
Basic Tutorial
Version 1.3, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 13-Jan-2004

Contents

Chapter 1 Introduction 1

Chapter 2 The WSDL File 3

Chapter 3 Coding the Web Service 15

Chapter 4 Using the Artix™ Designer 29

Chapter 5 Faults and Exceptions 55

Chapter 6 Mortgage Calculator 73
i

CONTENTS
 ii

Preface
What is Covered in this Book
The Artix Basic Tutorial provides a basic understand the concepts and terms
used in the IONA Artix Encompass product.

Who Should Read this Book
This manual is geared for first time Artix users. It is assumed that the
reader is familiar with C++ coding.

Organization of this Book
This book will guide you through the development of several Artix
applications. Initially you will use command line tools and the Artix
Designer to build and deploy HelloWorld applications. At the end of the
document you will be given an opportunity to build and deploy a more
involved application. See Chapter 1 for a more complete detailing of the
chapter contents.

Related Documentation
The document set for Artix includes the following:

• Getting Started with Artix Encompass

• Getting Started with Artix Relay

• Designing Artix Solutions

• Deploying and Managing Artix Solutions

• Artix Installation Guide
iii

PREFACE
• Artix Tutorial

• Developing Artix Applications in C++

• Developing Artix Applications in Java

• Artix Security Guide

The latest updates to the Artix documentation can be found at http://
iona.com/support/docs/artix/1.3/index.xml.

Online Help
The Artix Designer includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A contextual description of each screen.

• A comprehensive index and glossary.

• A full search feature.

There are two ways to access the online help: via the Help menu in the Artix
Designer, or by clicking the Help button on any interface dialog.

Suggested Path for Further Reading
If you are new to Artix, we suggest you read the documentation in the
following order:

1. Artix Basic Tutorial

2. Getting Started with Artix C++

The Getting Started book describes the basic concepts behind Artix. It
also provides details on installing the system and a detailed walk
through for developing a C++ Web Service.

3. Developing Artix Applications in C++

The development guide discusses the technical aspects of
programming applications using the Artix API.

4. Artix Tutorial

The Tutorial guides you through developing Artix applications using all
of the supported transports. This document contains advanced content
that is not supported by the Artix Encompass Standard product.

5. Deploying and Managing Artix Solutions
 iv

PREFACE
The deployment guide describes deploying Artix enabled systems. It
provides detailed examples for a number of typical use cases.

6. Designing Artix Solutions with Artix Designer

The Artix Designer book describes how to use the Artix GUI to describe
your services in an Artix contract.

7. Designing Artix Solutions from the Command Line

This book provides detailed information about the WSDL extentions
used in Artix contracts and explains the mappings between data types
and Artix bindings.

Additional Resources for Help
The IONA Knowledge Base contains helpful articles, written by IONA
experts, about Orbix and other products. You can access the knowledge
base at the following location: (http://www.iona.com/support/
knowledge_base/index.xml)

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>
v

PREFACE
Keying Conventions
This book uses the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
 vi

CHAPTER 1

Introduction
This tutorial describes the basics of creating a Web service
using Artix™ Encompass Standard, v1.3.

In This Chapter This chapter discusses the following topics:

Introduction to the Tutorial page 2
1

CHAPTER 1 | Introduction
Introduction to the Tutorial

What is Covered This tutorial discusses the basics of building a Web service application using
Artix Encompass Standard edition. The examples use SOAP encoding over
the HTTP transport.

Chapter 2, “The WSDL File” discusses the content of a WSDL file and how
this file provides all of the information needed to develop and access a Web
service.

Chapter 3, “Coding the Web Service” discusses how you can use Artix to
create a Web service from an existing WSDL file. This chapter details usage
of the wsdltocpp utility, a command line application that generates the
C++ code for your application.
Chapter 4, “Using the Artix™ Designer” instructs you on how to use the
Artix Designer to write a WSDL file. You will also use the designer to
generate starting point C++ code for your application.

Chapter 5, “Faults and Exceptions” discusses Web service faults and their
representation as C++ exceptions. You will use the Artix designer to add
fault handling to the application developed in Chapter 4.

Chapter 6, “Mortgage Calculator” gives you an opportunity to build a Web
service that is significantly more involved than the HelloWorld examples
developed in the earlier chapters.

With the exception of the work in Chapter 6, minimal C++ coding is
required and the tutorial commentary provides all of the code you need to
implement the examples. Consequently, even if you are not an experienced
C++ programmer, you will gain a considerable understanding of Artix by
working through this tutorial.

You may use this tutorial as the first piece of Artix product documentation
that you review. When you complete this tutorial you will be ready to study
the more detailed product documentation, specifically the programmers
guide Developing Artix Applications in C++ and the other, more advanced,
Artix tutorials.
 2

CHAPTER 2

The WSDL File
A Web service is defined as an application that:

Is a service defined and described by an XML document.
Is a service that can be discovered using XML documents.

This chapter discusses how the Web Services Definition
Language (WSDL) file can be used to satisfy these
requirements.

In This Chapter This chapter discusses the following topics:

What Are Web Services? page 4

What is WSDL? page 6

A Complete WSDL File page 13
3

CHAPTER 2 | The WSDL File
What Are Web Services?

Web Service Concepts The information services community generally regards Web services as
application-to-application interactions that utilize XML data representations
and the hypertext transfer protocol The advantages of Web services lie in
the fact that the data encoding scheme and transport semantics are based
on standardized, non-proprietary specifications. Additionally, string-based
message content is human readable, can be created and manipulated by
any programming development tool, and provides a high level of security
and data integrity.

What is Artix™? Artix extends the concept of Web services to include multiple data encoding
schemas and transport protocols. Additionally, Artix provides transparent
conversions between different data encoding schemas and/or transport
protocols. As a consequence, you are now free to develop applications that
integrate different middleware technologies without the burden of writing
wrapper or adapter components.

Artix is built on IONA’s Adaptive Runtime Technology. Application
functionality is extended through configuration rather than coding.
Customer applications are built on a collection of plugin libraries. If your
application does not require the functionality provided by a plugin, you can
exclude this library from your development and production environment.
Additionally, the capabilities of the Artix product line can be easily extended
through the introduction of new plugins. Existing applications, which
obviously do not require the services of the new plugin, are unaffected.

The Artix runtime environment also includes a number of enterprise
services, e.g., management or security, which support your production
requirements.

There are three approaches to using Artix. First, you can write applications
using the Artix Application Programming Interface (API). In this situation,
you are writing new applications using Artix as your development tool. This
is the approach introduced in this tutorial.

Second, you can integrate two existing applications, built on different
middleware technologies, into a single application. In this situation,
developers work with their current development tools and Artix functions as
 4

What Are Web Services?
a broker between the two dissimilar data encoding schemas and transport
protocols. This approach requires the extended functionality of the Artix
Encompass Advanced or Enterprise or Artix Relay Advanced or Enterprise
products, and is not covered in this tutorial.

Finally, you can use Artix as a replacement for other middleware transport
protocols. Your application code remains unchanged; the Artix libraries
replace the middleware libraries within your executable. This approach is
not covered in this tutorial.

Becoming Proficient with Artix

To become an effective Artix developer you need to understand four central
concepts, only one of which is related to writing code. First, you need to
understand the syntax for WSDL files and the Artix extensions to the WSDL
specification.

Second, you need to understand the relationship between Artix WSDL
extensions, Adaptive Runtime Technology plugins, and setting configuration
entries.

Third, you need an understanding of the Artix API, and the IONA and Artix
foundation class libraries, which you can use in your application.

Fourth, you must gain proficiency with the Artix Service Designer, a tool
through which you can write and edit WSDL files, convert CORBA Interface
Definition Language (IDL) files and data files into WSDL, and generate code.

This tutorial introduces concepts in all four of these categories. Subsequent
tutorials and the product documentation cover each of these concepts in
greater detail.
5

CHAPTER 2 | The WSDL File
What is WSDL?

Web Services Description
Language

A WSDL file is an XML document that is used to describe a Web service. In
this respect, it is similar to a CORBA IDL file, an abstract C++ class, or a
Java interface definition. Information within the WSDL file describes the
operations offered by the Web service and the location of the Web service.
Since the WSDL file is an XML document, it may be validated against an
XML Schema document to insure its accuracy.

WSDL files include three sets of elements, and child elements, which
collectively define a Web service. While a complete Web service definition
requires content from each of these sections, a specific WSDL file does not
need to include all three sections.

The Import Section

The Import section integrates content from other WSDL files into the current
WSDL file. Like a CORBA IDL file, you can build a complex WSDL file by
simply importing other WSDL files. Inclusion of import elements is optional,
but its use greatly facilitates writing and maintenance of large, or complex,
WSDL files.

The Logical Section

The Logical section includes a programming language, marshalling schema,
and protocol neutral description of the Web service. This section of the
WSDL file describes the data types and operations offered by the Web
service. It is composed of three subsections.

The types subsection includes the definitions for complex data types used
within an application. This subsection is an XML schema document that
defines the format of these types. In creating a WSDL file, you may either
include the XML schema as part of the file or import an existing schema file.
By using file imports, you can maintain your type definitions in a separate
file that is used by multiple applications. The types subsection describes
how the data will be represented within your application’s code. Each Web
service development tool will map these data definitions into programming
language specific data types and classes.
 6

What is WSDL?
The following WSDL file fragment illustrates the contents of the types
subsection. There are two data types defined: InParameter and
OutParameter. Both types represent string values. Do not be mislead by
the names: InParameter and OutParameter. The types can be used to
represent any string value.

The message subsection describes how the data will be combined to form
Web service requests and responses. For example, your messages might
specify that a Web service request will require two pieces of data, termed
parts, while the corresponding response includes only a single part.

The following WSDL file fragment illustrates the contents of the message
subsection. There are two message definitions. Each message contains a
single part. Do not be mislead by the names of the messages or parts.
Regardless of the assigned name, the messages could be used to represent
either a Web service request or response.

The portType subsection describes how messages will be combined to
define the operations available from the Web service. For example, a
request/response type operation will specify one input message and one
output message. A portType may include one, or more, operation

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>

<message name="RequestMessage">
 <part name="InPart" type="tns:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="tns:OutParameter"/>
</message>
7

CHAPTER 2 | The WSDL File
definitions. Each Web service development tool will map the portType to a
class, each operation to a method in the class definition, and each message
to either the input or output parameters of a method.

The following WSDL file fragment illustrates the contents of the portType
subsection. In Artix, the portType name will become the name of the class
that implements the Web service. This class will contain the method sayHi,
whose signature includes an in parameter corresponding to the input
element and an out parameter corresponding to the output element.

The syntax and format of the logical section is standardized through
specifications issued by the World Wide Web Consortium (W3C). All Web
service development tools must support these specifications to insure
inter-operability between Web services developed with different tools.

The Physical Section

The Physical section includes the data marshalling schema and transport
specific content, and describes the interaction of a Web service application
with the runtime environment. The information in this section is specific to
your current application. It is composed of two subsections.

The binding subsection describes how the data will be encoded during
transmission, while the service subsection provides information specific to
the transport protocol.

