
Artix
Version 5.6.4

WSDLGen Guide: Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-02-22

 Artix WSDLGen Guide: Java i i i

Contents

Preface..v
Contacting Micro Focus ..v

Using WSDLGen...1
WSDLGen Architecture...1
Generating Code with the wsdlgen Utility ...3
JAX-WS Templates ..6
WSDLGen Configuration File ...6
Unsupported XML Schema Types...9

Developing Basic Templates ..11
Writing Custom Templates ...11
Bilingual Files ...12
Predefined Objects ..15
Generating JAX-WS Java Code ..20

Parsing WSDL and XML..25
Parser Overview..25
Basic Parsing..26

The WSDL and XML Schema Models ..26
Parsing Document/Literal Wrapped Style..27
Parsing RPC/Literal Style..28

The JWSDL Parser ...29
Overview of the WSDL Model..30
JWSDL Parser Classes ...31

The XMLBeans Parser ..35
Overview of the XMLBeans Parser ...35
XMLBeans Parser Classes ...36

Appendix Appendix: Java Utility Classes.............................41
Useful Java Utility Classes ..41

Index ..45

iv Artix WSDLGen Guide: Java

 Artix WSDLGen Guide: Java v

Preface

What is Covered in This Book
This book describes how to use the WSDLGen command-line
utility to generate code from a WSDL contract. As well as
describing the standard WSDLGen code generating templates, the
book explains how to develop custom templates, which you can
then use to generate Artix applications implemented in Java.

Who Should Read This Book
This book is aimed primarily at Java developers who are interested
in using code generation to accelerate the process of
implementing Web service applications.
This book might also be of some interest to build engineers who
need to generate Makefiles and Ant build files based on the
content of WSDL contracts.

Artix Documentation Library
For information on the entire Artix Documentation Library,
including organization, contents, conventions, and reading paths,
see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com

 vi Artix WSDLGen Guide: Java

Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx (documentation

updates and PDFs)

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx

Artix WSDLGen Guide: Java vii

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 viii Artix WSDLGen Guide: Java

 Artix WSDLGen Guide: Java 1

Using WSDLGen
This chapter explains how to use the standard templates provided with
WSDLGen to generate sample applications in Java.

WSDLGen Architecture
Figure 1 provides an overview of the WSDLGen code generator
architecture.

Figure 1: WSDLGen Code Generator Architecture

WSDLGen core
The WSDLGen core consists of a pluggable framework—for loading
generator and scripting plug-ins—as well as providing a core set of
libraries, which are made available to the loaded plug-ins.
The core set of libraries includes the following object models,
which can represent the parsed contents of the WSDL contract, as
follows:
• JWSDL model—a model that recognizes the standard

elements of a WSDL contract, identifying each type of WSDL
element with a Java class.

• XMLBeans model—a model that recognizes the elements of an
XML schema definition. This model is used to represent the
types section of a WSDL contract (where the parameter data
types are defined).

For more details about the core parsers, see “Parser Overview”.
The WSDLGen core also includes additional utilities, as follows:
• SmartLoad utility—provides the capability to load template

files from a well-known location (a search path for SmartLoad
can be specified in the WSDLGen configuration file).

WSDL

WSDLGen Core

JWSDL Model

XMLBeans
Model

SmartLoader

Randomizer

Parse

Scripting
Plug-In

.jsb

Template

Output Files
JAX-WS

Generator
JavaScript

Plug-In

Generator
Plug-In

 2 Artix WSDLGen Guide: Java

• Randomizer utility—can be used to generate random
parameter data. This is useful for generating sample
application code.

Generator plug-ins
Because the WSDLGen core provides only the abstract framework
for code generation, it is always necessary to specify a particular
generator plug-in when you invoke WSDLGen. Currently, the
JAX-WS generator plug-in is provided.

JAX-WS generator plug-in
You must specify the JAX-WS generator in order to generate code
for an Artix JAX-WS Java application.

Scripting plug-ins
The WSDLGen architecture has been designed so that it is possible
to support additional template languages by adding a plug-in to
the core. Currently, WSDLGen supports only the JavaScript
language.

JavaScript plug-in
JavaScript (also known as ECMAScript) is an object-based
scripting language that has a syntax similar to C or Java. Unlike
object-oriented languages, however, JavaScript is not a
strongly-typed language.
The JavaScript plug-in enables you to write code-generating
templates in the JavaScript language. The choice of JavaScript as
the template language has no impact on the choice of generated
language: you can use JavaScript templates to generate code in
Java, or any other language.

Standard templates
WSDLGen provides a standard suite of templates that take a
WSDL contract and generate a sample Artix application in Java
based on the interfaces defined in the contract.

Custom templates
It is also possible for you to develop your own custom templates.
An easy way to get started with developing custom templates is to
take one of the standard WSDLGen templates and modify it for
your own requirements—see “Developing Basic Templates” for
details.

Artix WSDLGen Guide: Java 3

Generating Code with the wsdlgen Utility

Syntax of wsdlgen
The wsdlgen command-line utility has the following syntax:

Where a pair of square brackets, [], denotes an optional part of
the syntax and the asterisk character, *, implies that the
preceding option can be repeated 0 or more times.
You must specify the location of a valid WSDL contract file,
WSDLFile. You can also supply the following options:

wsdlgen [-G ApplicationType] [-T TemplateID]*
[-C ConfigFile] [-D Name=Value]* WSDLFile

-G ApplicationType Specifies the type of application to
generate. jaxws for generating JAX-WS
Java code, is defined by default.

-T TemplateID Each application type defines a set of
template IDs, which can be used as
shortcuts to invoke particular template
scripts. For details, see “Generating
JAX-WS code” on page 5.

-C ConfigFile Specifies the location of the WSDLGen
configuration file, ConfigFile. If this
option is not set, wsdlgen reads the
default configuration file (located in
%IT_WSDLGEN_CFG_FILE% on Windows and
$IT_WSDLGEN_CFG_FILE on UNIX).

-D Name=Value Specifies the value, Value, of a JavaScript
property, Name. See also “Variables
defined at the command line”.

 4 Artix WSDLGen Guide: Java

Alternative syntax of wsdlgen
Alternatively, you can use the following syntax:

In this syntax, the following options are used differently:

Generating code from a specific template
(or templates)
You can specify explicitly which templates to run, by invoking the
wsdlgen utility with the -T option. For example, suppose you have
a WSDL contract file, hello_world.wsdl, and you wish to generate a
sample implementation of the Greeter port type. You could invoke
the wsdlgen utility as follows:

Variables defined at the command line
The following JavaScript variables can be set at the command line,
using the -D option of the wsdlgen command:
• portType—local name of the port type for which code is

generated.
• bindingName—local name of the binding for which code is

generated.
• serviceName—local name of the service for which code is

generated.
• portName—name of the port for which code is generated.
• artixInstall—when generating an Ant build file using the

ArtixJaxwsAntfile.jsb template (for example, by running
wsdlgen -G jaxws -T ant), specifies the root directory of the
Java runtime. The Ant build file then picks up its Jar libraries
from the lib subdirectory of the specified directory. The
default value is ArtixInstallDir/java.

wsdlgen [-G GeneratorClass] [-T TemplateFile]*
[-C ConfigFile] [-D Name=Value]* WSDLFile

-G GeneratorClass Specifies the name of a generator plug-in class.
Use
com.iona.cxf.tools.wsdlgen.jaxwsgenerator.Jaxws
Generator to generate JAX-WS Java code.

-T TemplateFile Specifies the location of a bilingual template file,
TemplateFile, that governs code generation. This
option can be repeated, in order to generate
code from multiple templates in one invocation.

wsdlgen
-G
com.iona.cxf.tools.wsdlgen.jaxwsgenerator.JaxwsGenerat
or -D portType=Greeter
-T templates\jaxw\ArtixJaxwsServer.jsb
hello_world.wsdl

Artix WSDLGen Guide: Java 5

In particular, you can set the following combinations of these
variables at the command line in order to select a particular
service and port:
• serviceName and portName—generate code for the specified

service and port.
• serviceName—generate code for the specified service and the

first port of that service.
• portType—generate code for the first service, port, and binding

associated with the specified port type.
• bindingName—generate code for the first service and port

associated with the specified binding.
• None specified—generate code for the first service and port in

the WSDL contract.

