
Getting Started with
Artix Encompass

Version 1.2, September 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, ORBacus, Artix, Artix Relay,
Artix Encompass, Orchestrator, Mobile Orchestrator, Enterprise Integrator, Adaptive
Runtime Technology, Transparent Enterprise Deployment, and Total Business Integration
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001�2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 17-Oct-2003

M 3 1 1 0

Contents

List of Figures v

Preface vii

Chapter 1 Artix Encompass Concepts 1
Introduction to Artix Encompass 2
The Elements of Artix 4

The Artix Bus 5
Artix Service Access Points 6
Artix Contracts 7

The Artix Designer 10

Chapter 2 Using Artix Designer to Build a C++ Web Service 21
The Web Service Project 23
Using Artix Designer 24
Starting Artix Designer 28
Creating an Artix Designer Project 31
Building the Widget Web Server 36
Building the Widget Web Service Client 39
Testing the Application 42

Chapter 3 Using Artix Command Line Tools to Build a C++ Web Service 45
The Web Service Project 46
Using Artix Encompass Tools 47
Building the Widget Web Server 51
Building the Widget Web Service Client 53
Testing the Application 55

Appendix A Implementation Code for the Widget Server and Client 57
Server Implementation Code 58
Client Implementation Code 60
iii

CONTENTS
Glossary 65

Index 69
 iv

List of Figures

Figure 1: The Artix Bus 4

Figure 2: Client-Server System Diagram 11

Figure 3: Artix Contract Editor 12

Figure 4: Editing a complexType 13

Figure 5: Adding Parts to a Message 14

Figure 6: Editing a PortType 15

Figure 7: Editing an Operation 16

Figure 8: Artix Service Editor 17

Figure 9: Editing the Properties of an HTTP Port 18

Figure 10: Development Tool 19

Figure 11: Deployment Tool 20

Figure 12: Welcome Screen 29

Figure 13: Artix Designer 30

Figure 14: Select Project Type 31

Figure 15: New project details 32

Figure 16: System Configuration 33

Figure 17: WSDL File Selection 34

Figure 18: Widget Service Starting Point 35

Figure 19: Widget Server Development Screen 37

Figure 20: Widget Client Development Screen 40
v

LIST OF FIGURES
 vi

Preface
Overview Getting Started with Artix Encompass gives a brief overview of Artix

Encompass and provides a simple example of how to use Artix Encompass
to solve a real world problem.

Audience Getting Started with Artix Encompass is for anyone who needs to
understand the concepts and terms used in IONA�s Artix Encompass
product, as well as anyone who needs to install Artix or maintain installed
Artix systems.

Organization of this guide This guide is divided as follows:

� �Artix Encompass Concepts� provides general information about Artix
and how it is used.

� �Using Artix Designer to Build a C++ Web Service� presents a walk
through of how to create a C++ Web service with the Artix Designer.

� �Using Artix Command Line Tools to Build a C++ Web Service�
presents a walk through of the same scenario using the Artix command
line tools.

Related documentation The document set for IONA Artix includes the following:

� Getting Started With Artix

� Artix User�s Guide

� Artix Installation Guide

� Artix Tutorial
vii

PREFACE
� Artix C++ Programming Guide

� Artix Security Guide

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs/artix/1.2/index.xml.

Online help Artix includes comprehensive online help, providing:

� Detailed step-by-step instructions on how to perform important tasks.

� A description of each screen.

� A comprehensive index and glossary.

� A full search feature.

� Context-sensitive help.

The Help menu in Artix Designer provides access to this online help.

Reading path If you are new to Artix, you should read the documentation in the following
order:

1. Getting Started with Artix Encompass

The getting started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

2. Artix Tutorial

The tutorial guides you through programming Artix applications against
all of the supported transports.

3. The Artix Users� Guide

The users. guide describes the development pattern for designing and
deploying Artix enabled systems. It provides detailed examples for a
number of typical use cases.

4. GUI Online Help

The Artix design tools have context sensitive on-line help the provides
information specific to the tools that you are using.

5. Artix C++ Programmer�s Guide

The programmer�s guide discusses the technical aspects of
programming applications using the Artix C++ API.
 viii

http://www.iona.com/support/docs/artix/1.2/index.xml
http://www.iona.com/support/docs/artix/1.2/index.xml

PREFACE
Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts, about Artix and other products. You can access the knowledge base
at the following location:

The IONA update center contains the latest releases and patches for IONA
products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
ix

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 x

CHAPTER 1

Artix Encompass
Concepts
Artix Encompass extends enterprise Quality of Service features
to Web services applications and enables the rapid creation
and deployment of EAI solutions using Web services
technology.

In this chapter This chapter discusses the following topics:

Introduction to Artix Encompass page 2

The Elements of Artix page 4

The Artix Designer page 10
1

CHAPTER 1 | Artix Encompass Concepts
Introduction to Artix Encompass

Overview Artix Encompass enables developers to expose existing application logic as
Web services without changing the underlying middleware upon which they
run or developers can write new C++ Web services. In addition, it provides
enterprise levels of service such as session management, service look-up,
security, and transaction propagation.

Encompass does this by leveraging IONA�s proven Adaptive Runtime
Technology (ART) platform to provide a high-speed, stable backbone for
your Web service deployments. In addition, Encompass extends the ART
platform and the Web service metaphor by using the Artix Bus, IONA�s
transport and payload format switching technology. The Artix Bus enables
the creation of Web services that communicate using protocols other than
SOAP over HTTP; Web services can be developed and deployed using
proven enterprise quality communication mechanisms such as TIBCO
Rendevous�, CORBA, and IBM Websphere MQ (formerly MQSeries).