For standard SOAP encoded Web services, there are two formats to the
binding subsection: rpc/encoded and document/literal. The syntax and
contents of both formats are described in W3C specifications. For this
reason, the contents of the binding element, and its child elements, is
relatively sparse, as each Web service product implements the same
specification and the interpretation of the marshalling schema and format
can be coded into the product.

Artix Encompass Advanced and Enterprise, and Artix Relay Advanced and
Enterprise, define alternative marshalling schemas and formats for the
binding subsection. In WSDL files using these extensions, the contents of

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
 8

What is WSDL?
the binding subsection will be more complex. Artix provides command line
and graphical utilities that generate these more complex bindings, so you
will not need to hand edit your WSDL files.

The following WSDL file fragment illustrates the contents of the binding and
service subsections. In the second and third lines, you can see that the
TutorialPortType_SOAPBinding describes the marshalling of data for the
TutorialPortType. Each binding element is associated with only one
portType, although a WSDL file may contain multiple binding elements
associated with the same portType. Note that the binding specifies the
rpc/encoded format. Later in this tutorial you will use the Artix Designer
graphical users interface to write a WSDL file using the document/literal
format.

<binding
 name="TutorialPortType_SOAPBinding"
 type="tns:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>

<service name="HelloWorldService">
 <port
 binding="tns:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>
9

CHAPTER 2 | The WSDL File
The service subsection is associated with the binding
TutorialPortType_SOAPBinding. Each service element is associated with
only one binding, although a WSDL file may include multiple service
elements associated with the same binding.

Although the W3C provides specifications for some binding and service
definitions (for example, the Simple Object Access Protocol [SOAP]
binding), it is permissible for Web service development tools to define
alternative binding and service representations. To support multiple data
encoding schemas and transport protocols, Artix extends the W3C
specifications. These Artix extensions are provided as components of the
Artix Encompass Advanced and Enterprise and Artix Relay Advanced and
Enterprise products. The Artix Encompass Standard product is limited to
SOAP encoding over the HTTP transport.

Namespace Definitions Every element in a WSDL file must belong to a namespace. Namespace
declarations are scoped. A declaration may exist globally over the entire
WSDL document or locally within an element and its enclosed child
elements.

Namespaces are identified through namespace prefixes, which are generally
defined within the opening root element of the WSDL file. Prefixes defined
within the root element have global scope and are available throughout the
entire WSDL file. However namespaces may be defined, or redefined,
within an element. In this case, the scope of the prefix applies only to the
element and its child elements.

If an element name is not qualified with a namespace prefix, the element
belongs to the default namespace. When writing a WSDL file, you can
redefine the default namespace within an element. By redefining the default
namespace locally, you can reduce the effort needed to define the child
elements contained within this element.

Later in this tutorial you will use the Artix Designer to write a WSDL file.
The designer completely manages the namespace and prefix declarations.
You will not need to edit these entries.
 10

What is WSDL?
The following WSDL file fragment illustrates the contents of the opening root
<definitions> element. This element contains the global namespace
prefixes that are themselves prefixed with xmlns, which corresponds to the
default namespace.

Let’s review what each entry represents.

The name attribute is an arbitrary, user-defined name assigned to this
WSDL file.

The targetNamespace attribute is an arbitrary, user-defined identifier for the
default namespace within this WSDL file. Although the value of this
attribute appears to be an Internet URL, it need not actually represent a
Web page. The URL format is used to insure uniqueness; you can use any
unique content for this value. Note that the value of the targetNamespace
attribute and the value of the xmlns:tns namespace prefix are identical.
Elements within the WSDL file prefixed with tns are also assigned to the
target namespace.

The attribute xmlns defines the default namespace and corresponds to the
schema that defines the structure of a WSDL document. This entry is a
valid URL and you can use it to retrieve a copy of the XML schema file that
describes the WSDL file contents. Elements within your WSDL file that do
not include a namespace prefix become members of this namespace. These
elements must be defined in the XML schema file available at
http://schemas.xmlsoap.org/wsdl/.

The xmlns:soap attribute defines the namespace that must be used when
adding elements that describe a SOAP binding. Again this entry is a valid
URL and you can use it to retrieve a copy of the XML schema file that
describes the SOAP binding. You can see how this namespace prefix is
used in the WSDL file fragment described in “The Physical Section”.

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
11

CHAPTER 2 | The WSDL File
The xmlns:tns attribute is the namespace prefix for elements defined in this
WSDL file document. Its value is assigned by the user and is identical to
the value of the targetNamespace attribute. You use the tns prefix to refer to
the original default namespace within elements that have a locally defined
target namespace.

The attribute xmlns:xsd defines the namespace for the basic XML types.
This too is a valid URL that you can use to obtain further information about
the XML basic types.

Finally, the attribute xmlns:wsdl also defines the default namespace; it is
the same value as the xmlns attribute. You use this prefix within an element
where you have redefined the default namespace. For example, in the types
element,

the default namespace is redefined to be the value associated with the
xmlns:xsd prefix — http://www.w3.org/2001/XMLSchema. This is because
this element contains many child elements that are described within the this
namespace and by redefining the default namespace it is no longer
necessary to include the xsd prefix with each element. However, since there
may also be a need to use an element that is defined within the
http://schemas.xmlsoap.org/wsdl/ namespace, you now need a
corresponding prefix, which is defined locally within the opening
<schema> element.

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>
 12

A Complete WSDL File
A Complete WSDL File

The HelloWorld Web Service The following WSDL file describes a simple HelloWorld Web service. In the
earlier sections of this chapter, you reviewed the contents of this file.

<?xml version="1.0" encoding="UTF-8"?>

<definitions
 name="HelloWorldTutorial"
 targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/tutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
 <schema targetNamespace="http://www.iona.com/tutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 </schema>
</types>

<message name="RequestMessage">
 <part name="InPart" type="tns:InParameter"/>
</message>

<message name="ResponseMessage">
 <part name="OutPart" type="tns:OutParameter"/>
</message>
13

CHAPTER 2 | The WSDL File
You will use this file in the following chapter to create a Web service
application.

<portType name="TutorialPortType">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>

<binding
 name="TutorialPortType_SOAPBinding"
 type="tns:TutorialPortType">
 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="rpc"/>
 <input name="sayHiRequest">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </input>
 <output name="sayHiResponse">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://soapinterop.org/" use="encoded"/>
 </output>
 </operation>
</binding>

<service name="HelloWorldService">
 <port
 binding="tns:TutorialPortType_SOAPBinding"
 name="HelloWorldPort">
 <soap:address location="http://localhost:9000"/>
 </port>
</service>

</definitions>
 14

CHAPTER 3

Coding the Web
Service
Once you have a WSDL file, you can generate code and develop
a Web service application. The discussion in this chapter
illustrates how to use the Artix™ wsdltocpp utility to generate
C++ code from a WSDL file.

In This Chapter This chapter discusses the following topics:

The wsdltocpp Utility page 16

Generating Code page 19

Completing the Coding page 23

Running the Application page 28
15

CHAPTER 3 | Coding the Web Service
The wsdltocpp Utility

Generating C++ Code Once you have a WSDL file, whether you write it yourself or obtain it from
another source, you will want to write an application. With Artix
Encompass Standard, you can write a client application against an existing
Web service, you can write a server application that implements the Web
service, or you can write both the client and server applications. The
wsdltocpp utility is a command line tool that you will use to generate C++
code from a WSDL file.

wsdltocpp Utility Command Line Options

You control the output of the wsdltocpp command line utility through
command line options. By specifying the appropriate options, you can
generate exactly the code you need. The syntax used to invoke the
wsdltocpp utility is:

Where {WSDL-URL} is the path, or Web location, of the WSDL file, and
options may be:

wsdltocpp [options] {WSDL-URL}

-e Web-service-name
 The value of the name attribute in the <service> element. If

the WSDL file includes multiple <service> elements, and the -e
option is not specified, the value defaults to the name of the
first <service> element in the WSDL file.

-t port
 The value of the name attribute in the <port> element. If a

<service> element contains multiple <port> elements, and the
-t option is not specified, the value defaults to the name of
the first <port> element. If neither the -e nor -t option is
specified, the first <port> element within the first
<service> element in the WSDL file is used for code
generation.

-d output-directory
 The directory into which to generate the code.
 Defaults to the directory in which the wsdltocpp utility runs.
-n namespace
 The C++ namespace for the generated code.
 Defaults to the global namespace.
 16

The wsdltocpp Utility
There are other options in addition to those described. These additional
options are not, however, available within the Artix Encompass Standard
product and will not be discussed in this tutorial.

Specifying the Service/Port If your WSDL file includes multiple <service> elements, or multiple
<port> elements within a single <service> element, you need to specify
what <service> and/or <port> should be referenced during the code
generation process. You use the -e and -t command line options to specify
these values. For the simple HelloWorldTutorial.wsdl file developed in the
previous chapter, there is only a single <service> element containing a
single <port> element. Consequently, you will not need to use these
options when generating code from this WSDL file.

Specifying the C++ Namespace Generated C++ code should be included within a C++ namespace. You
use the -n option to provide the name of the namespace. Use of this option
is not required, but it is good programming style to generate code within a
namespace.

Generating the Implementation
Class

The wsdltocpp utility will generate starting point code for the Web service
implementation class when you supply the -impl option. There is no way to
specify names for the generated files; the names of the generated files are
derived from either the portType name or the name of the WSDL file.

-impl
 Whether to generate starting point code for the C++ class into

which you will code the Web service implementation.
-m { NMAKE | UNIX }
 Whether to generate a makefile for the selected platform.
 Choose either NMAKE for Windows or UNIX for Unix.
-server
 Whether to generate server stub classes only.
-client
 Whether to generate client proxy classes only.
-sample
 Whether to generate starting point code for client and/or

server mainline applications. Works in conjunction with the
-server and -client options.

-?
-flags
 Usage information.
17

CHAPTER 3 | Coding the Web Service
Therefore, if you use the -impl option multiple times, the starting point code
will be regenerated, wiping out any code you may have added to an earlier
version of the generated files.

Application Specific Code
Generation

You can control whether code is generated only for client applications, only
for server applications, or for both types of applications. Use the -client
option to restrict code generation to client related files; use the -server
option to restrict code generation to server related files.

The -sample option indicates whether starting point client and/or server
mainline code should be generated. You must be careful not to overwrite
the client mainline code once you have begun coding your application. If
you need to rerun the wsdltocpp utility, be certain not to use the -sample
option.

Generating the Makefile If desired, the wsdltocpp utility will create a makefile. The makefile will be
complete for the type of application you are creating. That is, if you are only
building a client application, the makefile will not include any references to
files and classes specific to server applications.
 18

Generating Code
Generating Code

Installing Artix You must first install the Artix Encompass Standard product. Follow the
instructions in the installation guide. For Windows NT4, service pack 6a,
Windows 2000 Professional, service pack 3, or Windows XP Professional,
you will need Microsoft Visual Studio or Microsoft Visual C++, v6.0, service
pack 3 or higher, or Microsoft Visual C++, v7.0.