Generating JAX-WS code
When generating JAX-WS code from the standard templates, it is
usually simpler to use the -G jaxws -T TemplateID syntax. For
example, to generate a sample implementation of the Greeter port
type from the hello_world.wsdl file, you could invoke the wsdlgen
utility as follows:

When called with -G jaxws, the -T TemplateID switch supports the
following template IDs:

wsdlgen
-G jaxws -D portType=Greeter -T impl hello_world.wsdl

impl For the given PortType port type (specified by the
portType property), generate the files PortType.java
and PortTypeImpl.java. Also, generate stub code for
the port type.

server For the given PortType, generate a file,
PortTypeServerSample.java, that implements the main()
function for a standalone server. Also, generate stub
code for the port type.

client For the given PortType, generate a file,
PortTypeClientSample.java, that invokes all of the
operations in the PortType port type. Also, generate
stub code for the port type.

all Specifying -T all is equivalent to specifying -T impl
-T server -T client.

ant Generate an Apache Ant build file for the Java
application. You can customize the location of the
Java runtime by setting the cxfInstall variable—see
“Variables defined at the command line”.

 6 Artix WSDLGen Guide: Java

JAX-WS Templates
WSDLGen provides a standard set of templates for generating
JAX-WS code. These templates are located in the
ArtixInstallDir/tools/templates directory.

Invoking the JAX-WS templates
To invoke a JAX-WS template directly, use the -G option to load
the JaxwsGenerator generator class. For example, to generate code
from a single JAX-WS template, TemplateFile, enter a command like
the following:

JAX-WS templates
Table 1 lists the WSDLGen templates that can be used to generate
JAX-WS Java examples.

WSDLGen Configuration File
The wsdlgen utility has its own configuration file, which is defined
in XML format. This configuration file enables you to customize
WSDLGen by:
• Setting JavaScript variables.
• Setting SmartLoader paths.
• Defining generator profiles.

wsdlgen
-G
com.iona.cxf.tools.wsdlgen.jaxwsgenerator.JaxwsGenerat
or
-T TemplateFile
WSDLFile

Table 1: WSDLGen Templates for Generating JAX-WS Code

Java Template File Description

ArtixJaxwsClient.jsb Generate a sample Java client.

ArtixJaxwsServer.jsb Generate a server main() function (for deploying the server
in standalone mode).

ArtixJaxwsImpl.jsb Generate an outline implementation for the port type
specified by the portType property.

ArtixJaxwsStubTypes.jsb Generate stub code and type files for port type specified by
the portType property.

ArtixJaxwsAntfile.jsb Generate a sample build.xml file, for use with the Apache
Ant build utility.

Artix WSDLGen Guide: Java 7

Default location
The WSDLGen configuration is stored at the following default
location:

Setting JavaScript variables
You can initialize JavaScript variables from the WSDLGen
configuration file, as shown in Example 1.

Where the defines element can contain any number of entries of
the form <VariableName>Value</VariableName>. Each configuration
entry of this form is equivalent to including the following
JavaScript code at the top of your template:

Setting SmartLoader paths
You can define a search path for the smart loader utility in the
WSDLGen configuration file by adding a sequence of path
elements inside an enclosing paths element, as shown in
Example 2.

When searching for scripts included through the smart loader
mechanism, WSDLGen searches the directories listed in the paths
element. For more details about the smart loader utility, see
“smartLoader utility”.

ArtixInstallDir/tools/etc/wsdlgen.cfg

Example 1: Setting JavaScript Variables in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <defines>
 <foo>fooValue</foo>
 <!-- ... -->
 </defines>
 ...
</wsdlgen>

var VariableName = "Value";

Example 2: Setting SmartLoader Paths in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <paths>
 <path>/home/fflintstone/.wsdlgen</path>
 <path>/usr/local/templates/wsdlgen</path>
 <!-- ... -->
 </paths>
 ...
</wsdlgen>

 8 Artix WSDLGen Guide: Java

Defining generator profiles
You can define your own generator profiles in the WSDLGen
configuration file. A generator profile enables you to customize the
combination of templates that are invoked when you enter a
WSDLGen command of the form wsdlgen -G ApplicationType -T
TemplateID. This is typically useful, if you are developing your own
WSDLGen templates.
Example 3 shows the general outline of a generator profile in the
WSDLGen configuration file.

The preceding profile configuration can be explained as follows:
1. The profiles element contains one or more arbitrarily-named

profile elements, ApplicationType.
2. An ApplicationType element represents a single generator

profile. You can call this element anything you like: the
wsdlgen utility automatically searches for the ApplicationType
element when you specify it using the -G ApplicationType
option.

3. The generator element specifies the name of the generator
plug-in class to use for this profile. For details of the generator
classes currently provided by WSDLGen, see “Alternative
syntax of wsdlgen”.

4. A TemplateID identifies a combination of templates that can be
called in a single batch. This element can have an arbitrary
name: the wsdlgen utility automatically searches for the
TemplateID element when you specify it using the -T TemplateID
option.
You can define multiple TemplateID elements within each
profile.

5. Within each template combination, use the template element
to specify the location of a single template. Typically, you
would specify the absolute pathname of the template. You can
also substitute environment variables from the operating
system, using the syntax, $VARIABLE_NAME$.

Example 3: Defining a Generator Profile in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 ...

1 <profiles>
2 <ApplicationType>
3 <generator>GeneratorClass</generator>
4 <TemplateID>
5 <template>TemplatePath</template>

 ...
 </TemplateID>
 ...
 </ApplicationType>
 </profiles>
 ...
</wsdlgen>

Artix WSDLGen Guide: Java 9

Examples of generator profiles
For some examples of generator profiles, see the profiles for cxx,
jaxrpc, and jaxws in the default configuration file,
ArtixInstallDir/tools/etc/wsdlgen.cfg.

Unsupported XML Schema Types
Currently, not all XML schema types are supported by the
WSDLGen code generator. The following XML schema types are
currently not supported by the JAX-WS code generator:
• Primitive types: xs:nonPositiveInteger, xs:duration,

xs:NMTokens, xs:IDREF, xs:IDREFS, xs:ENTITY, xs:ENTITIES,
xs:NOTATION.

• xs:list
• xs:union
• xs:group

• Types derived by extension or restriction.
• Occurrence constraints on xs:sequence and xs:choice.
• Anonymous types.

 10 Artix WSDLGen Guide: Java

 Artix WSDLGen Guide: Java 11

Developing Basic
Templates
This chapter provides an introduction to the subject of writing your own
templates for generating code in Java.

Writing Custom Templates
The simplest approach to take when writing a custom template is
to take one of the WSDLGen samples and modify it to your own
requirements. This chapter aims to provide you with enough
information to understand the sample templates and to use the
WSDLGen programming interfaces effectively.

Running a custom template
To generate code using a custom template, specify the template
file to the wsdlgen utility using the -T command-line option and
specify the relevant generator class using the -G command-line
option.
For full details of the relevant wsdlgen command-line syntax, see
“Alternative syntax of wsdlgen”.

Bilingual files
WSDLGen templates are written in a special file format known as a
bilingual file and identified by the .jsb file suffix. The bilingual file
format enables you to freely mix the JavaScript language and the
target language together in the one file. For details, see “Bilingual
files”.

Predefined objects
To provide you with convenient access to data and objects derived
from the WSDL contract, WSDLGen creates predefined objects in
JavaScript. For example, the wsdlModel object provides access to a
complete parse tree of the WSDL contract (using the JWSDL API).
For details, see “Predefined objects”.

 12 Artix WSDLGen Guide: Java

Built-in APIs
APIs provided for writing templates include the following:
• WSDLGen API for JAX-WS—utility functions for generating

JAX-WS Java code from WSDL.
• WSDLGen randomizer—a random data generator, used

internally by WSDLGen to generate random parameter values.
• JWSDL API—a WSDL parser based on the JWSDL standard.

See “The JWSDL Parser” on page 29 for details.
• XMLBeans API—an XML schema parser. See “The XMLBeans

Parser” on page 35 for details.
• Java model for JAX-WS—a Java parser that models the

artifacts generated by the JAX-WS WSDL-to-Java mapping.

Bilingual Files
The basic purpose of a JavaScript template in WSDLGen is to
generate code in a target language (such as Java). Consequently,
if a code generating template was written in pure JavaScript, it
would contain a large number of print directives to produce the
required target code. In practice, this style of coding quickly leads
to templates that are virtually illegible (you might be familiar with
this sort of problem in the context of HTML-generating servlet
code).
To solve this difficulty, WSDLGen introduces the concept of a
bilingual file for developing code-generating templates. The basic
idea of the bilingual file is that a set of escape sequences enable
you to switch back and forth between the generating language
and the target language. Example 4 shows a sample outline of
such a bilingual file, with one section of the file (enclosed between
[*** and ***]) expressed in the target language.

Example 4: Sample Outline of a Bilingual File.

