
Borland
AppServer™ 6.6

Developer’s Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

Copyright 1999–2006 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

BAS66DevGuide
April 2006
PDF

i

Contents

Chapter 1
Introduction to Borland AppServer 1

AppServer features 2
Borland AppServer Documentation 2

Accessing AppServer online help topics in
the standalone Help Viewer 3

Accessing AppServer online help topics
from within a AppServer GUI tool 3

Documentation conventions 3
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web 5
Borland newsgroups 5

Chapter 2
Borland AppServer overview and
architecture 7

AppServer architecture overview 7
AppServer services overview 8

Web Server . 8
JMS . 8
Smart Agent . 9
2PC Transaction Service 9

The Partition and its services 9
Connector Service 10
EJB Container 10
JDataStore Server 10
Lifecycle Interceptor Manager 10
Naming Service 10
Session Storage Service 10
Transaction Manager 11
Web Container 11

Borland AppServer and J2EE APIs 11
JDBC . 11
Java Mail . 12
JTA. . 12
JAXP. . 12
JNDI . 12
RMI-IIOP. . 12
Other Technologies 12
Optimizeit Profiler and Optimizeit

ServerTrace 12

Chapter 3
Partitions 13
Partitions Overview 13
Creating Partitions 14
Running Partitions 15

Running unmanaged Partitions 15
Running managed Partitions 16
Running Partitions with Optimizeit Profiler or

ServerTrace 16
Partition logging 17

Configuring Partitions 17
Application archives 17
Working with Partition services 18

Partition handling of services 18
Configuring individual services 18
Configuring VisiNaming Service Clusters

for AppServer 18
Gathering Statistics. 19
Security management and policies 19
Classloading policies 19
Partition Lifecycle Interceptors 20

JMX support in Partitions 20
Configuring the JMX Agent 21
Partition monitoring 21
Using the RMI-IIOP connector in

MC4J console. 21
Configuring the RMI-IIOP connector 22

Creating a secure JMX client 23
Switching between JDK 1.5 and MX4J

JMX agents 24
Partition level properties. 24

Partition MBeans 24
Deploying custom MBeans 26
Using Management EJB (MEJB) 27

Deploying the MEJB. 27
Writing an MEJB client 27
Event notification with MEJB 28
Running multiple partitions with MEJB 28

Locating the JMX agent 29
Thread pools. 29

Default thread pool 29
Auxiliary thread pool 30

Clustering J2EE Applications with Borland
AppServer 6.6 31

Chapter 4
Web components 33
Apache web server implementation 33

Apache configuration 33
Apache configuration syntax 34
Running Apache web server on a

privileged port 34
Using the .htaccess files 35

Apache directory structure 35
Borland web container implementation 36

Servlets and JavaServer Pages 36
Typical web application development

process . 37
Web application archive (WAR) file. 37

Borland-specific DTD 37
Adding ENV variables for the web

container 37
Microsoft Internet Information Services (IIS)

web server . 38
IIS/IIOP redirector directory structure 38

ii

Smart Agent implementation 39
Connecting an Apache web server to a

Borland web container 39
Connecting Borland web containers to Java

Session Service 40

Chapter 5
Web server to web container
connectivity 41

Apache web server to Borland web container
connectivity . 41

Modifying the Borland web container IIOP
configuration 41

Modifying the IIOP configuration in Apache 43
Additional Apache IIOP directives 45

Apache IIOP connector configuration 45
Adding new clusters 46
Adding new web applications 47

Large data transfer 47
Downloading large data 48

Implementing chunked download 48
Enabling chunked download 48
Known content length versus unknown 48
Chunked download with known content

length . 48
Chunked download with unknown

content length 49
Browsers supporting only the HTTP

1.0 protocol 49
Implementing non-chunked download 49

Uploading large data 50
Implementing chunked upload 50
Enabling chunked upload 50
Changing the upload buffer size 50
Known content length versus unknown 51
Chunked upload with known content

length . 51
Chunked upload with unknown content

length . 51
Implementing non-chunked upload 51

IIS web server to Borland web container
connectivity . 52

Modifying the IIOP configuration in the
Borland web container 52

Microsoft Internet Information Services (IIS)
server-specific IIOP configuration 52

How to Configure your Windows 2003/
XP/2000 system on which IIS is running . . . 52

IIS/IIOP redirector configuration 54
Adding new clusters 55
Adding new web applications 56

Chapter 6
Java Session Service (JSS)
configuration 57

Session management with JSS57
Managing and configuring the JSS 59

Configuring the JSS Partition service 60

Chapter 7
Clustering web components 61
Stateless and stateful connection services 61
The Borland IIOP connector. 61

Load balancing support 62
OSAgent based load balancing62
Corbaloc based load balancing62

Fault tolerance (failover) 63
Smart session handling 63

Setting up your web container with JSS. 64
Modifying a Borland web container for

failover .64
Session storage implementation64

Programmatic implementation 64
Automatic implementation 65

Using HTTP sessions65

Chapter 8
Apache web server to CORBA
server connectivity 67

Web-enabling your CORBA server 67
Determining the urls for your CORBA

methods .67
Implementing the ReqProcessor IDL in

your CORBA server 68
The process() method 69

Configuring your Apache web server to invoke
a CORBA server69

Apache IIOP configuration69
Adding new CORBA servers (clusters)70
Mapping URIs to defined clusters. 71

Chapter 9
Borland AppServer Web Services 73
Web Services Overview73

Web Services Architecture73
Web Services and Partitions 74
Web Service providers 75

Specifying web service information in a
deploy.wsdd file75

Java:RPC provider 75
Java:EJB provider. 76

How Borland Web Services work77

iii

Web Service Deployment Descriptors 77
Creating a server-config.wsdd file 78
Viewing and Editing WSDD Properties 78

Packaging Web Service Application Archives 78
Borland Web Services examples 78

Using the Web Service provider examples 79
Steps to build, deploy, and run the

examples 79
Apache Axis Web Service samples 79

Tools Overview . 80
Apache ANT tool. 80
Java2WSDL tool 80
WSDL2Java tool 80
Axis Admin tool 80

Chapter 10
Writing enterprise bean clients 81
Client view of an enterprise bean 81

Initializing the client 81
Locating the home interface 82
Obtaining the remote interface. 82

Session beans 83
Entity beans 83
Find methods and primary key class 84
Create and remove methods 84

Invoking methods 84
Removing bean instances 85
Using a bean's handle 85

Managing transactions 87
Getting information about an enterprise bean 87
Support for JNDI 88
EJB to CORBA mapping 88

Mapping for distribution 89
Mapping for naming 90
Mapping for transaction 91
Mapping for security 91

Chapter 11
The VisiClient Container 93
Application Client architecture 93

Packaging and deployment 94
Benefits of the VisiClient Container 94

Document Type Definitions (DTDs) 95
Example XML using the DTD 96

Support of references and links. 97
Using the VisiClient Container 98
VisiClient Container usage example 98
Running a J2EE client application on

machines not running AppServer 99
Embedding VisiClient Container functionality

into an existing application 99
Use of Manifest files 100

Example of a Manifest file 100
Exception handling 101
Using resource-reference factory types. 101
Other features. 101

Using the Client Verify tool. 101

Chapter 12
Caching of Stateful Session Beans 103
Passivating Session Beans 103

Simple Passivation 103
Aggressive Passivation 104

Sessions in secondary storage 105
Setting the keep alive timeout in

Containers 105
Setting the keep alive timeout for a

particular session bean 105

Chapter 13
Entity Beans and CMP 1.1 in
Borland AppServer 107

Entity Beans . 107
Container-managed persistence and

Relationships. 108
Implementing an entity bean. 108

Packaging Requirements 108
Entity Bean Primary Keys 109

Generating primary keys from a user
class . 109

Generating primary keys from a custom
class . 110

Support for composite keys 110
Reentrancy . 110

Container-Managed Persistence in AppServer . . . 111
AppServer CMP engine's CMP 1.1

implementation 111
Providing CMP metadata to the

Container 112
Constructing finder methods 112
Constructing the where clause 113
Parameter substitution 113
Compound parameters 113
Entity beans as parameters 114
Specifying relationships between entities . . . 114
Container-managed field names 116

Setting Properties 117
Using the Deployment Descriptor Editor 117

J2EE 1.2 Entity Bean using BMP or
CMP 1.1 117

Container-managed data access support 118
Using SQL keywords 118
Using null values 119
Establishing a database connection. 119
Container-created tables 119
Mapping Java types to SQL types. 120

Automatic table mapping 121

iv

Chapter 14
Entity Beans and Table Mapping
for CMP 2.x 123

Entity Beans . 123
Container-managed persistence and

Relationships 124
Packaging Requirements 124
A note on reentrancy 125

Container-Managed Persistence in AppServer. . . 125
About the Persistence Manager 126
Borland CMP engine's CMP 2.x

implementation 126
Optimistic Concurrency Behavior 127

Pessimistic Behavior 127
Optimistic Concurrency 127

Persistence Schema 128
Specifying tables and datasources. 129
Basic Mapping of CMP fields to columns . . 130
Mapping one field to multiple columns 130
Mapping CMP fields to multiple tables 131
Specifying relationships between tables . . . 132

Using cascade delete and database
cascade delete. 135

Database cascade delete support 135

Chapter 15
Using Borland AppServer
Properties for CMP 2.x 137

Setting Properties 137
Using the Deployment Descriptor Editor 137
The EJB Designer 138

J2EE 1.3 and 1.4 Entity Bean 138
Setting CMP 2.x Properties 139
Editing Entity properties 139
Editing Table and Column properties 140
Entity Properties. 141
Table Properties 142
Column Properties 143
Security Properties 144

Chapter 16
EJB-QL and Data Access Support 145
Selecting a CMP Field or Collection of CMP

Fields . 145
Selecting a ResultSet 146

Aggregate Functions in EJB-QL 146
Data Type Returns for Aggregate

Functions 146
Support for ORDER BY 148
Support for GROUP BY 149
Sub-Queries . 149
Dynamic Queries 150
Overriding SQL generated from EJB-QL by

the CMP engine. 151
Container-managed data access support 152

Support for Oracle Large Objects (LOBs) 153
Container-created tables 154

Chapter 17
Generating Entity Bean Primary
Keys 155

Generating primary keys from a user class 156
Generating primary keys from a custom class . . . 156
Implementing primary key generation by

the CMP engine 156
Oracle Sequences: using

getPrimaryKeyBeforeInsertSql 156
SQL Server: using getPrimaryKeyAfter

InsertSql and ignoreOnInsert. 156
JDataStore JDBC3: using

useGetGeneratedKeys 157
Automatic primary key generation using

named sequence tables 157
Key cache size 158

Chapter 18
Transaction management 159
Understanding transactions 159

Characteristics of transactions 159
Transaction support 160

Transaction manager services 160
Distributed transactions and two-phase

commit . 161
When to use two-phase commit

transactions. 162
Using multiple JDBC connections for

access to multiple database
resources from a single vendor in
the same transaction 162

Using multiple JDBC connections to
the same database resource in the
same transaction 162

Using multiple disparate resources in
a single transaction 162

EJBs and 2PC transactions 163
Example runtime scenarios 164

Declarative transaction management in
Enterprise JavaBeans 166

Understanding bean-managed and
container-managed transactions 167

Local and Global transactions 167
Transaction attributes 168

Programmatic transaction management
using JTA APIs. 169

JDBC API Modifications 170
Modifications to the behavior of the

JDBC API. 170
Overridden JDBC methods 170

Java.sql.Connection.commit() 170
Java.sql.Connection.rollback() 171
Java.sql.Connection.close(). 171
Java.sql.Connection.setAutoCommit

(boolean) 171

v

Handling of EJB exceptions. 171
System-level exceptions 171
Application-level exceptions 172
Handling application exceptions 172

Transaction rollback 172
Options for continuing a transaction 173

Chapter 19
Message-Driven Beans and JMS 175
JMS and EJB . 175

EJB 2.0 Message-Driven Bean (MDB) 176
EJB 2.1 MDB 176

Client View of an MDB 176
MDB Configuration 177

Connecting to a JMS Server from
EJB 2.0 MDBs 177

Connecting to message source from
EJB 2.1 MDBs 178

Changes to ejb-jar.xml 178
Changes to ejb-borland.xml 180

Clustering of MDBs 181
Error Recovery 182

Rebinding EJB 2.0 and EJB 2.1 MDBs
configured with a JMS provider message
source . 182

Redelivered messages for EJB 2.0 and
EJB 2.1 MDBs configured with a JMS
provider message source 182

MDBs and Transactions. 184

Chapter 20
Connecting to Resources with
Borland AppServer: using the
Definitions Archive (DAR) 185

JNDI Definitions Module 186
Migrating to DARs from previous versions

of Borland AppServer 187
Creating and Deploying a DAR 187
Disabling and Enabling a Deployed DAR 188
Packaging DAR Modules in an Application

EAR . 188

Chapter 21
Using JDBC 189
Configuring JDBC Datasources. 190

Deploying Driver Libraries 192
Defining the Connection Pool Properties for

a JDBC Datasource 193
Getting debug output 197
Descriptions of AppServer's Pooled

Connection States. 198
Support for older JDBC 1.x drivers 198
Advanced Topics for Defining JDBC

Datasources . 199
Connecting to JDBC Resources from J2EE

Application Components 201

Chapter 22
Using JMS 203
JMS 1.1 Common APIs 205
Configuring JMS Connection Factories and

Destinations . 205
Defining Connection Pool Properties for JMS

Connection Factories. 206
Defining Individual JMS Connection Factory

Properties . 208
Obtaining JMS Connection Factories and

Destinations in J2EE Application
Components . 209

J2EE 1.2 and J2EE 1.3. 209
J2EE 1.4 . 211

JMS and Transactions 214
Enabling the JMS services security 216
Advanced Concepts for Configuring JMS

Connection Factories and Destinations 216

Chapter 23
JMS provider pluggability 217
Runtime pluggability 217
Configuring JMS administered objects

(connection factories, queues and topics) 218
Setting Admin Objects Using Borland

Deployment Descriptor 218
Service Management for JMS Providers 219
Tibco EMS 4.2 . 219

Added value for Tibco 219
Configuring Admin Objects for Tibco 219
Auto Queue Creation Feature in Tibco 219
Tibco Admin Console. 219
Configuring clients for fault tolerant Tibco

connections 220
Enabling Security for Tibco 221
Disabling security for Tibco 221

OpenJMS . 221
Configuring JNDI objects for OpenJMS 222
Connection Modes in OpenJMS 224
Changing the Datasource for OpenJMS 224
Creating Tables for OpenJMS 225
Configuring Datasource to Achieve 2PC

Optimization. 225
Configuring Security with OpenJMS 225
Specifying Partition Level Properties for

OpenJMS . 226
OpenJMS Topologies. 228
Using Message Driven Beans (MDB) with

OpenJMS . 228
Other JMS providers 229

vi

Chapter 24
Integrating SonicMQ into Borland
AppServer 231

Installing SonicMQ 231
Configuring SonicMQ Administered Objects in

AppServer. 231
Resolving SonicMQ library modules in the

AppServer environment 232
Configuring Automatic Queue Creation for

SonicMQ Queues deployed to AppServer 232

Chapter 25
Integrating WebSphereMQ into
Borland AppServer (BAS) 235

Supported Versions. 235
WebSphereMQ Configuration 235

WebSphereMQ 5.3 235
WebSphereMQ 6.0 236

Configuring Admin Objects with
WebSphereMQ 236

Locating WebSphereMQ Library modules
at runtime . 236

WebSphereMQ 6.0 237

Chapter 26
Using JACC 239
JACC Contracts. 239

Provider Configuration Subcontract 239
Policy Configuration Subcontract 239
Policy Decision and Enforcement

Subcontract 239
How the JACC-based authorization works 240
Configuring JACC provider in Borland

AppServer. 240
Configuring a JACC provider using AppServer

Management Console 241
Configuring a JACC provider through the

configuration file. 241
Enabling/Disabling the JACC provider 241
Configuring external JACC providers 242

Chapter 27
Using ADLoginModule in BAS 243
How ADLoginModule works 243

User Principal Name 243
Authentication 243

Configuring ADLoginModule 244
Detailed Configuration Options 244

Chapter 28
Using JAXR 247
Using JAXR in BAS 247
System Property 248
JAXR Connection Properties 248
BAS JAXR Example code 249

Chapter 29
Using the Scheduler Service 251
Configuring the Scheduler Service 251
Using JDataStore to persist scheduler events . . . 252
Configuring other databases to persist

scheduler events. 253
Setting up for 2PC Optimization 253
Partition Service properties for Scheduler

Service. . 254
Quartz properties used in AppServer 255
Clustering support. 256

Chapter 30
Implementing Partition Interceptors 257
Defining the Interceptor 257
Creating the Interceptor Class 258
Creating the JAR file 260
Deploying the Interceptor 260

Chapter 31
VisiConnect overview 261
J2EE Connector Architecture 261
Components. . 262
System Contracts 263

Connection Management 264
Transaction Management 265

One-Phase Commit Optimization 266
Security Management 266

Component-Managed Sign-on 266
Container-Managed Sign-on 266
EIS-Managed Sign-on 266
Authentication Mechanisms. 267
Security Map 267
Security Policy Processing 268

Common Client Interface (CCI) 268
Packaging and Deployment 270
VisiConnect Features 271

VisiConnect Partition Service 271
Additional Classloading Support 271
Secure Password Credential Storage. 271
Connection Leak Detection 272
Security Policy Processing of ra.xml

Specifications 272
Resource Adapters 272

vii

Chapter 32
Using VisiConnect 273
VisiConnect service 273

Service overview. 273
Connection management 274

Configuring connection properties. 274
Security management with the Security Map 275

Authorization domain 276
Default roles 276
Generating a resource vault 276

Resource Adapter overview. 278
Development overview. 279

Editing existing Resource Adapters 279
Resource Adapter Packaging 280

Deployment Descriptors for the Resource
Adapter . 281

Configuring ra.xml 281
Configuring the transaction level type 281

Configuring ra-borland.xml 281
Changes to the Deployment Descriptors

for Connectors 1.5 282
Resource Adapter Classloader

Considerations 283
Connection Factories and Connections 283
Message Listeners. 284
Correcting ClassCastExceptions 285

Developing the Resource Adapter 285
Connection management 285
Transaction management 286
Security management 286
Packaging and deployment 286

Deploying the Resource Adapter 287
Application development overview 287

Developing application components 287
Common Client Interface (CCI). 287
Managed application scenario 288
Non-managed application scenario 289
Code excerpts—programming to

the CCI 289
Deployment Descriptors for Application

Components 291
EJB 2.x example 292
EJB 1.1 example 293

Other Considerations 295
Working with Poorly Implemented

Resource Adapters. 295
Examples of Poorly Implemented

Resource Adapters 295
Working with a Poor Resource Adapter

Implementation 296

Chapter 33
Borland AppServer Ant tasks and
running AppServer examples 301

General syntax and usage 301
Name-value pair transformation 302
Name-only argument transformation 302
Multiple File Arguments 302

Syntax and usage for iastool. 303
Omitting attributes 305
Examples of iastool Ant tasks 305

deploy . 305
merge . 305
ping . 305
restart . 305

Syntax and usage for java2iiop 306
Example of java2iiop Ant task 306

Syntax and usage for idl2java 306
Example of idl2java Ant task 307

Syntax and usage for appclient 308
Building and running the Borland AppServer

examples . 308
Deploying the example 308
Running the example 308
Undeploying the example. 308
Troubleshooting. 309

Chapter 34
iastool command-line utility 311
Using the iastool command-line tools 311

compilejsp . 312
compress . 314
deploy. . 315
dumpstack . 316
genclient . 317
gendeployable 318
genstubs . 318
info . 319
kill . 320
listpartitions. 321
listhubs . 322
listservices . 322
manage . 323
merge. . 324
migrate . 325
newconfig . 325
patch . 326
ping . 327
pservice. . 328
removestubs 329
restart. . 330
setmain . 331
start . 332
stop . 333
uncompress 334
undeploy . 334
unmanage . 335
usage . 336
verify . 336

Executing iastool command-line tools from
a script file . 338

Piping a file to the iastool utility. 338
Passing a file to the iastool utility 338

viii

Chapter 35
Partition XML reference 339
<partition> element 339

<jmx> element. 340
<mbean.server> element 340
<mlet.service> element 340
<http.adaptor> element 340
<xslt.processor> element 341
<rmi-iiop.adaptor> element. 341

<statistics.agent> element. 341
<security> element 342
<container> element 342
<user.orb> element 342
<management.orb> element 343
<shutdown> element 343
<services> element 344

<service> element 344
<properties> element 345
<archives> element 345
<archive> element 346

Chapter 36
EJB, JSS, and JTS Properties 347
EJB Container-level Properties 347
EJB Customization Properties: Deployment

Descriptor level 350
Complete Index of EJB Properties 351

Properties common for any kind of EJB. 351
Entity Bean Properties (applicable to

all types of entities—BMP, CMP 1.1
and CMP 2) 352

Message Driven Bean Properties 355
Stateful Session Bean Properties 357
EJB Security Properties 358

Java Session Service (JSS) Properties 358
Partition Transaction Service (Transaction

Manager) . 361

Chapter 37
Using LifeRay Portal 3.6.0 with
AppServer 6.6 363

Using Other Databases 364
Deploying Portlet or J2EE modules to LifeRay

module . 365

Chapter 38
Integrating Borland AppServer 6.6
with JBuilder 2006 367

Installing the Borland AppServer 6.6 plug-in 367
Configuring JBuilder 2006 for Borland

AppServer 6.6 368
Displaying the Borland Management

Console in JBuilder 369
VisiBroker development with JBuilder 369
Using the JBuilder Deployment Descriptor

Editor to develop J2EE 1.4 applications 370
Message Destinations page 371
Message Destination Reference page 372
Message-Driven Bean page 373
Resource Environment References page 374
Admin Object and Admin Object

Properties page 375
Resource Adapter page 375
BES Connection Definition page 376

Creating a run configuration for Borland
AppServer 6.6 targeted projects 377

Changing the management port 378
Launching the partition in JBuilder 2006 379
Deploying . 380
Remote debugging 381

Preparing to remote debug partitions
that are not managed in JBuilder 381

Preparing to remote debug partitions
with JBuilder 381

Remote debugging from JBuilder 382

Index 383

Chapter 1: Int roduct ion to Bor land AppServer 1

C h a p t e r

Chapter 1Introduction to Borland AppServer
Borland AppServer (AppServer) is a set of services and tools that enable you to build,
deploy, and manage distributed enterprise applications in your corporate environment.

The AppServer is a leading implementation of the J2EE 1.4 standard, and supports the
latest industry standards such as EJB 2.1, JMS 1.1, Servlet 2.4, JSP 2.0, CORBA 2.6,
XML, and SOAP. Borland provides two versions of AppServer, which include leading
enterprise messaging solutions for Java Messaging Service (JMS) management (Tibco
and OpenJMS). You can choose the degree of functionality and services you need in
AppServer, and if your needs change, it is simple to upgrade your license. See
Chapter 1, “Introduction to Borland AppServer” or Chapter 1, “Introduction to Borland
AppServer” for details.

The AppServer allows you to securely deploy and manage all aspects of your
distributed Java and CORBA applications that implement the J2EE 1.4 platform
standard.

With AppServer, the number of server instances per installation is unlimited, so the
maximum of concurrent users is unlimited.

AppServer includes:

■ Implementation of J2EE 1.4.

■ Apache Web Server version 2.2

■ Borland Security, which provides a framework for securing AppServer.

■ Single-point management of leading JMS management solutions included with
AppServer (Tibco, and OpenJMS).

■ Strong management tools for distributed components, including applications
developed outside of AppServer.

2 AppServer Developer ’s Guide

Borland AppServer Documentat ion

AppServer features
AppServer offers the following features:

■ Support for BAS platforms (please refer to http://support.borland.com/
kbcategory.jspa?categoryID=389 for a list of the platforms supported for AppServer).

■ Full support for clustered topologies.

■ Seamless integration with the VisiBroker ORB infrastructure.

■ Integration with the Borland JBuilder integrated development environment.

■ Enhanced integration with other Borland products including Borland Together
ControlCenter, Borland Optimizeit Profiler and ServerTrace.

■ AppServer allows existing applications to be exposed as Web Services and
integrated with new applications or additional Web Services. Borland Web Services
support is based on Apache Axis 1.2 technology, the next-generation Apache SOAP
server that supports SOAP 1.2.

Borland AppServer Documentation
The AppServer documentation set includes the following:

■ Borland AppServer Installation Guide—describes how to install AppServer on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

■ Borland AppServer Developer's Guide—provides detailed information about
packaging, deployment, and management of distributed object-based applications
in their operational environment.

■ Borland Management Console User's Guide—provides information about using the
Borland Management Console GUI.

■ Borland Security Guide—describes Borland's framework for securing AppServer,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

■ Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), and
the Interface Repository.

■ Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

The documentation is typically accessed through the Help Viewer installed with your
AppServer product. You can choose to view help from the standalone Help Viewer or
from within a AppServer GUI tool. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all AppServer books and reference documentation, a
thorough index, and a comprehensive search page.

The PDF books, Borland AppServer Developer's Guide and Borland Management
Console User's Guide are available online at http://info.borland.com/techpubs/
appserver.

Chapter 1: Introduct ion to Bor land AppServer 3

Documentat ion convent ions

Accessing AppServer online help topics in the standalone
Help Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows ■ Choose Start|Programs|Borland Deployment Platform|Help Topics

■ or, open the Command Prompt and go to the product installation \bin directory,
then type the following command:

help

UNIX Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing AppServer online help topics from within a AppServer
GUI tool

To access the online help from within a AppServer GUI tool, use one of the following
methods:

■ From within the Borland Management Console, choose Help|Help Topics

■ From within the Borland Deployment Descriptor Editor (DDEditor), choose Help|
Help Topics

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

Documentation conventions
The documentation for AppServer uses the typefaces and symbols described below to
indicate special text:

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

… Previous argument that can be repeated.

| Two mutually exclusive choices.

4 AppServer Developer ’s Guide

Contact ing Bor land support

Platform conventions

The AppServer documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

■ Name

■ Company and site ID

■ Telephone number

■ Your Access ID number (U.S.A. only)

■ Operating system and version

■ Borland product name and version

■ Any patches or service packs applied

■ Client language and version (if applicable)

■ Database and version (if applicable)

■ Detailed description and history of the problem

■ Any log files which indicate the problem

■ Details of any error messages or exceptions raised

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

Chapter 1: Introduct ion to Bor land AppServer 5

Contact ing Bor land support

Online resources

You can get information from any of these online sources:

World Wide Web

Check http://www.borland.com regularly. The AppServer Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

■ http://www.borland.com/downloads/download_appserver.html (AppServer software
and other files)

■ http://support.borland.com (AppServer FAQs)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the AppServer.
Visit http://www.borland.com/newsgroups for information about joining user-supported
newsgroups for Enterprise Server and other Borland products.

Note These newsgroups are maintained by users and are not official Borland sites.

World Wide Web: http://www.borland.com

Online Support: http://support.borland.com (access ID required)

6 AppServer Developer ’s Guide

Chapter 2: Bor land AppServer overview and archi tecture 7

C h a p t e r

Chapter2Borland AppServer overview and
architecture

This section contains an overview of the Borland AppServer (AppServer).

AppServer architecture overview
The AppServer is a CORBA-based, J2EE server that utilizes distributed objects
throughout its architecture. With the AppServer, you can establish connectivity to
platforms from corporate mainframes to simpler systems with small-business
applications and remote databases. The AppServer components process your
enterprise application based on how it is packaged and how the deployment
descriptors describe the application's modules.

8 AppServer Developer ’s Guide

AppServer serv ices overv iew

In the following architectural diagram, your enterprise applications sit on top of the
AppServer. An application server installation contains AppServer core services and
Partitions.

AppServer services overview
AppServer services are those services available to all applications being hosted on the
AppServer. They are:

■ Web Server

■ Java Messaging (JMS)

■ Smart Agent

■ 2PC Transaction Service

Web Server

The AppServer includes the Apache Web Server version 2.0. The Apache web server
is a robust, commercial grade reference implementation of the HTTP. protocol. The
Apache web server is highly configurable and extensible through the addition of third-
party modules. Apache supports clients with varying degrees of sophistication and
supports content negotiation to this end. Apache also provides unlimited URL aliasing.

Borland has added an IIOP Plug-in to the Apache web server. The IIOP Plug-in allows
Apache and the Borland web container to communicate via Internet Inter-ORB Protocol
(IIOP), allowing users to add the power of CORBA with their Web applications in new
ways. In addition, IIOP is the protocol of the VisiBroker ORB, allowing your Web
applications to fully leverage the services provided by the object-request-broker
provided by Borland.

JMS

The AppServer provides support for standard JMS pluggability, and currently bundles
the Tibco messaging service. See Chapter 23, “JMS provider pluggability” for vendor-
specific information on JMS services.

Chapter 2: Bor land AppServer overview and archi tecture 9

The Part i t ion and i ts serv ices

Smart Agent

The Smart Agent is a distributed directory service provided by the VisiBroker ORB
used in the AppServer. The Smart Agent provides facilities used by both client
programs and object implementations, and must be started on at least one host within
the local server network.

Note Users of the Web Edition do not have to use the Smart Agent if they expect their Web
server and Web containers to communicate through HTTP or another Web protocol. To
leverage the IIOP Plug-in (and, by extension, the ORB provided with the Web Edition),
however, the Smart Agent must be turned on.

More than one Smart Agent can be configured to run on your network. When a Smart
Agent is started on more than one host, each Smart Agent will recognize a subset of
the objects available and communicate with the other Smart Agents to locate objects it
cannot find. In addition, if one of the Smart Agent processes should terminate
unexpectedly, all implementations registered with that Smart Agent discover this event
and they will automatically re-register with another Smart Agent. It should be noted that
If a heavy services lookup load is necessary, it is advisable to use the Naming Service
(VisiNaming). VisiNaming provides persistent storage capability and cluster load
balancing whereas the Smart Agent only provides a simple round robin on a per
osagent basis.

2PC Transaction Service

The Two-Phase Commit (2PC) Transaction Service exists provides a complete
recoverable solution for distributed transactional CORBA applications. Implemented on
top of the VisiBroker ORB, the 2PC Transaction Service simplifies the complexity of
distributed transactions by providing an essential set of services, including a
transaction service, recovery and logging, integration with databases, and
administration facilities within one, integrated architecture.

The Partition and its services
A Partition is an application's deployment target. The Partition provides the J2EE
server-side runtime environment required to support a complete J2EE 1.3 application.
While a Partition is implemented as a single native process, its core implementation is
Java. When a Partition starts, it creates an embedded Java Virtual Machine (JVM)
within itself to run the Partition implementation and the J2EE application code.

Partitions are present in each AppServer Edition and product but they host less diverse
archives in the Web Services, Team and VisiBroker Editions. This section describes
the full-featured functional Partitions offered in the full Borland AppServer. Each
Partition instance provides:

■ Connector Service

■ EJB Container

■ JDataStore Server

■ Lifecycle Interceptor Manager

■ Naming Service

■ Session Storage Service

■ Transaction Manager

■ Web Container

10 AppServer Developer ’s Guide

The Part i t ion and i ts services

Connector Service

The Connector Service, also known as VisiConnect, is the Borland implementation of
the Connectors 1.0 standard, which provides a simplified environment for integrating
various EISs with the AppServer. The Connectors provide a solution for integrating
J2EE-platform application servers and EISs, leveraging the strengths of the J2EE
platform—connection, transaction and security infrastructure—to address the
challenges of EIS integration. For more information see Chapter 31, “VisiConnect
overview.”

EJB Container

The AppServer provides integrated EJB container services. These services allow you
to create and manage integrated EJB containers or EJB containers across multiple
Partitions. Use this service to deploy, run, and monitor EJBs. Tools include a
Deployment Descriptor Editor (DDEditor) and a set of task wizards for packaging and
deploying EJBs and their related descriptor files. EJB containers can also make use of
J2EE connector architecture, which enables J2EE applications to access Enterprise
Information Systems (EISs).

JDataStore Server

Borland's JDataStore is a relational database service written entirely in Java. You can
create and manage as many JDataStores as desired. For more information on
JDataStore, see the JDatastore online documentation at www.borland.com/techpubs/
jdatastore/.

Lifecycle Interceptor Manager

You can use Lifecycle Interceptors to further customize your implementation. Partition
Lifecycle Interceptors allow you to perform operations at certain points in a Partition's
lifecycle. For more information see Chapter 30, “Implementing Partition Interceptors,”

Naming Service

The Naming Service is provided by the VisiBroker ORB. It allows developers,
assemblers, and/or deployers to associate one or more logical names with an object
reference and store those names in a VisiBroker namespace. It also allows application
clients to obtain an object reference by using the logical name assigned to that object.
Object implementations can bind a name to one of their objects within a namespace
which client applications can then use to resolve a name using the resolve() method.
The method returns an object reference to a naming context or an object.

Session Storage Service

The Java Session Service (JSS) is a service that stores information pertaining to a
specific user session. The JSS provides a mechanism to easily store session
information into a database. For example, in a shopping cart scenario, information
about your session (your login name, the number of items in the shopping cart, and
such) is polled and stored by the JSS. So when a session is interrupted by a Borland
web container unexpectedly going down, the session information is recoverable by
another Tomcat instance through the JSS. The JSS must be running on the local
network. Any web container instance (in the cluster configuration) will find the JSS,
connect to it, and continue session management. For more information, see “Java
Session Service (JSS) configuration” on page 57.

Chapter 2: Bor land AppServer overview and archi tecture 11

Borland AppServer and J2EE APIs

Transaction Manager

A Partition Transaction Manager exists in each AppServer Partition. It is a Java
implementation of the CORBA Transaction Service Specification. The Partition
Transaction Manager supports transaction timeouts, one-phase commit protocol, and
can be used in a two-phase commit protocol under special circumstances. For more
information, see Chapter 18, “Transaction management.”

Web Container

The Web Container is designed to support deployment of web applications or web
components of other applications (for example, servlets and JSP files). The AppServer
provides the Borland Web Container, which is based on Tomcat 4.1. Tomcat is a
sophisticated and flexible open-source tool that provides support for servlets,
JavaServer Pages, and HTTP. Borland has also provided an IIOP plug-in with its Web
Container, enabling communication with application components and the web server
over IIOP rather than strict HTTP. Other features of the Web Container are:

■ EJB referencing

■ DataSource referencing

■ Environment referencing

■ Integration into industry-standard web servers

For more information, see “Web components” on page 33.

Borland AppServer and J2EE APIs
Since the AppServer is fully J2EE 1.4 compliant, it supports the use of the following
J2EE 1.4 APIs:

■ JNDI: the Java Naming and Directory interface

■ RMI-IIOP: remote method invocation (RMI) carried out via internet inter-ORB
protocol (IIOP)

■ JDBC: for getting connections to and modeling data from databases

■ EJB 2.1: the Enterprise JavaBeans 2.1 APIs

■ Servlets 1.0: the Sun Microsystems servlets APIs

■ JSP: JavaServer Pages APIs

■ JMS: Java Messaging Service

■ JTA: the Java transactional APIs

■ Java Mail: a Java email service

■ Connectors 1.5: the J2EE Connector Architecture

■ JAAS: the Java Authentication and Authorization Service

■ JAXP: the Java API for XML parsing

JDBC

Borland implements the Java DataBase Connection APIs from Sun Microsystems.
JDBC provides APIs for writing database drivers and a full Service Provider Interface
(SPI) for those looking to develop their own drivers. JDBC also supports connection
pooling and distributed transaction features. For more information, go to the
Transaction management and JDBC, JDBC API Modifications section.

12 AppServer Developer ’s Guide

Borland AppServer and J2EE APIs

Java Mail

Java Mail is an implementation of Sun's Java Mail API. It is a set of abstract APIs that
model a mail system. The API provides a platform independent and protocol
independent framework to build Java-technology-based email client applications.

JTA

The Java Transactional API (JTA) defines the UserTransaction interface required by
application components to start, stop, rollback, or commit transactions. EJBs establish
transaction participation through the getUserTransaction method, while other
components do so using JNDI lookups. JTA also specifies the interfaces needed by
Connectors and resource managers to communicate with an application server's
transaction manager.

JAXP

The Java APIs for XML Parsing (JAXP) enable the processing of XML documents
using the DOM, SAX, and XSLT parsing implementations. Developers can easily use
the parser provided with the reference implementation of the API to XML-enable their
Java applications.

JNDI

The Java Naming and Directory Interface is used to allow developers to customize
their application components at assembly and deployment without changes to the
component's source code. The container implements the runtime environment for the
components and provides the environment to the component as a JNDI naming
context. The components' methods access the environment through JNDI interfaces.
The JNDI naming context itself stores the application environment information and
makes it available to all application components at runtime.

RMI-IIOP

The VisiBroker ORB supports RMI-over-IIOP protocol. When used in conjunction with
the IIOP Connector Module for Apache and the Borland web container, it allows
distributed web applications built on CORBA foundations. For more information, see
“Using RMI over IIOP” in the VisiBroker for Java Developer's Guide.

Other Technologies

It is also possible to wrap other technologies, provide them as services, and run them
in the AppServer.

Optimizeit Profiler and Optimizeit ServerTrace

Borland's Optimizeit Profiler (purchased separately) helps you track memory and CPU
usage issues during the development of Java applications. Optimizeit ServerTrace
provides a comprehensive, high-level application performance analysis and root-cause
diagnostics that accelerate time-to-resolution of performance issues across complex,
distributed J2EE and SOA-enabled systems. The AppServer runs Optimizeit Profiler
and Optimizeit ServerTrace at the Partition level.

See the Sun Java Center for more information on these APIs.

Chapter 3: Part i t ions 13

C h a p t e r

Chapter3Partitions
This section explains what Partitions are and how they work. It explores the Partition's
footprint, facilities, configuration, and how to run a Partition.

Partitions Overview
Partitions are the runtime hosting environment for J2EE and web service application
components. A Partition is a process that can be tuned to suit the application it is
hosting. You can create any number of Partitions to isolate, scale, or cluster your
application deployment to meet your own requirements. Extensive tooling enables you
to simply create, configure, and distribute Partitions to your needs.

A Partition provides containers and services needed for your applications:

■ Web Container
■ EJB Container
■ Naming Service
■ Session Service
■ Transaction Service
■ Connector Service
■ JDataStore Database Server
■ Partition Lifecycle Interceptor Service

Additional applications and application components are also provided that can be used
in your applications:

■ UDDI Server
■ Apache Struts
■ Apache Cocoon
■ Petstore J2EE blueprint application
■ SmarTicket J2EE blueprint application

By enabling and disabling the various Partition containers and services, and
configuring the Partition's environment, you can “right-size” the Partition to its specific
task. Typical use cases for a Partition include:

■ Providing a complete isolated J2EE server platform for an application with all
relevant J2EE container and services enabled.

■ Providing a platform for a component of a distributed application such as its Web
Tier with just the Web Container and Session Service enabled.

14 AppServer Developer ’s Guide

Creat ing Part i t ions

■ Providing a central service such as a platform for the Borland AppServer
(AppServer) UDDI server with just its Web Container enabled.

■ Providing a diagnostic platform for an application such as running under Optimizeit.

Avoiding monolithic J2EE server Partitions hosting many applications also allows you
to fine tune the Java environment the application needs. The version and type of JDK
together with such configuration as heap space available ensures a satisfactory
environment in which to run, while not over-allocating resources. Limits on pooled
resources such as threads and connections may similarly be configured for optimal
total performance. Partitions also have their own individual security settings for
authentication mechanisms, authorization tables, and so on. A user who has authority
to access all resources in a development Partition may be granted much more limited
authority in a production Partition.

Creating Partitions
Partitions are created as Managed Objects in a “configuration” from templates provided
in the Borland Management Console. Typically the Partition disk footprint is created in:

<install-dir>/var/domains/<domain-name>/configurations/<configuration-name>/

You can specify another location for the Partition and add a pre-existing Partition to a
configuration. The Management Console provides a rich configuration experience for a
Partition and is discussed in “Using Partitions” in the Management Console User's
Guide. Most configuration data for the Partition and its services is captured in its
partition.xml file described in Chapter 35, “Partition XML reference.”

Figure 3.1 Partition Footprint

Chapter 3: Part i t ions 15

Running Part i t ions

Running Partitions
Partitions are typically run under the control of a management agent within a
configuration, but they can also be run directly from the command line as unmanaged
Partitions. In both cases the Partition requires that a Smart Agent (osagent) be running
in the same sub-net on the same Smart Agent port.

See “Using Partitions” in the Management Console User's Guide for information about
managing Partitions within a configuration.

Running unmanaged Partitions

To run an unmanaged Partition (not managed by SCU), use the following command:

partition [-path <my_partition_path>]

If no -path is specified, then the current directory is used.

The full list of Partition arguments is available in the following tables. Many of these
arguments are for use by the management agents and not by a user.

partition [<-options>] [-path <partitionpath>] [-management_agent <true|false>
[-management_agent_id <id>]] [-no_user_services] [-unique_cookie <cookie>]

<-options> are the usual Java options and VM system properties recognized by the
Partition.

Note Options that are typically static, and pertinent to both managed and unmanaged
Partitions, are best encapsulated in the Partition's configuration files.

Table 3.1 Partition command options

Option Description

-Dlog4j.configuration Path to the Partition's log4j configuration file. Default is
<partitionpath>/adm/properties/logConfiguration.xml

-Dlog4j.configuration.update.delay Specifies the period, in milliseconds, between checks
for updates to the log4j configuration file. Default is
60000 milliseconds (1 minute).

-Dpartition.ignore_shutdown_on_signal=
<true|false>

Use this property to decide whether to ignore
shutdown signals and wait for a shutdown request via
the Partition's management interface(s).

Note: UNIX sends a Ctrl+C signal to all processes in a
process group.

A Partition in control of its own life cycle would not set
this. When the Partition is invoked by some parent
controlling process, such as the SCU, then this would
be set to true to ensure that the Partition does not
immediately exit when the parent is issued a
shutdown signal.

-Dpartition.default.smartagent.port Overrides the User ORB Smart Agent port and
overrides all Partition configuration. This property is
only overridden by -Dvbroker.agent.port.

Typically used by a parent controlling process, such
as the SCU.

-Dpartition.default.smartagent.addr Overrides User ORB Smart Agent addr property and
overrides all Partition configuration. Is only overridden
by -Dvbroker.agent.addr.

Typically used by a parent controlling process, such
as the SCU.

-Dvbroker.agent.port Ultimate override for the User ORB Smart Agent port.

This is typically never used by a parent controlling
process, but it may be used by a command-line user.

16 AppServer Developer ’s Guide

Running Part i t ions

Running managed Partitions

Managed Partitions are started when the configuration to which they belong starts.
Typically the Partition starts according to a default mechanism, but you can configure
additional command-line options to be passed at creation-time. Or, you can edit
configuration.xml. Open the file, search for <partition-process>, and find the
<arguments> data block. Insert new command-line arguments within <argument> tags.

Running Partitions with Optimizeit Profiler or ServerTrace

You can configure the Profiler and ServerTrace using the Management console. If you
choose not to use the Management Console you must set the following environment
variables for running Partitions with either Optimizeit Profiler or ServerTrace:

OPTIT_HOME=<server_trace_root when running server trace|optimize_root when running
profiler>

Windows PATH=<server_trace_root when running server trace|optimize_root when running
profiler>;%PATH%

Solaris LD_LIBRARY_PATH=<server_trace_root when running server trace|optimize_root when
running profiler>/lib

To run a Partition with ServerTrace standalone:

Partition configured to use JDK 1.5:

partition -classpath <Server Trace Home>\lib\optit.jar -path <path to
partition> -management_agent true -management_agent_id <config_name>/
<hub_name>/<partition_name> -no_autostart_user_services false -optimizeithome
<server_trace_home> -Xrunoii:filter=>server_trace_root</filters/
BES.oif,port=1473 -Xbootclasspath/p:<Server Trace Home>\lib\oibcp\
oibcp_sun_150_06.jar

-Dvbroker.agent.addr Ultimate override for the User ORB Smart Agent addr.

Typically never used by a parent controlling process,
but it may be used by a command-line user.

-Dpartition.management_domain.port Sets the Management ORB Smart Agent port. Default
42424.

Typically used by a parent controlling process, such
as the SCU.

-DTomcatLoaderDebug Sets the Web Container debug level. Default 0 (zero).

Table 3.2 Partition command available arguments

Arguments Description

-path <partitionpath> Partition footprint path.

-management_agent <true|false> The default is false which disables the Partition
management agent and runs a standalone Partition.
To enable the Partition management agent, set to
true.

-management_agent_id <id> Sets the identity to be used for the Partition's
management interface object name.

-unique_cookie <cookie> Sets the cookie to be used to construct unique
identities in the Partition. In particular, used to
construct default external interface names. The
default is: <host><partitionpath>.

-no_autostart_user_services <true|false> If set to true, disables the autostart of user domain
Partition services that are configured to be started.

Table 3.1 Partition command options (continued)

Option Description

Chapter 3: Part i t ions 17

Conf igur ing Part i t ions

Partition configured to use JDK 1.4:

partition -classpath <Server Trace Home>\lib\optit.jar -path <path to
partition> -management_agent true -management_agent_id <config_name>/
<hub_name>/<partition_name> -no_autostart_user_services false -optimizeithome
<server_trace_home> -Xrunoii:filter=>server_trace_root</filters/
BES.oif,port=1473 -Xbootclasspath/p:<Server Trace Home>\lib\oibcp\
oibcp_sun_142_05.jar

To run a Partition with Optimizeit Profiler standalone:

partition -path <path_to_partition> -include_cfg partition_optimizeit.config -
optimizeithome <optimizeit_root> -Xrunpri:filter=<optimizeit_root>/filters/
BES.oif,port=1470

Solaris:

To run a Partition with Optimizeit Profiler or ServerTrace standalone, you must edit the
partition_trace.config or partition_optimize.config respectively, adding

vmparam -Xboundthreads

Note When re-starting BAS's Partition with ServerTrace enabled, the Partition may not stop
cleanly and appear to hang. This happens because the SNMP thread in the
ServerTrace subsystem does not shut down. Use the kill operation to stop the partition
and then use the start operation to restart it.

Partition logging

The Partition uses log4j for its logging mechanism. It is configured using a
DOMConfigurator from the file <partitionpath>/adm/properties/logConfiguration.xml.
The default configuration is to log in a text layout to rolling log files in <partitionpath>/
adm/logs. The Partition logConfiguration.xml file is monitored for updates with a default
check interval of 1 minute. See previous table of Partition options for information about
configuring the configuration file and monitor check interval.

Any output sent to System.out or System.err is redirected as log4j events to the logs.
System.out is logged at the INFO level and System.err is logged at the ERROR level.

If your application uses log4j then to configure application logging you should edit the
Partition's <partitionpath>/adm/properties/logConfiguration.xml file.

Configuring Partitions
Partitions offer a variety of fully-configurable services. This section discusses how to
work with Partition services, including archives, security, application services, and
statistics.

Application archives

Application components are hosted in the Partition itself. You can dynamically deploy
application archives to Partitions prior to running them or when they are running. If the
application archive is already hosted by the Partition, then it is unloaded and the new
archive loaded. To deploy modules to a Partition, simply right-click its icon in the
Management Console's Navigation Pane, and select Deploy Modules. The deployed
modules appear in the Partition footprint, as shown in the Partition Footprint figure in
“Creating Partitions” on page 14.

18 AppServer Developer ’s Guide

Conf igur ing Part i t ions

You can also host modules at locations outside the Partition footprint. To do so, open
the partition.xml file for the Partition whose module paths you want to configure.
Search for the <archives> node. Within this node, you can configure archive
repositories for all your archives by type, or provide the location of a specific archive
that you want hosted outside the Partition repositories. See “<archives> element” on
page 345 for syntax.

In the Management Console, archives hosted within the Partition's footprint are called
“Deployed Modules”. Archives that are hosted outside the Partition's footprint are
called “Hosted Modules”.

Working with Partition services

The Partition allows you to specify which services will run within it and how they will
behave in the context of the Partition instance. You can configure the Partition to
automatically start some or all of its services at Partition startup. You can specify the
order in which Partition services start and shut down. Additionally, you can configure
which Partition services are configurable through the Management Console. Again, the
partition.xml file captures this information as attributes of its <services> element.

Partition handling of services
The <services> element has four attributes, which are:

To set any one of these attributes, use either the Management Console or search the
Partition's partition.xml file for the <services> node. The valid value for each attribute
is a space-separated list of Partition service names, which are read left to right. For
example, if you wanted to shutdown a Partition service named ejb_container before a
service named transaction_service, you would set the value of shutdownorder to:

ejb_container transaction_service

Configuring individual services
Each Partition service is configurable within the context of its Partition parent. The
partition.xml file captures information about individual services in the <service> node,
the child node of <services>. In addition, you can use the <properties> sub-element
within <service> to set service-specific properties that do not come under the auspices
of the Partition's runtime executable.

If your services are to be included in the service node lists, you must define them with
a service data block and give them a unique name using the name attribute. For a full
description of the attributes that are configurable for Partition services, see Chapter 35,
“Partition XML reference.”

Configuring VisiNaming Service Clusters for AppServer
To configure a VisiNaming cluster for AppServer, in addition to the steps outlined in
Configuring the VisiNaming Service Cluster in the VisiBroker for Java Developer's
Guide, and in Configuring the VisiNaming Service Cluster section in the VisiBroker for
C++ Developer's Guide, you must add the name of the factory to the property jns.name
in partition.xml.

autostart The services to be started with the Partition.

startorder The startup order imposed on the Partition services included in the
autostart.

shutdownorder The shutdown order imposed on the Partition services running at
shutdown.

administer The Partition services that will appear in the Management Console
as configurable.

Chapter 3: Part i t ions 19

Conf igur ing Part i t ions

Gathering Statistics

Each Partition has a Statistics Agent that can be enabled for the short-term gathering
of statistics data. The data is stored onto disk, and is viewable using the Management
Console. Statistics are collected in snapshots performed at a specified interval, and are
cleaned up (removed from disk) at discreet intervals and after the collection period.
This function is called reaping.

You can enable, disable, and configure statistics gathering using the Management
Console or by setting attributes in the <statistics.agent> attribute of partition.xml. For
more information, see Chapter 35, “Partition XML reference.”

Security management and policies

Each Partition can have its own security settings. You can specify the security
manager to use for each Partition by specifying a valid security class. You can also set
the Policy to use for that manager (generally using a .policy file). You can configure
security using either the Management Console or by setting the attributes of the
<security> node of partition.xml. For more information, see Chapter 35, “Partition
XML reference.”

Important The default security profile shipped is not SSL-enabled. If your Partition requires
secure transport, change the security profile for your Partition to the ssl_enabled profile
as follows:

1 Open the Management Console and expand the Configurations node in the left
pane.

2 Right-click on Partition and choose Properties.

3 Click on the Security tab to bring it forward.

4 Select ssl-enabled from the Security Profile dropdown menu.

Classloading policies

You can configure the Partition's classloading policies, including the prefixes to load,
the classloader policy, and whether or not to verify JARs as they are being loaded. You
can configure classloading either using the Management Console or by setting
attributes of the <container> node of partition.xml.

The system.classload.prefixes attribute takes a comma-separated list of resource
prefixes as its value. These prefixes are delegated from the custom classloader to the
system classloader prior to attempting its own load. The classloader.classpath
attribute contains a semicolon-separated list of JARs to be loaded by each instance of
the application classloader. To verify the JARs as they load, set the verify.on.load
attribute to true, the default.

The classloader policy is set in the classloader.policy element. There are two
acceptable values:

per_module Creates a separate application classloader for each deployed module.
This policy is required for hot deployments (deployments while the
Partition is running).

container Loads all deployed modules in the shared classloader. This policy
prevents the ability to hot deploy.

20 AppServer Developer ’s Guide

JMX support in Part i t ions

Partition Lifecycle Interceptors

You can use Partition Lifecycle Interceptors to further customize your implementation.
Partition Lifecycle Interceptors allow you to perform operations at certain points in a
Partition's lifecycle. You deploy a Java class that implements:

com.borland.enterprise.server.Partition.service.PartitionInterceptor

and contains code to perform operations at one or more of the following interception
points:

■ At Partition initialization before any Partition services (Tomcat, for example) are
created and initialized.

■ At Partition initialization after any services are started but prior to the loading of any
modules.

■ At Partition startup after all Partition services have loaded their respective modules.

■ At Partition shutdown before Partition services have unloaded their respective
modules but prior to the services themselves shutting down.

■ At Partition termination after Partition services have been shut down.

Partition Interceptors have a variety of uses, including pre-loading JARs prior to
startup, inserting debugging operations during module loading, or even simple
messaging upon the completion of certain events.

For information about how to implement a Partition Lifecycle Interceptor, see
“Implementing Partition Interceptors” on page 257.

JMX support in Partitions
The Java Management Extensions (JMX) defines an architecture, the design patterns,
the APIs, and the services for application management in the Java programming
language. JMX is used to get and set configuration and performance information, and
send and receive alerts for Java programs. The JMX architecture is composed of
Management Beans (MBeans), a JMX agent, and JMX adaptors.

Each AppServer Partition hosts a fully functional JMX agent. AppServer uses the MX4J
HTTP adaptor without modification, but the MX4J RMI adaptor implementation has
been modified to suit the AppServer Partition in the following ways:

■ Uses the VisiBroker for Java ORB for RMI-IIOP remoting.

■ RMI Connector is modified to use RMI-IIOP as the underlying transport. This
connector works both in JDK 1.4 and JDK 1.5 environments.

■ The RMIConnectorServer is made available by both the Smart Agent component of
AppServer and the JMX Service URL.

The goal of the AppServer JMX implementation is to expose key runtime aspects of an
AppServer Partition as MBeans. J2EE Enterprise Management (JSR-77) support is
available in AppServer Partitions and has two fundamental aspects:

1 Instrumentation of the J2EE Server (Partition) following the JSR-77 model.

2 JSR-77 EJB interface to those JMX MBeans.

See “Partition MBeans” on page 24 for a list of Mbeans provided by Borland for the
Partition.

For more details about MX4J see http://mx4j.sourceforge.net, and for the JMX JSR-3
specification see http://jcp.org/aboutJava/communityprocess/final/jsr003/
index3.html.

Chapter 3: Part i t ions 21

JMX support in Part i t ions

Configuring the JMX Agent

The JMX Agent is configured in the jmx section of the partition.xml file. The MBean
Server is enabled by default and starts when the Partition is started. By default, the
RMI-IIOP adaptor is enabled and the HTML adaptor is disabled. The HTML adaptor is
supported only for JDK 1.4. See “<jmx> element” on page 340 for more details about
the jmx element.

JMX agent configuration can also be accomplished using the Borland Management
Console. See “JMX Agent properties” in the Management Console user’s Guide for
more information.

Partition monitoring

A JMX agent is embedded in each Partition, along with the HTTP and RMI-IIOP
adaptors, to enable Partition monitoring with a JMX client. This means it is possible for
a JMX-enabled client (such as the MC4J Management Console, provided with your
AppServer installation) to automatically detect these MBeans and plot graphs for the
changing values. For more information about using the MC4J Management Console
see “Using the JMX console” in the Management Console User’s Guide.

Note When you right-click on a partition name, the Launch JMX Console... menu option will
be enabled only if you have enabled the JMX agent in the partition properties.

If you enable the http.adaptor and xslt.processor elements in partition.xml, you can
also use a Web browser to monitor the Partition by way of the HTTP adaptor. The
default location of the HTTP adaptor is http://localhost:8082. This adaptor is however
not supported for JDK 1.5’s JMX Agent. See “<jmx> element” on page 340 for
information about configuring the HTTP adaptor.

Note In this release the emphasis is on monitoring rather than actively managing the
Partition using JMX. It is recommended that you continue using the Borland
Management Console to manage (stop, start) Partitions. See “Using Partitions” in the
Management Console User’s Guide for more information.

Using the RMI-IIOP connector in MC4J console

The pluggable JMX Connector in BAS implements JSR-160, and is based on RMI/IIOP
protocol. The connector works both in JDK 1.4, and JDK 1.5 environments. Run the
MC4J console. See “Launching the JMX console standalone” in the Management
Console User’s Guide for information on how to run the console. The JMXConnector
Mbean is displayed along with the corresponding attributes, operations and
notifications.

You can also use a standalone client to connect to the portable JMX connector running
in BAS partition. The following code snippet is taken from a sample JMX connector
client:

HashMap props = new HashMap();
 props.put("jmx.remote.credentials",new String[] { "admin", "admin" });
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 props.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "com.borland.jmx.remote.provider");
 props.put("jmx.remote.orb", orb);
 ClassLoader cl = Thread.currentThread().getContextClassLoader();
 JMXConnector m_connector = null;
 MBeanServerConnection m_connection = null;
 try
 {

22 AppServer Developer ’s Guide

JMX support in Part i t ions

Thread.currentThread().setContextClassLoader(JMXConnectorFactory.class.getClass
Loader());
 JMXServiceURL m_jmxurl;
 m_jmxurl = new JMXServiceURL("service:jmx:iiop://null/
corbaloc::xyz:42222/j2eeSample_WelcomePartition");
 m_connector = JMXConnectorFactory.connect(m_jmxurl,props);
 m_connection = m_connector.getMBeanServerConnection();
 Set set = null;
 set = m_connection.queryNames(new ObjectName("*:*"), null);
 System.out.println("Set.isEmpty : " + set.isEmpty()); //Just to see if
connection is OK
 }
 catch(IOException io)
 {
 io.printStackTrace();
 }
 catch (MalformedObjectNameException ex) {
 ex.printStackTrace();
 }
 finally
 {
 Thread.currentThread().setContextClassLoader(cl);
 }

In the above code, xyz represents the hostname and 42222 represents the port on
which the connector is started.

To run the JMX Connector client:

1 Build the client code as an AppClient container.

2 Start the sample partition (For example, WelcomePartition in the j2eeSample
configuration) with the RMI-IIOP connector enabled.

3 Run the AppClient container. See the secure cart example in the <bas_install>/
AppServer/examples/security/securecart directory.

Configuring the RMI-IIOP connector

You can configure the RMI-IIOP connector using the BAS Management Console. To
do so:

1 Open the Management Console.

2 Right-click on the partition name in the left pane and select Properties from the
resulting menu.

3 Click on the JMX Agent tab to bring it forward.

4 Check the Enable JMX checkbox if it is not already checked.

Note If you have JDK 1.5 or later version, you have the option of using the built in JMX
implementation. Check the Use JDK JMX checkbox in order to use this
implementation of JMX.

Chapter 3: Part i t ions 23

JMX support in Part i t ions

You can specify a port number for the pluggable RMI-IIOP Adaptor in the UI or
configure it in the partition.xml file available in the <bas-install>/var/domains/
configurations/<configuration-name>/mos/<partition-name>/adm/properties folder. Use
the following tag format for specifying RMI-IIOP Adaptor port number:

<jmx>
 <mbean.server enable="true"/>
 <mlet.service enable="false"/>
 <http.adaptor port="8082" enable="true" host="localhost" processor.name=""
socket.factory.name="" authentication.method="none">
 <xslt.processor File="" PathInJar="" enable="true" UseCache="true"
LocaleString="en"/>
 </http.adaptor>
 <rmi-iiop.adaptor enable="true" port="42222"/>
</jmx>

If you specify the port number as 0 or an invalid string, or you do not specify a port
number, the pluggable RMI-IIOP Connector will be started at a random port number.

mlet is a JMX service which allows you to download and register MBeans from a
remote MBean server. You can enable it by checking the Enable mlet services
checkbox.

Note If you try to register an MBean via the MEJB interface, the MBean class should be
present both on the client and the server side.

Creating a secure JMX client
JMX inherits its security from the partition's Management domain security settings. In
order for a JMX client to communicate with a JMX server in a secure partition, the client
will need to be secure as well in the management domain.

If you are using MC4J console, you can use it as is whether the console is
communicating with a secure or non-secure server. When you launch the client, it
automatically creates a secure client side ORB if the server is running in a secure
partition. To use an MEJB client you must make the client secure. Refer to the secure
cart example in the <bas_install>/AppServer/examples/security/securecart directory for
information on how to create a secure MEJB client.

Remoting mechanism for the Server side JMX components in BAS uses the
management domain VisiBroker ORB of the partition. The security of management
domain hence JMX Server is on by default. The remote JMX clients that need to
communicate with the JMX server which is hosted in a BAS partition must have
appropriately created secure ORB.

In BAS, the JMX clients talk to JMX Server over standards based JMX Connector that
uses RMI-IIOP. See the code sample in “Using the RMI-IIOP connector in MC4J
console” on page 21 for details on how a JMX client can establish a connection to a
JMX Server in the BAS partition, and also how to pass an ORB.

24 AppServer Developer ’s Guide

JMX support in Part i t ions

Switching between JDK 1.5 and MX4J JMX agents

When you run the partition using JDK 1.5, the partition uses the MX4J Agent by
default. In order to use the JDK 1.5's JMX agent, check the Use JDK JMX checkbox in
the Partition Properties dialog or make sure that the following line in <bas-install>/var/
domains/base/configurations/<configuration-name>/mos/<partition-name>/adm/
properties/partition-server.config file is commented:

MX4J as the default MBean Server
vmprop javax.management.builder.initial=mx4j.server.MX4JMBeanServerBuilder

When you check the Use JDK JMX checkbox in the Management Console indicating
that you are using JDK 1.5, the above lines get automatically commented out. To make
MX4J as the default JMX agent for all partitions, add the above line in <bas-install>/
bin/partition.config file.

Partition level properties
The following extract from the partition.xml file shows the property for the pluggable
JMX RMI-IIOP connector:

<partition version="6.6" name="WelcomePartition" description="A partition
hosting a number of pre-deployed BAS example applications. More examples are
available in the archive repository">
 <jmx>
 <mbean.server enable="true" />
 <mlet.service enable="false" />
 <http.adaptor port="8082" enable="true" host="localhost" processor.name=""
socket.factory.name="" authentication.method="none">
 <xslt.processor File="" PathInJar="" enable="true" UseCache="true"
LocaleString="en" />
 </http.adaptor>
 <rmi-iiop.adaptor enable="true" port="42222"/>
 </jmx>

Partition MBeans

This section describes the MBeans provided by Borland for the Partition. If you want to
deploy your own MBeans see “Deploying custom MBeans” on page 26.

The naming convention for the MBeans is from JSR-77. Please refer to JSR-77 section
3.1.1 for a complete description of this naming convention.

The following illustration shows you a high level overview of the MBeans implemented
for the AppServer Partition.

Chapter 3: Part i t ions 25

JMX support in Part i t ions

Figure 3.2 Partition MBeans

The MBeans are available only if you enable the JMX feature. The level of information
that is provided in the MBeans depends on the statistics level you set in the
Performance Tuning Wizard. Complete JSR-77 statistics will be available only if you
select the statistics level as “maximum”. You will get only a subset of the JSR-77
statistics if you select “medium” or “minimum”.

Note Certain MBeans have operations that are exposed specifically for invocation by other
related MBeans. These operations should not be invoked from the JMX (MC4J)
Console. MC4J Console does not distinguish between these operations and operations
that are relevant to the user. If the operation requires complex input parameter then
you may run through the method invocation wizard and experience a
NullPointerException. Even with simple input parameters, you have to explicitly select
the argument in the wizard. If not selected, the argument defaults to null and MC4J
cannot deal with this.

26 AppServer Developer ’s Guide

JMX support in Part i t ions

Deploying custom MBeans

To deploy custom MBeans:

1 Decide where to initialize your MBeans (possible places include a servlet or Startup
class).

2 Add the JNDI lookup code to locate the MBeanServer.

There is currently no standard way for the application to locate the JMX agent
(server) in an application server infrastructure. So, what you should do is follow the
model that is similar to the J2EE approach of looking up the ORB, UserTransaction,
etc, that is shown in the code snippet below.

Note that JMX agent is a server side feature, and the lookup operation in the client
VM will not be able to find a pointer to the server instance as the server is only
initialized in the server VM. A client will need to use the RMI-IIOP connection to
connect to a remote JMX agent.

3 Register the MBeans.

Once the MBean server is located, the registration step is just a normal process.
Note that your MBeans have to be in the classpath when you are doing these steps.
Also note that depending upon where you end up having your JMX code, you may
want to clean up your MBeans (unregister them) when your module is unloaded. For
example if your MBeans were registered in the Startup class, you may want to
unregister your MBeans in a Shutdown class.

The following code snippet shows how to deploy the custom MBean.

javax.naming.Context context = new javax.naming.InitialContext();
server = (MBeanServer)context.lookup("java:comp/env/jmx/MBeanServer");

// Create an ObjectName for the MBean
ObjectName name =
 new ObjectName("qa:mbeanName=helloworld,mbeanType=Standard");
com.borland.enterprise.qa.mbeans.helloworld.HelloWorld hello =
 new com.borland.enterprise.qa.mbeans.helloworld.HelloWorld();
server.registerMBean(hello,name);

// Invoke a method on it
server.invoke(name, "reloadConfiguration", new Object[0], new String[0]);

// Get an attribute value
Integer times = (Integer)server.getAttribute(name, "HowManyTimes");

Chapter 3: Part i t ions 27

JMX support in Part i t ions

Using Management EJB (MEJB)

The Management EJB (MEJB) allows you to get access to the managed objects
defined by the JSR-77 management model. It is an interface to the JMX MBeans.
MEJB is a stateless session bean which can be located using JNDI. It allows you to
query objects, get metadata for an object and set and get attributes of an object.

Deploying the MEJB
In the BAS footprint, the MEJB is located as a pre-built jar (mjeb_beans.jar) in the
<bas_install>/etc/prebuilt-ejbs/mejb directory. Deploy this MEJB to the desired
partition before running the client. To deploy the MEJB:

1 Open the Management Console.

2 Right-click on the partition name and select Deploy modules... from the menu. The
Borland AppServer Deployment Wizard will open.

3 Click on the Add... button and navigate to the mejb_beans.jar file and click OK.

4 Check the Generate stubs checkbox if not already checked.

5 Click on the Next button.

6 Click on Finish.

Writing an MEJB client
See the secure cart example provided in the <bas_install>/AppServer/examples/
security/securecart directory for details on how to write an MEJB client.

Before you use the client, you must generate the stubs for it. To create the stubs:

1 Create an EAR file with the client code and the mejb_beans.jar in it.

2 Run the following command from iastool:

iastool -gendeployable -src <EAR_filename>

The stubs will be created in the EAR file.

To deploy and run the MEJB client do the following:

1 Build the appclient code using the following deployment descriptors:

■ Add the following in the application-client-borland.xml file:

<application-client>
 <ejb-ref>
 <ejb-ref-name>ejb/mgmt/MEJB</ejb-ref-name>
 <jndi-name>j2ee/management/MEJB</jndi-name>
 </ejb-ref>
</application-client>

■ Add the following in the application-client.xml file:

<application-client>
 <display-name>mejb_client</display-name>
 <ejb-ref>
 <ejb-ref-name>ejb/mgmt/MEJB</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.borland.management.mejb.BesManagementHome</home>
 <remote> com.borland.management.mejb.BesManagement</remote>
 </ejb-ref>
</application-client>

28 AppServer Developer ’s Guide

JMX support in Part i t ions

2 Start the partition in which you have deployed the mejb_beans.jar.

3 Run the appclient container with the following command:

appclient <EAR_filename> -uri <client_jarfile>

Alternately, you can generate the stubs and make sure to include it in the CLASSPATH
of the client application.

Event notification with MEJB
The MEJB allows clients to receive notifications whenever the state of specified
managed objects change. The example below shows you how to add a notification
listener to the MEJB:

Context context = new InitialContext();
//look up jndi name
Object ref = context.lookup("j2ee/management/MEJB");
//look up jndi name and cast to Home interface
besManagementHome = (ManagementHome) PortableRemoteObject.narrow(ref,
 BesManagementHome.class);
Management mejb = besManagementHome.create();
ObjectName objectname = new
ObjectName("JMImplementation:type=MBeanServerDelegate");
ListenerRegistration lr = mejb.getListenerRegistry();
lr.addNotificationListener(objectname, new MyNotificationListener(),
 new MyNotificationFilter(), new HandBackObject(4040))

In the above example, MbeanServerDelegate, a system MBean, is used to add a
notification listener. The MyNotificationListener passed as the notification listener to
be triggered in case of an event basically implements the NotificationListener
interface and provides the action to be taken whenever a notification is received.

The MyNotificationFilter is a custom filter which is an implementation of
NotificationFilter interface. The notification filter is used to specify conditions under
which the notifications should be sent. The client can also choose some pre-defined
notification filters like AttributeChangeNotificationFilter and
NotificationFilterSupport in javax.management package and
MbeanServerNotificationFilter in javax.management.relation package. The
HandBackObject is a simple object which is delivered to the client whenever the
notification is triggered.

Note While using custom filters, make sure that the class definition is available on both the
server and the client side.

Running multiple partitions with MEJB
The sample pre-built MEJB jar in the <bas-install>/etc/prebuilt-ejbs/mejb directory can
be deployed to several running partitions at the same time. However, make sure that
you use a unique JNDI name for each partition. You can do this by using the DD editor.
This is necessary in order to ensure that clients can uniquely identify the corresponding
MEJBs. Also, on the client side the application container deployment descriptors
should carry the JNDI name of the intended MEJB.

Chapter 3: Part i t ions 29

Thread pools

Locating the JMX agent

If you are unsure whether the JMX agent is running, use one of the following methods
to locate it.

■ Use osfind.

To achieve uniqueness, the name of the JmxAgent running inside a Partition is
derived as follows:

<configName>_<hubName>_<partitionName>_JmxAgent

For example, a Partition with the following specs for each of the components:

<configName=ojms>_<hubName=XYZ2>_<partitionName=openjms>_JmxAgent

will be registered with the following name in osagent:

ojms_XYZ2_openjms_JmxAgent

will show the following output on running osfind:

prompt% set OSAGENT_PORT=<management_port>
prompt% osfind
osfind: Following are the list of Implementations started manually.
 HOST: 172.20.20.53
 REPOSITORY ID:
RMI:javax.management.remote.rmi.RMIServer:0000000000000000
 OBJECT NAME: ojms_XYZ2_openjms_JmxAgent

■ Use the Borland Management Console.
When you right-click on the Partition, and choose Launch JMX Console, the feature
will only work if the JMX Agent is properly configured for the Partition and the
Partition is running.

Thread pools

Default thread pool

A Partition can process multiple concurrent application requests using Visibroker
thread and connection management. Threads are assigned to process application
requests from a thread pool configured through an entity called a server engine.
Several server engines, and hence thread pool configurations, are available in
Visibroker. By default, a Partition uses a thread pool for server engine IIOP.

Partition properties relevant to the configuration of this pool can be browsed and edited
in the Partition Properties dialog of a Partition displayed in the Borland Management
Console. For more information see “Visibroker properties” in the Management Console
User's Guide.

Configuration of the default thread pool is achieved through the partition
vbroker.properties configuration file. The necessary properties are automatically
configured in AppServer Partitions. The configuration file is located under <install_dir>/
var/domains/<domain-name>/configurations/<config>/mos/<partition>/adm/properties/
vbroker.properties, and they are described in “Managing threads and connections” in
the VisiBroker for Java Developer's Guide.

30 AppServer Developer ’s Guide

Thread pools

Auxiliary thread pool

The auxiliary thread pool is used internally by a Partition to ensure that the default
thread pool is used exclusively for application requests, and to prevent issues such as
distributed deadlocks. The auxiliary thread pool is defined through configuration of a
VisiBroker server engine called aux_se.

Configuration of the auxiliary thread pool is achieved through the partition
vbroker.properties configuration file. The necessary properties are automatically
configured in AppServer Partitions. They are described in the following table.

Property Default value Description

vbroker.se.aux_se.host null Specifies the host name that can be used by
this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are valid values.

vbroker.se.aux_se.proxyHost null Specifies the proxy host name that can be used
by this server engine. The default value, null,
means use the host name from the system.
Host names or IP addresses are valid values.

vbroker.se.aux_se.scms aux_tp Specifies the Server Connection Manager
name.

vbroker.se.aux_se.scm.aux_tp.
manager.type

Socket Specifies the type of Server Connection
Manager.

vbroker.se.aux_se.scm.aux_tp.
manager.connectionMax

0 Specifies the maximum number of connections
to the server. The default value, 0 (zero),
indicates that there is no restriction.

vbroker.se.aux_se.scm.aux_tp.
manager.connectionMaxIdle

0 Specifies the time in seconds that the server
uses to determine whether an inactive
connection should be closed.

vbroker.se.aux_se.scm.aux_tp.
listener.type

IIOP Specifies the type of protocol the listener is
using.

vbroker.se.aux_se.scm.aux_tp.
listener.port

0 Specifies the port number used with the host
name property. The default value, 0 (zero),
indicates that the system will pick a random
port number.

vbroker.se.aux_se.scm.aux_tp.
listener.proxyPort

0 Specifies the proxy port number used with the
proxy host name property. The default value, 0
(zero), indicates that the system will pick a
random port number.

vbroker.se.aux_se.scm.aux_tp.
listener.giopVersion

1.2 This property can be used to resolve
interoperability problems with older VisiBroker
ORBs that cannot handle unknown minor GIOP
versions correctly. Valid values for this property
are 1.0, 1.1 and 1.2.

vbroker.se.aux_se.scm.aux_tp.
dispatcher.type

ThreadPool Specifies the type of thread dispatcher used in
the Server Connection Manager.

vbroker.se.aux_se.scm.aux_tp.
dispatcher.threadMin

0 Specifies the minimum number of threads that
the Server Connection Manager can create.

vbroker.se.aux_se.scm.aux_tp.
dispatcher.threadMax

0 Specifies the maximum number of threads that
the Server Connection Manager can create.
The default value, 0 (zero), implies no
restriction.

vbroker.se.aux_se.scm.aux_tp.
dispatcher.threadMaxIdle

0 Specifies the time in seconds before an idle
thread is destroyed.

vbroker.se.aux_se.scm.aux_tp.
connection.tcpNoDelay

true When this property is set to false, this turns on
buffering for the socket. The default value, true,
turns off buffering so that all packets are sent
as soon as they are ready.Valid values are true
and false.

Chapter 3: Part i t ions 31

Cluster ing J2EE Appl icat ions wi th Borland AppServer 6.6

For example, the following entries are required for the Partition:

##
Configuration file located under <install_dir>/var/domains/<domain-name>/
configurations/<config>/mos/<partition>/adm/properties/
vbroker.properties
##
##
ƒ
vbroker.se.aux_se.host=null
vbroker.se.aux_se.proxyHost=null
vbroker.se.aux_se.scms=aux_tp
vbroker.se.aux_se.scm.aux_tp.manager.type=Socket
vbroker.se.aux_se.scm.aux_tp.manager.connectionMax=0
vbroker.se.aux_se.scm.aux_tp.manager.connectionMaxIdle=0
vbroker.se.aux_se.scm.aux_tp.listener.type=IIOP
vbroker.se.aux_se.scm.aux_tp.listener.port=0
vbroker.se.aux_se.scm.aux_tp.listener.proxyPort=0
vbroker.se.aux_se.scm.aux_tp.listener.giopVersion=1.2
vbroker.se.aux_se.scm.aux_tp.dispatcher.type=ThreadPool
vbroker.se.aux_se.scm.aux_tp.dispatcher.threadMin=0
#
By default the thread pool size is unlimited. Actual thread
usage is controlled through default VBJ thread pool, but
the maximum number of active threads will never exceed
that currently active for the default thread pool.
#
vbroker.se.aux_se.scm.aux_tp.dispatcher.threadMax=0
vbroker.se.aux_se.scm.aux_tp.dispatcher.threadMaxIdle=0
vbroker.se.aux_se.scm.aux_tp.connection.tcpNoDelay=false
ƒ

By default, a Partition will use the aux_se server engine. However, if required, it can be
disabled through configuration of the following Partition system property:

useAuxiliaryThreadPool=false

Clustering J2EE Applications with Borland AppServer 6.6
Borland AppServer is designed for high reliability and availability. Part of its reliability
and availability comes from its clustering capabilities. For information on clustering
J2EE applications with Borland AppServer, see the white paper, Clustering J2EE
Applications with Borland AppServer 6.6, at http://support.borland.com/
entry.jspa?externalID=4304&categoryID=391.

32 AppServer Developer ’s Guide

Chapter 4: Web components 33

C h a p t e r

Chapter4Web components
This section provides information about the web components which are included in the
Borland AppServer (AppServer). For more information, see “Installing Borland
AppServer on Windows” or “Installing Borland AppServer on Solaris and HP-UX” in the
Installation Guide.

Apache web server implementation
The AppServer implementation of the open-source Apache web server version 2.2 (an
httpd server) is HTTP 1.1-compliant and is highly customizable through the Apache
modules.

Apache configuration

The Apache web server comes pre-configured and ready-to-use when it is initially
started. Many modules are dynamically loaded during the Apache startup. You can
later customize its configuration for the IIOP connector, clustering, failover, and load
balancing with one or more web container(s). You can use the Management Console
to modify the configuration file, or you can use the directives in the plain text
configuration file: httpd.conf.

By default, the Apache httpd.conf file is located in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/
mos/<apache_managedobject_name>/conf

Otherwise, for the location of the httpd.conf file, go to the configuration.xml file located
in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>

and search for the Apache Managed Object, apache-process httpd-conf sub-element
attribute:

httpd-conf=

For information about configuring the httpd.conf file for the IIOP connector/redirector,
see, “Modifying the IIOP configuration in Apache” on page 43 .

34 AppServer Developer ’s Guide

Apache web server implementat ion

Apache configuration syntax

When you edit the httpd.conf file, you must adhere to the following configuration
syntax guidelines:

■ The httpd.conf files contain one directive per line.

■ To indicate that a directive continues onto the next line, use a back-slash “\” as the
last character on a line.

■ No other characters or white space must appear between the back-slash “\” and the
end of the line.

■ Arguments to directives are often case-sensitive, but directives are not case-
sensitive.

■ Lines which begin with the hash character “#” are considered comments.

■ Comments cannot be included on a line after a configuration directive.

■ Blank lines and white space occurring before a directive are ignored, so you can
indent directives for clarity.

Running Apache web server on a privileged port

Processes which access privileged ports on UNIX hosts must have appropriate
permissions; the process must be started with the permissions of user root. Typically,
only some processes in a particular configuration need to be started with root
permissions. The setuser script helps configure AppServer to allow Apache web server
start as root or with root permissions. See “Using the setuser tool to manage
ownership” in the Installation Guide for information about using the setuser tool and
multi-user mode.

Before starting the configuration, gather the following information about the system on
which Apache is installed:

1 AppServer installation directory

2 User and group names for the account that the Agent should become after shedding
its root UID, that is, the installation owner.

3 User and group names for the system root account (typically root/sys)

The following steps describe the procedure for configuring the Apache web server to
run on port 80.

1 Ensure that the Management Hub and the configuration containing the Apache web
server are not running.

2 Enable multi-user mode on the AppServer installation.

a Edit the property

agent.mum.enabled.root.mo=true

in

<install_dir>/var/domains/base/adm/properties/agent.config

b Become root.

c Run the setuser script:

setuser -u <user> -g <group> +m

where <user> and <group> are the attributes of the installation owner account
(as described in B above).

Chapter 4: Web components 35

Apache web server implementat ion

3 Start the Management Hub.

4 Edit the Apache web server properties in the Management Console.

a Right click the Apache web server MO, and select Properties.

b In the Properties dialog, select the Apache Process Settings tab.

c Click More settings to open the Advanced Process Settings dialog.

d Select the Platform Specific Settings tab.

e In the Unix Settings group enter the user and group names for the system root
account in the Start as user and Start as group fields (as described in C above).

f Click OK to close the Advanced Process Settings dialog.

g In the Properties dialog, select the Files tab, and select the httpd.conf file.

h Change the User and Group directives to the user and group name values for the
account that owns the AppServer installation (as described in B above).

i Change the Listen directive to 80.

j Click OK to close the Apache Properties dialog.

5 Start the configuration.

Using the .htaccess files

The Apache web server allows for decentralized management of configuration through
the .htaccess files placed inside the web tree. These files are specified in the
AccessFileName directive.

Directives placed in .htaccess files apply to the directory where you place the file, and
all sub-directories. The .htaccess files follow the same syntax as the main configuration
files. Since .htaccess files are read on every request, changes made in these files take
immediate effect. To find which directives can be placed in .htaccess files, check the
Context of the directive. You can control which directives can be placed in .htaccess
files by configuring the AllowOverride directive in the main configuration files.

Apache directory structure
After installing the Apache web server, by default, the following Apache-specific
directory structure appears in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/
mos/<apache_managedobject_name>/

Table 4.1 Apache-specific directories

Apache-specific Directory Name Description

cgi-bin Contains all CGI scripts.

conf Contains all configuration files.

error Contains all error html documents.

htdocs Contains all HTML documents and web pages.

icons Contains the icon images in .gif format.

logs Contains all log files.

proxy Contains the proxies for your web application.

36 AppServer Developer ’s Guide

Borland web container implementat ion

Borland web container implementation
The Borland web container supports development and deployment of web applications.
The Borland web container, which is based on Tomcat 5.5.12., is included in the
AppServer. For more information, see “Installing Borland AppServer on Windows” or
“Installing Borland AppServer on Solaris and HP-UX” in the Installation Guide.

The Borland web container is a sophisticated and flexible tool that provides support for
Servlets 2.4 and JSP 2.0 specifications.

As a “Partition service”, all the Borland web container configuration files are located in
each of your Partitions' data directory under:

adm/tomcat/conf/

By default, a Partition's data directory is located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/
mos/<partition_name>/

For example, for a Partition named “standard”, by default the Borland web container
configuration files are located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/
mos/standard/adm/tomcat/conf/

Otherwise, for the location of a Partition data directory, go to the configuration.xml file
located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/

and search for the Partition Managed Object, partition-process sub-element directory
attribute:

<partition-process directory=

Servlets and JavaServer Pages

A servlet is a Java program that extends the functionality of a web server, generating
dynamic content and interacting with web clients using a request-response paradigm.

JavaServer Pages (JSP) are a further abstraction to the servlet model. JSPs are an
extensible web technology that uses template data, custom elements, scripting
languages, and server-side Java objects to return dynamic content to a client. Typically
the template data is HTML or XML elements, and in many cases the client is a web
browser.

Servlets and JSPs are server components that normally run within a web server.
Servlets are written as web server extensions separate from the HTML page, while
JSP embeds the Java code directly in the HTML. At runtime, the JSP Java code is
automatically converted into a servlet.

Servlets process web requests, pass them into the back-end enterprise application
systems, and dynamically render the results as HTML or XML client interfaces.
Servlets also manage the client session information, so that users do not need to
repeatedly input the same information.

Chapter 4: Web components 37

Borland web container implementat ion

Typical web application development process

In a typical development phase for a web application:

1 The web designer writes the JSP components, and the software developer creates
the servlets for handling presentation logic.

2 In conjunction, other software engineers write Java source code for servlets and the
.jsp and .html for processing client request to the server-side components (EJB
application tier, CORBA object, JDBC object).

3 The Java class files, .jsp files, and the .html files are bundled with a deployment
descriptor as a Web ARchive (WAR) file.

4 The WAR file (or web module) is deployed in the Borland web container as a web
application.

For more information about using the AppServer Deployment Descriptor Editor (DDE)
to create a Web ARchive (WAR) file, see “Adding WAR information” in the
Management Console User's Guide.

Web application archive (WAR) file

In order for the Borland web container to deploy a web application, the web application
must be packaged into a Web ARchive (WAR) file. This is achieved by using the
standard Java Archive tool jar command.

The WAR file includes the WEB-INF directory. This directory contains files that relate to
the web application. Unlike the document root directory of the web application, the files
in the WEB-INF directory do not have direct interaction with the client. The WEB-INF
directory contains the following:

Borland-specific DTD
For the Borland-specific DTD information, see the DTD documentation.

Adding ENV variables for the web container
You add web container ENV variables for a Partition the same way you set any ENV
variables for any Partition service; you use the <env-vars> element and insert the xml
code within the partition-process sub-element.

Note When adding web container ENV variables, be sure to type space-separated, value
pairs.

By default, all configuration.xml files are located in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/

Directory/File name Contents

/WEB-INF/web.xml the deployment descriptor

/WEB-INF/web-borland.xml the deployment descriptor with Borland-specific extensions.

/WEB-INF/classes/* the servlets and utility classes. The application class loader loads
any class in this directory.

/WEB-INF/lib/*.jar the Java ARchive (JAR) files which contain servlets, beans, and
other utility classes useful to the web application. All JAR files are
used by the web application class loader to load classes from.

38 AppServer Developer ’s Guide

Microsoft Internet Information Services (I IS) web server

To add web container ENV variables for a Partition Managed Object, use the env-vars
element and env-var sub-element and the following syntax:

<managed-object name="standard"> ...>
 <partition-process ...>
 <env-vars ...>
 <env-var name="name" value="value"/>
 </env-vars>
 ƒ
</managed-object>

where <name> is the ENV variable name and <value> is the value you want to set for the
named ENV variable.

For example:

<managed-object name="standard"> ...>
 <partition-process ...>
 <env-vars ...>
 <env-var name="ABC" value="val_abc"/>
 </env-vars>
 ƒ
</managed-object>

Microsoft Internet Information Services (IIS) web server
The Microsoft Internet Information Services (IIS) web server is not included with any
AppServer product offerings. However, AppServer does include the IIOP redirector
which provides connectivity from the Borland Tomcat-based web container to the IIS
web server, and from the IIS web server to a CORBA server. The IIOP redirector is
supported for the following IIS versions:

■ Microsoft Windows 2000/IIS version 5.0

■ Microsoft Windows XP/IIS version 5.1

■ Microsoft Windows 2003/IIS version 6.0

For more information, see “IIS web server to Borland web container connectivity” on
page 52.

IIS/IIOP redirector directory structure

After installing any of the AppServer products, by default, the following IIS/IIOP
redirector-specific directory structure appears in:

<install_dir>/etc/iisredir2/

Table 4.2 IIS/IIOP redirector directories

IIS/IIOP redirector-specific directory name Description

conf Contains all configuration files.

logs Contains all log files.

Chapter 4: Web components 39

Smart Agent implementat ion

Smart Agent implementation
The Smart Agent is a service that helps in locating and mapping client programs and
object implementation. The Smart Agent is automatically started with default
properties. For information on configuring the Smart Agent, see “Using the Smart
Agent” in the VisiBroker for Java Developer's Guide.

The Smart Agent is a dynamic, distributed directory service that provides facilities for
both the client programs and object implementation. The Smart Agent maps client
programs to the appropriate object implementation by correlating the object or service
name used by the client program to bind to an object implementation. The object
implementation is an object reference provided by a server, such as the Borland web
container.

The Smart Agent must be started on at least one host within your local network. When
your client program invokes an object (using the bind method), the Smart Agent is
automatically consulted. The Smart Agent locates the specified object implementation
so that a connection can be established between the client and the object
implementation. The communication with the Smart Agent is transparent to the client
program.

The following are examples of how the Smart Agent is used by the AppServer web
components:

■ Connecting Apache web server to a Borland web container.

■ Connecting Borland web containers to Java Session Service (JSS).

Connecting an Apache web server to a Borland web container

As a distributed directory service, the Smart Agent registers an active ID of an object
reference for the client programs to use. The following diagram shows the interaction
between the client program binding to an object through the Smart Agent. In this
example, the Apache web server is acting as a client and the Borland web container is
acting as a server (and provides the object reference).

40 AppServer Developer ’s Guide

Smart Agent implementat ion

Figure 4.1 Client program binding to an object reference

Connecting Borland web containers to Java Session Service

In this scenario, there are multiple web containers that need to connect to a Java
Session Service during start up. The Smart Agent is used to make a client/server
connection. The following diagram shows multiple instances of the Borland web
container. Each web container is acting as a client. During start up, the Smart Agent is
consulted as a directory service to find and connect a JSS object reference. For more
information about the Java Session Service (JSS), see Chapter 6, “Java Session
Service (JSS) configuration.”

Figure 4.2 Connecting multiple web containers to a single JSS

Chapter 5: Web server to web conta iner connect iv i ty 41

C h a p t e r

Chapter5Web server to web container
connectivity

This section describes the web server to web container IIOP connectivity provided in
the Borland AppServer (AppServer). For more information, see “Installing Borland
AppServer on Windows” or “Installing Borland AppServer on Solaris and HP-UX” in the
Installation Guide.