Artix Encompass Features Artix Encompass has the following unique features:

� Support for C++ Web service development

� Routing

� Transaction support for Web services

� Support for Asynchronous Web services

� Mainframe support for Web services

� Support for Web services to use multiple transports and message data
formats

� Security support for Web services

� Support for stateful Web services

� Leasing for Web services

� Load-balancing

� Look-up services

Supported transports Artix supports the following message transports:

� HTTP
 2

Introduction to Artix Encompass
� BEA Tuxedo

� IBM Websphere MQ

� TIBCO Rendezvous�

� IIOP Tunnel

Supported payload formats Artix can automatically transform between the following payload formats:

� G2++

� FML � Tuxedo format

� CORBA (GIOP) � CORBA format

� FRL � fixed record length

� VRL � variable record length

� SOAP

� TibrvMsg - TIBCO Rendezvous format

The mapping of logical data items between payload formats is supported by
Artix tools.
3

CHAPTER 1 | Artix Encompass Concepts
The Elements of Artix

Overview Artix�s unique features are implemented by a number of plug-ins to IONA�s
ART platform. These plug-ins form the core of Artix, the Artix Bus.
Applications that make use of Artix connect to the Bus using Artix Services
Access Points (SAPs). Service Access Points are described by Artix
Contracts.

Figure 1 shows how all of the Artix elements fit together.

In this Section This section discusses the following topics:

Figure 1: The Artix Bus

Artix Bus

Client Server

SAP
contract

SAP
contract

CORBASOAP/HTTP

The Artix Bus page 5

Artix Service Access Points page 6

Artix Contracts page 7
 4

The Elements of Artix
The Artix Bus

Overview The Artix Bus is a set of plug-ins that work in much the same way as the
simultaneous translators at the United Nations. The plug-ins read data that
can be in a number of disparate formats, the Bus directly translates the data
into another format, and the plug-ins write the data back out to the wire in
the new format. In this way Artix enables all of the applications in your
company to communicate over the Web without needing to understand
SOAP or HTTP. It also means that clients can contact Web services without
understanding the native language of the server handling requests.

Benefits While other Web service suites provide some ability to expose enterprise
applications as Web services, they frequently require a good deal of coding.
The Artix bus eliminates the need to modify your applications or write code
by directly translating between the enterprise application�s native
communication protocol and SOAP over HTTP, the prevalent protocol for
Web services. For example, by deploying an Artix instance with a SOAP over
Websphere MQ SAP and a SOAP over HTTP SAPoint, you can expose a
Websphere MQ application directly as a Web service. The Webshpere MQ
application would not need to be altered or made aware that it was being
exposed using SOAP over HTTP.

The Artix Bus� translation ability also makes it a powerful integration tool.
Unlike Enterprise EAI applications, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing and increases the speed at which messages are transmitted
through the Bus.
5

CHAPTER 1 | Artix Encompass Concepts
Artix Service Access Points

Overview An Artix Service Access Point (SAP) is where a service provider or service
consumer connects to the Artix Bus. SAPs are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection In essence, an SAP provides an abstract connection point between
applications. The benefit of using this abstract connection is that it allows
you to change the underlying communication mechanisms without recoding
any of your applications. You simply need to modify the contract describing
the SAP. For example, if one of your backend service providers is a Tuxedo
application and you want to swap out Tuxedo for a CORBA implementation,
you would simply change the SAP�s contract to contain a CORBA
connection to the Bus. The clients accessing the backend service provider
never need to be aware that the application has changed.
 6

The Elements of Artix
Artix Contracts

Overview The Web Services Definition Language (WSDL) is used to describe the
characteristics of the Service Access Points (SAPs) of an Artix connection.
By defining characteristics like service operations and messages in an
abstract way -- independent of the actual transport or protocol used to
implement the SAP -- these characteristics can be bound to a variety of a
specific protocols and formats. In fact, Artix allows an abstract definition to
be bound to multiple specific protocols and formats. This means that the
same definitions can be reused in multiple implementations of a service.

Artix contracts define the services exposed by a set of systems, the payload
formats and transports available to each system, and the rules governing
how the systems interact with each other. The most simple Artix contract
defines a set of systems with a shared interface, payload format, and
transport. Artix contracts, however, can define very complex integration
scenarios.

WSDL concepts Understanding Artix contracts requires some familiarity with WSDL,
including the definitions of the following terms:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated
and each part of a message is associated with defined types.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific protocol and data format for
operations defined in a portType.

A WSDL Port specifies a network address for a binding, and defines a single
communication endpoint.

A WSDL service specifies a set of related ports.
7

CHAPTER 1 | Artix Encompass Concepts
The Artix contract An Artix contract is specified in WSDL and conceptually divided into logical
and physical components.

The logical contract specifies things that are independent of the underlying
transport and wire format; it fully specifies the data structure and the
possible operations or interactions with the interface. It allows Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (wire format and transport).

The physical component of an Artix contract defines:

� The wire format, middleware transport, and service groupings

� The connection between the PortType �operations� and wire formats

� Buffer layout for fixed formats

� Artix extensions to WSDL

Payload Formats A payload format controls the layout of a message delivered over a
transport. The WSDL definition of a Port and its binding together associate a
payload format with a transport. A binding can be specified in the logical

Example 1: Artix WSDL Contract Elements

Logical Contract:

<Schema>

<Type> (analogous to typedefs)

<Message> (analogous to parameter)

<PortType> (analogous to class or CORBA interface definition)

<Operations> (analogous to methods)

Physical Contract:

<Binding> (payload format)

<Services> (groups of ports)

<Port> (transport addressing information)

<Route> (rules governing system interaction)
 8

The Elements of Artix
portion of an Artix contract (portType), which allows for a logical contract to
have multiple bindings and thus allow multiple on-the-wire formats to use
the same contract.
9

CHAPTER 1 | Artix Encompass Concepts
The Artix Designer

Overview The Artix Designer is a tool for creating and managing Artix contracts. It
provides editors for creating contracts from standard WSDL files as well as
from CORBA IDL files. The Designer also makes it easy to define new data
types, logical interfaces, payload bindings, and transports by providing
editors to walk you through each step.