// JavaScript Bilingual File
openOutputFile(PathName)

// Put JavaScript code here...
...

[***
 // Put TargetLanguage code here...
 ...
***]

closeOutputFile()

Artix WSDLGen Guide: Java 13

Opening and closing the output file
A bilingual file must be associated with an output destination. You
can specify an output file for the generated code by calling the
following function in your script (typically, at the start of the
template):

Where PathName specifies the path to the generated output file. On
UNIX platforms, an alternative form of the openOutputFile()
function is available, which lets you set file permissions on the
output file:

Where Permissions is a string value formatted in the same way as a
standard chmod permission string. For example, the string,
u=rwx,g=rx,o=x, would give full permissions to the owner, read and
execute permissions to the group, and execute permission to all
others. For full details of the permission string syntax, enter man
chmod at the command line.
You can close the output file by calling the following function
(typically, at the end of the template):

The call to openOutputFile() establishes an association between
the destination file, PathName, and the blocks of generated code
written in the target language. All of the generated code is sent to
the file, PathName, specified by the openOutputFile() function.

Output text delimiters
Blocks of generated code are delimited by the output text
delimiters shown in Table 3

openOutputFile(PathName)

openOutputFile(PathName, Permissions)

closeOutputFile()

Note: If openOutputFile() is not called, the output is
directed to standard out by default.

Table 2: Character Sequences for Delimiting Output Text

Character
Sequence

Description

[*** Beginning of a code block written in the
target language.

***] End of the code block written in the target
language.

 14 Artix WSDLGen Guide: Java

Escaping within output text
Within the scope of the output text delimiters, you can escape
back to JavaScript using the escape characters shown in Table 3.

Variable escape
Within the scope of the output text delimiters, you can substitute
the value of a JavaScript variable using the dollar sign, $, as an
escape character. To make the substitution, enclose the
JavaScript variable name between two dollar signs, $VarName$.
For example, if intfName is a JavaScript variable that holds a WSDL
port type name, you could declare a Java class to implement this
port type using the following fragment of bilingual file.

The implementation class name is derived by adding the Impl
suffix to the port type name. For example, if generating code for
the Greeter port type, $intfName$Impl would expand to GreeterImpl.

Line escape
Within the scope of the output text delimiters, you can escape to a
line of JavaScript code by putting the at symbol, @, at the start of
a line (as the first non-whitespace character).
For example, the following bilingual file generates a Java function,
ListInterfaceOps(), that lists all of the operations in the current
WSDL interface.

Table 3: Escape Characters Used in Output Text

Escape
Sequence

Description

$VarName$ Substitute a JavaScript variable, VarName,
embedding it in a line of output text—see
“Variable escape”.

@JavaScript Escape to a line of JavaScript—see “Line
escape”.

// JavaScript Bilingual File
openOutputFile(PathName)

[***
public class $intfName$Impl implements java.rmi.Remote {
***]

// More script (not shown)...
...
closeOutputFile()

// JavaScript Bilingual File
...
openOutputFile(PathName)

Artix WSDLGen Guide: Java 15

Unlike the variable escape mechanism, $VarName$, the line escape
does not produce any output text as a side effect of its execution.
While the line enclosing a variable escape sequence, $VarName$, is
implicitly enclosed in a print statement, the line escaped by the at
symbol, @, is not printed.

Escaping the escape characters
Occasionally, you might need to output the dollar, $, and at sign,
@, character literals inside the scope of an output text block. For
this purpose, WSDLGen defines the $dollar$ and at variables,
which resolve to literal dollar, $, and literal at, @, inside an output
text block.

Predefined Objects
The programming interface provided by WSDLGen includes a
number of predefined JavaScript objects. Some of these
predefined objects are simple variables (for example, intfName,
containing the name of the current port type), whilst others
provide access to particular APIs (for example, wsdlModel, which
provides access to the JWSDL parser API).

List of predefined objects
Table 4 shows the list of JavaScript objects predefined by
WSDLGen.

[***
 ...
 public static void ListInterfaceOps() {
 System.out.println("Operation is one of: ");
 @for (var i = 0; i < numOps; i++) {
 System.out.println(" $operations[i].getName()$");
 @}
 }
}
***]

closeOutputFile()

Table 4: Predefined JavaScript Objects

JavaScript
Object

Description

bindingName Local part of the binding name for which
code is generated. You can set this
variable when you invoke the wsdlgen
command (see “Variables defined at the
command line”).

intfName A name derived from the port type name,
portType, by dropping the PortType suffix
(if any).

 16 Artix WSDLGen Guide: Java

javaIntfName A name derived from intfName by
removing any dot characters, ., or
hyphen characters, -, and capitalizing the
subsequent letter. For example,
simple.simpleIntf would become
SimpleSimpleIntf.

javaModel An instance of the
org.apache.cxf.tools.common.model.JavaMo
del type, which provides access to a Java
parser.

javaPackage The Java package name in which to define
the generated implementation classes. Its
value is derived from the WSDL target
namespace.

javaServiceName A name derived from serviceName by
removing any dot characters, ., or
hyphen characters, -, and capitalizing the
subsequent letter. For example,
simple.simpleService would become
SimpleSimpleService.

jaxwsIntfName A name derived from intfName by
removing any dot characters, ., hyphen
characters, -, or underscore characters,
_, and capitalizing the subsequent letter.
For example, simple.simpleIntf would
become SimpleSimpleIntf.

jaxwsServiceName A name derived from serviceName by
removing any dot characters, ., hyphen
characters, -, or underscore characters,
_, and capitalizing the subsequent letter.
For example, simple.simpleService would
become SimpleSimpleService.

jsModel A wrapper for the wsdlModel object.

operations[] An array of operation objects, of
javax.wsdl.Operation type. See “JWSDL
Parser Classes” for details.

parametersList An instance of the utility class,
com.iona.wsdlgen.common.ParametersList.
This object enables you to obtain a list of
parts and faults for every WSDL
operation.

portName Port name for which code is generated.
You can set this variable when you invoke
the wsdlgen command (see “Variables
defined at the command line”).

Table 4: Predefined JavaScript Objects (Continued)

JavaScript
Object

Description

Artix WSDLGen Guide: Java 17

portType Local part of the port type name for which
code is generated. You can set this
variable when you invoke the wsdlgen
command (see “Variables defined at the
command line”).

randomizer An instance of a WSDLGen utility that
generates random numbers. The
WSDLGen templates use this object to
generate random parameters.

schemaModel An instance of the
org.apache.xmlbeans.SchemaTypeLoader
class, which provides access to an XML
schema parser. See “The XMLBeans
Parser” for details.

serviceName Local part of the service name for which
code is generated. You can set this
variable when you invoke the wsdlgen
command (see “Variables defined at the
command line”).

smartLoader An instance of a WSDLGen utility that
imports JavaScript or bilingual files from a
well-known location. The search path for
the smart loader can be specified in the
WSDLGen configuration file.

tns The namespace of the port type, binding,
and service elements. Specifically, this
variable contains the value of the
targetNamespace attribute from the
definitions element in the WSDL
contract.

wsdlFile The location of the WSDL contract file.

wsdlModel An instance of the javax.wsdl.Definition
class, which provides access to a JWSDL
parser. See “Parsing WSDL and XML” for
details.

Table 4: Predefined JavaScript Objects (Continued)

JavaScript
Object

Description

 18 Artix WSDLGen Guide: Java

WSDL and schema models
The following objects represent the roots of the WSDL model and
the XML schema model respectively:
• wsdlModel
• schemaModel

These parser objects provide a complete model of the WSDL
elements and XML schema types defined in the WSDL contract.
The following object represents the root of the JAX-WS Java
model:
• javaModel

This parser object provides a model of all the Java artifacts
produced by the JAX-WS WSDL-to-Java mapping.
Typically, it is not necessary to use these APIs in a basic template.
For more advanced applications, however, see “Parsing WSDL and
XML” for details about the parser APIs.

operations[] array
An array of operation objects representing all of the operations in
the portType port type. The operation objects are instances of
javax.wsdl.Operation, which is part of the JWSDL API.
For example, you can print out the names of all the operations in
the portType port type as follows:

For more details about the javax.wsdl.Operation class, see “JWSDL
Parser Classes”.

parametersList object
The parametersList object provides a method, getPartsAndFaults(),
that provides access to all of the message parts and faults
associated with a particular WSDL operation.
For example, to obtain the parts and faults associated with the ith
operation of the current WSDL interface, make the following
JavaScript call:

Where the argument to getPartsAndFaults() is a key, consisting of
a port type name concatenated with an operation name.

