

QALoad 05.06

Using the Player, Script Developm ent Workbench ,
and Analyze

iii

Customer Support Hot l ine:
1-800-538-7822

FrontLine Support Web Si te:
 h t tp:/ / front l ine.compuware.com

This document and the product referenced in i t are subject to the fol lowing legends:

Access is l im ited to authorized users. Use of th is product is subject to the terms and condit ions of the user’s
License Agreement with Compuware Corporat ion.

© 1998-2004 Compuware Corporat ion. Al l rights reserved. Unpublished - rights reserved under the
Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS

Use, dupl icat ion, or disclosure by the U.S. Government is subject to restrict ions as set forth in Compuware
Corporat ion l icense agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(i i)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III), as
appl icable. Compuware Corporat ion.

This product contains confident ial in formation and trade secrets of Compuware Corporat ion. Use,
disclosure, or reproduct ion is prohibited without the prior express writ ten permission of Compuware
Corporat ion.

Compuware, Act iveAnalysis, Act iveData, In terval, QACenter, QADirector, QALoad, QARun, Reconci le,
TestPartner, TrackRecord, and WebCheck are trademarks or registered trademarks of Compuware
Corporat ion.

Acrobat® Reader copyright © 1987-2002 Adobe Systems Incorporated. Al l rights reserved. Adobe, Acrobat ,
and Acrobat Reader are trademarks of Adobe Systems Incorporated.

Al l other company or product names are trademarks of their respect ive owners.

US Patent Nos.: Not Appl icable.

Doc. CWQLHX560
November 7, 2007

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

iv

Table Of Con ten ts
Player... 1

Overview of the QALoad Player.. 2

QALoad Player menus... 3

Instal l ing UNIX Players .. 4

Tuning QALoad Player for use with Oracle.. 5

Transfer Scripts to a UNIX Player ... 6

Validat ing Scripts in the Player .. 7

Dialog Box and Field Descript ion ... 9

QALoad Player Main Window .. 9

Save As.. 10

Player configurat ion ... 10

Script Development Workbench .. 11

Overview of the Script Development Workbench ... 12

The Script Development Workbench Main Window... 13

Menus and Toolbar Buttons... 14

Menus and Toolbars without an Open EasyScript Session .. 14

Menus and Toolbars with an Open EasyScript Session .. 14

Accessing the QALoad Script Development Workbench ... 15

Configuring the Script Development Workbench ... 16

Using EasyScript Sessions.. 17

EasyScript Sessions.. 17

EasyScript for Secure WWW ... 17

Using M iddleware Sessions... 20

Using the Universal Session.. 20

Opening a M iddleware Session... 20

Sett ing Conversion Options... 20

ADO .. 21

Citrix ... 22

Java ... 34

Oracle.. 37

OFS.. 42

SAP.. 52

UNIFACE... 60

Winsock .. 61

WWW ... 73

Table Of Contents

v

Developing a Test Script ... 99

Recording a Transact ion ... 99

Convert ing a Transact ion to a Script .. 101

Edit ing a Script ... 102

Compil ing a Script .. 147

Test ing a Script ... 147

Debugging a Script .. 148

Visual Navigator (WWW) ... 151

The Visual Navigator .. 151

Visual Navigator Menus ... 151

Visual Navigator's Find and Replace Feature.. 154

Developing a Script Using the Visual Navigator (WWW).. 155

Visual Script ing Concepts... 162

Primary Script Elements ... 166

Transact ion Loop Items.. 169

HTML Pages.. 171

Action Sub-Items .. 173

Action Item Sub-Items.. 175

Forms.. 176

XML Requests ... 179

Parameterizat ion in the Visual Navigator .. 182

Parameterizat ion ... 182

Using Variables with Visual Navigator ... 182

Using the Rule Library .. 186

Sample Scripts... 189

Overview — Sample Scripts.. 189

Citrix Scripts... 189

OFS Scripts.. 197

SAP Scripts .. 197

Winsock Scripts .. 209

WWW Scripts.. 222

NetLoad... 226

Using NetLoad .. 226

NetLoad server modules for TCP/IP and UDP.. 226

Instal l ing the NetLoad Server module.. 227

Start ing the NetLoad Server Module .. 227

Start ing a NetLoad session .. 228

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

vi

Creat ing a NetLoad datapool .. 228

Edit ing a NetLoad datapool .. 229

Adding or edit ing a NetLoad datapool descript ion .. 230

Datapool fields.. 230

Verifying CDO Support for MSExchange... 232

UNIX ... 233

Transfer Scripts to a UNIX Player ... 233

Test ing with QARun ... 234

Creat ing a QARun script ... 234

Automatical ly creat ing a QARun script .. 234

Manually creat ing a QARun script ... 235

Packaging Scripts for Cl ientVantage... 236

Overview - Packaging Scripts for Cl ientVantage.. 236

How to Package a Script .. 236

Troubleshoot ing.. 237

ODBC Memory Error Crash .. 237

The Default Session Prompt Did Not Open?.. 238

Winsock Running Out of Socket Resources ... 239

Citrix ... 239

SAP.. 240

Analyze.. 243

Overview of QALoad Analyze... 244

Accessing Analyze... 245

Understanding Durat ions... 246

Transact ion Durat ion ... 246

Checkpoint Durat ion .. 246

QALoad Analyze Menus and Toolbar Buttons ... 247

Accessing Test Data... 248

Using Timing Fi les.. 248

Accessing Test Data... 248

Accessing Test Data via Groups.. 249

Using Templates ... 251

Displaying Detai l Data.. 254

Displaying Detai l Data.. 254

Detai l Views.. 254

Sort ing Test Data .. 255

Graphing QALoad Timing Data ... 255

Table Of Contents

vii

Thresholds .. 255

Creat ing a Chart or Graph .. 259

Analyze Graph Types.. 259

Graphing QALoad Timing Data ... 259

Thinning Data Before Graphing... 260

Graphing Checkpoints ... 260

Graphing Counters... 261

Graphing Player Performance Counters... 261

Graphing Server Monitoring Data.. 261

Graphing Top Processes.. 262

Graphing Expert User Data... 262

Creat ing a Scatter Chart ... 262

Creat ing Financial Charts... 263

Customizing a Chart or Graph ... 264

Customizing a Graph ... 264

Adding Text or an Object to a Graph ... 264

Viewing Reports.. 265

Pre-Defined Reports.. 265

Summary report .. 266

Session report .. 267

Concurrent Users report ... 269

Response Time Analysis report ... 270

Output report .. 270

Client Throughput report ... 271

Server Monitoring report .. 271

Transact ion Throughput report .. 272

Top Ten Longest Checkpoint Durat ions Report .. 273

Player Performance report .. 276

Worst Performing Checkpoints and Counters Report ... 276

Expert User Report .. 279

Applicat ionVantage Report .. 280

Publish ing or Sharing Test Results.. 281

Export ing Test Data .. 281

Export ing data to HTML... 281

Export ing RIP fi le data.. 281

Export ing Appl icat ionVantage Trace Fi les ... 281

Sending email messages with test data... 282

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

viii

Creat ing a .zip fi le of test results .. 282

Viewing Reports.. 283

Viewing test results in a Web browser.. 284

Index ... 285

1

Player

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

2

Over view of t he QALoad Player
The QALoad Player simulates one or more virtual-users running C++ or Java based scripts, depending upon
which middleware environment was used for the test. These scripts mimic user act ivi t ies to load test the
appl icat ion, network, and server components of a cl ient-server system.

The QALoad Player simulates mult iple cl ients sending middleware cal ls back to a server. General ly, these
are database SQL cal ls — although other types of middleware layers can also be tested. When running
virtual user simulat ion, QALoad Player can emulate mult iple users from a single platform using the mult i-
tasking features of 32-bit Windows. The number of users that a single hardware system can emulate is
determined by the processor speed, main memory size, middleware layer, and simulated transact ion rate.
Please contact your QALoad distributor for further sizing in formation.

Once started, QALoad Player funct ions ent irely in the background without any direct user in teract ion. Al l
commands to QALoad Player come from the QALoad Conductor. In fact, once QALoad Player has been
started, the only in teract ion you may have with i t is to change startup parameters or to save the contents
of the display window to a fi le. When the Conductor process closes for any reason during a load test, the
associated Player processes terminate.

Citrix and SAP 6.20/6.40 scripts play back in a virtual user window on the desktop. For SAP, i t is possible to
enable or disable the VU window from the Conductor's Custom M iddleware Options dialog box. Citrix
replay sessions are min imized by default , but can be restored on the desktop.

Player

3

QALoad Player m enus
The fol lowing menus are avai lable from the QALoad Player:

Fi le menu

Edit menu

View menu

Options menu

Help menu

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

4

Inst al l i ng UNIX Player s
For in formation about instal l ing UNIX Players, please refer to the QACenter Performance Edit ion
Instal lat ion and Configurat ion Guide.

You can access th is guide by cl icking
Start>Program s>Com puw are>QALoad>Docum en tat ion>Instal l at i on and Con f igurat ion Guide.

Player

5

Tun ing QALoad Player f or use w i t h Or acle
Oracle version 7 SQL*NET puts significant demands on the system running QALoad Player by demanding
at least 1MB of physical memory and approximately 3MB of virtual memory per simulated user.
Compuware recommends you fol low these guidel ines when using Oracle to opt imize QALoad Player
performance:

! Set the Execut ing Threads Startup Interval parameter on the Player Configurat ion dialog box’s
Startup Parameters tab to between 2,000 and 4,000 mil l iseconds.

! Unless your appl icat ion cont inual ly logs in and out of Oracle, move the logon commands
(DO_olog and i ts associated DO_ologof) outside the Begin_Transact ion/End_Transact ion loop,
where the Oracnvrt program places them by default .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

6

Tr ansf er Scr ip t s t o a UNIX Player
Normally, the appropriate script is automatically uploaded from the QALoad Conductor to the Players and
compiled at runt ime. However, i f i t is ever necessary to manually transfer a script , use the procedure that
fol lows.

Note: The machine where the QALoad Script Development Workbench is installed must have Winsock-
based TCP/IP to transfer a script to the UNIX machine where you wish to run it.

To t ransf er a scr ip t :

The fol lowing procedure describes how to transfer a script fi le from the Windows workstat ion where the
QALoad Script Development Workbench resides to the system running the QALoad Player.

1. Access the Script Development Workbench.

2. From the Session menu, choose the middleware session you want to start .

3. In the Workspace Pane, cl ick the Scripts tab.

4. On the Scripts tab, select the script you want to transfer.

5. From the Tools menu, choose FTP to open the FTP Transfer dialog box. Note that the fi le name
you selected to transfer appears in the Fi l e to Transfer field.

6. Enter the Host Nam e, User Nam e, Passw ord, and Dest inat ion Di rectory.

7. Click Transfer to send the fi le to the system where your QALoad Player is instal led.

8. If you want to save the in formation you have entered for subsequent transfers, cl ick Save Set t i ngs.

9. Click Close/ Abort to exit the FTP Transfer dialog box.

Player

7

Val idat ing Scr ip t s in t he Player
Before adding a script to a load test, val idate i t to ensure that i t runs without problems. The fol lowing
procedure is only val id for Win32 scripts. To val idate a UNIX script , see Val idat ing a UNIX script .

Note: During validation of SAP scripts, do not minimize the SAP window. If the window is minimized, the
validation may fail. This problem does not occur if you select the Hide Graphical User Interface for SAP
Users option by clicking Browse [...] in the Type column of the Script Assignment tab in the Conductor. This
SAPGUI option runs SAP on an alternate desktop that is not visible.

To conf igure t he Player f or val idat ion:

1. In the Script Development Workbench, cl ick Opt ions>Workbench and select the Script
Val idat ion tab.

2. Select the Autom at i cal l y Recom pi le check box i f you want QALoad to compile a script before
attempting to val idate i t . QALoad l ists any compilat ion errors in the editor after compil ing.

3. (For Java and OFS) select Ask for Autom at i c Val idat ion of Java and OFS Scripts.

4. Select the On ly Display Player Output on Script Fai lure check box to view only Player messages
upon script fai lure, i f appl icable.

5. Type a value in the W ai t up to field. This is the number of seconds that the QALoad Script
Development Workbench should wait for a script to execute before t im ing out.

6. In the Player Sett ings area, select the Abort on Error check box for QALoad to stop script execut ion
upon encountering an error.

7. Select the Debug Data check box for the script to display a debug message indicat ing which
command the script is execut ing.

8. In the Run As area, indicate whether the transact ion should be run as th read- or process-based .

Note: Oracle Forms Server, Citrix, Java, and Uniface scripts are limited to process-based validation only.

9. In the Number of users field, type a number of virtual users to run th is script for val idat ion. The
default is 1.

10. Enter a value in the Transact ions field. For val idat ion, Compuware recommends that you accept
the default value of 1 transact ion.

11. In the Sleep Factor % field, type the percentage of each DO_SLEEP (pause in the script) to maintain.
For val idat ion, you may not need to run every pause in the script at i ts ful l length. The value can
be a percentage between 0 and 100. The default is 0.

12. Click OK to save your changes.

To val idat e a scr ip t in t he Player :

1. In the Com pi led Script field, browse for the compiled script DLL you want to val idate. Compiled
scripts are usual ly located in the directory \Program Files\Compuware\QALoad\Scripts.

2. Type a value in the Num ber of Users field. Compuware recommends one user for script val idat ion.

3. Type a value in the Transact ions field. Compuware recommends one transact ion for script
val idat ion.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

8

4. Select any appropriate opt ions to the right of the Compiled Script field. These opt ions determine
the type and amount of data that wi l l display in the Player Main Window. For descript ions of each
opt ions, see the topic QALoad Player Main Window.

5. In the Run As area, select whether the transact ion should run as th read- or process-based.

6. Click Start to run the script . The Player M ain Window wil l show the script 's progress. If the script
runs successful ly, i t is val id to use in a load test.

Player

9

Dialog Box and Field Descr ip t ion

QALoad Player Main Window
The QALoad Player Main Window is divided into two parts:

! The top port ion contains fields, buttons, and opt ions that help you configure the Player for script
val idat ion. When an actual load test is in progress, th is area displays the fol lowing in formation:

 Version : The version of the QALoad Player.

 Player Nam e: The network name assigned to the Player workstat ion.

 Player Address: The network address of the Player workstat ion.

 Player Port : The port number on th is Player workstat ion being monitored by the QALoad
Conductor.

 Player i s runn ing… the type of virtual users th is Player is running.

 The number of virtual users and transact ions th is Player is running.

! The bottom port ion of the Player M ain Window displays Player messages whi le a script is running.

Fields and But tons

Com pi led Script : Navigate to the compiled script (.dl l) to val idate.

Users: Type the number of users to emulate when val idat ing the selected script . Compuware recommends
one user for script val idat ion.

Transact ions: Type the number of t ransact ions to run when val idat ing the selected script . Compuware
recommends one transact ion for script val idat ion.

Start : Cl ick to begin script val idat ion. Player messages wil l display below.

Abort : Cl ick to stop al l virtual users immediately.

Ex i t : Cl ick to exit the load test graceful ly, when each virtual user is fin ished.

Debug Data: Select th is check box to have the Player display a debug message indicat ing which command
the script is execut ing and to generate WWW replay log fi les.

RR__Fai ledM sg: Select th is check box to view, in the Player window, the poin t where a middleware
command with in your script fai ls.

Check Poin ts: Select th is check box i f you want to display the Check Point command response t imes in
the Player window.

Auto Clear: Select th is check box to automatical ly clear any messages from the bottom port ion of the
window before running a new script .

Abort on Error: Select th is check box to abort script execut ion when an error is encountered.

Create Tim ing Fi l e: Select th is check box to create and save a Player t im ing fi le for th is Player to the
default QALoad t im ing fi le directory (normally \Program Files\Compuware\QALoad\TimingFiles).

Run As: Select i f th is Player should run scripts as th read- or process-based.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

10

Save As
Use th is dialog box to save a text fi le of the messages reported by Player during a test, or to save an exist ing
buffer with a different name.

Access th is dialog box from the Fi l e menu by selecting Save Buf fer or Save Buf fer As.

Player configurat ion
Use th is dialog box to set startup parameters for Player. The default startup parameters are saved in the
player sect ion of the QALOAD.INI fi le.

Access th is dialog box from the Opt ions menu by select ing Player Con f igurat ion .

Runtime tab

Player Nam e: This is the name that the Player wi l l report to the QALoad Conductor during a request. It
may be any string of alphanumeric characters, provided that the length does not exceed 10 characters and
there are no embedded spaces.

Com pi led Scripts: This field points to the directory which wil l hold the compiled scripts. When a test is
started, Player looks for scripts in th is directory. The configurat ion screen wil l veri fy that the directory
exists.

Compuware recommends that you use a directory on a networked drive to hold the compiled scripts.
Otherwise you wil l need to manually copy the script fi les to each Player system whenever a script changes.

Local Datapool : This field points to the directory which wil l hold the local datapool fi le referenced by th is
Player workstat ion.

Tim ing Fi l e: This field points to the default directory where the t im ing fi les are located.

Java tab

jvm .dl l di rectory: (opt ional) This is the directory where the JVM.DLL fi le is located. If specified, th is
JVM.DLL wil l be used to run the Java scripts from a standalone Player; otherwise, the entry specified in the
Compiler Sett ings tab of the Configure QALoad Script Development Workbench dialog box wil l be used.

11

Scr ip t Developm en t Wor k b ench

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

12

Over view of t he Scr ip t Developm en t Wor k bench
The QALoad Script Development Workbench is the QALoad component used to develop load test scripts. It
contains the faci l i t ies you need for recording transact ions such as funct ion cal ls or request / response
interact ions placed by your Windows appl icat ion. The recorded transact ion, cal led a capture fi le, contains
raw data that must be converted to an editable test script based on C++ or Java, depending upon which
middleware environment is under test.

After convert ing the recorded transact ion to a script , you can use the Script Development Workbench's
script editor and other funct ional i ty to make any necessary modificat ions to your script . For example,
maybe you had to sign on to a Web server with a user name and password as part of your recorded
transact ion. At test t ime, when mult iple virtual users are running your test script , you might want each
user to have a different user name/password combinat ion.

You can use the Script Development Workbench to create a re-usable pool of user name/password
combinat ions, saved as a datapool fi le, and edit your script to extract values from that fi le at test t ime.
QALoad provides script ing commands for si tuat ions l ike that, and provides a Funct ion Wizard and onl ine
language reference, both avai lable right from the editor, to help you locate and insert the right commands.

When you are sat isfied wi th your test script , you can compile i t direct ly from the Script Development
Workbench. And, final ly, add i t to a load test in the QALoad Conductor.

In shor t , t o p roduce a usable t est scr ip t you:

1. Record a transact ion in to a capture fi le (.cap).

2. Convert the capture fi le to an editable script .

3. Edi t the script .

4. Com pi le the script .

Script Development Workbench

13

The Scr ip t Developm en t Wor k bench M ain W indow
The QALoad Script Development Workbench main window is divided into dynamic panes that you can
h ide or show as needed by select ing commands from the View menu.

Hint : Click on a pane in the following graphic for a description of that pane. Use your scroll bars to see the
rest of the graphic.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

14

M enus and Toolbar But t ons
The QALoad Script Development Workbench menus and buttons change depending on whether you have
an EasyScript Session open.

Menus and Toolbars without an Open EasyScript Session
The fol lowing menus and toolbars are avai lable when an EasyScript Session is not open.

Fi le
View
Options
Session
Tools
Help
Toolbar Buttons

 Menus and Toolbars with an Open EasyScript Session
The fol lowing menus and toolbars are avai lable when an EasyScript Session is open.

Fi le
Edit
View
Options
Session
Tools
Window
Help
Toolbar Buttons
Recording Toolbar

Script Development Workbench

15

Accessing t h e QALoad Scr ip t Developm en t
Wor k bench

To access t he Scr ip t Developm ent W orkbench:

1. From the Windows taskbar, cl ick the Start button.

2. Choose Program s>Com puw are>QALoad>Script Developm en t Workben ch .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

16

Con f igur ing t he Scr ip t Developm en t Wor k bench
The first t ime you use the QALoad Script Development Workbench, you should set opt ions to determine a
working directory QALoad can use for temporary fi les, compiler sett ings, and other general opt ions related
to the behavior of the QALoad Script Development Workbench.

To set a w ork ing d i r ect ory:

1. Access the Script Development Workbench.

2. From the Session menu, choose the session you want to start .

3. From the Opt ions menu, choose Workbench .

4. Set any appropriate opt ions. For a descript ion of the avai lable opt ions, press F1 from the Configure
Script Development Workbench dialog box.

Note: Compuware recommends that you always select Automat ically Convert Capture on the
Workbench Configuration tab and Automat ically Compile Scripts on the Compiler Settings tab.

5. Click OK to save your sett ings.

Script Development Workbench

17

Using EasyScr ip t Sessions

EasyScript Sessions
When you first open the Script Development Workbench, you can set general opt ions related to which
panes to display, your compiler, and so on, but you cannot begin any middleware-specific act ivi t ies, such
as recording a transact ion, unt i l you open an EasyScript Session. Opening an EasyScript Session tai lors the
Script Development Workbench to a specific middleware environment, providing you with al l the
appropriate opt ions and funct ions for your script ing needs.

To open an EasyScript Session, choose your middleware type from the Session menu, or cl ick the
appropriate toolbar button. Once a session is open, the Workbench interface changes.

You can also open a Universal session to record cal ls from mult iple middlewares with in a single session.

EasyScript for Secure WWW

Overview

EasyScript for Secure WWW supports SSL/HTTPS requests when used in conjunct ion with the WWW
middleware. This support must be purchased separately and is distributed in a separately-instal led module.

Import ing a Client Cert ificate from a Web Browser (SSL)

You can import and convert a Cl ient Cert i ficate for any Web site you plan to visi t .

To im por t a cl ient cer t i f icat e:

1. Start your Web browser.

2. From the browser, select the Client Cert i ficate for the Web site you plan to visi t .

3. Export the Client Cert i ficate (.p12 of .pfx fi le) to a directory where you can access i t using the
Script Development Workbench.

Note: When the browser prompts you to enter a password, do not enter a password. If you enter a
password, QALoad cannot process the file.

4. Start a WWW Session in the QALoad Script Development Workbench.

5. Click Tools>Maintain Cert i ficates to open the SSL Cert i ficate Maintenance dialog box.

6. On the Cl ien t Cert i f i cates tab, cl ick the browse but ton [...] to browse for the Client Cert i ficate you
want to convert . The Select the Exported Client Cert i ficate to Convert dialog box opens.

7. Make sure Fi l es of Type specifies P12 fi les (*.p12) or PFX fi les (*.pfx).

8. Select the appropriate Cl ient Cert i ficate and cl ick Open . The path and fi le name of the selected
Client Cert i ficate appears in En ter Cert i f i cate to Convert on the Client Cert i ficates tab.

9. On the Cl ien t Cert i f i cates tab, cl ick Convert .

10. Click Close to exit the SSL Cert i ficate Maintenance dialog box .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

18

Creat ing a Client Cert ificate in QALoad (SSL)

This procedure assumes you have a WWW session act ive.

To creat e a cl ien t cer t i f i cat e:

1. From the Tools menu, select M ain tain Cert i f i cates to open the SSL Cert i f i cate M ain tenance
dialog box.

2. On the Client Cert ificates tab, enter a name in the Cert i f i cate Nam e field.

3. Enter the number of cert i ficates to create.

4. Click the Create button to create the QALoad Client Cert i ficate. QALoad stores i t in the
QALoad\ Cert i ficates directory.

Note: On the Unix player platform, you must create the Certificates sub-directory in the QALoad
directory. The directory name is case sensitive.

5. If necessary, configure your Web server to accept QALoad as the Cert i ficate Authori ty. Refer to your
Web server documentat ion for more in formation.

Creat ing an SSL Cert ificate Authority

Note that creat ing a new CA inval idates al l previously created cl ient cert i ficates.

To creat e an SSL Cer t i f i cat e Aut hor i t y:

1. Start a WWW session.

2. From the Tools menu, select M ain tain Cert i f i cates.

3. Click the Cert i ficate Authori ty tab.

4. Click the Create button to create a new Cert i ficate Authori ty with the expirat ion date shown in the
field.

5. Exit and re-start the Script Development Workbench.

6. After creat ing a new Cert i ficate Authori ty, re-import the CA to your Web server and then create
new Client Cert i ficates.

Creat ing an SSL Server Cert ificate

To creat e an SSL Server Cer t i f icat e:

1. Start a WWW session.

2. From the Tools menu, select M ain tain Cert i f i cates.

3. Click the Server Cert i ficate tab.

4. Click the Create button to create a new Server Cert i ficate with the expirat ion date shown in the
field.

Script Development Workbench

19

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

20

Using M idd lew ar e Sessions

Using the Universal Session
The Universal session al lows you to record cal ls from mult iple middleware appl icat ions with in a single
Script Development Workbench session. You might use the Universal session in cases where your
appl icat ion accesses an addit ional appl icat ion that uses a different protocol.

For example, your browser might download and open a Java applet which then communicates with a
Winsock server. If you recorded that act ivi ty using a simple WWW session, the Script Development
Workbench would only record the HTTP requests that downloaded and opened the Java applet. Recording
that transact ion with the Universal session ensures that you record the HTTP requests from the browser as
well as the Winsock-based communicat ion between the Java applet and the Winsock server — al l with in a
single script .

You start and record from a Universal session exact ly l ike a single middleware session with one difference
— after start ing a Universal session you must select which middleware appl icat ion(s) to record.

Opening a M iddleware Session

To access t he Scr ip t Developm ent W orkbench and open a m iddlew are session:

1. Click Start>Program s>Com puw are>QALoad\ Scri pt Developm en t Workben ch .

2. Choose the middleware name from the Session menu or by cl ick the appropriate button on the
toolbar. The Defaul t Session Prom pt opens.

Note: If this middleware type should be the default every time you open the Script Development
Workbench, select the check box Make this my default session. If you do not want to be prompted to set a
default middleware, clear the Enable default session checking check box. You can also turn default session
checking on or off from the Configure Script Development Workbench dialog box at any time.

3. Click OK.

Set t ing Conversion Opt ions
Before you begin recording, you can set opt ions to automatical ly customize your script during conversion.
Compuware recommends you set conversion opt ions before recording, then use the opt ion to
automatical ly convert your capture fi les to scripts. Detai ls

1. Access the Script Development Workbench. Detai ls

2. From the Session menu, select the appropriate middleware or start a Universal session.

3. Select Opt ions>Convert to open the appropriate Convert Options dialog box.

4. In the Session Options tree, cl ick Shared Convert Opt ions and set any appl icable opt ions. This
tree-view contains common opt ions that apply to al l the middleware environments QALoad
supports.

5. Click the middleware-specific convert opt ions in the Session Options tree, and set any appropriate
middleware-specific opt ions.

Notes:

 For the Citrix Web Interface environment, you must select opt ions in both the Citrix Convert
Options and the WWW Convert Options in the tree view.

Script Development Workbench

21

 For WWW, refer to Using the WWW Convert Options.

6. When you are fin ished, cl ick OK to save the current sett ings.

Hint : Press F1 from any middleware options tab for a description of available options.

ADO

Recording ADO Sessions

Click the ADO button on the toolbar to open an ADO session.

To set ADO recording opt ions and begin r ecording:

1. Click Opt ions>Record on the menu bar. The Session Options dialog box appears.

2. Select the appropriate opt ions in the right-hand pane, then cl ick OK.

3. Click the Record button on the Session toolbar.

Set t ing ADO Convert Opt ions

To set conversion opt ions f or an ADO session:

1. Choose Opt ions>Convert in the Script Development Workbench menu bar. The Session Options
dialog box appears.

2. Select the appropriate opt ions in the right-hand pane, then cl ick OK.

ADO Method Reference

QALoad provides descript ions and examples of the various methods that are avai lable for an ADO script .
For detai ls, refer to the Language Reference Help sect ion for ADO.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

22

Cit rix

Overview

Use QALoad's Citrix middleware to load test systems that run Citrix MetaFrame or Citrix MetaFrame XP.

What is Citrix?

Citrix middleware is a communicat ion layer that provides remote access to Windows systems. The remote
system appears in a window on the local system.

Connecting to the remote system

Once connected to a machine that is running the MetaFrame server, log in to the remote system and run
appl icat ions. Alternat ively, specify an appl icat ion in addit ion to a user name and password, which provides
access only to the specified appl icat ion and min imizes user input that is necessary to access the appl icat ion
under test. Test the environment using the Window Citrix Client to start a Citrix session.

Testing in load-balanced environments

If test ing an environment that includes a server farm, use Citrix ICA fi les to support th is type of
configurat ion. Specify the ICA fi le on the Citrix Record Options dialog box. ICA fi les are also necessary for
encrypt ion. ICA fi les are generated on the MetaFrame server and can be obtained from your MetaFrame
administrator. For more in formation about using ICA fi les, see Using ICA fi les.

When ICA fi les are not provided by an appl icat ion, specify connect ion in formation using the Published
Applicat ions or the Single Server opt ions in the Citrix Record Options dialog box. These opt ions also
enable you to specify l ists of publ ished appl icat ions and servers to invoke when you log on to the Citrix
cl ient session.

Testing using the Citrix Web Interface

When you in i t iate Citrix-publ ished appl icat ions using a web browser, you can capture and playback scripts
in QALoad using the Citrix Web Interface. The Citrix Web Interface starts a Universal session with the
Citrix and WWW middlewares selected. The WWW middleware in tercepts the ICA fi le created by the web
server. It passes data to and from the Citrix Server during the capture process, enabl ing you to test the
performance of appl icat ions that are avai lable through internet connect ions.

About the Cit rix Web Interface

Capture and playback scripts for Citrix appl icat ions accessed through a web browser using the Citrix Web
Interface. This starts a Universal session for both the Citrix and WWW middlewares, which enables the
WWW middleware to pass in formation to and from the Citrix server.

When select ing a publ ished appl icat ion through a web browser, the request is sent to the web server. The
web server creates an ICA fi le for the requested appl icat ion and returns i t to the web browser. When the
web browser finds an associated appl icat ion to handle the ICA fi le, the Citrix cl ient starts the publ ished
appl icat ion requested. The ICA fi le used during the capture process is saved in
QALoad\Middlewares\Temp.

Note: Only the first ICA file received by the web browser is recorded.

The converted script contains both Citrix and WWW funct ions. A new variable, char*
strICAFileName[N], is declared at the top of the script . Al l al located memory is released at the end of the
script .

Accessing a Cit rix Session

Use one of the fol lowing methods to begin recording a Citrix session.

Script Development Workbench

23

To access a Ci t r ix Cl ien t session:

 From the Session menu, cl ick Ci t r i x>Window s Cl ien t .

OR

 On the toolbar, select the down arrow next to the Ci t r i x button on the toolbar, then select
Window s Cl ien t .

To access t he Ci t r ix W eb Int er f ace w hen select ing a Ci t r ix session :

 From the Session menu, cl ick Ci t r i x>Web In terface.

OR

 On the toolbar, cl ick the down arrow next to the Ci t r i x button, then select Web In terface.

The Universal session starts with both the Citrix and WWW middlewares selected. In the Citrix tab,
Web Interface is selected in the Type field.

To access t he Ci t r ix W eb Int er f ace f rom a Universal session:

1. On the toolbar, cl ick Sessi on>Un iversal or cl ick the Un iversal button on the toolbar.

2. Click Opt ions>Record. The Universal Record Options dialog box appears.

3. In the M iddleware Select ion pane, select W WW, then select Ci t r i x . The Universal Record dialog
box displays both a WW W tab and a Ci t r i x tab. In the Ci t r i x tab, Web In terface is selected in the
Type field.

Recording a Cit rix Session

To begin recording a Citrix session, select the down arrow next to the Ci t r i x button on the toolbar, then
do one of the fol lowing procedures below.

Tips: Uppercase characters are not captured when the CAPS Lock key is on. Manually modify the script to
use uppercase characters or hold down the SHIFT key during recording.
Similarly, the Windows Logo key is not supported. Do not use the Windows Logo key to start applications
while recording a Citrix script.

To begin r ecording a Ci t r ix Cl ien t session:

1. Select Window s Cl ien t to act ivate a new Citrix session.

2. Click Opt ions>Record on the menu bar, and select the appropriate opt ions.

3. Click Record on the Sessi on toolbar.

The Citrix capture appl icat ion appears, as shown in the fol lowing image. Cl ick the three sect ions of the
image to learn more about the fields and the in formation that is displayed in each area.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

24

To begin r ecording using t he Ci t r ix W eb Int er f ace:

1. Select Web In terface to act ivate Universal session for the Citrix Web Interface.

2. Click Record on the Sessi on toolbar. The Un iversal Record Opt ions dialog box displays.

3. Select the appropriate opt ions, then cl ick Start Record .

Set t ing Cit rix Convert Opt ions

To set conversion opt ions f or Ci t r ix Cl ient session:

1. Choose Opt ions>Convert in the Script Development Workbench menu bar. The Session Options
dialog box appears.

2. Select the appropriate opt ions, then cl ick OK.

To set conversion opt ions f or Ci t r ix W eb In t er f ace session:

Script Development Workbench

25

1. Choose Opt ions>Convert in the Script Development Workbench toolbar. The Session Options
dialog box appears with both Citrix and WWW selected.

2. Click the Session Opt ions tab.

3. Under Convert Options, cl ick Ci t r i x Convert Opt ions.

4. Select the appropriate opt ions, then cl ick OK.

Note: During the conversion process for both Cl ient and Web Interface sessions, cal ls to the
CtxSetWindowTitle method are sometimes placed at an incorrect l ine in the script . Determine the
correct l ine by inspect ing the capture fi le and moving the cal l to that posit ion in the script .

The CtxSetWindowTitle method is added by QALoad during conversion and should otherwise not
be modified or manually added to a script .

Using ICA Files

ICA fi les, which are generated on the MetaFrame server, contain configurat ion opt ions for Citrix. You can
specify an ICA fi le on the Citrix Record Options dialog box.

ICA fi les are specified in the script with the CtxSetICAFile command. If an ICA fi le is specified, the cal l is
generated with an unquali fied fi le name. For example:

CtxSetICAFile("customapp.ica");

Note: The file name is not fully-qualified because the file may not exist in the same location among the
remote Player machines.

To val idate the script on the same machine on which i t was captured, copy the ICA fi le to the
QALoad\BinaryFiles directory.

To use the ICA fi le on remote Player machines, the ICA fi le should be specified as an attached fi le in the
External Data column of the Script Assignment tab in the Conductor.

Insert ing Screenshots in the Cit rix Script

During the Citrix session, you can take a screenshot of the contents of the connect ion window. This inserts
a wait point in the script for the screenshot you select and saves the image as a bitmap. You can select:

! Insert Wait for Ful l Screenshot - Inserts a wait point based on a ful l screenshot of the current
display.

! Insert Wait for Part ial Screenshot - Inserts a wait point based on a part ial screenshot of the current
display.

! Save Current Screenshot - Saves a screenshot of the current display to a bitmap fi le.

Note: Images are saved to \ QALoad \Middlewares\Citrix\Captures\screenshot.

To inser t a f ul l screenshot in t o t he Ci t r ix scr ip t :

1. In the Citrix Capture dialog box, cl ick Screenshots>In sert W ai t for Ful l Screenshot . The Screen
Capture Preview screen displays the image.

2. Click Fin i sh to confirm the screenshot. The Specify Screenshot Name dialog box displays with a l ist
of al l previously saved screenshots.

3. In the Nam e field, type a descript ive name for the image.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

26

4. Click OK. The image is saved as a bitmap and a wai t point for the screenshot is inserted in to the
script .

To inser t a par t ial screenshot in t o t he Ci t r ix scr ip t :

1. In the Citrix Capture dialog box, cl ick Screenshots>In sert W ai t for Part i al Screenshot . The
selected screen displays wi th the message "Select a rectangular region of the screenshot you want to
insert ."

2. Hold down the left mouse button and drag the cursor across the screen to select the region to save.
The Screen Capture Preview screen appears with the image you selected.

3. Click Fin i sh . The Specify Screenshot Name dialog box appears with a l ist of al l previously saved
screenshots.

4. In the Name field, type a descript ive name for the image.

5. Click OK. The image is saved as a bitmap and a wai t point for the screenshot is inserted in to the
script .

To save t he cur rent screen:

1. In the Citrix Capture dialog box, cl ick Screenshots>Save Curren t Screenshot . The Screen Capture
Preview screen displays.

2. Click Fin i sh . The Specify Screenshot Name dialog box displays with a l ist of al l previously saved
screenshots.

3. In the Name field, type a descript ive name for the image.

4. Click OK. The image is saved as a bitmap.

Clearing Events from the Internal Queue

In response to mouse and keyboard input, the Citrix server sends screen update events of the updated
screen image to the Citrix cl ient appl icat ion. You can synchronize these screen update events with the text
or graphic updates in the appl icat ion by using CtxWaitForScreenUpdate to insert waitpoints in the Citrix
script .

When numerous matching screen update events occur, such as the flashing edit cursor, they stay in the
in ternal queue indefin i tely. This can cause the CtxWaitForScreenUpdate funct ion to complete prematurely
by matching events with previously stored screen updates. You can clear the in ternal queue by using the
CtxScreenEventExists funct ion in a simple loop. Th is flushes al l past screen update events from the
in ternal queue, so a fol lowing CtxWaitForScreenUpdate can successful ly wai t for the next occurrence of
the desired screen update event.

Cit rix Command Reference

QALoad provides descript ions and examples of the various commands avai lable for a Citrix script . For
detai ls, refer to the Language Reference Help sect ion for Citrix.

Script Development Workbench

27

Advanced Script ing Techniques for Cit rix

Handling Citrix Server Farms

Citrix servers can be grouped in farms. When load test ing, you may want to connect to a Citrix server farm
rather than to a specific server. Load test ing requirements may include connect ing to a Citrix server farm,
where the load balancing feature supports dynamic redirect ion to a given server at connect ion t ime. This
load tests the server farm and Citrix load balancing rather than a single server, which can provide a more
real ist ic load test.

To record a script that connects to a farm, you must use an ICA fi le to connect. However, when a capture
takes place, a specific server (in the farm) must have a connect ion. Specify the correct ICA fi le to connect
to the server farm as well as a specific server with in that server farm.

To veri fy that your script is connect ing to a server farm and not a specific server, assign the server name to
one blank space when val idat ing the script . In order to record a script that connects to a farm, you must
use an ICA fi le specified in the Citrix Record Options dialog. Since the ICA fi le should contain al l the
necessary connect ion in formation, the server field should be left blank when recording.

When converted, the CitrixServer variable has a blank space:

.

.

.

/* Declare Variables */
const char *CitrixServer = " ";
const char *CitrixUsername = "citrix";
const char *CitrixPassword = "~encr~657E06726F697206";
const char *CitrixDomain = "qacitrix2";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

CtxSetConnectTimeout(90);
CtxSetDisconnectTimeout(90);
CtxSetWindowTimeout(30);
CtxSetPingTimeout(20);
CtxSetWaitPointTimeout(30);
CtxSetWindowVerification(TRUE);
CtxSetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-Domain);
CtxSetICAFile("PRD desktop.ica");
CtxSetEnableCounters(TRUE);
CtxSetWindowRetries(5, 5000);
CtxSetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

The Citrix cl ient ignores th is value and uses the ICA fi le to dynamical ly retrieve the server name at
playback t ime.

Conclusion

When you use these techniques to set up a Citrix server farm test script , you al low for dynamic server
redirect ion at playback as part of test ing a load balanced Citrix server farm.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

28

Handling Dynamic Windows

During conversion, CtxWaitForWindowCreate cal ls are added to the script for each named window
creat ion event. During replay, some dynamic windows that were in the capture may not appear, which
causes the script to fai l because a wait point t imes out. To avoid script fai lure in th is circumstance,
comment out the CtxWaitForWindowCreate commands that may be referencing dynamic windows.

Handling Dynamic Window Titles

Some appl icat ions create windows whose t i t les vary depending on the state of the window. For example,
M icrosoft Word creates a t i t le based on the default document name at the t ime of the window creat ion.
During replay, th is dynamic t i t le can differ from the window t i t le that was recorded, and the window is
not recognized. If th is occurs, t ry the fol lowing steps to modify the script :

1. Ensure that the Enable Wi ldcard Ti t l e M atch check box i s selected in the Ci t r i x conversion
opt ions prior to convert i ng the recording.
In the Window Verificat ion group of the Ci t r i x Convert Opt ions dialog box, ensure that the
Enable Wi ldcard Ti t l e M atch check box is selected. This check box is selected by default . If you
are working with a previously-converted script , ensure that a CtxSetEnableWildcardMatching
command exists in the script prior to the BEGIN_TRANSACTION command and that the parameter
is set to TRUE.

2. Veri fy w hether there i s an i ssue w i th dynam ic w i ndow t i t l es.
When a script fai ls on val idat ion because the run t ime window t i t le is different than the expected
window t i t le from the recording, i t is l ikely that you are deal ing with a dynamic t i t le issue that can
be handled by th is script ing technique. In th is case, the script fai ls on the
CtxWaitForWindowCreate cal l .

3. Iden t i fy a m atch “ pat tern ” for the dynam ic w indow t i t l e.
Note the error message that is returned during val idat ion (or replay). The message indicates the
expected window t i t le versus the window t i t le from script playback. Examine the differences in the
window t i t les to create a “ match pattern” that recognizes the window t i t le, whi le ignoring other
windows. A match pattern can be a simple substring of the window t i t le or a pattern string using
wildcard characters such as ? (to match any single character) or * (to match any number of
characters). The examples below i l lustrate the different match patterns.

4. Insert a CtxSetWindow M atchTi t l e com m and pr ior to the CtxWai tForWi ndow Create cal l for
the dynam ic w indow .
When adding the CtxSetWindowMatchTit le command, ensure that the first parameter contains the
correct window object and the second parameter contains the match string in double-quotes.

5. Val idate the script to ensure the CtxWai tForWindow Create com m and recogn izes the dynam ic
w indow nam e.
Run the revised script through val idat ion to ensure that the script succeeds. If the script does not
val idate successful ly, go to step 3 to determine i f the match pattern is correct.

Example 1: Using a substring match

In th is example, the M icrosoft Word appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is a concatenat ion of the default document that Word creates at appl icat ion startup with
the name of the appl icat ion. The script is altered to reflect the fact that the string “ M icrosoft Word” is
always part of the window t i t le:

// Window CWI_13 ("Microsoft Word") created
CtxSetWindowMatchTitle(CWI_13, “Microsoft Word”);
CtxWaitForWindowCreate(CWI_13);

Example 2: Using a wi ldcard match with the * character

Script Development Workbench

29

In th is example, the SampleClientApp appl icat ion generates a dynamic t i t le when the script is replayed.
The dynamic name is the name of the appl icat ion fol lowed by the name of the user, beginning with the
word “ User” . The asterisk (*) wi ldcard is subst i tuted for a given username, reflect ing the pattern of
“ SampleClientApp – User:” as part of the window t i t le fol lowed by an arbitrary user name:

// Window CWI_13 ("SampleClientApp – User: John") created
CtxSetWindowMatchTitle(CWI_13,“SampleClientApp – User: *”);
CtxWaitForWindowCreate(CWI_13);

Example 3: Using a wi ldcard match with the ? character

In th is example, the RandomValue appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is the appl icat ion fol lowed by a random single digit . The question mark character is
subst i tuted for the single digit to reflect the pattern that begins “ RandomValue: ” , fol lowed by single digit :

// Window CWI_13 ("RandomValue: 0") created
CtxSetWindowMatchTitle(CWI_13, “Sample Application: ?”);
CtxWaitForWindowCreate(CWI_13);

Handling Unexpected Events in Citrix

The CtxWindowEventExists and CtxScreenEventExists commands can be used to handle unexpected
window and screen events in Citrix scripts. When there is a possibi l i ty of unexpected dialogs appearing or
unexpected screen events occurring, you must modi fy the script to respond to the changes and cont inue
the load test.

For example, i f a script opens a M icrosoft Word document that resides on a network, and that document is
already open by another network user, an unexpected dialog box appears that prompts the user to choose
between cont inuing to open the document in read-only mode or to cancel i t . To prevent script fai lure,
modificat ions can be made in the script to handle the dialog boxes that appear in th is si tuat ion.

General ly, to handle unexpected events, you record two scripts. The first script contains a recording of the
expected events. The second script should include the unexpected events. Using the
CtxWindowEventExists and CtxScreenEventExists funct ions, create a condit ional block of code that
handles the dialogs that may appear.

Exam ple

The fol lowing script example shows the addit ional script l ines that were added to handle a Word
document that is already open by another user on a network. The added l ines appear in boldface type.

/*
 * capSave11111-2.cpp
 *
 * Script Converted on June 21, 2004 at 01:04:17 PM
 * Generated by Compuware QALoad convert module version 5.2.0 build 50
 *
 * This script contains support for the following middlewares:
 * - Citrix
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : No
 * Citrix
 * General Options :
 * Window Verification : Yes
 * Session Timeouts : Yes
 * Connect Timeout (s) : 60
 * Disconnect Timeout (s) : 60

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

30

 * Window Creation Timeout (s) : 30
 * Ping Timeout (s) : 20
 * Wait Point Timeout (s) : 30
 * Include Wait Points : Yes
 * Enable Counters : No
 * Include Unnamed Windows : Yes
 * Output Mode : Normal
 * Input Options :
 * Combine Keyboard Input : Yes
 * Combine Mouse Input : Yes
 */

#define CITRIX_CLIENT_VERSION "8.00.60000"
#define CITRIX_ICO_VERSION "2.4"
#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include "smacro.h"

#include "do_citrix.h"

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{
 /* Declare Variables */
 const char *CitrixServer = "qaccitrix";
 const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

 /* Citrix Window Information Objects */
 CtxWI *CWI_1 = new CtxWI(0x1001c, "Warning !!", 107, 43, 427, 351);
 CtxWI *CWI_2 = new CtxWI(0x2001c, "Log On to Windows", 111, 65, 418, 285);
 CtxWI *CWI_3 = new CtxWI(0x5001c, "Please wait...", 111, 112, 418, 145);
 CtxWI *CWI_4 = new CtxWI(0x30030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_5 = new CtxWI(0x40030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_6 = new CtxWI(0x4002e, "UsrLogon.Cmd", 0, 456, 161, 25);
 CtxWI *CWI_7 = new CtxWI(0x1003a, "", -2, 452, 645, 31);
 CtxWI *CWI_8 = new CtxWI(0x10066, "ICA Seamless Host Agent", 0, 0, 391, 224);
 CtxWI *CWI_9 = new CtxWI(0x10052, "Program Manager", 0, 0, 641, 481);
 CtxWI *CWI_10 = new CtxWI(0x1008c, "", 115, 0, 405, 457);
 CtxWI *CWI_11 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_12 = new CtxWI(0x2006a, "", 200, 186, 156, 287);
 CtxWI *CWI_13 = new CtxWI(0x10138, "", 112, 116, 416, 248);
 CtxWI *CWI_14 = new CtxWI(0x50036, "Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_15 = new CtxWI(0x1017e, "Open", 19, 23, 602, 387);
 CtxWI *CWI_16 = new CtxWI(0x20174, "*Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_17 = new CtxWI(0x10058, "", 113, 114, 305, 26);
 CtxWI *CWI_18 = new CtxWI(0x2013e, "Calculator", 66, 66, 261, 253);
 CtxWI *CWI_19 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_20 = new CtxWI(0x3006a, "Shut Down Windows", 111, 96, 418, 193);

 CtxWI *CWI_117 = new CtxWI(0x20172, "File In Use", 144, 127, 352, 179);
 CtxWI *CWI_118 = new CtxWI(0x30172, "11111111 (Read-Only) - Microsoft Word", -4,
-4, 649, 461);

 SET_ABORT_FUNCTION(abort_function);

 DEFINE_TRANS_TYPE("capSave11111-2.cpp");

Script Development Workbench

31

 CitrixInit(1);

 /* Citrix replay settings */
 CtxSetConnectTimeout(60);
 CtxSetDisconnectTimeout(60);
 CtxSetWindowTimeout(30);
 CtxSetPingTimeout(20);
 CtxSetWaitPointTimeout(30);
 CtxSetWindowVerification(TRUE);
 CtxSetEnableCounters(FALSE);
 CtxSetWindowRetries(5, 5000);
 CtxSetEnableWildcardMatching(TRUE);

 SYNCHRONIZE();

 BEGIN_TRANSACTION();

 DO_SetTransactionStart();

 CtxConnect(CitrixServer, CitrixOutputMode);

 // Window CWI_1 ("Warning !!") created 1087837356.454

 CtxWaitForWindowCreate(CWI_1, 2125);

 DO_MSLEEP(1891);
 CtxPoint(246, 267); //1087837358.797

 DO_MSLEEP(453);
 CtxMouseDown(CWI_1, L_BUTTON, NONE, 246, 267); // 1087837358.797

 CtxMouseUp(CWI_1, L_BUTTON, NONE, 247, 267); //1087837359.032

 .
 .
 .

 DO_MSLEEP(63);
 // Window CWI_14 ("Microsoft Word") created 1087837397.390

 CtxWaitForWindowCreate(CWI_14, 141);

 DO_MSLEEP(78);
 CWI_14->setTitle("Document1 - Microsoft Word"); //1087837397.468

 // Window CWI_13 ("") destroyed 1087837397.468

 DO_MSLEEP(2468);
 CtxPoint(37, 50); //1087837400.218

 DO_MSLEEP(282);
 CtxClick(CWI_14, 203, L_BUTTON, NONE); //1087837400.421

 // Window CWI_15 ("Open") created 1087837400.764

 CtxWaitForWindowCreate(CWI_15, 344);

 DO_MSLEEP(1656);
 CtxPoint(132, 99); //1087837402.671

 DO_MSLEEP(250);
 CtxDoubleClick(CWI_15); // 1087837402.874

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

32

 DO_MSLEEP(109);

 DO_MSLEEP(1953);
 CtxPoint(247, 197); //1087837404.827

 // Window CWI_15 ("Open") destroyed 1087837404.827

 if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE,3000,CWI_16))
 BeginBlock();
 CtxPoint(337, 265); //1087837404.905

 // Window CWI_16 ("11111111 - Microsoft Word") created
1087837404.905

 CtxWaitForWindowCreate(CWI_16, 31);

 // Window CWI_14 ("Document1 - Microsoft Word") destroyed
1087837404.905

 DO_MSLEEP(7547);
 CtxPoint(628, 9); //1087837414.592

 DO_MSLEEP(2141);
 CtxClick(CWI_16, 281, L_BUTTON, NONE); //1087837414.873

 DO_MSLEEP(234);
 // Window CWI_16 ("11111111 - Microsoft Word") destroyed
1087837415.108

 CtxPoint(113, 93); //1087837418.779

 // Window CWI_17 ("") created 1087837418.779
 EndBlock()

///ReadOnly Code Start

 else
 BeginBlock();

 // Window CWI_117 ("File In Use") created 1087840076.599

 CtxWaitForWindowCreate(CWI_117, 578);

 DO_MSLEEP(2360);
 CtxPoint(358, 283); //1087840079.068

 DO_MSLEEP(125);
 CtxClick(CWI_117, 281, L_BUTTON, NONE); //1087840079.365

 DO_MSLEEP(109);
 // Window CWI_117 ("File In Use") destroyed 1087840079.458

 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word") created
1087840079.521

 CtxWaitForWindowCreate(CWI_118, 63);

 // Window CWI_115 ("Document1 - Microsoft Word") destroyed
1087840079.521

 DO_MSLEEP(4766);

Script Development Workbench

33

 CtxPoint(631, 3); //1087840084.490

 DO_MSLEEP(203);
 CtxClick(CWI_118, 250, L_BUTTON, NONE); //1087840084.740

 DO_MSLEEP(93);
 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word")
destroyed 1087840084.833

 DO_MSLEEP(2407);
 CtxPoint(34, 465); //1087840087.333

 EndBlock();

///ReadOnly Code End

 DO_MSLEEP(1063);

 DO_MSLEEP(484);
 CtxPoint(112, 93); //1087837419.654

 DO_MSLEEP(406);
 CtxDoubleClick(CWI_9); // 1087837419.904
 .
 .
 .

 // Window CWI_9 ("Program Manager") destroyed 1087837440.122

 // Window CWI_7 ("") destroyed 1087837440.138

 DO_SetTransactionCleanup();

 CtxDisconnect();

 END_TRANSACTION();

 delete CWI_1; // "Warning !!"
 delete CWI_2; // "Log On to Windows"
 delete CWI_3; // "Please wait..."
 delete CWI_4; // "Citrix License Warning Notice"
 delete CWI_5; // "Citrix License Warning Notice"
 delete CWI_6; // "UsrLogon.Cmd"
 delete CWI_7; // ""
 delete CWI_8; // "ICA Seamless Host Agent"
 delete CWI_9; // "Program Manager"
 delete CWI_10; // ""
 delete CWI_11; // ""
 delete CWI_12; // ""
 delete CWI_13; // ""
 delete CWI_14; // "Microsoft Word"
 delete CWI_15; // "Open"
 delete CWI_16; // "11111111 - Microsoft Word"
 delete CWI_17; // ""
 delete CWI_18; // "Calculator"
 delete CWI_19; // ""
 delete CWI_20; // "Shut Down Windows"

 delete CWI_117; // "File In Use"
 delete CWI_118; // "11111111 (Read-Only) - Microsoft Word"

 CitrixUninit();

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

34

 REPORT(SUCCESS);
 EXIT();
 return(0);
}

void abort_function(PLAYER_INFO *s_info)
{
 RR__printf("Virtual User ABORTED.");

 CitrixUninit();

 EXIT();
}

Using the CtxWaitForScreenUpdate Command

In some situat ions, a window may vary in how long i t takes to refresh on the screen. For example, the
Windows Start menu is an unnamed window that can take varying amounts of t ime to appear, depending
on system resource usage. To prevent playback problems in which a mouse cl ick does not synchronize with
i ts in tended window, insert the CtxWaitForScreenUpdate command in the script after the act ion that
causes the window to appear. The parameters for the CtxWaitForScreenUpdate command correspond to
the X and Y coordinates and the width and height of the window. This command ensures that the window
has enough t ime to display before the mouse cl ick.

Java

Accessing JavaDoc

QALoad provides JavaDoc for your reference. To access i t from the Script Development Workbench menu,
choose Help>EasyScript for Java: JavaDoc from a Java session.

Creat ing a Java Script

To creat e a Java scr ipt f or QALoad :

1. With a Java session open, choose Fi le>New from the menu.

2. In the Fi le area, cl ick on the M iddlew are tree i tem.

3. In the Fi lename field, type a name for your new Java script . Note that Java fi le names do have
special requirements, and QALoad enforces those requirements. For example, Java fi le names
cannot contain spaces. If you try to include a space in your fi le name, QALoad gives you an error
prompt.

4. Click OK. The Create Java Script dialog box opens.

5. Under the Script field is a select ion box l ist ing al l the templates avai lable in your
\QALoad\Middlewares\Java\Templates directory. QALoad provides four default templates. If
you cl ick on a template name, a sample is shown in the right pane. The four templates are:

 long format — Provides al l required and opt ional methods.

 new class — Creates a class associated with the script .

 old format — Shows modi ficat ions needed to run legacy scripts.

Script Development Workbench

35

 short format — Provides only the min imum required methods.

Select the template that best suits your needs and cl ick OK. QALoad creates a stub script by the name
you designated and opens i t in the Workbook pane for edit ing.

6. Edit your script as necessary. You can use QALoad's Java Script Options dialog box to edit some
script at tributes.

Note: The main call in the script is used for debugging proposes and is not executed in the Conductor.

Set t ing Classpaths in QALoad Player for EasyScript for Java

When loading a class by name in the QALoad Player during runt ime, do not use a class name on the
Enterprise Java Bean (EJB) In it ialContext cal l . Instead, use a class instance or add a l ine of code before the
JNDI lookup cal l . Refer to the fol lowing examples:

Using a class instance

Replace the In it ialContext propert ies and JNDI names in the fol lowing example with the values that are
appropriate for your appl icat ion.

Before:
java.util.Hashtable ht = new java.util.Hashtable();
ht.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
ht.put(javax.naming.Context.PROVIDER_URL, "fh12623:1099");
javax.naming.InitialContext ic = new javax.naming.InitialContext(ht);
Object ref = ic.lookup("AddressMSvc");

After:
org.jnp.interfaces.NamingContextFactory nf = new
org.jnp.interfaces.NamingContextFactory();
java.util.Hashtable ht = new java.util.Hashtable();
ht.put(javax.naming.Context.PROVIDER_URL, "fh12623:1099");
javax.naming.Context ic = nf.getInitialContext(ht);
Object ref = ic.lookup("AddressMSvc");

Adding a l ine of code before the JNDI lookup call

Add the fol lowing l ine before the JNDI lookup cal l :
Thread.currentThread().setContextClassLoader(getClass().getClassLoader());

If i t is a stat ic method, use the fol lowing sample, replacing CLASSNAME with the class name of the code.
Thread.currentThread().setContextClassLoader(CLASSNAME.class.getClassLoader());

Execut ing a Java Applet

Java applets are handled by the fol lowing process:

1. The browser makes a request to a Web server for an HTML document that contains embedded Java
applets.

2. The browser downloads the Java applets, in the order in which they appear on the Web page, and
immediately executes them.

Example Web Page

The fol lowing Web page contains two sect ions that reference Java applets. Not ice the parameters that
fol low the applet. The browser passes these parameters when invoking an applet.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

36

<HTML>
<HEAD>
<TITLE>Java Example</TITLE></HEAD>
<BODY>

<center><h2>Java Applet Example</h2><hr>

<applet code="LScrollText.class" width="500" height="20" >
<PARAM NAME="MESSAGE" VALUE="Scrolling Text created by Java Applet... >>Click here to
Download<< Use it FREE">
<PARAM NAME="FONTHEIGHT" VALUE="14">
<PARAM NAME="SPEED" VALUE="2">
<PARAM NAME="PIXELS" VALUE="1">
<PARAM NAME="FONTCOLOR" VALUE="0000FF">
<PARAM NAME="BACKCOLOR" VALUE="FFFF00">
<PARAM NAME="TARGET" VALUE="lscrolltext.zip">
</applet>

A scrolling message, with custom colors, font size, speed, and target URL.

The source (.ZIP) file can be downloaded by clicking the associated area in text window.

<hr>

<APPLET CODE="imagefader.class" WIDTH=80 HEIGHT=107>
<PARAM name="demicron" value="www.demicron.se">
<PARAM name="reg" value="A00012">
<PARAM name="maxitems" value="3">
<PARAM name="width" value="80">
<PARAM name="height" value="107">
<PARAM name="bitmap0" value="anibal.jpg">
<PARAM name="bitmap1" value="jak.jpg">
<PARAM name="bitmap2" value="jan.jpg">
<PARAM name="url0" value=" ">
<PARAM name="url1" value=" ">
<PARAM name="url2" value=" ">
<PARAM name="step" value="0.05">
<PARAM name="delay" value="20">
<PARAM name="sleeptime" value="2000">

</APPLET>

This applet is a very popular image fader that displays a series of images, and allows URLs
to be associated with each image.

<hr>

</center>
</BODY></HTML>

Example script

QALoad does not evaluate Java applets. They appear as main requests. The example script features the
fol lowing elements:

! A DO_Http cal l to retrieve the main page.

! A DO_Http cal l to retrieve the scrol l ing text class.

! A DO_Http cal l to retrieve the image fader class Java applet.

How I t Works: QALoad interacts with the Web server without execut ion of the Java applet program wi th in
the virtual browser. The browser accepts the pages that contain Java applets, but does not execute the
applet as part of the load test. The Java applets are not evaluated by QALoad and appear as main requests
in the script .

DO_InitHttp(s_info);

Script Development Workbench

37

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/java.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Example", TITLE);

/* Request: 2 */
DO_Http("GET http://www.host.com/LScrollText.class HTTP/1.0\r\n\r\n");

/* Request: 3 */
DO_Http("GET http://www.host.com/imagefader.class HTTP/1.0\r\n\r\n");
DO_Http("GET http://www.host.com/jak.jpg HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Oracle

Recording an Oracle Session

Click the Oracle button on the toolbar to open an Oracle session.

To set Oracle r ecording opt ions and begin recording:

1. Click Opt ions>Record on the menu bar. The Session Options dialog box appears.

2. Select the appropriate opt ions in the right-hand pane, then cl ick OK.

3. Click the Record button on the Session toolbar.

Set t ing Oracle Convert Opt ions

To set conversion opt ions f or an Oracle session :

1. Choose Opt ions>Convert in the Script Development Workbench menu bar. The Session Options
dialog box appears.

2. Select the appropriate opt ions in the right-hand pane, then cl ick OK.

Act iveData for Oracle

ActiveData for Oracle

Oracle variabl izat ion is a powerful script ing assistant that provides automatic correlat ion of data values in
your script (auto-variabl izat ion) and lets you use a datapool as the source of data values (manual-
variabl izat ion).