For information about Apache to CORBA connectivity, see Chapter 8, “Apache web
server to CORBA server connectivity.”

Apache web server to Borland web container connectivity
This section provides information about the following web components:

■ an implementation of the open-sourced Apache web server version 2.2,

■ the Tomcat-based Borland web container, and

■ the IIOP connector, which provides connectivity from the Apache web server to the
Tomcat-based Borland web container.

These web components are included in the AppServer. For more information, see
“Installing Borland AppServer on Windows” or “Installing Borland AppServer on Solaris
and HP-UX” in the Installation Guide.

Modifying the Borland web container IIOP configuration

The server.xml is the main configuration file for the Borland web container and is
stored in your Partition's data directory:

adm/tomcat/conf/

For more information, see “Borland web container implementation” on page 36.

42 AppServer Developer ’s Guide

Apache web server to Bor land web container connect iv i ty

Within the server.xml file are the following lines of code that pertain to the IIOP
connector configuration.

<Connector className="com.borland.catalina.connector.iiop.IiopConnector"
 name="tc_inst1 debug="0" minProcessors="5"
 maxProcessors="75" enableChunking="false" port="0"
 canBufferHttp10Data="true" downloadBufferSize="4096" shortSessionId="false" />

Use these lines of code and the following attributes to configure the Borland web
container IIOP connector.

Table 5.1 IIOP connector attributes

Attribute Default Description

name tc_instl The name by which this connector can be reached by Apache
and IIS web servers.

debug 0 (zero) Integer that sets the level of debug information. When set to 0
(zero), the default, debug is turned off. To turn debug on, set to
1. For very detailed debug messages, set to 99.

minProcessors 5 The number of minimum threads previously created to service
requests on this connector.

maxProcessors 75 The number of maximum threads that will be created on this
connector to service requests.

enableChunking false Enables chunking behavior on the connector. To enable
chunking, set this attribute to true.

Important: To enable chunking, you must also set the servlet
response header Transfer-Encoding value to chunked. For more
information, see “Downloading large data” on page 48.

downloadBufferSize 4096 Defines the “chunked” buffer size employed when
enableChunking is set to true. This directive accepts a numeric
value >0. Essentially, the larger the number of bytes you set
this directive to, the less the number of CORBA RPCs that are
required to send the data to Apache or IIS. However, the larger
you set this directive, the more memory will be consumed in
servicing the transaction. Tuning this parameter allows you to
fine-tune the performance characteristics. This enables the
administrator to weigh the RPC costs against memory
resource usage to optimize uploading on their system.

Note: If an invalid value is presented (non numeric/negative
number) then the default 4096 value is employed. For more
information, see “Downloading large data” on page 48.

port 0 (zero) The IIOP connector port. If set to 0 (zero), the default, a
random port gets picked.

Note: If the corbaloc mechanism must be used to locate this
connector from Apache or IIS, then port must be set to a value
other than 0 (zero).

Chapter 5: Web server to web conta iner connect iv i ty 43

Apache web server to Borland web container connect iv i ty

Modifying the IIOP configuration in Apache

The httpd.conf file is the global configuration file for the Apache web server. Within the
httpd.conf file are the following lines which pertain to the IIOP connector.

Windows LoadModule iiop2_module <install_dir>/lib/<apache_managedobject_name>/
mod_iiop2.dll

IIopLogFile <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/<apache_managedobject_name>/
logs/mod_iiop.log

IIopLogLevel error
IIopClusterConfig <install_dir>/var/domains/<domain_name>/

configurations/<configuration_name>/mos/<apache_managedobject_name>/
conf/WebClusters.properties

IIopMapFile <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/<apache_managedobject_name>/
conf/UriMapFile.properties

canBufferHttp10Data true When the HTTP protocol is less than 1.1 and the content
length is not set on a servlet, the following two choices are
available for the web container. It can buffer up the data,
compute the content length, and then send the response or it
can raise an error message. To avoid buffering the data and
consuming memory, set this attribute to false.For more
information, see “Browsers supporting only the HTTP 1.0
protocol” on page 49.

shortSessionId false To enable the use of the Borland “collapsed locator” feature
that reduces the size of the IIOP connectors session id, set to
true. By default, this attribute is disabled; set to false.

The IIOP connector uses a stringified object reference (IOR) as
a means to associate a client with a given Borland web
container (service affinity). Some network routers and browser
implementations are unable to cope with the large payload
stored within the Session Id Cookie.

To resolve this problem, Borland has developed the collapsed
locator string that allows service affinity to be implemented
using a much shorter session id string. Setting shortSessionId
to true enables this feature, setting it to false or omitting the
parameter entirely, defaults to the conventional IOR-based
solution.

Note: The “collapsed locator” is essentially an encoded
CORBALOC string. Resolving a CORBALOC string to an
object-reference is a more costly operation than the equivalent
operation on an IOR. To alleviate this extra cost, the Apache
web server will maintain a look-aside list of encoded
CORBALOC strings to their resolved object references. This
will incur a slight increase in memory use per Apache web
server.

Important: In order for the shortSessionID feature to work
correctly, you must specify a port value for the IIOP connector;
you cannot use the port default value of 0 (zero).

Table 5.1 IIOP connector attributes (continued)

Attribute Default Description

44 AppServer Developer ’s Guide

Apache web server to Bor land web container connect iv i ty

Use these lines of code to configure the Apache web server IIOP connector.

1 “cluster” is used to represent a CORBA server instance that is known to the system by a single name
or URI. The IIOP connector is able to load-balance across multiple instances, hence the term “cluster”
is used.

The following are examples of typical configurations of these 5 lines for the IIOP
connector for Apache 2.2:

Windows example LoadModule iiop2_module C:/Borland/BDP/lib/myapache/mod_iiop2.dll
 IIopLogFile C:/Borland/BDP/var/domains/base/configurations/j2ee/mos/
myapache/logs/mod_iiop.log
 IIopLogLevel error
 IIopClusterConfig C:/Borland/BDP/var/domains/base/configurations/j2ee/
mos/myapache/conf/WebClusters.properties
 IIopMapFile C:/Borland/BDP/var/domains/base/configurations/j2ee/mos/
myapache/conf/UriMapFile.properties

Solaris example LoadModule iiop2_module /opt/Borland/BDP/lib/myapache/mod_iiop2.so
 IIopLogFile /opt/Borland/BDP/var/domains/base/configurations/j2ee/mos/
myapache/logs/mod_iiop.log
 IIopLogLevel error
 IIopClusterConfig /opt/Borland/BDP/var/domains/base/configurations/j2ee/
mos/myapache/conf/WebClusters.properties
 IIopMapFile /opt/Borland/BDP/var/domains/base/configurations/j2ee/mos/
myapache/conf/UriMapFile.properties

Table 5.2 IIOP directives for Apache

Directive default Description

LoadModule <install_dir>/lib/
<apache_managedobject_name>/
mod_iiop2.dll

Enables Apache 2.2 to load the IIOP
connector. This directive instructs the
Apache web server to load the Apache
mod_iiop2 module from the location
specified. Once the module is loaded,
the following four directives are
required to enable the IIOP connector
to locate the web container(s) or
CORBA server(s) it must communicate
with and perform other functions.

IIopLogFile <install_dir>/var/domains/
<domain_name>/configurations/
<configuration_name>/mos/
<apache_managedobject_name>/
logs/mod_iiop.log

Specifies the location where the IIOP
connector writes log output.

IIopLogLevel error Specifies the level of log information to
write. This directive can take one of the
following: debug|warn|info|error.

IIopClusterConfig <install_dir>/var/domains/
<domain_name>/configurations/
<configuration_name>/mos/
<apache_managedobject_name>/conf/
WebClusters.properties

Specifies the location of the “cluster”
instance file. For CORBA servers,
identifies the file that contains the
“cluster” name by which they are known
to the IIOP connector1.

IIopMapFile <install_dir>/var/domains/
<domain_name>/configurations/
<configuration_name>/mos/
<apache_managedobject_name>/conf/
UriMapFile.properties

Specifies the location of the URI-to-
Instance mapping file. For CORBA
servers, maps HTTP URIs to a specific
“cluster” known to the IIOP connector.

Chapter 5: Web server to web conta iner connect iv i ty 45

Apache web server to Borland web container connect iv i ty

Additional Apache IIOP directives
The following optional additional directives are available for you to use to further
customize your Apache IIOP configuration.

Apache IIOP connector configuration

The Apache IIOP connector has a set of configuration files that you must update with
web server cluster information. By default, these IIOP connector configuration files are
located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_managedobject_name>/conf

The two configuration files are:

Note Modifying either of these configuration files can be done so without starting up or
shutting down the Apache web server(s) or CORBA server(s) because the file is
automatically loaded by the IIOP connector.

Table 5.3 Additional Apache IIOP directives

Directive default Description

IIopChunkedUploading (commented out) true Controls whether Apache attempts “chunked”
uploads to the Borland web container IIOP
connector. To enable Apache to “chunk” large
size data that is greater than the
IIopUploadBufferSize value, uncomment and
make sure it is set to true.

Note: “Chunked” upload must also be enabled
on the web container by setting the server.xml
attribute enablechunking="true".
If you want Apache to wait until it has collected
all data before invoking the CORBA RPC to
send the large size data to the Borland web
container, leave commented out or set to false.
For more information, see “Implementing
chunked upload” on page 50.

IIopUploadBufferSize (commented out) 4096 Defines the “chunked” buffer size employed
when IIopChunkedUploading is set to true. This
directive accepts a numeric value >0.
Essentially, the larger the number of bytes you
set this directive to, the less the number of
CORBA RPCs that are required to send the
data to the Borland web container. However,
the larger you set this directive, the more
memory will be consumed in servicing the
transaction. Tuning this parameter allows you
to fine-tune the performance characteristics.
This enables the administrator to weigh the
RPC costs against memory resource usage to
optimize uploading on their system.

Note: If an invalid value is presented (non
numeric/negative number) then the default 4096
value is employed. For more information, see
“Implementing chunked upload” on page 50.

Table 5.4 Apache IIOP connection configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the corresponding web container(s) for
each cluster.

UriMapFile.properties Maps URI references to the clusters defined in the
WebClusters.properties file.

46 AppServer Developer ’s Guide

Apache web server to Bor land web container connect iv i ty

Adding new clusters
The WebClusters.properties file tells the IIOP connector:

■ The name of each available cluster (ClusterList).

■ The web container identification.

■ Whether to provide automatic load balancing (enable_loadbalancing) for a particular
cluster.

To add a new cluster, in the WebClusters.properties file:

1 add the name of the configured cluster to the ClusterList. For example:

ClusterList=cluster1,cluster2,cluster3

2 define each cluster by adding a line in the following format specifying the cluster
name, the required webcontainer_id attribute, and any additional attributes (see the
following Cluster definition attributes table). For example:

<clustername>.webcontainer_id = <id> <attribute>

Note Failover and smart session are always enabled, for more information see “Clustering
web components” on page 61.

For example:

ClusterList=cluster1,cluster2,cluster3
cluster1.webcontainer_id = tc_inst1
cluster2.webcontainer_id = corbaloc::127.20.20.2:20202,:127.20.20.3:20202/

tc_inst2
cluster2.enable_loadbalancing = true
cluster3.webcontainer_id = tc_inst3
cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load balancing.

2 The second cluster employs the corbaloc naming scheme, and is also enabled for
load balancing.

3 The third uses the osagent naming scheme, but has the load balancing features
disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with active http
sessions attached to the web server (attached users), because requests to these “live”
sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take effect on
the next request. You do not need to restart your server(s).

Table 5.5 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object “bind” name or corbaloc string identifying the web
container implementing the cluster.

enable_loadbalancing no To enable load balancing, do not include this attribute or
include and set to true; load balancing is enabled by default.
To disable load balancing, set to false indicating that this
cluster instance should not employ load-balancing
techniques.

Warning: Ensure that when entering the
enable_loadbalancing attribute you give it a legal value (true
or false).

Chapter 5: Web server to web conta iner connect iv i ty 47

Large data t ransfer

Adding new web applications
Important By default, your web application is not made available through Apache. In order to

make it available through Apache, you must add some information to the web
application descriptor. For step-by-step instructions on how to do so, see “Web Deploy
Paths” in the Management Console User's Guide.

For new applications that you have deployed to the Borland web container, you need to
do the following to make them available through the Apache web server. Use the
UriMapFile.properties file to map HTTP URI strings to web cluster names configured in
the WebClusters.properties file (see “Adding new clusters” on page 46).

■ In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and <clustername>
is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

/examples = cluster1
/examples/* = cluster1

/petstore/index.jsp = cluster2
/petstore/servlet/* = cluster2

In this example:

■ Any URI that starts with /examples will be forwarded to a web container running in
the “cluster1” web cluster.

■ URIs matching either /petstore/index.jsp or starting with /petstore/servlet will be
routed to “cluster2”.

Note With the URI mappings, the wild-card “*” is only valid in the last term of the URI and
may represent the follow cases:

■ the whole term (and all inferior references) as in /examples/*.

■ the filename part of a file specification as in /examples/*.jsp.

Note Modifications you make to the UriMapFile.properties file automatically take effect on
the next request. You do not need to restart your server(s).

If the WebCluster.properties or UriMapFile.properties is altered, then it is automatically
loaded by the IIOP connector. This means that the adding and removing of web
applications and the altering of cluster configurations may be done so without starting
up or shutting down the Apache web server(s) or Borland web container(s).

Large data transfer
This section details the AppServer options available to you for handling large data
transfers between a client and the Borland web container with Apache 2.2 in between.
The data to be transferred may be either:

■ static content obtained from a file, or

■ dynamically generated content

Typically, the content length is known in advance for static content, but is not known for
dynamic content.

48 AppServer Developer ’s Guide

Large data transfer

Downloading large data

The following modes are available for downloading large data from the Borland web
container to the browser:

■ Chunked download

■ Non-chunked download

Implementing chunked download
In the chunked download mode, the Borland web container does not wait until it has all
the data to send. As soon as servlet generates the data, the web container starts
sending the data to the browser via Apache in fixed size buffers.

Because the data is flushed as soon as it is available, the chunked download mode of
transfer has low memory requirements both on Apache and the Borland web container.
The browser user sees data as it arrives rather than as one large lump at the end of the
full transfer.

Enabling chunked download
To enable chunked download mode, you update the Borland web container server.xml
file which is stored in your Partition's data directory:

adm/tomcat/conf/

For more information, see “Borland web container implementation” on page 36.

To enable the chunked download:

1 In the Borland web container server.xml, locate the <Service name="IIOP"> section of
the code.

2 For the IIOP service you want to enable chunked download, set
enableChunking="true"

3 By default, the download buffer size is set to 4096. To change it for an IIOP service,
use the downloadBufferSize attribute as follows:

downloadBufferSize=<value>

Where <value> is a numeric value >0.

Note If an invalid value is presented (non numeric/negative number) then the default 4096
value is employed.

The chunked download mode of transfer has an overhead of an extra thread per each
request.

Known content length versus unknown
Based on whether content length is known in advance or not, chunked download mode
can take one of the following two paths:

■ chunked download with known content length

■ chunked download with unknown content length

Chunked download with known content length
In this case, a servlet or JSP knows the content length of the data in advance of the
transfer. The servlet sets the Content-Length HTTP header before writing out the data.
The Borland web container writes out a single response header followed by multiple
chunks of data. Apache receives this from the web container and sends data in the
same fashion to the browser.

The response header contains the following header:

Content-Length=<actual data size>

Chapter 5: Web server to web conta iner connect iv i ty 49

Large data t ransfer

Chunked download with unknown content length
HTTP protocol version 1.1 adds a new feature to handle the case of data transfer when
data length is not known in advance. This feature is called HTTP chunking. In this
case, a servlet does not know the content length of the data in advance of a transfer.
The servlet does not set the Content-Length HTTP header.

The Borland web container sends the data to the Apache web server in exactly the
same way as in the case of the chunked download where the content length is known
in advance; a single response header is sent followed by multiple data chunks. The
response header contains the following header:

Transfer-Encoding="chunked"

If the browser protocol is HTTP 1.1 and the Content-Length header is not set by the
servlet, the Borland web container automatically adds the Transfer-Encoding="chunked”
header.

When an Apache web server sees this Transfer-Encoding header, it starts sending the
data as “HTTP chunks”—a response header followed by multiple combinations of
“chunked” header, “chunked” data, and “chunked” trailers.

Note Per the HTTP 1.1 specification, if a servlet sets both the Content-Length and Transfer-
Encoding headers, the Content-Length header is dropped by the Borland web container.

Browsers supporting only the HTTP 1.0 protocol
If the browser only supports the HTTP 1.0 protocol or less and a servlet does not set
the Content-Length header, the Borland web container can not automatically add the
Transfer-Encoding header. The reason being that to the HTTP 1.0 protocol, the
Transfer-Encoding header has no meaning. In this case, the Borland web container:

1 buffers all the data until the data is finished,

2 calculates the content length, and

3 sets the Content-Length header itself.

If you do not want the Borland web container to perform this buffering behavior, you
can set the IIOP connector attribute canBufferHttp10Data="false". By default, this
attribute is set to true.

Note When the canBufferHttp10Data attribute is set to false, the following error message is
sent to the browser:

Servlet did not set the Content-Length

Implementing non-chunked download
This is the default transfer of data mode for the IIOP connector. In the non-chunked
download mode, the Borland web container waits until it has all the data to send. Then
it calculates the content length and sets the Content-Length header to the actual content
length. The Borland web container then sends the response header followed by a
single huge data block.

This mode of transfer has high memory requirements both on the Apache web server
and the Borland web container, because the data is cached until all of it is available.
Only when all the data is transferred does the browser user see the data.

The non-chunked download mode of transfer has no overhead of extra thread per each
request. This download mode works well under both the HTTP protocol versions 1.0
and 1.1, because the Transfer-Encoding header is never set in this mode.

50 AppServer Developer ’s Guide

Large data transfer

Uploading large data
The following modes are available for uploading large data initiated by a client (which
can be either a browser or a non-browser (such as Java) client that speaks HTTP):

■ Chunked upload
■ Non-chunked upload

The browser always sends the data to an Apache web server in a “chunked” fashion.
Chunked and non-chunked upload refers to the data transfer mode between an
Apache web server and a Borland web container.

Implementing chunked upload
By default, Apache will try to upload large size data in “chunks”. In this mode, Apache
does not wait until it has all the data from the browser before it starts sending data to a
Borland web container. Apache sends the data in fixed size buffers as the data
becomes available from the browser.

Because the data is flushed as soon as possible, the chunked mode of upload transfer
has low memory requirements both on Apache and the Borland web container.

The chunked mode of transfer has an overhead of an extra thread per each request on
the Borland web container.

Enabling chunked upload
To enable chunked upload mode, you must update both of the following:

■ the Borland web container server.xml file, which is stored in your Partition's data
directory: adm/tomcat/conf

For more information see “Borland web container implementation” on page 36.

■ the Apache httpd.conf file, which by default is located in the following directory:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_managedobject_name>/conf

For more information see “Apache configuration” on page 33.

To enable the chunked upload:

1 In the Borland web container server.xml, locate the <Service name="IIOP"> section of
the code.

2 By default, the enableChunking attribute is set to false. Change this value to
enableChunking="true"

3 In the Apache httpd.conf file, locate and uncomment the following IIOP directive:

#IIopChunkedUploading true

Note The chunked upload mode of transfer has an overhead of an extra thread per each
request for the Borland web container.

Changing the upload buffer size
By default, IIopUploadBufferSize is set to 4096 bytes. To change this value:

1 In the Apache httpd.conf, locate the following commented out directive:

#IIopUploadBufferSize 4096

2 Uncomment this directive and set as follows:

IIopUploadBufferSize <value>

where <value> is a numeric value >0 (greater than zero).

Note If you specify an invalid value (non numeric/negative number) then the default 4096
value is employed.

Chapter 5: Web server to web conta iner connect iv i ty 51

Large data t ransfer

Known content length versus unknown
Based on whether content length is known in advance or not, chunked upload mode
can take one of the following two paths:

■ chunked upload with known content length

■ chunked upload with unknown content length

Chunked upload with known content length
In this case, the client knows the content length of the data in advance of the transfer.
The client sets the Content-Length HTTP header before writing out the data. The client
writes out a single response header followed by multiple chunks of data. Apache
receives this from the browser and sends data in the same fashion to the Borland web
container.

The response header contains the following header:

Content-Length=<actual data size>

Chunked upload with unknown content length
HTTP protocol version 1.1 adds a new feature to handle the case of data transfer when
data length is not known in advance. This feature is called HTTP chunking.

In this case, a client does not know the content length of the data in advance of a
transfer. The client does not set the Content-Length HTTP request header. Instead, the
client sets the Transfer-Encoding HTTP request header to a value of chunked as follows:

Transfer-Encoding="chunked"

The client sends the data to the Apache web server as “HTTP chunks”; a single
request header followed by multiple combinations of chunk header, chunk data, and
chunk trailer.

When the Apache web server sees this Transfer-Encoding header, it strips out the
chunk header and chunk trailers and sends the data as normal data chunks to the
Borland web container.

At this time, no major browsers support uploading data without knowing the content
length. In other words, browsers never add a Transfer-Encoding="chunked” header to
an HTTP request. However, a non-browser client can add this header to an HTTP
request.

Implementing non-chunked upload
This is the default transfer of data mode for the IIOP connector. In the non-chunked
upload mode, the Apache web server waits until it has all the data to send. Then it
calculates the content length and sets the Content-Length header to the actual content
length. Apache then sends the request header followed by a single huge data block.

This mode of transfer has high memory requirements both on the Apache web server
and the Borland web container, because the data is cached until all of it is available.

The non-chunked upload mode of transfer has no overhead of extra thread per each
request (in the Borland web container). This download mode works well under both the
HTTP protocol versions 1.0 and 1.1, because the Transfer-Encoding header is never
set in this mode.

52 AppServer Developer ’s Guide

IIS web server to Bor land web container connect iv i ty

IIS web server to Borland web container connectivity
This section describes the Tomcat-based Borland web container, its IIOP connector,
as well as the IIS/IIOP redirector which provides connectivity from the Microsoft
Internet Information Services (IIS) web server (not included with AppServer) to the
Borland web container. These features are provided in AppServer. For more
information, see “Installing Borland AppServer on Windows” or “Installing Borland
AppServer on Solaris and HP-UX” in the Installation Guide.

Modifying the IIOP configuration in the Borland web container

The server.xml is the main configuration file for the Borland web container and is
stored in your Partition's data directory:

adm/tomcat/conf/

Within the server.xml file is a section that pertains to the IIOP connector configuration.
For detailed configuration information, see “Modifying the Borland web container IIOP
configuration” on page 41.

Microsoft Internet Information Services (IIS) server-specific IIOP
configuration

Before the IIS/IIOP redirector can be used on your system, you need to complete the
following:

■ Configure your Windows 2003/XP/2000 system on which IIS is running

■ Configure the IIS/IIOP redirector

How to Configure your Windows 2003/XP/2000 system on which IIS is
running
1 Add the OSAGENT_PORT required environment variable to the SYSTEM environment.

The IISredirectory relies on VisiBroker to provide the IIOP communication layer
between IIS and the Borland web container. In order to function, VisiBroker requires
that the following environment variable be defined as follows:

Important After setting the OSAGENT_PORT environment variable, in order for IIS to detect it, you
must reboot the Windows system.

2 Add the IIS/IIOP redirector as an ISAPI filter.

a Right-click My Computer and choose Manage.

The Computer Management dialog appears.

b Expand the tree, expand the Services and Applications node.

c Expand the Internet Information Services node.

d Right-click the Default Web Site node and choose Properties.

The Default Web Site Properties dialog appears.

e Go to the ISAPI Filters tab.

f Click Add.

Environment Variable Value Description

OSAGENT_PORT 14000 The numeric value of the OSAGENT port number used by
your AppServer.

Chapter 5: Web server to web conta iner connect iv i ty 53

IIS web server to Borland web container connect iv i ty

g In the Filter Properties dialog, type a Filter Name and the path for the Executable
in the corresponding entry boxes.

By convention, the name of the filter should reflect its task, for example:

iisredir2

Also, the executable should point to the iisredir2.dll in the <install_dir>\bin.
For example:

C:\borland\BDP\bin\iisredir2.dll

h Click OK.

Your new ISAPI filter appears on the list. You do not need to change the filter
Priority.

i Click OK.

3 Add a “borland” virtual directory to your IIS web site.

a In the Computer Management dialog, right-click Default Web Site and choose
New|Virtual Directory.

The Virtual Directory Creation Wizard appears.

b Click Next.

c For the Alias, enter “borland”.

The borland virtual directory is required to allow the IIS/IIOP redirector extension
to be located by the IIS web server when it responds to a URI of:

http://localhost/borland/iisredir2.dll

d For the Directory, browse to <install_dir>\bin.

e Click Next to proceed.

f For Access Permissions, select “Execute” in addition to “Read” and “Run scripts”
which are selected by default.

g Click Next.

h Click Finish.

4 Windows 2003 only: Configure ISAPI extension permissions for Windows 2003.

The IIS version limits which application extensions may be loaded into IIS. You have
the choice of enabling all extensions or selectively picking which ISAPI extensions
that may be run in your IIS installation. The following procedure enables just the
iisredir2 extension.

a In the Computer Management dialog, open “Services and Applications”.

b Open “Internet Information Service”.

c Open “Web Service Extensions” and click Add a new Service Extension.

d Name the extension “iisredir2.dll”.

e Browse (using the add button) to <install>\bin\iisredir2.dll

f Select this file.

g Check the Extension allowed checkbox.

h Click OK.

5 Restart IIS by stopping then starting the IIS Service:

a In the Computer Management dialog, right-click the Internet Information Services
node and choose Restart IIS.

b In the Stop/Start/Reboot dialog, from the drop-down choose “Stop Internet
Services on <name of your IIS web server>"

54 AppServer Developer ’s Guide

IIS web server to Bor land web container connect iv i ty

c Click OK.

The web service unloads any dlls loaded by the IIS administrator.

d After shut down of the server is complete, right-click the Internet Information
Services node and choose Restart IIS.

e In the Stop/Start/Reboot dialog, choose “Start Internet Services on <your IIS web
server name>”.

f Click OK.

The web service reloads any dlls loaded by the IIS administrator.

6 Make sure the iisredir2 filter is active.

a In the Computer Management dialog, right-click the Default Web Site node and
choose Properties.

b In the Default Web Site Properties dialog, go to the ISAPI Filters tab.

c The iisredir2 filter should be marked with a green up-pointing arrow indicating
that it has been activated.

If not, then check the iisredir2.log file for details of why it may not have loaded
correctly. This file can be found in:

<install_dir>\etc\iisredir2\logs

d To exit, click OK.

7 Attempt to access the \examples context via the IIS web-server.

If you have followed the previous steps, the \examples context should be accessible
following a restart of your IIS Server.

Note In the example the port number of the web server should match that configured for
your site. For instance, if your IIS administrator has configured IIS to listen on port
6060, then a valid URL is:

http://localhost:6060/examples

Of course, if your IIS is configured as per Microsoft defaults, then it listens on port
80, in which case you may dispense with a port number. For example:

http://localhost/examples

IIS/IIOP redirector configuration

The IIS/IIOP redirector has a set of configuration files that you must update with web
server cluster information. By default, these IIOP redirector configuration files are
located in the following directory:

<install_dir>/etc/iisredir2/conf

The configuration files are:

Note Modifying either of these configuration files can be done so without starting up or
shutting down the IIS web server(s) or Borland web container(s) because the file is
automatically loaded by the IIOP redirector.

Table 5.6 IIS/IIOP redirector configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the corresponding web container(s) for
each cluster.

UriMapFile.properties Maps URI references to the clusters defined in the
WebClusters.properties file.

Chapter 5: Web server to web conta iner connect iv i ty 55

IIS web server to Borland web container connect iv i ty

Adding new clusters
The WebClusters.properties file tells the IIOP redirector:

■ the name of each available cluster: (ClusterList).

■ the web container identification.

■ whether to provide automatic load balancing (enable_loadbalancing) for a particular
cluster.

To add a new cluster, in the WebClusters.properties file:

1 add the name of the configured cluster to the ClusterList. For example:

ClusterList=cluster1,cluster2,cluster3

2 define each cluster by adding a line in the following format specifying the cluster
name, the required webcontainer_id attribute, and any additional attributes (see the
following Cluster definition attributes table). For example:

 <clustername>.webcontainer_id = <id> <attribute>

Note Failover and smart session are always enabled, for more information see “Clustering
web components” on page 61.

For example:

ClusterList=cluster1,cluster2,cluster3
cluster1.webcontainer_id = tc_inst1
cluster2.webcontainer_id = corbaloc::127.20.20.2:20202,:127.20.20.3:20202/

tc_inst2
cluster2.enable_loadbalancing = true
cluster3.webcontainer_id = tc_inst3
cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load balancing.

2 The second cluster employs the corbaloc naming scheme, and is also enabled for
load balancing.

3 The third uses the osagent naming scheme, but has the load balancing features
disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with active http
sessions attached to the web server (attached users), because requests to these “live”
sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take effect on
the next request. You do not need to restart your server(s).

Table 5.7 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object “bind” name or corbaloc string
identifying the web container(s) implementing
the cluster.

enable_loadbalancing = true|false no To enable load balancing, do not include this
attribute or include and set to true; load
balancing is enabled by default. To disable
load balancing, set to false indicating that this
cluster instance should not employ load-
balancing techniques.

Warning: Ensure that when entering the
enable_loadbalancing attribute you give it a legal
value (true or false).

56 AppServer Developer ’s Guide

IIS web server to Bor land web container connect iv i ty

Adding new web applications
Important By default, your web applications are not made available through IIS. In order to make

a web application available through IIS, you must add some information to the web
application descriptor. For step-by-step instructions on how to do so, see “Web Deploy
Paths” in the Management Console User's Guide.

The \examples context is useful for verifying your IIS/IIOP installation configuration,
however, for new applications that you have deployed to the Borland web container,
you need to do the following to make them available through the IIS web server. Use
the UriMapFile.properties file to map HTTP URI strings to web cluster names configured
in the WebClusters.properties file (see “Adding new clusters” on page 55).

■ In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and <clustername>
is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

 /examples = cluster1
 /examples/* = cluster1

 /petstore/index.jsp = cluster2
 /petstore/servlet/* = cluster2

In this example:

■ Any URI that starts with /examples will be forwarded to a web container running in
the “cluster1” web cluster.

■ URIs matching either /petstore/index.jsp or starting with /petstore/servlet will be
routed to “cluster2”.

Note With the URI mappings, the wild-card “*” is only valid in the last term of the URI and
may represent the follow cases:

■ the whole term (and all inferior references) as in /examples/*.

■ the filename part of a file specification as in /examples/*.jsp.

Note Modifications you make to the UriMapFile.properties file automatically take effect on
the next request. You do not need to restart your server(s).

If the WebCluster.properties or UriMapFile.properties is altered, then it is automatically
loaded by the IIOP redirector. This means that the adding and removing of web
applications and the altering of cluster configurations may be done so without starting
up or shutting down the IIS web server(s) or Borland web container(s).

Chapter 6: Java Session Service (JSS) conf igurat ion 57

C h a p t e r

Chapter 6Java Session Service (JSS)
configuration

The Java Session Service (JSS) is a service that stores information pertaining to a
specific user session. JSS is used to store session information for recovery in case of
container failure.

Borland provides an Interface Definition Language (IDL) interface for the use of JSS.
Two implementations are bundled, one using DataExpress and another with any JDBC
capable database.

JSS provides a mechanism to easily store session information in a database. For
example, in a shopping cart scenario, information about your session (the number of
items in the shopping cart, and such) is stored by the JSS. So, if a session is
interrupted by a Borland web container unexpectedly going down, the session
information is recoverable by another Borland web container instance through the JSS.
The JSS must be running on the local network. Any web container (within the cluster
configuration) finds the JSS and connects to it and continues session management.

For more information about the Borland web container, see “Borland web container
implementation” on page 36 .

Session management with JSS
The following diagrams show typical landscapes of web components and how session
information is managed by the JSS. The JSS session management is completely
transparent to the client.

In the JSS Management with a Centralized JSS and Two Web Containers diagram,
there are four virtual machines:

■ The first machine hosts the Apache web server,

■ two other machines contain an instance of the Borland web container,

■ and the fourth machine hosts the JSS and relational database (JDataStore or a
JDBC datasource).

58 AppServer Developer ’s Guide

Session management with JSS

If an interruption occurs between the Apache web server (Machine 1) which is passing
a client request to the first web container instance (Machine 2), then the second web
container instance (Machine 3) can continue processing the client request by retrieving
the session information from the JSS (Machine 4). The items in the Shopping Cart are
retained and the client request continues to be processed.

Figure 6.1 JSS Management with a Centralized JSS and Two Web Containers

In the JSS Management with Two Web Containers and a Centralized Backend
Datastore diagram, are the following four virtual machines:

■ The first machine hosts the Apache web server,

■ the two other machines contain an instance of the Borland web container as well as
each hosting the JSS,

■ and the fourth machine hosts the relational database (JDataStore or a JDBC
datasource).

If an interruption occurs between the Apache web server (Machine 1) which is passing
a client request to the first web container instance (Machine 2), then the second web
container instance (Machine 3) can continue processing the client request by retrieving
the session information from the JSS (Machine 4). The items in the Shopping Cart are
retained and the client request continues to be processed.

Chapter 6: Java Session Service (JSS) conf igurat ion 59

Managing and conf igur ing the JSS

Figure 6.2 JSS Management with Two Web Containers and a Centralized Backend Datastore

Managing and configuring the JSS
The JSS configuration is defined through its properties. The Borland AppServer
(AppServer) is designed to work with any J2EE certified JDBC 2 driver; however,
AppServer is only certified with and supported on JDataStore and Oracle.

■ If JSS is configured to use a JDataStore file, the database tables are automatically
created by JSS.

■ If JSS is configured to use a JDBC datasource, three database tables needs to be
pre-created in the backend database by your system administrator using the
following SQL statements:

CREATE TABLE "JSS_KEYS" ("STORAGE_NAME" java_string primary key, "KEY_BASE"
java_float);
CREATE TABLE "JSS_WEB" ("KEY" java_string primary key, "VALUE"
java_serializable, "EXPIRATION" java_float);
CREATE TABLE "JSS_EJB" ("KEY" java_string primary key, "VALUE"
java_serializable, "EXPIRATION" java_float);

Note When using the above SQL statements, make sure to substitute the equivalent data
types for your database.

The JSS can run as part of the Partition side-by-side with other Partition services.

60 AppServer Developer ’s Guide

Managing and conf igur ing the JSS

Configuring the JSS Partition service

As a “Partition service”, JSS configuration information is located in each Partition's data
directory in the partition.xml file. By default, this file is located in the following
directory:

<install_dir>/var/domains/base/configurations/<configuration_name>/mos/
<partition_name>/adm/properties.

For example, for a Partition named “MyPartition”, by default the JSS configuration
information is located in:

<install_dir>/var/domains/base/configurations/<configuration_name>/mos/
mypartition/adm/properties/partition.xml

For more information see “<service> element” on page 344.

Otherwise, for the location of a Partition data directory, go to the configuration.xml file
located in:

<install_dir>/var/domains/base/configurations/<configuration_name>/

and search for the Partition Managed Object directory attribute:

<partition-process directory=

For a listing and description of the session service (JSS) level properties, see “Java
Session Service (JSS) Properties” on page 358.

Chapter 7: Cluster ing web components 61

C h a p t e r

Chapter7Clustering web components
This section discusses the clustering of multiple web components which includes
Apache web servers and the Tomcat-based Borland web containers. In a typical
deployment scenario, you can use multiple Borland Partitions to work together in
providing a scalable n-tier solution.

Each Borland Partition can have the same or different services. Depending on your
clustering scheme, these services can be turned off or on. In any case, leveraging
these resources together or clustering, makes deployment of your web application
more efficient. Clustering of the web components involves session management, load
balancing and fault tolerance (failover).

Stateless and stateful connection services
Interaction between the client and server involves two types of services: stateless and
stateful. A stateless service does not maintain a state between the client and the
server. There is no “conversation” between the server and the client while processing a
client request. In a stateful service, the client and server maintains a dialog of
information.

For information about the location of the Borland web container configuration files, see
“Borland web container implementation” on page 36.

The Borland IIOP connector
The IIOP connector is software that is designed to allow an http web server to redirect
requests to the Borland web container. The Borland AppServer (AppServer) includes
the IIOP connector for the Apache 2.2 and Microsoft Internet Information Server(IIS)
versions 5.0, 5.1 and 6.0 web servers. The job of handling the redirection of http
requests is split between two components:

■ a native library running on the web server.

■ a jar file running of the web container.

62 AppServer Developer ’s Guide

The Borland I IOP connector

The AppServer supports clustering of web components. The Borland IIOP connector
uses the IIOP protocol. The following unique features are provided:

■ Load Balancing

■ Fault tolerance (failover)

■ Smart Session handling

Load balancing support

Load balancing is the ability to direct http requests across a set of web containers. This
enables the system administrator to spread the load of the http traffic across multiple
web containers. Load balancing techniques can significantly improve the scalability of
a given system. The Borland IIOP connector can be configured to offer load balancing
in the following two ways:

■ OSAgent based load balancing

■ Corbaloc based load balancing

OSAgent based load balancing
This is simple to achieve and requires the least amount of configuration. In this setup,
you start a number of Borland web container instances and name the IIOP connector in
those Borland web container with the same name.

For more information about setting the name attribute, see “Modifying the Borland web
container IIOP configuration” on page 41.

Apache does load balancing across Borland web container instances for each request.
Essentially, Apache does a new bind for each request. The newly started Borland web
container containers can be dynamically discovered.

Important All Borland web containers and Apache must be running in the same ORB domain;
osagent based load balancing is not possible in cases where you are using different
Partitions on different ORB domains.

Corbaloc based load balancing
This approach uses a static configuration of the web containers that make up the
cluster. However, it can span ORB domains. In this case you specify the locations
where the web containers are running using the CORBA corbaloc semantics. For
example:

corbaloc::172.20.20.28:30303,:172.20.20.29:30304/tc_inst1

In the above corbaloc example string:

■ two TCP/IP endpoints are configured for a web container named “tc_inst1”

■ a web container with an object name of “tc_inst1” is running on host 172.20.20.28
with its IIOP connector at port 30303

■ there is another web container running with the same object name on host
172.20.20.29 with it's IIOP connector listening on port 30304.

For more information about setting the port attribute, see “Modifying the Borland web
container IIOP configuration” on page 41.

The web server side IIOP connector converts this corbaloc string into CORBA objects
using orb.string_to_object and uses the underlying features of VisiBroker to load
balance across these “endpoints” specified in the corbaloc string. There can be any
number of endpoints.

Note All of the listed web containers do not have to be running for the load balancing to
function. The ORB simply moves on to the next endpoint until a valid connection is
obtained.

Chapter 7: Cluster ing web components 63

The Borland I IOP connector

However, corbaloc based load balancing does require the web container's IIOP
connector be started at a known port and be available for corbaloc kind of object
naming. The following is a snippet of the web container IIOP connector configuration
that is required:

<Connector className="org.apache.catalina.connector.iiop.IiopConnector"
name="tc_inst1" port="30303"/>

This snippet starts the IIOP connector at port 30303 and names the Borland web
container object “tc_inst1”. The port attribute is optional. However, if you do not
specify the port, a random port gets picked up by the ORB and you will be unable to
use the corbaloc scheme to locate the object.

Your organization can impose policies on how to name web containers and the IIOP
port or port ranges used.

Fault tolerance (failover)

Failover using osagent bind naming and corbaloc naming is automatic in both cases. In
corbaloc naming, the next configured endpoint in the corbaloc name string is tried and
so on in a cyclic fashion until all endpoints in the corbaloc string are tried.

For osagent bind naming, the osagent automatically redirects the client to an
alternative (but equivalent) object instance.

Note If there is no object available to the osagent, or none of the endpoints specified in the
corbaloc name string are running, then the http request fails.

Smart session handling

When there is no session involved, the IIOP connector can do indiscriminate round
robining. However, when sessions are involved, it is important that Apache routes its
session requests to the web container that initiated the session.

In other http-to-servlet redirectors (and in the earlier version of the IIOP connector) this
is achieved by maintaining a list of sessions-ids-to-web-container-id's in the web
server's cache. This presents numerous issues with maintaining the state of this list.
This list can be very large and wasteful of system resources. It can become out of date,
for example, sessions can timeout and, in general, is an inefficient and problematic
facet of the web server to web container redirection paradigm.

The IIOP connector resolves this by utilizing a technique called “smart session ids”.
This is where the IOR of the web container is embedded within the session id returned
by the web container as part of the session cookie (or URL in the case of url-rewriting).

When the web container generates the session ID, it first determines if the request
originated from the IIOP connector. If so, it obtains the stringified IOR of the IIOP
connector through which the request is received. The web container generates the
normal session ID as it always generates, but pre-fixes the stringified IOR in front of it.
For example:

Stringified IOR: IOR:xyz
Normal session ID: abc
The new session ID: xyz_abc

In the case where the original web container has stopped running, failover is employed
to locate another instance of an equivalent web container.

In the case of corbaloc identified web containers, where automatic osagent failover is
not guaranteed, the IIOP connector performs a manual “rebind” to obtain a valid
reference to the running equivalent web container.

64 AppServer Developer ’s Guide

Sett ing up your web conta iner wi th JSS

Obviously, if there are no other running instances of the web container, then the http
request fails.

The new web container obtains the old state from the session database and continues
to service the request. When returning the response the new web container changes
the session ID to reflect its IOR. This should be transparent to Apache as it does not
look at the session ID on the way back to the browser client.

Setting up your web container with JSS
To properly failover when sessions are involved, you must set up the web containers
with the same JSS backend.

Modifying a Borland web container for failover

In the Borland web container configuration file, server.xml, you need to add an entry
similar to the following code sample for each web application. For more information
about the server.xml file, see “Modifying the Borland web container IIOP configuration”
on page 41.

<Manager className="org.apache.catalina.session.PersistentManager">
 <Store className="org.apache.catalina.session.BorlandStore"
 storeName="jss_factory"/>
 </Manager>

The preceding code specifies the use of a PersistentManager with a storage class
BorlandStore. It also specifies the connection to a BorlandStore factory named
jss_factory. There must be a JSS with that factory name running in the local network.

For a description of jss.factoryName, see “Java Session Service (JSS) Properties” on
page 358.

Session storage implementation

There are two methods of implementing session storage for your clustered web
components:

■ Programmatic implementation

■ Automatic implementation

Programmatic implementation
The Programmatic implementation assumes that each time you change the session
attributes, you call session.SetAttribute() to notify the Borland web container that you
have changed the session attributes.

This is a common operation in servlet development and when executed, there is no
need to modify the server.xml file. Each time you change the session data, it is
immediately written to the database through the JSS. Then if your web container
instance unexpectedly goes down, the next web container instance designated to pick
up the session accesses the session data. In essence, the Programmatic
implementation guarantees to save changes immediately.

Chapter 7: Cluster ing web components 65

Using HTTP sessions

Automatic implementation
The Automatic implementation lets you store the session data periodically to JSS,
regardless of whether the data has changed. By using this implementation, you do not
need to notify the web container that the session attribute has changed.

For example, you can change state without calling setAttribute () as depicted in the
following code example:

Object myState = session.getAttribute("myState");

// Modify mystate here and do not call setAttribute ()

Your configuration file, server.xml, will have the following code snippet:

<Manager className=
"org.apache.catalina.session.PersistentManager"
 maxIdleBackup="xxx">
<Store className=
"org.apache.catalina.session.BorlandStore"
storeName="jss_factory">
</Manager>

where xxx is the time interval in seconds that you want the session data to be stored.

For more information about the server.xml file, see “Modifying the Borland web
container IIOP configuration” on page 41.

Note When using the Automatic implementation, you need to consider the following
limitations:

1 If the web container goes down between two save intervals, the latest changes are
not visible for the next web container instance. This is an important concern when
defining the time interval value for the heartbeat.

2 The data is saved at the specified time interval no matter if the data is changed or
not. This can be wasteful if a session frequently does not change and the defined
time interval value is set too low.

Using HTTP sessions
The HyperText Transfer Protocol (HTTP) is a stateless protocol. In the client/server
paradigm, it means that all client requests that the Apache web server receives are
viewed as independent transactions. There is no relationship between each client
request. This is a typical stateless connection between the client and the server.

However, there are times when the client deems it necessary to have a session
concept for transaction completeness. A session concept typically means having a
stateful interaction between the client and server. An example of the session concept is
shopping online with an interactive shopping cart. Every time you add a new item into
your shopping cart, you expect to see that new item added to a list of previously added
items. HTTP is not usually regarded for handling client request in a stateful manner.
But it can.

AppServer supports the HTTP sessions through two methods of implementations:

■ Cookies: The web server send a cookie to identify a session. The web browser
keeps sending back the same cookie with future requests. This cookie helps the
server-side components to determine how to handle the transaction for a given
session.

■ URL rewriting: The URL that the user clicks on is dynamically rewritten to have
session information.

66 AppServer Developer ’s Guide

Chapter 8: Apache web server to CORBA server connect iv i ty 67

C h a p t e r

Chapter8Apache web server to CORBA server
connectivity

The Apache IIOP connector can be configured to enable your web server to
communicate with any standalone CORBA server implementing the ReqProcessor
Interface Definition Language (IDL). This means you can easily put a web-based front-
end on almost any CORBA server.

For more information, see “Installing Borland AppServer on Windows” or “Installing
Borland AppServer on Solaris and HP-UX” in the Installation Guide.

Web-enabling your CORBA server
The following steps are required to make your CORBA server accessible over the
internet:

■ Determine the urls for your CORBA methods

■ Implement the ReqProcessor IDL

Determining the urls for your CORBA methods

In order to make your CORBA server accessible over the internet, you need to:

1 Decide what business operations you want to expose.

2 Provide a url for those business operations (CORBA methods).

For example, your banking company's CORBA server is implementing the methods:
debit(), credit(), and balance() and you want to expose these business methods to
users through the internet. You need to map each of the CORBA server operations to
what the user types in a browser.

Your bank company web site is http://www.bank.com.

68 AppServer Developer ’s Guide

Web-enabl ing your CORBA server

To provide a url for each of the business operations you want to expose to the internet
users:

1 Append the web application name to the company root url.

For example:

http://www.bank.com/accounts

where accounts is the web application name.

Important By default, your web application is not made available through the web server. In
order to make it available through Apache, you must add some information to the
web application descriptor. For step-by-step instructions on how to do so, see “Web
Deploy Paths” in the Management Console User's Guide.

2 Append a name that is meaningful to users for the method in the web application
that you want to expose.

For example:

http://www.bank.com/accounts/balance

where balance is the meaningful name for the balance() method.

Implementing the ReqProcessor IDL in your CORBA server

The ReqProcessor IDL allows communication between a web server and a CORBA
server using IIOP. Once you implement the ReqProcessor IDL in your CORBA server,
http requests can be passed from your web server to your CORBA server.

In implementing this IDL, you must expect the request url as part of the HttpRequest and
invoke the appropriate CORBA method in response to that url.

IDL Specification for ReqProcessor Interface

*/
module apache {
 struct NameValue {
 string name;
 string value;
 };
 typedef sequence<NameValue> NVList;
 typedef sequence<octet> OctetSequence_t;

 struct HttpRequest {
 string authType; // auth type (BASIC,FORM etc)
 string userid; // username associated with request
 string appName; // application name (context path)
 string httpMethod; // PUT, GET etc,
 string httpProtocol; // protocol HTTP/1.0, HTTP/1.1 etc
 string uri; // URI associated with request
 string args; // query string associated with this request
 string postData; // POST (form) data associated with request
 boolean isSecure; // whether client specified https or http
 string serverHostname; // server hostname specified with URI

string serverAddr; // [optionally] server IP address specified with URI
 long serverPort; // server port number specified with URI

NVList headers; // headers associated with this request format:
header-name:value

 };

Chapter 8: Apache web server to CORBA server connect iv i ty 69

Conf igur ing your Apache web server to invoke a CORBA server

 struct HttpResponse {
 long status; // HTTP status, OK etc.
 boolean isCommit; // server intends to commit this request
 NVList headers; // header array
 OctetSequence_t data; // data buffer
 };

interface ReqProcessor {
 HttpResponse process(in HttpRequest req);
 };
};

The process() method
The ReqProcessor IDL includes the process() method which your Apache web server
calls for internet requests. The web server passes the user's request as an argument to
the process() method. Basically, the input for the process() method is a request from a
browser: HttpRequest, and the output for the process() method is an html page
contained in: HttpResponse.

Configuring your Apache web server to invoke a CORBA server
Before an Apache web server can invoke a CORBA server, you must modify the lines
of code that pertain to the IIOP connector in the httpd.conf file. For detailed
information, see “Modifying the IIOP configuration in Apache” on page 43.

Figure 8.1 Connecting from Apache to a CORBA server

Apache IIOP configuration

The Apache IIOP connector has a set of configuration files that you must update with
web server cluster information. By default, these IIOP connector configuration files are
located in:

<install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_managedobject_name>/conf

Note “cluster” is used to represent a CORBA object instance(s) that is known to the system
by a single name or URI. The IIOP connector is able to load-balance across multiple
instances, hence the term “cluster” is used.

70 AppServer Developer ’s Guide

Conf igur ing your Apache web server to invoke a CORBA server

The two configuration files are:

Modifying either of these configuration files can be done so without starting up or
shutting down the Apache web server(s) or CORBA server(s) because the file is
automatically loaded by the IIOP connector.

Adding new CORBA servers (clusters)
CORBA servers are known as “clusters” to the IIOP connector. To configure your
CORBA server for use with the IIOP connector, you need to define and add a “cluster”
to the WebClusters.properties file.

The WebClusters.properties file tells the IIOP connector:

■ The name of each available cluster (ClusterList).

■ The web container identification.

■ Whether to provide automatic load balancing (enable_loadbalancing) for a particular
cluster.

To add a new cluster:

■ In the WebClusters.properties file:

a add the name of the configured cluster to the ClusterList. For example:

ClusterList=cluster1,cluster2,cluster3

b define each cluster by adding a line in the following format specifying the cluster
name, the required webcontainer_id attribute, and any additional attributes (see
the following Cluster definition attributes table). For example:

<clustername>.webcontainer_id = <id> <attribute>

Note Failover and smart session are always enabled, see “Clustering web components” on
page 61.

Table 8.1 Apache IIOP connection configuration files

IIOP configuration file Description

WebClusters.properties Specifies the cluster(s) and the corresponding CORBA server(s) for
each cluster.

UriMapFile.properties Maps URI references to the clusters defined in the
WebClusters.properties file.

Table 8.2 Cluster definition attributes

Attribute Required Definition

webcontainer_id yes the object “bind” name or corbaloc string identifying the web
container implementing the cluster.

enable_loadbalancing no Load balancing is enabled by default; to enable load
balancing, do not include this attribute or include and set to
true. To disable load balancing, set to false indicating that
this cluster instance should not employ load-balancing
techniques.

Warning: Ensure that when entering the
enable_loadbalancing attribute you give it a legal value (true
or false).

Chapter 8: Apache web server to CORBA server connect iv i ty 71

Conf igur ing your Apache web server to invoke a CORBA server

For example:

ClusterList=cluster1,cluster2,cluster3
cluster1.webcontainer_id = tc_inst1
cluster2.webcontainer_id = corbaloc::127.20.20.2:20202,:127.20.20.3:20202/
tc_inst2

cluster2.enable_loadbalancing = true
cluster3.webcontainer_id = tc_inst3
cluster3.enable_loadbalancing = false

In the above example, the following three clusters are defined:

1 The first, uses the osagent naming scheme and is enabled for load balancing.

2 The second cluster employs the corbaloc naming scheme, and is also enabled for
load balancing.

3 The third uses the osagent naming scheme, but has the load balancing features
disabled.

Note To disable use of a particular cluster, simply remove the cluster name from the
ClusterList list. However, we recommend you do not remove clusters with active http
sessions attached to the CORBA server (attached users), because requests to these
“live” sessions will fail.

Note Modifications you make to the WebClusters.properties file automatically take effect on
the next request. You do not need to restart your server(s).

Mapping URIs to defined clusters
Once the cluster entry is defined, all that remains is to identify which HTTP requests
received by the web server need to be forwarded to your CORBA server. Use the
UriMapFile.properties file to map http uri strings to web cluster names (CORBA
instances) configured in the WebClusters.properties file.

■ In the UriMapFile.properties file, type:

<uri-mapping> = <clustername>

where <uri-mapping> is a standard URI string or a wild-card string, and <clustername>
is the cluster name as it appears in the ClusterList entry in the
WebClusters.properties file.

For example:

/examples = cluster1
/examples/* = cluster1

/petstore/index.jsp = cluster2
/petstore/servlet/* = cluster2

In this example:

■ Any URI that starts with /examples will be forwarded to a CORBA server running in
the “cluster1” web cluster.

■ URIs matching either /petstore/index.jsp or starting with /petstore/servlet will be
routed to “cluster2”.

Note With the URI mappings, the wild-card “*” is only valid in the last term of the URI and
may represent the follow cases:

■ the whole term (and all inferior references) as in /examples/*.

■ the filename part of a file specification as in /examples/*.jsp.

Note Modifications you make to the UriMapFile.properties file automatically take effect on
the next request. You do not need to restart your server(s).

72 AppServer Developer ’s Guide

Conf igur ing your Apache web server to invoke a CORBA server

If the WebCluster.properties or UriMapFile.properties is altered, then it is automatically
loaded by the IIOP connector. This means that modifications to either of these files can
be done so without starting up or shutting down the web server(s) or CORBA server(s).

Chapter 9: Bor land AppServer Web Services 73

C h a p t e r

Chapter9Borland AppServer Web Services
The Borland AppServer (AppServer) provides an out-of-the-box web services
capability in all Borland Partitions.

Web Services Overview
A Web Service is an application component that you can describe, publish, locate, and
invoke over a network using standardized XML messaging. Defined by new
technologies like Simple Object Access Protocol (SOAP), Web Services Description
Language (WSDL), and Universal Discovery, Description and Integration (UDDI), this
is a new model for creating e-business applications from reusable software modules
that are accessed on the World Wide Web.

Web Services Architecture

The standard Web Service architecture consists of the three roles that perform the web
services publish, find, and bind operations:

■ The Service Provider registers all available web services with the Service Broker.

■ The Service Broker publishes the web services for the Service Requestor to access.
The information published describes the web service and its location.

■ The Service Requestor interacts with the Service Broker to find the web services.
The Service Requestor can then bind or invoke the web services.

The Service Provider hosts the web service and makes it available to clients via the
Web. The Service Provider publishes the web service definition and binding
information to the Universal Description, Discovery, and Integration (UDDI) registry.
The Web Service Description Language (WSDL) documents contain the information
about the web service, including its incoming message and returning response
messages.

The Service Requestor is a client program that consumes the web service. The Service
Requestor finds web services by using UDDI or through other means, such as email. It
then binds or invokes the web service.

74 AppServer Developer ’s Guide

Web Services and Part i t ions

The Service Broker manages the interaction between the Service Provider and Service
Requestor. The Service Broker makes available all service definitions and binding
information. Currently, SOAP (an XML-based, messaging and encoding protocol
format for exchange of information in a decentralized, distributed environment) is the
standard for communication between the Service Requestor and Service Broker.

Figure 9.1 Standard Web Services Architecture

Web Services and Partitions
All AppServer Partitions are configured to support web services. You simply need to
start a Partition and deploy WARs (or EARs containing WARs) containing web
services.

Additionally, you can expose a previously deployed stateless session bean as a web
service. For more information, see “Export EJB as a Web Service Wizard” in the
Management Console User's Guide.

The Borland web services is based on the Apache Axis technology and supports
dispatch of incoming SOAP web services requests to the following “Web Service
providers”:

■ EJB providers

■ RPC/Java providers

■ MDB/Java providers

Chapter 9: Borland AppServer Web Serv ices 75

Web Service providers

Figure 9.2 Borland Web Services Architecture

Web Service providers
The Borland web services engine includes a number of providers. A provider is the link
that connects a client web service request to the user's class on the server side.

All providers do the following:

■ Create an instance of an object on which they can invoke methods. The exact way
of creating this object differs from provider to provider.

■ Invoke the methods on that object and pass all the parameters that the XML client
sent.

■ Pass the return value to the Axis Runtime engine, which then converts it to XML and
sends it back to the client.

Specifying web service information in a deploy.wsdd file

When installing a new web service, you must name the web service and specify which
provider the service is going to use. Each provider takes different parameters. The
following describes the service providers and the required parameters for each.

Java:RPC provider
This provider assumes that the class serving the web service is in the application
archive (WAR). When a web service request arrives, the RPC provider:

1 Loads the Java class associated with the service.

2 Creates a new instance of the object.

3 Invokes the specified method using reflection.

76 AppServer Developer ’s Guide

Web Service providers

The parameters are:

■ className: The name of the class that is loaded when a request arrives on this
service.

■ allowedMethods: The methods that are allowed to be invoked on this class. The class
can have more methods than listed here; the methods listed here are available for
remote invocation.

Example:

<service name="Animal" provider="java:RPC">
 <parameter name="className" value="com.borland.examples.web
services.java.Animal"/>
 <parameter name="allowedMethods" value="talk sleep"/>
</service>

Java:EJB provider
This provider assumes that the class serving the web service is an EJB.

Note You can expose a previously deployed stateless session bean as a web service. For
more information, see “Export EJB as a Web Service Wizard” in the Management
Console User's Guide.

When a web service request arrives:

1 The EJB provider looks up the bean name in JNDI initial context.

2 Locates the home class and creates a bean.

3 Invokes the specified method using reflection on the EJB stub.

The actual EJB itself must be deployed to any Partition before a client can access it.

The essential parameters are:

■ beanJndiName: The name of the bean in JNDI.

■ homeInterfaceName: The fully specified class of the home interface. This class must
be present in the WAR.

■ className: The name of the EJB remote interface.

■ allowedMethods: The methods that are allowed to be invoked on this EJB, separated
by spaces. The EJB can have more methods than listed here; the methods listed
here are available for remote invocation.

Example:

<service name="Animal" provider="java:EJB">
<parameter name="beanJndiName" value="Animal"/>
<parameter name="homeInterfaceName"

value="com.borland.examples.webservices.ejb.AnimalHome"/>
<parameter name="className"

value="com.borland.examples.webservices.ejb.Animal"/>
<parameter name="allowedMethods" value="talk sleep"/>

</service>

Chapter 9: Borland AppServer Web Serv ices 77

How Borland Web Services work

How Borland Web Services work
1 The web services server receives an XML SOAP message from a client.

2 It then:

a Interprets the SOAP message.

b Extracts the SOAP service name.

c Determines the appropriate provider who can respond to this service.

3 The mapping between the SOAP service and the type of provider is obtained from
the Web Service Deployment Descriptor (WSDD) as part of WAR deployment.

4 The message is then passed onto the right provider. For information about the
different ways in which each provider deals with the message, see “Java:RPC
provider” on page 75 and “Java:EJB provider” on page 76.

Web Service Deployment Descriptors
Web services are deployed as part of a WAR. A single WAR can contain multiple web
services. You can also deploy multiple WARs with each containing many web services.

The difference between a normal WAR and a WAR containing web services is the
presence of an extra descriptor named server-config.wsdd in the WEB-INF directory. The
server-config.wsdd file provides configuration information (the name of the web
service, the provider, any corresponding Java classes and allowed methods).

There is one WSDD file per WAR and it contains information about all available web
services within that WAR.

The typical component structure of a WAR containing web services has the following
elements:

■ WEB-INF/web.xml

■ WEB-INF/server-config.wsdd

■ WEB-INF/classes/<classes corresponding to your web services are located here>

■ WEB-INF/lib/<classes corresponding to your web services are located here in the
packed JAR form>

The WEB-INF/lib also contains some standard JARs that are necessary for the Axis
Runtime engine.

To publish your Java classes as a web service, use the WSDD format to define the
items that you want to deploy to the Partition. For example, an entry corresponding to a
service named “BankService” can be:

 <service name="BankService" provider="java:RPC">
 <parameter name="allowedMethods" value="create_account query_account"/>
 <parameter name="className" value="com.fidelity.Bank"/>
 </service>

In this case, the com.fidelity.Bank Java class links to web service BankService. The
class com.fidelity.Bank can have a number of public methods, but only the methods
create_account and query_account are available through the web service.

78 AppServer Developer ’s Guide

Packaging Web Service Appl icat ion Archives

Creating a server-config.wsdd file

To create the server-config.wsdd:

■ Use JBuilder to generate the deployment descriptor as part of your WAR.

or

1 Use a text editor to write a deploy.wsdd file. Refer to the deploy.wsdd file in
<install_dir>/examples/webservices/java/server.

2 Run the Tools Overview with the deploy.wsdd file by typing:

prompt>java org.apache.axis.utils.Admin server deploy.wsdd

The server-config.wsdd file is packaged as part of the WAR.

Viewing and Editing WSDD Properties

You can view and edit the properties of any web service deployment descriptor
(WSDD) (server-config.wsdd file) that is packaged in a WAR file using either the
Borland Management Console or the DDEditor. For more information, see “Viewing
Web Services WSDD properties” or “Web Services” in the Management Console
User's Guide.

Packaging Web Service Application Archives
To Create a WAR that can be deployed to the web services archive:

1 Make sure your web service classes are in WEB-INF/classes or WEB-INF/lib.

2 Copy the Axis toolkit libraries to WEB-INF/lib. The Axis libraries can be found in:
<install_dir>/lib/axis

3 Copy the web.xml necessary for the Axis tool kit to WEB-INF directory. The web.xml
can be found in: <install_dir>/etc/axis

4 Create a deploy.wsdd that has deployment information about your web services.

5 Run the Axis Admin tool on this deploy.wsdd to generate the server-config.wsdd as
follows:

java org.apache.axis.utils.Admin server deploy.wsdd

6 Copy this server-config.wsdd to WEB-INF

7 JAR your web application into a WAR file.

Borland Web Services examples
To help you get started with developing and deploying web services, we provide
samples and examples for the Borland web services engine. These examples are
included in your AppServer installation at:

<install_dir>/examples/webservices/

The examples that illustrate the different web service providers are located in the web
services examples directory in the Java, EJB, MDB or VisiBroker folder.

Your AppServer installation also includes several Apache Axis samples in:

<install_dir>/examples/webservices/axis/samples/

Chapter 9: Borland AppServer Web Serv ices 79

Borland Web Services examples

Using the Web Service provider examples

The AppServer examples must be built before they are deployed and deployed before
they are run. Building the examples involves generating the necessary WSDL files and
packaging the application's code and descriptors into a deployable unit, in this case a
WAR. This WAR can then be deployed to a Borland Partition. The application is run by
invoking its client from a command-line. Building and running the examples is
automated through the use of the Apache Ant utility, while deployment is performed
using tools provided with AppServer.

Steps to build, deploy, and run the examples
1 Build. You can build all of the examples simultaneously or build each one

individually. To build them all simultaneously, navigate to the:

/examples/webservices/

directory and execute the Ant command. For example:

C:/BDP/examples/webservices>Ant

builds all the examples.

To build an individual example, navigate to its specific directory and execute the Ant
command.

For example:

C:/BDP/examples/webservices/java>Ant

builds only the Java Provider example.

2 Deploy. You deploy the examples to a running instance of AppServer. You can use
the ant deploy target, or any of the following to deploy your WAR and JAR:

■ iastool command-line utility; for more information see “iastool command-line
utility” on page 311.

■ Deployment Wizard; see “Deployment Wizard” in the Management Console
User's Guide.

3 Run. To run an example, navigate to its directory and use the ant run-client
command.

For example, to run the Java Provider client:

C:/BDP/examples/webservices/java>Ant run-client

Apache Axis Web Service samples

The Apache Axis web service samples are already deployed in the axis-samples.war
file present in the Borland Partition. Since these are already pre-deployed, you do not
need to use the Apache Axis deploy commands suggested in the Apache Axis User's
Guide.

The Apache Axis User's Guide is also provided with the AppServer installation and is
located in:

<install_dir>/doc/axis/user-guide.html

These samples illustrate the capabilities of Axis. They are unmodified from the original
Apache Axis implementation and are not guaranteed to run.

80 AppServer Developer ’s Guide

Tools Overview

Tools Overview
This section describes the various tools used in examples.

Apache ANT tool

The Apache ANT utility is a platform-independent, java-based build tool used to build
the examples.

The XML build script build.xml is used to drive the tool. This build.xml file describes
the various targets available for a project and the commands executed in response to
those targets. The AppServer conveniently provides all necessary JARs and scripts to
run the Apache Ant tool.

Java2WSDL tool

The Java2WSDL is an Apache Axis utility class that generates WSDL corresponding to
a Java class. This class can accept a number of command line arguments. You can get
the full usage help by running this utility without arguments as follows:

java org.apache.axis.wsdl.Java2WSDL

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\axis
directory, before you run the following command.

WSDL2Java tool

The WSDL2Java is an Apache Axis utility class that generates Java classes from a
WSDL file. This tool can generate java stubs (used on the client side), or java skeletons
(used on the server side). The generated files make it easy to develop your client or
server for a given WSDL.

This class can accept a number of command line arguments. You can get the full
usage help by running this utility without arguments as follows:

java org.apache.axis.wsdl.WSDL2Java

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\axis
directory, before you run the following command.

Axis Admin tool

The Apache Admin tool is a utility class that generates WAR level global configuration
files based on deployment information specific to some web services.

The input to this utility is a XML file (typically named deploy.wsdd) containing
deployment information about one or more web services. The Apache Admin utility
adds some global definitions that are necessary and writes an output file. Use this tool
as follows:

java org.apache.axis.utils.Admin server|client deployment-file

Note You must set your CLASSPATH to include all jar files in the <install-dir>\lib\axis
directory, before you run the command.

This tool generates server-config.wsdd or client-config.wsdd based on what option
you choose.

Chapter 10: Wri t ing enterpr ise bean cl ients 81

C h a p t e r

Chapter10Writing enterprise bean clients

Client view of an enterprise bean
A client of an enterprise bean is an application—a stand-alone application, an
application client container, servlet, or applet—or another enterprise bean. In all cases,
the client must do the following things to use an enterprise bean:

■ Locate the bean's home interface. The EJB specification states that the client
should use the JNDI (Java Naming and Directory Interface) API to locate home
interfaces.

■ Obtain a reference to an enterprise bean object's remote interface. This involves
using methods defined on the bean's home interface. You can either create a
session bean, or you can create or find an entity bean.

■ Invoke one or more methods defined by the enterprise bean. A client does not
directly invoke the methods defined by the enterprise bean. Instead, the client
invokes the methods on the enterprise bean object's remote interface. The methods
defined in the remote interface are the methods that the enterprise bean has
exposed to clients.

Initializing the client

The SortClient application imports the necessary JNDI classes and the SortBean home
and remote interfaces. The client uses the JNDI API to locate an enterprise bean's
home interface.

A client application can also use logical names (as recommended in the various J2EE
specifications) to access resources such as database connections, remote enterprise
beans, and environment variables. The container, per the J2EE specification, exposes
these resources as administered objects in the local JNDI name space (that is,
java:comp/env).

82 AppServer Developer ’s Guide

Cl ient v iew of an enterpr ise bean

Locating the home interface

A client locates an enterprise bean's home interface using JNDI, as shown in the code
sample below. The client first needs to obtain a JNDI initial naming context. The code
instantiates a new javax.naming.Context object, which in our example it calls
initialContext. Then, the client uses the context lookup() method to resolve the name to
a home interface. Note that the initialization of the initial naming context factory is EJB
container/server specific.

A client application can also use logical names to access a resource such as the home
interface. See “Initializing the client” on page 81 for more information.

The context's lookup() method returns an object of type java.lang.Object. Your code
must cast this returned object to the expected type. The following code sample shows
a portion of the client code for the sort example. The main() routine begins by using the
JNDI naming service and its context lookup method to locate the home interface. You
pass the name of the remote interface, which in this case is sort, to the
context.lookup() method. Notice that the program eventually casts the results of the
context.lookup() method to SortHome, the type of the home interface.

// SortClient.java
import javax.naming.InitialContext;
import SortHome; // import the bean's home interface
import Sort; // import the bean's remote interface
public class SortClient {

ƒ
public static void main(String[] args) throws Exception {

javax.naming.Context context;

// preferred JNDI context lookup
// get a JNDI context using a logical JNDI name in the local JNDI context,

i.e.,ejb-ref
javax.naming.Context context = new javax.naming.InitialContext();
Object ref = context.lookup("java:comp/env/ejb/Sort");
SortHome home = (SortHome) javax.rmi.PortableRemoteObject.narrow

(ref, SortHome.class);
Sort sort = home.create();
... //do the sort and merge work
sort.remove();

}
}

The main() routine of the client program throws the generic exception coded this way,
the SortClient program does not have to catch any exceptions that might occur, though
if an exception occurs it will terminate the program.

Obtaining the remote interface

Now that we have obtained the home interface of an enterprise bean we can get a
reference to the enterprise bean's remote interface. To do this, we use the home
interface's create or finder methods. The exact method to invoke depends on the type
of the enterprise bean and the methods the enterprise bean provider has defined in the
home interface.

Chapter 10: Wri t ing enterpr ise bean cl ients 83

Cl ient v iew of an enterpr ise bean

For example, the first code sample shows how SortClient obtains a reference to the
Sort remote interface. Once SortClient obtains the reference to the home interface and
casts it to its proper type (SortHome), then the code can create an instance of the bean
and call its methods. It calls the home interface's create() method, which returns a
reference to the bean's remote interface, Sort. (Because SortBean is a stateless
session bean, its home interface has only one create() method and that method by
definition takes no parameters.) SortClient can then call the methods defined on the
remote interface—sort() and merge()—to do its sorting work. When the work finishes,
the client calls the remote interface's remove() method to remove the instance of the
enterprise bean.

Session beans
A client obtains a reference to a session bean's remote interface by calling one of the
create methods on the home interface.

All session beans must have at least one create() method. A stateless session bean
must have only one create() method, and that method must have no arguments. A
stateful session bean can have one create() method, and may have additional
create() methods whose parameters vary. If a create() method does have parameters,
the values of these parameters are used to initialize the session bean.

The default create() method has no parameters. For example, the sort example uses a
stateless session bean. It has, by definition, one create() method that takes no
parameters:

Sort sort = home.create();

The cart example, on the other hand, uses a stateful session bean, and its home
interface, CartHome, implements more than one create() method. One of its create()
methods takes three parameters, which together identify the purchaser of the cart
contents, and returns a reference to the Cart remote interface. The CartClient sets
values for the three parameters—cardHolderName, creditCardNumber, and
expirationDate—then calls the create() method. This is shown in the code sample
below:

Cart cart;
{

String cardHolderName = "Jack B. Quick";
String creditCardNumber = "1234-5678-9012-3456";
Date expirationDate = new GregorianCalendar(2001,

Calendar.JULY, 1).getTime();
cart = home.create(cardHolderName, creditCardNumber, expirationDate);

}

Session beans do not have finder methods.

Entity beans
A client obtains a reference to an entity object either through a find operation or a
create operation. Recall that an entity object represents some underlying data stored in
a database. Because the entity bean represents persistent data, entity beans typically
exist for quite a long time; certainly for much longer than the client applications that call
them. Thus, a client most often needs to find the entity bean that represents the piece
of persistent data of interest, rather than creating a new entity object, which would
create and store new data in the underlying database.

A client uses a find operation to locate an existing entity object, such as a specific row
within a relational database table. That is, find operations locate data entities that have
previously been inserted into data storage. The data may have been added to the data
store by an entity bean or it may have been added outside of the EJB context, such as
directly from within the database management system (DBMS). Or, in the case of
legacy systems, the data may have existed prior to the installation of the EJB
container.

84 AppServer Developer ’s Guide

Cl ient v iew of an enterpr ise bean

A client uses an entity bean object's create() method to create a new data entity that
will be stored in the underlying database. An entity bean's create() method inserts the
entity state into the database, initializing the entity's variables according to the values in
the create() method's parameters. A create() method for an entity bean always returns
the remote interface, but the corresponding ejbCreate() method returns primary key of
the entity instance.

Every entity bean instance must have a primary key that uniquely identifies it. An entity
bean instance can also have secondary keys that can be used to locate a particular
entity object.

Find methods and primary key class
The default find method for an entity bean is the findByPrimaryKey() method, which
locates the entity object using its primary key value. Its signature is as follows:

<remote interface> findByPrimaryKey(<key type> primaryKey)

Every entity bean must implement a findByPrimaryKey() method. The primaryKey
parameter is a separate primary key class that is defined in the deployment descriptor.
The key type is the type for the primary key, and it must be a legal value type in RMI-
IIOP. The primary key class can be any class—a Java class or a class you've written
yourself.

For example, you have an Account entity bean that defines the primary key class
AccountPK. AccountPK is a String type, and it holds the identifier for the Account bean.
You can obtain a reference to a specific Account entity bean instance by setting the
AccountPK to the account identifier and invoking the findByPrimaryKey() method, as
shown in the following code sample.

AccountPK accountPK = new AccountPK("1234-56-789");
Account source = accountHome.findByPrimaryKey(accountPK);

The bean provider can define additional finder methods that a client can use.

Create and remove methods
A client can also create entity beans using create methods defined in the home
interface. When a client invokes a create() method for an entity bean, the new instance
of the entity object is saved in the data store. The new entity object always has a
primary key value that is its identifier. Its state may be initialized to values passed as
parameters to the create() method.

Keep in mind that an entity bean exists for as long as data is present in the database.
The life of the entity bean is not bound by the client's session. The entity bean can be
removed by invoking one of the bean's remove() methods—these methods remove the
bean and the underlying representation of the entity data from the database. It is also
possible to directly delete an entity object, such as by deleting a database record using
the DBMS or with a legacy application.

Invoking methods

Once the client has obtained a reference to the bean's remote interface, the client can
invoke the methods defined in the remote interface for this enterprise bean. The
methods pertaining to the bean's business logic are of most interest to the client. There
are also methods for getting information about the bean and its interfaces, getting the
bean object's handle, testing if one bean is identical to another bean, and methods for
removing the bean instance.

The next code sample illustrates how a client calls methods of an enterprise bean, in
this case, a cart session bean. We pick up the client code from the point where it has
created a new session bean instance for a card holder and retrieved a Cart reference
to the remote interface. At this point, the client is ready to invoke the bean methods.

Chapter 10: Wri t ing enterpr ise bean cl ients 85

Cl ient v iew of an enterpr ise bean

First, the client creates a new book object, setting its title and price parameters. Then, it
invokes the enterprise bean business method addItem() to add the book object to a
shopping cart. The addItem() method is defined on the CartBean session bean, and is
made public through the Cart remote interface. The client adds other items (not shown
here), then calls its own summarize() method to list the items in the shopping cart. This
is followed by the remove() method to remove the bean instance. Notice that a client
calls the enterprise bean methods in the same way that it invokes any method, such as
its own method summarize().

ƒ
Cart cart;
{
 ƒ
 // obtain a reference to the bean's remote interface
 cart = home.create(cardHolderName, creditCardNumber, expirationDate);
}
// create a new book object
Book knuthBook = new Book("The Art of Computer Programming", 49.95f);
// add the new book item to the cart
cart.addItem(knuthBook);

ƒ
// list the items currently in the cart
summarize(cart);
cart.removeItem(knuthBook);
ƒ

Removing bean instances

The remove() method operates differently for session beans than for entity beans.
Because a session object exists for one client and is not persistent, a client of a
session bean should call the remove() method when finished with a session object.
There are two remove() methods available to the client: the client can remove the
session object with the javax.ejb.EJBObject.remove() method, or the client can remove
the session handle with the javax.ejb.EJBHome.remove(Handle handle) method. See
“Using a bean's handle” on page 85 for more information on handles.

While it is not required that a client remove a session object, it is considered to be good
programming practice. If a client does not remove a stateful session bean object, the
container eventually removes the object after a certain time, specified by a timeout
value. The timeout value is a deployment property. However, a client can also keep a
handle to the session for future reference.

Clients of entity beans do not have to deal with this problem as entity beans are only
associated with a client for the duration of a transaction and the container is in charge
of their life cycles, including their activation and passivation. A client of an entity bean
calls the bean's remove() method only when the entity object is to be deleted from the
underlying database.

Using a bean's handle

A handle is an another way to reference an enterprise bean. A handle is a serializable
reference to a bean. You can obtain a handle from the bean's remote interface. Once
you have the handle, you can write it to a file (or other persistent storage). Later, you
can retrieve the handle from storage and use it to reestablish a reference to the
enterprise bean.

86 AppServer Developer ’s Guide

Cl ient v iew of an enterpr ise bean

However, you can only use the remote interface handle to recreate the reference to the
bean; you cannot use it to recreate the bean itself. If another process has removed the
bean, or the system crashed or shutdown and removed the bean instance, then an
exception is thrown when the client application tries to use the handle to reestablish its
reference to the bean.

When you are not sure that the bean instance will still be in existence, rather than using
a handle to the remote interface, you can store the bean's home handle and recreate
the bean object later by invoking the bean's create or find methods.

After the client creates a bean instance, it can use the getHandle() method to obtain a
handle to this instance. Once it has the handle, it can write it to a serialized file. Later,
the client program can read the serialized file, casting the object that it reads in to a
Handle type. Then, it calls the getEJBObject() method on the handle to obtain the bean
reference, casting the results of getEJBObject() to the correct type for the bean.

To illustrate, the CartClient program might do the following to utilize a handle to the
CartBean session bean:

import java.io;
import javax.ejb.Handle;
ƒ
Cart cart;
ƒ
cart = home.create(cardHolderName, creditCardNumber, expirationDate);
// call getHandle on the cart object to get its handle
cartHandle = cart.getHandle();
// write the handle to serialized file
FileOutputStream f = new FileOutputStream ("carthandle.ser");
ObjectOutputStream o = new ObjectOutputStream(f);
o.writeObject(myHandle);
o.flush();
o.close();
ƒ
// read handle from file at later time
FileInputStream fi = new FileInputStream ("carthandle.ser");
ObjectInputStream oi = new ObjectInputStream(fi);
//read the object from the file and cast it to a Handle
cartHandle = (Handle)oi.readObject();
oi.close();
ƒ
// Use the handle to reference the bean instance
try {
 Object ref = context.lookup("cart");
 Cart cart1 = (Cart) javax.rmi.PortableRemoteObject.narrow(ref, Cart.class);
 ƒ
} catch (RemoteException e) {
 ƒ
}
ƒ

When finished with the session bean handle, the client can remove it with the
javax.ejb.EJBHome.remove(Handle handle) method.

Chapter 10: Wri t ing enterpr ise bean cl ients 87

Managing t ransact ions

Managing transactions
A client program can manage its own transactions rather than letting the enterprise
bean (or container) manage the transaction. A client that lmanages its own transaction
does so in exactly the same manner as a session bean than manages its own
transaction.

When a client manages its own transactions, it is responsible for delimiting the
transaction boundaries. That is, it must explicitly start the transaction and end (commit
or roll back) the transaction.

A client uses the javax.transaction.UserTransaction interface to manage its own
transactions. It must first obtain a reference to the UserTransaction interface, using
JNDI to do so. Once it has the UserTransaction context, the client uses the
UserTransaction.begin() method to start the transaction, followed later by the
UserTransaction.commit() method to commit and end the transaction (or
UserTransaction.rollback() to rollback and end the transaction). In between, the client
does its queries and updates.

This code sample shows the code that a client would implement to manage its own
transactions. The parts that pertain specifically to client-managed transactions are
highlighted in bold.

ƒ
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
ƒ
public class clientTransaction {
 public static void main (String[] argv) {
 UserTransaction ut = null;
 InitialContext initContext = new InitialContext();
 ƒ
 ut = (UserTransaction)initContext.lookup("java:comp/UserTransaction");
 // start a transaction
 ut.begin();
 // do some transaction work
 ƒ
 // commit or rollback the transaction
 ut.commit(); // or ut.rollback();
 ƒ
]
]

Getting information about an enterprise bean
Information about an enterprise bean is referred to as metadata. A client can obtain
metadata about a bean using the enterprise bean's home interface getMetaData()
method.

The getMetaData() method is most often used by development environments and tool
builders that need to discover information about an enterprise bean, such as for linking
together beans that have already been installed. Scripting clients might also want to
obtain metadata on the bean.

88 AppServer Developer ’s Guide

Support for JNDI

Once the client retrieves the home interface reference, it can call the getEJBMetaData()
method on the home interface. Then, the client can call the EJBMetaData interface
methods to extract such information as:

■ The bean's EJBHome home interface, using EJBMetaData.getEJBHome().

■ The bean's home interface class object, including its interfaces, classes, fields, and
methods, using EJBMetaData.getHomeInterfaceClass().

■ The bean's remote interface class object, including all class information, using
EJBMetaData.getRemoteInterfaceClass().

■ The bean's primary key class object, using EJBMetaData.getPrimaryKeyClass().

■ Whether the bean is a session bean or an entity bean, using
EJBMetaData.isSession(). The method returns true if this is a session bean.

■ Whether a session bean is stateless or stateful, using
EJBMetaData.isStatelessSession(). The method returns true if the session bean is
stateless.

Support for JNDI
The EJB specification defines the JNDI API for locating home interfaces. JNDI is
implemented on top of other services, including CORBA's Naming Service, LDAP/
X.500, flat files, and proprietary directory services. The diagram below illustrates the
different implementation choices. Typically, the EJB server provider selects a particular
implementation of JNDI.

The technology implemented beneath JNDI is of no concern to the client. The client
needs to use only the JNDI API.

EJB to CORBA mapping
There are a number of aspects to the relationship between CORBA and Enterprise
JavaBeans. Three important ones are the implementation of an EJB container/server
with an ORB, the integration of legacy systems into an EJB middle tier, and the access
of enterprise beans from non-Java components, specifically clients. The EJB
specification is currently only concerned with the third aspect.

CORBA is a very suitable and natural platform on which to implement an EJB
infrastructure. CORBA addresses all of the concerns of the EJB specification with the
CORBA Core specification or the CORBA Services:

■ Support for distribution. CORBA Core and CORBA Naming Service

■ Support for transactions. CORBA Object Transaction Service

■ Support for security. CORBA Security Specification, including IIOP-over-SSL

Chapter 10: Wri t ing enterpr ise bean cl ients 89

EJB to CORBA mapping

Additionally, CORBA allows the integration of non-Java components into an
application. These components can be legacy systems and applications, plus different
kinds of clients. Back-end systems can be easily integrated using OTS and any
programming language for which an IDL mapping exists. This requires an EJB
container to provide OTS and IIOP APIs.

The EJB specification is concerned with the accessibility of enterprise beans from non-
Java clients and provides an EJB to CORBA mapping. The goals of the EJB/CORBA
mapping are:

■ Supporting interoperability between clients written in any CORBA-supported
programming language and enterprise beans running on a CORBA-based EJB
server.

■ Enabling client programs to mix and match calls to CORBA objects and enterprise
beans within the same transaction.

■ Supporting distributed transactions involving multiple enterprise beans running on
CORBA-based EJB servers provided by different vendors.

The mapping is based on the Java-to-IDL mapping. The specification includes the
following parts: mapping of distribution-related aspects, the mapping of naming
conventions, the mapping of transactions, and the mapping of security. We explain
each of these aspects in the following sections. Since the mapping uses new IDL
features introduced by the OMG's Object-by-Value specification, interoperability with
other programming languages requires CORBA 2.3-compliant ORBs.

Mapping for distribution

An enterprise bean has two interfaces that are remotely accessible: the remote
interface and the home interface. Applying the Java/IDL mapping to these interfaces
results in corresponding IDL specifications. The base classes defined in the EJB
specification are mapped to IDL in the same manner.

For example, look at the IDL interface for an ATM enterprise session bean that has
methods to transfer funds between accounts and throws an insufficient funds
exception. By applying the Java/IDL mapping to the home and the remote interface,
you get the following IDL interface.

module transaction {
 module ejb {
 valuetype InsufficientFundsException : ::java::lang::Exception {};
 exception InsufficientFundsEx {
 ::transaction::ejb::InsufficientFundsException value;
 };
 interface Atm : ::javax::ejb::EJBObject{
 void transfer (in string arg0, in string arg1, in float arg2)
 raises (::transaction::ejb::InsufficientFundsEx);
 };
 interface AtmHome : ::javax::ejb::EJBHome {
 ::transaction::ejb::Atm create ()
 raises (::javax::ejb::CreateEx);
 };
};};};};

90 AppServer Developer ’s Guide

EJB to CORBA mapping

Mapping for naming

A CORBA-based EJB runtime environment that wants to enable any CORBA clients to
access enterprise beans must use the CORBA Naming Service for publishing and
resolving the home interfaces of the enterprise beans. The runtime can use the
CORBA Naming Service directly or indirectly via JNDI and its standard mapping to the
CORBA Naming Service.

JNDI names have a string representation of the following form “directory1/directory2/
.../directoryN/objectName”. The CORBA Naming Service defines names as a
sequence of name components.

typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
typedef sequence<NameComponent> Name;

Each “/” separated name of a JNDI string name is mapped to a name component; the
leftmost component is the first entry in the CORBA Naming Service name.

A JNDI string name is relative to some naming context, which calls the JNDI root
context. The JNDI root context corresponds to a CORBA Naming Service initial
context. CORBA Naming Service names are relative to the CORBA initial context.

A CORBA program obtains an initial CORBA Naming Service naming context by
calling resolve_initial_references("NameService") on the ORB (pseudo) object. The
CORBA Naming Service does not prescribe a rooted graph for organizing naming
context and, hence, the notion of a root context does not apply. The initialization of the
ORB determines the context returned by resolve_initial_references().

For example, a C++ Client can locate the home interface to the ATMSession bean,
which has been registered with a JNDI string name “transaction/corbaEjb/atm”. You
first obtain the initial naming context.

Object_ptr obj = orb->resolve_initial_references("NameService");
NamingContext initialNamingContext= NamingContext.narrow(obj);
if(initialNamingContext == NULL) {
 cerr << "Couldn't initial naming context" << endl;
 exit(1);
}

Then you create a CORBA Naming Service name and initialize it according to the
mapping explained previously.

Name name = new Name(1);
name[0].id = "atm";
name[0].kind = "";

Now resolve the name on the initial naming context. Assume that you have
successfully performed the initialization and that you have the context of the naming
domain of the enterprise bean. We narrow the resulting CORBA object to the expected
type and make sure that the narrow was successful.

Object_ptr obj = initialNamingContext->resolve(name);
ATMSessionHome_ptr atmSessionHome = ATMSessionHome.narrow(obj);
if(atmSessionHome == NULL) {
 cerr << "Couldn't narrow to ATMSessionHome" << endl;
 exit(1);
}

Chapter 10: Wri t ing enterpr ise bean cl ients 91

EJB to CORBA mapping

Mapping for transaction

A CORBA-based enterprise bean runtime environment that wants to enable a CORBA
client to participate in a transaction involving enterprise beans must use the CORBA
Object Transaction Service for transaction control.

When an enterprise bean is deployed it can be installed with different transaction
policies. The policy is defined in the enterprise bean's deployment descriptor.

The following rules have been defined for transactional enterprise beans: A CORBA
client invokes an enterprise through stubs generated from the IDL interfaces for the
enterprise bean's remote and home interface. If the client is involved in a transaction, it
uses the interfaces provided by CORBA Object Transaction Service. For example, a
C++ client could invoke the ATMSession bean from the previous example as follows:

try {
 ƒ
 // obtain transaction current
 Object_ptr obj = orb->resolve_initial_refernces("Current");
 Current current = Current.narrow(obj);
 if(current == NULL) {
 cerr << "Couldn't resolve current" << endl;
 exit(1);
 }
// execute transaction
 try {
 current->begin();
 atmSession->transfer("checking", "saving", 100.00);
 current->commit(0);
 } catch(...) {
 current->rollback();
 }
}
catch(...) {
 ƒ
}

Mapping for security

Security aspects of the EJB specification focuses on controlling access to enterprise
beans. CORBA defines a number of ways to define the identities, including the
following cases:

■ Plain IIOP. CORBA's principal interface was deprecated in early 1998. The principal
interface was intended for determining the identity of a client. However, the authors
of the CORBA security services implemented a different approach, GIOP.