// JavaScript Bilingual File
...
for (var i=0; i < operations.length; i++) {
[***
 System.out.println("Operation["+i+"] name = "
 + $operations[i].getName()$
);
***]
}

var partsAndFaults = parametersList.getPartsAndFaults(
 portType + operations[i].getName()
)

Artix WSDLGen Guide: Java 19

By calling partsAndFaults.parts()[k]—where k lies in the range 0
to partsAndFaults.parts().length—you can obtain a PartHolder
object, which holds the following items:
• partsAndFaults.parts()[k].getPart()—returns the

javax.wsdl.Part object that represents the current part.
• partsAndFaults.parts()[k].getDirection()—returns one of the

following direction flag values: DIRECTION_IN, or DIRECTION_OUT.
By calling partsAndFaults.faults()[k]—where k lies in the range 0
to partsAndFaults.faults().length—you can obtain a FaultHolder
object, which holds the following items:
• partsAndFaults.faults()[k].getName()—returns the fault

name.
• partsAndFaults.faults()[k].getParts()—returns the array of

javax.wsdl.Part objects contained in the fault.

smartLoader utility
The smart loader utility provides a way of including files located
relative to a well-known directory (or directories). For example, if
you are implementing a custom template, you could include the
contents of the file, CustomUtils/MyUtilities.js, at the start of
your template by calling smartLoad() as follows:

Where the included file, CustomUtils/MyUtilities.js, is located
under one of the directories listed in the paths element in the
WSDLGen configuration file. Example 5 shows an example of a
configuration file that specifies two path directories, with each
directory enclosed in a path element. The directories are searched
in the order in which they appear in the configuration file.

JavaScript Bilingual File
smartLoad("CustomUtils/MyUtilities.js");
...

Example 5: Smart Loader Path in the WSDLGen Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
 <paths>
 <path>/home/fflintstone/.wsdlgen</path>
 <path>/usr/local/templates/wsdlgen</path>
 <!-- ... -->
 </paths>
 ...
</wsdlgen>

 20 Artix WSDLGen Guide: Java

Generating JAX-WS Java Code
This section provides a brief overview of the most important
WSDLGen functions for generating JAX-WS Java code. The
following topics are described:
• Indentation level.
• Mangling identifiers.
• Generating print calls.
• Generating operation calls in a JAX-WS consumer.
• Catching fault exceptions in a JAX-WS consumer.
• Generating a JAX-WS service implementation.

Indentation level
Some of the functions in the WSDLGen API generate multi-line
output. To give you some control over the layout of the resulting
output, these functions take an integer parameter, IndentLevel,
that lets you specify the initial level of indentation.

Mangling identifiers
Table 5 summarizes the functions that you can use to mangle
identifiers according to the JAX-WS mangling rules.

Table 5: Functions for Mangling JAX-WS Identifiers

Function Description

jaxwsMangleMethodName(
 methodName

)

Return a mangled method name, according to the
following rule: remove each occurrence of _ or - and
capitalize the following character. For example, foo_bar
becomes FooBar and foo-bar becomes FooBar.

jaxwsMangleTypeName(
 typeName

)

Return a mangled type name, according to the following
rule: remove each occurrence of ., _, or - and capitalize
the following character. For example, my_type becomes
MyType and iona.my-type becomes IonaMyType.

jaxwsMangleURI(
 name

)

Remove the trailing file extension from a URI. For
example, http://www.iona.com/foo.xml becomes
http://www.iona.com/foo.

jaxwsMangleVarName(
 varName

)

Return a mangled object name or class name, according
to the following rule: remove all occurrences of . and -
characters.

Artix WSDLGen Guide: Java 21

Generating print calls
Table 6 summarizes the WSDL functions that you use to generate
Java methods that print operation parameter values.

For example, to generate a method that prints the out and inout
parameters of the met JAX-WS method, use the following code:

To call the preceding print method, generate a method call as
follows:

Table 6: Functions for Generating JAX-WS Print Calls

Function Description

jaxwsPrintMethodSig(
 portType,
 opName,
 ignoreDirection

)

Generate the signature of a Java method that prints out the
parameters of the operation, opName, in the interface, portType.
The ignoreDirection parameter specifies which kind of parameter
not to print. The ignoreDirection parameter can have one of the
following values: DIRECTION_IN, DIRECTION_OUT, DIRECTION_INOUT.

jaxwsPrintParts(
 portType,
 opName,
 lvl,
 isClient

)

Generate the body of a Java method that prints out the
parameters of the operation, opName, in the interface, portType.
REVISIT - In the templates, the isClient parameter seems to be
treated as an ignoreDirection parameter. Which is correct?

jaxwsPrintCall(
 portType,
 opName,
 ignoreDirection

)

Generate a Java method call that calls the method generated by
the preceding utility functions.

$jaxwsPrintMethodSig(portType, met.getOperationName(),
DIRECTION_IN)$ {

 $jaxwsPrintParts(portType, met.getOperationName(), 2,
DIRECTION_IN)$

}

$jaxwsPrintCall(portType, met.getOperationName(),
DIRECTION_IN)$

 22 Artix WSDLGen Guide: Java

Generating operation calls in a JAX-WS
consumer
Table 7 summarizes the WSDLGen functions that you use to
generate a WSDL operation call using the JAX-WS mapping:

The functions inTable 7 take the following arguments:
• portType is the local name of the port type on which the

operation is defined;
• opName is the local name of the WSDL operation;
• lvl specifies how many levels of indentation are applied to the

generated code.
• ignoreDirection specifies which kind of parameters to ignore

whilst processing. This flag can take either of the values,
DIRECTION_IN or DIRECTION_OUT. For example, if you specify this
flag as DIRECTION_OUT, only in parameters will be processed.

Example 6 shows how to use the preceding functions to generate
JAX-WS operation calls in a Web service client. The code iterates
over every operation in the current port type, generating code to
declare and initialize the parameters and then call the operation.

Table 7: Functions for Generating a JAX-WS Operation Call

Function Description

jaxwsPopulateParts(
 portType,
 opName,
 lvl,
 isClient

)

When the isClient parameter is equal to true, populate each of
the request parameters (in and inout parameters) with random
data.

jaxwsMethodCall(
 portType,
 opName,
 lvl

)

Call the operation, opName.

Example 6: Generating JAX-WS Operation Calls

@for (var i = 0; i < methods.size(); i++) {
@var met = methods.get(i)
 public static void

call$initialToUpperCase(met.getName())$($initialToUppe
rCase(jaxwsIntfName)$ impl) {

 System.out.println("Invoking $met.getName()$...");
 $jaxwsPopulateParts(portType,

met.getOperationName(), 3, true)$
 $jaxwsMethodCall(portType,

met.getOperationName(), 3)$
 }

@}

Artix WSDLGen Guide: Java 23

Catching fault exceptions in a JAX-WS
consumer
To generate a catch exception statement, WSDLGen provides the
getJaxwsCatchExceptionsStatement() function, whose syntax is
summarized in Table 8.

Example 7 shows an example of how to generate Java code to
catch the fault exceptions associated with the method, met.

Generating a JAX-WS service
implementation
Table 9 summarizes the WSDLGen functions that you use to
generate a JAX-WS implementation class.

Table 8: Functions for Generating a JAX-WS Operation Call

Function Description

getJaxwsCatchExceptionsStatement(
 Method,
 lvl,
 ignoreDirection

)

Generate a catch exception statement for Method, where
Method is a JavaMethod instance that represents the WSDL
operation.

Example 7: Generating JAX-WS Code to Catch a Fault Exception

// JavaScript Bilingual File
...
[***
@var exceptions = met.getExceptions()
@if (exceptions.size()) {
 try {
@}
 // Code to call ’met’ (not shown)
 ...
@if (exceptions.size()) {
$getJaxwsCatchExceptionsStatement(met, 2, DIRECTION_OUT)$
@}
...
***]

Table 9: Functions for Generating a JAX-WS Implementation Class

Function Description

jaxwsMethodSig(
 met

)

Generate a Java method signature for the operation
represented by met in the Java model.

 24 Artix WSDLGen Guide: Java

Example 8 shows a fragment of a script that uses the preceding
functions to generate a Java implementation class. The script
iterates over all of the operations in the current port type,
portType, generating an implementing method for each one.

jaxwsPopulateParts(
 portType,
 opName,
 lvl,
 isClient

)

When the isClient parameter is equal to false, populate each of
the reply parameters (inout and out parameters) with random
data.