Auto-variabl i zat ion

When you enable auto-variabl izat ion, QALoad correlates the data values produced by the execut ion of
recorded SQL statements and assigns a single source variable to matching bind and stat ic variables that

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

38

subsequently use the value. Auto-variabl izat ion wil l on ly target a capture fi le's bind variables and
embedded stat ic data in recorded SQL statements as receivers of source variables. Source variables wi l l be
automatical ly generated based on the capture fi le's PostBind data, Fetch data, and embedded Stat ic data in
SQL statements. Source variables from PostBind data wi l l be generated only i f the PostBind data belongs to
one of these OCI bind data types:

Code OCI7 Bind Data Type OCI8 Bind Data Type

3 SQLT_INT SQLT_INT

4 SQLT_FLT SQLT_FLT

68 SQLT_UIN SQLT_UIN

1 SQLT_CHR SQLT_CHR

5 SQLT_STR SQLT_STR

96 SQLT_AFC SQLT_AFC

97 SQLT_AFC SQLT_AFC

11 SQLT_RID SQLT_RID Not Appl icable

in OCI8

Source variables from Fetch data wi l l be generated only i f the Fetch data belongs to one of the above OCI
datatypes or one of the fol lowing:

Code OCI7 Fetch Data Type OCI8 Fetch Data Type

6 SQLT_VNU SQLT_VNU

2 SQLT_NUM SQLT_NUM

Note: Fetch data is made available in the capture file only when the Oracle Capture Option Use Fetch
data for Variablizat ion is selected.

Stat ic data embedded in SQL statements wi l l be used as source variable or receiver of a source variable only
when the SQL statement states a SELECT, INSERT, UPDATE or DELETE operat ion. SQL statements that
contain stored procedures (e.g. BEGIN…) wil l be excluded.

Auto-variabl izat ion occurs by default in QALoad, but you can turn i t off by clearing the conversion opt ion
Variabl i zat ion (Act i veData) on the Oracle Convert Opt ions tab. If you choose to use automatic
variabl izat ion, you can then use manual-variabl izat ion to change a source variable previously determined
by auto-variabl izat ion to data from a local or central datapool.

M an ual Variabl i zat ion

Manual variabl izat ion al lows you to change the source of variables ident i fied through auto-variabl izat ion
to use data from central or local datapools. You use the variabl izat ion tree-view and the opt ions avai lable
from the tree-view to view and change source variables.

Script Development Workbench

39

Manual variabl izat ion is l im ited to changing the source variables to data that was prepared from a local
datapool or conductor (central) datapool. Once changed, al l (but not individual) source variables may be
changed back to the original source variables.

Why use Act i veData for Oracle?

! To avoid dupl i cate key errors w h ich can occur during playback w hen th e data relat i onsh ips
h idden (im pl ied) w i th in a set of Oracle SQL statem en ts are not recorded. For example, a
recorded Select SQL statement may include the Oracle nextval expression to get the next sequential
unique number in the database. The returned value from the expression is used for the primary key
in a subsequent Insert statement. The primary key is associated with a bind variable. The value of
the bind variable is recorded and noted in the QALoad script . When the script is played back, the
returned value from nextval wi l l natural ly be different from the value of the bind variable. The
Insert SQL execut ion incurs a dupl icate key error from the Oracle server.

Oracle variabl izat ion prevents th is error by providing a logical relat ionship between the returned data
from the Select statement and the data for the Insert bind variable. The data relat ionship is establ ished
through a source variable.

! To reduce diagnost i c t im e for playback data i ssues, especial l y w hen deal in g w i th l arge scripts.
Using a single source variable for script variables that have the same data value reduces the amount
of debugging t ime that would have been spent on mult iple script variables. Addit ional ly, the
Compare Tool aids you in debugging data issues by h ighl ight ing SQL and data differences that
could in fluence the load test of two similar capture fi les.

Variablization menu

Access the Variabl i zat ion menu from the Script Development Workbench's Session menu, or by right-
cl icking from the variabl izat ion tree-view.

Create/ Edi t a source: Opens a tree-view of your variabl ized
statements and their sources.

Show Capture Di f feren ce: Accesses the Compare Tool, where you
can choose a capture fi le to compare to the current capture fi le and
have the differences in SQL statements and bind data h ighl ighted for
your comparison with in the variabl izat ion tree-view.

Revariabl i ze: Deletes al l manually generated source variables and re-
executes auto-variabl izat ion. Note that datapool sources may not be
changed back to PostBind, Fetch, or Stat ic data unless you select th is
opt ion.

Rem ove al l sources: Deletes al l source variables from the script 's .var
fi le.

Show SQL statem en t : Provides a detai led view of the h ighl ighted
SQL statement. The detai led view wil l display associated Bind and

Column data (from the Execute statement), associated PostBind data, and associated Fetch data.

Hin ts: Opens the Oracle Variabl izat ion Hints onl ine help.

Word w rap: Shows the complete SQL statement in wrapped format. This is selected by default .

Displ ay opt ions: Al lows you to change display opt ions to one of the fol lowing: Only statements with bind
variables, Unsourced Bind statements, or Show al l SQL statements (default).

The Refresh the curren t view opt ion wil l re-draw the tree-view after a source is manually changed.

Save the Variabl i zat ion VAR f i l e: Saves any changes to the script 's .var fi le.

Save and Convert : Saves changes to the .var fi le and re-converts the script .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

40

Save and Convert As: Saves changes to the .var fi le and prompts you to save your script under a new name
before re-convert ing i t .

Variablize

Use th is dialog box to variabl ize a fi le or to compare two similar fi les. The results are displayed in a tree-
view from which you can manually variabl ize the fi le or view the differences between the two fi les. When
you compare two fi les, the differences in SQL statements and bind data are h ighl ighted with in the
Variabl izat ion tree-view.

Variabl i ze the fol l ow ing capture f i l e: Lists the path and name of the curren t ly selected capture fi le (.cap).

Com pare and Variabl i ze w i th the fol l ow ing f i l e: Navigate to the capture fi le you'd l ike to compare to the
current ly selected capture fi le.

Variabl i ze: Variabl izes the fi le and displays the recorded SQL statements, bind variables, stat ic variables
embedded in SQL statements, data values and the sources of data values as determined by auto-
variabl izat ion.

Cancel : Closes the dialog box without making any changes.

Source Details

Displays detai ls about the source of the selected variable, and al lows you to replace the source with data
from a central or local datapool.

Nam e: Lists the name of the field in the script that was variabl ized.

Value: Lists the value assigned to the variabl ized field.

Line #: Lists the script l ine where the field is located.

(Defaul t) From Postbind/ Fetch / Stat i c data: If th is opt ion is selected, the source of the variable was
determined by auto-variabl izat ion.

Source variable nam e in Convert scri pt : The name assigned to the variable by auto-variabl izat ion, or
when replaced by a datapool variable.

From datapool : Select th is opt ion to change the source to a central or local datapool.

Field Num ber: Specify the column number in the datapool fi le to use as the source.

Advanced Opt ions: Cl ick to open the Act iveData Advanced Source Options dialog box where you can
format the source before using i t , if necessary.

Displ ay val ues m atched by auto-variabl i zat ion : In th is area, cl ick the appropriate button to determine
which values to display: Sources, Matching values, or Matching names and values.

M atch exact : Select i f the source must be an exact match, or de-select to use the source for a sub-string
search.

Update Source: Cl ick to update the variable source according to the sett ings on th is dialog.

Update ALL: Cl ick to use the newly created source variable for al l i tems in the l ist area.

Delete Source: Cl ick to delete the variable and al l i ts references from the tree-view.

Qui t : Cl ick to cancel without saving any changes.

Comparing Files

The Oracle Variabl izat ion Compare Tool compares two similar capture fi les, ident i fies the differences in
SQL statements and bind data, and h ighl ights them in the Variabl izat ion Tree View.

Script Development Workbench

41

Why Use the Com pare Tool?

The Compare Tool can help you debug data issues in your transact ion that may cause load test problems,
especial ly in large scripts. With the differences h ighlighted in a window display, you can quickly determ ine
i f manual variabl izat ion is warranted for specific variables. Manual variabl izat ion can help you work
around data issues that in fluence load tests.

To use t he Com pare Tool :

1. In the Workspace pane, right-cl ick on the first capture fi le you want to compare and select
Variabl i ze from the shortcut menu. The Variabl ize dialog box opens, displaying the path and
name of the selected fi le.

2. Select the Com pare and Variabl i ze w i th the fol l ow ing f i l e check box, and then navigate to the
capture fi le you wish to compare against the first selected fi le.

3. Click the Variabl i ze button. A new tab opens in the Script Development Workbench, present ing a
tree-view of the data. Differences in SQL statements and bind data are h ighl ighted.

4. View differing values by cl icking on a h ighl ighted bind variable or SQL statement. The Show
Capture Difference window opens, l ist ing the value used in each fi le.

5. If you do not need to change the data, cl ick OK to be returned to the tree-view. If you need to
change the source of a bind i tem to a datapool variable, cl ick Go to Source Di splay. The Source
Detai ls (for bind data) window or Show SQL Statement (for SQL statements) window opens.

6. Change the source of any variables to cal l datapool i tems.

7. Save the .var fi le and convert your capture fi le to bui ld an updated script by right-cl icking and
select ing Save and Convert or Save and Convert As.

Setting up QALoad to run Oracle scripts on UNIX

After instal l ing the QALoad UNIX Player and ut i l i t ies, you should ensure that the fol lowing environment
variables are set prior to start ing the Player Agent (loadagent):

Plat form Envi ronm en t
Variable

Value

Al l Plat form s: ORACLE_HOME <path>/oracle/product/<version>

 TNS_ADMIN <location of config files>

 ORACLE_SID <oracle instance name

Linux : LD_LIBRARY_PATH <playerdir>/lib:<ORACLE_HOME>/lib

Solari s: LD_LIBRARY_PATH <playerdir>/lib:<ORACLE_HOME>/lib

Sett ing environment variables on UNIX systems depends on your login shel l . For example:

! For ksh : export ORACLE_HOME=/oracle/product/8.1.6

! For csh : setenv ORACLE_HOME /oracle/product/8.1.6

The ORACLE_HOME environment variable points to the directory where the Oracle workstat ion software
has been instal led. The TNS_ADMIN environment variable should point to the locat ion of the cl ient
and/or server config fi les. ORACLE_SID should be set to the name of the Oracle instance. For each UNIX

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

42

platform, update the appropriate l ibrary path variable to include the l ibrary di rectory for the part icular
version of Oracle.

Scripts wi l l automatical ly be downloaded to the Player machines by the Conductor and compiled, i f
necessary, at test execut ion t ime.

During the automatic script download and compile, i f a script compile error occurs, a scriptname.err fi le
wi l l be generated in the scripts directory.

To compile a script by hand, use the Rmake command. The syntax is as fol lows:

Rmake <scriptdir>/<scriptname>

 or

Rmake <scriptdir>/<scriptname>

Oracle Command Reference

QALoad provides descript ions and examples of the various commands avai lable for an Oracle script . For
detai ls, refer to the Language Reference Help sect ion for Oracle OCI Version 7, General Oracle, or Oracle
OCI Version 8.

OFS

Set t ing Oracle Forms Convert Opt ions

Use the fol lowing procedures to set Oracle Forms convert opt ions and advanced convert opt ions. Use the
advanced convert opt ions to customize the post-capture steps taken before convert ing the capture fi le to a
script , or to manually perform post-capture processing of a proxycap (hexadecimal encoded) fi le. This
produces a new cap fi le, postcapweb fi le, longcap fi le, and sortedcap. This process overwrites these fi les
when they already exist .

To set conversion opt ions f or Oracle Form s in a single session :

1. Choose Opt ions>Convert in the Script Development Workbench toolbar. The Session Options
dialog box appears.

2. Select the appropriate opt ions, then cl ick OK.

To set conversion opt ions f or Oracle Form s in a Universal session :

1. Choose Opt ions>Convert in the Script Development Workbench toolbar. The Session Options
dialog box appears with both Oracle Forms Server and WWW selected.

2. Click the Session Opt ions tab.

3. Under Convert Opt ions in the tree view, cl ick Oracle Form s Convert Opt ions.

4. Select the appropriate opt ions, then cl ick OK.

To set Advanced conver t op t ions:

1. Choose Opt ions>Convert in the Script Development Workbench toolbar to open the Session
Options dialog box.

2. In the Convert Options tree view, cl ick Advanced Convert Opt ions.

Script Development Workbench

43

3. Select the appropriate opt ions, then cl ick OK.

Recording Oracle Forms Server Sessions

You can record an Oracle Forms session in a single session, or in a Universal session for Oracle E-Business
Suite 11i (EBS-11i) and Oracle E-Business Suite 12 (EBS-12). Select the down arrow next to the Oracle
Form s Server Session but ton on the toolbar, then fol low one of the procedures below.

To begin r ecording an OFS single session:

1. Select Oracle Form s to act ivate a new OFS single session.

2. From the toolbar, select Opt ions>Record, and select the appropriate opt ions.

3. Click Record on the Sessi on toolbar.

To begin r ecording OFS in a Universal session:

1. Select E-Business Sui te 11i or E-Business Sui te 12 to act ivate Universal session for the Oracle
Forms and WWW middlewares.

2. Click Record on the Sessi on toolbar. The Session Opt ions dialog box displays with the M iddleware
tab on top. Both WWW and Oracle Forms Server are selected.

3. Click the Session Opt ions tab.

4. In the tree view under Record Options, select Oracle Form s Record Opt ions. The Oracle Forms
Record Options pane displays on the right. The session you in i t iated, either E-Business Suite 11i or
E-Business Suite 12, automatical ly displays in the Form s En vi ronm en t field.

5. Select the appropriate opt ions, then cl ick OK to begin recording.

Note: When you record EBS-12 using Internet Explorer 6, changing the Accessibility option on the EBS-12
login page from the default (None) requires modifications to your script in order for it to run properly. Refer
to Changing Accessibility Options in Oracle EB-12 for more information.

Oracle Forms Recording Modes

QALoad supports recording Oracle E-Business Suite (EBS) 12 and 11i, and Oracle Appl icat ions using Forms
10g, 9i, and patched 6i (versions 6.0.8.14 and up). These appl icat ions may be recorded in HTTP mode (also
cal led Servlet mode), SSL mode (also cal led HTTPS or Secure Servlet mode), and socket mode. These
recording types are described briefly below.

Recording Servlet Mode

Oracle Forms Applicat ions use HTTP to send Forms data across the network. To record in Servlet mode,
select Servlet in the Connect ion Mode l ist in the Record Options dialog box before you start recording your
appl icat ion.

Note: When using server-side recording, you must perform steps to configure the server. See Using server-
side recording for more information. Server-side recording is not available for EBS-12 or EBS-11i.

Recording SSL Mode

To record an OFS appl icat ion in Secure Servlet (SSL) mode, select Secure Servlet in the Connect ion Mode
l ist in the Record Options dialog box. For non-EBS-12 appl icat ions, you must specify a certDB fi le by
entering the Jin it iator certDB fi le that the appl icat ion uses. The certDB fi le veri fies the SSL Cert i ficate
Authori ty on the cl ient side prior to the Forms connect ion. This field is not required for EBS-12.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

44

Note: SSL mode is not available with server-side recording.

Recording Socket Mode

For Socket M ode recording, QALoad must start your appl icat ion for you through your browser. Before
recording, enter the URL of the Forms applet page in the URL field, and the Form s Server port in the Port
field. If you leave the Port field blank, or enter an incorrect port number, your recording wil l on ly result in
an empty capture fi le. You may leave the URL field blank, but wi l l be prompted for the Forms applet page
on the in i t ial browser page. From the applet page, cl ick the l ink to your Forms appl icat ion. QALoad wil l
take over recording at th is point.

Checkpoints in Oracle Forms Server scripts

EasyScript for Oracle Forms Server supports QALoad's automatic middleware checkpoint t im ings in both
HTTP and socket modes. Default checkpoints (Begin/End Checkpoint pairs) are not supported.

Automatic checkpoints are enabled from the Conductor's Tim ing Opt ions column on the Script
Assignm en t tab and are enabled on a script-by-script basis.

At playback, automatic checkpoints are executed during the ofsSendRecv statement.

Forms validat ion/ playback debugging opt ions

Debug data

When the Debug Data opt ion is enabled on the Configure Script Development Workbench dialog box for
val idat ion, or the Conductor's Debug Trace opt ion is enabled for playback, executed script statements wi l l
be displayed. For example:

VU 0 : Line:90, ofsSetWindowSize("FORMWINDOW" ,6, OFS_ENDMSG, 137, 750, 600)
VU 0 : Line:91, ofsActivateWindow("WINDOW_START_APP" ,11, OFS_ENDMSG, 247)
VU 0 : Line:92, ofsShowWindow("WINDOW_START_APP" ,11, OFS_ENDMSG, 173)
VU 0 : Line:93, ofsFocus("BUTTON" ,51, OFS_ENDMSG, 174)
VU 0 : Line:94, ofsSetWindowSize("FORMWINDOW" ,6, OFS_ENDMSG, 137, 750, 600)
VU 0 : Line:95, ofsSendRecv(1) //ClientSeqNo=2|MsgCount=6

Oracle Forms Server method reference

QALoad provides descript ions and examples of the various methods and funct ions avai lable for an Oracle
Forms Server script . For detai ls, refer to the Language Reference Help sect ion for Oracle Forms Server.

Using the certDB File for OFS Replay

In some Oracle Appl icat ion Server and Oracle E-Business Suite 11i environments, the cert i ficates needed for
the SSL handshake with the server are not in the default wal let used during replay. This causes the SSL
handshake to fai l .

You can use the certDB fi le used by JIn it iator for OFS replay. To do th is for Script Val idat ion, place the
certdb.txt fi le in the BinaryFi les directory.

To use t he cer t DB f i le f or OFS replay in Conduct or :

1. In the Conductor's Script Assignment tab, select a script in the Script column.

2. Click Browse . The External Data dialog box appears.

3. In Attached Fi les, cl ick Add. The Add Attached Fi le dialog box displays.

Script Development Workbench

45

4. From the BinaryFi les folder, select certdb.tx t , then cl ick Open .

5. Click OK.

Advanced Script ing Techniques

Understanding the C++ Script

Oracle Forms Server scripts are produced for al l Oracle E-Business Suite and Oracle Appl icat ions recordings.
The C++ script executes OFS-related statements by passing the statements in the script DLL to the OFS Java
engine that performs the cl ient act ivi t ies and the cl ient communicat ion with the server. Because the C++
script statements are direct ly t ied to corresponding methods in the OFS Java engine, modificat ions to the
script statements are l im ited to changing the property parameter values through variabl izat ion.

An OFS C++ script contains three main sect ions: Connect ion, Appl icat ion Body, and Disconnect. The
QALoad transact ion loop includes al l three sect ions by default . The transact ion loop can be moved using
the guidel ines described in Moving the OFS transact ion loop. An internal auto checkpoint is created during
connect ion statements and transmission statements.

The C++ script statements are a condensed version of the Java-style script statements. The C++ script
statements show the GUI controls in the OFS appl icat ion and the control propert ies, which are either
control at tributes or act ivi t ies. For example:

ofsClickButton("BUTTON", 52, OFS_ENDMSG, 325);

In th is example, the user cl icks (property 325) a button (control ID 52). OFS_ENDMSG is a flag that
indicates that the GUI act ivi ty ends the current OFS Message.

QALoad also al lows OFS and WWW statements from a Universal session to be scripted in the C++ script ,
providing the abi l i ty to play back WWW and OFS statements. QALoad automatical ly extracts ICX t ickets
and any necessary cookies from the WWW middleware traffic and passes them to the OFS middleware.

Connection Statements

The connect ion script l ines in the C++ script vary depending on the type of Forms connect ion mode that is
act ive. You choose the Forms connect ion mode on the Oracle Forms Record Options dialog box. Forms
connect ion modes include server-side recording, HTTP, HTTPS, or socket.

Server-side recording is l im ited to appl icat ions that use Oracle Appl icat ion Server. HTTP connect ion mode
is avai lable for appl icat ions using Forms 9i and for appl icat ions using the patched Forms 6i version
configured with the HTTP servlet. HTTPS connect ion mode is strict ly for SSL-enabled appl icat ions that use
Forms 9i. Socket connect ion mode is for appl icat ions that use Forms 6i and lower versions, such as Oracle
11i.

Server-side recording connect ions

Server-side recording mode contains only one connect ion statement. The funct ion that is used –
ofsSetServletMode – contains the l istener servlet value that you entered on the Oracle Form s Server
Recording Opt ions dialog box. The first parameter defines the HTTP or HTTPS configurat ion of the
appl icat ion environment. The second parameter defines the name of the Forms Listener Servlet used by the
appl icat ion. To connect, QALoad internal ly invokes Oracle’s dispatch cal ls using the two parameters.
Oracle’s proprietary classes provide the implementat ion for the HTTP or HTTPS connect ion. For example:

ofsSetServletMode(OFS_HTTP, "http://ntsap45b:7779/forms90/l90servlet");

HTTP connect ions

HTTP connect ion mode contains mult iple connect ion statements. To connect, QALoad internal ly performs
Java cal ls to accomplish the fol lowing tasks:

! Define HTTP header propert ies

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

46

! Connect to the Forms Servlet (an HTTP-GET request)

! Set the parameters of the Forms Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-GET request)

! Set addit ional HTTP header property for the Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-POST request). The last connect ion statement also
in i t iates the required Forms “ handshake” and determines the Forms encrypt ion used by the
appl icat ion environment .

For example:

ofsHTTPSetHdrProperty("User-Agent", "Java1.3.1.9");
ofsHTTPSetHdrProperty("Host", "ntsap45b:7779");
ofsHTTPSetHdrProperty("Accept", "text/html, image/gif, image/jpeg, *; q=.2, "*/*; q=.2"
);
ofsHTTPSetHdrProperty("Connection", "Keep-alive");
ofsHTTPConnectToFormsServlet(
"http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession");
ofsHTTPSetListenerServletParms("?ifcmd=getinfo&ifhost=C104444D01&ifip= "192.168.234.1"
);
ofsHTTPConnectToListenerServlet("http://ntsap45b:7779/forms90/l90servlet");
ofsHTTPSetHdrProperty("Content-type", "application/x-www-form-urlencoded");
ofsHTTPInitialFormsConnect();

HTTPS connect ions

HTTPS connect ion mode uses the same connect ion statements as HTTP mode.

Socket connect ions

Socket mode contains only one connect ion statement. The funct ion that is used – ofsConnectToSocket –
contains the port number and the URL you entered on the Oracle Forms Record Options dialog box to start
OFS capture. The port value is the port on which the Forms Server direct ly l istens for Forms traffic. To
connect, QALoad uses Java cal ls to open a Java socket using the parameters, in i t iate the required Forms
"handshake” , and determine the Forms encrypt ion used by the appl icat ion environment. For example:

ofsConnectToSocket("10.10.0.167", 9002);

Application Statements

The appl icat ion statements in the C++ script consist of property statements and transmission statements.
Property statements describe the attributes and act ivi t ies of GUI controls in the appl icat ion. Transmission
statements send the GUI controls and their propert ies as Forms Message data to the server. There is only
one transmission statement: ofsSendRecv. QALoad creates an in ternal auto checkpoint when th is statement
is executed. In the fol lowing example, the first two (property) statements set the locat ion and size of a
FormWindow GUI control. The ofsSendRecv statement sends the GUI control propert ies to the server.

ofsSetWindowLocation("FORMWINDOW", 6, OFS_ENDMSG, 135, 0, 0); //Property
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500); //Property
ofsSendRecv(1); //Transmission

Param eters of a property statem en t :

The parameters of a property statement are arranged in the fol lowing sequence:

1. Captured con t rol nam e. If the name is not avai lable, th is value is the class name to which the
control belongs.

2. Captured con t rol ID.

3. Act ion type. This flag indicates i f the property is to be added to the current Forms Message or i f the
property ends the current Forms Message. During playback, each control is treated as a Forms

Script Development Workbench

47

Message. When the current Message ends, QALoad translates the control and i ts propert ies to
binary format. The val id values are:

 OFS_ADD – add the property to the current Message.

 OFS_ENDMSG – add the property to the current Message and end the Message.

 OFS_STARTSUBMSG – add the property of the succeeding nested Message to the current
Message.

4. Property ID. The Forms version-specific ID of the property.

5. Property value. Captured value of the property (opt ional)

6. Property value. Captured value of the property (opt ional)

For example:

ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);

In th is example, control ID 6, which belongs to GUI class FORMWINDOW, is resized (PROPERTY
137) to have coordinates 650 and 500. This marks the end of the current Message.

Forms environment statements:

The in i t ial set of statements in the Forms script describes the Forms appl icat ion environment. In th is set,
the "version” and the “ cmdline” propert ies are the most important. The version property shows the Forms
Bui lder version used by the appl icat ion. The version indicates the capabi l i t ies of the appl icat ion. For
example, some versions cannot support HTTP connect ions. The cmdline property shows the Forms
configurat ion parameters passed to the server by the Forms applet. The parameter “ record=names”
indicates that the appl icat ion enables GUI control names to be captured. Control names are preferred in
mult i-threaded playback. The “ ICX” parameter indicates that the appl icat ion uses a Personal Home Page.

In the sample script below, the Forms bui lder version is 90290 (the version used in Oracle 9iAS Release 2,
unpatched). The cmdline property shows “ record=forms” which defaults “ record=names” . The cmdline
property does not have the “ ICX” t icket parameter.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);
ofsSetDisplaySize("RUNFORM", 1, OFS_ADD, 264, 1024, 768);
ofsInitSessionCmdLine("RUNFORM", 1, OFS_ADD, 265,
 "server module=test1.fmx userid= sso_userid= debug=no buffer_records=no debug_"
 "messages=no array=no query_only=no quiet=yes render=no host=ntsap45b.prodti.com"
 "puware.com port= record=forms tracegroup=debug log=run1 term=");
ofsSetColorDepth("RUNFORM", 1, OFS_ADD, 266, "256");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "0");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "8421504");
ofsSetFontName("RUNFORM", 1, OFS_ADD, 383, "Dialog");
ofsSetFontSize("RUNFORM", 1, OFS_ADD, 377, "900");
ofsSetFontStyle("RUNFORM", 1, OFS_ADD, 378, "0");
ofsSetFontWeight("RUNFORM", 1, OFS_ADD, 379, "0");
ofsSetScaleInfo("RUNFORM", 1, OFS_ADD, 267, 8, 20);
ofsSetNoRequiredVAList("RUNFORM", 1, OFS_ADD, 291);
ofsSetPropertyString("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");
ofsSendRecv(1);
//ClientSeqNo=1|CapTime=1086884188.281|MsgCount=1

Sending messages to the server:

The ofsSendRecv statement sends the accumulated GUI controls and their propert ies to the Forms Server as
binary data. This statement represents the point at which the cl ient sends a Forms Terminal Message to the
server. In Oracle Forms, the cl ient and the server must end each data block with a Terminal Message before
any transmission occurs.

In ternal ly, QALoad varies the binary data transmission depending on the connect ion mode:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

48

! For server-side recording mode, QALoad sends the binary data by invoking Oracle’s dispatch cal ls.
Oracle’s own classes provide the implementat ion for the HTTP transmission.

! For HTTP or HTTPS mode, QALoad wraps the binary data inside an HTTP stream and invokes Java’s
HTTP cal ls.

! For socket mode, QALoad sends the binary data direct ly to the Java socket opened at the
connect ion point .

The ofsSendRecv statement has one parameter: the response code of the captured Terminal Message. The
possible values for th is parameter are 1 (add), 2 (update), and 3 (close). Typical ly, when the response code
is 3, the Forms Server reacts by removing the GUI controls associated with the cl ient message from the
server cache.

A comment l ine appears after each ofsSendRecv statement that contains script-tracking in formation. The
information on the comment l ine is also found in the capture fi le in each ofsSendRecv capture l ine. The
comment l ine shows the relat ive sequence of each cl ient request, as represented by a Terminal Message,
from the start of the appl icat ion (e.g. Cl ientSeqNo=1). The comment l ine also shows the t im ing mark of
the captured Terminal Message (e.g. CapTime=1086884188.281) and the number of Forms messages
contained in the request (e.g. MsgCount=1). The number of Messages can be veri fied by count ing the
preceding ENDMSG and STARTSUBMSG flags in the request block. The comment l ine is useful for
debugging playback issues because i t readi ly shows the cl ient request sequence number where the issue is
occurring.

Gett ing the server reply:

During the execut ion of ofsSendRecv, QALoad also obtains the server’s reply and translates the binary
Forms data in to Forms control values and control propert ies. The values are also writ ten to the playback
log fi le (in capture fi le format) i f script logging is enabled. The fol lowing sample is a server reply:

VU 0 : M|S|2|0|1
VU 0 : P|S|322|java.lang.Integer|0|151000320
VU 0 : P|S|279|java.lang.Boolean|0|false
VU 0 : P|S|525|java.lang.String|AMERICAN_AMERICA.WE8MSWIN1252
VU 0 : T|S|1|ServerSeqNo=1|MsgCount=76

The first l ine indicates the start of a Forms Message from the server (M |S). The th ird parameter is an act ion
code (1= add, 2= update, 3= delete, 4= get property value). The fourth parameter is the Class Code of the
control (0 = root class). The fi fth parameter is the Control ID (1= RunForm).

The second, th ird and fourth l ines are property l ines related to the above Forms Message from the server
(P|S). The th ird parameter of each l ine is the property ID (322). The fourth parameter is the data type of
th is property (java.lang.In teger). The fi fth parameter is the data value. If the value is 0, the data value is in
a sixth parameter (false).

The th ird l ine is the terminal message l ine from the server (T|S). The th ird parameter is the response code
associated with the terminal message (1= add, 2= update, = close). The fourth parameter is the relat ive
sequence of the server reply, as represented by a Terminal Message, from the start of the appl icat ion (e.g.
ServerSeqNo= 1). The fi fth parameter is the number of Forms messages contained in the reply (e.g.
MsgCount = 1). The number of Messages may be veri fied by count ing the preceding M|S flags in the reply
block. The fourth and fi fth parameters are script-tracking in formation, which can be useful for debugging
a playback issue. If logging is enabled, the log fi le shows the tracking in formation, which can make the
comparison between server responses and captured responses easier.

Processing large data and delayed response scenarios:

When HTTP or HTTPS connect ion mode is used, Forms data is wrapped inside the HTTP reply stream.
QALoad checks the HTTP header of the reply before processing the Forms data. The HTTP header
sometimes indicates that the cl ient needs to perform addit ional HTTP POST requests to obtain the
complete Forms data. This indicat ion occurs when the content-length of the reply is 64000 (a large data
scenario), or the content-type is "text/plain” and the HTTP header contains an “ i ferror: ” string (a delayed

Script Development Workbench

49

response/re-post scenario). QALoad performs the necessary POST requests to obtain the complete reply
data, and then translates the accumulated reply data to Forms controls and propert ies.

Disconnect statements

The disconnect script l ines vary depending on the Forms connect ion mode.

! In server-side recording mode, the ofsServerSideDisconnect script statement in ternal ly invokes
Oracle’s dispatch cal ls to disconnect.

! In HTTP mode, the ofsHTTPDisconnect statement in ternal ly makes Java cal ls to disconnect the
main URL connect ion from the servlet.

! In socket mode, the ofsSocketDisconnect statement closes the socket on which the Forms Server
l istens for traffic.

Using Script Logging as a Debugging tool

You can debug a playback issue in a C++ script by enabl ing replay logging. The opt ion for enabl ing replay
logging is located on the Script Assignment tab of the Conductor. For more in formation about enabl ing log
fi le generat ion, see Debugging a script .

When logging is enabled, QALoad writes the cl ient requests and server repl ies to the playback log fi le in the
same format as the capture fi le. The playback log fi le is found in the \QALoad\LogFiles directory. When
there is an issue during playback, such as the server not responding to a cl ient request, you can compare
the capture fi les and check the differences in the server reply data. Both the capture fi le and the log fi le
contain tracking in format ion appended to the server’s terminal messages. The tracking data contains the
relat ive sequence number of the server reply from the start of the Forms session and the t im ing mark. The
tracking data also shows the number of Forms messages contained in the reply block. The number of
messages are based on the number of “ M |S” l ines prior to the “ T|S” l ines.

In the fol lowing example, the first set of statements shows the logged statements and the second set of
statements shows the captured statements. The ServerSeqNo value shows that th is is the 8th reply from the
server. The MsgCount value of 1 shows that only one Forms Message is included in th is reply block.

1087419810.000|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087419810.000|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087419810.000|MsgCount=1
1087419810.000|M|S|2|0|30
1087419810.000|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087419810.000|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000T|S|1|ServerSeqNo=8|CapTime=1087419810.000|MsgCount=1

1087402349.296|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087402349.296|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087402349.296|MsgCount=1
1087402349.296|M|S|2|0|30
1087402349.296|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087402349.296|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|T|S|1|ServerSeqNo=8|CapTime=1087402349.296|MsgCount=1

Moving the OFS Transaction Loop

To enable movement of the QALoad transact ion loop in the C++ script , you must fi rst record a ful l business
transact ion and a part ial business transact ion. The business transact ion is the act ivi ty that you would l ike
to repeat during QALoad playback. Insert QALoad capture comments (using the Insert Com m and button
on the Recording toolbar) at the start and end of a business transact ion. These comments wi l l help you
find the spots in the script where you would l ike to reposit ion the BEGIN_TRANSACTION() and
END_TRANSACTION() statements. Then re-start the business transact ion.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

50

QALoad's OFS script presents a sequence of Forms GUI objects. The GUI objects contain context
dependencies. For example, when a window is opened, the buttons, text fields and edit boxes inside that
window are logical ly dependent on the state of that window. When only one business transact ion is
captured and the corresponding script ’s transact ion loop is moved, the sequence of the GUI objects is
broken during the second i terat ion of the transact ion loop. The broken sequence results in a broken
context, which causes the server to respond unpredictably during playback on the second and subsequent
i terat ions of the transact ion loop. When the business transact ion is restarted during capture, the Forms
GUI objects that compose the new transact ion are used to anchor in to the new transact ion loop without
breaking the context dependencies of GUI objects.

When modifying the script , use the comment l ines as guides in moving the END_TRANSACTION() and
BEGIN_TRANSACTION() statements. Ensure that there is a contextual flow from the new posit ion of the
END_TRANSACTION() statement to the new posit ion of the BEGIN_TRANSACTION() statement. The set of
GUI objects that belong to the ofsSendRecv() statement just before the new END_TRANSACTION()
statement must be the same as the set of GUI objects that belong to the ofsSendRecv() statement prior to
the new BEGIN_TRANSACTION() statement.

During playback, modify the Conductor sett ing for Transact ion Pacing on the Script Assignment tab to
al low the database to process each new business transact ion.

The fol lowing example shows a modified OFS transact ion loop:

New posit ion of the BEGIN_TRANSACTION statement

/*
NewSales
*/

DO_SLEEP(13);
ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=31|MsgCount=2|1093981339.921
BEGIN_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsRemoveFocus("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 174);
ofsSetSelection("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ADD, 195, 0, 0);
ofsSetCursorPosition("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 193, "0");
ofsFocus("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 174);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=32|MsgCount=4|1093981347.296

New posit ion of the END_TRANSACTION statement

/*
EndTrans
*/

DO_SLEEP(39);
ofsSendRecv(1); //ClientSeqNo=61|MsgCount=4|1093981458.031

ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsSelectMenuItem("Sales Orders", 257, OFS_ENDMSG, 477, "MENU_11059");

DO_SLEEP(26);
ofsSendRecv(1); //ClientSeqNo=62|MsgCount=2|1093981485.265

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);

Script Development Workbench

51

ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(3);
ofsSendRecv(1); //ClientSeqNo=63|MsgCount=2|1093981488.437
END_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsIndexSKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 176, 10, 0);

DO_SLEEP(13);
ofsSendRecv(1); //ClientSeqNo=64|MsgCount=2|1093981502.640

Tips:
During capture, the OFS configuration parameter "record=names" must be enabled to produce control names
that may be included in the converted script. Control names persist throughout the Forms session, unlike
control IDs, whose values may change at runtime. Add the “ record=names” parameter in the Formsweb.cfg
file or add this parameter to the startup servlet URL.
Control IDs can create problems when the transaction loop is moved. Some of the control IDs that have been
instantiated by the server prior to the new transaction loop lose context during iterations of the new loop. For
example, in a second loop iteration, the server assumes that these client controls are new, generates new
control IDs, and eventually cannot find the proper context. Then the server stops responding. If control names
are used, Forms objects that have been instantiated before the new transaction loop are maintained through
all iterations of the loop because the control name persists throughout the application session.
During playback, ensure that the sleep factor is at 100% and that the transaction pacing is set to a large
enough value for the server to process the business transaction that is contained in the new loop. These
options can be set on the Script Assignment tab of the Conductor.

Verifying OFS Window Creation

The ofsWindowCreated command does two th ings. First , i t ensures that for the ofsSendRecv() command
preceding i t , the server includes in the response that a FormWindow object with the t i t le specified is
created. The script returns FALSE if the object is not created. Second, the original (captured) control ID is
associated with the object represent ing the control in OFS replay’s in ternal l ist of controls, which is in
addit ion to the (runt ime) control ID that is tracked.

This al lows better tracking of FormWindow GUI controls that exist at runt ime by being able to match up
both the control name and the original control ID.

The ofsWindowCreated command only handles objects of type FormWindow.

Using the ofsWindow Created Script Com m and

The fol lowing example shows an example from a modified OFS script :

 ofsSendRecv(1); //ClientSeqNo=1|MsgCount=1|1137439721.484

 if (!ofsWindowCreated(11, "WINDOW_LARGE_GRAPH"))
{
 // Only fail if this window was not created
 RR__FailedMsg(s_info, "WINDOW_LARGE_GRAPH was not created!");
}
ofsWindowCreated(15, "WINDOW_START_APP");
ofsWindowCreated(20, "WINDOW_CONTROLSTEST");
ofsWindowCreated(24, "WINDOW_GRAPHICSTEST");
ofsWindowCreated(28, "WINDOW_DATABASETEST");

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

52

SAP

Overview of SAP

Use QALoad's SAP middleware to load test systems that run SAP 6.20 and 6.40.

What is SAP?

The SAP GUI front-end is a middleware that al lows users to access SAP servers from Windows. The SAP
servers run various SAP business appl icat ions, such as appl icat ions for customer relat ionship management,
human resources, and supply chain management.

Connecting to the SAP Server

Once you have connected to a machine that is running the SAP server, you can log on and interact with
the SAP appl icat ions.

Configuring an SAP Client for Load Test ing

Before you can record an SAP session, you must have an SAP cl ient that is configured to enable QALoad to
access the SAP server. Configure the SAP cl ient through the SAP Logon appl icat ion.

To conf igure an SAP cl ien t f or load t est ing:

1. Start the SAP Logon appl icat ion. From the taskbar, cl ick Start>Program s>SAP Fron t
End>SAPlogon .

2. Click New ... on the SAP Logon dialog box. The New Entry dialog box appears.

3. Type values in the Descri pt i on , Appl i cat ion Server, and System num ber fields.

Note: QALoad uses the value in the Descript ion field to connect to the server.

4. Click OK. The new SAP server entry appears in the l ist in the SAP Logon dialog box .

SAP Recording Opt ions (Versions 6.x)

Save Server Descri pt i on : Select to specify and save the server descript ion (name) to which you want to
connect during recording. If th is check box is not selected, you are prompted for a server descript ion
during the log on process.

Script Development Workbench

53

Recording an SAP Session

An SAP server connect ion must be configured before you can connect with QALoad. See Configuring an
SAP Client for Load Test ing for more in formation. Addit ional ly, your SAP administrator must set the
SAPGUI/User_Scripting securi ty profi le parameter to TRUE to successful ly record a script . For more
in formation about SAP securi ty sett ings, refer to the SAP publ icat ion t i t led "Sapgui Scripting Security".

To record an SAP session:

1. If you have not already chosen SAP as the session type, cl ick SAP Session to act ivate a new SAP
session.

2. In the Script Development Workbench, cl ick Record on the Session toolbar.

3. If you have not selected the Save Server Descript ion Record opt ion, the SAP Server Descript ion
dialog box appears. Type the name of the SAP server to which you want to connect. This value is
the same as the Descri pt i on field that displays in the SAP Logon configurat ion appl icat ion. Press
En ter. A logon dialog box appears.

4. Type a user ID in the User field and the password in the Passw ord field. Press En ter. The SAP
appl icat ion starts.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

54

5. In the SAP appl icat ion, turn off the script ing and not i ficat ion opt ions. Cl ick Custom izing of l ocal
l ayout and choose Opt ions. The Options dialog box appears. On the Script ing tab, select Enable
Script i ng and clear the two Not i fy check boxes.

6. Begin recording act ions in SAP.

SAP Convert Opt ions

Save Passw ord: Select to save the encrypted password. If th is check box is not selected, you are prompted
for a password during conversion.

VB Script : Select to generate Visual Basic Script for debugging outside QALoad. If th is opt ion is not
selected, you receive C++ scripts that can be used for playback with in QALoad.

Insert SAP con t rol com m ents: Select one of the fol lowing to insert SAP control l ists as comments in your
script .

! None: There is no control in formation shown as a comment in the script .

! Tex t f i elds and Statusbars: Control types GuiTextField or GuiStatusbar wi l l be in the script as
comments with in formation: type, name, and id string.

! Al l con t rol s: Al l controls wi l l be in the script as comments with in formation: type, name, and id
string.

Bui ld SAP Libraries: Cl ick Bui ld to generate the QALoad SAP l ibraries based on your version of SAP. If you
receive l inking errors whi le val idat ing or compil ing, you should cl ick th is button.

SAP Command Reference (Versions 6.x)

QALoad provides descript ions and examples of the various commands avai lable for an SAP script . For
detai ls, refer to SAP 6.x Language Reference Commands.

Viewing the SAP Control Log

Assist your script ing by using the SAP capture control log fi le to view the in formation that was present at
capture . The log fi le is in XML format.

To open t he cont rol log :

1. In the Script Development Workbench Workspace, cl ick the Captures tab or the Scripts tab, then
right-cl ick on an SAP script or capture fi le.

OR

Open an SAP script or capture fi le, then right-cl ick on the open fi le.

2. From the right-cl ick menu, choose View Con t rol Log.

Script Development Workbench

55

Advanced Script ing Techniques for SAP

Adding Custom Counters to Retrieve Server Information

The fol lowing example adds custom counters to obtain and save the SAP Server in formation that is
avai lable through the SAP Gui Script ing API. Not ice that SAPGuiSessionInfo is cal led before logging off ,
because the data is not avai lable after logging off.

int id1, id2, id3, id4;

long lRoundTrips,lFlushes;

// "Counter Group", "Counter Name", "Counter Units
// (Optional)", Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative RoundTrips", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative Flushes", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips", 0, DATA_LONG,
COUNTER_INSTANCE);

id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0, DATA_LONG, COUNTER_INSTANCE);

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{
 SAPGuiConnect(s_info,"qacsapdb2");
 ...
 SAPGuiSessionInfo(GetRoundTrips,lRoundTrips);
 SAPGuiSessionInfo(GetFlushes,lFlushes);
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSPO1", "Log Off");

 COUNTER_VALUE(id1,lRoundTrips);
 COUNTER_VALUE(id2,lFlushes);
 COUNTER_VALUE(id3,lRoundTrips);
 COUNTER_VALUE(id4,lFlushes);

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char *)e.Description(),
S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

Required Commands

Certain commands must be present in an SAP script for i t to run successful ly. These commands are created
automatical ly during the conversion process. Most of the commands exist before the
BEGIN_TRANSACTION statement. The required commands include:

SET_ABORT_FUNCTION(abort function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info, "ERROR initializing COM");

SAPGuiSetCheckScreenWildcard(‘*’);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

56

SYNCHRONIZE();

Requi red com m ands for t ransact ion restart i ng

When transact ion restart ing is enabled in the Conductor for an SAP script , the fol lowing commands,
which are automatical ly added by QALoad during script conversion, must exist for the script to run:

SAPGuiApplication(RegisterROT);
SAPGuiApplication(RevokeROT);
SAPGui_error_handler(s_info, buffer);

The SAPGuiApplicat ion command properly registers and removes the script 's SAP GUI usage on the
Runtime Object Table (ROT). If a transact ion fai ls, these act ions are taken to start and clean up the SAP
environment.

Note: Do not call RR__FailedMsg in an SAP script if the script includes a restart transaction operation.
SAPGui_error_handler can be called with the same parameters as RR__FailedMsg to output a fatal error
message while still allowing a proper clean up of the current transaction before restarting the transaction.

Error Handling and Reporting

A try/catch block is automatical ly generated for the commands between the BEGIN_TRANSACTION and
END_TRANSACTION statements. This construct provides error handl ing and report ing from the script .

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");

 //Set SapApplication = CreateObject("Sapgui.ScripingCtrl.1")
 //SapApplication.OpenConnection ("qacsapdb")
 //Set Session = SapApplication.Children(0).Children(0)

 DO_SLEEP(3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 83, 24, false);

 DO_SLEEP(6);

 SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
 SAPGuiCmd1(GuiTextField,PutText,"qaload1");

 SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
 SAPGuiCmd1Pwd(GuiPasswordField, PutText,"~encr~1211616261");

 SAPGuiCmd0(GuiPasswordField,SetFocus);
 SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd1(GuiMainWindow,SendVKey,0);
 SAPGuiCheckScreen("S000","SAPMSYST","SAP");

 ...

 DO_SLEEP(10);

 SAPGuiPropIdStr("wnd[0]/usr/cntlIMAGE_CONTAINER/shellcont/shell/shellcont[0]/shell");
 SAPGuiCmd1(GuiCtrlTree, ExpandNode, "0000000003");
 SAPGuiCmd1(GuiCtrlTree, PutSelectedNode, "0000000004");
 SAPGuiCmd1(GuiCtrlTree, PutTopNode, "Favo");
 SAPGuiCmd1(GuiCtrlTree, DoubleClickNode, "0000000004");
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

Script Development Workbench

57

catch (_com_error e){
 char buffer[1024];
 sprintf (buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on with in the transact ion loop, move the SAPGuiConnect cal l inside the try block as
shown in the fol lowing example:

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("capture.cpp");
RESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");
 ...
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){

 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on outside the transact ion loop, move the log off sect ion so that i t fol lows the
END_TRANSACTION statement. However, ensure that the recording with in the transact ion loop begins
and ends in the same locat ion in the menu system. For example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");
SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

SAPGuiConnect(s_info,"qacsapdb2");

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~1211616261");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

58

SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");

BEGIN_TRANSACTION();

try{
 SAPGuiVerCheckStr("6204.119.32");
 ...
} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

Handling Multiple Logons

You may need to modify your script to handle mult iple logons when the recording scenario differs from
the run-t ime scenario. For example, i f when you record, no users are logged on to the SAP environment
and when you run the script , users are already logged on, the script may fai l . To work around th is issue,
you can use the SAPGuiPropIdStrExists and SAPGuiPropIdStrExistsEnd commands to handle either
scenario. This technique works by checking for the mult iple logon dialog box from SAP and select ing the
Con t inue opt ion.

The fol lowing example demonstrates the usage of the SAPGuiPropIdStrExists and
SAPGuiPropIdStrExistsEnd commands to handle mult iple logons:

...

SAPGuiCheckScreen("S000","SAPMSYST","SAP");
SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 DO_SLEEP(24);

 SAPGuiCmd0(GuiRadioButton,Select);
 SAPGuiCmd0(GuiRadioButton,SetFocus);
 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("S000","SAPMSYST","License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/ radMULTI_LOGON_OPT2");

...

Checking the SAP Status Bar

The SAP status bar displays error and status messages, as shown in the fol lowing figure.

Script Development Workbench

59

You can use the SAPGuiCheckStatusbar command to test for certain status responses in the SAP
environment.

The SAPGuiCheckStatusbar command is used in the fol lowing script example:

...
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow, SendVKey, 0);
SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");
SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found

BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar", "E: Make an entry in all required
fields");

if (bRetSts)
 RR__printf(" True\n");

else
 RR__printf(" False\n");

...

Object Life Span

Whenever a script is run, al l objects on the SAP GUI window are deleted and re-created. These objects,
which are created in the SAP environment and can disappear without user in teract ion, can cause script
fai lure i f the script references the objects after they have disappeared.

For more troubleshoot ing in formation, refer to SAP’s publ icat ion t i t led “ SAP GUI Scripting API for the
Windows and Java Platforms” .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

60

UNIFACE

Uniface recording opt ions

Un i face executable: Enter the ful l path or browse to the Uniface 7 executable that is used by the
appl icat ion you want to record. For example: c:\usys72\bin\UNIFACE.exe.

Work ing di rectory: Enter or browse to the working directory of your Uniface appl icat ion or the directory
of any addit ional fi les your appl icat ion may require that do not reside in the appl icat ion’s path
environment.

In i t i al i zat ion (.i n i) f i l e: Enter or browse to the ful l path to the Uniface appl icat ion 's in i t ial izat ion fi le.

Assignm en t (.asn) f i l e: Enter or browse to the ful l path to the appl icat ion 's assignment fi le. For example:
c:\usys72\project\myapp.asn.

Com m and l i ne statem en t : Type command l ine opt ions that should be used at appl icat ion startup,
including the command that is used to start the appl icat ion. For example: warehouse 1 control
use=control dnp=tcp:

Uniface conversion opt ions

Includes: Type the ful l path or browse to the directory that contains the database include fi les.

Libraries: Type the ful l path or browse to the directory that contains the database l ibrary fi les.

Generate Un i face l i sts: Uniface can handle in ternal l ist structures. Select th is check box to convert strings
contain ing l ist i tems to a succession of DO_URB_xxx cal ls that manipulate Uniface l ists.

Show output param eters: Select th is opt ion for the converted script to contain the output parameters of
an operat ion as commented l ines.

Insert t race m essages as com m ents: Select th is opt ion for the converted script to contain the recorded
content of the message frame as commented l ines.

Uniface command reference

QALoad provides descript ions and examples of the various commands avai lable for a Uniface script . For
detai ls, refer to the Language Reference Help sect ion for Uniface.

Script Development Workbench

61

Winsock

How QALoad handles DO_WSK_Send commands

QALoad displays the contents of a DO_WSK_Send command as a string in a Winsock script . Some of these
strings are very large, which can cause a compiler error (fatal error C1076: compiler l im it : in ternal heap
l im it reached) i f there are several large strings in a single script .

To avoid th is compilat ion error, QALoad does not al low strings that are displayed in a Winsock script to be
more than 12,000 characters. If a DO_WSK_Send command has a send buffer larger than 12,000 characters,
i ts buffer is broken into smaller strings during the conversion. These smaller strings are then copied in to a
char buffer named "SendBuffer", which is sent in the DO_WSK_Send command. The size of the SendBuffer
variable, by default , is declared as the size of the largest DO_WSK_Send + 1000. For example:

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
/* Declare Variables */
char SendBuffer[22139]; //Largest send is 21139 + 1000

 ...
...
...

 strcpy(SendBuffer, "$$"); //Assume a large string, shortened for this example
strcat(SendBuffer, "$$");

 /* 12675 bytes */
DO_WSK_Send(S1, SendBuffer);

 ...
...

 strcpy(SendBuffer, "$$"); //SendBuffer is reused
strcat(SendBuffer, "$$");
strcat(SendBuffer, "$$");

 /* 21139 bytes */
DO_WSK_Send(S1, SendBuffer);

 ...
...

 REPORT(SUCCESS);
EXIT();
return(0);
}

Handling Winsock applicat ion data flow

Frequently, server programs return unique values (for example, a session ID) that vary with each execut ion
of the script and may be vital to the success of subsequent transact ions. To create scripts that include these
values, you need to subst i tute the hard-coded values returned by the server with variables. The fol lowing
original and modified code examples demonstrate th is technique.

Original code

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

62

* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///
// The session id returned by the server is
// unique to each connection
///

/* 21bytes: SessionID=jrt90847\r\n */

DO_WSK_Expect(S1, "\n");

//
// This unique id is then used for subsequent
// requests
//

/* 34 bytes */

DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

Script Development Workbench

63

EXIT();

return(0);
}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();
}

Modified code

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

64

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null-terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = '\0';

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

//
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
//

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

Winsock Recording Opt ions

User Started: Select th is opt ion i f you want to start your appl icat ion manually for recording, either before
or after you start recording. Because th is method may fai l to record your appl icat ion’s in i t ial cal ls,
Compuware recommends you use the Autom at i c opt ion instead. Select the User Started opt ion when you
do not know the ful l appl icat ion startup name and command opt ion parameters or when the appl icat ion
spawns off processes that generate traffic that you want recorded.

Notes:
If you run a character-based application in a DOS window, the Script Development Workbench does not
record the API calls.

If you choose this option and the application under test generates traffic before the first Windows screen
displays, you must also select the Capture Init ializat ion Phase check box on the Workbench Configuration
tab of the Configure QALoad Script Development Workbench dialog box.

Script Development Workbench

65

Autom at i c: Select th is opt ion i f you want QALoad to automatical ly start your Winsock-based cl ient,
al lowing you to record early appl icat ion startup act ivi ty. This is the recommended method of recording
because i t takes advantage of QALoad’s enhanced abi l i t ies to handle various mult i-threaded programming
techniques. When you select th is opt ion, the QALoad Script Development Workbench records the API cal ls
that occur before the cl ient enters i ts message loop. Select th is opt ion to record traffic from just one
appl icat ion. This opt ion l im its the recording output to just the traffic generated by the appl icat ion, not
including the traffic that is generated by processes spawned by the appl icat ion.

Com m and Line: Enter the command l ine of your Winsock-based cl ient. Note that i f you enter the ful l
path, QALoad automatical ly enters the path in the Work ing Di rectory field.

Work ing Di rectory: Enter the working directory of your Winsock-based cl ient, i f necessary.

Capture: Select the Winsock version to record.

Set IP Addresses: Cl ick th is button to open the Add/Delete IP Addresses dialog box, which you can use to
specify the IP addresses and ports on which you want to record Winsock API cal ls or that you wish to
exclude from recording.

Winsock Conversion Opt ions

There are no special ized conversion opt ions for Winsock.

Winsock Command Reference

QALoad provides descript ions and examples of the various commands avai lable for a Winsock script . For
detai ls, refer to the Language Reference Help sect ion for Winsock.

Advanced Script ing Techniques for Winsock

Understanding Data representation in the Script

This sect ion describes how data that is sent and received is displayed in a Winsock script . Use th is sect ion
as a reference when you examine a script .

During the conversion process, QALoad determines how to represent each character in the script . This
conversion process uses the fol lowing rules:

1. The character is compared to the “ space” character in the ASCII table, which has a decimal value of
32. If the character’s value is less than 32, the fol lowing steps are taken :

a. If the character is “ \ r” , “ \ n” , “ \ t” , or “ \ f” , i t is represented in the script as a normal C
escape character.

b. If the character is either “ ^ \ ” or “ ^^” , i t is represented in the script as an octal character.
For example, the values would be “ \ 034” and “ \ 036” , respect ively.

c. If the character’s value is less than 32 and i t does not meet the descript ions in a) and b)
above, i t is represented in the script as a control character. For example, i f the character is a
nul l character, i t is represented in the script as “ ^@” .

2. If the character’s decimal value is between 32 (the “ space” character) and 126 (~), i t displays in the
script as a standard readable ASCII character, with the fol lowing except ions:

 If the character is “ \ ” , which has a decimal value of 92, i t is represented as “ \ \ ” in the
script .

 If the character is “ “ “ , which has a decimal value of 34, i t is represented as “ \ ” ” in the
script .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

66

 If the character is “ ^” , which has a decimal value of 94, i t is represented as “ ^^” in the
script .

3. If the character has a decimal value of 127, which corresponds to Delete (DEL), i t is represented as
“ ^” in the script .

The fol lowing table summarizes the results of rules 1-3.

Code Octal Decim al Char

^@ 000 0 NUL

^A 001 1 SOH

^B 002 2 STX

^C 003 3 ETX

^D 004 4 EOT

^E 005 5 ENQ

^F 006 6 ACK

^G 007 7 BEL

^H 010 8 BS

\t 011 9 HT

\n 012 10 LF

^K 013 11 VT

\f 014 12 FF

\r 015 13 CR

^N 016 14 SO

^O 017 15 SI

^P 020 16 SLE

^Q 021 17 SC1

^R 022 18 DC2

^S 023 19 DC3

^T 024 20 DC4

^U 025 21 NAK

^V 026 22 SYN

^W 027 23 ETB

^X 030 24 CAN

Script Development Workbench

67

^Y 031 25 EM

^Z 032 26 SIB

^[033 27 ESC

\034 034 28 FS

^] 035 29 GS

^_ 037 31 US

 040 32 SP

\" 042 34 "

\\ 134 92 \

^^ 136 94 ^

^? 177 127 DEL

4. If the character is not included in the groups defined in steps 1-3, i t is represented as an octal
character in the script . These characters are often referred to as h igh ASCII characters (those with a
decimal value greater than 128), and are represented in the script as “ \ OOO” , where OOO is the
octal value for the ASCII character.

Handling Winsock application data flow

Frequently, server programs return unique values (for example, a session ID) that vary with each execut ion
of the script and may be vital to the success of subsequent transact ions. To create scripts that include these
values, you need to subst i tute the hard-coded values returned by the server with variables. The fol lowing
original and modified code examples demonstrate th is technique.

Original code

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

68

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///
// The session id returned by the server is
// unique to each connection
///

/* 21bytes: SessionID=jrt90847\r\n */

DO_WSK_Expect(S1, "\n");

//
// This unique id is then used for subsequent
// requests
//

/* 34 bytes */

DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);
}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();
}

M odi f i ed code

Script Development Workbench

69

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null-terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = '\0';

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

70

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

//
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
//

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

Saving Server Replies

There are two methods for saving the ent ire reply that a server sends back. The fol lowing paragraphs
describe each method.

Using the Response() an d ResponseLength () com m ands

The Response() command can be cal led direct ly after the DO_WSK_Expect() command. It returns a pointer
to the data that has been received by DO_WSK_Expect(). To also receive the length of the replay, cal l the
ResponseLength() command, which returns the number of characters that were received. The fol lowing
example uses the Response() and ResponseLength() commands.

Example

In th is example, variables are declared to store the results from the two funct ions. Both funct ions are also
used to save the buffer that is received with in the DO_WSK_Expect() command.

/* Declare Variables */
int x = 0;
char *temp;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

DO_WSK_Expect(S1, "d");

Script Development Workbench

71

// Used to store the data that was received by the
// DO_WSK_Expect

temp = Response();

// Used to get the size of the response that was received
// so far

x = ResponseLength();

/* The line below will print the length of the response and the actual response */

RR__printf(“length = %d, and response= %s",x, temp);
DO_WSK_Closesocket(S1);

The message “ length=21 response=You are now connected” displays in the Player buffer window.

Using the DO_WSK_Recv() com m and

To save a response based on i ts size instead of a unique character string that is used with in the
DO_WSK_Expect() command, use the DO_WSK_Recv() command. This command enables you to specify
how much data to receive and where to store the data.

You can also use the DO_WSK_Recv() command to store the reply that is returned from the server. This
strategy is useful when you need to retrieve the buffer that is returned from the server, even though the
returned data is too dynamic and causes the DO_WSK_Expect() command to fai l every t ime.

Example

In th is example, the DO_WSK_Recv() command is used to save a server reply based on size. Two variables
are declared to store the results from the DO_WSK_Recv() command.

/* Declare Variables */
int size = 0;
char temp[45];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

memset(temp,'\0',45);
DO_WSK_Recv(S1,temp,45,0,&size);
RR__printf("size=%d string=%s",size,temp);
DO_WSK_Closesocket(S1);

The message “ size=21 string=You are now connected” displays in the Player buffer window.

Note: If you use this method as a substitute for the DO_WSK_Expect() command, ensure that you receive
the correct information prior to calling the next function in the script.

Parsing server replies for values

To parse a buffer for a part icular value, you can write a parsing rout ine that searches the ent ire buffer for
the value. However, you can also use one of QALoad ’s Winsock helper commands. The fol lowing scenarios
describe two situat ions in which you could use the Winsock commands to solve a parsing problem.

Scenario 1:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

72

To find a string in a server reply, you can use the SkipExpr() and ScanExpr() commands. SkipExpr()
searches for the first occurrence of a string in the in ternal buffer that contains the response that was
received with in the DO_WSK_Expect() command. Then, use the ScanExpr() command to search for
another string. ScanExpr() saves the buffer from the first occurrence of the string that was used with
SkipExpr() up to and including the string used with in ScanExpr(). The first parameter of ScanExpr() is a
UNIX-style regular expression. The fol lowing table l ists the most common expressions:

Character M ean ing

. Matches the end of a string.

* Matches any number of characters.

? Matches any one character.

Example In th is example, the buffer contains “ sessionid=1234567890abc” , and the goal is to retrieve
everyth ing after the “ =” , up to and including “ abc” .

/* Declare Variables */
char temp[35];
int size = 0;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 23 bytes: sessionid=1234567890abc */

DO_WSK_Expect(S1, "c");
SkipExpr("sessionid=");
size=ScanExpr(".*abc" , temp);
RR__printf("length = %d string = %s", size, temp);
DO_WSK_Closesocket(S1);

The message “ length=13 string=1234567890abc” displays in the Player buffer window.

Scenario 2:

You may have data returned from the server that is too dynamic, that is, you are not able to base parsing
on actual characters. The solut ion is to base the parsing on character posit ions instead.