■ The GIOP specification contains a component called service context, which is an
array of value pairs. The identifier is a CORBA long and the value is a sequence of
octet. Among other purposes, entries in the service context can be used to identify a
caller.

■ Secure IIOP. The CORBA security specification defines an opaque data type for the
identity. The real type of the identity is determined by the chosen security
mechanism; for example, GSS Kerberos, SPKM, or CSI-ECMA.

■ IIOP over SSL. SSL uses X.509 certificates to identify servers and, optionally,
clients. When a server requests a client certificate, the server can use the certificate
as a client identity.

92 AppServer Developer ’s Guide

Chapter 11: The VisiCl ient Container 93

C h a p t e r

Chapter11The VisiClient Container
VisiClient is a container that provides a J2EE environment for services for application
clients.

Containers are an integral part of J2EE applications. Most applications provide
containers for each application type. Application clients depend on their containers to
supply system services to all J2EE components.

Application Client architecture
J2EE application clients are first tier client programs that execute in their own Java
virtual machines. Application clients obey the model for Java technology-based
applications, in that they are invoked at their main method and run until the virtual
machine is terminated. Like other J2EE application components, application clients
depend on a container to provide system services; though in the case of application
clients, these services are limited.

Figure 11.1 VisiClient architecture

94 AppServer Developer ’s Guide

Appl icat ion Cl ient archi tecture

Packaging and deployment

Deploying the application client components into a VisiClient container requires the
specification of deployment descriptors using XML. (Refer to J2EE 1.3 Specification for
more information about application clients, and their deployment into a J2EE 1.3
compliant container.)

Application clients are packaged in JAR files and include a deployment descriptor
(similar to other J2EE application components). The deployment descriptor defines the
EJB and the external resources referenced by the application. You can use the Borland
AppServer (AppServer) Deployment Descriptor Editor for packaging and editing
application client components. For more information, see “Using the Deployment
Descriptor Editor” in the Management Console User’s Guide.

The deployment descriptor is necessary because there are a number of functions that
must be configured at deployment time, such as assigning names to EJBs and their
resources. The minimum requirements for deployment of an application client into a
VisiClient container are:

■ All the client-side classes are packaged into a JAR. See below section on required
client JARs and files. A well-formed JAR should have the following:

■ Application specific classes including the class containing the application entry
point (main class)

■ The JAR file must have a META-INF subdirectory with the following:

■ A manifest file

■ A standard XML file (application-client.xml), as required by J2EE 1.3
specifications

■ A vendor-specific XML file (application-client-borland.xml)

■ RMI-IIOP stubs which can also be packaged separately. In this case, the file needs
the classpath attribute of the manifest file set to the appropriate value. The JAR
formed in this manner is deployable to a standalone container or to an EAR file. The
following sections in this chapter describe this process in detail.

Benefits of the VisiClient Container

VisiClient offers users a range of benefits from the use of J2EE applications. These
include:

■ Client code portability: Applications can use logical names (as recommended in
the J2EE specifications) to access resources such as database connections, remote
EJBs and environment variables. The container, per the J2EE specification,
exposes the resources as administered objects in the local JNDI namespace
(java:comp/env).

■ JDBC Connection Pooling: Client applications in Borland AppServer can use
JDBC 2-based datasources (factories). VisiClient Container provides connection
pooling to client applications in the Server that employ a JDBC 2-based datasource.
For example, the VisiClient container's application uses java.net.URL, JMS, and
Mail factories.

Datasource and URL factories are deployed in the in-process local JNDI subcontext
that resides in the client container virtual machine on startup. Other res-ref-types (such
as JMS and Mail) are configured and deployed using the relevant tools from the vendor
of these products. Refer to the Deployment, Datasources and Transaction chapters of
the Borland AppServer Developer's Guide for more information about configuration
and deployment.

Chapter 11: The VisiCl ient Container 95

Document Type Def in i t ions (DTDs)

Document Type Definitions (DTDs)
There are two deployment descriptors for each J2EE compliant application client
module. One is a J2EE standard deployment descriptor, and the other is a vendor
specific file.

The XML grammar for a J2EE application client deployment descriptor is defined in the
J2EE application-client Document Type Definition (DTD). The root element of the
deployment descriptor for an application client is the application-client.

Note The content of XML elements are generally case sensitive. All valid application client
deployment descriptors must contain the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application Client
 1.3//EN';';http://java.sun.com/j2ee/dtds/application-client_1_3.dtd'>

The vendor-specific deployment descriptor for an application client must contain the
following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Borland Corporation//DTD J2EE
Application Client
 1.3//EN""http://www.borland.com/devsupport/appserver/dtds/application-
client_1_3-borland.dtd">

The contents of the Borland-specific application client DTD are:

 <!ELEMENT application-client (ejb-ref*, resource-ref*, property*)>
 <!ELEMENT ejb-ref (ejb-ref-name, jndi-name)>
 <!ELEMENT resource-ref (res-ref-name, jndi-name)>
 <!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT ejb-ref-name (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT res-ref-name (#PCDATA)>

Here ejb-ref-name and res-ref-names are the names of the corresponding elements in
the J2EE XML file, and jndi-name is the absolute JNDI name with which the object is
deployed in JNDI.

96 AppServer Developer ’s Guide

Document Type Def in i t ions (DTDs)

Example XML using the DTD

As discussed, every application client needs a pair of XML files; a standard file and a
vendor-specific file.

Example of a standard file:

<?xml version="1.0" encoding="ISO8859_1"?>

<!DOCTYPE application-client PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE
Application Client 1.3//EN' 'http://java.sun.com/j2ee/dtds/application-
client_1_3.dtd'>
<application-client>
 <display-name>SimpleSort</display-name>
 <description>J2EE AppContainer spec compliant Sort client</description>
 <env-entry>
 <description>
 Testing environment entry
 </description>
 <env-entry-name>myStringEnv</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>MyStringEnvEntryValue</env-entry-value>
 </env-entry>
 <ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>SortHome</home>
 <remote>Sort</remote>
 <ejb-link>sort</ejb-link>
 </ejb-ref>
 <resource-ref>
 <description>
 reference to a jdbc datasource mentioned down in the DD section
 </description>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref></application-client>

Example of a vendor-specific file:

<?xml version="1.0"?>

<!DOCTYPE application-client PUBLIC "-//Borland Corporation//DTD J2EE
Application Client 1.3//EN"

 "http://www.borland.com/devsupport/appserver/dtds/
application-client_1_3-borland.dtd">

<application-client>
 <ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
 </ejb-ref>
 <resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
<jndi-name>datasources/OracleDataSource</jndi-name>
 </resource-ref>
</application-client>

Chapter 11: The VisiCl ient Container 97

Support of references and l inks

For more information about environment entries, ejb-refs, or resource-refs, see the
relevant sections of Sun Microsystems' EJB 2.0 specifications at
www.java.sun.com/j2ee.

Sample code
This example shows the usage of the logical local JNDI naming context. It shows how
a client uses the deployment descriptors specified in the preceding section.

// get a JNDI context using the Naming service and create a remote object

 javax.naming.Context context = new javax.naming.InitialContext();
 Object ref = context.lookup("java:comp/env/ejb/Sort");
 SortHome home = (SortHome) javax.rmi.PortableRemoteObject.narrow(ref,

SortHome.class);
 Sort sort = home.create();
 // get the value of an environment entry using JNDI
 Object envValue = context.lookup("java:comp/env/myStringEnv");
 System.out.println("Value of env entry = "+ (java.lang.String) envValue);
 // locate a UserTransaction object
 javax.transaction.UserTransaction userTransaction =
 (javax.transaction.UserTransaction) context.lookup("java:comp/
UserTransaction");

userTransaction.begin();
 // locate the datasource using resource-ref name
 Object resRef = context.lookup("java:comp/env/jdbc/CheckingDataSource");
 java.sql.Connection conn = ((javax.sql.DataSource)resRef).getConnection();
 //do some database work.
 userTransaction.commit();
ƒ

Support of references and links
During application assembly and deployment you must verify that all EJB and resource
references have been properly linked. For more information about EJB and resource
references, consult Sun Microsystems' EJB 2.0 and J2EE 1.3 specifications.

The Borland AppServer client container supports the use of ejb-links. In the case of a
standalone JAR file, the ejb-links have to be resolved before the JAR is deployed.
There must be a JNDI name specified for the target bean in the vendor-specific section
of the client deployment descriptor.

For a client JAR that is part of an Enterprise Application Archive (EAR), the JNDI name
of the target EJB may live in a different ejb-jar. The client verify tool checks that the
target EJB with the name specified in the ejb-link tag exists.

During runtime, the container resolves (locates) the target EJB corresponding to the
ejb-link name in the EAR and uses the JNDI name of the target EJB. Note that
application clients run in their own Java virtual machines. EJB-links are not optimized
for application clients like they are for EJBs referring to another EJB located in the
same container.

98 AppServer Developer ’s Guide

Support of references and l inks

Keep the following rules in mind when working with EJB references and ejb-links in
deployment descriptors for application client containers:

1 An ejb-ref that is not an ejb-link must have an entry in a Borland-specific file
containing the JNDI name of the referenced (target) EJB.

2 An ejb-ref that has an ejb-link element must follow these rules:

■ If the ejb-ref is in a client JAR and is a standalone JAR, rule 1 applies. That is, it
should have a Borland-specific file with the JNDI name resolved in the
deployment descriptor within the (same) JAR.

■ If the ejb-ref is in a client-jar embedded in an application archive (an EAR), the
JNDI name of the target EJB is not required to exist in the application-client-
borland.xml file. In this case, the name in the ejb-link element is composed of a
path name specifying the fully qualified path to the ejb-jar containing the
referenced enterprise bean with the ejb-name of the target bean appended and
separated from the path name by “#”. The path name is relative to the JAR file
containing the application client that is referencing the enterprise bean. This
allows multiple enterprise beans with the same ejb-name to be uniquely
identified.

If the path is not specified, container picks first matching EJB-name that it finds from
list of EJB JARs inside EAR and throws an exception if doesn't find a bean with
same name in ejb-link element.>

Using the VisiClient Container

The following command line demonstrates the use of the VisiClient Container:

Prompt% appclient <client-archive> [-uri <uri>] [client-arg1 client-arg2 ..]

The following table describes VisiClient container command line elements and
definitions

VisiClient Container usage example

The following command lines demonstrate usage of an application client. In the
example, the appclient launcher sets the classpath required to launch VisiClient.

This example is also located in the Hello example in the install_dir/examples/j2ee/
hello directory. When your server (EJB container) is up, to run a client embedded
inside an EAR file, the command is:

appclient me install_dir\examples\j2ee\build\hello\hello.ear -uri
helloclient.jar

To run a client in a standalone JAR file, the command is:

appclient me install_dir\examples\j2ee\build\hello\client\helloclient.jar

Table 11.1 Elements in a VisiClient container command

Element Definition

<client-archive> A standalone client JAR or EAR containing client JAR.

-uri The relative location of the client JAR inside an EAR file. This is required for
EAR contained JAR files.

<client-args> Space separated list of arguments passed to the client's main class.

Chapter 11: The VisiCl ient Container 99

Embedding VisiCl ient Container funct ional i ty in to an exist ing appl icat ion

Running a J2EE client application on machines not running
AppServer

To run a J2EE application client on a client machine that does not have Borland
AppServer installed on it, make sure to copy the following VisiClient files to your client
machine and run the following processes.

1 Copy the following JAR files from <install_dir>/lib to client machine:

■ lm.jar
■ xmlrt.jar
■ asrt.jar
■ vbjorb.jar
■ vbsec.jar
■ jsse.jar
■ jaas.jar
■ jcert.jar
■ jnet.jar
■ vbejb.jar

2 Copy the following JAR file from <install_dir>/jms/tibco/clients/java to client
machine:

■ tibjms.jar

3 Copy <install_dir>/bin/appclient.config to client machine.

4 Copy <install_dir>/BES/bin/appclient.exe to client machine.

To run the J2EE client using the appclient:

1 Set the PATH to appclient.exe and JDK.

2 Edit the appclient.config to change JAVA_HOME, and lib PATH.

3 Run the J2EE client from <client_application_folder>/client.

Embedding VisiClient Container functionality into an existing
application

As an alternative to deploying and running a client application in the VisiClient
container, it is possible to use a programmatic approach to embed the client container's
functionality into an existing application. In this case, the client application can be
started in a common Java fashion by running a class implementing the main() method.

To embed the VisiClient container functionality into your application, you need to call
the following method:

public static void com.borland.appclient.Container.init
 (java.io.InputStream deploymentDescriptorSun,
 java.io.InputStream deploymentDescriptorBorland)
throws IllegalArgumentException;

This method will create and populate the “java:comp/env” naming context based on the
information provided in the pair of Sun and Borland deployment descriptors. The
deploymentDescriptorSun and deploymentDescriptorBorland parameters must represent
text XML data corresponding to the deployment descriptors. An
IllegalArgumntException exception is thrown if the data provided is not recognized as a
valid deployment descriptor.

100 AppServer Developer ’s Guide

Use of Manifest f i les

Sample code
This example shows usage of this method:

public static void main (String[] args) {
 ƒ
 // load deployment descriptor files
 java.io.FileInputStream ddSun = new
 java.io.FileInputStream("META-INF/application-client.xml");
 java.io.FileInputStream ddBorland = new
 java.io.FileInputStream("META-INF/application-client-borland.xml");
 // initialize client container
 com.borland.appclient.Container.init(ddSun, ddBorland);
 // lookup ejb in JNDI using an ejb-ref
 javax.naming.Context context = new javax.naming.InitialContext();
 Object ref = context.lookup ("java:comp/env/ejb/hello");
 ƒ
}

Note Only application client descriptors can be loaded using this method. This means that all
ejb-refs must be resolved or located by specifying the jndi-name in the Borland
descriptor. This cannot be done using the ejb-link in the Sun descriptor since using ejb-
link requires complete knowledge of the whole application including application and
EJB JAR deployment descriptors.

Use of Manifest files
VisiClient container relies on the presence of a manifest file to obtain information about
launching an application. The manifest file should be saved in the META-INF
subdirectory of the client archive. The relevant attributes in the manifest file for the
VisiClient container are:

■ The main class to be launched by the container on startup. This is an application
entry point which must be present in the manifest file.

■ The classpath of the dependencies of the main class. If the client-jar is self-
contained, or if dependencies are specified using the system CLASSPATH during
application launch, this attribute can be ignored.

Example of a Manifest file

An example of a Manifest file is shown below.

Manifest-Version: 1.0
Main-Class: SortClient
Class-Path:

This example shows the container will execute by loading the main method of the class
specified in the Main-Class attribute of the Manifest file. In this example it is SortClient.
The container expects to have a method with the following signature in this class:

public static void main(String[] args) throws Exception {...}

The container will report an error and exit if it doesn't find the main method. The client
verify utility, which comes with VisiClient, tries to locate a main class and reports an
error if it doesn't find one.

Chapter 11: The VisiCl ient Container 101

Except ion handl ing

Exception handling
Application client code is responsible for taking care of any exceptions that are
generated during the program execution. Any unhandled exceptions are caught by the
container which will log them and terminate the Java virtual machine process.

Using resource-reference factory types
The client application deployed in a client container can use the VisiTransact JDBC
connection pooling and Prepared Statement re-use facilities. Refer to the Deployment,
and Transaction chapters of the Borland AppServer Developer's Guide for details
about configuration and deployment. Client applications in AppServer can use JDBC 2-
based datasources.

Note that just like javax.sql.DataSource (which is one of the possible res-ref-types)
VisiClient allows the application to use URL, JMS, and Mail factories as the resource-
ref types.

java.net.url and java_mail.session factories are deployed in the in-process local JNDI
subcontext that resides in the client container virtual machine on startup. Other res-ref-
types like JMS and Mail should be configured and deployed using the relevant vendor
tools for these products.

Other features
The AppServer includes a number of extra features in the VisiClient container in
addition to the requirements for the J2EE specification. These include:

■ User Transaction interface: This is available in the java:comp/env name space
and can be looked up using JNDI. It supports transaction demarcation, and
propagation.

■ Client Verify Tool: This runs on standalone client JARs or client JARs embedded in
an EAR file. The verify tool enforces the following rules:

■ The manifest file in the client JAR has the main class specified.

■ The JAR/EAR is valid (it has the correct required manifest entries).

■ ejb-refs are valid (that is, a JNDI name for the target EJB is specified in the
Borland-specific file).

■ If ejb-ref is an ejb-link, then the archive should be an EAR file. There must also
be an EJB with the same name as the ejb-link value in the EAR file.

■ Resource references are valid.

Using the Client Verify tool

The following command line demonstrates the use of the Client Verify tool:

iastool -verify -src <srcjar> -role <DEVELOPER| ASSEMBLER| DEPLOYER>

Usage examples of Client Verify tool:

iastool -verify -src sort.jar -role DEVELOPER
iastool -verify -src sort.ear clients/sort_client.jar -role DEVELOPER

For more information see “verify” on page 336 on the available options.

102 AppServer Developer ’s Guide

Chapter 12: Caching of Stateful Session Beans 103

C h a p t e r

Chapter12Caching of Stateful Session Beans
The EJB Container supports stateful session enterprise beans using a high-
performance caching architecture based on the Java Session Service (JSS). There are
two pools of objects: the ready pool and the passive pool. Enterprise beans transition
from the ready pool to the passive pool after a configurable timeout. Transitioning an
enterprise bean to the passive pool stores the enterprise bean's state in a database.
Passivation of stateful sessions exists for two purposes:

1 Maximize memory resources

2 Implement failover

Configuring Borland's JSS implementation is discussed in Chapter 6, “Java Session
Service (JSS) configuration.” This document explains the use of the properties that
control the passivation and persistence of individual session objects.

Passivating Session Beans
At deployment time, the deployer uses the Borland AppServer's (AppServer) tools to
set a passivation timeout for the EJB Container in a particular Partition. The container
regularly polls active session beans to determine when they are last accessed. If a
session bean has not been accessed during the timeout period, its state is sent to
persistent storage and the bean instance is removed from memory.

Simple Passivation

Passivation timeouts are set at the container-level. You use the property
ejb.sfsd.passivation_timeout to configure the length of time a session bean can go un-
accessed before its state is persisted and its instance removed from memory. This
length of time is specified in seconds. The default value is five seconds. This property
can be set in the partition.xml properties file for the Partition you are configuring. This
file is located in:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Edit this file to set the ejb.sfsb.passivation_timeout property.

104 AppServer Developer ’s Guide

Passivat ing Session Beans

If you set this property to a non-zero value, you can also set the integer property
ejb.sfsb.instance_max for each deployed session bean in their deployment descriptors.
This property defines the maximum number of instances of a particular stateful session
bean that are allowed to exist in the EJB container's memory at the same time. If this
number is reached and a new instance of a stateful session needs to be allocated, the
EJB container throws an exception indicating lack of resources. 0 is a special value. It
means no maximum set.

If the maximum number of stateful sessions defined by the ejb.sfsb.instance_max
property is reached, the EJB container blocks a request for an allocation of a new bean
for the time defined by the integer property ejb.sfsb.instance_max_timeout. The
container will then wait for the number to drop below this value before throwing an
exception indicating a lack of resources. This property is defined in ms (1/1000th of
second). 0 is a special value. It means not to wait and throw an exception indicating
lack of resources immediately.

Aggressive Passivation

One of the key advantages in the use of JSS is its ability to fail over. Several containers
implementing JSS can be configured to use the same persistent store, allowing them to
fail over to each other. Setting up the JSS for failover is discussed in Chapter 6, “Java
Session Service (JSS) configuration.” To facilitate taking advantage of the JSS failover
capability, Borland provides the option of using aggressive passivation.

Aggressive passivation is the storage of session state regardless of its timeout. A bean
that is set to use aggressive passivation will have its session state persisted every time
it is polled, although its instance will not be removed from memory unless it times out.
In this way, if a container instance fails in a cluster, a recently-stored version of the
bean is available to other containers using identical JSS instances communicating with
the same backend. As in simple passivation, if the bean times out, it will still be
removed from memory.

Again, aggressive passivation is set Partition-wide using the boolean property
ejb.sfsb.aggressive_passivation. Setting the property to true (the default) stores the
session's state regardless of whether it was accessed before the last passivation
attempt. Setting the property to false allows the container to use only simple
passivation. Again, this property is set in the container's properties file partition.xml
located in:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Bear in mind that although using aggressive passivation aids in failover, it also results
in a performance hit since the container accesses the database more often. If you
configure the JSS to use a non-native database (that is, you choose not to use
JDataStore), the loss of performance can be even greater. Be aware of the tradeoff
between availability and performance before you elect to use aggressive passivation.

Chapter 12: Caching of Stateful Session Beans 105

Sessions in secondary storage

Sessions in secondary storage
Most sessions are not kept in persistent storage forever after they timeout. Borland
provides a mechanism for removing stored sessions from the database after a discrete
period of time known as the keep alive timeout. The keep alive timeout specifies the
minimum amount of time in seconds to persist a passivated session in stateful storage.
The actual amount of time it is kept in the database can vary, since it is not wise from a
performance standpoint to constantly poll the database for unused sessions. The
actual amount of time a session is persisted is at least the value of the keep alive
timeout and not more than twice the value of the keep alive timeout.

Unlike the other passivation properties discussed above, the keep alive timeout can be
specified either Partition-wide and/or on the individual session bean. If you set a keep
alive timeout for a specific bean, its value will take precedence over any container-wide
values. If you do not specify a keep alive timeout for a particular bean, it will use the
Partition-wide value.

Setting the keep alive timeout in Containers

The Borland JSS implementation uses the property ejb.sfsb.keep_alive_timeout to
specify the amount of time (in seconds) to maintain a passivated session in stateful
storage. The default value is 86,400 seconds, or twenty-four hours. Like the other
properties discussed above, you set the keep alive timeout in the container properties
file:

<install_dir>/var/domains/base/configurations/<configuration_name>
/ mos/<partition_name>/adm/properties

Remember that any value you specify here can be overridden by setting a keep alive
timeout for a specific session bean.

Setting the keep alive timeout for a particular session bean

You may wish to have certain session beans hosted in your container have their
passivated states stored for greater or lesser periods of time than others. You can use
the <timeout> element in the ejb-borland.xml file to set the keep alive timeout for a
particular bean. The DTD element for a session bean provides this element:

<!ELEMENT session (ejb-name, bean-home-name?, bean-local-home-name?, timeout?,
ejb-ref*, ejb-local-ref*, resource-ref*, resource-env-ref*, property*)>

For example, let's say we have a simple stateful session bean called personInfo
collecting a bit of personal information for simple message forum. We might be inclined
to keep this session highly-available, without aggressive passivation, and have little
need to store it in our database for more than a few minutes if it passivates. Since the
rest of our session beans need to be kept in stateful storage a bit longer if they
passivate, we'll use the Borland-specific deployment descriptor for the bean's JAR to
set a shorter keep alive timeout, say 300 seconds (five minutes). In our ejb-borland.xml
deployment descriptor, we'd have the following:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>personInfo</ejb-name>
 <timeout>300</timeout>
 </session>
 </enterprise-beans>
</ejb-jar>

This value will override any values we entered in the ejbcontainer.properties file while
allowing other hosted sessions to use the default value found there.

106 AppServer Developer ’s Guide

Chapter 13: Ent i ty Beans and CMP 1.1 in Borland AppServer 107

C h a p t e r

Chapter13Entity Beans and CMP 1.1 in Borland
AppServer

Here we'll examine how entity beans are deployed in the Borland AppServer
(AppServer) and how persistence of entities can be managed. This is not, however, an
introduction to entity beans and should not be treated as such. Rather, this document
will explore the implications of using entity beans within Borland Partitions. We'll
discuss descriptor information, persistence options, and other container-optimizations.
Information on the Borland-specific deployment descriptors and implementations of
Container-Managed Persistence (CMP) will be documented in favor of general EJB
information that is generally available from the J2EE Specifications from Sun
Microsystems.

Entity Beans
Entity beans represent a view of data stored in a database. Entity beans can be fine-
grained entities mapping to a single table with a one-to-one correspondence between
entity beans and table rows. Or, entity beans can span multiple tables and present data
independent of the underlying database schema. Entity beans can have relationships
with one another, can be queried for data by clients, and can be shared among
different clients.

Deploying your Entity Bean to one of the AppServer Partitions requires that it be
packaged as a part of a JAR. The JAR must include two descriptor files: ejb-jar.xml
and the proprietary ejb-borland.xml file. The ejb-jar.xml descriptor is fully-documented
at the Sun Java Center. The DTD for ejb-borland.xml is reproduced in this document
and its usage documented here. The Borland proprietary descriptor contains a number
of properties that can be set to optimize container performance and manage the
persistence of your entity beans.

108 AppServer Developer ’s Guide

Container-managed persistence and Relat ionships

Container-managed persistence and Relationships
Borland's EJB container provides tools that generate the database access calls at the
time that the entity bean is deployed; that is, when the entity bean is installed into a
Partition. The tools use the deployment descriptors to determine the instance fields for
which they must generate database access calls. Instead of coding the database
access directly in the bean, the bean provider of a container-managed entity bean must
specify in the deployment descriptor those instance fields for which the container tools
must generate access calls. The container has sophisticated deployment tools capable
of mapping the fields of an entity bean to its data source.

Container-managed persistence has many advantages over bean-managed
persistence. It is simpler to code because bean provider does not have to code the
database access calls. Handling of persistence can also be changed without having to
modify and recompile the entity bean code. The Deployer or Application Assembler can
do this by modifying the deployment descriptor when deploying the entity bean. Shifting
the database access and persistence handling to the container not only reduces the
complexity of code in the bean, it also reduces the scope of possible errors. The bean
provider can focus on debugging the business logic of the bean rather than the
underlying system issues.

The EJB 2.0 specification allows entity beans that use container-managed persistence
to also have container-managed relationships among themselves. The container
automatically manages bean relationships and maintain the referential integrity of
these relationships. This differs from the EJB 1.1 specification, which only allowed you
to expose a bean's instance state through its remote interface.

Just as you defined container-managed persistence fields in a bean's deployment
descriptor, you can now define container-managed relationship fields in the
deployment descriptor. The container supports relationships of various cardinalities,
including one-to-one, one-to-many, and many-to-many.

Implementing an entity bean
Implementing an entity bean follows the rules defined in the EJB 1.1 and 2.0
specifications. You must implement a home interface, a remote interface or a local
interface (if using the 2.0 container-managed persistence), and the entity bean
implementation class. The entity bean class must implement the methods that
correspond to those declared in the remote or local and home interfaces.

Packaging Requirements

Like session beans, entity beans can expose their methods with their interfaces. Each
Entity Bean must also have corresponding entries in its JAR's deployment descriptors.
The standard deployment descriptor, ejb-jar.xml contains essentially three different
types of deployment information. These are:

1 General Bean Information: This corresponds to the <enterprise-beans> elements
found in the descriptor file and is used for all three types of beans. This information
also includes information on the bean's interfaces and class, security information,
environmental information, and even query declarations.

2 Relationships: This corresponds to the <relationships> elements found in the
descriptor file and applies to entity beans using CMP only. This is where container-
managed relationships are spelled out.

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 109

Implement ing an ent i ty bean

3 Assembly Information: This corresponds to the <assembly-descriptor> element
which explains how the beans interact with the application as a whole. Assembly
information is broken down into four categories:

■ Security Roles: simple definitions of security roles used by the application. Any
security role references you defined for your beans must also be defined here.

■ Method Permissions: each method of each bean can have certain rules about
their execution. These are set here.

■ Container-Transactions: this specifies the transaction attributes as per the EJB
2.0 specification for each method participating in a transaction

■ Exclude List: methods to be uncalled by anyone

All of these can be accessed through the Deployment Descriptor Editor. You should
refer to the EJB 2.0 specification for DTD information and the proper use of the
descriptor files.

Entity Bean Primary Keys

Each Entity Bean must have a unique primary key that used to identify the bean
instance. The primary key can be represented by a Java class that must be a legal
value type in RMI-IIOP. Therefore, it extends the java.io.Serializable interface. It
must also provide an implementation of the Object.equals(Object other) and
Object.hashCode() methods.

Normally, the primary key fields of entity beans must be set in the ejbCreate() method.
The fields are then used to insert a new record into the database. This can be a difficult
procedure, however, bloating the method, and many databases now have built-in
mechanisms for providing appropriate primary key values. A more elegant means of
generating primary keys is for the user to implement a separate class that generates
primary keys. This class can also implement database-specific programming logic for
generating primary keys.

Generating primary keys from a user class
With enterprise beans, the primary key is represented by a Java class containing the
unique data. This primary key class can be any class as long as that class is a legal
value type in RMI-IIOP, meaning it extends the java.io.Serializable interface. It must
also provide an implementation of the Object.equals(Object other) and
Object.hashCode() methods, two methods which all Java classes inherit by definition.

The primary key class can be specific to an particular entity bean class. That is, each
entity bean can define its own primary key class. Or, multiple entity beans can share
the same primary key class.

The bank application uses two different entity beans to represent savings and checking
accounts. Both types of accounts use the same field to uniquely identify a particular
account record. In this case, they both use the same primary key class, AccountPK, to
represent the unique identifier for either type of account. The following code shows the
definition of the account primary key class:

public class AccountPK implements java.io.Serializable {
 public String name;
 public AccountPK() {}
 public AccountPK(String name) {
 this.name = name;
 }
}

110 AppServer Developer ’s Guide

Implement ing an ent i ty bean

Generating primary keys from a custom class
To generate primary keys from a custom class, you must write a class that implements
the com.borland.ejb.pm.PrimaryKeyGenerationListener interface.

Support for composite keys
Primary keys are not restricted to a single column. Sometimes, a primary key is
composed of more than one column. In a more realistic example, a course is not
identified merely by its name. Instead, the primary key for each course record can be
the department in which the course is offered and the course number itself. The
department code and the course number are separate columns in the Course table. A
select statement that retrieves a particular course, or all courses in which a student is
enrolled, must use the entire primary key; that is, it must consider both columns of the
primary key.

The Borland CMP engine supports composite primary keys. You can use keys with
multiple columns in the where clause of a select statement. You can also select all
fields of a compound key in the select clause portion of the statement.

For the where clause, specify multiple field names in the same manner that you specify
single field names. Use “and” to separate each field. The format is

<column> = :<parameter>[ejb/<entity bean>]

Note that the equal (=) sign is one of several possible notations. You could also specify
greater than (>), less than (<), greater than or equal (>=), or less than or equal (<=).
The colon (:) notation indicates parameter substitution. The parameter field is specified
with the bean name first, followed by a dot (.), then the bean attribute.

For example, to find all students taking Art 205, Renaissance Art where classes are
identified by the department (Art) and the course number (205), you might have the
following select statement defined for the finder method findByCourse():

SELECT sname FROM Enrollment WHERE course_department = :c.department[ejb/
Course] AND
 course_number = :c.number[ejb/Course]

You can also have the select statement return multiple fields from a compound key. In
the select clause of the select statement, list the fields, separated by commas. Note
that you use the same dot notation as for parameters; that is, specify the entity bean
name, followed by a dot (.), then the attribute name. For example, the finder method
findByStudent() can have the following select statement:

SELECT c.department, c.number FROM Enrollment WHERE student_name = :s

Reentrancy

By default, entity beans are not reentrant. When a call within the same transaction
context arrives at the entity bean, it causes the exception java.rmi.RemoteException to
be thrown.

You can declare an entity bean reentrant in the deployment descriptor; however, take
special care in this case. The critical issue is that a container can generally not
distinguish between a (loopback) call within the same transaction and a concurrent
invocation (in the same transaction context) on that same entity bean.

When the entity bean is marked reentrant, it is illegal to allow a concurrent invocation
within the same transaction context on the bean instance. It is the programmer's
responsibility to ensure this rule.

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 111

Container-Managed Persistence in AppServer

Container-Managed Persistence in AppServer
The AppServer's EJB Container is fully J2EE 1.3 compliant. The bean provider designs
persistence schemas for their entity beans, determined the methods for accessing
container-managed fields and relationships, and defines these in the beans'
deployment descriptor. The deployer maps this persistence schema to the database
and creates any other necessary classes for the beans' maintenance.

Information on J2EE 1.3 entity beans and CMP 2.0 is found in the Chapter 15, “Using
Borland AppServer Properties for CMP 2.x.”

AppServer CMP engine's CMP 1.1 implementation

While you don't have to be an expert on all aspects of the Borland CMP engine to use
it effectively, it is helpful to have some knowledge of certain areas. This section
provides information on the areas that users of the CMP engine should understand. In
particular, it focuses on the deployment descriptor file and the XML statements
contained within the file.

Before continuing, there are some key things to note in the implementation of an entity
bean that uses 1.1 container-managed persistence:

■ The entity bean has no implementations for finder methods. The EJB Container
provides the finder method implementations for entity beans with container-
managed persistence. Rather than providing the implementation for finder methods
in the bean's class, the deployment descriptor contains information that enables the
container to implement these finder methods.

■ The entity bean declares all fields public that are managed by the container for the
bean. The CheckingAccount bean declares name and balance to be public fields.

■ The entity bean class implements the seven methods declared in the EntityBean
interface: ejbActivate(), ebjPassivate(), ejbLoad(), ejbStore(), ejbRemove(),
setEntityContext(), and unsetEntityContext(). However, the entity bean is required
to provide only skeletal implementations of these methods, though it is free to add
application-specific code where appropriate. The CheckingAccount bean saves the
context returned by setEntityContext() and releases the reference in
unsetEntityContext(). Otherwise, it adds no additional code to the EntityBean
interface methods.

■ There is an implementation of the ejbCreate() method (because this entity bean
allows callers of the bean to create new checking accounts), and the implementation
initializes the instance's two variables, account name and balance amount, to the
argument values. The ejbCreate() method returns a null value because, with
container-managed persistence, the container creates the appropriate reference to
return to the client.

■ The entity bean provides the minimal implementation for the ejbPostCreate()
method, though this method could have performed further initialization work if
needed. For beans with container-managed persistence, it is sufficient to provide
just the minimal implementation for this method because ejbPostCreate() serves as
a notification callback. Note that the same rule applies to the methods inherited from
the EntityBean interface as well.

112 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

Providing CMP metadata to the Container
According to the EJB Specification, the deployer must provide CMP metadata to the
EJB container. The Borland Container captures the CMP-relevant metadata in the XML
deployment descriptor. Specifically, the Borland Container uses the vendor-specific
portion of the deployment descriptor for the CMP metadata.

This section illustrates some of the information that needs to be provided for container-
managed finder methods, particularly if you are constructing container-managed finder
methods at the command line level. Because it is not an exhaustive reference, you
should refer to the DTD of the deployment descriptor for the detailed syntax. Look for
the syntax for the finder methods and Object-Relation (OR) mapping metadata.

Constructing finder methods
When you construct a finder method, you are actually constructing an SQL select
statement with a where clause. The select statement includes a clause that states what
records or data are to be found and returned. For example, you might want to find and
return checking accounts in a bank. The where clause of the select statement sets
limits on the selection process; that is, you might want to find only those checking
accounts with a balance greater than some specified amount, or accounts with a
certain level of activity per month. When the Container uses container-managed
persistence, you must specify the terms of the where clause in the deployment
descriptor.

For example, suppose you have a finder method called findAccountsLargerThan(int
balance) and you are using container-managed persistence. This finder method
attempts to find all bank accounts with a balance greater than the specified value.
When the Container executes this finder method, it actually executes a select
statement whose where clause tests the account balances against the int value
passed as a parameter to the method. Because we're using container-managed
persistence, the deployment descriptor needs to specify the conditions of the where
clause; otherwise, the Container does not know how to construct the complete select
statement.

The value of the where clause for the findAccountsLargerThan(int balance)method is
“balance > :balance”. In English, this translates to: “the value of the balance column is
greater than the value of the parameter named balance.” (Note that there is only one
argument to the finder method, an int value.)

The default container-managed persistence implementation supports this finder
method by constructing the complete SQL select statement, as follows:

select * from Accounts where ? > balance

The CMP engine then substitutes “?” with the int parameter. Lastly, the engine
converts the result set into either an Enumeration or Collection of primary keys, as
required by the EJB Specification.

It is possible to inspect the various SQL statements that the CMP implementation
constructs. To do this, enable the EJBDebug flag on the container. When that flag is
enabled, it prints the exact statements constructed by the Container.

While other EJB Container products use code generation to support CMP, the Borland
Container does not use code generation because it has serious limitations. For
example, code generation makes it difficult to support a “tuned update” feature,
because of the great number of different update statements to container-managed
fields that are required.

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 113

Container-Managed Persistence in AppServer

Constructing the where clause
The where clause is a necessary part of select statements when you want to delimit the
extent of the returned records. Because the where clause syntax can be fairly complex,
you must follow certain rules in the XML deployment descriptor file so that the EJB
Container can correctly construct this clause.

To begin with, you are not obligated to use the literal “where” in your <where-clause>.
You can construct a where clause without this literal and rely on the Container to
supply it. However, the Container only does this if the <where-clause> is not an empty
string; it leaves empty strings empty. For example, you could define a where clause as
either:

<where-clause> where a = b </where-clause>

or:

<where-clause> a = b </where-clause>

The Container converts a = b to the same where clause, where a = b. However, it leaves
unmodified an empty string defined as <where-clause> “” </where-clause>.

Note The empty string makes it easy to specify the findAll() method. When you specify just
an empty string, the Container construes that to mean the following:

select [values] from [table];

Such a select statement would return all values from a particular table.

Parameter substitution
Parameter substitution is an important part of the where clause. The Borland EJB
Container does parameter substitution wherever it finds the standard SQL substitution
prefix colon (:). Each parameter for substitution corresponds to a name of a parameter
in the finder specification found in the XML descriptor.

For example, in the XML deployment descriptor, you might define the following finder
method which takes a parameter balance (note that balance is preceded by a colon):

<finder>
 <method-signature>findAccountsLargerThan(float balance)</method-signature>
 <where-clause>balance > :balance</where-clause>
</finder>

The Container composes a SQL select statement whose where clause is:

balance > ?

Note that the :balance parameter in the deployment descriptor becomes a question
mark (?) in the equivalent SQL statement. When invoked, the Container substitutes the
value of the parameter :balance for the ? in the where clause.

Compound parameters
The Container also supports compound parameters; that is, the name of a table
followed by a column within the table. For this, it uses the standard dot (.) syntax,
where the table name is separated from the column name by a dot. These parameters
are also preceded by a colon.

For example, the following finder method has the compound parameters :address.city
and :address.state:

<finder>
 <method-signature>findByCity(Address address)</method-signature>
 <where-clause>city = :address.city AND state = :address.state</where-clause>
</finder>

114 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

The where clause uses the city and state fields of the address compound object to
select particular records. The underlying Address object could have Java Beans-style
getter methods that correspond to the attributes city and state. Or, alternatively, it
could have public fields that correspond to the attributes.

Entity beans as parameters
An entity bean can also serve as a parameter in a finder method. You can use an entity
bean as a compound type. To do so, you must tell the CMP engine which field to use
from the entity bean's passed reference to the SQL query. If you do not use the entity
bean as a compound type, then the Container substitutes the bean's primary key in the
where clause.

For example, suppose you have a set of OrderItems entity beans associated with an
Order entity object. You might have the following finder method:

java.util.Collection OrderItemHome.findByOrder(Order order);

This method returns all OrderItems associated with a particular Order. The deployment
descriptor entry for its where clause would be:

<finder>
 <method-signature>findByOrder(Order order)</method-signature>
 <where-clause>order_id = :order[ejb/orders]</where-clause>
</finder>

To produce this where clause, the Container substitutes the primary key of the Order
object for the string :order[ejb/orders]. The string between the brackets (in this
example, ejb/orders) must be the <ejb-ref> corresponding to the home of the
parameter type. In this example, ejb/orders corresponds to an <ejb-ref> pointing to
OrderHome.

When you use an EJBObject as a compound type (using the dot notation), you are
actually accessing the underlying get method for the field in the <finder> definition. For
example, the following in the <finder> definition:

order_id = :order.orderId

calls the getOrderId() method on the order EJBObject and uses the result of the call in
the selection criterion.

Specifying relationships between entities
Relational databases (RDBMS) permit records in one table to be associated with
records in another table. The RDBMS accomplishes this using foreign keys; that is, a
record in one table maintains a field (or column) that is a foreign key or reference to
(usually) the primary key of a related record in another table. You can map these same
references among entity beans.

For the CMP engine to map references among entity beans, you use an <ejb-link>
entry in the deployment descriptor. The <ejb-link> maps field names to their
corresponding entities. The CMP engine uses this information in the deployment
descriptor to locate the field's associated entity. (Refer to the pigs example for an
illustration of the <ejb-link> entry.)

Any container-managed persistence field can correspond to a foreign key field in the
corresponding table. When you look at the entity bean code, these foreign key CMP
fields appear as object references.

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 115

Container-Managed Persistence in AppServer

For example, suppose you have two database tables, an address table and a country
table. The address table contains a reference to the country table. The SQL create
statements for these tables might look as shown below.

create table address (
 addr_id number(10),
 addr_street1 varchar2(40),
 addr_street2 varchar(40),
 addr_city varchar(30),
 addr_state varchar(20),
 addr_zip varchar(10),
 addr_co_id number(4) * foreign key *
);
create table country (
 co_id number(4),
 co_name varchar2(50),
 co_exchange number(8, 2),
 co_currency varchar2(10)
);

Note that the address table contains the field addr_co_id, which is a foreign key
referencing the country table's primary key field, co_id.

There are two classes that represent the entities which correspond to these tables, the
Address and Country classes. The Address class contains a direct pointer, country, to the
Country entity. This direct pointer reference is an EJBObject reference; it is not a direct
Java reference to the implementation bean.

Now examine the code for both classes:

//Address Class
public class Address extends EntityBean {
 public int id;
 public String street1;
 public String street1;
 public String city;
 public String state;
 public String zip;
 public Country country; // this is a direct pointer to the Country
}
//Country Class
public class Country extends EntityBean {
 public int id;
 public String name;
 public int exchange;
 public String currency;
}

In order for the Container to resolve the reference from the Address class to the Country
class, you must specify information about the Country class in the deployment
descriptor. Using the <ejb-link> entry in the deployment descriptor, you instruct the
Container to link the reference to the field Address.country to the JNDI name for the
home object, CountryHome. (Look at the pigs example for a more detailed explanation.)
The container optimizes this cross-entity reference; because of the optimization, using
the cross reference is as fast as storing the value of the foreign key.

116 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

However, there are two important differences between using a cross reference and
storing the foreign key value:

■ When you use a cross reference pointer to another entity, you do not have to call the
other entity's home object findByPrimaryKey() method to retrieve the corresponding
object entity. Using the above example as an illustration, the Address.country pointer
to the Country object lets you retrieve the country object directly. You do not have to
call CountryHome.findByPrimaryKey(address.country) to get the Country object that
corresponds to the country id.

■ When you use a cross reference pointer, the state of the referenced entity is only
loaded when you actually use it. It is not automatically loaded when the entity
containing the pointer is loaded. That is, merely loading in an Address object does
not actually load in a Country object. You can think of the Address.country field as a
“lazy” reference, though when the underlying object is actually used does a “lazy”
reference load in its corresponding state. (Note that this “lazy” behavior is a part of
the EJB model.) This facet of the EJB model results in the decoupling of the life
cycle of Address.country from the life cycle of the Address bean instance itself.
According to the model, Address.country is a normal entity EJBObject reference;
thus, the state of Address.country is only loaded when and if it is used. The
Container follows the EJB model and controls the state of AddressBean.country as it
does with any other EJBObject.

Container-managed field names
The Borland Container has changed the container-managed persistent field names so
that they are more Java friendly. SQL column names often prepend a shortened form
of the table name, followed by an underscore, to each column name. For example, in
the address table, there is a column for the city called addr_city. The full reference to
this column is address.addr_city. With the Borland Container, this maps to the Java
field Address.city, rather than the more redundant and more awkward
Address.addr_city.

You can achieve this Java-friendly column-to-field-name mapping using the
deployment descriptor. While this section shows you how to manually edit the
deployment descriptor, it is best to use the Deployment Descriptor Editor GUI to
accomplish this. See “Using the Deployment Descriptor Editor” in the Management
Console User’s Guide for instructions on using the GUI screens.

Should you choose to manually edit the deployment descriptor, use the <env-entry-
name>, <env-entry-type>, and <env-entry-value> subtags within the <env-entry> tag.
Place the more friendly Java field name in the <env-entry-name> tag, noting that it is
referencing a JDBC column. Put the type of the field in the <env-entry-type> tag. Lastly,
place the actual SQL column name in the <env-entry-value> tag. The following
deployment descriptor code segment illustrates this:

<env-entry>
 <env-entry-name>ejb.cmp.jdbc.column:city</env-entry-name>
 <env-entry-type>String</env-entry-type>
 <env-entry-value>addr_city</env-entry-value>
</env-entry>

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 117

Sett ing Propert ies

Setting Properties
Most properties for Enterprise JavaBeans can be set in their deployment descriptors.
The Borland Deployment Descriptor Editor (DDEditor) also allows you to set properties
and edit descriptor files. Use of the Deployment Descriptor Editor is described in the
Borland AppServer Management Console User's Guide. Use properties in the
deployment descriptor to specify information about the entity bean's interfaces,
transaction attributes, and so forth, plus information that is unique to an entity bean. In
addition to the general descriptor information for entity beans, here are also three sets
of properties that can be set to customize CMP implementations, entity properties,
table properties, and column properties. Entity properties can be set either by using the
EJB Designer or in the XML directly.

Using the Deployment Descriptor Editor

You can use the Deployment Descriptor Editor, which is part of the Borland AppServer
to set up all of the container-managed persistence information. You should refer to the
Management Console User's Guide for complete information on the use of the
Deployment Descriptor Editor and other related tools.

J2EE 1.2 Entity Bean using BMP or CMP 1.1

Descriptor Element Navigation Tree Node/Panel Name DDEditor Tab

Entity Bean name Bean General

Entity Bean class Bean General

Home Interface Bean General

Remote Interface Bean General

Home JNDI Name Bean General

Persistence Type (CMP or
BMP)

Bean General

Primary Key Class Bean General

Reentrancy Bean General

Icons Bean General

Environment Entries Bean Environment

EJB References to other
Beans

Bean EJB References

EJB Links Bean EJB References

Resource References to data
objects/connection factories

Bean Resource References

Resource Reference type Bean Resource References

Resource Reference
Authentication Type

Bean Resource References

Security Role References Bean Security Role References

Entity Properties Bean Properties

Container Transactions Bean:Container Transactions Container Transactions

Transactional Method Bean:Container Transactions Container Transactions

Transactional Method
Interface

Bean:Container Transactions Container Transactions

Transactional Attribute Bean:Container Transactions Container Transactions

Method Permissions Bean:Method Permissions Method Permissions

CMP Description Bean:CMP1.1 CMP 1.1

CMP Tables Bean:CMP1.1 CMP 1.1

118 AppServer Developer ’s Guide

Sett ing Propert ies

Container-managed data access support

For container-managed persistence, the Borland EJB Container supports all data types
supported by the JDBC specification, plus some other types beyond those supported
by JDBC.

The following shows the basic and complex types supported by the Borland EJB
Container:

■ Basic types:

■ Complex types

■ Any class implementing java.io.Serializable, such as Vector and Hashtable

■ Other entity bean references

Keep in mind that the Borland Container supports classes implementing the
java.io.Serializable interface, such as Hashtable and Vector. The container supports
other data types, such as Java collections or third party collections, because they also
implement java.io.Serializable. For classes and data types that implement the
Serializable interface, the Container merely serializes their state and stores the result
into a BLOB. The Container does not do any “smart” mapping on these classes or types;
it just stores the state in binary format. The Container's CMP engine observes the
following rule: the engine serializes as a BLOB all types that are not one of the explicitly
supported types.

In this context, the Container follows the JDBC specification: a BLOB is the type to which
LONGVARBINARY maps. (For Oracle, this is LONG RAW.)

Using SQL keywords
The CMP engine for the Borland Container can handle all SQL keywords that comply
with the SQL92 standard. However, you should keep in mind that vendors frequently
add their own keywords. For example, Oracle uses the keyword VARCHAR2. If you want
to ensure that the CMP engine can handle vendor keywords that may differ from the
SQL standard, set up an environment property in the deployment descriptor that maps
the CMP field name to the column name. By using this sort of environment property,
you do not have to modify your code.

Container-Managed Fields
Description

Bean:CMP1.1 CMP 1.1

Finders Bean:CMP1.1 Finders

Finder Method Bean:CMP1.1 Finders

Finder WHERE Clause Bean:CMP1.1 Finders

Finder Load State option Bean:CMP1.1 Finders

■ boolean Boolean ■ short Short

■ double Double ■ byte[]

■ long Long ■ char Character

■ BigDecimal java.util.Date ■ int Integer

■ byte Byte ■ String java.sql.Date

■ float Float ■ java.sql.Time java.sql.TimeStamp

Descriptor Element Navigation Tree Node/Panel Name DDEditor Tab

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 119

Sett ing Propert ies

For example, suppose you have a CMP field called “select”. You can use the following
environment property to map “select” to a column called “SLCT”, as shown below.

<cmp-info>
 <database-map>
 <table>Data</table>
 <column-map>
 <field-name>select</field-name>
 <column-name>SLCT</column-name>
 </column-map>
 </database-map>
</cmp-info>

Using null values
It is possible that your database values can contain SQL null values. If so, you must
map them to fields whose Java data types are permitted to contain Java null values.
Typically, you do this by using Java types instead of primitive types. Thus, you use a
Java Integer type rather than a primitive int type, or a Java Float type rather than a
primitive float type.

Establishing a database connection
You must specify a DataSource so that the CMP engine can open a database
connection. The DataSource defines the information necessary for establishing a
database connection, such as username and password. Define a DataSource and then
use a resource-ref to refer to the DataSource in the XML deployment descriptor for the
bean. The CMP engine can then use the DataSource to access the database via
JDBC.

At the point in the vendor-specific XML file where you provide the jndi binding for the
resource-ref, add the element

<cmp-resource>True</cmp-resource>

For cases where the entity bean declares only one resource-ref, you do not need to
provide the above XML element. When the entity bean has only one resource-ref, the
Borland Container knows to automatically choose that one resource as the cmp-
resource.

Container-created tables
You can instruct the Borland EJB Container to automatically create tables for
container-managed entities based on the entity's container-managed fields. Because
table creation and data type mappings vary among vendors, you must specify the
JDBC database dialect in the deployment descriptor to the Container. For all
databases (except for JDataStore) if you specify the dialect, then the Container
automatically creates tables for container-managed entities for you. The Container will
not create these tables unless you specify the dialect.

However, for the JDataStore database, the Container can detect the dialect from the
URL for the JDataStore database. Thus, for JDataStore, the Container will create these
tables regardless of whether you explicitly specify the dialect.

120 AppServer Developer ’s Guide

Sett ing Propert ies

The following table shows the names or values for the different dialects (case is
ignored for these values):

Mapping Java types to SQL types
When you develop an enterprise bean for an existing database, you must map the SQL
data types specified in the database schema to Java programming language data
types.

The Borland EJB Container follows the JDBC rules for mapping Java programming
language types to SQL types. JDBC defines a set of generic SQL type identifiers that
represent the most commonly used SQL types. You must use these default JDBC
mapping rules when you develop an enterprise bean to model an existing database
table. (These types are defined in the class java.sql.Types.)

The following table shows the default SQL to Java type mapping as defined by the
JDBC specification.

Database Name Dialect Value

JDataStore jdatastore

Oracle oracle

Sybase sybase

MSSQLServer mssqlserver

DB2 db2

Interbase interbase

Informix informix

No database none

Java type JDBC SQL type

boolean/Boolean BIT

byte/Byte TINYINT

char/Character CHAR(1)

double/Double DOUBLE

float/Float REAL

int/Integer INTEGER

long/Long BIGINT

short/Short SMALLINT

String VARCHAR

java.math.BigDecimal NUMERIC

byte[] VARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.util.Date TIMESTAMP

java.io.Serializable VARBINARY

Chapter 13: Ent i ty Beans and CMP 1.1 in Bor land AppServer 121

Sett ing Propert ies

Automatic table mapping

The Borland EJB container has the capability to automatically map Java types defined
in the enterprise bean code to database table types. However, while it may create
these tables automatically, it does not necessarily use the most optimal mapping
approach. In fact, automatically generating these mappings and tables is more of a
convenience for developers.

The Borland-generated tables are not optimized for performance. Often, they overuse
database resources. For example, the container maps a Java String field to the
corresponding SQL VARCHAR type. However, the mapping is not sensitive to the actual
length of the Java field, and so it maps all string fields to the maximum VARCHAR length.
Thus, it might map a two-character Java String to a VARCHAR(2000) column.

In a production situation, it is preferable for database administrators (DBA) to create
the tables and do the type mapping. The DBA can override the default mappings and
produce a table optimized for performance and use of database resources.

While all relational databases implement SQL types, there may be significant variations
in how they implement these types. Even when they support SQL types with the same
semantics, they may use different names to identify these types. For example, Oracle
implements a Java boolean as aNUMBER(1,0), while Sybase implements it as a BIT and
DB2 implements it as a SMALLINT.

When the Borland EJB Container creates the database tables for your enterprise
beans, it automatically maps entity bean fields and database table columns. The
container must know how to properly specify the SQL types so that it can correctly
create the tables in each supported database. As a result, the EJB Container maps
some Java types differently, depending on the database in use. The following table
shows the mapping for Oracle, Sybase/MSSQL, and DB2:

Java types Oracle Sybase/MSSQL DB2

boolean/Boolean NUMBER(1,0) BIT SMALLINT

byte/Byte NUMBER(3,0) TINYINT SMALLINT

char/Character CHAR(1) CHAR(1) CHAR(1)

double/Double NUMBER FLOAT FLOAT

float/Float NUMBER REAL REAL

int/Integer NUMBER(10,0) INT INTEGER

long/Long NUMBER(19,0) NUMERIC(19,0) BIGINT

short/Short NUMBER(5,0) SMALLINT SMALLINT

String VARCHAR(2000) TEXT VARCHAR(2000)

java.math.BigDecimal NUMBER(38) DECIMAL(28,28) DECIMAL

byte[] LONG RAW IMAGE BLOB

java.sql.Date DATE DATETIME DATE

java.sql.Time DATE DATETIME TIME

java.sql.Timestamp DATE DATETIME TIMESTAMP

java.util.Date DATE DATETIME TIMESTAMP

java.io.Serializable RAW(2000) IMAGE BLOB

122 AppServer Developer ’s Guide

Sett ing Propert ies

The following table shows the Java to SQL type mapping for JDatastore, Informix, and
Interbase:

Java types JDatastore Informix Interbase

boolean/Boolean BOOLEAN SMALLINT SMALLINT

byte/Byte SMALLINT SMALLINT SMALLINT

char/Character CHAR(1) CHAR(1) CHAR(1)

double/Double DOUBLE FLOAT DOUBLE PRECISION

float/Float FLOAT SMALLFLOAT FLOAT

int/Integer INTEGER INTEGER INTEGER

long/Long LONG DECIMAL(19,0) NUMBER(15,0)

short/Short SMALLINT SMALLINT SMALLINT

String VARCHAR VARCHAR(2000) VARCHAR(2000)

java.math.BigDecimal NUMERIC DECIMAL(32) NUMBER(15,15)

byte[] OBJECT BYTE BLOB

java.sql.Date DATE DATE DATE

java.sql.Time TIME DATE DATE

java.sql.Timestamp TIMESTAMP DATE DATE

java.util.Date TIMESTAMP DATE DATE

java.io.Serializable OBJECT BYTE BLOB

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 123

C h a p t e r

Chapter14Entity Beans and Table Mapping for
CMP 2.x

Here we'll examine how entity beans are deployed in the Borland AppServer
(AppServer) and how persistence of entities can be managed. This is not, however, an
introduction to entity beans and should not be treated as such. Rather, this document
will explore the implications of using entity beans within Borland Partitions. We'll
discuss descriptor information, persistence options, and other container-optimizations.
Information on the Borland-specific deployment descriptors and implementations of
Container-Managed Persistence (CMP) will be documented in favor of general EJB
information that is generally available from the J2EE Specifications from Sun
Microsystems.

Entity Beans
Entity beans represent a view of data stored in a database. Entity beans can be fine-
grained entities mapping to a single table with a one-to-one correspondence between
entity beans and table rows. Or, entity beans can span multiple tables and present data
independent of the underlying database schema. Entity beans can have relationships
with one another, can be queried for data by clients, and can be shared among
different clients.

Deploying your Entity Bean to one of the AppServer Partitions requires that it be
packaged as a part of a JAR. The JAR must include two descriptor files: ejb-jar.xml
and the proprietary ejb-borland.xml file. The ejb-jar.xml descriptor is fully-documented
in the J2EE 1.3 Specification. The DTD for ejb-borland.xml is reproduced in this
document and aspects of its usage documented here. The Borland proprietary
descriptor allows for the configuration of a number of properties that can be set to
optimize container performance and manage the persistence of your entity beans.

124 AppServer Developer ’s Guide

Container-managed persistence and Relat ionships

Container-managed persistence and Relationships
Borland's EJB container provides tools that generate the persistence calls at the time
that the entity bean is deployed; that is, when the entity bean is installed into a
Partition. The tools use the deployment descriptors to determine the instance fields
which must be persisted. Instead of coding the database access directly in the bean,
the bean provider of a container-managed entity bean must specify in the deployment
descriptor those instance fields for which the container tools must generate access
calls. The container has sophisticated deployment tools capable of mapping the fields
of an entity bean to its data source.

Container-managed persistence has many advantages over bean-managed
persistence. It is simpler to code because the bean provider does not have to code the
database access calls. Handling of persistence can also be changed without having to
modify and recompile the entity bean code. The Deployer or Application Assembler can
do this by modifying the deployment descriptor when deploying the entity bean. Shifting
the database access and persistence handling to the container not only reduces the
complexity of code in the bean, it also reduces the scope of possible errors. The bean
provider can focus on debugging the business logic of the bean rather than the
underlying system issues.

Borland's Persistence Manager (PM) not only persists CMP fields but also CMP
relationships. The container manages bean relationships and maintains the referential
integrity of these relationships. Just as you defined container-managed persistence
fields in a bean's deployment descriptor, you can now define container-managed
relationship fields in the deployment descriptor. The container supports relationships of
various cardinalities, including one-to-one, one-to-many, and many-to-many.

Packaging Requirements

Like session beans, entity beans can expose their methods with a remote interface or
with a local interface. The remote interface exposes the bean's methods across the
network to other, remote components. The local interface exposes the bean's methods
only to local clients; that is, clients located on the same EJB container.

Entity beans that use EJB 2.0 container-managed persistence should use the local
model. That is, the entity bean's local interface extends the EJBLocalObject interface.
The bean's local home interface extends the EJBLocalHome interface. You must deploy
these interfaces as well as an implementation of your bean's class.

Each Entity Bean must also have corresponding entries in its JAR's deployment
descriptors. The standard deployment descriptor, ejb-jar.xml contains essentially
three different types of deployment information. These are:

1 General Bean Information: This corresponds to the <enterprise-beans> elements
found in the descriptor file and is used for all three types of beans. This information
also includes information on the bean's interfaces and class, security information,
environmental information, and even query declarations.

2 Relationships: This corresponds to the <relationships> elements found in the
descriptor file and applies to entity beans using CMP only. This is where container-
managed relationships are spelled out.

3 Assembly Information: This corresponds to the <assembly-descriptor> element
which explains how the beans interact with the application as a whole. Assembly
information is broken down into four categories:

■ Security Roles: simple definitions of security roles used by the application. Any
security role references you defined for your beans must also be defined here.

■ Method Permissions: each method of each bean can have certain rules about
their execution. These are set here.

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 125

Container-Managed Persistence in AppServer

■ Container-Transactions: this specifies the transaction attributes as per the EJB
2.0 specification for each method participating in a transaction.

■ Exclude List: methods not to be called by anyone.

In addition, each Entity Bean also provides persistence information in the Borland-
specific descriptor file, ejb-borland.xml. In this descriptor file, you specify information
used by the Borland CMP engine and PM to persist entities in a backing store. This
information includes:

■ General Bean Information: Information about deployed Enterprise JavaBeans,
including interface locations.

■ Table and Column Properties: Information about database tables and columns
used by entity beans in the JAR.

■ Security Roles: Authorization information for the deployed Enterprise JavaBeans.

All of these can be accessed from the Deployment Descriptor Editor. You should refer
to the EJB 2.0 specification for DTD information and the proper use of the descriptor
files.

A note on reentrancy

By default, entity beans are not reentrant. When a call within the same transaction
context arrives at the entity bean, it causes the exception java.rmi.RemoteException to
be thrown.

You can declare an entity bean reentrant in the deployment descriptor; however, take
special care in this case. The critical issue is that a Container can generally not
distinguish between a (loopback) call within the same transaction and a concurrent
invocation (in the same transaction context) on that same entity bean.

When the entity bean is marked reentrant, it is illegal to allow a concurrent invocation
within the same transaction context on the bean instance. It is the programmer's
responsibility to ensure this rule.

Container-Managed Persistence in AppServer
The AppServer's EJB Container is fully J2EE 1.3 compliant. It implements both
container-managed persistence (CMP) for Enterprise JavaBeans implementing either
the EJB 1.1 and/or EJB 2.0 specifications. The bean provider designs persistence
schemas for their entity beans, determines the methods for accessing container-
managed fields and relationships, and defines these in beans' deployment descriptors.
The deployer maps this persistence schema to the database and creates any other
necessary classes for the beans' maintenance.

The EJB 2.0 Specification from Sun Microsystems details the specifics for the bean
and container contracts in Chapters 10 and 11. Creating the persistence schema is not
in the scope of this document, but is well discussed in both the Sun specification and in
the Borland JBuilder documentation at http://info.borland.com/techpubs/jbuilder/,
the relevant parts of which are the Developing Applications with Enterprise JavaBeans
and the Distributed Application Developer's Guide.

126 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

About the Persistence Manager

The Persistence Manager (PM) provides a data-access layer for reading and writing
entity beans. It also provides navigation and maintenance support for relationships
between entities and extensions to EJB-QL. Currently, the PM only supports data
access to relational database by means of JDBC. The PM uses an optimistic
concurrency approach to data access. Conflicts in resource state are resolved before
transaction commit or rollback by use of verified SQL update and delete statements.

Although the PM does not manage transactions (this is the Container's responsibility),
it is aware of transaction start and completion and can therefore manage entity state.
The PM uses the TxContext class to represent the root of managed entities during
transaction lifecycles. When the container manages a transaction it asks the PM for the
associated TxContext instance. If none exists, as is the case when a new transaction
has started, one is created by the PM. When a transaction is completing, the container
calls the method TxContext.beforeCompletion() to alert the PM to verify entity state.

The PM has complete responsibility for entity data storage and the maintenance of the
state of relationships between entities. Relationship editing is also managed by the PM.
This simplifies interactions with the container and allows the PM to optimize its read
and write operations. This approach also suppresses duplicate find requests by
tracking returned primary keys for requested entities. Data from duplicate find
operations can then be returned from the first load of the entity's data.

Borland CMP engine's CMP 2.x implementation

In CMP 2.x, the details of constructing finder and select methods have been pushed
into the EJB 2.0 specification. Users should thoroughly inspect the specification for
details on implementing their database SQL. The Borland EJB Container is fully-
compliant with the EJB 2.0 specification and supports all of its features.

The implementation class for an entity bean using 2.0 container-managed persistence
is different from that of a bean using 1.1 container-managed persistence. The major
differences are as follows:

■ The class is declared as an abstract class.

■ There are no public declarations for the fields that are container-managed fields.
Instead, there are abstract get and set methods for container-managed fields.
These methods are abstract because the container provides their implementation.
For example, rather than declaring the fields balance and name, the CheckingAccount
class might include these get and set methods:

public abstract float getBalance();
public abstract void setBalance(float bal);
public abstract String getName();
public abstract void setName(String n);

■ Container-managed relationship fields are likewise not declared as instance
variables. The class instead provides abstract get and set methods for these fields,
and the container provides the implementation for these methods.

Table Mapping for CMP 2.x is accomplished using the vendor-specific ejb-borland.xml
deployment descriptor. The descriptor is a companion to the ejb-jar.xml descriptor
described in the EJB 2.0 specification. Borland uses the XML tag <cmp2-info> as an
enclosure for table mapping data as needed. Then you use the <table-properties> and
its associated <column-properties> elements to specify particular information about the
entity bean's implementation. Use the DTD for syntax of the XML grammar.

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 127

Container-Managed Persistence in AppServer

Optimistic Concurrency Behavior

The container uses optimistic or pessimistic concurrency to control the behavior of
multiple transactions accessing the same data. The AppServer has four optimistic
concurrency behaviors which are specified as Table Properties. These behaviors are:

■ SelectForUpdate
■ SelectForUpdateNoWAIT
■ UpdateAllFields
■ UpdateModifiedFields
■ VerifyModifiedFields
■ VerifyAllFields

The behavior exhibited by the container corresponds to the value of the
optimisticConcurrencyBehavior Table Property.

Pessimistic Behavior
In this mode, the container will allow only one transaction at a time to access the data
held by the entity bean. Other transactions seeking the same data will block until the
first transaction has committed or rolled back. This is achieved by setting the
SelectForUpdate table property and issuing a tuned SQL statement with the FOR UPDATE
statement included. You can issue this SQL by overriding the SQL generated by the
CMP engine. Other selects on the row are blocked until then. The tuned SQL
generated looks like this:

SELECT ID, NAME FROM EMP_TABLE WHERE ID=? FOR UPDATE

You can also specify the SelectForUpdateNoWAIT table property. Doing so instructs the
database again to lock the row until the current transaction is committed or rolled back.
However, other selects on the row will fail (rather than blocking). The following SQL
illustrates a SELECT statement for the above:

SELECT ID, NAME FROM EMP_TABLE WHERE ID=? FOR UPDATE NOWAIT

These options should be used with caution. Although it does ensure the integrity of the
data, your application's performance could suffer considerably. This option will also not
function if you are using the Option A cache, since the entity bean remains in memory
in this mode and calls to ejbLoad() are not made between transactions.

Optimistic Concurrency
This mode permits the container to allow multiple transactions to operate on the same
data at the same time. While this mode is superior in performance, there is the
possibility that data integrity could be compromised.

The AppServer has four optimistic concurrency behaviors which are specified as Table
Properties. These behaviors are:

■ SelectForUpdate
■ SelectForUpdateNoWAIT
■ UpdateAllFields
■ UpdateModifiedFields
■ VerifyModifiedFields
■ VerifyAllFields

SelectForUpdate Use this option for pessimistic concurrency. With this option specified, the database
locks the row until the current transaction is committed or rolled back. Other selects on
the row are blocked until then.

SelectForUpdate
NoWAIT

Use this option for pessimistic concurrency. With this option specified, the database
locks the row until the current transaction is committed or rolled back. Other selects on
the row will fail.

128 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

UpdateAllFields With this option specified, the container issues an update on all fields, regardless of
whether or not they were modified. For example, consider a CMP entity bean with three
fields, KEY, VALUE1, and VALUE2. The following update will be issued at the terminus
of every transaction, regardless of whether or not the bean was modified:

UPDATE MyTable SET (VALUE1 = value1, VALUE2 = value2) WHERE KEY = key

UpdateModifiedFields This option is the default optimistic concurrency behavior. The container issues an
update only on the fields that were modified in the transaction, or suppresses the
update altogether if the bean was not modified. Consider the same bean from the
previous example, and assume that only VALUE1 was modified in the transaction.
Using UpdateModifiedFields, the container would issue the following update:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key

This option can provide a significant performance boost to your application. Very often
data access is read-only. In such cases, not sending an update to the database upon
every transaction saves quite a bit of processing time. Suppressing these updates also
prevents your database implementation from logging them, also enhancing
performance. The JDBC driver is also taxed far less, especially in large-scale EJB
applications. Even for well-tuned drivers, the less work they have to perform, the better.

VerifyModifiedFields This option, when enabled, orders the CMP engine to issue a tuned update while
verifying that the updated fields are consistent with their previous values. If the value
has changed in between the time the transaction originally read it and the time the
transaction is ready to update, the transaction will roll back. (You will need to handle
these rollbacks appropriately.) Otherwise, the transaction commits. Again using the
same table, the CMP engine generates the following SQL using the
VerifyModifiedFields behavior if only VALUE1 was updated:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key AND VALUE1 = old-VALUE1

VerifyAllFields

This option is very similar to VerifyModifiedFields, except that all fields are verified.
Again using the same table, the CMP engine generates the following SQL using this
option:

UPDATE MyTable SET (VALUE1 = value1) WHERE KEY = key AND VALUE1 = old-VALUE1
AND VALUE2 = old-VALUE2

Note The two verify settings can be used to replicate the SERIALIZABLE isolation level in the
Container. Often your applications require serializable isolation semantics. However,
asking the database to implement this can have a significant performance impact.
Using the verify settings allows the CMP engine to implement optimistic concurrency
using field-level locking. The smaller the granularity of the locking, the better the
concurrency.

Persistence Schema

The Borland CMP 2.x engine can create the underlying database schema based on the
structure of your entity beans and the information provided in the entity bean
deployment descriptors. You don't need to provide any CMP mapping information in
such cases. Simply follow the instructions for “Specifying tables and datasources,”
below. Or, the CMP engine can adapt to an existing underlying database schema.
Doing so, however, requires you to provide information to the CMP engine about your
database schema. In such cases, see “Basic Mapping of CMP fields to columns” on
page 130 as well as CASE 2 in “Specifying tables and datasources.”

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 129

Container-Managed Persistence in AppServer

Specifying tables and datasources
The minimum information required in ejb-borland.xml is an entity bean name and an
associated datasource. A datasource is used to obtain connections to a database.
Information on datasource configuration is given in Chapter 20, “Connecting to
Resources with Borland AppServer: using the Definitions Archive (DAR).” There are
two means of providing this information.

CASE 1: A development environment without existing database tables using either
JDataStore or Cloudscape databases.

In this case, the Borland CMP engine creates tables automatically, assuming that the
entity bean name is the same as the desired table name. You need only provide the
bean's name and its associated datasource as a property:

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <property>
 <prop-name>ejb.datasource</property>
 <prop-value>serial://ds/myDatasource</prop-value>
 </property>
</entity>

The Borland CMP engine will automatically create tables in this datasource based on
the bean's name and fields.

CASE 2: A deployment environment with (or without) existing database tables using
supported databases.

In this case, you need to supply information on the tables to which the entities map.
You'll provide a table name in the <entity> portion of the descriptor, and some
properties in the <table-properties> portion:

<entity>
 <ejb-name>CustomerEJB</ejb-name>
 <cmp2-info>
 <table-name>CUSTOMER</table-name>
 </cmp2-info>
</entity>
ƒ
<table-properties>
 <table-name>CUSTOMER</table-name>
 <property>
 <prop-name>datasource</prop-name>
 <prop-value>serial://ds/myDatasource</prop-value>
 </property>
</table-properties>

Note that the datasource property is called datasource when specified in the <table-
properties> element and ejb.datasource when in the <entity> element. If you are using
a database other than JDataStore or Cloudscape and would like to have the Borland
CMP engine automatically create this table, add the following XML to the <table-
properties> element:

ƒ
<table-properties>
 <table-name>CUSTOMER</table-name>
 <property>
 <prop-name>create-tables</prop-name>
 <prop-value>True</prop-value>
 </property>
</table-properties>

130 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

Basic Mapping of CMP fields to columns
Basic field mapping is accomplished using the <cmp-field> element in the ejb-
borland.xml deployment descriptor. In this element, you specify a field name and a
corresponding column to which it maps. Consider the following XML for an entity bean
called LineItem, which maps two fields, orderNumber and line, to two columns,
ORDER_NUMBER and LINE:

<entity>
 <ejb-name>LineItem</ejb-name>
 <cmp2-info>
 <cmp-field>
 <field-name>orderNumber</field-name>
 <column-name>ORDER_NUMBER</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>line</field-name>
 <column-name>LINE</column-name>
 </cmp-field>
 </cmp2-info>
</entity>

Mapping one field to multiple columns
Many users may employ coarse-grained entity beans that implement a Java class to
represent more fine-grained data. For example, an entity bean might use an Address
class as a field, but may need to map elements of the class (like AddressLine1,
AddressCity, and so forth) to an underlying database. To do this, you use the <cmp-
field-map> element, which defines a field map between your fine-grained class and its
underlying database representation. Note that such classes must implement
java.io.Serializable and all their data members must be public.

Consider an entity bean called Customer that uses the class Address to represent a
customer's address. The Address class has fields for AddressLine, AddressCity,
AddressState, and AddressZip. Using the following XML, we can map the class to its
representation in a database with corresponding columns:

<entity>
 <ejb-name>Customer</ejb-name>
 ƒ
 <cmp2-info>
 <cmp-field>
 <field-name>Address</field-name>
 <cmp-field-map>
 <field-name>Address.AddressLine</field-name>
 <column-name>STREET</column-name>
 </cmp-field-map>
 <cmp-field-map>
 <field-name>Address.AddressCity</field-name>
 <column-name>CITY</column-name>
 </cmp-field-map>
 <cmp-field-map>
 <field-name>Address.AddressState</field-name>
 <column-name>STATE</column-name>
 </cmp-field-map>
 <cmp-field-map>
 <field-name>Address.AddressZip</field-name>
 <column-name>ZIP</column-name>
 </cmp-field-map>
 </cmp-field>
 </cmp2-info>
 ƒ
</entity>

Note that we use one <cmp-field-map> element per database column.

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 131

Container-Managed Persistence in AppServer

Mapping CMP fields to multiple tables
You may have an entity that contains information persisted in multiple tables. These
tables must be linked by at least one column representing a foreign key in the linked
table. For example, you might have a LineItem entity bean mapping to a table LINE_ITEM
with a primary key LINE that is a foreign key in a table called QUANTITY. The LineItem
entity also contains some fields from the QUANTITY table that correspond to LINE entries
in LINE_ITEM. Here's what our LINE_ITEM table might look like:

QUANTITY, COLOR, and SIZE are all values that are also stored in the QUANTITY
table, shown here. Note the identical values for some of the fields. This is because the
LINE_ITEM table itself stores information in the QUANTITY table, using the LineItem
entity to provide composite information.

Again, we can describe these relationships using a combination of <cmp-field>
elements and a <table-ref> element. The <cmp-field> elements define the fields found
in LineItem. Since there are some fields that require information from QUANTITY, we'll
specify that generically by using a TABLE_NAME.COLUMN_NAME syntax. For instance, we'd
define LINE_ITEM's COLOR column as QUANTITY.COLOR. Finally, we'll specify the linking
column, LINE, that makes up our primary key/foreign key relationship. We'll do this
using the <table-ref> element.

Now let's look at the XML. First we define the CMP fields for the LineItem entity bean:

<entity>
 <ejb-name>LineItem</ejb-name>
 ƒ
 <cmp2-info>
 <cmp-field>
 <field-name>orderNumber</field-name>
 <column-name>ORDER_NO</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>line</field-name>
 <column-name>LINE</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>item</field-name>
 <column-name>ITEM</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>quantity</field-name>
 <column-name>QUANTITY.QUANTITY</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>color</field-name>
 <column-name>QUANTITY.COLOR</column-name>
 </cmp-field>
 <cmp-field>
 <field-name>size</field-name>
 <column-name>QUANTITY.SIZE</column-name>
 </cmp-field>

LINE ORDER_NO ITEM QUANTITY COLOR SIZE

001 XXXXXXX01 Kitty Sweater 2 red XL

LINE QUANTITY COLOR SIZE

001 2 red XL

132 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

Next, we specify the linking column between LINE_ITEM and QUANTITY by using a <table-
ref> element.

 <table-ref>
 <left-table>
 <table-name>LINE_ITEM</table-name>
 <column-list>
 <column-name>LINE</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>QUANTITY</table-name>
 <column-list>
 <column-name>LINE</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmp2-info>
</entity>

Specifying relationships between tables
To specify relationships between tables, you use the <relationships> element in ejb-
borland.xml. Within the <relationships> element, you define an <ejb-relationship-
role> containing the role's source (an entity bean) and a <cmr-field> element
containing the relationship. The descriptor then uses <table-ref> elements to specify
relationships between two tables, a <left-table> and a <right-table>. You must
observe the following cardinalities:

■ One <ejb-relationship-role> must be defined per direction; if you have a bi-
directional relationship, you must define an <ejb-relationship-role> for each bean
with each referencing the other.

■ Only one <table-ref> element is permitted per relationship.

Within the <left-table> and <right-table> elements, you specify a column list that
contains the column names to be linked together. The column list corresponds to the
<column-list> element in the descriptor. The XML is:

<!ELEMENT column-list (column-name+)>

Let's look at some relationships to see how this XML is put into practice:

CASE 1: a unidirectional one-to-one relationship.

Here, we have a Customer entity bean with a primary key, CUSTOMER_NO, that is also used
as a primary key for an entity called SpecialInfo, which contains special customer
information stored in a separate table. We need to specify a relationship between these
two entities. The Customer entity uses a field called specialInformation to map to the
SpecialInfo bean. We specify two relationship roles, one for each bean and assign
either to left- and/or right-table. Then we specify the name of their related column for
both.

 <relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>specialInformation</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>CUSTOMER</table-name>

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 133

Container-Managed Persistence in AppServer

 <column-list>CUSTOMER_NO</column-list>
 </left-table>
 <right-table>
 <table-name>SPECIAL_INFO</table-name>
 <column-list>CUSTOMER_NO</column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>

Next, we finish the <ejb-relation> entry by providing its other half, the SpecialInfo
bean. Since this is a mono-directional relationship, we don't need to specify any table
elements. We only need add the following, defining the other half of the relationship
and its source:

 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>SpecialInfo</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

CASE 2: a bidirectional one-to-many relationship.

Here, we have a Customer entity bean with a primary key, CUSTOMER_NO, that is also a
foreign key in an Order entity bean. We want the Borland EJB Container to manage this
relationship. The Customer bean uses a field called “orders” that links a customer to his
orders. The Order bean uses a field called “customers” for linking in the reverse
direction. First, we define the relationship and its source for the first direction: setting up
the mapping for a Customer's orders.

<relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>orders</cmr-field-name>

Then, we add the table references to specify the relationship between the tables. We're
basing this relationship on the CUSTOMER_NO column, which is a primary key for Customer
and a foreign key for Orders:

 <table-ref>
 <left-table>
 <table-name>CUSTOMER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>ORDER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>

134 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

We're not quite done with our relationship, though. Now, we need to complete it by
specifying the relationship role for the other direction:

 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>customers</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>ORDER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>CUSTOMER</table-name>
 <column-list>
 <column-name>CUSTOMER_NO</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 ƒ
</relationships>

CASE 3: a many-to-many relationship.

If you define a many-to-many relationship, you must also have the CMP engine create
a cross-table which models a relationship between the left table and the right table. Do
this using the <cross-table> element, whose XML is:

<!ELEMENT cross-table (table-name, column-list, column-list)>

You may name this cross-table whatever you like using the <table-name> element. The
two <column-list> elements correspond to columns in the left and right tables whose
relationship you wish to model. For example, consider two tables, EMPLOYEE and
PROJECT, which have a many-to-many relationship. An employee can be a part of
multiple projects, and projects have multiple employees. The EMPLOYEE table has three
elements, an employee number (EMP_NO), a last name (LAST_NAME), and a project ID
number (PROJ_ID). The PROJECT table contains columns for the project ID number
(PROJ_ID), the project name (PROJ_NAME), and assigned employees by number (EMP_NO).

To model the relationship between these two tables, a cross-table must be created..
For example, to create a cross-table that shows employee names and the names of the
projects on which they are working, the <table-ref> element would look like the
following:

<table-ref>
 <left-table>
 <table-name>EMPLOYEE</table-name>
 <column-list>
 <column-name>EMP_NO</column-name>
 <column-name>LAST_NAME</column-name>
 <column-name>PROJ_ID</column-name>
 </column-list>
 </left-table>
 <cross-table>
 <table-name>EMPLOYEE_PROJECTS</table-name>

Chapter 14: Ent i ty Beans and Table Mapping for CMP 2.x 135

Container-Managed Persistence in AppServer

 <column-list>
 <column-name>EMP_NAME</column-name>
 <column-name>PROJ_ID</column-name>
 </column-list>
 <column-list>
 <column-name>PROJ_ID</column-name>
 <column-name>PROJ_NAME</column-name>
 </column-list>
 </cross-table>
 <right-table>
 <table-name>PROJECT</table-name>
 <column-list>
 <column-name>PROJ_ID</column-name>
 <column-name>PROJ_NAME</column-name>
 <column-name>EMP_NO</column-name>
 </column-list>
 </right-table>
</table-ref>

Since these are “secondary tables” and therefore have no primary keys, the PROJ_ID
column appears in both column lists. This could also be the common column EMP_NO,
depending upon how you wish to model the data.

Using cascade delete and database cascade delete

Use <cascade-delete> when you want to remove entity bean objects. When cascade
delete is specified for an object, the container automatically deletes all of that object's
dependent objects. For example you may have a Customer bean which has a one-to-
many, uni-directional relationship to an Address bean. Because an address instance
must be associated to a customer, the container automatically deletes all addresses
related to the customer when you delete the customer.

To specify cascade delete, use the <cascade-delete> element in the ejb-jar.xml file as
follows:

<ejb-relation>
 <ejb-relation-name>Customer-Account</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Account-Has-Customer
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <cascade-delete/>
 </ejb-relationship-role>
</ejb-relation>

Database cascade delete support
AppServer supports the database cascade delete feature, which allows an application
to take advantage of a database's built in cascade delete functionality. This reduces
the number of SQL operations sent to the database by the container, therefore
improving performance.

To use database cascade delete, the tables corresponding to the entity beans have to
be created with the appropriate table constraints on the respective database. For
example, if you are using cascade delete in EJB 2.0 entity beans on Order and LineItem
entity beans, the tables have to be created as follows:

create table ORDER_TABLE (ORDER_NUMBER integer, LAST_NAME varchar(20),
FIRST_NAME varchar(20), ADDRESS varchar(48));
create table LINE_ITEM_TABLE (LINE integer, ITEM varchar(100), QUANTITY
numeric, ORDER_NUMBER integer CONSTRAINT fk_order_number REFERENCES
ORDER_TABLE(ORDER_NUMBER) ON DELETE CASCADE);

136 AppServer Developer ’s Guide

Container-Managed Persistence in AppServer

The <cascade-delete-db> element in the ejb-borland.xml file specifies that a cascade
delete operation will use the cascade delete functionality of the database. By default
this feature is turned off.

Note If you specify the <cascade-delete-db> element in the ejb-borland.xml file, you must
specify <cascade-delete> in ejb-jar.xml.

The XML for <cascade-delete-db> in the ejb-borland.xml is shown in the following
relationship:

<relationships>
 <!--
 ONE-TO-MANY: Order LineItem
 -->
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>OrderEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>lineItems</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>ORDER_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>LINE_ITEM_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>LineItemEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>order</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>LINE_ITEM_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 </left-table>
 <right-table>
 <table-name>ORDER_TABLE</table-name>
 <column-list>
 <column-name>ORDER_NUMBER</column-name>
 </column-list>
 <right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 <cascade-delete-db />
 </ejb-relation>
 </relationships>

Chapter 15: Using Bor land AppServer Propert ies for CMP 2.x 137

C h a p t e r

Chapter15Using Borland AppServer Properties
for CMP 2.x

Setting Properties
Most properties for Enterprise JavaBeans can be set in their deployment descriptors.
The Borland Deployment Descriptor Editor (DDEditor) also allows you to set properties
and edit descriptor files. Use of the Deployment Descriptor Editor is described in the
Borland Management Console User's Guide. For more information, see “Using the
Deployment Descriptor Editor” on page 137. Use properties in the deployment
descriptor to specify information about the entity bean's interfaces, transaction
attributes, and so forth, plus information that is unique to an entity bean. In addition to
the general descriptor information for entity beans, here are also three sets of
properties that can be set to customize CMP implementations, entity properties, table
properties, and column properties. Entity properties can be set either by using the
Deployment Descriptor Editor or in the XML directly.

Using the Deployment Descriptor Editor

You can use the Deployment Descriptor Editor, which is part of the Borland AppServer
(AppServer), to set up all of the container-managed persistence information. The
following table shows descriptor information and where in the Deployment Descriptor
Editor that information can be entered.

For complete information on the use of the Deployment Descriptor Editor and other
related tools, see “Using the Deployment Descriptor Editor” in Management Console
User's Guide.

138 AppServer Developer ’s Guide

Sett ing Propert ies

The EJB Designer

CMP 2.x properties are set using the EJB Designer. For more information about the
EJB Designer, see “The EJB Designer” in the Borland Management Console User's
Guide.

J2EE 1.3 and 1.4 Entity Bean

Descriptor Element
Navigation Tree Node/Panel
Name DDEditor Tab

Entity Bean name Bean General

Entity Bean class Bean General

Home Interface Bean General

Remote Interface Bean General

Local Home Interface Bean General

Local Interface Bean General

Home JNDI Name Bean General

Local Home JNDI Name Bean General

Persistence Type (CMP or BMP) Bean General

CMP Version Bean General

Primary Key Class Bean General

Reentrancy Bean General

Icons Bean General

Environment Entries Bean Environment

EJB References to other Beans Bean EJB References

EJB Links Bean EJB References

Resource References to data
objects/connection factories

Bean Resource References

Resource Reference type Bean Resource References

Resource Reference
Authentication Type

Bean Resource References

Security Role References Bean Security Role References

Entity Properties Bean Properties

Security Identity Bean Security Identity

EJB Local References to beans
in the name JAR

Bean EJB Local References

EJB Local Links Bean EJB Local References

Resource Environmental
References for JMS

Bean Resource Env Refs

Container Transactions Bean:Container Transactions Container Transactions

Transactional Method Bean:Container Transactions Container Transactions

Transactional Method Interface Bean:Container Transactions Container Transactions

Transactional Attribute Bean:Container Transactions Container Transactions

Method Permissions Bean:Method Permissions Method Permissions

Entity, Table, and Column
Properties

JAR EJB Designer (see below)

Chapter 15: Using Bor land AppServer Propert ies for CMP 2.x 139

Sett ing Propert ies

Setting CMP 2.x Properties

The AppServer uses the EJB Designer, a component of the Deployment Descriptor
Editor, to set CMP 2.x properties. The EJB Designer is fully-documented in “The EJB
Designer” in the Borland Management Console User's Guide..

Editing Entity properties

To edit Entity properties using the EJB Designer:

1 Start the DDEditor and open the deployment descriptor for the JAR containing your
entity beans.

2 Select the top-level object in the DDEditor's Navigation Pane. In the Properties
Pane you will see three tabs—General, XML, and EJB Designer.

3 Choose the EJB Designer Tab and left-click on any of the bean representations that
appear. Click the Properties button. The Entity Beans Properties window appears.

4 Edit the properties you desire and click OK. The properties themselves are
discussed below.

140 AppServer Developer ’s Guide

Sett ing Propert ies

Editing Table and Column properties

Table and Column properties can only be set by editing the ejb-borland.xml descriptor
file from the DDEditor's Vendor XML Tab, or by using the EJB Designer. To edit or add
Table and Column properties:

1 Start the DDEditor and open the deployment descriptor for the JAR containing your
entity beans.

2 Select the top-level object in the DDEditor's Navigation Pane. In the Properties
Pane you will see three tabs: General, XML, and EJB Designer.

3 Select the XML Tab. Two additional Tabs are now available in the Properties Pane;
Standard and Vendor. Choose Vendor.

4 Locate or add either the <column-properties> or <table-properties> elements and
add property definitions in accordance with the borland-specific DTD (see the
ejb-borland.xml). Germane entries are in bold. Descriptions of the entity, table, and
column properties follow, including their data type, default values, and a property
description.