Artix requires the Java Runtime Environment v1.4.1. If necessary, Artix will
install the JRE during the installation process. If you already have the
v1.4.1 JRE or JDK installed, you will be able to run Artix against your
existing installations. If you are using an existing JRE or JDK installation,
you must set the environment variable JAVA_HOME to the installation
directory. If you are using the JRE installed by Artix, you do not need to set
the JAVA_HOME environment variable.1

Configuring Artix

During the installation process, Artix creates two configuration files. The file
<installationDirectory>\artix\1.3\etc\domains\artix.cfg is the main
configuration file. During start-up, every Artix process reads this file. For
the purposes of this tutorial you do not need to be concerned with the
contents of this file. As you develop more involved applications, you will
extend and edit this file.

The file <installationDirectory>\artix\1.3\bin\artix_env.bat is used to set the
Artix development and runtime environments. You must run this file in
every command window before building or running an Artix application.

Creating the Directory Structure After installing Artix, a number of demo applications will be available in the
<installationDirectory>\artix\1.3\demos directory. After you complete this
tutorial you should review each of these demos.

1. If you have an earlier version of the JRE or JDK installated on your computer, for
example, v1.3.x, you may have already set a JAVA_HOME environment variable.
You must remove this environment variable for Artix to work properly with the
JRE included as part of the Artix installation. There is no need to remove the
existing JRE/JDK. You must not remove the JAVA_HOME environment variable if
it points to your JRE/JDK v1.4.1 installation.
19

CHAPTER 3 | Coding the Web Service
For this tutorial, you will add another subdirectory under the demos
directory. Under the demos directory, create the subdirectory Tutorial.
Under the Tutorial directory, create the subdirectories client and server.

Copying the WSDL File Return to the previous chapter and use the Adobe Reader Select Text tool to
copy the contents of the HelloWorldTutorial.wsdl file into a notepad or
wordpad document. Since the file spans two pages, you will need to copy
and paste the contents from the first page and then copy and paste the
contents from the second page. Save the file as HelloWorldTutorial.wsdl
into both the Tutorial\Client and the Tutorial\server directories. To view the
contents with formatting, open the file in your Internet Explorer browser.

Generating the Client Application
Code

You will separately generate the client and server application code in their
respective directories.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the <installationDirectory>\artix\1.3\demos\Tutorial\client
directory by issuing the command:

3. Generate the client application with the command:

The following files are generated:

♦ Tutorial.h: A header file that defines the method signatures for
the Web service.

♦ TutorialClient.h, TutorialClient.cxx: Header and implementation
files that define the client proxy class. This client proxy class will
implement the virtual sayHi method. You do not need to edit the
code in these files, but you should review the contents of the
header file. Note that there are multiple constructors defined. In

cd ..\demos\Tutorial\client

wsdltocpp -n ArtixDemo -client -sample -m NMAKE
HelloWorldTutorial.wsdl
 20

Generating Code
this tutorial your code will use the first constructor, which does
not require any input from your code. As you develop more
complex applications you will learn the value of the alternative
constructors. The alternative constructors will not be discussed in
this tutorial.

♦ SampleClient.cxx: The starting point code for your client
application. In this tutorial, you will need to flush out the coding
in this file.

♦ HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and implementation
files that include the definitions for the classes that represent the
data types defined in the WSDL file <types> section. You must
review the contents of the header file, from which you will learn
the APIs needed to work with the generated type definitions.

♦ HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes that create instances of
your application specific data types. You do not need to review
the contents of these files.

♦ makefile: A makefile that you can use the build the client
application.

Generating the Server Application
Code

To generate code for the server application:

1. Move to the Tutorial\server directory by issuing the command:

2. Generate the server application with the command:

The following files are generated:

♦ Tutorial.h: A header file that defines the method signatures for
the Web service.

cd ..\server

wsdltocpp -n ArtixDemo -server -sample -m NMAKE -impl
HelloWorldTutorial.wsdl
21

CHAPTER 3 | Coding the Web Service
♦ TutorialServer.h, TutorialServer.cxx: Header and implementation
files that define the server stub class. You do not need to review
the contents of these files.

♦ SampleServer.cxx: The starting point code for your server
mainline application. In this tutorial, you will not need to add
code to this file. In more complex applications, you may need to
extend the generated code.

♦ TutorialImpl.h, TutorialImpl.cxx: Header and implementation
files that contain starting point code for your Web service
implementation class. For this tutorial you will need to add
coding to the method bodies corresponding to the Web service
operations. In more complex applications, you may need to edit
the header file as well as add code to the implementation file.

♦ HelloWorldTutorial_wsdlTypes.h,
HelloWorldTutorial_wsdlTypes.cxx: Header and implementation
files that include the definitions for the classes that represent the
data types defined in the WSDL file <types> section. You must
review the contents of the header file, from which you will learn
the APIs needed to work with the generated type definitions.

♦ HelloWorldTutorial_wsdlTypesFactory.h,
HelloWorldTutorial_wsdlTypesFactory.cxx: Header and
implementation files for factory classes that create instances of
your application specific data types. You do not need to review
the contents of these files.

♦ makefile: A makefile that you can use the build the server
application.
 22

Completing the Coding
Completing the Coding

The Implementation Class The TutorialImpl.cxx file contains compilable code, but there is no
processing logic in the method bodies. In this demo application, you only
need to add processing logic to the implementation class’ sayHi method.

In a text editor, open the TutorialImpl.cxx file and note the signature for the
sayHi method.

The method includes two parameters, the first representing the part within
the input message and the second representing the part within the output
message. The return type is void.

All C++ methods in Artix have void return types and output is always
represented by out parameters. At first this may seem to be an
inconvenience. But when you consider the facts that input and output
messages could include multiple parts and that WSDL has no concept of a
return value, only input and output messages, this approach makes sense.
In parameters correspond to the parts of the input message and out
parameters correspond to the parts of the output message. Since an output
message does not assign greater importance to one of its possible multiple
parts, it would be impossible for the code generating logic to select which
part should correspond to a return value.

You must now add processing logic to the sayHi method. The desired
processing is straight forward — just return a message that includes the
input. For example, Hello Artix User, where Artix User corresponds to the
value of InPart.

This seems simple. InParameter and OutParameter both correspond to an
xsd:string, so it would seem that you could simply concatenate "Hello " with
InPart and assign the new string to OutPart. But, not so fast.

void
TutorialImpl::sayHi(
 const ArtixDemo::InParameter InPart,
 ArtixDemo::OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception))
{
}

23

CHAPTER 3 | Coding the Web Service
Look into the HelloWorldTutorial_wsldTypes.h file and find the definitions
for InParameter and OutParameter. They are not strings, but classes that
encapsulate a member variable that is a string. To get and set the value of
this member variable you must use the accessor methods.

Consequently, the code you add to the sayHi method body becomes:

namespace ArtixDemo
{
 . . .

 class InParameter : public IT_Bus::AnySimpleType
 {
 public:
 InParameter();
 InParameter(const InParameter & value);
 . . .

 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;

 private:
 IT_Bus::String m_val;

 };
 . . .

 class OutParameter : public IT_Bus::AnySimpleType
 {
 public:
 OutParameter();
 OutParameter(const OutParameter & value);
 . . .

 void set_value(const IT_Bus::String & value);
 const IT_Bus::String & get_value() const;

 private:
 IT_Bus::String m_val;

 };
 . . .
};

OutPart.set_value("Hello " + InPart.get_value());
 24

Completing the Coding
Building the Web Service Server Application

Now that you have completed coding the implementation object, you can
build the application.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the <installationDirectory>\artix\1.3\demos\Tutorial\server
directory by issuing the command:

3. Build the server application with the command:

This creates the server executable file server.exe.

cd ..\demos\Tutorial\server

nmake all
25

CHAPTER 3 | Coding the Web Service
The Client Application For this demo, you only need to work with the SampleClient.cxx file.
Although this file is compilable, it does not actually invoke the Web service
operations. Open the file and examine the generated code.

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "TutorialClient.h"

IT_USING_NAMESPACE_STD
using namespace ArtixDemo
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 cout << "Tutorial Client" << endl;

 try
 {
 IT_Bus::init(argc, argv);
 TutorialClient client;

 // Sample invocation calls are shown in
 // commented lines below.
 /*
 ArtixDemo::InParameter InPart_0;
 ArtixDemo::OutParameter OutPart_1;
 client.sayHi (InPart_0, OutPart_1);
 */
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

 26

Completing the Coding
Note that the code generation process flushed out a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter and no output statement to display the value
returned in the out parameter.

You need to remove the comment delimiters and edit the code as follows:

Building the Web Service Client Application

Now that you have completed coding the client mainline, you can build the
application.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the <installationDirectory>\artix\1.3\demos\Tutorial\client
directory by issuing the command:

3. Build the client application with the command:

This creates the client executable file client.exe.

ArtixDemo::InParameter InPart_0;
ArtixDemo::OutParameter OutPart_1;

InPart_0.set_value("Artix User");

client.sayHi (InPart_0, OutPart_1);

cout << "sayHi returned: " + OutPart_1.get_value() << endl;

cd ..\demos\Tutorial\client

nmake all
27

CHAPTER 3 | Coding the Web Service
Running the Application

Set the Runtime Environment Before you can run the application, you must set the environment.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

Start the Server Application To start the server application:

1. Move to the <installationDirectory>\artix\1.3\demos\Tutorial\server
directory by issuing the command:

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the Client Application To run the client application:

1. Move to the <installationDirectory>\artix\1.3\demos\Tutorial\client
directory by issuing the command:

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the Server Application Issue Ctrl-C in the command window running the server application.

cd ..\demos\Tutorial\server

start server

cd ..\client

client
 28

CHAPTER 4

Using the Artix™
Designer
In the previous chapters, you used a pre-written WSDL file to
build your Web service application. In this chapter, you will
use the Artix Designer to write an equivalent WSDL file. You
will also use the designer to generate the starting point code.

In This Chapter This chapter discusses the following topics:

The Artix Designer page 30

The Artix Project page 31

Writing the WSDL File page 35

Developing an Application page 45

Generating Code page 47

Completing the Code page 50
29

CHAPTER 4 | Using the Artix™ Designer
The Artix Designer

The Designer The Artix Designer is a graphical user interface based application through
which you will write and/or edit WSDL files. Although there are other XML
editing tools that you could use to write a WSDL file, the Artix Designer has
an understanding of the Artix WSDL extensions and is a much easier way to
write the WSDL files used in an Artix application. For example, the designer
will automatically add the required namespace declarations and prefix
definitions when you build Artix applications that involve other data
marshalling schemas, transport protocols, or routing.

The designer is also integrated with the Artix command line tools, for
example, the wsdltocpp utility, so that you can also use the designer to
generate starting point code. Integration with other command line utilities
allows the designer to import IDL files and convert their contents into
WSDL, generate starting point code for Java Web service applications, or
convert WSDL files into IDL.

Starting the Artix Designer

In Windows you have two ways to start the Artix Designer.

1. You can select the Start > Programs > IONA Artix 1.3 >
IONA Artix 1.3 > Designer menu entry.

2. You can open a command window to the directory
<installationDirectory>\artix\1.3\bin and run the batch file
start_designer.bat.

Selecting the menu entry simply runs the start_designer.bat file.
 30

The Artix Project
The Artix Project

Artix Projects Similar to other interactive development environment applications, the Artix
Designer maintains all of the files comprising an application within a larger
entity called a project.