For example, to save the characters 20 through 25, you could use the ScanSkip() and ScanString()
commands. ScanSkip() skips a specified number of characters in the in ternal buffer that stores the response
that was received with in the DO_WSK_Expect() command. ScanString() scans a number of characters from
the current posit ion with in the buffer in to a character string.

Example

In th is example, a buffer contain ing “ xxx123456789yyy” is returned from the server. The value between
“ xxx” and “ yyy” is returned.

/* Declare Variables */

char temp[15];

...

BEGIN_TRANSACTION();

...

Script Development Workbench

73

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 16 bytes: xxx0123456789yyy */

memset(temp,'\0',15);
DO_WSK_Expect(S1, "yyy");
ScanSkip(3);
ScanString(10,temp);
RR__printf("string=%s",temp);
DO_WSK_Closesocket(S1);

The message “ string=0123456789” displays in the Player buffer window.

WWW

Convert ing a WWW Script

QALoad has been enhanced to enable you to control how much automated processing is performed during
test execut ion by choosing HTML mode or HTTP mode for script conversion. When going through the
WWW convert for the first t ime, you are now prompted to choose between HTML mode and HTTP mode.

Tip: Compuware recommends that you use the WWW Convert Options dialog box to convert between
modes, rather than manually edit the script.

Typical HTML processing uses more processor cycles and memory during test execut ion, but requires less
script ing. The Visual Navigator is generated using QALoad's Document Object Mode (DOM) approach,
which also is used for playback.

HTTP processing instructs QALoad to disable most of i ts automatic HTML handl ing engine during replay,
and i t also affects how the script is generated. In th is mode, the convert process uses some HTML parsing
to generate the Visual Navigator. This parsing method also is used for playback instead of the DOM. The
HTTP mode replaces M in imized Processor mode. Scripts converted before QALoad release 5.6 using
M in imized Processor mode wil l replay in HTTP mode.

Caut ion: Once you convert a script using HTTP mode or HTML mode, you must reconvert the script to
change the convert mode. This is necessary so that the convert and replay methods match. Failure to change
modes by reconverting the script can cause the script to replay incorrectly.

Using the WWW Record Opt ions

Use the WWW Record Options to determine how QALoad handles captures web page transact ion data.

To set t he W W W recording opt ions:

1. With a WWW session open, cl ick Opt ions>Record. The Session Options dialog box appears with
the WWW Record Options h ighl ighted in the tree view control. The WWW Record Options dialog
box appears on the right.

2. Select the appropriate opt ions, then do one of the fol lowing:

! Click OK to save the select ions and return to the WWW session screen.

! Click Advanced Record Opt ions in the tree view control. The Advanced Recording Options
dialog box appears on the right.

3. Select the appropriate opt ions.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

74

4. Click OK. The basic record opt ions and the advanced opt ions are saved and you return to the
WWW session screen.

Using the WWW Convert Opt ions

Use the WWW Convert Options to control how QALoad produces scripts from recorded transact ion data.
You can also choose the convert and playback mode for WWW middleware sessions. The convert and
playback mode determines the amount of memory and processor QALoad uses during replay.

To select t he processing m ode:

1. With the WWW session open, cl ick Opt ions>Convert . The Session Options dialog box displays.

2. Click WWW Convert Opt ions in the tree view control. The WWW Convert Options dialog box
appears on the right side of the screen.

3. Select the convert mode to use for the WWW middleware sessions. You can choose:

! HTML Mode - to reduce the amount of script ing.

! HTTP Mode - to control processor and memory usage.

Tip: Compuware recommends that you use the WWW Convert Options dialog box to convert between
modes, rather than manually edit the script.

4. Click each of the fol lowing to display the associated dialog box and select the appropriate opt ions:

Note: The options available for Parsing depend on whether you select HTTP or HTML mode.

 Parsing

 Verificat ion

 Caching

 Traffic Fi l ters

 Rule Fi l ters

 Connect ion Sett ings

 Content Type Handling

 General

 Siebel

5. Click OK to save the sett ings and return to the main WWW session screen .

Caut ion: Once you convert a script using HTTP mode or HTML mode, you must reconvert the script to
change the convert mode. This is necessary so that the convert and replay methods match. Failure to change
modes by reconverting the script can cause the script to replay incorrectly.

Using the WWW Playback Opt ions

The WWW Playback opt ions you select affect the ent ire script .

To select t he W W W Playback Opt ions:

1. With a script open in a WWW session, double-cl ick Playback Opt ions in the tree view. The
avai lable session opt ions display in the tree view.

Script Development Workbench

75

2. Double-cl ick W W W Playback Opt ions in the tree view.

3. Click each playback opt ion in the tree view to display the associated dialog box on the right.

4. Click each of the fol lowing to display the associated dialog box and select the appropriate opt ions:

Note: The options available for Parsing depend on the mode you select in the WWW Convert Options
dialog box.

 Parsing (HTML Mode or HTML Mode)

 Caching

 Traffic Fi l ters

 Connect ion Sett ings

 Proxy

 General

 Siebel

Configuring a Web Browser (WWW)

Before you record the WWW requests your Web browser makes, you must configure the browser to use
QALoad’s proxy server.

To conf igure a W eb brow ser :

1. Start your Web browser.

2. Specify proxy sett ings:

 In the field designated to specify the address of the proxy server, enter the machine name
where QALoad Script Development Workbench is instal led.

 In the Port field, enter the port(s) that you specified on the Script Development Workbench’s
WWW Record Options wizard (Capture Ports fields).

3. Click OK.

Best Pract ices

Comparison of HTTP Mode and HTML Mode

Choosing HTML mode or HTTP mode for script conversion enables you to control how much automated
processing is performed during test execut ion. Typical HTML processing uses more processor cycles and
memory during test execut ion, but requires less script ing. HTTP processing instructs QALoad to disable
most of i ts automatic HTML handl ing engine during replay, and i t also affects how the script is generated.

Features Avai lable
for Select ion

HTTP
M ode

HTM L M ode Convert
Opt ions Page

Parsing Yes No (Always On) Parsing

Dynamic Cookie Handling Yes No (Always On) Parsing

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

76

Dynamic Redirects Yes No (Always On) Parsing

Authent icat ion Yes Yes N/A

HTTPS Yes Yes N/A

Extracts Yes Yes N/A

Tit le Veri ficat ion Yes Yes Verificat ion

Content Check Yes Yes Content Type
Handling

Chunked Data Yes Yes N/A

Streaming Media Yes Yes General

Traffic Fi l ters Yes Yes Traffic Fi l ters

Parameterizat ion Rules Yes Yes Rule Fi l ters

Al low JavaScript Execut ion Yes No Parsing

Click_Ons No Yes N/A

Fi l l In Forms No Yes N/A

Caching Yes Yes Caching

Expert User Yes Yes N/A

Universal Mode Yes Yes N/A

Represent CJK as Octal
Characters

Yes Yes General

UTF-8 Yes Yes N/A

XML Requests Yes Yes General

Meta Refresh Yes Yes General

Automatic Sub-request
Processing

Yes No (Always On) Parsing

Set JavaScript Execut ion
Level

No Yes Parsing

Set JavaScript Loop
Timeout

Yes Yes Parsing

Manually Select Sub-
requests

Yes Yes Parsing

Script Development Workbench

77

Persistent Connect ions
During Replay

Yes Yes Connect ion Sett ings

Graceful Socket Shutdown Yes Yes Connect ion Sett ings

Baud Rate Emulat ion Yes Yes Connect ion Sett ings

Reuse SSL Session ID Yes Yes Connect ion Sett ings

Siebel Support Yes Yes Siebel

Strip Al l Cookies Yes Yes General

Using HTML Mode

HTML mode converts and replays scripts using ful l Document Object Model (DOM) and JavaScript engine.
HTML documents are ful ly parsed in HTML mode. JavaScript can be executed at different levels, including
NONE, LIMITED, and FULL. Because HTML mode uses ful l DOM and JavaScript engine, i t uses more
processor cycles and memory during test execut ion, but requires less script ing.

Use HTML mode to create load test ing scripts quickly and easi ly, and for load tests requiring fewer virtual
users (VU) running on any player machine. You can use HTML mode to create scripts for heavier load
test ing, but the scripts may require more player machines on which to run the VUs.

Considerat ions

! Javascript - Javascript can be executed at different levels, including None, Limited, and Ful l .

! CPU usage - Uses more processor cycles during test execut ion

! M em ory - Uses more memory during test execut ion

! Param eteri zat ion - Requires less script ing and less parameterizat ion than HTTP mode because
QALoad is better able to in fer user act ions using i ts DOM.

Use th i s m ode i f you are:

! test ing a web site that uses complex JavaScript with complex HTML pages that contains a
significant number of l inks, tables or HTML objects

! a novice tester and wish to work with scripts that more closely resemble the user's in teract ions with
the appl icat ion under test

! only test ing with a low number of virtual users or have significant hardware resources avai lable for
load test ing execut ion

Tip: Compuware recommends that you use the WWW Convert Options dialog box to convert between
modes, rather than edit the script manually.

Sam ple Script

The fol lowing shows a sample of a script with HTML mode selected:

…
…
SET_SCRIPT_LANGUAGE(SLID_English);

DO_WWWInitialize(s_info, HTML_MODE);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

78

...

...

BEGIN_TRANSACTION();

…
…
Using HTTP Mode

HTTP mode converts and replays scripts using a simpli fied HTML parser and l im ited JavaScript engine. You
can control the level of HTML document parsing, and whether JavaScript should be executed. HTTP mode
does less processing during replay and uses less memory because i t does not create Document Object
Models (DOM) for each processed HTML page.

HTTP mode may require more parameterizat ion than HTML mode. During conversion, act ions are
represented in the visual script by NavigateTo or PostTo tree i tems instead of Cl ickOn or Fi l l -In Form tree
i tems. This means that any dynamic variables passed from reply to request must be managed in the script .
Use the Variable Replacement Wizard to develop rules to find parameters in your script and replace them
with variables.

Considerat ions

! JavaScri pt — Because JavaScript execut ion is l im ited, some scripts may require customizat ion to
emulate Javascript operat ions not executed by QALoad.

! Autom at i c Sub-requests — When Parsing is selected, automatic Sub-requests are enabled. When
not enabled, QALoad executes the same sub-requests made during the capture phase (instead of
parsing the server responses). This makes playback h ighly scalable, but very dynamic web
appl icat ions may require addit ional script ing. Al l subrequests and addit ional subrequests are
selected by default during the convert .

! Funct ions — Converted scripts use only the Navigate_To() and Post_To funct ions; the Click_On()
funct ion is disabled.

! Param eteri zat ion — May require more parameterizat ion than HTML mode.

! M em ory and CPU Usage — Does less processing and uses less memory during replay.

! Dyn am ic variables — Dynamic variables passed from reply to request must be managed in the
script .

Use th i s m ode i f you are:

! test ing a web site that makes l i t t le use of Javascript and creates pages with few HTML opt ions on
them

! an experienced load tester and wish to work with scripts that more closely resemble the
appl icat ions HTTP interact ions with the server under test

! you are test ing for h igh virtual user throughput or simulat ing h igh numbers of concurrent virtual
users from l im ited hardware resources

Tip: Compuware recommends that you use the WWW Convert Options dialog box to convert between
modes, rather than edit the script manually.

Sam ple Script

The fol lowing shows a sample script with HTTP mode selected:

…
…
SET_SCRIPT_LANGUAGE(SLID_English);

Script Development Workbench

79

DO_WWWInitialize(s_info, HTTP_MODE);

...

...

BEGIN_TRANSACTION();

...

...

Sample Scripts for Convert Options

Below are samples of how the WWW convert opt ions appear in a script . Compuware recommends that you
use the WWW Convert Options dialog box to convert between modes, rather than edit the script
manually.

Once you convert a script using HTTP mode or HTM L mode, you must reconvert the script to change the
convert mode. This is necessary so that the convert and replay methods match. Fai lure to change modes by
reconvert ing the script can cause the script to replay incorrect ly.

Parsing

Parse Pages

When the Page Parsing opt ion is selected on the WWW Convert Options, QALoad performs l im ited
parsing operat ions on incoming HTML pages. This opt ion only appl ies to HTTP mode, and is disabled i f
HTML mode is selected as the convert mode.

You should disable th is opt ion i f you find that you need to fi t more HTTP mode virtual users on a single
player machine. Disabl ing th is opt ion can decrease the processor usage required by a virtual user.

Considerat ions

! When selected, l im ited parsing is performed on incoming HTML pages.

! Must be selected to enable the Al low Javascript execut ion opt ion.

! Must be selected to enable the Automatical ly process sub-requests opt ion.

! May increase processor usage required by a virtual user.

Use th is opt ion to:

! Allow Javascript to be executed in HTTP mode.

! Allow automatic sub-request ing to be used in HTTP mode.

! Enable document veri ficat ion in HTTP mode.

Al low JavaScript Execut i on

This opt ion is only enabled when the Parse Pages opt ion is selected in HTTP conversion mode. When th is
opt ion is enabled, QALoad executes JavaScript in replay as i f the LIMITED JavaScript Execut ion Level is
used. Since JavaScript in HTML mode is control led by the JavaScript Execut ion Level opt ion, th is opt ion is
disabled i f HTML mode is selected as the convert mode.

Considerat ions

! The opt ion to turn on or turn off JavaScript execut ion is avai lable only in HTTP mode. JavaScript
execut ion in HTML mode is control led by the JavaScript Execut ion Level opt ion .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

80

! When enabled, QALoad executes JavaScript at the Limited execut ion level.

! May decrease the amount of parameterizat ion required for certain scripts.

! May increase the processor t ime required by a virtual user.

Use th is opt ion to:

Decrease the amount of parameterizat ion required.

Autom at i cal l y Process Sub-requests i n HTTP M ode

When th is opt ion is selected, QALoad does not insert sub-requests (such as .jpg, .gi f, .css, .js, etc.) direct ly
in to the script fi le, but automatical ly makes these requests during replay by parsing them out of the HTML
pages.

This opt ion is only enabled when HTTP mode is selected and the Parse Pages opt ion is enabled. HTML
mode always processes sub-requests automatical ly.

Considerat ions

! When th is opt ion is disabled, QALoad executes the same sub-requests made during the capture
phase instead of parsing the server response.

! Very dynamic web appl icat ions may require addit ional script ing.

! All sub-requests and addit ional sub-requests are selected by default during convert .

! Enabling th is opt ion requires more processing during playback.

Use th is opt ion to:

! Allow QALoad to manage sub-requests.

! Reduce the length of .cpp script fi les.

! Increase .cpp script fi le readabi l i ty.

Dyn am ic Redi rect Handl ing

Select ing th is opt ion enables the QALoad replay engine to dynamical ly handle 3XX redirects. When a 3XX
redirect page is returned during replay, QALoad processes the redirect and requests the redirected page as
well . This opt ion only appl ies to HTTP mode, and is disabled i f HTML mode is selected as the convert
mode.

Considerat ions

! This opt ion should normally only be disabled i f you do not want the script to fol low 3XX redirects.

! Dynamic redirect handl ing does not handle JavaScript redirects.

! Dynamic redirect handl ing does not handle meta refresh redirects.

Use th is opt ion to:

! Dynamical ly handle 3XX redirects.

! Process the redirect and also request the redirected page.

Dyn am ic Cook ie Handl ing

When you select th is opt ion, QALoad automatical ly processes dynamic cookies during replay. This opt ion
only appl ies to HTTP mode, and is disabled i f HTML mode is selected as the convert mode. QALoad always
handles dynamic cookies in HTML mode.

Script Development Workbench

81

Considerat ions

! Not select ing th is opt ion hard codes cookie values from the capture fi le in to the script fi le.

! When th is opt ion is not selected in HTTP mode, QALoad places Set(NEXT_REQUEST, COOKIE)
commands into the generated script fi le.

! When th is opt ion is enabled, and you st i l l can insert Set(NEXT_REQUEST_ONLY, COOKIE)
statements. This can override the cookie value that QALoad sends for any cookie that is being
dynamical ly handled.

! You should only disable th is opt ion i f you require more control over the cookies that QALoad
sends during replay.

Use th is opt ion to:

! Ensure that dynamic cookies are processed during replay.

! Ensure that dynamic cookies are not automatical ly inserted in to the script during convert .

Example Web Page

Script Example with Option Selected

Script Example with Option Not Selected

Example Web Page

The cookies for th is si te are:
Set-Cookie: SaneID=172.22.24.180-4728804960004
Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af
<html>
<head></head>
<body>

RELOAD PAGE TO INCREMENT COUNTER

</body>
</html>
Script example with the Dynamic Cookie Handling option selected
The following example has the “Handle Dynamic Cookies” check box selected.
...
...
Set(EVERY_REQUEST, HTTP_MODE_HANDLE_DYNAMIC_COOKIES, TRUE);
BEGIN_TRANSACTION();
...
...
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
...
...
END_TRANSACTION();
...
...

Script Example with the Dynamic Cookie Handling Option Selected

The fol lowing example has the Dynam ic Cook ie Handl ing check box selected.
...
...
Set(EVERY_REQUEST, HTTP_MODE_HANDLE_DYNAMIC_COOKIES, TRUE);
BEGIN_TRANSACTION();
...
...
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
...

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

82

...
END_TRANSACTION();
...
...

Script Example with the Dynamic Cookie Handling Option Not Selected

The fol lowing example has the Dynam ic Cook ie Handl ing check box cleared.
...
...
Set(EVERY_REQUEST, HTTP_MODE_HANDLE_DYNAMIC_COOKIES, FALSE);
BEGIN_TRANSACTION();
...
...
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
/* Request: 2 */
Set(NEXT_REQUEST_ONLY, COOKIE, "SaneID",
"172.22.24.180-4728804960004");
Set(NEXT_REQUEST_ONLY, COOKIE, " SITESERVER ",
" ID=f0544199a6c5970a7d087775f83b23af ");
Navigate_To("http://www.host.com/cgi-bin/cookies5.pl ");
...
...
END_TRANSACTION();
...
...

JavaScri pt Execut ion Level

This opt ion controls the types of JavaScript statements that QALoad executes while running in HTML
mode. The levels are None, Limited, and Ful l . Limited is selected by default .

This opt ion only appl ies when HTML is selected as the convert mode. In HTTP mode, th is opt ion is
disabled and there is only a single level of JavaScript execut ion.

The fol lowing table explains each JavaScript Execut ion Level:

Execut ion Level Descript i on

None No JavaScript is executed during replay.

Limited Only the fol lowing JavaScript statements are executed during replay:

! document.cookie =

! window.document.cookie =

! document.write()

! window.document.write()

Images are also requested where the image.src statement occurs.

Ful l Al l JavaScript statements are executed during replay.

Considerat ions

! When using the Limited JavaScript Execution Level, you may need to do further parameterization and edit the script.

! In HTTP mode, only the Limited level of JavaScript execution is available.

! Using no JavaScript execution or a Limited level execution requires less processing time and memory usage than
the Full level of JavaScript execution.

Script Development Workbench

83

Use th is opt ion to:

Control the amount of processor and memory usage.

JavaScri pt Loop Tim eout

This opt ion controls the amount of t ime that a JavaScript runs before QALoad terminates the JavaScript
code. JavaScript can run in to in fin i te loops, or take a very long t ime to run. This opt ion appl ies to both
HTML and HTTP mode.

Considerat ions

! The t imeout value should be decreased i f you find that an unnecessary JavaScript is running longer
than the t imeout value.

! The t imeout value should be increased i f you find that a necessary JavaScript is running longer
than the t imeout value.

! Make sure that a necessary JavaScript is able to complete before the t imeout value of t ime is
reached.

Use th is opt ion to:

Prevent JavaScripts from running into in fin i te loops or from running indefin i tely .

Connection Settings

Connect ion Set t i ngs

These opt ions control how QALoad handles connect ions to target servers during replay.

Considerat ions

! Connect ion Opt ions — Select to keep the connect ion to the server open for each request sent to
the server.

! Graceful Socket Shutdow n — Select to control how QALoad terminates i ts socket connect ions.

! Baud Rate Em ulat ion — Select to simulate a specific baud rate for transmission of requests.

! SSL Session — Select to instruct QALoad to reuse the current session 's communicat ion in formation
(session ID) for al l page requests with in the transact ion.

Use th is opt ion to:

Control how QALoad handles connect ions to target servers during replay.

Persi sten t Connect ions During Replay

This is an opt ion placed in the script to be used at replay t ime. Select ing th is opt ion keeps the connect ion
to the server open for each request sent to the server.

Considerat ions

Keeping connect ions open (persistent) can increase the speed at which requests are sent to the server.

Use th is opt ion to:

Control processor and memory usage for requests.

See also:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

84

Sample Scripts: Persistent Connect ions During Replay

Connect ion Sett ings

M ax Concurren t Connect ions

This opt ion indicates the maximum number of connect ions that a DO_Http or DO_Https command opens
to the server at any t ime. These simultaneous connect ions are only used i f sub-request ing is enabled.

Considerat ions

! Keeping the maximum number of connect ions open can increase the speed at which requests are
sent to the server.

! In HTTP mode, i f the Automatically process subrequests opt ion on the Parsing Options page is NOT
selected, th is opt ion is disabled.

Use th is opt ion to:

Control processor and memory usage for requests.

M ax Connect ion Ret ries

This opt ion specifies the number of t imes during replay that QALoad wil l at tempt to connect to the server
after t im ing out.

Considerat ions

You must select Persistent connect ions during replay to enable th is opt ion.

Use th is opt ion to:

Control processor and memory usage for requests.

Server Respon se Tim eout

This opt ion specifies, in seconds, the length of t ime during replay that QALoad waits for data from the
server before t im ing out.

Considerat ions

You must select Persistent connect ions during replay to enable th is opt ion.

Use th is opt ion to:

Control processor and memory usage for requests.

Graceful Socket Shutdow n

When th is opt ion is enabled, QALoad attempts to graceful ly terminate socket connect ions by making sure
that al l remain ing data has been sent and received before closing a socket connect ion.

Considerat ions

Enabling th is opt ion usual ly requires more t ime before the socket is shut down.

Use th is opt ion to:

Control how QALoad terminates i ts socket connect ions.

Baud Rate Em ulat ion

Script Development Workbench

85

Use th is opt ion to simulate slower connect ions to a Web server, such as 56 Kbps modem or DSL.

Specify a baud rate when enabl ing baud rate emulat ion in the Convert Opt ions dialog box.

Considerat ions

! The DO_SetBaudRate command is inserted in to the script with the specified baud rate as i ts only
parameter.

! If baud rate emulat ion must be asymmetric (the upload rate is different than the download rate),
use the DO_SetBaudRateEx command.

! DO_SetBaudRateEx takes two parameters: the upload baud rate and the download baud rate.

Use th is opt ion to:

! Simulate a specific baud rate for transmission of requests.

! Simulate a specific baud rate for recept ion of requests.

General

Proxy HTTP Version

A WWW script can be set to 1.1 or 1.0. When set to 1.1, al l proxy HTTP requests and subrequests are sent
as HTTP/1.1. When set to 1.0, al l proxy HTTP requests and subrequests are sent as HTTP/1.0.

Considerat ion

HTTP 1.1 requests receive chunked repl ies.

Use th is opt ion to:

Specify the HTTP version of requests and sub-requests sent to the server.

M ETA Refresh Th reshold

When th is opt ion is selected, the t ime value that you specify in the seconds field is compared to a Web
page’s META Refresh value (e.g. <META HTTP-EQUIV=Refresh CONTENT=” 10” ;
URL=” http:/ /www.compuware.com” >).

Considerat ions

! If the CONTENT field value is less than the t ime value you specify, the page is treated as a
redirected page.

! If the CONTENT field value is greater than the t ime value you specify, the page is treated as a
regular page.

Use th is opt ion to:

Avoid in fin i te loops in the script . In fin i te loops can occur i f a page refreshes periodical ly to update data.

Sample Scripts

Script Example with Option Selected

Script Example with Option Not Selected

Script Example with the META Refresh Threshold Option Selected

The fol lowing example has the M ETA Refresh Th reshold check box selected and is set to a value greater
than 5.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

86

...

...

Set(EVERY_REQUEST, HTTP_VERSION, "1.1");

Set(EVERY_REQUEST, META_REFRESH_THRESHOLD, 5);

BEGIN_TRANSACTION();

...

...

/ * Request: 1 */

Navigate_To(“ http:/ /host/path/ to/page.pl");

Veri fy(PAGE_TITLE , "You have reached the final page!!");

Script Example with META Refresh Threshold Option Not Selected

The fol lowing example has the M ETA Refresh Th reshold check box cleared. The example also appl ies to
having the opt ion selected and set to a value less than 5.

...

...

/ / WWW General Options

Set(EVERY_REQUEST, HTTP_VERSION, "1.1");

BEGIN_TRANSACTION();

...

...

/ * Request: 1 */

Navigate_To(“ http:/ /host/path/ to/page.pl");

Veri fy(PAGE_TITLE, “ Just Wait”);

DO_SLEEP(5);

/ * Request: 2 */

Navigate_To(“ http:/ /host/path/ to/ realpage.pl");

Veri fy(PAGE_TITLE, "You have reached the final page!!");

Represen t CJK as Octal Characters

When th is opt ion is selected, the double-byte characters used for Chinese, Japanese, and Korean (CJK)
scripts are converted in to octal format.

Considerat ions

! Since CJK characters use Double Byte Character Sets (DBCS), encoding must be enabled for a
capture with CJK characters, so that the double-byte characters can be viewed in a legible format.

! Data stays in encoded format throughout the load test: from capture, through convert and replay,
to the analysis of the t im ing fi le.

Use th is opt ion to:

Script Development Workbench

87

! Enable the encoding of captured data from web appl icat ions contain ing Double Byte Character Sets
(DBCS) such as Chinese, Japanese, or Korean.

! Encode al l nat ive characters when nat ive character support cannot be used.

St ream ing M edia

QALoad supports two types of streaming media:

! RealOne Player

! Windows Media Player

Considerat ions

! Streaming media is not supported through firewalls and across proxies.

! When streaming media conversion is enabled and you record a transact ion that cal ls streaming
media, an addit ional command is inserted in to the script that requests the media.

! You do not have to l isten to or view the ent ire media you are request ing. Simply record i ts URL and
ensure that the appropriate media player is instal led on the QALoad Player machines that wi l l
execute playback of the script .

! At run t ime, the script invokes the media player and requests the streaming media resource.

Use th is opt ion:

For audio and video download test ing of scripts with Windows Media Player or RealOne Player and
their supported media formats through a WWW session.

St r i p Al l Cook ies f rom Request

When th is opt ion is selected, no cookies are sent wi th requests.

Use th is opt ion to:

Specify whether cookies are sent with requests.

Document Title Verification

Enables document t i t le veri ficat ion for main requests of type HTML or TEXT.

Considerat ions

There are three supported methods for veri fying a document t i t le: search for the En t i re Docum en t Ti t l e,
the Pref i x of the document t i t le, or the Suf f i x of the document t i t le.

Use th i s opt ion to:

! Create scripts that veri fy characters contained in document t i t les.

! Detect and handle error messages that are returned in an HTML page.

Caching

When a caching opt ion is enabled, requested images, .css, or .js fi les are cached at playback t ime.

Considerat ions

! Types of documents that QALoad caches on the virtual user during replay are: None, Im ages, CSS,
JS, and Im ages, or Al l .

! The caching level names denote the types of documents that QALoad caches on the virtual user
during replay.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

88

! If these documents are referenced after the virtual user has already requested and received the
document once, they are not requested from the target server again by that virtual user.

Use th i s opt ion to:

Select the type of caching you would l ike the WWW replay engine to use during playback.

Script Sam ples

Caching Option: None
Set(EVERY_REQUEST, CACHING, NO_CACHING);

Caching Option: Images

Set(EVERY_REQUEST, CACHING, IMAGES);

Caching Option: CSS, JS, and Images

Set(EVERY_REQUEST, CACHING, IMAGES_JS_AND_CSS);

Caching Option: All
Set(EVERY_REQUEST, CACHING, ALL);

Traffic Filters

Traffic Fi l ters al lows you to fi l ter out certain requests whi le playing back a script .

Considerat ions

Traffic fi l ters do not affect XML requests that are writ ten to the Visual Navigator tree when a capture fi le is
converted.

Use th i s opt ion to:

! Determine which traffic should be:

 included in your script

 blocked from your script

 converted to subrequests in the script

 Also block specific substrings in the path of URLs, such as .jpg to block al l JPEG images.

Rule Filters

Selects the Rule Folders that are scanned for matching rules when convert ing a WWW capture fi le in to a
Visual Navigator script .

Considerat ions

! Rules are sets of parameters that are establ ished to subst i tute certain pre-establ ished variables for
system generated variables.

! Parameters and Rules are establ ished using the Variable Replacement Wizard.

Use th i s opt ion to:

Control the rules QALoad uses during the convert process to help parameterize scripts.

Script Development Workbench

89

Enable Siebel Support

The Enable Siebel Support opt ion al lows QALoad to ident i fy i f the capture fi le to be converted is a Siebel
fi le.

Considerat ions

! This opt ion results in adding a new command in the script cal led SiebelIn it ial ize, which ident i fies
the script as a Siebel script .

! Two addit ional commands are also inserted in to the script : SiebelUpdatePage and GetSiebelValue.
These two commands are only added i f there were HTML responses in the capture fi le, which
resulted in generat ion of Siebel variables.

! When the convert process is complete, al l HTML pages with Siebel variables attached to them at
the convert process are output in to the script fi le so playback can retrieve values from the Siebel
Correlat ion Library. These parameters appear in various PostTo commands in the script and are
correlated automatical ly to local variables created by the Siebel Correlat ion Library.

Note: When you want to modify the values of the parameters provided to create a new value for each
transaction, you must manually parameterize the values.

Use th i s opt ion to:

Record, modify, and play back scripts for the purpose of performance test ing against Siebel appl icat ions
and environments.

Script Sam ples

Example Script with Option Selected

Example Script with Option Not Selected

Script Example with the Enable Siebel Support Option Selected

The fol lowing example has the Enable Siebel Support check box selected.
CLoadString __Siebel_1 = "VRId-3";
CLoadString __Siebel_2 = "";
CLoadString __Siebel_3 = "SWERowId0=1-7BZ";
CLoadString __Siebel_4 = "";
CLoadString __Siebel_5 = "1-136";
CLoadString __Siebel_6 = "SWERowId0=1-7BZ";
CLoadString __Siebel_7 = "";
CLoadString __Siebel_8 = "1-1UY";
CLoadString __Siebel_9 = "";
CLoadString __Siebel_10 = "1-1UY";
CLoadString __Siebel_11 = "";
CLoadString __Siebel_12 = "1-1UY";
…
…
// WWW General Options
Set(EVERY_REQUEST, HTTP_VERSION, "1.1");
SiebelInitialize(); // Siebel support is enabled

….
….
Post_To("http://dtw-siebel78/callcenter_enu/start.swe");
// Get the Siebel parameters from this page
SiebelUpdatePage();
__Siebel_5 = GetSiebelValue(" S_BC3_S09_R06_FID ");
__Siebel_8 = GetSiebelValue(" S_BC3_S09_R05_FID ");
__Siebel_10 = GetSiebelValue(" S_BC3_S09_R05_FID ");
__Siebel_12 = GetSiebelValue(" S_BC3_S09_R05_FID ");
….

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

90

….
// Original string was:
// "1-136"
// Variablized string is:
// "{$ VAR:Siebel-5 $}"
//
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWERowId", __Siebel_5);
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEC", "7");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEMethod", "PositionOnRow");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEReqRowId", "1");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWERPC", "1");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEApplet", "Contact Assoc Applet");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEView", "Account Detail - Contacts View");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWECmd", "InvokeMethod");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWESP", "false");

// Original string was:
// "1156341790828"
// Variablized string is:
// "{$ DATETIME:MS1970 $}"
//
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWETS", TIME_SINCE_1970("milliseconds"));
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEIgnoreCtrlShift", "0");
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWEP", "1B_Account Contact List
Applet9_NewRecord0_0_1_7");

// Original string was:
// "SWERowId0=1-7BZ"
// Variablized string is:
// "{$ VAR:Siebel-7 $}"
//
//-- Update the Calculation Variable Siebel-7 --
//
// Variablized string is:
// "SWERowId0={$ VAR: Siebel-6 $}"
//
__Siebel_7 = "SWERowId0=";
__Siebel_7 += __Siebel_6;
__Siebel_7 = __Siebel_7;
Set(NEXT_REQUEST_ONLY, POST_DATA, "SWERowIds", __Siebel_7);
Set(NEXT_REQUEST_ONLY, CHECKPOINT_NAME, "Page 20 - http://dtw-siebel78/callcenter");

Post_To("http://dtw-siebel78/callcenter_enu/start.swe");
DO_SLEEP(1);

Script Example with the Enable Siebel Support Option Not Selected

The fol lowing example has the Enable Siebel Support check box cleared.
Siebel_off
extern "C" int rhobot_script(PLAYER_INFO* s_info)
{
// Declare Variables
//

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("cap_siebel_on.cpp");

SET_SCRIPT_LANGUAGE(SLID_English);
DO_InitHttp(s_info);

Script Development Workbench

91

// Playback Options
//
Set(EVERY_REQUEST, PROXY_MODE, PROXY_AUTOMATIC_CONFIGURATION);
Set(EVERY_REQUEST, PROXY_SCRIPT, "http://proxyconf.compuware.com");
Set(EVERY_REQUEST, HTTP_VERSION, "1.1");
Set(EVERY_REQUEST, PROXY_HTTP_VERSION, "1.0");
Set(EVERY_REQUEST, JAVASCRIPT_LEVEL, FULL);
Set(EVERY_REQUEST, USER_PATIENCE, 120); // Maximum time to wait for an HTTP Reply
Set(EVERY_REQUEST, CONNECTION_RETRIES, 4); // maximum attempts to connect
Set(EVERY_REQUEST, BROWSER_THREADS, 2); // total browser threads to simulate
Set(EVERY_REQUEST, CACHING, NO_CACHING); // Enable/Disable cache
Set(EVERY_REQUEST, REUSE_CONNECTION, TRUE); // maintain socket connection if possible
Set(EVERY_REQUEST, REUSE_SECURE_SESSION, TRUE);
..
..
..
Navigate_To("http://dtw-siebel78/callcenter_enu/start.swe");

//--------- REQUEST # 6 ---------
//
// current page url is http://dtw-
siebel78/callcenter_enu/start.swe?SWECmd=GetCachedFrame&SWEACn=.....
//
Set(NEXT_REQUEST_ONLY, HEADER, "Accept", "image/gif, image/x-xbitmap, image/jpeg"
 ", image/pjpeg, application/x-shockwave-flash, */*");
Set(NEXT_REQUEST_ONLY, POST_DATA, "s_2_1_57_0", "Business");
Set(NEXT_REQUEST_ONLY, POST_DATA, "s_2_1_27_0", "sdfasdf");
Set(NEXT_REQUEST_ONLY, POST_DATA, "s_2_1_28_0", "sfdasfd");
}

Streaming Media

Streaming Media Support

QALoad includes support for audio and video download test ing of both Windows Media Player and
RealOne Player and their supported media formats through a WWW session. When streaming media
conversion is enabled and you record a transact ion that cal ls streaming media, an addit ional command
that requests the media is inserted in to your script . You do not have to l isten to or view the ent ire media
you are request ing. You simply need to record i ts URL and ensure that the appropriate media player is
instal led on the Player machines that plays back the script . At run t ime, the script invokes your media
player and requests the streaming media resource. Streaming media through a firewall or proxy server is
not supported.

QALoad's streaming media support includes the fol lowing media player(s). The appropriate media player
must be instal led on the machine you are recording from as well as any QALoad Player machine that wi l l
be execut ing the script .

! RealOne Player — The media download is in i t iated by request ing a fi le that is a data type
supported by the RealOne Player. Supported data types are RealAudio, RealVideo, RealText, RealPix,
and SMIL. As a result , the DownloadMediaRP command wil l be inserted in to the script at the
appropriate point. At runt ime, th is command in it iates and waits for complet ion of the download.
RealOne Player scripts must be executed as process-based scripts.

! Window s M edia Player — The media download is in i t iated by downloading a fi le with a content
type of (audio|video)/ (x-ms-asf|s-ms-asf) in the browser. Current ly, only .asx fi les are supported. As
a result , the DownloadMediaFromASX command is inserted in to the script at the appropriate
point.

Note: QALoad does not support scripts that have both RealNetworks media and Windows Media in the
same script. To test both types in a single load test, use a different script for each type.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

92

Please note that asynchronous cal ls may not be played back exact ly as they were recorded. For example, i f
you cl ick on a l ink in the browser whi le recording while the media is playing, during replay that l ink is not
requested unt i l the media cl ip has fin ished being processed.

Recording Streaming Media

To record st r eam ing m edia:

1. With a WWW session open in the Script Development Workbench, choose Opt ions>Convert from
the menu.

2. On the WWW tab, cl ick Advanced.

3. Select the Streaming Media opt ion and cl ick OK.

When you record your transact ion, make sure you invoke your media player through cl icking a l ink or
typing a URL in your web browser. QALoad records the URL from your web browser; therefore, you must
use your browser to access your media fi le or else the URL wil l not be recorded in your script .

Streaming Media in Visual Navigator

If you selected the Streaming Media opt ion on the WWW Advanced conversion opt ions dialog box before
recording your script , and the recorded transact ion contains RealOne Player or Windows Media streaming
requests, your streaming media request wi l l be presented as a Page in the tree-view, similar to the fol lowing

graphic:

The form-view (bottom pane) for a streaming media page shows the
t i t le Real Media Request or Windows Media Request to indicate the type
of request you recorded, and l ists the fol lowing fields:

Requested URI: Lists the requested URI that invoked the media
player. For Real M edia the fi le typical ly is an RM fi le, whi le for
Windows Media i t is typical ly an ASX fi le.

Play M edia Request : Select th is check box for the virtual user to
process the RM or ASX fi le that is received and make the necessary
requests to dupl icate what the cl ient performed while receiving the
streaming media. If th is checkbox is not selected, then no further
processing is performed after receiving the RM or ASX fi le.

Play Requested M edia for N seconds: You can specify how much of the streaming media fi le the virtual
user should play, in seconds, before moving on to the next request. A value of zero indicates that the ent ire
media stream should be played.

Note: While a virtual user is playing a media request it will not make any other requests in the transaction
loop. This may be different than what the user performed when recording the transaction because a browser
is capable of spawning the streaming media player as a separate executable which can execute at the same
time that the user continues to make further web requests in the browser.

Script Development Workbench

93

CJK Support

CJK Support in QALoad

QALoad supports load test ing of Chinese, Japanese, and Korean (CJK) Web appl icat ions that use Double
Byte Character Sets (DBCS). DBCS is a character set that uses two bytes (16 bits) rather than one byte (8
bits) to represent a single character. Some languages, such as Chinese, Japanese, and Korean, have writ ing
schemes with many different characters and character sets that cannot be represented with single-byte
characters such as ASCII and EBCDIC.

QALoad supports the fol lowing:

! Simpli fied Chinese - People's Republic of China (PRC), Singapore

! Tradit ional Chinese - Taiwan, Hong Kong, Macau

! Japanese

! Korean

Notes:

CJK support only applies to the WWW middleware. Currently, QALoad only supports the CJK Double
Byte Character Sets; Web applications that host Bi-Directional (BiDi) characters (which includes Arabic
and Hebrew languages) are not currently supported.
UTF-8-encoded characters are treated as an additional character set used on CJK platforms. They are
supported when represented on their native operating system. For example, Japanese characters are
displayed properly on a Japanese operating system.

QALoad provides two methods of support for CJK: nat ive character and encoding. Depending on your
test ing requirements and environment, i t may be necessary to use both mechanisms to support the load
test ing of a Web site that contains CJK characters.

! Nat i ve Character: converts the CJK characters to their original characters in Chinese, Japanese, or
Korean. Nat ive character support is only possible when using a nat ive operat ing system (OS) such
as load test ing a Japanese Web appl icat ion from a Japanese version of M icrosoft Windows. QALoad
supports one CJK language's characters in a script at a t ime, plus ASCII/Engl ish. Nat ive character
support is used with in test scripts, error messages (generated through system commands that use
nat ive characters) and t im ing fi les, making script edit ing easier and t im ing fi le analysis quicker.

! Encoding: encodes al l CJK characters in to a sequence of prin table characters regardless of the
language and exact character set in use. Encoding support is used when load test ing mult iple
language sites from the same OS, or when load test ing a CJK site from that of another CJK
platform. For example, test ing a si te with Japanese characters from a Korean or Engl ish/ASCII OS.
The encoding opt ion is used when nat ive character support cannot be used or when script
portabi l i ty between different CJK language OS is required.

Native Character CJK Support

By default , QALoad translates Chinese, Japanese, and Korean (CJK) characters i f you are using the QALoad
Workbench on the same CJK language operat ing system as the operat ing system on which the Web
appl icat ion is being captured. There are no opt ions to enable, but you may wish to ensure that the
Represen t CJK as Octal Characters opt ion check box is not selected.

To veri fy, th is opt ion is located on the General page under WWW Convert Options in Opt ions>Convert as
shown below.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

94

Below is an example of a t im ing fi le with nat ive characters displayed in QALoad Analyze below.

Script Development Workbench

95

Encoding CJK Support

QALoad uses the encoding opt ion when convert ing a capture fi le contain ing more than one set of Chinese,
Japanese, or Korean (CJK) language characters. The encoding opt ion also is used when convert ing the
script on a CJK language operat ing system different than the one on which the appl icat ion was captured.

To over r ide QALoad's Nat ive Charact er Suppor t and enable Encoded Suppor t :

1. In the QALoad Script Development Workbench, cl ick Opt ions>Convert . The Session Options
dialog box appears.

2. In the tree view under WWW Convert Options, cl ick General . The General convert opt ions dialog
box displays.

3. In the Other category, select the Represen t CJK as Octal Characters check box as shown below.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

96

When using encoded characters in QALoad test scripts, the result ing t im ing fi les do not display
checkpoints in their nat ive language. The fol lowing graphic of QALoad Analyze shows a t im ing fi le with
encoded characters with in i t .

Script Development Workbench

97

Represent CJK as Octal Characters

When th is opt ion is selected, the double-byte characters used for Chinese, Japanese, and Korean (CJK)
scripts are converted in to octal format.

Considerat ions

! Since CJK characters use Double Byte Character Sets (DBCS), encoding must be enabled for a
capture with CJK characters, so that the double-byte characters can be viewed in a legible format.

! Data stays in encoded format throughout the load test: from capture, through convert and replay,
to the analysis of the t im ing fi le.

Use th i s opt ion to:

! Enable the encoding of captured data from web appl icat ions contain ing Double Byte Character Sets
(DBCS) such as Chinese, Japanese, or Korean.

! Encode al l nat ive characters when nat ive character support cannot be used.

CJK and Visual Navigator

The Visual Navigator handles both nat ive and encoded Chinese, Japanese, and Korean (CJK) characters.
(See CJK Support in QALoad for more in formation about CJK support.)

The fol lowing graphic shows how the Visual Navigator provides nat ive character support. Both Engl ish and
Chinese characters are displayed in the Workbook Pane.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

98

The same capture fi le, Shanghai.cap, is open in the graphic below. Here, the Visual Navigator displays the
Chinese characters in encoded format.

Script Development Workbench

99

Develop ing a Test Scr ip t

Recording a Transact ion

Recording M iddleware Calls

QALoad begins recording before start ing your appl icat ion, ensuring that any early startup act ivi ty is
recorded.

Hint : You can save yourself some steps later by setting options now to automatically convert your
recorded capture file and compile it into a script.

To record a m iddlew are cal l :

(WWW only) If you are running your appl icat ion on Windows XP SP2, Compuware recommends you turn
the 'pop-up blocker' feature off before recording a transact ion. The feature can be disabled via the browser
window's Tools menu in In ternet Opt ions>Pri vacy.

1. Open an appropriate middleware session in the QALoad Script Development Workbench.

2. (Oracle Forms Server only) Choose Opt ions>Workbench , then cl ick the Com pi ler Set t i ngs tab. In
the Java sect ion of the dialog box, set the locat ion of your Java fi les for recording.

3. Select Session>Record>Start . QALoad launches your appl icat ion and any proxies, i f necessary, and
begins recording any cal ls.

4. Run the desired user operat ions using your appl icat ion.

5. (WWW only) If you are capturing SSL requests using EasyScript for Secure WWW, the browser
generates one or more prompts indicat ing the fol lowing:

 It does not recognize the authori ty who signed the server cert i ficate.

 The server cert i ficate presented by the Web site does not contain the correct si te name.

When you receive these prompts, cl ick the browser’s Next or Cont inue button so you can connect to
and exchange information with the desired Web site.

6. (Optional) At any t ime during the recording process, you can insert any necessary commands or
comments in to the capture fi le.

7. When you have recorded a complete transact ion, stop the appl icat ion from which you are
recording.

8. When you fin ish, cl ick Stop Record. You are prompted to save your capture fi le. By default ,
capture fi les (.cap) are saved in the QALoad\Middlewares\<middleware_name>\captures directory.

Note: If QALoad is not able to record from your application, try QALoad’s alternate procedure for
recording.

The Script Development Workbench automatical ly converts a capture fi le to a script fi le when you stop the
recording process. You are prompted i f a script by the same name already exists, so that you can decide
whether to overwrite an exist ing script or to save your script under a different name.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

100

Changing Recording Opt ions without Recording

You can view and change recording opt ions at any t ime without recording a capture fi le.

To change recording opt ions w i t hout r ecording :

1. Access the QALoad Script Development Workbench. Detai ls

2. From the Session menu, select the appropriate middleware or start a Universal session.

3. From the Opt ions menu, choose Record. The Record Options wizard opens, showing a tab of
recording opt ions for the middleware you selected.

4. On your middleware tab, select opt ions and enter in formation as appropriate.

5. Click OK.

For a descript ion of avai lable recording opt ions, see Record Options Wizard.

Insert ing Commands/ Comments into a Capture File

You can insert commands or comments while recording a capture fi le.

To inser t com m ands/ com m ent s in t o a capt ure f i le:

1. On the Recording toolbar, cl ick Insert Com m and. The toolbar expands into a window where you
can select opt ions for insert ing commands into your capture fi le.

2. In the Com m and Type area, select whether you want to insert a comment or a begin/end
checkpoint.

3. In the Com m and In fo area, type your comment or a descript ion of the checkpoint.

4. Do one of the fol lowing:

! Click Insert to insert your comment or checkpoint command into your capture fi le.

! Click Insert Com m and again to close the expanded window without insert ing a command.

5. Continue recording your t ransact ion as usual .

Recording with Manual Program Startup

Use th is procedure to manually start your appl icat ion and the Record faci l i ty. You can start your
appl icat ion at any t ime before or after start ing to record.

This procedure only appl ies to Winsock and SAP.

To record w i t h m anual program st ar t up:

1. Access the QALoad Script Development Workbench. Detai ls

2. Choose the appropriate session from the Session menu.

3. From the Opt ions menu, choose Record to open the Record Options wizard.

4. On your middleware tab, select the User Started Program opt ion. Cl ick OK.

5. WW W On ly: Start your browser.

Script Development Workbench

101

6. Click Start Record .

7. Start your appl icat ion (SAP only: start QALSAP.EXE, which is located in the \QALoad directory).

8. Run the user operat ions you want to record. As you execute the operat ions, QALoad records the
operat ions in a capture fi le (.cap).

9. (Optional) At any t ime during the recording process, you can insert any necessary commands or
comments in to the capture fi le. Detai ls

10. When you fin ish, cl ick Stop Record. You must stop recording before you shut down the appl icat ion
from which you are recording. QALoad prompts you to save your capture fi le. By default , capture
fi les are saved in the QALoad\Middlewares\<middleware_name>\Captures directory .

Convert ing a Transact ion to a Script

Convert ing

A capture fi le contains al l the raw data that was recorded, but i t needs to be converted in to an editable
script fi le before you can proceed. The script fi le can then be open in the Script Development Workbench
editor and edited as needed.

To conver t a capt ure f i le t o a scr ipt :

1. Access the QALoad Script Development Workbench. Detai ls.

2. From the Session menu, choose the session you want to start .

3. If you have not already done so, set conversion opt ions.

4. In the Workspace Pane, cl ick the Captures tab.

5. Click the capture fi le you want to convert and cl ick Session>Convert . The capture fi le is converted
to a script . In the Workspace Pane, cl ick the Scripts tab to view the l ist of scripts you have
converted.

Note: (WWW Only) When you click Session>Convert , the WWW Script Conversion Mode Selection dialog
box displays. Choose the mode in which to convert the script. How?

Note: If an Error/Warning Summary opens in the Output Pane, resolve any errors.

6. Compile the script .
Note: You can set an option to automatically convert your recorded transactions into scripts. How?

Set Up Automat ic Conversion and Compilat ion of a Script

The Script Development Workbench automatical ly converts a capture fi le when you stop the recording
process and compile the result ing script . You are prompted i f a script by the same name already exists, so
that you can decide whether to overwrite an exist ing script or to save your script under a different name.

If the default sett ings to automatical ly convert a capture fi le have been changed, fol low the steps below to
reset the automatic conversion and compilat ion.

To set up aut om at ic conversion and com pi lat ion:

1. From the Script Developm en t Workben ch menu, choose Opt ions>Workbench .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

102

2. On the Workbench Configurat ion tab, in the Record Opt ions area, select the check box
Autom at i cal l y Convert Capture.

3. Click the Com pi ler Set t ings tab.

4. Select the check box Autom at i cal l y com pi le scri pts.

5. Select the check box Prom pt before overw ri t i ng script to ensure that a script is not overwrit ten
accidental ly.

6. Click OK to save your sett ings.

Edit ing a Script

Edit ing a Script

The Funct ion Wizard al lows you to quickly and easi ly edit your script by choosing from the QALoad
commands avai lable to your script and insert ing them with a cl ick of your mouse.

The Funct ion Wizard is located in the Script Development Workbench in a
pane on the right side of the window. You can enable or disable the
Funct ion Wizard from the View menu or by cl icking the Show or Hide
Funct ion Wizard button on the toolbar.

The Funct ion Wizard l ists al l funct ions that are val id to use in your open
script . Funct ions are grouped in logical sect ions with in the top window of
the wizard. When you h ighl ight a funct ion in the top window of the
wizard, the lower window l ists a descript ion of that funct ion and i ts
parameters.

To insert a funct ion in to your script , locate i t in the Funct ion Wizard and
then simply drag-and-drop the funct ion in to your script .

The funct ion wil l be writ ten in to your script at the point you chose. When
you insert a funct ion using the wizard, a text box opens showing the
proper syntax and parameter opt ions. (The text box may not appear i f an
associated variable or object has not been declared in the script .) As you
edit the funct ion 's parameters, the text box h ighl ights the parameter that
is current ly being edited.

Note for ADO scripts: After inserting an ADO method, change the # sign
to the appropriate object number.

Using Custom Counters and Messages

QALoad al lows you to define your own counters and insert messages into your script , where they are
writ ten to your t im ing fi le and are viewable in Analyze or at runt ime in the Conductor.

Counters can be either cumulative or instance. This determines how they are graphed in Analyze:

! For a cumulat ive counter, Analyze keeps a running sum of the counter whi le graphing verses
elapsed t ime. This type of counter is used for al l the WWW error counters. Each t ime a WWW error
occurs, a value of 1 (one) is wri t ten for that counter. When looking at a detai led view in Analyze,

Script Development Workbench

103

you can see at what t imes that error occurred. When you graph a counter in Analyze, the graph
shows the total number of occurrences verses the elapsed t ime.

! For an instance counter, Analyze graphs each value direct ly. No summing of previous values is
done.

Counters must be added manually using the QALoad commands DEFINE_COUNTER and
COUNTER_VALUE. Messages must be added manually using the QALoad command SCRIPT_MESSAGE.

The fol lowing sample script i l lustrates both script counters and messages:

#include <stdio.h>
#include "smacro.h"
#include "do_www.h"

int rhobot_script(PLAYER_INFO *s_info)
{
char buf1[256];
int id1, id2, id3, id4;

DEFINE_TRANS_TYPE("ScriptCounters ");
DO_InitHttp(s_info);

// "Counter Group", "Counter Name", "Counter Units (Optional)",
// Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative long",
 0, DATA_LONG, COUNTER_CUMULATIVE);
id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative float",
 0, DATA_FLOAT, COUNTER_CUMULATIVE);
id3 = DEFINE_COUNTER("Instance Group", "Instance long",
 0, DATA_LONG, COUNTER_INSTANCE);
id4 = DEFINE_COUNTER("Instance Group", "Instance float",
 0, DATA_FLOAT, COUNTER_INSTANCE);

SYNCHRONIZE();
BEGIN_TRANSACTION();

// add value to cumulative counter 1
COUNTER_VALUE(id1, 1);
DO_SLEEP(2);

// add value to cumulative counter 2
COUNTER_VALUE(id2, 1.5);
RND_DELAY(6);

// add value to instance counter 1
COUNTER_VALUE(id3, s_info->nRndDelay);

// add custom message for this user
wsprintf(buf1, "User %d slept for %d milliseconds during transaction %d",
 s_info->nAbsVUNum, s_info->nRndDelay, s_info->s_trans_count);
SCRIPT_MESSAGE("User Messages", buf1);
DO_SLEEP(2);

// add value to instance counter 2
// relative user number plus pi times the current transaction number
COUNTER_VALUE(id4, s_info->nRelVUNum + (3.14159 * s_info->s_trans_count));

END_TRANSACTION();
DO_FreeHttp();
REPORT(SUCCESS);
EXIT();

}

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

104

Defining Checkpoints

Checkpoint statements col lect t im ings of events, such as the execut ion of SQL statements. If you manually
insert checkpoint statements in to your capture fi le during the recording process, or i f you select the
Include Defaul t Checkpoin t Statem en ts conversion opt ion before convert ing a script , your script
includes checkpoints.

Otherwise, you must manually insert checkpoints in your scripts to col lect t im ings.

Defining Transact ion Loops

If you did not insert begin-and end-transact ion commands into your capture f i le, QALoad’s Convert faci l i ty
automatical ly places begin-and end-transact ion commands at the start and end of the recorded sequence.
QALoad scripts execute the code between the begin-and end-transact ion commands in a loop according to
the number of t imes you specify in the QALoad Conductor when sett ing up a test.

Depending on how you completed your recording, you may want to move one or both of these transact ion
commands to another place in the script to more accurately define the transact ion that runs during the
load test.

For example, let ’s say during the recording process you log in and log out as part of the procedure.
However, during the load test you do not want to log in and log out as part of every transact ion. To avoid a
login and logout with every procedure, move the begin- and end-transact ion commands so the login and
logout commands are outside of the transact ion loop.

Simulat ing User-Entered Data

When you create a script , you probably have some constant data embedded in the script , for example, an
employee number, that automatical ly enters your appl icat ion’s input fields while recording. If you run a
load test using th is script , the script uses the same data for each transact ion. To run a real ist ic test, you can
modify the script to use variable data from a datapool fi le. By varying the data input over the course of a
test, the behavior more real ist ical ly emulates the behavior of mult iple users. You can use the QALoad Script
Development Workbench to create, maintain, and use datapool fi les (.dat) to insert variable data in to your
scripts.

A datapool can be defined as either central or local:

! Cent ral : a datapool that resides on the same workstat ion as the QALoad Conductor, and is
avai lable to any Player system on the network that requests i t from the QALoad Conductor. A
central datapool is control led by the QALoad Conductor, and you use the QALoad Conductor to set
any opt ions relat ing to a central datapool.

! Local : a datapool that resides on a Player workstat ion, and is only avai lable to that Player. Because
a local datapool resides local ly and is only avai lable to the local Player, i t does not generate any
network traffic. Use the QALoad Script Development Workbench to insert local datapools in to a
script .

The fol lowing sect ions describe how to create and use central and local datapools.

Creating a Datapool File

You can create a datapool fi le using the Script Development Workbench.

To creat e a dat apool f i le:

1. Open a middleware session in the QALoad Script Development Workbench.

2. From the Fi l e menu, choose New .

Script Development Workbench

105

3. On the New dialog box that opens, select New from the Datapools tree i tem.

4. In the Fi l enam e field, type a unique name for your datapool fi le.

5. In the Row s: and Cols: fields, type the number of rows and columns your new datapool should
have.

6. Click OK.

7. Enter your datapool records in the grid that opens in the Workbook Pane.

8. When you are fin ished entering datapool records, cl ick Fi l e>Save As to name your datapool fi le.

9. Click OK to save the fi le. QALoad saves the fi le in your \QALoad\Datapools directory.

Modifying a Datapool File

You can modify a datapool fi le using the Script Development Workbench.

To m odi f y a dat apool f i le:

1. In the Workspace Pane, cl ick the Datapools tab.

2. Double-cl ick the datapool fi le you want to modify. The datapool fi le opens in the Workbook pane.

3. Make the appropriate changes and save the fi le.

Using a Central Datapool File in a Script

You assign a central datapool fi le to a specific script by select ing the datapool fi le and sett ing any
appropriate opt ions using the Conductor. Each script can use a single central datapool. The central
datapool is avai lable to al l Player workstat ions running the test. The fol lowing procedures describe how to
assign and extract data from a central datapool. These procedures assume you have already created the
datapool fi le as described above.

To assign a cent ral dat apool f i le:

1. With a session ID fi le open in the QALoad Conductor, cl ick the Script Assignm en t tab.

2. In the Ex ternal Data column for the selected script , cl ick Brow se.

3. In the Ex ternal Data dialog box, navigate to the datapool you wish to use. Select i t and cl ick
Open .

4. If you wish to re-use the datapool records when the script reaches the end of the fi le, select
Rew ind. To only use each record once, and then discard i t , select St r i p.

5. When you are done, cl ick OK.

Using Data Records f rom a Cen t ral Datapool Fi le

To use data from a central datapool in your load test, you wil l have to modify your script . Typical ly, you
wil l read one record per transact ion.

To add dat apool st at em ent s t o your scr ip t :

1. With your script open in the QALoad Script Development Workbench, navigate to the place where
you want to insert a datapool variable and h ighl ight the text to replace.

2. From the Session menu, choose In sert>Datapool . The Insert New Datapool dialog box appears.

3. Select a datapool from the l ist and cl ick OK, or cl ick Add to open the Select Datapool dialog box
where you can choose a datapool fi le to add to your test .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

106

4. When you are fin ished, the QALoad Script Development Workbench places several datapool
funct ions in to your script , denot ing them with markers so you can easi ly ident i fy them .

 Using Local Datapool Files in a Script

You assign a local datapool fi le to a specific script by select ing the datapool fi le and sett ing any appropriate
opt ions using the QALoad Script Development Workbench. Each script can use up to 64 local datapools.
Use the fol lowing procedures to assign and extract data from a local datapool fi le. These procedures assume
you have created a datapool as described above.

To assign a local dat apool :

1. Open a session in the QALoad Script Development Workbench.

2. In the Workspace pane, cl ick the Scripts tab.

3. On the Scripts tab, double-cl ick on the appropriate script name to open i t in the Workbook pane.

4. From the Session menu, choose In sert>Datapool . The Insert Datapool Com m ands dialog box
appears.

5. On the Insert Datapool Com m ands dialog box, cl ick Add. The Select Datapool dialog box opens.

6. In the Type field, select Local . Note that you can also choose to insert a central datapool from th is
dialog box. If you choose to insert a central datapool from here, the QALoad Script Development
Workbench places the Conductor command GET_DATA in to the script just after the
BEGIN_TRANSACTION command, bookmarks the command in the margin of the script , and uses any
opt ions set for the specified datapool in the QALoad Conductor.

7. In the ID field, give the datapool a unique ident i fier. The name can contain alphanumeric
characters only. Use underscores (_) for spaces. This ID wil l help you ident i fy the datapool in your
script , for example “ACCOUNT_NUMS”.

8. In the Fi lename field, type (or browse for) the ful ly qual i fied path of your datapool fi le. For
example: c:\Program
Files\Compuware\QALoad\Workbench\<middleware_name>\Scripts\datapool.dat

9. If you wish to re-use the datapool records when the script reaches the end of the file, select Rewind at End of File.
To only use each record once, and then discard it, clear this option.

10. When you are fin ished, cl ick OK. The selected datapool is displayed on the Insert New Datapool
dialog box.

11. Click OK. The QALoad Script Development Workbench wil l place a #define statement ident i fying
the datapool fi le near the beginning of your script , and place the datapool commands
OPEN_DATA_POOL, READ_DATA_RECORD, and CLOSE_DATA_POOL at the default locat ions in the script .
These statements wi l l be bookmarked in the margin for easy ident i ficat ion.

12. When you are fin ished modifying the script , save any changes.

For detai led in formation about any of these commands, refer to the Language Reference sect ion.

Using Data Records f rom a Local Datapool Fi l e

To use data from a local datapool fi le you wil l have to modify your script to read data records and fields at
the appropriate place in the script . Datapool fi les should typical ly be opened with the statement
OPEN_DATA_POOL just before the BEGIN_TRANSACTION statement, then datapool fields can be cal led in to
the script to replace variable strings. The OPEN_DATA_POOL statement is automatical ly inserted in to your
script when you use the QALoad Script Development Workbench to insert your datapool.

1. Read a record from the datapool fi le using the fol lowing command, which reads a single record
from the local datapool fi le you specify:
READ_DATA_RECORD(<LOCAL DATAPOOL ID>);

Script Development Workbench

107

2. To access the fields of th is record, subst i tute GET_DATA_FIELD(ACCOUNT_NUMS, n) expressions in
place of variable strings.