The Artix Designer generates all of the Artix components you need to
complete your project. These components include:

� Artix contracts describing each of the services in your system.

� An Artix contract describing how Artix integrates your services.

� Any Artix stub and skeleton code needed to write Artix application
code.

� The needed configuration information to deploy your Artix instances.

In addition, the Artix Designer can also generate CORBA IDL from any
contracts that have a CORBA binding.

System Diagram The first screen you see when using the Artix Designer is the system
diagram. The system diagram displays all of the services in your system and
the Artix instances deployed to integrate the services. This diagram is
updated as you add services and Artix instances to your system. Figure 2
shows a system diagram containing a client and server being integrated
 10

The Artix Designer
using a standalone Artix instance.

Project Tree To the left of the Designer�s editor panel is the project tree. The project tree
lists all of system diagram components with nodes for generating code,
generating deployment information, and, if you are using CORBA,
generating IDL. The project tree also lists all of the contracts imported into
your project..

Figure 2: Client-Server System Diagram
11

CHAPTER 1 | Artix Encompass Concepts
The drop down list at the bottom of the project tree panel controls the
amount of detail shown in the tree at a time. The default is to show all the
information about the project. You can chose to view only the contracts
imported into the project or just the system components.

Contract Editor The contract editor of the Artix Designer is where most of the work is done
when developing an Artix project. As shown in Figure 3, the contract editor
presents you with a graphical representation of an Artix contract. By
selecting the different nodes in the diagram you bring up editors that allow
you to add to or edit each of the parts of an Artix contract.

Figure 3: Artix Contract Editor
 12

The Artix Designer
Type Editor The type editor is invoked from the contract editor and allows you to create
new logical types in your contract or modify existing types. When editing
existing types, the editor screen is tailored to match the kind of data type
you are editing. Figure 4 shows the screen for editing a complexType.

When adding a new type the editor walks you through the creation of your
data type.

Figure 4: Editing a complexType
13

CHAPTER 1 | Artix Encompass Concepts
Message Editor The message editor is invoked from the contract editor and allows you to
add new messages to your contract and to edit existing messages. Using the
editor you can add new parts to existing messages from the types existing in
your contract and the editor ensures that there are no naming conflicts.
Figure 5 shows the message editor�s main dialog.

Interface Editor The interface editor, or PortType editor, is invoked from the contract editor
and allows you to edit existing logical interfaces or add new logical
interfaces. Logical interfaces are referred to as portTypes in a WSDL

Figure 5: Adding Parts to a Message
 14

The Artix Designer
document and the editor dialogs rely on WSDL terminology. The output of
this editor will be entered in a portType element in your contract. Figure 6
shows the interface editor.

Operation Editor The operation editor is part of the interface editor. It allows you to modify
existing operations defined on the interface or to add new operations to the
interface. When adding messages to an operation, the editor will only allow
you to select from messages already defined in the contract. The editor also

Figure 6: Editing a PortType
15

CHAPTER 1 | Artix Encompass Concepts
checks for any naming conflicts. Figure 7 shows the operation editor.

Binding Editor The binding editor is invoked from the contract editor and allows you to map
any interface described in your contract to one of the payload formats
supported by Artix. The editor asks you to select the payload format and the
interface. It then performs the mapping automatically.

Service Editor The service editor is invoked from the contract editor and allows you to edit
existing WSDL service definitions in your contract and to add new WSDL
service definitions in your contract. As shown in Figure 8, the editor shows

Figure 7: Editing an Operation
 16

The Artix Designer
you the name of service, the ports defined as part of the service, the
transport used by the selected port, and any properties set on the selected
port.

Figure 8: Artix Service Editor
17

CHAPTER 1 | Artix Encompass Concepts
Port Editor The port editor is part of the service editor and it allows you to modify the
properties of an existing port or add a new port to an existing service. It
provides you with a list of properties you can set on each type of port Artix
supports and ensures that the required values are supplied. Figure 9 shows
the properties for an Artix HTTP port.

Routing Editor The routing editor is invoked from the contract editor and allows you to
create routes between compatible ports. For this editor to be used, your
contract must have more than one port defined and the ports must be
compatible. For a detailed discussion on port compatibility and routing see
the Artix Users� Guide.

Figure 9: Editing the Properties of an HTTP Port
 18

The Artix Designer
Development Tool The development tool is invoked by selecting the Development icon under
one of the services in the project tree. Using this tool, shown in Figure 10,
you can generate Artix C++ stub and skeleton code for the interfaces
defined by the selected service�s contract. The tool will also generate a make
file and sample server and client mainlines for you.

If the service�s contract contains a CORBA binding, the development tool
will also generate IDL describing the service�s interfaces.

Figure 10: Development Tool
19

CHAPTER 1 | Artix Encompass Concepts
Deployment Tool The deployment tool is invoked by selecting the Deployment icon under one
of the services in the project tree. The deployment tool, show in Figure 11,
generates an Artix configuration file that is optimized for the selected
service, a script for setting up your Artix runtime environment, and a
composite Artix contract that is suitable for deployment into a runtime
system. The generated configuration file contains all of the information
needed to deploy your service using Artix. In the case of a standalone Artix
service the deployment tool also generates start and stop scripts for the Artix
service.

Figure 11: Deployment Tool
 20

CHAPTER 2

Using Artix
Designer to Build
a C++ Web
Service
Artix Encompass is a world class utility for building C++ Web
services using simple, standard C++ programming
techniques. It provides all the tools needed to edit WSDL
contracts and generate starting point code for Web servers and
their clients.