When you start the designer, you have the option of creating a new project,
returning to an existing project, or simply starting the designer.

The name you assign to a project becomes the name of a directory under
which the project files are stored. Artix will not let you give two projects the
same path and name. Consequently, when creating a new project you
should not create the project directory manually; let the Artix Designer
create the directory.

It is not necessary to create all of the application files using the designer.
For example, one approach is to import an existing WSDL file into the
designer and then edit the file, if necessary. Alternatively, you can import a
CORBA IDL file into the designer, which then transforms the contents of the
IDL file into the equivalent WSDL file.

In this tutorial you will use the designer to create a new project and write an
original WSDL file. You will then use the designer to generate starting point
C++ code.

Creating a New Project

After starting the Artix Designer, you are presented with the Welcome
window. Select the Create a New Project radio button and click on the OK
command button.
31

CHAPTER 4 | Using the Artix™ Designer
In the Select Project Type window, select the Other radio button and click
the Next command button.

In the Add Project Details window, name your project GuiTutorial, enter, or
browse, to the directory that will contain your project, and click the Next
command button.
 32

The Artix Project
In the Select Configuration window, select the Embedded radio button and
click the Next command button.

An Embedded application means that the Web service endpoints, the client
and/or server applications, will be Artix applications, written against the
Artix API. A Standalone application means that the Web service endpoints
may be applications written with other middleware technologies, for
example, CORBA, WebSphere™ MQ, TIBCO Rendezvous™, or Tuxedo. In
this situation, the Artix process serves as a switch, bridge, or router,
transforming requests from one marshalling scheme and transport to a
different marshalling scheme and/or transport.

The Artix Encompass Standard product will only create Embedded
applications. The Artix Encompass Advanced and Enterprise or the Artix
Relay Advanced and Enterprise products support development of
Standalone applications.

You can use the Select WSDL or IDL window to import an existing WSDL or
IDL file. For example, you could import the WSDL file used in the previous
chapters. In this tutorial, you will be using the Artix designer to write a new
WSDL file, so simply click the Finish command button.
33

CHAPTER 4 | Using the Artix™ Designer
The designer creates the project, which it displays as a hierarchy of
directories. You must save the project to actually create the project
directories on your drive; the Contracts directory will not be created until you
either create, or import, a WSDL file.

The Client and Server icons represent WSDL files. If you highlight one of
these icons and then select the WSDL tab at the bottom of the window,

you can view the contents of the corresponding WSDL file. Since you have
not yet supplied any content for the WSDL file, these files only contain the
opening root element <definitions>, which includes common namespace
prefix definitions.
 34

Writing the WSDL File
Writing the WSDL File

Approaches Now that you have an Artix project, you have several approaches to writing
a WSDL file. If you are only interested in writing a Web service server
application, you could add all of the WSDL file content to the Server.wsdl
file represented by the Server icon.

Alternatively, if you are only interested in writing a client application using
an existing WSDL file, you could import that file into the project.

It is more likely, however, that you will be interested in writing both client
and server applications against the same WSDL file. The Artix Designer has
been optimized for this situation in that it allows you to write one WSDL file,
or several WSDL file fragments, and reuse them in multiple applications.

In this tutorial, you will write one WSDL file for both the client and server
applications. Rather than adding the contents to the WSDL files
represented by the Client and Server icons, you will write a third WSDL file
and include it by reference into the Client.wsdl and Server.wsdl files. Your
client application will use the file Client.wsdl while your server application
will use the file Server.wsdl, both of these files will include all of the content
of the WSDL file you will write. The only differences between Client.wsdl
and Server.wsdl will be the values assigned to the name, targetNamespace,
and xmlns:tns attributes in the opening <definitions> element.

Creating the WSDL File You will write the WSDL file as an entry under the Contracts icon. You will
then use the designer to import the completed file into the files Client.wsdl
and Server.wsdl.

Highlight the Contracts icon and either select the File > New Contract menu
entry, or right click on the Contracts icon and select New Contract from the
popup menu. The New Contract — Artix Designer window opens.

♦ Enter HelloWorldGuiTutorial into the Name text box.

♦ Enter http://www.iona.com/guitutorial into the TargetNamespace
text box.

♦ Click the OK command button.
35

CHAPTER 4 | Using the Artix™ Designer
These entries become the values of the name, targetNamespace, and
xmlns:tns attributes in the opening <definitions> element. You can view
the contents of the WSDL file by highlighting the HelloWorldGuiTutorial icon
and clicking on the WSDL tab. Currently the WSDL file only includes the
opening <definitions> element.

Define Types The <types> section of the WSDL file contains your data type definitions.
For this simple application you have several choices. You could not bother
to define unique types for the application and use a basic type, for example,
xsd:string, as message parts. Alternatively, you could define simple types,
that is new types that are derived from an existing xsd type. This was the
approach used in the earlier example. Finally, you could define element
types, which are wrappers around other defined types. This approach is
especially useful if your types are complex or highly structured, for example,
a structure or array. Additionally, using elements as message parts allows
selection of the document/literal encoding format for your binding.

Defining the Simple Types

In this example, you will employ the third approach. You will first need to
define simple types derived from xsd:string and then define element types
that contain these simple types.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Type menu entry, or right click on the HelloWorldGuiTutorial
icon and select New > Type from the popup menu.

2. In the New Type — Artix Designer — Select WSDL window, select the
Add to existing WSDL "HelloWorldGuiTutorial" radio button and click
the Next command button.

3. Throughout the entire WSDL file creation process you will add your
new content to the current WSDL file. Selecting the Add to new WSDL
radio button will create another WSDL file that will include select
content. This is the approach you would follow if you want to create
WSDL file fragments for reuse.

4. In the New Type — Artix Designer — Define Type Properties window,
enter InParameter into the Name text box and select the simpleType
radio button. Click the Next command button.
 36

Writing the WSDL File
5. In the New Type — Artix Designer — Define Type Attributes window,
select xsd:string from the Base Type drop down list. The remaining
controls are used to further restrict the simple type, for example,
limiting the length of the string to a specific number of characters or to
one of a restricted number of entries. For this example, you do not
need these additional restrictions. Simply click on the Next command
button.

6. In the New Type — Artix Designer — View Summary window, you can
review the content that will be added to the WSDL file. Click on the
Finish command button.

7. Repeat the process, creating a second simple type named
OutParameter. Note that the Base Type drop down list now includes
tns:InParameter as a valid type. Be careful, as newly defined types are
added to the top of the list; you will need to scroll down the list to find
the xsd:string entry.

Highlight the HelloWorldGuiTutorial icon and select the WSDL tab. Review
the current contents of the WSDL file. Note that the <types> section has
be added to the file.

Defining the Element Types

You now want to define element types that wrap each of your simple types.
This process is identical to defining a simple type except that you must
select the element radio button in the New Type — Artix Designer — Define
Type Properties window.

In the New Type — Artix Designer — Define Type Attributes window you are
only presented with a Type drop down list. Since an element type is simply
a wrapper around another type, there are no additional options.

Create two element types:

♦ InElement of type tns:InParameter.

♦ OutElement of type tns:OutParameter.

Again, highlight the HelloWorldGuiTutorial icon and review the contents of
the WSDL file. Note that the <types> section now includes four
definitions:

♦ Simple type InParameter, of type xsd:string.

♦ Simple type OutParameter, of type xsd:string.

♦ Element type InElement, of type tns:InParameter.
37

CHAPTER 4 | Using the Artix™ Designer
♦ Element type OutElement, of type tns:OutParameter.

The following WSDL file fragment summarizes the content of the
HelloWorldGuiTutorial.wsdl file.

Define the Messages Now that you have defined the required types, you can begin to define the
messages. Your types will be used as the message parts.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Message menu entry, or right click on the
HelloWorldGuiTutorial icon and select New > Message from the popup
menu.

2. In the New Message — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldGuiTutorial"
 targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/guitutorial"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <simpleType name="InParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <simpleType name="OutParameter">
 <restriction base="xsd:string"/>
 </simpleType>
 <element name="InElement" type="tns:InParameter"/>
 <element name="OutElement" type="tns:OutParameter"/>
 </schema>
 </types>

</definitions>
 38

Writing the WSDL File
3. In the New Message — Artix Designer — Define Message Properties
window, enter RequestMessage into the Name text box. Click the Next
command button.

4. In the New Message — Artix Designer — Define Parts window, enter
InPart into the Name text box and select tns:InElement from the Type
drop down list. Be careful — Do not select tns:InParameter from the
Type drop down list.

Now click the Add command button; your part is added to the Part List
control. If your message requires multiple parts (which is not the
situation in this example), you would simply define another part and
add it to the Part List.

Finally, click the Next command button.

5. In the New Message — Artix Designer — View Summary window, you
can review the content that will be added to the WSDL file.

6. Check the Check here to create another message checkbox and click
the Next command button.

7. Create a second message – ResponseMessage – with a part named
OutPart of type tns:OutElement. In the New Message — Artix
Designer — View Summary window click the Finish command button.

Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file fragment
shows the new content of the HelloWorldGuiTutorial.wsdl file.

Define the portType A portType contains operations, which are comprised of one or more
messages. A oneway operation will include only an input message; the
client application will not receive a response from the Web service. A
request:response operation includes an input message, an output message,
and zero, or more, fault messages. Defining and coding fault messages will
be discussed in the following chapter.

<message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
</message>

<message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
</message>
39

CHAPTER 4 | Using the Artix™ Designer
For this example, you will define a portType that includes one
request:response operation –sayHi – that uses RequestMessage as its input
and ResponseMessage as its output. There is nothing significant about the
names assigned to the messages or parts; name assignments are to assist
the developer, Artix doesn’t care what names are used. An identical
application could be created by naming the messages One and Two and the
parts X and Y.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Port Type menu entry, or right click on the
HelloWorldGuiTutorial icon and select New > Port Type from the
popup menu.

2. In the New Port Type — Artix Designer — Select WSDL window,
select the Add to existing WSDL "HelloWorldGuiTutorial" radio button
and click the Next command button.

3. In the New Port Type — Artix Designer — Define Port Type Properties
window, enter GuiTutorialPT into the Name text box. Click the Next
command button.

4. In the New Port Type — Artix Designer — Define Port Type Operations
window, enter sayHi into the Name text box. Select Request-response
from the Style drop down list and click the Next command button.

5. In the New Port Type — Artix Designer — Define Operation Messages
window, select input from the Type drop down list and
tns:RequestMessage from the Message drop down list. The Name
sayHiRequest appears in the Name text box. If desired, you can
change this entry to something more meaningful to your application.
In this example, leave the suggested content.

6. Click the Add command button, which transfers the input message to
the Operation Messages control.

7. Now, select output from the Type drop down list. Note that input no
longer appears in the listing; an operation can have only one input
message. Select tns:ResponseMessage from the Message drop down
list. The Name sayHiResponse appears in the Name text box; leave
this suggested content.