3. After the END_TRANSACTION statement, close the local datapool fi le by using the fol lowing
statement:
CLOSE_DATA_POOL(LOCAL DATAPOOL ID);

Note that th is statement is added automatical ly i f you use the QALoad Script Development Workbench to
insert your datapool.

For detai led in formation about any of these commands, refer to the Language Reference sect ion.

Inserting Variable Data with ActiveData Substitution

The QALoad Script Development Workbench al lows you to transform string data from quoted constants or
substrings into variables. Act iveData variable subst i tut ion lets you ident i fy and right-cl ick on a string to
declare the selected string a variable with in the QALoad script . This faci l i ty also lets you select or edit
datapool entries more dynamical ly, making script development easier and more efficient.

To subst i t ut e a dat apool value or a var iable in p lace of a select ed st r ing in your scr ip t :

1. Start the appropriate session in the QALoad Script Development Workbench.

2. In the Workspace pane, cl ick the Scripts tab.

3. On the Script tab, double-cl ick the script you wish to open. The script opens in the Workbook
pane.

4. In the script , h ighl ight the string you wish to replace.

5. Right-cl ick anywhere in the h ighl ighted string.

! To subst i tute a value from a datapool :

 — Click Act i veData>Datapool Subst i tut i on in the shortcut menu that opens. The
Act i veData Datapool Subst i tut i on dialog box opens.

 In the Datapool (s) area, h ighl ight the datapool to use. The contents of the datapool fi le
display below. If the datapool you want to use is not l isted, cl ick the Add button to add
i t to the l ist of avai lable datapools.

 In the Field: ID field, type the field number of the specific value to use from the
datapool.

 When you are fin ished, cl ick OK. The QALoad Script Development Workbench wil l
place a #define statement ident i fying the datapool fi le at the beginning of your script .
It wi l l also insert the datapool commands OPEN_DATA_POOL, READ_DATA_RECORD,
GET_DATA_FIELD and CLOSE_DATA_POOL at the default locat ions in the script , and
bookmark them in the margin for easy ident i ficat ion. Refer to the Language Reference
sect ion for detai led in formation about any of those commands.

 To subst i tute a variable:

 Click Act i veData>Variable Subst i tut i on from the shortcut menu that appears. The
Act i veData Variable Subst i tut i on dialog box opens.

h. Assign a variable name for the selected string in the Variable Nam e field.

i . Click OK. The QALoad Script Development Workbench wil l declare the variable at the
beginning of your script and subst i tute the named variable for the selected string. It wi l l
also bookmark both locat ions for easy ident i ficat ion.

6. When you are fin ished, save your script changes. Compuware recommends that you also compile
your script to check for any errors.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

108

Middleware Script ing Techniques

Citrix

Handl ing Ci t r i x Server Farm s

Citrix servers can be grouped in farms. When load test ing, you may want to connect to a Citrix server farm
rather than to a specific server. Load test ing requirements may include connect ing to a Citrix server farm,
where the load balancing feature supports dynamic redirect ion to a given server at connect ion t ime. This
load tests the server farm and Citrix load balancing rather than a single server, which can provide a more
real ist ic load test.

To record a script that connects to a farm, you must use an ICA fi le to connect. However, when a capture
takes place, a specific server (in the farm) must have a connect ion. Specify the correct ICA fi le to connect
to the server farm as well as a specific server with in that server farm.

To veri fy that your script is connect ing to a server farm and not a specific server, assign the server name to
one blank space when val idat ing the script . In order to record a script that connects to a farm, you must
use an ICA fi le specified in the Citrix Record Options dialog. Since the ICA fi le should contain al l the
necessary connect ion in formation, the server field should be left blank when recording.

When converted, the CitrixServer variable has a blank space:

.

.

.

/* Declare Variables */
const char *CitrixServer = " ";
const char *CitrixUsername = "citrix";
const char *CitrixPassword = "~encr~657E06726F697206";
const char *CitrixDomain = "qacitrix2";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

CtxSetConnectTimeout(90);
CtxSetDisconnectTimeout(90);
CtxSetWindowTimeout(30);
CtxSetPingTimeout(20);
CtxSetWaitPointTimeout(30);
CtxSetWindowVerification(TRUE);
CtxSetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-Domain);
CtxSetICAFile("PRD desktop.ica");
CtxSetEnableCounters(TRUE);
CtxSetWindowRetries(5, 5000);
CtxSetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

The Citrix cl ient ignores th is value and uses the ICA fi le to dynamical ly retrieve the server name at
playback t ime.

Conclusion

Script Development Workbench

109

When you use these techniques to set up a Citrix server farm test script , you al low for dynamic server
redirect ion at playback as part of test ing a load balanced Citrix server farm.

Handl ing Dynam ic Win dow Ti t l es

Some appl icat ions create windows whose t i t les vary depending on the state of the window. For example,
M icrosoft Word creates a t i t le based on the default document name at the t ime of the window creat ion.
During replay, th is dynamic t i t le can differ from the window t i t le that was recorded, and the window is
not recognized. If th is occurs, t ry the fol lowing steps to modify the script :

1. Ensure that the Enable Wi ldcard Ti t l e M atch check box i s selected in the Ci t r i x conversion
opt ions prior to convert i ng the recording.
In the Window Verificat ion group of the Ci t r i x Convert Opt ions dialog box, ensure that the
Enable Wi ldcard Ti t l e M atch check box is selected. This check box is selected by default . If you
are working with a previously-converted script , ensure that a CtxSetEnableWildcardMatching
command exists in the script prior to the BEGIN_TRANSACTION command and that the parameter
is set to TRUE.

2. Veri fy w hether there i s an i ssue w i th dynam ic w i ndow t i t l es.
When a script fai ls on val idat ion because the run t ime window t i t le is different than the expected
window t i t le from the recording, i t is l ikely that you are deal ing with a dynamic t i t le issue that can
be handled by th is script ing technique. In th is case, the script fai ls on the
CtxWaitForWindowCreate cal l .

3. Iden t i fy a m atch “ pat tern ” for the dynam ic w indow t i t l e.
Note the error message that is returned during val idat ion (or replay). The message indicates the
expected window t i t le versus the window t i t le from script playback. Examine the differences in the
window t i t les to create a “ match pattern” that recognizes the window t i t le, whi le ignoring other
windows. A match pattern can be a simple substring of the window t i t le or a pattern string using
wildcard characters such as ? (to match any single character) or * (to match any number of
characters). The examples below i l lustrate the different match patterns.

4. Insert a CtxSetWindow M atchTi t l e com m and pr ior to the CtxWai tForWi ndow Create cal l for
the dynam ic w indow .
When adding the CtxSetWindowMatchTit le command, ensure that the first parameter contains the
correct window object and the second parameter contains the match string in double-quotes.

5. Val idate the script to ensure the CtxWai tForWindow Create com m and recogn izes the dynam ic
w indow nam e.
Run the revised script through val idat ion to ensure that the script succeeds. If the script does not
val idate successful ly, go to step 3 to determine i f the match pattern is correct.

Example 1: Using a substring match

In th is example, the M icrosoft Word appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is a concatenat ion of the default document that Word creates at appl icat ion startup with
the name of the appl icat ion. The script is altered to reflect the fact that the string “ M icrosoft Word” is
always part of the window t i t le:

// Window CWI_13 ("Microsoft Word") created
CtxSetWindowMatchTitle(CWI_13, “Microsoft Word”);
CtxWaitForWindowCreate(CWI_13);

Example 2: Using a wildcard match with the * character

In th is example, the SampleClientApp appl icat ion generates a dynamic t i t le when the script is replayed.
The dynamic name is the name of the appl icat ion fol lowed by the name of the user, beginning with the
word “ User” . The asterisk (*) wi ldcard is subst i tuted for a given username, reflect ing the pattern of
“ SampleClientApp – User:” as part of the window t i t le fol lowed by an arbitrary user name:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

110

// Window CWI_13 ("SampleClientApp – User: John") created
CtxSetWindowMatchTitle(CWI_13,“SampleClientApp – User: *”);
CtxWaitForWindowCreate(CWI_13);

Example 3: Using a wildcard match with the ? character

In th is example, the RandomValue appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is the appl icat ion fol lowed by a random single digit . The question mark character is
subst i tuted for the single digit to reflect the pattern that begins “ RandomValue: ” , fol lowed by single digit :

// Window CWI_13 ("RandomValue: 0") created
CtxSetWindowMatchTitle(CWI_13, “Sample Application: ?”);
CtxWaitForWindowCreate(CWI_13);

Handl ing Dynam ic Win dow s

During conversion, CtxWaitForWindowCreate cal ls are added to the script for each named window
creat ion event. During replay, some dynamic windows that were in the capture may not appear, which
causes the script to fai l because a wait point t imes out. To avoid script fai lure in th is circumstance,
comment out the CtxWaitForWindowCreate commands that may be referencing dynamic windows.

Handl ing Unexpected Even ts in Ci t r i x

The CtxWindowEventExists and CtxScreenEventExists commands can be used to handle unexpected
window and screen events in Citrix scripts. When there is a possibi l i ty of unexpected dialogs appearing or
unexpected screen events occurring, you must modi fy the script to respond to the changes and cont inue
the load test.

For example, i f a script opens a M icrosoft Word document that resides on a network, and that document is
already open by another network user, an unexpected dialog box appears that prompts the user to choose
between cont inuing to open the document in read-only mode or to cancel i t . To prevent script fai lure,
modificat ions can be made in the script to handle the dialog boxes that appear in th is si tuat ion.

General ly, to handle unexpected events, you record two scripts. The first script contains a recording of the
expected events. The second script should include the unexpected events. Using the
CtxWindowEventExists and CtxScreenEventExists funct ions, create a condit ional block of code that
handles the dialogs that may appear.

Example

The fol lowing script example shows the addit ional script l ines that were added to handle a Word
document that is already open by another user on a network. The added l ines appear in boldface type.

/*
 * capSave11111-2.cpp
 *
 * Script Converted on June 21, 2004 at 01:04:17 PM
 * Generated by Compuware QALoad convert module version 5.2.0 build 50
 *
 * This script contains support for the following middlewares:
 * - Citrix
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : No
 * Citrix
 * General Options :
 * Window Verification : Yes
 * Session Timeouts : Yes
 * Connect Timeout (s) : 60

Script Development Workbench

111

 * Disconnect Timeout (s) : 60
 * Window Creation Timeout (s) : 30
 * Ping Timeout (s) : 20
 * Wait Point Timeout (s) : 30
 * Include Wait Points : Yes
 * Enable Counters : No
 * Include Unnamed Windows : Yes
 * Output Mode : Normal
 * Input Options :
 * Combine Keyboard Input : Yes
 * Combine Mouse Input : Yes
 */

#define CITRIX_CLIENT_VERSION "8.00.60000"
#define CITRIX_ICO_VERSION "2.4"
#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include "smacro.h"

#include "do_citrix.h"

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{
 /* Declare Variables */
 const char *CitrixServer = "qaccitrix";
 const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

 /* Citrix Window Information Objects */
 CtxWI *CWI_1 = new CtxWI(0x1001c, "Warning !!", 107, 43, 427, 351);
 CtxWI *CWI_2 = new CtxWI(0x2001c, "Log On to Windows", 111, 65, 418, 285);
 CtxWI *CWI_3 = new CtxWI(0x5001c, "Please wait...", 111, 112, 418, 145);
 CtxWI *CWI_4 = new CtxWI(0x30030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_5 = new CtxWI(0x40030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_6 = new CtxWI(0x4002e, "UsrLogon.Cmd", 0, 456, 161, 25);
 CtxWI *CWI_7 = new CtxWI(0x1003a, "", -2, 452, 645, 31);
 CtxWI *CWI_8 = new CtxWI(0x10066, "ICA Seamless Host Agent", 0, 0, 391, 224);
 CtxWI *CWI_9 = new CtxWI(0x10052, "Program Manager", 0, 0, 641, 481);
 CtxWI *CWI_10 = new CtxWI(0x1008c, "", 115, 0, 405, 457);
 CtxWI *CWI_11 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_12 = new CtxWI(0x2006a, "", 200, 186, 156, 287);
 CtxWI *CWI_13 = new CtxWI(0x10138, "", 112, 116, 416, 248);
 CtxWI *CWI_14 = new CtxWI(0x50036, "Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_15 = new CtxWI(0x1017e, "Open", 19, 23, 602, 387);
 CtxWI *CWI_16 = new CtxWI(0x20174, "*Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_17 = new CtxWI(0x10058, "", 113, 114, 305, 26);
 CtxWI *CWI_18 = new CtxWI(0x2013e, "Calculator", 66, 66, 261, 253);
 CtxWI *CWI_19 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_20 = new CtxWI(0x3006a, "Shut Down Windows", 111, 96, 418, 193);

 CtxWI *CWI_117 = new CtxWI(0x20172, "File In Use", 144, 127, 352, 179);
 CtxWI *CWI_118 = new CtxWI(0x30172, "11111111 (Read-Only) - Microsoft Word", -4,
-4, 649, 461);

 SET_ABORT_FUNCTION(abort_function);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

112

 DEFINE_TRANS_TYPE("capSave11111-2.cpp");

 CitrixInit(1);

 /* Citrix replay settings */
 CtxSetConnectTimeout(60);
 CtxSetDisconnectTimeout(60);
 CtxSetWindowTimeout(30);
 CtxSetPingTimeout(20);
 CtxSetWaitPointTimeout(30);
 CtxSetWindowVerification(TRUE);
 CtxSetEnableCounters(FALSE);
 CtxSetWindowRetries(5, 5000);
 CtxSetEnableWildcardMatching(TRUE);

 SYNCHRONIZE();

 BEGIN_TRANSACTION();

 DO_SetTransactionStart();

 CtxConnect(CitrixServer, CitrixOutputMode);

 // Window CWI_1 ("Warning !!") created 1087837356.454

 CtxWaitForWindowCreate(CWI_1, 2125);

 DO_MSLEEP(1891);
 CtxPoint(246, 267); //1087837358.797

 DO_MSLEEP(453);
 CtxMouseDown(CWI_1, L_BUTTON, NONE, 246, 267); // 1087837358.797

 CtxMouseUp(CWI_1, L_BUTTON, NONE, 247, 267); //1087837359.032

 .
 .
 .

 DO_MSLEEP(63);
 // Window CWI_14 ("Microsoft Word") created 1087837397.390

 CtxWaitForWindowCreate(CWI_14, 141);

 DO_MSLEEP(78);
 CWI_14->setTitle("Document1 - Microsoft Word"); //1087837397.468

 // Window CWI_13 ("") destroyed 1087837397.468

 DO_MSLEEP(2468);
 CtxPoint(37, 50); //1087837400.218

 DO_MSLEEP(282);
 CtxClick(CWI_14, 203, L_BUTTON, NONE); //1087837400.421

 // Window CWI_15 ("Open") created 1087837400.764

 CtxWaitForWindowCreate(CWI_15, 344);

 DO_MSLEEP(1656);
 CtxPoint(132, 99); //1087837402.671

 DO_MSLEEP(250);
 CtxDoubleClick(CWI_15); // 1087837402.874

Script Development Workbench

113

 DO_MSLEEP(109);

 DO_MSLEEP(1953);
 CtxPoint(247, 197); //1087837404.827

 // Window CWI_15 ("Open") destroyed 1087837404.827

 if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE,3000,CWI_16))
 BeginBlock();
 CtxPoint(337, 265); //1087837404.905

 // Window CWI_16 ("11111111 - Microsoft Word") created
1087837404.905

 CtxWaitForWindowCreate(CWI_16, 31);

 // Window CWI_14 ("Document1 - Microsoft Word") destroyed
1087837404.905

 DO_MSLEEP(7547);
 CtxPoint(628, 9); //1087837414.592

 DO_MSLEEP(2141);
 CtxClick(CWI_16, 281, L_BUTTON, NONE); //1087837414.873

 DO_MSLEEP(234);
 // Window CWI_16 ("11111111 - Microsoft Word") destroyed
1087837415.108

 CtxPoint(113, 93); //1087837418.779

 // Window CWI_17 ("") created 1087837418.779
 EndBlock()

///ReadOnly Code Start

 else
 BeginBlock();

 // Window CWI_117 ("File In Use") created 1087840076.599

 CtxWaitForWindowCreate(CWI_117, 578);

 DO_MSLEEP(2360);
 CtxPoint(358, 283); //1087840079.068

 DO_MSLEEP(125);
 CtxClick(CWI_117, 281, L_BUTTON, NONE); //1087840079.365

 DO_MSLEEP(109);
 // Window CWI_117 ("File In Use") destroyed 1087840079.458

 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word") created
1087840079.521

 CtxWaitForWindowCreate(CWI_118, 63);

 // Window CWI_115 ("Document1 - Microsoft Word") destroyed
1087840079.521

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

114

 DO_MSLEEP(4766);
 CtxPoint(631, 3); //1087840084.490

 DO_MSLEEP(203);
 CtxClick(CWI_118, 250, L_BUTTON, NONE); //1087840084.740

 DO_MSLEEP(93);
 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word")
destroyed 1087840084.833

 DO_MSLEEP(2407);
 CtxPoint(34, 465); //1087840087.333

 EndBlock();

///ReadOnly Code End

 DO_MSLEEP(1063);

 DO_MSLEEP(484);
 CtxPoint(112, 93); //1087837419.654

 DO_MSLEEP(406);
 CtxDoubleClick(CWI_9); // 1087837419.904
 .
 .
 .

 // Window CWI_9 ("Program Manager") destroyed 1087837440.122

 // Window CWI_7 ("") destroyed 1087837440.138

 DO_SetTransactionCleanup();

 CtxDisconnect();

 END_TRANSACTION();

 delete CWI_1; // "Warning !!"
 delete CWI_2; // "Log On to Windows"
 delete CWI_3; // "Please wait..."
 delete CWI_4; // "Citrix License Warning Notice"
 delete CWI_5; // "Citrix License Warning Notice"
 delete CWI_6; // "UsrLogon.Cmd"
 delete CWI_7; // ""
 delete CWI_8; // "ICA Seamless Host Agent"
 delete CWI_9; // "Program Manager"
 delete CWI_10; // ""
 delete CWI_11; // ""
 delete CWI_12; // ""
 delete CWI_13; // ""
 delete CWI_14; // "Microsoft Word"
 delete CWI_15; // "Open"
 delete CWI_16; // "11111111 - Microsoft Word"
 delete CWI_17; // ""
 delete CWI_18; // "Calculator"
 delete CWI_19; // ""
 delete CWI_20; // "Shut Down Windows"

 delete CWI_117; // "File In Use"
 delete CWI_118; // "11111111 (Read-Only) - Microsoft Word"

 CitrixUninit();

Script Development Workbench

115

 REPORT(SUCCESS);
 EXIT();
 return(0);
}

void abort_function(PLAYER_INFO *s_info)
{
 RR__printf("Virtual User ABORTED.");

 CitrixUninit();

 EXIT();
}

Using the CtxWai tForScreenUpdate Com m and

In some situat ions, a window may vary in how long i t takes to refresh on the screen. For example, the
Windows Start menu is an unnamed window that can take varying amounts of t ime to appear, depending
on system resource usage. To prevent playback problems in which a mouse cl ick does not synchronize with
i ts in tended window, insert the CtxWaitForScreenUpdate command in the script after the act ion that
causes the window to appear. The parameters for the CtxWaitForScreenUpdate command correspond to
the X and Y coordinates and the width and height of the window. This command ensures that the window
has enough t ime to display before the mouse cl ick.

OFS

Understanding the C++ Script

Oracle Forms Server scripts are produced for al l Oracle E-Business Suite and Oracle Appl icat ions recordings.
The C++ script executes OFS-related statements by passing the statements in the script DLL to the OFS Java
engine that performs the cl ient act ivi t ies and the cl ient communicat ion with the server. Because the C++
script statements are direct ly t ied to corresponding methods in the OFS Java engine, modificat ions to the
script statements are l im ited to changing the property parameter values through variabl izat ion.

An OFS C++ script contains three main sect ions: Connect ion, Appl icat ion Body, and Disconnect. The
QALoad transact ion loop includes al l three sect ions by default . The transact ion loop can be moved using
the guidel ines described in Moving the OFS transact ion loop. An internal auto checkpoint is created during
connect ion statements and transmission statements.

The C++ script statements are a condensed version of the Java-style script statements. The C++ script
statements show the GUI controls in the OFS appl icat ion and the control propert ies, which are either
control at tributes or act ivi t ies. For example:

ofsClickButton("BUTTON", 52, OFS_ENDMSG, 325);

In th is example, the user cl icks (property 325) a button (control ID 52). OFS_ENDMSG is a flag that
indicates that the GUI act ivi ty ends the current OFS Message.

QALoad also al lows OFS and WWW statements from a Universal session to be scripted in the C++ script ,
providing the abi l i ty to play back WWW and OFS statements. QALoad automatical ly extracts ICX t ickets
and any necessary cookies from the WWW middleware traffic and passes them to the OFS middleware.

Connect ion Statem en ts

The connect ion script l ines in the C++ script vary depending on the type of Forms connect ion mode that is
act ive. You choose the Forms connect ion mode on the Oracle Forms Record Options dialog box. Forms
connect ion modes include server-side recording, HTTP, HTTPS, or socket.

Server-side recording is l im ited to appl icat ions that use Oracle Appl icat ion Server. HTTP connect ion mode
is avai lable for appl icat ions using Forms 9i and for appl icat ions using the patched Forms 6i version
configured with the HTTP servlet. HTTPS connect ion mode is strict ly for SSL-enabled appl icat ions that use

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

116

Forms 9i. Socket connect ion mode is for appl icat ions that use Forms 6i and lower versions, such as Oracle
11i.

Server-side recording connect ions

Server-side recording mode contains only one connect ion statement. The funct ion that is used –
ofsSetServletMode – contains the l istener servlet value that you entered on the Oracle Form s Server
Recording Opt ions dialog box. The first parameter defines the HTTP or HTTPS configurat ion of the
appl icat ion environment. The second parameter defines the name of the Forms Listener Servlet used by the
appl icat ion. To connect, QALoad internal ly invokes Oracle’s dispatch cal ls using the two parameters.
Oracle’s proprietary classes provide the implementat ion for the HTTP or HTTPS connect ion. For example:

ofsSetServletMode(OFS_HTTP, "http://ntsap45b:7779/forms90/l90servlet");

HTTP connect ions

HTTP connect ion mode contains mult iple connect ion statements. To connect, QALoad internal ly performs
Java cal ls to accomplish the fol lowing tasks:

! Define HTTP header propert ies

! Connect to the Forms Servlet (an HTTP-GET request)

! Set the parameters of the Forms Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-GET request)

! Set addit ional HTTP header property for the Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-POST request). The last connect ion statement also
in i t iates the required Forms “ handshake” and determines the Forms encrypt ion used by the
appl icat ion environment .

For example:

ofsHTTPSetHdrProperty("User-Agent", "Java1.3.1.9");
ofsHTTPSetHdrProperty("Host", "ntsap45b:7779");
ofsHTTPSetHdrProperty("Accept", "text/html, image/gif, image/jpeg, *; q=.2, "*/*; q=.2"
);
ofsHTTPSetHdrProperty("Connection", "Keep-alive");
ofsHTTPConnectToFormsServlet(
"http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession");
ofsHTTPSetListenerServletParms("?ifcmd=getinfo&ifhost=C104444D01&ifip= "192.168.234.1"
);
ofsHTTPConnectToListenerServlet("http://ntsap45b:7779/forms90/l90servlet");
ofsHTTPSetHdrProperty("Content-type", "application/x-www-form-urlencoded");
ofsHTTPInitialFormsConnect();

HTTPS connect ions

HTTPS connect ion mode uses the same connect ion statements as HTTP mode.

Socket connect ions

Socket mode contains only one connect ion statement. The funct ion that is used – ofsConnectToSocket –
contains the port number and the URL you entered on the Oracle Forms Record Options dialog box to start
OFS capture. The port value is the port on which the Forms Server direct ly l istens for Forms traffic. To
connect, QALoad uses Java cal ls to open a Java socket using the parameters, in i t iate the required Forms
"handshake” , and determine the Forms encrypt ion used by the appl icat ion environment. For example:

ofsConnectToSocket("10.10.0.167", 9002);

Appl i cat ion Statem en ts

Script Development Workbench

117

The appl icat ion statements in the C++ script consist of property statements and transmission statements.
Property statements describe the attributes and act ivi t ies of GUI controls in the appl icat ion. Transmission
statements send the GUI controls and their propert ies as Forms Message data to the server. There is only
one transmission statement: ofsSendRecv. QALoad creates an in ternal auto checkpoint when th is statement
is executed. In the fol lowing example, the first two (property) statements set the locat ion and size of a
FormWindow GUI control. The ofsSendRecv statement sends the GUI control propert ies to the server.

ofsSetWindowLocation("FORMWINDOW", 6, OFS_ENDMSG, 135, 0, 0); //Property
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500); //Property
ofsSendRecv(1); //Transmission

Parameters of a property statement:

The parameters of a property statement are arranged in the fol lowing sequence:

1. Captured con t rol nam e. If the name is not avai lable, th is value is the class name to which the
control belongs.

2. Captured con t rol ID.

3. Act ion type. This flag indicates i f the property is to be added to the current Forms Message or i f the
property ends the current Forms Message. During playback, each control is treated as a Forms
Message. When the current Message ends, QALoad translates the control and i ts propert ies to
binary format. The val id values are:

 OFS_ADD – add the property to the current Message.

 OFS_ENDMSG – add the property to the current Message and end the Message.

 OFS_STARTSUBMSG – add the property of the succeeding nested Message to the current
Message.

4. Property ID. The Forms version-specific ID of the property.

5. Property value. Captured value of the property (opt ional)

6. Property value. Captured value of the property (opt ional)

For example:

ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);

In th is example, control ID 6, which belongs to GUI class FORMWINDOW, is resized (PROPERTY
137) to have coordinates 650 and 500. This marks the end of the current Message.

Forms environment statements:

The in i t ial set of statements in the Forms script describes the Forms appl icat ion environment. In th is set,
the "version” and the “ cmdline” propert ies are the most important. The version property shows the Forms
Bui lder version used by the appl icat ion. The version indicates the capabi l i t ies of the appl icat ion. For
example, some versions cannot support HTTP connect ions. The cmdline property shows the Forms
configurat ion parameters passed to the server by the Forms applet. The parameter “ record=names”
indicates that the appl icat ion enables GUI control names to be captured. Control names are preferred in
mult i-threaded playback. The “ ICX” parameter indicates that the appl icat ion uses a Personal Home Page.

In the sample script below, the Forms bui lder version is 90290 (the version used in Oracle 9iAS Release 2,
unpatched). The cmdline property shows “ record=forms” which defaults “ record=names” . The cmdline
property does not have the “ ICX” t icket parameter.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);
ofsSetDisplaySize("RUNFORM", 1, OFS_ADD, 264, 1024, 768);
ofsInitSessionCmdLine("RUNFORM", 1, OFS_ADD, 265,
 "server module=test1.fmx userid= sso_userid= debug=no buffer_records=no debug_"
 "messages=no array=no query_only=no quiet=yes render=no host=ntsap45b.prodti.com"

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

118

 "puware.com port= record=forms tracegroup=debug log=run1 term=");
ofsSetColorDepth("RUNFORM", 1, OFS_ADD, 266, "256");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "0");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "8421504");
ofsSetFontName("RUNFORM", 1, OFS_ADD, 383, "Dialog");
ofsSetFontSize("RUNFORM", 1, OFS_ADD, 377, "900");
ofsSetFontStyle("RUNFORM", 1, OFS_ADD, 378, "0");
ofsSetFontWeight("RUNFORM", 1, OFS_ADD, 379, "0");
ofsSetScaleInfo("RUNFORM", 1, OFS_ADD, 267, 8, 20);
ofsSetNoRequiredVAList("RUNFORM", 1, OFS_ADD, 291);
ofsSetPropertyString("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");
ofsSendRecv(1);
//ClientSeqNo=1|CapTime=1086884188.281|MsgCount=1

Sending messages to the server:

The ofsSendRecv statement sends the accumulated GUI controls and their propert ies to the Forms Server as
binary data. This statement represents the point at which the cl ient sends a Forms Terminal Message to the
server. In Oracle Forms, the cl ient and the server must end each data block with a Terminal Message before
any transmission occurs.

In ternal ly, QALoad varies the binary data transmission depending on the connect ion mode:

! For server-side recording mode, QALoad sends the binary data by invoking Oracle’s dispatch cal ls.
Oracle’s own classes provide the implementat ion for the HTTP transmission.

! For HTTP or HTTPS mode, QALoad wraps the binary data inside an HTTP stream and invokes Java’s
HTTP cal ls.

! For socket mode, QALoad sends the binary data direct ly to the Java socket opened at the
connect ion point .

The ofsSendRecv statement has one parameter: the response code of the captured Terminal Message. The
possible values for th is parameter are 1 (add), 2 (update), and 3 (close). Typical ly, when the response code
is 3, the Forms Server reacts by removing the GUI controls associated with the cl ient message from the
server cache.

A comment l ine appears after each ofsSendRecv statement that contains script-tracking in formation. The
information on the comment l ine is also found in the capture fi le in each ofsSendRecv capture l ine. The
comment l ine shows the relat ive sequence of each cl ient request, as represented by a Terminal Message,
from the start of the appl icat ion (e.g. Cl ientSeqNo=1). The comment l ine also shows the t im ing mark of
the captured Terminal Message (e.g. CapTime=1086884188.281) and the number of Forms messages
contained in the request (e.g. MsgCount=1). The number of Messages can be veri fied by count ing the
preceding ENDMSG and STARTSUBMSG flags in the request block. The comment l ine is useful for
debugging playback issues because i t readi ly shows the cl ient request sequence number where the issue is
occurring.

Getting the server reply:

During the execut ion of ofsSendRecv, QALoad also obtains the server’s reply and translates the binary
Forms data in to Forms control values and control propert ies. The values are also writ ten to the playback
log fi le (in capture fi le format) i f script logging is enabled. The fol lowing sample is a server reply:

VU 0 : M|S|2|0|1
VU 0 : P|S|322|java.lang.Integer|0|151000320
VU 0 : P|S|279|java.lang.Boolean|0|false
VU 0 : P|S|525|java.lang.String|AMERICAN_AMERICA.WE8MSWIN1252
VU 0 : T|S|1|ServerSeqNo=1|MsgCount=76

The first l ine indicates the start of a Forms Message from the server (M |S). The th ird parameter is an act ion
code (1= add, 2= update, 3= delete, 4= get property value). The fourth parameter is the Class Code of the
control (0 = root class). The fi fth parameter is the Control ID (1= RunForm).

Script Development Workbench

119

The second, th ird and fourth l ines are property l ines related to the above Forms Message from the server
(P|S). The th ird parameter of each l ine is the property ID (322). The fourth parameter is the data type of
th is property (java.lang.In teger). The fi fth parameter is the data value. If the value is 0, the data value is in
a sixth parameter (false).

The th ird l ine is the terminal message l ine from the server (T|S). The th ird parameter is the response code
associated with the terminal message (1= add, 2= update, = close). The fourth parameter is the relat ive
sequence of the server reply, as represented by a Terminal Message, from the start of the appl icat ion (e.g.
ServerSeqNo= 1). The fi fth parameter is the number of Forms messages contained in the reply (e.g.
MsgCount = 1). The number of Messages may be veri fied by count ing the preceding M|S flags in the reply
block. The fourth and fi fth parameters are script-tracking in formation, which can be useful for debugging
a playback issue. If logging is enabled, the log fi le shows the tracking in formation, which can make the
comparison between server responses and captured responses easier.

Processing large data and delayed response scenarios:

When HTTP or HTTPS connect ion mode is used, Forms data is wrapped inside the HTTP reply stream.
QALoad checks the HTTP header of the reply before processing the Forms data. The HTTP header
sometimes indicates that the cl ient needs to perform addit ional HTTP POST requests to obtain the
complete Forms data. This indicat ion occurs when the content-length of the reply is 64000 (a large data
scenario), or the content-type is "text/plain” and the HTTP header contains an “ i ferror: ” string (a delayed
response/re-post scenario). QALoad performs the necessary POST requests to obtain the complete reply
data, and then translates the accumulated reply data to Forms controls and propert ies.

Disconnect statem en ts

The disconnect script l ines vary depending on the Forms connect ion mode.

! In server-side recording mode, the ofsServerSideDisconnect script statement in ternal ly invokes
Oracle’s dispatch cal ls to disconnect.

! In HTTP mode, the ofsHTTPDisconnect statement in ternal ly makes Java cal ls to disconnect the
main URL connect ion from the servlet.

! In socket mode, the ofsSocketDisconnect statement closes the socket on which the Forms Server
l istens for traffic.

Using Script Logging as a Debugging tool

You can debug a playback issue in a C++ script by enabl ing replay logging. The opt ion for enabl ing replay
logging is located on the Script Assignment tab of the Conductor. For more in formation about enabl ing log
fi le generat ion, see Debugging a script .

When logging is enabled, QALoad writes the cl ient requests and server repl ies to the playback log fi le in the
same format as the capture fi le. The playback log fi le is found in the \QALoad\LogFiles directory. When
there is an issue during playback, such as the server not responding to a cl ient request, you can compare
the capture fi les and check the differences in the server reply data. Both the capture fi le and the log fi le
contain tracking in format ion appended to the server’s terminal messages. The tracking data contains the
relat ive sequence number of the server reply from the start of the Forms session and the t im ing mark. The
tracking data also shows the number of Forms messages contained in the reply block. The number of
messages are based on the number of “ M |S” l ines prior to the “ T|S” l ines.

In the fol lowing example, the first set of statements shows the logged statements and the second set of
statements shows the captured statements. The ServerSeqNo value shows that th is is the 8th reply from the
server. The MsgCount value of 1 shows that only one Forms Message is included in th is reply block.

1087419810.000|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087419810.000|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087419810.000|MsgCount=1
1087419810.000|M|S|2|0|30
1087419810.000|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

120

1087419810.000|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087419810.000|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000T|S|1|ServerSeqNo=8|CapTime=1087419810.000|MsgCount=1

1087402349.296|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087402349.296|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087402349.296|MsgCount=1
1087402349.296|M|S|2|0|30
1087402349.296|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087402349.296|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|T|S|1|ServerSeqNo=8|CapTime=1087402349.296|MsgCount=1

M oving the OFS Transact ion Loop

To enable movement of the QALoad transact ion loop in the C++ script , you must fi rst record a ful l business
transact ion and a part ial business transact ion. The business transact ion is the act ivi ty that you would l ike
to repeat during QALoad playback. Insert QALoad capture comments (using the Insert Com m and button
on the Recording toolbar) at the start and end of a business transact ion. These comments wi l l help you
find the spots in the script where you would l ike to reposit ion the BEGIN_TRANSACTION() and
END_TRANSACTION() statements. Then re-start the business transact ion.

QALoad's OFS script presents a sequence of Forms GUI objects. The GUI objects contain context
dependencies. For example, when a window is opened, the buttons, text fields and edit boxes inside that
window are logical ly dependent on the state of that window. When only one business transact ion is
captured and the corresponding script ’s transact ion loop is moved, the sequence of the GUI objects is
broken during the second i terat ion of the transact ion loop. The broken sequence results in a broken
context, which causes the server to respond unpredictably during playback on the second and subsequent
i terat ions of the transact ion loop. When the business transact ion is restarted during capture, the Forms
GUI objects that compose the new transact ion are used to anchor in to the new transact ion loop without
breaking the context dependencies of GUI objects.

When modifying the script , use the comment l ines as guides in moving the END_TRANSACTION() and
BEGIN_TRANSACTION() statements. Ensure that there is a contextual flow from the new posit ion of the
END_TRANSACTION() statement to the new posit ion of the BEGIN_TRANSACTION() statement. The set of
GUI objects that belong to the ofsSendRecv() statement just before the new END_TRANSACTION()
statement must be the same as the set of GUI objects that belong to the ofsSendRecv() statement prior to
the new BEGIN_TRANSACTION() statement.

During playback, modify the Conductor sett ing for Transact ion Pacing on the Script Assignment tab to
al low the database to process each new business transact ion.

The fol lowing example shows a modified OFS transact ion loop:

New position of the BEGIN_TRANSACTION statement

/*
NewSales
*/

DO_SLEEP(13);
ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=31|MsgCount=2|1093981339.921
BEGIN_TRANSACTION();

Script Development Workbench

121

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsRemoveFocus("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 174);
ofsSetSelection("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ADD, 195, 0, 0);
ofsSetCursorPosition("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 193, "0");
ofsFocus("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 174);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=32|MsgCount=4|1093981347.296

New position of the END_TRANSACTION statement

/*
EndTrans
*/

DO_SLEEP(39);
ofsSendRecv(1); //ClientSeqNo=61|MsgCount=4|1093981458.031

ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsSelectMenuItem("Sales Orders", 257, OFS_ENDMSG, 477, "MENU_11059");

DO_SLEEP(26);
ofsSendRecv(1); //ClientSeqNo=62|MsgCount=2|1093981485.265

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(3);
ofsSendRecv(1); //ClientSeqNo=63|MsgCount=2|1093981488.437
END_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsIndexSKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 176, 10, 0);

DO_SLEEP(13);
ofsSendRecv(1); //ClientSeqNo=64|MsgCount=2|1093981502.640

Tips:
During capture, the OFS configuration parameter "record=names" must be enabled to produce control names
that may be included in the converted script. Control names persist throughout the Forms session, unlike
control IDs, whose values may change at runtime. Add the “ record=names” parameter in the Formsweb.cfg
file or add this parameter to the startup servlet URL.
Control IDs can create problems when the transaction loop is moved. Some of the control IDs that have been
instantiated by the server prior to the new transaction loop lose context during iterations of the new loop. For
example, in a second loop iteration, the server assumes that these client controls are new, generates new
control IDs, and eventually cannot find the proper context. Then the server stops responding. If control names
are used, Forms objects that have been instantiated before the new transaction loop are maintained through
all iterations of the loop because the control name persists throughout the application session.
During playback, ensure that the sleep factor is at 100% and that the transaction pacing is set to a large
enough value for the server to process the business transaction that is contained in the new loop. These
options can be set on the Script Assignment tab of the Conductor.

SAP

Requi red Com m ands

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

122

Certain commands must be present in an SAP script for i t to run successful ly. These commands are created
automatical ly during the conversion process. Most of the commands exist before the
BEGIN_TRANSACTION statement. The required commands include:

SET_ABORT_FUNCTION(abort function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info, "ERROR initializing COM");

SAPGuiSetCheckScreenWildcard(‘*’);
SYNCHRONIZE();

Required commands for transact ion restart ing

When transact ion restart ing is enabled in the Conductor for an SAP script , the fol lowing commands,
which are automatical ly added by QALoad during script conversion, must exist for the script to run:

SAPGuiApplication(RegisterROT);
SAPGuiApplication(RevokeROT);
SAPGui_error_handler(s_info, buffer);

The SAPGuiApplicat ion command properly registers and removes the script 's SAP GUI usage on the
Runtime Object Table (ROT). If a transact ion fai ls, these act ions are taken to start and clean up the SAP
environment.

Note: Do not call RR__FailedMsg in an SAP script if the script includes a restart transaction operation.
SAPGui_error_handler can be called with the same parameters as RR__FailedMsg to output a fatal error
message while still allowing a proper clean up of the current transaction before restarting the transaction.

Error Handl ing and Report i ng

A try/catch block is automatical ly generated for the commands between the BEGIN_TRANSACTION and
END_TRANSACTION statements. This construct provides error handl ing and report ing from the script .

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");

 //Set SapApplication = CreateObject("Sapgui.ScripingCtrl.1")
 //SapApplication.OpenConnection ("qacsapdb")
 //Set Session = SapApplication.Children(0).Children(0)

 DO_SLEEP(3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 83, 24, false);

 DO_SLEEP(6);

 SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
 SAPGuiCmd1(GuiTextField,PutText,"qaload1");

 SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
 SAPGuiCmd1Pwd(GuiPasswordField, PutText,"~encr~1211616261");

 SAPGuiCmd0(GuiPasswordField,SetFocus);
 SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd1(GuiMainWindow,SendVKey,0);
 SAPGuiCheckScreen("S000","SAPMSYST","SAP");

Script Development Workbench

123

 ...

 DO_SLEEP(10);

 SAPGuiPropIdStr("wnd[0]/usr/cntlIMAGE_CONTAINER/shellcont/shell/shellcont[0]/shell");
 SAPGuiCmd1(GuiCtrlTree, ExpandNode, "0000000003");
 SAPGuiCmd1(GuiCtrlTree, PutSelectedNode, "0000000004");
 SAPGuiCmd1(GuiCtrlTree, PutTopNode, "Favo");
 SAPGuiCmd1(GuiCtrlTree, DoubleClickNode, "0000000004");
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf (buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on with in the transact ion loop, move the SAPGuiConnect cal l inside the try block as
shown in the fol lowing example:

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("capture.cpp");
RESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");
 ...
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){

 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on outside the transact ion loop, move the log off sect ion so that i t fol lows the
END_TRANSACTION statement. However, ensure that the recording with in the transact ion loop begins
and ends in the same locat ion in the menu system. For example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

124

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");
SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

SAPGuiConnect(s_info,"qacsapdb2");

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~1211616261");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");

BEGIN_TRANSACTION();

try{
 SAPGuiVerCheckStr("6204.119.32");
 ...
} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

Handl ing M ul t i ple Logons

You may need to modify your script to handle mult iple logons when the recording scenario differs from
the run-t ime scenario. For example, i f when you record, no users are logged on to the SAP environment
and when you run the script , users are already logged on, the script may fai l . To work around th is issue,
you can use the SAPGuiPropIdStrExists and SAPGuiPropIdStrExistsEnd commands to handle either
scenario. This technique works by checking for the mult iple logon dialog box from SAP and select ing the
Con t inue opt ion.

The fol lowing example demonstrates the usage of the SAPGuiPropIdStrExists and
SAPGuiPropIdStrExistsEnd commands to handle mult iple logons:

...

SAPGuiCheckScreen("S000","SAPMSYST","SAP");
SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 DO_SLEEP(24);

 SAPGuiCmd0(GuiRadioButton,Select);
 SAPGuiCmd0(GuiRadioButton,SetFocus);
 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("S000","SAPMSYST","License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/ radMULTI_LOGON_OPT2");

...

Script Development Workbench

125

Check ing the SAP Status Bar

The SAP status bar displays error and status messages, as shown in the fol lowing figure.

You can use the SAPGuiCheckStatusbar command to test for certain status responses in the SAP
environment.

The SAPGuiCheckStatusbar command is used in the fol lowing script example:

...
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow, SendVKey, 0);
SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");
SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found

BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar", "E: Make an entry in all required
fields");

if (bRetSts)
 RR__printf(" True\n");

else
 RR__printf(" False\n");

...

Object Li fe Span

Whenever a script is run, al l objects on the SAP GUI window are deleted and re-created. These objects,
which are created in the SAP environment and can disappear without user in teract ion, can cause script
fai lure i f the script references the objects after they have disappeared.

For more troubleshoot ing in formation, refer to SAP’s publ icat ion t i t led “ SAP GUI Scripting API for the
Windows and Java Platforms” .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

126

Winsock

Understanding Data represen tat ion in the Script

This sect ion describes how data that is sent and received is displayed in a Winsock script . Use th is sect ion
as a reference when you examine a script .

During the conversion process, QALoad determines how to represent each character in the script . This
conversion process uses the fol lowing rules:

1. The character is compared to the “ space” character in the ASCII table, which has a
decimal value of 32. If the character’s value is less than 32, the fol lowing steps are taken:

a. If the character is “ \ r” , “ \ n” , “ \ t” , or “ \ f” , i t is represented in the script as a normal C escape
character.

b. If the character is either “ ^ \ ” or “ ^^” , i t is represented in the script as an octal character. For
example, the values would be “ \ 034” and “ \ 036” , respect ively.

c. If the character’s value is less than 32 and i t does not meet the descript ions in a) and b) above,
i t is represented in the script as a control character. For example, i f the character is a nul l
character, i t is represented in the script as “ ^@” .

2. If the character’s decimal value is between 32 (the “ space” character) and 126 (~), i t displays in the
script as a standard readable ASCII character, with the fol lowing except ions:

 If the character is “ \ ” , which has a decimal value of 92, i t is represented as “ \ \ ” in the
script .

 If the character is “ “ “ , which has a decimal value of 34, i t is represented as “ \ ” ” in the
script .

 If the character is “ ^” , which has a decimal value of 94, i t is represented as “ ^^” in the
script .

3. If the character has a decimal value of 127, which corresponds to Delete (DEL), i t is represented as
“ ^” in the script .

The fol lowing table summarizes the results of rules 1-3.

Code Octal Decim al Char

^@ 000 0 NUL

^A 001 1 SOH

^B 002 2 STX

^C 003 3 ETX

^D 004 4 EOT

^E 005 5 ENQ

^F 006 6 ACK

^G 007 7 BEL

^H 010 8 BS

\t 011 9 HT

Script Development Workbench

127

\n 012 10 LF

^K 013 11 VT

\f 014 12 FF

\r 015 13 CR

^N 016 14 SO

^O 017 15 SI

^P 020 16 SLE

^Q 021 17 SC1

^R 022 18 DC2

^S 023 19 DC3

^T 024 20 DC4

^U 025 21 NAK

^V 026 22 SYN

^W 027 23 ETB

^X 030 24 CAN

^Y 031 25 EM

^Z 032 26 SIB

^[033 27 ESC

\034 034 28 FS

^] 035 29 GS

^_ 037 31 US

 040 32 SP

\" 042 34 "

\\ 134 92 \

^^ 136 94 ^

^? 177 127 DEL

4. If the character is not included in the groups defined in steps 1-3, i t is represented as an octal
character in the script . These characters are often referred to as h igh ASCII characters (those with a
decimal value greater than 128), and are represented in the script as “ \ OOO” , where OOO is the
octal value for the ASCII character.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

128

Handl ing Winsock appl i cat ion data f l ow

Frequently, server programs return unique values (for example, a session ID) that vary with each execut ion
of the script and may be vital to the success of subsequent transact ions. To create scripts that include these
values, you need to subst i tute the hard-coded values returned by the server with variables. The fol lowing
original and modified code examples demonstrate th is technique.

Original code

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///
// The session id returned by the server is
// unique to each connection
///

/* 21bytes: SessionID=jrt90847\r\n */

Script Development Workbench

129

DO_WSK_Expect(S1, "\n");

//
// This unique id is then used for subsequent
// requests
//

/* 34 bytes */

DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);
}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();
}

Modified code

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

130

char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null-terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = '\0';

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

//
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
//

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

Saving Server Repl ies

Script Development Workbench

131

There are two methods for saving the ent ire reply that a server sends back. The fol lowing paragraphs
describe each method.

Using the Response() and ResponseLength() commands

The Response() command can be cal led direct ly after the DO_WSK_Expect() command. It returns a pointer
to the data that has been received by DO_WSK_Expect(). To also receive the length of the replay, cal l the
ResponseLength() command, which returns the number of characters that were received. The fol lowing
example uses the Response() and ResponseLength() commands.

Example

In th is example, variables are declared to store the results from the two funct ions. Both funct ions are also
used to save the buffer that is received with in the DO_WSK_Expect() command.

/* Declare Variables */
int x = 0;
char *temp;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

DO_WSK_Expect(S1, "d");

// Used to store the data that was received by the
// DO_WSK_Expect

temp = Response();

// Used to get the size of the response that was received
// so far

x = ResponseLength();

/* The line below will print the length of the response and the actual response */

RR__printf(“length = %d, and response= %s",x, temp);
DO_WSK_Closesocket(S1);

The message “ length=21 response=You are now connected” displays in the Player buffer window.

Using the DO_WSK_Recv() command

To save a response based on i ts size instead of a unique character string that is used with in the
DO_WSK_Expect() command, use the DO_WSK_Recv() command. This command enables you to specify
how much data to receive and where to store the data.

You can also use the DO_WSK_Recv() command to store the reply that is returned from the server. This
strategy is useful when you need to retrieve the buffer that is returned from the server, even though the
returned data is too dynamic and causes the DO_WSK_Expect() command to fai l every t ime.

Example

In th is example, the DO_WSK_Recv() command is used to save a server reply based on size. Two variables
are declared to store the results from the DO_WSK_Recv() command.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

132

/* Declare Variables */
int size = 0;
char temp[45];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

memset(temp,'\0',45);
DO_WSK_Recv(S1,temp,45,0,&size);
RR__printf("size=%d string=%s",size,temp);
DO_WSK_Closesocket(S1);

The message “ size=21 string=You are now connected” displays in the Player buffer window.

Note: If you use this method as a substitute for the DO_WSK_Expect() command, ensure that you receive
the correct information prior to calling the next function in the script.

Parsing server repl i es for values

To parse a buffer for a part icular value, you can write a parsing rout ine that searches the ent ire buffer for
the value. However, you can also use one of QALoad ’s Winsock helper commands. The fol lowing scenarios
describe two situat ions in which you could use the Winsock commands to solve a parsing problem.

Scenario 1:

To find a string in a server reply, you can use the SkipExpr() and ScanExpr() commands. SkipExpr()
searches for the first occurrence of a string in the in ternal buffer that contains the response that was
received with in the DO_WSK_Expect() command. Then, use the ScanExpr() command to search for
another string. ScanExpr() saves the buffer from the first occurrence of the string that was used with
SkipExpr() up to and including the string used with in ScanExpr(). The first parameter of ScanExpr() is a
UNIX-style regular expression. The fol lowing table l ists the most common expressions:

Character M ean ing

. Matches the end of a string.

* Matches any number of characters.

? Matches any one character.

Example In th is example, the buffer contains “ sessionid=1234567890abc” , and the goal is to retrieve
everyth ing after the “ =” , up to and including “ abc” .

/* Declare Variables */
char temp[35];
int size = 0;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

Script Development Workbench

133

/* 23 bytes: sessionid=1234567890abc */

DO_WSK_Expect(S1, "c");
SkipExpr("sessionid=");
size=ScanExpr(".*abc" , temp);
RR__printf("length = %d string = %s", size, temp);
DO_WSK_Closesocket(S1);

The message “ length=13 string=1234567890abc” displays in the Player buffer window.

Scenario 2:

You may have data returned from the server that is too dynamic, that is, you are not able to base parsing
on actual characters. The solut ion is to base the parsing on character posit ions instead.

For example, to save the characters 20 through 25, you could use the ScanSkip() and ScanString()
commands. ScanSkip() skips a specified number of characters in the in ternal buffer that stores the response
that was received with in the DO_WSK_Expect() command. ScanString() scans a number of characters from
the current posit ion with in the buffer in to a character string.

Example

In th is example, a buffer contain ing “ xxx123456789yyy” is returned from the server. The value between
“ xxx” and “ yyy” is returned.

/* Declare Variables */

char temp[15];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 16 bytes: xxx0123456789yyy */

memset(temp,'\0',15);
DO_WSK_Expect(S1, "yyy");
ScanSkip(3);
ScanString(10,temp);
RR__printf("string=%s",temp);
DO_WSK_Closesocket(S1);

The message “ string=0123456789” displays in the Player buffer window.

WWW

Sim ulat ing Variable IP Addresses

While QALoad can simulate mult iple virtual users from a single system, i t general ly does so using a single
source IP address. In most test ing situat ions th is isn ’t a problem, but with a small set of HTTP-based
appl icat ions, i t may not be the best way to simulate real-l i fe act ivi ty. For QALoad Player machines with
more than one stat ic IP address, QALoad can direct each virtual user to use a di fferent source IP address.

To accomplish th is, a local datapool fi le contain ing a l ist of local stat ic IP addresses must be created on
each QALoad Player mach ine. When you enable IP spoofing in the QALoad Conductor, the QALoad
Conductor instructs each QALoad Player to create the appropriate datapool fi le at run t ime. The QALoad
Player uses these addresses for connect ions to HTTP and SSL servers. Each virtual user receives one address
for use with al l i ts connect ions. If there are more virtual users than addresses, IP addresses are re-used
start ing from the beginning of the datapool fi le.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

134

Modifying a Script to Use Variable IP Addresses

QALoad uses the DO_IPSpoofEnable command to insert IP addresses from the datapool in to the script .
When th is command is executed, the script opens the datapool fi le located on the QALoad Player, reads
the first avai lable data record, and stores that record for use on al l subsequent DO_Http and DO_Https
cal ls. If there are more virtual users than IP addresses in the datapool fi le, IP addresses are reused. You can
automatical ly generate the DO_IPSpoofEnable command in your script during conversion by select ing the
IP Spoofing opt ion from the QALoad Script Development Workbench’s WW W Advanced dialog box.
Access th is dialog box from the Convert Options wizard’s WWW tab by cl icking the Advanced button.
This opt ion inserts the DO_IPSpoofEnable command direct ly in the script during conversion, before the
first DO_Http or DO_Https command.

Creat ing a Datapool of IP Addresses

Use the fol lowing procedure to create a datapool of val id IP addresses from the QALoad Conductor. This
fi le is automatical ly created on the QALoad Player workstat ions (Windows and UNIX) at run t ime.

To creat e a dat apool of IP addresses:

1. Start QALoad Conductor.

2. Click the M ach ine Assignm en t tab.

3. Select a script in the Script field.

4. Click Manager Players. The Manage Player Machines and Groups dialog box appears.

5. Double-cl ick the Player machine name in the l ist . The Propert i es dialog box appears.

6. Select the Generate IP Spoof Data (m ach ines w i th m ul t i ple IP addresses on ly) opt ion in the
Player Machine sett ings field.

7. Click OK.

At run t ime, the QALoad Conductor sends a command to each QALoad Player Agent to create the datapool
fi le of IP addresses, and the script is sent to the server using the different IP addresses.

The Generate IP Spoof Data check box is val id only for WWW scripts.

Note: The machine on which the QALoad Conductor resides must have static IP addresses assigned to it. If
no static IP addresses are found, the QALoad Conductor displays a warning and the datapool file is not
generated. The datapool file is named ipspoof.dat, and is saved in the \Compuware\QALoad\Datapools
directory.

Handl ing Error M essages f rom the Web Server

When a server returns an error message, i t returns i t in one of two ways. It ei ther returns an error message
with a response code (for example, 404 Not Found) or returns an HTML page that contains an error
message. The fol lowing sect ions provide examples of code that you can use in your script to handle errors
that the Web server returns to the browser.

Handling error messages with response codes

The example below demonstrates how to write code to handle error messages that include response codes
that the Web server returns to the browser. The code performs the fol lowing act ions:

! Checks for an error code using the DO_GetLastHttpError command

! Aborts or cont inues script execut ion, based on the WWW_FATAL_ERROR statement

Example

Script Development Workbench

135

int error;
char errorString[30];

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

if((error = DO_GetLastHttpError()) > 399)

{
sprintf(errorString, "Error in response: %d\n", error);
WWW_FATAL_ERROR("Request-host", errorString);
}

Handling error messages returned in an HTML page

The examples below demonstrate how to write code to handle error messages that the Web server returns
to the browser in an HTM L page.

Using DO_VerifyDocTitle to verify page requests

By insert ing the DO_VerifyDocTit le command into your script , you can compare the HTML document
t i t les in your load test script with the document t i t les you original ly captured. The code performs the
fol lowing act ions:

! Calls DO_Http to request an HTML page from the Web server

! Calls DO_VerifyDocTit le with the original HTML document t i t le. If the t i t les do not match,
DO_VerifyDocTit le exits the script

Exam ple

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

Searching response text for error messages

In some scripts, error messages are displayed as text in an HTML page. The fol lowing example
demonstrates how to detect these messages in a script . The code performs the fol lowing act ions:

! Searches for errors returned as HTML from the Web server

! Branches to error handl ing code

Exam ple

int response;
response = DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
if (strstr (response, "200 OK") == NULL)
 WWW_FATAL_ERROR("host", "Response did not have 200 OK");

Sim ulat ing JavaScript

JavaScript is handled by the fol lowing process:

1. The browser makes a page request to a server for a page that contains JavaScript.

2. Because JavaScript is simply uncompiled code, the browser downloads and immediately executes
th is code upon receipt of the page.

Supported Objects

QALoad supports the bui l t -in JavaScript objects (global, object, funct ion, array, string, boolean, number,
math, date, regexp, and error), document objects, and image objects.

Supported Propert ies

The only document propert ies that QALoad supports are cookies, t i t le, and the images array. The only
image property that QALoad supports is src.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

136

Evaluation Errors

If an object, property, or funct ion used with in a block of JavaScript code is not defined, i t causes a
JavaScript except ion. The except ion stops evaluat ion of that block.

Example Web Page

The fol lowing Web page contains the JavaScript funct ion and an onLoad tag that cal ls the scrol l i t funct ion.
The onLoad tag tel ls the browser to execute the JavaScript immediately after loading the page. The scrol l i t
funct ion displays a scrol l ing banner region on the Web page.

<HTML>
<HEAD>
<TITLE>Java Script Example</TITLE></HEAD>

<SCRIPT LANGUAGE="JavaScript" src="js_do_nothing.js">

function scrollit_r2l(seed)
{

var m1 = " Welcome to Compuware's QALoad homepage.";
var m2 = " Glad to see you.";
var m3 = " Thanks for coming. ";
var msg = m1 + m2 + m3;
var out = " ";
var c = 1;

if (seed > 100) {
seed--;
var cmd="scrollit_r2l(" + seed + ")";
timerTwo=window.setTimeout(cmd,100);
}

else if (seed <= 100 && seed > 0) {
for (c=0 ; c < seed ; c++) {
out+=" ";
}
out+=msg;
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else if (seed <= 0) {
if (-seed < msg.length) {
out+=msg.substring(-seed,msg.length);
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else {
window.status=" ";
timerTwo = window.setTimeout("scrollit_r2l(100)", 75);
}
}
}

</script>

<BODY onLoad="timerONE=window.setTimeout('scrollit_r2l(100)',500);">
<!-- End scrolltext -->

<center><h2>Java Script Example</h2><hr>Check out the browser's scrolling status
 bar.

</center>

Script Development Workbench

137

</BODY></HTML>

Example script

The fol lowing script features a DO_Http cal l to retrieve the JavaScript page.

How I t Works: QALoad evaluates the JavaScript in the context of script blocks, onLoad tags, and src and
then executes them.

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/js.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Script Example", TITLE);

...

...

END_TRANSACTION();

Sim ulat ing Cook ies

This sect ion describes how QALoad handles cookies. Cookies are handled by the fol lowing process:

1. The browser makes a CGI request to a server for a dynamic page.

2. When the server sends the page back to the browser, the page includes a cookie in the header. The
browser saves the cookie along with in formation that t ies i t to the Web server.

3. On al l subsequent requests to that Web server, the browser passes the cookie along with the
request .

Example Web page

The fol lowing CGI Perl script generates a Set-Cookie header as a part of subsequent HTTP requests.

Set-Cookie: SaneID=172.22.24.180-4728804960004
Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

<html>

...

The cookies for this site are:

SaneID=172.22.24.180-4728804960004; SITESERVER=ID=f0544199a6c5970a7d087775f83b23af
<P>

Next cookie for this URL will be : 1

RELOAD PAGE TO INCREMENT COUNTER

Return to
previous homepage.

Example script when Dynamic Cookie Handling is turned on

This is the default method by which QALoad handles cookies. The example script features the fol lowing
elements:

! Two CGI requests that return dynamic pages

! Cookies are handled by the replay engine

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

138

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(TRUE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

/* Request: 2 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Example script when Dynamic Cookie Handling is turned off

The example script features the fol lowing elements:

! A CGI request that returns a dynamic page

! Two DO_GetCookieFromReply cal ls to retrieve the cookie from reply

! Two DO_SetValue cal ls to set the cookie

! A free cookie

How I t Works: For cookies that are set with CGI scripts, the script stores incoming cookies in a variable
and passes them back to the Web browser in the reply from the CGI script . The script handles these
cookies by execut ing a DO_GetCookieFromReply command after the CGI request.
DO_GetCookieFromReply stores the cookie values in variables, which the script then passes back to
subsequent CGI requests using the DO_SetValue command.

int i;
char *Cookie[4];

...

...

for(i=0;i<4;i++)
Cookie[i]=NULL;
DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(FALSE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl
 "HTTP/1.0\r\n\r\n");

/*Set-Cookie: NUM=1 */
DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/*Set-Cookie: SQUARE=1 */
DO_GetCookieFromReplyEx("SQUARE", &Cookie[1], '*');

/* Request: 2 */
DO_SetValue("cookie000", Cookie[0]); /* NUM=1 */
DO_SetValue("cookie001", Cookie[1]); /* SQUARE=1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "

Script Development Workbench

139

 "HTTP/1.0\r\n"
 "Cookie: {*cookie000}; {*cookie001}\r\n\r\n");

...

...

DO_HttpCleanup();
for(i=0; i<4; i++)
{
free(Cookie[i]);
Cookie[i]=NULL;
}

END_TRANSACTION();

Execut ing a Visual Basic scri pt

QALoad does not evaluate a Visual Basic script . However, any Visual Basic script request that occurs is
inserted in to the script as a main request.