In this chapter This chapter discusses the following topics:

The Web Service Project page 23

Using Artix Designer page 24

Starting Artix Designer page 28

Creating an Artix Designer Project page 31

Building the Widget Web Server page 36
21

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Building the Widget Web Service Client page 39

Testing the Application page 42
 22

The Web Service Project
The Web Service Project

The problem scenario Your company produces widgets and has decided to automate its ordering
system to cut labor costs and reduce turnaround time. The new system will
allow the company�s customers to submit their orders electronically, will
generate and send electronic bills to the customer, and generate a work
order for your manufacturing system.

Your company�s CIO has determined he wants this new system to be
implemented using a Web service and that the development of both the
server and the client will be done in-house. Unfortunately, your IT
department doesn�t have anybody with solid Java or Web services skills and
there is no money or time to hire a new developer for this project.

How Artix simplifies solving the
problem

Artix simplifies the solution to this problem by providing automated
generation of the following:

� C++ server skeletons which allow developers to program using
standard C++ metaphors

� C++ server implementation object method shells

� C++ client stubs which allow developers to program using standard
C++ metaphors

� C++ server mainline starting point code

� C++ client mainline starting point code

� makefiles for Unix or Windows

� deployment descriptors for Web services
23

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Using Artix Designer

Overview Artix Designer provides a graphical environment in which to define your Web
service�s interfaces and the transports it will use. In this case, the problem is
to define a service that receives an order and returns a bill. A full description
of this service includes:

� The structure of the data the service sends and receives

� The operations offered by the service

� The order in which the data is encoded

� The payload format the service uses

� The transport the service uses

� The location of the service.

A Web service is defined in a WSDL document. Artix can import WSDL
directly, and convert it into Artix contracts (which are themselves WSDL
files that may include IONA-specific extensions). Even if a service
description is less formal than an existing WSDL file (e.g., in the case where
a service is under development), Artix Designer provides a series of wizards
to guide you through the process of creating an Artix contract based on the
information available.

The Web service description For the purposes of this example we will use a predefined Widget service
defined in Example 2.

Example 2: Vendor WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 24

Using Artix Designer
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>

Example 2: Vendor WSDL document
25

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
This WSDL document completely describes the interface exposed by the
Web service and the data that is passed to and from the server. Artix
Designer can import this file directly and use it in the Artix contract that
describes the entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="widgetOrder">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="widgetOrderBill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 2: Vendor WSDL document

<types> Defines the complex data types used by the service. This
service uses an enumerated type, widgetSize, to
describe the widgets, a structure, Address, to hold the
shipping address, and two structures, widgetOrderInfo
and widgetOrderBillInfo, for the data needed to
process the order.

<message> Defines the messages by which the service
communicates.

<portType> Defines the operations offered by the service.
 26

Using Artix Designer
<binding> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<service> Defines the address where the service can be contacted.
27

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Starting Artix Designer

Overview Artix Designer is a suite of tools for developing Artix solutions and managing
Artix projects.

Windows On a Windows system you can start Artix Designer from the Start menu.
Select Programs|IONA|Artix|Artix Designer. You can also start Artix
Designer from the command line with the following command:

The executable for this command is installed in the following directory:

UNIX On a UNIX system you must start Artix Designer from the command line. To
start Designer, complete the following steps:

1. Run %IT_PRODUCT_DIR%\artix\1.2\bin\artix_env to source the Artix
environment.

2. Run %IT_PRODUCT_DIR%\artix\1.2\bin\start_designer to start the
GUI.

start_designer

%IT_PRODUCT_DIR%\artix\1.2\bin
 28

Starting Artix Designer
Once the GUI is running 1. Select Go straight to designer on the welcome screen shown in
Figure 12.

2. You will see a screen like Figure 13.

Figure 12: Welcome Screen
29

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Figure 13: Artix Designer
 30

Creating an Artix Designer Project
Creating an Artix Designer Project

Overview An Artix project consists of one or more Artix contracts, a system design
diagram, and a number of source code files. Artix Designer creates a special
directory and project structure to manage these artifacts.

Procedure To create a new Artix Designer project complete the following steps:

1. Create a new Artix project by selecting New|Project from the
designer�s File menu.

2. You will see a screen like Figure 14.

3. Select Integrate with an existing web service.

4. Click Next.

Figure 14: Select Project Type
31

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
5. You will see a screen like Figure 15.

6. Type Widgets in the Name field.

7. Click Change.

8. Using the file navigation dialog box, navigate to your home directory
and click Select Project Directory.

9. Click Next.

Figure 15: New project details
 32

Creating an Artix Designer Project
10. A screen like that shown in Figure 16 appears:.

11. Select Embedded.

12. Click Next.

Figure 16: System Configuration
33

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
13. You will see a screen like Figure 17.

14. Click the Select button.

15. Using the file navigation dialog box, navigate to your Artix installation
directory.

16. Under your Artix installation directory, locate the demos/widgets
directory.

17. Select widgets.wsdl from the file selection box.

18. Click the Validate File button.

19. When Finish becomes available, click it to create your project.

20. The Designer screen now looks like Figure 18.

Figure 17: WSDL File Selection
 34

Creating an Artix Designer Project
Figure 18: Widget Service Starting Point
35

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Building the Widget Web Server

Overview Artix Designer generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, the designer
generates a sample server mainline, and generates a makefile to build the
server.

Once Artix Designer generates the stub code, you must write the
implementation logic using the C++ development environment of your
choice.

Procedure To develop the widget web server using Artix Designer complete the
following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Server node under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Server node.

4. Select the Development icon under the Server node in the project tree.
 36

Building the Widget Web Server
5. You will see a screen similar to Figure 19.

6. Select C++ from the Development Environment pull-down list.

7. Enter WidgetServer for the C++ Namespace.

8. Select the appropriate type of makefile generation for your platform.

9. Select orderWidgetsService from the Select Service pull-down list.

10. Select widgetOrderPort from the Select Port pull-down list.

11. Click OK.

Figure 19: Widget Server Development Screen
37

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
12. The following files are generated in the Server/src/cpp directory of
your project folder:

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Client.*, source
files.