Table 9: Functions for Generating a JAX-WS Implementation Class

Function Description

Example 8: Generating a JAX-WS Implementation Class

// JavaScript Bilingual File
...
[***
@for (var i = 0; i < methods.size(); i++) {
@var met = methods.get(i)
 $jaxwsMethodSig(met)$
 System.out.println("Executing operation

$met.getName()$");
 $jaxwsPrintCall(portType, met.getOperationName(),

DIRECTION_OUT)$

 $jaxwsPopulateParts(portType, met.getOperationName(),
3, false)$

@ if (met.getReturn().getType() != "void") {
 return null;
@ }
 }
@}
***]

 Artix WSDLGen Guide: Java 25

Parsing WSDL and XML
This chapter introduces you to the subject of parsing WSDL using the
low-level APIs, JWSDL and Apache XMLBeans. The higher-level
WSDLGen API is built on top of these basic parsing APIs.

Parser Overview
The parsing APIs that underly WSDLGen are taken from the
following open source products:
• WSDL4J (reference implementation of the JWSDL standard),
• Apache XMLBeans.
These two parsers provide alternative views of the WSDL contract.
The JWSDL model is useful for parsing WSDL artifacts, such as
port types, bindings, and services. The XMLBeans model, on the
other hand, is an XML schema parser, which is more useful for
parsing the XML schema types defined in the WSDL contract.

JWSDL
JWSDL is a Java API for parsing WSDL contracts. This API is being
developed under the Java Community Process, JSR 110. A copy of
the JWSDL specification and complete Javadoc for the JWSDL API
can be downloaded from the following location:
http://jcp.org/en/jsr/detail?id=110

Apache XMLBeans
Apache XMLBeans is an open source API for parsing XML schemas.
It is useful for parsing the contents of the schema elements in a
WSDL contract. The home page for the XMLBeans project is:
http://xmlbeans.apache.org/
The complete Javadoc for XMLBeans v2.2.0 is available at the
following location:
http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

http://jcp.org/en/jsr/detail?id=110
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

 26 Artix WSDLGen Guide: Java

Rhino
Rhino is a Java implementation of JavaScript that includes the
capability to map Java APIs into JavaScript (the scripting Java
feature). In the context of WSDLGen, this capability of Rhino is
exploited to make both the JWSDL API and the XMLBeans API
available in JavaScript (these APIs are originally specified in Java
only).
Due to the strong similarity between Java syntax and JavaScript
syntax, the mapped APIs are remarkably intuitive to use from
within JavaScript. For details about how this mapping works, see:
http://www.mozilla.org/rhino/ScriptingJava.html

Basic Parsing
This section discusses some basic topics in parsing WSDL
contracts. In particular, you need to be aware of how the contract
style (document/literal wrapped or RPC/literal) affects how you
parse a WSDL port type.

The WSDL and XML Schema Models
WSDLGen enables JavaScript programs to access the JWSDL API
and the XMLBeans API from by defining the following JavaScript
objects:
• wsdlModel—the root of the JWSDL parser model.
• schemaModel—the root of the XMLBeans parser model.
These two objects are pushed into JavaScript using the Rhino
Java-to-JavaScript mapping feature.

wsdlModel instance
To access the JWSDL API from within JavaScript, use the wsdlModel
object, which is an instance of the javax.wsdl.Definition class
mapped to JavaScript.
The JWSDL Definition class represents the top level element of
the WSDL contract (see “JWSDL Parser Classes”). For example,
you can use the wsdlModel object to obtain a list of all the port
types in the contract as follows:

// JavaScript

var portTypeMap = wsdlModel.getPortTypes()
var portTypeArr = portTypeMap.values().toArray()

// Iterate over the list of port types
for each (pt in portTypeArr) {
 ... // Do something with the port type, pt.
}

http://www.mozilla.org/rhino/ScriptingJava.html

Artix WSDLGen Guide: Java 27

schemaModel instance
To access the XMLBeans API from within JavaScript, use the
schemaModel object, which is an instance of the
org.apache.xmlbeans.SchemaTypeLoader class mapped to JavaScript.
The XMLBeans SchemaTypeLoader class enables you to find the XML
schema types and elements defined within the wsdl:types element
in the WSDL contract (see “XMLBeans Parser Classes”). For
example, you can use the schemaModel object to obtain an element
named {http://xml.iona.com/wsdlgen/demo}testParams, as follows:

Parsing Document/Literal Wrapped Style
This subsection describes how to parse a WSDL contract that is
written in document/literal wrapped style. The document/literal
wrapped style is distinguished by the fact that it uses single part
messages. Each part is defined to be a sequence type, whose
constituent elements represent operation parameters.

Characteristics of the document/literal
wrapped style
A given operation, OperationName, must be defined as follows, in
order to conform to the document/literal wrapped style of
interface:
• Input message—the message element that represents the

operation’s input message must obey the following conditions:
 The message contains just a single part.
 The part references an element (not a type) and the

element must be named, OperationName.
• Input element—the OperationName element must be defined as a

sequence complex type, where each element in the sequence
represents a distinct input parameter.

• Output message—the message element that represents the
operation’s output message must obey the following
conditions:
 The message contains just a single part.
 The part references an element (not a type) and the

element must be named, OperationNameResponse.
• Output element—the OperationNameResponse element must be

defined as a sequence complex type, where each element in
the sequence represents a distinct output parameter.

// JavaScript

var TARG_NAMESPACE = "http://xml.iona.com/wsdlgen/demo"
var elQName = new

javax.xml.namespace.QName(TARG_NAMESPACE,
"testParams")

var el = schemaModel.findElement(elQName)

 28 Artix WSDLGen Guide: Java

Sample WSDL contract
Example 9 shows an example of a WSDL contract defining an
operation, testParams, that conforms to document/literal wrapped
style.

Parsing RPC/Literal Style
This subsection describes how to parse a WSDL contract that is
written in RPC/literal style. The RPC/literal style is distinguished
by the fact that it uses multi-part messages (one part for each
parameter).

Example 9: Operation Defined in Document/Literal Style

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
 <wsdl:types>
 <schema targetNamespace="..."
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="testParams">
 <complexType>
 <sequence>
 <element name="inInt"

type="xsd:int"/>
 <element name="inoutInt"

type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="testParamsResponse">
 <complexType>
 <sequence>
 <element name="inoutInt"

type="xsd:int"/>
 <element name="outFloat"

type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <message name="testParams">
 <part name="parameters" element="tns:testParams"/>
 </message>
 <message name="testParamsResponse">
 <part name="parameters"

 element="tns:testParamsResponse"/>
 </message>
 <wsdl:portType name="BasePortType">
 <wsdl:operation name="testParams">
 <wsdl:input message="tns:testParams"
 name="testParams"/>
 <wsdl:output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</definitions>

Artix WSDLGen Guide: Java 29

Characteristics of the RPC/literal style
A given operation, OperationName, must be defined as follows, in
order to conform to the RPC/literal style of interface:
• Input message—the message element that represents the

operation’s input message must obey the following conditions:
 The message can contain multiple parts, where each part

represents a distinct input parameter.
 Each part references a type (not an element).

• Output message—the message element that represents the
operation’s output message must obey the following
conditions:
 The message can contain multiple parts, where each part

represents a distinct output parameter.
 Each part references a type (not an element).

Sample WSDL contract
Example 10 shows an example of a WSDL contract defining an
operation, testParams, that conforms to RPC/literal style.

The JWSDL Parser
This section contains a partial summary of the JWSDL parser API.
Only the parts of the API that you would need for generating
application code are described here. For a complete description of
the API, see JSR 110.

Example 10: Operation Defined in RPC/Literal Style

<definitions ...>
 ...
 <message name="testParams">
 <part name="inInt" type="xsd:int"/>
 <part name="inoutInt" type="xsd:int"/>
 </message>
 <message name="testParamsResponse">
 <part name="inoutInt" type="xsd:int"/>
 <part name="outFloat" type="xsd:float"/>
 </message>
 ...
 <portType name="BasePortType">
 <operation name="testParams">
 <input message="tns:testParams"

name="testParams"/>
 <output message="tns:testParamsResponse"
 name="testParamsResponse"/>
 </operation>
 ...
</definitions>

http://jcp.org/en/jsr/detail?id=110

 30 Artix WSDLGen Guide: Java

Overview of the WSDL Model
This section provides a partial overview of the WSDL model
supported by the JWSDL parser. We focus here on the subset of
the JWSDL API that is useful for generating application code from
a WSDL contract. Hence, the discussion omits the API for parsing
wsdl:binding and wsdl:service elements. The API for parsing the
wsdl:portType element, which is essential for generating
application code, is described here.

JWSDL classes required for parsing a
port type
Figure 2 provides an overview of the JWSDL classes required for
parsing a WSDL port type, showing how each JWSDL class
corresponds to an element of the original WSDL contract.