Sim ulat ing Fram es

Frames are handled by the fol lowing process:

1. The browser makes a main page request to a Web server for a page that contains frames.

2. The browser parses the frame pages and places them in sub-windows with in the browser, each of
which displays the frame content.

Example Web Page

The fol lowing Web page contains four frames.

<HTML>
<HEAD>
<TITLE>FRAME Example</TITLE>
</HEAD>

<! -- Here is the FRAME information for browsers with frames -->

<FRAMESET Rows="*,*"><!-- Two rows, each equal height -->
 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ul-frame">
 <FRAME Src="findex.htm" Name="ur-frame">
 </FRAMESET>

 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ll-frame">
 <FRAME Src="findex.htm" Name="lr-frame">
 </FRAMESET>
</FRAMESET>

</HTML>

Example Script

QALoad automatical ly generates al l constructs necessary to request frames. The example script features the
fol lowing element:

! A DO_Http cal l to retrieve the main page.

How I t Works: The frames are treated as sub-requests and are evaluated and requested by QALoad .

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

140

...

...

DO_Http("GET http://www.host.com/frameset.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("FRAME Example", TITLE);

...

...

END_TRANSACTION();

Sim ulat ing Brow ser Cach ing

Browser caching is handled by the fol lowing process:

1. When the browser makes a request for stat ic HTML pages, i t may include an opt ion to retrieve the
page only i f i t is newer than the one held in the browser’s cache.

2. If browser caching is enabled, the server returns only newer versions of the page. If browser caching
is not enabled, the server always returns the page.

How I t Works: The QALoad Script Development Workbench disables browser caching while recording,
which means a page is always retrieved.

Request ing Passw ord-protected Di rectories

Web developers use password-protected directories to protect access to some pages. When the browser
requests a page in a password-protected directory, the server returns a special response that specifies the
page is password-protected. When the browser receives th is type of reply, i t gathers the user ID and
password, encrypts them, and passes them back to the server in a subsequent request.

Example Script

QALoad automatical ly generates al l the constructs that are necessary to execute a request of a password-
protected directory.

The example script features the fol lowing elements:

! DO_BasicAuthorizat ion, which takes the user ID and password as parameters

! DO_Http request to the password-protected directory

BEGIN_TRANSACTION();
DO_BasicAuthorization("frank", "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/access_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a Secured Page", TITLE);

...

...

END_TRANSACTION();

Example Script

QALoad also handles Windows Domain Authent icat ion (NTLM).

The example script features the fol lowing elements:

! A DO_NTLMAuthorizat ion cal l , which takes the domain, user ID, and password as parameters

! DO_Http request to the NTLM protected directory

BEGIN_TRANSACTION();
DO_NTLMAuthorization("dom1\\frank", "~encr~557A2549474E57444A");

Script Development Workbench

141

...

...

DO_Http("GET http://www.host.com/ntlm_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a NTLM Page", TITLE);

...

...

END_TRANSACTION();

Reuse SSL session ID

This opt ion is avai lable only on an SSL instal lat ion of QALoad . By default , th is opt ion is not selected and
SSL session IDs are not re-used, which reflects standard browser behavior. If your appl icat ion re-uses SSL
session IDs, consider select ing th is opt ion.

The Reuse SSL session ID opt ion is used by the replay engine at replay t ime and the current session’s ID is
re-used for al l the requests with in the transact ion.

Script example with the Reuse SSL Session ID opt ion selected

The fol lowing example has the Reuse SSL session ID check box selected.

...

...

SYNCHRONIZE();

/* Select following statement for reuse of Session ID with */
/* SSL. If session ID needs only to be reused within */
/* a transaction insert after the BEGIN_TRANSACTION */
/* statement */

/* DO_SSLReuseSession(TRUE); */

BEGIN_TRANSACTION();

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/subs.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Page Of Subs", TITLE);

...

...

END_TRANSACTION();

...

...

Script example with the Reuse SSL Session ID not selected

The fol lowing example has the Reuse SSL session ID check box cleared.

...

...

SYNCHRONIZE();

/* Select following statement for reuse of Session ID */
/* with SSL. If session ID needs only to be reused within */
/* a transaction, insert after the BEGIN_TRANSACTION */
/* statement */

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

142

/* DO_SSLReuseSession(FALSE); */

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/subs.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Page Of Subs", TITLE);

...

...

END_TRANSACTION();

...

...

CGI Requests

Simulat ing CGI Requests

The fol lowing topics describe strategies for simulat ing CGI requests:

CGI Parameter Encoding

CGI Get Requests

CGI Post Requests

CGI Forms

CGI Parameter Encoding

Common Gateway Interface (CGI) is widely used on World Wide Web sites to provide the abi l i ty to run
server-side scripts that can take variable input from a Web browser. QALoad recognizes when the browser
has communicated to a CGI si te and automatical ly creates variables for parameters whenever necessary. For
example, many CGI submission forms contain h idden parameters that the user cannot modify, but are
always sent in the WWW request. Because these values can contain variable data, QALoad inserts
statements in to the script to store these h idden parameters in variables and append them automatical ly to
CGI requests.

CGI requests also include parameters that the browser has al lowed the user to modify. For example, a CGI
form might require a user to enter a name and address and cl ick a submit button to cont inue. QALoad does
not automatical ly store these types of parameters in variables, but instead provides an easy way to modi fy
the content of the parameters that are being sent in the CGI request using the DO_SetValue command.

When you modify parameters that are passed into a QALoad CGI request, ensure that al l CGI parameters
contain ing characters that are not alphanumeric (a-Z, 0-9) are encoded before being sent to the server. CGI
encoding entai ls insert ing the ASCII value of a character, prefixed with the “ %” character, in to the
parameter. QALoad automatical ly CGI-encodes any values that i t detects during the recording and
conversion process; however, to manually add or modify any CGI parameter strings after your script is
created, you must manual ly encode special characters to ensure that the CGI parameter data is sent to the
Web server properly. For example, to insert the “ =” character in to a CGI parameter, fi rst determine i ts
ASCII hexadecimal value (3D), and insert that value in to the CGI parameter prefixed with “ %” . In the CGI
parameter string, “ %3D” would replace “ =” . Al l CGI parameter encoding is handled by th is method, except
for spaces. Blank spaces must be specified in the encoded CGI string by the character “ +” , rather than the
ASCII value.

QALoad provides an automatic way of performing th is encoding using the DO_EncodeString command.

Script Development Workbench

143

CGI Get Requests

Get requests are handled by the fol lowing process:

1. The browser makes a request to a server for a URL that contains a cal l to a Common Gateway
Interface (CGI) program.

2. The server cal ls the CGI program, which usual ly returns a Web page. The returned page is cal led a
dynamic page because i t is created by the CGI program.

3. The browser accepts the result ing dynamic page and displays i t .

Example Web Page

The fol lowing Web page contains an anchor (l ink) that references a CGI program. The reference results in a
CGI Get request.

The anchor cal ls the CGI program named perl_1.pl with some parameters. In perl_1.pl?name=FRANK, the
quest ion mark (?) denotes the start of parameters that need to be passed to the program. The name/value
pair being passed to the perl_1.pl program is name=FRANK.

When you cl ick the anchor text (dynamic HTML page), the browser makes a CGI Get request. A Get
request, when executed by the server, passes parameters in an environment variable to the CGI program.
This type of parameter handl ing is l imited to 255 characters.

<HTML>
<HEAD>
<TITLE> QALoad WWW Capture Examples</TITLE>
</HEAD>
<BODY>
Dynamic HTML Page
</BODY>
</HTML>

Example Script

QALoad automatical ly generates al l constructs that are necessary for a CGI Get request. The fol lowing
script uses a DO_Http cal l for the CGI Get request.

How I t Works: The script processes a CGI Get request the same way i t processes URL l inks to a page. In the
example script below, note that the parameters passed to the Web server on the CGI cal l are recorded
unchanged. The parameters do not change unless the page is dynamical ly generated.

char *Anchor[1];
for(i=0;i<1;i++)
Anchor[i]=NULL;

DO_InitHttp(s_info);

SYNCHRONIZE();
BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

/*
* Anchor 'http://www.host.com/cgi-bin/perl_1.pl?name=FRANK'
* 'Dynamic HTML Page'
*/

DO_GetAnchorHREF("Dynamic HTML Page", &Anchor[0]);
DO_SetValue("Anchor000", Anchor[0]);
DO_Http("GET {*Anchor000} HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Perl Example Page", TITLE);

...

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

144

...

for(i=0; i<1; i++)

{
free(Anchor[i]);
Anchor[i]=NULL;
}

END_TRANSACTION();

CGI Post Requests

Post requests are handled by the fol lowing process:

1. The browser makes a request to a server for an HTM L page that contains a form that uses an act ion
statement with a Post cal l to a CGI program.

2. When you cl ick the Submit button on a CGI form, the browser makes a Post request and the server
returns a Web page.

3. The browser accepts the dynamic page and displays i t . Because i t is a CGI Post request, the browser
passes the parameters of the program to the CGI script as command l ine opt ions.

Example Web Page

The fol lowing Web page contains a form that cal ls a CGI script with a Post Request.

<html>
<head><title> QALoad's Perl Example Page</title>
</head><body><center> QALoad's Perl Example Page</center>
<form name = myform method = POST action = perl_1.pl>
<input type = text name = yourname size = 50>

<input type = submit value = "Submit Request">
<input type = reset>
</form>
</body></html>

Example Script

QALoad automatical ly generates al l the constructs that are necessary for a CGI Post request. The fol lowing
script features a DO_HTTP request that executes a CGI Post request :

char *ActionURL[1];
...
...
for(i=0;i<1;i++)
ActionURL[i]=NULL;
...
...
BEGIN_TRANSACTION();
/* Request: 1 */
DO_SetValue("name", "FRANK");
DO_Http("GET http://www.host.com/cgi-bin/perl_1.pl?{name} "
 "HTTP/1.0\r\n\r\n");

DO_VerifyDocTitle(" QALoad's Perl Example Page", TITLE);
/* ActionURL[0]="http://www.host.com/cgi-bin/perl_1.pl" */
DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

...

/* Request: 2 From: QALoad's Perl Example Page */
DO_SetValue("action_statement0", ActionURL[0]);
DO_SetValue("yourname", "PostFrank");
DO_SetValue("function", "View the log of previous visitors.");
DO_Http("POST {*action_statement0} HTTP/1.0\r\n"
 "Content-Type: application/x-www-form-urlencoded\r\n"

Script Development Workbench

145

 "Content-Length: {*content-length}\r\n\r\n"
 "{yourname}&{function}");

DO_VerifyDocTitle(" QALoad's Perl Example Page", TITLE);

...

...

for(i=0; i<1; i++)
{
free(ActionURL[i]);
ActionURL[i]=NULL;
}

END_TRANSACTION();

CGI Forms

Common Gateway Interface (CGI) forms are handled by the fol lowing process:

1. The browser requests a page that contains a CGI form. It displays the page and provides the
in teract ion for input fields that the CGI form specif ies.

2. A user enters data in to the CGI form and cl icks the submit button. This act ion causes the browser
to process the CGI form’s act ion statement.

3. The browser processes the act ion statement, gathers al l input fields as name value pairs, and passes
them to a CGI cal l contained in the act ion statement .

Example Web page

The fol lowing Web page contains a CGI form with:

! An act ion statement

! Input fields

! Hidden fields

<HTML>
<HEAD><TITLE>Forms Example</TITLE>
</HEAD>
<BODY>
<FORM ACTION="http://www.host.com/cgi-bin/perl_9.pl" method=post>

<TABLE>
<TR>
<TD>Name:
<TD><INPUT NAME="name" SIZE="20" MAXLENGTH=20>
<TR>
<TD>Password:
<TD><INPUT TYPE =password NAME="password" SIZE="20" MAXLENGTH=20>

There is a hidden field containing data here: <INPUT TYPE=hidden NAME="hidden" VALUE="This
rocks!">

Here is another hidden field: <INPUT TYPE=hidden NAME="hidden1" VALUE="Web testing is fun">

</FORM>
</BODY>
</HTML>

Example script

QALoad automatical ly generates al l the constructs that are necessary to make a CGI form request.

The example includes the fol lowing features:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

146

! A DO_Http cal l to retrieve the forms page.

! Commented descript ion of the input fields on the page.

! GetFormValueByName commands to retrieve the values of the h idden fields from the form.

! DO_SetValue cal ls to store the field names and their user-entered values.

! A DO_Http cal l for the CGI get request.

char *Field[2];
char *ActionURL[1];

...
...

for(i=0;i<2;i++)
Field[i]=NULL;

for(i=0;i<1;i++)
ActionURL[i]=NULL;

...

...

BEGIN_TRANSACTION();

...

...

/* Request: 1 */

DO_Http("GET http://www.host.com/forms.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Forms Example", TITLE);

/* ActionURL[0]="http://www.host.com/cgi-bin/perl_9.pl" */

DO_GetFormActionStatement(FORM(1), &ActionURL[0]);

/* Form:1 text Name: name, Value: , Desc: */
/* Form:1 text Name: password, Value: , Desc: */
/* Form:1 hidden Name: hidden, Value: This rocks! */

DO_GetFormValueByName(FORM(1), "hidden", "hidden", 1, &Field[0]);

/* Form:1 hidden Name: hidden1, Value: Web testing is fun */

DO_GetFormValueByName(FORM(1), "hidden", "hidden1", 1, &Field[1]);

/* Request: 2 From: Forms Example */

DO_SetValue("action_statement0", ActionURL[0]);
DO_SetValue("name", "form-name");
DO_SetValue("password", "form-password");
DO_SetValue("hidden", Field[0]);
DO_SetValue("hidden1", Field[1]);
DO_Http("POST {*action_statement0} HTTP/1.0\r\n"
 "Content-Type: application/x-www-form-urlencoded\r\n"
 "Content-Length: {*content-length}\r\n\r\n"
 "{name}&{password}");

DO_VerifyDocTitle("Forms Example - Results", TITLE);

...

...

for(i=0; i<2; i++)
{
free(Field[i]);
Field[i]=NULL;
}

Script Development Workbench

147

for(i=0; i<1; i++)
{
free(ActionURL[i]);
ActionURL[i]=NULL;
}

END_TRANSACTION();

Compiling a Script

Compiling a Test Script

A QALoad script is a real C++ script , and therefore needs to be compiled before i t can be used. QALoad
works with your exist ing compiler to compile usable test scripts. If you make changes to an exist ing script ,
you must re-compile i t before you can successful ly use i t in a test. If you add an uncompiled or out-of-date
script to a load test, the QALoad Conductor prompts you to compile the script .

Set Up Automat ic Conversion and Compilat ion of a Script

The Script Development Workbench automatical ly converts a capture fi le when you stop the recording
process and compile the result ing script . You are prompted i f a script by the same name already exists, so
that you can decide whether to overwrite an exist ing script or to save your script under a different name.

If the default sett ings to automatical ly convert a capture fi le have been changed, fol low the steps below to
reset the automatic conversion and compilat ion.

To set up aut om at ic conversion and com pi lat ion:

1. From the Script Developm en t Workben ch menu, choose Opt ions>Workbench .

2. On the Workbench Configurat ion tab, in the Record Opt ions area, select the check box
Autom at i cal l y Convert Capture.

3. Click the Com pi ler Set t ings tab.

4. Select the check box Autom at i cal l y com pi le scri pts.

5. Select the check box Prom pt before overw ri t i ng script to ensure that a script is not overwrit ten
accidental ly.

6. Click OK to save your sett ings.

Test ing a Script

Validat ing Scripts in Workbench

Before adding a script to a load test, val idate i t to ensure that i t runs without problems. The fol lowing
procedure is only val id for Win32 scripts. To val idate a UNIX script , see Val idat ing a UNIX script .

Note: During validation of SAP scripts, do not minimize the SAP window. If the window is minimized, the
validation may fail. This problem does not occur if you select the Hide Graphical User Interface for SAP
Users option by clicking Browse [...] in the Type column of the Script Assignment tab in the Conductor. This
SAPGUI option runs SAP on an alternate desktop that is not visible.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

148

To conf igure t he Scr ip t Developm ent W orkbench f or val idat ion :

1. Click Opt ions>Workben ch and select the Script Val idat ion tab.

2. Select the Autom at i cal l y Recom pi le check box i f you want QALoad to compile a script before
attempting to val idate i t . QALoad l ists any compilat ion errors in the editor after compil ing.

3. (For Java and OFS) select Ask for Autom at i c Val idat ion of Java and OFS Scripts.

4. Select the On ly Display Player Output on Script Fai lure check box to view only Player messages
upon script fai lure, i f appl icable.

5. Type a value in the W ai t up to field. This is the number of seconds that the QALoad Script
Development Workbench should wait for a script to execute before t im ing out.

6. In the Player Sett ings area, select the Abort on Error check box for QALoad to stop script execut ion
upon encountering an error.

7. Select the Debug Data check box for the script to display a debug message indicat ing which
command the script is execut ing.

8. In the Run As area, indicate whether the transact ion should be run as th read- or process-based .

Note: Oracle Forms Server, Citrix, Java, and Uniface scripts are limited to process-based validation only.

9. In the Num ber of users field, type a number of virtual users to run th is script for val idat ion. The
default is 1.

10. Enter a value in the Tran sact ions field. For val idat ion, Compuware recommends that you accept
the default value of 1 transact ion.

11. In the Sleep Factor % field, type the percentage of each DO_SLEEP (pause in the script) to
maintain. For val idat ion, you may not need to run every pause in the script at i ts ful l length. The
value can be a percentage between 0 and 100. The default is 0.

12. Click OK to save your changes.

To val idat e a scr ip t in W orkbench:

1. In the Workspace Pane, cl ick the Scripts tab.

2. Double-cl ick on the appropriate script name to open the script .

3. From the Session menu, choose Val idate Script .

You receive a message and trace in formation in the Output pane. When the script executes successful ly,
you receive a confirmation message. If i t does not execute successful ly, use the trace in formation to help
you ident i fy errors.

Debugging a Script

Debugging a Script

If you encountered errors whi le val idat ing or test ing a script , use QALoad's debugging opt ions to monitor
the Player(s) that generated errors whi le they are running or after the test.

You can watch a virtual user execute a script on a Player Workstat ion while i t is running. To monitor
selected virtual users at runt ime, enable the Debug Trace opt ion before you run your test. Each virtual user
for which you enabled Debug Trace displays messages on i ts assigned Player workstat ion indicat ing which
commands are being executed.

Script Development Workbench

149

You can instruct the Conductor to generate and save detai ls about the script execut ion of selected virtual
users by enabl ing Logfi le Generat ion before you run your test. This appl ies to Citrix, ODBC, Oracle, Oracle
Forms Server, SAP, Winsock, or WWW only.

To enable t he debug opt ions:

1. On the Conductor's Script Assignment tab, h ighl ight the script you want to monitor.

2. In the Debug Options column, cl ick the brow se (...) button (note that the button may not be
visible unt i l you cl ick in the Debug Options column).

3. On the Debug Options dialog box, you can opt ional ly choose the fol lowing opt ions:

a. To enable the Debug Trace opt ion: in the Debug Trace Virtual User Range area, choose
which virtual users (i f any) to monitor. You can choose None or Al l Virtual Users, or choose
Virtual User(s) and then type the numbers assigned to the virtual users you want to monitor.
You can monitor individual virtual users or ranges of virtual users.

b. To enable Logfi le Generat ion: in the Logfi le Generat ion Virtual User Range area, choose
which virtual users (i f any) to monitor. You can choose None or Al l Virtual Users, or choose
Virtual User(s) and then type the numbers assigned to the virtual users you want to monitor.
You can monitor individual virtual users or ranges of virtual users.

4. Click OK to save your changes.

5. From the Conductor's main menu, cl ick Fi l e>Save to save your test session ID.

6. Run your test as usual.

Note: Some log files are generated automatically when you run a test in the Script Development
Workbench or Player.

QALoad Support Log Files

The table below ident i fies the QALoad log (support) fi les that are generated automatical ly during a test.

Note: Some log files are generated automatically when you run a test in the Script Development
Workbench or Player.

Each virtual user for which you enabled Logfi le Generat ion in Conductor creates a fi le contain ing
in formation about their performance. After the test is fin ished, the Conductor requests al l log fi les from
the Players and save them in the directory \Program Files\Compuware\QALoad\LogFiles on the
workstat ion where the Conductor is instal led.

Log fi les are named <scriptname>_<middleware>_vu<AbsoluteVirtualUserNumber>.<ext>, where:

! <scriptname> is the name of the script the virtual user ran

! <middleware> is the name of your middleware application

! <AbsoluteVirtualUserNumber> is the identification number assigned to the virtual user

! <.ext> is the file extension, dependent upon which middleware application you are testing

M iddlew are .RIP
Fi le

.CAP Fi le
(Replay

Capture)

.TRC Fi le
Player Trace

.LOG Fi le

ADO No No Yes Yes

Citrix Yes Yes Yes No

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

150

ODBC No No Yes *Yes

Oracle No No Yes *Yes

Oracle
Forms
Server

Yes Yes Yes No

SAP No No Yes Yes

Uniface No Yes Yes No

Winsock No No Yes *Yes

WWW Yes Yes Yes No

Note: *This middleware also uses the .log file in replay capture.

Verifying Script Checkpoints

You can quickly veri fy the syntax of the checkpoint commands BeginCheckpoint() and EndCheckpoint()
in your script every t ime you compile your script by sett ing a single opt ion, or on-the-fly with a single
menu command.

To aut om at ical ly ver i f y scr ip t checkpoin t s, every t im e you com pi le a scr ipt :

1. From the Script Development Workbench's main menu, cl ick Opt ions>Workbench .

2. On the Configure Script Development Workbench dialog box, cl ick the Com pi ler Set t i ngs tab.

3. Select the Veri fy Checkpoin ts opt ion.

4. Click OK.

Every t ime you compile your script , the Script Development Workbench veri fies the syntax of your
checkpoint statements, and ensures the parameters passed in each pair match . If any errors are
encountered, an error message displays in the Output pane. You can cl ick on any error l ine to go direct ly
to that l ine in the script .

To m anual ly ver i f y scr ip t checkpoint s, f or t he open scr ip t only:

With your script open in the Workbook pane, cl ick Session>Veri fy Checkpoin ts.

The Script Development Workbench veri fies the syntax of your checkpoint statements, and ensures the
parameters passed in each pair match. If any errors are encountered, an error message displays in the
Output pane. You can cl ick on any error l ine to go direct ly to that l ine in the script .

Script Development Workbench

151

Visual Navig at or (W W W)

The Visual Navigator
The visual script ing in terface, cal led the Visual Navigator, has three panes that represent different aspects
of your script , and menu i tems that offer you addit ional funct ional i ty. Using the Visual Navigator to
develop your scripts makes your job easier. For example, searching through l ines of code to locate a
part icular button you cl icked on a part icular page can take a long t ime, but using the Visual Navigator you
can simply cl ick through the pages to locate that button. In fact, you can develop your whole script –
recording, variabl izing, convert ing, compil ing, and running i t – al l from the Visual Navigator's in terface
without ever wri t ing a l ine of code.

For a brief explanat ion of each Visual Navigator pane, cl ick on the panes in the graphic below. For more
in formation about a pane, use the l inks l isted after the graphic.

Note: To make the following graphic fit better in this help window, we've turned off the Script
Development Workbench toolbars and panes that are not directly related to this help topic. You can
hide/show many of the Script Development Workbench toolbars and panes using commands available from
the View menu.

Visual Navigator Menus
The Visual Navigator has a number of special menu commands to help you develop your script .

Visual Navigator Menu

Edit Menu

Tools Menu

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

152

Visual Navigator Menu

The Visual Navigator menu is the main menu for Visual Script ing. Access the Visual Navigator menu from
the Script Development Workbench's main menu, or right-cl ick on any i tem in the Visual Navigator tree-
view (left pane).

Datapools and Variables: Opens the Datapools and Variables dialog box, where you can add, delete, or
modify datapool fi les or variables.

View Script Fi l e: Opens a window showing the C++ (.cpp) fi le based on what is current ly showing in the
Visual Navigator's tree-view. This is a read-only script .

Create Edi table Script Fi le: Creates an editable C++ (.cpp) script based on the current Visual Script . You
can modify th is script direct ly; however, any changes made to the script wi l l not be reflected in the tree
and vise-versa.

Show Hidden Fields: Displays form fields that are h idden by the browser.

Show Redi rected Pages (3xx):Toggles whether or not redirected pages are displayed. These are pages that
come back with a reply status code of 3xx, for example: 302 Not Found.

Show Cl ien t Error Pages (4xx): Toggles whether or not Cl ient Error pages are displayed. These are pages
that come back with a reply status code of 4xx, for example: 407 Proxy Authorization Required.

Show Server Error Pages (5xx): Toggles whether or not Server Error pages are displayed. These are pages
that come back with a reply status code of 5xx, for example: 503 Service Unavailable.

Insert Tree I tem : Opens a sub-menu where you can choose to insert certain tree i tems into your script . For
detai ls, see Insert ing script i tems.

Delete Tree I tem : Deletes the current ly selected tree i tem. If the selected i tem may not be deleted from the
script , th is command is unavai lable.

View Source: Opens a text window displaying the source code of the current ly act ive HTML Page or
Subrequest in the tree view.

Edit Menu

The Script Development Workbench Edit menu provides special commands for Visual Navigator
funct ional i ty as well as common Edit menu commands. Access the Edit menu from the main menu, or
right-cl ick on an edit box that can be variabl ized in the Visual Navigator form-view (bottom pane). Fields
that can be variabl ized are denoted with a Var button.

Script Development Workbench

153

The commands on the Edit menu are dynamic and the avai labi l i ty of certain commands depends upon
whether you have text selected and where your cursor is. The fol lowing graphics i l lustrate the difference:

Insert Variable/ Subst i tute w i th Variable: Opens the Datapools and Variables dialog, al lowing you to
insert a variable or replace the selected text with a variable. Subst i tuted text wi l l refer to a local variable or
datapool variable and wil l look similar to one of the fol lowing examples:

{$ VAR:Customer Number $}

{$ VAR:Last Name:Customer Data $}

These commands are only avai lable when the cursor is placed in an edit box on a tree-view i tem that can
be variabl ized (you wil l see Var or Var Wiz next to i t).

Insert Random Value/ Subst i tute w i th Random Value: Opens the Random Number Tag dialog box where
you can specify a range wi th in which a random number should be generated for th is value. The subst i tuted
text looks l ike th is:

{$ RANDOM:0:100 $}

and i t produces a random number between the lower and upper l im it each t ime i t is executed.

These commands are only avai lable when the cursor is placed in an edit box on a tree-view i tem that can
be variabl ized (you wil l see Var next to i t).

Insert VU Num ber/ Subst i tute w i th VU Num ber (Absolute): Inserts or replaces the h ighl ighted text with
the fol lowing text:

{$ VU:ABS $}

This is the virtual user number at runt ime. The absolute virtual user number is assigned depending on the
number of Players in use. For example, two Player machines with 50 virtual users on each, would assign
numbers 0 through 49 for Player 1 and 50 through 99 for Player 2. Typical ly, the VU number is combined
with other text to form a larger string, such as:

Customer{$ VU:ABS $}

In th is example, Player 1 has values of Customer0 through Customer49, and Player 2 has values of
Customer50 through Customer99. These commands are only avai lable when the cursor is placed in an edit
box on a tree-view i tem that can be variabl ized (you wil l see Var or Var Wiz next to i t).

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

154

Insert VU Num ber/ Subst i tute w i th VU Num ber (Relat i ve): Inserts or replaces the h ighl ighted text with
the fol lowing text:

{$ VU:REL $}

This is the virtual user number at runt ime. The relat ive virtual user number is assigned to each Player in
use. Each Player has relat ive numbers from 0 to N, where N is the total number of VUs run on that Player.
For example, two Player machines with 50 virtual users on each, would assign numbers 0 through 49 to
each Player. Typical ly, the VU number is combined with other text to form a larger string, such as:

Customer{$ VU:REL $}

In th is example, Player 1 has values of Customer0 through Customer49, and Player 2 has values of
Customer0 through Customer49. These commands are only avai lable when the cursor is placed in an edit
box on a tree-view i tem that can be variabl ized (you wil l see Var next to i t).

Revert to Original St r i ng: Rol ls the contents of the selected edit box back to when i t was first created,
usual ly when the recording was converted to a Visual Script .

This menu i tem is enabled only i f the edit box with in the form can be variabl ized and i t has been changed
at some point.

Delete Variable Reference: Deletes the variable from the selected edit box. Note that you can also
h ighl ight a variable and press the Delete key to delete a variable with in an edit box.

This menu i tem becomes enabled when you h ighl ight a variable inside of an edit box.

Tools Menu

The Script Development Workbench Tools menu provides access to the Rule Library for parameterizat ion,
the ZipFi le wizard for col lect ing fi les needed by the Technical Support team to analyze and resolve a
problem, and common Tools menu commands. Access the Tools menu from the Script Development
Workbench main menu.

Rule Library: Opens the Rule Library dialog box, where you can add, delete, or modify saved Variable
Replacement Rules.

Visual Navigator's Find and Replace Feature
Visual Navigator has an enhanced Find/Replace feature that al lows you to find occurrences of strings
with in the tree-view, al lowing you to quickly locate and/or replace text. For example, you could find
occurrences of Smith and replace them al l with the datapool variable {$ Last Name:User Info $}.

To access Visual Navigat or 's Find f eat ure:

Script Development Workbench

155

1. Select Edi t>Find in the toolbar. The Find and Replace dialog box displays with the Find tab on
top.

2. Enter the appropriate opt ions and cl ick Find Nex t . When al l matches are found, close the dialog
box or cl ick Repl ace to use the Replace feature.

To access Visual Navigat or 's Replace f eat ure:

1. Select Edi t>Replace in the toolbar. The Find and Replace dialog box displays with the Replace tab
on top.

2. Enter the appropriate opt ions.

3. Do one of the fol lowing:

 Click Find Nex t to review each ident i fied variable before replacing i t .

 Click Replace Al l to replace al l variables without reviewing them.

4. Close the Find Replace dialog box .

Developing a Script Using the Visual Navigator (WWW)

Recording a Visual Navigator Script

Recording a Visual Navigator Script

You record a Visual Navigator script the same way you record a regular QALoad script — by sett ing opt ions
to determine the behavior of QALoad while recording, and then cl icking through a transact ion to mimic a
user. QALoad records al l sent and received HTTP and SSL cal ls using the Script Development Workbench's
Web proxy and writes the act ivi ty to a capture fi le.

After recording, the capture fi le must be converted to an editable, C++ script . This is the point where Visual
Scripting differs from a regular WWW script. By sett ing a single opt ion before convert ing the capture fi le to
an editable script , you can turn your capture fi le data in to a Visual Script that al lows you to view the actual
Web pages you recorded in a browser-l ike in terface, where you can manipulate the transact ion and easi ly
insert variable in formation in to your script without direct ly edit ing a l ine of code.

To record a Visual Scr ip t :

If you are running your appl icat ion on Windows XP SP2, Compuware recommends you turn the 'pop-up
blocker' feature off before recording a transact ion. The feature can be disabled via the browser window's
Tools menu in In ternet Opt ions>Pri vacy.

1. Open a WWW session in the Script Development Workbench.

2. Click Opt ions>Record. The WWW Record Options dialog box opens. Set any relevant opt ions.

3. Click OK.

4. For convenience, set conversion opt ions now also. Cl ick Opt ions>Convert . The Session Options
dialog box opens. Set any appl icable opt ions on the Shared Convert Options and WWW Convert
Options screens. Cl ick OK. (You can set conversion opt ions after recording your transact ion, i f you
prefer, or even change pre-set opt ions at any t ime after recording and then re-convert the capture
fi le to apply the changes.)

5. From the toolbar, cl ick the Start Record button. QALoad launches your appl icat ion and any
proxies, i f necessary, and begins recording cal ls.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

156

6. Record the transact ion .

7. When you are fin ished, cl ick the Stop Record button. You are prompted to save your capture fi le.
By default , capture fi les (.cap) are saved in the directory QALoad\Middlewares\WWW\captures. In the
Fi l e Nam e field, type a fi le name and cl ick OK. The WWW Script Conversion Mode Select ion
dialog box appears.

Note: If you previously set opt ions to prompt automatic conversion, your capture fi le is
converted to a Visual Script and opens automatical ly in the editor. For more in formation about
sett ing up automatic conversion, see Configuring the Script Development Workbench.

8. Select either HTM L M ode or HTTP M ode. Cl ick OK.

9. Click the Captures tab and locate the capture fi le you just saved.

10. Right-cl ick the fi le and choose Convert . QALoad converts your capture fi le to a Visual Navigator
script and opens i t in the editor.

Visual Navigator Files

When you create a script using Visual Navigator, QALoad saves important in formation about your script in
the fol lowing fi les. These fi les are saved in the directory \Compuware\QALoad\Middlewares\WWW in the
subdirectories \Scripts and \Captures. Some of these fi les can be modified, and can be opened from the
Script Development Workbench's Workspace pane, i f necessary.

Note: If you choose to enable support for Siebel while converting a capture file, you must copy the Siebel
files from the Siebel installation folder to C:\Program Files\Compuware\QALoad\BinaryFiles.

Fi l enam e Descript i on

Fi l es Generated From Recording

<filename>.cap A fi le contain ing al l of the requests
and responses that were recorded.

<filename>.rfd Replies to subrequests, wh ich most ly
consist of images, style sheets, and
javascripts. This data is used to
visual ly recreate the pages as they
appeared when recording.

Fi l es Generated From Conversion to a Visual Script

<filename>.vistree Contains most of the elements of the
Visual Navigator tree, including any
elements that you modify later or
add to your script .

<filename>.VisHtml Contains the HTML pages of al l the
main requests as well as images,
stylesheets, and other subrequested
pages. This data is used to visual ly
recreate the pages as they appeared
when recording.

<filename>.VisXml Contains any XML/SOAP
information that was recorded.

<filename>.cpp A C++ representat ion of your script .

Script Development Workbench

157

Insert ing Script Items

Inserting Tree Items

You can insert a number of script i tems into your converted script .

To inser t t ree i t em s:

1. Do one of the fol lowing:

 From the Script Development Workbench main menu, choose Visual
Navigator>In sert Tree I tem .

 Right-cl ick in the tree-view (left pane) and choose Insert Tree I tem .

2. Choose the i tem to insert .

Most of the inserted i tems can be moved up and down the tree using the Up/Dow n arrows in the form-
view (bottom pane) for that i tem. You can also delete an i tem highl ighted in the tree-view by choosing
Delete Tree I tem from the menu.

The fol lowing script i tems can be inserted from the Visual Navigator menu:

Extract String

Cookie

Http Header

Content Check

CGI Parameter

Synch

IP Spoof

Read Datapool

Checkpoint Pair

Increment/Decrement /Reset Variable

Print Values (debugging)

Comment

Inserting Cookies into a Script

Cookie i tems can be added direct ly to the Html Page i tem they apply to, under the Act ion i tem (for
example, a Cl ick on Link i tem).

To inser t a cook ie i t em :

1. In the Visual Navigator tree-view (left pane), navigate to the Html Page i tem requiring the cookie
and then cl ick on i t to select i t .

2. From the menu, choose Visual Navigator>Insert Tree I tem >Cook ie. A Cookie form-view opens in
the bottom pane.

3. In the Nam e field, type a name for the new Cookie or cl ick Var Wiz... to access the Select Variable
dialog box where you can select a value from a datapool fi le or create a variable for th is field.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

158

4. In the Value field, type a value for the new Cookie or cl ick Var Wiz... to access the Select Variable
dialog box where you can select a value from a datapool fi le or create a variable for th is field.

5. Click Save to save your changes.

The Cookie i tem is added to the script for the selected Html Page i tem.

Inserting HTTP headers into a Visual Navigator script

You can insert HTTP headers under the Common Http Headers tree i tem.

To inser t a new Ht t p Header i t em :

1. In the Visual Navigator tree-view (left pane), navigate to the Com m on Ht tp Headers script i tem,
and then cl ick on i t .

2. From the menu, choose Visual Navigator>Insert Tree I tem >Ht tp Header. An Ht tp Header form-
view opens in the bottom pane.

3. In the Nam e field, type a name for the new header or cl ick Var Wiz... to access the Select Variable
dialog box where you can select a value from a datapool fi le or create a variable for th is field.

4. In the Value field, type a value for the new header or cl ick Var Wiz... to access the Select Variable
dialog box where you can select a value from a datapool fi le or create a variable for th is field.

5. Click Save to save your changes.

The header i tem is added to the script , and wil l be used for al l requests at playback unless i t is overwrit ten
by a header with the same name underneath an individual request act ion.

XML Support

XML Support

QALoad's XML support is handled through the Script Development Workbench's Visual Navigator, which
displays your script 's HTTP or XML requests in an easy-to-use, visual ly-based interface that offers you
point-and-cl ick script edit ing. Although XML is supported through the Visual Navigator, Compuware
recommends you read through th is help topic as well as the Visual Navigator help topics to become
famil iar with the features that are unique to QALoad's XML support.

When an HTTP request is made for an XML document, ei ther in the form of an HTTP GET request or an
HTTP POST request with an XML document as the post data, the data is displayed in the three Visual
Navigator panes as i l lustrated below. Cl ick on a pane in the graphic for a descript ion of i ts contents and
funct ional i ty.

Note: To make the following graphic fit better in this help window, the Script Development Workbench
toolbars and panes that are not directly related to this help topic are not displayed. You can hide/show many
of the Script Development Workbench toolbars and panes using commands available from the View menu.

Script Development Workbench

159

XML Requests

When an HTTP request is for an XML document, ei ther in the form of an HTTP GET request, or an HTTP
POST request with an XM L document as the post data, then an XML Request tree i tem is displayed in the
tree-view (left pane). The form-view (bottom pane) for an XML Request i tem includes the fol lowing fields:

Reply Status: The reply status code. The status code is 200 OK for most pages that return correct ly.

Request URI: This read-only field shows the URI requested, which resulted in th is page being displayed.

Checkpoin t Nam e: If the page has a t i t le, i t is used as the checkpoint name. If not, the word Checkpoint is
used. To make sure al l checkpoint names are unique, QALoad adds a number to the beginning of the
checkpoint name.

XM L Request Sub-i tem s

An XML Request i tem can contain the fol lowing sub-i tems.

XML Reply

The URI of the document returned as a result of the XML request. XML data corresponding to the reply is
displayed in the browser-view.

HTTP Headers

If a header exists under an act ion i tem, i t is sent for that request only. If the header has the same name as
one of the common headers, i t overrides the common header for th is request only. The form-view (bottom
pane) for an HTTP header l ists i ts name and value. Because there is no XML data recorded for a header, the
browser-view remains empty. It is possible to insert addit ional HTTP Headers.

Cookies CGI Parameter

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

160

The Cookies tree i tem contains a l ist of Cookie i tems that were sent in the header of the request that th is
i tem made while being recorded. Cookies are added automatical ly by the browser based on the URI that is
being requested. They are either set as a result of the previous reply (server returned a Set-Cookie
command), or they are set by JavaScript contained in the previous reply. The form-view for a cookie i tem
l ists i ts name and value. Because there is no XML data recorded for a header, the browser-view remains
empty.

XML Document-view

When you cl ick on an XML Request i tem in the tree-view (left pane) the right pane becomes a document-
view displaying a tree-view of detai ls about the XM L document requested or returned as the result of an
XML request. Each individual XML item appears as a node in the XML document tree. XML elements can
have chi ld elements and these appear as chi ld nodes of the XML element. Attributes of an element appear
as chi ld nodes of the element, with the attribute value appearing as a chi ld of the attribute name.

What i f no XM L data i s associ ated w i th a request?

If there is no XML document associated with the XML request (for example, an HTTP GET) a message
indicat ing that there is no XML to be displayed is shown in the XML document-view.

How does the docum en t -view relate to the form -view ?

Select ing an i tem in the XML document tree displays the form-view detai ls corresponding to that XML
element type in the bottom pane.

Fol lowing is an example of XML request data displayed in a port ion of the XML document-view:

XML Form-view

When an XML request is displayed in the document-view (top pane) — as a result of an XML request i tem
or XML reply chi ld i tem being selected in the Visual Navigator tree-view — you can cl ick on i tems in the
document-view to display in formation about each in the form-view (bottom pane). If no XML item is
selected in the document-view, the XML Page form-view displays instead. For XML items, the form view
display opt ions depend on two th ings:

! what type of XML item is selected in the Visual Navigator tree-view (left pane): an XML request or
an XML reply

! what type of XML item is subsequently selected in the XML document-view (top pane)

When an XML item is selected in the XML document-view, the value of that XML item is displayed in an
edit box in the form-view. Some values — attribute values and text values — can be edited or variabl ized
(that is, subst i tut ing one or more variables for the value in an XML request or select ing the return value
from an XML reply i tem to be received by a variable for later use in the script). Text i tems, which are values
between element tags, and attribute values represent volat i le i tems in an XML document structure, used for
passing values to and from Web Services, for example.

The fol lowing tables l ist the possible act ions for XML items displayed in a form-view. Val id act ions are
determined by the XML item type and whether the i tem is from an HTTP POST request or from an HTTP
reply.

Script Development Workbench

161

In the fol lowing tables:

! If an i tem is editable, the value in the form-view can be changed and the new value is used during
replay.

! If a value can be variablized, a variable can be subst i tuted for al l or part of the value. The variable's
value is placed in the variable's locat ion at replay. An example is a value received from an i tem
from a previous XML document reply.

! If a variable can receive a replay value, the return value for the i tem can be placed into a selected
variable during replay. The variable can then be subst i tuted for an input value in a later XML
request .

XM L Request I tem s

XM L Request I tem Edi table? Can the Value
be Variabl i zed?

Declarat ion No No

DTD (Document
Type Defin i t ion)

No No

PI (Processing
Instruct ion)

No No

Comment No No

Element No No

Attribute (Name) No No

Attribute (Value) Yes Yes

Text Yes Yes

XM L Reply I tem s

XM L Request I tem Can Variable
Receive Replay

Value

Declarat ion No

DTD (Document Type
Defin i t ion)

No

PI (Processing
Instruct ion)

No

Comment No

Element No

Attribute (Name) No

Attribute (Value) Yes

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

162

Text Yes

Visual Script ing Concepts

Int roducing Visual Script ing

Visual Navigator for WWW is QALoad's easy-to-use visual in terface to QALoad's powerful script
development tools. Visual Navigator for WWW renders your recorded C++-based transact ion in a tri -paned,
browser-l ike environment similar to popular visual ly-oriented development tools, with icons represent ing
al l the elements of your script . In fact, you could set up and run a WWW script without ever having to
modify a C++-based script .

With Visual Navigator's advanced edit ing features, you don't have to know the syntax of QALoad's
command set or your HTML requests or responses to customize your script . You can quickly and easi ly:

! See what URL cal ls were made and what type they were (for example a POST or GET statement)

! See what in formation was passed in a cal l

! See what repl ies/pages were returned

! Add checkpoints or comments in to your script

! Move the begin/end transact ion statement

! Move the synchronize statement

! Edit an HTTP header

! Set part icular flags and commands

! Add datapools

! Parameterizing your script

! Extract in formation from a reply to use in subsequent cal ls

! Save your script and go back to i t at any t ime for further edit ing

! Create a C++-based script fi le, i f you l ike

Looking at a Transact ion Loop

The transact ion loop is the port ion of your script that is played back repeatedly, represent ing mult iple
users making requests. The elements in your transact ion loop depend on what was original ly recorded on
each page you requested. You can move the transact ion loop up or down in the tree-view using the arrow
buttons, to al low certain requests to be moved in or out of the Transact ion Setup area, where they wil l be
executed before beginning the transact ion loop.

Note: The following graphic does not show all the possible script elements, but gives a good
representation of what your transaction loop might look like in the Visual Navigator.

High-level script items

There are three h igh-level script i tems in the transact ion loop that represent the web pages you've
recorded. NavigateTo, HTML Pages, and XML Requests:

NavigateTo: This is always the first i tem under the Transact ion Loop element , and is always denoted wi th
an arrow icon. It l ists the URL that was typed into the web browser at the start of recording. This specifies
the first request to be made. The result of th is request is the next i tem in the tree, which is general ly an
HTML Page i tem.

If the first i tem is an HTTP request for XML data, i t wi l l appear as an XML Request i tem in the tree.

Script Development Workbench

163

Page (HTM L): Fol lowing NavigateTo there wil l typical ly be a set of HTML Page i tems, which are always
denoted with a globe icon underneath the Transact ion Loop element. These represent pages visi ted whi le
the transact ion was being recorded.

The form-view (bottom pane) l ists the request 's reply status, the requested URI, and the associated
checkpoint name for the page returned.

HTML Page i tems can be parent to a number of script i tems in the tree-view, such as Act ion i tems. For
more in formation about sub-i tems that can exist under a Page i tem, see HTM L Page sub-i tems.

XM L Request : Requests for XML documents are denoted by a document/arrow icon underneath the
Transact ion Loop element . These represent the requests for XML data made during the transact ion that
was recorded. XML Request i tems can be parent to a number of lower-level script sub-i tems in the tree-
view, such as Header and Cookie i tems and the XmlReply document i tem. See XML requests to learn about
sub-i tems that can exist under an XML Request i tem.

XML Support

QALoad's XML support is handled through the Script Development Workbench's Visual Navigator, which
displays your script 's HTTP or XML requests in an easy-to-use, visual ly-based interface that offers you
point-and-cl ick script edit ing. Although XML is supported through the Visual Navigator, Compuware
recommends you read through th is help topic as well as the Visual Navigator help topics to become
famil iar with the features that are unique to QALoad's XML support.

When an HTTP request is made for an XML document, ei ther in the form of an HTTP GET request or an
HTTP POST request with an XML document as the post data, the data is displayed in the three Visual
Navigator panes as i l lustrated below. Cl ick on a pane in the graphic for a descript ion of i ts contents and
funct ional i ty.

Note: To make the following graphic fit better in this help window, the Script Development Workbench
toolbars and panes that are not directly related to this help topic are not displayed. You can hide/show many
of the Script Development Workbench toolbars and panes using commands available from the View menu.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

164

Streaming Media in Visual Navigator

If you selected the Streaming Media opt ion on the WWW Advanced conversion opt ions dialog box before
recording your script , and the recorded transact ion contains RealOne Player or Windows Media streaming
requests, your streaming media request wi l l be presented as a Page in the tree-view, similar to the fol lowing
graphic:

The form-view (bottom pane) for a streaming media page shows the
t i t le Real Media Request or Windows Media Request to indicate the type
of request you recorded, and l ists the fol lowing fields:

Requested URI: Lists the requested URI that invoked the media
player. For Real M edia the fi le typical ly is an RM fi le, whi le for
Windows Media i t is typical ly an ASX fi le.

Play M edia Request : Select th is check box for the virtual user to
process the RM or ASX fi le that is received and make the necessary
requests to dupl icate what the cl ient performed while receiving the
streaming media. If th is checkbox is not selected, then no further
processing is performed after receiving the RM or ASX fi le.

Play Requested M edia for N seconds: You can specify how much of the streaming media fi le the virtual
user should play, in seconds, before moving on to the next request. A value of zero indicates that the ent ire
media stream should be played.

Note: While a virtual user is playing a media request it will not make any other requests in the transaction
loop. This may be different than what the user performed when recording the transaction because a browser
is capable of spawning the streaming media player as a separate executable which can execute at the same
time that the user continues to make further web requests in the browser.

CJK and Visual Navigator

The Visual Navigator handles both nat ive and encoded Chinese, Japanese, and Korean (CJK) characters.
(See CJK Support in QALoad for more in formation about CJK support.)

The fol lowing graphic shows how the Visual Navigator provides nat ive character support. Both Engl ish and
Chinese characters are displayed in the Workbook Pane.

Script Development Workbench

165

The same capture fi le, Shanghai.cap, is open in the graphic below. Here, the Visual Navigator displays the
Chinese characters in encoded format.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

166

Primary Script Elements

Primary Elements of a Visual Navigator Script

When you open a Visual Navigator script , you'l l see standard elements of your script l isted in the left pane.
Each element can contain a number of script i tems, which in turn have attributes that are editable in some
cases. This topic l ists the major elements of a script , and l inks to addit ional help topics describing each
element 's associated script i tems:

The main elements of a Visual Navigator script are:

WWW Playback Options

Variables

Parameterizat ion Rules

Datapool Fi les

Common Http Headers

Common Content Checks

Transact ion Setup

Transact ion Loop

Transact ion Cleanup

WWW Playback Opt ions

This i tem contains sett ings related to playback such as proxy sett ings, t ime out value, number of
concurrent connect ions, baud rate emulat ion, and fi l ters.

Parsing

Caching

Traffic Fi l ters

Connect ion Sett ings

Content Type Handling

Proxy

General

Siebel

Variables

These are local variables that have been created for th is script . When you h ighl ight a variable in the tree
view, the fields display data related to the variable type you selected. For in formation about
parameterizat ion, see Parameterizat ion.

Script Development Workbench

167

Parameterizat ion Rules Script Items

Lists Parameterizat ion Rules that you create when you define a variable to subst i tute for a value. Saving the
variable as a rule enables you to reuse i t for other instances of the variable.

When you cl ick Param eteri zat ion Rules in the Visual Navigator tree-view, detai ls of the rules stored in the
Rule Library appears in the right-hand pane.

Note: Properties for the rules are defined using the Rule Library Wizard or the Variable Replacement
Wizard.

Datapool Files

The datapool fi les being cal led by the script . Each datapool l isted has a l ist of variables under i t
represent ing columns in the datapool fi le. Datapools can be Local (specific to a single Player) or Central
(avai lable to al l Players).

Common Ht tp Headers

Lists headers that were recorded from at least 50% of your requests. These headers wi l l be sent out with
every request that is made at playback unless they are overwrit ten by a header of the same name
underneath an individual request act ion.

You can insert new header i tems from the tree-view by cl icking Visual Navigator>Insert Tree I tem >Ht tp
Header. In addit ion, you can modify the values in the Http Header form in the right pane.

Common Content Checks

Lists common content checks, which apply to al l repl ies sent by the server. Content checks enable you to
veri fy whether the correct page was returned based on the existence or absence of a specific search string.
You can also set content checks at the page level. Cl ick the Add New Con ten t Check I tem button in the
form-view to add new common content checks.

Common content checks can include variables. Common content checks enable you to generate an error
code on a set condit ion even i f no individual page-level content checks are enabled. The search string is
compared to the raw HTML returned by the server, so you may need to include HTML tags in your search
to match the text that appears in the browser.

Transact ion Setup

Lists any act ions that occurred before the main transact ion loop. Any i tems/act ions that occur under th is
heading wil l be executed after the Synchronize but before the BEGIN_TRANSACTION(); statement at
playback. For example, you may have logged in to a part icular Web site and do not want to log in and out
with every transact ion at playback. You can move the Transact ion Setup i tem in the tree-view by
h ighl ight ing it and cl icking the Move UP/M ove DOWN buttons. The Transact ion Setup can contain cl ient
cert i ficate tree i tems.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

168

Client Cert ificate Tree Item

If the recorded transact ion contains a l ine with a ssl-clientcert command, then
Visual Navigator wi l l create a Cl ient Cert i ficate tree i tem and place i t direct ly
beneath the Transact ion Setup tree i tem.

The Client Cert i ficate string can be modified or variabl ized in the form-view.

The Client Cert i ficate i tem can also be moved up and down the tree l ike other
tree i tems, such as checkpoints. This al lows you to move i t in to the Transact ion
Loop area i f you wish to change the cert i ficate with each transact ion.

A Client Cert i ficate i tem wil l generate a script l ine similar to the fol lowing:

Set (EVERY_REQUEST, CERTIFICATE, “qaload_cl”);
If the Requi res Passw ord check box is selected, the generated script l ine is similar to the fol lowing:

Set (EVERY_REQUEST, CERTIFICATE_PASSWORD, "~encr~250F7641455876");

Transact ion Loop

Lists the requests in your transact ion. Al l i tems/act ions that occur under th is heading are placed between
the BEGIN_TRANSACTION and END_TRANSACTION statements, causing them to be repeated for as many
t imes as the Conductor tel ls them to be. The transact ion loop has a number of possible sub-elements,
depending on the Web site you tested. For detai led descript ions of the elements that can be l isted in a
transact ion loop, see Looking at a transact ion loop.

M ove UP/ M ove DOW N: Click the arrow to move the selected transact ion loop i tem in the tree-view up or
down.

The fol lowing i tems are automatical ly cleared at the end of a transact ion. When you move the transact ion
loop, you can prevent memory leaks by select ing the i tems to clear at the end of the transact ion.

Cook ies: Select th is checkbox to clear al l cookies at the end of the transact ion . This checkbox outputs the
appropriate statement for the Clear(ALL_COOKIES) statement in the generated script .

Cache: Select th is checkbox to clear the WWW cache at the end of the transact ion. This checkbox outputs
the appropriate statement for the Clear(CACHE) statement in the generated script .

Connect ions: Select th is checkbox to close any remain ing connect ions at the end of the transact ion. Th is
checkbox outputs the appropriate statement for the Clear(CONNECTIONS) statement in the generated
script .

Referring Page: Select th is checkbox to clear the HTML referring page at the end of the transact ion. Th is
checkbox outputs the appropriate statement for the Clear(REFERER) statement in the generated script .

Basic Authori zat ion : Select th is checkbox to clear the basic NTLM authorizat ion at the end of the
transact ion. This checkbox outputs the appropriate statement for the Clear(BASIC_AUTH_FLAG) statement
in the generated script .

Proxy Authori zat ion : Select th is checkbox to clear the proxy authorizat ion at the end of the transact ion.
This checkbox outputs the appropriate statement for the Clear(PROXY_AUTH_FLAG) statement in the
generated script .

Script Development Workbench

169

Transact ion Cleanup

Lists act ions that occur after the script has fin ished execut ing the appropriate number of t ransact ions. Any
i tems that occur under th is heading are placed after the END_TRANSACTION statement. For example, you
may want to log out of a part icular Web site after complet ing the appropriate number of t ransact ions.

M ove UP/ M ove DOW N: Click the arrow to move the selected transact ion cleanup i tem in the tree-view up
or down.

The fol lowing i tems are automatical ly cleared at the end of a transact ion. When you move the transact ion
cleanup i tem, you can prevent memory leaks by select ing the i tems to clear at the end of the transact ion .

Cook ies: Select th is checkbox to clear al l cookies at the end of the transact ion . This checkbox outputs the
appropriate statement for the Clear(ALL_COOKIES) statement in the generated script .

Cache: Select th is checkbox to clear the WWW cache at the end of the transact ion. This checkbox outputs
the appropriate statement for the Clear(CACHE) statement in the generated script .

Connect ions: Select th is checkbox to close any remain ing connect ions at the end of the transact ion. Th is
checkbox outputs the appropriate statement for the Clear(CONNECTIONS) statement in the generated
script .

Referring Page: Select th is checkbox to clear the HTML referring page at the end of the transact ion. Th is
checkbox outputs the appropriate statement for the Clear(REFERER) statement in the generated script .

Basic Authori zat ion : Select th is checkbox to clear the basic NTLM authorizat ion at the end of the
transact ion. This checkbox outputs the appropriate statement for the Clear(BASIC_AUTH_FLAG) statement
in the generated script .

Proxy Authori zat ion : Select th is checkbox to clear the proxy authorizat ion at the end of the transact ion.
This checkbox outputs the appropriate statement for the Clear(PROXY_AUTH_FLAG) statement in the
generated script .

Transact ion Loop Items

Transact ion Loop Items

The fol lowing i tems can exist under a Transact ion Loop i tem in the
tree-view:

 Synch

 IP Spoof

 Read Datapool

 Checkpoint pair

 Increment/Decrement/Reset Variable

 Debug Print

 Comment

Synch

Inserts a Synch i tem immediately after the current ly selected HTML Page. A Synch i tem represents a spot
where al l virtual users wi l l pause during replay unt i l al l act ive virtual users have reached the same point .
Once the virtual users are synchronized th is way, the Conductor wi l l instruct them al l to cont inue.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

170

A Synch i tem can be moved up or down the tree using Up/Dow n in the form-view.

IP Spoof

Inserts an IP Spoof i tem immediately after the current ly selected HTML page.

In order for IP Spoofing to work with Visual Navigator, i t is necessary to create or insert an exist ing local
datapool fi le cal led IPSPOOF.dat in the Visual Navigator tree-view. For more in formation about creat ing
th is datapool fi le and insert ing i t , see Sett ing Up IP Spoofing.

Read Datapool

Opens the Datapool and Variables dialog box, al lowing you to choose which datapool to use, and then
inserts a Read Datapool i tem immediately after the current ly selected HTML Page.

You can move th is i tem up or down the tree-view by cl icking Up/Dow n in the form-view.

Checkpoint Pair Script Item

Inserts a Begin Checkpoi n t i tem before the current ly selected HTML Page and an End Checkpoin t after
the current ly selected HTML Page.

Checkpoints are used to measure durat ion t imes for certain act ions to be completed. You can move ei ther
the Begin or End checkpoint i tem to encompass several requests, i f necessary. To move either i tem,
h ighl ight i t and then cl ick M ove Up/M ove Dow n in the form-view.

Print Values (debugging)

Inserts a Debug Prin t i tem after the current ly selected HTML Page. This causes a string to be output to the
Player window during playback. This can be useful for debugging a script whi le you are trying to variabl ize
i t so that i t replays correct ly with mult iple virtual users.

Comment

Inserts a Com m ent i tem after the current ly selected HTML page. Type your comment in to the form-view
(bottom pane).

Script Development Workbench

171

HTML Pages

HTML Page Form-view

The form-view (bottom pane) for an
HTML Page tree i tem contains the
fol lowing in formation:

Reply Status: The code designat ing
the status of the reply. For most pages
that were returned correct ly, th is wi l l
be 200 OK.

Requested URI: This read-only field
l ists the URI which was requested that
resulted in th is page being displayed.

Checkpoin t Nam e: If the page has a t i t le, then i t wi l l be used as the checkpoint name. If not, the word
Checkpoint wi l l be used. To make sure al l checkpoin t names are unique, a number may be appended to the
end of the checkpoint name.

M eta Ref resh Requi red [] Seconds Before Redi rect ion : If the META Refresh opt ion was selected on the
WWW Convert Options General dialog box, th is field displays the number of seconds that QALoad waits
before i t t reats a META refresh request as a normal request. This field only appears when refresh t imeouts
are enabled.

HTML Page Sub-items

The fol lowing script i tems can exist under a Page (HTML) i tem in the Visual Navigator's tree-view. Each
possible page sub-i tem is l isted below, along with descript ions for the fields that appear in the form-view in
the right pane when you select the i tem in the tree-view.

In addit ion, a Page i tem can contain sub-i tems that you insert manually after recording the transact ion.

Content Check sub-i tem

PageCheck sub-i tem

Addit ionalSubRequests sub-i tem

SubRequests sub-i tem

Cookies Set by Server sub-i tem

Sleep sub-i tem

Fi l l In Form sub-i tem

Act ion sub-i tems

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

172

Content Check Sub-item

Inserts a Con ten t Check i tem for the current ly-selected HTML page. This veri fies that the correct page was
returned based on the existence or absence of a part icular search string in the server's reply for that page.
Content checks can include variables. The search st ring is compared to the raw HTML returned by the
server, so you may need to include HTML tags in your search to match the text that appears in the
browser.

The top pane displays the source for the HTML page. You can easi ly select text in the top pane and add i t
to the content check defin i t ion by cl icking the Copy f rom Source button.

PageCheck Sub-item

Page Check enables you to veri fy that the t i t le of the page that was requested is correct.

Addit ionalSubRequests Sub-item

Some requests are contained in applets, Act iveX components, or other objects that are captured, but not
played back by QALoad . These subrequests, which are not recognized as normal subrequests, are l isted in
the Addi t i onalSubRequests tree i tem.

Each addit ional subrequest i tem appears in the script as a pre-loaded subrequest just before the main
act ion. As a result , the playback engine requests the main page, regular subrequests, and then the pre-
loaded subrequests.

For example:

//--------- REQUEST # 2 ---------
//
// current page url is http://c96852d01/pda/
//
// Pre-load the following image requests before the next request is made.
// These requests seem to have been made by javascript or applets associated
// with the next page but will not be made automatically by the replay engine,
// hence they are here in the script.
//

Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/images/LeftBackgrnd.jpg");

Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuopen.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuclose.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuclose.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/images/browsex.gif");

Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://c96852d01/pda/images/browse.gif");

SubRequests Sub-item

Lists al l subrequests (such as images) that the page performed in order to be ful ly rendered in the browser.
Subrequests cannot be changed and are shown strict ly to provide detai led in formation about the requests
that were made during the recording session.

Script Development Workbench

173

Cookies Set by Server Sub-item

If the reply from the server for the requested page contains a Set-Cookie command, i t is l isted here. This
i tem cannot be modified, i t is l isted for your in formation only.

Sleep Sub-item

Every page has a Sleep i tem immediately before i ts Act ion i tem. The sleep value specifies how many
seconds were spent viewing th is page (or fi l l ing out a form) before an act ion was taken (such as cl icking on
a l ink or button).

Fill In Form Sub-item

If a requested page contains a Form (html element) that was fi l led in by the user, then a Fi l l In Form item
and i ts associated elements wi l l be created in the tree-view. When th is tree i tem is selected, a bl inking
frame wil l appear around the form in the browser-view (top pane).