Chapter 15: Using Bor land AppServer Propert ies for CMP 2.x 141

Sett ing Propert ies

Entity Properties

These properties are for CMP 1.1 and above implementations:

These properties are for CMP 2.x implementations only:

Property Type Default Description

ejb.maxBeansInCache lava.lang.Integer 1000 This option specifies the maximum number of beans
in the cache that holds on to beans associated with
primary keys, but not transactions. This is relevant
for Option “A” and “B” (see ejb.transactionCommitMode
below). If the cache exceeds this limit, entities will
be moved to the ready pool by calling ejbPassivate.

ejb.maxBeansInPool java.lang.Integer 1000 The maximum number of beans in the ready pool. If
the ready pool exceeds this limit, entities will be
removed from the container by calling
unsetEntityContext().

ejb.maxBeansInTransactions lava.lang.Integer 500*

(see Description)

A transaction can access any/large number of
entities. This property sets an upper limit on the
number of physical bean instances that EJB
container will create. Irrespective of the number of
database entities/rows accessed, the container will
manage to complete the transaction with a smaller
number of entity objects (dispatchers). The default
for this is calculated as ejb.maxBeansInCache/2. If the
ejb.maxBeansInCache property is not set, this
translates to 500.

ejb.TransactionCommitMode Enumerated Shared Indicates the disposition of an entity bean with
respect to a transaction. Acceptable values are:

■ Exclusive: This entity has exclusive access to
the particular table in the database. The state of
the bean at the end of the last committed
transaction can be assumed to be the state of
the bean at the beginning of the next transaction.

■ Shared: This entity shares access to the
particular table in the database. However, for
performance reasons, a particular bean remains
associated with a particular primary key between
transactions to avoid extraneous calls to
ejbActivate() and ejbPassivate() between
transactions. The bean stays in the active pool.

■ None: This entity shares access to the particular
table in the database. A particular bean does not
remain associated with a particular primary key
between transactions, but goes back to the ready
pool after every transaction.

Property Type Default Description

ejb.invalidateFinderCollectionAtCommit java.lang.Boolean False Whether or not to optimize transaction commit by
invalidating finder collections. CMP 2.x only.

ejb.cacheCreate java.lang.Boolean True Whether or not to attempt to cache the insert of
the entity bean until the ejbPostCreate is
processed.

ejb.datasource java.lang.String N/A Default JDBC datasource to use in case no table-
properties have been set. CMP 2.x only.

142 AppServer Developer ’s Guide

Sett ing Propert ies

Table Properties

The following properties apply to CMP 2.x only. If you are migrating from CMP 1.1 to
CMP 2.x, you must update your CMP properties. CMP 1.1 properties were formerly of
the format ejb.<property-name>, and were all specified in the <entity> portion of the
deployment descriptor. With CMP 2.x, the AppServer adds Table and Column
Properties, which manage persistence. Refer to these properties below to see where
migration issues may appear.

ejb.truncateTableName java.lang.Boolean False If no table name is specified, CMP2.x engine will
use the EJB name as the table name. EJB names
can be more than 30 characters in length.
Moreover, certain databases have a restriction on
the table length to be 30 characters or less. This
property is used to force the table name to be
truncated to be 30 characters or less. CMP 2.x
only.

ejb.eagerLoad java.lang.Boolean False eager-loads the entire row and keeps the data in
the transactional cache. After loading, all database
resources are released. Subsequent getters could
get data in cache and not having to require any
more database resources. CMP 2.x only.

Property Type Default Description

Property Type Default Description

datasource java.lang.String None JNDI datasource name of the database for this
table.

optimisticConcurrencyBehavior java.lang.String UpdateModifiedFields The container uses optimistic or pessimistic
concurrency to control multiple transactions
(updates) that access shared tables.
Acceptable values are:

■ SelectForUpdate: database locks the row
until the current transaction is committed or
rolled back. Other selects on the row are
blocked (wait) until then.

■ SelectForUpdateNoWAIT: database locks the
row until the current transaction is
committed or rolled back. Other selects on
the row will fail.

■ UpdateAllFields: perform an update on all of
an entity's fields, regardless if they were
modified or not.

■ UpdateModifiedFields: perform an update
only on fields known to have been modified
prior to the update being issued.

■ VerifyModifiedFields: verify the entity's
modified fields against the database prior to
update.

■ VerifyAllFields: verify all the entity's fields
against the database prior to update
regardless if they were modified or not.

Pessimistic concurrency specifies the
container to allow only one transaction at a
time to access the entity bean. Other
transactions that try to access the same data
will block (wait) until the first transaction
completes. This is achieved by issuing a tuned
SQL with FOR UPDATE when the entity bean is
loaded. To achieve pessimistic concurrency
set SelectForUpdate or SelectForUpdateNoWAIT.

Chapter 15: Using Bor land AppServer Propert ies for CMP 2.x 143

Sett ing Propert ies

Column Properties

useGetGeneratedKeys java.lang.Boolean False Whether to use the JDBC3
java.sql.Statement.getGeneratedKeys() method
to populate the primary key from
autoincrement/sequence SQL fields.
Currently, only Borland JDataStore supports
this statement.

primaryKeyGenerationListener java.lang.String None Specifies a class, written by the user, that
implements
com.borland.ejb.pm.PrimaryKeyGenerationListene
r interface and generates primary keys..

dbcAccesserFactory java.lang.String None A factory class that can provide accessor class
implementations to get values from a
java.sql.ResultSet, and set values for a
java.sql.PreparedStatement.

getPrimaryKeyBeforeInsertSql java.lang.String None SQL statement to execute before inserting a
row to provide primary key column names.

getPrimaryKeyAfterInsertSql java.lang.String None SQL statement to execute after inserting a row
to provide primary key column names.

useAlterTable java.lang.Boolean false Whether or not to use the SQL ALTER statement
to alter an entity's table to add columns for
fields that do not have a matching column.

createTableSql java.lang.String None SQL statement used to create the table if it
needs to be created automatically.

create-tables java.lang.Boolean false The Borland CMP engine automatically
creates tables for Cloudscape and JDataStore
databases—that is, in the development
environment. To enable automatic table
creation in other databases, you must set this
flag to true.

Property Type Default Description

Property Type Default Description

ignoreOnInsert java.lang.String false Specifies the column that must not be set during
the execution of an INSERT statement. This
property is used in conjunction with the
getPrimaryKeyAfterInsertSql property.

createColumnSql java.lang.String None Use this property to override the standard data-
type lookup and specify the data type manually,
use this property.

■ Local transactions support the
javax.ejb.EJBContext methods
setRollbackOnly() and getRollbackOnly().

■ Local transactions support time-outs for
database connections and transactions.

■ Local transactions are lightweight from a
performance standpoint.

144 AppServer Developer ’s Guide

Sett ing Propert ies

Security Properties

These security properties are specified in the <entity> portion of the deployment
descriptor.

columnJavaType java.lang.String None Java type used to create this column if the table
needs to be created automatically. The
acceptable values are:

■ java.lang.Boolean
■ java.lang.Byte
■ java.lang.Character
■ java.lang.Short
■ java.lang.Integer
■ java.lang.Long
■ java.lang.Float
■ java.math.BigDecimal
■ java.lang.String
■ java.sql.Time
■ java.sql.Date
■ java.sql.TimeStamp
■ java.io.Serializable

This property is ignored if createColumnSql is set.

Property Type Default Description

ejb.security.
transportType

Enumerated SECURE_ONLY This property configures the Quality of
Protection of a particular EJB. If set to
CLEAR_ONLY, only non-secure connections are
accepted from the client to this EJB. This is
the default setting, if the EJB does not have
any method permissions.

If set to SECURE_ONLY, only secure connections
are accepted form the client to this EJB. This
is the default setting, if the EJB has at least
one method permission set.

If set to ALL, both secure and non-secure
connections are accepted from the client.

Setting this property controls a transport value
of the ServerQoPConfig policy. See the
“Security API” chapter from the Programmer's
Reference for details.

ejb.security.
trustInClient

java.lang.Boolean False This property configures the Quality of
Protection of a particular EJB. If set to true,
the EJB container requires the client to
provide an authenticated identity.

By default, the property is set to false, if there
is at least one method with no method
permissions set. Otherwise, it is set to true.

Setting this property controls a transport value
of the ServerQoPConfig policy. See the
“Security API” chapter from the Programmer's
Reference for details.

Property Type Default Description

Chapter 16: EJB-QL and Data Access Support 145

C h a p t e r

Chapter16EJB-QL and Data Access Support
EJB-QL allows you to specify queries in an object oriented query language, EJB-QL.
The Borland CMP engine translates these queries into SQL queries. The Borland
AppServer (AppServer) provides some extensions to the EJB-QL functionality
described in the Sun Microsystems EJB 2.x Specification.

Selecting a CMP Field or Collection of CMP Fields
When only one cmp-field of an otherwise large EJB is required, you can use EJB-QL to
select a single instance of collection of that cmp-field. Using EJB-QL in this way
improves application performance by eliminating the need to load an entire EJB. For
example, this query method selects only the balance field from the Account table:

<query>
 <query-method>
 <method-name>ejbSelectBalanceOfAccountLineItem</method-name>
 <method-params>
 <method-param>java.lang.Long</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Local</result-type-mapping>
 <ejb-ql>SELECT l.balance FROM Account a, IN (a.accountLineItem)

l WHERE l.lineItemId=?1</ejb-ql>
</query>

The return types of the EJB-QL query method are:

■ If the Java type of the cmp-field is an object type, and the query method is a single-
object query method, the return type is an instance of that object type.

■ If the Java type of the cmp-field is an object type and the query method returns
multiple objects, a collection of instances of the object type is returned.

■ If the Java type of the cmp-field is a primitive Java type, and the SELECT method is
a single-object method, the return type is that primitive type.

■ If the Java type of the cmp-field is a primitive Java type, and the SELECT method is
for multiple objects, a collection of the wrappered Java type is returned.

146 AppServer Developer ’s Guide

Aggregate Funct ions in EJB-QL

Selecting a ResultSet

When more than one cmp-field is to be returned by a single query method, the return
type must be of type ResultSet. This allows you to select multiple cmp-fields from the
same or multiple EJBs in the same query method. You then write code to extract the
desired data from the ResultSet. This feature is a Borland extension of the CMP 2.x
specification.

Aggregate Functions in EJB-QL
Aggregate functions are MIN, MAX, SUM, AVG, and COUNT. For the aggregate
functions MIN, MAX, SUM, and AVG, the path expression that forms the argument for
the function must terminate in a cmp-field. Also, database queries for MAX, MIN, SUM,
and AVG will return a null value if there are no rows corresponding to the argument to
the aggregate function. If the return type is an object-type, then null is returned. If the
return type is a primitive type, then the container will throw a ObjectNotFoundException
(a sub-class of FinderException) if there is no value in the query result.

The path expression to the COUNT functions may terminate in either a cmp-field or
cmr-field, or may be an identification variable.

For example, the following EJB-QL aggregate function terminates in a CMP field:

<query>
 <query-method>
 <method-name>ejbSelectMaxLineItemId</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Local</result-type-mapping>
 <ejb-ql>SELECT MAX(l.lineItemId) FROM Account AS a, IN (a.accountLineItem) l
WHERE l.accountId=?1</ejb-ql>
</query>

The following restrictions must be observed for aggregate functions:

■ Arguments to the SUM and AVG functions must be numeric (Integer, Byte, Long,
Short, Double, Float, and BigDecimal).

■ Arguments to the MAX and MIN functions must correspond to orderable cmp-field
types (numeric, string, character, and dates).

■ The path expression that forms the argument for the COUNT function can terminate
in either a cmp-field or a cmr-field. Application performance is greatly enhanced
when the COUNT function is used to determine the size of a collection of cmr-fields.

Data Type Returns for Aggregate Functions

The following table shows the data types that can be arguments for the various
aggregate functions in EJB-QL selecting a single object, and what data types will be
returned.

An aggregate function that selects multiple objects returns a collection of the
wrappered Java data type that is returned.

Aggregate Function Argument data type Expected return type

MIN, MAX, SUM java.lang.Integer java.lang.Integer

AVG java.lang.Integer java.lang.Double

COUNT java.lang.Integer java.lang.Long

Chapter 16: EJB-QL and Data Access Support 147

Aggregate Funct ions in EJB-QL

MIN, MAX, SUM java.lang.Integer java.lang.Integer

AVG java.lang.Integer java.lang.Double

COUNT java.lang.Integer java.lang.Long

MIN, MAX, SUM java.lang.Byte java.lang.Byte

AVG java.lang.Byte java.lang.Double

COUNT java.lang.Byte java.lang.Long

MIN, MAX, SUM java.lang.Byte java.lang.Byte

AVG java.lang.Byte java.lang.Double

COUNT java.lang.Byte java.lang.Long

MIN, MAX, SUM java.lang.Long java.lang.Long

AVG java.lang.Long java.lang.Double

COUNT java.lang.Long java.lang.Long

MIN, MAX, SUM java.lang.Long lonjava.lang.Long

AVG java.lang.Long java.lang.Double

COUNT java.lang.Long java.lang.Long

MIN, MAX, SUM java.lang.Short java.lang.Short

AVG java.lang.Short java.lang.Double

COUNT java.lang.Short java.lang.Long

MIN, MAX, SUM java.lang.Short java.lang.Short

AVG java.lang.Short java.lang.Double

COUNT java.lang.Short java.lang.Long

MIN, MAX, SUM java.lang.Double java.lang.Double

AVG java.lang.Double java.lang.Double

COUNT java.lang.Double java.lang.Long

MIN, MAX, SUM java.lang.Double java.lang.Double

AVG java.lang.Double java.lang.Double

COUNT java.lang.Double java.lang.Long

MIN, MAX, SUM java.lang.Float java.lang.Float

AVG java.lang.Float java.lang.Double

COUNT java.lang.Float java.lang.Long

MIN, MAX, SUM java.lang.Float java.lang.Float

AVG java.lang.Float java.lang.Double

COUNT java.lang.Float java.lang.Long

MIN, MAX, SUM java.math.BigDecimal java.math.BigDecimal

AVG java.math.BigDecimal java.lang.Double

COUNT java.math.BigDecimal java.lang.Long

MIN, MAX java.lang.String java.lang.String

COUNT java.lang.String java.lang.Long

MIN, MAX java.util.Date java.util.Date

COUNT java.util.Date java.lang.Long

MIN, MAX java.sql.Date java.sql.Date

COUNT java.sql.Date java.lang.Long

MIN, MAX java.sql.Time java.sql.Time

COUNT java.sql.Time java.lang.Long

MIN, MAX java.sql.Timestamp java.sql.Timestamp

COUNT java.sql.Timestamp java.lang.Long

Aggregate Function Argument data type Expected return type

148 AppServer Developer ’s Guide

Support for ORDER BY

Support for ORDER BY
The EJB 2.0 Specification supports three SQL clauses in EJB-QL: SELECT, FROM, and
WHERE.

The Borland CMP engine also supports the SQL clause ORDER BY in the same EJB-QL
statement, provided it is placed after the WHERE clause. This is done in the standard ejb-
jar.xml deployment descriptor in the <ejb-ql> entity. For example, the following EJB-
QL statement selects distinct objects from a Customer Bean and orders them by the
LNAME field:

<query>
 <description></description>
 <query-method>
 <method-name>findCustomerByNumber</method-name>
 <method-params />
 <ejb-ql>SELECT Distinct Object(c) from CustomerBean c WHERE c.no >

1000 ORDER BY c.LNAME</eql-ql>
 </query-method>
<query>

You can specify either ASC (ascending) or (DESC) descending in your EJB-QL as
well. If you do not specify either, the results will be ordered ascending by default.

For example, consider the following table:

The query:

SELECT OBJECT(e) FROM EMPLOYEE e ORDER BY e.HIRE_DATE

will produce the following result:

NAME DEPARTMENT SALARY HIRE DATE
Timmy Twitfuller Mail Room 1000 1/1/01
Sam Mackey The Closet with the Light Out 800 1/2/02
Ralph Ossum Coffee Room 900 1/4/01

NAME DEPARTMENT SALARY HIRE DATE
Timmy Twitfuller Mail Room 1000 1/1/01
Ralph Ossum Coffee Room 900 1/4/01
Sam Mackey The Closet with the Light Out 800 1/2/02

Chapter 16: EJB-QL and Data Access Support 149

Support for GROUP BY

Support for GROUP BY
The GROUP BY clause is used to group rows in the result table prior to the SELECT
operation being performed. Consider the following table:

We can get the average salary of each department using a single query method:

SELECT e.DEPARTMENT, AVG(e.SALARY) FROM EMPLOYEE e GROUP BY e.DEPARTMENT

The results are:

Sub-Queries
Sub-queries are permitted as deep as the database implementation being queried
allows. For example, you could use the following sub-query (in bold) specified in ejb-
jar.xml. Note that the sub-query includes ORDER BY as well, and the results are to be
returned in descending (DESC) order.

<query>
 <query-method>
 <method-name>findApStatisticsWithGreaterThanAverageValue</method-name>
 <method-params />
 </query-method>
 <ejb-ql>SELECT Object(s1) FROM ApStatistics s1 WHERE s1.averageValue >
SELECT AVG(s2.averageValue) FROM ApStatistics s2 ORDER BY s1.averageValue
DESC</ejb-ql>
</query>

See your database implementation documentation for details on the appropriate use of
sub-queries.

NAME DEPARTMENT SALARY HIRE DATE
Mike Miller Mail Room 1200 11/18/99
Timmy Twitfuller Mail Room 1000 1/1/01
Buddy Coffee Room 1000 4/13/97
Sam Mackey The Closet with the Light Out 800 1/2/02
Todd Whitmore The Closet with the Light Out 900 4/12/01
Ralph Ossum Coffee Room 900 1/4/01

DEPARTMENT AVG(SALARY)
Coffee Room 950
Mail Room 1100
The Closet with the Light Out 850

150 AppServer Developer ’s Guide

Dynamic Queries

Dynamic Queries
There are situations where you may need to search dynamically for data, based on
variable criteria. Unfortunately EJB-QL queries do not support this scenario. Since
EJB-QL queries are specified in the deployment descriptor, any changes to the queries
require re-deployment of the bean. The AppServer offers a Dynamic Query feature
which allows you to construct and execute EJB-QL queries dynamically and
programmatically in the bean code.

Dynamic queries offer these benefits:

■ allow you to create and execute new queries without having to update and deploy
an EJB.

■ reduce the size of the EJB's deployment descriptor file because finder queries can
be dynamically created instead of statically defined in the deployment descriptors.

Dynamic queries don't need to be added to the deployment descriptor. They are
declared in the bean class for dynamic ejbSelects, or in the local or remote home
interfaces for dynamic finders.

A finder method for a dynamic query is:

 public java.util.Collection findDynamic(java.lang.String ejbql,
Class[] types, Object[] args)

 throws javax.ejb.FinderException

 public java.util.Collection findDynamic(java.lang.String ejbql,
Class[] types, Object[] args, java.lang.String sql)

 throws javax.ejb.FinderException

The ejbSelects for dynamic queries are:

 public java.util.Collection selectDynamicLocal(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

public java.util.Collection selectDynamicLocal(java.lang.String ejbql, Class[]
types, Object[] params, java.lang.String sql)
 throws javax.ejb.FinderException

 public java.util.Collection selectDynamicRemote(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

public java.util.Collection selectDynamicRemote(java.lang.String ejbql, Class[]
types, Object[] params, java.lang.String sql)
 throws javax.ejb.FinderException

 public java.sql.ResultSet selectDynamicResultSet(java.lang.String ejbql,
Class[] types, Object[] params)
 throws javax.ejb.FinderException

public java.sql.ResultSet selectDynamicResultSet(java.lang.String ejbql,
Class[] types, Object[] params, java.lang.String sql)
 throws javax.ejb.FinderException

where the following applies:

■ java.lang.String ejbql: this represents the actual EJB-QL syntax.

■ Class[] types: this array gives the class types of the parameters to the select or
finder method (it can be an empty array if there are no parameters).

Chapter 16: EJB-QL and Data Access Support 151

Overr id ing SQL generated from EJB-QL by the CMP engine

■ Object[] params: this array gives the actual values of the parameters. This is the
same as the parameters argument of the regular select or finder method.

The return type of a dynamic select or finder is always java.util.Collection, with
the exception of the selectDynamicResultSet. If there is a single instance of the object
or value type returned from the query, it is the first member of the collection.
Dynamic queries follow the same rules as regular queries.

■ java.lang.String sql: User specified sql. If specified, this will override the sql
generated by EJB-QL.

Note There should not be any trace of the eight methods associated with dynamic queries in
your deployment descriptor.

Overriding SQL generated from EJB-QL by the CMP engine
Important This feature is for advanced users only!

The Borland CMP engine generates SQL calls to your database based on the EJB-QL
you enter in your deployment descriptors. Depending on your database
implementation, the generated SQL may be less than optimal. You can capture the
generated SQL using tools supplied by your backing-store implementation or another
development tool. If the generated SQL is not optimal, you can replace it with your
own. However, we offer no validation on the user SQL.

Note A problem with your SQL may generate an exception which can potentially crash the
system.

You specify your own optimized SQL in the Borland proprietary deployment descriptor,
ejb-borland.xml. The XML grammar is identical to that found in ejb-jar.xml, except that
the <ejb-ql> element is replaced with a <user-sql> element. This proprietary element
contains a SQL-92 statement (not an EJB-QL statement) that is used to access the
database instead of the CMP engine-generated SQL.

Important The SELECT clause for this statement must be identical to the SELECT clause generated
by the Borland CMP engine.

Subsequent clauses are user-optimized. The ordering of the fields in the SELECT clause
is proprietary to the CMP engine and therefore must be preserved.

For example:

<entity>
 <ejb-name>EmployeeBean</ejb-name>
 ƒ
 <query>
 <query-method>
 <method-name>findWealthyEmployees</method-name>
 <method-params />
 </query-method>
 <user-sql>SELECT E.DEPT_NO, E.EMP_NO, E.FIRST_NAME, E.FULL_NAME,
 E.HIRE_DATE, E.JOB_CODE, E.JOB_COUNTRY,
 E.JOB_GRADE, E.LAST_NAME, E.PHONE_EXT, E.SALARY
 FROM EMPLOYEE E WHERE E.SALARY > 200000
 </user-sql>
 </query>
 ƒ
</entity>

Note The extensive SELECT statement reflects the type of SQL generated by the CMP engine.

When the CMP engine encounters an EJB-QL statement in the ejb-jar.xml
deployment descriptor, it checks ejb-borland.xml to see if there is any user SQL
provided in the same bean's descriptor.

152 AppServer Developer ’s Guide

Container-managed data access support

If none is present, the CMP engine generates its own SQL and executes it.

If the ejb-borland.xml descriptor does contain a query element, it uses the SQL within
the <user-sql> tags instead.

Important The <query> element in ejb-borland.xml does not replace the <query> element in the
standard ejb-jar.xml deployment descriptor. If you want to override the CMP engine's
SQL, you must provide the elements in both descriptors.

Container-managed data access support
For CMP, the Borland EJB Container supports all data types supported by the JDBC
specification, including types beyond those supported by JDBC.

The following shows the basic and complex types supported by the Borland EJB
Container:

■ Basic types:

■ Complex types

■ Any class implementing java.io.Serializable, such as Vector and Hashtable

■ Other entity bean references

Note The Borland CMP engine now supports using the Long value type for dates, as well as
java.sql.Date for java.util.Date.

Keep in mind that the Borland Container supports classes implementing the
java.io.Serializable interface, such as Hashtable and Vector. The container supports
other data types, such as Java collections or third party collections, because they also
implement java.io.Serializable. For classes and data types that implement the
Serializable interface, the Container merely serializes their state and stores the result
into a BLOB. The Container does not do any “smart” mapping on these classes or types;
it just stores the state in binary format. The Container's CMP engine observes the
following rule: the engine serializes as a BLOB all types that are not one of the explicitly
supported types.

Depending on your database implementation, the following data types require fetching
based on column index:

Note If you use either of the two data types BINARY (MS SQL) or RAW (Oracle) as primary keys,
you must explicitly specify their size.

■ boolean Boolean ■ short Short

■ double Double ■ byte[]

■ long Long ■ char Character

■ BigDecimal java.util.Date ■ int Integer

■ byte Byte ■ String java.sql.Date

■ float Float ■ java.sql.Time java.sql.TimeStamp

Database Data Types

Oracle ■ LONG RAW

Sybase ■ NTEXT

■ IMAGE

MS SQL ■ NTEXT

■ IMAGE

Chapter 16: EJB-QL and Data Access Support 153

Container-managed data access support

Support for Oracle Large Objects (LOBs)

There are two types of Large Objects (LOBs), Binary Large Objects (BLOBs) and
Character Large Objects (CLOBs).

BLOBs are mapped to CMP fields with the following data types:

■ byte[]

■ java.io.Serializable

■ java.io.InputStream

CLOBs, by virtue of being Character Large Objects, can only be mapped to cmp-fields
with the java.lang.String data type.

By default, the Borland CMP engine does not automatically map cmp-field to LOBs. If
you intend to use LOB data types, you must inform the CMP engine explicitly in the
ejb-borland.xml deployment descriptor. You do this by setting the Column Property
createColumnSql. For example:

<column-properties>
 <column-name>CLOB-column</column-name>
 <property>
 <prop-name>createColumnSql</prop-name>
 <prop-type>String></prop-type>
 <prop-value>CLOB</prop-value>
 </property>
</column-properties>

<column-properties>
 <column-name>BLOB-column</column-name>
 <property>
 <prop-name>createColumnSql</prop-name>
 <prop-type>String></prop-type>
 <prop-value>BLOB</prop-value>
 </property>
</column-properties>

Note The default BLOB size limit for adding and finding BLOB data from AppServer using
CMP EJBs is 10,000 bytes. The default can be changed by setting the system property
below:

-DEJBCmpMaxBlobSize=xxxxxxxx

This limit does not actually control the size of the BLOB. The database and its driver
can also limit this size. For example, Oracle treats BLOBs that are greater than 4GB
size differently than BLOB less than 4GB.

154 AppServer Developer ’s Guide

Container-managed data access support

Container-created tables

You can instruct the Borland EJB Container to automatically create tables for
container-managed entities based on the entity's container-managed fields by enabling
the create-tables property. Because table creation and data type mappings vary
among vendors, you must specify the JDBC database dialect in the deployment
descriptor to the Container. For all databases (except for JDataStore) if you specify the
dialect, then the Container automatically creates tables for container-managed entities
for you if the create-tables property is set to true. The Container will not create these
tables unless you specify the dialect.

The following table shows the names or values for the different dialects (case is
ignored for these values):

Database Name Dialect Value

JDataStore jdatastore

Oracle oracle

Sybase sybase

MSSQLServer mssqlserver

DB2 db2

Interbase interbase

Informix informix

Chapter 17: Generat ing Ent i ty Bean Pr imary Keys 155

C h a p t e r

Chapter17Generating Entity Bean Primary
Keys

Each entity bean must have a unique primary key that is used to identify the bean
instance. The primary key can be represented by a Java class, which must be a legal
value type in RMI-IIOP. Therefore, it extends the java.io.Serializable interface. It
must also provide an implementation of the Object.equals(Object other) and
Object.hashCode() methods.

Normally, the primary key fields of entity beans must be set in the ejbCreate() method.
The fields are then used to insert a new record into the database. This can be a difficult
procedure, however, bloating the method, and many databases now have built-in
mechanisms for providing appropriate primary key values. A more elegant means of
generating primary keys is for the user to implement a separate class that generates
primary keys. This class can also implement database-specific programming logic for
generating primary keys.

You may either generate primary keys by hand, use a custom class, or allow the
container to use the database tools to perform this for you. If you use a custom class,
implement the com.borland.ejb.pm.PrimaryKeyGenerationListener interface, discussed
below. To use the database tools, you can set properties for the CMP engine to
generate primary keys depending upon the database vendor.

156 AppServer Developer ’s Guide

Generat ing pr imary keys f rom a user c lass

Generating primary keys from a user class
With enterprise beans, the primary key is represented by a Java class containing the
unique data. This primary key class can be any class as long as that class is a legal
value type in RMI-IIOP, meaning it extends the java.io.Serializable interface. It must
also provide an implementation of the Object.equals(Object other) and
Object.hashCode() methods, two methods which all Java classes inherit by definition.

Generating primary keys from a custom class
To generate primary keys from a custom class, you must write a class that implements
the com.borland.ejb.pm.PrimaryKeyGenerationListener interface.

Note this is a new interface for generating primary keys. In previous versions of Borland
AppServer, this class was com.inprise.ejb.cmp.PrimaryKeyGenerator. This interface is
still supported, but Borland recommends using the newer interface when possible.

Next, you must inform the container of your intention to use your custom class to
generate primary keys for your entity beans. To do this, you set a table property
primaryKeyGenerationListener to the class name of your primary key generator.

Implementing primary key generation by the CMP engine
Primary key generation can also be implemented by the CMP engine. Borland provides
four properties to support primary key generation using database specific features.
These properties are:

■ getPrimaryKeyBeforeInsertSql
■ getPrimaryKeyAfterInsertSql
■ ignoreOnInsert
■ useGetGeneratedKeys

All of these properties are table properties except ignoreOnInsert, which is a column
property.

Oracle Sequences: using getPrimaryKeyBeforeInsertSql

The property getPrimaryKeyBeforeInsertSql is typically used in conjunction with Oracle
Sequences. The value of this property is a SQL statement used to select a primary key
generated from a sequence. For example, the property could be set to:

SELECT MySequence.NEXTVAL FROM DUAL

The CMP engine would execute this SQL and then extract the appropriate value from
the ResultSet. This value will then be used as the primary key when performing the
subsequent INSERT. The extraction from the ResultSet is based on the primary key's
type

SQL Server: using getPrimaryKeyAfterInsertSql and
ignoreOnInsert

Two properties need to be specified for cases involving SQL Server. The
getPrimaryKeyAfterInsertSql property specified the SQL to execute after the INSERT has
been performed. As above, the CMP engine extracts the primary key from the
ResultSet based on the primary key's type. The property ignoreOnInsert must also be
set to the name of the identity column. The CMP engine will then know not to set that
column in the INSERT.

Chapter 17: Generat ing Ent i ty Bean Primary Keys 157

Implement ing pr imary key generat ion by the CMP engine

JDataStore JDBC3: using useGetGeneratedKeys

Borland's JDataStore supports the new JDBC3 method
java.sql.Statement.getGeneratedKeys(). This method is used to obtain primary key
values from newly inserted rows. No additional coding is necessary, but note that this
method is unsupported in other databases and is recommended for use only with
Borland JDataStore. To use this method, set the boolean property useGetGeneratedKeys
to True.

Automatic primary key generation using named sequence tables

A named sequence table is used to support auto primary key generation when the
underlying database (such as Oracle SEQUENCE) and the JDBC driver (AUTOINCREMENT in
JDBC 3.0) do not support key generation . The named sequence table allows you to
specify a table that holds a key to use for primary key generation. The container uses
this table to generate the keys.

The table must contain a single row with a single column

To use the name sequence table your table must have a single row with a single
column that is an integer (for the sequence values). You must create a table with one
column named “SEQUENCE” with any initial value. For example:

 CREATE TABLE TAB_A_SEQ (SEQUENCE int);
 INSERT into TAB_A_SEQ values (10);

In this example key generation starts from value 10.

To enable this feature, set it in <column-properties> in ejb-borland.xml:

<table-properties>
 <table-name>TABLE_A</table-name>
 <column-properties>
 <column-name>ID</column-name>
 <property>
 <prop-name>autoPkGenerator</prop-name>
 <prop-type>java.lang.String</prop-type>
 <prop-value>NAMEDSEQUENCETABLE</prop-value>
 </property>
 <property>
 <prop-name>namedSequenceTableName</prop-name>
 <prop-type>java.lang.String</prop-type>
 <prop-value>TAB_A_SEQ</prop-value>
 </property>
 <property>
 <prop-name>keyCacheSize</prop-name>
 <prop-type>java.lang.Integer</prop-type>
 <prop-value>2</prop-value>
 </property>
 </column-properties>
ƒ
 </table-properties>

Note that “ID” is the primary key column, which is marked for auto Pk Generation using
NAMEDSEQUENCETABLE. The table used is TAB_A_SEQ.

Note Set the ejb.CacheCreate property to false while using getPrimaryKeyAfterInsert or
useGetGeneratedKeys. The container needs to know the primary key to dispatch calls to
the bean instance. Therefore, it needs to know the primary key at the same time the
Create method returns.

158 AppServer Developer ’s Guide

Implement ing pr imary key generat ion by the CMP engine

Key cache size
When generating the primary key, the container fetches the key from the table in the
database. You can improve performance by reducing trips to the database by
specifying a key cache size. To use this feature, in the ejb-borland.xml file, you set the
<key-cache-size> element to specify how many primary key values the database will
fetch. The container will cache the number of keys used for primary key generation
when the value of the cache size is > 1.

The default value for key cache size, if not specified, is 1. Although key cache size is
optional, it is recommended you specify a value > 1 to utilize performance optimization.

Note There may be gaps in the keys generated if the container is rebooted or used in a
clustered mode.

Chapter 18: Transact ion management 159

C h a p t e r

Chapter18Transaction management
This chapter describes how to handle transactions.

Understanding transactions
Application programmers benefit from developing their applications on platforms such
as Java 2 Enterprise Edition (J2EE) that support transactions. A transaction-based
system simplifies application development because it frees the developer from the
complex issues of failure recovery and multi-user programming. Transactions are not
limited to single databases or single sites. Distributed transactions can simultaneously
update multiple databases across multiple sites.

A programmer typically divides the total work of an application into a series of units.
Each unit of work is a separate transaction. As the application progresses, the
underlying system ensures that each unit of work, each transaction, fully completes
without interference from other processes. If not, it rolls back the transaction and
completely undoes whatever work the transaction had performed.

Characteristics of transactions

Typically, transactions refer to operations that access a shared resource like a
database. All access to a database is performed in the context of a transaction. All
transactions share the following characteristics:

■ Atomicity
■ Consistency
■ Isolation
■ Durability

These characteristics are denoted by the acronym ACID.

A transaction often consists of more than a single operation. Atomicity requires that
either all or none of the operations of a transaction are performed for the transaction to
be considered complete. If any of a transaction's operations cannot be performed, then
none of them can be performed.

160 AppServer Developer ’s Guide

Transact ion manager services

Consistency refers to resource consistency. A transaction must transition the database
from one consistent state to another. The transaction must preserve the database's
semantic and physical integrity.

Isolation requires that each transaction appear to be the only transaction currently
manipulating the database. Other transactions can run concurrently. However, a
transaction must not see the intermediate data manipulations of other transactions until
and unless they successfully complete and commit their work. Because of
interdependencies among updates, a transaction can get an inconsistent view of the
database were it to see just a subset of another transaction's updates. Isolation
protects a transaction from this sort of data inconsistency.

Transaction isolation is qualified by varying levels of concurrency permitted by the
database. The higher the isolation level, the more limited the concurrency extent. The
highest level of isolation occurs when all transactions can be serialized. That is, the
database contents look as if each transaction ran by itself to completion before the next
transaction started. However, some applications can tolerate a reduced level of
isolation for a higher degree of concurrency. Typically, these applications run a greater
number of concurrent transactions even if transactions are reading data that may be
partially updated and perhaps inconsistent.

Lastly, durability means that updates made by committed transactions persist in the
database regardless of failure conditions. Durability guarantees that committed
updates remain in the database despite failures that occur after the commit operation
and that databases can be recovered after a system or media failure.

Transaction support

The Borland AppServer (AppServer) supports flat transactions, but not nested
transactions. Transactions are implicitly propagated. This means that the user does not
have to explicitly pass the transaction context as a parameter, because the J2EE
container transparently handles this for the client.

Transaction management can be performed programmatically by calling the standard
JTS or JTA APIs. An alternative, and more recommended approach, when writing
J2EE components such as Enterprise JavaBeans (EJBs) is to use declarative
transactions where the J2EE Container transparently starts and stops transactions.

Transaction manager services
There are two transaction managers, or engines, available in AppServer:

■ Transaction Manager (formerly known as Partition Transaction Service)

■ OTS (formerly known as 2PC Transaction Service)

A Transaction Manager exists in each AppServer Partition. It is a Java implementation
of the CORBA Transaction Service Specification. The Transaction Manager supports
transaction timeouts, one-phase commit protocol and can be used in a two-phase
commit protocol under special circumstances.

Use the Transaction Manager under the following conditions:

■ When using one-phase commit protocol.

■ When you need faster performance. Currently, only the Transaction Manager can
be configured to be in-process. The transaction management APIs and other
transaction components are in-process JVM calls, so it is much faster than the OTS
engine.

Chapter 18: Transact ion management 161

Transact ion manager serv ices

■ When using a two-phase commit protocol but do not care about transaction
recovery. For example, when checking business logic during development of an
Enterprise JavaBean there is no need for transaction recovery. If you use the
Transaction Manager for two-phase commit, you must set the “Allow unrecoverable
completion” property to true in “Properties” for the Transaction Manager as
displayed under the Partition in the AppServer Management Console. Alternatively,
you can set system property EJBAllowUnrecoverableCompletion for the partition.

The OTS engine exists in a separate address space. It provides a complete solution for
distributed transactional CORBA applications. Implemented on top of the VisiBroker
ORB, the OTS engine simplifies the complexity of distributed transactions by providing
an essential set of services—including a transaction service, recovery and logging,
integration with databases, and administration facilities—within one, integrated
architecture.

Distributed transactions and two-phase commit

The Borland EJB Container supports distributed transactions. Distributed transactions
are those transactions that cross systems, platforms, and Java Virtual Machines
(JVMs).

Transactions that manipulate data across multiple resources use a two-phase commit
process. This process ensures that the transaction correctly updates all resources
involved in the transaction. If it cannot update all resources, then it updates none of the
resources.

Note Although support is provided by AppServer for two-phase commit transactions, they
are inherently expensive due to number of remote procedure calls (RPCs) and should
be used only when needed. See “When to use two-phase commit transactions” on
page 162.

There are two steps to a two-phase commit. The first step is the preparation phase. In
this phase the transaction service requests that each resource involved in the
transaction readies its updates and signal to the transaction service whether it can
commit the updates. The second step is the commit phase. The transaction service
initiates the actual resource updates only when all resources have signaled that they
can complete the update process. Should any resource signal they cannot perform
updates, the transaction service instructs all other resources to rollback all updates
involved in the transaction.

The Transaction Manager and OTS engine support both heterogeneous distributed
(two-phase commit) transactions and two-phase commit for homogeneous resources.

By default, the Transaction Manager does not allow multiple resources to participate in
a global transaction, but it can be configured to allow multiple resource participation
through its support for unrecoverable transaction completion. This can be enabled on
the Transaction Manager by setting either “Allow unrecoverable completion” option
from the Management Console (right-click the Transaction Manager and select
“Properties”), or the Partition system property EJBAllowUnrecoverableCompletion. When
unrecoverable transaction completion is enabled, the container makes a one-phase
commit call on each participating resource during the transaction commit process.
Care must taken when enabling unrecoverable transaction completion; as the name
suggests, no recovery is available when a failure occurs prior to transaction
completion, which may lead to inconsistent states in participating resources.

To support heterogeneous two-phase commit transactions, the OTS engine must
integrate with XA support in the underlying resources. With availability of XA-enabled
JDBC drivers from DBMS vendors and JMS support provided by message service
providers, the EJB container and OTS engine allow multiple resources to participate in
a single transaction.

162 AppServer Developer ’s Guide

Transact ion manager services

Two-phase commit for homogeneous databases requires some configuration of the
DBMS servers. While the container controls the commit to the first database, the
DBMS server controls the commits to the subsequent databases using the DBMS's
built-in transaction coordinator. For more information, see your vendor's manual for the
DBMS server.

When to use two-phase commit transactions

One of the basic principals of building high performance distributed applications is to
limit the number of remote procedure calls (RPCs). The following explains typical
situations; when and when not to use two-phase commit transactions. Avoiding a two-
phase commit transaction when it is not needed, therefore avoiding unnecessary RPCs
involving JTA XAResource objects and the OTS engine, greatly improves your
application's performance.

Using multiple JDBC connections for access to multiple database
resources from a single vendor in the same transaction
In scenarios involving multiple databases from a single vendor, it is often possible to
avoid using two-phase commit. You can access one database and use it to access the
second database by tunneling access through the connection to the first database.
Oracle and other DBMSs provide this capability. In this case the AppServer Partition
can be configured with only one JDBC connection to the “fronting” database. Access to
the “backing” database is tunneled through the first JDBC connection.

Using multiple JDBC connections to the same database resource in the
same transaction
When multiple JDBC connections to the same database are obtained and used by
distributed participants within a single transaction, a two-phase commit can be
avoided. The JDBC connections, as expected, need to be obtained from a XA
datasource. But, rather than performing a two-phase commit, a one-phase commit can
be used to complete the transaction since only a single resource is involved. This is
achieved by using the Transaction Manager rather than the OTS engine. An alternative
is to collocate all EJBs involved in the transaction, rather than having them deployed in
distributed Partitions. In this case, a non-XA datasource is used and no two-phase
commit is required.

Using multiple disparate resources in a single transaction
In this case there is a need for a two-phase commit transaction. This situation arises
when, for example, you are running a single transaction against both Oracle and
Sybase, or if you have a transaction that includes access to an Oracle database and a
JMS provider, such as MQSeries. In the latter case, the transaction is coordinated
using JTA XAResource object, obtained from Oracle via JDBC and MQSeries via JMS,
and enables both resources to participate in the two-phase commit transaction
completion. It is worth noting that two-phase commit capabilities (provided by the OTS
engine), are only needed when a single transaction involves access to multiple
incompatible resources.

Note In order to utilize the OTS engine as the default transaction service, the Transaction
Manager must be stopped first.

Chapter 18: Transact ion management 163

Transact ion manager serv ices

EJBs and 2PC transactions

With the introduction of messaging in the J2EE platform, a number of common
scenarios now exist involving access to multiple resources from EJBs in a single
transaction . As we know, when more than one resource is involved in a transaction,
the OTS engine is needed to reliably complete the transaction using the two-phase
commit protocol. Sample scenarios include:

■ A session bean accesses two types of entity beans in a transaction where each are
persisted in a different database.

■ A session bean accesses an entity bean and in the same transaction does some
messaging work, such as sending a message to a JMS queue.

■ In the onMessage method of a message-driven bean, access entity beans on
message delivery.

In each of the above examples, two heterogeneous resources need to be accessed
from within a session bean or a message-driven bean as part of a single transaction.
These EJBs have the REQUIRED transaction attribute defined and need access to the
OTS engine. However, if the OTS engine is running, then all modules deployed to that
Partition are able to discover it and can attempt to use it. The OTS engine will perform
a one-phase commit when only one resource is registered in a transaction, but suffers
the extra RMI overhead since it is an external process. Ideally, the in-process
Transaction Manager should be used for EJBs not involved in a two-phase commit
transaction. To better utilize the transaction services available in AppServer, a bean-
level property, ejb.transactionManagerInstanceName may be specified for EJBs that
require 2PC transaction completion. This property provides the name of the OTS
engine to be used by the EJB container doing transaction demarcation on any of the
methods for the relevant bean. Both the Transaction Manager and the OTS engine
may be available for all EJBs but only those that do not have
ejb.transactionManagerInstanceName specified will discover the Transaction Manager.

This property can be commonly used for session or message-driven beans since
transactions are usually demarcated in a session bean facade or the onMessage method
of a message-driven bean.

To set the ejb.transactionManagerInstanceName property use the Management Console.
Navigate to your deployed EJB module, right-click on it and select “DDEditor”. In the
DDEditor select the required bean from the Navigation Pane. Select the “Properties”
tab and add the ejb.transactionManagerInstanceName property. Define the property as a
String and specify a unique name value such as “MyTwoPhaseEngine”.

Next, you must modify the OTS engine factory name with the
ejb.transactionManagerInstanceName value. In the Management Console, select the
OTS engine from the “corbaSample” configuration, identified as the “OTS engine”
managed object type. Right-click and select “Properties” from the drop-down menu. In
the Properties dialog choose the Settings tab and modify the value for “Factory Name”.
Click OK, and restart the service. The OTS engine may also be started from the
command line, independent of an AppServer server. The factory name can be provided
using property vbroker.ots.name as follows:

prompt> ots -Dvbroker.ots.name=<MyTwoPhaseEngine>

The EJB will now use the OTS engine named “MyTwoPhaseEngine”. As mentioned,
the Partition may be hosting several J2EE modules, but only those beans that have
ejb.transactionManagerInstanceName set go to the (non-default) OTS engine. Other
beans in the Partition that require method invocation in a transaction, but do not require
2PC, always find the Transaction Manager due to local service affinity.

164 AppServer Developer ’s Guide

Transact ion manager services

Following is a deployment configuration usage example. Displayed below is an extract
from deployment descriptor ejb-borland.xml packaged with the deployed EJB module
and viewable in the DDEditor. The ejb.transactionManagerInstanceName property is set
for Session bean “OrderSesEJB” where OrderSesEJB takes orders from customers, creates
an order in the database and sends messages to the manufacturers for making parts.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>OrderSesEJB</ejb-name>
 <bean-home-name>OrderSes</bean-home-name>
 <bean-local-home-name />
 <ejb-local-ref>
 <ejb-ref-name>ejb/OrderEntLocal</ejb-ref-name>
 <jndi-name>OrderEntLocal</jndi-name>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemEntLocal</ejb-ref-name>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jms/QueueConnectionFactory</res-ref-name>
 <jndi-name>QueueConnectionFactory</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <jndi-name>OrderQueue</jndi-name>
 </resource-env-ref>
 <property>
 <prop-name>ejb.transactionManagerInstanceName</prop-name>
 <prop-type>String</prop-type>
 <prop-value>TwoPhaseEngine</prop-value>
 </property>
 </session>

<ejb-jar>

Example runtime scenarios
The following diagrams show configurations where the standard Transaction Manager
and the OTS engine co-exist. The deployment configuration is done in a manner in
which the beans participating in 2PC transactions have their transaction management
done by the OTS engine, named “TwoPhaseEngine”, and those that don't need 2PC
transactions use the default in- process Transaction Manager.

The example archive used is complex.ear, in an AppServer Partition. It has three beans:

■ OrderSesEJB: takes orders from customers, creates an order in the database, and
sends messages to the manufacturers for making parts.

■ UserSesEJB: creates new users in the company database. Only accesses a single
database, therefore only needs to access a 1PC engine (Transaction Manager).

■ OrderCompletionMDB: receives a notification from the manufacturer about the part
delivery, and also updates the database using entity beans.

To configure this example deployment scenario:

1 Using the DDEditor, add the ejb.transactionManagerInstance property to the beans
OrderSesEJB and OrderCompletionMDB. Refer to the above XML extract for this
example.

2 Next, using the Management Console, start the OTS engine with factory name set
as “TwoPhaseEngine”.

3 Keep the local Transaction Manager enabled.

Chapter 18: Transact ion management 165

Transact ion manager serv ices

The following diagrams show example interactions between the client, the AppServer
Partition, and how the AppServer Partition locates the right transaction service based
on the above configuration. All of the beans are assumed to have container-managed
transactions.

Example 1PC usage
1 The client calls a method of UserSesEJB. This is an implementation of the method that

creates users in the database.

2 Before the call is actually invoked, as shown below, the Partition uses its in-process
Transaction Manager to begin the transaction.

3 The session bean does some database work.

4 When the call is over, the Partition issues commit.

5 The Transaction Manager calls commit_one_phase() on the database resource.

Example 2PC usage
1 The client calls OrderSesEJB.create() method to create a new order.

2 Since the bean is configured to use the OTS engine named TwoPhaseEngine, the
container locates the right transaction service named TwoPhaseEngine, and uses it
for beginning the transaction.

3 The session bean does some database work, and sends a message to a JMS
queue.

4 When the call is over, the Partition issues commit.

166 AppServer Developer ’s Guide

Declarat ive t ransact ion management in Enterpr ise JavaBeans

5 The OTS engine coordinates the transaction completion with the database and the
JMS resources.

Example 2PC usage with MDBs
At some point in time, an asynchronous message is delivered to OrderCompletionMDB by
invoking its onMessage() method, which has a REQUIRED transaction attribute. The
container starts a transaction using ITS and then invokes the onMessage() method. In
the body of the method, the bean updates the database to indicate order delivery. It is
important to note that there are 2 resources involved. The first one is the JMS
resource, which is associated with the MDB instances that got the message, and the
second is the database that the MDB instance updated. This scenario is similar to the
example diagram above.

Note ejb.transactionManagerInstanceName is also supported for MDBs. See “MDBs and
Transactions” on page 184 for more information.

Declarative transaction management in Enterprise JavaBeans
Transaction management for Enterprise JavaBeans (EJBs) is handled by the EJB
Container and the EJBs. Enterprise JavaBeans make it possible for applications to
update data in multiple databases within a single transaction.

EJBs utilize a declarative style of transaction management that differs from the
traditional transaction management style. With declarative management, the EJB
declares its transaction attributes at deployment time. The transaction attributes
indicate whether the EJB container manages the bean's transactions or whether the
bean itself manages its own transactions, and, if so, to what extent it does its own
transaction management.

Traditionally, the application was responsible for managing all aspects of a transaction.
This entailed such operations as:

■ Creating the transaction object.

■ Explicitly starting the transaction.

■ Registering resources involved in the transaction.

■ Keeping track of the transaction context.

■ Committing the transaction when all updates completed.

Chapter 18: Transact ion management 167

Declarat ive t ransact ion management in Enterpr ise JavaBeans

It requires a developer with extensive transaction processing expertise to write an
application that is responsible for managing a transaction from start to finish. The code
for such an application is more complex and difficult to write, and it is easy for “pilot
error” to occur.

With declarative transaction management, the EJB container manages most if not all
aspects of the transaction for you. The EJB container handles starting and ending the
transaction, plus maintains its context throughout the life of the transaction object. This
greatly simplifies an application developer's responsibilities and tasks, especially for
transactions in distributed environments.

Understanding bean-managed and container-managed
transactions

When an EJB programmatically performs its own transaction demarcation as part of its
business methods, that bean is considered to be using bean-managed transaction. On
the other hand, when the bean defers all transaction demarcation to its EJB container,
and the container performs the transaction demarcation based on the Application
Assembler's deployment instructions, then the bean is referred to as using container-
managed transaction.

EJB session beans, both stateful and stateless varieties, can use either container- or
bean-managed transactions. However, a bean cannot use both types of transaction
management at the same time. EJB entity beans can only use container-managed
transaction. It is the bean provider who decides the type of transaction which an EJB
can use.

An EJB can manage its own transaction if it wishes to start a transaction as part of one
operation and then finish the transaction as part of another operation. However, such a
design might be problematic if one operation calls the transaction starting method, but
no operation calls the transaction ending method.

Whenever possible, enterprise beans should use container-managed transactions as
opposed to bean-managed transactions. Container-managed transactions require less
programming work and are less prone to programming error. In addition, a container-
managed transaction bean is easier to customize and compose with other beans.

Local and Global transactions

A transaction involves an atomic unit of work performed against data maintained by
one or more resource managers. Examples of resource managers are database
managements systems and JMS message providers. A local transaction involves work
performed against a single resource manager independent of an external transaction
manager. For instance, a JDBC connection obtained from a database can have SQL
operations performed on it to update the database and then have the work committed
in a local transaction using a commit() operation, assuming autoCommit mode for the
connection is turned off, otherwise each operation is performed within a local
transaction. A global transaction is coordinated by a transaction manager, such as the
partition Transaction Manager or OTS engine, and it can involve work performed for
one or more distributed resource managers. Transaction management for EJBs, both
container-managed and bean-managed, implies use of global transactions. When a
single resource manager participates in a global transaction, all work may be
performed within a local transaction on behalf of the global transaction (refer to EJB
Specification Version 2.0, Section 17.6.4 Local transaction optimization for more
details).

Methods of an EJB defined with bean-managed transactions must obtain an
implementation handle to JTA interface javax.transaction.UserTransaction and invoke
operations on it to explicitly participate in a global transaction.

168 AppServer Developer ’s Guide

Declarat ive t ransact ion management in Enterpr ise JavaBeans

With container-managed transactions, the EJB Container interposes each EJB method
call and follows certain rules to determine whether or not work should be processed as
part of a global transaction. The decision taken by the Container depends on the
transaction attribute value set for the method, by the Application Assembler in the
components deployment descriptor, and whether a global transaction context exists
upon invocation of the method (refer to Table 14 in EJB Specification Version 2.0,
Section 17.6.2.7 Transaction attribute summary). Should the method be processed
without the presence of a global transaction context, work performed against an
external resource manager from within the method is completed using local
transaction(s). The following are specific examples of when local transactions are used
for EJB methods of an EJB with container-managed transaction demarcation:

■ If the transaction attribute is set to NotSupported and the container detects that
resources were accessed.

■ If the transaction attribute is set to Supports and the container detects that a) the
method was not invoked from within a global transaction, and b) resources were
accessed.

■ If the transaction attribute is set to Never and the container detects that resources
were accessed.

Transaction attributes

EJBs that use bean-managed transaction have transaction attributes associated with
each method of the bean. The attribute value tells the container how it must manage
the transactions that involve this bean. There are six different transaction attributes that
can be associated with each method of a bean. This association is done at deployment
time by the Application Assembler or Deployer.

These attributes are:

■ Required: This attribute guarantees that the work performed by the associated
method is within a global transaction context. If the caller already has a transaction
context, then the container uses the same context. If not, the container begins a new
transaction automatically. This attribute permits easy composition of multiple beans
and co-ordination of the work of all the beans using the same global transaction.

■ RequiresNew: This attribute is used when the method does not want to be associated
with an existing transaction. It ensures that the container begins a new transaction.

■ Supports: This attribute permits the method to avoid using a global transaction. This
must only be used when a bean's method only accesses one transaction resource,
or no transaction resources, and does not invoke another enterprise bean. It is used
solely for optimization, because it avoids the cost associated with global
transactions. When this attribute is set and there is already a global transaction, the
EJB Container invokes the method and have it join the existing global transaction.
However, if this attribute is set, but there is no existing global transaction, the
Container starts a local transaction for the method, and that local transaction
completes at the end of the method.

■ NotSupported: This attribute also permits the bean to avoid using a global
transaction. When this attribute is set, the method must not be in a global
transaction. Instead, the EJB Container suspends any existing global transaction
and starts a local transaction for the method, and the local transaction completes at
the conclusion of the method.

Chapter 18: Transact ion management 169

Programmatic t ransact ion management using JTA APIs

■ Mandatory: It is recommended that this attribute not be used. Its behavior is similar to
Requires, but the caller must already have an associated transaction. If not, the
container throws a javax.transaction.TransactionRequiredException. This attribute
makes the bean less flexible for composition because it makes assumptions about
the caller's transaction.

■ Never: It is recommended that this attribute not be used. However, if used, the EJB
Container starts a local transaction for the method. The local transaction completes
at the conclusion of the method.

Under normal circumstances only two attributes, Required and RequiresNew, must be
used. The attributes Supports and NotSupported are strictly for optimization. The use of
Never and Mandatory are not recommended because they affect the composibility of the
bean. In addition, if a bean is concerned about transaction synchronization and
implements the javax.ejb.SessionSynchronization interface, then the Assembler/
Deployer can specify only the attributes Required, RequiresNew, or Mandatory. These
attributes ensure that the container invokes the bean only within a global transaction,
because transaction synchronization can only occur within a global transaction.

Note When a client calls an EJB which in turn calls another EJB, and both EJBs access the
same database, only one JDBC connection will be used if the Transaction attribute of
the methods involved is set to Required. The reason is that work done in each of the
beans becomes part of the single transaction.

Programmatic transaction management using JTA APIs
All transactions use the Java Transaction API (JTA). When transactions are container
managed, the platform handles the demarcation of transaction boundaries and the
container uses the JTA API; you do not need to use this API in your bean code.

A bean that manages its own transactions (bean-managed transaction), however, must
use the JTA javax.transaction.UserTransaction interface. This interface allows a client
or component to demarcate transaction boundaries. Enterprise JavaBeans that use
bean-managed transactions use the method EJBContext.getUserTransaction().

In addition, all transactional clients use JNDI to look up the UserTransaction interface.
This simply involves constructing a JNDI InitialContext using the JNDI naming
service, as shown in the following line of code:

javax.naming.Context context = new javax.naming.InitialContext();

Once the bean has obtained the InitialContext object, it can then use the JNDI
lookup() operation to obtain the UserTransaction interface, as shown in the following
code sample.

javax.transaction.UserTransaction utx = (javax.transaction.UserTransaction)
 context.lookup("java:comp/UserTransaction");

Note that an EJB can obtain a reference to the UserTransaction interface from the
EJBContext object. This is because an enterprise bean by default inherits a reference to
the EJBContext object. Thus, the bean can simply use the
EJBContext.getUserTransaction() method rather than having to obtain an
InitialContext object and then using the JNDI lookup() method. However, a
transactional client that is not an enterprise bean must use the JNDI lookup approach.

When the bean or client has the reference to the UserTransaction interface, it can then
initiate its own transactions and manage these transactions. That is, you can use the
UserTransaction interface methods to begin and commit (or rollback) transactions. You
use the begin() method to start the transaction, then the commit() method to commit the
changes to the database. Or, you use the rollback() method to abort all changes
made within the transaction and restore the database to the state it was in prior to the
start of the transaction. Between the begin() and commit() methods, you include code
to carry out the transaction's business.

170 AppServer Developer ’s Guide

JDBC API Modi f icat ions

JDBC API Modifications
The standard Java Database Connectivity (JDBC) API is used by the AppServer to
access databases that support JDBC through vendor provided drivers. Requests for
access to a database is centralized through the AppServer JDBC Connection Pool.
This section describes modifications the AppServer JDBC pool makes to JDBC
behavior for transactions.

The JDBC pool is a pseudo JDBC driver that allows a transactional application to
obtain a JDBC connection to a database. The JDBC pool associates JDBC
connections with the Transaction Manager's transactions, and delegates connection
requests to JDBC drivers that factory the JDBC connections. Once a connection is
obtained using the JDBC pool, the transaction is coordinated automatically by the
transaction service.

The JDBC pool and its associated resources provide complete transactional access to
the DBMS. The JDBC pool registers resources transparently with the transaction
coordinator. Because of limitations of the 1.x version of the JDBC API, the JDBC pool
can only provide one-phase commit. Version 2.0 of the JDBC API supports full two-
phase commit.

Modifications to the behavior of the JDBC API

To enable JDBC access for transactional applications written in Java, you use the
JDBC API. The JDBC API is fully documented at the following web site:

http://www.javasoft.com/products/jdk/1.2/docs/guide/jdbc/spec/
jdbc-spec.frame.html

However, the behavior of some JDBC methods is overridden by the partition's
transaction service when they are invoked within the context of a transaction managed
by the partition. The following methods are affected:

■ Java.sql.Connection.commit()

■ Java.sql.Connection.rollback()

■ Java.sql.Connection.close()

■ Java.sql.setAutoCommit(boolean)

The rest of this section explains the changes to the semantics of these methods for
partition-managed transactions.

Note If a thread is not associated with a transaction, all of these methods will use the
standard JDBC transaction semantics.

Overridden JDBC methods

Java.sql.Connection.commit()
As defined in the JDBC API, this method commits all work that was performed on a
JDBC connection since the previous commit() or rollback(), and releases all database
locks.

If a global transaction is associated with the current thread of execution do not use this
method. If the global transaction is not a container-managed transaction, that is the
application manages its own transactions, and a commit is required use the JTA API to
perform the commit rather than invoking commit() directly on the JDBC connection.

Chapter 18: Transact ion management 171

Handl ing of EJB except ions

Java.sql.Connection.rollback()
As defined in the JDBC API, this method rolls back all work that was performed on a
JDBC connection since the previous commit() or rollback(), and releases all database
locks.

If a global transaction is associated with the current thread of execution do not use this
method. If the global transaction is not a container-managed transaction, that is the
application manages its own transactions, and a rollback is required use the JTA API to
perform the rollback rather than invoking rollback() directly on the JDBC connection.

Java.sql.Connection.close()
As defined in the JDBC API, this method closes the database connection and all JDBC
resources associated with the connection.

If the thread is associated with a transaction this call simply notifies the JDBC pool that
work on the connection is complete. The JDBC pool releases the connection back to
the connection pool once the transaction has completed. JDBC connections opened by
the JDBC pool cannot be closed explicitly by an application.

Java.sql.Connection.setAutoCommit(boolean)
As defined in the JDBC API, this method is used to set the auto commit mode of a
transaction. The setAutoCommit() method allows Java applications to either:

■ Execute and commit all SQL statements as individual transactions (when set to
true). This is the default mode, or

■ Explicitly invoke commit() or rollback() on the connection (when set to false).

If the thread is associated with a transaction, the JDBC pool turns off the auto-commit
mode for all connections factoried in the scope of a partition's transaction service
transaction. This is because the transaction service must control transaction
completion. If an application is involved with a transaction, and it attempts to set the
auto commit mode to true, the java.sql.SQLException() will be raised.

Handling of EJB exceptions
Enterprise JavaBeans can throw application and/or system level exceptions if they
encounter errors while handling transactions. Application-level exceptions pertain to
errors in the business logic and are intended to be handled by the calling application.
System-level exceptions, such as runtime errors, transcend the application itself and
can be handled by the application, the bean, or the bean container.

The EJB declares application-level exceptions and system-level exceptions in the
throws clauses of its Home and Remote interfaces. You must check for checked
exceptions in your program try/catch block when calling bean methods.

System-level exceptions

An EJB throws a system-level exception, which is a java.ejb.EJBException (but may
also be a java.rmi.RemoteException), to indicate an unexpected system-level failure.
For example, it throws this exception if it cannot open a database connection. The
java.ejb.EJBException is a runtime exception and does not have to be listed in the
throws clause of the bean's business methods.

System-level exceptions usually require the transaction to be rolled back. Often, the
container managing the bean does the rollback. Other times, especially with bean-
managed transactions, the client must rollback the transaction.

172 AppServer Developer ’s Guide

Handl ing of EJB except ions

Application-level exceptions

An EJB throws an application-level exception to indicate application-specific error
conditions, that is, business logic errors and not system problems. These application-
level exceptions are exceptions other than java.ejb.EJBException. Application-level
exceptions are checked exceptions, which means you must check for them when you
call a method that potentially can throw this exception.

The EJB's business methods use application exceptions to report abnormal application
conditions, such as unacceptable input values or amounts beyond acceptable limits.
For example, a bean method that debits an account balance can throw an application
exception to report that the account balance is not sufficient to permit a particular debit
operation. A client can often recover from these application-level errors without having
to rollback the entire transaction.

The application or calling program gets back the same exception that was thrown and
this allows the calling program to know the precise nature of the problem. When an
application-level exception occurs, the EJB instance does not automatically rollback
the client's transaction. The client now has the knowledge and the opportunity to
evaluate the error message, take the necessary steps to correct the situation, and
recover the transaction. Otherwise, the client can abort the transaction.

Handling application exceptions

Because application-level exceptions report business logic errors, the client is
expected to handle these exceptions. While these exceptions can require transaction
rollback, they do not automatically mark the transaction for rollback. You often have the
option to retry the transaction, though there are times when you must abort and
rollback the transaction.

The bean Provider is responsible for ensuring that the state of the bean is such that, if
the client continues with the transaction, there is no loss of data integrity. If the Provider
cannot ensure this degree of integrity, then the bean marks the transaction for rollback.

Transaction rollback
When your client program gets an application exception, you must first check if the
current transaction has been marked for “rollback only”. For example, a client can
receive a javax.transaction.TransactionRolledbackException. This exception indicates
that the helper enterprise bean failed and the transaction has been aborted or marked
“rollback only”. In general, the client does not know the transaction context within which
the called enterprise bean operated. The called bean may have operated in its own
transaction context separate from the calling program's transaction context, or it may
have operated in the calling program's context.

If the EJB operated in the same transaction context as the calling program, then the
bean itself (or its container) may have already marked the transaction for rollback.
When the EJB container has marked a transaction for rollback, the client should stop
all work on the transaction. Normally, a client using declarative transactions will get an
appropriate exception, such as javax.transaction.TransactionRolledbackException.
Note that declarative transactions are those transactions where the container manages
the transaction details.

A client that is itself an EJB calls the javax.ejb.EJBContext.getRollbackOnly method to
determine if its own transaction has been marked for rollback or not.

For bean-managed transactions—those transactions managed explicitly by the client—
the client should rollback the transaction by calling the rollback method from the
java.transaction.UserTransaction interface.

Chapter 18: Transact ion management 173

Handl ing of EJB except ions

Options for continuing a transaction
When a transaction is not marked for rollback, then the client has three options:

■ Rollback the transaction.

■ Pass the responsibility by throwing a checked exception or re-throwing the original
exception.

■ Retry and continue the transaction. This can entail retrying portions of the
transaction.

When a client receives a checked exception for a transaction not marked for rollback,
its safest course is to rollback the transaction. The client does this by either marking
the transaction as “rollback only” or, if the client has actually started the transaction,
calling the rollback method to actually rollback the transaction.

The client can also throw its own checked exception or re-throw the original exception.
By throwing an exception, the client lets other programs further up the transaction
chain decide whether or not to abort the transaction. However, in general it is
preferable for the code or program closest to the occurrence of the problem to make
the decision about saving the transaction.

Lastly, the client can continue with the transaction. The client can evaluate the
exception message and decide if invoking the method again with different parameters
is likely to succeed. However, you need to keep in mind that retrying a transaction is
potentially dangerous. You have no knowledge of nor guarantee that the enterprise
bean properly cleaned up its state.

Clients that are calling stateless session beans, on the other hand, can retry the
transaction with more confidence if they can determine the problem from the thrown
exception. Because the called bean is stateless, the client does not have the problem
of not knowing the state in which the bean left the transaction.

174 AppServer Developer ’s Guide

Chapter 19: Message-Driven Beans and JMS 175

C h a p t e r

Chapter19Message-Driven Beans and JMS

JMS and EJB
According to the specification, there are no limitations on a bean acting as a JMS
message producer or synchronous consumer. It can use the regular JMS APIs to send
a message to a queue or publish to a topic. As long as you perform synchronous style
consumption of messages (that is, not based on javax.jms.MessageListener), then there
are no problems on the consumption side either. The complexity lies in the need for a
JMS message send or receive request to participate in a transaction context shared by
other work in an application. We already know how to solve this problem using JMS
and JTA in a non-EJB application. The EJBs demand no special treatment.

Since EJB method invocations are synchronous, some calls will have to wait until the
bean has completed its processing. This may include calling other beans, databases,
and so forth. This RMI behavior can be undesirable in many situations. For example,
you may just want to call the method and have it return before doing any heavy
processing, allowing the caller to proceed with other tasks in the meantime. Threading
in the client is an obvious way to achieve this, but it suffers from two problems:

■ the client's programming model is not a true asynchronous style

■ if the client is an EJB, threading is prohibited in its method implementations

The most desirable scenario is for an appclient, servlet, EJB, or other component to
have the capability to fire a message and then have an EJB be driven asynchronously
by that message. In turn, that EJB can send a message to another EJB or perform
direct data access or other business logic. The caller does not wait beyond the time the
message is successfully queued. On the other side, the EJB can process the message
at its convenience. This EJB's processing typically involves a unit of work made up of
three operations:

1 dequeueing the message,

2 activating an instance and performing whatever work the business logic demands,
and

3 optionally queuing a reply message back

Enterprise systems require that it be possible to have transactional and other
container-managed guarantees for this unit of work.

176 AppServer Developer ’s Guide

Cl ient View of an MDB

EJB 2.0 Message-Driven Bean (MDB)

The EJB 2.0 specification formalizes the integration between JMS and asynchronous
invocation of enterprise beans by pushing these responsibilities to the EJB Container.
This eases the burden on the developer, who now simply provides a class that is a
JMS listener and also an EJB. This is done by implementing javax.jms.MessageListener
and javax.ejb.MessageDrivenBean in the class. This and an XML descriptor containing
all the deployment settings is all that the application programmer needs to provide.

From a client's perspective, this EJB is nonexistent. The client simply publishes
messages to the queue or topic. The EJB container associates the MDB with the
published queue/topic and handles all lifecycle, pooling, concurrency, reentrance,
security, transaction, message handling, and exception handling issues.

EJB 2.1 MDB

With integration of the J2EE Connector Architecture 1.5 (JCA 1.5) in EJB 2.1 the MDB
can now process messages from non-JMS messaging servers in addition to JMS
based providers. A JCA 1.5 compliant resource adapter implementation can be
developed for any type of messaging server and deployed to an application server.
When configured to pass inbound messages from the messaging server to the
application server, the resource adapter can be selected as the source for messages
driving 2.1 MDBs.

JCA 1.5 defines a Message Inflow contract which is a messaging contract between the
EJB container and an asynchronous connector, so that MDBs automatically process
incoming messages from an EIS or some other type of messaging provider. EJB 2.1
MDBs must implement the standard javax.ejb.MessageDrivenBean interface as well as
a specific messaging interface defined by the connector. If the connector is a JMS-
based provider, the MDB must implement javax.jms.MessageListener, but for non-JMS
providers it must implement some other type of interface that is specific to the provider.

In Borland Application Server 6.6, EJB 2.1 MDBs can be configured to process
messages from JMS providers either indirectly through a JCA resource adapter or
directly without the need for a pre-deployed JCA resource adapter.

Client View of an MDB
Clients do not bind to an MDB like they do for session beans and entity beans. The
client only needs to send a message to the destination to which the MDB is configured
to listen. Typically clients also use the <resource-ref> and <resource-env-ref>(in EJB
2.0) or <message-destination-ref>(in EJB 2.1) for JMS destination specification in their
deployment descriptor and then point to the same JNDI names as configured in the
MDB deployment descriptor. See “Obtaining JMS Connection Factories and
Destinations in J2EE Application Components” on page 209 for information on how to
configure your client deployment descriptors to communicate with the JMS provider.

This being the case, there is no EJB metadata or handle of which the client needs to be
aware. This is because there is no RMI client view of a Message Driven Bean.

Chapter 19: Message-Driven Beans and JMS 177

MDB Conf igurat ion

MDB Configuration
Since MDBs do not expose EJB interfaces, they do not have JNDI names in the normal
sense like EJBHome objects do. When an MDB is deployed, it communicates with a
message provider in preparation for processing incoming messages.

EJB 2.0 MDBs are associated with two JMS resource objects that must pre-exist in
JNDI before the MDB is deployed. These are:

■ a JMS connection factory to use for connecting to the JMS provider and

■ a JMS queue/topic on that provider to listen to for incoming messages

The JNDI names for these objects are specified in the MDB's ejb-borland.xml
deployment descriptor. The <connection-factory-name> captures the resource
connection factory used to connect to the JMS service provider. The <message-driven-
destination-name> element captures the actual topic/queue on which the MDB is to
listen. Once these elements are specified, the MDB has all the information it needs to
connect to the JMS service provider, receive messages, and send replies.

EJB 2.1 MDBs can be configured in one of two ways. If the EJB 2.1 MDB implements
javax.jms.MessageListener, indicating a JMS based MDB, it can be configured to
communicate directly with the JMS provider rather than use a JCA 1.5 connector. In
this case, JNDI names for JMS resource objects can be specified in the MDB's
ejb-borland.xml deployment descriptor under <jms-provider-ref> element. An EJB 2.1
MDB can alternatively be configured to receive messages from a JCA 1.5 connector
using element <resource-adapter-ref> in the Borland-specific deployment descriptor file
ejb-borland.xml.

Connecting to a JMS Server from EJB 2.0 MDBs

EJB 2.0 MDBs provide a special case for connecting to the JMS server, the source for
inbound messages. In the standard deployment descriptor file, ejb-jar.xml, the type of
JMS destination from which the inbound messages are received, is defined using the
<message-driven-destination> element in the MDB's declaration. For example:

<message-driven>
 <ejb-name>MyMDBTopic</ejb-name>
ƒ
<message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
 </message-driven-destination>
ƒ
</message-driven>

Consult the J2EE 1.3 Specification for the proper use of this element. The Borland-
specific XML file, ejb-borland.xml binds the logical name of the JMS destination with
the JNDI name using equivalent element, <message-driven-destination>. The JNDI
name for JMS connection factory required to connect to JMS server must also be
defined using <connection-factory-name>. For example,

<message-driven>
<ejb-name>MyMDBTopic</ejb-name>
ƒ
<message-driven-destination>jms/resources/Topic</message-driven-destination>
<connection-factory-name>jms/resources/tcf</connection-factory-name>
ƒ
</message-driven>

178 AppServer Developer ’s Guide

MDB Conf igurat ion

See the Configuring JMS Connection Factories and Destinations section in the Using
JMS section for detailed information on configuring these JMS resource objects bound
under JNDI.

Note You must use an XA connection factory when the MDB is deployed with the REQUIRED
transaction attribute. The whole idea of this deployment is to enable the consumption
of the message that drives the MDB to share the same transaction as any other work
that is done from within the MDB.onMessage() method. To achieve this the container
performs XA coordination with the JMS service provider and any other resources
enlisted in the transaction.

Connecting to message source from EJB 2.1 MDBs

As a result of EJB 2.1 and JCA 1.5, there have been changes to both the standard
deployment descriptor, ejb-jar.xml, and the Borland proprietary deployment
descriptor, ejb-borland.xml for J2EE 1.4.

Changes to ejb-jar.xml
Each EJB 2.1 MDB is connected to its message source based on the information in the
deployment descriptor. The standard deployment descriptor, ejb-jar.xml, in EJB 2.1
has changed to accommodate the connector-based MDB.

EJB 2.1 adds new elements, <messaging-type>, <message-destination-type>, and
<activation-config>, in the ejb-jar.xml file:

The <messaging-type> element indicates which message type will be used, it does this
by stating the fully-qualified interface name that the MDB implements. If no interface
name is given, the container defaults to JMS message type,
javax.jms.MessageListener.

The optional <message-destination-type> element designates a fully-qualified interface
name that represents the type of destination from which the bean will get messages.
For MDBS that represent JMS message type, javax.jms.MessageListener, the allowed
values are javax.jms.Topic or javax.jms.Queue.

Since the connector-based MDBs no longer rely exclusively on JMS, the EJB 2.0
elements <message-driven-destination><message-selector> and <acknowledge-mode>
elements are eliminated in EJB 2.1. Configuration properties required by EJB 2.1 MDB
activation can be defined in a generic set of name-value pairs under the <activation-
config> element. The property names and values used to describe the messaging
service vary depending on the type of service used. These <activation-config>
properties are examined when the message-driven bean is deployed. Each eliminated
JMS-related element from EJB 2.0 can be represented by an <activation-config-
property> element when <messaging-type> element specifies a JMS messaging type
(javax.jms.MessageListener)

Here is an example of how a JMS-based MDB can be defined in EJB 2.1 ejb-jar.xml
file:

<enterprise-beans>
 <message-driven>
 <ejb-name>EJB_SEC_MDB_TOPIC_CMT</ejb-name>
 <ejb-class>com.sun.ts.tests.ejb.ee.sec.mdb.MsgBean</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 <transaction-type>Container<transaction-type>
 <message-destination-type>javax.jms.Topic</message-destination-type>
 <message-destination-link>StockTopic</message-destination-link>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>acknowledgeMode

</activation-config-property-name>
 <activation-config-property-value>Auto-acknowledge

Chapter 19: Message-Driven Beans and JMS 179

MDB Conf igurat ion

<activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destinationType

</activation-config-property-name>
 <activation-config-property-value>javax.jms.Topic

<activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>subscriptionDurability

</activation-config-property-name>
 <activation-config-property-value>DURABLE

<activation-config-property-value>
 </activation-config-property>
 <activation-config>
 </message-driven>
 ƒ
</enterprise-beans>

The property names and values used in the <activation-config> to describe the
messaging service vary depending on the type of message service used, but EJB 2.1
defines the following four fixed properties for JMS-based MDBs:

The Message Inflow contract in the JCA 1.5 specification is a contract between the
messaging service provider and the application server for the delivery of messages to
an MDB. As a part of this contract, the messaging provider implements a JavaBean
component called ActivationSpec. The ActivationSpec defines the properties that are
required by the messaging provider in order to deliver messages. The administrator
may define default values for these properties, but when the application containing the
MDB is deployed, these will be overridden by any <activation-config-property>
elements defined in the MDB's deployment descriptor. A JMS provider that confirms to
the Sun specification will therefore have the above mentioned properties on its
ActivationSpec. You can leave a property out of the MDB's deployment descriptor and
define it administratively instead. Conversely, there may be other, provider-specific
properties that you previously had to define administratively that you can now include
in the MDB's deployment descriptor.

Standard descriptor element <message-destination-link> is used to define a logical
name for the message destination. It is used with a <message-destination> element to
illustrate message flow within an application. For MDBs that specify a JMS provider
message source, the JMS destination object is resolved from the target <message-
destination> of <message-destination-link>, if present in the MDBs deployment
descriptor.

<activation-config-
property-name> Description

<activation-config-
property-value>

acknowledgeMode Allows an MDB container to notify the
JMS provider that the MDB has
received the message.

Auto-acknowledge (default)
or Dups-ok-acknowledge

messageSelector Allows an MDB to be selective about
which messages it receives. It allows an
MDB to set properties based on which
messages will be received. These
properties can be expressions or
Boolean logic.

String selector

destinationType Indicates the type of destination from
which the MDB receives messages

javax.jms.Queue or
javax.jms.Topic

subscriptionDurablity Determines whether the JMS provider
must store any messages that an MDB
receives when the MDB container is
disconnected from the provider.

NonDurable (default)
or Durable

180 AppServer Developer ’s Guide

MDB Conf igurat ion

In EJB 2.1 MDBs, standard descriptor element <message-destination-ref> can be used
instead of <resource-env-ref> for definition of JMS destinations used within application
logic of the MDB.

Changes to ejb-borland.xml
The Borland proprietary deployment descriptor has been modified to accommodate the
new connector-based MDB. It now includes a new element, <message-source>. This
element allows an application assembler to specify activation of the MDB through a
JCA 1.5 resource adapter or in the case of a JMS messaging type MDB directly to a
JMS provider. If you are using a JMS provider, you must use the <jms-provider-ref>
element as follows:

<enterprise-beans>
 <message-driven>
 <ejb-name>EJB_SEC_MDB_TOPIC_CMT</ejb-name>
 <message-source>
 <jms-provider-ref>
 <message-driven-destination-name>
 Jms/MyTopic
 </message-driven-destination-name>
 <connection-factory-name>jms/myTCF</connection-factory-name>
 <pool>
 <max-size>120</max-size>
 <init-size>100</init-size>
 <wait-timeout>600</wait-timeout>
 </pool>
 </jms-provider-ref>
 </message-source>
 ƒ
 </message-driven>
</enterprise-beans>

If you are using a Connector-based non-JMS messaging provider, use the following
<message-source>:

<enterprise-beans>
 <message-driven>
 <ejb-name>EJB_SEC_MDB_TOPIC_CMT</ejb-name>
 <message-source>
 <resource-adapter-ref>
 <instance-name>
 MyResourceApadter
 </instance-name>
 </resource-adapter-ref>
 </message-source>
 </message-driven>
</enterprise-beans>

The resource adapter may provide the Java class name and the interface type of an
optional set of JavaBean classes representing various administered objects.
Administered objects are specific to a messaging style or message provider and can
be referenced using <resource-env-ref> from the application logic of an MDB. For
example, some messaging styles may need applications to use special administered
objects for sending and synchronously receiving messages via connection objects
using messaging-style specific APIs. Borland deployment descriptor element
<resource-env-ref> is extended to override property values of an administered object.

Chapter 19: Message-Driven Beans and JMS 181

Cluster ing of MDBs

For example:

ƒ
 <message-driven>
 <message-source>
 <resource-adapter-ref>
 <instance-name>ResourceAdapter1</instance-name>
 </resource-adapter-ref>
 </message-source>
 ƒ
 <resource-env-ref>
 <resource-env-ref-name>mdbRequiredConnFactory</resource-env-ref-name>
 <admin-object>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String<prop-type>
 <prop-value>localhost:7222</prop-value>
 </property>
 </admin-object>
 </resource-env-ref>
 ƒ
 </message-driven>
 ƒ

Clustering of MDBs
The clustering of MDBs differs from the clustering of other enterprise beans. With
MDBs, producers put messages into a destination. The messages will reside in the
destination until a consumer takes the messages off the destination (or, if the
messages are non-durable, when the server hosting the destination crashes). This is a
pull model since the message will just reside on the destination until a consumer asks
for it. The containers contend to get the next available message on the destination.
MDBs provide an ideal load-balancing paradigm, one that is smoother than other
enterprise bean implementations for distributing a load . The server that is the least
burdened can ask for and obtain the message. The tradeoff for this optimal load-
balancing is that messaging has extra container overhead by virtue of the destination's
position between the producer and the consumer.

There is not, however, the same concept of failover with a messaging service as exists
in VisiBroker. If the consumer disappears, the queue fills up with messages. As soon
as the consumer is brought back online, the messages resume being consumed. Of
course, the JMS server itself should be fault-tolerant. The client should never notice
any “failure” with the exception of response delays if such messages are expected.
This kind of fault tolerance demands only a way of detecting failed consumers and
activating them after failure.

That said, it is possible to deploy MDBs in more than one Partition with the Messaging
Server pushing messages to only one, switching to the other in case of failure. Most
JMS products allow queues to behave in load-balancing or fault-tolerant modes. That
is, MDB replicas can register to the same queue and the messages are distributed to
them using a load-balancing algorithm. Alternately, messages may all go to one
consumer until it fails, at which point delivery shifts to another. The connection
established to the JMS service provider from the MDB can also provide a load-
balancing and/or fault-tolerant node. JMS service providers may provide fault-tolerance
features. For specific information on clustering and fault-tolerance features, see
Chapter 23, “JMS provider pluggability.”

182 AppServer Developer ’s Guide

Error Recovery

Keep in mind that only one MDB instance in a container that subscribes to a topic will
consume any given message. This means that, for all parallel instances of an MDB to
concurrently process messages, only one of the instances will actually receive any
particular message. This frees up the other instances to process other messages that
have been sent to the topic. Note that each container that binds to a particular topic will
consume a message sent to that topic. The JMS subsystem will treat each message-
driven bean in separate containers as a separate subscriber to that message! This
means that if the same MDB is deployed to many containers in a cluster, then each
deployment of the bean will consume a message from the topic to which it subscribes.
If this is not the behavior you desire, and you require exactly one consumption of a
message, then you should consider deploying a queue rather than a topic.

Error Recovery
The following section deals with JMS server connection failures and setting connection
rebind attempt properties. It also covers the redelivery of messages when an MDB fails
to consume a message.

Rebinding EJB 2.0 and EJB 2.1 MDBs configured with a JMS
provider message source

A connection failure usually occurs after you deploy your bean, causing a need for
rebind attempt. You also receive an error if you are trying to deploy your bean and a
connection to the JMS server was never established. Whether a failure occurs post
deployment or no connection was found during deployment, the container will
transparently attempt to rebind the JMS service provider connection when you set the
rebind attempt properties. This ensures even greater fault-tolerance from an MDB
instance.

The two bean-level properties that control the number of rebind attempts made and the
time interval between attempts are:

■ ejb.mdb.rebindAttemptCount: this is the number of times the EJB Container tries to
re-establish a failed JMS connection for this MDB. The default value is 5 (five).

To make the container attempt to rebind infinitely you need to explicitly specify
ejb.mdb.rebindAttemptCount=0.

■ ejb.mdb.rebindAttemptInterval: the time in seconds between successive retry
attempts. The default value is 60.

Redelivered messages for EJB 2.0 and EJB 2.1 MDBs configured
with a JMS provider message source

Should the MDB fail to consume a message for any reason, the message will be
re-delivered by the JMS service. The message will only be re-delivered five times. After
five attempts, the message will be delivered to a dead queue (if one is configured).
There is one bean-level property that controls the re-deliver attempt count:

■ ejb.mdb.maxRedeliverAttemptCount: the max number of times a message will be
re-delivered by the JMS service provider if an MDB is unable to consume it. The
default value is 5.

Chapter 19: Message-Driven Beans and JMS 183

Error Recovery

There are two bean-level properties for delivering a message to a dead queue:

■ ejb.mdb.unDeliverableQueueConnectionFactory: looks up JNDI name for the
connection factory to create connection to the JMS service.

■ ejb.mdb.unDeliverableQueue: looks up the JNDI name of the queue.

The XML example for unDeliverableQueueConnectionFactory and unDeliverableQueue
is shown here:

 <ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>MyMDB</ejb-name>
 <message-driven-destination-name>serial://jms/q

</message-driven-destination-name>
 <connection-factory-name>serial://jms/xaqcf

</connection-factory-name>
 <pool>
 <max-size>20</max-size>
 <init-size>0</init-size>
 </pool>
 <resource-ref>
 <res-ref-name>jms/QueueConnectionFactory</res-ref-name>
 <jndi-name>jms/xaqcf</jndi-name>
 </resource-ref>
 <property>
 <prop-name>ejb.mdb.maxRedeliverAttemptCount</prop-name>
 <prop-type>String</prop-type>
 <prop-value>3</prop-value>
 </property>
 <property>
 <prop-name>ejb.mdb.unDeliverableQueueConnectionFactory

</prop-name>
 <prop-type>String</prop-type>
 <prop-value>serial://jms/qcf</prop-value>
 </property>
 <property>
 <prop-name>ejb.mdb.unDeliverableQueue</prop-name>
 <prop-type>String</prop-type>
 <prop-value>serial://jms/q2</prop-value>
 </property>
 <property>
 <prop-name>ejb-designer-id</prop-name>
 <prop-type>String</prop-type>
 <prop-value>MyMDB</prop-value>
 </property>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor />
</ejb-jar>

You can set these properties with the DDEditor. From the Console, navigate the tree
on the left until you find the module containing your MDBs. Right-click the module and
select DDEditor. When the DDEditor appears, select the bean node in the Navigation
Pane to open the editor's panels for that bean. Select the “Properties” tab from the
Content pane, and Add properties.

184 AppServer Developer ’s Guide

MDBs and Transact ions

MDBs and Transactions
For information about using JMS within transactions, see “JMS and Transactions” on
page 214. This section deals exclusively with using MDBs in transactions.

A common scenario for using the MDBs involves transactions requiring two-phase
commit (2PC). Such an MDB has the REQUIRED transaction attribute. The MDB
application method could be written to access and possibly update an external
resource. Completion of the container managed transaction for the MDB method must
include receipt of the message that triggered the method, and any work performed
against the external resource from within the method. To achieve this, the transaction
must be coordinated by a 2PC transaction service, such as the OTS engine. See “EJBs
and 2PC transactions” on page 163 for more details on optimal ways to use the OTS
engine with MDBs.

Chapter 20: Connect ing to Resources with Bor land AppServer: using the Def in i t ions Archive (DAR) 185

C h a p t e r

Chapter 20Connecting to Resources with
Borland AppServer: using the

Definitions Archive (DAR)
J2EE specifies a uniform mechanism for establishing connections to resources using
Java standard interfaces. A resource related object containing resource manager
location details and connection attributes is bound under a JNDI service provider, and
can be retrieved by your application as a resource connection factory in a JNDI lookup.
Sample resource connection factories include JDBC datasources and JMS connection
factories. Once a resource connection factory is obtained from JNDI, a connection to
the desired resource manager can then be established. A connection to a relational
database is obtained through a JDBC datasource, a connection to a message broker is
obtained through a JMS connection factory, and general Enterprise Information
Systems (EIS) connections are obtained through JCA resource adapters.

Use the Borland Management Console and Borland Deployment Descriptor Editor
(DDEditor) to create, edit, and deploy resource connection factories and other resource
related JNDI objects, such as JMS destinations. An XML descriptor file
(jndi-definitions.xml), generally called the JNDI Definitions module, captures the
properties representing resource related objects. This file is packaged in a Data
ARchive (DAR) module.

In the Borland AppServer (AppServer), a partition hosted Naming Service represents
the default JNDI service provider—its an implementation of a CosNaming service
provider. Resource related objects are bound in the Naming Service of an AppServer
partition through deployment of DAR or RAR module using standard AppServer
deployment procedures. At that time, only properties required to create an instance of
a resource connection factory, or JMS destination, are stored in the JNDI bound object.
During JNDI lookup for a resource related object, an instance of the desired resource
object is created using the stored property values from the object retrieved. The newly
created instance is then passed back to the caller of JNDI lookup() method. In this way,
DARs can be successfully deployed to an AppServer partition without having to load
classes for vendor specific resource objects. Class libraries for resource vendors are
only required by application processes that actually perform JNDI lookup of resource
related objects.