Generally, each JWSDL class is named after the element it
represents. Note, however, that the class representing the
definitions element is called Definition, not Definitions.

Figure 2: JWSDL Classes for Parsing a Port Type

<definitions ...>
 ...
 <message ...>
 <part ... />
 </message>
 ...
 ...
 ...
 <portType ...>
 ...
 <operation>
 <input .../>
 <output .../>
 <fault .../>
 ...
 </operation>
 ...
 </portType>
 ...
</definitions>

javax.wsdl.Definition

javax.wsdl.Message

javax.wsdl.Part

javax.wsdl.PortTy

javax.wsdl.Opera

javax.wsdl.Inp

javax.wsdl.Ou

javax.wsdl.Fa

Artix WSDLGen Guide: Java 31

Node hierarchy
Each JWSDL class in the nodal hierarchy provides methods to
access the WSDL elements it contains or, in some cases,
references. Figure 3 shows the most convenient paths you can
take to navigate down the node hierarchy when parsing a WSDL
port type.

Once you get down as far as a javax.wsdl.Part node, you can
retrieve the QName of the element (or type) that represents a
particular operation argument. To progress further with the
parsing, you need to switch to the XMLBeans API, which enables
you to parse the XML schema encoding the argument data (see
“The XMLBeans Parser”).

JWSDL Parser Classes
This subsection summarizes the JWSDL parser classes that are
likely to prove most useful when attempting to parse a port type
in the context of generating code.
The following JWSDL classes are summarized here:
• javax.wsdl.Definition
• javax.wsdl.PortType
• javax.wsdl.Operation
• javax.wsdl.Input
• javax.wsdl.Output
• javax.wsdl.Fault
• javax.wsdl.Message
• javax.wsdl.Part

Useful Java utility classes
A number of Java utility classes are used with the JWSDL parser
API (for example, aggregate types such as java.util.List). For
your convenience, a brief overview of these utility classes is
provided in Appendix: Java Utility Classes.
For the complete Javadoc API, consult the following Javadoc
reference:
 http://docs.oracle.com/javase/6/docs/api/

Figure 3: Navigating the JWSDL Node Hierarchy

Definition

Message Part

PortType Operation

Input

Output

Fault

Message Part

Message Part

http://docs.oracle.com/javase/6/docs/api/

 32 Artix WSDLGen Guide: Java

javax.wsdl.Definition
The javax.wsdl.Definition class represents a wsdl:definition
element (top level of a WSDL contract). The most useful methods
from the javax.wsdl.Definition class are shown in Table 10.

javax.wsdl.PortType
The javax.wsdl.PortType class represents a wsdl:portType element.
The most useful methods from the javax.wsdl.PortType class are
shown in Table 11.

Table 10: Methods from the javax.wsdl.Definition Class

Method Signatures Description

java.util.Map getPortTypes() Get the portType elements defined in this
definition element.

javax.wsdl.PortType getPortType(
 javax.xml.namespace.QName name
)

Get the portType element with the specified
name.

java.util.Map getAllPortTypes() Get the portType elements defined in this
definition element and those in any imported
definition elements down the WSDL tree.

java.util.Map getImports() Get a map of lists containing all the imports
defined here.

java.util.Map getImports(String
namespaceURI)

Get the list of imports for the specified
namespaceURI.

java.util.Map getNamespaces() Get all namespace associations in this definition.

String getNamespace(String prefix) Get the namespace URI associated with this
prefix.

String getPrefix(String namespaceURI) Get a prefix associated with this namespace URI.

String getTargetNamespace() Get the target namespace in which the WSDL
elements are defined.

Table 11: Methods from the javax.wsdl.PortType Class

Method Signatures Description

java.util.List getOperations() Get the operations defined in this port type.

javax.wsdl.Operation getOperation(
 String name,
 String inputName,
 String outputName
)

Get the operation with the specified name, name.
If the operation name is overloaded, you can
optionally use the inputName (the name of the
operation’s input element) and/or the outputName
(the name of the operation’s output element) to
disambiguate. Otherwise, set inputName and
outputName to null.

javax.xml.namespace.QName getQName() Returns the name of the port type.

Artix WSDLGen Guide: Java 33

javax.wsdl.Operation
The javax.wsdl.Operation class represents a wsdl:operation
element. The most useful methods from the javax.wsdl.Operation
class are shown in Table 12.

javax.wsdl.Input
The javax.wsdl.Input class represents a wsdl:input element. The
most useful methods from the javax.wsdl.Input class are shown in
Table 13.

javax.wsdl.Output
The javax.wsdl.Output class represents a wsdl:output element. The
most useful methods from the javax.wsdl.Output class are shown
in Table 14.

boolean isUndefined() True if this port type is not defined.

Table 11: Methods from the javax.wsdl.PortType Class

Method Signatures Description

Table 12: Methods from the javax.wsdl.Operation Class

Method Signatures Description

javax.wsdl.Input getInput() Get this operation’s input element.

javax.wsdl.Output getOutput() Get this operation’s output element.

java.util.Map getFaults() Get this operation’s fault elements.

javax.wsdl.Fault getFault(String name) Get the fault with the specified name.

String getName() Returns the name of the operation.

boolean isUndefined() True if the operation is undefined.

Table 13: Methods from the javax.wsdl.Input Class

Method Signatures Description

javax.wsdl.Message getMessage() Get the input message element.

String getName() Return the name of the input element (if any).

Table 14: Methods from the javax.wsdl.Output Class

Method Signatures Description

javax.wsdl.getMessage() Get the output message element.

String getName() Return the name of the output element (if any).

 34 Artix WSDLGen Guide: Java

javax.wsdl.Fault
The javax.wsdl.Fault class represents a wsdl:fault element. The
most useful methods from the javax.wsdl.Fault class are shown in
Table 15.

javax.wsdl.Message
The javax.wsdl.Message class represents a wsdl:message element.
The most useful methods from the javax.wsdl.Message class are
shown in Table 16.

javax.wsdl.Part
The javax.wsdl.Part class represents a wsdl:part element. The
most useful methods from the javax.wsdl.Part class are shown in
Table 17.

Table 15: Methods from the javax.wsdl.Fault Class

Method Signatures Description

javax.wsdl.Message getMessage() Get the fault message element.

String getName() Return the name of the fault element (if any).

Table 16: Methods from the javax.wsdl.Message Class

Method Signatures Description

java.util.Map getParts() Get a map of the message’s parts, where the key
is a part name and the value is a javax.wsdl.Part
object.

javax.wsdl.Part getPart(String name) Get the part specified by name.

javax.xml.namespaceQName getQName() Get the qualified name of this message element.

boolean isUndefined() True if this message element is undefined.

Table 17: Methods from the javax.wsdl.Part Class

Method Signatures Description

javax.xml.namespace.QName
getElementName()

Get the element node referred to by the part’s
element attribute (if any).

javax.xml.namespace.QName getTypeName() Get the type node referred to by the part’s type
attribute (if any).

String getName() Get the name of the part.

Artix WSDLGen Guide: Java 35

The XMLBeans Parser
This section contains a partial summary of the XMLBeans parser
API, which can be used to parse the parameter data from WSDL
operations at runtime. For a complete description of the API, see
the XMLBeans 2.2.0 Javadoc.

Overview of the XMLBeans Parser
This section provides a partial overview of the classes in the
XMLBeans parser. The XMLBeans parser actually supports two
different kinds of schema model: a static model and a dynamic
(runtime) model. The static model is created by generating a set
of Java classes that represent the elements of an XML schema.
The dynamic model, on the other hand, does not require any Java
classes to be generated and can parse any XML schema at
runtime.
The section focuses on describing the dynamic (runtime) model.

XMLBeans classes needed to parse XML
schema
The following XMLBeans classes are essential for the runtime
parsing of XML data:
• org.apache.xmlbeans.SchemaTypeLoader—a class that enables

you to look up schema types and schema global elements by
name.

• org.apache.xmlbeans.SchemaGlobalElement—a class that
represents elements defined directly inside the xsd:schema
element (in contrast to elements defined at a nested level in
the schema, which are known as local elements).

• org.apache.xmlbeans.SchemaType—the class that represents a
schema type.

• org.apache.xmlbeans.SchemaProperty—a class that represents a
summary of the elements that share the same name within a
complex type definition.

Note: The main difference between a global element
and a local element is that a global element can be
defined to be a member of a substitution group,
whereas a local element cannot. In addition, the
elements referenced within a wsdl:part element would
normally be global elements.