Extract St ring Sub-item

Inserts an Extract String i tem when you need to extract in formation from the script and store i t in a
variable to use later in the script .

When an Extract String i tem is inserted in to the tree-view, the browser-view displays the HTML source for
the page in which the i tem is inserted. The string to extract is recognized by the text preceding i t and the
text fol lowing i t . The test string in between is extracted and saved into a local variable. You must specify
the local variable that receives the extracted string at run t ime by cl icking on Select Var.

Frames

When an HTML page that is recorded contains frames, they are represented in the tree-view (left pane)
with a circle icon contain ing a capital F. A frame page is indented beneath the page that is i ts parent. If you
cl ick on a frame icon in the tree-view, the corresponding frame is h ighl ighted in the browser-view (top
pane) with a bl inking frame around i t for ident i ficat ion.

Duplicated frameset pages

Sometimes when a user cl icks on a l ink or takes some other act ion inside of a frame, the new page that was
requested simply replaces the contents of one of the frames already shown in the browser. To indicate that
the frameset page (the main page that holds the frames) has not changed, Visual Navigator renames i t
Duplicated Frameset n. Where n is an ident i fying number for the frameset that is incremented as more
frameset pages are dupl icated.

Act ion Sub-Items

Act ion Sub-items

An Act ion i tem appears under each HTML Page except the last one in the script . This represents the act ion
that the user took to get to the next page. Act ion i tems include:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

174

! NavigateTo – Visual Navigator could not determine how the user accessed the next page (they may
have typed a URL direct ly in to the address bar, or a JavaScript may have caused the jump).

Note: A NavigateTo item is the first element that appears under the Transaction Loop element.
This is because when the browser is launched during recording, the user must specify a starting
address (typically by typing it into the Address bar).

! Click On Link – The user cl icked on a text l ink

! Click On Image – The user cl icked on an image l ink

! Click On Button – The user cl icked on a Submit type button

! PostTo – Data was sent to the server with a POST command but a matching submit button was not
found. This may have been caused by a JavaScript.

Action i tems can contain various sub-elements. For detai ls, see Act ion i tem sub-elements.

NavigateTo Sub-item

Specifies a URI to be requested. If the Script Development Workbench cannot determine how the next
page was requested (typical ly due to a JavaScript making the request), then i t wi l l use a NavigateTo tree
i tem instead of something more specific, such as a Cl i ck On Link .

Click On Link Sub-item

When the user cl icks on a text l ink or an image l ink, then a Cl ick On Link action i tem is inserted under
that page. This is used to describe the act ion that was taken while on th is page that resulted in the next
page being requested.

When a Click On Link tree-view i tem is selected, the text or image in the browser-view (top pane) is
h ighl ighted by a bl inking frame to make i t easier to locate. There are several types of Cl ick On Links:

 Tex t Links – One of the more common l inks in web pages are Text based l inks. These usual ly
appear as underl ined text.

 Im age Links – An image can have a l ink, similar to text.

 Cl ien t -Side Im age M ap – A Client-Side Image Map is an image on a page that has mult iple
l inks associated with i t . Each l ink is associated with a region, which can be any shape. When
the user cl icks on the image, the browser determines which region was cl icked on and requests
the page l inked to that region.

 Server-Side Im age M ap – A Server-Side Image Map is an image on a page that has mult iple
l inks associated with i t . Unl ike Cl ient-Side Image Maps, these l inks are stored on the server
rather than the cl ient. When a user cl icks on the image, the browser sends the server the mouse
coordinate relat ive to the top-left corner of the image. The server then repl ies with the
appropriate page.

Click On Button sub-item

Clicking on Subm i t is usual ly associated with entering values in to a form (Fi l l In Form item). When the
Cl i ck On But ton tree-view i tem is selected, the associated button in the browser window (top pane) wi l l be
h ighl ighted with a bl inking frame, making i t easier to locate.

Script Development Workbench

175

PostTo sub-item

If the recorded request was a POST request rather than a GET request and the Script Development
Workbench could not find a matching Submit type button, then a PostTo tree act ion i tem wil l be inserted
under the page. This can sometimes happen i f the request is in i t iated by JavaScript.

Act ion Item Sub-Items

Act ion item sub-elements

The fol lowing i tems can exist under Act ion i tems in the tree-view:

Http Headers sub-i tem

Cookies sub-i tem

CGI Parameters sub-i tem

NTLM Authent icat ion sub-i tem

Basic Authent icat ion sub-i tem

Http Headers Sub-item

If a header exists under an Act ion i tem, then i t wi l l be sent for that
request only. If the header has the same name as one of the common
headers, then i t wi l l override the common header for th is request
only. It is possible to insert addit ional HTTP headers.

Cookies sub-item

When a Cookie i tem is a sub-element of an Act ion i tem, i t contains a
l ist of cookie i tems that were sent in the header of the request that
the Act ion i tem made when recording. Cookies are added
automatical ly by the browser based on the URI that is being

requested. They are either set as a result of the previous reply (the server returned a Set-Cookie command),
or they are set by JavaScript contained in the previous reply.

If the Cookie shown has a matching Set-Cookie i tem, then noth ing displays in the script since the cookie is
created automatical ly during playback. If there is no matching Set-Cookie i tem, then a Set-Cookie type
statement is generated in the script .

You can insert addit ional cookies in to the Cookies sect ion of a page as another means of variabl izing the
playback. How?

CGI Parameters Sub-item

Lists CGI parameters sent along with the request made by the Act ion i tem.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

176

NTLM Authent icat ion Sub-item

Sometimes the pages being requested require NTLM Authent icat ion, that is, the user wi l l be presented with
a dialog box asking for a UserID, Password, and Domain. This in formation is recorded and l isted in the
tree-view under the Act ion i tem that requires i t .

Forms

Forms Sub-items

Many pages that are used during a WWW load test ing session contain forms that a user must fi l l out, and
submit buttons that are cl icked. QALoad ident i fies forms and the elements with in them, as well as
determin ing which submit button was cl icked i f there is more than one.

When a page contains a form that wi l l be submitted, then a Fi l l In Form item is inserted in to that page’s
l ist of i tems in the tree-view (left pane). When a Fi l l In Form item is selected in the tree-view (left pane),
Visual Navigator h ighl ights the form with a bl inking frame in the browser-view (top pane).

Underneath the Fi l l In Form item in the tree view are Form Element i tems, such as Edit Boxes, Radio
Buttons, and Check Boxes, represent ing elements that can appear in forms on HTML pages. Fol lowing the
Fi l l In Form item is either a Cl ick On Button i tem or a PostTo i tem.

The fol lowing sub-i tems can appear under a Fi l l In Form item:

Hidden sub-i tem

Editbox sub-i tem

Selectbox sub-i tem

TextArea sub-i tem

Checkbox sub-i tem

Radio sub-i tem

Hidden sub-item

Forms can contain h idden fields that do not show up on the page. These
fields are not visible to the end user in teract ing with the browser, but
they may need to be variabl ized for a load test, for example a field that
contains a session ID may need to be variabl ized.

Form View Fields

The form-view (bottom pane) for a Hidden Field element l ists the
fol lowing in formation:

Nam e: The name of the h idden field
Value: The value of the h idden field.
Al l ow th i s h idden f i eld to be variabl i zed: Select to variabl ize th is field.
Cl ick the var... button to select a variable.

Script Development Workbench

177

Editbox Sub-item

One of the more common elements in a form is an edit box. When th is tree item is selected, QALoad wil l
draw a bl inking frame around the appropriate edit box in the browser-view (top pane). The edit box in the
browser-view wil l show the value that was original ly typed in when the transact ion was recorded.

Form View Fields

The form-view (bottom pane) for an Edit Box element l ists the fol lowing in formation:

General

Nam e: The name of the edit box.
Value: The value of the edit box. Any changes made to th is field wi l l be reflected in the edit box in the
browser window.

M atch ing Param eter Rul es

Rule: Lists the rules that have been created for th is variable type. These rules may or may not have been
placed in the Rule Library.

Appl ied to I tem : Indicates whether the rule is appl ied to th is variable.

GoTo Rule: Goes to the individual rule under the Parameterizat ion Rules tree i tem. In the right-hand pane,
in formation in the M atch ing I tem tab of the Rule Detai ls dialog box displays.

Previous M atch : Goes to the next matching variable immediately preceding the current i tem in the script .

Nex t M atch : Goes to the next matching variable immediately fol lowing the current i tem in the script .

Apply: Appl ies the rule h ighl ighted in the l istbox to th is variable. Only one rule can be appl ied to an
instance of a variable.

Undo Apply: Removes appl icat ion of the rule h ighl ighted in the l istbox from th is variable. Other
matching variables to which th is rule is appl ied are not affected.

Selectbox Sub-item

A select box is often cal led a drop down select ion box or l ist box. The form-view wil l appear sl ight ly
different depending upon whether the Select Box is capable of support ing mult iple select ions or not.

Form View Fields

The form-view (bottom pane) for a Select Box element l ists the fol lowing in formation:

Nam e: The name (in the HTML) of the select box.
I tem s f rom the Select Box : Lists the i tems present in the Select Box in the browser-view. An i tem has a
checkbox next to i t to indicate i f i t has been selected. To change a select ion, select or clear the checkbox.
Your choices wil l be reflected in the browser. If the Select Box only supports one select ion, then only the
most recent select ion is selected.
Variabl i zed Select ions: Edit boxes that al low the use of variables (local or from a datapool) to specify what
opt ions are chosen from the Select Box. For a mult iple select ion Select Box, i t is possible to add up to six
variables in addit ion to any i tem chosen using the check boxes.

For a single select ion Select Box, a single edit box is provided to al low you to use a variable (local or from a
datapool) to specify the opt ion you want chosen from the Select Box.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

178

TextArea Sub-item

A Text Area i tem is a multi-l ine text box.

Form View Fields

The form-view (bottom pane) for a TextArea element l ists the fol lowing in formation:

General

Nam e: The name of the Text Area field.
Value: The value of the Text Area field. Any changes you enter in to th is edit box are reflected in the
browser-view (top pane). To enter a l inefeed, press Ctrl+Enter.

M atch ing Param eter Rul es

Rule: Lists the rules that have been created for th is variable type. These rules may or may not have been
placed in the Rule Library.

Appl ied to I tem : Indicates whether the rule is appl ied to th is variable.

GoTo Rule: Goes to the individual rule under the Parameterizat ion Rules tree i tem. In the right-hand pane,
in formation in the M atch ing I tem tab of the Rule Detai ls dialog box displays.

Previous M atch : Goes to the next matching variable immediately preceding the current i tem in the script .

Nex t M atch : Goes to the next matching variable immediately fol lowing the current i tem in the script .

Apply: Appl ies the rule h ighl ighted in the l istbox to th is variable. Only one rule can be appl ied to an
instance of a variable.

Undo Apply: Removes appl icat ion of the rule h ighl ighted in the l istbox from th is variable. Other
matching variables to which th is rule is appl ied are not affected.

Checkbox Sub-item

The form-view (bottom pane) for a Checkbox element l ists the fol lowing in formation:

Nam e: Name of the Checkbox.
Value: Value of the Checkbox.
State: Reflects whether the box is checked (selected) or not. If the State is 1 (checked), then the Name and
Value are passed along in the request to the server. If the State is 0 (not checked) then the Name and Value
are not passed along. You can change the value of the State by cl icking on the checkbox control in the
browser-view (top pane).

Radio Sub-item

Form View Fields

The form-view (bottom pane) for a Radio Button element l ists the fol lowing in formation:

General

Group Nam e: The Group Name is shared by al l radio buttons that belong to the same group.
Value: The Value field is what different iates one radio button from another. The group name and value of
the selected radio button wil l be sent along with the request to the server. The Value of a radio button can
be, and often is, di fferent than the text shown in the browser.
use th i s val ue but ton : When you select a radio but ton in the browser-view (top pane) i ts value wil l display
in th is text box. Cl ick th is button to transfer th is value in to the above Value field.

M atch ing Param eter Rul es

Script Development Workbench

179

Rule: Lists the rules that have been created for th is variable type. These rules may or may not have been
placed in the Rule Library.

Appl ied to I tem : Indicates whether the rule is appl ied to th is variable.

GoTo Rule: Goes to the individual rule under the Parameterizat ion Rules tree i tem. In the right-hand pane,
in formation in the M atch ing I tem tab of the Rule Detai ls dialog box displays.

Previous M atch : Goes to the next matching variable immediately preceding the current i tem in the script .

Nex t M atch : Goes to the next matching variable immediately fol lowing the current i tem in the script .

Apply: Appl ies the rule h ighl ighted in the l istbox to th is variable. Only one rule can be appl ied to an
instance of a variable.

Undo Apply: Removes appl icat ion of the rule h ighl ighted in the l istbox from th is variable. Other
matching variables to which th is rule is appl ied are not affected.

XML Requests

XML Document-view

When you cl ick on an XML Request i tem in the tree-view (left pane) the right pane becomes a document-
view displaying a tree-view of detai ls about the XM L document requested or returned as the result of an
XML request. Each individual XML item appears as a node in the XML document tree. XML elements can
have chi ld elements and these appear as chi ld nodes of the XML element. Attributes of an element appear
as chi ld nodes of the element, with the attribute value appearing as a chi ld of the attribute name.

What if no XML data is associated with a request?

If there is no XML document associated with the XML request (for example, an HTTP GET) a message
indicat ing that there is no XML to be displayed is shown in the XML document-view.

How does the document-view relate to the form-view?

Select ing an i tem in the XML document tree displays the form-view detai ls corresponding to that XML
element type in the bottom pane.

Fol lowing is an example of XML request data displayed in a port ion of the XML document-view:

XML Form-view

When an XML request is displayed in the document-view (top pane) — as a result of an XML request i tem
or XML reply chi ld i tem being selected in the Visual Navigator tree-view — you can cl ick on i tems in the
document-view to display in formation about each in the form-view (bottom pane). If no XML item is
selected in the document-view, the XML Page form-view displays instead. For XML items, the form view
display opt ions depend on two th ings:

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

180

! what type of XML item is selected in the Visual Navigator tree-view (left pane): an XML request or
an XML reply

! what type of XML item is subsequently selected in the XML document-view (top pane)

When an XML item is selected in the XML document-view, the value of that XML item is displayed in an
edit box in the form-view. Some values — attribute values and text values — can be edited or variabl ized
(that is, subst i tut ing one or more variables for the value in an XML request or select ing the return value
from an XML reply i tem to be received by a variable for later use in the script). Text i tems, which are values
between element tags, and attribute values represent volat i le i tems in an XML document structure, used for
passing values to and from Web Services, for example.

The fol lowing tables l ist the possible act ions for XML items displayed in a form-view. Val id act ions are
determined by the XML item type and whether the i tem is from an HTTP POST request or from an HTTP
reply.

In the fol lowing tables:

! If an i tem is editable, the value in the form-view can be changed and the new value is used during
replay.

! If a value can be variablized, a variable can be subst i tuted for al l or part of the value. The variable's
value is placed in the variable's locat ion at replay. An example is a value received from an i tem
from a previous XML document reply.

! If a variable can receive a replay value, the return value for the i tem can be placed into a selected
variable during replay. The variable can then be subst i tuted for an input value in a later XML
request .

XM L Request I tem s

XM L Request I tem Edi table? Can the Value
be Variabl i zed?

Declarat ion No No

DTD (Document
Type Defin i t ion)

No No

PI (Processing
Instruct ion)

No No

Comment No No

Element No No

Attribute (Name) No No

Attribute (Value) Yes Yes

Text Yes Yes

XM L Reply I tem s

XM L Request I tem Can Variable
Receive Replay

Value

Declarat ion No

Script Development Workbench

181

DTD (Document Type
Defin i t ion)

No

PI (Processing
Instruct ion)

No

Comment No

Element No

Attribute (Name) No

Attribute (Value) Yes

Text Yes

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

182

Par am et er i zat ion in t he Visual Navig at or

Parameterizat ion
Parameterizat ion is the process of subst i tut ing certain values in a script with variables you define.
Parameterizat ion is used in Visual Script ing for WWW scripts.

When you modify QALoad scripts before replaying them, the modificat ions usual ly are repet i t ive and
consistent. Parameterizat ion provides the means for replacing values with system-generated variables
throughout your scripts. The values for variables are derived from a datapool, an extract string, or a
calculated value.

Methods for Parameterizing a Script

Values in a script that you can parameterize are noted in the form-view (bottom pane) with the var...
button next to the field. This gives you access to the Datapool and Variables dialog box, where you can
define values for variables.

Certain values in the script support the Variable Replacement Wizard. The Variable Replacement Wizard
simpli fies the process of parameterizat ion by taking you through the necessary steps for defin ing variables
for the fields you want to replace. Fields for which the Variable Replacement Wizard is avai lable are shown
in the form-view with Var Wiz... button next to the field.

Saving Parameters as Rules

You can create and maintain a table of the variables you define by storing them as rules in the Rule
Library. Once stored, the script looks for these rules and replaces the value wi th the parameters you assign
to that rule.

Using Variables with Visual Navigator

Overview of Variables

When you record a transact ion, the result ing script is a recording of the act ions of a single end-user. When
you play back that script mult iple t imes during a load test, you probably want i t to emulate the act ions of
multiple users making differing requests of your server instead of the single user that was recorded. One way
to achieve that is to replace certain data with a variable that draws i ts value from a l ist of values that you
provide. Here are some examples of why and how you might use variables in a script :

! If your original script recorded a user logging on to a si te using an ID and password, you can
replace the ID and password with variables in the script . At test t ime, those variables draw their
values from a datapool fi le of acceptable values, using a different set of values for each transact ion
run. In other words, that one script could emulate a number of different users by ut i l izing a
different user ID/password combinat ion for each transact ion.

! If your script inserted new records in to a customer database, you might want the names to be
unique each t ime the script is run (each transact ion). You could create a datapool fi le of names,
and then insert a variable in to the script where the name was typed. At test t ime, the variable
inserts a different name from the datapool fi le with each transact ion.

! If an ID string is returned from the server and that ID is then used as part of future requests to the
server, and each virtual user may get back a differen t ID from the server, you can use a variable to

Script Development Workbench

183

use a specific ID. You could extract an ID from the reply, place i t in to a variable, and then use the
value in that variable in place of the actual ID for future requests, ensuring you only use the ID you
specify.

There are a number of values in your script that can be replaced with variables. Those values are noted in
the form view (bottom pane) with var.... Values that use the Variable Replacement Wizard are shown in
the form view with Var Wiz. Typical ly variables derive their values from a datapool an extracted string, or
a calculated value.

Naming Variables

When you first create a datapool fi le, the included variables are automatical ly assigned the default names
Var1, Var2, Var3, and so forth.

QALoad al lows you to rename those variables with meaningful names that can even include spaces. This
makes i t much easier to work with datapools. For example, you could name a datapool variable something
logical l ike City, rather than trying to remember that Var4 in your datapool is the City variable.

Renaming Variables

You can quickly and easi ly rename local or datapool variables from the tree-view. Simply h ighl ight the
variable under the Datapool Fi les or Variables tree-view i tem, and then change the variable name in the
result ing form-view (bottom pane).

You can also edit from the Datapools and Variables dialog box. To access i t , right-cl ick anywhere in the
tree-view and then choose Datapools and Variables from the shortcut menu. Highl ight the variable to
rename and cl ick Renam e.

Datapools and Variables

Datapools and variables can be added or modified by several methods. To simply create, delete, or modi fy
datapool fi les and variables at any t ime while a script is open in the editor, choose Visual
Navigator>Datapools an d Variables from the menu to access the Datapools and Variables dialog box.

Alternately, the same dialog box wil l open automat ical ly whenever you are asked to choose a variable or
datapool fi le whi le working with the script , al lowing you to create the variables you need on-the-fly.

Data that can be variabl ized is denoted in the form-view (bottom pane) by the var... button. Cl icking
the var... button wil l open the Datapools and Variables dialog box.

Types of Variables

Types of Variables

When values in a script are replaced with variables, the variables typical ly are derived from extract strings,
datapools, or calculated variables.

Ex t ract St r i ngs

Insert an Extract String i tem when you need to extract in formation from a reply and store i t in a variable to
use in future requests or simply for logging the in formation. For example, i f a string is located inside a
JavaScript or in a h idden tag that is not visible in the browser, and i t m ight change each t ime th is page is
requested, use an Extract String to extract the value. Extract strings search on the text preceding and the
text fol lowing the string you want to extract.

Datapools

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

184

Datapools draw values from a fi le of acceptable values and use a different set of values each t ime a
parameter is replaced. You can select an exist ing datapool fi le or create a new datapool fi le to add to your
script from your datapool directory. Each datapool has a l ist of variables under i t represent ing columns in
the datapool fi le. When you create a datapool, you specify the number of columns (variables) and rows
(values) i t contains.

The datapool fi le you choose is added to your script and is l isted under Datapool Fi les in the Visual
Navigator tree-view. You can choose to add a central or local datapool to a script .

Note: You can have only one central datapool file associated with a script, but can have any number of
local datapool files.

Central

Central datapools are Conductor-based. They reside on the same workstat ion as the QALoad Conductor,
and are avai lable to any Player system on the network that requests i t from the Conductor. You can apply
only one central datapool fi le to a script .

Local

Local datapools are Player-based. They reside on a Player workstat ion, and are only avai lable to that Player.
You can apply any number of local datapool fi les to a script .

Calculated Variables

Calculated variables are generated dynamical ly at runt ime and are based on a formula you define. For
example, you might want each virtual user to have a unique string, such as Smith1, Smith2, and so forth,
or you may want to calculate a new value each t ime through the transact ion loop.

Calculated variables are strings bui l t from one or more elements. These can include datapools, local
variables, and text, as well as the fol lowing:

Date and Time

Insert the date and t ime in the format you select.

Random Alphanumeric

Subst i tutes the value with random alphanumeric characters at runt ime. Specify the type and length of
characters to use. You can select: let ters only, numbers only, or both let ters and numbers.

The value can be a fixed length, where you specify the number of characters, or variable length, where you
specify the min imum and maximum number of characters.

Random Numeric

Subst i tutes the value with a random number at runt ime. You specify the min imum value, maximum value,
the number of decimal places, and the number of leading digits. Numbers generated with fewer leading
digits are padded with zeros.

Local Variable

A variable with a stat ic value that you set when you create i t .

Virtual User Number

The number used to ident i fy the virtual users during a test. You can include a virtual user number (VU) in
the calculat ion. VUs may be absolute (assigned by the Conductor) or relat ive (assigned by the Player at
runt ime).

Absolute

Script Development Workbench

185

The absolute virtual user number is assigned by the Conductor based on the total number of virtual users
on al l Players. Each virtual user is assigned a number and no numbers are repeated. Insert an absolute
virtual user number when i t is necessary to use a completely unique virtual user number in place of a
variable.

Relat i ve

The relat ive virtual user number is the number assigned to the virtual user by i ts Player. Because a test has
mult iple Players and each Player assigns virtual user numbers from 0-n, a relat ive virtual user number is
only unique on a single Player.

Local Variable

A local variable is a stat ic value that you can subst i tute wherever variables can be used. You can quickly
add local variables to your script from the Visual Navigator tree-view. Insert Increment Variable,
Decrement Variable, and Reset Variable i tems into the tree-view to manipulate the value of any variables.

About Extract Strings

Insert an Extract String i tem in your script when you need to replace a system-generated value or reuse a
system-created value later in a script . You can extract in formation from a reply and store i t in a variable to
use in future requests. For example, i f a system-created order number is assigned during a transact ion that
must be used again later in the transact ion, you can use an Extract String to store the value and insert i t
in to the script at the appropriate point.

When you select text to store in an extract string, Visual Navigator uses 10 or more characters on either
side of the extracted text to make the search string unique and find th is copy of the extracted text. You can
increase or decrease the size of the strings.

About Local Variables

A local variable has a constant value that you assign when you create the variable. It can be subst i tuted
wherever variables can be used. You can quickly add local variables to your script by right-cl icking in the
Visual Navigator tree-view and select ing Datapools and Variables.

Note: You can insert Increment Variable, Decrement Variable, and Reset Variable items into the tree-view to
manipulate the value of any variables.

Edit ing Variables

Adding a Variable

Add variables to the script from the Visual Navigator tree-view. Types of variables are:

! Local variables

! Datapools

! Calculated variables

! Extract Strings

Note: You can insert Increment Variable, Decrement Variable, and Reset Variable items into the tree-
view to manipulate the value of any variables.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

186

Using the Rule Library

Overview of the Rule Library

You can save variable replacements you define as rules. These are stored in the Rule Library, where you can
use them in future recordings and reduce repet i t ive parameterizat ion tasks.

When subsequent captures are converted, the Visual Navigator scans the Rule Library for matching
parameters. For example, i f a rule parameterizes the value of a CGI Parameter named SessionID, the Visual
Navigator scans through the Visual Tree for any CGI Parameters that match the descript ion defined in the
rule. If a match is found, the rule is added to the Visual Tree, where you can apply i t to the script .

From the Rule Library, you can create rules, edit rules, and view detai ls of individual rules and the folders
in which they are stored.

Elements of the Rule Library Dialog Box

Create or modify parameter rules from the Rule Library dialog box. The dialog box contains the fol lowing
areas:

! Menus

! Tree view

! Detai ls

Rule Library Menus

M en u Com m and Descript i on

Fi l e New Rule - Opens the Rule Creat ion Wizard. Use the wizard to
define a rule that you can use to parameterize future scripts.

New Folder - Creates a new folder in the tree-view.

Edi t Use the Edit menu to cut, copy, paste, delete, or rename rules.

Rule Edi t Rule - Opens the Rule Creat ion Wizard so you can edit a
rule you select in the Rule Library.

Help Displays QALoad help.

Rule Library Tree-View

The Rule Library tree-view displays a h ierarchical view of al l rules and folders with in the Rule Library.

Script Development Workbench

187

Rule Library Dialog Box Details

The Detai ls area of the Rule Library dialog box displays in formation on the rules defined in the Rule
Library. There are two levels of detai l :

! Folder - When you select a folder name in the Rule tree, the Detai l s area of the dialog box displays
in formation for each rule in the folder.

! Individual Rule - When you select a rule in a folder in the Rule tree, the Detai l s area of the dialog
box displays in formation for the individual rule in three tabs.

Applying a Rule

When you define values to replace variables in a script , you can save them as rules and apply them to other
scripts.

To apply a rule f rom t he Visual Tree:

1. In the Visual Navigator vistree, cl ick the Param eter i zat ion Rules script i tem and select the rule to
apply. A descript ion of the rule displays in the form-view.

2. Click the M atch ing I tem s tab. The propert ies that determine the matching i tems and each
matching i tem found in the script display.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

188

3. Do one of the fol lowing:

! Click Apply Rule on the left-hand side of the dialog box to apply the rule to al l the
matching i tems.

! Select an i tem or i tems in the table and cl ick Apply to I tem on the right-hand side of the
dialog box .

 Note: When a different rule has been applied to an individual item, a red exclamation mark (!) appears
next to the item in the table. Only one rule can be applied at a time. Click Go to Item and review the
information in the Matching Parameter Rules area of the form-view to view the rule applied to the item.

To apply a rule f rom t he f orm -view f or a var iable:

1. In the Visual Navigator vistree, select the variable to which you want to apply the rule.

2. In the M atch ing Param eter Rules area at the bottom of the form-view (right-hand pane), select
the rule you want to apply.

3. Click Apply. The rule is appl ied to the variable.

Edit ing a Rule

Follow these steps to edit rules stored in the Rule Library.

To edi t a rule:

1. Select a rule in the Rule Library visual t ree, and cl ick Rule>Edi t Rule. The Rule Creat ion Wizard
opens and displays the in formation on the rule you selected.

2. Follow the procedure for creat ing a rule to make changes to the rule elements.

Script Development Workbench

189

Sam p le Scr ip t s

Overview — Sample Scripts
This sect ion shows examples of how you can manipulate converted scripts to address specific si tuat ions or
resolve certain problems. Samples include examples of variabl izat ion, changes to transact ion logic, and
detai led descript ions of commonly used commands. Sample scripts are shown for these middlewares:

Citrix

Oracle Forms Server

SAP

Winsock

WWW

Cit rix Scripts

Cit rix Script Samples

You can address specific si tuat ions or resolve certain problems by modifying converted Citrix scripts.

Tips: Uppercase characters are not captured when the CAPS Lock key is on. Manually modify the script to
use uppercase characters or hold down the SHIFT key during recording.
Similarly, the Windows Logo key is not supported. Do not use the Windows Logo key to start applications
while recording a Citrix script.

The scripts l isted below include a descript ion of the problem, the procedure for implementing the
modificat ion, and samples of a modified script .

Handl ing Citrix Server Farms

Handling Dynamic Window Tit les

Handling Intermit tent Windows

Handling Unexpected Events

Moving Citrix Connect and Disconnect Outside the Transact ion Loop

Script ing Mouse Act ions

Using the CtxWaitForScreenUpdate Command

Flushing Past Events from the Internal Queue

Handling Cit rix Server Farms

Handling Citrix Server Farms

Citrix servers can be grouped in farms. When load test ing, you may want to connect to a Citrix server farm
rather than to a specific server. Load test ing requirements may include connect ing to a Citrix server farm,
where the load balancing feature supports dynamic redirect ion to a given server at connect ion t ime. This
load tests the server farm and Citrix load balancing rather than a single server, which can provide a more
real ist ic load test.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

190

To record a script that connects to a farm, you must use an ICA fi le to connect. However, when a capture
takes place, a specific server (in the farm) must have a connect ion. Specify the correct ICA fi le to connect
to the server farm as well as a specific server with in that server farm.

To veri fy that your script is connect ing to a server farm and not a specific server, assign the server name to
one blank space when val idat ing the script . In order to record a script that connects to a farm, you must
use an ICA fi le specified in the Citrix Record Options dialog. Since the ICA fi le should contain al l the
necessary connect ion in formation, the server field should be left blank when recording.

When converted, the CitrixServer variable has a blank space:

.

.

.

/* Declare Variables */
const char *CitrixServer = " ";
const char *CitrixUsername = "citrix";
const char *CitrixPassword = "~encr~657E06726F697206";
const char *CitrixDomain = "qacitrix2";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

CtxSetConnectTimeout(90);
CtxSetDisconnectTimeout(90);
CtxSetWindowTimeout(30);
CtxSetPingTimeout(20);
CtxSetWaitPointTimeout(30);
CtxSetWindowVerification(TRUE);
CtxSetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-Domain);
CtxSetICAFile("PRD desktop.ica");
CtxSetEnableCounters(TRUE);
CtxSetWindowRetries(5, 5000);
CtxSetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

The Citrix cl ient ignores th is value and uses the ICA fi le to dynamical ly retrieve the server name at
playback t ime.

Conclusion

When you use these techniques to set up a Citrix server farm test script , you al low for dynamic server
redirect ion at playback as part of test ing a load balanced Citrix server farm.

Handling Dynamic Window Tit les

Example One

Script Sam ples: Exam ple One - Using a Subst r ing M atch

Script Development Workbench

191

In th is example, the M icrosoft Word appl icat ion generates a dynamic t i t le. The dynamic name is a
concatenat ion of the default document that Word creates at appl icat ion startup with the name of the
appl icat ion.

Original Window Tit le (Record) “ M icrosoft Word”

Actual Window Tit le (Val idat ion) “ document1 - M icrosoft Word”

Actual Window Tit le (Val idat ion) “ document 2 - M icrosoft Word”

The script is altered to reflect the fact that the string “ M icrosoft Word” is always part of the window t i t le.
 The asterisk (*) wi ldcard is subst i tuted for the default document name.

“ Match Pattern” from window
t i t les

 “ * - M icrosoft Word”

Example Two

Script Sam ples: Exam ple Tw o - Using a Wi ldcard M atch

In th is example, the Sample Appl icat ion generates a dynamic t i t le. The dynamic name is the name of the
appl icat ion fol lowed by the t ime the script is created.

Original Window Tit le (Record) “ Sample Appl icat ion – 09:01:23 AM”

Actual Window Tit le (Val idat ion) “ Sample Appl icat ion – 11:00:04 AM”

Actual Window Tit le (Val idat ion) “ Sample Appl icat ion – 12:20:52 PM”

The quest ion mark (?) wi ldcard is subst i tuted for a given t ime.

“ Match Pattern” from window
t i t les

“ Sample Appl icat ion – ??:??:?? ?M”

Handling Intermit tent Windows

Modifying the Script for Intermittent Windows

Windows that don't appear when a script is recorded can appear in termit tent ly during replay. One
example commonly encountered with Citrix is the ICA Seamless Host Agent window. If an unexpected
window appears at val idat ion or playback, you must modify the script to handle the window event.

To simpli fy the script ing process, record a temporary session and convert i t to a script . This should be a
session where the unexpected window appears so that the user must in teract, for example, with a mouse
cl ick or keyboard entry, to dismiss the in termittent window. Note the locat ion in the playback script where
the presence of the in termit tent window prevented the script from cont inuing. This is where code is added
to the script .

Do the fol lowing i f a val idat ion or playback session indicates an unexpected window appeared that
requires user in teract ion:

! Record a temporary script where the unexpected window event appears.

! Convert the original session to a script .

! Modify the original script with a sect ion of the temporary script .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

192

To record a t em porary scr ip t :

Simpli fy the script ing effort required by doing the fol lowing:

1. Record a temporary session of the transact ion. This should include the appearance of the
in termit tent window and the subsequent user in teract ion that dismisses the window.

2. Add a comment when the window appears and before the window is dismissed.

3. Give the successful record session a temporary name.

4. Click Opt ions>Convert , and cl ick OK to convert the session to a script .

To m odi f y t he or ig inal scr ip t :

Extract a small sect ion of the temporary script code and insert i t in to the original script .

1. Ident i fy the locat ion in the original script where the unexpected window appeared. You can do
th is by not ing the last window that was successful ly created before val idat ion fai lure.

Tip: Note the location with a code-style comment. This is the location where you paste in code from the
temporary script.

2. Ident i fy the code in the temporary script that creates the Citrix window object. This code is in the
sect ion labeled /* Citrix Window Information Objects */ and can be ident i fied by the name
parameter.

3. Cut and paste th is l ine in to the corresponding sect ion in the original script .

4. Modify the l ine pasted in to the original script , giving the statement a unique Citrix window
ident i fier.

Note: This identifier, CWI_n, must be a unique value in the original script or the script will not compile.

5. Find the l ine in the temporary script that deletes the Citrix window object. This code is after the
END_TRANSACTION cal l .

6. Copy th is l ine to the same locat ion in the original script and modify i t with the unique Citrix
window ident i fier from Step 4.

7. Add a special version of the CtxSetWindowMatchTit le command in the original script in the
locat ion where the original script fai led because of the in termit tent window.

This is where the window must be recognized and dismissed, i f i t exists. The first parameter is the
Citrix window object ident i fier from Step 2. The second parameter is an asterisk enclosed in double
quotes (“ *”). This parameter ensures that commands l ike CtxClick work with any matched window,
even i f the in termit tent window does not exist .

9. Ident i fy the code that dismisses th is window in the temporary script by scrol l ing to the comment
you inserted during capture, and backtracking unt i l you find the correct CtxWaitForWindowCreate
statement. Usual ly th is code consists of either a set of CtxPoint and CtxClick or one or more
keyboard entry cal ls after the window create event.

Caut ion: Do not include the CtxWaitForWindowCreate statement.

10. Copy the code from the temporary script and paste i t after the CtxSetWindowMatchTit le cal l added
in Step 5. Ensure that the Citrix window object parameter for these cal ls is the Citrix window
object ident i fier from Step 2.

Conclusion

Fol lowing these techniques, you can modify a session to handle the appearance of in termit tent windows
that require user act ion to dismiss. The sample scripts i l lustrate th is process.

Sample original script

Script Development Workbench

193

Sample temporary script

Sample modified script

Handling Unexpected Events

Modifying the Script to Handle Unexpected Events

Unexpected Citrix events that were not recorded in the original script can occur during a playback session .
These can include Intermit tent Windows or appl icat ion windows that may appear based on the user’s
session state. For example, the calculator appl icat ion may already be present when the Citrix user logs on a
session, or the user may need to invoke the appl icat ion.

When there is the possibi l i ty of unexpected events occurring, you must modi fy the script to respond to the
changes and cont inue the load test. Use the CtxWindowEventExists funct ion to create a condit ional block
of code that handles the unexpected dialogs.

When you modify a script to handle unexpected events, you must:

! Perform an in i t ial val idat ion of the script .

! Record a temporary script to capture the unexpected event.

! Modify the original script to include and handle the unexpected event.

! Re-val idate the script .

Note: You may need to configure the workbench and player for validation.

To per f orm an in i t ial val idat ion:

1. Click Session>Val idate to val idate the script . This is when an unexpected event can cause sporadic
fai lure during val idat ion or playback.

2. Ident i fy the sporadic event visual ly so that you can recognize i t in a later record session .

To record a t em porary scr ip t :

1. Click Opt ions>Record to record a second script that recreates the unexpected event. Successive
sessions should be recorded unt i l the unexpected event occurs.

2. Insert comments at two points:

 Where the event is fi rst recognized.

 Where the event is acted on and the Citrix session state and any window states have
returned to the state before the event occurred.

Note: You may need to position the mouse over a window or control, such as a button, before inserting
the second comment. (See Scripting Mouse Events.)

3. Give th is capture a name to denote th is session’s temporary status.

4. Click Opt ions>Convert , then cl ick OK to convert the session to a script .

To m odi f y t he or ig inal scr ip t w i t h code f rom t he t em porary scr ipt :

Fol low these steps to insert script code from the temporary script that handles the unexpected event.

1. Insert a code comment in the original script where the unexpected event occurred.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

194

2. Copy the code between the two comments in the temporary script and paste i t in to the original
script at the locat ion of the unexpected event you ident i fied.

Note: Comments ensure that the pasted code is clearly marked in the script.

3. Ident i fy any Citrix window objects that exist in API cal ls in the pasted code snippet. For each
object, do one of the fol lowing:

 If the window object is whol ly contained, both created and destroyed, in the pasted code
snippet:

a. Ident i fy the Citrix window creat ion and delet ion l ines of code in the temporary script .

b. Copy these l ines to the original script . This is the creat ion l ine in the /* Citrix Window
Information Objects */ sect ion and the delet ion l ine after the END_TRANSACTION cal l .

c. Give the Citrix window object variable a unique variable name.

d. Change al l variable references to the Citrix window in the pasted code snippet API cal ls to
the new variable name.

 If the window object referenced in a pasted API cal l is an act ion on an exist ing window object
in the original script , modify al l API cal ls in the pasted cal ls to refer to the variable name of the
Citrix window object in the original script .

4. Before the code snippet, add a condit ional check to see i f the unexpected window event has
occurred. Use the CtxWindowEventExists API cal l in an If condit ional, where i f the result is TRUE,
a block of code is executed. Then add a BeginBlock on the next l ine. BeginBlock is logical ly
ident ical to the C begin brace “ {“ .

5. After the code snippet, add an EndBlock. EndBlock is logical ly ident ical to the C end brace “ }“ .

Note: If there is code in the original script that should not be executed if the condition is TRUE,
 put this code in an Else block within the BeginBlock and EndBlock calls.

To re-val idat e t he scr ipt :

1. Click Session>Com pi le to compile the script after making script ing changes.

2. Cl ick Session>Val idate Script to val idate the script . Make sure that val idat ion succeeds when the
unexpected event occurs and when the event does not occur.

Conclusion

Fol lowing these techniques, you can modify scripts to handle unexpected events that occur during
playback. Script ing around unexpected events al lows you to perform load test ing for complex user
scenarios. The fol lowing sample scripts i l lustrate th is process:

Sample original script

Sample modified script

Script ing Mouse Act ions

Modifying the Script for Controlling Mouse Actions

Changes to screen resolut ion or server sett ings can cause the appearance, size, and locat ion coordinates of
a window to differ from the expected behavior in the recorded script . By sett ing Display coordinate
tool t i p on r i gh t -cl i ck opt ion in val idat ion w indow in the Convert Opt ions dialog box, you can right-
cl ick the mouse at the desired locat ion to extract screen coordinate values that correspond to buttons and
other controls in real t ime during val idat ion .

To modify a script to retrieve coordinate values, you must:

Script Development Workbench

195

! Validate the sett ings.

! Modify the script .

To val idat e t he set t ings:

1. Click Opt ions>Convert , and cl ick the Ci t r i x tab.

2. Ensure that the Display coordinate tool t i p on r i gh t -cl i ck opt ion in val i dat ion w indow
checkbox is selected.

3. Set Replay output m ode to Normal.

4. Click OK to convert the script .

During val idat ion, a right mouse-cl ick results in a toolt ip display of the screen coordinate values. You can
use these values in a manually added CtxPoint cal l to ensure that the mouse is moved to these coordinates
before any subsequent mouse cl ick act ions.

Tip: Make a note of these coordinate values, since this tooltip is not logged.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

196

To m odi f y t he scr ipt :

Once you determine the correct mouse coordinates from val idat ion, modify the script .

1. Add or modify the CtxPoint command.

2. Insert the new values in to the script .

Conclusion

Fol lowing these techniques, you can retrieve screen coordinates at val idat ion and insert them into a script .
This corrects mouse behavior as a result of changes to the server sett ings or the user session environment.
The sample scripts, showing added CtxPoint and CtxMouseClick, and modified CtxPoint, i l lustrate these
techniques.

Sample: Script Snippet with Modified CtxPoint

The fol lowing sample shows a script extract with a modified CtxPoint command. Comments and added
script l ines are h ighl ighted in bold.

Sam ple Script
…beginning of script…

DO_MSLEEP(1844);
// Window CWI_10 ("") destroyed 1113840796.133

Script Development Workbench

197

DO_MSLEEP(1828);

/// Modifying a CtxPoint is easy once you have the
/// target coordinates and have identified the
/// CtxClick statement that was failing. Just
/// insert the X and Y coordinates as the parameters.

CtxPoint(200, 200); //1113840798.309

DO_MSLEEP(344);
CtxClick(CWI_5, 78, L_BUTTON, NONE); //1113840798.387

…end of script…

OFS Scripts

Oracle Forms Server Script Samples

You can address specific si tuat ions or resolve certain problems by modifying converted Oracle Forms Server
(OFS) scripts. The samples shown here include a descript ion of the problem, the procedure for
implementing the modificat ion, and samples of a modified script . Script modificat ions are discussed for:

Parameterizat ion of Login Credent ials

Changing Accessibi l i ty Options in Oracle EBS-12

SAP Scripts

SAP Script Samples

You can address specific si tuat ions or resolve certain problems by modifying converted SAP scripts. The
samples shown here include a descript ion of the problem, the procedure for implementing the
modificat ion, and samples of a modified script . Script modificat ions are discussed for:

Checking and Handling SAPGuiCheckScreen Errors

Checking the SAP Status Bar

Extract ing a String from a SAP Control

Extract ing a Unique String from a SAP Control

Handling Mult iple SAP Logons in a Single Script

Implementing Content Check of a SAP Control

Required SAP Commands to Support Transact ion Restart

Required SAP Script Commands

Retrieving SAP Counter Data

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

198

Checking the SAP Status Bar

Overview: Checking the Status Bar

The SAP status bar displays error and status messages. When running an SAP script , you can check the
status bar to determine whether the script is execut ing properly.

Conclusion

Use the SAPGuiCheckStatusbar command to test for certain status responses in the SAP environment and
take act ions based on messages returned from the SAP server. The sample script i l lustrates th is procedure.

See Also

SAP Scripts Overview

Sample Script: Checking the SAP Status Bar

The SAPGuiCheckStatusbar command is used in the fol lowing script example to test for certain status
responses. The code added to check the status bar is shown in bold.

Sam ple Script
...
SAPGuiPropIdStr("wnd[0]");//1109615021.466
SAPGuiCmd1(GuiMainWindow,SendVKey,4);
SAPGuiCheckScreen("PA40","SAPMP50A","Personnel Actions"); //1109615021.481

DO_SLEEP(15);

Script Development Workbench

199

SAPGuiPropIdStr(""
 "wnd[1]/usr/tabsG_SELONETABSTRIP/tabpTAB001/ssubSUBSCR_PRESEL:SAPLSDH4:0220/sub:"
"SAPLSDH4:0220/txtG_SELFLD_TAB-LOW[0,24]"); //1109615036.231
SAPGuiCmd1(GuiTextField,PutText,"pan");
SAPGuiCmd1(GuiTextField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");//1109615036.246
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("PA40","SAPLSDH4","Restrict Value Range"); //1109615036.246

// Check to determine if the name we chose is found in db
// If not stop the script should not continue
BOOL bRetSts =
SAPGuiCheckStatusbar("wnd[0]/sbar", "No values for this selection");
if (bRetSts)
{
 RR__printf(" No such last name in Database");
 SAPGui_error_handler(s_info," End Now No such name in Database");
}
...

Extract ing a St ring from a SAP Control

Overview: Extracting a String from a SAP Control

When running an SAP script , you may want to get the control ’s text.

For example, in the fol lowing screen, after Chi ld1 Col. 2 is selected, the right table is fi l led in with data by
the SAP server. You can use the in formation as needed.

Use the SAPGuiGetControlText command to extract data from a SAP server returned control. The sample
script i l lustrates th is procedure.

Sample: Extracting a String from a SAP Control

The fol lowing sample script shows the SAP commands required to extract a data string from a returned
control in an SAP environment. You can use SAPGuiGetControlText to get the content of the Even t nam e

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

200

textfield. Use convert opt ion I nser t SAP cont r ol comment s: al l cont r ol s to output al l controls as
comment.

Sam ple Script

SAPGuiPropIdStr("wnd[0]/usr/cntlTREE_CONTAINER/shellcont/shell"
);//1152817068.134

SAPGuiCmd2(GuiCtrlTree,SelectItem,"Child1","Column2");
SAPGuiCmd2(GuiCtrlTree,EnsureVisibleHorizontalItem,"Child1","Column2");
SAPGuiCmd2(GuiCtrlTree,PressButton,"Child1","Column2");
SAPGuiCheckScreen("DWDM","SAPCOLUMN_TREE_CONTROL_DEMO","SAP");//1152817068.321

// *SAP* GuiMenubar name="mbar" Id="wnd[0]/mbar"
// *SAP* GuiMenu name="System" Id="wnd[0]/mbar/menu[0]"
// *SAP* GuiMenu name="Create Session" Id="wnd[0]/mbar/menu[0]/menu[0]"
// *SAP* GuiMenu name="End Session" Id="wnd[0]/mbar/menu[0]/menu[1]"
// *SAP* GuiMenu name="User Profile" Id="wnd[0]/mbar/menu[0]/menu[2]"

 …..
 // *SAP* GuiLabel name="%#AUTOTEXT004"
 Id="wnd[0]/usr/lbl%#AUTOTEXT004"

// *SAP* GuiTextField name="G_EVENT" Id="wnd[0]/usr/txtG_EVENT"
// *SAP* GuiLabel name="%#AUTOTEXT002" Id="wnd[0]/usr/lbl%#AUTOTEXT002"
// *SAP* GuiTextField name="G_NODE_KEY" Id="wnd[0]/usr/txtG_NODE_KEY"
// *SAP* GuiLabel name="%#AUTOTEXT005" Id="wnd[0]/usr/lbl%#AUTOTEXT005"

// *SAP* GuiTextField name="G_ITEM_NAME" Id="wnd[0]/usr/txtG_ITEM_NAME"
// *SAP* GuiLabel name="%#AUTOTEXT006" Id="wnd[0]/usr/lbl%#AUTOTEXT006"
// *SAP* GuiTextField name="G_HEADER_NAME" Id="wnd[0]/usr/txtG_HEADER_NAME"
// *SAP* GuiStatusbar name="sbar" Id="wnd[0]/sbar"
// *SAP* GuiStatusPane name="pane[0]" Id="wnd[0]/sbar/pane[0]"
// *SAP* GuiStatusPane name="pane[1]" Id="wnd[0]/sbar/pane[1]"
// *SAP* GuiStatusPane name="pane[2]" Id="wnd[0]/sbar/pane[2]"
// *SAP* GuiStatusPane name="pane[3]" Id="wnd[0]/sbar/pane[3]"
// *SAP* GuiStatusPane name="pane[4]" Id="wnd[0]/sbar/pane[4]"
// *SAP* GuiStatusPane name="pane[5]" Id="wnd[0]/sbar/pane[5]"

 // Check the event name
char * strEvent = SAPGuiGetControlText("wnd[0]/usr/txtG_EVENT", "GuiTextField");
RR__printf(" The Event Name: %s", strEvent);
free(strEvent);

Required SAP Script Commands

Overview: Required SAP Script Commands

Certain commands must be present in an SAP script . These commands are created automatical ly during the
conversion process. Most of the commands are before the BEGIN_TRANSACTION statement. Review th is
sect ion i f you are having unexpected issues after script edit ing.

Note: If the SAP script supports transaction restarting, review Required Commands for Supporting
Transaction Restart in SAP.

Requi red Scri pt Com m ands

Required commands and associated code statements for the SAP script are:

SET_ABORT_FUNCTION(abort funct ion);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoIn it ial ize(0);

i f(hr != ERROR_SUCCESS)

 RR__FailedMsg(s_info, "ERROR in it ial izing COM");

Script Development Workbench

201

SAPGuiSetCheckScreenWildcard(‘*’);

SYNCHRONIZE();

Note: These functions are required, but additional SAP API script commands are also essential to run an
SAP script.

Conclusion

When encountering unexpected compiler errors after script edit ing, review the script to ensure al l required
commands are present. This might reveal a problem created by the script edits, especial ly when moving the
transact ion loop. You must take care when doing extensive script edit ing not to accidental ly remove
cri t ical commands. Recording the transact ion again and doing a windiff comparison can also help when
unexpected compiler errors occur.

The sample script shows the statements used in the script .

Sample: SAP Script with Commands

The fol lowing sample is a SAP Script with required commands. Required commands in the script are
h ighl ighted in bold.

Sam ple Script

/*
 * capture.cpp
 *
 * Script Converted on July 20, 2004 at 08:43:23 AM
 * Generated by Compuware QALoad convert module version 5.2.0 build 73
 *
 * This script contains support for the following middlewares:
 * - SAP
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Constants to Variables : Yes
 * Remove Quotes : No
 * Tabs To Spaces : No
 * Auto Checkpoints : No
 * SAP
 * Version : 6204.119.32
 */

#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include <windows.h>
#include <atlbase.h>
#include <objbase.h>
#include "do_SAPCCOM.h"
#include <atlwin.h>
#include <atlcom.h>
#include <atlhost.h>
#include "cscript.h"
#include "do_SapGui.h"
#include "mwCommon.h"

extern "C" {
#include "smacro.h"
}

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

202

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{

/* Declare Variables */

/// These script functions in bold must be present and
/// before the SYNCHRONIZE command in every SAP script.

ACTION();

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)

 RR__FailedMsg(s_info,"SAP: ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSDO_SetTransactionStart();

try{

SAPGuiConnect(s_info,"testsap620");

SAPGuiApplication(RegisterROT);

SAPGuiVerCheckStr("6204.119.32");

//Set SapApplication = CreateObject("Sapgui.ScriptingCtrl.1")
//SapApplication.OpenConnection ("testsap620")
//Set Session = SapApplication.Children(0).Children(0)

DO_SLEEP(18);

SAPGuiPropIdStr("wnd[0]");//1057828784.513
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(16);

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");//1057828800.786
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");//1057828800.796
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~0000x_'9d");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");//1057828800.836
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");//1057828800.856

DO_SLEEP(6);
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(3);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[15]");//1057828809.839

Script Development Workbench

203

SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSMTR_NAVIGATION","SAP Easy
Access");//1057828809.859

DO_SLEEP(2);

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");//1057828811.382
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");//1057828811.402

} // end try

catch (_com_error e){
char buffer[1024];
sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char
*)e.Description(), S_task_id);
SAPGui_error_handler(s_info,buffer);
} // end catch

DO_SetTransactionCleanup();

SAPGuiApplication(RevokeROT);

END_TRANSACTION();

REPORT(SUCCESS);
EXIT();
return(0);

}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User ABORTED.");
EXIT();

}

Retrieving SAP Counter Data

Modifying the Script to Retrieve SAP Counter Data

SAP scripts can retrieve customer counter in formation for each virtual user. By insert ing code snippets that
use the SAPGui script ing API in to the SAP script , you can obtain and save SAP server in formation.

To m odi f y t he scr ipt t o ret r ieve SAP count er dat a:

1. Declare and in i t ial ize the counter ident i ficat ion (ID) variables using the in t data type. You should
declare a variable for each counter value to be extracted. The DEFINE_COUNTER macro in i t ial izes the
declared counter ident i fier variable and creates a holder for the value in the t im ing fi le.

2. Declare and in i t ial ize the variable to hold the actual SAP counter value. You should declare the
variable using a datatype that can hold any expected value for the counter. Usual ly a long is
appropriate.

3. Retrieve the counter in formation from the SAP server using the SAPGuiSessionInfo command. The
value is placed in the variable you created in Step 2. The first parameter is the SAP property object
corresponding to the counter. The second parameter is the variable to hold the value.

4. Save the counter value to the t im ing fi le. The COUNTER_VALUE macro command extracts the value
from the server. The value is extracted to the variable created in Step 2. It is stored in the t im ing fi le
using the associated ID created in Step 1.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

204

Conclusion

Fol lowing these techniques, you can obtain customer counter in formation from the SAP server, save i t to
the virtual user’s t im ing fi le, and view i t in Analyze. The sample original script and sample modified script
i l lustrate th is modificat ion.

Sample: Original SAP Script with Counters

The fol lowing sample shows an original SAP script extract with counters. Points of in terest in the script are
h ighl ighted in bold.

Sam ple Script

/*
 * counters.cpp
 *
 * Script Converted on July 20, 2004 at 08:43:23 AM
 * Generated by Compuware QALoad convert module version 5.2.0 build 73
 *
 * This script contains support for the following middlewares:
 * - SAP
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Constants to Variables : Yes
 * Remove Quotes : No
 * Tabs To Spaces : No
 * Auto Checkpoints : No
 * SAP
 * Version : 6204.119.32
 */

#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include <windows.h>
#include <atlbase.h>
#include <objbase.h>
#include "do_SAPCCOM.h"
#include <atlwin.h>
#include <atlcom.h>
#include <atlhost.h>
#include "cscript.h"
#include "do_SapGui.h"
#include "mwCommon.h"

extern "C" {
#include "smacro.h"
}

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{

/* Declare Variables */

/// Declare the SAP custom counter variable IDs

Script Development Workbench

205

/// Also declare any SAP counter value variables.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("counters.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"SAP: ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

/// Initialize the SAP custom counter variable IDs.

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_SetTransactionStart();

try{

SAPGuiConnect(s_info,"testsap620");

SAPGuiApplication(RegisterROT);

SAPGuiVerCheckStr("6204.119.32");

//Set SapApplication = CreateObject("Sapgui.ScriptingCtrl.1")
//SapApplication.OpenConnection ("testsap620")
//Set Session = SapApplication.Children(0).Children(0)

DO_SLEEP(18);

SAPGuiPropIdStr("wnd[0]");//1057828784.513
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(16);

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");//1057828800.786
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");//1057828800.796
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~0000x_'9d");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");//1057828800.836
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");//1057828800.856

DO_SLEEP(6);
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(3);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[15]");//1057828809.839
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSMTR_NAVIGATION","SAP Easy
Access");//1057828809.859

DO_SLEEP(2);

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");//1057828811.382
SAPGuiCmd0(GuiButton,Press);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

206

/// This is where we would like to retrieve the RoundTrips
/// and Flushes counter. Here the SAPGuiSessionInfo command
/// will be inserted to retrieve these SAP counter values from the server.

SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");//1057828811.402

/// Here is where the counter information will actually be
/// written to the timing file.

} // end try

catch (_com_error e){
char buffer[1024];
sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char
*)e.Description(), S_task_id);
SAPGui_error_handler(s_info,buffer);

} // end catch

DO_SetTransactionCleanup();

SAPGuiApplication(RevokeROT);

END_TRANSACTION();

REPORT(SUCCESS);
EXIT();
return(0);

}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User ABORTED.");
EXIT();

}

Sample: Modified SAP Script with Custom Counters

The fol lowing sample shows a modified SAP script with SAP custom counters. Changes to Original script
are h ighl ighted in bold.

Sam ple Script

/*
 * counters.cpp
 *
 * Script Converted on July 20, 2004 at 08:43:23 AM
 * Generated by Compuware QALoad convert module version 5.2.0 build 73
 *
 * This script contains support for the following middlewares:
 * - SAP
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Constants to Variables : Yes
 * Remove Quotes : No
 * Tabs To Spaces : No
 * Auto Checkpoints : No
 * SAP
 * Version : 6204.119.32
 */

#define SCRIPT_VER 0x00000205UL

Script Development Workbench

207

#include <stdio.h>
#include <windows.h>
#include <atlbase.h>
#include <objbase.h>
#include "do_SAPCCOM.h"
#include <atlwin.h>
#include <atlcom.h>
#include <atlhost.h>
#include "cscript.h"
#include "do_SapGui.h"
#include "mwCommon.h"

extern "C" {
#include "smacro.h"
}

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{

/* Declare Variables */

/// Scripting: Step 1

int id1, id2, id3, id4;
long lRoundTrips,lFlushes;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("counters.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"SAP: ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

/// Scripting: Step 2

// "Counter Group", "Counter Name", "Counter Units
// (Optional)", Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative RoundTrips", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative Flushes", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips", 0, DATA_LONG,
COUNTER_INSTANCE);

id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0, DATA_LONG,
COUNTER_INSTANCE);

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_SetTransactionStart();

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

208

try{

SAPGuiConnect(s_info,"testsap620");

SAPGuiApplication(RegisterROT);

SAPGuiVerCheckStr("6204.119.32");

//Set SapApplication = CreateObject("Sapgui.ScriptingCtrl.1")
//SapApplication.OpenConnection ("testsap620")
//Set Session = SapApplication.Children(0).Children(0)

DO_SLEEP(18);

SAPGuiPropIdStr("wnd[0]");//1057828784.513
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(16);

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");//1057828800.786
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");//1057828800.796
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~0000x_'9d");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");//1057828800.836
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");//1057828800.856

DO_SLEEP(6);
SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,92,34,false);

DO_SLEEP(3);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[15]");//1057828809.839
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSMTR_NAVIGATION","SAP Easy
Access");//1057828809.859

DO_SLEEP(2);

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");//1057828811.382
SAPGuiCmd0(GuiButton,Press);

/// Scripting: Step 3

SAPGuiSessionInfo(GetRoundTrips,lRoundTrips);
SAPGuiSessionInfo(GetFlushes,lFlushes);

SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");//1057828811.402

/// Scripting: Step 4

COUNTER_VALUE(id1,lRoundTrips);
COUNTER_VALUE(id2,lFlushes);
COUNTER_VALUE(id3,lRoundTrips);
COUNTER_VALUE(id4,lFlushes);

} // end try

catch (_com_error e){
char buffer[1024];

Script Development Workbench

209

sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char
*)e.Description(), S_task_id);
SAPGui_error_handler(s_info,buffer);

} // end catch

DO_SetTransactionCleanup();

SAPGuiApplication(RevokeROT);

END_TRANSACTION();
REPORT(SUCCESS);
EXIT();
return(0);

}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User ABORTED.");
EXIT();

}

Winsock Scripts

Winsock Script Samples

You can address specific si tuat ions or resolve certain problems by modifying converted Winsock scripts.
These samples show a descript ion of the problem, the procedure for implementing the modificat ion, and
samples of a modified script . Script modificat ions are discussed for:

Handling Winsock Connect ion Problems

Accessing Local and Remote Network Addresses

Using Central Datapools with in a Winsock Script

Using Local Datapools with in a Winsock Script

Accessing Server Replies with DO_WSK_Read

Accessing Server Replies with DO_WSK_Recv

Receiving Winsock UDP Data with DO_WSK_Recvfrom

Sending Variable Data with DO_WSK_Send

Sending Variable Data using DO_WSK_SendAll

Sending Variable Data using DO_WSK_SendTo

Sending Variable Data using DO_WSK_Write

Accessing Server Replies Using Response() and ResponseLength()

Parsing Server Replies Using ScanFloat and ScanInt

Parsing Server Replies Using ScanSkip and ScanString

Parsing Server Replies Using SkipExpr and ScanSkip

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

210

Accessing Local and Remote Network Addresses

You can retrieve the IP address or port to which a socket handle is connected, or retrieve the IP address and
port to which a socket handle is bound. The sample script i l lustrates how to retrieve and store socket
address and port in format ion. The required code is shown in bold.