13. Insert the highlighted code shown in �Server Implementation Code� on
page 58, to orderWidgetsImpl.cxx to add the application logic to the
server.

14. Build the server.

UNIX

Windows

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsImpl.h orderWidgetsServer.cxx

orderWidgetsServer.h SampleClient.cxx

SampleServer.cxx Makefile

Server_wsdlTypesFactory.cxx Server_wsdlTypesFactory.h

widgets_wsdlTypes.cxx widgets_wsdlTypes.h

make server.exe

nmake server.exe
 38

Building the Widget Web Service Client
Building the Widget Web Service Client

Overview Artix-generated proxy classes integrate smoothly into a standard C++
application. To use an Artix proxy you must initialize the Artix Bus and then
instantiate an instance of the proxy class. Once instantiated the proxy object
provides all of the functionality of the server through standard invocations of
its methods.

Procedure To develop the widget web service client using Artix Designer complete the
following steps:

1. Select the widgetOrderForm contract from the Contracts folder of the
project tree.

2. Drag the contract to the Client node under the Configuration folder on
the project tree.

3. A copy of the contract will appear under the Client node.

4. Select the Development icon under the Client node in the project tree.
39

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
5. You will see a screen similar to Figure 20.

6. Select C++ from the Development Environment pull-down list.

7. Enter WidgetClient for the C++ Namespace.

8. Select the appropriate type of makefile generation for your platform.

9. Select orderWidgetsService from the Select Service pull-down list.

10. Select widgetOrderPort from the Select Port pull-down list.

11. Click OK.

Figure 20: Widget Client Development Screen
 40

Building the Widget Web Service Client
12. The following files are generated in the Clinet/src/cpp directory of
your project folder:

For the purposes of generating a web service client to interact with the
widget web server, you do not need any of the server, *Server.* and
orderWidgetsImpl.cxx, source files.

13. Insert the highlighted code shown in �Client Implementation Code� on
page 60, to sampleClient.cxx to add the application logic to the
client.

14. Build the client.

UNIX

Windows

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsImpl.h orderWidgetsServer.cxx

orderWidgetsServer.h SampleClient.cxx

SampleServer.cxx Makefile

Client_wsdlTypesFactory.cxx Client_wsdlTypesFactory.h

widgets_wsdlTypes.cxx widgets_wsdlTypes.h

make client.exe

nmake client.exe
41

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
Testing the Application

Overview Once all of the components are generated, your system is ready to be tested.

Procedure To test your Artix project complete the following steps:

1. Go to the widget project directory you created.

2. Run artix_env.

3. Go to the server directory.

The server will be located in the Server/src/cpp folder of your project
directory.

4. Start the server with the following command:

5. Go to the client directory.

The client will be located in the Client/src/cpp folder of your project
directory.

6. Start the client with the following command:

7. Answer the questions to complete the widget order form.

8. The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Sample output Example 3 shows the output from a sample run of the Artix project.

start server

start client

Example 3: Sample Widget Order

C:\IONA\artix\1.2\demos\widgets>start client
 42

Testing the Application
orderWidgets Client
How many widgets do you want to order?123

What type of widgets do you want to order?
1 - Big
2 - Large
3 - Mungo
4 - Gargantuan
Selection [1-4]4

Enter Street Address:123 Elm Street
Enter Apt. or Suite Number:
Enter City:Walford
Enter State:CT
Enter ZIP Code:02343
Sending Widget Order
Bill for Your Widgets
Order Number: 23:12:4807/31/03
Date: 07/31/03
Quantity: 123
Type: Gargantuan
Amount Due: 123
Ship To:
123 Elm Street

Walford, CT
02343

Example 3: Sample Widget Order
43

CHAPTER 2 | Using Artix Designer to Build a C++ Web Service
 44

CHAPTER 3

Using Artix
Command Line
Tools to Build a
C++ Web Service
Artix Encompass is a world class utility for building C++ Web
services using simple, standard C++ programming
techniques. It provides all the tools needed to edit WSDL
contracts and generate starting point code for Web servers and
their clients.

In this chapter This chapter discusses the following topics:

The Web Service Project page 46

Using Artix Encompass Tools page 47

Building the Widget Web Server page 51

Building the Widget Web Service Client page 53

Testing the Application page 55
45

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
The Web Service Project

The problem scenario Your company produces widgets and has decided to automate its ordering
system to cut labor costs and reduce turnaround time. The new system will
allow the company�s customers to submit their orders electronically, will
generate and send electronic bills to the customer, and generate a work
order for your manufacturing system.

Your company�s CIO has determined he wants this new system to be
implemented using a Web service and that the development of both the
server and the client will be done in-house. Unfortunately, your IT
department doesn�t have anybody with solid Java or Web services skills and
there is no money or time to hire a new developer for this project.

How Artix simplifies solving the
problem

Artix simplifies the solution to this problem by providing automated
generation of the following:

� C++ server skeletons which allow developers to program using
standard C++ metaphors

� C++ server implementation object method shells

� C++ client stubs which allow developers to program using standard
C++ metaphors

� C++ server mainline starting point code

� C++ client mainline starting point code

� makefiles for Unix or Windows

� deployment descriptors for Web services
 46

Using Artix Encompass Tools
Using Artix Encompass Tools

Overview Artix Encompass provides a full set of command line tools to take a Web
service description and build the server stubs and client proxy code needed
to implement the service. In this case, the problem is to define a service that
receives an order and returns a bill. A full description of this service
includes:

� The structure of the data the service sends and receives

� The operations offered by the service

� The order in which the data is encoded

� The payload format the service uses

� The transport the service uses

� The location of the service.