Note: XML schema allows you to define an element
with the same name more than once inside a complex
type declaration.

http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

 36 Artix WSDLGen Guide: Java

XMLBeans Parser Classes
This subsection summarizes the most important XMLBeans parser
classes, which you are likely to use while parsing an XML schema
type in WSDLGen.
The following XMLBeans classes are summarized here:
• org.apache.xmlbeans.SchemaTypeLoader
• org.apache.xmlbeans.SchemaGlobalElement
• org.apache.xmlbeans.SchemaType
• org.apache.xmlbeans.SchemaProperties

SchemaTypeLoader
The org.apache.xmlbeans.SchemaTypeLoader class is used to find
specific nodes in the XMLBeans parse tree. In particular, you can
use it to find element nodes and type nodes. The most useful
methods from the SchemaTypeLoader class are shown in Table 18.

SchemaGlobalElement
The org.apache.xmlbeans.SchemaGlobalElement class represents an
element node in the XMLBeans parse tree. The most useful
methods from the SchemaGlobalElement class are shown in
Table 19.

Table 18: Methods from the SchemaTypeLoader Class

Method Signature Description

SchemaGlobalElement findElement(
 javax.xml.namespace.QName name
)

Returns the global element definition with the
given name, or null if none.

SchemaType findType(
 javax.xml.namespace.QName name
)

Returns the type with the given name, or null if
none.

Table 19: Methods from the SchemaGlobalElement Class

Method Signature Description

javax.xml.namespace.QName getName() Returns the form-unqualified-or-qualified name.

SchemaType getType() Returns the type.

java.math.BigInteger getMinOccurs() Returns the minOccurs value for this particle.

java.math.BigInteger getMaxOccurs() Returns the maxOccurs value for this particle, or
null if it is unbounded.

boolean isNillable() True if nillable; always false for attributes.

String getSourceName() The name of the source file in which this
component was defined (if known).

Artix WSDLGen Guide: Java 37

SchemaType
The org.apache.xmlbeans.SchemaType class represents a type node
in the XMLBeans parse tree. The most useful methods from the
SchemaType class are shown in Table 20.

Table 20: Methods from the SchemaType Class

Method Signature Description

SchemaStringEnumEntry enumEntryForString(
 String s
)

Returns the string enum entry corresponding to
the given enumerated string, or null if there is no
match or this type is not a string enumeration.

StringEnumAbstractBase enumForInt(int i) Returns the string enum value corresponding to
the given enumerated string, or null if there is no
match or this type is not a string enumeration.

StringEnumAbstractBase
enumForString(String s)

Returns the string enum value corresponding to
the given enumerated string, or null if there is no
match or this type is not a string enumeration.

SchemaType[] getAnonymousTypes() The array of inner (anonymous) types defined
within this type.

int getAnonymousUnionMemberOrdinal() For anonymous types defined inside a union
only: gets the integer indicating the declaration
order of this type within the outer union type, or
zero if this is not applicable.

SchemaAttributeModel getAttributeModel() Returns the attribute model for this complex
type (with simple or complex content).

SchemaProperty[] getAttributeProperties() Returns all the SchemaProperties corresponding
to attributes.

SchemaProperty getAttributeProperty(
 QName attrName
)

Returns a SchemaProperty corresponding to an
attribute within this complex type by looking up
the attribute name.

SchemaType getAttributeType(
 QName eltName,
 SchemaTypeLoader wildcardTypeLoader
)

Returns the type of an attribute based on the
attribute name and the type system within which
(wildcard) names are resolved.

QName getAttributeTypeAttributeName() Returns the attribute qname if this is a attribute
type, or null otherwise.

SchemaType getBaseEnumType() If this is a string enumeration, returns the most
basic base schema type that this enumeration is
based on.

SchemaType getBaseType() Returns base restriction or extension type.

SchemaType getContentBasedOnType() For complex types with simple content returns
the base type for this type's content.

SchemaParticle getContentModel() Returns the complex content model for this
complex type (with complex content).

 38 Artix WSDLGen Guide: Java

int getContentType() Returns EMPTY_CONTENT, SIMPLE_CONTENT,
ELEMENT_CONTENT, or MIXED_CONTENT for complex
types.

int getDecimalSize() For atomic numeric restrictions of decimal only:
the numeric size category.

int getDerivationType() Returns an integer for the derivation type, either
DT_EXTENSION, DT_RESTRICTION, DT_NOT_DERIVED.

SchemaProperty[] getDerivedProperties() Returns the SchemaProperties defined by this
complex type, exclusive of the base type (if
any).

SchemaProperty[] getElementProperties() Returns all the SchemaProperties corresponding
to elements.

SchemaProperty getElementProperty(
 QName eltName
)

Returns a SchemaProperty corresponding to an
element within this complex type by looking up
the element name.

SchemaType getElementType(
 QName eltName,
 QName xsiType,
 SchemaTypeLoader wildcardTypeLoader
)

Returns the type of a child element based on the
element name and an xsi:type attribute (and the
type system within which names are resolved).

XmlAnySimpleType[] getEnumerationValues() Returns the array of valid objects from the
enumeration facet, null if no enumeration
defined.

SchemaType getListItemType() For list types only: get the item type.

QName getName() The name used to describe the type in the
schema.

SchemaType getPrimitiveType() For atomic types only: get the primitive type
underlying this one.

SchemaProperty[] getProperties() For atomic types only: get the primitive type
underlying this one.

int getSimpleVariety() Returns whether the simple type is ATOMIC, UNION,
or LIST.

SchemaStringEnumEntry[]
getStringEnumEntries()

Returns the array of SchemaStringEnumEntries for
this type: this array includes information about
the Java constant names used for each string
enum entry.

SchemaTypeSystem getTypeSystem() Returns the SchemaTypeLoader in which this type
was defined.

SchemaType getUnionCommonBaseType() For union types only: get the most specific
common base type of the constituent member
types.

Table 20: Methods from the SchemaType Class (Continued)

Method Signature Description

Artix WSDLGen Guide: Java 39

SchemaType[] getUnionConstituentTypes() For union types only: get the constituent
member types.

SchemaType[] getUnionMemberTypes() For union types only: get the shallow member
types.

SchemaType[] getUnionSubTypes() For union types only: gets the full tree of
member types.

boolean hasAllContent() True if the complex content model for this
complex type is an all group.

boolean hasAttributeWildcards() True if this type permits wildcard attributes.

boolean hasElementWildcards() True if this type permits element wildcards.

boolean hasPatternFacet() True if there are regular expression pattern
facets.

boolean hasStringEnumValues() True if this is a string enum where an integer is
assigned to each enumerated value.

boolean isAnonymousType() True if the Xsd type is anonymous (i.e., not
top-level).

boolean isAttributeType() True if this is a attribute type.

boolean isBounded() True if bounded.

boolean isBuiltinType() True for any of the 40+ built-in types.

boolean isNoType() True for the type object that represents a the
absence of a determined type.

boolean isNumeric() True if numeric.

boolean isPrimitiveType() True for any of the 20 primitive types (plus
anySimpleType).

boolean isSimpleType() True for the anySimpleType and any
restrictions/unions/lists.

boolean isURType() True for anyType and anySimpleType.

boolean matchPatternFacet(String s) True if the given string matches the pattern
facets.

int ordered() True if ordered.

QNameSet qnameSetForWildcardAttributes() Returns a QNameSet of attributes that may exist in
wildcard buckets and are not explicitly defined in
this schema type.

QNameSet qnameSetForWildcardElements() Returns a QNameSet of elements that may exist in
wildcard buckets and are not explicitly defined in
this schema type.

Table 20: Methods from the SchemaType Class (Continued)

Method Signature Description

 40 Artix WSDLGen Guide: Java

SchemaProperties
The org.apache.xmlbeans.SchemaProperties class represents a
summary of the element definitions that share the same name
within a complex type definition. Rather than having to look up the
properties for all of the different element fields that have the same
name, it is usually simpler to obtain the relevant SchemaProperties
object. The SchemaProperties object attempts to unify the
properties of the same-name elements in a consistent manner.
The most useful methods from the SchemaProperties class are
shown in Table 21.

Table 21: Methods from the SchemaProperties Class

Method Signature Description

SchemaType getContainerType() The type within which this property appears.

String getDefaultText() Returns the default or fixed value, if it is
consistent.

XmlAnySimpleType getDefaultValue() Returns the default or fixed value as a
strongly-typed value, if it is consistent.

BigInteger getMaxOccurs() Returns a summarized maximum occurrence
number.

BigInteger getMinOccurs() Returns a summarized minimum occurrence
number.

QName getName() The name of this element or attribute.