186 AppServer Developer ’s Guide

JNDI Def in i t ions Module

Note In prior versions of AppServer, a file-system service provider called the Serial Provider
was the default JNDI service provider for deployment of DARs and JNDI Definitions
modules. Resource related objects bound to this provider involved creation of the
resource objects during deployment, and hence required vendor class libraries to be
deployed in advance. In addition, JNDI names for resource related objects required a
serial URL prefix, that is “serial://”. With the Naming Service being the default service
provider, this prefix is no longer required in JNDI name specification. Deployment of
existing DARs/JNDI Definitions modules that have JNDI names with this prefix are now
automatically bound to the Naming Service.

A resource related object is obtained in J2EE through a resource reference. You can
reference resource connection factories or JMS destinations from EJBs, servlets and
other J2EE application components using resource-reference elements in the
component's deployment descriptors. See Chapter 21, “Using JDBC” for more specific
information on how to define JDBC datasource resource references, and Chapter 22,
“Using JMS” for resource reference definition examples of JMS connection factories
and destinations.

Each AppServer partition has a predeployed DAR module named
default-resources.dar containing example definitions for JDBC datasources, JMS
connection factories and JMS destinations. This module can be examined, updated
and redeployed in the following steps:

1 Navigate to default-resources.dar under the Deployed Modules node of a partition
in the left pane of the Borland Management console.

2 Right-click on default-resources.dar and select Edit deployment descriptor from
the context menu. The Borland Deployment Descriptor Editor window will open. The
available datasources and connection factories should be visible in the left pane.

3 Right-click on the root node in the navigation pane of the Borland Deployment
Descriptor Editor and select the appropriate option to create a New object you want
to add.

When a J2EE component attempts a JNDI lookup for a resource reference, vendor
classes associated with the resource object must be available in the runtime
environment. If the J2EE component is deployed to an AppServer partition, the vendor
class libraries must be deployed to the partition as a library archive. Exceptions to this
rule include JNDI lookups for resource objects whose dependent class libraries are
bundled with AppServer. For example, a JDataStore datasource or any JMS resource
object of the JMS message server installed with AppServer.

JNDI Definitions Module
Resource related objects are bound under the Naming Service through deployment of
a DAR file containing the JNDI Definitions Module. A DAR has a special .dar file
extension. It must be deployed to an AppServer partition either individually or
packaged with other J2EE modules in an EAR file.

Note A DAR is not a part of the J2EE specification. It is a Borland-specific implementation
designed to simplify deployment and management of resource connection factories
and JMS destinations. You do not package connection factory or JMS destination
vendor classes in this archive type. Those classes must be deployed as a library to
individual Partitions.

The only contents of the DAR that you must provide is an XML descriptor file called
jndi-definitions.xml. It contains definitions for resource related objects, each with a
JNDI name identifying its location in JNDI. Like other descriptors, this is placed within
the META-INF directory of the DAR. The contents of the DAR hence is as follows:

META-INF/jndi-definitions.xml

Chapter 20: Connect ing to Resources with Bor land AppServer: using the Def in i t ions Archive (DAR) 187

Creat ing and Deploying a DAR

You deploy the DAR containing the descriptor file just as you would any other J2EE
module using either the Console or command-line utilities, or as part of an EAR. You
can deploy any number of distinctly named DARs in the same Partition or to an
AppServer cluster. Should two or more deployed DARs have resource object
definitions with identical JNDI names, the last deployed module overwrites any existing
object binding on the same node.

Once deployed, resource objects defined in the DAR can be examined in the Naming
Service namespace using the JNDI Browser.

Migrating to DARs from previous versions of Borland AppServer

Previous product versions, including IAS 4.1 and BAS 4.5, did not have a DAR module
to contain the jndi-definitions.xml descriptor. If you have a customized
jndi-definitions.xml file that needs to be transferred to AppServer, follow these
migration steps:

1 If you want the entire contents of the default resources overridden, make a
temporary directory called META-INF and place your existing jndi-definitions.xml file
within it.

2 Open a command window and use the following jar command:

prompt>jar uvMf default-resources.dar META-INF/jndi-definitions.xml

3 Now deploy this module following the usual procedures.

If you have performed only a few customizations on your old jndi-definitions.xml file
then it may be easier to simply move the appropriate XML stanzas from the old file into
the one contained within the pre-deployed DAR.

Creating and Deploying a DAR
The DDEditor walks you through creating a new JNDI Definitions Module. Open the
DDEditor and select “File|New...” The Object Gallery appears.

Select the JNDI Definitions tab and select JNDI Definitions Archive to create a new
DAR. Click OK. You may now add JDBC datasources or add JMS resources. Or, you
may do this later. When you are finished save the module by choosing “File|Save...” .

188 AppServer Developer ’s Guide

Disabl ing and Enabl ing a Deployed DAR

After saving the archive, use the J2EE Deployment Wizard to deploy the module. The
wizard reads resource definitions from the DAR and binds them to the Naming Service
of the target partition(s). To start the wizard, open the Console and select “Wizards|
Deployment Wizard.” Follow the on-screen instructions.

Disabling and Enabling a Deployed DAR
Once a DAR module is deployed to a partition, it is enabled. This means that its
resource object definitions are bound to the Naming Service of the partition for as long
as the Naming Service remains active. Enabling a DAR module rebinds its resource
object definitions to the Naming Service and in the process overwrites any pre-existing
content for JNDI names specified. Disabling a DAR module has no immediate impact
on the contents of an active Naming Service. Upon a subsequent restart of the
partition, disabled DARs are not deployed to the partition, that is, resource object
definitions are not bound to the Naming Service. By default, the Naming Service stores
object bindings in memory. Each time the host partition is restarted, resource object
bindings from previously deployed DARs are destroyed. If the Naming Service is
configured with a JDBC backing store, resource object bindings for all DARs are
retained, even those that were once deployed but now marked disabled. Use the JNDI
Browser to locate and permanently remove these bindings.

To manipulate a deployed DAR module, use the Console to select it from the set of
Deployed Modules for a partition, right-click and choose the appropriate action.

Packaging DAR Modules in an Application EAR
Sometimes it is useful to package all archives that make up a complete application into
a single deployable unit. The common scenario is that you have some EJBs in an EJB
Archive, some servlets and JSPs in a Web Archive and they both depend on some
datasources or JMS administrative objects defined in a DAR. Using the Archive Tools
in the Console it is easy to package a set of individual archives into a single EAR
Module.

Note Because DARs are not a part of the J2EE specification, you must include at least one
other valid J2EE module along with your DAR within the EAR. An EAR containing only
a DAR file is not a valid J2EE archive.

Chapter 21: Using JDBC 189

C h a p t e r

Chapter21Using JDBC
Resource related objects such as JDBC datasources are obtained in a portable J2EE
mandated way through JNDI. A JDBC datasource is resolved by performing a JNDI
lookup of a J2EE Resource Reference defined in the deployment descriptors of an
application component. Resource Reference definitions involve both standard J2EE
and Borland's proprietary deployment descriptors. In the standard deployment
descriptor, a Resource Reference specifies a logical name relative to the application's
JNDI environment naming context, java:comp/env/. Borland's deployment descriptor
complements the standard descriptor by associating the Resource Reference logical
name with the actual JNDI location of the JDBC resource definition. For example, in an
EJB Jar component, the standard J2EE deployment descriptor, ejb-jar.xml, specifies
Resource References for an EJB using a <resource-ref> element for a JDBC
datasource. In Borland AppServer (AppServer), a JNDI lookup of a Resource
Reference involves retrieval of the JDBC datasource definition from which the desired
datasource object is created and returned to caller of lookup. The property values
present in the JDBC datasource definition determine the type and characteristics of
datasource object created.

Before a Resource Reference lookup can be attempted, the required datasource
definition must first be bound to its physical JNDI location. In AppServer, JDBC
datasource definitions are bound into a JNDI service provider during deployment of a
Definitions ARchive (DAR) module. By default, these objects are bound to the
partitions Naming Service, the JNDI CosNaming service provider in AppServer. This
chapter describes how to define JDBC datasource definitions in a DAR module and
how to obtain a reference to a JDBC datasource from your J2EE application.

190 AppServer Developer ’s Guide

Conf igur ing JDBC Datasources

Configuring JDBC Datasources
Using the Console, navigate to the “Deployed Modules” list in the Partition whose
datasources you need to configure. By default, every Partition has a predeployed JNDI
Definitions Module (DAR) called default-resources.dar. Right-click on the module and
choose “Edit deployment descriptor” from the context menu. The Deployment
Descriptor Editor (DDEditor) appears.

In the Navigation Pane of the DDEditor is a list of datasources preconfigured in the
product. If needed they can be individually edited to suit the user's requirements.

To create a new JDBC datasource, Right-click on the node at the top of the tree in the
navigation pane and select “New JDBC Datasource...” from the Context Menu.

A dialog box prompts for a JNDI name for the newly-created datasource. Once given, a
representation of this datasource appears in the tree in the Navigation Pane. Click its
representation to open its configuration panel.

The DDEditor has knowledge of some common JDBC drivers and can autofill the class
names and essential properties for the appropriate JDBC datasource. If the JDBC
datasource type you want appears in the Datasource Type list then choose it,
otherwise select “Other(JDBC2)”.

Chapter 21: Using JDBC 191

Configur ing JDBC Datasources

The Main tab in the content pane captures the essential properties needed to define
the chosen database. If the database is known to the DDEditor, it will automatically
complete these properties.

The Driver Properties and Pool Properties tabs capture some of the information from
the Main tab, but also allow you to set any less common properties that do not appear
in the Main tab.

192 AppServer Developer ’s Guide

Conf igur ing JDBC Datasources

To add pool properties, click the Add button and select the property you want to add
from the drop-down list under “Name.” Pool Properties are described in “Defining the
Connection Pool Properties for a JDBC Datasource” on page 193. The same
procedure is used for adding Driver Properties.

Consult your database documentation for any properties you need to define.

Once you're finished, save the module and dismiss the final modal window. The JNDI
Definitions Module is automatically re-deployed to the Partition.

Deploying Driver Libraries

If a deployed application component contains a JNDI lookup of third party JDBC
datasource, vendor libraries are required and must be deployed to the target Partition
as a library archive before the lookup is performed. Note that these steps are not
necessary if you are using the native all-Java database, JDataStore. When trying to
connect to another database like Oracle or Sybase the respective JDBC driver must
first be deployed to the target Partition. To deploy a library to multiple partitions do the
following:

1 From the Console, select Wizard->Deployment Wizard. This will open the
Deployment Wizard.

2 Click on the Add button and navigate to the library file in the resulting window and
click OK. The library name should now appear in the selection box in the
Deployment Wizard.

3 Click on the Next button. The names of the partitions will appear in the Deployment
Wizard window.

4 Select the partitions to which you want to deploy the library and click on the Finish
button. The deployment status will appear in a separate window.

5 Click the Close button to close this window. You can verify that the libraries are
deployed correctly by checking the partition's Deployed Modules node in the
Management Console navigation pane. The name of the library should appear
under the Deployed Modules node.

6 Stop and restart the partition for the deployment to take effect.

Chapter 21: Using JDBC 193

Def ining the Connect ion Pool Propert ies for a JDBC Datasource

To deploy the library to a single partition:

1 Right-click on the partition's name in the navigation pane in the Management
Console and select Deploy Modules from the context menu. The Deployment
Wizard will open.

2 Click on the Add button and navigate to the library file in the resulting window and
click OK. The library name should now appear in the selection box in the
Deployment Wizard.

3 Click on the Next button. The partition name will appear in the Deployment Wizard
window.

4 Select the partition to which you want to deploy the library and click on the Finish
button. The deployment status will appear in a separate window.

5 Click the Close button to close this window. You can verify that the libraries are
deployed correctly by checking the partition's Deployed Modules node in the
Management Console navigation pane. The name of the library should appear
under the Deployed Modules node.

6 Stop and restart the partition for the deployment to take effect.

Defining the Connection Pool Properties for a JDBC Datasource
At runtime each JDBC datasource corresponds to an instance of a connection pool.
Connection pools provide for the reuse of connections and optimization of database
connectivity. Some datasources may require different treatment as connection pools
than others. A number of configuration options exist for these connection pools. Control
of pool sizes, statement execution behavior, and transaction parameters are specified
as properties in the <visitransact-datasource> element in the DAR descriptor file. You
specify properties using the <property> element, which includes the <prop-name>,
<prop-type>, and <prop-value> elements. The complete list of properties, allowed
values, defaults, and descriptions appear in the following table:

Name Allowed Values Description Default Value

FinalizeNoTxBusy
Connections

This property differs from the rest of the
Connection Pool properties because it
must be set in the BAS Partition by
editing the partition_server.config to
add the following line:

vmpram -DFinalizeNoTxBusyConnections

When set, it will impact all BAS JDBC
Connection Pools active in that
partition.

When a JDBC
Connection enters a
state of NoTxBusy,
the application must
close the connection,
otherwise the JDBC
Connection Pool will
hold onto a reference
of it indefinitely and
the underlying
database connection
is never released.
This property, when
set, configures BES
connection pools to
hold a weak reference
for JDBC
connections, allowing
out of scope
NoTxBusy
connections, not
closed by
applications, to be
freed when JVM
garbage collection
occurs.

connectionType

194 AppServer Developer ’s Guide

Defining the Connect ion Pool Propert ies for a JDBC Datasource

Enumerated:

■ Direct

■ XA

Indicates type transaction association
of all connections retrieved from the
connection pool, whether “Direct” or
“XA”

Not Applicable.
Property specification
is mandatory

optimizeXA

Boolean By default, XAResource API calls are
kept to a minimum for optimization of
AppServer JDBC connection pool
performance. Setting optimizeXA to a
value of false disables this
optimization. Under certain conditions,
datasources must have optimizeXA
property set to false. For instance,
conflicts can arise between default
XAResource optimizations in
AppServer JDBC connection pool and
certain vendor resource managers,
such as Oracle, during two-phase
commit protocol. When setting
optimizeXA to false, applications using a
JDBC connection in the scope of a
distributed transaction must issue a
connection close() before completion
of the transaction, otherwise
unexpected transaction completion
conditions will arise.

True maxPoolSize

Integer Specifies the maximum number of
database connections that can be
obtained from this datasource
connection pool.

0 (zero), implying
unbounded size

waitTimeout

Integer The number of seconds to wait for a
free connection when maxPoolSize
connections are already opened. When
using the maxPoolSize property and the
pool is at its max and can't serve any
more connections, the threads looking
for JDBC connections end up waiting
for the connection(s) to become
available for a long time if the wait time
is unbounded (set to 0 seconds). You
can set the waitTimeout period to suit
your needs.

30 busyTimeout

Integer The number of seconds to wait before
a busy connection is released

600 (ten minutes) idleTimeout

Integer A pooled connection remaining in an
idle state for a period of time longer
than this timeout value should be
closed. All idle connections are
checked for idleTimeout expiration
every 60 seconds. The value of the
idleTimeout is given in seconds.

600 (ten minutes) queryTimeout

Integer Specifies in seconds the time limit for
executing database queries by this
datasource.

0 (zero), implying
indefinite period

dialect

Name Allowed Values Description Default Value

Chapter 21: Using JDBC 195

Def ining the Connect ion Pool Propert ies for a JDBC Datasource

Enumerated:

■ oracle

■ sybase

■ interbase

■ jdatastore

Specifies the database vendor as a hint
for automatic table creation performed
during Container Managed Persistence

This property is
optional. There is no
default value.

isolationLevel

Enumerated:

■ TRANSACTION_NONE

■ TRANSACTION_READ_COMMITTED

■ TRANSACTION_READ_UNCOMMITTED

■ TRANSACTION_REPEATABLE_READ

■ TRANSACTION_SERIALIZEABLE

Indicates database isolation level
associated with all connections opened
by this datasource's connection pool.
See the J2EE 1.3 specification for
details on these isolation levels.

Defaults to whatever
level is provided by
the JDBC driver
vendor.

reuseStatements

Boolean Optimization directive requesting
prepared SQL statements to be cached
for reuse. Applies to all connections
obtained from the connection pool.

True initSQL

String Specifies a list of “;” separated SQL
statements to be executed each time a
connection is obtained for a fresh
transaction. The SQL is performed
before any application work is
performed on the connection.

This property is
optional. There is no
default value.

refreshFrequency

Integer Using dbPingSQL, this property specifies
a timeout, in seconds, for each
connection in an idle state. Once the
timeout expires, the connection is
examined to determine if it is still a
valid connection. All idle connections
are checked for refreshFrequency at
sixty second intervals.

300 (five minutes) dbPingSQL

String Specifies an SQL statement used to
validate open connections present in
the connection pool and to refresh
connections during a refreshFrequency
timeout.

Not defined. When no
SQL is specified, the
container uses
java.sql.ConnectionisC
losed() method to
validate the
connection.

resSharingScope

Enumerated:

■ Shareable

■ Unshareable

Indicates whether connection
statements and result sets are cached
for reuse. If set to Shareable, connection
statements and results sets are
cached, thereby optimizing throughput
of connections. If set to Unshareable,
connections are closed once the
application closes the connection.

Shareable maxPreparedStatement
CacheSize

Name Allowed Values Description Default Value

196 AppServer Developer ’s Guide

Defining the Connect ion Pool Propert ies for a JDBC Datasource

Integer Each connection within an AppServer
JDBC pool caches
java.sql.PreparedStatement objects for
reuse.

Each PreparedStatement cache is
organized by SQL literal strings
representing unique SQL statement
requests.

This property limits the number of
PreparedStatements cached per pooled
JDBC connection. It specifies the
maximum size of the cache. If a cache
reaches the limit, any subsequent
javax.sql.Connection.prepareStatement()
calls result in non-cached instances of
PreparedStatement objects being created
and returned to the caller. The lifecycle
of the cache is the same as the JDBC
connection lifecycle. For example, if an
idle connection times out, both the
connection and its PreparedStatement
cache are discarded. Unresolved
parameterized SQL statements are
cached, for example, the statement
SELECT NAME FROM CUSTOMER WHERE AGE=20
is cached as SELECT NAME FROM CUSTOMER
WHERE :age='?'. Note that this property
is only effective when the
reuseStatements property of the
datasource is set to true (default). The
default value is 40, which is usually
sufficient for applications.

40 maxPreparedStatement
sPerQuery

Integer Under certain conditions such as high
concurrency or when CMP 2.0 entity
beans are processed, more than one
PreparedStatement can be processed
concurrently for the same SQL query
on the same pooled connection. For
example, a SQL query SELECT name FROM
table1 WHERE id=? can return distinct
result sets when different values are
used for ?. Although the
PreparedStatement cache has a single
entry for each SQL query, two or more
PreparedStatements can exist in the
cache for the query.

This property specifies the maximum
number of cached PreparedStatements
for a single query. If the limit is
exceeded for a particular query,
subsequent
javax.sql.Connection.prepareStatement()
calls result in non-cached instances of
PreparedStatement objects created and
returned to the caller. Like
maxPreparedStatementCacheSize, this
property is only effective when the
reuseStatements property of the
datasource is set to true (default).

20

Name Allowed Values Description Default Value

Chapter 21: Using JDBC 197

Gett ing debug output

Getting debug output
A number of system properties can be set to log activity at datasource, connection
pool, connection and statement levels during application processing. It is not
necessary to configure these properties during normal application runtime execution
but should a situation arise where details of JDBC flow of control is needed these
options are useful. Runtime output generated with these properties set can be provided
to Borland Technical Support to help resolve issues involving JDBC datasource and
connections. Setting these properties for a partition results in log message generation
during JDBC activity. Note that additional log4j configuration is required to ensure that
the messages are actually written to the partition log. Locate the partition's log4j
configuration file, called logConfiguration.xml, and add the following <logger> element:

ƒ
<log4j:configuration>
 ƒ
 <logger name="com.inprise.visitransact.jdbc2" additivity="true">
 <level value="DEBUG" />
 </logger>
 ƒ
</log4j:configuration>

Note BAS logging is based on the Log4j infrastructure. Some user applications which use
Log4j may cause the Partition to hang. User applications should use the per-partition
log4j Configuration file, rather than deploying a Configuration file in the archive. By
default, this file is located under the Partition's Managed Object footprint at:
<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/mos/
<partition_name>/adm/properties/logConfiguration.xml. Alternately, you can
uncomment the following line in the <install_dir>/bin/partition.config file:

vmprop borland.enterprise.server.partition.disableSystemRedirect=true

System Property Name Type Description Default

DataSourceDebug Boolean Reports activity at datasource level for all
datasources

False

ConnectionPoolDebug Boolean Reports activity at connection pool level for all
datasources

False

ConnetionPoolStateDebug Boolean Reports transitions of connections in
connection pool

False

JDBCProxyDebug Boolean Reports activity at connection level for all
connections

False

PreparedStatementCacheDebug Boolean Reports activity at prepared statement level
for all statements

False

198 AppServer Developer ’s Guide

Descr ipt ions of AppServer 's Pooled Connect ion States

Descriptions of AppServer's Pooled Connection States
When the EJB container's statistic gathering option is enabled, the Partition event log
contains useful statistics about the JDBC connections pool. The log lists the number of
connections in the various lifecycle states of a pooled JDBC2 connection. Following is
a description of each state:

■ Free: a cached/pooled connection that is available for use by an application

■ TxBusy: a cached connection that is in use in a transaction

■ NoTxBusy: a cached connection that is in use by an application with no transaction
context

■ Committed: a connection that was associated with a transaction received a
commit() call from the transaction service

■ RolledBack: a connection that was associated with a transaction received a
rollback() call from the transaction service

■ Prepared: a connection that was associated with a transaction received a prepare()
call from the transaction service

■ Forgot: a connection that was associated with a transaction received a forget() call
from the transaction service

■ TxBusyXaStart: a pooled connection that is associated with a transaction branch.

■ TxBusyXaEnd: a pooled connection that has finished its association with a
transaction branch

■ BusyTimedOut: a cached connection that was removed from the pool after it
stayed with the transaction longer than the busyTimeout pool property

■ IdleTimedOut: a connection that was removed from the pool due to being idle for
longer than the pool's idleTimeout property

■ JdbcHalfCompleted: a transitionary state where the connection is participating in a
background housekeeping activity related to pool management (being refreshed, for
example) and therefore, unavailable until the activity completes

■ Closed: the underlying JDBC connection was closed

■ Discarded: A cached connection got discarded (due to timeout errors, for example)

■ JdbcFinalized: an unreferenced connection was garbage collected

Support for older JDBC 1.x drivers
JDBC 1x drivers do not provide a datasource object. Under the J2EE specification,
however, database connections are always fetched using the javax.sql.DataSource
interface. To allow users to still use JDBC 1x drivers, AppServer provides an
implementation of a JDBC 1x datasource to allow writing portable J2EE code. This
implementation is a facade provided on top of the DriverManager connection
mechanism of the JDBC 1x specification.

If you want to define a datasource on top of such a driver then in the DD Editor choose
the Datasource Type field as “Other(JDBC1x)”. Then in the Main panel you can input
the Driver Manager classname and connection URL for your particular database and
driver.

The class name com.inprise.visitransact.jdbc1w2.InpriseConnectionPoolDataSource is
not the DriverManager class of the JDBC driver; it is a wrapper class. The vendor's class
should be specified in the Driver Class Name text box of the editor panel.

Chapter 21: Using JDBC 199

Advanced Topics for Def in ing JDBC Datasources

Advanced Topics for Defining JDBC Datasources
Whether you choose to use the server's graphical tools or not, defining a datasource
means providing some information to the container in XML format. Let's look at what it
takes to define a JDBC datasource and bind it to JNDI. Let's start by examining the
DTD of the jndi-definitions.xml file. The elements in bold are the main elements
specific to JDBC datasources.

<!ELEMENT jndi-definitions (visitransact-datasource*, driver-datasource*, jndi-
object*)>
<!ELEMENT visitransact-datasource (jndi-name, driver-datasource-jndiname,
property*)>
<!ELEMENT driver-datasource (jndi-name, datasource-class-name,
log-writer?, property*)>
<!ELEMENT jndi-object (jndi-name, class-name, property*)>
<!ELEMENT property (prop-name, prop-type, prop-value)>
 <!ELEMENT prop-name (#PCDATA)>
 <!ELEMENT prop-type (#PCDATA)>
 <!ELEMENT prop-value (#PCDATA)>
 <!ELEMENT jndi-name (#PCDATA)>
 <!ELEMENT driver-datasource-jndiname (#PCDATA)>
 <!ELEMENT datasource-class-name (#PCDATA)>
 <!ELEMENT log-writer (#PCDATA)>
 <!ELEMENT class-name (#PCDATA)>

Defining a JDBC datasource involves two XML elements. The first is the
<visitransact-datasource> element. This is where you define the datasource your
application code will look up. You include the following information:

■ jndi-name: this is the name of the datasource as it will be referenced by JNDI. It is
also the name found in the resource references of your enterprise beans.

■ driver-datasource-jndiname: this is the JNDI name of the driver class supplied by
the database or JMS vendor that you deployed as a library to your Partitions. It is
also the name that will be referenced by the <driver-datasource> element discussed
next.

■ properties: these are the properties for the datasource's role in its connection pool.
We'll discuss these properties in a little more detail in the Defining the Connection
Pool Properties for a JDBC Datasource section.

So, let's look at an example of this portion of the datasource definition in the XML. In
the following example, we'll look at an example using Oracle:

<jndi-definitions>
 <visitransact-datasource>
 <jndi-name>datasources/Oracle</jndi-name>
 <driver-datasource-jndiname>datasources/OracleDriver

</driver-datasource-jndiname>
 <property>
 <prop-name>connectionType</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>Direct</prop-value>
 </property>
 ƒ
 <!-- other properties as needed -->
 ƒ
 </visitransact-datasource>
 ƒ
 </jndi-definitions>

200 AppServer Developer ’s Guide

Advanced Topics for Def in ing JDBC Datasources

We're not done. Now we must perform the other half of the datasource definition by
providing information on the driver. We do this in the <driver-datasource> element,
which includes the following information:

■ jndi-name: This is the JNDI name of the driver class, and its value must be identical
to the <driver-datasource-jndiname> value from the <visitransact-datasource>
element.

■ datasource-class-name: Here is where you provide the name of the connection
factory class supplied from the resource vendor. It must be the same class you
deployed to the Partition as a library.

■ log-writer: This is a boolean element that activates verbose modes for some
vendor connection factory classes. Consult your resource's documentation for the
use of this property.

■ properties: These are properties specific to the JDBC resource, such as
usernames, passwords, and so forth. These properties are passed to the driver
class for processing. Consult your JDBC resource documentation for property
information. Specifying the properties in XML is shown below.

Armed with this information, let's complete our datasource definition for the Oracle
datasource we started above. In order to be thorough, let's first reproduce the XML we
started above:

 <jndi-definitions>
 <visitransact-datasource>
 <jndi-name>datasources/Oracle</jndi-name>
 <driver-datasource-jndiname>datasources/OracleDriver

</driver-datasource-jndiname>
 <log-writer>False</log-writer>
 <property>
 <prop-name>connectionType</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>Direct</prop-value>
 </property>
 </visitransact-datasource>
 ƒ

Note the driver datasource JNDI name in bold. Now we'll add the following:

 <driver-datasource>
 <jndi-name>datasources/OracleDriver</jndi-name>
 <datasource-class-name>oracle.jdbc.pool.OracleConnectionPoolDataSource</
datasource-class-name>
 <property>
 <prop-name>user</prop-name>
 <prop-type>String</prop-type>
 <prop-value>MisterKittles</prop-value>
 </property>
 <property>
 <prop-name>password</prop-name>
 <prop-type>String</prop-type>
 <prop-value>Mittens</prop-value>
 </property>
 ƒ
 // other properties as needed
 ƒ
 </driver-datasource>
</jndi-definitions>

Now the JDBC datasource is fully defined. Once you've packaged the XML file as a
DAR, you can deploy it to a Partition. Doing so registers the datasource with the
Naming Service and makes it available for lookup.

Chapter 21: Using JDBC 201

Connect ing to JDBC Resources f rom J2EE Appl icat ion Components

Connecting to JDBC Resources from J2EE Application Components
In Borland proprietary deployment descriptors, such as ejb-borland.xml for EJB
components, the <resource-ref> element is used to map a datasource logical name to
actual JNDI location of a JDBC datasource definition. Mapping of the logical name to
its location occurs when a JNDI lookup is performed for a desired datasource in the
application component. You use the element within your individual component
definitions. For example, a <resource-ref> for an entity bean must be found within the
<entity> tags. Let's look at the DTD representation of the <resource-ref> element of
Borland deployment descriptors:

<!ELEMENT resource-ref (res-ref-name, jndi-name, cmp-resource?)>

In this element you specify the following:

■ res-ref-name: this is the logical name for the resource, the same logical name you
use in the <resource-ref> element of the standard ejb-jar.xml descriptor file. This is
the name your application components use to look up the datasource.

■ jndi-name: this is the JNDI name of the datasource that will be bound to its logical
name. It must match the value of the corresponding <jndi-name> element of the
<visitransact-datasource> element deployed with the DAR.

■ cmp-resource: this is an optional boolean element that is relevant to entity beans
only. If set to True, the container's CMP engine will monitor this datasource.

Let's look at an example entity bean that uses the Oracle datasource we defined
above:

<entity>
 <ejb-name>entity_bean</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jdbc/MyDataSource</res-ref-name>
 <jndi-name>datasources/Oracle</jndi-name>
 <cmp-resource>True</cmp-resource>
 </resource-ref>
 ƒ
</entity>

As you can see, we used the identical JNDI name from the <visitransact-datasource>
element from the datasource definition. Now let's see how we obtain a datasource
object reference. To do so, the application performs a lookup of the <res-ref-name>
value of the deployed components and the object references are retrieved from the
remote CosNaming provider. For example:

 javax.sql.DataSource ds1;

 try {
 javax.naming.Context ctx = (javax.naming.Context)

new javax.naming.InitialContext();
 ds1 = (DataSource)ctx.lookup("java:comp/env/jdbc/MyDataSource");
 }
 catch (javax.naming.NamingException exp) {
 exp.printStackTrace();
 }

A database java.sql.Connection can now be obtained from ds1.

202 AppServer Developer ’s Guide

Chapter 22: Using JMS 203

C h a p t e r

Chapter 22Using JMS
Resource related objects such as JMS connection factories and JMS Queue/Topic
destinations are obtained in a portable J2EE mandated way through JNDI. A JMS
resource object is resolved by performing a JNDI lookup of a J2EE Resource
Reference defined in the deployment descriptors of an application component.
Resource Reference definitions involve both standard J2EE and Borland's proprietary
deployment descriptors. In the standard deployment descriptor, a Resource Reference
specifies a logical name relative to the application's JNDI environment naming context,
java:comp/env/. Borland's deployment descriptor complements the standard descriptor
by associating the Resource Reference logical name with the actual JNDI location of
the JMS resource definition. For example, in an EJB Jar component, the standard
J2EE deployment descriptor, ejb-jar.xml, specifies Resource References for an EJB
using a <resource-ref> element for a JMS connection factory and <resource-env-ref>
elements for JMS Topics and Queues. In Borland AppServer(AppServer), a JNDI
lookup of a Resource Reference involves retrieval of the JMS resource definition from
which the desired JMS object is created and returned to caller of lookup. The property
values present in the JMS resource definition determine the type and characteristics of
resource object created.

Before a Resource Reference look up can be attempted, the required resource
definition must first be bound to its physical JNDI location. In the AppServer, JMS
resource definitions are bound into a JNDI service provider during deployment of a
Definitions ARchive (DAR) module. By default, these objects are bound to the
partitions' Naming Service, the JNDI CosNaming service provider in AppServer. This
chapter describes how to define JMS resource object definitions in a DAR module and
delves into the details of how to get a handle to a JMS resource object from a J2EE
application. A discussion of JMS activity and how it relates transactions is also
provided.

A DAR contains the JNDI definitions module (jndi-definitions.xml file) which contains
properties for each resource related object that you want to bind to a JNDI provider
(Naming Service). When an application EAR is deployed, the contents of the DAR file
get deployed in the Naming Service of a partition. The properties of the resource
related object defined in the jndi-definitions.xml file are stored in a JNDI bound object
in the partition-hosted Naming Service.

204 AppServer Developer ’s Guide

Using JMS

When an application client or an EJB component does a JNDI lookup for a resource
related object, it calls a lookup() method which communicates with the JNDI provider:

1 The Application Client refers to the <resource-ref> element in the standard
deployment descriptor (in the case of EJBs it is ejb-jar.xml) to get the logical name
of the resource. (It does a lookup in the component's local namespace, java:comp/
env, to obtain the logical name of the object.) This logical name is specified in its
<resource-ref-name> sub element. For example, in ejb-jar.xml:

 ƒ
 <description>This example demonstrates JMS XA and JDBC XA in a two-phase
commit transaction.</description>
 <enterprise-beans>
 <session>
 ƒ
 <resource-ref>
 <description />
 <res-ref-name>jms/insurance/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 ƒ
 </session>

2 Using this logical name, the Container obtains the actual JNDI location of the JMS
resource definition (a JNDI bound object) from the Borland proprietary deployment
descriptor, ejb-borland.xml:

ƒ
 <enterprise-beans>
 <session>
 ƒ
 <resource-ref>
 <res-ref-name>jms/insurance/ConnectionFactory</res-ref-name>
 <jndi-name>jms/xacf</jndi-name>
 </resource-ref>
 </session>

3 The Container then creates an instance of the resource object by using the stored
property values in the bound object. The following properties were stored in the
ConnectionFactory object from the jndi-definitions.xml file when the related DAR
was deployed:

ƒ
<jndi-definitions>
 <jndi-object>
 <jndi-name>jms/xacf</jndi-name>
 <classname>com.tibco.tibjms.TibjmsXAConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222</prop-value>
 </property>
 </jndi-object>

4 This instance is then wrapped in the Borland proprietary API (in the JMS proxy
layer) by the container and passed back to the caller (could be an application client
or could be another J2EE component) of the lookup().

Chapter 22: Using JMS 205

JMS 1.1 Common APIs

JMS 1.1 Common APIs
With JMS 1.1, JMS client applications have the option to use domain-independent
unified APIs. A client can obtain a handle to a generic JMS ConnectionFactory, and
from it a generic Session object that can be used with either a Queue or Topic for
message processing. The common APIs along with their domain specific APIs are
listed in the table below:

The major change when using common interfaces is that one or more Queue and/or
Topic destinations can now be simultaneously accessed through the same session all
within the same transaction. With this change, either all the messages in a single
transaction (messages to/from the queue(s) and the topic(s)) get sent and the
transaction is considered successful or the whole transaction is aborted and none of
the messages are delivered.

Borland AppServer supports the domain-independent APIs of JMS 1.1, and the
constraints imposed by J2EE 1.4 in use of all JMS 1.1 APIs.

Configuring JMS Connection Factories and Destinations
Using the Management Console, navigate to the “Deployed Modules” list in the
Partition whose JMS resource objects you need to configure. By default, every Partition
has a predeployed JNDI Definitions Module (DAR) called default-resources.dar. Right-
click on the module and choose “Edit deployment descriptor” from the context menu.
The Deployment Descriptor Editor (DDEditor) opens.

In the Navigation Pane of the DDEditor is a list of JMS connection factories, and
queues/topics preconfigured in the product. Click on the connection factory name. The
right pane will display the properties for it. For each connection factory, you can choose
Tibco, Sonic, WMQ or another (“Other”) JMS provider. The DDEditor has knowledge of
Tibco and auto fills the class names for each. You can also choose the object resource
type from the JMS Object type drop-down list. For OpenJMS, you must edit the
openjms.xml file to configure connection factories and destination. See “Configuring
JNDI objects for OpenJMS” on page 222 for details on how to access this file.

If you selected “Other” from the JMS Provider list, look up the JMS vendor's
documentation to ascertain the correct name of its connection factory, topic, or queue
implementation class. In addition, the Main panel will not suggest any properties to fill
in and you will need to use the Properties tab to set any appropriate properties.

JMS Common APIs (in JMS 1.1) Point-to-Point Domain APIs Publish/Subscribe Domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

XAConnectionFactory XAQueueConnectionFactory XATopicConnectionFactory

XAConnection XAQueueConnection XATopicConnection

XASession XAQueueSession XATopicSession

206 AppServer Developer ’s Guide

Def ining Connect ion Pool Propert ies for JMS Connect ion Factor ies

To create a new JMS object, right-click the root node in the navigation pane and select
“New JMS Object” from the Context Menu.

A dialog box prompts for JNDI name of JMS object to be created. By default, the name
specified corresponds to a location in the Naming Service. If a JNDI name is specified
with a “serial//” prefix, the remaining name following the prefix corresponds to a
location in the Naming Service. Once given, a representation of this JMS object
appears in the tree in the Navigation Pane. Click the representation to open its
configuration panel.

The DDEditor has knowledge of Tibco, Sonic, WMQ and can auto fill the class names
for it.

Note The Main panel will not suggest any JMS objects other than Tibco, Sonic and WMQ.
You need to use the Properties tab to set any appropriate properties.

When you're finished, choose “File|Save...” and the module will be saved back to the
Partition and redeployed.

Defining Connection Pool Properties for JMS Connection Factories
Each JMS connection factory defined in AppServer has an associated connection pool.
You can specify connection pool properties for each JMS connection factory defined in
the jndi-definitions.xml file of a DAR module. The AppServer partition system
properties can be specified to dictate the default behavior for all JMS connection pools
established in a partition's Java virtual machine. However, properties defined for
individual JMS connection factories in the jndi-definitions.xml file override system
property values.

Chapter 22: Using JMS 207

Defining Connect ion Pool Propert ies for JMS Connect ion Factor ies

The AppServer partition system properties used for default configuration of JMS
connection pools are listed in the table below :

Property Name Description Type Values

JMSConnectionMaxPoolSize Maximum number of JMS connections
allowed for a JMS connection pool

Integer 0<n, where n is the maximum
number of connections allowed
for a JMS connection pool. The
default is 0, indicating an
unlimited number

JMSConnectionWaitTimeout Time allowed to wait for a free connection
in the JMS connection pool

Integer Default is 30 seconds

JMSConnectionIdleTimeout Time allowed for connection to remain
idle in the JMS connection pool before
being discarded

Integer Default is 60 seconds

JMSConnectionPoolDebug Enable display of debug messages
associated with AppServer JMS
connection pooling

Boolean Default value is true

true – Enable Debug

false – Disable debug

JMSConnectionPoolDisable Controls use of AppServer connection
pooling for JMS Connection factories.

Boolean Default value is false

false – Enable JMS connection

true – Disable JMS connection

JMSConnectionPoolMonitorLevel Enable JMS pool monitoring for
AppServer JMS connection and session
pools.

Important: Each JMS connection can
have a set of JMS sessions created,
which are maintained in a JMS session
pool. Consider the impact on the
performance of the connection when you
set a value for this property, because
each level corresponds to an increased
degree of maintenance and collection of
values for sets of counters and states. If
you choose “maximum”, it will have the
greatest performance impact on the
connection.

String ■ “none” (Default)

■ “minimum”

■ “medium”

■ “maximum”

JMSSessionMaxPoolSize Maximum number of JMS sessions for
each JMS session pool of a connection
factory

Integer 0<n, where n is the maximum
number of JMS sessions allowed
for a JMS session pool
associated with a JMS
connection. The default is 0,
indicating an unlimited number

JMSSessionWaitTimeout Time allowed to wait for a free session in
a JMS session pool

Integer Default is 30 seconds

JMSSessionPoolDisable Controls use of AppServer session
pooling per JMS connection. When a
JMS connection factory is looked up
under JNDI, if the value of this property is
true the vendor JMS connection factory is
returned. It is not wrapped by any
AppServer proxy class.

Boolean Default value set to false

false – Enable JMS session
true – Disable JMS session

JMSSessionPoolDebug Enable display of debug messages
associated with AppServer JMS session
pooling

Boolean Default value is false

false – Disable debug
true – Enable debug

208 AppServer Developer ’s Guide

Def ining Indiv idual JMS Connect ion Factory Propert ies

Defining Individual JMS Connection Factory Properties
You can define JMS pool properties for individual connection factories in jndi-
definitions.xml file. These properties override partition system properties. Use the
<property> element to add a pool property. For example:

<jndi-definitions>
 <!-- **************************** -->
 <!-- * JMS Connection Factories * -->
 <!-- **************************** -->
 <jndi-object>
 <jndi-name>jms/cf</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222</prop-value>
 </property>
 <property>
 <prop-name>besConnectionPoolMaxPoolSize</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>11</prop-value>
 </property>
 <property>
 <prop-name>besConnectionPoolDebug</prop-name>
 <prop-type>Boolean</prop-type>
 <prop-value>true</prop-value>
 </property>
 <property>
 <prop-name>besSessionPoolDisable</prop-name>
 <prop-type>Boolean</prop-type>
 <prop-value>true</prop-value>
 </property>
 </jndi-object>
 ƒ
 </jndi-definitions>

The full set of JMS Connection factory pool properties are listed below together with
the corresponding system property that each overrides:

Individual Pool Property Associated System Property

besConnectionPoolMaxPoolSize JMSConnectionMaxPoolSize

besConnectionPoolWaitTimeout JMSConnectionWaitTimeout

besConnectionPoolIdleTimeout JMSConnectionIdleTimeout

besConnectionPoolMonitorLevel JMSConnectionPoolMonitorLevel

besConnectionPoolDisable JMSConnectionPoolDisable

besConnectionPoolDebug JMSConnectionPoolDebug

besSessionPoolMaxPoolSize JMSSessionMaxPoolSize

besSessionPoolWaitTimeout JMSSessionWaitTimeout

besSessionPoolDisable JMSSessionPoolDisable

besSessionPoolDebug JMSSessionPoolDebug

Chapter 22: Using JMS 209

Obtaining JMS Connect ion Factor ies and Dest inat ions in J2EE Appl icat ion Components

Obtaining JMS Connection Factories and Destinations in J2EE
Application Components

A JMS connection factory object is obtained in much the same way as a JDBC
datasource object. The factory object is declared in a <resource-ref> element of both
the standard J2EE and Borland-specific deployment descriptors. However, extra
configuration is required if an application needs to interact with destinations of a JMS
provider. A <resource-env-ref> element must be specified in both descriptors with
definition of at least one JMS destination, that is a target queue or topic on which
messages can be produced/consumed. While the standard J2EE deployment
descriptor provides the logical name and type of a JMS connection factory and a JMS
destination, the Borland specific deployment descriptor maps the logical name to a
reference of the actual target object, resolved through JNDI lookup.

J2EE 1.2 and J2EE 1.3

Details of <resource-ref> and <resource-env-ref> elements for standard J2EE
deployment descriptors are described in J2EE 1.3 specifications. These elements
apply to all application components, for instance EJBs, Servlets and application clients,
that wish to use JMS APIs. Similarly, corresponding <resource-ref> and <resource-env-
ref> elements exist in accompanying Borland-specific deployment descriptors. Let's
look at deployment descriptors for an EJB session bean that uses JMS. First, from
standard EJB descriptor, ejb-jar.xml:

 ƒ
 <session>
 <ejb-name>session_bean</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <res-env-ref-name>jms/MyJMSQueue</res-env-ref-name>
 <res-env-ref-type>javax.jms.Queue</res-env-ref-type>
 </resource-env-ref>
 ƒ
 </session>

The portable descriptor above defines logical names for a JMS connection factory and
a JMS Queue through <resource-ref> and <resource-env-ref> respectively. In Borland's
proprietary deployment descriptors, such as ejb-borland.xml for EJB components, the
<resource-ref> element is used to resolve the logical name to actual JNDI location of a
JMS connection factory definition when a JNDI lookup is performed for the desired
connection factory in the application component. This element is used within descriptor
definitions of individual components. For example, a <resource-ref> for an entity bean
must be found within the <entity> tags. Let's examine the DTD representation of the
<resource-ref> element for J2EE 1.2 and 1.3 Borland deployment descriptors:

<!ELEMENT resource-ref (res-ref-name, jndi-name, cmp-resource?)>

210 AppServer Developer ’s Guide

Obtaining JMS Connect ion Factor ies and Dest inat ions in J2EE Appl icat ion Components

In this element you specify the following:

■ res-ref-name: this is the logical name for the resource object, the same logical name
you use in the <resource-ref> element of the standard ejb-jar.xml descriptor file.
This is the name your application components use to look up the JMS connection
factory.

■ jndi-name: this is the JNDI name of the connection factory that will be bound to the
logical name. It must match the value of the corresponding <jndi-name> element of
the <jndi-object> element in the deployed DAR where the connection factory is
defined.

Just as the <resource-ref> element is used to map logical names for JMS connection
factories to actual JNDI location of desired connection factory definition, the <resource-
env-ref> element maps the logical name for JMS destinations, such as Queues and
Topics, to actual JNDI location of destination definition. The DTD representation of this
element for Borland deployment descriptors is as follows:

<!ELEMENT resource-env-ref (resource-env-ref-name, jndi-name)>

Two elements are specified:

■ resource-env-ref-name: this is the logical name of the Topic or Queue, and its
value must be identical to the value of the <res-env-ref-name> of J2EE standard
descriptor.

■ jndi-name: this is the JNDI name of the topic or queue that resolves the logical
name.

The final contents for Borland descriptor ejb-borland.xml accompanying the ejb-
jar.xml defined above is:

 <session>
 <ejb-name>session_bean</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jms/MyJMSQueueConnectionFactory</res-ref-name>
 <jndi-name>resources/qcf</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/MyJMSQueue</resource-env-ref-name>
 <jndi-name>resources/q</jndi-name>
 </resource-env-ref>
 ƒ
 </session>

Keep in mind that <resource-ref> and <resource-env-ref> elements can be used for all
J2EE components that require JMS related resource objects. For instance, application
clients using JMS APIs should obtain connection factories and destinations the same
way as EJBs, through JNDI lookup or Resource References in application code and
specification of <resource-ref> and <resource-env-ref> elements in the clients
deployment descriptors. For example, in the J2EE standard descriptor, application-
client.xml:

<application-client>
ƒ
<resource-ref>
 <res-ref-name>jms/MyJMSTopicConnectionFactory</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>
<resource-env-ref>
 <res-env-ref-name>jms/MyJMSTopic</res-env-ref-name>
 <res-env-ref-type>javax.jms.Topic</res-env-ref-type>
</resource-env-ref>
ƒ
 </application-client>

Chapter 22: Using JMS 211

Obtaining JMS Connect ion Factor ies and Dest inat ions in J2EE Appl icat ion Components

and its accompanying Borland descriptor application-client-borland.xml:

 <application-client>
 ƒ
 <resource-ref>
 <res-ref-name>jms/MyJMSTopicConnectionFactory</res-ref-name>
 <jndi-name>resources/tcf</jndi-name>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/MyJMSTopic</resource-env-ref-name>
 <jndi-name>resources/t</jndi-name>
 </resource-env-ref>
 ƒ
 </application-client>

Now let's see how we obtain object references to a JMS connection factory and a
destination in the application logic. In retrieval of the connection factory, the application
performs a JNDI lookup of the <res-ref-name> value from <resource-ref> element in the
J2EE deployment descriptor. To retrieve the destination object, a JNDI lookup is
performed against the <res-env-ref-name> value of <resource-env-ref> element in the
J2EE deployment descriptor. The names specified for <jndi-name> are identical to JNDI
names in <jndi-object> elements of the JMS resource definitions in a deployed DAR
module. When a lookup succeeds a JMS resource object is obtained, that is, for JMS
connection factory identified through logical name jms/MyJMSTopicConnectionFactory a
deployed JMS definition object is retrieved from the Naming Service under resources/
tcf and from it a connection factory object is created and returned to the application.

For example, the application client code associated with client descriptors provided
above resolves JMS resource objects as follows:

 javax.jms.TopicConnectionFactory myTCF;
 javax.jms.Topic myTopic;
 try {
 javax.naming.Context ctx = (javax.naming.Context) new
javax.naming.InitialContext();
 myTCF = (TopicConnectionFactory) ctx.lookup("java:comp/env/jms/
MyJMSTopicConnectionFactory");
 // Now ready to obtain a connection from myTCF
 myTopic = (Topic) ctx.lookup("java:comp/env/jms/MyJMSTopic");
 ƒ
 }
 catch (javax.naming.NamingException exp) {
 exp.printStackTrace();
 }

J2EE 1.4

In earlier versions of J2EE, each application component had to declare an <resource-
env-ref> in the standard deployment descriptor for look up of a JMS destination from its
own local namespace. If separate application components have references to the
same destination, there was no way for a deployer to know that these <resource-env-
ref>s should be bound to the same destination.

Here is an example which uses the <resource-env-ref> to define the same JMS
destination from two separate application components, Session beans, in this case:

ƒ
<ejb-jar ... >
 <enterprise-beans>
 <session>
 <ejb-name>SenderEJB</ejb-name>
 ƒ

212 AppServer Developer ’s Guide

Obtaining JMS Connect ion Factor ies and Dest inat ions in J2EE Appl icat ion Components

 <resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/LogicalNameA</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </session>
 <session>
 <ejb-name>ReceiverEJB</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/LogicalNameB</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </session>

In J2EE 1.4, although you can continue to use <resource-env-ref>, a new element,
<message-destination-ref> has been introduced for specification of JMS destinations.
The same example above can be rewritten using the <message-destination-ref>
element instead of <resource-env-ref> in the standard deployment descriptor, ejb-
jar.xml, as follows:

 ƒ
 <ejb-jar ... >
 <enterprise-beans>
 <session>
 <ejb-name>SenderEJB</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <message-destination-ref>
 <message-destination-ref-name>jms/LogicalNameA

</message-destination-ref-name>
 <message-destination-type>javax.jms.Queue

</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage>
 <message-destination-link>MsgQueue1</message-destination-link>
 </message-destination-ref>
 </session>
 <session>
 <ejb-name>ReceiverEJB</ejb-name>
 ƒ
 <resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <message-destination-ref>
 <message-destination-ref-name>jms/LogicalNameB

</message-destination-ref-name>

Chapter 22: Using JMS 213

Obtaining JMS Connect ion Factor ies and Dest inat ions in J2EE Appl icat ion Components

 <message-destination-type>javax.jms.Queue
</message-destination-type>

 <message-destination-usage>Consumes</message-destination-usage>
 <message-destination-link>MsgQueue1</message-destination-link>
 </message-destination-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <message-destination>
 <message-destination-name>MsgQueue1</message-destination-name>
 </message-destination>
 </assembly-descriptor>
 </ejb-jar>

The above example shows two <message-destination-ref> elements that refer to the
same destination, the Queue MsgQueue1. Each of these <message-destination-ref>s
have a <message-destination-link> element whose value is MsgQueue1. The link
elements maps the <message-destination-ref>s to a <message-destination> element in
the <assembly-descriptor> resolving the two <message-destination-ref>s to the same
queue. The ejb-borland has a corresponding <message-destination> element within its
<assembly-descriptor> element. At runtime, the <message-destination> element from
ejb-jar.xml is resolved against the <jndi-name> of the <message-destination> element
specified in the ejb-borland.xml descriptor:

ƒ
 <ejb-jar ... >
 <enterprise-beans>
 ƒ
 </enterprise-beans>
 <assembly-descriptor>
 <message-destination>
 <message-destination-name>MsgQueue1</message-destination-name>
 <jndi-name>jms/TibcoQueue1</jndi-name>
 </message-destination>
 </assembly-descriptor>
 </ejb-jar>

To show JMS message flow in an application where more than one <message-
destination-ref>s resolves to the same underlying destination, each one of them
should declare a <message-destination-link> with a value corresponding to a <message-
destination> element in the <assembly-descriptor>. The value in the <message-
destination-link> must match the value of the <message-destination-name> in the
<message-destination> element. At runtime, the <message-destination-ref>s will resolve
to the same destination.

You can also link to a <message-destination> defined in a different J2EE module within
the same application. For example, <message-destination-link> ../other/
other.jar#destination </message-destination-link> would link to a <message-
destination> with the name destination in the JAR file at the relative path ../other/
other.jar.

You must also specify a <message-destination> element in the ejb-jar.xml for every
destination you use.

Important The JNDI name of a <message-destination> in Borland deployment descriptor takes
precedence over a specified JNDI name of a <message-destination-ref> that has a link
to the <message-destination> element.

214 AppServer Developer ’s Guide

JMS and Transact ions

JMS and Transactions
The rules for using JMS APIs in EJB bean code with transactions are discussed in the
EJB 2.0 specification section 17.3.5.

Following is an extract:

17.3.5 Use of JMS APIs in transactions

The Bean Provider must not make use of the JMS request/reply paradigm (sending
of a JMS message, followed by the synchronous receipt of a reply to that
message) within a single transaction.

Because a JMS message is not delivered to its final destination until the
transaction commits, the receipt of the reply within the same transaction will
never take place. Because the container manages the transactional enlistment of
JMS sessions on behalf of a bean, the parameters of the createSession(boolean
transacted,int acknowledgeMode), createQueueSession(boolean transacted,int
acknowledgeMode) and createTopicSession(boolean transacted, int
acknowledgeMode) methods are ignored. It is recommended that the Bean Provider
specify that a session is transacted, but provide 0 for the value of the
acknowledgment mode.

The Bean Provider should not use the JMS acknowledge() method either within a
transaction or within an unspecified transaction context. Message
acknowledgment in an unspecified transaction context is handled by the
container. Section 17.6.5 describes some of the techniques that the container
can use for the implementation of a method invocation with an unspecified
transaction context.

Avoiding use of the JMS request/reply paradigm and JMS acknowledge() method is
equally relevant for other J2EE components such as application clients, as it is to EJB
bean code. In addition to rules described above, application code should not use any
JMS XA APIs. The program should look exactly as if the code is written in a non-
transactional JMS program. It is the Container's responsibility to handle any XA
handshakes required when a global transaction is active. The only configuration
required is that deployment descriptor element <resource-ref>, with reference to the
JMS Connection factory JNDI object, be set up to use the XA variant. If it is non-XA,
the program still runs, but there are no atomicity guarantees, in other words, it is a local
transaction. Also note that for AppServer to automatically handle the transaction
handshakes it is necessary to have the application run in a Container, either EJB, Web
or appclient. For example, a java client with no JMS XA API calls will not have its JMS
activity participate in a global transaction, one has to write it as a J2EE application
client instead. Also make sure that all connection factories are looked up through
deployment descriptor element <resource-ref>. This allows the Container to trap the
JMS API calls and insert appropriate hooks.

Let us examine in more detail the following sentences extracted from the EJB 2.1
specification:

Because the container manages the transactional enlistment of JMS sessions on
behalf of a bean, the parameters of the createSession(boolean transacted,int
acknowledgeMode), createQueueSession(boolean transacted,int acknowledgeMode)
and createTopicSession(boolean transacted, int acknowledgeMode) methods are
ignored. It is recommended that the Bean Provider specify that a session is
transacted, but provide 0 for the value of the acknowledgment mode.

Chapter 22: Using JMS 215

JMS and Transact ions

The assumption here is that messages produced/consumed by JMS sessions should
be included as part of the unit of work maintained by a global transaction, should a
global transaction be active. In order for transactional enlistment to occur, the parent
connection factory of connections on which createSession(), createQueueSession() or
createTopicSession() are invoked must be defined as a javax.jms.XAConnectionFactory,
javax.jms.XAQueueConnectionFactory or javax.jms.XATopicConnectionFactory,
respectively. That is, the value for <res-type> of J2EE deployment descriptor element
<resource-ref>, with definition of JMS connection factory to be used for the J2EE
component, must be either javax.jms.XAConnectionFactory,
javax.jms.XAQueueConnectionFactory or javax.jms.XATopicConnectionFactory. If the
connection factory has a non XA connection factory <res-type>, the program still runs
but work performed on JMS sessions will not be included in the global transaction; in
this case the transacted and acknowledgeMode parameters will influence the behavior of
message production/consumption. For instance:

 import javax.jms.*;

 QueueConnectionFactory nonXAQCF;
 Queue myQueue;

 try {
 javax.naming.Context ctx = (javax.naming.Context) new
javax.naming.InitialContext();
 nonXAQCF = (QueueConnectionFactory) ctx.lookup("java:comp/env/jms/
MyJMSQueueConnectionFactory");
 myQueue = (Queue) ctx.lookup("java:comp/env/jms/MyJMSQueue");
 }
 catch (javax.naming.NamingException exp) {
 exp.printStackTrace();
 }

 // Note: A global transaction context is currently active when the Session
is being created

 QueueSession qSession = conn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
 QueueSender = qSession.createSender(myQueue);
 TextMessage msg = qSession.createTextMessage("A Message ");
 sender.send(msg);

Here, the TextMessage msg is queued regardless of the outcome of the active global
transaction. This is in line with test cases in the J2EE Compatibility Test Suite. It seems
useful to have this capability in a global transaction, whereby a log message needs to
be sent irrespective of the enclosing global transaction's completion result.

Multiple resource access within a single global transaction is supported in AppServer.
This provides the capability to do a unit of work which is composed of sending/
receiving JMS messages along with some other type of resource manager access.
That is, it is desirable to write code (in an EJB for example) which does some work
against a non JMS resource such as a database and also send a message to a queue
with the Container providing transactional completion for all work performed. Upon
completion of the transaction, either the work performed against the database is
committed AND the message is queued, or should something fail during the
transaction database work is rolled back AND the message is not delivered to the
queue.

216 AppServer Developer ’s Guide

Enabl ing the JMS services secur i ty

In application code, an EJB method such as doSomeWork() shown below is supported in
AppServer:

 // Business method in a session bean, the EJB container marks the transaction
 void doSomeWork()
 {
 // Establish a database connection
 java.sql.Connection dbConn = datasource.getConnection();

 // Execute SQL
 ƒ

 // Call a remote EJB in the same transaction

 ejbRemote.doWork();

 // Send a JMS message to a queue
 jmsSender.send(msg);

 }

Enabling the JMS services security
See Chapter 23, “JMS provider pluggability” for vendor-specific information on JMS
services such as security.

Advanced Concepts for Configuring JMS Connection Factories and
Destinations

JDBC datasource resource objects and JMS Connection Factories and Destinations
for JMS providers Tibco, SonicMQ and WMQ, are defined in a DAR module using a
jndi-definitions.xml descriptor. Module tibco-resources.dar, deployed to Welcome
Partition in sample BAS configuration j2eeSample contains some default Tibco
Connection Factories, Topics and Queues, defined for the AppServer install with Tibco
JMS server option. You can edit these existing definitions to suit your environment or
create new definitions using the DDEditor. JMS connection factories, similar to JDBC
datasources, are classes that wrap the connection factory classes provided by JMS
vendors. If you want to use a JMS vendor not bundled or certified to work with
AppServer, you need to deploy that vendor's connection factory classes to your
Partition.

See Chapter 23, “JMS provider pluggability” for vendor-specific information on JMS
queues.

Chapter 23: JMS provider p luggabi l i ty 217

C h a p t e r

Chapter23JMS provider pluggability
The Borland AppServer (AppServer) is designed to support any arbitrary JMS provider
as long as certain requirements are met. There are three aspects of JMS pluggability:
runtime pluggability, configuration of JMS admin objects (connection factories and
queues/topics), and service management. You will achieve the best results if all three
are met, but just having the runtime level pluggability, as well as vendor-specific ways
to achieve the other levels, may be sufficient in many situations.

Borland AppServer 6.6 bundles the Tibco EMS 4.2.0 V12 and OpenJMS 0.7.6.1 JMS
providers. OpenJMS is bundled as a partition level service.

Runtime pluggability
Runtime pluggability is determined by compliance to the J2EE specification. A CTS
compliant JMS product that additionally implements the JMS specification optional
APIs can seamlessly plug into the AppServer runtime. All features like transactions and
MDB support are retained.

JMS products must possess the capability to perform transactional messaging to
support MDBs and J2EE container intercepted messaging. That is, a JMS queue or
topic must be a transactional resource. AppServer requires that JMS products
implement the JTA XAResource interface and support JMS XA APIs.

In addition, the JMS product should support the javax.jms.ConnectionConsumer
interface. The latter is vital since a central idea of MDBs is the concurrent consumption
of messages. The ConnectionConsumer interface achieves this. The mechanism also
works in conjunction with some optimal methods of the javax.jms.Session objects,
namely Session.run() and Session.setMessageListener().

218 AppServer Developer ’s Guide

Conf igur ing JMS administered objects (connect ion factor ies, queues and topics)

Configuring JMS administered objects (connection factories, queues
and topics)

If the JMS providers' admin objects, like connection factories and destinations follow
the JavaBeans specification (as encouraged in the JMS specification), the Borland
Deployment Descriptor Editor tool can define, edit and deploy these objects into the
AppServer JNDI tree without needing a JMS product-specific mechanism.

For specific information on using other JMS service providers with AppServer and
requirements for admin objects (queues, topics, and connection factories), see “Other
JMS providers” on page 229.

Setting Admin Objects Using Borland Deployment Descriptor

You can set the admin object properties for Tibco from the Borland Deployment
Descriptor Editor. To do so:

1 Launch the Borland Deployment Descriptor Editor from within the Management
Console or standalone from the Start menu.

2 Select File|New and click on the JNDI Definitions tab to bring it forward.

3 Select the JNDI Definitions Archive and click OK to create a new JMS object.

4 Right-click on the Untitled JMS object in the left pane and select New JMS Object.

5 Give the JMS object a name in the New JMS Object window and click OK. Your
JMS object will appear under your archive.

6 Click on your JMS object, and select the Main tab.

7 Configure your object by selecting various fields from the drop-down menus and
entering information in the properties' fields.

8 To add additional properties for the JMS object, select the Properties tab and click
“Add” to add properties (name, type, value).

Chapter 23: JMS provider p luggabi l i ty 219

Service Management for JMS Providers

Service Management for JMS Providers
The AppServer service control infrastructure can manage the JMS service process
(either a JVM or native process, whatever form it takes in the JMS provider) as a first
class managed object. Operations like starting, stopping and server configuration is
provided for supported (Tibco, and OpenJMS) providers out of the box.

Tibco EMS 4.2
Tibco has achieved the runtime level of pluggability that is determined by the
compliance to the J2EE specification. Tibco 4.2 is JMS 1.1 compliant and supports
unified JMS APIs.

Added value for Tibco

Tibco provides this added value:

■ Transparent installation

■ Tibco Admin Console is available from AppServer Management Console Tools
menu.

Configuring Admin Objects for Tibco

Tibco's admin object properties are defined in AppServer and can be configured
graphically using the Borland Deployment Descriptor Editor.

See “Setting Admin Objects Using Borland Deployment Descriptor” on page 218.

Auto Queue Creation Feature in Tibco

Tibco has an auto queue creation feature by which if a specified queue does not exist
in the server, the Tibco server will create the queue as necessary.

Tibco Admin Console

Note You can launch the Tibco Admin Console from within AppServer only for the Windows
platform. For all other platforms, run the executable from <tibco_home> directory to
launch the console.

AppServer includes the Tibco Admin Console for additional configuration. To launch
the Tibco Admin Console, select it from the Tools menu in the AppServer Management
Console.

220 AppServer Developer ’s Guide

Tibco EMS 4.2

Configuring clients for fault tolerant Tibco connections

To connect to a backup server in the event of failure of a primary server, a client
application must specify multiple server URLs in the jndi-object XML for the
connection factories as below:

 <jndi-object>
 <jndi-name>jms/XAConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsXAConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>
 <jndi-object>
 <jndi-name>jms/ConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>
 <jndi-object>
 <jndi-name>jms/XAQueueConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsXAQueueConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>
 <jndi-object>
 <jndi-name>jms/QueueConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsQueueConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>
 <jndi-object>
 <jndi-name>jms/XATopicConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsXATopicConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>
 <jndi-name>jms/TopicConnectionFactory</jndi-name>
 <class-name>com.tibco.tibjms.TibjmsTopicConnectionFactory</class-name>
 <property>
 <prop-name>serverUrl</prop-name>
 <prop-type>String</prop-type>
 <prop-value>localhost:7222,anotherhost:7222</prop-value>
 </property>
 </jndi-object>

Chapter 23: JMS provider p luggabi l i ty 221

OpenJMS

Enabling Security for Tibco

Note For information on SSL, please refer to the Tibco documentation. Tibco documentation
is located in <install_dir>\jms\tibco\doc\html.

To enable security for Tibco, you can either modify the tibemsd.conf file located in
/<install_dir>/jms/tibco/bin, or you can set it using the Tibco Admin tool.

Note Make sure that the Tibco service is active before following the steps below.

1 From the Tools menu in Borland Management Console launch the Tibco Admin
Console tool.

2 Type connect.

3 Enter Login name and Password.

4 Once connected, type set server authorization=enabled.

5 Security is now enabled. For client authentication, users should be created and
added to an authorization group. For instance, create a user using the command:

create user <name> [<description>] [password=<password>]

6 Add a member, type add member <group-name> <user-name> [,<user-name2>,...].

Disabling security for Tibco

Follow the steps for Enabling Security for Tibco described above, but in step 4 rather
than enabling security set the server authorization to disabled:

set server authorization=disabled

OpenJMS
OpenJMS is tied to the lifecycle of an AppServer partition. The AppServer contains a
complete footprint of OpenJMS.

Note OpenJMS 7.6 is JMS 1.0 compliant and does not support the unified APIs.

OpenJMS provides the following added value:

■ Transparent Installation

■ Support for automatic table creation

■ Out-of-box integration with AppServer's Naming Service (JNDI), Transaction
Service and Datasource

■ Provides partition-level service management

■ Support for RMI connector using VisiBroker

■ Lifecycle management using Borland Management Console

When you install AppServer with OpenJMS in Borland AppServer version 6.6,
OpenJMS comes packaged as a partition level template. This means that partitions
created from this template get OpenJMS as an in-process service.

222 AppServer Developer ’s Guide

OpenJMS

The following properties in the partition template are set to true by default when you
install AppServer with OpenJMS:

■ ejb.mdb.use_jms_threads=true

This property is needed to allow the transaction that was started by OpenJMS to
propagate into AppServer

■ ejb.mdb.local_transaction_optimization=true

This property is needed to allow the use of non-XA JMS connection factories to be
used in transactional scenarios. If not set, the MDBs that have transaction onMessage
method will fail to deploy

■ jts.allow_unrecoverable_completion=true

By default, AppServer uses the JDataStore database for message persistence. If
your application database is different from your message persistence database, you
will need to set this property to true in order to achieve the two phase commit.

See Chapter 36, “EJB, JSS, and JTS Properties” for more information on each of the
properties.

Even though OpenJMS can be used in a standalone mode where it is the only service
in the partition, there are some advantages to using OpenJMS as an in-process
service:

■ It helps avoid the two-phase commit (2PC), and hence the performance cost and
deployment complexity associated with it. This involves JDBC connection sharing
among different components in the partition that access the database. It can be
achieved by making OpenJMS persist messages in the same database as the one
in which application data is stored. This configuration where 2PC can be avoided is
possible only when OpenJMS is accessed through its embedded or RMI connector
inside the AppServer partition. See “Configuring Datasource to Achieve 2PC
Optimization” on page 225 for details.

■ Since all the components are centralized in a single virtual machine, you can avoid
the cost of TCP/IP. The JMS client library calls an in-process JMS service using
regular Java call and vice versa.

■ Since VBJ provides local call optimizations, the application won't need to have two
types of connectors. It can use only the RMI connector irrespective of client location
with respect to the JMS server.

You can find the OpenJMS product documentation in the <appserver_install>/jms/
openjms/docs directory.

Configuring JNDI objects for OpenJMS

Since each partition in AppServer can host an instance of OpenJMS, there is a
dedicated configuration file, openjms.xml, for each partition. The openjms.xml file
contains information about various OpenJMS connectors and JNDI objects that the
instance hosts.

Note AppServer does not support the administration GUI in OpenJMS. You can create and
delete queues for OpenJMS by editing the openjms.xml file.

To add new Queues, Topics or Connection Factories for OpenJMS, you must modify
its configuration file, openjms.xml. To access this file:

1 Select the relevant partition in the left pane of the Borland Management Console.

2 Right-click on the OpenJMS service in the left pane.

3 Select Properties from the drop-down menu.

4 Click on the openjms.xml tab in the properties pane to bring it forward.

Chapter 23: JMS provider p luggabi l i ty 223

OpenJMS

5 Edit the file to add the JNDI objects.

See the OpenJMS documentation in the <appserver_install>/jms/openjms/docs
directory for more details on this file.

The code sample below shows you how to add a Queue and a Topic connection
factory.

■ You can add any number of factories as necessary for your application.

■ Make sure that each object you add has a unique name so as to avoid being
overwritten in JNDI. The name has to be unique among multiple instances.

■ You must have at least one TopicConnectionFactory and one
QueueConnectionFactory in the embedded scheme.

■ If you do not specify a port for the connector, the default port will be used. Refer to
the OpenJMS documentation for details at <appserver_install>/jms/openjms/docs.

<Configuration>

 <ServerConfiguration host="localhost" embeddedJNDI="false" />

 <JndiConfiguration>
 <property name="java.naming.factory.initial"
 value="com.inprise.j2ee.jndi.CtxFactory" />
 <property name="java.naming.provider.url"
 value="serial://" />
 </JndiConfiguration>

 <Connectors>
 <Connector scheme="embedded">
 <ConnectionFactories>
 <QueueConnectionFactory name="jms/EmbeddedQueueConnectionFactory" />
 <TopicConnectionFactory name="jms/EmbeddedTopicConnectionFactory" />
 </ConnectionFactories>
 </Connector>

 <Connector scheme="tcp">
 <ConnectionFactories>
 <QueueConnectionFactory name="jms/TcpQueueConnectionFactory" />
 <TopicConnectionFactory name="jms/TcpTopicConnectionFactory" />
 <QueueConnectionFactory name="jms/qcf" />
 <QueueConnectionFactory name="jms/QueueConnectionFactory" />
 <QueueConnectionFactory name="jms/xaqcf" />
 <TopicConnectionFactory name="jms/tcf" />
 <TopicConnectionFactory name="jms/TopicConnectionFactory" />
 <TopicConnectionFactory name="jms/xatcf" />
 </ConnectionFactories>
 </Connector>

 <Connector scheme="rmi">
 <ConnectionFactories>
 <QueueConnectionFactory name="jms/qcf" />
 <QueueConnectionFactory name="jms/QueueConnectionFactory" />
 <QueueConnectionFactory name="jms/xaqcf" />
 <TopicConnectionFactory name="jms/tcf" />
 <TopicConnectionFactory name="jms/TopicConnectionFactory" />
 <TopicConnectionFactory name="jms/xatcf" />
 </ConnectionFactories>
 </Connector>

 </Connectors>

224 AppServer Developer ’s Guide

OpenJMS

Note When configuring JMS resource objects in Borland deployment descriptors, in
preparation for an application JNDI lookup, be sure you add a serial:// prefix to the
value of jndi-name elements. For example, serial://jms/q. OpenJMS resource objects
are deployed independent of DAR files. They are bound directly under JNDI with a
serial:// prefixed name upon BAS partition start. Applications that perform a JNDI
lookup of an OpenJMS resource object must use the serial:// prefix to resolve the
object.

Connection Modes in OpenJMS

OpenJMS supports multiple ways for the client to access it—using Embedded, TCP,
and RMI connectors.

Use the Embedded connector when OpenJMS is installed as an in-process service.
Specify all the connection factories needed locally under the embedded connector
section in the openjms.xml file. You can take advantage of the 2PC optimization only if
you use OpenJMS as a partition level (in-process) service using the embedded or RMI
connector. In embedded mode, the JMS clients access the JMS server using local
Java calls and use embedded queue/connection factories. These factories provide
optimal ways to avoid the cost of TCP/IP.

If you use OpenJMS as an out-of-process service, you must use the RMI or TCP
connectors. The RMI connector in AppServer is configured to use RMI-over-IIOP and
hence can carry transaction context from client to JMS server. It has the capability to
optimize local calls when the clients are co-located with the OpenJMS server and so
makes it more efficient. The TCP connector, which is based on custom protocol doesn't
carry transaction context.

Important You can disable the TCP or RMI connectors when not using them. Do not disable the
Embedded connector even if you are not using it. The Embedded connector is used
internally to control service management (start, stop etc.) of OpenJMS as a part of the
AppServer partition level service.

Changing the Datasource for OpenJMS

By default, when the OpenJMS service starts, it looks in the partition.xml file for the
location of the datasource where the OpenJMS messages will be persisted. This
datasource entry must exist in a DAR file. In the event that the entry is not found in the
DAR file, OpenJMS service will default to the datasource mentioned in the openjms.xml
file. If you want OpenJMS to use the datasource configured in the partition.xml file
only, you can comment the <DatabaseConfiguration> entry out in openjms.xml file. This
way, if the datasource is not found, you will see an error message. You can change the
datasource and make it point to the same datasource which your J2EE application
uses. To change the datasource:

1 Right-click on the OpenJMS service in the left pane of the Borland Management
Console.

2 Select Properties from the drop-down menu.

3 Enter the path to the datasource in the Name text box in the General tab.

4 (Optional) Uncheck the “Clean messages on startup” checkbox if you do not want
the previously stored (undelivered) messages to be deleted when you restart the
partition. The messages that get delivered, are automatically deleted from the
database. The messages that could not be delivered for any reason remain in the
database. It is these messages that get cleaned up when you check this box. This
checkbox is checked by default.

You must also specify the right database driver in the openjms.xml configuration file. To
access this file, right-click on the OpenJMS service and select Properties from the
menu. Click on the openjms.xml tab in the properties pane.

Chapter 23: JMS provider p luggabi l i ty 225

OpenJMS

Creating Tables for OpenJMS

If you choose to use a database other than JDataStore, you must create appropriate
tables in the database before using it. In case of JDataStore, the tables are pre-
created. Use the scripts provided by OpenJMS to create tables in other databases.
You can find these scripts in <bas_install>\jms\openjms\config\db directory. See the
OpenJMS User's Guide for details. This guide is available in <appserver_install>/jms/
openjms/docs directory.

Configuring Datasource to Achieve 2PC Optimization

By using OpenJMS as a partition-level service you can achieve the two-phase commit
optimization. OpenJMS can be configured to persist data in any relational database. By
default, AppServer uses the partition's JDataStore database for persisting JMS
messages. You can change the default datasource and make it point to the same
datasource which your J2EE application uses. (See “Changing the Datasource for
OpenJMS” on page 224 for details on how to change the datasource.) This way,
OpenJMS and your application will use a single transaction resource and you will be
able to avoid the two-phase commit.

Important When there are multiple messaging applications in the partition, and each of them uses
a distinct datasource for application data, the two-phase commit optimization is not
possible for each of those applications. The two-phase commit optimization will work
only with the one that has the same datasource as OpenJMS. OpenJMS can persist
data in only one datasource for all applications in a partition, regardless of the number
of applications in that partition. So, if a partition has multiple applications and each
application stores its data in its own separate database, you can make OpenJMS
datasource to point to only one of those databases. The application that stores its data
in this database will achieve the 2PC optimization.

Configuring Security with OpenJMS

The authentication and security features that come with OpenJMS version 0.7.6. work
with the following AppServer configurations:

1 OpenJMS authentication with TCP Connector

2 OpenJMS authentication with VBJ-based RMI Connector

Note HTTPS and TCPS connections are not supported in AppServer 6.6 release.

The following XML code in openjms.xml file shows an example of how to turn on
security for configurations 1 only. It provides a list of authenticated users:

<SecurityConfiguration securityEnabled="true"/>
 <Users>
 <User name="admin" password="admin"/>
 <User name="j2ee" password="j2ee"/>
 </Users>

3 OpenJMS authentication with VBJ-based RMI connector using AppServer security

Refer to the <appserver_install>/examples/security/Readme.html document on how
to configure security for this configuration.

Refer to the OpenJMS documentation in <appserver_install>/jms/openjms/docs
directory for details on how to use security in OpenJMS.

226 AppServer Developer ’s Guide

OpenJMS

Specifying Partition Level Properties for OpenJMS

To integrate OpenJMS as a partition level service in AppServer, it is introduced as a
new service in the partition's configuration. The following properties are for OpenJMS
in the partition.xml file. This file is located in <appserver_install>/var/domains/base/
configurations/<my_config>/mos/<openjms_partition>/adm/properties directory.

The following code in the partition.xml file creates OpenJMS as a partition level
service:

- <service name="jms"
 runas.propstorage="management_runas.properties"
 version="6.5" description="JMS Service based on OpenJMS(tm)

version 0.7.6.1"
 vendor="Borland Software Corporation"
 class="com.borland.enterprise.server.services.PartitionService"
 startup.synchronization="service_ready"
 startup.service_ready.max_wait="0"
 shutdown.synchronization=""
 shutdown.phase="1">
 <properties lifecycle.class="com.borland.jms.JmsPartitionService"
 openjms.configfile="adm/openjms/conf/openjms.xml"
 openjms.home="../../../../../../../jms/openjms"
 openjms.clean_messages_on_startup="true"
 openjms.datasource="serial://datasources/OpenJmsDataSource"
 openjms.sql_file="adm/openjms/conf/openjms.sql"
 openjms.datasource_lookup_interval="1"
 openjms.max_datasource_lookup_retries="1" />
 </service>

The properties are described in the table below:

Property Name Description Default Value

lifecycle.class Used to add an inprocess JMS service. In
case of OpenJMS(tm) this property has to
have a value of
com.borland.jms.JmsPartitionService. The
reflection based code of the partition
launcher dynamically detects if the class
specified in this property is in the Java
CLASSPATH. If it finds it, it tries to load and
start the service.

com.borland.jms.JmsPartitionService

openjms.configfile This property specifies the location of the
configuration file. The location is relative to
the current working directory of your
partition. This file is the central place where
configuration of OpenJMS(tm) is stored.
This file is needed for the embedded
OpenJMS(tm) service to come up with a
AppServer partition. This file also contains
the list of JNDI objects (Queues, and
Topics) that need to be created as part of
the OpenJMS(tm) service startup.

adm/openjms/conf/openjms.xml

openjms.home This property specifies where
OpenJMS(tm) is installed. OpenJMS uses
the value specified here to locate various
resources.

<AppServerInstallRoot>/jms/openjms

Chapter 23: JMS provider p luggabi l i ty 227

OpenJMS

openjms.clean_messages_on_startup This property indicates whether to clean up
the database tables containing JMS
messages across partition restart.
Currently, this property is only available for
JDataStore. For other databases, you must
delete messages manually.

true

openjms.datasource This property specifies the JNDI name of
the datasource that is used to persist
messages in OpenJMS(tm). If this
datasource is the same as the one that your
application uses, then the JDBC connection
pool will be shared among them and a
single JDBC connection will be used both
to persist messages and provide data
access to your application, thereby
avoiding a need for 2PC. If the specified
datasource is not available in the JNDI
namespace at the startup time, the startup
code will use the properties
openjms.datasource_lookup_interval, and
openjms.max_datasource_lookup_retries
described below, to make multiple attempts
to access the target datasource. Despite
that, if the lookup fails, the initialization
code will internally construct a datasource
from the information specified in the
configuration (openjms.xml) file.

Note: The startup code will use the
information from openjms.xml file only if the
user specified datasource is not available. If
the datasource is pre-deployed or available
in JNDI , RDBMS configuration in the
openjms.xml file will be ignored.

serial://datasources/JDSLocal

openjms.sql_file This property is used to specify the file that
contains the SQL statements to drop, and
create database tables. These tables are
used by OpenJMS(tm) for message
persistence.

adm/openjms/conf/openjms.sql

openjms.datasource_lookup_interval This property specifies the duration
between successive datasource lookup
attempts. See the property
openjms.datasource property above.

1 second

openjms.max_datasource_lookup_retries This property specifies the number of
attempts to lookup for the datasource
before attempting to use the default
datasource.See the property
openjms.datasource property above.

5 seconds

openjms.recreate_database_on_startup This property when set will cause re-
creation of database across each startup of
the service. This is useful for cases where
previous messages are not needed in the
subsequent runs (for example, while
testing).

false

openjms.database.softcommit This property is only applicable when
JDataStore is used to persist JMS
messages. This property provides
improved performance during commit
process, but with lack of recoverability in
some rare failure scenarios. See
JDataStore documentation for more details.

true

Property Name Description Default Value

228 AppServer Developer ’s Guide

OpenJMS

OpenJMS Topologies

Important If you have two OpenJMS services with both of them using the TCP connector, make
sure you have different port numbers specified for them in the openjms.xml file. To open
this file, right-click on the OpenJMS service in the Borland Management Console and
select Properties from the drop down menu. Click on the openjms.xml tab in the
properties pane.

OpenJMS can be configured to run in the following two topologies:

■ Server shared mode—where the OpenJMS service is hosted in a dedicated
partition with other services in that partition disabled. It is available as a shared
service to all partitions that are in the same osagent domain as the configuration in
which OpenJMS partition resides. The remote clients can access OpenJMS via an
RMI or TCP connector. Since OpenJMS needs a naming service to bind the JNDI
objects that are specified in its configuration file, the Transaction and Naming
services must be enabled in the partition that hosts OpenJMS or they should be
available in the SmartAgent domain.

■ Embedded Service mode—where OpenJMS is run as an embedded service in
each of the partitions in the configuration. Each partition uses the embedded (intra-
virtual machine) connector of OpenJMS instead of the TCP or RMI connector. The
JMS clients use the embedded queue/topic connection factories. These factories
provide optimal ways to avoid the cost of TCP/IP. Even though JMS clients can use
the RMI connector in this mode, to achieve maximum performance it must use the
local (embedded) connector.

Note If multiple OpenJMS service instances are running in a single SmartAgent domain of
AppServer, there will be no database sharability or automatic failover to a running
instance. This is because there is no support for clustering for OpenJMS.

Using Message Driven Beans (MDB) with OpenJMS

For an AppServer partition to support MDBs, the MDB must be able to access a JMS
server. To make the MDB access the OpenJMS server, make sure that:

1 OpenJMS is installed and enabled as an in-process service in your partition or
available in the domain. Right-click on the OpenJMS service and select Start from
the menu to enable the service.

2 The resource references are properly configured in the ejb-jar.xml file to point to
the right type of connection factory.

Important If your MDB needs transactional access, you must use Embedded or RMI
connection factories with your MDB so as to support transaction propagation.

openjms.database This property only applies to JDS and is
used to specify the name of the JDS
database.

openjms.jds

openjms.use_bes_transactions OpenJMS starts a transaction before it
dispatches messages. It uses the
transaction service that is part of the
partition which contains OpenJMS. If no
transaction service is available in the
partition, one from the Smart Agent domain
is selected. Use this property when you use
OpenJMS during transactions. This
property does not affect the messaging
applications that don’t involve transactions.
However, to avoid an extra cost of
transaction startup and propagation turn
this property off.

true

Property Name Description Default Value

Chapter 23: JMS provider p luggabi l i ty 229

Other JMS providers

Other JMS providers
Borland AppServer supports the SonicMQ 6.0/6.1 and WebSphereMQ 5.3/6.0 JMS
providers. For information on how to integrate SonicMQ with AppServer see
Chapter 24, “Integrating SonicMQ into Borland AppServer.” For information on how to
integrate WebSphereMQ with AppServer see Chapter 25, “Integrating WebSphereMQ
into Borland AppServer (BAS).”

230 AppServer Developer ’s Guide

Chapter 24: Integrat ing SonicMQ into Bor land AppServer 231

C h a p t e r

Chapter 24Integrating SonicMQ into Borland
AppServer

This document provides the steps to enable Borland AppServer (AppServer) to work
with an independent installation of a SonicMQ 6.0/6.1 JMS provider. Both SonicMQ
versions 6.0 and 6.1 are JMS 1.1 compliant.

Note You must purchase SonicMQ separately. It is not bundled with AppServer 6.6.

Installing SonicMQ
Install SonicMQ to a location independent of the AppServer installation. Make sure that
the Management features are installed so that you can manage the SonicMQ services
through the Sonic Management Console.

Configuring SonicMQ Administered Objects in AppServer
You must define the JMS administered objects accessed through JNDI in the Borland
proprietary DAR modules. The Borland Deployment Descriptor Editor(DDEditor) tool in
AppServer allows you to create the administered objects in a DAR module. See
“Setting Admin Objects Using Borland Deployment Descriptor” on page 218.

See the SonicMQ V6.1 Configuration and Management Guide for information on all the
properties that can be configured for administered objects using the Sonic JMS
Administered Objects tool.

See Chapter 22, “Using JMS” for a description of AppServer related properties that can
be applied to JMS connection factory object definitions in DAR modules.

232 AppServer Developer ’s Guide

Resolv ing SonicMQ l ibrary modules in the AppServer environment

Resolving SonicMQ library modules in the AppServer environment
SonicMQ 6.0/6.1 client libraries, sonic_Client.jar and sonic_XA.jar, and their
dependent libraries must be loaded by AppServer for deployment of J2EE
application(s) that wish to access a SonicMQ server.

The suggested approach for enabling SonicMQ client libraries in AppServer is to apply
the following updates to JMS related configuration files located under <AppServer>/bin:

■ Edit the sonic.config file and set the value of jms.home to the root directory of the
external SonicMQ installation. For example:

set jms.home=C:/SonicMQ/V61

■ Edit the jms.config file. Uncomment the statement to include sonic.config. Make
sure that the include statements for other JMS providers are commented out:

#include $var(installRoot)/bin/tibco.config
#include $var(installRoot)/bin/openjms.config
include $var(installRoot)/bin/sonic.config

This allows SonicMQ client libraries to be resolved by all AppServer partitions and by
J2EE client applications run by AppServer appclient tool.

Configuring Automatic Queue Creation for SonicMQ Queues deployed
to AppServer

When a DAR module containing definition of SonicMQ JMS Queues is deployed to a
partition, AppServer can be configured to automatically create the JMS Queues in the
target SonicMQ server. Certain SonicMQ management libraries need to be available to
AppServer for automatic JMS Queue creation to occur. These libraries must be loaded
from the partition's classpath. This can be achieved by updating AppServer
configuration files sonic.config and jms.config as described above. Additionally, the
following steps must be performed:

■ Make sure that the naming service definition in the partition's configuration file,
partition.xml, has jns.auto-create-queues property set to true as follows:

<service name="visinaming"
 runas.propstorage="management_runas.properties" version="6.6"
 description="Naming Service" vendor="Borland Software Corporation"
 class="com.borland.enterprise.server.services.naming.NamingService"
 startup.synchronization="service_ready"
startup.service_ready.max_wait="0"
 shutdown.synchronization="" shutdown.phase="1">
 <properties jns.name="namingservice"
 jns.auto-create-queues="true">
 </properties>
</service>

■ Update partition-server.config file of the partition to ensure target SonicMQ server
can be located:

a Open the Management Console.

b Switch to the Installations view by clicking on the Installations icon on the
extreme left side of the console.

c In the left pane, navigate to the partition for which you want to make the change.
The General Properties page for the partition will open in the right pane.

d Click on the Files tab at the bottom of the right pane.

Chapter 24: Integrat ing SonicMQ into Bor land AppServer 233

Conf igur ing Automatic Queue Creat ion for SonicMQ Queues deployed to AppServer

e Select partition-server.config in the lower left pane.

f Scroll to the end of the file and enter the following for only the properties you want
to change:

vmprop <property_name>=<value>

You can do this for the following 5 properties:

g Save edits and restart the partition.

Note SonicMQ Server must be active prior to deployment of a DAR module with SonicMQ
JMS Queues in order to successfully auto-create the queues.

Property Default Value

sonicmq.domainName domain1

sonicmq.brokerURL tcp://localhost:2506

sonicmq.user Administrator

sonicmq.pwd Administrator

sonicmq.brokerName /Brokers/Broker1

234 AppServer Developer ’s Guide

Chapter 25: Integrat ing WebSphereMQ into Bor land AppServer (BAS) 235

C h a p t e r

Chapter 25Integrating WebSphereMQ into
Borland AppServer (BAS)

This document provides the steps to enable Borland AppServer (AppServer) to work
with an independent installation of a WebSphereMQ 5.3/6.0 JMS provider.

Note You must purchase WebSphereMQ separately. It is not bundled with AppServer 6.6.

Supported Versions
Both WebSphereMQ 5.3 and 6.0 are certified to work with the product.

WebSphereMQ Configuration
To configure WebSphereMQ:

WebSphereMQ 5.3

Out of the box installation of WMQ 5.3 does not support JMS 1.1 APIs. To take
advantage of the JMS1.1 features, fix pack 06 (CSD06) or above should be installed on
top of WMQ 5.3 installation.

The “standard” WebSphereMQ Client supports only the local (i.e. one-phase commit)
transactions, managed by the queue manager to which the client application is
connected. To support distributed transactions(2PC), you must install WebSphereMQ
Extended Transactional Client.