A Web service is defined in a WSDL document. Artix tools import WSDL
directly and generate standard C++ code as starting point for development
of the Web service.

The Web service description For the purposes of this example we will use a predefined Widget service
defined in Example 4.

Example 4: Vendor WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
47

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>

Example 4: Vendor WSDL document
 48

Using Artix Encompass Tools
This WSDL document completely describes the interface exposed by the
Web service and the data that is passed to and from the server. Artix
Designer can import this file directly and use it in the Artix contract that
describes the entire integrated system you are building.

The major sections of the WSDL description are interpreted as follows:

 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="widgetOrder">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="widgetOrderBill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <soap:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 4: Vendor WSDL document

<types> Defines the complex data types used by the service. This
service uses an enumerated type, widgetSize, to
describe the widgets, a structure, Address, to hold the
shipping address, and two structures, widgetOrderInfo
and widgetOrderBillInfo, for the data needed to
process the order.

<message> Defines the messages by which the service
communicates.

<portType> Defines the operations offered by the service.
49

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
<binding> Describes how the service expects its data to be
formatted. In this case, it formats the data using SOAP.

<service> Defines the address where the service can be contacted.
 50

Building the Widget Web Server
Building the Widget Web Server

Overview Artix�s wsdltocpp tool generates server stubs for any of the contracts used to
describe a component of your integration project. In addition, it generates a
sample server mainline, and generates a makefile to build the server.

Once wsdltocpp generates the stub code, you must write the
implementation logic using the C++ development environment of your
choice.

Procedure To develop the widget web server using wsdltocpp complete the following
steps:

1. Go to the Artix bin directory.

UNIX

Windows

2. Source the artix_env script.

3. Go to the widgets demo directory.

UNIX

Windows

4. Generate the server stubs from widget.wsdl using the wsdltocpp tool.

UNIX

$IT_PRODUCT_DIR/artix/1.2/bin

%IT_PRODUCT_DIR%\artix\1.2\bin

$IT_PRODUCT_DIR/artix/1.2/demos/widgets

%IT_PRODUCT_DIR%\artix\1.2\demos\widgets

wsdltocpp -sample -impl -m UNIX widgets.wsdl
51

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
Windows

5. The following files are generated:

For the purposes of generating a Web server to implement the widget
ordering system, you do not need any of the client, *Client.*, source
files.

6. Insert the highlighted code shown in �Server Implementation Code� on
page 58, to orderWidgetsImpl.cxx to add the application logic to the
server.

7. Build the server.

UNIX

Windows

wsdltocpp -sample -impl -m NMAKE widgets.wsdl

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsImpl.h orderWidgetsServer.cxx

orderWidgetsServer.h SampleClient.cxx

SampleServer.cxx Makefile

widgts_wsdlTypesFactory.cxx widgts_wsdlTypesFactory.h

widgts_wsdlTypes.cxx widgts_wsdlTypes.h

make server.exe

nmake server.exe
 52

Building the Widget Web Service Client
Building the Widget Web Service Client

Overview Artix generated proxy classes integrate smoothly into a standard C++
application. To use an Artix proxy you must initialize the Artix Bus and then
instantiate an instance of the proxy class. Once instantiated the proxy object
provides all of the functionality of the server through standard invocations of
its methods.

Procedure To create the widget web service client using wsdltocpp complete the
following steps:

1. Go to the Artix bin directory.

UNIX

Windows

2. Source the artix_env script.

3. Go to the widgets demo directory.

UNIX

Windows

4. Generate the client proxies from widget.wsdl using the wsdltocpp
tool.

UNIX

$IT_PRODUCT_DIR/artix/1.2/bin

%IT_PRODUCT_DIR%\artix\1.2\bin

$IT_PRODUCT_DIR/artix/1.2/demos/widgets

%IT_PRODUCT_DIR%\artix\1.2\demos\widgets

wsdltocpp -sample -m UNIX widgets.wsdl
53

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
Windows

5. The following files are generated:

For the purposes of generating a Web service client to interact with the
widget web server, you do not need any of the server, *Server.* and
orderWidgets.impl, source files.

6. Insert the highlighted code shown in �Client Implementation Code� on
page 60, to sampleClient.cxx to add the application logic to the
client.

7. Build the client.

UNIX

Windows

wsdltocpp -sample -m NMAKE widgets.wsdl

orderWidgets.h orderWidgetsClient.cxx

orderWidgetsClient.h orderWidgetsImpl.cxx

orderWidgetsServer.h orderWidgetsServer.cxx

SampleServer.cxx SampleClient.cxx

Makefile widgts_wsdlTypesFactory.cxx

widgts_wsdlTypesFactory.h widgts_wsdlTypes.h

widgts_wsdlTypes.cxx

make client.exe

nmake client.exe
 54

Testing the Application
Testing the Application

Overview Once all of the components are generated, your system is ready to be tested.

Procedure To test your Artix project complete the following steps:

1. Go to the widget project directory you created.

2. Run artix_env.

3. Start the server with the following command:

4. Start the client with the following command:

5. Answer the questions to complete the widget order form.

6. The server will return a bill containing the information you entered
along with a randomly generated order number and a price for the
widgets.

Sample output Example 5 shows the output from a sample run of the Artix project.

start server

start client

Example 5: Sample Widget Order

C:\IONA\artix\1.1\demos\widgets>start client
55

CHAPTER 3 | Using Artix Command Line Tools to Build a C++ Web Service
orderWidgets Client
How many widgets do you want to order?123

What type of widgets do you want to order?
1 - Big
2 - Large
3 - Mungo
4 - Gargantuan
Selection [1-4]4

Enter Street Address:123 Elm Street
Enter Apt. or Suite Number:
Enter City:Walford
Enter State:CT
Enter ZIP Code:02343
Sending Widget Order
Bill for Your Widgets
Order Number: 23:12:4807/31/03
Date: 07/31/03
Quantity: 123
Type: Gargantuan
Amount Due: 123
Ship To:
123 Elm Street

Walford, CT
02343

Example 5: Sample Widget Order
 56

APPENDEX A

Implementation
Code for the
Widget Server and
Client

In this appendex This appendex contains the following:

Server Implementation Code page 58

Client Implementation Code page 60
57

CHAPTER A | Implementation Code for the Widget Server and Client
Server Implementation Code

Overview The logic of an Artix server is developed inside of an implementation class
generated by the Artix tools. This implementation code can typically be
written using standard C++. For more advanced functionality, like
transactions or security, you may need to use Artix-specific calls.