SchemaType getType() The schema type for the property.

int hasDefault() Returns NEVER, VARIABLE, or CONSISTENTLY
defaulted, depending on the defaults present in
the elements in this property.

int hasFixed() Returns NEVER, VARIABLE, or CONSISTENTLY fixed,
depending on the fixed constraints present in the
elements in this property.

int hasNillable() Returns NEVER, VARIABLE, or CONSISTENTLY nillable,
depending on the nillability of the elements in
this property.

boolean isAttribute() True for attributes.

boolean isReadOnly() True for read-only properties.

 Artix WSDLGen Guide: Java 41

Appendix: Java Utility
Classes
For you convenience, this appendix summarizes some standard Java
utility classes that are used extensively throughout the WSDLGen scripts.

Useful Java Utility Classes
There are a few Java utility classes that are extensively used in
the WSDLGen scripts, as follows:
• javax.xml.namespace.QName
• java.util.Map
• java.util.Collection
• java.util.Iterator
• java.util.List
• java.util.ListIterator

For your convenience, the API for these utility classes is
summarized here. This summary does not include all of the
methods in these classes, however. For the complete Java API,
consult the Javadoc reference at:
 http://docs.oracle.com/javase/6/docs/api/

javax.xml.namespace.QName
The javax.xml.namespace.QName class includes the methods shown
in Table 22.

Table 22: Some Methods and Constructors from QName

Method/Constructor Signature Description

QName(String localPart) Construct a QName that has no namespace.

QName(String namespaceURI, String
localPart)

Construct a QName consisting of a namespace
URI and a local part.

QName(String namespaceURI, String
localPart, String Prefix)

Constructor with namespace prefix (the prefix is
not very important in the context of WSDL
parsing).

String getLocalPart() Get the local part of the QName.

String getNamespaceURI Get the namespace URI of the QName.

String getPrefix Get the prefix (rarely needed).

String toString() Return "{"+namespaceURI+"}"+localPart.

http://docs.oracle.com/javase/6/docs/api/

 42 Artix WSDLGen Guide: Java

java.util.Map
The java.util.Map<K,V> class includes the methods shown in
Table 23.

java.util.Collection
The java.util.Collection<E> class includes the methods shown in
Table 24.

java.util.Iterator
The java.util.Iterator<E> class includes the methods shown in
Table 25.

Table 23: Some Methods from java.util.Map

Method Signature Description

put(K key, V value) Add a new entry to the map.

V get(Object key) Use the key to look up a value in the map.

java.util.Collection<V> values() If you want to iterate over all of the values in the
map, it is necessary to convert it to a collection
first.

boolean isEmpty() True, if the map is empty.

int size() Return the number of entries in the map.

Table 24: Some Methods from java.util.Collection

Method Signature Description

java.util.Iterator<E> iterator() Return an iterator, which can be used to iterate
over all members of the collection.

Table 25: Some Methods from java.util.Iterator

Method Signature Description

boolean hasNext() True, if a call to next() would return another
element in the collection.

E next() Return the next element in the collection and
increment the iterator index.

Artix WSDLGen Guide: Java 43

java.util.List
The java.util.List<E> class includes the methods shown in
Table 26.

java.util.ListIterator
The java.util.ListIterator<E> class, which is a bidirectional
iterator, includes the methods shown in Table 27.

Table 26: Some Methods from java.util.List

Method Signature Description

Object[] toArray() Convert the list to an array.

java.util.ListIterator listIterator() Return an iterator, which you can use to iterate
over all of the list members.

boolean isEmpty() True, if the list is empty.

int size() Return the number of list members.

Table 27: Some Methods from java.util.ListIterator

Method Signature Description

boolean hasNext() True, if a call to next() would return another list
member.

E next() Return the next member of the list and
increment the iterator index.

boolean hasPrevious() True, if a call to previous() would return another
list member.

E previous() Return the previous member of the list and
decrement the iterator index.

 44 Artix WSDLGen Guide: Java

Artix WSDLGen Guide: Java 45

Index

A
ant build file

generating 5
architecture

of WSDLGen 1
array 16, 18
artixInstall property 4

B
bilingual file

jsb file suffix 11
bilingual files

and wsdlgen utility 4
closeOutputFile() method 13
definition 11
escape characters 14
including 19
indentation level 20
openOutputFile() method 13
output text delimiters 13
overview 12

bindingName property 4, 15

C
character literals

dollar and at sign 15
closeOutputFile() method 13
Collection class 42
com.iona.wsdlgen.common.ParametersLis
t class 16

configuration
and wsdlgen utility 3
smart loader path 19

custom templates
writing 11

D
Definition class 26, 32
delimiters

output text, in bilingual files 13
DIRECTION_IN 19
DIRECTION_OUT 19
document/literal wrapped style

parsing 27
documentation

.pdf format vi
updates on the web vi

E
escape character

dollar sign 14
escape characters

at sign 14
escaping the 15
in bilingual files 14

F
Fault class 34
fault handling

faults() method 19
getPartsAndFaults() method 18

faults() method 19

G
getDirection() method 19
getPart() method 19
getPartsAndFaults() method 18

I
including bilingual files 19
indentation level 20
Input class 33
intfName variable 15
Iterator class 42

J
java.util.Collection class 42
java.util.Iterator class 42
java.util.List class 43
java.util.ListIterator class 43
java.util.Map class 42
javaIntfName variable 16
javaModel variable 16
javaPackage variable 16
JavaScript

bilingual files 12
plug-in 2
predefined objects 11
properties, specifying on command
line 3

Rhino implementation of 26
javaServiceName variable 16
javax.wsdl.Definition class 26, 32
javax.wsdl.Fault class 34
javax.wsdl.Input class 33
javax.wsdl.Message class 34
javax.wsdl.Operation class 16, 33
javax.wsdl.Output class 33
javax.wsdl.Part class 31, 34
javax.wsdl.PortType class 32
javax.xml.namespace.QName class 41
jaxwsIntfName variable 16
jaxwsServiceName variable 16
jsb file suffix 11
jsModel object 16

 46 Artix WSDLGen Guide: Java

JWSDL
in WSDLGen architecture 1

JWSDL parser
API 29

L
line escape 14
List class 43
ListIterator class 43

M
Map class 42
Message class 34
message direction

DIRECTION_IN 19
DIRECTION_OUT 19

message URL http
//www.ecma-international.org/
publications/standards/
Ecma-262.htm 2

O
openOutputFile() method 13
Operation class 33
org.apache.xmlbeans.SchemaGlobalElem
ent class 36

org.apache.xmlbeans.SchemaProperties
class 40

org.apache.xmlbeans.SchemaType
class 37

org.apache.xmlbeans.SchemaTypeLoader
class 27, 36

Output class 33

P
parametersList object 16, 18
parser objects 18
Part class 31, 34
path

for smart loader utility 19
plug-ins

JavaScript 2
portName property 4, 16
PortType class 32
portType property 4, 17
predefined objects 11

list of 15
parser objects 18

Q
QName class 41

R
randomizer object 17
Rhino 26
RPC/literal style

parsing 28

S
SchemaGlobalElement class 36

schemaModel object 17
and XMLBeans parser 26

SchemaProperties class 40
SchemaType class 37
SchemaTypeLoader class 27, 36
serviceName property 4, 17
smartLoad() method 19
smart loader

configuring the path 19
smartLoader utility 17
smart loader utility

how to use 19
stub code

generating 5

T
templates

in WSDLGen architecture 2
tns variable 17

V
variable escape 14

W
WSDL4J 25
wsdlFile variable 17
wsdlgen utility

artixInstall property 4
bindingName property 4
portName property 4
portType property 4
serviceName property 4
syntax 3

wsdlModel object 17
and JWSDL parser 26

X
XMLBeans 25

in WSDLGen architecture 1

	Preface
	Contacting Micro Focus

	Using WSDLGen
	WSDLGen Architecture
	Generating Code with the wsdlgen Utility
	JAX-WS Templates
	WSDLGen Configuration File
	Unsupported XML Schema Types

	Developing Basic Templates
	Writing Custom Templates
	Bilingual Files
	Predefined Objects
	Generating JAX-WS Java Code

	Parsing WSDL and XML
	Parser Overview
	Basic Parsing
	The WSDL and XML Schema Models
	Parsing Document/Literal Wrapped Style
	Parsing RPC/Literal Style

	The JWSDL Parser
	Overview of the WSDL Model
	JWSDL Parser Classes

	The XMLBeans Parser
	Overview of the XMLBeans Parser
	XMLBeans Parser Classes

	Appendix: Java Utility Classes
	Useful Java Utility Classes

	Index