8. Click the Add command button to transfer the ouptut message to the
Operation Messages control.
 40

Writing the WSDL File
You can click on the Type drop down list and note that the output entry
no longer appears in the listing; an operation can have only one output
message. While you will not be adding fault messages to this
operation, multiple fault message may be added to an operation.
Consequently, you can repeat this process to add one or more fault
messages to the operation.

9. Finally, click on the Next command button and review the content in
the New Port Type — Artix Designer — View Port Operations Summary
window. Since this example only requires one portType, click on the
Next and then Finish command buttons.

Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file fragment
shows the new content of the HelloWorldGuiTutorial.wsdl file.

Define the Binding A binding describes how the messages will be marshalled. Each binding is
associated with a single portType, although the same portType may be
associated with multiple bindings.

In the previous example, the binding used the rpc/encoded style. In this
example, you will specify the document/literal style, which is required when
message parts are element types.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Binding menu entry, or right click on the HelloWorldGuiTutorial
icon and select New > Binding from the popup menu.

2. In the New Binding — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.

3. In the New Binding — Artix Designer — Select Binding Type window,
select the SOAP radio button. The other binding choices are not
available in the Artix Encompass Standard product. Click the Next
command button.

<portType name="GuiTutorialPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
41

CHAPTER 4 | Using the Artix™ Designer
4. In the New Binding — Artix Designer — Select Port Type window,
select the GuiTutorialPT entry from the Port Type drop down list.

Actually, since your WSDL file only contains one portType definition,
this is the only entry in the list. But if there were multiple portTypes
defined, you would need to select the desired portType from the list.

Note that a suggested Binding Name is already entered into the Name
text box. You can change this entry; the only requirement is that each
binding in the WSDL file, if you create multiple bindings, have a
unique Binding Name.

5. In the SOAP Setting control group there are two drop down list
controls. From the Style list, select document, and from the Use list,
select literal. If you select an invalid combination, for example
rpc/encoded or document/encoded, you will not be able to move to the
next window. Click the Next command button.

6. In the New Binding — Artix Designer — Edit Binding window,
highlight the sayHi icon representing your operation and review the
binding details. Click the Next command button.

7. In the New Binding — Artix Designer — View WSDL Contract window,
you can review the new content that will be added to the WSDL file.
Finally, click the Finish command button.

Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file fragment
shows the new content of the HelloWorldGuiTutorial.wsdl file.

<binding name="GuiTutorialPT_SOAPBinding"
 type="tns:GuiTutorialPT">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
 42

Writing the WSDL File
Define the Service A service provides transport specific information. Each service element may
include one, or more, port elements. The port elements must be uniquely
identified through the value of the name attribute. Each port element is
associated with a single binding element, although the same binding
element may be associated with one, or more, port elements. In addition, a
WSDL file may contain multiple service elements.

In this example, the WSDL file contains one service element, which contains
a single port element.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Service menu entry, or right click on the HelloWorldGuiTutorial
icon and select New > Service from the popup menu.

2. In the New Service — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.

3. In the New Service — Artix Designer — Define Service window, enter
HelloWorldService into the Name text box. Click the Next command
button.

4. In the New Service — Artix Designer — Define Port window, enter
HelloWorldPort into the Name text box and select
GuiTutorialPT_SOAPBinding from the Binding drop down list.
Actually, since your WSDL file only contains one binding definition,
this is the only entry in the list. But if there were multiple bindings
defined, you would need to select the desired binding from the list.
Click the Next command button.

5. In the New Service — Artix Designer — Define Extensor Properties
window, select SOAP from the Transport Type drop down list and enter
http://localhost:9000 as the value for the location attribute. This is the
only required entry, and you may specify any port number you choose.
Refer to the Artix documentation for a discussion of the other extensor
properties.

6. Click the Next command button. In the New Service — Artix Designer
— Port Summary window, you can review the new content that will be
added to the WSDL file. Finally, click the Finish command button.
43

CHAPTER 4 | Using the Artix™ Designer
Highlight the HelloWorldGuiTutorial icon, click on the WSDL tab, and
review the contents of the WSDL file. The following WSDL file fragment
shows the new content of the HelloWorldGuiTutorial.wsdl file.

The elements with the namespace prefix http-conf are unique to Artix and
represent the unspecified extensor properties. Note the inclusion of the
http-conf namespace prefix definition in the opening definitions element.

<service name="HelloWorldService">
 <port binding="tns:GuiTutorialPortType_SOAPBinding"
 name="newPort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
</service>
 44

Developing an Application
Developing an Application

Project Summary You have now completed writing the WSDL file. Currently the file is located
under the Contracts icon within the Artix Designer and in the
GuiTutorial\Contracts directory on your drive. Other than the fact that this
WSDL file uses element types and document/literal encoding, this WSDL file
is functionally equivalent to the file used in the previous example. You could
repeat the earlier example using this WSDL file instead of the file provided in
this document.

In this example, you want to use the same WSDL file for both the client and
server applications. With the Artix Designer you accomplish this goal by
dragging and dropping the HelloWorldGuiTutorial icon onto the Client and
Server icons.

The Client Application Highlight the HelloWorldGuiTutorial icon, hold down the left mouse button,
and drag and drop the icon onto the Client icon.

Highlight the Client icon and click on the WSDL tab. Note that the
Client.wsdl file now includes an import element, which identifies the
HelloWorldGuiTutorial.wsdl file.

Your client application will be generated from the Client.wsdl file, which
incorporates the content of the HelloWorldGuiTutorial.wsdl file.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Client"
 targetNamespace="http://www.iona.com/
 artix/1.3.0/GuiTutorial/Client/Client"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns1="http://www.iona.com/guitutorial"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/
 1.3.0/GuiTutorial/Client/Client"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import
 location="../../Contracts/HelloWorldGuiTutorial.wsdl"
 namespace="http://www.iona.com/guitutorial"/>
</definitions>
45

CHAPTER 4 | Using the Artix™ Designer
The Server Application Highlight the HelloWorldGuiTutorial icon, hold down the left mouse button,
and drag and drop the icon onto the Server icon.

Highlight the Server icon and click on the WSDL tab. Note that the
Server.wsdl file now includes an import element, which identifies the
HelloWorldGuiTutorial.wsdl file.

Your server application will be generated from the Server.wsdl file, which
incorporates the content of the HelloWorldGuiTutorial.wsdl file.

Generating Code from Composite
WSDL Files

The WSDL files Client.wsdl and Server.wsdl are composite WSDL files, that
is, the description of the Web service is contained in multiple WSDL files
that are imported into these files. When you generate the application code,
you will use the composite WSDL file as the description of the Web service.
Artix will transparently work down through the included files to find the
required information.

For each WSDL file listed in the composite file, and for the composite WSDL
file itself, Artix will generate four files:

♦ <WSDLfileName>_wsdlTypes.h

♦ <WSDLfileName>_wsdlTypes.cxx

♦ <WSDLfileName>_wsdlTypesFactory.h

♦ <WSDLfileName>_wsdlTypesFactory.cxx

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Server"
 targetNamespace="http://www.iona.com/
 artix/1.3.0/GuiTutorial/Server/Server"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ns1="http://www.iona.com/guitutorial"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.iona.com/artix/
 1.3.0/GuiTutorial/Server/Server"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import
 location="../../Contracts/HelloWorldGuiTutorial.wsdl"
 namespace="http://www.iona.com/guitutorial"/>
</definitions>
 46

Generating Code
Generating Code

The Client Application Highlight the development icon under the Client icon. The System
Development Options window appears.

For this example, select C++ from the Development Environment drop
down list. The suggested entry in the Code Location text box indicates that
the code will be generated into a directory under the GuiTutorial\Client
directory.

Since you are generating code for a client application, you deselect the
Generate Implementation Code check box. The suggested C++ namespace
is derived from the project name; you are free to change this entry to a more
meaningful value.
47

CHAPTER 4 | Using the Artix™ Designer
The Select Service and Select Port drop down lists are used to select the
service and port against which code will be generated. Since there is only
one service and port in your WSDL file, the lists contain only one entry.
These drop down lists correspond to the -e and -t command line options for
the wsdltocpp utility.

Select the appropriate radio button within the Generate Makefile group.

Click the Advanced Options command button. The WSDL to C++
Conversions Options — Artix Designer window opens.

Since you are building the client application, deselect the Generate Server
Code checkbox. The Generate Sample Code checkbox is equivalent to the
-sample option for the wsdltocpp utility and the Generate Client Code
checkbox is equivalent to the -client option for the wsdltocpp utility.

Click the OK command button, then click the OK command button on the
System Development Options window. A message box confirms code
generation success.

The Server Application Highlight the development icon under the Server icon. The System
Development Options window appears.

For this example, select C++ from the Development Environment drop
down list. The suggested entry in the Code Location text box indicates that
the code will be generated into a directory under the GuiTutorial\Server
directory.
 48

Generating Code
Since you are generating code for a server application, you select the
Generate Implementation Code check box. The suggested C++ namespace
is derived from the project name; you may change this to a more meaningful
value. Since you are building the client and server applications separately,
you do not need to use the same C++ namespace value in both
applications.

The Select Service and Select Port drop down lists are used to select the
service and port against which code will be generated. Since there is only
one service and port in your WSDL file, the lists contain only one entry.
These drop down lists correspond to the -e and -t command line options for
the wsdltocpp utility.

Select the appropriate radio button within the Generate Makefile group.

Click the Advanced Options command button. The WSDL to C++
Conversions Options — Artix Designer window opens.

Since you are building the server application, make certain to deselect the
Generate Client Code checkbox. The Generate Sample Code checkbox is
equivalent to the -sample option for the wsdltocpp utility and the Generate
Server Code checkbox is equivalent to the -server option for the wsdltocpp
utility.

Click the OK command button, then click the OK command button on the
System Development Options window. A message box confirms code
generation success.
49

CHAPTER 4 | Using the Artix™ Designer
Completing the Code

Close the Artix Designer You have now finished with the Artix Designer. Close the application by
selecting the File > Exit menu item. Alternatively, you can click on the
close box in the upper right corner of the window, or click on the icon in the
upper left corner of the window and select Close from the drop down menu.

The GuiTutorial.h File This header file is common to both the client and server applications. It
contains the signatures for each of the Web service operations. Open this
file in a text editor and review the signature for the sayHi method.

Note that although the message parts were defined as the element types
InElement and OutElement, the method signature uses C++ classes
derived from the simple types InParameter and OutParameter.

Your coding for this version of the demo application is identical to the coding
you implemented in the earlier tutorial example.

The Implementation Class The TutorialImpl.cxx file contains compilable code, but there is no
processing logic in the method bodies. In the server application, you only
need to add processing logic to the implementation class’ sayHi method.

In a text editor, open the TutorialImpl.cxx file and note the signature for the
sayHi method.

The method includes two parameters, the first representing the part within
the input message and the second representing the part within the output
message. The return type is void.

The code you add to the sayHi method body is:

virtual void
 sayHi(
 const GuiTutorial::InParameter & InPart,
 GuiTutorial::OutParameter & OutPart
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

OutPart.set_value("Hello " + InPart.get_value());
 50

Completing the Code
Building the Web Service Server Application

Now that you have completed coding the implementation object, you can
build the application.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the
<installationDirectory>\artix\1.3\demos\GuiTutorial\Server\src\cpp
directory by issuing the command:

3. Build the server application with the command:

This creates the server executable file server.exe.