The WebSphereMQ Extended Transactional Client is a fee-based feature of
WebSphereMQ version 5.3. It extends the WebSphereMQ capabilities by allowing
WebSphereMQ client applications to participate in globally coordinated transactions. In
other words, it offers two-phase commit (XA compliant) processing support to
WebSphereMQ client applications so that they can participate in global transactions
managed by some external transaction managers.

236 AppServer Developer ’s Guide

Conf igur ing Admin Objects wi th WebSphereMQ

WebSphereMQ 6.0

The default installation of WebSphereMQ 6.0 has support for JMS 1.1 APIs.

WebSphereMQ 6.0 has built in support for distributed transactions(2PC) and MQ
Extended Transactional Client installation is not required.

Configuring Admin Objects with WebSphereMQ
WebSphereMQ's admin object properties are defined in BES and can be configured
graphically using the Borland Deployment Descriptor Editor. See “Setting Admin
Objects Using Borland Deployment Descriptor” on page 218.

For a complete list of JNDI properties and other configuration options available with
WebSphereMQ 5.3, refer to WebSphereMQ's Using Java document published at
http://publibfp.boulder.ibm.com/epubs/pdf/csqzaw12.pdf.

For a complete list of JNDI properties and other configuration options available with
WebSphereMQ 6.0, refer the WebSphereMQ Using Java document published at
http://publibfp.boulder.ibm.com/epubs/pdf/csqzaw13.pdf.

Locating WebSphereMQ Library modules at runtime
WMQ 5.3 Client libraries need to be loaded in BAS partition for deployment of J2EE
application(s) that wish to access a WMQ5.3 server.Following are the full set of
libraries required by a BAS partition

■ com.ibm.mq.jar

■ com.ibm.mqjms.jar

■ com.ibm.mqbind.jar

■ com.ibm.mqetclient.jar (this jar is a part of WMQ Extended Transactional Client
installation)

One approach in making these available to BAS would be to deploy them to the BAS
partition hosting the J2EE application. However, a better approach is to update JMS
related configuration files located under <BAS_install>/bin:

■ Edit the wmq53.config and set the value of jms.home to the root directory of the
external WMQ5.3 installation.

■ Edit the jms.config file. Uncomment the include statement to include wmq53.config.
Make sure that the include statements for other JMS providers are commented out:

#include $var(installRoot)/bin/tibco.config
#include $var(installRoot)/bin/openjms.config
#include $var(installRoot)/bin/sonic.config
include $var(installRoot)/bin/wmq53.config

This allows WMQ5.3 client libraries to be resolved by all BAS partitions and by J2EE
client applications run by BAS tool appclient.

Chapter 25: Integrat ing WebSphereMQ into Bor land AppServer (BAS) 237

Locat ing WebSphereMQ Library modules at runt ime

WebSphereMQ 6.0

WebSphereMQ 6.0 Client libraries need to be loaded in BAS partition for deployment
of J2EE application(s) that will be accessing a WebSphereMQ 6.0 server. A full set of
libraries required by a BAS partition are:

■ com.ibm.mq.jar

■ com.ibm.mqjms.jar

■ dhbcore.jar

■ com.ibm.mqetclient.jar (Extended transactional client)

One approach in making these available to BAS would be to deploy them to the BAS
partition hosting the J2EE application. However, a better approach is to update JMS
related configuration files located under <BAS_install>/bin:

■ Edit the wmq60.config file and set the value of jms.home to the root directory of the
external WebSphereMQ 6.0 installation.

■ Edit the jms.config file. Uncomment the include statement to include wmq53.config.
Make sure that the include statements for other JMS providers are commented out:

#include $var(installRoot)/bin/tibco.config
#include $var(installRoot)/bin/openjms.config
#include $var(installRoot)/bin/sonic.config
include $var(installRoot)/bin/wmq60.config

This allows WebSphereMQ 6.0 client libraries to be resolved by all BAS partitions and
by J2EE client applications run by BAS tool appclient.

238 AppServer Developer ’s Guide

Chapter 26: Using JACC 239

C h a p t e r

Chapter 26Using JACC
The Java Authorization Contract for Containers (JACC) specification defines a contract
between a J2EE application server and an authorization policy provider. All J2EE
application containers, web containers, and enterprise bean containers are required to
support this contract. The contract defined by this specification is divided into three
subcontracts. Taken together, these subcontracts describe the installation and
configuration of authorization providers such that they will be used by containers in
performing their access decisions.

JACC Contracts
The three subcontracts are the Provider Configuration Subcontract, the Policy
Configuration Subcontract, and the Policy Decision and Enforcement Subcontract.

Provider Configuration Subcontract

The Provider Configuration Subcontract defines the requirements placed on providers
and containers such that Policy providers may be integrated with containers.

Policy Configuration Subcontract

The Policy Configuration Subcontract defines the interactions between container
deployment tools and providers to support the translation of declarative J2EE
authorization policy into policy statements within a J2SE Policy provider.

Policy Decision and Enforcement Subcontract

The Policy Decision and Enforcement Subcontract defines the interactions between
container policy enforcement points and policy decisions required by J2EE containers.

240 AppServer Developer ’s Guide

How the JACC-based author izat ion works

How the JACC-based authorization works
JACC allows the EJB and Web containers in an application server to interact with third
party authorization providers to make authorization decisions when a J2EE resource is
accessed. The Web and EJB containers in a J2EE application server use JACC-
compliant authorization providers to restrict client access to the resources and
services. The providers do this based on the policy information propagated to them by
the deploy tool during application deployment. The provider stores this information in
its repository for use when making the authorization decisions. Authorization decisions
are made by the provider based on whether the principal (user) belongs to a role that
has the necessary privileges to access a particular resource.

When an application is being deployed, the AppServer does the following:

1 Create a unique contextID that uniquely identifies the module that is being deployed.

2 Build the PolicyConfiguration with the set of Permissions that will be required to
access each resource of the module.

3 Propagate the security policy information to the provider through the JACC APIs.

When a client/user makes a request to access an EJB method or a servlet or URL:

1 The EJB container or the Web container creates an appropriate permission object
and the ProtectionDomain object containing the principals of the caller.

2 The container then calls the Policy.implies method of the java.security.Policy object
implemented by the provider and passes the two objects to the provider.

3 The provider makes the decision based on the policy information it has stored (by
checking its principal-to-role map) and returns a boolean value to the container.

4 If the role to which the principal belongs has access permissions to the resource, the
implies method returns true and the user is allowed to access the resource by the
container. Otherwise, it returns a false and the user is denied access to the
resource.

Configuring JACC provider in Borland AppServer
The JACC provider in AppServer implements the standard java.security.Policy object
specified in the Provider Configuration Subcontract section, which it uses to make the
access decisions. The JACC provider also implements the PolicyConfigurationFactory
class and the PolicyConfiguration interface, which enables deployment tools to
propagate all security elements to the provider during application deployment.

The following properties control the installation of the AppServer JACC provider:

Property Name Description Default Value

javax.security.jacc.
policy.provider

Specifies the policy
implementation class that
will be used by the
application server for policy
replacement.

com.borland.security.jacc.
provider.BESJACCPolicy

javax.security.jacc.
PolicyConfigurationFactory.
rovider

Specifies the providers
PolicyConfigurationFactory
implementation class.

com.borland.security.jacc.provider.
BESPolicyConfigurationFactory

Chapter 26: Using JACC 241

Conf igur ing a JACC provider using AppServer Management Console

Configuring a JACC provider using AppServer Management Console
You can configure the JACC provider using the AppServer Management Console or
you can configure the JACC provider properties in the partition_server.config file.

To configure the properties using the AppServer Management Console:

1 Select the Partition name in the left pane of the console.

2 Right-click on the partition name and select Properties from the resulting menu.

3 The Partition Properties page will open.

4 Click on the Security tab.

5 Configure the two properties in the JACC Properties box.

Configuring a JACC provider through the configuration file
To configure the JACC provider properties in the partition_server.config file:

1 Go to the following directory:

<install_dir>\var\domains\base\configurations\j2eeSample\mos\
<partition_name>\adm\properties

2 Open the partition_server.config file.

3 Locate the following lines:

#JACC provider configuration
vmprop javax.security.jacc.policy.provider=com.borland.security.jacc.

provider.BESJACCPolicy
vmprop javax.security.jacc.PolicyConfigurationFactory.provider=com.borland.

security.jacc.provider.BESPolicyConfigurationFactory

4 Configure the properties as desired.

Note If you leave these properties blank, the JACC provider will not be enabled and the
system will fall back to security framework as existed in the previous AppServer
releases.

Enabling/Disabling the JACC provider
You have the option of using one of the following:

■ Configure AppServer security as a JACC provider (this is the default setting)

■ JACC disabled in AppServer security—the underlying security mechanism is the
same as it existed in the previous releases of AppServer

■ Configure AppServer to use external JACC providers

By default, when you install the AppServer you will receive Borland VisiSecure as the
JACC provider. The JACC provider shipped with AppServer is compliant with all JACC
APIs and implements the Provider Configuration subcontracts specified in the JACC
specification.

The default settings for security properties in the Management Console of the
AppServer are set such that you can use AppServer security with the JACC APIs. If
you choose to not use the JACC with the AppServer security provider, you must clear
the security properties in the management console.

242 AppServer Developer ’s Guide

Conf igur ing external JACC providers

Alternatively, you can extend your security infrastructure by plugging in a third party
JACC-based security provider into AppServer. If you choose to use an external
provider, you must enter the appropriate values for the properties in the JACC
Properties box in the Partition Properties dialog box. Also, make sure that the external
JACC provider related jar files are deployed to the partition as library modules.

Configuring external JACC providers
Any JACC-compliant external provider can be plugged into the AppServer. The
provider implementation and configuration should follow the guidelines as mentioned
below:

■ The provider should provide an implementation for java.security.Policy and the
configuration has to happen correctly through the admin console or the
configuration file as discussed in the earlier sections.

■ The provider should provide an implementation for the PolicyConfigurationFactory
and the configuration has to happen correctly through the admin console or the
configuration file.

■ All the provider dependent jar files should be deployed to the partition as library
modules.

An example which demonstrates how a provider should be implemented and
configured with BES is shipped with the product. Please refer to <install dir>/
examples/security/jacc for details.

You can configure an external JACC provider using the Borland Management Console
or you can configure the security properties in partition_server.config file.

Chapter 27: Using ADLoginModule in BAS 243

C h a p t e r

Chapter27Using ADLoginModule in BAS
Active Directory is Microsoft's implementation of directory service for the Windows
platform. It provides the means to manage the identities , resources, and the
relationships between them, all of which make up the network environment.
ADLoginModule is a new LoginModule bundled with BAS which inherits from the
LDAPLoginModule and specifically works with Active Directory as backend user store.

How ADLoginModule works

User Principal Name

Different from the LDAPLoginModule, by default, ADLoginModule uses user principal
name (UPN) to bind to Active Directory Server, thus performs the authentication. UPN
is formed by combining object name with the Fully Qualified Domain Name (FQDN)—
objectname@QFDN. For example, for user1 in domain abc.def.net, the user principal
name user1@abc.def.net will be used as the security principal (instead of the DN as in
LDAPLoginModule).

Authentication

Authentication process includes two steps:

1 Validate the username/password pair against the user backend store

2 Populate user attributes, which will be used for authorization at latter stage

During the first step, ADLoginModule forms the User Principal Name with the provided
username and the domain name option. With the password provided by the user,
ADLoginModule binds to the Active Directory. A successful binding operation means
the user is authenticated by the Active Directory server.

244 AppServer Developer ’s Guide

Conf igur ing ADLoginModule

After the successful authentication, ADLoginModule gets the Distinguished Name (DN)
for the user entry from the Active Directory, and populates the designated set of
attributes (from options specified in JAAS configuration). In doing so, ADLoginModule
searches from SEARCHBASE context and looks for entry satisfying the filter
“userPrincipalName=UPN”.

With the DN information in hand, ADLoginModule populates the required attributes of
that entry based on options specified in JAAS configuration.

Configuring ADLoginModule
A new option DOMAINNAME is added specifically for ADLoginModule, which indicates
the domain to which this entity is authenticated against. A sample configuration looks
as follows:

adrealm {
 com.borland.security.provider.authn.ADLoginModule required
 INITIALCONTEXTFACTORY=com.sun.jndi.ldap.LdapCtxFactory
 PROVIDERURL="ldap://testing.net"
 DOMAINNAME=abc.def.net
 SEARCHBASE="cn=users,dc=abc,dc=def,dc=net"
 };

with this configuration, the user will be authenticated against Active Directory Server at
host testing.net, and for the domain adc.def.net. The user entry will be searched from
SEARCHBASE “cn=users,dc=abc,dc=def,dc=net”.

Detailed Configuration Options
Similar to LDAPLoginModule, ADLoginModule can be configured with following entry
inside JAAS configuration file:

<realm-name> {
 com.borland.security.provider.authn.ADLoginModule

authentication-requirements-flag
 INITIALCONTEXTFACTORY=connection-factory-name
 PROVIDERURL=backend-url
 DOMAINNAME=[domain name as in DNS-mapped format, for example, abc.def.net]
 SEARCHBASE=search-start-point
 USERATTRIBUTES=attribute1, attribute2, ...
 USERNAMEATTRIBUTE=attribute
 QUERY=dynamic-query
 };

Chapter 27: Using ADLoginModule in BAS 245

Detai led Conf igurat ion Opt ions

The detailed description for the options are summarized below:

Property Name Description

INITIALCONTEXTFACTORY The InitialContextFactory class that is used by JNDI to bind to LDAP.

PROVIDERURL The URL to the directory server of the form ldap://<servername>:<port>.
This attribute is mandatory.

DOMAINNAME Anew attribute for Active Directory, indicates the domain name for the
user. This is the recommend way to perform login with AD though is not
mandatory. For login using DN, USERNAMEATTRIBUTE must be set
to “DN”.

SEARCHBASE Explicitly set the search base for the directory to lookup. This attribute
is optional, if this is not specified, the search will be performed from the
root context of domain.

USERATTRIBUTES Comma-separated list of attributes that will be retrieved and stored for
an authenticated user. This attribute is optional, if this is not specified
all the attributes for the entry will be populated. Refer to
LDAPLoginModule in the Security User Guide for more information.

USERNAMEATTRIBUTE When user is being authenticated to the system—either through
CallbackHandler or IdentityWallet, a name-password pair is required.
This attribute defines the meaning of “name”—a username within a
domain or a DN. This attribute is optional—if this is not specified (which
is the default case), DOMAINNAME option must be specified, and
user's input is treated as the username within the domain—a UPN is
formed as <username>@<domainname>. On the other hand, if DN is used for
login, this option must be set to “DN”. In this case, the input from user
will be treated as the DN directly.

QUERY Provides a mechanism to dynamically query the directory server for
other information and represent the results as attributes. Refer to
LDAPLoginModule in the Security User Guide for more information.
This attribute is optional.

246 AppServer Developer ’s Guide

Chapter 28: Using JAXR 247

C h a p t e r

Chapter28Using JAXR
This document describes the Java API for XML Registries (JAXR). JAXR is part of
J2EE 1.4 specification. It gives the J2EE developer a common standard API to access
various XML registries particularly used in web services. The JAXR specification from
Sun is available at http://java.sun.com/xml/jaxr/index.jsp.

The Borland AppServer (BAS) integrates Apache jUDDI and Apache scout to provide a
UDDI registry and JAXR compliance. Apache jUDDI is an open source Java
implementation of the Universal Description, Discovery, and Integration (UDDI)
specification for Web Services.

JAXR specification defines two types of providers each with a different Capability
Level. Each provider offers a different level of support for interacting with the two
popular registry specifications, UDDI and ebXML. A type 0 provider offers support for
accessing UDDI registries and type 1 provider supports access to both UDDI AND
ebXML registries.

Apache scout, which is integrated with BAS, is a type 0 jUDDI JAXR provider. It adapts
the jUDDI client to standard JAXR API.

Using JAXR in BAS
Before you use the JAXR APIs, you must set the classpath and system properties
settings for the running JVM. You must deploy the juddi.ear to a BAS partition. The
juddi.ear file is located at a BAS repository, <BAS_home>/var/repository/archives/ears.

You must include the following libraries that are required by the BAS partition to host
the juddi.ear:

■ <BAS_home>/lib/scout.jar

■ <BAS_home>/lib/juddi.jar

■ <BAS_home>/lib/axis/axis.jar

■ <BAS_home>/lib/axis/commons-discovery-0.2.jar

248 AppServer Developer ’s Guide

System Property

You can include the jar files as library in to your J2EE application (ear, jar or war files)
or you can deploy the jar files as a static library into the BAS partition.

If you are running JAXR in a Java client application, all the above mentioned libraries
and the libraries below must be included in classpath:

■ <BAS_home>/lib/axis/commons-logging.jar

■ <BAS_home>/lib/axis/asrt.jar

System Property
To use the JAXR Provider for UDDI, the name of the ConnectionFactory
implementation class must first be specified by setting the System Property
javax.xml.registry.ConnectionFactoryClass to
org.apache.ws.scout.registry.ConnectionFactoryImpl. By default, BAS partition has this
property automatically set to its JVM. If you are an application user you do not need to
set this property. If you are running JAXR in a standalone java application, this system
property must be set to point to the JVM. Failure to specify this will result in the value
defaulting to com.sun.xml.registry.common.ConnectionFactoryImpl, which will not be
found. This will result in a JAXRException when the ConnectionFactory.newInstance()
method is called. The BAS JAXR Provider for UDDI does not support lookup of the
ConnectionFactory via JNDI.

JAXR Connection Properties
Connection specific properties must be set to ConnectionFactory before getting
Connection from the factory. See the JAXR specification for a detailed list of the
properties and their descriptions. The following is a subset of properties that are
required to get a connection:

Property Description

javax.xml.registry.queryManagerURL The URL of the jUDDI registry's inquiry API for
UDDI. This url will be of the form: http://
<hostname>:<port>/juddi/inquiry. This property is
required.

javax.xml.registry.lifeCycleManagerURL The URL of the UDDI registry's publish API for
UDDI. This url will be of the form: http://
<hostname>:<port>/juddi/publish.

javax.xml.registry.authenticationMethod The method of authentication to use when
authenticating with the registry. This may take one
of two values, UDDI_GET_AUTHTOKEN or HTTP_BASIC. The
default value is UDDI_GET_AUTHTOKEN if none is
specified.

Chapter 28: Using JAXR 249

BAS JAXR Example code

BAS JAXR Example code
The following example shows you how to create a connection using JAXR API:

import javax.xml.registry.Connection;
import javax.xml.registry.ConnectionFactory;
import java.util.Properties;

public class TestConnection
{
 public static void main(String[] args)
 {
 Properties prop = new Properties();
 try
 {
 String queryurl = "http://localhost:8080/juddi/inquiry";
 prop.setProperty("javax.xml.registry.queryManagerURL", queryurl);
 prop.setProperty("javax.xml.registry.lifeCycleManagerURL", queryurl);
 ConnectionFactory factory = ConnectionFactory.newInstance();
 factory.setProperties(prop);
 Connection con = factory.createConnection();
 if(con == null)
 System.out.println("No Connection");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
}

250 AppServer Developer ’s Guide

Chapter 29: Using the Scheduler Service 251

C h a p t e r

Chapter29Using the Scheduler Service
Borland AppServer 6.6 (AppServer) supports J2EE 1.4 compliant EJB timer service. In
AppServer this service is known as the Scheduler Service. The AppServer Scheduler
Service is based on Quartz. Refer to the EJB 2.1 specification for generic information
on EJB Timer Service. To obtain Quartz-related documentation, go to
http://www.opensymphony.com/quartz/documentation.action

The Scheduler Service is a partition-level service, which means that each time you
create a partition, it will automatically be included as one of the partition services. The
Scheduler Service can be used even when the EJB container goes down.

Configuring the Scheduler Service
You can configure some of the commonly used scheduler service properties in the
AppServer Management Console. To do so:

1 Open the AppServer Management Console.

2 Double-click on the partition name whose scheduler service you want to configure to
expand the node.

3 Right-click on Scheduler Service node under the partition.

4 Select Properties... from the resulting menu. The Properties dialog box will open.

5 Configure the following Scheduler Service Settings in the General tab:

Transaction Timeout—specifies the time within which a transaction should be
successful. If a transaction is not successfully completed within the time set in this
field, the transaction will be marked for rollback.

Max Redelivery Count—specifies the number of attempts that the Scheduler
Service will make to redeliver a message to an application whose transaction (of
which the scheduler event was a part) has been rolled back.

252 AppServer Developer ’s Guide

Using JDataStore to persist scheduler events

Clean events on startup—If this checkbox is checked, all the jobs and triggers will
be deleted from the database when the partition is (re)started. It is applicable only if
you specify JobStoreCMT to persist the scheduler events. This option is currently
supported only for JDataStore.

Soft Commit—Check this box if you want to enable soft commit. With soft commit
enabled, the operating system cache can buffer file writes from committed
transactions. Soft commit improves performance, but cannot guarantee the
durability of the most recently committed transactions.

6 Click on the Quartz tab to bring it forward.

7 Configure the following properties:

Maximum number of threads—Specifies the maximum number of threads in a
thread pool

Job Store Type—The default choice in the drop-down menu is Memory. This allows
you to store scheduler events in-memory. Select JDBC(CMT) from the menu if you
want to persist events in a database.

If you select JDBC(CMT) as your Job Store Type, you must configure the following
in the Settings for Job Store box:

Database—Select a database from the drop-down menu

Container Managed DataSource—Specifies the URL for the container managed
datasource. Please see the Quartz documentation for details on Container
Managed DataSource.

Non Container Managed DataSource—Specifies the URL for non-container
managed datasource

8 To set more properties, click on the Advanced... button. The Scheduler (Quartz)
Properties page will open. You can configure additional properties here.

Using JDataStore to persist scheduler events
The AppServer Scheduler Service can be configured to persist data in any relational
database. By default, AppServer uses the JDataStore for persistence. If you do not
specify a database in which to store the scheduler events, AppServer defaults to
storing these events in the JDataStore database.

Chapter 29: Using the Scheduler Service 253

Conf igur ing other databases to persist scheduler events

Configuring other databases to persist scheduler events
The partition's JDataStore database is used by default to persist scheduler data.
However, you can configure a different database if you want to use the database used
for the application data to persist the scheduler data too. To use a database other than
JDataStore, you must do the following:

■ Create appropriate tables in the database using the scripts provided by Quartz for
that database. These scripts are available in the Quartz footprint.

■ Choose the right database driver in Quartz's configuration file located at
<partition_working_directory>/adm/scheduler/bes.properties

Setting up for 2PC Optimization
If the timer is tied to a transaction in an application, if for any reason the transaction is
rolled back, then the creation or deletion of the timer will also be rolled back along with
the transaction. Similarly, if the scheduler event is delivered to an EJB as part of a
transaction which is eventually rolled back, the scheduler service will attempt to
redeliver the event. As per EJB 2.1 specification, there must be at least one re-delivery
attempt. You can configure the number of redelivery attempts that the scheduler
service makes. The default is 1. This means that when a transaction is rolledback, the
Scheduler Service in AppServer will try to redeliver the message once. See
“Configuring the Scheduler Service” on page 251 for details on how to configure the
maximum redelivery count.

To achieve 2PC optimization, you must use a common datasource to persist scheduler
events and store application data which the J2EE application uses. If there are multiple
applications in the partition and each of them uses a distinct datasource than 2PC
optimization is not possible for each of those applications, but would work only with the
one that has the same datasource as the Scheduler Service.

In some deployments, it will be necessary to use a 2PC-enabled (XA) datasource. This
means the datasource JNDI name that you specify for transaction use in the
bes.properties file will need to point to an XA-datasource in the DAR file.

Note The transactional behavior, for example the rollback operation, is only applicable if you
set the persistent store to CMT.

254 AppServer Developer ’s Guide

Part i t ion Service propert ies for Scheduler Serv ice

Partition Service properties for Scheduler Service
Quartz is introduced as a new service in the partition's configuration file, partition.xml.
The table below lists the partition service properties that are specific to Quartz
integration.

Property Name Description Default Value

lifecycle.class BES partition makes it possible to
dynamically add new services which can
follow the life cycle of the partition process.

com.borland.jms.
SchedulerPartitionService

properties.location Specifies the location of the configuration
file.

<appserverInstallRoot>\
var\domains\base\
configurations\
<configName>\mos\
<partitionName>\adm\
scheduler\bes.properties

sql.location Specifies the location of the sql scripts
which you can use to create tables in the
database

<partition_dir>\adm\
scheduler\
tables_jdatastore.sql

scheduler.clean_persistent_data_on_startup Indicates whether to clean up the database
tables containing scheduling data across
partition restart.

false

scheduler.database_softcommit This property is only relevant when
JDataStore is used as the backing store for
persistence. This property provides
improved performance during commit
process, but with lack of recoverability in
some rare failure scenarios. See the
JDataStore documentation for more details.
This property is also used in AppServer
JSS.

true

scheduler.transaction_timeout Transaction timeout No timeout. You can
override the default by
specifying the time in
seconds before timeout
occurs.

scheduler.auto_create_tables Auto create Quartz tables if they do not
already exist

true

scheduler.max_redelivery_count Number of times scheduler service will try to
redeliver the event in case transaction rolls
back

1

scheduler.use_default_datasource Whether or not to use our default
datasource which has the JNDI URL jdbc/
quartz and points to JDataStore database at
adm/scheduler/database/scheduler.jds

yes

Chapter 29: Using the Scheduler Service 255

Quartz propert ies used in AppServer

Quartz properties used in AppServer
The table below lists the properties in Quartz that are used by AppServer Scheduler
Service. These properties are listed in the <appserver-install>\var\domains\base\
configurations\<configuration_name>\mos\<partition_name>\adm\scheduler\
bes.properties file. For a detailed description of these properties, see the Quartz
documentation.

Property Name Description Default Value

org.quartz.scheduler.instanceName Specifies the name of the scheduler TestScheduler

org.quartz.scheduler.instanceId Specifies the id of the scheduler AUTO

org.quartz.scheduler.
wrapJobExecutionInUserTransaction

Set this property to true to start a
UserTransaction before calling
execute on the job. The transaction
will commit after the job's execute
method completes, and the
JobDataMap is updated

True

org.quartz.scheduler.userTransactionURL Specifies the JNDI URL of Application
Server's UserTransaction manager.
This is only used together with
JobStoreCMT

java:comp/
UserTransaction

org.quartz.threadPool.class Specifies the threadpool class org.quartz.simpl.
SimpleThreadPool

org.quartz.threadPool.threadCount Specifies the number of threads that
are available for concurrent execution
of jobs. The practical value is from 1-
100

30

org.quartz.threadPool.threadPriority Specifies the thread priority. The
value is between
Thread.MIN_PRIORITY (1) and
Thread.MAX_PRIORITY(10)

5

org.quartz.threadPool.makeThreadsDaemons Set this property to true to make the
threads in the pool created as
daemon threads

True

org.quartz.jobStore.class Specifies the JobStore class. Set this
property to RAMJobStore for non-
persistent and to JobStoreTx or
JobStoreCMT for persistent jobs and
triggers. JobStoreTx is for standalone
Scheduler Service; JobStoreCMT is
used if datasources are to managed
by the appserver.

RAMJobStore (Memory).
Currently, the AppServer
Scheduler Service only
supports RAMJobStore
and JobStoreCMT

org.quartz.jobStore.driverDelegateClass org.quartz.impl.jdbcjobstore.oracle.Or
acleDelegate for Oracle database and
org.quartz.impl.jdbcjobstore.HSQLDB
Delegate for JDataStore

org.quartz.impl.jdbcjobsto
re.HSQLDBDelegate.
Currently AppServer
Scheduler Service only
supports JdataStore and
Oracle database

org.quartz.jobStore.dataSource Specifies the name of the container
managed transaction(CMT)
datasource. JobStoreCMT requires
one CMT and one non-CMT
datasource.

myDS

org.quartz.jobStore.nonManagedTXDataSource Specifies the name of the non-
container managed transaction
datasource

myDSNoTx

256 AppServer Developer ’s Guide

Cluster ing support

Clustering support
The Borland AppServer provides clustering support for the Scheduler Service. For
example, if you have two identical partitions with Scheduler Service enabled on both of
them. If you deploy the same application on them and register a timer in one of the
applications, if that partition goes down, assuming that both applications are pointing to
the same database, the replica could continue to get the timer events. The AppServer
Scheduler Service supports failover.

org.quartz.dataSource.NAME_CMT.jndiURL Specifies the JNDI URL of the CMT
data source. NAME_CMT is the name
of the CMT datasource

jdbc/Quartz

org.quartz.dataSource.NAME_NOT_CMT.jndiURL Specifies the JNDI URL of the non-
CMT data source. NAME_NOT_CMT
is the name of the non-CMT
datasource

jdbc/Quartz

Property Name Description Default Value

Chapter 30: Implement ing Part i t ion Interceptors 257

C h a p t e r

Chapter 30Implementing Partition Interceptors
Implementing Partition Interceptors requires the following steps:

1 Defining your interceptor using the module-borland.xml descriptor file.

2 Creating the interceptor class.

3 JARing the class and the descriptor file.

4 Deploy the JAR to the Partition of interest.

Defining the Interceptor
You define the interceptor by creating a module-borland.xml file. This file uses the
following DTD:

<!ELEMENT module (Partition-interceptor?)>
<!ELEMENT Partition-interceptor (class-name, argument?, priority?)>
<!ELEMENT class-name (#PCDATA)>
<!ELEMENT argument (key, value)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT priority (#PCDATA)>

The <class-name> element must contain the full-path class name of the implementation
contained within the JAR.

The <priority> element is an optional field that controls the order in which a set of
interceptors for a particular Partition are fired. This value must be between 0 and 9.
Priority 0 ranks before priority 9. Interceptors are fired in order during load time and in
reverse order during shutdown. If two or more interceptors share the same priority,
there is no way to determine or enforce which of that set will be fired relative to the
other.

The <argument> is an optional element which contains a pair of elements, <key> and
<value>. These are passed into your class implementation as a java.util.HashMap. Your
code must extract the appropriate values from this type. The limit on arguments is
imposed by the JVM implementation.

258 AppServer Developer ’s Guide

Creat ing the Interceptor Class

For example, the following XML defines an interceptor called InterceptorImpl:

<module>
<Partition-interceptor>
 <class-name>com.borland.enterprise.examples.InterceptorImpl</class-name>
 <argument>
 <key>key1</key>
 <value>value1</value>
 </argument>
 <argument>
 <key>key2</key>
 <value>value2</value>
 </argument>
 <argument>
 <key>key3</key>
 <value>value3</value>
 </argument>
 <priority>1</priority>
</Partition-interceptor>
</module>

Creating the Interceptor Class
Your class must implement:

com.borland.enterprise.server.Partition.service.PartitionInterceptor

The following methods are available:

■ public void initialize(java.util.HashMap args);

This method is called before any Partition services like the Tomcat container are
created and initialized. This method is not subject to the <priority> parameter, since
it is invoked as each interceptor is loaded.

■ public void startupPreLoad();

This method is called after Partition services are started and before the Partition
services load modules.

■ public void startupPostLoad();

This method is invoked after all Partition services have loaded their respective
modules.

■ public void shutdownPreUnload();

This method is called before the Partition services unload their respective modules.
The <priority> parameter now reverses its meaning; priority 9 interceptors are called
first, then priority 8, and so forth.

■ public void shutdownPostUnload();

This method is called after the services have unloaded their modules.

■ public void PartitionTerminating();

This method is called after the services have been shut down, just before the
Partition shuts down.

Chapter 30: Implement ing Part i t ion Interceptors 259

Creat ing the Interceptor Class

The following code sample shows the class InterceptorImpl defined in the module-
borland.xml descriptor above:

package com.borland.enterprise.examples;

// This interface is contained in xmlrt.jar
import com.borland.enterprise.server.Partition.service.PartitionInterceptor;

public class InterceptorImpl implements PartitionInterceptor {
 static final String _className = "InterceptorImpl";

 public void initialize(java.util.HashMap args) {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": initialize");
 System.out.println("key1 has value " + args.get("key1").toString());
 System.out.println("key2 has value " + args.get("key2").toString());
 System.out.println("key3 has value " + args.get("key2").toString());
 }
 public void startupPreLoad() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": startupPreLoad");
 }
 public void startupPostLoad() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": startupPostLoad");
 }
 public void shutdownPreUnload() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": shutdownPreUnload");
 }
 public void shutdownPostUnload() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": shutdownPostUnload");
 }
 public void PartitionTerminating() {
 // Writing to System.out and System.err will
 // cause the output to be logged.
 // There is no requirement to log.
 System.out.println(_className + ": PartitionTerminating");
 }
}

260 AppServer Developer ’s Guide

Creat ing the JAR f i le

Creating the JAR file
Use Java's JAR utility to create a JAR file of the class and its descriptor file.

Deploying the Interceptor
Use the Deployment Wizard to deploy the interceptor to the Partition. Do not check
either the “Verify deployment descriptors” or the “Generate stubs” checkboxes.

Important You must restart the Partition after deploying your interceptor.

You can also simply copy your JAR file into one of these two directories, making sure
you restart the Partition manually afterward:

■ <install_dir>/var/servers/<server_name>/Partitions/<Partition_name>/lib

■ <install_dir>/var/servers/<server_name>/Partitions/<Partition_name>/lib/system

Chapter 31: Vis iConnect overv iew 261

C h a p t e r

Chapter31VisiConnect overview

J2EE Connector Architecture
In the information technology environment, enterprise applications generally access
functions and data associated with Enterprise Information Systems (EIS). This
traditionally has been performed using non-standard, vendor-specific architectures.
When multiple vendors are involved, the number of architectures involved exponentiate
the complexity of the enterprise application environment. With the introduction of the
Java 2 Enterprise Edition (J2EE) 1.4 Platform and the J2EE Connector Architecture
(Connectors) 1.5 standards, this task has been greatly simplified.

VisiConnect, the Borland implementation of the Connectors 1.5 standard, provides a
simplified environment for integrating various EISs with the Borland AppServer
(AppServer). The Connectors provides a solution for integrating J2EE-platform
application servers and EISs, leveraging the strengths of the J2EE platform—
connection, transaction and security infrastructure—to address the challenges of EIS
integration. With the Connectors, EIS vendors need not customize integration to their
platforms for each application server. Through VisiConnect's strict conformance to the
Connectors, the AppServer itself requires no customization in order to support
integration with a new EIS.

Connectors enables EIS vendors to provide standard Resource Adapters for their
EISs. These Resource Adapters are deployed to the AppServer, each providing the
integration implementation between the EIS and the AppServer. With VisiConnect, the
AppServer ensures access to heterogeneous EISs. In turn, the EIS vendors need
provide only one standard Connectors-compliant resource adapter. By default, this
resource adapter has the capability to deploy to the AppServer.

262 AppServer Developer ’s Guide

Components

Components
The Connectors environment consists of two major components—the implementation
of the Connectors in the application server, and the EIS-specific Resource Adapter.

In the J2EE 1.4 Architecture, the Connectors is an extension of the J2EE Container,
otherwise known as the application server. In compliance with the J2EE 1.4 Platform
and Connectors 1.5 specifications, VisiConnect is an extension of the AppServer, and
not a service in and of itself. The following diagram illustrates VisiConnect within the
AppServer Architecture:

Figure 31.1 VisiConnect within the AppServer

(VisiConnect is represented above by the module titled “Connectors.”)

A Resource Adapter is a system-level driver specific to an EIS, which provides access
to that EIS. To put it simply, a Resource Adapter is analogous to a JDBC driver. The
interface between a Resource Adapter and the EIS is specific to the EIS. It can be
either a Java interface or a native interface.

The Connectors consists of three main components:

■ System Contracts that provide the integration between the Resource Adapter and
the application server (AppServer).

■ Common Client Interface that provides a standard client API for Java applications,
frameworks, and development tools to interact with the Resource Adapter.

■ Packaging and Deployment that provides the capacity for various Resource
Adapters to plug into J2EE applications in a modular manner.

Chapter 31: Vis iConnect overview 263

System Contracts

The following diagram illustrates the Connectors architecture:

A Resource Adapter and its collateral serve as the Connector. VisiConnect supports
Resource Adapters developed by EIS vendors and third-party application developers
written to the Connectors 1.5 standard. Resource Adapters contain the components—
Java, and if necessary, native code—required to interact with the specific EIS.

System Contracts
The Connectors specification defines a set of system level contracts between the
application server and an EIS-specific Resource Adapter. This collaboration keeps all
system-level mechanism transparent from the application components. Thus, the
application component provider focuses on the development of business and
presentation logic, and need not delve into the system-level issues related to EIS
integration. This promotes the development of application components with greater
ease and maintainability.

VisiConnect, in compliance with the Connectors specification, has implemented the
standard set of defined contracts for:

■ Connection Management, that allows an application server to pool connections to
underlying EISs, providing application components with connection services to
EISs. This leads to a highly scalable application environment that supports a large
number of clients requiring access to heterogeneous EISs.

■ Transaction Management, the contract between the application server transaction
manager and an EIS supporting transactional access to EIS resource managers,
that enables the application server to manage transactions across multiple resource
managers.

■ Security Management, that enables secure access to underlying EISs. This
provides support for a secure application environment, which reduces security
threats to the EIS and protects valuable information resources managed by the EIS.

■ Lifecycle Management allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to
bootstrap a resource adapter instance during its deployment or application server
startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

264 AppServer Developer ’s Guide

System Contracts

■ Work Management allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an
application server for execution. The application server dispatches threads to
execute submitted Work instances. This allows a resource adapter to avoid creating
or managing threads directly, and allows an application server to efficiently pool
threads and have more control over its runtime environment. The resource adapter
can control the security context and transaction context with which Work instances
are executed.

■ Transaction Inflow allows a resource adapter to propagate an imported transaction
to an application server. This contract also allows a resource adapter to transmit
transaction completion and crash recovery calls initiated by an EIS, and ensures
that the ACID properties of the imported transaction are preserved.

■ Message Inflow allows a resource adapter to asynchronously deliver messages to
message endpoints residing in the application server independent of the specific
messaging style, messaging semantics, and messaging infrastructure used to
deliver messages. This contract also serves as the standard message provider
pluggability contract that allows a wide range of message providers (Java Message
Service (JMS), Java API for XML Messaging (JAXM), etc.) to be plugged into any
J2EE compatible application server via a resource adapter.

Connection Management

Connections to an EIS are expensive resources to create and destroy. To support
scalable applications, the application server needs to be able to pool connections to
the underlying EISs. To simplify application component development, this connection
pooling mechanism needs to be transparent to the components accessing the
underlying EISs.

The Connectors specification supports connection pooling and management,
optimizing application component performance and scalability. The connection
management contract, defined between the application server and the Resource
Adapter, provides:

■ A consistent application development model for connection acquisition for both
managed (n-tier) and non-managed (two-tier) applications.

■ A framework for the Resource Adapter to provide a standard connection factory and
connection interface based on the Common Client Interface (CCI), opaque to the
implementation for the underlying EIS.

■ A generic mechanism for providing different quality of services (QoS) advanced
connection pooling, transaction management, security management, error tracing
and logging—for a configured set of Resource Adapters.

■ Support for the application server to implement its connection pooling facility.

VisiConnect uses connection management to:

■ Create new connections to an EIS

■ Configure connection factories in the Java Naming and Directory Interface (JNDI)
namespace.

■ Find the right connection to an EIS from an existing set of pooled connections, and
reuse that connection.

■ Hook in AppServer's transaction and security services.

The AppServer establishes, configures, caches and reuses connections to the EIS
automatically through VisiConnect.

Chapter 31: Vis iConnect overview 265

System Contracts

The application component performs a lookup of a Resource Adapter connection
factory in the JNDI namespace, using the connection factory to get a connection to the
underlying EIS. The connection factory delegates the connection creation request to
the VisiConnect connection manager instance. On receiving this request, the
connection manager performs a lookup in the connection pool. If there is no connection
in the pool that can satisfy the connection request, VisiConnect uses the
ManagedConnectionFactory implemented by the Resource Adapter to create a new
physical connection to the underlying EIS. If VisiConnect finds a matching connection
in the pool, it then uses the matching ManagedConnection instance to satisfy the
connection request. If a new ManagedConnection instance is created, the server adds the
new ManagedConnection instance to the connection pool.

VisiConnect registers a ConnectionEventListener with the ManagedConnection instance.
This listener enables VisiConnect to receive event notifications related to the state of
the ManagedConnection instance. VisiConnect uses these notifications to manage
connection pooling, transactions, connection cleanup and handle error conditions.

VisiConnect uses the ManagedConnection instance to provide a Connection instance that
acts as an application-level handle to the underlying physical connection, to the
application component. The component in turn uses this handle—and not the
underlying physical connection directly—to access EIS resources.

Transaction Management

Transactional access to multiple EISs is an important and often critical requirement for
enterprise applications. The Connectors supports transaction access to multiple,
heterogeneous EISs—where a number of interactions must be committed together, or
not at all, in order to maintain data consistency and integrity.

VisiConnect utilizes the AppServer's transaction manager and supports Resource
Adapters conforming to the following transaction support levels.

■ No Transaction support: if a Resource Adapter supports neither Local
Transactions nor XA Transactions, it is non-transactional. If an application
component uses a non-transactional Resource Adapter, the application component
must not involve any connections to the respective EIS in a transaction. If the
application component is required to involve EIS connections in a transaction, the
application component must use a Resource Adapter which support Local or XA
Transactions.

■ Local Transaction support: the application server manages resources directly,
which are local to the Resource Adapter. Unlike XA Transactions, local transactions
can neither participate in the two-phase commit (2PC) protocol, nor participate as a
distributed transaction (whereas the transaction context is simply propagated);
instead, local transactions solely target one-phase commit (1PC) optimization. A
Resource Adapter defines the type of transaction support in its Sun standard
deployment descriptor. When an application component requests an EIS connection
as part of a transaction, AppServer starts a local transaction based on the current
transaction context. When the application closes the connection, AppServer
commits the local transaction, and cleans up the EIS connection once the
transaction is completed.

■ XA Transaction support: a transaction is managed by a transaction manager
external to the Resource Adapter and the EIS. A Resource Adapter defines the type
of transaction support in its Sun-standard deployment descriptor. When an
application component demarcates an EIS connection request as part of a
transaction, the AppServer is responsible for enlisting the XA resource with the

266 AppServer Developer ’s Guide

System Contracts

transaction manager. When the application component closes that connection, the
application server unlists the XA resource from the transaction manager, and cleans
up the EIS connection once the transaction is completed.

In compliance with the Connectors 1.5 specification, VisiConnect provides full
support for all three specified transaction levels.

One-Phase Commit Optimization
In many cases, a transaction is limited in scope to a single EIS, and the EIS resource
manager performs its own transaction management—this is the Local Transaction. An
XA Transaction can span multiple resource managers, thus requiring transaction
coordination to be performed by an external transaction manager, typically one
packaged with an application server. This external transaction manager can either use
the 2PC protocol, or propagate the transaction context as a distributed transaction, to
manage a transaction that spans multiple EISs. If only one resource manager is
participating in an XA Transaction, it uses the 1PC protocol. In an environment where a
singleton resource manager is handling its own transaction management, 1PC
optimization can be performed, as this involves a less expensive resource than a 1PC
XA Transaction.

Security Management

In compliance with the Connectors 1.5 specification, VisiConnect supports both
container-managed and component-managed sign-on. At runtime, VisiConnect
determines the selected sign-on mechanism based on information specified in
deployment descriptor of the invoking component. If VisiConnect is unable to
determine the sign-on mechanism requested by the component (most often due to an
improper JNDI lookup of the Resource Adapter connection factory), VisiConnect will
attempt container-managed sign-on. If the component has specified explicit security
information, this will be presented in the call to obtain the connection, even in the case
of container-managed sign-on.

Component-Managed Sign-on
When employing component-managed sign-on, the component provides all the
required security information—most commonly a username and a password—when
requesting to obtain a connection to an EIS. The application server provides no
additional security processing other than to pass the security information along on the
request for the connection. The Resource Adapter uses the component-provided
security information to perform EIS sign-on in an implementation-specific manner.

Container-Managed Sign-on
When employing container-managed sign-on, the component does not present any
security information, and the container must determine the necessary sign-on
information, providing this information to the Resource Adapter in the request to obtain
a connection. The container must determine an appropriate resource principal and
provide this resource principal information to the Resource Adapter in the form of a
Java Authentication and Authorization Service (JAAS) Subject object.

EIS-Managed Sign-on
When employing EIS-managed sign-on, the Resource Adapter internally obtains all of
its EIS connections with a pre-configured, hard-coded set of security information. In
this scenario the Resource Adapter does not depend upon the security information
passed to it in the invoking component's requests for new connections.

Chapter 31: Vis iConnect overview 267

System Contracts

Authentication Mechanisms
The AppServer user must be authenticated whenever they request access to a
protected AppServer resource. For this reason, each user is required to provide a
credential (a username/password pair or a digital certificate) to AppServer. The
following types of authentication mechanisms are supported by AppServer:

■ Password authentication a user ID and password are requested from the user and
sent to AppServer in clear text. Borland Enterprise Server checks the information
and if it is trustworthy, grants access to the protected resource.

■ The SSL (or HTTPS) protocol can be used to provide an additional level of security
to password authentication. Because the SSL protocol encrypts the data transferred
between the client and AppServer, the user ID and password of the user do not flow
in the clear. Therefore, AppServer can authenticate the user without compromising
the confidentiality of the user's ID and password.

■ Certificate authentication: when an SSL or HTTPS client request is initiated,
AppServer responds by presenting its digital certificate to the client. The client then
verifies the digital certificate and an SSL connection is established. The
CertAuthenticator class then extracts data from the client's digital certificate to
determine which AppServer User owns the certificate and then retrieves the
authenticated User from the AppServer security realm.

■ You can also use mutual authentication. In this case, Borland Enterprise Server not
only authenticates itself, it also requires authentication from the requesting client.
Clients are required to submit digital certificates issued by a trusted certificate
authority. Mutual authentication is useful when you must restrict access to trusted
clients only. For example, you might restrict access by accepting only clients with
digital certificates provided by you.

For more information, see “Getting Started with Security” in the Developer's Guide.

Security Map
In Section 8.5 of the Connectors 1.5 specification, a number of possible options are
identified for defining a Resource Principal on the behalf of whom sign-on is being
performed. VisiConnect implements the Principal Mapping option identified in the
specification.

Under this option, a resource principal is determined by mapping from the identity of
the initiating caller principal for the invoking component. The resulting resource
principal does not inherit the identity of security attributes of the principal that is it
mapped from. Instead, the resource principal derives its identity and security attributes
based on the defined mapping. Thus, to enable and use container-managed sign-on,
VisiConnect provides the Security Map to specify the initiating principal association
with a resourceprincipal. Expanding upon this model, VisiConnect provides a
mechanism to map initiating caller roles to resource roles.

If container-managed sign-on is requested by the component and no Security Map is
configured for the deployed Resource Adapter, an attempt is made to obtain the
connection using a null JAAS Subject object. This is supported based upon the
Resource Adapter implementation.

While the defined connection management system contracts define how security
information is exchanged between the AppServer and the Resource Adapter, the
determination to use container-managed sign-on or component-managed sign-on is
based on deployment information defined for the component requesting a connection.

268 AppServer Developer ’s Guide

Common Cl ient Interface (CCI)

The Security Map is specified with the security-map element in the ra-borland.xml
deployment descriptor. This element defines the initiating role association with a
resource role. Each security-map element provides a mechanism to define appropriate
resource role values for the Resource Adapter and EIS sign-on processing. The
security-map elements provide the means to specify a defined set of initiating roles and
the corresponding resource role to be used when allocating managed connections and
connection handles.

A default resource role can be defined for the connection factory in the security-map
element. To do this, specify a user-role value of “*” and a corresponding resource-role
value. The defined resource-role is then utilized whenever the current identity if not
matched elsewhere in the Security Map.

This is an optional element. However, it must be specified in some form when
container-managed sign-on is supported by the Resource Adapter and any component
uses it. Additionally, the deployment-time population of the connection pool is
attempted using the defined default resource role, given that one is specified.

Security Policy Processing
The Connectors 1.5 specification defines default security policies for any Resource
Adapters running in an application server. It also defines a way for a Resource Adapter
to provide its own specific security policies overriding the default.

In compliance with this specification, AppServer dynamically modifies the runtime
environment for Resource Adapters. If the Resource Adapter has not defined specific
security policies, AppServer overrides the runtime environment for the Resource
Adapter with the default security policies specified in the Connectors 1.5 specification.
If the Resource Adapter has defined specific security policies, Borland Enterprise
Server first overrides the runtime environment for the Resource Adapter first with a
combination of the default security policies for Resource Adapters and the specific
policies defined for the Resource Adapter. Resource Adapters define specific security
policies using the security-permission-spec element in the ra.xml deployment
descriptor file.

For more information on security policy processing requirements, see Section 18.2,
“Security Permissions”, in the Connectors 1.5 specification (http://java.sun.com/j2ee/
download.html#connectorspec).

Common Client Interface (CCI)
The Common Client Interface (CCI) defines a standard client API for application
components. The CCI enables application components, Enterprise Application
Integration (EAI) frameworks, and development tools to drive interactions across
heterogeneous EISs using a common client API.

The CCI is targeted for use by EAI and enterprise tool vendors. The Connectors 1.5
specification recommends that the CCI be the basis for richer functionality provided by
the tool vendors, rather than being an application-level programming interface used by
most application developers. Application components themselves may also write to the
API. As the CCI is a low-level interface, this use is generally reserved for the migration
of legacy modules to the J2EE 1.4 Platform. Through the CCI, legacy EIS clients can
integrate directly with the AppServer; this provides for a smoother, less costly migration
path to J2EE 1.4.

The CCI defines a remote function call interface that focuses on executing functions on
an EIS and retrieving the results. The CCI is independent of a specific EIS; in other
words, it is not bound to the data types, invocation hooks, and signatures of a particular
EIS. The CCI is capable of being driven by EIS-specific metadata from a repository.

Chapter 31: Vis iConnect overview 269

Common Cl ient Inter face (CCI)

The CCI enables the AppServer to create and manage connections to an EIS, execute
an interaction, and manage data records as input, output, or return values. The CCI is
designed to leverage the Java Beans architecture and Java Collection framework.

The Connectors 1.5 specification recommends that a Resource Adapter support CCI
as its client API, while it requires the Resource Adapter to implement the system
contracts. A developer may choose to write the Resource Adapter to provide a client
API different from the CCI, such as:

■ the Java Database Connectivity (JDBC) API (an example of a general EIS-type
interface), or

■ for example, the client API based on the IBM CICS Java Gateway (an example of a
EIS-specific interface)

The CCI (which form the application contract) consists of the following:

■ ConnectionFactory A ConnectionFactory implementation creates a connection
and interaction object as a means of interacting with an EIS. Its getConnection
method gets a connection to an EIS instance.

■ Connection A Connection implementation represents an application level handle to
an EIS instance. The actual connection is represented by a ManagedConnection.
An application gets a Connection object by using the getConnection method of a
ConnectionFactory object.

■ Interaction An Interaction implementation is what drives a particular interaction. It is
created using the ConnectionFactory. The following three arguments are needed to
carry out an interaction via the Interaction implementation: InteractionSpec, which
identifies the characteristics of the concrete interaction, and Input and Output, which
both carry the exchanged data.

■ InteractionSpec An InteractionSpec implementation defines all interaction-relevant
properties of a connector (for example, the name of the program to call, the
interaction mode, and so forth). The InteractionSpec is passed as an argument to an
Interaction implementation when a particular interaction has to be carried out.

■ Input and output The input and output are records.

A record is a logical collection of application data elements that combines the actual
record bytes together with its type. Examples are COBOL and C data structures.
Record implementation in CCI uses streams. In the javax.resource.cci.Streamable
interface, reading and writing from streams is handled by read and write methods. In
the javax.resource.cci.Record interface, getRecordName() and
getRecordShortDescription(), and setRecordName() and setRecordShortDescription()
get and set the record data.

You must create records for all of the data structures that are externalized by the EIS
functions you want to reuse. You then use the records as input and output objects that
pass data via a Resource Adapter to and from an EIS. You will want to consider the
following options when creating a record:

■ Having direct access to nested, or hierarchical, records A direct, or 'flattened',
set of accessor methods may be more convenient, or seem more natural, to some
users. For example, programmers accustomed to COBOL may expect to be able to
refer directly to the field of a sub-record if the field name is unique within the record.
This is similar to the way COBOL field names are scoped. There is no need to
qualify field names if the field name is unique.

■ Custom and Dynamic Records You can generally create two types of records:
custom and dynamic. The main difference between these is the way fields are
accessed. For dynamic records, the fields are found by taking the field name,
looking up the offset and the marshalling of the information, and then accessing it.

270 AppServer Developer ’s Guide

Packaging and Deployment

For custom records, the offset and the marshalling of the information is in the code,
resulting in faster access. Generating custom records results in more efficient code,
but there are restrictions on their use.

■ Records with or without notification If a record is created with notification, then
the properties of the record are bound.

Note If bound properties are not required, then it is more efficient to create a record
without notification.

Packaging and Deployment
The Connectors provides packaging and deployment interfaces so that various
Resource Adapters can be deployed to J2EE 1.4 Platform compliant application
servers, such as the AppServer.

Figure 31.2 Packaging and Deployment in the AppServer and VisiConnect

A Resource Adapter packages a set of Java interfaces and classes, which implement
the Connectors-specified system contracts and EIS-specific functionality to be
provided by the Resource Adapter. The Resource Adapter can also require the use of
native libraries specific to the underlying EIS, and other collateral, for example:

■ Documentation

■ Help files

■ A code generator for EJBs

■ A tool that directly provides configuration utilities so you can configure the EIS
directly

■ A tool that provides additional deployment facilities for remote Resource Adapter
components

■ For example, with IBM CICS, a set of JCL scripts that you may need to run on the
mainframe

Chapter 31: Vis iConnect overview 271

Vis iConnect Features

The Java interfaces and classes are packaged together, with required collateral and
deployment descriptors, to create a Resource Adapter module. The deployment
descriptors define the deployment contract between a Resource Adapter and the
application server

A Resource Adapter can be deployed as a shared, standalone module, or packaged as
part of a J2EE application. During deployment, the Resource Adapter module is
installed on the AppServer and configured for the target operational environment. The
configuration of a Resource Adapter is based on the properties defined in the
deployment descriptors.

VisiConnect Features
Among the value-added features provided by VisiConnect as enhancements to the
Connectors standard are the following:

■ VisiConnect Partition Service

■ Additional Classloading Support

■ Secure Password Credential Storage

■ Connection Leak Detection

■ Security Policy Processing of ra.xml Specifications

VisiConnect Partition Service

The Borland Partition with the VisiConnect service enabled is designed to support
development and deployment of J2EE applications which bundle Resource Adapters,
or standalone Resource Adapter components. The AppServer Partition provides
integrated VisiConnect services. Tools include a Deployment Descriptor Editor (DDE)
and a set of task wizards for packaging and deploying Resource Adapters and their
related descriptor files.

This provides a highly modular environment for running VisiConnect. The AppServer
provides a default VisiConnect Service in Partitions for deployment.

Additional Classloading Support
VisiConnect supports the loading of properties or classes that are specified in
ClassPath entry of the Resource Adapter's Manifest.mf file. The following is a
description of how you configure properties and classes that are in and used by a
Resource Adapter.

The Resource Adapter (RAR) archive file and the application component using it (for
example, an EJB jar) are contained in an Enterprise Application (EAR) archive. The
RAR requires resources such as Java properties that are stored in a JAR file, and that
JAR file is contained within the EAR file (not in the RAR itself).

You specify a reference to the RAR Java classes by adding a ClassPath= entry in the
RAR Manifest.mf file. You can also store the EJB Java classes in the same JAR file
that is contained within the EAR. This scenario provides a “support” JAR file that
contains Java classes for the components in the EAR that require them.

Secure Password Credential Storage
VisiConnect provides a standard method for Resource Adapter deployers to plug in
their specified authorization/authentication mechanism through secure password
credential storage.

272 AppServer Developer ’s Guide

Resource Adapters

This storage mechanism is used to map user roles (AppServer roles, which may be
associated with AppServer username and password combinations or credentials) to
resource roles (EIS roles, which may be associated with EIS user name and password
combinations or credentials).

Connection Leak Detection
VisiConnect provides two mechanisms for preventing connection leaks:

■ Leveraging a garbage collector

■ Providing an idle timer for tracking the usage of connection objects

Security Policy Processing of ra.xml Specifications
VisiConnect provides a set of security permissions for execution of a Resource Adapter
in a managed runtime environment. The AppServer also grants a Resource Adapter
explicit permissions to access system resources.

Resource Adapters
Source code for several Resource Adapters are provided with VisiConnect as
examples. Some of these Resource Adapters are wrappers for JDBC 2.0 calls, some
using the CCI and some not. Deployment descriptors supporting the three transaction
levels are provided for each Resource Adapter.

Simplified application examples for these JDBC Resource Adapters are provided with
VisiConnect. An EJB is used to model the data in the EIS, and a J2EE client and a
Servlet are used to query the Resource Adapter and display the output. The example
uses any RDBMS which is supported by a JDBC 2.0 compliant driver. By default, the
examples are configured to use JDataStore as the EIS, but it is a straightforward task
to configure them to use any JDBC 2.0 RDBMS. The components are packaged as a
J2EE Application. For more information, refer to the VisiConnect example README
provided with the AppServer.

Other sample resource adapters provided with the product include an open-source
generic JMS resource adapter with instructions for integrating with JMS providers such
as Tibco and OpenJMS, and a mail resource adapter which allows you to use an email
server as an EIS. These samples demonstrate the use of message inflow to allow for
inbound communication from the EIS to the application server, as well as outbound
connection capability.

Chapter 32: Using Vis iConnect 273

C h a p t e r

Chapter 32Using VisiConnect
The Java 2 Enterprise Edition (J2EE) Connector Architecture enables EIS vendors and
third-party application developers to develop Resource Adapters that can be deployed
to any application server supporting the J2EE 1.4 Platform Specification. The
Resource Adapter provides platform-specific integration between the J2EE component
and the EIS. When a Resource Adapter is deployed to the Borland AppServer
(AppServer), it enables the development of robust J2EE applications which can access
a wide variety of heterogeneous EISs. Resource Adapters encapsulate the Java
components, and if necessary, the native components required to interact with the EIS.

Before using VisiConnect, Borland recommends that you read the Connectors 1.5
specification.

VisiConnect service
Resource adapters are hosted by Partitions with the VisiConnect Partition Service
enabled. Multiple Resource Adapters can be deployed in the same Partition.
VisiConnect is responsible for making the connection factories of its deployed
Resource Adapters available to the client through JNDI. Thus, the client can look up
the connection factory for a specific Resource Adapter using JNDI.

Service overview

The VisiConnect Service is a complete implementation of the Connectors 1.5
specification, including all optional functionality.

Every Resource Adapter object in the deployed Connector is simultaneously both a
Resource Adapter object and a CORBA object.

Unlike other Connectors implementations, VisiConnect has no restrictions on
partitioning. Any number of Resource Adapters can go into any number of Partitions
running on any number of machines. Plus, support for distributed transactions protocol
allows Resource Adapters to be partitioned arbitrarily. Partitioning enables you to
configure the application during deployment to optimize its overall performance.

274 AppServer Developer ’s Guide

Connect ion management

Connection management
The ra.xml deployment descriptor file contains a config-property element to declare a
single configuration setting for a ManagedConnectionFactory instance. The resource
adapter provider typically sets these configuration properties. However, if a
configuration property is not set, the resource adapter deployer is responsible for
providing a value for the property.

Borland provides its own deployment descriptor for defining connectors and their
connection factory properties: ra-borland.xml. See Borland DTDs for more information
on using the ra-borland.xml descriptor.

Configuring connection properties

The following connection pool properties can be set:

The following properties have been deprecated and are now ignored by VisiConnect.
They have been replaced by the pool properties busy-timeout, idle-timeout, and wait-
timeout, listed in the table above. You do not have to delete the old-style properties
from ra-borland.xml.

Property Value type Description Default

wait-timeout Integer The number of seconds to wait for a free
connection when maximum-capacity
connections are already opened. When
using the maximum-capacity property and the
pool is at its max and can't serve any more
connections, the threads looking for
connections end up waiting for the
connection(s) to become available for a
long time if the wait time is unbounded (set
to 0 seconds). You can set the wait-timeout
period to suit your needs.

30

busy-timeout Integer The number of seconds to wait before a
busy connection is released. If a connection
is busy for a long time, the application using
it may have hung and be unable to release
the connection. This timeout will ensure that
connections will be timed out when they
have been busy for much longer than
necessary.

600 (ten minutes)

idle-timeout Integer A pooled connection remaining in an idle
state for a period of time longer than this
timeout value should be closed to conserve
resources. All idle connections are checked
for idle-timeout expiration every 60
seconds. The value of the idle-timeout is
given in seconds. A value of 0 (zero)
indicates that connection cleanup is
disabled.

600 (ten minutes)

maximum-capacity Integer Identifies the maximum number of
managed connections which VisiConnect
will allow. Throws
ResourceAllocationException when requests
for newly allocated managed connections
go beyond this limit.

10

Chapter 32: Using VisiConnect 275

Securi ty management wi th the Secur i ty Map

Unused Pool properties

Security management with the Security Map
The Security Map enables the definition of user roles that can be

1 Used directly with the EIS for container-managed sign-on (use-caller-identity).

2 Mapped to an appropriate resource role for container-managed sign-on (run-as).

In the first case, when the user role identified at run time is found in the mapping, the
user role itself is used to provide security information for interacting with an EIS. In the
second case, when the user role identified at run time is found in the mapping, the
associated resource role is used to provide security information for interacting with an
EIS.

The use-caller-identity option is used when user identities in the user role identified at
run time are available to the EIS as well. For example, a user identity, “borland”/
”borland”, belonging to role “Borland”, is available to the AppServer, and the available
EIS, a JDataStore database, has an identity of “borland”/”borland” available to it. When
a Resource Adapter serving JDataStore is deployed with a Security Map specifying:

<security-map>
 <user-role>Borland</user-role>
 <use-caller-identity></use-caller-identity>
</security-map>

Applications on this server instance which use this JDataStore database can use use-
caller-identity to access it.

Note Due to a limitation currently in VisiSecure, you must define the caller identity in the
resource vault as well as the user vault.

The run-as option is used when it makes sense to map user identities in the user role
identified at run time to identities in the EIS. For example, a user identity, “demo”/
”demo”, belonging to role “Demo”, is available to the AppServer, and the available EIS,
an Oracle database, has an identity of “scott”/”tiger”, which is ideal for a demo user.
When a Resource Adapter serving Oracle is deployed with a Security Map specifying:

<security-map>
 <user-role>Demo</user-role>
 <run-as>
 <role-name>oracle_demo</role-name>
 <role-description>Oracle demo role</role-description>
 </run-as>
</security-map>

The role oracle_demo is defined in the resource vault (see below), applications on this
server instance which use this Oracle database can use run-as to access it.

Property Default Description

initial-capacity 1 Identifies the initial number of managed connections which
VisiConnect will attempt to obtain during deployment.

capacity-delta 1 Identifies the number of additional managed connections which
the VisiConnect will attempt to obtain during resizing of the
maintained connection pool.

cleanup-enabled true Indicates whether or not the Connection Pool should have
unused Managed Connections reclaimed as a means to control
system resources.

cleanup-delta 1 Identifies the amount of time the Connection Pool Management
will wait between attempts to reclaim unused Managed
Connections.

276 AppServer Developer ’s Guide

Secur i ty management wi th the Secur i ty Map

When run-as is used, the vault must be provided for VisiConnect to use to extract the
security information for the resource role. A resource role name and a set of credentials
are written to this vault. When VisiConnect loads a Resource Adapter with a defined
Security Map using run-as, it will read in the credentials for the defined role name(s)
from the vault.

Authorization domain

The <authorization-domain> element in the ra-borland.xml descriptor file specifies the
authorization domain associated with a specified user role. If <security-map> is set, you
should set <authorization-domain> with its associated domain. If <authorization-
domain> is not set, VisiConnect assumes the use of the default authorization domain.
See “Getting started with security” in the Security Guide for more information on using
authorization domains.

Default roles

In addition, the <security-map> element enables the definition of a default user role that
can be associated with the appropriate resource role. This default role would be
preferred to if the user role identified at run-time is not found in the mapping. The
default user role is defined in the <security-map> element with a <user-role> element
given a value of “*”. For example:

<user-role>*</user-role>

A corresponding <role-name> entry must be included in the <security-map> element.
The following example illustrates the association between an AppServer user role and
a resource role.

<security-map>
 <user-role>*</user-role>
 <run-as>
 <role-name>SHME_OPR</role-name>
 </run-as>
</security-map>

The default user role is also used at deployment time if the connection pool parameters
indicate that the AppServer should initialize connections. The absence of a default user
role entry or the absence of a <security-map> element may prevent the server from
creating connections using container-managed security.

Generating a resource vault

To use run-as security mapping as described above, a resource role(s) must be
defined in a vault which is provided to the AppServer. This is known as the resource
vault.

VisiConnect provides a tool, ResourceVaultGen, to create a resource vault and to
instantiate role objects in this vault. A role name and its associated security credentials
are written to the resource vault by ResourceVaultGen. At this time only credentials of
type Password Credential can be written to the resource vault. The usage of
ResourceVaultGen is as follows:

java -Dborland.enterprise.licenseDir=<install_dir/var/domains/base/
configurations/<configuration_name>/mos/<partition_name>/adm> -
Dserver.instance.root=<install_dir/var/domains/base/configurations/
<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
com.borland.enterprise.visiconnect.tools.ResourceVaultGen -rolename <role_name>
-username <user_name> -password <password> -vaultfile <full path to vault file>
-vpwd <vault_password>

Chapter 32: Using VisiConnect 277

Securi ty management wi th the Secur i ty Map

where:

When using ResourceVaultGen, ensure that the following jars are in your
CLASSPATH:

■ lm.jar
■ visiconnect.jar
■ vbsec.jar
■ jsse.jar
■ jnet.jar
■ jcert.jar
■ jaas.jar
■ jce1_2_1.jar
■ sunjce_provider.jar
■ local_policy.jar
■ US_export_policy.jar

Note If you fail to include these jars in your CLASSPATH when you attempt to generate a
vault, you may end up with a vault file which is invalid. If you attempt to reuse the
invalid vault file, you will encounter an EOFException. To resolve, delete the invalid
vault file and regenerate with ResourceVaultGen, ensuring that you have the proper
jars in your CLASSPATH.

VisiConnect will use the vault if Security Map information is specified in at deployment
time for a Resource Adapter. If the resource vault is password protected, VisiConnect
will need to have the following property passed to it:

-Dvisiconnect.resource.security.vaultpwd=<vault_password>

If the resource vault is in a user specified location (-vaultfile ...), VisiConnect will need
to have the following property passed to it:

-Dvisiconnect.resource.security.login=<path of specified vault file>

The following examples illustrate the use of ResourceVaultGen:

Example 1:

java -Dborland.enterprise.licenseDir=/opt/BES/var<install_dir/var/domains/base/
configurations/<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
 -Dserver.instance.root=/opt/BES/var/servers/servername -
Dpartition.name=standard
 com.borland.enterprise.visiconnect.tools.ResourceVaultGen -rolename
administrator
 -username red -password balloon -vaultfile
 /opt/BES/var/servers/servername/adm/properties/partitions/standard/
resourcevault -vpwd
 lock

-rolename Resource role name to store in the resource vault.

-username Resource username to associate with the resource role.

-password Resource password to associate with the resource role.

-vaultfile
(optional)

Path to the vault file you write the resource role(s)to. If not specified,
ResourceVaultGen will attempt to write to the default resource vault file
<install_dir/var/domains/base/configurations/<configuration_name>/
mos/<partition_name>/adm/properties/
management_vbroker.properties>. If the vault file is does not already
exist, a new vault file will be written to the specified location.

-vpwd
(optional)

Password to assign to the vault for access authorization. If not
specified, the vault will be created without a password.

278 AppServer Developer ’s Guide

Resource Adapter overview

This usage generates a resource vault named resourcevault to /opt/BES/var/servers/
servername/adm/properties/partitions/standard, with a role administrator associated
with a Password Credential with username red and password balloon. The vault file
itself is password protected, using the password lock. For VisiConnect to use this vault,
the following properties must be set for it:

-Dvisiconnect.resource.security.vaultpwd=lock
-Dvisiconnect.resource.security.login=resourcevault

Example 2:

java -Dborland.enterprise.licenseDir=/opt/BES/var/domains/base/configurations/
<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
-Dserver.instance.root=/opt/BES/var/domains/base/configurations/
<configuration_name>/mos/<partition_name>/adm/properties/
management_vbroker.properties>
-Dpartition.name=petstore
com.borland.enterprise.visiconnect.tools.ResourceVaultGen
-rolename manager accounts -username mickey daffy
-password mouse duck -vpwd goofy

This usage generates a default resource vault (named resource_vault) to /opt/BES/var/
servers/servername/adm/properties/partitions/petstore, with a role manager associated
with a Password Credential with username mickey and password mouse, and another
role accounts associated with a Password Credential with username daffy and
password duck. The vault file itself is password protected, using the password goofy.
For VisiConnect to use this vault, the following properties must be set for it:

-Dvisiconnect.resource.security.vaultpwd=goofy

Example 3:

java -Dborland.enterprise.licenseDir=/opt/BES/var/servers/servername/adm -
Dserver.instance.root=/opt/BES/var/servers/servername
-Dpartition.name=standard
com.borland.enterprise.visiconnect.tools.ResourceVaultGen
-rolename OClone ENolco -username darkstar geraldo -password meteor rivera

This usage generates a default resource vault (named resource_vault) to /opt/BES/var/
domains/base/configurations/<configuration_name>/mos/<partition_name>/adm/
properties/management_vbroker.properties>, with a role developer associated with a
Password Credential with username darkstar and password meteor, and a role host
associated with a Password Credential with username geraldo and password rivera.
The vault file itself is not password protected. VisiConnect requires no additional
parameters to use this vault.

Note ResourceVaultGen cannot be used to write vault information to an existing file containing
invalid characters. For example, a file generated by 'touch', or a StarOffice or Word
document. ResourceVaultGen can only write vault information to a new file that it itself
generates, or a valid existing vault file.

Resource Adapter overview
According to the Connectors 1.5 specification, you must be able to deploy a Resource
Archive (RAR) as part of an Enterprise Archive (EAR). With AppServer and
VisiConnect you can also deploy a standalone RAR. Once the RAR is deployed, you
must do the following:

■ Write code to obtain a connection.
■ Create an Interaction object.
■ Create an Interaction Spec.
■ Create record and/or result set instances.
■ Run the execute command so the record objects become populated.

Chapter 32: Using VisiConnect 279

Resource Adapter overview

In addition to some introductory conceptual information, this chapter provides steps to
help you understand the code you must write.

The J2EE Connector Architecture enables Enterprise Information System (EIS)
vendors and third-party application developers to develop Resource Adapters that can
be deployed to any J2EE 1.4 compliant application server. The Resource Adapter is
the main component of the J2EE Connector Architecture (Connectors), providing
platform-specific integration between J2EE application components and the EIS. When
a Resource Adapter is deployed to the AppServer, it enables the development of
robust J2EE applications which can access a wide variety of heterogeneous EISs.
Resource Adapters encapsulate the Java components and, if necessary, the native
components required to interact with the EIS.

Development overview

See “Developing the Resource Adapter” on page 285 for more information.

Developing a Resource Adapter from scratch requires implementing the necessary
interfaces and deployment descriptors, packaging these into a Resource Adapter
Archive (RAR), and finally deploying the RAR to the AppServer. The following
summarizes the main steps for developing a Resource Adapter:

1 Write Java code for the various interfaces and classes required by the Resource
Adapter within the scope of the Connectors 1.5 specification.

2 Specify these classes in the ra.xml standard deployment descriptor file.

3 Compile the Java code for the interfaces and implementation into class files.

4 Package the Java classes into a Java Archive (JAR) file.

5 Create the Resource Adapter-specific deployment descriptors:

■ ra.xml: describes the Resource Adapter-related attributes and deployment
properties using the Sun standard DTD.

■ ra-borland.xml: add additional AppServer-specific deployment information. This
file contains the parameters for connection factories, connection pools, and
security mappings.

6 Create the Resource Adapter Archive (RAR) file (that is, package the Resource
Adapter)

7 Deploy the Resource Adapter Archive to the AppServer, or include it in an
Enterprise Application Archive (EAR) file to be deployed as part of a J2EE
application.

Editing existing Resource Adapters
If you have existing Resource Adapters you would like to deploy to the AppServer, it
may only be necessary to edit the Borland-specific deployment descriptor described
above and repackage the adapter. Doing so involves the following steps, with
illustrative example:

1 Create an empty staging directory for the RAR:

mkdir c:/temp/staging

2 Copy the Resource Adapter to be deployed into the staging directory:

cp shmeAdapter.rar c:/temp/staging

3 Extract the contents of the Resource Adapter Archive:

jar xvf shmeAdapter.rar

280 AppServer Developer ’s Guide

Resource Adapter overview

The staging directory should now contain the following:

■ a JAR containing Java classes that implement the Resource Adapter

■ a META-INF directory containing the files Manifest.mf and ra.xml

1 Create the ra-borland.xml file using the Borland Deployment Descriptor Editor
(DDEditor) and save it into the staging area's META-INF directory. See “Using the
Deployment Descriptor Editor” in the Management Console User’s Guide for
information on using the DDEditor.

2 Create the new Resource Adapter Archive

jar cvf shmeAdapter.rar -C c:/temp/staging

3 You may now deploy the Resource Adapter to the AppServer.

Resource Adapter Packaging

The Resource Adapter is a J2EE component contained in a RAR. Resource Adapters
use a common directory format. The following is an example of a Resource Adapter's
directory structure:

Resource Adapter Directory Structure:

.META-INF/ra.xml

.META-INF/ra-borland.xml

./images/shmeAdapter.jpg

./readme.html

./shmeAdapter.jar

./shmeUtilities.jar

./shmeEisSdkWin32.dll

./shmeEisSdkUnix.so

As shown in the structure above, the Resource Adapter can include documentation
and related files not directly used by the Resource Adapter—for example, the image
and readme files. Packaging the Resource Adapter means packaging these files as
well.

Packaging a Resource Adapter includes the following steps:

1 Create a temporary staging directory.

2 Compile the Resource Adapter Java classes into the staging directory. (Or, as
above, simply copy pre-compiled classes into the staging directory.)

3 Create a JAR file to store the Resource Adapter Java classes. Add this JAR to the
top level of the staging directory.

4 Create a META-INF subdirectory in the staging area.

5 Create a ra.xml deployment descriptor in this subdirectory and add entries for the
Resource Adapter. Refer to Sun Microsystems' documentation for information on
the ra.xml document type definition, at http://java.sun.com/dtd/connector_1_0.dtd.

6 Create a ra-borland.xml deployment descriptor in this same META-INF subdirectory
and add entries for the Resource Adapter. Refer to the DTD at the end of this
document for details on the necessary entries.

7 Create the Resource Adapter Archive:

jar cvf resource-adapter-archive.rar -C staging-directory

This command creates a RAR file that you can deploy to the server. The -C staging-
directory option instructs the JAR command to change to the staging-directory so
that the directory paths recorded in the RAR file are relative to the directory where
the Resource Adapters were staged.
One or more Resource Adapters can be staged in a directory and packaged in a
JAR file.

Chapter 32: Using VisiConnect 281

Deployment Descr iptors for the Resource Adapter

Deployment Descriptors for the Resource Adapter
The AppServer uses two XML files to specify deployment information. The first of these
is ra.xml, based on Sun Microsystems' DTD for resource adapters. The second is
Borland's proprietary ra-borland.xml, which includes additional deployment information
necessary for AppServer.

Configuring ra.xml

If you do not already have an ra.xml file associated with your Resource Adapter, it is
necessary to manually create a new one or edit an existing one. You can use a text
editor or the Borland DDEditor to edit these properties. For the most up-to-date
information on creating an ra.xml file, refer to the Connectors specification at
http://java.sun.com/j2ee/connector.

Configuring the transaction level type
It is of critical importance that you specify the transaction level type supported by your
Resource Adapter in the ra.xml deployment descriptor. The following table shows the
transaction levels supported and how they are rendered in XML.

Configuring ra-borland.xml

The ra-borland.xml file contains information required for deploying a Resource Adapter
to the AppServer. Certain attributes need to be specified in this file in order to deploy
the RAR file. This functionality is consistent with the equivalent .xml extensions for
EJBs, EARs, WARs, and client components for the AppServer.

Until Borland-specific deployment properties are provided in the ra-borland.xml file, the
RAR cannot be deployed to the server. The following attributes are required in ra-
borland.xml for a deployable RAR:

■ Resource Adapter instance name. This name must be unique among RARs
deployed to the partition. It is used by the VisiConnect service to uniquely identify
the deployed Resource Adapter. When a Resource Adapter supports inbound
communication, this is the name used in the ejb-borland.xml descriptor for the
endpoint MDB to identify the Resource Adapter from which the MDB expects to
receive incoming messages.

■ For each connection-definition in the ra.xml file:

■ Connection factory interface class name. This must be unique among all
connection-definitions in the Resource Adapter. This class name is used to
associate the specifications for a particular connection factory in the ra-
borland.xml with the specifications for the corresponding factory in the ra.xml file.

■ Connection factory name. This must be unique among all Resource Adapters
deployed to the partition.

■ Connection factory JNDI name. This must be unique among all Resource
Adapters deployed to the partition.

Transaction Support Type XML representation

None <transaction-support>NoTransaction</transaction-support>

Local <transaction-support>LocalTransaction</transaction-support>

XA <transaction-support>XA</transaction-support>

282 AppServer Developer ’s Guide

Deployment Descr iptors for the Resource Adapter

The following optional attributes may also be specified in the ra-borland.xml file:

■ Reference to a separately deployed connection factory that contains Resource
Adapter components that should be shared with the current Resource Adapter.

■ Directory where all shared libraries should be copied.

■ Mapping of security principals for Resource Adapter/EIS sign-on processing. This
mapping identifies resource principals to be used when requesting EIS connections
for applications that use container-managed security and for EIS connections
requested during initial deployment.

■ For each connection-definition in the ra.xml file:

■ Connection factory description

■ Logging-required flag. This indicates whether logging should be done for the
ManagedConnectionFactory and ManagedConnection classes.

■ Log file location

■ Connection pool properties:

■ busy-timeout: the number of seconds to wait before a busy connection is
released. The default is 600 seconds

■ idle-timeout: a pooled connection remaining in an idle state for a period of
time longer than this timeout value should be closed. All idle connections are
checked for expiration every 60 seconds. The value of the idle-timeout is
given in seconds. The default is 600 seconds.

■ wait-timeout: the number of seconds to wait for a free connection. The default
is 30 seconds.

Changes to the Deployment Descriptors for Connectors 1.5

BAS supports both Connectors 1.0 and Connectors 1.5. The following lists the
significant changes in the deployment descriptor for Connectors 1.5:

■ A new resource adapter implementation class needs to be specified in the ra.xml.

<resourceadapter>
 <resourceadapter-class>
 .ResourceAdapter.Implementation.Class
 </resourceadapter-class>
ƒ

■ Multiple connection definitions can be specified within the same RAR within the
<outbound-resourceadapter>.

■ Multiple message adapters can be specified within the <inbound-resourceadapter>

■ Configuration properties can be specified at the Resource Adapter level using the
config-property element. Note that the config-property type can only be objects and
not primitives, for example, you need to use java.lang.Integer rather than int. Also,
make sure that the set methods in the Resource Adapter implementation use the
same types. For example, in this case: setCount(java.lang.Integer value):

 <config-property>
 <description>Open User Name</description>
 <config-property-name>Count</config-property-name>
 <config-property-type>java.lang.Integer</config-property-type>
 <config-property-value>100</config-property-value>
 </config-property>

Config properties can also be set specific to each connection definition and also for
each of the connection definitions.

Chapter 32: Using VisiConnect 283

Resource Adapter Classloader Considerat ions

Note The Message Driven Bean that is configured as an Endpoint to receive messages
through an inbound resource adapter has to implement the messagelistener-type
interface specified in the ra.xml.

<inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type> </messagelistener-type>

The EJB must include the activation configuration required to activate the endpoint.

Resource Adapter Classloader Considerations
Borland AppServer provides a per-module classloader policy: each deployed module,
whether .ear, .war, .rar, or ejb.jar, has its own classloader whose classpath includes all
the classes packaged in that module. This allows each module to completely control
the classes it will have access to; several modules can have their own copies of a
library in different versions, or can use the same package names without clashing with
packages used by other modules. This is a powerful feature, but can lead to
complications when multiple modules need to interoperate with each other and share
some classes.

While each module has its own classloader, the partition in which VisiConnect runs has
several additional classloaders of its own. Classes in these per-partition classloaders
are available to all modules running in the partition. Generally, the per-module
classloaders take precedence over partition-level classloaders, so if a class is found in
both, the per-module copy is the one that will be used.

There are two types of situations where VisiConnect users may need to exercise some
care in packaging their applications to account for classloader issues:

■ Connection factories and connections for outbound communication

■ Message listeners for inbound communication

Connection Factories and Connections

The connection factory and connection interface and implementation classes for
outbound communication may be provided along with the resource adapter. In some
cases, the interface classes may in fact be standards-based and supplied as part of the
JDK or an extension, while the implementation classes are proprietary and specific to
the resource adapter. For example, a JMS Resource Adapter may provide its own
proprietary implementation of the standard javax.jms.QueueConnectionFactory and
javax.jms.QueueConnection classes.

Classes in the javax.jms package are provided by Borland AppServer and will be
present in the partition's classloader, and all modules will share the same class
definitions for those classes. But the proprietary classes that implement these
javax.jms interfaces will be supplied by the Resource Adapter, and each module may
have its own copy of these proprietary class definitions.

In order to get a connection to a Resource Adapter, the client program does a JNDI
lookup for one of the Resource Adapter's connection factories. The object returned by
this JNDI lookup must be created using the class definitions available to the .ear, .war,
or .jar module where the client resides; otherwise, when the client code attempts to
make use of the connection factory object, it will receive a ClassCastException. The
client next uses the connection factory to create Connection instances. These objects,
too, must be created using the client module's classloader, so that the client code can
manipulate the objects.

284 AppServer Developer ’s Guide

Resource Adapter Classloader Considerat ions

At the same time, the VisiConnect service, running inside the AppServer, needs to
make use of some of the classes provided by the Resource Adapter. For example, 1.5
level Resource Adapters contain an implementation of
javax.resource.spi.ResourceAdapter, which will be used by VisiConnect to start and
stop of the Resource Adapter. Any use by VisiConnect of the Resource Adapter
classes will be done using the classloader of the Resource Adapter. If the Resource
Adapter was deployed as a standalone .rar (rather than being embedded in an .ear
with its clients), it will have its own classloader, and thus its own copies of the class
definitions for the Resource Adapter classes. In this situation there may be a potential
for ClassCastExceptions.

One such problem area is the method
ManagedConnectionFactory.setResourceAdapter(javax.resource.spi.ResourceAdapter).
The ManagedConnectionFactory instance is created using the client classloader, while the
ResourceAdapter instance is created using the .rar classloader. If the implementation
of this method casts the ResourceAdapter instance to a proprietary implementation
class, a ClassCastException will be thrown.

Message Listeners

An inbound resource adapter must specify a class to be its message listener. This
class will be implemented by any MDB which is to serve as an endpoint for inbound
communications from this Resource Adapter. When the Resource Adapter has a
message which is to be passed on to the MDB, it will invoke a method in the message
listener class. For example, many JMS Resource Adapters will use
javax.jms.MessageListener as their message listener class, and the
onMessage(javax.jms.Message) method in this class to actually receive the incoming
messages. Since all these classes are provided by the javax.jms package, which is in
the partition's classloader and therefore shared by both the Resource Adapter and the
MDB client, there is no possibility here of ClassCastExceptions.

However, a Resource Adapter is free to provide its own proprietary message listener
class, and this class may have any number of methods to actually deliver messages,
all of which may use proprietary objects as arguments. This may be a source of
ClassCastExceptions.

VisiConnect will ensure that even if the message listener class is proprietary, calls to
the MDB will be properly handled such that the message delivery method in the MDB is
invoked using the definition of the message listener from the MDB's own classloader.
However, if that method takes an argument which is a proprietary object, VisiConnect
cannot map from the Resource Adapter's class definition of that object to the MDB's
class definition. This will lead to ClassCastExceptions.

For example, the Mail Resource Adapter provided as a sample with the product
provides a message listener class called
com.borland.enterprise.ra.mail.api.MailListener. This class contains a message
delivery method called onMessage(javax.mail.Message). Notice that the message
listener class is proprietary, but its onMessage() method takes a non-proprietary object
as an argument. This situation will NOT cause ClassCastExceptions. The message
listener class itself may be proprietary. Only if one or more arguments on a message
delivery method are proprietary objects will there be a classloader problem.

Chapter 32: Using VisiConnect 285

Developing the Resource Adapter

Correcting ClassCastExceptions

In any of the problem situations described above, you have two basic possibilities for a
resolution:

■ Create an .ear that contains the Resource Adapter .rar and its clients. Since the
entire .ear will share a classloader, there can be no ClassCastExceptions moving
objects between the Resource Adapter and the client.

■ Remove the Resource Adapter classes from both the .rar and the client modules,
and deploy these classes to the partition as a library .jar. A library .jar will be
placed in the partition's classloader, shared by all deployed modules. Therefore, all
modules will use the same class definitions for the Resource Adapter classes, and
no ClassCastExceptions will be thrown.

Developing the Resource Adapter
This section describes how to develop a Connectors 1.5-compliant Resource Adapter.
Resource Adapters must implement the following system contract requirements,
discussed in detail below:

■ Connection management
■ Security management
■ Transaction management
■ Packaging and deployment

Connection management

The connection management contract for the resource adapter specifies a number of
classes and interfaces necessary for providing the system contract. The resource
adapter must implement the following interfaces:

■ javax.resource.spi.ManagedConnection
■ javax.resource.spi.ManagedConnectionFactory
■ javax.resource.spi.ManagedConnectionMetaData

The ManagedConnection implementation provided by the Resource Adapter must,
in turn, supply implementations of the following interfaces and classes to provide
support to the application server. It is the application server which will ultimately be
managing the connection and associated transactions.

Note If your environment is non-managed (that is, not managed by the application
server), you are not required to use these interfaces or classes.

■ javax.resource.spi.ConnectionEvent
■ javax.resource.spi.ConnectionEventListener

In addition, support for error logging and tracing must be provided by implementing the
following methods in the Resource Adapter:

■ ManagedConnectionFactory.setLogWriter()
■ ManagedConnectionFactory.getLogWriter()
■ ManagedConnection.setLogWriter()
■ ManagedConnection.getLogWriter()

The resource adapter must also provide a default implementation of the
javax.resource.spi.ConnectionManager interface for cases in which the Resource
Adapter is used in a non-managed two-tier application scenario. A default
implementation of ConnectionManager enables the Resource Adapter to provide services
specific to itself. These services can include connection pooling, error logging and
tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

286 AppServer Developer ’s Guide

Developing the Resource Adapter

In an application-server-managed environment, the Resource Adapter should not use
the default ConnectionManager implementation class. Managed environments do not
allow resource adapters to support their own connection pooling. In this case, the
application server is responsible for connection pooling. A Resource Adapter can,
however, have multiple ConnectionManager instances per physical connection
transparent to the application server and its components.

Transaction management

Resource Adapters are easily classified based on the level of transaction support they
provide. These levels are:

■ NoTransaction: the Resource Adapter supports neither local not JTA transactions,
and implements no transaction interfaces.

■ LocalTransaction: the Resource Adapter supports resource manager local
transactions by implementing the LocalTransaction interface. The local transaction
management contract is specified in Section 6.7 of the Connectors 1.5 specification
from Sun Microsystems.

■ XATransaction: the Resource Adapter supports both resource manager local and
JTA/XA transactions by implementing the LocalTransaction and XAResource
interfaces, respectively. The XA Resource-based contract is specified in Section 6.6
of the Connectors 1.5 specification from Sun Microsystems.

The transaction support levels above reflect the major steps of transaction support that
a Resource Adapter must implement to allow server-managed transaction
coordination. Depending on its transaction capabilities and the requirements of its
underlying EIS, a Resource Adapter can choose to support any one of the above
levels.