Code Example 6 shows the implementation code for the sample widget Web
service.

Example 6: Widget Server Implementation

#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <it_cal/cal.h>
#include <string.h>
#include <stdlib.h>
#include "orderWidgetsImpl.h"

IT_USING_NAMESPACE_STD

orderWidgetsImpl::orderWidgetsImpl(IT_Bus::Bus_ptr bus,
IT_Bus::Port* port) : orderWidgetsServer(bus, port)

{
}

orderWidgetsImpl::~orderWidgetsImpl()
{
}

void orderWidgetsImpl::placeWidgetOrder(
 const widgetOrderInfo & widgetOrderForm,
 widgetOrderBillInfo & widgetOrderConformation
) IT_THROW_DECL((IT_Bus::Exception))
{
 widgetOrderConformation.setamount(
 widgetOrderForm.getamount());

 widgetOrderConformation.setorder_date(
 widgetOrderForm.getorder_date());
 58

Server Implementation Code
 widgetOrderConformation.settype(widgetOrderForm.gettype());

 widgetOrderConformation.setshippingAddress(
 widgetOrderForm.getshippingAddress());

 IT_Bus::Float amtDue = widgetOrderForm.getamount() * 1.00;
 widgetOrderConformation.setamtDue(amtDue);

 char tempOrdNum[128], tempBuf[20];
 _strtime(tempOrdNum);
 _strdate(tempBuf);
 strcat(tempOrdNum, tempBuf);
 widgetOrderConformation.setorderNumber(tempOrdNum);
}

Example 6: Widget Server Implementation
59

CHAPTER A | Implementation Code for the Widget Server and Client
Client Implementation Code

Overview The logic of an Artix client is developed using standard C++ calls.
Artix-specific code is only needed to initialize the Artix Bus in the mainline of
your client. For more advanced functionality, like transactions or security,
you may need to use Artix specific-calls.

Code The client application logic code is shown in Example 7.

Example 7: Widget Web Service Client

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>
#include <it_cal/fstream.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>

#include "orderWidgetsClient.h"

IT_USING_NAMESPACE_STD
using namespace IT_Bus;

long get_amount()
{
 long amount;

 cout << endl;
 cout << "How many widgets do you want to order?" << flush;

 cin >> amount;

 return(amount);
}

 60

Client Implementation Code
widgetSize get_type()
{
 widgetSize type;
 char selection;

 cout << endl;
 cout << "What type of widgets do you want to order?" << endl;
 cout << "1 - Big" << endl;
 cout << "2 - Large" << endl;
 cout << "3 - Mungo" << endl;
 cout << "4 - Gargantuan" << endl;
 cout << "Selection [1-4]" << flush;

 cin >> selection;

 switch (selection)
 {
 case '1':
 {
 type = big;
 break;
 }
 case '2':
 {
 type = large;
 break;
 }
 case '3':
 {
 type = mungo;
 break;
 }
 case '4':
 {
 type = gargantuan;
 break;
 }
 default : type = mungo;
 }

 return(type);
}

Example 7: Widget Web Service Client
61

CHAPTER A | Implementation Code for the Widget Server and Client
Address get_address()
{
 Address address;
 char temp[256];

 cout << endl;
 cout << "Enter Street Address:" << flush;
 gets(temp); // clears the buffer
 gets(temp);
 address.street1 = string_dup(temp);

 cout << "Enter Apt. or Suite Number:" << flush;
 gets(temp);
 address.street2 = string_dup(temp);

 cout << "Enter City:" << flush;
 gets(temp);
 address.city = string_dup(temp);

 cout << "Enter State:" << flush;
 cin >> temp;
 address.state = string_dup(temp);

 cout << "Enter ZIP Code:" << flush;
 cin >> temp;
 address.zipCode = string_dup(temp);

 return(address);
}

void print_bill(widgetOrderBillInfo bill)
{
 cout << "Bill for Your Widgets" << endl;
 cout << "Order Number: " << bill.orderNumber << endl;
 cout << "Date: " << bill.order_date << endl;
 cout << "Quantity: " << bill.amount << endl;

Example 7: Widget Web Service Client
 62

Client Implementation Code
 switch(bill->type)
 {
 case big:
 {
 cout << "Type: Big" << endl;
 break;
 }
 case large:
 {
 cout << "Type: Large" << endl;
 break;
 }
 case mungo:
 {
 cout << "Type: Mungo" << endl;
 break;
 }
 case gargantuan: cout << "Type: Gargantuan" << endl;
 }

 cout << "Amount Due: " << bill.amtDue << endl;

 cout << "Ship To:" << endl;
 cout << bill.shippingAddress.street1 << endl;
 cout << bill.shippingAddress.street2 << endl;
 cout << bill.shippingAddress.city << ", " <<

bill.shippingAddress.state << endl;
 cout << bill.shippingAddress.zipCode << endl;
}

int main(int argc, char** argv)
{
 cout << "orderWidgets Client" << endl;

 /*
 * Create an instance of the web service client.
 */

 try
 {
 IT_Bus::init(argc, argv);

 orderWidgetsClient client;

Example 7: Widget Web Service Client
63

CHAPTER A | Implementation Code for the Widget Server and Client
 // Sample invocation calls are shown in
 // commented lines below.