The Client Application For the client application, you only need to work with the SampleClient.cxx
file.

Note that the code generation process flushed out a simple invocation of the
sayHi method, but the code is commented out and there is no value
assigned to the in parameter and no output statement to display the value
returned in the out parameter.

You need to remove the comment delimiters and edit the code as follows:

Other than the C++ namespace, this coding is identical to the coding in the
previous example.

cd ..\demos\GuiTutorial\Server\src\cpp

nmake all

GuiTutorial::InParameter InPart_0;
GuiTutorial::OutParameter OutPart_1;

InPart_0.set_value("Artix User");

client.sayHi (InPart_0, OutPart_1);

cout << "sayHi returned: " + OutPart_1.get_value() << endl;
51

CHAPTER 4 | Using the Artix™ Designer
Building the Web Service Client Application

Now that you have completed coding the client mainline, you can build the
application.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the
<installationDirectory>\artix\1.3\demos\GuiTutorial\Client\src\cpp
directory by issuing the command:

3. Build the client application with the command:

This creates the client executable file client.exe.

cd ..\demos\GuiTutorial\Client\src\cpp

nmake all
 52

Running the Application
Running the Application

Set the Runtime Environment Before you can run the application, you must set the environment.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

Start the Server Application To start the server application:

1. Move to the <installationDirectory>\artix\1.3\demos\GuiTutorial
\Server\src\cpp directory by issuing the command:

2. Start the server application with the command:

A new command window opens and the server application starts.

Run the Client Application To run the client application:

1. Move to the <installationDirectory>\artix\1.3\demos\GuiTutorial
\Client\src\cpp directory by issuing the command:

2. Run the client application with the command:

The client application invokes on the Web service and displays the return.

Stop the Server Application Issue Ctrl-C in the command window running the server application.

cd ..\demos\GuiTutorial\Server\src\cpp

start server

cd ..\..\..\Client\src\cpp

client
53

CHAPTER 4 | Using the Artix™ Designer
 54

CHAPTER 5

Faults and
Exceptions
This chapter focuses on how to declare faults in WSDL files
and how to handle the corresponding C++ exceptions in
Artix™ client and server applications.

In This Chapter This chapter discusses the following topics:

Raising Exceptions page 56

Handling Runtime Exceptions page 57

Working with WSDL Faults page 59

Developing An Application page 62
55

CHAPTER 5 | Faults and Exceptions
Raising Exceptions

Types of Artix Exceptions C++ exceptions may originate from three different sources.

• The Artix runtime libraries may throw a C++ exception.

• The Artix runtime services, for example, the locator service, may throw
a C++ exception.

• The business logic within the Web service itself may throw a C++
exception.

In each case, the exception is returned to the client application.

The WSDL file provides no information about exceptions originating from the
Artix runtime libraries as these exceptions are not directly related to your
Web service contract. These exceptions are returned as subclasses of the
Artix class IT_Bus::Exception. Consequently, your client code must use
try{} and catch (IT_Bus::Exception){} blocks to gracefully handle possible
exceptions.

Many of the Artix runtime services are described in WSDL files, and a
service’s operations may include fault messages. If your application uses
these services, your application must also include the client-side classes
generated from this WSDL file. In this case, you can use the runtime
service’s WSDL file, and the contents of the generated code, to understand
how the WSDL faults map to C++ classes. Your application code will use
these classes to handle the service’s exceptions.

When you write the WSDL file that describes your Web service, you may
include zero or more fault messages in each request:response operation.
When you run the wsdltocpp utility, these fault messages become C++
classes that your application code will use to handle your application’s
exceptions.

Handling exceptions raised by either an Artix runtime service or your
application’s business logic is similar. You enclose your application code
within a try{} block and use one, or more, catch{} blocks to handle the
possible exceptions.
 56

Handling Runtime Exceptions
Handling Runtime Exceptions

Types of Runtime Exceptions Artix includes an extensive collection of runtime exceptions, which primarily
represent errors that may arise during marshalling and transport.

♦ IT_Bus::ConnectException

♦ IT_Bus::DeserializationException

♦ IT_Bus::IOException

♦ IT_Bus::NoDataException

♦ IT_Bus::SecurityException

♦ IT_Bus::SerializationException

♦ IT_Bus::ServiceException

♦ IT_Bus::TransportException

♦ IT_Bus::UserFaultException

These exceptions are defined in corresponding header files, which are
located in the <installationDirectory>\artix\1.3\include\it_bus directory.

Since IT_Bus::Exception is the superclass for all of these exception classes,
you may use the IT_Bus::Exception class’ API to extract details about what
caused the exception.

The IT_Bus::Exception Class API

The IT_Bus::Exception class is actually just a typedef of the
IT_Bus::FWException class. The header file that includes this typedef entry
is <installationDirectory>\artix\1.3\include\it_bus\types.h.

Your application code will never create an instance of a runtime exception.
Consequently, the only API methods you need are used to obtain a
description, and optionally a message code, describing the processing error.

The IT_Bus::Exception::Message() method returns an informative
description of the error that caused the runtime exception.

The IT_Bus::Exception::Error() method returns an exception code.
57

CHAPTER 5 | Faults and Exceptions
Handling IT_Bus::Exception You have already seen an example of handling the runtime exceptions. The
code generated for your client application includes a try{} block around all
of the application logic and a catch(IT_Bus::Exception){} block.

This is generally all that is needed, although your code could catch each of
the runtime exceptions separately.

int
main(int argc, char* argv[])
{
 . . .

 try
 {
 . . .
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message()
 << endl;
 return -1;
 }
 return 0;
}

 58

Working with WSDL Faults
Working with WSDL Faults

Defining WSDL Faults A WSDL fault is simply a message, which may contain zero or one part. A
message corresponding to a WSDL fault is referenced by the <fault> child
element under the <operation> element. A request:response operation
may include zero, or more, child fault elements. If appropriate to the Web
service, the same fault message may be associated with multiple
operations.

The wsdltocpp utility creates a C++ class corresponding to the message; a
message part becomes an instance variable and accessor methods are
provided to manipulate the value of this variable. If a fault message needs
to contain multiple parts, you need to define a complex type, which then
becomes the type of the message part.

You will need to study the generated code to understand how to create and
manipulate the exception class.

As with messages representing a request or response, fault messages may
contain either encoded or literal element parts. The following fragment
illustrates the WSDL file definition of a fault message.

<types>
 <schema targetNamespace="http://www.iona.com/guitutorial"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 . . .

 <complexType name="FaultDetails">
 <sequence>
 <element name="FaultMsg" type="xsd:string"/>
 <element name="FaultID" type="xsd:int"/>
 </sequence>
 </complexType>
 <element name="DoIKnowYou" type="tns:FaultDetails"/>

 </schema>
</types>

<message name="UnknownUser">
 <part element="tns:DoIKnowYou" name="theFault"/>
</message>
59

CHAPTER 5 | Faults and Exceptions
Note that the message, UnknownUser, only contains one part, theFault,
which is an instance of the element DoIKnowYou. DoIKnowYou is a
wrapper around the complex type FaultDetails, which contains two pieces of
information, a string message and a numeric code.

The operation that uses this fault must include a fault child element within
the operation element, as illustrated in the following fragment.

If you are using the Artix Designer to create your WSDL file, you do not need
to worry about how to include the fault message in the binding; the designer
will handle this task.

When you run the wsdltocpp utility, two C++ classes are generated. The
class FaultDetails corresponds to the complex type. This class includes
variables corresponding to the FaultMsg and FaultID elements and accessor
methods to manipulate these values. The class UnknownUserException
corresponds to the UnknownUser message. This class includes a variable of
type FautlDetails and accessor methods to manipulate this value.

Throwing the Exception While both class definitions include a copy constructor, neither class
includes a constructor that allows you to set the instance variables.
Consequently, you must handle initialization in your code.

To throw the exception from your Web service’s code, you must first
instantiate and initialize an instance of the FaultDetails class and then use
this instance to initialize an instance of the UnknownUserException class.
Finally, your code throws the UnknownUserException instance.

<portType name="GuiTutorialPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 <fault message="tns:UnknownUser" name="sayHiFault"/>
 </operation>
</portType>

FaultDetails faultData;
faultData.setFaultMsg("User unknown to me");
faultData.setFaultID(200);

UnknownUserException ex;
ex.settheFault(faultData);

throw ex;
 60

Working with WSDL Faults
Handling the Exception The exception UnknownUserException is derived from the Artix class
IT_Bus::UserFaultException, which is derived from IT_Bus::Exception.

Consequently, you must include code to catch this exception before your
code that handles IT_Bus::Exception. Since the catch block receives a
reference to the UnknownUserException object, your code needs to use the
accessor method to obtain the FaultDetails object and then extract the
FaultMsg and FaultID.

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

61

CHAPTER 5 | Faults and Exceptions
Developing An Application

The GuiTutorial Application The application developed in the preceding chapter can be easily modified
to demonstrate fault usage. Since you must define new types representing
the fault details, a new message, and modify the sayHi operation details,
the changes will also impact the binding definition. Consequently, it is
easiest to delete the existing binding and service elements from the WSDL
file and recreate these entries once the other modifications are complete.

Modifying the WSDL File

Start the Artix Designer and return to the GuiTutorial project.

1. Highlight the HelloWorldGuiTutorial icon under the Contracts icon and
click on the WSDL tab. The WSDL file contents are displayed in the
panel.

2. Select the Contract > Edit > Services menu entry or right click on the
HelloWorldGuiTutorial icon and select Edit > Services from the popup
menu.

3. In the Edit Services — Artix Designer window, highlight the
HelloWorldService icon in the top panel and click on the Delete
command button. Confirm your decision by clicking the Yes command
button. Then click on the Apply and OK command buttons. View the
WSDL file contents and confirm that the <service>...</service>
section has been removed.

4. Select the Contract > Edit > Bindings menu entry or right click on the
HelloWorldGuiTutorial icon under the Contracts icon. and select Edit >
Bindings from the popup menu.

5. Select the Edit Bindings window, highlight the
GuiTutorialPT_SOAPBinding icon in the top panel and click on the
Delete command button. Confirm you decision by clicking the Yes
command button. The click on the Apply and OK command buttons.
View the WSDL file contents and confirm that the
<binding>...</binding> section has been removed.
 62

Developing An Application
If you highlight the HelloWorldGuiTutorial icon under either the Client or
Server icons and view the WSDL file contents, you will observe the edited
content. These icons actually represent links to the WSDL file in the
Contracts directory, so edits are applied to the file imported into the
Client.wsdl and Server.wsdl files.

You now create the data types that represent the exception details.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Type menu entry, or right click on the HelloWorldGuiTutorial
icon and select New > Type from the popup menu.

2. In the New Type — Artix Designer — Select WSDL window, select the
Add to existing WSDL "HelloWorldGuiTutorial" radio button and click
the Next command button.

3. In the New Type — Artix Designer — Define Type Properties window,
enter FaultDetails into the Name text box and select the complexType
radio button. Click the Next command button.