Security management

The security management contract requirements for a Resource Adapter are as
follows:

■ The Resource Adapter is required to support the security contract by implementing
the ManagedConnectionFactory.createManagedConnection() method.

■ The Resource Adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection() method implementation.

■ The Resource Adapter is required to specify its support for the security contract as
part of its deployment descriptor. The relevant deployment descriptor elements are:

■ <authentication-mechanism></authentication-mechanism>
■ <authentication-mechanism-type></authentication-mechanism-type>
■ <reauthentication-support></reauthentication-support>
■ <credential-interface></credential-interface>

Refer to section 10.3.1 of the Connectors 1.5 specification for more details on these
descriptor elements.

Packaging and deployment

The file format for a packaged Resource Adapter module defines the contract between
a Resource Adapter provider and a Resource Adapter deployer. A packaged Resource
Adapter includes the following elements:

■ Java classes and interfaces that are required for the implementation of both the
Connectors system-level contracts and the functionality of the Resource Adapter

■ Utility Java classes for the Resource Adapter

Chapter 32: Using VisiConnect 287

Deploying the Resource Adapter

■ Platform-dependent native libraries required by the Resource Adapter

■ Help files and documentation

■ Descriptive meta information that ties the above elements together

For more information on packaging requirements, refer to Section 10.3 and 10.5 of the
Connectors 1.5 specification, which discuss deployment requirements and supporting
JNDI configuration and lookup, respectively.

Deploying the Resource Adapter
Deployment of Resource Adapters is similar to deployment of EJBs, Enterprise
Applications and Web Applications. As with these modules, a Resource Adapter can
be deployed as an archive file or as an expanded directory. A Resource Adapter can
be deployed either dynamically using the AppServer Console or the iastool utilities, or
as a part of an EAR. See the Borland AppServer User's Guide for deployment details.

When a Resource Adapter is deployed, a name must be specified for the module. This
name provides a logical reference to the Resource Adapter deployment that, among
other things, can be used to update or remove the Resource Adapter. The AppServer
implicitly assigns a deployment name that matches the filename of the RAR file or
deployment directory containing the Resource Adapter. This logical name can be used
to manage the Resource Adapter after the server has started. The Resource Adapter
deployment name remains active in the AppServer until the module is undeployed.

Application development overview

Developing application components

Common Client Interface (CCI)
The client APIs used by application components for EIS access can be categorized as
follows:

■ The standard common client interface (CCI) defined in Section 9 of the Connectors
1.5 specification.

■ A general client interface specific to the type of Resource Adapter and its underlying
EIS. For example, JDBC is one such interface for RDBMSs.

■ A proprietary client interface specific to the particular Resource Adapter and its
underlying EIS. For example, the CICS Java Gateway is one such interface for the
IBM CICS transaction processor, and the JFC for the SAP R/3 enterprise resource
planner is another.

The Connectors 1.5 specification defines the CCI for EIS access. The CCI is a
standard client API for application components that enables these and EAI frameworks
to drive interactions across heterogeneous EISs. The CCI is primarily targeted for
Enterprise Application Integration (EAI), third-party enterprise tool vendors, and
migration of legacy modules to the J2EE Platform.

In the CCI, a connection factory is a public interface that enables connection to an EIS
instance. The ConnectionFactory interface is implemented by the Resource Adapter to
provide this service. An application looks up a ConnectionFactory instance in the JNDI
namespace, and uses it to request to obtain EIS connections.

288 AppServer Developer ’s Guide

Appl icat ion development overview

The application then uses the returned Connection interface to access the EIS. To
provide a consistent application programming model across both CCI and EIS-specific
APIs, the ConnectionFactory and Connection interfaces comply to the Interface
Template design pattern. This defines the skeleton of the connection creation and
connection closing, deferring the appropriate steps to subclasses. This allows for these
interfaces to be easily extended and adapted to redefine certain steps of connection
creation and closing without changing these operations' structure. For more
information on the application of the Interface Template design pattern to these
interfaces, refer to Section 5.5.1 in the Connectors 1.5 specification
(http://java.sun.com/j2ee/connector).

Managed application scenario
The following steps are performed when a managed application requests to obtain a
connection to an EIS instance from a connection factory, as specified in the res-type
variable:

1 The application assembler or component provider specifies the connection factory
requirements for an application component by using a deployment descriptor:

res-ref-name: shme/shmeAdapter
res-type:javax.resource.cci.ConnectionFactory
res-auth: Application|Container

2 The Resource Adapter deployer sets the configuration information for the Resource
Adapter.

3 VisiConnect uses a configured Resource Adapter to create physical connections to
the underlying EIS.

4 The application component performs a JNDI lookup of a connection factory instance
in the component's environment:

// obtain the initial JNDI Naming context
 javax.naming.Context ctx = new javax.naming.InitialContext();
 // perform the JNDI lookup to obtain the connection factory
 javax.resource.cci.ConnectionFactory cxFactory =
 (javax.resource.cci.ConnectionFactory)ctx.lookup(
 "java:comp/env/shme/shmeAdapterConnectionFactory");

5 The JNDI name passed in the context lookup is that same as that specified in the
res-ref-element of the component's deployment descriptor. The JNDI lookup returns
a connection factory instance of type java.resource.cci.ConnectionFactory as
specified in the res-type element.

6 The application component invokes the getConnection() method on the connection
factory to request to obtain an EIS connection. The returned connection instance
represents an application level handle to an underlying physical connection. An
application component requests multiple connections by invoking the
getConnection() method on the connection factory multiple times.

javax.resource.cci.Connection cx = cxFactory.getConnection();

7 The application component uses the returned connection to access the underlying
EIS. This is specific to the Resource Adapter.

8 After the component finishes with the connection, it closes it using the close()
method on the connection interface.

cx.close();

9 If the application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The AppServer manages to
cleanup of unused connections. When the container terminates a component
instance, the container cleans up all the connections used by that component
instance.

Chapter 32: Using VisiConnect 289

Appl icat ion development overview

Non-managed application scenario
In the non-managed application scenario, a similar programming model must be
followed in the application component. The non-managed application must lookup a
connection factory instance, request to obtain an EIS connection, use the connection
for EIS interactions, and close the connection when completed.

The following steps are performed when a non-managed application component
requests to obtain a connection to an EIS instance from a connection factory:

1 The application component calls the getConnection() method on the
javax.resource.cci.ConnectionFactory instance to get a connection to the underlying
EIS instance.

2 The connection factory instance delegates the connection request to the default
connection manager instance. The Resource Adapter provides the default
connection manager implementation.

3 The connection manager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnectionFactory.createManagedConnection() method.

4 Invoking ManagedConnectionFactory.createManagedConnection() creates a new
physical connection to the underlying EIS, represented by the ManagedConnection
instance it returns. The ManagedConnectionFactory uses the security information from
the JAAS Subject object, and ConnectionRequestInfo, and its configured set of
properties (port number, server name, etc.) to create the new ManagedConnection
instance.

5 The connection manager instance calls the ManagedConnection.getConnection()
method to get an application-level connection handle. This method call does not
necessarily create a new physical connection to the EIS instance; it produces a
temporary handle that is used by an application to access the underlying physical
connection, represented by the ManagedConnection instance.

6 The connection manager instance returns the connection handle to the connection
factory instance; the connection factory in turn returns the connection to the
requesting application component.

Code excerpts—programming to the CCI
The following code excerpts illustrate the application programming model based on the
CCI requesting to obtain a connection, obtaining the connection factory, creating the
interaction and interaction spec, obtaining a record factory and records, executing the
interaction with the records, and performing the same using result sets and custom
records.

// Get a connection to an EIS instance after lookup of a connection factory
// instance from the JNDI namespace. In this case, the component allows the
// container to manage the EIS sign-on
javax.naming.Context ctx = new javax.naming.InitialContext();
javax.resource.cci.ConnectionFactory cxFactory =
(javax.resource.cci.ConnectionFactory)ctx.lookup(
 "java:comp/env/shme/shmeAdapter");
javax.resource.cci.Connection cx = cxFactory.getConnection();

// Create an Interaction instance
javax.resource.cci.Interaction ix = ct.createInteraction();

// Create a new instance of the respective InteractionSpec
com.shme.shmeAdapter.InteractionSpecImpl ixSpec = new
com.shme.shmeAdapter.InteractionSpecImpl();
ixSpec.setFunctionName("S_EXEC");
ixSpec.setInteractionVerb(javax.resource.cci.InteractionSpec.SYNC_SEND_RECEIVE
);
// ...

290 AppServer Developer ’s Guide

Appl icat ion development overview

// Get a RecordFactory instance
javax.resource.cci.RecordFactory recFactory = // ... get a RecordFactory

// Create a generic MappedRecord using the RecordFactory instance. This record
// instance acts as an input to the execution of an interaction. The name of
the
// Record acts as a pointer to the metadata for a specific record type
javax.resource.cci.MappedRecord input = recFactory.createMappedRecord(
"ShmeExecRecord");

// Populate the generic MappedRecord instance with input values. The component
// code adds values based on the metadata it has accessed from the metadata
// repository
input.put("<key: element0>", new String("S_APP01");
input.put("<key: element1>", // ...);
// ...

// Create a generic IndexedRecord to hold output values that are set by the
// execution of the interaction
javax.resource.cci.IndexedRecord output =
 recFactory.createIndexedRecord("ShmeExecRecord");

// Execute the Interaction
boolean response = ix.execute(ixSpec, input, output);

// Extract data from the output IndexedRecord. Note that type mapping is done
// in the generic IndexedRecord by mean of the type mapping information in the
// metadata repository. Since the component uses generic methods on the
// IndexedRecord, the component code performs the required type casting
java.util.Iterator iter = output.iterator();

while (iter != null && iter.hasNext())
{
 // Get a record element and extract value ...
}

// Set up the requirements for the ResultSet returned by the execution of
// an Interaction. This step is optional. Default values are used if
// requirements are not explicitly set.
com.shme.shmeAdapter.InteractionSpecImpl rsIxSpec =
 new com.shme.shmeAdapter.InteractionSpecImpl();
rsIxSpec.setFetchSize(20);
rsIxSpec,setResultSetType(javax.resource.cci.ResultSet.TYPE_SCROLL_INSENSITIVE
);

// Execute an Interaction that returns a ResultSet
javax.resource.cci.ResultSet rSet =
 (javax.resource.cci.ResultSet)ix.execute(rsIxSpec, input);

// Iterate over the ResultSet. The example here positions the cursor on the
// first row and then iterates forward through the contents of the ResultSet.
// Appropriate get methods are then used to retrieve column values.
rSet.beforeFirst();

while (rSet != null && rSet.next())
{
// get the column values for the current row using the appropriate
// get methods
}

// This illustrates reverse iteration through the ResultSet
rSet.afterLast();

while (rSet.previous())

Chapter 32: Using VisiConnect 291

Appl icat ion development overview

{
// get the column values for the current row using the appropriate
// get methods
}

// Extend the Record interface to represent an EIS-specific custom Record.
// The interface CustomerRecord supports a simple accessor/mutator design
// pattern for its field values. A development tool would generate the
// implementation class of the CustomerRecord
public interface CustomerRecord extends javax.resource.cci.Record,
 javax.resource.cci.Streamable
{
 public void setName(String name);
 public void setId(String custId);
 public void setAddress(String address);

 public String getName();
 public String getId();
 public String getAddress();
}

// Create an empty CustomerRecord instance to hold output from
// the execution of an Interaction
CustomerRecord customer = // ... create an instance

// Create a PurchaseOrderRecord instance as an input to the Interaction
// and set properties on this instance. The PurchaseOrderRecord is another
// example of a custom Record
PurchaseOrderRecord purchaseOrder = // ... create an instance
purchaseOrder.setProductName("...");
purchaseOrder.setQuantity("...");
// ...

// Execute an Interaction that populates the output CustomerRecord instance
boolean crResponse = ix.execute(rsIxSpec, purchaseOrder, customer);

// Check the CustomerRecord
System.out.println("Customer Name = [" + customer.getName() + "],
 Customer ID = [" + customer.getId() + "],
 Customer Address = [" + customer.getAddress() + "]");

Deployment Descriptors for Application Components

The application component deployment descriptors need to specify connection factory
information for the Resource Adapter which the component will use. Appropriate
entries are required in:

1 In the component's Sun standard deployment descriptor. For example, in ejb-
jar.xml, the following is required:

■ res-ref-name: shme/shmeAdapter

■ res-type: javax.resource.cci.ConnectionFactory

■ res-auth: Application|Container

2 In addition, any version specific entries can be included. For example, EJB 2.0's res-
sharing-scope:

■ res-sharing-scope: Shareable|Unshareable

292 AppServer Developer ’s Guide

Appl icat ion development overview

3 In the component's Borland-specific deployment descriptor. For example, in ejb-
borland.xml, the following is required:

■ res-ref-name: shme/shmeAdapter

■ res-type: javax.resource.cci.ConnectionFactory

4 In addition, any version specific entries can be included. For example, EJB 1.1's
cmp-resource:

■ cmp-resource: True|False

The following details example deployment descriptors for two EJBs—the first written to
the EJB 2.0 spec, the second written to the EJB 1.1 spec. Both the standard and
Borland-specific deployment descriptors are shown. In these examples, a hypothetical
Resource Adapter is referenced.

EJB 2.x example

ejb-jar.xml deployment descriptor
This example uses container-managed persistence

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <display-name>SHME Integration Jar</display-name>
 <enterprise-beans>
 <session>
 <description>Interface EJB for shmeAdapter Class /shme/test/

shmeAdapter/schema/Customer</description>
 <display-name>customer_bean</display-name>
 <ejb-name>shme/customer_bean</ejb-name>
 <home>com.shme.test.shmeAdapter.schema.CustomerHome</home>
 <remote>com.shme.test.shmeAdapter.schema.CustomerRemote</remote>
 <ejb-class>com.shme.test.shmeAdapter.schema.CustomerBean

</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <description>SHME Repository URL for Connector configuration

</description>
 <env-entry-name>repositoryUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>s_repository://S_APP01</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Location of Resource Adapter Configuration within

the SHME Repository</description>
 <env-entry-name>configurationUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/shme/client</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>Reference to SHME Resource Adapter</description>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <res-type>com.shme.shmeAdapter.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 </session>
 </enterprise-beans>

Chapter 32: Using VisiConnect 293

Appl icat ion development overview

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>customer_bean</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>s_exec_customer_query</method-name>
 <method-params/>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

This corresponds to the ejb-jar.xml above.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Borland Software Corporation//DTD Enterprise

JavaBeans 2.0//EN" "http://www.borland.com/devsupport/appserver/dtds/
ejb-jar_2_0-borland.dtd">

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>shme/customer_bean</ejb-name>
 <bean-home-name>shme/customer_bean</bean-home-name>
 <resource-ref>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <jndi-name>eis/shmeAdapter</jndi-name>
 </resource-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

EJB 1.1 example

ejb-jar.xml deployment descriptor
This example uses bean-managed persistence.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans

1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <description />
 <display-name>ShmeAdapter Interface Jar</display-name>
 <small-icon />
 <large-icon />
 <enterprise-beans>
 <session>
 <description>Interface EJB for SHME Class /shme/test/shmeAdapter/schema/

Customer</description>
 <display-name>customer_bean</display-name>
 <ejb-name>shme/customer_bean</ejb-name>
 <home>com.shme.test.shmeAdapter.schema.CustomerHome</home>
 <remote>com.shme.test.shmeAdapter.schema.CustomerRemote</remote>
 <ejb-class>com.shme.test.shmeAdapter.schema.CustomerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 <env-entry>
 <description>SHME Repository URL for Connector configuration

</description>
 <env-entry-name>repositoryUrl</env-entry-name>

294 AppServer Developer ’s Guide

Appl icat ion development overview

 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>s_repository://S_APP01</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Location of Resource Adapter configuration within the SHME
Repository</description>
 <env-entry-name>configurationUrl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/shme/client</env-entry-value>
 </env-entry>
 <resource-ref>
 <description>Reference to SHME Resource Adapter</description>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <res-type>com.shme.shmeAdapter.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
</enterprise-beans>
<ejb-client-jar />
</ejb-jar>

ejb-inprise.xml deployment descriptor
This corresponds to the ejb-jar.xml above.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE inprise-specific PUBLIC '-//Inprise Corporation//DTD Enterprise

JavaBeans 1.1//EN' 'http://www.borland.com/devsupport/appserver/dtds/
ejb-inprise.dtd'>

<inprise-specific>
 <enterprise-beans>
 <session>
 <ejb-name>shme/customer_bean</ejb-name>
 <bean-home-name>shme/customer_bean</bean-home-name>
 <timeout>0</timeout>
 <resource-ref>
 <res-ref-name>shme/shmeAdapter</res-ref-name>
 <jndi-name>eis/shmeAdapter</jndi-name>
 <cmp-resource>False</cmp-resource>
 </resource-ref>
 </session>
 </enterprise-beans>
</inprise-specific>

Chapter 32: Using VisiConnect 295

Other Considerat ions

Other Considerations

Working with Poorly Implemented Resource Adapters

Some commercially available Resource Adapters may be poorly implemented. As
there does not yet exist any mechanism to test a Resource Adapter for compliance to
the Connectors specs (as the J2EE Compatibility Test Suite (CTS) tests a Connectors
implementation for spec compliance), it is currently not a simple task to recognize, but
among the symptoms, you will find:

1 The Resource Adapter will exhibit strange errors during deployment

2 The Resource Adapter will exhibit strange errors during method invocation on the
connection factory.

As VisiConnect strictly implements J2EE 1.4 and Connectors 1.5 requirements, it is
often the only Connector Container which will detect poorly implemented Resource
Adapters and not ignore the problem.

Examples of Poorly Implemented Resource Adapters
Generally, poorly implemented Resource Adapters are not compliant with the
Connectors 1.5 specification. Examples of such Resource Adapters include:

■ The Resource Adapter with a connection factory implementing only
java.io.Serializable, and not both java.io.Serializable and
javax.resource.Referenceable as per the Connectors specification (Section 10.5
“JNDI Configuration and Lookup”). The local JNDI context handlers of application
servers such as AppServer can only register objects if they implement both
interfaces. If a Resource Adapter implements a connection factory as Serializable,
and doesn't implement Referenceable, you will see exceptions thrown when the
application server attempts to deploy the connection factory to JNDI.

■ The Resource Adapter with a connection factory which poorly implements
javax.resource.Referenceable (which inherits getReference() from
javax.naming.Referenceable). The J2SE 1.3.x and 1.4.x specs specify that for
javax.naming.Referenceable, getReference() either:

a Returns a valid, non-null reference of the Referenceable object, or

b Throws an exception (javax.naming.NamingException).

If the Resource Adapter implements Referenceable such that getReference() can
(and will) return null, you will see exceptions thrown when a client attempts to
invoke a connection factory method such as getConnection().

■ The Resource Adapter with a connection factory correctly implementing
Referenceable, but which does not provide an implementation of
javax.naming.spi.ObjectFactory (which is required by the Connectors specification
(Section 10.5 “JNDI Configuration and Lookup”)). Although such a Resource
Adapter can be deployed to an application server without incident, it cannot be
deployed to JNDI outside the aegis of an application server, as a non-managed
Connector. Also, including a javax.naming.spi.ObjectFactory implementation source
Adapter with backup mechanism for JNDI Reference-based connection factory
lookup.

296 AppServer Developer ’s Guide

Other Considerat ions

■ The Resource Adapter which specifies an connection factory or connection interface
while not implementing that interface in its connection factory or connection class,
respectively. Section 10.6 “Resource Adapter XML DTD” in the Connectors spec
discusses the related requirements. To illustrate, let's say that in the ra.xml of a
particular Resource Adapter, you have the following elements:

//...
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.shmeAdapter.ShmeConnection</connection-impl-
class>
//...

But your implementation of ShmeConnection is as follows:

package shme;
public class ShmeConnection
{
private ShmeManagedConnection mc;
 public ShmeConnection(ShmeManagedConnection mc)
 {
 System.out.println("In ShmeConnection");
 this.mc = mc;
 }
}

Any attempt to invoke getConnection() on this Resource Adapter's connection
factory will result in a java.lang.ClassCastException, as you're indicating to the
appserver in ra.xml that connection objects returned by the Resource Adapter are to
be cast to java.sql.Connection.

Working with a Poor Resource Adapter Implementation
To work around a poor Resource Adapter implementation, perform the following:

Extend the connection factory and/or connection class of the Connector, and have the
extension correctly implement the poorly implemented code. For example, when
dealing with a connection factory which implements Serializable, and doesn't
implement Referenceable the idea is to extend the original connection factory to
implement Referenceable, which means implementing getReference() and
setReference().

To illustrate, if the connection factory is com.shme.BadConnectionFactory, extend the
connection factory as com.shme.GoodConnectionFactory, and implement Referenceable as
follows:

package com.shme.shmeAdapter;

public class GoodConnectionFactory
{
 private javax.naming.Reference ref;
// ...
 public javax.naming.Reference getReference()
{
// implement such that getReference() never returns null
// ...
 return ref;
 }
public javax.naming.Reference setReference(javax.naming.Reference ref)
 // this.ref = ref;
 }
 //

Chapter 32: Using VisiConnect 297

Other Considerat ions

Also, when dealing with a poorly behaving getReference(), there are various ways to
accomplish this, but principally, the idea is to implement getReference() such that it
never returns null. The best approach is to implement:

■ A fallback mechanism in getReference() which sets the reference to be returned
correctly if the connection factory's reference attribute is null—returning a
registerable javax.naming.Reference object, and

■ A helper class implementing javax.naming.spi.ObjectFactory to provide the fallback
object to create the connection factory object from the valid Reference instance.

To illustrate, if the connection factory is com.shme.BadConnectionFactory, extend the
connection factory as com.shme.GoodConnectionFactory, and override getReference() as
follows:

package com.shme.shmeAdapter;

public class GoodConnectionFactory
{
 // ...

 public javax.naming.Reference getReference()
 {
 if (ref == null)
 {
 ref = new javax.naming.Reference(this.getClass().getName(),
 "com.shme.shmeAdapter.GoodCFObjectFactory"
 /* object factory for GoodConnectionFactory references */,
 null);
 String value;
 value = managedCxFactory.getClass().getName();

 if (value != null)
 {
 ref.add(new javax.naming.StringRefAddr(
 "managedconnectionfactory-class", value));
 }

 value = cxManager.getClass().getName();

 if (value != null)
 {
 ref.add(new javax.naming.StringRefAddr(
 "connectionmanager-class", value));
 }
 }

 return ref;
 }

 // ...
}

298 AppServer Developer ’s Guide

Other Considerat ions

Then implement the associated object factory class, in this case:

com.shme.shmeAdapter.GoodCFObjectFactory
package com.shme.shmeAdapter;

import javax.naming.spi.*;
import javax.resource.spi.*;

public class GoodCFObjectFactory implements ObjectFactory {
 public GoodCFObjectFactory() {};

 public Object getObjectInstance(Object obj,
 javax.naming.Name name,
 javax.naming.Context context,
 java.util.Hashtable env)
 throws Exception
 {
 if (!(obj instanceof javinstance ofReference))
 {
 return null;
 }

 javax.naming.Reference ref = (javax.naming.Reference)obj;

 if (ref.getClassName().equals(
"com.shme.shmeAdapter.GoodConnectionFactory"))
 {
 ManagedConnectionFactory refMcf = null;
 ConnectionManager refCm = null;

if (ref.get("managedconnectionfactory-class") != null)
 {
 String managedCxFactoryStr =
 (String)ref.get("managedconnectionfactory-class").getContent();
 Class mcfClass = Class.forName(managedCxFactoryStr);
 refMcf = (ManagedConnectionFactory)mcfClass.newInstance();
 }

if (ref.get("connectionmanager-class") != null)
 {
 String cxManagerStr = (String)ref.get("connectionmanager-class"
).getContent();
 Class cxmClass = Class.forName(cxManagerStr);
 java.lang.ClassLoader cloader = cxmClass.getClassLoader();
 refCm = (ConnectionManager)cxmClass.newInstance();
 }

 GoodConnectionFactory cf = null;

 if (refCm != null)
 {
 cf = new GoodConnectionFactory(refMcf, refCm);
 }
 else
 {
 cf = new GoodConnectionFactory(refMcf);
 }

 return cf;
 }

 return null;
 }
}

Chapter 32: Using VisiConnect 299

Other Considerat ions

Update the classes in the ra.xml standard deployment descriptor file. For example,
before extending the implementation, the ra.xml may look something like this:

<managedconnectionfactory-class>com.shme.shmeAdapter.
LocalTxManagedConnectionFactory</managedconnectionfactory-class>
<connectionfactory-interface>javax.sql.DataSource</connectionfactory-interface>
<connectionfactory-impl-class>com.shme.shmeAdapter.BadConnnectionFactory</
connectionfactory-impl-class>
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.Connection</connection-impl-class>

After extending the interfaces, the ra.xml may look something like this:

<managedconnectionfactory-class>com.shme.shmeAdapter.
LocalTxManagedConnectionFactory </managedconnectionfactory-class>
<connectionfactory-interface>javax.sql.DataSource</connectionfactory-interface>
<connectionfactory-impl-class>com.shme.shmeAdapter.GoodConnectionFactory</
connectionfactory-impl-class>
<connection-interface>java.sql.Connection</connection-interface>
<connection-impl-class>com.shme.shmeAdapter.Connection</connection-impl-class>

As this illustrates, this conversion only impacts the connection factory. No other
Resource Adapter classes are affected by this conversion.

Compile the Java code for the extended implementation (and any helper classes) into
class files.

Package these into the Resource Adapter's Java Archive (.jar) file.

Update the Resource Adapter Archive (.rar) file with this extended .jar.

Deploy the Resource Adapter Archive, or include it in an Enterprise Application Archive
(.ear) file to be deployed as part of a J2EE application, to VisiConnect running
standalone or as a Partition service in the AppServer.

You've now converted a badly behaving Resource Adapter into a well behaving one.

Sometimes the design of a Resource Adapter makes it impossible to extend the
existing API implementation. In such cases you need to re-implement the offending
class or classes, and set the elements in ra.xml to reference the re-implementation(s).
Or better yet, choose another Resource Adapter, which is compliant with the
Connectors specification to work with.

300 AppServer Developer ’s Guide

Chapter 33: Bor land AppServer Ant tasks and running AppServer examples 301

C h a p t e r

Chapter33Borland AppServer Ant tasks and
running AppServer examples

Many of the Borland AppServer (AppServer) examples now employ the Ant build script
system. In addition to Ant's core functionality, the Borland AppServer version of Ant
includes customized tasks for several of the AppServer command line tools, including
commands of the following:

■ appclient
■ iastool
■ idl2java
■ java2iiop

These customized Ant tasks have the following advantages over using exec or apply
directives:

■ Customized Ant tasks run under the VM used to launch the Ant script, hence they
run faster and use less memory compared to spawning new JVM's with the exec/
apply commands.

■ Customized tasks have a much simpler command syntax than the exec/apply
version.

■ Ant features such as filesets and patternsets are available in a more natural way.

General syntax and usage
The following table shows the currently defined Ant tasks and their relationship to the
equivalent command line tools.

Generally the AppServer Ant task uses the same pattern as the command-line tool
equivalent.

Ant task name Equivalent command line Function

appclient appclient Runs a client application.

idl2java idl2java Converts IDL to Java classes.

java2iiop java2iiop Executes the java2iiop command.

iastool iastool Runs iastool.

302 AppServer Developer ’s Guide

General syntax and usage

Name-value pair transformation

All name-value pair command line arguments can be transformed into Ant task
attributes. The name-value pair command-line arguments should be translated into
equivalent XML attributes. For example, the command line:

iastool -verify -src cart_beans_client.jar -role DEVELOPER

translates into the Ant task:

<iastool option="verify" src="cart_beans_client.jar" role="DEVELOPER" />

Name-only argument transformation

All name-only command-line arguments can be transformed into boolean type Ant task
attributes. For boolean-style attributes, such as -nowarn, use the default usage of the
attribute, according to the usage documented for each of the command line tools. See
“iastool command-line utility” on page 311 for more information about iastool command
line attributes.

For example, the following command sets the warn attribute to false:

iastool -verify -src cart_beans_client.jar -role DEVELOPER -nowarn -nostrict

The equivalent Ant task is:

<iasverify src="cart_beans_client.jar" role="DEPLOYER" nowarn="true"
strict="false" />

Note It is not valid to use “warn” as an attribute in the Ant task. For instance, the following
line causes a syntax error:

****** INCORRECT SYNTAX!!! ******
<iasverify src="cart_beans_client.jar" role="DEPLOYER" warn="false"
strict="false" />

Multiple File Arguments

Many commands either act on multiple files or have options which can point to multiple
files. There are several ways to achieve this functionality in the equivalent Ant task. For
example, the iastool -merge command:

iastool -merge -target build\client.jar -type lib client\build\local_client.jar
build\local_stubs.jar

has the Ant equivalent:

<iastool option="merge" target="${build.dir}/client.jar" type="lib"
 jars="client/build/local_client.jar ; build/local_stubs.jar" />

Note The files in the jars attribute must be separated by semi-colons (;) or colons (:)—
spaces and commas are not valid separators.

Ant provides a convenient <fileset> task to include multiple files:

<iastool option="merge" target="build/client.jar" type="lib" >
 <fileset dir="client/build" includes="local_client.jar" />
 <fileset dir="build" includes="local_stubs.jar" />
</iastool>

Chapter 33: Bor land AppServer Ant tasks and running AppServer examples 303

Syntax and usage for iastool

The patternset feature of Ant can also be useful. The following alteration now includes
all of the jar files contained in the build directory and all of its sub-directories:

<iastool option="merge" target="${build.dir}/client.jar" type="lib" >
 <fileset dir="${build.dir}" includes="**/*.jar" />
</iastool>

Class path attributes can include multiple paths separated by semicolons:

<iastool option="verify" src="cart_beans_client.jar" role="DEPLOYER"
classpath="alib.jar;blib.jar" />

or use the <classpath> element:

<iastool option="verify" src="cart_beans_client.jar" role="DEPLOYER" >
 <classpath>
 <pathelement location="alib.jar" />
 <pathelement location="blib.jar" />
 </classpath>
</iastool>

Syntax and usage for iastool
The iastool Ant tasks can use two different styles:

1 <iastool option="myoption” />

2 <iasmyoption />

For example, the command line:

iastool -verify -src cart_beans_client.jar

translates into the Ant task:

<iastool option="verify" src="cart_beans_client.jar" />

or you can use the older Ant style for backward compatible Ant tasks:

<iasverify src="cart_beans_client.jar" />

The following table shows the Ant task styles for each of the iastool options.

iastool Ant task style 1
iastool Ant
task style 2

Equivalent
command line Function

Fileset
attribute

<iastool option=
"compilejsp” />

<iascompilejsp /> iastool -compilejsp Precompiles JSP's.

<iastool option=
"compress” />

<iascompress /> iastool -compress Compresses a JAR file.

<iastool option=
"deploy” />

<iasdeploy /> iastool -deploy Deploys a J2EE module. jars

<iastool option=
"dumpstack” />

<iasdumpstack /> iastool -dumpstack Dumps the stack trace of a
Partition process to the
stdout.log, located in:

<install_dir>/var/domains/
<domain-name>/configurations/
<configuration-name>/
mos/<partition-name>/adm/logs/
<partition_name>.stdout.log

<iastool option=
"genclient” />

<iasgenclient /> iastool -genclient Generates a client library. jars

<iastool option=
"gendeployable” />

<iasgendeployable /> iastool -gendeployable Generates a manually deployable
module.

<iastool option=
"genstubs” />

<iasgenstubs /> iastool -genstubs Generate a stub library.

304 AppServer Developer ’s Guide

Syntax and usage for iastool

Note The Fileset attributes column indicate attributes which can accept multiple file names.
Such attributes can employ the Ant <fileset> element to designate these files.
Techniques for including multiple files is explained in the “Multiple File Arguments” on
page 302.

<iastool option=
"info” />

<iasinfo /> iastool -info Displays system configuration
information.

<iastool option=
"kill” />

<iaskill /> iastool -kill Kills a Managed Object.

<iastool option=
"listhubs” />

<iaslisthubs /> iastool -listhubs Lists available Hubs on a
management port.

<iastool option=
"listpartitions” />

<iaslistpartitions /> iastool -listpartitions Lists the Partitions running on a
Hub.

<iastool option=
"listservices” />

<iaslistservices /> iastool -listservices Lists the services running on a
Hub.

<iastool option=
"manage” />

<iasmanage /> iastool -manage Actively manage a Managed
Object.

<iastool option=
"merge” />

<iasmerge /> iastool -merge Merges a set of JAR files into a
single JAR file.

jars

<iastool option=
"migrate” />

<iasmigrate /> iastool -migrate Migrates a module from J2EE 1.2
to J2EE 1.3.

<iastool option=
"patch” />

<iaspatch /> iastool -patch Applies a patch to a JAR file.

<iastool option=
"ping” />

<iasping /> iastool -ping Pings a Managed Object or Hub
for its current state.

<iastool option=
"pservice” />

<iaspservice /> iastool -pservice Enables, disables, or gets the
state of a Partition service.

<iastool option=
"removestubs” />

<iasremovestubs /> iastool -removestubs Removes stubs from a JAR.

<iastool option=
"restart” />

<iasrestart /> iastool -restart Restarts a Managed Object.

<iastool option=
"setmain” />

<iassetmain /> iastool -setmain Sets the main class of a client
JAR or a JAR in an EAR.

<iastool option=
"stop” />

<iasstop /> iastool -stop Stops a Managed Object.

<iastool option=
"uncompress” />

<iasuncompress /> iastool -uncompress Uncompresses a JAR file.

<iastool option=
"undeploy” />

<iasundeploy /> iastool -undeploy Undeploys a Managed Object.

<iastool option=
"unmanage” />

<iasunmanage /> iastool -unmanage Removes a Managed Object from
active management.

<iastool option=
"verify” />

<iasverify /> iastool -verify Verifies a J2EE module.

iastool Ant task style 1
iastool Ant
task style 2

Equivalent
command line Function

Fileset
attribute

Chapter 33: Bor land AppServer Ant tasks and running AppServer examples 305

Syntax and usage for iastool

Omitting attributes

Omitting an attribute from the Ant task call has the same effect as omitting the option
from the command line tool. Since some attributes are true by default, omitting an
attribute does not necessarily set the attribute to false.

For more information on the default values of these options, see “iastool command-line
utility” on page 311.

Examples of iastool Ant tasks

The following are a few examples to illustrate the usage details for iastool Ant tasks.
For more details about the function of each iastool option and attribute, see “iastool
command-line utility” on page 311.

deploy
<target name="deploy" description="Deploys the example to the server">
<iastool option="deploy" hub="${hub.name}" cfg="${cfg.name}"
 partition="${partition.name}" mgmtport="${default.mgmtport}"
 jars="${build.dir}/hello.ear;${bes.lib.dir}/../var/repository/archives/wars/

bank_form.war"
 realm="${realm.name}" user="${server.user.name}" pwd="${server.user.pwd}"/>
</target>

merge
<iastool option="merge" target="${build.dir}/helloclient.jar" type="lib">
 <fileset dir="${build.dir}" includes="hello_stubs.jar" />
</iastool>

ping
<target name="ping">
<iastool option="ping" hub="${hub.name}" cfg="${cfg.name}"
 partition="${partition.name}" mgmtport="${default.mgmtport}"
 realm="${realm.name}" user="${server.user.name}" pwd="${server.user.pwd}" />
</target>

restart
<target name="iastoolrestart">
<iastool option="-restart" hub="${hub.name}" cfg="${cfg.name}"
 partition="${partition.name}" mgmtport="${default.mgmtport}"
 realm="${realm.name}" user="${server.user.name}" pwd="${server.user.pwd}" />
</target>

306 AppServer Developer ’s Guide

Syntax and usage for java2i iop

Syntax and usage for java2iiop
The java2iiop Ant task is very different from its command line tool. It is an exception to
the Borland Ant task usage pattern. Ant task java2iiop takes classes in a directory
instead of an individual file. The classpath attribute points to the directory containing
the classes that need to be compiled by java2iiop. That classpath is Path-Like
structure in Ant, and the usage of it is very flexible, but to use classpath with the
java2iiop task you can only use one of the following styles:

1 Used as an attribute, its value only accepts colon- or semicolon-separated lists of
locations:

<java2iiop classpath="${path1}:${path2}"/>

2 Used as nested classpath element.
This takes the general form of:

<java2iiop>
 <classpath>
 <pathelement path="${path1}"/>
 <pathelement location="lib/helper.jar"/>
 </classpath>
</java2iiop>

The location attribute specifies a single file or directory relative to the project's base
directory (or an absolute filename), while the path attribute accepts colon- or
semicolon-separated lists of locations. The path attribute is intended to be used with
predefined paths. In any other case, multiple elements with location attributes
should be preferred.

For details on the equivalent command line arguments for java2iiop, see “Programmer
tools for Java” in the VisiBroker for Java Developer’s Guide.

Example of java2iiop Ant task

<target name="create_ejb_stubs" depends="home">
 <java2iiop root_dir="${stubsPath}" list_files="true"
classpath="${outputPath}" />
</target>

Syntax and usage for idl2java
The idl2java Ant task is similar to its equivalent command tool. It tasks nested Path-
Like structure filesets which are equivalent to command line file inputs.

<idl2java>
 <fileset dir="server" includes="*.idl" />
</idl2java>

For details on the equivalent command line arguments for idl2java, see “Programmer
tools for Java” in the VisiBroker for Java Developer’s Guide.

Attribute Type Required

classpath Path Yes

back_Compat_Mapping boolean No

bind boolean No

boa boolean No

comments boolean No

compile boolean No

Chapter 33: Bor land AppServer Ant tasks and running AppServer examples 307

Syntax and usage for id l2java

Example of idl2java Ant task

<target name="idl2java" depends="init">
 <idl2java package="com.borland.examples.webservices.visibroker"
root_dir="${server-skel-src}">
 <fileset dir="server" includes="*.idl" />
 </idl2java>
 <javac srcdir="${server-skel-src}" destdir="${server-classes}"
classpathref="classpath"/>
</target>

compiler String No

destDir Path No

dynamic_Marshal boolean No

examples boolean No

export_All boolean No

exported String No

gen_Included_Files boolean No

idl2package String No

idl_Strict boolean No

import String No

imported String No

include File No

invoke_Handler boolean No

line_Directives boolean No

list_Files boolean No

list_Includes boolean No

map_Keyword String No

narrow_Compliance boolean No

obj_Wrapper boolean No

object_Method boolean No

package String No

retain_Comments boolean No

root_Dir File No

sealed String No

servant boolean No

srcDir Path No

srcFile String No

stream_Marshal boolean No

strict boolean No

tie boolean No

undefine String No

VBJclassPath Path No

VBJdebug String No

VBJjavaVM File No

VBJprop String No

VBJquoteSpaces String No

VBJtag String No

version String No

warn_Missing_Define String No

warn_Unrecognized_Pragmas boolean No

Attribute Type Required

308 AppServer Developer ’s Guide

Syntax and usage for appcl ient

Syntax and usage for appclient
<!-- Execute the example. -->
<target name="execute" description="Executes the Hello World example">
 <appclient jar="${build.dir}/hello.ear" uri="helloclient.jar" args="World"/
>
</target>

Building and running the Borland AppServer examples
Note Many of the AppServer examples have their own readme.html files located in:

<install_dir>/examples

To build an AppServer example:

1 Open a command line window.

2 Set the current directory to an example directory. The “Hello World” example located
at <install_dir>/examples/j2ee/hello is a good place to start.

3 On the command line, enter “ant”.

The example should build automatically.

Note The server does not have to be running to build the example. However, deployment
and undeployment require that the server be operational. Executing an example
requires that the Partition be running.

Deploying the example

1 Make sure that a server is running.

2 On the command line, enter ant deploy.

This will deploy the example to the Hub, Configuration, and Partition set in the
<install_dir>\examples\deploy.properties file.

If you wish to deploy to a different combination of Hub/Configuration/Partition, you can
either edit the deploy.properties file to change the settings, or use -D options on the
command line to override the deploy.properties settings.

For example, to use a Hub named “myhub", use the command:

ant -Dhub.name=myhub deploy

This will override the default Hub name in deploy.properties with the value myhub.

Running the example

1 Make sure that the Partition is running.

2 On the command line, enter ant execute.

The precise response depends on the particular example.

Undeploying the example

1 Make sure that a server is running.

2 On the command line, enter undeploy.

Chapter 33: Bor land AppServer Ant tasks and running AppServer examples 309

Bui ld ing and running the Bor land AppServer examples

Troubleshooting

1 Make sure that the <appserver_install_dir>/bin directory is on your path and
precedes the path to any alternative Ant installations.

2 Before calling the ant execute command, make sure that the server and the Partition
are running.

3 The <appserver_install_dir>\examples\deploy.properties contains default settings
for the Hub, Configuration, Partition, and Management Port. These default
properties include:

■ hub.name=your_machine_name
■ cfg.name=j2ee
■ partition.name=standard
■ realm.name=ServerRealm
■ server.user.name=admin
■ server.user.pwd=admin

where your_machine_name is the machine name designated at installation. You
can reset these values as needed or specify them on the Ant command line using
the -D option.

310 AppServer Developer ’s Guide

Chapter 34: iastool command-l ine ut i l i ty 311

C h a p t e r

Chapter34iastool command-line utility
This section describes the iastool command-line utility that you can use to manage
your managed objects.

Using the iastool command-line tools
The iastool utility is a set of command-line tools for manipulating managed objects.
The following table shows the command-line tools provided with the iastool utility:

Table 34.1 iastool command-line utilities

Use... To...

-compilejsp Precompile JSPs in a standalone WAR or all WARs in an EAR. For more
information, see “compilejsp” on page 312.

-compress Compress a JAR file. For more information, see “compress” on page 314.

-deploy Deploy a J2EE module to the specified Partition. For more information, see
“deploy” on page 315.

-dumpstack Dump the stack trace of a Partition process to the Partition stdout.log file. For
more information, see “dumpstack” on page 316.

-genclient Generate a library containing client stubs, EJB interfaces, and dependent
classes. For more information, see “genclient” on page 317.

-gendeployable Generate a manually deployable module. For more information, see
“gendeployable” on page 318.

-genstubs Generate a library containing client or server stubs only. For more
information, see “genstubs” on page 318.

-info Display system configuration information. For more information, see “info” on
page 319.

-kill Kill a managed object. For more information, see “kill” on page 320.

-listpartitions List the partitions on a hub. For more information, see “listpartitions” on
page 321.

-listhubs List the available hubs on a management port. For more information, see
“listhubs” on page 322.

-listservices List the services on a hub. For more information, see “listservices” on
page 322.

-manage Actively manage a managed object. For more information, see “manage” on
page 323.

312 AppServer Developer ’s Guide

Using the iastool command-l ine tools

compilejsp

Use this tool to precompile JSP pages in a standalone WAR or in all WARs in an EAR.
The JSP pages are compiled into Java servlet classes and saved in a WAR file. This
operation enables the JSP pages to be served faster the first time they are accessed.

Note When compiling JSPs using the iastool, you may encounter an out-of-memory error.
Increase the size of the virtual memory on your system to solve this issue.

Syntax

-compilejsp -src <war_or_ear> -target <target_file> [-overwrite]
[-package <package_root>] [-excludefile <exclude_file>] [-loglevel <0-4>]
[-classpath <classpath>]

Default Output
By default, compilejsp reports if the operation was successful or not.

-merge Merge a set of JAR files into a single JAR file. For more information, see
“merge” on page 324.

-migrate Migrate a module from J2EE 1.2, 1.3, or 1.4 to an alternative target J2EE
version. For more information, see “migrate” on page 325.

-newconfig Create a new configuration from a configuration template. For more
information see “newconfig” on page 325.

-patch Apply one or more patches to a JAR file. For more information, see “patch”
on page 326.

-ping Ping a managed object or hub for its current state. For more information, see
“ping” on page 327.

-pservice Enables, disables, or gets the state of a partition service. For more
information, see “pservice” on page 328.

-removestubs Remove all stub files from a JAR file. For more information, see
“removestubs” on page 329.

-restart Restart a hub or managed object. For more information, see “restart” on
page 330.

-setmain Set the main class of a standalone Client JAR or a Client JAR in an EAR. For
more information, see “setmain” on page 331.

-start Start a managed object. For more information, see “start” on page 332.

-stop Stop a hub or managed object. For more information, see “stop” on
page 333.

-uncompress Uncompress a JAR file. For more information, see “uncompress” on
page 334.

-undeploy Remove a J2EE module from a Partition. For more information, see
“undeploy” on page 334.

-unmanage Remove a managed object from active management. For more information,
see “unmanage” on page 335.

-usage Display the usage of command-line options. For more information, see
“usage” on page 336.

-verify Verify a J2EE module. For more information, see “verify” on page 336.

Table 34.1 iastool command-line utilities (continued)

Use... To...

Chapter 34: iastool command-l ine ut i l i ty 313

Using the iastool command-l ine tools

Options
The following table describes the options available when using the compilejsp tool.

Example
To precompile the JSP pages contained in a WAR file called proj1.war located in the
current directory into a WAR file called proj1compiled.war in the same location:

iastool -compilejsp -src proj1.war -target proj1compiled.war

To precompile the JSP pages contained in an EAR file called proj1.ear located in the
directory c:\myprojects\ into an EAR file called proj1compiled.ear in the same location
and generate the maximum amount of diagnostic messages:

iastool -compilejsp -src c:\myprojects\proj1.ear -target
c:\myprojects\proj1compiled.ear -loglevel 4

Using the excludefile option
The compilejsp excludefile option allows you to specify a text file containing a list of
JSPs to exclude from the compile operation. The following list details the usage rules.

■ Comment lines (with a leading '#') and blank lines are ignored.

■ Leading and trailing blank spaces and white spaces on each line are trimmed.

■ Each line in the exclude file represents one exclude pattern entry, which can be a
string for exact matching or a Java Pattern regular expression.

■ Each JSP exclude entry is used to perform an exact match against a JSP URL first.
If there is no match, the JSP exclude entry will be used as a regular expression to
match against the JSP URL again.

■ A JSP URL is compared against each of the JSP exclude entries using the above
algorithm. As soon as there is a match, the JSP is excluded from compilation. If the
JSP URL does not match any of the JSP exclude entries, the JSP will be compiled.

■ If a pattern entry is not a valid Java regular expression, a warning is shown. It will
still be used to compare against JSP URLs for exact match.

Option Description

-src <war_or_ear> Specifies the WAR or EAR file you want to compile. The full or
relative path to the file must be specified. There is no default.

-target <target_file> Specifies the name of the target WAR or EAR archive file to be
generated. If file name you specify already exists, use the -
overwrite option to overwrite the previously existing target. The
full or relative path to the file must be specified. There is no
default.

-overwrite Indicates that the <target_file> should be overwritten if it
previously existed. If <target_file> exists but -overwrite is not
used, you will get an error message saying that the target JAR
must be different from the source JAR.

-package <package_root> Specifies the base package name for the precompiled JSP
servlet classes. The default is com.bes.compiledjsp.

-excludefile <exclude_file> Specifies a text file containing a list of JSP files to exclude from
the compile operation. See “Using the excludefile option” on
page 313 for more details.

-loglevel <0-4> Specifies the amount of output diagnostic messages to be
generated. A value greater than 2 will also leave the temporary
servlet Java files for further inspection. The default is 2.

-classpath <classpath> Specifies any additional libraries that may be required for
compiling the JSP pages. There is no default.

314 AppServer Developer ’s Guide

Using the iastool command-l ine tools

■ If the iastool -compilejsp -loglevel option is set to 3 or higher, the exclude pattern
entries, the number of excluded JSP pages, and the excluded JSP URLs are be
displayed.

■ If all of the JSP files in the archive are excluded the -compilejsp command will fail.

The following are some example exclude patterns:

This pattern excludes a specific JSP: /jsp/test/test.jsp
/jsp/test/test[.]jsp

This pattern excludes the JSP /jsp/test/test.jsp or /jsp/test/test2jsp, etc.
because the regular expression "." represents any character
/jsp/test/test.jsp

This pattern excludes all the files under the /include URL path
/include/.*

This pattern excludes all the include.jsp files
.*/include[.]jsp

This pattern excludes all the JSP files that start with "tmp_" in the /jsp
URL path
and all JSP files in any URL path that starts with "tmp_" under /jsp
/jsp/tmp_.*[.]jsp

This pattern excludes all the JSP files that start with "tmp_" in the /jsp
URL path
/jsp/tmp_[^/]*[.]jsp

compress

Use this tool to compress a JAR file.

Syntax

-compress -src <srcjar> -target <targetjar>

Default Output
By default, compress reports if the operation was successful or not.

Options
The following table describes the options available when using the compress tool.

Example
To compress a JAR file, called proj1.jar and located in the current directory, into a file
called proj1compress.jar in the same location:

iastool -compress -src proj1.jar -target proj1compress.jar

Option Description

-src <srcjar> Specifies the JAR file that you want to compress. The full or relative path
to the file must be specified. There is no default.

-target <targetjar> Specifies the name of the compressed JAR file to be generated. The full
or relative path to the file must be specified. There is no default.

Chapter 34: iastool command-l ine ut i l i ty 315

Using the iastool command-l ine tools

To compress a JAR file called proj1.jar located in the directory c:\myprojects\ into a
file called proj1compress.jar in the same location:

iastool -compress -src c:\myprojects\proj1.jar
-target c:\myprojects\proj1compress.jar

deploy

Use this tool to deploy a J2EE module to a specified Partition on the specified hub and
configuration.

Syntax

-deploy -jars <jar1,jar2,...> <-hub <hub>|-host <host>:listener_port>>
-cfg <configname> -partition <partitionname> [-force_restart] [-cp <classpath>]
[-args <args>] [-javac_args <args>] [-noverify] [-nostubs] [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, deploy reports if the operation was successful.

Options
The following table describes the options available when using the deploy tool.

Option Description

-jars <jar1,jar2...> Specifies the names of one or more JAR files to be deployed. To
specify more than one JAR file, enter a comma (,) between each
file name (no spaces). The full or relative path to the files must
be specified. There is no default.

-hub <hub> Specifies the name of the hub in which to deploy the JAR files.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the partition you are interested in is running. This option
enables the iastool utility to locate a partition on a different
subnet than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration containing the partition
in which you want to load the JAR file.

partition <partitionname> Specifies the name of the Partition in which you want to load the
JAR file.

-force_restart Restarts the specified Partition after deploying the module. If
this option is not specified, you will need to restart the Partition
manually to initialize the module.

-cp <classpath> Specifies the classpath containing the class dependencies of
the JAR file(s) to be deployed.

-args <args> Specifies any arguments that are needed by the JAR file. For
details, see “Programmer tools for Java” in the VisiBroker for
Java Developer’s Guide.

-javac_args <args> Specifies any Java compiler arguments that are needed by the
JAR file.

-noverify Turns off verification of the active connections to a Partition on a
specified management port.

-nostubs Prevents creation of client or server-side stub files for the
deployed module.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

316 AppServer Developer ’s Guide

Using the iastool command-l ine tools

dumpstack

Use this tool to obtain diagnostic information about the threads running in a Partition.
This tool causes the Partition to generate a stack trace of all threads, and the output is
stored in the Partition's stdout.log, located in:

<install_dir>/var/domains/<domain-name>/configurations/<configuration-name>/
 mos/<partition-name>/adm/logs/<partition_name>.stdout.log

. The stack trace may be useful for diagnosing problems with the Partition. The log file
is located in the directory:

<install_dir>\var\domains\<domain_name>\configurations\<config_name>\
 <partition_name>\adm\logs\partition_log.xml

Syntax

-dumpstack <-hub <hub>|-host <host>:<listener_port>> -cfg <configname>
-partition <partitionname> [-mgmtport <nnnnn>] [-realm <realm>]
[-user <username>] [-pwd <password>] [-file <login_file>]

Options
The following table describes the options available when using the dumpstack tool.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

-hub <hub>|-host
<hostname>:<listener_port>

Specifies the name of the hub or the host name and the listener
port of the machine on which the partition process you are
interested in is running. You must specify either a hub name or a
host name and listener port. Specifying a listener port enables the
iastool utility to locate a hub on a different subnet than the
machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration containing the specified
partition.

-partition <partitionname> Specifies the name of the Partition that you want to diagnose. The
name of a valid Partition must be specified.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424

-realm <realm> Specifies the realm used to authenticate a user when the user and
password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name , and
password used to authenticate a user. The full or relative path to
this file must be specified. See “Executing iastool command-line
tools from a script file” on page 338 for more information.

Option Description

Chapter 34: iastool command-l ine ut i l i ty 317

Using the iastool command-l ine tools

Examples
The following example shows how to perform a thread dump of the standard Partition in
the j2ee configuration on the BES1 hub:

iastool -dumpstack -hub BES1 -cfg j2ee -partition standard

The following example shows how to perform a thread dump of the standard Partition
on a computer host on a specific listener port. Note that the -host option can be used
regardless of whether iastool is executed on the same or a different host machine on
which the partition is running.

iastool -dumpstack -host mymachine:1234 -cfg j2ee -partition standard

genclient

Use this tool to generate a library containing client stubs files, EJB interfaces, and
dependent class files for one or more EJB JAR files, and to package them into one or
more client JAR files. The client JAR is not an EJB, but is an EJB client.

If genclient fails for one of the EJB JARs in the argument list, an error is displayed and
the genclient tool will continue to attempt to generate a client JAR on the remainder of
the specified list.

The genclient tool will exit 0 (zero), for 100% success, or 1, for any failure.

Syntax

-genclient -jars <jar1,jar2,...> -target <client_jar> [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the genclient tool.

Example
The following example shows how to generate a manually deployable module client
JAR file from each of the EJB JAR files: proj1.jar, proj2.jar, and proj3.jar into the
EJB JAR myproj.jar.

iastool -genclient -jars proj1.jar,proj2.jar,proj3.jar -target myproj.jar

Option Description

-jars <jar1,jar2,...> Specifies one or more JAR files for which you want to generate one or
more client JAR files. To specify more than one JAR file, enter a
comma (,) between each file name (no spaces). The full or relative
path to the JAR files must be specified. There is no default.

-target <client_jar> Specifies the client-JAR files to be generated on the localhost. The full
or relative path to the JAR files must be specified. There is no default.

-cp <classpath> Specifies the classpath containing the class dependencies of the JAR
file for which you want to generate a client JAR file. The default is
none.

-args <java2iiop_args> Specifies any arguments that are needed by the file. For details, see
“Programmer tools for Java” in the VisiBroker for Java Developer’s
Guide.

-javac_args <args> Specifies any Java compiler arguments that are needed by the JAR
file.

318 AppServer Developer ’s Guide

Using the iastool command-l ine tools

gendeployable

Use this tool to create a manually deployable server-side module. Server-side
deployable JAR files are archives (EAR, WAR, or JAR beans only) that have been
compiled to resolve all external code references by using stubs and are, therefore,
ready for deployment.

For example, first use gendeployable to create the server-side deployable JAR file on a
local machine, then use the deploy tool to copy and load it on the hub. The hub is
advised of the presence of the new JAR file and loads it automatically. Using the
command-line tools lets you script a creation and deployment to several servers quite
simply. You can also manually copy the server-side deployable JAR file to the correct
location on each hub, but this requires restarting each hub to cause it to be recognized
and loaded.

Syntax

-gendeployable -src <input_jar> -target <output_jar> [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the gendeployable tool.

Example
The following example shows how to generate a server-side deployable module JAR
file for proj1.jar into the file server-side.jar.

iastool -gendeployable -src proj1.jar -target serverside.jar

genstubs

Use this tool to create a stubs library file containing client or server stubs.

Syntax

-genstubs -src <input_jar> -target <output_jar> [-client] [-cp <classpath>]
[-args <java2iiop_args>] [-javac_args <args>]

Option Description

-src <input_jar> Specifies the JAR file (or the directory of an expanded JAR) that you
want to use to generate a new deployable JAR file. The full or relative
path to the JAR file must be specified. There is no default.

-target <output_jar> Specifies the deployable JAR files to be generated on the localhost.
The full or relative path to the JAR files must be specified. There is no
default.

-cp <classpath> Specifies the classpath containing the class dependencies of the JAR
file for which you want to generate a client JAR file. The default is
none.

-args <java2iiop_args> Specifies any arguments that are needed by the file. For details, see
“Programmer tools for Java” in the VisiBroker for Java Developer’s
Guide.

-javac_args <args> Specifies any Java compiler arguments that are needed by the JAR
file.

Chapter 34: iastool command-l ine ut i l i ty 319

Using the iastool command-l ine tools

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the genstubs tool.

Examples
The following example shows how to generate a server-side stubs of the EJB JAR
proj1.jar into the EJB JAR server-side.jar.

iastool -genstubs -src proj1.jar -target serverside.jar

The following example shows how to generate a client-side stub file for the EJB JAR
myproj.jar into the EJB JAR client-side.jar.

iastool -genstubs -src c:\dev\proj1.jar -target
-client c:\builds\client-side.jar

info

Use this tool to display the Java system properties for the JVM the iastool is running
in.

Syntax

-info

Default Output
The default output is the current Java system properties for the JVM the iastool is
running in. For example, the first few lines of output look like the following partial listing:

application.home : C:\Program Files\AppServer
awt.toolkit : sun.awt.windows.WToolkit
file.encoding : Cp1252
file.encoding.pkg : sun.io
file.separator : \
java.awt.fonts :
java.awt.graphicsenv : sun.awt.Win32GraphicsEnvironment
java.awt.printerjob : sun.awt.windows.WPrinterJob
java.class.path : C:\Program Files\AppServer\jdk\lib\tools.jar
.
.
.

Option Description

-src <input_jar> Specifies the JAR file (or the directory of an expanded JAR) for which
you want to generate a stubs library. The full or relative path to the
JAR file must be specified. There is no default.

-target <output_jar> Specifies the name of the JAR file that will be generated on the
localhost. The full or relative path to the JAR file(s) must be specified.
There is no default.

-client Specifies that you want to generate client-side stubs. If this option is
not specified, the genstubs tool will generate server-side stubs.

-cp <classpath> Specifies the classpath containing the class dependencies of the JAR
file for which you want to generate a client JAR file(s). The default is
none.

-args <java2iiop_args> Specifies any arguments that are needed by the file. For details, see
“Programmer tools for Java” in the VisiBroker for Java Developer’s
Guide.

-javac_args <args> Specifies any Java compiler arguments that are needed by the JAR
file.

320 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Example
The following example shows how to display configuration information.

iastool -info|more

kill

Use this tool to kill a managed object on a specified hub and configuration.

Syntax

-kill <-hub <hub>|-host <host>:listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the kill tool lists the managed object that has been killed.

Options
The following table describes the options available when using the kill tool.

Examples
The following example kills the managed object j2ee-server using the default
management port:

iastool -kill -hub AppServer1 -cfg j2ee -mo j2ee-server

The following example kills the partition naming service running on the configuration
j2ee using the management port 24410:

iastool -kill -hub AppServer1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

Option Description

-hub <hub> Specifies the name of the hub on which you want to kill a
managed object.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the managed object you are interested in is running. The
option is enables the iastool utility to locate a hub on a different
subnet than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration containing the
specified managed object.

-mo <managedobjectname> Specifies the name of the managed object.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Chapter 34: iastool command-l ine ut i l i ty 321

Using the iastool command-l ine tools

listpartitions

Use this tool to list the partitions running on a specified hub, and optionally on a
specified configuration or management port.

Syntax

-listpartitions <-hub <hub>|-host <host>:<listener_port>>
[-cfg <configname>] [-mgmtport <nnnnn>] [-bare] [-realm <realm>]
[-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the listpartitions tool displays the partitions running on a specified hub, or
displays the partitions running on a specified hub on a specified configuration or
management port.

Options
The following table describes the options available when using the listpartitions tool.

Examples
The following example lists the partitions running on the hub AppServer1 using the
default management port:

iastool -listpartitions -hub AppServer1

The following example lists the partitions running on the hub AppServer1 using the
management port 24410:

iastool -listpartitions -hub AppServer1 -mgmtport 24100

Option Description

-hub <hub> Specifies the hub name for which you want to list the running
partitions.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the partitions you are interested in are running. The option
is enables the iastool utility to locate a hub on a different subnet
than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration on which to list
partitions.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-bare Suppresses the output information, other than the names of the
running partitions.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

322 AppServer Developer ’s Guide

Using the iastool command-l ine tools

listhubs

Use this tool to list hubs running on a particular management port located on the same
local area network.

Syntax

-listhubs [-mgmtport <nnnnn>] [-bare] [-realm <realm>] [-user <username>]
[-pwd <password>] [-file <login_file>]

Default Output
By default, the listhubs tool displays the hubs running in the default management port
or on a specified management port.

Note If a particular hub that is queried is down, it is not listed.

Options
The following table describes the options available when using the listhubs tool.

Examples
The following example lists the hubs running in the default management port:

iastool -listhubs

The following example lists the hubs running in the management port 24410:

iastool -listhubs -mgmtport 24100

listservices

Use this tool to list one or more services running on a hub.

Syntax

-listservices <-hub <hub>|-host <host>:<listener_port>> [-cfg <configname>]
[-mgmtport <nnnnn>] [-bare] [-realm <realm>] [-user <username>]
[-pwd <password>] [-file <login_file>]

Default Output
By default, listservices displays a list of all partition services registered for the
specified hub on a particular management port.

Option Description

-mgmtport <nnnnn> Specifies a management port number of the running hub you want to list.
The default is 42424.

-bare Suppresses output information, other than the names of the running hubs.

-realm <realm> Specifies the realm used to authenticate a user when the user and
password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the specified realm.

-file <login_file> Specifies a login script file containing the realm, user name , and
password used to authenticate a user. The full or relative path to this file
must be specified. See “Executing iastool command-line tools from a
script file” on page 338 for more information.

Chapter 34: iastool command-l ine ut i l i ty 323

Using the iastool command-l ine tools

Options
The following table describes the options available when using the listservices tool.

Example
The following example lists all services running on the salsa hub:

iastool -listservices -hub salsa

manage

Use this tool to actively manage a managed object in a configuration.

Syntax

-manage (-hub <hub>|-host <host>:<listener_port>) [-cfg <configname>] -mo
<managedobjectname> [-moagent <managedobjectagent>] [-mgmtport <99999>] [-realm
<realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the manage tool.

Option Description

-hub <hub> Specifies the name of the hub for which you want to list the
running services.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the services you are interested in are running. The option
is enables the iastool utility to locate a hub on a different subnet
than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration on which to list services.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-bare Suppresses output of information other than the names of the
running services.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

-hub <hub> Specifies the name of the hub on which the managed object is
running.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the managed object is running. This option enables the
iastool utility to locate a hub on a different subnet than the
machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration with which the
managed object is associated.

-mo <managedobjectname> Specifies name of the managed object.

-moagent <managedobjectagent> Specifies the agent with which the managed object is
associated.

324 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Example
The following example puts the managed object j2ee-server into the actively managed
mode using the default management port:

iastool -manage -hub AppServer1 -cfg j2ee -mo j2ee-server

merge

Use this tool to produce a single, new Java Archive file (EJB-JAR) containing the
contents of a specified list of EJB-JARs. Multiple EJB 1.1 and EJB 2.0 deployment
descriptors (if any) will be consolidated into a single deployment descriptor. If merging
fails for one of the EJB-JARs in the argument list an error is displayed and the merge
command will exit indicating failure.

Syntax

-merge -jars <jar1,jar2,...> -target <new_jar> -type <valid_type>

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the merge tool.

-mgmtport <99999> Specifies the port with which the managed object's agent is
associated.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

-jars <jar1,jar2,..> Specifies the JAR files to merge, comma separated and no spaces. The
full or relative path to the JAR files must be specified. There is no
default.

-target <new_jar> Specifies the name of the new JAR file to be created containing the
merged contents of the specified list of JAR files. The full or relative path
to the new JAR file must be specified. There is no default.

-type valid_type Specifies the type of the new archive file using one of the following
supported formats:

■ ejb2.0 – Version 2.0 Enterprise Java Bean

■ ejb1.1 – Version 1.1 Enterprise Java Bean
■ ear1.3 – Version 1.3 Enterprise Application Resource
■ ear1.2 – Version 1.2 Enterprise Application Resource
■ lib – Library file
■ war2.3 – Version 2.3 Web Application Archive
■ war2.2 – Version 2.2 Web Application Archive
■ rar1.0 – Version 1.0 Resource Adapter Archive
■ client1.2 – Version 1.2 Client JAR
■ client1.3 – Version 1.3 Client JAR
■ jndi1.2 – Version 1.2 Java Naming and Directory Interface

Option Description

Chapter 34: iastool command-l ine ut i l i ty 325

Using the iastool command-l ine tools

Example
The following example merges the EJB-JAR files proj1.jar, proj2.jar, and proj3.jar
into a new version 2.0 EJB-JAR file named combined.jar:

iastool -merge -jars proj1.jar,proj2.jar,proj2.jar
-target combined.jar -type ejb2.0

migrate

Use this tool to convert a JAR or XML file from one version of J2EE to another, for
example, J2EE version 1.2 to J2EE version 1.3 or J2EE 1.4.

Note The migrate command only converts the deployment descriptor for an EJB; as such,
code changes may also be required to implement the conversion properly in your
deployment.

If the conversion fails, an error is displayed.

Syntax

-migrate [-to[1.2|1.3|1.4]] -src <src-archive> -target <target-archive>

Default Output
The default returns nothing to standard output (stdout).

Options
The following table describes the options available when using the migrate tool.

Example
The following example migrates the file myj1_2.jar from J2EE version 1.2 to J2EE
version 1.3 into new file called myj1_3.jar:

iastool -migrate -src myj1_2.jar -target myj1_4.jar //here -to 1.4 is implied
iastool -migrate -to 1.3 -src myj1_2.jar -target myj1_3.jar //here a 1.2 module
is converted to 1.3

newconfig

Use this tool to create a new configuration from a configuration template. The
command takes the name of a new configuration, the filename and path of a template
file relative to the installation's configuration template directory, and an optional
property file that overrides the properties in the template used to create the new
configuration.

Option Description

-to[1.2|1.3|1.4] Specifies the target version that the source J2EE module should be
migrated to. For instance, a J2EE 1.3 source module can be
migrated to J2EE 1.2 or J2EE 1.4, and a J2EE 1.2 module can be
migrated to a target J2EE 1.3 or J2EE 1.4 module. If you do not
specify this option then it defaults to J2EE 1.4.

-src <src-archive> Specifies the J2EE module to convert. The full or relative path to the
archive file (or the directory of an expanded JAR) must be specified.
There is no default.

-target <target-archive> Specifies the name of the J2EE module to be created. The full or
relative path to the archive file must be specified. There is no
default.

326 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Syntax

-newconfig (-hub <hub>|-host <host>:<listener_port>) -cfg <configname>
 -template <template_path> [-property <property_path>] [-mgmtport <99999>]
 [-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output returns nothing to standard output (stdout).

Options

Example

iastool -newconfig -hub myhub -cfg SimpleProcessConfig -template native.xml
 -property c:\simple.properties

patch

Use this tool to apply one or more patches to a JAR file and produce a new JAR file
with the applied patches.

Syntax

-patch -src <original_jar> -patches <patch1_jar,...> -target <new_jar>

Default Output
The default output displays the patches that were applied.

Option Description

-hub <hub> Specifies the name of the hub in which to create the new
configuration.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the hub is running to create the new configuration. This
option enables the iastool utility to locate a hub on a different
subnet than the machine on which iastool is running.

-cfg <configname> Specifies the name of the new configuration.

-template <template_path> Specifies the path where the configuration template is located.
template_path can be either a full path of a configuration template
XML file or a path relative to the configuration template directory
(i.e. <install_dir>/var/templates/configurations/).

-property <property_path> Specifies the path to an optional property file that overrides the
properties used in the template to create the new configuration.

-mgmtport <99999> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Chapter 34: iastool command-l ine ut i l i ty 327

Using the iastool command-l ine tools

Options
The following table describes the options available when using the patch tool.

Example
The following example applies the patches contained in the files mypatch1.jar and
mypatch2.jar to the file myold.jar which are all located in the current directory and
creates a new file called mynew.jar in the same location:

iastool -patch -src myold.jar -patches mypatch1.jar,mypatch2.jar
-target mynew.jar

ping

Use this tool to verify the current state of a hub or a managed object. The ping
command will return nothing for a hub that is not running.

Syntax

-ping <-hub <hub>|-host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-ping <-hub <hub>|-host <host>:<listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output shows the name and status of the hub (and optionally the managed
object) if the process is pinged and running. For example:

Pinging Hub xyz_corp1: Running

The ping tool returns one of the following states:

■ Running
■ Starting
■ Stopping
■ Not Running
■ Restarting
■ Cannot Load
■ Cannot Start
■ Terminated
■ Unknown

Option Description

-src <original_jar> Specifies the JAR file to which you want to apply one or more
patches. The full or relative path to the JAR file must be specified.
There is no default.

-patches <patch1_jar,...> Specifies one or more JAR files that contain the patches you want
to apply. To specify more than one file, enter a comma (,) between
each file name (no spaces). The full or relative path to the files
must be specified. There is no default.

-target <new_jar> Specifies the name of the new JAR file to be created. The full or
relative path to the JAR file must be specified. There is no default.

328 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Options
The following table describes the options available when using the ping tool.

Examples
The following example pings the hub AppServer1 in the default management port:

iastool -ping -hub AppServer1

The following example pings the partition naming service running on the hub
AppServer1 in the management port 24410:

iastool -ping -hub AppServer1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

pservice

Use this tool to enable, disable, or get the state of a partition service.

Syntax

-pservice <hub <hub>|-host <host>:<listener_port>> -cfg <configname>
-partition <partitionname> -moagent <managedobjectagent>
-service <servicename> <-enable|-disable|-status> [-force_restart]
[-mgmtport <nnnnn>] [-realm <realm>] [-user <username>] [-pwd <password>]
[-file <login_file>]

Default Output
The default output returns nothing to standard output (stdout).

Option Description

-hub <hub> Specifies the hub to ping or whose services to ping. There is no
default.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the hub or managed object you are interested in is
running. The option is enables the iastool utility to locate a
managed object on a different subnet than the machine on
which iastool is running.

-cfg <configname> Specifies the name of the configuration on which to ping for
managed objects.

-mo <managedobjectname> Specifies the name of the managed object.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Chapter 34: iastool command-l ine ut i l i ty 329

Using the iastool command-l ine tools

Options
The following table describes the options available when using the pservice tool.

Example
The following example shows how to enable the partition naming service on the
standard partition.

iastool -pservice -hub AppServer1 -cfg j2ee -partition standard
-service standard_visinaming -enable -force_restart -mgmtport 24431

removestubs

Use this tool to remove all stub files from a JAR file.

Syntax

-removestubs -jars <jar1,jar2,...> [-targetdir <dir>]

Default Output
The default output returns nothing to standard output (stdout).

Option Description

-hub <hub> Specifies the hub where the partition service you are interested
in is located. There is no default.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the partition service you are interested in is running. The
option is enables the iastool utility to locate a partition service
on a different subnet than the machine on which iastool is
running.

-partition <partitionname> Specifies the name of the partition.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

-service <servicename> Specifies the name of the service.

-enable|-disable|-status Specifies the operation you would like to perform on the
partition service.

-force_restart Restarts the specified Partition after completing the enable,
disable, or status operation. If this option is not specified, you
will need to restart the Partition manually to initialize the
module.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

330 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Options
The following table describes the options available when using the removestubs tool.

Example
The following example shows how to remove stub files located from the EJB JAR files
proj1.jar, proj2.jar, and proj3.jar located in the current directory and copy them to
c:\examples\proto:

iastool -removestubs -jars proj1.jar,proj2.jar,proj3.jar
-targetdir c:\examples\proto

restart

Use this tool to restart a hub or managed object. The hub must already be running in
order for the restart tool to work with a hub.

Syntax

-restart <-hub <hub>|-host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-restart <-hub <hub>|-host <host>:<listener_port>> [-cfg <configname>]
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the hub or managed object that has been restarted.

If the restart tool fails (for example, when a managed object cannot be shutdown or
restarted), an error is displayed with a status code which is returned to standard error
output (stderr).

Options
The following table describes the options available when using the restart tool.

Option Description

-jars <jar1,jar2...> Specifies the JAR file(s) from which you want to remove one or more
stub files. To specify more than one JAR file, enter a comma(,) between
each JAR file (no spaces). The full or relative path to the JAR file(s)
must be specified. There is no default.

-targetdir <dir> Specifies the directory in which the stub files that were removed will be
stored. A full or relative path must be specified, if this option is specified.
There is no default. If no target directory is specified, the stub files will
be removed, but not saved.

Option Description

-hub <hub> Specifies the name of the hub that you want to restart. Also
used to locate a managed object on a particular hub.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the managed object you are interested in is running. The
option is enables the iastool utility to locate a managed object
on a different subnet than the machine on which iastool is
running.

-cfg <configname> Specifies the name of the configuration on which to locate
managed objects.

-mo <managedobjectname> Specifies the name of the managed object.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

Chapter 34: iastool command-l ine ut i l i ty 331

Using the iastool command-l ine tools

Examples
The following example restarts the hub AppServer1 on the default management port:

iastool -restart -hub AppServer1

The following example restarts the partition naming service running on the hub
AppServer1 on the management port 24410:

iastool -restart -hub AppServer1 -cfg j2ee -mo standard_visinaming -mgmtport
24410

setmain

Use this tool to set the main class of a standalone Client JAR or a Client JAR in an
EAR file. Once the main class is set, the java -jar jarfile command will automatically
invoke the main class that has been set for the JAR file.

Syntax

-setmain -jar <jar_or_ear> [-uri <client_jar_in_ear>] -class <main_classname>

Default Output
The default output displays the main class that has been set for the specified JAR file.

Options
The following table describes the options available when using the setmain tool.

Examples
The following example sets a main class for a standalone Client JAR:

iastool -setmain -jar myclient.jar -class com.bes.myjclass

The following example sets a main class for a Client JAR contained in an EAR file:

iastool -setmain -jar myapp.ear -uri base/myapps/myclient.jar
-class com.bes.myjclass

-mgmtport nnnnn Specifies the management port number used by the specified
hub. The default is 42424.

-realm realm Specifies the realm used to authenticate a user when the user
and password options are specified.

-user username Specifies the user to authenticate against the specified realm.

-pwd password Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

-jar <jar_or_ear> Specifies the name of the JAR or EAR file on which you want to set
the main class.

-uri <client_jar_in_ear> If you are setting the main class for an EAR file, you must use the -
uri option to identify the URI (Uniform Resource Identifier) path of
the client JAR in the EAR.

-class <main_classname> Specifies the class name that will be set as the main class in the
specified Client JAR. The class must exist in the client JAR file and
contain a main() method.

Option Description

332 AppServer Developer ’s Guide

Using the iastool command-l ine tools

start

Use this tool to start a managed object on a specified hub and configuration.

Syntax

-start <-hub <hub>|-host <host>:<listener_port>> -cfg <configname>
-mo <managedobjectname> -moagent <managedobjectagent> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the managed object that has been started.

Options
The following table describes the options available when using the start tool.

Example
The following example starts the partition naming service running on the hub
AppServer1 in the j2ee configuration on management port 24410:

iastool -start -hub AppServer1 -cfg j2ee -mo standard_visinaming -mgmtport
24410

Option Description

-hub <hub> Specifies the name of the hub on which the managed object
you want to start is located.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the managed object you are interested in is running. The
option is enables the iastool utility to locate a hub on a different
subnet than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration containing the
managed object you are interested in.

-mo <managedobjectname> Specifies the name of the managed object you are interested
in.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. If not specified, the default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Chapter 34: iastool command-l ine ut i l i ty 333

Using the iastool command-l ine tools

stop

Use this tool to shut down a hub or managed object.

Syntax

-stop <-hub <hub>|-host <host>:<listener_port>> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

or

-stop <-hub <hub>|-host <host>:<listener_port>> [-mgmtport <nnnnn>]
-cfg <configname> -mo <managedobjectname> -moagent <managedobjectagent>
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output displays the process or processes that have been shut down.

If the stop tool fails (for example when a managed object cannot be shutdown), an error
is displayed with a status code, which is returned to standard error output (stderr).

Options
The following table describes the options available when using the stop tool.

Example
The following example stops the partition naming service running on the hub
AppServer1 in the j2ee configuration on the management port 24410:

iastool -stop -hub AppServer1 -cfg j2ee -mo standard_visinaming -mgmtport 24410

Option Description

-hub <hub> Specifies the name of the hub that you want to shut down, or
the hub on which resides the managed object you want to shut
down.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the hub or managed object you are interested in is
running. The option is enables the iastool utility to locate a hub
on a
different subnet than the machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration containing the
managed object you are interested in.

-mo <managedobjectname> Specifies the name of the managed object you are interested
in.

-moagent <managedobjectagent> Specifies the managed object agent name. Use this option if
the specified hub has more than one agent.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. The default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

334 AppServer Developer ’s Guide

Using the iastool command-l ine tools

uncompress

Use this tool to uncompress a JAR file.

Syntax

-uncompress -src <srcjar> -target <targetjar>

Default Output
By default, uncompress reports if the operation was successful or not.

Options
The following table describes the options available when using the uncompress tool.

Examples
The following example converts the compressed JAR file called small.jar located in
the current directory into an uncompressed file called big.jar in the same location:

iastool -uncompress -src small.jar -target big.jar

The following example uncompresses a JAR file named small.jar located in the
directory c:\myprojects\ into a file named big.jar in the same location:

iastool -uncompress -src c:\myprojects\small.jar -target c:\myprojects\big.jar

undeploy

Use this tool to undeploy a J2EE module from a specified Partition on a specified hub
and configuration.

Syntax

-undeploy -jar <jar> <-hub <hub>|-host <host>:<listener_port>>
-cfg <config_name> -partition <partitionname> [-mgmtport <nnnnn>]
[-realm <realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
By default, the undeploy tool reports if the operation was successful or not.

Options
The following table describes the options available when using the undeploy tool.

Option Description

-src <srcjar> Specifies the JAR file that you want to uncompress. The full or relative
path to the file must be specified. There is no default.

-target <targetjar> Specifies the name of the uncompressed JAR file to be generated. The
full or relative path to the file must be specified. There is no default.

Option Description

-jar <jar> Specifies the name of the JAR file to be undeployed. The full or
relative path to the file must be specified. There is no default.

-hub <hub> Specifies the name of the hub from which to undeploy the JAR
file.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the deployed module you are interested in is located. The
option is enables the iastool utility to locate a module on a
different subnet than the machine on which iastool is running.

Chapter 34: iastool command-l ine ut i l i ty 335

Using the iastool command-l ine tools

unmanage

Use this tool to remove a managed object from the actively managed mode.

Syntax

-unmanage (-hub <hub>|-host <host>:<listener_port>) [-cfg <configname>] -mo
<managedobjectname> [-moagent <managedobjectagent>] [-mgmtport <99999>] [-realm
<realm>] [-user <username>] [-pwd <password>] [-file <login_file>]

Default Output
The default output returns nothing to standard output (stdout).

Options
The following table describes the options available when using the unmanage tool.

-cfg <configname> Specifies the configuration name under which the partition is
configured.

-partition <partitionname> Specifies the name of the Partition that contains the JAR file.

-mgmtport <nnnnn> Specifies the management port number used by the specified
hub. If not specified, the default is 42424.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

-hub <hub> Specifies the name of the hub on which the managed object is
running.

-host <host>:<listener_port> Specifies the host name and the listener port of the machine on
which the managed object is running. This option enables the
iastool utility to locate a hub on a different subnet than the
machine on which iastool is running.

-cfg <configname> Specifies the name of the configuration with which the
managed object is associated.

-mo <managedobjectname> Specifies name of the managed object.

-moagent <managedobjectagent> Specifies the agent with which the managed object is
associated.

-mgmtport <99999> Specifies the port with which the managed object's agent is
associated.

-realm <realm> Specifies the realm used to authenticate a user when the user
and password options are specified.

-user <username> Specifies the user to authenticate against the specified realm.

-pwd <password> Specifies the user's password to authenticate against the
specified realm.

-file <login_file> Specifies a login script file containing the realm, user name ,
and password used to authenticate a user. The full or relative
path to this file must be specified. See “Executing iastool
command-line tools from a script file” on page 338 for more
information.

Option Description

336 AppServer Developer ’s Guide

Using the iastool command-l ine tools

Example
The following example removes the managed object j2ee-server from the actively
managed mode using the default management port:

iastool -unmanage -hub AppServer1 -cfg j2ee -mo j2ee-server

usage

When invoked without arguments usage displays a list of recognized command-line
options and a brief description of each. Invoking usage with one or more arguments
provides a more detailed description of the specified commands and their arguments.

Syntax

-usage
-usage <tool>
-usage <tool1 tool2 tool3>

Note Arguments to the usage command do not require a leading hyphen.

Default Output
By default, the usage tool displays a list with a brief description of each command-line
tool.

Examples
The following example displays a list and a brief description of each the command-line
tools:

iastool -usage

The following example displays detailed information on the compress tool:

iastool -usage compress

The following example displays detailed information on the -start, -stop, and -restart
tools:

iastool -usage start stop restart

verify

Use this tool to check an archive file for correctness and consistency, and to check if all
of the elements required for deploying your application are in place.

The verification process supports the following roles that correspond to a phase in the
application's life cycle and the appropriate level of verification (similar to the J2EE role
definitions):

■ Developer: This is the lowest verification level. All xml is checked for syntax as well
as standard and proprietary keywords relevant to the current archive type.
Consistency across the archive is checked, but no external resources are verified at
this level.

■ Assembler: Once the archives are individually verified and are correct, other
resources built into an application will start to be verified. For example, this level will
verify the existence and correctness of URIs (Uniform Resource Identifiers), but not
EJB or JNDI links.

■ Deployer: (the default) All checks are turned on. EJB and JNDI links are checked at
this level as well as the operational environment in which the application is to be
deployed.

Chapter 34: iastool command-l ine ut i l i ty 337

Using the iastool command-l ine tools

Supported archive types are EAR, EJB, WAR, JNDI, and Client JARs. The typical
archive verification process includes the following checks:

■ A pass over the XML, checking for correct XML syntax.

■ Verification of the semantics of the standard and proprietary XML descriptors, and
the compliance with their required descriptors for each supported archive type.

Verification always occurs in a hierarchical fashion, starting with the top module, then
recursively working through its submodules, and finally checking for inter-archive links.

Syntax

-verify -src <srcjar> [-role <DEVELOPER|ASSEMBLER|DEPLOYER>] [-nowarn]
[-strict] [-classpath <classpath>]

Default Output
By default, verify reports nothing (for example, if no errors are found in the specified
module).

Options
The following table describes the options available when using the verify tool.

Example
The following example performs a developer level verification of the JAR file soap-
client.jar located in the c:\examples\soap directory:

-verify -src c:\examples\soap\soap-client.jar -role DEVELOPER

Option Description

-src <srcjar> Specifies the JAR file (or the directory of an expanded
JAR) that you want to verify. The full or relative path to
the file must be specified. There is no default.

-role <DEVELOPER|ASSEMBLER|DEPLOYER> Specifies the level of error checking to perform:

■ DEVELOPER

■ ASSEMBLER

■ DEPLOYER (default)

For details, see the role descriptions above.

-nowarn Specifies that the tool should only report errors that
preclude deployment and not report warnings.

-strict Specifies that the tool should report the most minute
inconsistencies, many of which do not affect the overall
integrity of the application.

-classpath <classpath> Specifies the search path for application classes and
resources. To enter more than one directory, ZIP, or
JAR file entry, separate each entry with a semicolon (;).

338 AppServer Developer ’s Guide

Execut ing iastool command-l ine tools f rom a scr ipt f i le

Executing iastool command-line tools from a script file
Several iastool utility tools require that you supply login information (realm, username,
and password). You may, however, want to run iastool commands from a script file,
but doing so would expose the realm, username, password information to anyone who
has access to the script file. There are two methods you can use to protect this
information:

■ Enter the realm, username, and password information into a file and pipe that file to
the command.

■ Enter the realm, username, password information into a file and pass the file to the
command with the -file option.

Piping a file to the iastool utility

The following example shows how to ping a hub named east1 by piping the file
mylogin.txt (located in the default Borland Deployment Platform installation directory)
to the iastool utility:

iastool -ping -hub east1 < c:\AppServer\mylogin.txt

where the file mylogin.txt contains three lines that correspond to what you would enter
for the realm, username, and password:

2
username
password

Note The contents of the file are exactly what you would enter on the command-line. The
first entry in the file is the realm option—not the realm name, but the number you would
choose from the list presented to you if you run the ping tool without the realm option.
The second line is the username and the third line is the password. This file can then be
secured in such a way that it is readable by the iastool utility, but not by unauthorized
users.

Passing a file to the iastool utility

The following command shows how to ping a hub named east1 by passing a file to the
iastool utility using the -file option:

iastool -ping -hub east1 -file c:\AppServer\mylogin.txt

where mylogin.txt has the following format:

Default Login
Smart Agent port number
username
password
false
ServerRealm

The -file option requires that you supply a fully qualified file name (the file name plus
a relative or absolute path). When passing a file to the iastool utility, only the third,
fourth, and sixth lines are used, which are the username, password, and realm name,
respectively. The other lines must be present, but the information they contain is
ignored by the iastool utility. For example:

Default Login
12448
myusername
mypassword
false
ServerRealm

Chapter 35: Part i t ion XML reference 339

C h a p t e r

Chapter35Partition XML reference
This section describes the XML definition of a Partition's partition.xml configuration
file that contains the core meta-data for a Partition's configuration.

<partition> element
The partition element is the root node of the schema which contains the attributes and
sub-elements that define the settings that control the configuration of a Borland
AppServer (AppServer) Partition.

Syntax

<partition version="version number" name="partition name"
description="description">
 ƒ
</partition>

The partition element contains the following sub-elements:

■ <jmx>
■ <statistics.agent>
■ <security>
■ <container>
■ <user.orb>
■ <management.orb>
■ <shutdown>
■ <services>
■ <archives>

Attribute Description

version Product version of the Partition.

name The name of the Partition.

description A description of the Partition.

340 AppServer Developer ’s Guide

<part i t ion> element

<jmx> element

The jmx element contains the sub-elements for configuring the JMX agent. See JMX
support in Partitions for more information about the AppServer JMX implementation.

The jmx element contains the following sub-elements:

■ <mbean.server>
■ <mlet.service>
■ <http.adaptor>
■ <rmi-iiop.adaptor>

<mbean.server> element
The mbean.server element is used to enable or disable the JMX agent's MBean Server.
The MBean Server is an interface and a factory object defined by the agent
specification level of the JMX.

<mlet.service> element
The mlet.service element configures the JMX agent's MLet service. The MLet service
is useful for loading MBean classes and resources inside an MBean Server's JVM from
a remote host and registering the MBeans in a single action.

<http.adaptor> element
The http.adaptor element configures the JMX agent's HTTP adaptor. The HTTP
adaptor is the adaptor for the HTTP protocol through which the Partition can be
managed through any HTML 3.2 compliant browser or application.

The http.adaptor element contains the following sub-element:

■ <xslt.processor>

Attribute Description

enable Enables or disables the MBean Server. Valid values are true (default) or false.

Attribute Description

enable Enables or disables the MLet service. Valid values are true or false (default).

Attribute Description

enable Enables or disables the HTTP adaptor. Valid values are true or false
(default).

port The port number at which the HTTP adaptor is listening. 8082 is the
default port number.

host Defines the host name which the server will be listening to. If left with
the default setting (localhost) you cannot access the server from
another computer. This is good for security reasons, forcing you to
explicitly open the server to the outside. You can also use 0.0.0.0
which will open the server to all local interfaces. Default is localhost.

authentication.method Sets the authentication method. Valid values are none, basic, and
digest. Default is none.

socket.factory.name Replaces the default socket factory with another using an ObjectName,
the pointed MBean has to have a public ServerSocket
createServerSocket(int port, int backlog, String host) throws
IOException method.

processor.name This sets the MBean's ObjectName to be used as XML processor. The
MBean has to implement the mx4j.tools.adaptor.http.ProcessorMBean
interface.

Chapter 35: Part i t ion XML reference 341

<part i t ion> e lement

<xslt.processor> element
The xslt.processor element configures the XSLT processor for the HTTP adaptor. The
XSLT processor transforms the raw XML into presentable HTML for the Web browser.
If this property is not enabled and you try to use the MX4J Web console you will get raw
XML in your Web browser.