 /*

 widgetOrderInfo widgetOrderForm; // (INPUT)
 widgetOrderBillInfo widgetOrderConformation; //

(OUTPUT)
 client.placeWidgetOrder (widgetOrderForm,

widgetOrderConformation);
 */

 widgetOrderInfo order_form;
 order_form.amount = get_amount();
 char date[10];
 _strdate(date);
 order_form.order_date = CORBA::string_dup(date);
 order_form.type = get_type();
 order_form.shippingAddress = get_address();

 widgetOrderBillInfo bill;

 cout << "Sending Widget Order" << endl;
 client.placeWidgetOrder(order_form, bill);
 print_bill(bill);

 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message()
 << endl;
 return -1;
 }

 return 0;
}

Example 7: Widget Web Service Client
 64

Glossary
A Artix Designer

A suite of GUI tools for creating and deploying Artix integration solutions.

B Binding
A binding associates a specific transport/protocol and data format with the
operations defined in a <portType>.

Bus
See Service Bus

Bridge
A usage mode in which Artix is used to integrate applications using different
payload formats.

C Connection
An established communication link between any two Artix endpoints.

Contract
An Artix contract is a WSDL file that defines the interface and all
connection-related information for that interface. A contract contains two
components: logical and physical. The logical contract defines things that are
independent of the underlying transport and wire format, and is specified in
the <portType>, <operation>, <message>, <type>, and <schema> WSDL tags.

The physical contract defines the payload format, middleware transport, and
service groupings, and the mappings between these things and portType
�operations.� The physical contract is specified in the <port>, <binding> and
<service> WSDL tags.

Contract Editor
A GUI tool used for editing Artix contracts. It provides several wizards for
adding services, transports, and bindings to an Artix contract.
65

GLOSSARY
D Deployment Mode
One of two ways in which an Artix application can be deployed: Embedded
and Standalone. An embedded-mode Artix application is linked with
Artix-generated stubs and skeletons to connect client and server to the service
bus. A standalone application runs as a separate process in the form of a
daemon.

E Embedded Mode
Operational mode in which an application creates a Service Access Point,
either by invoking Artix APIs directly, or by compiling and linking
Artix-generated stubs and skeletons to connect client and server to the service
bus.

End-point
The runtime deployment of one or more contracts, where one or more
transports and its marshalling is defined, and at least one contract results in
a generated stub or skeleton (thus an end-point can be compiled into an
application). Contrast with Service.

H Host
The network node on which a particular service resides.

M Marshalling Format
A marshalling format controls the layout of a message to be delivered over a
transport. A marshalling format is bound to a transport in the WSDL definition
of a Port and its binding. A binding can also be specified in a logical contract
portType, which allows for a logical contract to have multiple bindings and
thus multiple wire message formats for the same contract.

P Payload Format
The on-the-wire structure of a message over a given transport. A payload
format is associated with a port (transport) in the WSDL via the binding
definition.

Protocol
A protocol is a transport whose format is defined by an open standard.
 66

R Routing
The redirection of a message from one WSDL binding to another. Routing
rules are specified in a contract and apply to both end-points and standalone
services. Artix supports port-based routing and operation-based routing
defined in WSDL contracts. Content-based routing is supported at the
application level.

Router
A usage mode in which Artix redirects messages based on rules defined in an
Artix contract.

S Service
An Artix service is an instance of an Artix runtime deployed with one or more
contracts, but with no generated language bindings. The service has no
compile-time dependencies. A service is dynamically configured by deploying
one or more contracts on it.

Service Access Point
The mechanism, and the points at which individual service providers and
consumers connect to the service bus.

Service Bus
The set of service providers and consumers that communicate via Artix. Also
known as an Enterprise Service Bus.

Standalone Mode
An Artix instance running independently of either of the applications it is
integrating. This provides a minimally invasive integration solution and is fully
described by an Artix contract.

Switch
A usage mode in which Artix connects applications using two different
transport mechanisms.

System
A collection of services and transports.
67

GLOSSARY
T Transport
An on-the-wire format for messages.

Transport Plug-In
A plug-in module that provides wire-level interoperation with a specific type
of middleware. When configured with a given transport plug-in, Artix will
interoperate with the specified middleware at a remote location or in another
process. The transport is specified in the <port> element of a contract.
 68

Index

A
Artix Bus 5
Artix contract 8
Artix Designer 24, 28

binding editor 16
contract editor 12
interface editor 14
message editor 14
operation editor 15
port editor 18
project tree 11
service editor 16
system diagram 10
type editor 13

B
binding 7, 27, 50

C
contract 7
contract editor

binding editor 16
interface editor 14
message editor 14
service editor 16
type editor 13

I
interface editor

operation editor 15

M
message 26, 49

O
operation 7

P
payload format 3, 8
portType 7, 26, 49
S
service 27, 50
Service Access Point 6, 7

T
types 26, 49

W
Web Services Definition Language 7
WSDL 24, 47
69

INDEX
 70

	List of Figures
	Preface
	Artix Encompass Concepts
	Introduction to Artix Encompass
	The Elements of Artix
	The Artix Bus
	Artix Service Access Points
	Artix Contracts

	The Artix Designer

	Using Artix Designer to Build a C++ Web Service
	The Web Service Project
	Using Artix Designer
	Starting Artix Designer
	Creating an Artix Designer Project
	Building the Widget Web Server
	Building the Widget Web Service Client
	Testing the Application

	Using Artix Command Line Tools to Build a C++ Web Service
	The Web Service Project
	Using Artix Encompass Tools
	Building the Widget Web Server
	Building the Widget Web Service Client
	Testing the Application

	Implementation Code for the Widget Server and Client
	Server Implementation Code
	Client Implementation Code

	Glossary
	Index