Sample Script
...
/* Declare Variables */

//Belows are two socket structs that will store the address and port information.
struct sockaddr_in RemoteAddr;
struct sockaddr_in LocalAddr;
…
BEGIN_TRANSACTION();
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_TCP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
/* Socket S2 was bound to address 0.0.0.0 on port 3320 (hibyte=12,lobyte=248) */

//Called after the DO_WSK_Bind() to see which address the socket was bound to
LocalAddr.sin_addr.s_addr = ntohl(GetLocalAddr(S1));

//Called after the DO_WSK_Bind() to see which port the socket was bound to
LocalAddr.sin_port = GetLocalPort(S1);

DO_WSK_Connect(S1, "10.4.26.24", 80, AF_INET);

//Called to retrieve the remote address that S1 is connected to.
RemoteAddr.sin_addr.s_addr = ntohl(GetRemoteAddr(S1));

//Called to retrieve the remote port that S1 is connected to.
RemoteAddr.sin_port = ntohs(GetRemotePort(S1));

//The function below will print the remote and local address and port information
// to the playerbuffer. Within the RR__printf() the script is using the socket function
// “inet_ntoa()” to convert the IP from an unsigned long to a string
// format, “XXX.XXX.XXX.XXX”.
RR__printf("Remote: address=%s port=%d",inet_ntoa(RemoteAddr.sin_addr),
RemoteAddr.sin_port);
RR__printf("Local: address=%s port=%d",inet_ntoa(LocalAddr.sin_addr), LocalAddr.sin_port);

DO_WSK_Closesocket(S1);

…
Conclusion

When th is code is executed, a message is prin ted to the playerbuffer, such as:

VU 0 : Remote: address=10.4.26.24 port=80

VU 0 : Local: address=10.15.16.26 port=1125

Parsing Server Replies Using ScanFloat and ScanInt

Sometimes local appl icat ions must in terpret and act on numeric values sent from a remote appl icat ion. For
example, remote appl icat ions may send a port number to the local appl icat ion. The local appl icat ion parses
the remote port from the data i t receives and attempts to connect to the remote machine on the new port .

By using ScanInt(), you can parse the received buffer for numeric values, such as port numbers, or use
ScanFloat() to parse for larger numeric values. The sample script i l lustrates how to use ScanFloat() and
ScanInt(). The required code is shown in bold.

Script Development Workbench

211

Sample Script

...

/* Declare Variables */

//The variable "port" was declared to store the port# that the remote

// application sends. The variable "nID" is used to store the unique

// ID that is sent by the remote application.

unsigned short port;

float nID;

...

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Socket(S2, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Connect(S1, "10.15.21.225", 33, AF_INET);

/* 11 bytes: "port=\nA\0\0aB" */

//Since the end of the data that is being received is dynamic, the

// script will use DO_WSK_Read() to receive the data instead

// using the DO_WSK_Expect() that was converted into the script.

//DO_WSK_Expect(“B”);
DO_WSK_Read(S1,11);

//Calling ScanSkip to move the pointer to the first byte of the port

ScanSkip(5);

//Calling ScanInt to copy the next two bytes into a variable that will

// store the port from the remote application.

ScanInt(MyByteOrder(),2,(char*)&port);

//Calling ScanFloat to copy the next four bytes into a variable that will

// store the unique ID from the remote application.

ScanFloat(MyByteOrder(),4,(char*)&nID);

//Printing the port number to the playerbuffer window, and converting

// the value from network byte order to host byte order.

RR__printf("port=%d",ntohs(port));

//Printing the unique ID that the remote application sent to the

// playerbuffer.

RR__printf("float=%f",nID);

DO_WSK_Closesocket(S1);

//Below is the original DO_WSK_Connect that was converted into the script

//DO_WSK_Connect(S2,”10.15.21.225”, 2526, AF_INET);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

212

//Uses the port that was returned above to reconnect to the remote application

DO_WSK_Connect(S2, "10.15.21.225", ntohs(port), AF_INET);

DO_WSK_Send(S2,"Hello World");

DO_WSK_Closesocket(S2);

...

Conclusion

In th is example, the script parses the port number sent from the remote appl icat ion and uses th is to
reconnect to the remote appl icat ion. The script also uses ScanFloat() to parse a unique ID from the message
sent by the remote appl icat ion.

Parsing Server Replies Using ScanSkip and ScanString

Data returned from the server may be too dynamic to base your parsing on actual characters. In th is case,
 you can base your search on character posit ions using ScanSkip() and ScanString().

For example, you can save characters 20 through 25 that are returned from a server. The ScanSkip() skips
the specified number of characters in the in ternal buffer that stores the response received in the
DO_WSK_Expect(). The ScanString() scans the number of characters you specify in to a character string
from the current posit ion in the buffer.

In th is sample, the buffer returned from the server is xxx123456789yyy. You are retrieving the value
between xxx and yyy. The required code is shown in bold.

Sample Script

...

/* Declare Variables */

//Variable to store the string that we are searching for.

char temp[15];

…
BEGIN_TRANSACTION();

…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//Below is the actual data that was returned at capture time.

/* 16 bytes: xxx0123456789yyy */

DO_WSK_Expect(S1, "yyy");

//making sure that all of the data within our variable has been initialized

memset(temp,'\0',15);

//skips 3 bytes within the buffer that was received.

Script Development Workbench

213

ScanSkip(3);

//copies the next 10 bytes of the buffer that was received into our temp variable

ScanString(10,temp);

//Displays the string that was found to the playerbuffer window.

RR__printf("string=%s",temp);

DO_WSK_Closesocket(S1);

...

Conclusion

In th is example, the message “ string=0123456789” is prin ted to the player buffer window.

Receiving Winsock UDP Data with DO_WSK_Recvfrom

When the appl icat ion you are capturing is using the UDP protocol, you can use the DO_WSK_Recvfrom()
to receive data from the remote appl icat ion. The sample script i l lustrates how to use the Do_Wsk_Recvfrom
(). The required code is shown in bold.

Sample Script

...

/* Declare Variables */

//The variable strBuf is used to formulate the dynamic data that is

// sent in the DO_WSK_Sendto() below.

char strBuf[256];

//RemoteAddr stores the remote applications address and port

struct sockaddr_in RemoteAddr;

//nBytes is used to stor the number of bytes that were received via DO_WSK_Recvfrom()

int nBytes = 0;

…
BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_DGRAM, IPPROTO_UDP);

DO_WSK_Bind(S1, "10.15.16.26", 333);

//Receives data via the UDP protocol

DO_WSK_Recvfrom(S1,strBuf,(struct sockaddr*) &RemoteAddr, 256, 0, &nBytes);

//Prints to the player buffer the number of bytes that were received and

// the remote address and port that sent them.

RR__printf("Received %d bytes from %s:%d",

nBytes, inet_ntoa(RemoteAddr.sin_addr),

ntohs(RemoteAddr.sin_port));

…

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

214

DO_WSK_Closesocket(S1);

Conclusion

This example shows how to use DO_WSK_Recvfrom() to receive UDP protocol data. It shows how to access
the address and port of the remote appl icat ion sending the data.

Sending Variable Data with DO_WSK_Send

Captured data may not be the data you want to use while running a test. For example, you might change
the user name sent during capture t ime to a differen t value during replay. You can change the value in the
DO_WSK_Send() to make a stat ic value with in the funct ion. However, i f you want to subst i tute a different
value each t ime, you can create a dynamic variable, such as a datapool value, to replace the user name.

In th is example, the script includes a DO_WSK_Send() that sends “ name=Jim” to the server as the user
name. For test ing purposes, you want to change the name to include a variable that represents a different
name, such as “ Mark” . The code required for th is is shown in bold.

Sample Script

…

/* Declare Variables */

//Below are variables needed for the dynamic data. The size of these

//variables will depend upon how big the buffer is that you are replacing

char buffer[65];

char sendbuffer[65];

…
BEGIN_TRANSACTION();

…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//Below is the original send based upon the capture file.

// DO_WSK_Send(S1,"name=Jim");

//The script will now create a buffer that is different than what was captured,

//and if we wanted the string “Mark” could also of been a datapool value.
strcpy(buffer, "Mark");

sprintf(sendbuffer, "name=%s", buffer);

//The script will now send the variable string that was created above

DO_WSK_Send(S1, sendbuffer);

/* 2 bytes: ok */

DO_WSK_Expect(S1,"ok");

Script Development Workbench

215

DO_WSK_Closesocket(S1);

Conclusion

In th is example, the user name sent to the server is changed from “ name=Jim” to “ name=Mark” by
modifying the buffer before the DO_WSK_Send() and passing the new buffer as the second parameter of
the DO_WSK_Send().

Sending Variable Data using DO_WSK_SendAll

When only a port ion of a string that the script is sending must be modified to make i t dynamic, using the
DO_WSK_SendAll() can be easier than modifying the DO_WSK_Send().

The fol lowing example sends the username “ Bob” and the password “ CPWR” to the server to logon. Since
only one instance of th is user can be logged on to the server, you must modify the script to read different
user names and passwords from a datapool before sending i t . In the sample script sn ippet, the required
code is shown in bold.

Sample Script

...

BEGIN_TRANSACTION();

//Reads in a datapool record to be used to make the username and password dynamic.

GET_DATA();

DO_WSK_Socket(S2, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Bind(S2, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S2, "10.0.6.32", 80, AF_INET);

//In the string that was sent below "Bob" and "CPWR" both need to be modified

// to allow for multiple users to execute this script.

/* 20 bytes */

//DO_WSK_Send(S2, "^@user=Bob^@pwd=CPWR^@\377");

//Using DO_WSK_Sendall the message that is being sent can easily be modified, so

// that the script can read in the username and password from a datapool file.

DO_WSK_SendAll(S2,5, "^@user", VARDATA(1), "^@pwd=", VARDATA(2), "^@\377");

/* 15 bytes: SID=1234567890^@ */

DO_WSK_Expect(S2, "^@");

DO_WSK_Closesocket(S2);

...

Conclusion

In the sample modified script , the user name and password are read in from a datapool fi le and the data is
sent using the DO_WSK_SendAll().

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

216

Sending Variable Winsock UDP Data

Captured data may not be the data that you want to use while running a test. For example, you may want
to subst i tute a user name sent during capture with a different value each t ime during replay. You can do
th is using a dynamic variable, such as a datapool variable.

Note: Changing the value located in the DO_WSK_Sendto() makes the value static within the function.

In th is sample, the code in bold below shows how change data values.

Sample Script

...

/* Declare Variables */

//The variable strBuf is used to formulate the dynamic data that is

// sent in the DO_WSK_Sendto() below.

char strBuf[24];

…
BEGIN_TRANSACTION();

//Reads in a row of data from a central datapool file, and this will be

//used as part of the dynamic data that will be sent via the DO_WSK_Sendto()

GET_DATA();

DO_WSK_Socket(S1, AF_INET, SOCK_DGRAM, IPPROTO_IP);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_BROADCAST, 1);

DO_WSK_Bind(S1, "127.0.0.1", 5634);

//Below is the original DO_WSK_Sendto() that was converted into the script

//DO_WSK_Sendto(S1, "name=Brian", "10.25.26.24", 1234);

//The example below reads a record in from a central datapool, and the value

// is then sent as part of the DO_WSK_Sendto() buffer.

memset(strBuf, 0, 24);

sprintf(strBuf, "name=%s", VARDATA(1));

DO_WSK_Sendto(S1, strBuf, "10.25.26.24", 1234);

…
DO_WSK_Closesocket(S1);

…

Conclusion

In th is example, the virtual user reads in a row of data from a central datapool, which is used to create a
dynamic message. This message is used in the DO_WSK_Sendto() to send i t to the address “ 10.25.26.24” .

Sending Variable Data using DO_WSK_Write

You can use DO_WSK_Write() instead of DO_WSK_Send() when coding scripts by hand. DO_WSK_Write()
does not expect strings that have certain control and nul l characters encoded, as does DO_WSK_Send().
This al lows you to send data without using EscapeStr() to encode any possible control characters.

Script Development Workbench

217

The sample script i l lustrates how to use DO_WSK_Write(). The required code is shown in bold.

Sample Script

...

/* Declare Variables */

//Variable that will be used to send data to the server via DO_WSK_Write()

char temp[24];

...

BEGIN_TRANSACTION();

DO_WSK_Socket(S2, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Bind(S2, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S2, "10.4.26.24", 60, AF_INET);

//The original data that was sent was... "^@user=Bob^@pwd=CPWR^@", and the

// ^@ are encoded null characters. The function below constructs the same

// data that was sent without the data being encoded.

memcpy(temp,"\0user=Bob\0pwd=CPWR\0", 19);

/* 19 bytes */

//The DO_WSK_Send() below was converted to the script from the capture file.

//DO_WSK_Send(S2, "^@user=Bob^@pwd=CPWR^@");

//Since the script is now using DO_WSK_Write() to send the data it does not

//need to call EscapeStr() to encoded the NULL characters within the string

//that is being sent.

DO_WSK_Write(S2,temp, 19);

/* 15 bytes: SID=1234567890^@ */

DO_WSK_Expect(S2, "^@");

DO_WSK_Closesocket(S2);

...

Conclusion

In the sample script , the data was sent using the DO_WSK_Write() instead of the DO_WSK_Send(). This
al lows you to send data without encoding i t .

Using Central Datapools within a Winsock Script

You can use dynamic data in your script by reading data from a datapool fi le. However, datapool fi les must
be in an ASCII string, and not al l dynamic data are in th is format. For example, when the string
 “ \ 121\ 101\ 114\ 157\ 141\ 144” appears in a datapool fi le and is read in using a one of the datapool
funct ions, you receive \ \ 121\ \ 101\ \ 114\ \ 157\ \ 141\ \ 144 as the output.

You can ensure that the output string you receive is accurate by using the OctalToChar() to convert any
octal sequences into their binary representat ion. In th is sample script , the string
“ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a central datapool fi le and converted to i ts binary
representat ion. The required code is shown in bold.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

218

Sample Script

/* Declare Variables */

//Variable declared to store the central datapool record.

char temp[40];

…
BEGIN_TRANSACTION();

//Gets a row of data from the Conductor during the test.

GET_DATA();

…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

//Read the first column from the central datapool row that was

//returned when the GET_DATA() was called.

strcpy(temp,VARDATA(1));

//used to convert octal strings to their binary format

OctalToChar(temp);

//The script is now setup to send the data that was read in from the

//central datapool file instead of the hard coded values that were captured.

DO_WSK_Send(S1,temp);

//Below is the original send that was captured.

//DO_WSK_Send(S1,”\121\101\122\165\156”);
DO_WSK_Closesocket(S1);

Conclusion

In th is example, the DO_WSK_Send() sends the octal representat ion for the string “ QALoad” ,
 “ \ 121\ 101\ 114\ 157\ 141\ 144” , to the server.

Using Local Datapools within a Winsock Script

You can use dynamic data in your script by reading data from a datapool fi le. However, datapool fi les must
be in an ASCII string, and not al l dynamic data are in th is format. For example, when the string
 “ \ 121\ 101\ 114\ 157\ 141\ 144” appears in a datapool fi le and is read in using a one of the datapool
funct ions, you receive \ \ 121\ \ 101\ \ 114\ \ 157\ \ 141\ \ 144 as the output.

You can ensure that the output string you receive is accurate by using the OctalToChar() to convert any
octal sequences into their binary representat ion. In th is sample script , the string
“ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a local datapool fi le and converted to i ts binary
representat ion. The required code is shown in bold.

Sample Script

//This is used as an easy to remember descriptor for the datapool file.

Script Development Workbench

219

#define DP1 1/* Identifier for a datapool file*/

/* Declare Variables */

//Variable declared to store the local datapool record.

char temp[40];

…
//Opens the datapool file

OPEN_DATA_POOL("datapool.dat", DP1, TRUE)

BEGIN_TRANSACTION();

//Reads a row of data in from the datapool file that was opened above

READ_DATA_RECORD(DP1);

…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

//Read the first column from the local datapool row that was

//returned when the READ_DATA_RECORD () was called.

strcpy(temp, GET_DATA_FIELD(DP1, 1));

//used to convert octal strings to their binary format

OctalToChar(temp);

//The script is now setup to send the data that was read in from the

//local datapool file instead of the hard coded values that were captured.

DO_WSK_Send(S1,temp);

//Below is the original send that was captured.

//DO_WSK_Send(S1,”\121\101\122\165\156”);

DO_WSK_Closesocket(S1);

Conclusion

In th is example, the DO_WSK_Send() sends the octal representat ion for the string “ QALoad” ,
 “ “ \ 121\ 101\ 114\ 157\ 141\ 144” , to the server.

Accessing Server Replies

Accessing Server Replies Using Response and ResponseLength

You can save the ent ire reply that a server returns using Response() and ResponseLength(). When you cal l
Response() direct ly after the DO_WSK_Expect(), i t returns a pointer to the data received by the
DO_WSK_Expect(). To receive the length of the received reply, cal l the ResponseLength(). This returns the
number of characters received.

The sample script i l lustrates how to use these commands to save a server reply. In th is sample, the code in
bold shows how to use Response() and ResponseLength().

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

220

Sam ple Script
/* Declare Variables */
//Below are variables needed for this example
int x = 0;
char *temp;
…
BEGIN_TRANSACTION();
…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//Below is the actual buffer that was returned at capture time.
/* 21 bytes: You are now connected */
DO_WSK_Expect(S1, "d");

// used to store the data that was received by the DO_WSK_Expect
temp = Response();

//used to get the size of the response that was received so far.
x = ResponseLength();

//The line below will print the length of the response to the playerbuffer
RR__printf(“The size of the received buffer was %d bytes ",x,);

DO_WSK_Closesocket(S1);

Conclusion

In th is example, Response() and ResponseLength() are used to prin t the message “ The size of the received
buffer was 21 bytes” to the player buffer window.

Accessing Server Replies with DO_WSK_Read

When data received is too dynamic and there is noth ing on which to base the unique string, you cannot
use the DO_WSK_Expect() to access server repl ies. In th is case, when the number of characters received is
always the same, you can use DO_WSK_Read().

In the fol lowing example, the user sends a logon string to the server and the server sends back a unique
key that is used for subsequent cal ls. Since the ending characters always change, DO_WSK_Read is cal led to
receive a specified number of characters. You can parse th is data for any values you need. The required
code is shown in bold.

Sam ple Script
...
BEGIN_TRANSACTION();

DO_WSK_Socket(S2, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Bind(S2, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S2, "10.4.26.24", 80, AF_INET);

/* 20 bytes */
DO_WSK_Send(S2, "^@user=Bob^@pwd=CPWR^@\377");

//The data that is being sent from the server is dynamic and the ending
// character is never the same. Since this is the case using
// DO_WSK_Expect() will not work, so the script will use DO_WSK_Read()
// to receive the same number of bytes that were originally sent.

Script Development Workbench

221

/* 14 bytes: SID=1234567890 */
//DO_WSK_Expect(S2, "^@");

//The script will now print the response that was received by
// calling Response() to gain access to the received buffer.

If (DO_WSK_Read(S2,14) != -1)
RR__printf("String = %s",Response());
...

Conclusion

Using DO_WSK_Read() instead of DO_WSK_Expect() al lows the virtual user to receive a specific number of
bytes instead of a sequence of characters.

Accessing Server Replies with DO_WSK_Recv

When the data returned is too dynamic and the DO_WSK_Expect() fai ls, you can use DO_WSK_Recv() to
store the reply returned from the server. This saves the response based on i ts size instead of on the unique
character string used in the DO_WSK_Expect(). When you use DO_WSK_Recv(), you specify how much
data you want to receive and where to store i t .

The sample script i l lustrates how to use DO_WSK_Recv to store the reply from the server. The required
code is shown in bold.

Sam ple Script

/* Declare Variables */
//Below are variables that were declared to use with DO_WSK_Recv,
//and the size of temp will vary depending upon the buffers that your
//application is returning.
int size = 0;
char temp[45];
…
BEGIN_TRANSACTION();
…
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//Below is the data that was received at capture time.
/* 21 bytes: You are now connected */

//Initializing the temp variable
memset(temp,'\0',45);

//Instead of calling DO_WSK_Expect() to receive the data, the
//script will now call DO_WSK_Recv(). This will allow the script to
//receive a specified number of characters instead of looking at the data
//to determine if the buffer has been received entirely or not.

DO_WSK_Recv(S1,temp,45,0,&size);

//Original function that was in the script
//DO_WSK_Expect(S1, “d”);
//Prints the size of the string that was received to the playerbuffer.
RR__printf("Size of the received buffer was %d bytes", size);

DO_WSK_Closesocket(S1);

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

222

Conclusion

In th is example, the message “ Size of the received buffer was 21 bytes” is prin ted to the player buffer
window.

Caut ion: When using this method instead of the DO_WSK_Expect(), verify that you receive the correct
information before moving on to the next function in your script.

WWW Scripts

WWW Script Samples

You can address specific si tuat ions or resolve certain problems by modifying converted WWW scripts. The
samples shown here include a descript ion of the problem, the procedure for implementing the
modificat ion, and samples of a modified script . Scripts modificat ions are discussed for:

Extract ing a String from a WWW Response and Reusing i t as a CGI Parameter

Extract ing and Reusing Web Service XML Values

Moving the Transact ion Loop

Extract ing and Reusing Cookies

Extract ing a String from a WWW Response for Val idat ion

Forcing a Subrequest

IP Spoofing with a Local Datapool

Prevent ing Unwanted Subrequests

Extract ing and Reusing Cookies

Overview: Extracting and Reusing a Cookie

In some load tests, you may need to extract a cookie and use i t later in the script .

Script i ng

To extract the cookie, use the DO_GetCookie(). Reuse the value with DO_SetValue.

Conclusion

The sample script sn ippet i l lustrates extract ing and reusing a cookie.

Sample: Extracting and Reusing a Cookie

The fol lowing sample is a port ion of a script that extracts and reuses a cookie.

Sam ple Script
char * userid;
char * aspsessionid;
...
...
BEGIN_TRANSACTION();
...
...
/* Request: 1 */
DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
/*
 * Get a cookie named USER_ID

Script Development Workbench

223

 */
DO_GetCookie ("USER_ID", 1, &userid);
/*
 * Get the second ASPSESSIONID cookie. ASPSESSIONID
 * cookies always have extra characters on the end to make
 * them unique.
 *
 * An example ASPSESSIONID: ASPSESSIONIDQQQGGQDO=EBOOONBBFH
 * BBELAJIMEFAKAP
 */
DO_GetCookie ("ASPSESSIONID*", 2, &aspsessionid);
DO_SetValue(“User”, userid)
DO_Http("POST http://company.com/ HTTP/1.0\r\n\r\n”
 “Content-Type: application/x-www-form-urlencoded\r\n"
 "Content-Length: {*content-length}\r\n"
 “{User}”);

Forcing a Subrequest

Overview: Forcing a Subrequest that is not Being Made Automatically

Occasional ly, one of the necessary subrequests that is recorded is not requested automatical ly at playback
t ime. This can be caused by complex javascript code not execut ing correct ly, or by an Act iveX control that
cannot be used at playback t ime. You can force th is subrequest by insert ing an
ADDITIONAL_SUBREQUEST statement.

Script i ng

To request an addit ional subrequest, insert a command l ike the one below before the act ion statement
(Cl ick_On, Navigate_To, or Post_To).

Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST, "http://xyz.com/onsale.aspx");

This adds the specified URL to the l ist of subrequests automatical ly generated when the requested page is
parsed.

Conclusion

Using these techniques, you can modify a script to force a subrequest. The sample modified script
i l lustrates forcing a subrequest.

Sample: Modified Script for Forcing a Subrequest

In th is example, one of the pages has an Act iveX object associated with i t that automatical ly generates a
request for i tems that are on sale. However, at playback th is request is not made because Act iveX objects
are not executed at playback t ime. To force th is subrequest, you can insert an Addit ional Subrequest i tem
just before the act ion statement. Relevant statements are shown in bold.

Sam ple Script
//--------- REQUEST # 5 (see action item on Page 4) ---------
//
// current page url is http://xyz.com/chairs.htm
//
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST, "http://xyz.com/onsale.aspx");
Click_On(LINK, 1, DESCRIPTION, "Nuts and Bolts");
Verify(PAGE_TITLE, "Nuts and Bolts");

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

224

IP Spoofing with a Local Datapool

IP Spoofing with a Local Datapool

Datapools can provide IP spoofing addresses to scripts on playback machines. By creat ing a special IP
spoofing datapool for the part icular playback machine, you can spoof the correct addresses at runt ime.

Note: For the script to execute properly, the IP addresses in the local datapool must match the IP
addresses bound to the network cards on the playback machine.

Script i ng

When you modify a Visual Script to al low for IP spoofing for a local playback machine, you must:

! Create a datapool file with the IP addresses associated with the network cards on the playback machine.

! Insert the required scripting code for datapool access into the script.

! Retrieve and use the spoofed IP address.

Visual Navigator

Visual Navigator provides GUI in terfaces in the tree view for creat ing datapool fi les and using spoofed IP
addresses. You can use the datapool variables as IP spoofing addresses in the IP spoof in terface.

Conclusion

By fol lowing these script ing techniques, you can modify a Visual Script to extract IP addresses from
datapool fi les for use as spoofed addresses. The modified script sample i l lustrates the modificat ions
required in the script .

Moving the Transact ion Loop Statements

Moving the Transaction Loop Statements

Load test ing a web site can require you to log on and log out when you want to perform mult iple
transact ions during a single session. You can move the BEGIN_TRANSACTION statement and the
END_TRANSACTION statement so that the virtual user does not log on and log out with every transact ion.

To m odi f y t he C++ scr ip t :

1. Move the BEGIN_TRANSACTION and RESTART_TRANSACTION_TOP statements so that they are
just below any statements that log the user onto the system.

2. Keep the RESTART_TRANSACTION_BOTTOM, Clear(...), and END_TRANSACTION statements
together and move them so that they are immediately above the Logout requests.

Tip: The Clear(...) statements give you the opt ion of retain ing or removing i tems at the end of each
transact ion. The Clear statements are automatical ly included in the script and remove al l cookies, WWW
cache, connect ions, referring page, basic authorizat ion, and proxy authorizat ion i tems. To retain any i tem
at the end of the transact ion, you must comment out the related Clear(...) command.

Visual Navigator

If you are using Visual Navigator, you can move the Transact ion Loop and Transact ion Cleanup statements
in the tree view rather than in the C++ script . You also can select the i tems to clear at the end of each
transact ion in the Visual Navigator form view. Items you can clear or retain are: cookies, WWW cache,
connect ions, referring page, basic authorizat ion, and proxy authorizat ion.

Note: By default, all objects are selected and cleared at the end of the transaction.

Script Development Workbench

225

To m odi f y t he Visual Navigat or t r ee view :

1. Select the Transact ion Loop i tem and cl ick the Move Down button in the form view unt i l i t moves
below the Logon pages.

2. In the Cleared i tems at end of t ransact ion sect ion of the form view, clear the checkbox next to each
i tem you want retained at the end of the transact ion.

3. Do the same for the End Transact ion by select ing the Transact ion Cleanup tree i tem and moving i t .

4. In the Cleared i tems area at end of t ransact ion sect ion of the form view, clear the checkbox next to
each i tem you want retained at the end of the transact ion. Any pages after the Transact ion
Cleanup, such as the Logout, take place after al l t ransact ion in the main loop have fin ished
execut ing.

Sam ple Script s

The original script sample and modified script sample show a script that logs in to a newsgroup forum,
performs act ions, such as reading threads and replying to them, and then logs out. The scripts ident i fy the
Logon and Logout requests and show the old and new locat ions of the transact ion statements. The original
script shows al l objects selected in Visual Navigator for clearing at the end of the transact ion. In the
modified script , the Cookies are unchecked in Visual Navigator and are not cleared at the end of the
transact ion.

Note: When you modify the C++ script, the Clear (ALL_COOKIES) statement is manually commented out
 to retain cookies at the end of the transaction.

Prevent ing Unwanted Subrequests

Sample: Preventing Unwanted Subrequests

The fol lowing sample uses a fi l ter string to prevent the unwanted subrequest. Points of in terest are
h ighl ighted in bold.

Sam ple Script
Set (EVERY_REQUEST, BLOCK_TRAFFIC_FROM, "AcmeAds");
SYNCHRONIZE();

BEGIN_TRANSACTION();
RESTART_TRANSACTION_TOP(); // do not modify this statement

//--------- REQUEST # 1 ---------
//
Set (NEXT_REQUEST_ONLY, CHECKPOINT_NAME, "Page 1 - ");

Navigate_To("http://www.mystore.com/");
Verify(PAGE_TITLE, "Jack’s Hardware Store");
etc.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

226

Net Load

Using NetLoad
NetLoad is QALoad’s suite of load generat ion scripts that al lows you to simulate load condit ions on your
network using any of the fol lowing protocols:

! FTP

! HTTP

! PING

! LDAP

! POP3

! SMTP

! TCP

! UDP

! MSExchange

NetLoad includes QALoad-provided scripts, which you can access from the Conductor to run in a test, for
each protocol. You can customize the act ivi ty of the script by creat ing reusable datapools in the QALoad
Script Development Workbench to use during test ing. When you run a test, each virtual user requests a
single datapool record. Once al l the records have been read, the datapool fi le is rewound and the process
starts again. You can use QALoad’s components to run scripts and analyze the results as usual, or you can
integrate your results with Compuware’s ServerVantage product.

In short , NetLoad al lows you to generate traffic on your network in a control led manner and gather
performance t im ings from the network. To faci l i tate test ing under TCP/IP and UDP, NetLoad provides you
with a server module to simulate server act ivi ty — al lowing you to gather network t im ings without
expending your actual server resources.

Note: To use NetLoad for MSExchange to test on Outlook 2000, you must ensure that CDO support is
installed on your workstation before you continue. For instructions, see Verifying CDO Support for
MSExchange.

For more in formation on the NetLoad Server modules, see NetLoad Server Modules for TCP/IP and UDP.

NetLoad server modules for TCP/ IP and UDP
If you are load test ing a network running TCP/IP or UDP, you should use the appropriate NetLoad Server
module to simulate server responses during your load test. This al lows you to load your network and
col lect t im ings without expending your own server’s resources. The NetLoad Server modules are only for
use i f you’re test ing on TCP/IP or UDP. You do not need to instal l the Server modules to test any other
NetLoad-supported protocol.

You can instal l or copy the NetLoad Server modules to any Windows workstat ion on your network. After
start ing the appropriate Server module, you supply the QALoad Script Development Workbench with the
host name of the machine where the Server module is running and the port number that you specified
when you started the Server module. When you are ready to run a test, start the Server module fi rst . During
the test NetLoad communicates with the NetLoad Server module, effect ively loading the network. If
NetLoad does not find the NetLoad Server module at the specified port—for instance i f you mistyped the
port number—the test fai ls (TCP) or fai ls to in i t iate (UDP).

Script Development Workbench

227

Determining when to use the TCP server module

If you are going to send TCP packets using NetLoad, you must have a QALoad TCP Server module running
on each machine that you are sending packets to. Copy the TCP Server module fi le, Net loadTCPServer.exe,
to each machine that wi l l be receiving packets and double-cl ick on the fi le to start the TCP Server module.

Because the QALoad TCP Server module is a Windows-based program, you cannot use i t to send NetLoad
TCP packets to a UNIX machine.

Determining when to use the UDP server module

It is not necessary to have a QALoad UDP Server module running at the dest inat ion machine for NetLoad
to successful ly send packets to i t ; however, the Netload UDP Server can be useful to veri fy that the packets
are being sent. To instal l the UDP Server module on a machine you are sending packets to, copy the
program NetloadUDPServer.exe to that machine. Double-cl ick the fi le to start the UDP Server module.

Since i t is not necessary to have the UDP Server module running, you can send NetLoad UDP packets to
both UNIX and Windows workstat ions.

Note: If you are testing UDP in “ broadcast” mode, it is not necessary to use the NetLoad Server module.

Installing the NetLoad Server module
If you are load test ing a network running TCP/IP or UDP, the NetLoad Server module appropriate for your
protocol must be running on a Windows workstat ion on your network before you start the test. The Server
modules are instal led automatical ly i f you chose the opt ion to instal l them during setup. However, once
the Server module is instal led on one workstat ion, you can instal l i t on another workstat ion by simply
copying the program from one workstat ion to another. The NetLoad Server modules are instal led to the
directory \Program Files\Compuware\QALoad\Middlewares\NetLoad\Server, and are named:

! NetLoadTCPServer.exe (for TCP/IP): If you are going to send TCP packets using NetLoad, you
must have a TCP Server module running on each machine you are sending packets to. Because the
TCP Server module is a Windows program, you cannot send NetLoad TCP packets to a UNIX
machine.

! NetLoadUDPServer.exe (for UDP): It is not necessary to have a UDP Server module running on the
machines you are sending UDP packets to. However, the UDP Server is useful for veri fying that the
packets are being sent. Since i t is not necessary to have a UDP Server module instal led on the
dest inat ion workstat ions, you can send NetLoad UDP packets to UNIX machines.

Start ing the NetLoad Server Module
You can configure and start the NetLoad server module from the Start menu.

If you are load test ing a network running TCP/IP or UDP, the NetLoad Server module appropriate for your
protocol should be running on a Windows workstat ion on your network before you start the test. The
Server modules are instal led with your QALoad product i f you chose to instal l them during setup. If you are
unsure i f you should be using a NetLoad Server module, see NetLoad server modules for TCP/IP and UDP.

To st ar t t he m odule:

1. Point to Start>Program s>Com puw are> QALoad >NetLoad. Then cl ick on the appropriate Server
module: TCP Server or UDP Server.

2. When prompted, type the port number of the host machine and cl ick OK.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

228

3. On the QALoad NetLoad Server window, under the Opt ions menu, select one of the fol lowing:

 Show M essage Every Packet — Displays a message, including byte size, after sending or
receiving a packet.

 Show M essage Every 100 Packets — Displays a message every 100 packets l ist ing the total
number of packets received.

Start ing a NetLoad session
You can start a NetLoad session from the workbench with an exist ing datapool fi le or a new one.

To st ar t a session:

1. From the QALoad Script Development Workbench, choose Session>NetLoad.

2. Open an exist ing protocol datapool fi le or create a new one:

 To create a new datapool f i le, choose Fi le>New . The New NetLoad Fi le dialog box opens.

 To open an exist ing datapool fi le, choose Fi le>Open . The Open NetLoad Fi le dialog box opens.

3. Select the protocol you wish to test on and cl ick OK. If you are opening an exist ing datapool fi le,
navigate to the fi le and open i t .

4. Enter or edit the appropriate datapool in formation in the Workbook Pane.

The QALoad Script Development Workbench al lows you to have mult iple fi les open at the same t ime.
Datapool fi les are located in the directory \Program
Files\Compuware\QALoad\Middlewares\NetLoad\Scripts.

Creat ing a NetLoad datapool

To creat e a Net Load dat apool :

1. From the QALoad Script Development Workbench, cl ick Session>NetLoad.

2. Click Fi l e>New to open the New NetLoad Fi le dialog box.

3. Select the protocol for wh ich you wish to create a datapool fi le and cl ick OK.

A grid opens in the Workbook Pane. Each row on the grid represents a single data record. The
column headings indicate the appropriate field in formation to enter. Note that the actual fields in
the grid vary by protocol.

4. Enter the appropriate in formation for your datapool fi le.

Some fields on the grid contain pul l-down menus. To act ivate them, cl ick anywhere with in the field.
Then make your select ion from the menu that appears.

5. When you are fin ished, select Fi l e>Save to name and save the datapool fi le.

The datapool fi le is l isted in the Workspace Pane Datapools tab. QALoad creates a script with the same
name and l ists i t on the Scripts tab. Both fi les are saved to the \NetLoad\Scripts directory (for example,
c:\Program Files\Compuware\QALoad\Middlewares\NetLoad\Scripts\datapool.dat).

To ent er dat apool dat a:

1. From the QALoad Script Development Workbench, choose Session>NetLoad.

Script Development Workbench

229

2. Click Fi l e>New to open the New NetLoad Fi le dialog box. Select the protocol for which you wish
to create a datapool fi le and cl ick OK. A grid similar to the one shown below appears in the
Workbook Pane. Each row on the grid represents a single data record. The column headings
indicate the appropriate field in formation to enter. Note that the actual fields in the grid vary by
protocol .

3. Enter the appropriate in formation for your datapool fi le. Note that some fields on the grid contain
pul l-down menus. To act ivate them, cl ick anywhere with in the field. Then make your select ion
from the menu that appears.

4. When you are fin ished, cl ick Fi l e>Save to name and save the datapool fi le. Note that your datapool
fi le is l isted in the Workspace Pane Datapools tab. QALoad creates a C++ script by the same name
and l ists i t in the Workspace Pane Scripts tab. Both fi les wi l l be saved to your \NetLoad\Scripts
directory (for example, c:\Program
Files\Compuware\QALoad\Middlewares\NetLoad\Scripts\datapool.dat).

3. (Optional) Write a descript ion of th is datapool fi le for later reference by select ing
Opt ions>NetLoad. Once a descript ion has been entered for a datapool fi le, you can review or edit
the descript ion any t ime the fi le is open by select ing Opt ions>NetLoad again .

Edit ing a NetLoad datapool
You can edit the NetLoad datapool to make changes or addit ions to the fi le.

To edi t a dat apool :

1. With the appropriate NetLoad protocol session open, open the datapool by choosing Fi l e>Open
and navigat ing to i t , or select i t from the Workspace tab Datapools tab.

2. Make any changes or addi t ions to the fi le.

3. To delete an ent ire record (a single row), cl ick i ts row number and select Grid>Delete Row (s).

4. To insert a new record (a single row) above an exist ing record, cl ick a row number and select
Grid>In sert Row . NetLoad inserts a blank row above the selected row.

5. Save any changes to the fi le by select ing Fi l e>Save.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

230

Adding or edit ing a NetLoad datapool descript ion
You can add a meaningful descript ion, or edit a previous one, for any NetLoad datapool.

To edi t a descr ipt ion:

1. With a datapool fi le open, select Opt ions>NetLoad.

2. Enter a descript ion for the current datapool fi le.

Datapool fields
The fol lowing protocol-specific fields are provided with in a datapool:

MSExchange

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Prof i l e Nam e: Type the name of your mail profi le. For example, M icrosoft Out look.

Send To: Type the names of one or more mail recipients, separated by commas (,) or semi-colons (;).

Cc: Type the names of one or more mail recipients, separated by commas (,) or semi-colons (;).

Size of Body: Select a fi le size from the drop-down l ist for the body of the mai l message.

At tached f i l e si ze: Select a fi le size for the attachment fi le from the drop-down l ist .

FTP

Send/ Receive: Specifies whether the script wi l l be sending or receiving a fi le.

ASCII / Binary: Describes whether the fi le contains ASCII or binary data.

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Host : The name of the host computer.

User ID: A user ID for accessing the host computer.

Passw ord: A password for accessing the host computer.

Fi l e Size Opt ions: Describes whether the fi le being sent to the host is of fixed or random size.

Fi l e Size (m in): The min imum fi le size to send to the host or the size of the fixed fi le.

Fi l e Size (m ax): The maximum fi le size to send to the host.

Path : The path of the fi le to receive, or the dest inat ion of the fi le being sent. You must enter an absolute
path.

Fi l enam e: The name of the fi le to receive or of the fi le being sent.

HTTP

Connect ion : Describes whether the connect ion is regular (the connect ion is closed after the
request/ response completes) or persistent (the connect ion remains open for subsequent requests).

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

URL: The address of the page to receive.

Proxy Server: The name of the proxy server (opt ional). Note that only proxy servers that do not require a
user ID and password are supported.

Script Development Workbench

231

PING

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Host Nam e: The name of the host computer.

Pk t Size (Fixed/ Random): Describes i f the packet being sent to the host is of fixed or random size.

Pk t Size (m in): The min imum packet size to send, or the size of the fixed packet to send.

Pk t Size (m ax): The maximum packet size to send.

LDAP

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Host Nam e: The name of the host computer.

Search St r ing: The text string to search for.

POP3

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

POP3 Server: The name of the POP3 server machine.

User ID: A user ID for accessing the POP3 server.

Passw ord: A password for accessing the POP3 server.

Delete af ter read: Choose whether to delete the message after i t has been read.

Connect ion : Describes whether the connect ion is regular (the connect ion is closed after the
request/ response completes) or persistent (the connect ion remains open for subsequent requests).

SMTP

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

SM TP Server: The name of the SMTP server machine.

From : Enter an email address or name.

Send To: Type the names of one or more mail recipients, separated by commas (,) or semi-colons (;).

Cc: Type the names of one or more mail recipients, separated by commas (,) or semi-colons (;).

Size of Body: Select a fi le size from the drop-down l ist for the body of the mai l message.

Fi l e Path : Select a fi le from the drop-down l ist to use as the body of the mail message. This field displays
fi les in the local directory only i f you selected Browse in the Size of Body field.

At tached f i l e si ze: Select a fi le size for the attachment fi le from the drop-down l ist .

At tached f i l e path : Select a fi le from the drop-down l ist to use as an attachment. This field displays fi les in
the local directory only i f you selected Browse in the Attached Fi le Size field.

Connect ion : Describes whether the connect ion is regular (the connect ion is closed after the
request/ response completes) or persistent (the connect ion remains open for subsequent requests).

TCP

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Host Nam e: The name of the host computer.

Port : The port number of the host computer.

Pk t Size (Fixed/ Random): Describes i f the packet being sent to the host is of fixed or random size.

Pk t Size (m in): The min imum packet size to send, or the size of the fixed packet to send.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

232

Pkt Size (m ax): The maximum packet size to send.

UDP

Checkpoin t Descri pt i on : A descript ion of th is checkpoint.

Host Nam e: Type the name of the host computer that is to receive the packet.

Port : The port number of the host computer.

Pk t Size (Fixed/ Random): Describes i f the packet being sent to the host is of fixed or random size.

Pk t Size (m in): The min imum packet size to send, or the size of the fixed packet to send.

Pk t Size (m ax): The maximum packet size to send.

Verifying CDO Support for MSExchange
Before you can successful ly test with NetLoad for M SExchange using Outlook 2000, you must ensure that
Col laborat ion Data Objects (CDO) support is instal led.

To ver i f y CDO suppor t :

1. From the Windows task bar, cl ick Start>Set t i ngs>Con t rol Panel .

2. Double-cl ick the Add/ Rem ove Program s icon.

3. From the l ist on the Instal l / Un instal l tab, select M icrosoft Office 2000 or M icrosoft Out look 2000.

4. Click the Add/ Rem ove button.

5. Click Add or Rem ove Features.

6. Click the plus sign (+) next to M icrosoft Out look for Windows.

7. Select Col laborat ion Data Objects, and then cl ick Run f rom M y Com puter .

Script Development Workbench

233

UNIX

Transfer Scripts to a UNIX Player
Normally, the appropriate script is automatically uploaded from the QALoad Conductor to the Players and
compiled at runt ime. However, i f i t is ever necessary to manually transfer a script , use the procedure that
fol lows.

Note: The machine where the QALoad Script Development Workbench is installed must have Winsock-
based TCP/IP to transfer a script to the UNIX machine where you wish to run it.

To t ransf er a scr ip t :

The fol lowing procedure describes how to transfer a script fi le from the Windows workstat ion where the
QALoad Script Development Workbench resides to the system running the QALoad Player.

1. Access the Script Development Workbench.

2. From the Session menu, choose the middleware session you want to start .

3. In the Workspace Pane, cl ick the Scripts tab.

4. On the Scripts tab, select the script you want to transfer.

5. From the Tools menu, choose FTP to open the FTP Transfer dialog box. Note that the fi le name
you selected to transfer appears in the Fi l e to Transfer field.

6. Enter the Host Nam e, User Nam e, Passw ord, and Dest inat ion Di rectory.

7. Click Transfer to send the fi le to the system where your QALoad Player is instal led.

8. If you want to save the in formation you have entered for subsequent transfers, cl ick Save Set t i ngs.

9. Click Close/ Abort to exit the FTP Transfer dialog box .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

234

Test ing w i t h QARun

Creat ing a QARun script
To create a QARun script , insert any number of QARun transact ions (QARun scripts) in to a QALoad
template script accessible from the QALoad Script Development Workbench. The template script is a
simple QALoad script that can be compiled and run; however, i t contains no funct ional i ty unt i l you insert
the QARun transact ions appropriate for your test ing needs. QALoad provides two methods for insert ing
QARun transact ions: automated and manual.

Using the automated method, you enter in formation in the QALoad Script Development Workbench about
the QARun transact ions to use and then let QALoad generate the test script using the in formation you
provided. This method is fast and efficient when you know exact ly which QARun scripts to use and where
they are located.

The manual method al lows you to open a copy of the QALoad template script and insert t ransact ions and
commands manually. You may want to use th is method i f you suspect you may need to edit your script
whi le you're creat ing i t .

Automat ically creat ing a QARun script

To aut om at ical ly creat e a QARun scr ipt :

1. From the QALoad Script Development Workbench, cl ick Session>QARun to start a QARun
script ing session.

2. Click Session>Generate Script . The Create New QARun Execut ion Script dialog box opens.

3. In the Login St r ing field, select or type a val id username and password to access your instal lat ion
of QARun.

4. In the Envi ronm en t field, select the appropriate QARun environment.

5. In the QARun Script field, enter the name of the QARun transact ion to insert , or select i t from the
l ist , which contains a record of the last five QARun script names you entered.

Although you can enter a script name from any database, when the test is actual ly running and
QALoad invokes QARun, QARun attempts to retrieve that script from its default database.
Therefore, in the QARun program instal led on the Player, you should designate a default database
that contains the script(s) you want to run.

6. Select the Autom at i cal l y Include Checkpoin t check box i f you want QALoad to automatical ly
insert a checkpoint in to the script after th is QARun transact ion.

7. In the QALoad Script Nam e field, enter a name for th is QALoad script . To write over an exist ing
script , cl ick the Brow se button to the right of th is field and select a script from the l ist of avai lable
scripts.

8. To add addit ional QARun transact ions to th is script , cl ick Add Script and repeat Steps 3–6 for each
addit ional t ransact ion.

9. When you are fin ished, cl ick Create Script . The QALoad script is saved in the directory \Program
Files\Compuware\QALoad\Middlewares\QARun\Scripts, and the script opens in the script editor.

10. To compile the script for test ing, cl ick Session>Com pi le.

Script Development Workbench

235

Manually creat ing a QARun script
You can manually insert QARun commands or scripts in to a QALoad script to compile.

To m anual ly creat e a scr ipt :

1. From the QALoad Script Development Workbench, select Session>QARun to start a QARun
script ing session.

2. Select Session>New Tem plate to create a new script from the QALoad template script .

3. In the Choose Script Name dialog box, enter a name for the new QALoad script in the Script Nam e
field and cl ick OK. The script is saved in the directory \Program
Files\Compuware\QALoad\Middlewares\QARun\Scripts, and the script opens in the script editor.

4. Edit the script as necessary:

! You can manually enter any transact ions or script ing commands direct ly in the script .

! You can insert a QARun transact ion by posit ion ing the cursor on the appropriate l ine and
select ing Session>In sert>Transact ion . On the Insert a QARun Transact ion dialog box that
opens:

" In Login St r ing, select or type a val id user name and password to access your instal lat ion of
QARun.

" In Envi ronm en t , select the appropriate QARun environment.

" In QARun Script Nam e, enter the name of the QARun transact ion to insert , or select i t
from the l ist , which contains a record of the last five QARun script names you entered. Note
that you can enter a script name from any database; however, when the test is actual ly
running and QALoad invokes QARun, QARun wil l at tempt to retrieve that script from its
default database. Therefore, in the QARun program instal led on the Player, you should
designate a default database that contains the script (s) you want to run.

! When you are fin ished, cl ick Insert to insert the script you just created in to the QALoad script .

5. When you are fin ished, save any changes.

6. To compile the script for test ing, select Session>Com pi le.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

236

Pack ag ing Scr ip t s f or Cl i en t Van t age

Overview - Packaging Scripts for ClientVantage
ClientVantage users must veri fy that versions of scripts and Player software located on each agent mach ine
are compatible. When dispari t ies exist , for example, when product ion systems are upgraded, the test scripts
used to monitor the end-user experience also must be updated.

QALoad's Package Script funct ion enables you to select a QALoad script , veri fy that i t is up-to-date, and
then package i t in a zip fi le that you can transfer to Player machines in any locat ion. The Package Script
ut i l i ty automatical ly determines and includes al l associated fi les, such as datapools and binary fi les, that
are required to run the script . The zip fi le contains the script , i ts auxi l iary fi les, and a manifest fi le that l ists
the packaged fi les and the middleware the script uses.

Note: You must compile scripts before placing them in the zip file.

How to Package a Script
Use th is procedure to select a QALoad script and package i t and al l i ts associated fi les in to a zip fi le that you
can transfer to a Player machine for use by ClientVantage.

To select a scr ip t :

1. Open a session in the Script Development Workbench.

2. Select a script in the Workspace pane and cl ick Fi l e>Package Scri pt . The Package Scripts dialog box
appears with the script you selected displayed in the Script Fi l e field.

Note: You can open the Package Scripts dialog box before choosing a script, then click Browse to open
the Select Script File to Package dialog box and select the script.

To package t he scr ip t :

1. In the Package Scripts dialog box, cl ick Package. The Select Package Directory and Name dialog box
appears.

2. Click the down arrow in the Save in field to select the directory where you want to save the zip
fi le. The default directory provided is Program Files\Compuware\QALoad.

3. In the Fi l e nam e field, type a name for the zip fi le. The default name provided is the name of the
script .

4. Click Save. The zip fi le is created and saved in the directory you selected. The Package Scripts
dialog box displays.

Note: You can only package compiled scripts. If you try to use the Package Scripts utility on an uncompiled
script, an error message appears. You must exit the Package Scripts dialog box, compile the script, and start
the script packaging process again.

5. Select another script to package, or cl ick Close.

To unpackage t he scr ip t :

To unpackage the script , access the Vantage Console in Cl ientVantage where you can publ ish the script .
For more in formation on how to use the Vantage Console, refer to the onl ine help in Cl ientVantage.

Script Development Workbench

237

Tr oub leshoot ing

ODBC Memory Error Crash
Whenever a user-started capture is in i t iated, QALoad appears to begin capturing, but as soon as the
program to capture against i t is started, a memory except ion is encountered.

The fol lowing error is not encountered immediately. It may not occur unt i l you attempt to cl ick on
something or perform some sort of act ivi ty on your machine.

Application popup: explorer.exe - Application Error : The instruction at
"0x1001ee30" referenced memory at "0x1001ee30". The memory could not be
"written".

To f ix t he ODBC m em ory er ror crash:

If you are running Windows XP Pro SP2, perform the fol lowing steps:

1. Right-cl ick on M y Com puter and select Propert i es. The System Propert ies dialog box appears. (If
your My Computer is not avai lable, access Con t rol Panel>System .)

2. Select the Advanced tab, then cl ick Set t i ngs in the Performance group box .

3. On the Performance Options dialog box, select the Data Execut ion Preven t ion tab. Make sure that
Turn on DEP for al l program s…” is selected.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

238

4. Click Add, then navigate to select the fol lowing appl icat ions:

a. <systemroot>\explorer.exe

b. <systemroot>\system32\rundll32.exe

5. Click OK for any warnings that appear.

6. Click OK on the Performance Options dialog box to save your changes and close the dialog box .

The Default Session Prompt Did Not Open?
If the Default Session Prompt fai ls to open when you start a middleware session, then default session
checking was previously disabled. Do the fol lowing to enable default session checking:

1. From the Opt ions menu, choose Workbench . The Configure QALoad Script Development
Workbench dialog box opens.

2. On the Workben ch Con f igurat ion tab, select the Enable defaul t Session ch eck ing check box .

The next t ime you open a QALoad Script Development Workbench middleware session, you are prompted
to make i t your default session.

Script Development Workbench

239

Winsock Running Out of Socket Resources
You may encounter a problem running out of socket resources on NT or Solaris when there are large
numbers of short-l ived connect ions.

When TCP/IP connect ions are shutdown, they go in to a TIME_WAIT state wait ing for the specified in terval
to expire. While in that state the connect ion is looking for any stray packets that may have been sent to
th is connect ion and remain unacknowledged.

If th is process was skipped, i t would be possible for a new connect ion to be opened using the same address
and port as the previous connect ion and to incorrect ly receive data that was intended for the previous
connect ion. When QALoad is generat ing many short-l ived connect ions, during a Winsock or WWW load
test, the default sett ing for the t imed wait delay may be so h igh that the driver machine wil l run out of
socket resources as al l closed sockets wait in the TIME_WAIT state.

To change the sett ing for the t imed wait delay:

Windows NT

Set the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\
Parameters\TcpTimedWaitDelay

to a lower value. It can be set to anyth ing between 30 and 300. Compuware suggests using the lowest
possible value (30).

Solaris 2.6

Using "ndd" set the "tcp_close_wait_interval" to 30 seconds:

ndd -get /dev/tcp tcp_close_wait_interval

ndd -set /dev/tcp tcp_close_wait_interval 30000

Solaris 2.7

Use "ndd" as shown previously for Solaris 2.6, but subst i tute the "tcp_t ime_wait_interval"

Cit rix

Performance issues with SAP or Cit rix scripts

If you experience performance issues with SAP or Citrix scripts, increase your system paging fi le size to a
fixed size of at least four t imes the amount of RAM on the machine.

Recording Cit rix Scripts for Rest ricted Desktops

When recording a Citrix script on a restricted desktop, you must take extra steps to ensure proper playback.
Dynamic windows may be created and destroyed with no user in teract ion at both logon and logoff. To
prevent unexpected results during playback, do not cl ick on any of these dynamic windows. For example,
the script might attempt to cl ick on a destroyed window or a window that has not been created yet. The
appearance of dynamic windows often depends on the speed of the server or the load on the farm during
playback.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

240

Desktop Screen Resolut ion When Recording Cit rix Scripts

To ensure that the ent ire Citrix in terface is visible during recording, set the Resolut ion field in the Citrix
recording opt ions to a lower value than that of the desktop. Also, the screen resolut ion must be the same
as the screen resolut ion specified in the Citrix ICA fi le.

Wait Points in Cit rix Scripts

When mouse move consol idat ion is enabled via the Combine Mouse Input opt ion on the Convert Opt ions
dialog box, not al l events that were captured appear during replay. As a result , the placement of wait points
for window moves and window resizing is importan t. When a window is moved on the desktop, a window
move event is created for each mouse move. However, during replay of a consol idated script , only one
mouse move is made (to the final dest inat ion), and subsequently only one window move event occurs.
Because of th is consol idat ion of consecut ive mouse and window moves, the CtxWaitForWindowMove
command in your script should target the final window move in the series. This issue also appl ies to the
CtxWaitForWindowResize command and the resizing of windows on the desktop.

If a window's t i t le changes while the window is being created (such as a browser window's t i t le bar
changing once the default Web page begins to load), the CtxWaitForWindowCreate command may t ime
out. If th is occurs, remove the wait point or insert a CtxWaitForScreenUpdate command to preserve the
wait in the script .

SAP

Performance issues with SAP or Cit rix scripts

If you experience performance issues with SAP or Citrix scripts, increase your system paging fi le size to a
fixed size of at least four t imes the amount of RAM on the machine.

SAP Script Validat ion Fails

If your SAP script fai ls during val idat ion i t perform any of the fol lowing procedures to resolve the problem.

Disable Autom at i c Proxy Con f igurat ion in In ternet Explorer

To d isable aut om at ic p roxy conf igurat ion:

You may need to disable automatic proxy configurat ion in Internet Explorer.

1. In Internet Explorer, cl ick Tools>In ternet Opt ions.

2. On the Connect ions tab, cl ick LAN Set t i ngs.

3. Ensure that the Use autom at i c con f igurat ion scri pt check box is cleared.

Increase the Scri pt Execut ion Tim eout Value

To increase t he t im eout value:

If disabl ing the automatic proxy configurat ion does not solve the problem, consider increasing the script
execut ion t imeout value to 100 seconds or to the length of the capture fi le (in seconds), whichever is
greater.

Script Development Workbench

241

1. With an SAP session open in the Script Development Workbench, cl ick Opt ions>Workbench .

2. On the Script Val idat ion tab, type the new value in the Wai t up to field.

3. Click OK.

Do Not M in im ize the SAP Window

To m axim ize t he SAP w indow :

During val idat ion of SAP scripts, do not min imize the SAP window. If the window is min imized, the
val idat ion may fai l . This problem does not occur i f you do the fol lowing:

1. In Conductor, select the Script Assignm en t tab.

2. In the Type column, cl ick [...] to browse.

3. Select the Hide Graph ical User In terface for SAP Users opt ion .

Compiler Errors with SAP Scripts

If you receive a type mismatch error when compil ing an SAP script , you must remove the quotat ion marks
around the last parameter of the affected command. For example:

error C2664: '<FuncName>' : cannot convert parameter n from 'char [n]' to 'long'

This compiler error, which can occur in commands that manipulate column widths, indicates a data type
error and can be corrected by removing the quotat ion marks around the last parameter.

The fol lowing example shows the l ines in a script that could cause an error, and the corrected version of
the same l ines:

Script that produces the error:
 SAPGuiPropIdStr("wnd[0]/shellcont[1]/shell");
 SAPGuiCmd2(GuiCtrlTree, SetColumnWidth, "REPNAME", "218");

Corrected scri pt :
 SAPGuiPropIdStr("wnd[0]/shellcont[1]/shell");
 SAPGuiCmd2(GuiCtrlTree, SetColumnWidth, "REPNAME", 218);

243

Analyze

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

244

Over view of QALoad Analyze
QALoad Analyze is the QALoad component used to create summary stat ist ics and graphs from t im ing data
col lected during a load test. Set cri teria for col lect ing and displaying test data in QALoad Analyze before or
after opening a test ’s t im ing fi le (.t im). For example, alter output opt ions, t ime ranges, and graphics display
opt ions.

QALoad Analyze stores the state of a t im ing fi le when i t is closed so that next t ime you open i t , you see the
same reports and graphs that were present last t ime you viewed i t . You also have the abi l i ty to easi ly create
templates, which enable you to specify the reports and graphs that are automatical ly generated for any
new t im ing fi le you open.

In addit ion, QALoad Analyze generates a working folder where al l fi les and reports related to the t im ing fi le
are stored. QALoad Analyze provides seven pre-defined reports as well as the abi l i ty to create custom
reports using XML fi le (.xml), XSL translat ion fi le (.xsl), and HTM fi le (.h tm) formats. View these reports in
QALoad Analyze or in a Web browser.

QALoad Analyze displays a t im ing fi le tab in the Workspace, each tab contain ing groups. Use QALoad
Analyze’s in teract ive view to sort test data, produce detai led checkpoint data, produce a variety of graphs
and reports (with drag and drop funct ional i ty), export data to different formats, and email test results and
pre-defined reports.

Analyze

245

Accessing Analyze
The fol lowing procedures describe how to start QALoad Analyze.

To access Analyze f rom t he QALoad Conduct or :

1. In the QALoad Conductor, cl ick Tools>Opt ions. The Options dialog box appears.

2. Click the General tab. In the General Options area, select the Launch An alyze Af ter Test check
box .

At the end of each test run, QALoad Conductor automatical ly launches QALoad Analyze and opens the
most recent t im ing fi le. If you did not select the Launch Analyze After Test check box before the test,
fol low the steps below.

1. Click Tools>Analyze.

2. In QALoad Analyze, cl ick Fi l e>Open . The Open Timing Fi le dialog box appears. Select a t im ing fi le
to work with by double-cl icking the fi le name in the l ist of avai lable t im ing fi les.

To access Analyze f rom t he W indow s St ar t m enu:

Cl ick Start>Program Fi les>Com puw are> QALoad >Analyze.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

246

Under st and ing Dur at ion s
When you begin to analyze your test results, i t is important to understand how durat ions are calculated by
QALoad.

Transact ion Durat ion
Transact ion durat ion is the t ime that the script being tested takes to complete a transact ion, from the
BEGIN_TRANSACTION command to the END_TRANSACTION command.

Three factors comprise transact ion durat ion:

! The script processing t ime including, but not l im ited to, added script logic, QALoad processing of
server repl ies, and other QALoad processing.

! Sleep t ime.

! The response t ime of the appl icat ion under test including, but not l im ited to, the appl icat ion
server, database access, and network.

Checkpoint Durat ion
Checkpoint durat ion is the amount of t ime between begin and end checkpoint statements. The fol lowing
factors comprise checkpoint durat ion and apply to both automatic checkpoints and user-defined
checkpoints.

If you select the Conductor's Enable t im ing of autom at i c m iddlew are checkpoin ts opt ion or use the
BeginCheckpoint and EndCheckpoint funct ions in the script , the fol lowing factors comprise checkpoint
durat ion:

! The response t ime of the appl icat ion under test, including, but not l im ited to, the appl icat ion
server, database access, and network.

! Sleep t ime, i f the Conductor's Incl ude sleep t im es w hen calculat ing checkpoin t t im ings opt ion
is selected.

! QALoad processing t ime is not included with in these checkpoints in order to provide a more
accurate value of server, database, and network response t imes.

Checkpoint durat ions do not always sum to the same value as the transact ion durat ion. For more
in formation, see Comparing checkpoint durat ions to transact ion durat ion.

Analyze

247

QALoad Analyze M enus and Toolbar But t ons
Click a menu or toolbar name in the fol lowing l ist for a descript ion.

Fi le

Edit

View

Template

Tools

Window

Help

Analyze Toolbar buttons

Graph Toolbar buttons

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

248

Accessing Test Dat a

Using Timing Files
When you run a test using a part icular session ID fi le (set up in the Conductor), each Player compiles a
local t im ing fi le comprised of a series of t im ing records for each checkpoint of each script run on that
Player. Each t im ing record in the fi le consists of a response t ime/elapsed t ime pair of values specifying the
amount of t ime i t took a certain checkpoint to fin ish (response t ime) at a specific t ime in the test (elapsed
t ime).