4. In the New Type — Artix Designer — Define Type Attributes window,
select sequence from the Group Type drop down list. From the Type
drop down list, select the xsd:string entry and enter FaultMsg into the
Name text box. Click the Add command button, which transfers this
element to the Element List panel.

5. To add the second member of the FaultDetails sequence, select xsd:int
from the Type drop down list and then enter FaultID into the Name text
box. Click the Add command button. Your sequence now includes
two members. Click the Next and Finish command buttons to
complete the type definition entry.

6. You now want to define an element type that wraps your complex
types. This process is identical to defining the complex type except
that you must select the element radio button in the New Type — Artix
Designer — Define Type Properties window.

7. In the New Type — Artix Designer — Define Type Attributes window,
you are only presented with a Type drop down list. Since an element
type is simply a wrapper around another type, there are no additional
options.

8. Create one element type:

♦ DoIKnowYou of type tns:FaultDetails.
63

CHAPTER 5 | Faults and Exceptions
You must now define the fault message. There is nothing that links this
message to an operation fault except how you use the message when
defining an operation.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Message menu entry, or right click on the
HelloWorldGuiTutorial icon and select New > Message from the popup
menu.

2. In the New Message — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.

3. In the New Message — Artix Designer — Define Message Properties
window, enter UnknownUser into the Name text box. Click the Next
command button.

4. In the New Message — Artix Designer — Define Parts window, enter
theFault into the Name text box and select tns:DoIKnowYou from the
Type drop down list. Now click the Add command button; your part is
added to the Part List control. Finally, click the Next command button.

5. In the New Message — Artix Designer — View Summary window, you
can review the content that will be added to the WSDL file. Click the
Finish command button.

Finally you need to edit the portType definition.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
Edit > Port Types menu entry or right click and select Edit > Port
Types from the popup menu.

2. In the Edit Port Types — Artix Designer window, highlight the sayHi
operation in the top panel and then click the Edit command button
below the Operation Messages grouping control.

3. In the Edit Operation Messages — Artix Designer window select fault
from the Type drop down list. From the Message drop down list select
the tns:UnknownUser entry. Click on the Add command button, which
adds the fault message to the Operation Messages listing. Finally,
click on the Apply, OK, and OK command buttons.

Review the contents of the WSDL file and confirm that the sayHi operation
now includes a fault element.
 64

Developing An Application
Now you need to recreate the SOAP binding and service and port
definitions.

1. Highlight the HelloWorldGuiTutorial icon and select the Contract >
New > Binding menu entry, or right click on the HelloWorldGuiTutorial
icon and select New > Binding from the popup menu.

2. In the New Binding — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.

3. In the New Binding — Artix Designer — Select Binding Type window,
select the SOAP radio button. Click the Next command button.

4. In the New Binding — Artix Designer — Select Port Type window,
select the GuiTutorialPT entry from the Port Type drop down list. Note
that a suggested Binding Name is already entered into the Name text
box. You can change this entry; the only requirement is that each
binding in the WSDL file, if you create multiple bindings, have a
unique Binding Name.

5. In the SOAP Setting control group there are two drop down list
controls. From the Style list, select document, and from the Use list,
select literal. Click the Next command button.

6. In the New Binding — Artix Designer — Edit Binding window,
highlight the sayHi icon representing your operation and review the
binding details. Click the Next command button.

7. In the New Binding — Artix Designer — View WSDL Contract window,
you can review the new content that will be added to the WSDL file.

8. Finally, click the Finish command button. Highlight the
HelloWorldGuiTutorial icon, click on the WSDL tab, and review the
contents of the WSDL file.

9. Once again, highlight the HelloWorldGuiTutorial icon and select the
Contract > New > Service menu entry, or right click on the
HelloWorldGuiTutorial icon and select New > Service from the popup
menu.

10. In the New Service — Artix Designer — Select WSDL window, select
the Add to existing WSDL "HelloWorldGuiTutorial" radio button and
click the Next command button.
65

CHAPTER 5 | Faults and Exceptions
11. In the New Service — Artix Designer — Define Service window, enter
HelloWorldService into the Name text box. Click the Next command
button.

12. In the New Service — Artix Designer — Define Port window, enter
HelloWorldPort into the Name text box and select
GuiTutorialPT_SOAPBinding from the Binding drop down list. Click
the Next command button.

13. In the New Service — Artix Designer — Define Extensor Properties
window, select SOAP from the Transport Type drop down list and enter
http://localhost:9000 as the value for the location attribute. This is the
only required entry, and you may specify any port number you choose.

14. Click the Next command button. In the New Service — Artix Designer
— Port Summary window, you can review the new content that will be
added to the WSDL file. Finally, click the Finish command button.

Generating the Application Code

You will use the Artix Designer to generate starting point code for the
application.

1. Highlight the Development icon under the Client icon. The System
Development Options window appears.

2. For this example, select C++ from the Development Environment drop
down list. The suggest entry in the Code Location text box indicates
that the code will be generated into a directory under the
GuiTutorial\Client directory.

Since you are generating code for a client application, you deselect the
Generate Implementation Code check box.

3. The Select Service and Select Port drop down lists are used to select
the service and port against which code will be generated. Since there
is only one service and port in your WSDL file, the lists contain only
one entry. These drop down lists correspond to the -e and -t command
line options for the wsdltocpp utility.

4. Select the appropriate radio button within the Generate Makefile
group.
 66

Developing An Application
5. Click the Advanced Options command button. The WSDL to C++
Conversions Options — Artix Designer window opens.

Since you are building the client application, deselect the Generate
Server Code checkbox. The Generate Sample Code checkbox is
equivalent to the -sample option for the wsdltocpp utility and the
Generate Client Code checkbox is equivalent to the -client option for
the wsdltocpp utility.

6. Click the OK command button, then click the OK command button on
the System Development Options window. A message box confirms
code generation success.

7. Now highlight the development icon under the Server icon. The
System Development Options window appears.

8. For this example, select C++ from the Development Environment drop
down list. The suggest entry in the Code Location text box indicates
that the code will be generated into a directory under the
GuiTutorial\Server directory.

As you are generating code for a server application, you select the
Generate Implementation Code check box. The suggested C++
namespace is derived from the project name; you may change this to a
more meaningful value. Since you are building the client and server
67

CHAPTER 5 | Faults and Exceptions
applications separately, you do not need to use the same C++
namespace value in both applications.

9. The Select Service and Select Port drop down lists are used to select
the service and port against which code will be generated. Since there
is only one service and port in your WSDL file, the lists contain only
one entry. These drop down lists correspond to the -e and -t command
line options for the wsdltocpp utility.

10. Select the appropriate radio button within the Generate Makefile
group.

11. Click the Advanced Options command button. The WSDL to C++
Conversions Options — Artix Designer window opens.

Since you are building the server application, make certain to deselect
the Generate Client Code checkbox. The Generate Sample Code
checkbox is equivalent to the -sample option for the wsdltocpp utility
and the Generate Server Code checkbox is equivalent to the -server
option for the wsdltocpp utility.

12. Click the OK command button, then click the OK command button on
the System Development Options window. A message box confirms
code generation success.
 68

Developing An Application
Completing the Code

In the implementation class you need to complete the sayHi method. You
will modify the previous coding so that the UnknownUserException is
thrown unless the value of InPart is Artix User.

In the client application SampleClient.cxx file, remove the comment
delimiters and replace with the following code.

Note: Although the types FaultDetails and UnknownUser are defined in
the HelloWorldGuiTutorial.wsdl file, Artix v1.3 places the code
corresponding to the element UnknownUser into the files
Client_wsdlTypes.h/.cxx. This class definition should be in the files
HelloWorldGuiTutorial_wsdlTypes.h/.cxx.

if (InPart.get_value() != "Artix User")
{
 FaultDetails faultData;
 faultData.setFaultMsg("User unknown to me");
 faultData.setFaultID(200);

 UnknownUserException ex;
 ex.settheFault(faultData);

 throw ex;
}
OutPart.set_value("Hello " + InPart.get_value());

GuiTutorial::InParameter InPart_0;
GuiTutorial::OutParameter OutPart_1;

// Set user name to command line parameter
InPart_0.set_value("Artix User");
if (argc > 1)
{
 InPart_0.set_value(argv[1]);
}
// Alternative code to set user name
/*
argc > 1 ? InPart_0.set_value(argv[1]) : \
 InPart_0.set_value("Artix User");
*/
client.sayHi (InPart_0, OutPart_1);
cout << "sayHi returned: " + OutPart_1.get_value() << endl;
69

CHAPTER 5 | Faults and Exceptions
Also add a new catch{} block before the existing catch{} block.

Building the Application

Now that you have completed coding, you can build the application.

1. Open a command window to the <installationDirectory>\artix\1.3\bin
directory and run the artix_env.bat file.

2. Move to the
<installationDirectory>\artix\1.3\demos\GuiTutorial\Client\src\cpp
directory by issuing the command:

3. Build the client application with the command:

This creates the client executable file client.exe.

To build the server application:

1. Move to the
<installationDirectory>\artix\1.3\demos\GuiTutorial\Server\src\cpp
directory by issuing the command:

2. Build the server application with the command:

This creates the server executable file server.exe.

catch(UnknownUserException& ex)
{
 FaultDetails& fd = ex.gettheFault();
 cout << "Error Message: " << fd.getFaultMsg() << endl;
 cout << "Error ID: " << fd.getFaultID() << endl;
 return -1;
}

cd ..\demos\GuiTutorial\Client\src\cpp

nmake all

cd ..\..\..\Server\src\cpp

nmake all
 70

Developing An Application
Running the Application

To start the server application:

1. Start the server application with the command:

A new command window opens and the server application starts.

To run the client application:

1. Move to the <installationDirectory>\artix\1.3\demos\GuiTutorial
\Client\src\cpp directory by issuing the command:

2. Run the client application with the command,

which submits <someName> to the Web service’s sayHi method.

Or with the command:

which submits Artix User to the Web service’s sayHi method.

The client application invokes on the Web service and displays either the
anticipated greeting or the details of the exception.

Stop the Server Process

Stop the server process by issuing Ctrl-C in its command window.

start server

cd ..\..\..\Client\src\cpp

client <someName>

client
71

CHAPTER 5 | Faults and Exceptions
 72

CHAPTER 6

Mortgage
Calculator
This chapter is your "final exam." With minimal guidance, you
will use the Artix™ Designer to recreate a WSDL file that
describes a mortgage calculator Web service. Once you write
the WSDL file, you will generate the starting point code and
build the service.

In This Chapter This chapter discusses the following topics:

The Mortgage Calculator Web Service page 74

The WSDL File page 76

The Application Code page 79
73

CHAPTER 6 | Mortgage Calculator
The Mortgage Calculator Web Service

The Service Assume you work in the information services department of a banking
institution. The bank has decided to deploy a mortgage calculator Web
service so that mortgage brokers and potential customers can determine the
amount of a monthly mortgage payment. You have been given the
assignment of creating this Web service.

The service is relatively simple. It receives a request that includes the
amount of the anticipated loan, the annual interest rate percentage, and the
term of the loan in years. The service returns the same information and the
monthly payment value.