At the end of a test, Player t im ing fi les are sent to the Conductor and are merged into a single t im ing fi le,
cal led the Primary t im ing fi le, for analysis. If you set up in tegrat ion with Compuware's ServerVantage
product, the Conductor col lects t im ing data from the ServerVantage central console and merges that data
in to the t im ing fi le as well .

Primary t im ing fi les are saved in the \Program Files\Compuware\QALoad\TimingFiles directory, and
are name <sessionID>_date_time.tim.

The Primary t im ing fi le created by the Conductor after a test run contains al l of the t im ing records of al l
Players in that test run. Use QALoad Analyze to view, sort , graph, and create reports using the test data in
the t im ing fi le.

Hint : In the event that something goes wrong on the network and a Player timing file is not passed to the
Conductor, it is still possible to analyze results from a Player timing file. Player timing files are saved in the
\Program Files\Compuware\QALoad\TimingFiles directory and are named
tim_yyyymmdd_hhmmss_xxx.ptf, where yyyymmdd_hhmmss is the date/ time the test was started, and
xxx is the Player number.

Accessing Test Data
When you open a t im ing fi le, QALoad ’s Analyze program summarizes the checkpoints recorded in the fi le
during the load test and presents the data in a report format cal led the Summary report .

You can access QALoad Analyze and open a t im ing fi le contain ing test results from each of the QALoad
components.

To access Analyze f rom t he QALoad Conduct or :

1. In the QALoad Conductor, cl ick Tools>Opt ions. The Options dialog box appears.

2. Click the General tab. In the General Options area, select the Launch An alyze Af ter Test check
box .

At the end of each test run, QALoad Conductor automatical ly launches QALoad Analyze and opens the
most recent t im ing fi le. If you did not select the Launch Analyze After Test check box before the test:

1. Click Tools>Analyze.

2. In QALoad Analyze, cl ick Fi l e>Open . The Open Timing Fi le dialog box appears. Select a t im ing fi le
to work with by double-cl icking the fi le name in the l ist of avai lable t im ing fi les.

To access a previously-creat ed t im ing f i le in Analyze f rom t he W indow s St ar t m enu:

1. Click Start>Program Fi les>Com puw are> QALoad >Analyze.

Analyze

249

2. Click Fi l e>Open . The Open Timing Fi le dialog box appears. Select a t im ing fi le to work with by
double-cl icking the fi le name in the l ist of avai lable t im ing fi les.

3. Select the template to use for viewing the t im ing fi le.

To access a previously creat ed t im ing f i le f rom t he QALoad Scr ip t Developm ent W orkbench:

1. In the QALoad Script Development Workbench, cl ick Tools>Analyze.

2. In QALoad Analyze, cl ick Fi l e>Open . The Open Timing Fi le dialog box appears. Select a t im ing fi le
to work with by double-cl icking the fi le name in the l ist of avai lable t im ing fi les.

3. Select the template to use for viewing the t im ing fi le.

Accessing Test Data via Groups
The QALoad Analyze Workspace displays t im ing fi le data in groups. Each group displays different aspects
of the data from a t im ing fi le. The data displayed and the groups avai lable may vary, depending on the
type of data col lected during the load test.

Cl ick a group name below to view the type of data displayed in each group.

Reports Top Processes

Checkpoints RIP Fi les

Counters Appl icat ionVantage

Server Monitoring Expert User

Player Performance Counters

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

250

Analyze

251

Using Templates

Using Timing File Templates

Timing fi le templates enable you to save current views of an open t im ing fi le. Al l open views, such as
reports, graphs, and thresholds are stored in the template. When you reopen a t im ing fi le or open a new
t im ing fi le and apply a template, i t appears with the set of views defined for the template.

Every t ime you close a t im ing fi le in Analyze, a Last Viewed State template for the t im ing fi le is created.
This fi le stores the reports and graphs that are open, their posit ions and sizes, and any thresholds you
defined. You can use an opt ion s in the Open menu or in the Tools>Opt ions menu to choose to reopen a
t im ing fi le in the same state i ts last viewed state.

Use the Tem plate menu to:

! Save the current views of a t im ing fi le to create a template.

! Select an exist ing template and apply i t to the open t im ing fi le.

! Remove the template from the current t im ing fi le or from disk.

! Create system-wide thresholds for counters and checkpoints.

You can apply a template to any t im ing fi le you open. If any part of the template cannot be appl ied to the
t im ing fi le, for example, i f the template references a script that doesn't exist in the current fi le, a dialog box
displays with the name of the report or graph that doesn't apply. The default name for the template is the
SessionID port ion of the f i le name of the open t im ing fi le.

Note: Only one t im ing fi le is saved to a template. If more than one t im ing fi le is open, the opt ion to
define a template is disabled.

Creat ing a New Template

Create a template to save the views of an open t im ing fi le. This saves reports and graphs that are open, as
well any thresholds that have been defined. When you open other t im ing fi les using the template, the fi les
display in the views saved to the template.

To creat e a new t em plat e:

1. Click Tem plate>Save curren t view s. The Speci fy Tem plate to Save curren t view s and
th resholds dialog box appears.

Note: This menu option is available only if a single timing file is open.

2. Select a folder in the Save in field. By default , al l templates are stored in the Tem plates folder. The
default template name is the Session ID port ion of the t im ing fi le name.

3. Do one of the fol lowing:

 Click Create to accept the Session ID as the template name. When you use th is name
for the template, al l future t im ing fi les created by th is Conductor session automatical ly
open with the views speci fied in the template.

 Type a name for the new template in the Fi l e nam e field, and cl ick Create.

Note: You can choose template options that globally set how timing files open using the options
in the Analyze Options dialog box .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

252

Opening a Timing File in a Template

When you open a t im ing fi le, you can select how it displays by opening i t in a template. Specifying a
template opens the reports, graphs, and thresholds defined in the template.

To open a t im ing f i le in a t em plat e:

1. Click Fi l e>Open . The Open Tim ing Fi l e dialog box displays.

2. In the Fi l e nam e field, select the t im ing fi le to open.

3. Select one of the fol lowing:

! Open last view ed state i f avai lable - (Default) Opens the t im ing fi le in the same views that
were displayed when you last closed i t . This restores al l reports and graphs that were open,
their posit ions and sizes, as well as any defined thresholds for graphs. If there is no last viewed
state or i f you do not select th is opt ion, the fi le opens using the opt ion you select in the
Tem plate area below.

! In the Tem plate area, cl ick one of the fol lowing opt ions:

" Do NOT use a tem plate w hen open ing t im ing f i le - No template is appl ied and only the
Summary report for the t im ing fi le displays.

" Use tem plate associated w i th Session ID f i l e nam e - (Default) Appl ies the template with
the same Session ID name as the t im ing fi le. Use th is opt ion to open al l future t im ing fi les
created by th is Conductor session with the views specified in the template. If no match is
found, only the Summary report displays.

" Use th i s tem plate for open ing the t im ing f i l e - Enables the Brow se (...) button. Select a
saved template to apply to al l t im ing fi les when they are opened.

Note: By default, both the Open in last viewed state if available and Use template associated with the
Session ID file name are selected. This way if there is no last viewed state, the template associated with the
Session ID file name is applied to the timing file.

4. Click Open . The t im ing fi le you selected appears in the views defined for the selected template.

Applying a Template to an Open Timing File

You can select an exist ing template and apply i t to al l open t im ing fi les. This closes al l reports and graphs
that are open and displays the t im ing fi le in the views defined in the template.

To apply a t em plat e t o an open t im ing f i le:

1. Click Tem plate>Use ex ist i ng. The Select Template to Use for Open Timing Fi les dialog box
appears.

2. Select a template and cl ick Apply.

Al l open reports and graphs are closed and those specified in the template are opened.

Note: If any part of the template cannot be applied to the timing file, for example, if the template
references a script that does not exist in the current file, a dialog box appears with the name of the report or
graph that cannot be displayed.

Analyze

253

Applying Templates Globally with the Opt ions Dialog Box

Use the Analyze Options dialog box to select template opt ions that global ly set how t im ing fi les open.
Using a template saves the reports, graphs, and thresholds defined in the template.

Note: Use Template>Use Exist ing to apply a template to an individual open timing file.

To speci f y a t em plat e:

1. Click Tools>Opt ions.

2. Click the Tem plates tab and select one of the fol lowing:

 Open last view ed state i f avai lable - (Default) Opens the t im ing fi le in the same views
that were displayed when you last closed i t . This restores al l reports and graphs that
were open, their posit ions and sizes, as well as any defined thresholds for graphs. If
there is no last viewed state or i f you do not select th is opt ion, the fi le opens using the
opt ion selected in the Tem plate area below.

 In the Tem plate area, select one of the fol lowing:

o Do NOT use a tem plate w hen open ing t im ing f i les - No template is appl ied. The
Summary report for the t im ing fi le displays.

o Use tem plate associated w i th the Session ID f i l e nam e - (Default) Appl ies the template
with the same Session ID name as the t im ing fi le. Use th is opt ion to open al l future t im ing
fi les created by th is Conductor session with the views specified in the template. If no match
is found, only the Summary report displays.

o Use th i s tem plate for open ing t im ing f i l es - Enables the Browse (...) button. Select a saved
template to apply to al l t im ing fi les when they are opened.

Note: By default, both Open in last viewed state if available and Use template associated with the
Session ID file name are selected. This way if there is no last viewed state, the template associated with the
Session ID file name is applied to the timing file.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

254

Disp laying Det ai l Dat a

Displaying Detail Data
Display detai led stat ist ics from a t im ing fi le such as checkpoints, counters, in the QALoad Analyze Data
window. View stat ist ics for not only the act ive t im ing fi le, but also for other t im ing fi les and drag and drop
onto the act ive t im ing fi le detai l view.

To d isplay det ai led st at ist ics:

1. In the workspace, with the appropriate Timing Fi le tab selected, cl ick the group for which you want
to view stat ist ics.

2. Select the appropriate checkpoints or counters (depending on which group you choose).

3. From the Analyze toolbar, cl ick the Detai l button or right-cl ick on a selected checkpoint or counter
and choose Detai l .

Detai l in formation is presented in the Data window in both a summary and data table. The information
displayed varies based on the group selected.

Note: If the test aborts, complete data for all the checkpoints and counters may not display.

The fol lowing detai l views are avai lable:

Checkpoints Detai l Data

Counters Detai l Data

Server Monitoring Detai l Data

Player Performance Counters Detai l Data

Top Processes Detai l Data

Expert User Detai l Data

Detail Views
You can view detai l data by right-cl icking a script or group and select ing Detai l . The detai l view displays
data from a t im ing fi le. The data displayed and the groups avai lable may vary, depending on the type of
data that was col lected during the load test. Detai l data is displayed in two panes: a summary table and a
data table.

You can view detai ls for the fol lowing groups:

Checkpoints

Counters

Server Monitoring

Player Performance Counters

Top Processes

Expert Users

Analyze

255

Sort ing Test Data
A Detai l view potent ial ly contains a large number of checkpoints, counters, and so forth, especial ly i f a
load test had many virtual users. To make information manageable, specify up to three levels of cri teria to
sort by, in ascending or descending order.

For example, i f a test ran using five scripts on 100 virtual users, sort the data by script name. Suppose each
virtual user ran more than one transact ion using a part icular script , then sort by both script name and by
virtual user. Or, to quickly locate any t im ing bott lenecks, sort by response t ime.

Use the Sort Detai ls dialog box to sort a detai l view. To access th is dialog box, select Tools>Sort from the
Analyze menu or cl ick Sort on the Analyze toolbar.

Graphing QALoad Timing Data
A t im ing fi le can potent ial ly contain enough data that graphing al l of i t at one t ime results in an
unreadable graph. Before beginning, consider th inning the amount of data to be shown on a single graph.
Detai ls

Select t he group t o graph:

In the Workspace, with the appropriate Timing Fi le tab selected, cl ick the group for which to create a
graph.

Note: If the test aborts, complete data may not be available for all checkpoints and counters.

The fol lowing groups are avai lable, depending on the t im ing fi le:

Checkpoints

Counters

Server Monitoring

Player Performance Counters

Top Processes

Expert User
Note: For each Group except Checkpoints and Expert User, the graph type is a line graph. For graphing

multiple checkpoints or expert users, the graph type is either a line or bar graph. For graphing a single
checkpoint only, in addition to line and bar graphs, you can also create Response Time Distribution and
Cumulative Response Time Distribution graphs.

Thresholds

Using Thresholds

Thresholds are user-defined values that show the expected warning and cri t ical l im its for a counter or
checkpoint. Thresholds help ident i fy problem areas in the test, such as checkpoints or counters that go
above or below a specified number. They act ively monitor response t imes by indicat ing whether data
records are surpassing user-defined expected warning and cri t ical levels.

Thresholds are saved in the Template fi le. The information displays in graphs and detai l reports in the
detai l data view.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

256

Graphs

The selected data is displayed in a l ine graph format in the Data window. Graphs show thresholds as
horizontal l ines with the number of fai led points.

Detail Reports

Detai l reports display thresholds in a Summary table and a Data table. The Summary table is a summary of
raw data col lected from a load test. The defined threshold l im its, the percentage of fai lures for the
threshold, and the total violat ions are displayed. In the Data table, the fai led points are shown in red.

Analyze

257

Creat ing Thresholds

Define thresholds to show the expected warning and cri t ical l im its for a counter or checkpoint.

To creat e Thresholds:

1. Select Tem plate>Th resholds. The Th resholds dialog box appears.

2. Click the appropriate group in the Workspace. Data with in each group is l isted in a tree-view.

3. Highl ight a counter or checkpoint and drag i t to the Th reshold dialog box.

Note: You can drag entire groups or individual items to the Threshold dialog box.

4. Click Edit to name the threshold and set the threshold l im its and condit ions.

5. Do one of the fol lowing:

! Click the check box in the Act i ve column for the thresholds you want to use, then cl ick Apply.

! Click Act i vate Al l to use al l of the thresholds, then cl ick Apply.

Edit ing Thresholds

Once you create the threshold, set the threshold propert ies using the Edi t funct ion.

To edi t Thresholds:

1. In the Th resholds dialog box, do one of the fol lowing:

 Double-cl ick the threshold you want to edit .

 Highl ight the appropriate threshold and cl ick Edi t .

The Th reshold Propert i es dialog box appears.

2. In the Th reshold Label field, type a name for the threshold. This is opt ional.

3. In the Lim i t field, type the number for the threshold. This is used with the Condi t i on you select to
calculate violat ions.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

258

4. In the Lim i t Condi t ion sect ion, choose how the threshold violat ions are calculated. You can select :

! Greater than the threshold l im it you defined (>)

! Equal to the threshold l im it you defined (=)

! Less than the threshold l im it you defined (<)

5. Click OK. The Th reshold dialog box appears showing the l im it and condit ion you specified.

Viewing Thresholds

Threshold in formation displays in graphs and detai l reports in the detai l data view .

Note: The data displayed and the groups available may vary, depending on the type of data that is
collected during the load test.

To view t h resholds in g raphs:

1. In the Workspace, cl ick the appropriate Timing Fi le tab. Data is l isted in a tree-view.

2. Click the group to view, and select the appropriate checkpoints or counters to display in the graph.

Note: You can select an entire group or individual data files.

3. Click View > Graph or right-cl ick and choose Graph from the context menu.

The selected data displays in a l ine graph format in the Data window. Graphs show thresholds as
horizontal l ines with the number of fai led points.

To view t h resholds in det ai l repor t s:

1. In the Workspace, cl ick the appropriate Timing Fi le tab. Data is l isted in a tree-view.

2. Click the group to view, and select the appropriate checkpoints or counters to display in the detai l
report .

Note: You can select an entire group or individual data files.

3. Click View > Detai l or right-cl ick and choose Detai l from the context menu.

The detai l report for the selected data displays. Detai l reports display thresholds in a Summary table and a
Data table. The Summary table is a summary of raw data col lected from a load test. In the Data table, the
fai led points are shown in red.

Analyze

259

Cr eat ing a Char t or Gr ap h

Analyze Graph Types
The fol lowing basic graph types are avai lable in QALoad Analyze.

Line Graph

A l ine graph plots response t imes versus elapsed t imes for the selected checkpoints. It provides a good
representat ion of how much fluctuat ion there is in response t imes over the course of a test.

Bar Graph

A bar graph shows the median, mean, or percent i le response t imes for the selected checkpoints.

Transaction Throughput Graph

This type of graph shows the cumulat ive number of t ransact ions that occurred with in the user-specified
t ime range over the durat ion of the test.

Response Time Distribution Graph

This type of graph shows the percentage of checkpoint t im ings that fal l with in a part icular response t ime
range. A response t ime distribut ion graph shows i f response t imes tend to fal l with in the range or are
widely dispersed. A response t ime distribut ion graph only shows results for a single checkpoint, al though i t
can compare results from mult iple t im ing fi les.

Cumulative Response Time Distribution Graph

This type of graph shows the percentage of t ransact ions for a single checkpoint that have a response t ime
equal to or less than a specified value.

Graphing QALoad Timing Data
A t im ing fi le can potent ial ly contain enough data that graphing al l of i t at one t ime results in an
unreadable graph. Before beginning, consider th inning the amount of data to be shown on a single graph.
Detai ls

Select t he group t o graph:

In the Workspace, with the appropriate Timing Fi le tab selected, cl ick the group for which to create a
graph.

Note: If the test aborts, complete data may not be available for all checkpoints and counters.

The fol lowing groups are avai lable, depending on the t im ing fi le:

Checkpoints

Counters

Server Monitoring

Player Performance Counters

Top Processes

Expert User
Note: For each Group except Checkpoints and Expert User, the graph type is a line graph. For graphing

multiple checkpoints or expert users, the graph type is either a line or bar graph. For graphing a single

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

260

checkpoint only, in addition to line and bar graphs, you can also create Response Time Distribution and
Cumulative Response Time Distribution graphs.

Thinning Data Before Graphing
Test results may contain more data than can reasonably be graphed. Thinning data before graphing
provides a clearer and more manageable graph.

To t h in t im ing dat a in Conduct or :

1. With your test session ID fi le open, cl ick the Scri pt Assignm en t tab.

2. For each script for which you would l ike to th in your test data, cl ick the button in the Tim ing
Opt ions column.

3. On the Timing Options dialog box, cl ick the Enable Tim ing Data Th inn ing check box.

4. In the Th in Every... field, type the number of t ransact ions to average. The average is sent to the
Conductor for inclusion in the t im ing fi le, rather than every value.

5. Click OK.

6. Save your changes to your test session ID fi le by choosing Fi l e>Save from the Conductor menu.

For more detai ls about the Timing Options dialog box, see Timing Options.

To set up dat a t h inning in Analyze:

1. With a t im ing fi le open, cl ick Tools>Opt ions.

2. Click the Data Th inn ing tab.

3. Type the number of data points to plot on each graph and select the method by which to graph the
data points.

4. Click OK.

For a descript ion of the opt ions on th is dialog box, see Options Dialog Box - Data Thinning Tab.

Graphing Checkpoints
Note: A timing file can potentially contain enough data that graphing all of it at one time results in an

unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph checkpoin t s:

1. Open the appropriate .t im fi le in QALoad Analyze. In the Workspace, cl ick the Checkpoin ts group.
Checkpoint data is l isted in a tree-view.

2. Select the checkpoints to graph.

3. From the View menu, choose Graph . The Select Graph dialog box appears.

4. In the Graph Type drop-down l ist , select from the fol lowing:

 Line (response t imes versus elapsed t imes for the selected data.)

 Bar (median, mean, or a percent i le response t ime of the selected checkpoints.)

Analyze

261

Note: The BAR graph displays only one data point for each selected counter. The data point represents
the mean, median, or percentile response time. When you select a LINE graph after a BAR graph through the
BAR graph’s context menu, the LINE graph displays the data of the BAR graph, not the data from the tree
control on the left pane. Since there is only one data point per selected counter, the line graph does not
display a line. This display is different from the LINE graph that you request from the tree control, which
displays all the data points for each selected counter.

The following graph types are only available when graphing a single checkpoint:

 Response Time Distribut ion (how the response t imes of a single checkpoint are distributed.)

 Cumulat ive Response Time Distribut ion (the percentage of checkpoint t im ings that were equal
to or less than a specified value.)

Data for the selected checkpoint(s) is graphed in the Data window in the format selected in step 4.

Graphing Counters
Note: A timing file can potentially contain enough data that graphing all of it at one time results in an

unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph count er s:

1. Open the appropriate .t im fi le in QALoad Analyze. In the Workspace, cl ick the Coun ters group.
Counter data is l isted in a tree-view.

2. Select the counter(s) to graph.

3. From the View menu, choose Graph . Data for the selected counter(s) is graphed in a l ine graph
format in the Data window.

Graphing Player Performance Counters
Note: A timing file can potentially contain enough data that graphing all of it at one time results in an

unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph Player per f orm ance count er s:

1. Open the appropriate .t im fi le in QALoad Analyze. Select the Player Perform ance Coun ters group.

2. In the Workspace, select the performance counter(s) to graph.

3. Click the View Graph but ton or right-cl ick and choose Graph from the context menu. Data for the
selected Agent(s) is graphed in a l ine graph format in the Data window.

Graphing Server Monitoring Data
Monitoring servers is a method of load test ing. QALoad provides performance counter data through three
server monitoring methods:

! Remote M onitoring - Performs the monitoring of performance counters from a machine under test
without the use of agent software on the machine.

! Server Analysis - Performs the monitoring of performance counters from a machine under test
using the ServerVantage agent software instal led on the machine.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

262

! ServerVantage - An Avai labi l i ty Management appl icat ion complementary to QALoad for service
level monitoring of performance counters for appl icat ions, servers, and databases during
product ion. ServerVantage also provides not i ficat ion, event management, and report ing features.

Graphing Top Processes
Note: A timing file can potentially contain enough data that graphing all of it at one time results in an

unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph t op processes:

1. Open the appropriate .t im fi le in QALoad Analyze. Select the Top Processes group.

Note: The Top Processes group is available only if you enable the option in the QALoad Conductor Server
Analysis Agent configuration screen before running a test.

2. In the Workspace, select the data point(s) to graph.

3. Click the View Graph but ton or right-cl ick and choose Graph from the context menu. Data for the
selected Agent(s) is graphed in a l ine graph format in the Data window.

Graphing Expert User Data
Note: A timing file can potentially contain enough data that graphing all of it at one time results in an

unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph exper t user dat a:

1. Open the appropriate .t im fi le in QALoad Analyze.

2. Select the Expert User group in the Workspace tree-view.

3. In the Workspace, select the data point(s) to graph.

4. Click the View Graph but ton or right-cl ick and choose Graph from the context menu. Data for the
selected Agent(s) is graphed in a l ine graph format in the Data window.

Creat ing a Scat ter Chart

To creat e a scat t er char t :

1. Click the View Graph but ton or choose Graph from the View menu. The Select Graph dialog box
appears.

2. Select the Line graph type.

3. Click OK. Data for the selected checkpoints is presented in a l ine graph format in QALoad Analyze’s
data window.

4. Right-cl ick anywhere in the graph, and select Gal lery from the menu. The gal lery of graph types
displays.

5. Click the Scatter type graph.

6. Right-cl ick anywhere in the graph.

Analyze

263

7. Select Propert i es from the menu. The Chart FX Propert ies dialog box displays.

8. Click the Series tab.

9. In the Show every: field, cl ick the up or down arrow to increase or decrease the number of data
points displayed, for example, show every 5th point.

10. In the Size: field, cl ick the up or down arrow to increase or decrease the size of the scatter points.

11. Click Apply.

12. In the Shape: field, cl ick the arrow and select the shape for the scatter points.

13. Click Apply, then cl ick OK.

See Customizing a graph for more in formation about customizing a graph.

Creat ing Financial Charts
There are three financial charts in QALoad Analyze: Candlest ick, High-low-close, and Open-high-low-close.
Use th is procedure to display these charts in the graph Gallery, and then create graphs of these types.

To access t he f inancial char t s:

1. Go to the QALoad root directory. The default is c:\Program Files\Compuware\QALoad.

2. In a text editor, open the graphprops.xm l fi le.

3. In the l ine <FinancialCharts value="false/">, replace the value by h ighl ight ing the word false
and typing true.

4. Click Fi l e>Save, then cl ick Fi l e>Ex i t .

To use t he f inancial char t s:

In QALoad Analyze, do the fol lowing:

1. Click the View Graph but ton or choose Graph from the View menu. The Select Graph dialog box
appears.

2. Click the down arrow select the Line graph type.

3. Click OK. Data for the selected checkpoints is presented in a l ine graph format in QALoad Analyze’s
data window.

4. Right-cl ick anywhere in the graph.

5. Select Gal lery from the menu. The gal lery of graph types displays.

6. Click the graph you want to use.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

264

Cust om izing a Char t or Gr aph

Customizing a Graph
Change the style and appearance of a graph using opt ions avai lable from either of the Graph toolbars. The
Graph toolbars contain buttons for standard Windows operat ions as well as for customizing a graph's
appearance. Display the Graph toolbars by right-cl icking in an open area of a graph and choosing
Toolbars>Toolbar or An notate Toolbar from the shortcut menu.

The fol lowing features can be customized from the Graph toolbar. Cl ick on any feature in the fol lowing
l ists for addit ional in formation or instruct ions:

Graph Type

Color

Grid Orientat ion (horizontal and vert ical)

Legend Box

Dimension (3D or 2D)

Rotat ion

Z-Cluster

Font

Text/Object

Adding Text or an Object to a Graph
To create explanatory text or an object on a graph, use any of the text or object buttons on the Graph
Annotate toolbar.

To add a not e or object t o a graph t em plat e:

1. Display the Annotate toolbar.

2. Add text and/or an object to the graph .

Storing a Note or Object in a Template

You can add explanatory text or objects to a graph to be ut i l ized as part of a template when the template is

appl ied to future t im ing fi les. For text, use the Tex t Box or the Bal loon w i th Tex t button . To

create an object, use the Rectangle or Ci rcle button .

Note: These are the only objects that can be stored in a template.

To save t he in f orm at ion in a t em plat e:

1. Complete the steps above for adding a note or object.

2. Follow the instruct ions for Creat ing a New Template. The saved note or object is avai lable when
the template is appl ied to future t im ing fi les.

Analyze

265

View ing Repor t s

Pre-Defined Reports
QALoad Analyze provides pre-defined reports for viewing load test results without t ime-consuming data
manipulat ion.

In the Workspace, select the Reports group and cl ick the appropriate report . The reports are in HTML
generated by XSL fi les. View them in QALoad Analyze, or direct ly in a Web browser.

Note: Compuware provides each of the available pre-defined reports as convenience to view the results of
a load test without any data manipulation. In addition, create customized versions of these reports by
selecting the appropriate group and creating detail reports and graphs.

The fol lowing reports are avai lable. Cl ick a report name for detai ls.

Summary

Session

Concurrent Users

Response Time Analysis

Output

Cl ient Throughput

Server Monitoring

Transact ion Throughput

Top Ten Longest Checkpoint Durat ions

Worst Performing Checkpoints and Counters

Player Performance

Expert User

Appl icat ion Vantage

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

266

Summary report
The Summary report is the primary output from each test run, one of the pre-defined reports QALoad
Analyze makes avai lable. When you open a t im ing fi le, QALoad Analyze automatical ly displays the Load
Test Summary in the Data window. It presents t im ing in formation for each transact ion in the t im ing fi le
and the min imum, maximum, and median response t imes for each checkpoint.

The output is divided into two sect ions. The first sect ion presents the Summary Test In formation, Test
Time information, and Data Thinning and Time Range information. The second sect ion presents the Script
In formation for each script . It shows t im ing Summaries and Checkpoint in formation for each script .

With the Summary Report open in Analyze, cl ick a heading in the Test In formation area to display detai led
in formation on scripts, errors, and messages. When you enable data th inning, the number of errors and
messages is th inned, accordingly.

Note: There is a limit of 3000 errors processed for each script and 3000 messages processed for each
group within a script. When you click # Errors or #Messages for detailed information, any script or group
within the script that exceeds the limit does not display. A script or group can fall within the limit when data is
thinned but exceed the limit when data is not thinned. This means that more scripts may appear in the Error
section and more groups may appear within scripts in the Script Message section when data is thinned.

Sample Summary Report

For a brief descript ion of each report sect ion, scrol l down and cl ick a sect ion heading in the fol lowing
sample.

Analyze

267

Session report
Provides summary in formation about the test session. The information in th is report was obtained from
the Conductor’s configurat ion sett ings when the load test was started. To view a summary of test sett ings
that includes changes made while the test was running, see the Summary report .

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

268

F

Analyze

269

For descript ions of the in formation provided in each sect ion, cl ick the sect ions in the fol lowing image.

Concurrent Users report
Displays the total number of virtual users for the test, concurrent users vs. elapsed t ime, as well as graphs
for individual scripts that were part of the test.

Note: A totals graph will not display if the test contains only one script.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

270

Response Time Analysis report
Provides an indicator of how well a script ran. The report displays a graph of each script 's transact ion
durat ion (response t ime vs. elapsed t ime) as well as the fol lowing checkpoint summary data:

#Tran s: Number of data points used to calculate the stat ist ics.
#Recs: Number of data records. This value, i f di fferent from the value of #Trans, reflects the number of
checkpoint records that are used for analysis after data th inning has been appl ied.
M in : M in imum recorded response t ime.
M ax : Maximum recorded response t ime.
Std. Dev: Standard deviat ion of al l response t imes. A large standard deviat ion indicates a wide variance in
response t imes.
M edian : Median response t ime, in seconds.
nth%: n percent of the responses have a value less than the value shown.

Output report
Provides a cumulat ive l ist of al l errors, sorted by script and occurrence in t ime, that occurred during the
course of a load test.

Note: Failed messages are included in the errors count that appears in the Test Information section of the
report, but are detailed in the Script Messages section.

Analyze

271

Client Throughput report
Provides a graph of HTTP Reply analysis for key HTTP counters, HTTP counter vs. elapsed t ime.

Server Monitoring report
Server monitoring is a component of load test ing. QALoad provides performance counter data through
three server monitoring methods: Remote M onitoring, ServerVantage, and Server Analysis Agent
monitoring.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

272

Transact ion Throughput report
Provides the cumulat ive number of t ransact ions over elapsed t ime for each script and for the total test.

Analyze

273

Top Ten Longest Checkpoint Durat ions Report
Provides graphs and l ists detai ls about checkpoints that had the longest checkpoint durat ion during the
test. Checkpoints with longest durat ions are those that consumed the most amount of t ime during the test.
This report contains the fol lowing sect ions:

! A summary sect ion with overview information about the test.

! A bar graph of the ten longest checkpoint durat ions in the test, fol lowed by detai ls for each
checkpoint in the graph. These checkpoints can originate in any script that was included in the
test.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

274

! Bar graphs for each script that show up to the ten longest checkpoint durat ions, fol lowed by detai ls
for each checkpoint in the script .

The report is generated by Analyze only i f each script has at least one checkpoint other than the durat ion
checkpoint. The data provided in the report can be used as a start ing point to ident i fy performance
problems.

Note: Transaction duration checkpoints are not included in the report.

Analyze

275

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

276

Player Performance report
Displays transact ion durat ions in a graph format by player machine. This report helps ident i fy individual
player machines that have poor test results. In addi t ion to the bar graph that plots the average transact ion
durat ion for each player machine, the report also includes summary data for the overal l test, and detai ls for
each player machine. This report is generated by Analyze only i f two or more player machines were used in
the test.

Worst Performing Checkpoints and Counters Report
This report provides graphs and l ists detai ls about checkpoints and counters that had the worst
performance during the test. Performance is based on the thresholds you define.

Checkpoints with the worst performance are calculated using the average response t ime for each
checkpoint. Counters with the worst performance are those that consume the most amount of t ime during
the test. Checkpoints with the most errors and counters with the h ighest fai lure rates are l isted first . The
data provided is a start ing point for ident i fying performance problems.

Note: The report is generated by Analyze only if a threshold is defined and if the threshold is violated by
the data. Thresholds that are not violated do not appear in the report.

The bar graphs for each script show up to ten of the longest checkpoint durat ions and are fol lowed by
detai ls for each checkpoin t in the graph. The checkpoints can originate in any script that was included in
the test. The report contains the fol lowing sect ions:

! A summary sect ion with overview information about the test.

! Bar graphs for checkpoints and bar graphs for counters showing the fol lowing:

 Sum m ary by percen tage of violat i ons - Shows the number of points that exceeded the
threshold divided by the total number of data points. For example, in the report for counters

Analyze

277

below, the total fai lure of 8 divided by the total records of 60, yields a fai lure rate of 13.3
percent.

 Sum m ary by severi ty - Shows the percent of t ime during the test that the data is in violat ion
of the threshold. This calculat ion uses a weighted average to determine the percentage. For
example, in the report for counters below, when the weighted average is used to calculate the
severi ty, the fai lure rate is 7.6 percent and 6.5 percent.

Since the first method measures the fai lure rate by percentage of violat ions, and the second method
measures fai lures by the amount of t ime the data is in violat ion, the numbers can differ great ly between
the two methods. It is possible for a data set to have a 5 percent fai lure rate when calculated by percentage
of fai lures, and an 80 percent fai lure rate when calculated by severi ty. This can indicate that an error
deviat ing significant ly from the norm may be a more notable fai lure than a greater number of fai lures.

In the example below, the counter summary by percent of violat ions for Server Analysis shows a total of 8
fai lures out of 60 records, for a fai lure rate of 13.3 percent. The percentage of violat ions for Remote
Monitoring has a total of 3 fai lures in 41 records, for a fai lure rate of 4.2 percent.

When measured by severi ty, however, the fai lure rate for Remote Monitoring is more serious than for
Server Analysis. Here, the fai lure rate for Remote M onitoring is 7.6 percent compared to the rate 6.5
percent for Server Analysis.

Note: Transaction duration checkpoints are not included in the report.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

278

Analyze

279

Expert User Report
Displays in formation on the scripts that ran on each player machine with the Expert User opt ion enabled.
It provides a t im ing breakdown of the individual components, such as HTML, images, and objects, of the
web pages that were requested during a test. The Expert User report shows how much t ime i t took to
download a part icular component of a web page from the server. It also shows the percentage of network
and server t ime for the request.

The Expert User report contains a summary sect ion and a detai l sect ion. The Summary sect ion at the top of
the report displays overview information about the test for each QALoad Player instance.

The detai l sect ion displays the main requests and each subrequest made when the script executes. Main
requests are made when Navigate_to(), Cl ick_On(), Post_to(), DO_http(), or DO_https() are executed in a
WWW script. The subrequests, or Web components, that make up the main page can include html, css, js
pages, and so forth.

The percentage of server and network t ime displays in the Average Server and Average Network fields, with
a graphic representat ion in the Server/Network field. This in formation can help you determine whether
web pages with a h igh response t ime are having server- or network-related performance problems. If an
except ional amount of t ime is being spent on the server, you can monitor the server that is under test
using a server monitoring tool such as ServerVantage or QALoad's Remote M onitoring opt ions. If too much
t ime is being spent on the network, you can monitor the network under test using a tool such as
Appl icat ionVantage.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

280

Applicat ionVantage Report
Displays in formation on the scripts that ran on each player machine. It contains a summary sect ion with
overview information about the test, and a graph of the transact ion response t ime of the script in seconds.

Note: If Expert User data was collected (WWW only), the Network and Server percentage data also is
included.

A detai l sect ion displays the beginning and ending t ime for the trace fi les produced by the scripts running
on the Appl icat ionVantage player machines. A separate sect ion appears for each Applicat ionVantage Player
machine that ran during the test period, .

Analyze

281

Pub l i sh ing or Shar ing Test Resu l t s

Export ing Test Data
Convert test data in to three convenient formats for viewing or export ing:

HTM L — Export data in a detai l view or graph to HTML fi les for convenient viewing in a default Web
browser or for sending as attachments in an email message. See Export ing Data to HTML for instruct ions.

RIP — Any t ime a user fai ls during load test ing, QALoad Analyze generates a RIP fi le contain ing user errors.
If a t im ing fi le has RIP fi le data, you can export the RIP fi le to the working folder and view i t in QALoad
Analyze or the QALoad Script Development Workbench. See Export ing RIP Fi le Data for instruct ions.

Appl i cat ionVan tage (AV) t race f i l es - When a t im ing fi le has Appl icat ionVantage data, you can export
the Appl icat ionVantage trace fi les to a working directory and view them with in Appl icat ionVantage. See
Export ing Appl icat ionVantage Trace Fi les for instruct ions.

Export ing data to HTML

To expor t dat a f rom a det ai l view t o HTM L:

1. Open a t im ing fi le.

2. Generate a detai l view or graph.

3. Click anywhere in the detai l view or graph, making i t act ive.

4. From the Fi l e menu, choose Export>Data. The Save As dialog box appears.

5. Navigate to the appropriate locat ion for saving the HTML fi le and name the fi le.

6. Select Web Page (*.h tm ;*.h tm l) as the fi le type and cl ick Save.

Export ing RIP file data
Note: If a timing file does not contain any RIP data, then a RIP Files group will not exist in the Workspace.

To expor t t he RIP f i le dat a t o t he w ork ing f older :

1. Open a t im ing fi le.

2. In the Workspace, cl ick the RIP Fi les group.

3. In the tree view, select the appropriate RIP fi les check box.

4. Right-cl ick on the selected fi les and choose Export . The Browse For Folder dialog box appears.

5. Select the folder you wish to export the RIP fi le data to. The default is the working folder.

6. Click OK. Analyze exports the RIP fi le to the working folder.

Export ing Applicat ionVantage Trace Files
You can export Appl icat ionVantage trace fi les to a working folder or to Appl icat ionVantage.

Note: If a timing file does not contain any ApplicationVantage data, then the ApplicationVantage group
does not exist in the Workspace.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

282

To expor t t he Appl icat ionVant age dat a t o a w ork ing f older :

1. Open a t im ing fi le.

2. In the Workspace, cl ick the Appl icat ionVantage group.

3. In the tree view, select the appropriate Appl icat ionVantage fi les check box.

4. Right-cl ick on the selected fi les and choose Export to Fi l e. The Browse For Folder dialog box
appears.

5. Select the folder you wish to export the Appl icat ionVantage fi le data to. The default is the working
folder.

6. Click OK. Analyze exports the Appl icat ionVantage fi le to the working folder.

To expor t t he Appl icat ionVant age dat a t o App l icat ionVant age:

1. Open a t im ing fi le.

2. In the Workspace, cl ick the Appl icat ionVantage group.

3. In the tree view, select the appropriate Appl icat ionVantage fi les check boxes.

4. Do one of the fol lowing:

 Right-cl ick on the selected fi les and choose Export to Appl i cat ionVan tage.

 Double-cl ick the fi le to export .

The trace fi les are loaded into the Appl icat ionVantage database and then opened in
Appl icat ionVantage.

Sending email messages with test data
If you are using a M icrosoft mail program, QALoad Analyze can send an emai l message with a t im ing fi le or
pre-defined report at tached. The recipient(s) of the message wil l be able to open the fi les in a Web browser.

To em ai l p re-def ined repor t s:

1. Choose Fi le>Send.

2. In the Send dialog box, select reports, views, and t im ing fi les from their respect ive tabs and cl ick
Add to add them to the l ist of i tems you want to send.

3. In the Send To field, choose Em ai l Recipien t .

4. (opt ional) Cl ick the Zip to f i l e check box to send the fi les in the compressed .zip format. Type a
name for the .zip fi le in the adjacent field.

5. Click OK. Analyze creates a new Outlook email message that contains al l of the pre-defined reports,
.xml, .xsl, and fi les associated with the t im ing fi le as attachments, or a single .zip fi le that contains
those fi les as an attachment. Address the email , add message text, and send the message.

Creat ing a .zip f ile of test results
You can create a .zip fi le to convenient ly package al l test data in to one fi le for sending to others or storing
local ly. Analyze creates a f i le in .zip format, which you can either save to a locat ion on your computer or
send as an attachment to an email .

Analyze

283

To creat e a .zip f i le:

1. Choose Fi le>Send.

2. In the Send dialog box, select reports, views, and t im ing fi les from their respect ive tabs and cl ick
Add to add them to the l ist of i tems you want to include in the .zip fi le.

3. In the Send To field, choose Em ai l Recipien t to email the zip fi le or choose Fi le to save the fi le on
your computer.

4. Click the Zip to f i l e check box to send the fi les in the compressed .zip format. Type a name for the
.zip fi le in the adjacent field.

5. If you chose Fi le in step 3, type the path of the locat ion for the .zip fi le or cl ick the browse button
[...] to select a locat ion.

6. Click OK. Depending on which opt ion you chose in step 3, Analyze performs one of the fol lowing
act ions:

 If you chose Em ai l Recipi en t , Analyze creates a new Outlook email message that
contains al l of the pre-defined reports, .xml, .xsl, and fi les associated with the t im ing
fi le as a single, compressed .zip fi le attachment. Address the email , add message text,
and send the message.

 If you chose Fi le, Analyze creates a single, compressed .zip fi le in the locat ion you
specified in step 5 that contains al l of the pre-defined reports, .xml, .xsl, and fi les
associated with the t im ing fi le.

Viewing Reports
View reports generated by QALoad Analyze on a machine with QALoad instal led or on any machine with a
Web browser. In order to save the contents of a t im ing fi le's working folder when viewing reports, clear the
Rem ove XM L Work ing Folder opt ion on the Workspace tab of the Options dialog box. For more
in formation, see Options Dialog Box - Workspace Tab.

Viewing reports on a machine with QALoad Analyze

To view reports in QALoad Analyze, cl ick the Summary report button or any of the pre-defined report
buttons in the QALoad Analyze Workspace. See Load Test Summary for a quick in troduct ion to viewing
reports.

Viewing reports on a machine without QALoad Analyze

To view reports in a Web browser, copy the ent ire working folder for the t im ing fi le onto the machine. The
fol lowing fi les are required (where <Summary> represents the name of the report):

! <Summary>.htm

! <Summary>.xml

! <Summary>.xsl

In addit ion, the M icrosoft XML version 4.0 parser (provided with QALoad) is required to view QALoad
reports. View any of the pre-defined reports by cl icking the <Summary>.htm fi le to launch a report with the
assistance of the associated XML and XSL support fi les.

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

284

Other ways to view test data

View not only pre-defined reports, but also t im ing fi le detai l views and graphs by export ing or sending
email messages with test data to another machine. Cl ick the fol lowing l inks for more in formation:

! Export ing Test Data

! Sending Email Messages with Test Data

Viewing test results in a Web browser
An important part of the load test ing process is viewing and studying the results of a test. You can view the
results of a load test not only on a machine where QALoad is instal led, but also on any machine with a
Web browser. QALoad Analyze provides pre-defined reports as well as .xml and .xsl fi les that can be
customized to meet desired specificat ions.

When you open a t im ing fi le, QALoad Analyze generates a working folder contain ing al l support ing fi les,
reports, and images generated from that t im ing fi le. This folder is located in the directory \Program
Files\Compuware\QALoad\TimingFiles\xxx.xml.source where <xxx> is the name of the t im ing fi le.

The fol lowing fi les are found in the working folder:

Fi l e Nam e Descript i on

<timingfile>.xml.source Working folder generated in the Reports folder when opening a
t im ing fi le. The working folder name is always the <name of the
t im ing fi le> with a .xml.source extension.

<timingfile>.xml Original t im ing fi le with just enough information to create the
QALoad Analyze pre-defined reports. It is a representat ion of the
t im ing fi le, <t im ingfi le>.t im.

<timingfile>.complete.xml Original t im ing fi le contain ing al l data col lected during a load
test. It can be an extremely large fi le. Use th is fi le i f creat ing a
report using XSL that requires th is data.

summary.htm Use th is HTM fi le to view the Summary report (or any other
avai lable pre-defined report) in any Web browser.

summary.xml Generated XML fi le for the Summary report (or any other
avai lable pre-defined report .)

summary.xsl Generated XSL fi le for the Summary report or any other
avai lable pre-defined report . Translates the .xml fi le specifying
HTML as i ts output and generates the HTML report . Use th is fi le
to customize the reports by writ ing in .xsl.

default.htm Report that provides a main screen to launch any other pre-
defined reports. Uses nav.htm for the navigat ion frame.

When closing a t im ing fi le, ei ther keep al l of the reports generated from the t im ing fi le in the working
folder, or delete them. To set th is opt ion, see the Workspace tab on the Options dialog box.

To view load test results in a Web browser, cl ick: How to View Reports.

285

Index
.

.cap fi le... 149, 156

.cpp... 156

.log fi le ... 149

.rfd .. 156

.rip fi le.. 149

.trc fi le .. 149

.VisHtml ... 156

.VisTree... 156

.VisXml .. 156

.zip fi le, creat ing in Analyze

Creat ing a zip fi le of test results 282

.zip fi le, creat ing in Analyze 282

A

Action i tem

Page sub-i tem ... 171

Act ion i tem .. 175

Act iveData

Oracle

using the Compare Tool 40

Addit ional SubRequests 171

ADO method reference...................................... 21

Analyze

graphs... 260

menus .. 247

opening.. 245, 248

toolbars .. 247

Analyze... 244

authent icat ion

basic, in Visual Navigator scripts................. 175

NTLM, in Visual Navigator scripts............... 175

authent icat ion.. 175

B

baud rate .. 84

browser caching... 140

C

caching... 87

capture fi le

create.. 100

insert commands... 100

capture fi le ... 100

capture fi le ... 100

CDO ... 232

cert i ficate ... 17, 18

CGI requests

parameters ... 175

CGI requests... 142

chart

Financial .. 263

Scatter .. 262

checkpoints

defin ing ... 104

durat ion ... 246, 273

graphing .. 260

reports.. 273, 276

veri fying... 150

worst performing... 276

Citrix

clearing events from the in ternal queue....... 26

dynamic windows 28, 109, 110

ICA fi les ... 25

insert ing screenshots in a script 25

overview... 22

recording.. 23, 239

script samples .. 189

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

286

server farm 27, 108, 189

troubleshoot ing 239, 240

unexpected events 29, 110

wait points ... 240

Citrix .. 22

CJK Support

encoding .. 95

octal characters.. 86, 97

Visual Navigator..................................... 97, 164

CJK Support .. 93

Click On Button (submit) 171, 174

Click On Link ... 171, 174

cl ient cert i ficate

passwords... 168

cl ient cert i ficate.. 168

Client Throughput report 271

ClientVantage

packaging a script .. 236

col laborat ion data objects................................ 232

commands

DO_WSK_Send... 61

edit ing.. 102

insert in to capture fi le 100

comment, Visual Navigator script i tem 170

Compare Tool

Act iveData for Oracle..................................... 40

compil ing scripts.. 147

concurrent

users ... 269

configuring

browser... 75

connect ion sett ings

max connect ion ... 84

persistent .. 83

connect ion sett ings.. 83

connecton sett ings

max concurrent ... 84

Content Check... 171

conversion opt ions

SAP... 54

sett ing .. 20

UNIFACE.. 60

Winsock ... 65

conversion opt ions.. 20

cookies

in Visual Navigator scripts................... 173, 175

insert ing in to a script 157

simulat ing.. 137

stripping from requests.................................. 87

cookies ... 80

Cookies Set by Server 171

counters

custom ... 102

graphing .. 261

worst performing... 276

counters ... 102

CtxScreenEventExists................................. 29, 110

CtxWindowEventExists............................. 29, 110

custom script messages.................................... 102

D

datapoints

graphing .. 260

th inning... 260

datapool

creat ing .. 104

incorporat ing... 104

modifying .. 104

naming .. 183

NetLoad 228, 229, 230

retrieving ... 104

variables... 183

Visual Navigator .. 183

debug

log fi les... 149

Index

287

print ... 170

script .. 148

Default Session Prompt 238

detai l data... 254

directory opt ions.. 16

document t i t le veri ficat ion 87

dupl icated frameset page 173

durat ion ... 246

dynamic

cookie handl ing ... 80

redirect handl ing ... 80

windows, Citrix.............................. 28, 109, 110

E

EasyScript ... 17

Email ing test data from QALoad Analyze........ 282

encoding CJK ... 93

export ing data to html 281

export ing rip fi les... 281

export ing test data ... 281

extract string

Visual Navigator script i tem 173

extract string .. 185

F

fi les

Visual Script ing.. 156

Fi l l In Form

Page sub-i tem ... 171

fi l ters

rules.. 88

traffic.. 88

forms, in Visual Navigator 176

frames... 139, 173

Funct ion Wizard .. 102

G

graceful socket shutdown 84

graph

checkpoints.. 260

counters... 261

customizing ... 264

datapoints.. 260

Financial Chart .. 263

Player Performance Counters...................... 261

Scatter Chart .. 262

Server Monitoring Data 261

th inning... 260

Top Processes... 262

graph .. 255, 259

group

checkpoints.. 249

ClientVantage.. 249

counters... 249

player performance counters....................... 249

remote monitoring 249

reports.. 249

RIP Fi les.. 249

server analysis.. 249

server monitoring .. 249

ServerVantage.. 249

Top Processes... 249

group.. 249

H

HTML

page.. 171

reports.. 281

stat ic pages... 140

HTML ... 75, 77

HTTP

headers

in Visual Navigator scripts 175

insert ing... 158

HTTP.. 75, 78

HTTPS.. 17

I

ICA fi le... 25

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

288

instal l ing

NetLoad server module................................ 227

UNIX Players.. 4

IP address ... 133

IP spoof .. 224

J

Java... 34

Java applet .. 35

JavaDoc .. 34

JavaScript

execut ion ... 79, 82

t imeout .. 83

JavaScript .. 135

L

launching Analyze ... 248

Load Test Summary.. 266

load-balanced environment, Citrix 22

local variables... 185

log fi les... 149

logfi le generat ion ... 148

M

Machine Assignments, in Session report 267

Machines in Use, in Session report 267

menus

Analyze... 247

Oracle Variabl izat ion 39

Player ... 3

Visual Navigator... 151

META refresh .. 85

N

native character support 93

NavigateTo ... 171

NetLoad

CDO support .. 232

creat ing a datapool 228

edit ing a datapool .. 229

entering/edit ing a datapool descript ion 230

instal l ing the server module........................ 227

MSExchange .. 232

start ing a session .. 228

start ing the server module........................... 227

NetLoad.. 227

NTLM authent icat ion, in Visual Navigator scripts
... 175

O

octal characters.. 86, 97

ODBC

memory error ... 237

opening a t im ing fi le 248

opt ions

Workbench

conversion ... 20

directory .. 16

fi le.. 16

recording ... 100

opt ions... 16

opt ions... 20

opt ions... 100

Oracle

command reference....................................... 42

opt imizing Player for 5

UNIX .. 41

Oracle... 5

Oracle Forms Server

appl icat ion statements 46, 116

C++ scripts... 45, 115

connect ion statements 45, 115

debugging .. 49, 119

disconnect statements........................... 49, 119

method reference... 44

recording.. 43

transact ion loop..................................... 49, 120

veri fying window creat ion 51

Output report ... 270

Index

289

P

Page i tems .. 171

PageCheck .. 171

parameterizat ion .. 182

parameters.. 10

parsing.. 79

password-protected directory........................... 140

persistent connect ions....................................... 83

Player

configurat ion ... 10

errors.. 148

log fi les... 149

performance

counters ... 261

report ... 276

scripts... 7

UNIX .. 4, 6, 233

using with Oracle... 5

Player.. 2

PostTo... 171

Pre-defined reports

Cl ient Throughput 265, 271

Concurrent Users... 265

Output .. 265

Player Performance...................................... 276

Response Time Analysis............................... 265

Server Monitoring.. 265

Summary .. 265

Top Ten Longest Checkpoint Durat ions 273

Transact ion Throughput 265

proxy http .. 85

Q

QALoad Analyze... 244

QALoad Player.. 2

QALoad Script Development Workbench . 12, 248

QARun

scripts... 234, 235

R

read datapool, Visual Navigator script i tem 170

recording

Citrix .. 23

Java .. 34

middleware cal ls.. 99

mult iple middleware sessions........................ 99

opt ions... 100

Oracle Forms Server 43

SAP... 53

UNIFACE.. 60

Universal .. 20

Winsock ... 64

WWW .. 155

recording.. 100

recording.. 100

redirects.. 80

reports

Appl icat ion Vantage.................................... 280

Client Throughput 271

Concurrent Users... 269

export ing ... 281

Output ... 270

Player Performance...................................... 276

pre-defined........... 265, 270, 271, 272, 273, 276

Response Time Analysis............................... 270

Server Monitoring.. 271

Session ... 267

Summary.. 266

Top Ten Longest Checkpoint Durat ion 273

Transact ion Throughput 272

viewing .. 283

response t ime distribut ion

Response Time Analysis report 270

restart ing transact ions

SAP scripts.. 55, 121

rules

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

290

fi l ters.. 88

rules.. 186

Running Scripts, in Session report 267

S

sample Load Test Summary 266

SAP

conversion opt ions.. 54

handl ing mult iple logons...................... 58, 124

Recording an SAP session 53

recording opt ions... 52

script ing techniques 58, 124

troubleshoot ing 239, 240

SAP ... 52

SAP control log... 54

script

adding messages for playback...................... 102

compil ing... 147

debugging .. 40, 148

edit ing

techniques

Citrix samples...................................... 189

general ... 104

OFS... 197

SAP55, 56, 58, 59, 121, 122, 124, 125, 203

Winsock 61, 65, 67, 70, 71, 126, 128, 130,
132

WWW samples.................................... 222

techniques ... 189

edit ing.. 102

edit ing.. 157

Java... 34

packaging ... 236

samples

best pract ices.. 79

Citrix .. 189

Oracle Forms Server 197

Winsock ... 209

WWW .. 222

samples .. 189

transfer ... 6, 233

val idat ing... 7, 147

Visual Basic .. 139

Visual Navigator .. 166

Script Development Workbench

accessing .. 15

configuring .. 16

menus.. 14

toolbar buttons.. 14

Script Development Workbench 12

server farm ... 27, 108, 189

server monitoring

graphing .. 261

Report .. 271

Top Processes... 262

server repl ies 70, 71, 130, 132

server response t imeout 84

Session report ... 267

Siebel .. 89, 156

SLEEP

as a component of checkpoint durat ion 246

Visual Navigator i tem 171

SLEEP.. 171

socket resources ... 239

SSL.. 17

startup parameters ... 10

streaming media

configuring QALoad 92

Visual Navigator 92, 164

streaming media .. 87, 91

subrequests... 80, 171

Summary report ... 266

support

log fi les... 149

synch, Visual Navigator script i tem................. 169

Index

291

T

technical support .. i i i

template

t im ing fi les... 251, 252

test

accessing data .. 248

information .. 267

results

displaying data... 254

email ing ... 282

Load Test Summary 266

sort ing.. 255

th inning data... 260

viewing .. 284

th inning test data .. 260

thresholds... 255, 258

t im ing data/ fi le

th inning... 260

t i t le veri ficat ion .. 87

toolbars

Script Development Workbench

EasyScript ... 14

Top Processes

graphing... 262

traffic fi l ters.. 88

transact ion

cleanup... 169

durat ion

understanding durat ions......................... 246

loop 49, 104, 120, 162, 224

throughput

report ... 272

troubleshoot ing

ODBC memory error.................................... 237

Performance issues with SAP or Citrix scripts
... 239, 240

SAP script val idat ion fai ls 240

The default session prompt didn 't open 238

Winsock running out of socket resources... 239

U

UNIFACE

conversion opt ions.. 60

recording opt ions .. 60

Universal session .. 20

UNIX

instal l ing Players.. 4

Oracle... 41

transferring scripts................................... 6, 233

UNIX .. 6

UNIX .. 233

V

variables

adding.. 185

extract strings .. 185

local ... 185

naming .. 183

types... 183

Visual Navigator 154, 183

variables... 182

variabl izat ion

menu.. 39

Rule Library ... 186

Winsock scripts................................ 61, 67, 128

vistree... 151

Visual Basic script .. 139

Visual Navigator

Act ion i tem .. 175

cl ient cert i ficate ... 168

datapools ... 183

DBCS.. 97, 164

debug print .. 170

fi les... 156

Find and Replace ... 154

forms.. 176

QALoad 05.06 Using the Player, Script Development Workbench, and Analyze

292

frames... 173

HTML Page... 171

insert ing script i tems 157

interface ... 151

menus .. 151

recording a script ... 155

script elements... 166

streaming media support 92, 164

transact ion loop ... 162

tree-view... 166

variables ... 183

XML 158, 160, 163, 179

Visual Navigator ... 162

visual script ing ... 162

W

wait points ... 240

Web browser

configure.. 75

viewing test results....................................... 284

Win32 script

val idate... 147

Winsock

character representat ion 65, 126

commands ... 65

conversion opt ions.. 65

recording opt ions .. 64

script .. 61, 209

server repl ies............................ 70, 71, 130, 132

socket resources... 239

variabl izat ion 61, 67, 128

wizard

Funct ion Wizard .. 102

Workbench

scripts... 147

Workbench .. 12

WWW

insert ing script i tems manually 157

scripts... 166, 222

streaming media .. 91

Visual Navigator 151, 166

XML support .. 158, 163

X

XML

document view 160, 179

form view ... 160, 179

requests.. 159

support ... 158, 163

Z

zip fi le, creat ing in Analyze 282

	Player
	Overview of the QALoad Player
	QALoad Player menus
	Installing UNIX Players
	Tuning QALoad Player for use with Oracle
	Transfer Scripts to a UNIX Player
	Validating Scripts in the Player
	Dialog Box and Field Description
	QALoad Player Main Window
	Save As
	Player configuration

	Script Development Workbench
	Overview of the Script Development Workbench
	The Script Development Workbench Main Window
	Menus and Toolbar Buttons
	Menus and Toolbars without an Open EasyScript Session
	Menus and Toolbars with an Open EasyScript Session

	Accessing the QALoad Script Development Workbench
	Configuring the Script Development Workbench
	Using EasyScript Sessions
	EasyScript Sessions
	EasyScript for Secure WWW

	Using Middleware Sessions
	Using the Universal Session
	Opening a Middleware Session
	Setting Conversion Options
	ADO
	Citrix
	Java
	Oracle
	OFS
	SAP
	UNIFACE
	Winsock
	WWW

	Developing a Test Script
	Recording a Transaction
	Converting a Transaction to a Script
	Editing a Script
	Compiling a Script
	Testing a Script
	Debugging a Script

	Visual Navigator (WWW)
	The Visual Navigator
	Visual Navigator Menus
	Visual Navigator's Find and Replace Feature
	Developing a Script Using the Visual Navigator (WWW)
	Visual Scripting Concepts
	Primary Script Elements
	Transaction Loop Items
	HTML Pages
	Action Sub-Items
	Action Item Sub-Items
	Forms
	XML Requests

	Parameterization in the Visual Navigator
	Parameterization
	Using Variables with Visual Navigator
	Using the Rule Library

	Sample Scripts
	Overview — Sample Scripts
	Citrix Scripts
	OFS Scripts
	SAP Scripts
	Winsock Scripts
	WWW Scripts

	NetLoad
	Using NetLoad
	NetLoad server modules for TCP/IP and UDP
	Installing the NetLoad Server module
	Starting the NetLoad Server Module
	Starting a NetLoad session
	Creating a NetLoad datapool
	Editing a NetLoad datapool
	Adding or editing a NetLoad datapool description
	Datapool fields
	Verifying CDO Support for MSExchange

	UNIX
	Transfer Scripts to a UNIX Player

	Testing with QARun
	Creating a QARun script
	Automatically creating a QARun script
	Manually creating a QARun script

	Packaging Scripts for ClientVantage
	Overview - Packaging Scripts for ClientVantage
	How to Package a Script

	Troubleshooting
	ODBC Memory Error Crash
	The Default Session Prompt Did Not Open?
	Winsock Running Out of Socket Resources
	Citrix
	SAP

	Analyze
	Overview of QALoad Analyze
	Accessing Analyze
	Understanding Durations
	Transaction Duration
	Checkpoint Duration

	QALoad Analyze Menus and Toolbar Buttons
	Accessing Test Data
	Using Timing Files
	Accessing Test Data
	Accessing Test Data via Groups
	Using Templates

	Displaying Detail Data
	Displaying Detail Data
	Detail Views
	Sorting Test Data
	Graphing QALoad Timing Data
	Thresholds

	Creating a Chart or Graph
	Analyze Graph Types
	Graphing QALoad Timing Data
	Thinning Data Before Graphing
	Graphing Checkpoints
	Graphing Counters
	Graphing Player Performance Counters
	Graphing Server Monitoring Data
	Graphing Top Processes
	Graphing Expert User Data
	Creating a Scatter Chart
	Creating Financial Charts

	Customizing a Chart or Graph
	Customizing a Graph
	Adding Text or an Object to a Graph

	Viewing Reports
	Pre-Defined Reports
	Summary report
	Session report
	Concurrent Users report
	Response Time Analysis report
	Output report
	Client Throughput report
	Server Monitoring report
	Transaction Throughput report
	Top Ten Longest Checkpoint Durations Report
	Player Performance report
	Worst Performing Checkpoints and Counters Report
	Expert User Report
	ApplicationVantage Report

	Publishing or Sharing Test Results
	Exporting Test Data
	Exporting data to HTML
	Exporting RIP file data
	Exporting ApplicationVantage Trace Files
	Sending email messages with test data
	Creating a .zip file of test results
	Viewing Reports
	Viewing test results in a Web browser

	Index