In a real work situation, you would be given the responsibility of defining the
data types, writing the WSDL file, and implementing the service. If you
want, you can approach this tutorial in the same way. Here is all of the
information you need to know:

• Input values:

Dollar amount of loan, for example, $100,000.00.

Annual interest percentage rate, for example, 8.75.

Term of loan in years, for example, 25.

• Output values:

Dollar amount of loan.

Annual interest percentage rate.

Term of loan in years.

Monthly payment.

• Faults:

The bank does not issue mortgages that exceed $2000.00 per
month. If the monthly payment is greater than this amount, the
service should raise the fault PaymentExceedsLimit, which
includes the monthly payment value as a member.

• Monthly payment formula:

Numerator = (($ amount of loan) * (monthly interest rate))

Denominator = (1 - ((1 +(monthly interest)) ** (-(Term * 12))))
 74

The Mortgage Calculator Web Service
Monthly Payment = Numerator \ Denominator

Where:

Monthly interest rate is a decimal value equal to the annual interest
percentage rate divided by 1200.

* represents multiplication.

** represents exponentiation.

/ represents division.

Alternatively, you can use the WSDL file described in the next section and
the wsdltocpp utility (discussed in Chapter 3, “Coding the Web Service”) to
generate the starting point code.

Finally, you can employ the WSDL file described in the next section as a
guide and use the Artix Designer to recreate the WSDL file and generate the
starting point code (as discussed in Chapter 4, “Using the Artix™
Designer”).

Which approach you take is your decision.
75

CHAPTER 6 | Mortgage Calculator
The WSDL File

The Web Service Description The following WSDL file describes the Mortgage Calculator Web service.
Although this Web service can be adequately described using simple data
types and messages with multiple parts, this WSDL file consolidates all of
the required input and output values into complex types and each method
contains only one part.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 name="MortgageCalculator"
 targetNamespace="http://www.bank.com/mortgagecalculator"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:http-conf=
 "http://schemas.iona.com/transports/http/configuration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.bank.com/mortgagecalculator"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema
 targetNamespace="http://www.bank.com/mortgagecalculator"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="CalculateFault" type="tns:MonthlyPayment"/>
 <element name="Request" type="tns:LoanRequest"/>
 <element name="Response" type="tns:BankAnswer"/>
 <simpleType name="LoanAmount">
 <restriction base="xsd:double"/>
 </simpleType>
 <simpleType name="Term">
 <restriction base="xsd:int"/>
 </simpleType>
 <simpleType name="AnnualInterestRate">
 <restriction base="xsd:double"/>
 </simpleType>
 <simpleType name="MonthlyPayment">
 <restriction base="xsd:double"/>
 </simpleType>
 76

The WSDL File
 <complexType name="BankAnswer">
 <sequence>
 <element name="Principal" type="tns:LoanAmount"/>
 <element name="Years" type="tns:Term"/>
 <element name="PercentageRate"
 type="tns:AnnualInterestRate"/>
 <element name="Payment" type="tns:MonthlyPayment"/>
 </sequence>
 </complexType>
 <complexType name="LoanRequest">
 <sequence>
 <element name="Principal" type="tns:LoanAmount"/>
 <element name="Years" type="tns:Term"/>
 <element name="PercentageRate"
 type="tns:AnnualInterestRate"/>
 </sequence>
 </complexType>
 </schema>
 </types>

 <message name="PaymentExceedsLimit">
 <part element="tns:CalculateFault"
 name="CalculatedPayment"/>
 </message>
 <message name="CustomerRequest">
 <part element="tns:Request" name="Input"/>
 </message>
 <message name="BankResponse">
 <part element="tns:Response" name="Output"/>
 </message>

 <portType name="Calculator">
 <operation name="CalculateMonthlyPayment">
 <input message="tns:CustomerRequest"
 name="CalculateMonthlyPaymentRequest"/>
 <output message="tns:BankResponse"
 name="CalculateMonthlyPaymentResponse"/>
 <fault message="tns:PaymentExceedsLimit"
 name="CalculateMonthlyPaymentFault"/>
 </operation>
 </portType>
77

CHAPTER 6 | Mortgage Calculator
If you want to use this file directly, you will need to copy the content into a
text file. Since the content spans three pages of this document, you will
need to copy and paste from each page separately, recombining the extracts
in the proper order in your text file. You can then proceed as described in
Chapter 3.

If you want to use this file as a guide to writing your own WSDL file with the
Artix Designer, you should start the designer, create a new project, and then
create the WSDL file. Start with the simple type definitions, then the
complex types followed by the element types. Next, define the messages,
port type, binding, and service. You can then create the client and server
applications, and generate starting point code, as described in Chapter 4.

 <binding name="Calculator_SOAPBinding" type="tns:Calculator">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CalculateMonthlyPayment">
 <soap:operation soapAction="" style="document"/>
 <input name="CalculateMonthlyPaymentRequest">
 <soap:body use="literal"/>
 </input>
 <output name="CalculateMonthlyPaymentResponse">
 <soap:body use="literal"/>
 </output>
 <fault name="CalculateMonthlyPaymentFault">
 <soap:fault name="CalculateMonthlyPaymentFault"
 use="literal"/>
 </fault>
 </operation>
 </binding>

 <service name="MortgageService">
 <port binding="tns:Calculator_SOAPBinding"
 name="MortgagePort">
 <soap:address location="http://localhost:9000"/>
 <http-conf:client/>
 <http-conf:server/>
 </port>
 </service>

</definitions>
 78

The Application Code
The Application Code

Application Files The wsdltocpp utility and the Artix Designer generate all of the files you
need to write this application.

• SampleClient.cxx is your client application. You will need to add the
code that makes the invocation and prints out the results. You will
also want to allow the user to input loan amount, annual interest rate,
and term as command line arguments to the client application.
Assume that the input will not include the dollar or percent signs.

• <WSDLfileName>_wsdlTypes.h is the file that contains your type
definitions. You must review the content of this file to understand the
API for each of these types.

• CalculatorImpl.cxx is your implementation object. You will need to add
the code that calculates the monthly payment from the input values.
Remember that the processing logic in the CalculateMonthlyPayment
method needs to throw the PaymentExceedsLimitException if the
monthly payment is greater than $2000.00.

The Client Application Code

The following code fragment is a workable solution to this coding
assignment.

Note: If you use the provided WSDL file and the wsdltocpp utility, type
definitions are generated into the file <WSDLfileName>_wsdlTypes.h. If
you use the Artix Designer and the composite WSDL approach to write
your own WSDL file, the definition of the exception class is inthe files
Client_wsdlTypes.h and Server_wsdlTypes.h.

#include <it_bus/bus.h>
#include <it_bus/Exception.h>
#include <it_cal/iostream.h>

#include "CalculatorClient.h"

IT_USING_NAMESPACE_STD
using namespace MortgageCalculator;
using namespace IT_Bus;
79

CHAPTER 6 | Mortgage Calculator
int
main(
 int argc,
 char* argv[]
)
{
 cout << "Calculator Client" << endl;
 try
 {
 IT_Bus::init(argc, argv);
 CalculatorClient client;
 MortgageCalculator::LoanRequest Input_0;
 Input_0.getPrincipal().set_value
 (strtod(argv[1], (char**)NULL));
 Input_0.getPercentageRate().set_value
 (strtod(argv[2], (char**)NULL));
 Input_0.getYears().set_value(atoi(argv[3]));

 MortgageCalculator::BankAnswer Output_1;
 client.CalculateMonthlyPayment (Input_0, Output_1);

 cout << "Principal: $" << Output_1.getPrincipal().get_value()
 << endl;
 cout << "Term: " << Output_1.getYears().get_value()
 << " years" << endl;
 cout << "Rate: " << Output_1.getPercentageRate().get_value()
 << "%" << endl;
 cout << "Payment: $" << Output_1.getPayment().get_value()
 << endl;
 }
 catch (PaymentExceedsLimitException& ex)
 {
 cout << endl << "PaymentExceedsLimitException Raised"
 << endl;
 cout << "\tMonthly payment too large: $"
 << ex.getCalculatedPayment().get_value() << endl;
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.Message() << endl;
 return -1;
 }
 return 0;
}

 80

The Application Code
The CalculatorImpl Code

The following code fragment is a workable solution to this coding
assignment (only the code for the CalculatorImpl class is shown).

#include "CalculatorImpl.h"
#include <it_cal/cal.h>
// Add include for math.h
#include <math.h>

using namespace MortgageCalculator;

CalculatorImpl::CalculatorImpl(IT_Bus::Bus_ptr bus)
 : MortgageCalculator::CalculatorServer(bus) {}

CalculatorImpl::~CalculatorImpl() {}

void
CalculatorImpl::CalculateMonthlyPayment(
 const MortgageCalculator::LoanRequest & Input,
 MortgageCalculator::BankAnswer & Output
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::Double principal = Input.getPrincipal().get_value();
 IT_Bus::Double rate = Input.getPercentageRate().get_value();
 IT_Bus::Int term = Input.getYears().get_value();

 // Convert yearly interest rate to monthly interest rate
 rate/=1200;

 // Multiply principle by rate
 // The value in numerator will become the payment
 IT_Bus::Double numerator = principal*rate;

 // Convert years to months
 term*=12;

 // Calculate value of denominator
 IT_Bus::Double denominator = (1 - ((pow((1+rate), (-term)))));

 // Calculate monthly payment
 numerator/=denominator;
 // Numerator now holds the monthly payment
81

CHAPTER 6 | Mortgage Calculator
Note the include statement for the math.h file; this header file is not
included by the Artix code generation process.

Building the Application

Compile the applications as described in either Chapter 3 or Chapter 4.

Running the Application

Open a command window and set the environment by running the
artix_env.bat file.

Move to the directory containing your server application. Start the server
with the command:

Move to the directory containing your client application. Run the client,
providing loan amount, annual interest rate, and term (in years) as
command line arguments; do not enter $ or % signs.

Run the client with several combinations of input and confirm that the
exception is properly thrown and handled.

 // Declare a variable to return the payment
 MonthlyPayment payment;
 // Set payment into return object
 payment.set_value(numerator);

 if (numerator >= 2000)
 {
 // Create and throw exception
 PaymentExceedsLimitException ex;
 ex.setCalculatedPayment(payment);
 throw ex;
 }

 // Initialize return
 // Transfer values from input
 Output.setPrincipal(Input.getPrincipal());
 Output.setYears(Input.getYears());
 Output.setPercentageRate(Input.getPercentageRate());
 // Set monthly payment
 Output.setPayment(payment);
}

start server

client <loan amount> <annual interest rate> <term>
 82

	Introduction
	Introduction to the Tutorial

	The WSDL File
	What Are Web Services?
	What is WSDL?
	A Complete WSDL File

	Coding the Web Service
	The wsdltocpp Utility
	Generating Code
	Completing the Coding
	Running the Application

	Using the Artix Designer
	The Artix Designer
	The Artix Project
	Writing the WSDL File
	Developing an Application
	Generating Code
	Completing the Code
	Running the Application

	Faults and Exceptions
	Raising Exceptions
	Handling Runtime Exceptions
	Working with WSDL Faults
	Developing An Application

	Mortgage Calculator
	The Mortgage Calculator Web Service
	The WSDL File
	The Application Code