<rmi-iiop.adaptor> element
The rmi-iiop.adaptor element configures the JMX agent's RMI-IIOP adaptor. The RMI-
IIOP adaptor is based on the client framework, which helps managers or managing
applications to communicate with the MBean Server through RMI.

<statistics.agent> element

The statistics.agent element configures the Partition's statistics agent. The Partition
statistics agent consists of two components:

■ A statistics collector that periodically collects statistics data on the Partition and
saves that data onto disk. These periodic data samples build up on disk enabling the
product tools to provide current, and historical current statistical data on a Partition.

■ A statistics reaper that periodically reaps (cleans up) the historical data from disk.

The Partition statistics agent is intended for collecting short term statistical data.
However, it is only physically limited by the amount of disk space it is allowed to
consume.

Attribute Description

enable Enables or disables the XSLT processor. Valid values are true (default) or false.

File Determines where to look for XSL files. If the target file is a directory, it assumes
that XSL files are located in the directory. Otherwise if it points to a JAR or ZIP
file, it assumes that the files are located inside. Pointing to a file system is
especially useful for testing.

PathInJar Sets the directory in the JAR file where XSL files reside.

LocaleString Sets the locale by using a String. Default is en.

UseCache Indicates whether to cache the transformation objects. This speeds up the
transformation process. It is usually set to true, but you can set it to false for
easier testing. Default is true.

Attribute Description

enable Enables or disables the RMI-IIOP adaptor. Valid values are true (default) or false.

port The port number to be allocated for the RMI-IIOP adaptor port. If you do not specify
a port number or specify 0 as the port number, a random port number is assigned.

Attribute Description

enable Enables or disables the statistics agent. A disabled statistics agent will
not collect or reap statistics data. Valid values are true (default) or false.

level Sets the level of detail of statistics collected from a Partition. Valid
values are: none, minimum (default), and maximum.

snapshot.period_secs Specifies how often (in seconds) Partition statistics are collected and
written to the disk. The default is 10 seconds.

reap.enable Enables or disables the reaping (clean up) of Partition statistics data on
disk. Valid values are true (default) or false.

reap.older_than_secs If reap_enable is true, sets the threshold for the age (in seconds) of
statistics data kept on disk before being deleted. The default is 600
seconds (10 minutes).

reap.period_secs If reap_enable is true, sets the time period (in seconds) between sweeps
to clean up statistics data older than reap.older_than_secs from disk. The
default is 60 seconds (1 minute).

342 AppServer Developer ’s Guide

<part i t ion> element

<security> element

The security element lets you configure the security settings for a given Partition. This
empty element contains the attributes described in the following table.

<container> element

The container element specifies how the Partition works with classloading.

<user.orb> element

The user.orb element controls the VisiBroker configuration used for the Partition's user
domain ORB.

Attribute Description

enable Enables or disables security for a Partition. Valid values are true (default) or false.

manager Specifies the name of the security manager used by a Partition. Valid values are
any available security provider names, for example
com.borland.security.provider.CertificateWallet.

policy Specifies the name of the security policy file that defines the security rules of a
Partition. Valid values are any fully qualified security policy file names, for example
<install_dir>/va/\security/profile/\management/java_security.policy

Attribute Description

system.classload.prefixes This is a comma separated list of resource prefixes that the custom
classloader will delegate to the system classloader prior to
attempting to load itself.

verify.on.load When true runs verify on JARs as they are loaded. Default is true.

classloader.policy Determines the type of classloader to be used by the Partition.
Valid values are per_module or container. The per_module classloader
policy will create a separate application classloader for each
deployed module. This policy is required if you want to be able to
hot deploy. The container policy will load all deployed modules in
the shared classloader. You cannot hot deploy if this policy is
selected.

classloader.classpath Contains a semicolon (;) separated list of JAR files to be loaded by
each instance of the application classloader. This has the same
logical effect as bundling these jars in every module.

Attribute Description

orb.propstorage Path to the Partition's user ORB properties file. Relative paths
are relative to the Partition's properties directory (the directory
partition.xml is in).

use.default.smartagent.port This property defines whether the Partition will use the SCU
Smart Agent configuration to determine the Smart Agent port
value.

use.default.smartagent.addr This property defines whether the Partition will use the SCU
Smart Agent configuration to determine the Smart Agent host
address value.

Chapter 35: Part i t ion XML reference 343

<part i t ion> e lement

<management.orb> element

The management.orb element controls the VisiBroker configuration for the Partition's
management domain ORB.

All the paths are relative to the Partition's properties directory (the directory
partition.xml is in).

<shutdown> element

The shutdown element determines the actions taken when a Partition stops. This empty
element has no attributes.

Attribute Description

orb.propstorage Path to the Partition's management domain ORB properties file.

required_roles.propstorage Path to the Partition's management domain ORB required roles
configuration file.

runas.propstorage Path to the Partition's management domain ORB runas
configuration file.

Attribute Description

dump_threads Flag that causes the Partition to dump diagnostic information on threads
still running late in Partition shutdown.

dump_threads.count If defined, the value indicates the number of times to dump the thread
states during shutdown. It is useful if you are trying to see if some
threads are simply taking a long time to quit, but do quit eventually.

delay.1 Reserved for support use.

garbage_collection.1 Reserved for support use.

delay.2 Reserved for support use.

runfinalizersonexit Reserved for support use.

delay.3 Reserved for support use.

garbage_collection.2 Reserved for support use.

delay.4 Reserved for support use.

runfinalization Reserved for support use.

344 AppServer Developer ’s Guide

<part i t ion> element

<services> element

The services element lets you configure the Partition's services. Each Partition service
has a service sub-element with its specific configuration, the services element itself
has the following attributes:

The <services> element contains the following sub-element:

■ service

<service> element
The <service> element provides the configuration for a Partition service. It contains
attributes that govern the Partition's management of the service and a properties sub-
element that contains the service's configuration metadata.

Attribute Description

autostart List of Partition's services to be started at Partition startup.

The value is a space separated list of Partition service names.

startorder The startup order to be imposed on the Partition services configured to be
started by the autostart attribute. Partition services that are not specified are
started after those specified.

A valid value is a space separated list of Partition service names in their start
order (left to right).

shutdownorder The shutdown order to be imposed on the Partition services that are running at
Partition shutdown. Partition services that are not specified are stopped before
those specified.

A valid value is a space separated list of Partition service names in their
shutdown order (left to right).

administer List of Partition services that are visible to the user. They appear in the tools
when Partition services are listed.

Attribute Description

name The Partition service's name.

version The version of the Partition service.

description The description for the Partition service.

vendor The description of the vendor for the Partition service.

class The class that implements the Partition's service plugin
architecture and provides the management and control
interface for the service.

in.management.domain Flag that indicates if the service runs in the Partition's
management domain or in the Partition's user domain.

startup.synchronization The type of synchronization to be performed when the
service is started. Valid values are:

■ service_ready—wait for the service to be ready for up to
startup.service_ready.max_wait milliseconds.

■ delay—always wait for startup.delay milliseconds, do
not monitor the service for it to become ready.

Default is no synchronization.

startup.service_ready.max_wait Limits the maximum time, in milliseconds, that the
Partition waits for the service to start when the
startup.synchronization value is service_ready. A value of 0
(zero) means no time limit is imposed. The default value is
0 (zero).

startup.delay Defines the time, in milliseconds, that the Partition waits in
order to give the service a chance to start when the
startup.synchronization value is delay. A value of 0 (zero)
means wait forever. Default is 0 (zero) .

Chapter 35: Part i t ion XML reference 345

<part i t ion> e lement

<properties> element
The properties element lets you supply the specific service's configuration metadata.

<archives> element
The archives element contains configuration metadata for the archives that the
Partition can host. A specific archive can have an archive sub-element with attributes
specific to that archive. An archive does not have to have an archive sub-element.

All the paths are relative to the Partition's root directory.

shutdown.synchronization The type of synchronization to be performed when the
service is shutdown. Valid values are:

■ service_shutdown—wait for the service to stop for up to
shutdown.service_shutdown.max_wait milliseconds.

■ delay—always wait for shutdown.delay milliseconds, do
not monitor the service for it to stop.

Default is no synchronization.

shutdown.service_shutdown.max_wait Limits the maximum time, in milliseconds, that the
Partition waits for the service to stop when the
shutdown.synchronization value is service_shutdown. A value
of 0 (zero) means no time limit is imposed. Default value is
0 (zero).

shutdown.delay Defines the time, in milliseconds, that the Partition waits in
order to give the service a chance to stop when the
shutdown.synchronization value is delay. A value of 0 (zero)
means wait forever. Default is 0 (zero).

shutdown.phase This property governs which Partition shutdown phase the
service is shutdown in. A Partition shuts down in 2
phases. In the first phase all services and components
providing user facility are shutdown, and in the second
phase the Partition's own infrastructure is shutdown. Valid
values are 1 (default) and 2.

It is not typical for any Partition service to be shutdown in
phase 2.

Attribute Description

ear.repository.path Path to the Partition's EARs directory. All EARs found in that
directory are loaded by the Partition on startup, unless specifically
disabled with an archive element.

war.repository.path Path to the Partition's WARs directory. All WARs found in that
directory are loaded by the Partition on startup, unless specifically
disabled with an archive element.

ejbjar.repository.path Path to the Partition's EJB jars directory. All EJB jars found in that
directory are loaded by the Partition on startup, unless specifically
disabled with an archive element.

rar.repository.path Path to the Partition's RARs directory. All RARs found in that
directory are loaded by the Partition on startup, unless specifically
disabled with an archive element.

dar.repository.path Path to the Partition's DARs directory. All DARs found in that
directory are loaded by the Partition on startup, unless specifically
disabled with an archive element.

lib.repository.path Path to the Partition's lib directory. All JAR files found in that directory
are placed on the Partition's system classpath.

classes.repository.path Path to the Partition's classes directory. All classes found in that
directory are placed on the Partition's system classpath.

Attribute Description

346 AppServer Developer ’s Guide

<part i t ion> element

<archive> element
The archive element contains configuration metadata specific to an archive. Archives
that are found in the Partition's archive repository directories do not need an archive
element unless there is non-default configuration that need to be applied to them.

All the paths are relative to the Partition's root directory.

Attribute Description

name Name of the archive to which this element pertains. Is the filename of the archive.

disable Flag for disabling the hosting of that archive in the Partition at startup. Valid values
are true or false (default).

path Path to an archive that exists outside of the Partition repositories. Use to get the
Partition to host an archive from a specified path.

Chapter 36: EJB, JSS, and JTS Propert ies 347

C h a p t e r

Chapter36EJB, JSS, and JTS Properties

EJB Container-level Properties
Set EJB container properties in partition.xml (each Partition has its own properties
file). This file is located in the following directory:

<install_dir>/var/domains/base/configurations/configuration_name/mos/
partition_name/adm/properties

Property Description Default

ejb.copy_arguments=true|false This flag causes arguments to be copied in intra-bean in-process
calls. By default, intra-bean calls use pass-by-reference
semantics. Enable this flag to cause intra-bean calls to use pass-
by-value semantics.

Note: A number of EJBs will run significantly slower using pass-
by-value semantics.

false

ejb.use_java_serialization=
true|false

If set it overrides use of IIOP serialization with Java serialization for
things like session passivation, and so forth.

false

348 AppServer Developer ’s Guide

EJB Container- level Propert ies

ejb.useDynamicStubs=
true|false

This property is only relevant for CMP 2.0 entity beans that provide
local interfaces. If set, the Container, which otherwise uses
CORBA to dispatch calls, uses a dynamic proxy-based scheme to
dispatch calls (creating custom lightweight, non-CORBA
references). These local dynamic stubs provide many
optimizations, especially due to the callers and callees being in the
same VM, making a direct dispatch to the beans without going
through the CORBA layer. Also, since the dynamic stubs are
aware of the EJB container data structures, they access the target
beans more quickly. Note that currently the stub generator,
java2iiop (called using the iastool or directly) still generates the
stubs for all the interfaces in the archive. When ejb.useDynamicStubs
is active, the subset of stubs that correspond to the selected CMP
2.0 beans are ignored.

This feature, when used, makes the whole dispatch mechanism
dynamic, providing dynamic stubs for the client side as well as
dynamic skeletons on the server side. Any statically generated
stub and skeleton classes in the archive are ignored.

You set the property in the bean. However, if there isn't an issue
with using the property in all the entity beans, the easiest way is to
set it at the EAR level in the deployment descriptor.

Important: You must use this property in conjunction with
ejb.usePKHashCodeAndEquals.

true

ejb.usePKHashCodeAndEquals=
true|false

Data structures that support Active Cache (TxReady cache) and
Associated Cache (Ready beans cache) use java.util.Hashtable,
and java.util.HashMap. The values (entity bean instances) pooled in
these data structures are keyed on the primary key values of the
cached entity beans. As we know, the implementation of
Hashtable relies on computing hashCode() and calling equals()
methods of the keys to place and locate the values. These data
structures are in the critical code path and are accessed frequently
by the container while dispatching calls to methods in entity beans
The default in Borland AppServer (AppServer) is a reflection-
based computation. When this property is set, the container uses a
user supplied implementation of the equals() and hashCode()
methods.

true

ejb.no_sleep=true|false Typically set from a main program that embeds a Container.
Setting this property prevents the EJB container from blocking the
current thread, thereby returning the control back to user code.

false

ejb.trace_container=true|false Turns on useful debugging information that tells the user what the
Container is doing. Installs debugging message interceptors.

false

ejb.xml_validation=true|false If set, the XML descriptors are validated against its DTD at
deployment time.

true

ejb.xml_verification=true|false If set, J2EE archive is verified at deployment time. false

ejb.classload_policy=per_module|
container|none

Defines class loading behavior of standalone EJB container. Not
applicable to the Partition. If set to per_module, the container uses a
new instance of custom class loader with each J2EE archive
deployed. If set to none, the container uses the system class loader.
Hot-deployment and deployment of EARs does not work in this
mode. If set to container, container uses single custom class
loader. This enables deployment of EARs, but disables hot-
deployment feature.

per_module

ejb.module_preload=true|false Loads the entire J2EE archive into memory at deployment time, so
the archive can be overwritten or rebuilt. This option is required by
JBuilder running a standalone ejb container.

false

ejb.system_classpath_first=
true|false

If set to true, the custom classloader will look at the system
classpath first.

false

Property Description Default

Chapter 36: EJB, JSS, and JTS Propert ies 349

EJB Container- level Propert ies

ejb.sfsb.keep_alive_timeout=
<num>

Defines the default value of the <timeout> element used in the ejb-
borland.xml descriptor. This property affects an EJB whose
<timeout> element is skipped or set to 0. The purpose of this
property is to define a time interval in seconds how long to keep an
inactive stateful session bean alive in the persistent storage (JSS)
after it was passivated. After the time interval ends, JSS deletes
the session's state from the persistent storage, so it becomes
impossible to activate it later.

86400 (=24 hours)

ejb.cacheTimeout=<integer> This property hints the container to invalidate the data fields of
entity beans after a specified time-out period. Use the property by
specifying the interval for which the container will not load a bean's
state from the database, but uses the cached state instead. At the
end of the expire period specified, the container marks the bean as
dirty (but keeps its association with the primary key), forcing the
instance to load its state from the database (not the cache) before
it can be used in any new transactions. The property is expected to
be used by entity beans that are not frequently modified.

The property is a positive integer representing cache intervals in
seconds.

This is only valid for commit mode A. It is ignored if specified for
any other commit mode.

0 (no timeout).

ejb.sfsb.aggressive_
passivation=true|false

If set to true, stateful session bean is passivated no matter when it
was used last time. This enables fail-over support, so if an EJB
container fails, the session can be restored from the last saved
state by one of EJB containers in the cluster. If set to false, only
the beans which were not used since the last passivation attempt,
are passivated to JSS. This makes the fail-over support less
deterministic, but speeds things up. Use this setting, to trade
performance for high-availability.

true

ejb.sfsb.factory_name=
<string>

If set, makes the stateful session beans use a different JSS from
the one that is running within the same EJB container or Partition.
Specify the factory name of JSS to use. This is the name under
which JSS is registered with Smart Agent (osagent).

none

ejb.logging.verbose=
true|false

If set to true, the EJB container logs messages about unexpected
situations which potentially could require user's attention. The
messages are marked with >>>> EJB LOG <<<< header. Set it to false,
to suppress these messages.

true

ejb.logging.
doFullExceptionLogging=
true|false

If set, the container logs all unexpected exceptions thrown in an
EJB implementation.

false

ejb.jss.pstore_location=
<path>

Use this to override the default name and location of the file used
as a JSS backend storage. Applicable only for standalone ejb
containers. This option is deprecated, use jss.pstore and
jss.workingDir instead.

none

ejb.jdb.pstore_location=
<path>

Use this to override the default name and location of the file used
by the database service. Applicable only for standalone ejb
containers.

none

ejb.interop.marshal_handle_
as_ior=true|false

If set to true, each instance of javax.ejb.Handle is marshaled as a
CORBA IOR. Otherwise, it is marshaled as a CORBA abstract
interface. See CORBA IIOP spec for details.

false

ejb.finder.no_custom_marshal=
true|false

When a multi-object finder returns a collection of objects, by
default the EJB container does the following:

■ creates and returns a custom Vector implementation to the
caller.

■ creates IORs (from the primary keys) lazily as the caller of the
finder browses/iterates over the Vector returned.

■ compute IORs for the whole Vector, when result is to leave the
JVM where it was created.

If this property is set to true, the EJB container does not do any of
the above.

false

Property Description Default

350 AppServer Developer ’s Guide

EJB Customizat ion Propert ies: Deployment Descr iptor level

EJB Customization Properties: Deployment Descriptor level
These properties customize the behavior of a particular EJB. Some of them are
applicable only to a particular type of EJB (such as session or entity), others are
applicable to any kind of bean. There are several places where these properties can be
set. Below are these places in the order of precedence:

1 Property element defined on the EJB level in the ejb-borland.xml deployment
descriptor of a JAR file. This setting affects this particular EJB only. For example,
the following XML sets the ejb.maxBeansInPool property to 99 for the EJB named
data:

<ejb-jar>
 ƒ
 <enterprise-beans>
 <entity>
 <ejb-name>data</ejb-name>
 <bean-home-name>data</bean-home-name>
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>
 </property>
 </entity>
 </enterprise-beans>
 ƒ
</ejb-jar>

ejb.collect.stats_gather_
frequency=<num>

The time interval in seconds between printouts of container
statistics. If set to zero, this disables stats gathering and no stats
are displayed (since they are not collected). This means that a
zero setting overrides whatever may be the value of
ejb.collect.display_statistics, ejb.collect.statistics or
ejb.collect.display_detail_statistics properties.

5

ejb.collect.display_
statistics=true|false

This flag turns on timer diagnostics, which allow the user to see
how the Container is using the CPU.

false

ejb.collect.statistics=
true|false

Same as the ejb.collect.display_statistics property, except this
property does not write the timer value to the log.

false

ejb.collect.display_detail_
statistics=true|false

This flag turns on the timer diagnostics, as
ejb.collect.display_statistics option does. In addition, it prints out
method level timing information. This allows the developer to see
how different methods of the bean are using CPU. Please note,
that the console output of this flag will require you to widen your
terminal to avoid wrapping of long lines.

false

ejb.mdb.threadMaxIdle=<num> There is a VM wide thread pool maintained by the EJB container
for message-driven bean execution. This pool has the same
configurability as the ORB dispatcher pool for handling RMI
invocations. This particular property controls the maximum
duration in seconds a thread can idle before being reaped out.

300

ejb.mdb.threadMax=<num> Maximum number of threads allowed in the MDB thread pool. 0 (no limit)

ejb.mdb.threadMin=<num> Minimum number of threads allowed in the MDB thread pool. 0

ejb.allowNullsInFinders=
true|false

This property is applicable only to CMP 2.x. If you set this property
to true, it will allow the presence of NULLs as the return value of a
finder or as part of a finder Collection. By default, this property is
set to False.

False

Property Description Default

Chapter 36: EJB, JSS, and JTS Propert ies 351

Complete Index of EJB Propert ies

2 Property element defined on the <ejb-jar> level in the ejb-borland.xml deployment
descriptor of a JAR file. This setting affects all EJBs defined in this JAR. For
example, the following XML sets the ejb.maxBeansInPool property to 99 for all EJBs
in the particular JAR file:

<ejb-jar>
 ƒ
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>
 </property>
 ƒ
</ejb-jar>

3 Property element defined at the <application> level in the application-borland.xml
deployment descriptor of an EAR file. This setting affects all EJBs defined in the all
JARs located in this EAR file. For example, the following XML sets the
ejb.maxBeansInPool property to 99 on the EAR level:

<application>
 ƒ
 <property>
 <prop-name>ejb.maxBeansInPool</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>99</prop-value>
 </property>
 ƒ
</application>

4 EJB property defined as an EJB container level property. This affects all EJBs
deployed in this EJB container. For example, the following command sets the
ejb.maxBeansInPool property to 99 for all beans deployed in the EJB container
started standalone:

vbj -Dejb.maxBeansInPool=99 com.inprsie.ejb.Container ejbcontainer hello.ear
-jns -jss -jts

Complete Index of EJB Properties

Properties common for any kind of EJB

Property Type Description Default

ejb.default_transaction_attribute Enumeration
(NotSupported,
Supports,
Required,
RequiresNew,
Mandatory,
Never)

This property specifies a
transaction attribute value for
the methods which have no
trans-attribute defined in the
standard deployment
descriptor. Note, that if this
property is not specified, the
EJB container does not assume
any default transaction
attribute. Thus, specifying this
property, may simplify porting
J2EE applications created with
other application servers which
assume some default
transaction attribute.

None

352 AppServer Developer ’s Guide

Complete Index of EJB Propert ies

Entity Bean Properties (applicable to all types of entities—BMP,
CMP 1.1 and CMP 2)

Property Type Description Default

ejb.maxBeansInPool Integer This option specifies the
maximum number of beans
in the ready pool. If the
ready pool exceeds this
limit, entities will be
removed from the
container by calling
unsetEntityContext.

1000

ejb.maxBeansInCache Integer This option specifies the
maximum number of beans
in the cache that holds on
to beans associated with
primary keys, but not
transactions. This is
relevant for Option “A” and
“B” (see
ejb.transactionCommitMode
below). If the cache
exceeds this limit, entities
will be moved to the ready
pool by calling ejbPassivate.

1000

ejb.maxBeansInTransactions Integer A transaction can access
any/large number of
entities. This property sets
an upper limit on the
number of physical bean
instances that EJB
container will create.
Irrespective of the number
of database entities/rows
accessed, the container
will manage to complete
the transaction with a
smaller number of entity
objects (dispatchers). The
default for this is calculated
as ejb.maxBeansInCache/2. If
the ejb.maxBeansInCache
property is not set, this
translates to 500.

Calculated

Chapter 36: EJB, JSS, and JTS Propert ies 353

Complete Index of EJB Propert ies

ejb.transactionCommitMode Enumeration
(A|Exclusive,
B|Shared,
C|None)

This flag indicates the
disposition of an entity
bean with respect to a
transaction. The values
are:

A or Exclusive: This entity
has exclusive access to the
particular table in the DB.
Thus, the state of the bean
at the end of the last
committed transaction can
be assumed to be the state
of the bean at the
beginning of the next
transaction. For example,
to cache the beans across
transactions.

B or Shared: This entity
shares access to the
particular table in the DB.
However, for performance
reasons, a particular bean
remains associated with a
particular primary key
between transactions, to
avoid extraneous calls to
ejbActivate and
ejbPassivate between
transactions. This means
the bean stays in the active
pool. This setting is the
default.

C or None: This entity shares
access to the particular
table in the DB. A particular
bean does not remain
associated with a particular
primary key between
transactions, but goes back
to ready pool after every
transaction. This is
generally not a useful
setting.

Shared

ejb.transactionManagerInstanceName String Use this property to specify
by name a particular
transaction manager for
driving the transaction
started for method calls.
This option is useful in
cases where you need 2PC
completion of a particular
transaction but want to
avoid the RPC overhead of
using a 2PC transaction
manager for all other
transactions in the system.
This is also supported for
MDBs.

None

Property Type Description Default

354 AppServer Developer ’s Guide

Complete Index of EJB Propert ies

ejb.findByPrimaryKeyBehavior Enumeration
(Verify,
Load,
None)

This flag indicates the
desired behavior of the
findByPrimaryKey method.
The values are:

Verify: This is the standard
behavior, for
findByPrimaryKey to simply
verify that the specified
primary key exists in the
database.

Load: This behavior causes
the bean's state to be
loaded into the container
when findByPrimaryKey is
invoked, if the finder call is
running in an active
transaction. The
assumption is that found
objects will typically be
used, and it is optimal to go
ahead and load the object's
state at find time. This
setting is the default.

None: This behavior
indicates that
findByPrimaryKey should
be a no-op. Basically, this
causes the verification of
the bean to be deferred
until the object is actually
used. Since it is always the
case that an object could
be removed between
calling find and actually
using the object, for most
programs this optimization
will not cause a change in
client logic.

ejb.checkExistenceBeforeCreate

Property Type Description Default

Chapter 36: EJB, JSS, and JTS Propert ies 355

Complete Index of EJB Propert ies

Message Driven Bean Properties

Boolean Most tables to which
entity beans are
mapped have a
Primary Key
Constraint. If the
CMP engine attempts
to create a bean that
already exists, this
constraint is violated
and a
DuplicateKeyException
is thrown.

Some tables,
however, do not
define Primary Key
Constraints. In these
cases, the
checkExistanceBeforeCr
eate property can be
used to avoid
duplicate entities.
When set to True, the
CMP engine checks
the database to see if
the entity exists
before attempting the
insert operation. If the
entity exists then the
DuplicateKeyException
is thrown.

False

Property Type Description Default

Property Type Description Default

ejb.mdb.use_jms_threads Boolean Option to switch to using the JMS providers
dispatch thread rather than the Container
managed thread to execute the onMessage()
method. For OpenJMS this value will be true,
since the message will be delivered in the
JMS providers dispatch thread.

false

Note: This
value will be
true by default
for OpenJMS.

ejb.mdb.local_transaction_optimization Boolean This property is currently used only with
OpenJMS. It is used to attain atomicity without
using the XAConnectionFactory. The same
database is used for message persistence
and application data.

true

ejb.mdb.maxMessagesPerServerSession Integer For JMS providers that support the option to
batch load a ServerSession with multiple
messages, use this property to tune
performance.

5

ejb.mdb.max-size Integer This is the maximum number of connections
in the pool.

None

ejb.mdb.init-size Integer When the pool is initially created, this is the
number of connections AppServer populates
the pool with.

None

356 AppServer Developer ’s Guide

Complete Index of EJB Propert ies

ejb.mdb.wait_timeout Integer The number of seconds to wait for a free
connection when maxPoolSize connections
are already opened. When using the
maxPoolSize property and the pool is at its
max and can't serve any more connections,
the threads looking for JDBC connections end
up waiting for the connection(s) to become
available for a long time if the wait time is
unbounded (set to 0 seconds). You can set
the waitTimeout period to suit your needs.

30

ejb.mdb.rebindAttemptCount Integer This is the number of times the EJB Container
attempts to re-establish a failed JMS
connection or a connection that was never
established for the MDB.

To make the Container attempt to rebind
infinitely you need to explicitly specify
ejb.mdb.rebindAttemptCount=0.

5

ejb.mdb.rebindAttemptInterval Integer The time in seconds between successive retry
attempts (see above property) for a failed JMS
connection or a connection that was never
established.

60

ejb.mdb.maxRedeliverAttemptCount Integer This is the number of times a message will be
re-delivered by the JMS service provider
should the MDB fail to consume a message
for any reason. The message will only be
re-delivered five times. After five attempts, the
message will be delivered to a dead queue (if
one is configured).

5

ejb.mdb.unDeliverableQueueConnectionFactory String Should an MDB fail to consume a message for
any reason, the message will be re-delivered
by the JMS service. The message will only be
re-delivered five times. After five attempts, the
message will be delivered to a dead queue (if
one is configured). This property looks up the
JNDI name for the connection factory to
create a connection to the JMS service. This
property is used in conjunction with
ejb.mdb.unDeliverableQueue.

None

ejb.mdb.unDeliverableQueue String Should an MDB fail to consume a message for
any reason, the message will be re-delivered
by the JMS service. The message will only be
re-delivered five times. After five attempts, the
message will be delivered to a dead queue (if
one is configured). This property looks up the
JNDI name of the queue. This property is
used in conjunction with
ejb.mdb.unDeliverableQueueConnectionFactory.

None

ejb.transactionManagerInstanceName String This property is currently supported only for
MDBs that have the “Required” transaction
attribute. Use this property to specify by name
a particular transaction manager for driving
the transaction started for the onMessage()
call. This option is useful in cases where you
need 2PC completion of this particular
transaction but desire to avoid the RPC
overhead of using the 2PC transaction
manager for all other transactions in the
system, for example, in entity beans. Please
refer to the MDB chapter for more details.

None

Property Type Description Default

Chapter 36: EJB, JSS, and JTS Propert ies 357

Complete Index of EJB Propert ies

Stateful Session Bean Properties

Property Type Description Default

ejb.sfsb.passivation_timeout Integer Defines the time interval (in seconds) when
to passivate inactive stateful session beans
into the persistent storage (JSS).

5

ejb.sfsb.instance_max Integer Defines the maximum number of instances
of a particular stateful session bean allowed
to exist in the EJB container memory at the
same time. If this number is reached and a
new instance of a stateful session needs to
be allocated, the EJB container throws an
exception indicating lack of resources. 0 is
a special value. It means no maximum set.
Note, that this property is applicable only if
the ejb.sfsb.passivation_timeout property is
set to non-zero value.

0

ejb.sfsb.instance_max_timeout Integer If the max number of stateful sessions
defined by the ejb.sfsb.instance_max
property is reached, the EJB container
blocks a request for an allocation of a new
bean for the time defined by this property
waiting if the number goes lower before
throwing an exception indicating lack of
resources. This property is defined in ms
(1/1000th of second). 0 is a special value. It
means not to wait and throw an exception
indicating lack of resources immediately.

0

ejb.jsec.doInstanceBasedAC Boolean If set to true, the EJB container checks if
the principal invoking an EJB's method is
the same principal that created this bean. If
this check fails, the method throws a
java.rmi.AccessException (or
javax.ejb.AccessLocalException) exception.
This is applicable to stateful session beans
only.

True

358 AppServer Developer ’s Guide

Java Session Service (JSS) Propert ies

EJB Security Properties

Java Session Service (JSS) Properties
JSS can run as part of standalone EJB container (-jss option) or as part of a Partition.

As a “Partition service", JSS Configuration information is located in each Partition's
data directory in the partition.xml file. By default, this file is located in the following
directory:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>
/mos/<partition_name>/adm/properties/

For example, for a Partition named “standard", by default the JSS configuration
information is located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>
/mos/standard/adm/properties/partition.xml

For more information, go to the partition.xml reference, “<service> element” on
page 344.

Otherwise, for the location of a Partition data directory, go to the configuration.xml file
located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/

and search for the Partition Managed Object directory attribute:

<partition-process directory=

Property Type Description Default

ejb.security.transportType Enumeration (CLEAR_ONLY, SECURE_ONLY, ALL) This property configures the Quality
of Protection of a particular EJB.

If set to CLEAR_ONLY, only non-secure
connections are accepted from the
client to this EJB. This is the default
setting, if the EJB does not have any
method permissions.

If set to SECURE_ONLY, only secure
connections are accepted form the
client to this EJB. This is the default
setting, if the EJB has at least one
method permission set.

If set to ALL, both secure and non-
secure connections are accepted
from the client.

Setting this property controls a
transport value of the ServerQoPConfig
policy.

None

ejb.security.trustInClient Boolean This property configures the Quality
of Protection of a particular EJB. If
set to true, the EJB container
requires the client to provide an
authenticated identity. By default, the
property is set to false, if there is at
least one method with no method
permissions set. Otherwise, it is set
to true. Setting this property controls
a transport value of the
ServerQoPConfig policy.

Chapter 36: EJB, JSS, and JTS Propert ies 359

Java Session Service (JSS) Propert ies

The JSS supports two kinds of backend storage: JDataStore or a JDBC datasource.
For more information, go to the Java Session Service (JSS) configuration section.

Property Console Property Name Description Default

jss.workingDir=<path> Working directory The directory where the
backend database
(JDataStore) file is located.

Note: this property is
applicable only if the jss.pstore
property is configured to use a
JDataStore file as backend
storage.

If not specified and the JSS
runs in the Partition, then
the Partition's working
directory <install_dir>/var/
domains/<domain_name>/
configurations/
<configuration_name>/mos/
<partition_name> is used.

If not specified and the JSS
runs as part of a
standalone EJB container,
then the current directory
where the container started
is used.

jss.factoryName=<char_string> Factory name Name given to the JSS factory
created by this service. The
service gets registered with
this name in the Smart Agent
(osagent).

If not specified and the JSS
runs in the Partition, the
default value is:
<server_name>:file:<install
_dir>/ var/domains/
<domain_name>/
configurations/
<configuration_name>/ mos/
<partition_name>/ .

If not specified and the JSS
runs in a standalone EJB
container, the default value
is EJB/
JSS[<container_name>].

jss.softCommit=true|false Soft commit If true, the JSS uses the
JDataStore backend database
with the Soft Commit mode
enabled. Setting this property
improves the performance of
the Session Service, but can
cause recently committed
transactions to be rolled back
after a system crash.

Note: this property is
applicable only if the jss.pstore
property is configured to use a
JDataStore file as backend
storage. For more details, see
the JDataStore documentation
at: http://info.borland.com/
techpubs/jdatastore/.

true

jss.maxIdle=<numeric value> Max idle The time interval in seconds
between runs of JSS garbage
collection job. The JSS
garbage collection job is
responsible for removing the
state of expired sessions from
the backend database. If set to
0, the garbage collection job
never starts.

1800 (=30min)

jss.debug=true|false Print debug information. If set
to true, the JSS prints out
debug traces.

false

360 AppServer Developer ’s Guide

Java Session Service (JSS) Propert ies

jss.pstore=<char_string> Persistent store Specifies the JDatastore file to
use for backend storage. If the
file does not exist, JSS creates
the file with the .jds extention,
for example jss_factory.jds.

For any compatible database
supporting JDBC, specifies the
JNDI name with the serial:
prefix, for example serial://
datasources/OracleDB to use for
backend storage. In this case,
JSS uses a datasource that is
deployed in the Naming
Service under the JNDI name
specified.

If the JSS runs in the
Partition, the JDataStore
file named is used, such as
jss_factory.jds.

If the JSS runs in a
standalone ejb container,
the
<container_name>_jss.jds is
used.

jss.backingStoreType=<Dx|JDBC> Specifies the type of persistent
backend storage to use.
Acceptable values are: Dx
(indicating a local JDatastore
database, or JDBC (indicating a
JDBC datasource that is
resolved from the JNDI name
provided using the jss.pstore
property value).

For a JSS that runs in a
Partition, the default is Dx
(local JDataStore
database).

If the JSS runs in a
standalone ejb container,
the default is Dx.

jss.userName=<char_string> User name User name JSS uses to open a
connection with the
JDataStore backend database.

Note: this property is
applicable only if the jss.pstore
property is configured to use a
JDataStore file as backend
storage.

<default-user-name>

jss.passWord=<char_string> When JSS persistent storage
is defined through
jss.backingStoretype=DX, use
this property to specify the
password value required for
jss.userName access to the local
JDataStore database.

Note: This property is
applicable only if
jss.backingStoretype=Dx
(configured to use JDataStore
for persistent backend
storage).

masterkey

Property Console Property Name Description Default

Chapter 36: EJB, JSS, and JTS Propert ies 361

Part i t ion Transact ion Service (Transact ion Manager)

Partition Transaction Service (Transaction Manager)
Listed below are properties that influence the behavior of the Partition Transaction
Service (Transaction Manager). The properties can be specified when hosted by either
a standalone EJB container or a Partition.

When configuring the Partition Transaction Service for a Partition, set the properties in
the partition.xml file which is located in the <install_dir>/var/domains/base/
configurations/<configuration_name>/mos/<partition_name>/adm/properties.

If running an EJB container standalone, they must be specified using system property
names described below in section titled JTS System Properties. For example, when
JTS is hosted by a standalone EJB Container property
jts.allow_unrecoverable_completion must be specified using its system property
equivalent:

prompt% vbj -DEJBAllowUnrecoverableCompletion com.inprise.ejb.Container
ejbcontainer beans.jar -jns -jts

Property Description Default

jts.allow_unrecoverable_completion=true|false If set to true, this instructs the
Container built-in JTS
implementation to do a non-
recoverable (that is, non two-phase)
completion when there are multiple
Resource registrations. Use at your
own risk. It is provided only as a
developer friendly feature. For
OpenJMS, this property is set to true
by default.

False

jts.no_global_tids=true|false By default, JTS generates X/Open
XA compatible transaction identifiers.
By setting this property to true, the
transaction key generation behavior
changes to generate non-XA
compliant tids. By generating XA
compliant properties out of the box,
the EJB container can work with
JDBC2/XA drivers seamlessly.

False

jts.no_local_tids=true|false There is an optimization where the
EJB container detects that a
transaction was started in the
transaction service that lives in the
same VM, and make the transaction
comparison faster. Setting this
property to true turns that off. This
local transaction identifier (local tid) is
a subset of the global transaction id
hence makes the transaction
comparisons faster.

False

jts.timeout_enable=true|false By default, JTS transaction timeout
facility is disabled. When enabled,
each new transaction created by JTS
will registered with a timeout in the
JTS Timeout Manager. If the timeout
expires before completion of the
transaction, JTS will automatically
rollback the transaction.

False

jts.timeout_interval=<num> The JTS Timeout Manager examines
registered transactions for timeout
expiration at intervals in seconds
controlled by the value of this
property. Setting it to a value of 0
causes the interval to occur every
9999 seconds.

5

362 AppServer Developer ’s Guide

Part i t ion Transact ion Serv ice (Transact ion Manager)

jts.default_timeout=<num> The timeout period for a Bean
Managed transaction can be
configured using JTA UserTransaction
setTransactionTimeout() method. If not
used or if transaction is a Container
Managed transaction, the default
transaction timeout value is applied.
This can be configured upon JTS
startup using the jts.default_timeout
property value. The granularity of this
property is 1 second.

600

jts.default_max_timeout=<num> To prevent specification of an
excessive timeout value for the
jts.default_timeout property, the
jts.default_max_timeout property
controls the maximum time a
transaction can be active before its
expired. The granularity of this
property is 1 second.

3600

jts.trace=true|false Set this property to generate JTS
debug messages.

False

jts.transaction_debug_timeout=<num> If set, this property displays a list of
active transactions maintained by
JTS. Its value dictates the interval in
seconds at which transactions are
displayed.

None

Property Description Default

Chapter 37: Using L i feRay Portal 3.6.0 wi th AppServer 6.6 363

C h a p t e r

Chapter 37Using LifeRay Portal 3.6.0 with
AppServer 6.6

This document describes the steps to prepare the liferay ear for deployment, create a
liferay configuration using the Borland AppServer (AppServer) console, deploy the
LifeRay portal, and deploy any custom portlets.

Liferay is an open-source portal that is designed to deploy portlets. It provides
personalization, user/group management, web mail, message boards, content
management all rolled into one package. It comes bundled with many portlet
applications which are compliant with Java Portlet Specification, JSR-168.

In order to use the LifeRay Portal with AppServer do the following:

1 Download the LifeRay 3.6.0 EAR file from http://www.liferay.com.

2 Open a Borland Management Console and log in.

3 Create a configuration for the LifeRay Portal. When you create the configuration
using the Management Console the configuration comes preconfigured with a
LifeRay partition, JDataStore, and JMS.

a Right-click on Configurations node in the left pane and select Add Configuration...
from the menu.

b Click on Portals in the Template Gallery.

c Select LifeRay Portal Configuration from the right pane in the Template Gallery
and click on the Select button. The Create New Configuration dialog box will
open.

d Enter a name for the new liferay configuration in the Name field.

e Change the Smart Agent Port in the Configuration Properties box by double-
clicking on the value in the Value column.

f Click OK.

4 Run the configuration by right-clicking on the configuration name and selecting Start
from the resulting menu.

364 AppServer Developer ’s Guide

Using Other Databases

5 Create a LifeRay server on which to host the LifeRay EAR file. Deploy the EAR file
to the server.

To create a LifeRay server:

a Right-click on the Hosted Modules node under the LifeRay partition in the left
pane of the Borland Management Console.

b Select Host LifeRay module... from the menu. The Host LifeRay Portal dialog will
open.

c Enter the path to the LifeRay EAR file in the Liferay Ear Path box.

d Enter the path to the directory where you want to host the LifeRay module in the
Host Target Directory field. This directory must be on the same machine as the
agent. Make sure that this directory already exists.

e Make sure that the Generate Stub checkbox is checked.

f Enter a name in the Module Name text box if you want to change the default
module name. By default the module gets the same name as the directory in
which you host the LifeRay module.

g Click OK. You will see a status box. The AppServer will first generate the stub
then extract the contents of the EAR file into the directory that you entered in step
3.

6 Test whether the LifeRay module has been deployed correctly by going to
http://localhost:8080 in a browser. This should open the LifeRay portal in the
browser. The default login name for the LifeRay Portal is test@liferay.com and the
default password is test.

Note To change any of the LifeRay partition properties, right-click on the LifeRay partition
name in the left pane of the Management Console and select Properties from the
menu. Click on the desired tab to bring it forward and change the properties associated
with that tab.

Using Other Databases
By default, LifeRay uses the JDataStore database to store data. You can use a
database other than JDataStore. Refer to the http://www.liferay.com/web/guest/
documentation/development/databases site for information on which databases are
supported. If you would like to use a database other than JDataStore, you must do the
following:

1 Create a new liferay.dar file with the JNDI information for the database you want to
use in the jndi-definitions.xml file.

For information on how to edit the jndi-definitions.xml file for the database you
want to use, see http://www.liferay.com/web/guest/documentation/development/
databases site.

For information on how to create a DAR file, see “Creating a JNDI definitions archive
(DAR)” in the Management Console User's Guide.

2 Replace the default liferay.dar that is included with the LifeRay portal configuration
with the new one you created.

Chapter 37: Using Li feRay Portal 3.6.0 wi th AppServer 6.6 365

Deploying Port le t or J2EE modules to L i feRay module

Deploying Portlet or J2EE modules to LifeRay module
You can add an EJB JAR, WAR, RAR or a library JAR to a hosted liferay module. To
deploy any of these to a LifeRay module:

1 Open the Borland Management Console.

2 Expand the LifeRay partition node in the left pane.

3 Right-click on the LifeRay hosted module under the Hosted Modules node, and
select Deploy Portlet from the menu. The LifeRay Portal Deployment Wizard will
open.

4 Click on the Add button to point the wizard to the portlet (WAR file) that you want to
deploy.

5 Click on the Finish button.

To check whether the portlet is deployed successfully:

1 Open a web browser.

2 Go to the LifeRay portal by typing http://localhost:8080 in a web browser

3 Log in to the portal using the default login which is test@liferay.com and password
which is test.

4 Scroll down until you see the Add Portlet to Wide Column field. You should see the
newly added portlet in the drop-down menu for field.

5 Select the portlet and click on the Add button to add the portlet to your portal.

366 AppServer Developer ’s Guide

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 367

C h a p t e r

Chapter38Integrating Borland AppServer 6.6
with JBuilder 2006

This chapter explains how to install the Borland AppServer 6.6 plug-in for JBuilder
2006, configure the plug-in, and use Borland AppServer 6.6 with JBuilder 2006.

Note JBuilder 2006 also supports Borland Enterprise Server AppServer Edition versions
6.0RP1 and 6.5 (Patch 11). For more information on these plug-in versions, see “Using
JBuilder with Borland servers” in Developing J2EE Applications in the JBuilder online
Help for more information.

Installing the Borland AppServer 6.6 plug-in
The Borland AppServer 6.6 plug-in for JBuilder 2006 is installed to the
<APPSERVER_HOME>/etc folder of the Borland AppServer installation. The plug-in is not
installed with JBuilder 2006. In order to access the Borland AppServer 6.6 plug-in and
the J2EE 1.4 supported features, you need to copy the plug-in to the JBuilder
<JBUILDER_HOME>/patch folder and restart JBuilder.

To install the JBuilder 2006 plug-in,

1 Save your project and exit JBuilder.

2 Copy jbuilder2006_bas66_plugin.jar from the <APPSERVER_HOME>/etc/jbuilder folder
to the <JBUILDER_HOME>/patch folder.

3 Restart JBuilder.

368 AppServer Developer ’s Guide

Conf igur ing JBui lder 2006 for Bor land AppServer 6.6

Configuring JBuilder 2006 for Borland AppServer 6.6
After you have installed the plug-in and restarted JBuilder, you need to configure
JBuilder to use the plug-in.

To configure JBuilder settings for Borland AppServer 6.6,

1 Choose Enterprise|Configure Servers to display the Configure Servers dialog box.
The right side of the dialog box displays the default settings for the server. The
General page displays common fields, while the Custom page displays server-
specific fields. In some cases, modifying a Custom setting will update a setting on
the General page.

2 Select Borland Enterprise Server AppServer Edition 6.x from the User Home folder
in the left pane.

Note 6.x refers to AppServer versions Borland Enterprise Server AppServer Edition
6.0RP1, Borland Enterprise Server AppServer Edition 6.5 (Patch 11), and Borland
AppServer 6.6.

3 Select the Enable Server option at the top of the dialog box.
Checking this option enables the fields for Borland AppServer 6.6. You won't be
able to edit any fields until it is checked. The Enable Server check box also
determines whether this server will appear in the list of servers when you select a
server for your project using Project|Project Properties|Servers.

4 View and change (if required) fields on the General tab:

■ Home Directory: The directory where Borland AppServer 6.6 is installed. The
default is Borland/AppServer. If the default directory is not correct, use the ellipsis
(…) button to browse to the correct directory.

■ Native Executable Launcher: The native executable used to run this server. The
default is partition.exe in the <APPSERVER_HOME>/bin folder. If JBuilder is able to
locate the native executable, this field is automatically filled in for you.

■ VM Parameters: The parameters you want to pass to the virtual machine.

■ Server Parameters: The parameters you want to pass to the server.

■ Working Directory: The location of a working directory.

5 Click the Custom tab to view and change (if required) fields unique to the server.
Change or fill in these fields:

■ JDK Installation Directory: The directory where JDK v 1.5.0 is located. For
Borland AppServer 6.6, this is automatically set to the <APPSERVER_HOME>/jdk/
jdk1.5.0 folder. Your project will use this JDK to run the AppServer partition.

■ Server Name: The Borland AppServer 6.6 hub name.

■ Configuration Name: The name of the configuration that manages the partition.
By default, this is set to jbuilder.

■ Partition Name: The name of the partition in which the module is run. By default,
this is set to jbpartition.

■ Add A Management Agent Item To The Enterprise Menu: Adds a Management
Agent item to the JBuilder Enterprise menu, so you can start the Management
Agent quickly from the JBuilder IDE.

■ Server Realm: The server realm name. For more information, see the Borland
Management Console User’s Guide. The default setting is ServerRealm.

■ User Name: The name you use to identify yourself to the server. The default
value is admin.

■ User Password: The password you use to identify yourself to the server. The
default value is admin.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 369

Displaying the Bor land Management Console in JBui lder

■ Advanced Settings: Click this button to display the Advanced Settings dialog box.
Use this dialog box to change the port number used by the Management Agent
and to select the Use Security option. The management port is used in JBuilder
to detect the server during startup and deployment. Change the management
port only if you are deploying to a remote server with a management port that is
different from the default. When you change the port number, make sure that you
entered the same port number as the server: the server won't start up without the
correct port number. The port and security settings you choose must match the
settings of your server. The values are read from the Borland AppServer property
files, but the values will be changed automatically if you change the Home
Directory setting. Note that changing the port number while you have the
Management Agent started in JBuilder automatically shuts down the
Management Agent.

6 Click OK to close the dialog box and save settings.
Any projects that were targeted for Borland Enterprise Server AppServer Edition 6.x
are automatically updated to the new Borland AppServer home.

Displaying the Borland Management Console in JBuilder
After you have installed and configured JBuilder 2006 for Borland AppServer 6.6, you
can display the Borland AppServer Management Console in the JBuilder message
pane. To do so, you need to edit the jbuilder.config configuration file.

1 Save your project and exit JBuilder.

2 Open jbuilder.config in a text editor. This file is located in the <JBUILDER_HOME>/bin
folder.

3 Add the following VM parameter to the configuration file:
vmparam -Djava.endorsed.dirs=<APPSERVER_HOME>/lib/endorsed

4 Restart JBuilder.

5 Choose View|Panes|BAS Console 6.6.
The Borland Management Console is displayed in the message pane.

VisiBroker development with JBuilder
You use the CORBA node of the Enterprise Setup dialog box (Enterprise|Enterprise
Setup) to set up Borland AppServer for use with VisiBroker 7.0 in JBuilder 2006.

To make the ORB available to JBuilder,

1 Choose Enterprise|Enterprise Setup to display the Enterprise Setup dialog box.
Select the CORBA page. The parameters in this dialog box allow a JBuilder user to
develop CORBA applications.

2 Select the VisiBroker (Borland Enterprise Server AppServer Edition 6.x) option from
the Configuration drop-down list. This option is automatically updated to point to the
<APPSERVER_HOME>/bin folder.

3 To start the Smart Agent from the Tools menu, check the Add The VisiBroker Smart
Agent Item To The Tools Menu option.

4 Enter the number of the SmartAgent port in the SmartAgent Port field.

5 Click OK to save the configuration.

370 AppServer Developer ’s Guide

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

Important In the runtime configuration for your CORBA application, you need to add the following
parameters to the VM Parameters field in the Edit Runtime Configuration dialog box
(Run|Configurations|Edit):

-Dvbroker.agent.port=<your_osagent_port>
-Dborland.enterprise.licenseDir=<APPSERVER_HOME>/var
-Dborland.enterprise.licenseDefaultDir=<APPSERVER_HOME>/license

You've now completed setting up your system to use VisiBroker 7.0, installed with
Borland AppServer 6.6. Before running your application, choose Tools|VisiBroker
Smart Agent to start the Smart Agent.

Using the JBuilder Deployment Descriptor Editor to develop J2EE 1.4
applications

Borland AppServer 6.6 supports J2EE 1.4 applications. The JBuilder Deployment
Descriptor Editor provides new editors for J2EE 1.4 applications targeted for Borland
AppServer 6.6.

J2EE 1.4 requires that each deployment descriptor be validated against an XML
schema, instead of a DTD. The Borland AppServer 6.6 plug-in for JBuilder 2006
supports these updates. When you right-click a J2EE deployment descriptor in the
project pane and choose Validate, the descriptor is validated against an XML schema
file. The J2EE modules for Borland AppServer deployment are validated against the
following schema files:

■ Application module: application_1_4-borland.xsd

■ Application Client module: application-client_1_4-borland.xsd

■ Connector module: connector_1_5.xsd

■ EJB module: ejb-jar_2_1-borland.xsd

■ Web module: web-app_2_4-borland.xsd

To view the standard Java commented J2EE 1.4 XML schemas, go to Java 2 Platform,
Enterprise Edition (J2EE) : XML Schemas for J2EE Deployment Descriptors at:

http://java.sun.com/xml/ns/j2ee/

To support Borland AppServer 6.6, the JBuilder Deployment Descriptor Editor now
contains updated editors or new editors for the following entities:

■ Message Destinations page: Web module, EJB module, Application Client module

■ Message Destination Reference page: Web module, Application Client module,
session bean, entity bean, message-driven bean

■ Message-Driven Bean page: Message-driven bean

■ Resource Environment References page: Message-driven bean

■ Admin Object and Admin Object Properties page: Message-driven bean

■ Resource Adapter page: Connector module

■ BES Connection Definition page: Connector module

Note JBuilder provides a Deployment Descriptor editor for editing standard and server-
specific J2EE 1.3 modules and deployment descriptors. For information on the editor,
see “Editing EJB deployment descriptors” in Developing Applications with Enterprise
JavaBeans in the JBuilder online Help.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 371

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

Message Destinations page

The Messages Destinations page is a new DD Editor page for a Web module, EJB
module, and Application Client module.

Use the Message Destinations page to set the new J2EE 1.4 deployment descriptor
element <message-destination-name> for a Web module, EJB module, or Application
Client module. This element specifies the name of a message destination reference.
The Borland AppServer 6.6 value is a JNDI name that represents the message
destination reference name used in the web module, EJB module, or application client
module.

To display the Message Destinations page and set the standard and Borland
AppServer-specific deployment descriptor elements,

1 Select the Web module, EJB module, or Application Client module in the project
pane.
Select the DD Editor tab at the bottom of the content pane.

2 Open the structure pane.

3 Expand the module node and select the Message Destinations node.

4 To add a message destination, right-click the node and choose Add.

5 Click the Standard tab in the DD Editor.

a Enter the name of the message destination in the Name field. The name must be
unique among the names of message destinations within the deployment file.

b Enter the language with which to associate the Display Name, Description, and
icons in the Language field. You can have one Display Name, Description, and
large and small icon for each language. Use the Add and Remove buttons to add
and remove languages.

c Enter the name to be displayed the Display Name field.

d Enter the description in the Description field.

e Enter the location of a large icon (32 x 32 pixels) in the Large Icon field. The icon
must be contained in the module tree.

f Enter the location of a small icon (16 x 16 pixels) in the Small Icon field. The icon
must be contained in the module tree.

6 Click the BES tab in the DD Editor. In the JNDI Name field, enter the JNDI name for
the message destination. See Chapter 22, “Using JMS” for more information.

372 AppServer Developer ’s Guide

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

Message Destination Reference page

The Message Destinations Reference page is a new DD Editor page for a Web module
and Application Client module, as well as for entity beans, session beans, and
message-driven beans.

Use the Message Destination Reference page to set the new J2EE 1.4 deployment
descriptor element <message-destination-ref> for a Web module and Application Client
module, as well as for entity beans, session beans, and message-driven beans. The
message destination reference contains a declaration of the reference associated with
a resource.

To display the Message Destination Reference page and set the Borland AppServer
6.6-specific deployment descriptor element,

1 Select the Web module, EJB module, or Application Client module in the project
pane.

Select the DD Editor tab at the bottom of the content pane.

2 Open the structure pane.

3 Expand the module or bean node and select the Message Destination References
node.

4 To add a message destination reference, right-click the node and choose Add.

5 Click the Standard tab in the DD Editor. Set the following attributes:

a Enter the name of the message destination reference in the Name field. This is
the name used in deployment component code.

b Specify the Java type of the message destination in the Type field. The type
specifies the Java interface to be implemented by the destination.

c Choose how the message destination will be used in the Usage field. Choose
Consumes if messages are consumed from the message destination; choose
Produces if messages are produced for the destination, or choose
ConsumeProduces if messages are both consumed and produced. The
Assembler makes use of this information in linking producers of a destination with
its consumers.

d Specify the message destination link in the Link field. This element links a
message destination reference or message-driven bean to a message
destination. The Assembler sets the value to reflect the flow of messages
between producers and consumers in the application. The value must be the
name of a message destination in the same deployment file or in another
deployment file in the same J2EE application unit. Alternatively, the value may be
composed of a path name specifying a deployment file containing the referenced
message destination with the name of the destination appended and separated
from the path name by #. The path name is relative to the deployment file
containing a deployment component that is referencing the message destination.
This allows multiple message destinations with the same name to be uniquely
identified.

e Enter the language to which the description applies in the Description Language
field. Use the Add and Remove buttons to add and remove languages. You can
have one description per language.

f Enter the description of the message destination reference in the Description
field.

6 Click the BES tab in the DD Editor.

7 Enter the JNDI name for the message destination. See Chapter 22, “Using JMS” for
more information.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 373

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

Message-Driven Bean page

The Borland-specific Messages-Driven Bean page was updated for message-driven
beans.

Use the Message-Driven Bean page of the DD Editor to set the deployment descriptor
for a message-driven bean. Both the standard and Borland AppServer 6.6-specific
pages have been updated for the J2EE 1.4 implementation.

To display the Message-Driven Bean page and set standard and BAS-specific
deployment descriptor elements,

1 Select the EJB module in the project pane.
The DD Editor is displayed in the content pane.

2 Open the structure pane.

3 Expand the EJB module, then the Message Driven Beans node. Select a message-
driven bean.
The Message-Driven Bean page is displayed in the DD Editor.

4 Click the Standard tab in the DD Editor. Set the following attributes:

a Enter the name of the message-driven bean in the Name field.

b Enter the fully-qualified name of the Java class that implements the bean's
business methods in the EJB Class field. This information must be specified.

c Choose the bean's messaging type in the Messaging Type field.

d Select how the bean's transactions are managed in the Transaction Type drop-
down list. Transactions can be managed by the bean itself or by the container.

e Select the message destination type in the Message Destination Type drop-down
list. This is the actual topic or queue the message-driven bean is listening to.

f Enter the bean's message destination in the Message Destination Link field.

g Enter the language for the activation configuration description in the Description
Language field. Use the Add and Remove buttons to add and remove languages.
You can have one description per language.

h Enter a description of the bean in the Description field.

i Enter the language for the display information in the Language field. Use the Add
and Remove buttons to add and remove languages. You can have one display
description per language.

j Enter the name you want used to identify the bean for display purposes in the
Display Name field.

k Enter a description for display purposes in the Description field.

l Enter the name of a large icon (32 x 32 pixels) you want associated with the bean
in the Large Icon field.

m Enter the name of a small icon (16 x 16 pixels) you want associated with the bean
in the Small Icon field.

5 Click the BES tab in the DD Editor. Use this page to set the Borland AppServer
<message-source> element.

a Choose the message source type from the Message Source Type drop-down list.
Choose jms-provider-ref to activate the message source through a JMS provider,
using EJB 2.0 implementation. Choose adapter-ref to activate the message
source through a JCA 1.5 resource adapter.

b Enter the message-driven bean destination in the Destination Name field. This is
the actual topic or queue the message-driven bean is listening to. This field is
available if jms_provider_ref is selected as the Message Source Type.

374 AppServer Developer ’s Guide

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

c Enter the resource connection factory used to connect to the JMS broker in the
Connection Factory Name field. This field is available if jms_provider_ref is
selected as the Message Source Type.

d Enter the initial number of connections in the Initial Pool Size field. This field is
available if jms_provider_ref is selected as the Message Source Type.

e Enter the maximum number of connections in the Maximum Pool Size field. This
field is available if jms_provider_ref is selected as the Message Source Type.

f Enter the length of time (in seconds) to wait for a connection in the Wait Timeout
field. This field is available if jms_provider_ref is selected as the Message Source
Type.

g Enter the name of the resource adapter instance that connects to a J2EE
resource in the Instance Name field. This field is available if
resource_adapter_ref is selected as the Message Source Type.

Resource Environment References page

The Borland-specific Resource Environment References page was updated for
message-driven beans.

Use the Resource Environment References page to set the <resource-environment-ref>
element for a message-driven bean. The resource environment reference can be set to
either a JNDI name or an administered object. A resource environment reference maps
a logical name used by the client application to the physical name of an object.

To display the Resource Environment Reference page and set the Borland AppServer
6.6-specific deployment descriptor element,

1 Select the EJB module in the project pane.
The DD Editor is displayed in the content pane.

2 Open the structure pane.

3 Expand the EJB module and select the Message Driven Beans node. Select a
message-driven bean.

4 Right-click the Resource Environment References page and choose Add.

5 Click the BES tab in the DD Editor.

a Choose the type of reference from the Resource Environment References Type
drop-down list. Choose JNDI name to select a JNDI reference. Choose Admin
Object to select an administered object. If you select Admin Object, you need to
set properties for the object. See “Admin Object and Admin Object Properties
page” on page 375 for more information.

b Enter the name of the JNDI bean that maps the logical name to the object name
in the JNDI Name field. This field is only available if JNDI Name is selected as the
Resource Environment Type. See Chapter 22, “Using JMS” for more information.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 375

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

Admin Object and Admin Object Properties page

The Admin Object and Admin Object Properties pages are new for resource
environment references on message-driven beans.

Use the Admin Object page to add an administered object for a resource environment
reference. Use the Admin Object Properties page to set the object properties. This
page is only available if you select Admin Object as the Resource Environment
References Type. Administered objects are specific to a messaging style or message
provider.

To display the Admin Object page and set the Borland AppServer 6.6-specific
deployment descriptor element,

1 Select the EJB module in the project pane.
The DD Editor is displayed in the content pane.

2 Open the structure pane.

3 Expand the EJB module and select the Message Driven Beans node. Select a
message-driven bean.

4 Right-click the Resource Environment References page and choose Add.

5 Click the BES tab in the DD Editor.

6 Choose Admin Object from the Resource Environment Reference Type drop-down
list.

7 Expand the Resource Environment References node in the structure pane until you
see the entry you just added.

8 Expand the node and select the Admin Object Properties node. Right-click the node
and choose Add.
The BES Admin Object Properties page is displayed in the DD Editor.

9 Enter properties:

a Enter the property name in the Name field.

b Choose the type of property from the Type drop-down list. Select one of
java.lang.String, java.lang.Boolean, or Integer. You can also select
<Unspecified>.

c Enter a value for the property in the Value field. The value must match the type of
property.

Resource Adapter page

The Borland-specific Resource Adapter page is new for a Connector module.

Use the Resource Adapter page to set the Borland-specific JCA 1.5 deployment
descriptor <resourceadapter> element for a Connector module. This element describes
a resource adapter for a connector.

To display the Resource Adapter page and set the Borland AppServer 6.6-specific
deployment descriptor element,

1 Select the Connector module in the project pane.
The DD Editor is displayed in the content pane.

2 Open the structure pane.

3 Expand the Connector module and choose the Resource Adapter node.

376 AppServer Developer ’s Guide

Using the JBui lder Deployment Descr iptor Edi tor to develop J2EE 1.4 appl icat ions

4 Click the BES tab in the DD Editor.

a Enter the name of the connection factory in the Instance Name field.

b Enter the resource adapter link reference in the Resource Adapter Link
Reference field. This allows you to associate multiple deployed resource
adapters with a single deployed resource adapter. The link provides for linking
and reusing resources already configured in a base resource adapter to another
resource adapter, modifying only a subset of attributes. Using this field avoids
duplication of resources where possible. Any values defined in the base resource
adapter deployment are inherited by the linked resource adapter unless
otherwise specified.

c Enter the directory where all shared libraries should be copied in the Resource
Adapter Library Directory field.

d Enter the authorization domain for the connection in the Authorization Domain
field.

BES Connection Definition page

The BES Connection Definition is new for a Connector module.

Use the BES Connection Definition page to set the Borland-specific JCA 1.5
deployment descriptor <outbound-resourceadapter> element for a Borland Connector
Module. The information includes the fully qualified names of classes and interfaces
that are required as part of the connector architecture, the number of managed
connections, and the connection timing intervals.

To display the BES Connection Definition page and set the Borland AppServer 6.6-
specific deployment descriptor element,

1 Select the Connector module in the project pane.
The DD Editor is displayed in the content pane.

2 Open the structure pane.

3 Expand the Connector module and the Resource Adapter node.

4 Right-click the BES Connection Definitions node and choose Add.

5 Set attributes for the connection definition:

a Enter the name of the factory interface in the Factory Interface field.

b Enter the name of the factory class used to connect to the JMS broker in the
Factory Name field.

c Enter the connection description in the Description field.

d Enter the name of the JNDI class to the connection factory in the JNDI Name
field. See Chapter 22, “Using JMS” for more information.

e Check the Enable Logging option to require logging for the
ManagedConnectionFactory or ManagedConnection classes.

f Enter the name and location of the file where the logging results are to be written
in the Log File Name field.

g Enter the initial number of managed connections the server attempts to allocate
at deployment time in the Initial Capacity field.

h Enter the maximum number of managed connections the server allows to be
allocated at any one time in the Maximum Capacity field.

i Enter the length of time in seconds to wait if the connection is busy in the Busy
Timeout field.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 377

Creat ing a run conf igurat ion for Bor land AppServer 6.6 targeted projects

j Enter the length of time in seconds to wait before timing out a connection in the
Idle Timeout field.

k Enter the length of time in seconds to wait for a connection in the Wait Timeout
field.

l Enter the number of managed connections the server attempts to allocate when
fulfilling a request for a new connection in the Capacity Delta field.

m Select the Enable Cleanup option to force the server to attempt to claim unused
managed connections to save system resources.

n Enter the time in seconds the server waits between attempts to claim used
managed connections in the Cleanup Interval field.

6 To add connection definition properties, expand the node for the definition you just
added, right-click the Properties node and choose Add. Enter properties:

a Enter the property name in the Name field.

b Choose the type of property from the Type drop-down list. Select one of
java.lang.String, java.lang.Boolean, or Integer. You can also select
<Unspecified>.

c Enter a value for the property in the Value field. The value must match the type of
property.

Creating a run configuration for Borland AppServer 6.6 targeted
projects

JBuilder uses a default Borland AppServer configuration called jbuilder and a default
partition called jbpartition as a deployment target for Borland AppServer 6.6. If the
configuration or partition doesn't exist, one will be created automatically when you
configure the plug-in. The server name is the same as the hub name.

You can start multiple partitions using multiple JBuilder run configurations. To create
multiple run configurations, follow these steps:

1 Choose Run|Configurations, then click New.

2 Change the Run Type to Server. The displayed server is the server selected for the
project in Project Properties|Server.

3 In the Category list, select Server|Command Line.

4 Change the Partition and Configuration fields to the ones you want to use.

5 Click OK to close the New Runtime Configuration dialog box and save the
configuration.

6 Repeat these steps to create additional run configurations to run other partitions.

7 To run multiple partitions, use the Management Agent (Enterprise|Borland
Enterprise Server Management Agent).

To avoid naming service conflicts, make sure that you have the naming service
enabled for only one of the partitions. To disable the naming service for a partition, edit
the run configuration for the partition (Edit Runtime Configuration dialog box) and
uncheck the Naming/Directory service in the Category list.

Before starting up the partition, make sure you have configured unique port numbers
for the Tomcat and JDataStore services.

378 AppServer Developer ’s Guide

Creat ing a run conf igurat ion for Bor land AppServer 6.6 targeted pro jects

Important You cannot change the Tomcat port setting from the JBuilder run configuration. You
need to start the server, open the Borland AppServer Management Console, and set
the port on the server side. To do this,

1 Start the Borland Management Agent from the command line: <APPSERVER_HOME>/bin/
scu.exe

2 Open the Borland AppServer Management Console: <APPSERVER_HOME>/bin/
console.exe

3 Log into the console.

4 Choose the Management Hubs node.

5 Expand the Management Hubs node until you see the running partition. Expand the
partition node.

6 Right-click the Web Container node and choose Properties.
The Configure Web Container dialog box is displayed.

7 Expand the Service: HTTP node. Choose Connector.

8 Scroll through the Connector page until you see the Port Number field.

9 Change the port number to the one you want to use.

10 Choose File|Save.

Changing the management port

The Management Agent manages all partitions. The default management port, set on
the Advanced Settings dialog box (Tools|Configure Servers|Advanced Settings) is
42424. You can change the management port used by JBuilder, or the one used by the
server.

To change the port used by JBuilder,

1 Choose Enterprise|Configure Servers and chose Borland Enterprise Server
AppServer Edition 6.x from the User Home Folder on the left.

2 Click the Custom tab, then the Advanced Settings button.

3 Change the port in the Management Port field. (The default is 42424.)

4 Click OK two times.

To change the management port used by the server,

1 Open the Borland Management Console embedded in JBuilder 2006 (View|Panes|
BAS 6.6 Console).

Note The embedded console has to be enabled first. See “Displaying the Borland
Management Console in JBuilder” on page 369.

2 Double-click Installations.

3 Expand the server location node and select the server node.

Note The server is also the machine ID.

4 Expand the server node until you see the server displayed as a sub-node of the
Agents node.

5 Right-click the server node and choose Properties.

6 Change the port number in the Management Port field.

7 Click OK to save the settings.

If you change the management port, the management agent will shutdown if it was
started in JBuilder.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 379

Launching the part i t ion in JBui lder 2006

Launching the partition in JBuilder 2006
When you launch the partition in JBuilder, the Management Agent is started by default
and the server is launched. After the partition has been started, all deployable archives
are automatically deployed. Startup output is displayed in the message pane.

If you want to start multiple partitions, or quickly redeploy partitions, you can start the
Management Agent (Enterprise|Borland Enterprise Server Management Agent). The
Management Agent refers to scu.

To launch the partition and configuration for the server, right-click the module in the
project pane you want to run. Select Run Using <Configuration_Name>. Typically, this
will be the name of the server runtime configuration.

Running the partition in JBuilder will:

■ Create the partition and configuration, if not already present. The partition and
configuration name are derived from the run configuration used to start up the
server. If you are starting the configuration or server using the default configuration,
the partition name as configured in the application server properties will be used.

■ Deploy any resources defined in jndi-definitions.xml (if present) to the root of the
partition directory, <APPSERVER_HOME>\var\domains\base\configurations\
<CONFIGURATION_NAME>\mos\<PARTITION_NAME>\dars\jbuilder.dar. The jndi-
definitions.xml file is packaged into this .dar file and deployed.

Note The jndi-definitions.xml file is created if your project contains an EJB 2.0 module
with data sources/messaging resources defined. This action can be turned off by
unchecking the Deploy jndi-definitions.xml option on the Deployment|EJBs Service
Properties page on the Server node of the Project Properties dialog box (Project
Properties|Server|Services|Deployment|EJBs).

■ Remove any archives deployed to the partition, if the Remove Archives Already
Deployed To Server option is selected. You can set this option in the Server|
Archives category on the Edit Runtime Configuration dialog box for the server run
configuration (Run|Configurations|<Server_Config_Name>|Edit|Run page|Category
list).

■ Deploy the selected archives. By default, all deployable archives in the project are
selected. You can choose the archives to deploy in the Server|Archives category on
the Edit Runtime Configuration dialog box for the server run configuration (Run|
Configurations|<Server_Config_Name>|Edit|Run page|Category list).

■ Start the partition. When partition startup is complete, you should see the partitions
listed in the message pane for Borland AppServer 6.6. Archives deployed at startup
should be loaded and accessible.

Note By default, all services associated with a partition are started.

380 AppServer Developer ’s Guide

Deploying

Deploying
To deploy EJBs, WARs, and EAR modules to Borland AppServer 6.6, follow these
steps.

1 Choose Enterprise|Configure Servers.

2 Select Borland Enterprise Server AppServer Edition 6.x from the left side of the
dialog box.

3 Click the Custom tab and set the Server, Configuration, and Partition names to
match that of the server. (The server can be running remotely or on the local
machine.)

4 Click the Advanced Settings button and make sure the Management Port setting
matches the port set for the server.

5 Click OK two times.

Now you are ready to deploy. There are two ways to deploy EJBs, WARs, and EAR
modules using JBuilder. You can deploy using the Deployment wizard or the context
menu.

To deploy using the Deployment wizard,

1 Build your project (Project|Make).

2 Start the Management Agent (Enterprise|Borland Enterprise Server Management
Agent).

3 Open the Server Deployment wizard (Enterprise|Server Deployment).

4 On Page 1 of the wizard, select the modules to deploy. Set the Restart Partitions On
Deploy (Cold Deploy) option if the partition has already been started. Click Next.

5 On Page 2, select the partition you want to deploy modules to from the list.

Important If the selected partition has already been started, restart it to access the deployed
modules.

6 Click Finish to deploy.

To deploy from the context menu,

1 Build your project (Project|Make).

2 Start the Management Agent (Enterprise|Borland Enterprise Server Management
Agent).

3 In the project pane, right-click any deployable node.

4 Choose Deploy Options|Deploy.

Note To deploy more than one module, you can select multiple deployable nodes in the
project pane, right-click them, and use the Deploy Options context menu.

Chapter 38: Integrat ing Bor land AppServer 6.6 wi th JBui lder 2006 381

Remote debugging

Remote debugging
Before you can debug your application remotely, you need to configure the partition.
Choose one of these topics for more information:

■ Preparing to remote debug partitions that are not managed in JBuilder

■ Preparing to remote debug partitions with JBuilder

Once the configuration, partition, and server are started, follow the instructions in
“Remote debugging from JBuilder” on page 382. For a remote debugging tutorial, see
“Tutorial: Remote debugging with the Borland Enterprise Server AppServer Edition 6.0”
in Developing Enterprise JavaBeans in the JBuilder online help. The steps are the
same for both the 6.x and 6.6 versions of the Borland application server.

Preparing to remote debug partitions that are not managed in
JBuilder

To prepare to remote debug partitions that are not managed in JBuilder,

1 Start the Borland Management Agent from the command line: <APPSERVER_HOME>/bin/
scu.exe

2 Open the Borland AppServer Management Console: <APPSERVER_HOME>/bin/
console.exe
Log into the console.

3 Choose the Management Hubs node. Expand the node until you see the partition
you want to debug.

4 Right-click the partition name and choose Properties.
The Partition Properties dialog box is displayed.

5 Select the Partition Process Settings tab.

6 Check the Enable JPDA Remote Debugging option.

7 Set the JPDA Debugging Transport Address to 3999.

8 Uncheck the Suspend Partition Until Debugger Attaches option.

9 Click OK.

Preparing to remote debug partitions with JBuilder

To prepare to remote debug partitions with JBuilder,

1 Shut down the server.

2 Open the file: <APPSERVER_HOME>/var/domains/base/configurations/
<CONFIGURATION_NAME>/configuration.xml

3 Look for the JPDA element and edit attribute values as follows:
 enable-jpda-debug="true"
jpda-transport-address="3999"
jpda-suspend="false"

382 AppServer Developer ’s Guide

Remote debugging

Remote debugging from JBuilder

Once the server, partition, and Management Agent have been started, follow these
steps from the JBuilder IDE:

1 In the project from which you want to launch the remote debug session, choose
Run|Configurations.

2 Select the Server run configuration and choose Edit.

3 Select the Debug|Connection node.

4 Select the Remote Attach option.

5 Set the Transport Type to dt_socket and the localhost value to 3999.

6 Click OK two times to close the Run Configuration dialog boxes.

7 Set a breakpoint in the process you want to debug.

8 Click the down arrow next to the Debug Project button on the toolbar and select the
Server configuration you just created or edited. The debugger launches, attaches to
the partition running remotely, and stops at the breakpoint.

Index 383

Symbols
[] brackets 3
| vertical bar 3
… ellipsis 3

A
ADLoginModule, using 243
Ant 301

building AppServer examples 308
customized tasks 301
deploying AppServer examples 308
running AppServer examples 308
troubleshooting AppServer examples 309
undeploying AppServer examples 308

Ant tasks
iastool examples 305
ommitting attributes 305
syntax 301
usage 301

Apache Ant 301
building AppServer examples 308
deploying AppServer examples 308
running AppServer examples 308
troubleshooting AppServer examples 309
undeploying AppServer examples 308
web services 79

Apache Axis
Axis Toolkit libraries 78
web service samples 79
web services 74, 75
web services Admin tool 80

Apache web server 8, 33
clustering 61, 64
configuration 33
configuration syntax 33
connecting to CORBA 67
connecting to web container 39
CORBA server 69
directory structure 35
.htaccess files 35
HTTP sessions 65
httpd.conf file 33, 43
IIOP configuration 45
IIOP connector 41
IIOP connector configuration 43
IIOP module 41
privileged port 34

Apache, httpd.conf configuration 34
applications

managed 268
non-managed 268

AppServer examples
building 308
deploying 308
running 308
troubleshooting 309
undeploying 308

AppServer web components 33
AppServer web server 33

directory structure 35
archive deployment, Partitions 17

archives, deploying in JBuilder 380
authentication, VisiConnect 267
auxiliary thread pool 30
Axis Toolkit libraries, web services 78

B
BLOB 153
Borland AppServer

architecture 7
Connector service 10
EJB container 10
examples, running 301
J2EE APIs 11
JDataStore 10
JMS services 8
Management Agent 369
Naming service 10
Partition Services 9
Partitions 9
partitions, starting Borland 379
services 8
session service 10
Smart Agent 9
transaction manager 11
Transaction Service 9
web container 11
web server 8

Borland AppServer 6.6
configuring in JBuilder 368
deploying to remotely 380
plug-in, installing with JBuilder 367
remote debugging 381
starting 379

Borland Developer Support, contacting 4
Borland Management Console, in JBuilder 369
Borland Technical Support, contacting 4
Borland virtual directory, IIS/IIOP redirector 52
Borland web container 36

adding environment variables 37
clustering 61, 64
configuration files 36
connecting to JSS 39
ENV variables 37
IIOP configuration 41
IIOP connector 41
JavaServer Pages 36
JSS and failover 64
server.xml 36, 41
servlets 36

Borland Web site 4, 5
Borland-specific web DTD 37

C
cascade delete 135

database 135
cascade delete database 135
CGI-bin Apache directory 35
classloading

support 271
VisiConnect 271

classloading policies, in Partitions 19

Index

384 AppServer Developer ’s Guide

client
definition of 81
get bean information 87
initialization of 81
invoke enterprise bean methods 84
locate home interface 82
manage transaction 87
obtain remote interface 82
use bean handle 85

client j2ee, running 99
client-side stub file, generating 318
CLOB 153
clustering

Apache web server 61
Borland web container 61
Java Session Service 64
JSS 64
message-driven beans 181
Session Service 64
web components 61

Clustering, J2EE Applications in BAS 31
clusters

deploying JAR files 315
IIOP connector 45
IIOP redirector 54
undeploying JAR files 334

CMP 2.x 123, 125
and entity beans 123
Borland implementation 126
CMP mapping 130
coarse-grained fields 130
configuring database tables 129
configuring datasources 129
container-managed relationships 124
many-to-many 134
mapping fields to multiple tables 131
one-to-many 133
one-to-one 132
optimistic concurrency 127
persistence manager 124, 126
schema 128
specifying relationships 132

command line tools
compilejsp 312
compress 314
deploy 315
dumpstack 316
genclient 317
gendeployable 318
genstubs 318
info 319
kill 320
listhubs 322
listpartitions 321
listservices 322
manage 323
merge 324
migrate 325
newconfig 325
patch 326
ping 327
pservice 328
removestubs 329
restart 330
start 331, 332

stop 333
uncompress 334
undeploy 334
unmanage 335
usage 336
verify 336

commands, conventions 3
compilejsp, iastool command 312
component managed sign-on 266
compress, iastool command 314
conf Apache directory 35
conf IIS directory 38
configurations (Borland), starting in JBuilder 379
configuring

JBuilder for Borland AppServer 6.6 368
JNDI objects for OpenJMS 222
RMI-IIOP connector 22

connection
leak detection 272
management 264
recovery, JMS 182

Connector service 10
connector, IIOP 41
connectors, connection management 264
Container-Managed Persistence 2.0

automatic table creation 154
CMP engine properties 139
column properties 140, 143, 144
data access support 152
entity bean properties 137
entity properties 139, 141
fetching special data types 152
Oracle Large Objects (LOBs) 153
table properties 140, 142

CORBA
connecting to web server 67
distribution mapping 89
IIOP connector 67
mapping to EJB 88
naming mapping 90
object instances and IIOP connector 69
security mapping 91
transaction mapping 91
web server connection 67

CORBA methods, urls 67
CORBA servant, implemeting ReqProcessor IDL 68
CORBA server

implementing ReqProcessor IDL 68
ReqProcessor IDL 67, 68
web-enabling 67

corbaloc load balancing 62

D
Data Archive (DAR) 186

creating and deploying 187
jndi-definitions module 186
migrating to 187
packaging 188

databases, connecting 185
DataExpress 57
datasources. See Data Archive (DAR)
debugging, remote 381
default thread pool 29
deploy, iastool command 315

Index 385

deploying
archives in JBuilder 380
MEJB 27
MEJB client 27

deployment descriptor, customization properties 350
deployment, to Partitions 17
deploy.wssd file 75
Developer Support, contacting 4
diagnostic tools, dumpstack (iastool) 316
distributed transaction, two-phase commit 161
DOCTYPE declaration 95
documentation 2

accessing Help Topics 3
Borland AppServer Developer's Guide 2
Borland AppServer Installation Guide 2
Borland Security Guide 2
Management Console User's Guide 2
.pdf format 2
platform conventions used in 4
type conventions used in 3
updates on the web 2
VisiBroker for Java Developer's Guide 2
VisiBroker VisiTransact Guide 2

DTD, XML 95, 96
dump, generating 316
dumpstack, iastool command 316
dynamic queries, EJB-QL 150

E
EIS integration 261
EJB

mapping to CORBA 88
web services 74

EJB Container
ejb.classload_policy property 348
ejb.collect.display_detail_statistics property 350
ejb.collect.display_statistics property 350
ejb.collect.statistics property 350
ejb.collect.stats_gather_frequency property 350
ejb.copy_arguments property 347
ejb.finder.no_custom_marshal property 349
ejb.interop.marshal_handle_as_ior property 349
ejb.jdb.pstore_location property 349
ejb.jss.pstore_location property 349
ejb.logging.doFullExceptionLogging property 349
ejb.logging.verbose property 349
ejb.mdb.threadMax property 350
ejb.mdb.threadMaxIdle property 350
ejb.mdb.threadMin property 350
ejb.module_preload property 348
ejb.no_sleep property 348
ejb.sfsb.aggressive_passivation property 349
ejb.sfsb.factory_name property 349
ejb.sfsb.keep_alive_timeout property 349
ejb.system_classpath_first property 348
ejb.trace_container property 348
ejb.use_java_serialization property 347
ejb.useDynamicStubs property 348
ejb.usePKHashCodeAndEquals property 348
ejb.xml_validation property 348
ejb.xml_verification property 348

EJB container 10
properties 347

ejb.classload_policy for EJB Container 348

ejb.collect.display_detail_statistics for EJB
Container 350

ejb.collect.display_statistics for EJB Container 350
ejb.collect.statistics for EJB Container 350
ejb.collect.stats_gather_frequency for EJB

Container 350
ejb.copy_arguments for EJB Container 347
ejb.default_transaction_attribute for EJBs 351
EJBException 171
ejb.findByPrimaryKeyBehavior for Entity Beans 354
ejb.finder.no_custom_marshal for EJB Container 349
ejb.interop.marshal_handle_as_ior for EJB

Container 349
ejb.jdb.pstore_location for EJB Container 349
ejb.jsec.doInstanceBasedAC for Stateful Session

Beans 357
ejb.jss.pstore_location for EJB Container 349
ejb.logging.doFullExceptionLogging for EJB

Container 349
ejb.logging.verbose for EJB Container 349
ejb.maxBeansInCache for Entity Beans 352
ejb.maxBeansInPool for Entity Beans 352
ejb.maxBeansInTransactions for Entity Beans 352
ejb.mdb.init-size for Message Driven Beans 355
ejb.mdb.local_transaction_optimization, for Message

Driven Beans 355
ejb.mdb.maxMessagesPerServerSession for Message

Driven Beans 355
ejb.mdb.max-size for Message Driven Beans 355
ejb.mdb.rebindAttemptCount for Message Driven

Beans 356
ejb.mdb.rebindAttemptInterval for Message Driven

Beans 356
ejb.mdb.threadMax for EJB Container 350
ejb.mdb.threadMaxIdle for EJB Container 350
ejb.mdb.threadMin for EJB Container 350
ejb.mdb.unDeliverableQueue for Message Driven

Beans 356
ejb.mdb.unDeliverableQueueConnectionFactory for

Message Driven Beans 356
ejb.mdb.use_jms_threads for Message Driven

Beans 355
ejb.mdb.wait_timeout for Message Driven Beans 356
ejb.module_preload for EJB Container 348
ejb.no_sleep for EJB Container 348
EJB-QL 145

dynamic queries 150
GROUP BY extension 149
optimizing SQL 151
ORDER BY extension 148
return types for aggregate functions 146
selecting a cmp-field 145
selecting a collection of cmp-fields 145
selecting a ResultSet 146
specifying custom SQL 151
sub-queries 149
using aggregate functions 146

ejb-ref-name 95, 97
ejb-refs 97
ejb.security.transportType for EJB Security 358
ejb.security.trustInClient for EJB Security 358
ejb.sfsb.aggressive_passivation for EJB Container 349
ejb.sfsb.factory_name for EJB Container 349
ejb.sfsb.instance_max for Stateful Session Beans 357

386 AppServer Developer ’s Guide

ejb.sfsb.instance_max_timeout for Stateful Session
Beans 357

ejb.sfsb.keep_alive_timeout for EJB Container 349
ejb.sfsb.passivation_timeout for Stateful Session

Beans 357
ejb.system_classpath_first for EJB Container 348
ejb.trace_container for EJB Container 348
ejb.transactionCommitMode for Entity Beans 353
ejb.transactionManagerInstanceName for Message

Driven Beans 353, 356
ejb.use_java_serialization for EJB Container 347
ejb.useDynamicStubs for EJB Container 348
ejb.usePKHashCodeAndEquals for EJB Container 348
ejb.xml_validation for EJB Container 348
ejb.xml_verification for EJB Container 348
enable_loadbalancing attribute 70
enterprise bean

bean-managed transaction 167
container-managed transaction 167
get information about 87
home interface, locate 82
metadata 87
remote interface, reference to 82
remove instances of 85
transaction management 166

enterprise bean methods, to invoke 84
Enterprise JavaBeans

common properties 351
ejb.default_transaction_attribute property 351
Entity Bean properties 352
MDB properties 355
properties index 351
security properties 358
Stateful Session Bean properties 357

entity bean
create methods 84
find methods 83
remote interface

create methods 84
find methods 83
reference to 83
remove methods 84

remove instances of 85
remove methods 84

Entity Beans
EJB 2.0 123
ejb.findByPrimaryKeyBehavior property 354
ejb.maxBeansInCache property 352
ejb.maxBeansInPool property 352
ejb.maxBeansInTransactions property 352
ejb.transactionCommitMode property 353

entity beans
interfaces 124
packaging requirements 124
primary keys 155
re-entrancy 125

ENV variables
Borland web container 37
Tomcat-based web container 37
web container 37

environment variables web container 37
error recovery, JMS 182

examples 301
building 308
deploying 308
running 308
troubleshooting 309
undeploying 308
web services 78, 79

executing iastool from a script 338
existing applications 99

F
failover

IIOP connector 62, 63
JSS 64
web component clustering 61

fault tolerance
IIOP connector 62, 63
MDB 182
web component clustering 61

-file option, executing iastool from a script 338
find methods 83

G
genclient, iastool command 317
gendeployable, iastool command 318
genstubs, iastool command 318

H
handle 85
Help Topics, accessing 3
home interface, locate 82
.htaccess files 35
htdocs Apache directory 35
HTTP adaptor 21
HTTP sessions, Apache web server 65
httpd.conf 33

IIOP and CORBA 69
location 33

httpd.conf file
configuration syntax 34
IIOP connector configuration 43

I
iastool

compilejsp 312
compress 314
deploy 315
dumpstack 316
executing from a script 338
genclient 317
gendeployable 318
genstubs 318
info 319
kill 320
listhubs 322
listpartitions 321
listservices 322
manage 323
merge 324

Index 387

migrate 325
newconfig 325
patch 326
ping 327
pservice 328
removestubs 329
restart 330
start 331, 332
stop 333
uncompress 334
undeploy 334
unmanage 335
usage 336
verify 336

icons Apache directory 35
IIOP

adding new CORBA objects 70
CORBA 69, 70
plugin 41

IIOP connector 41
adding a CORBA instance 69
adding clusters 45, 46
adding CORBA instances 70
adding web applications 47
Apache configuration 43
Apache configuration files 69
Apache web server 41
clustering 61
configuration files 45
CORBA 67
failover 62, 63
fault tolerance 62, 63
load balancing 62
mapping CORBA URLs 69
mapping URIs 45
mapping URIs to CORBA servers 71
server.xml 41
smart session handling 62, 63
UriMapFile.properties 47, 71
web components 61
web container 41
web server 41
WebClusters.properties file 46, 70

IIOP redirector 38
adding clusters 54, 55
adding web applications 56
configuration 54
configuration files 54
IIS web server 52
mapping URIs 54
UriMapFile.properties 56
WebClusters.properties file 55

IIS
adding new clusters 55
adding new web applications 56

IIS redirector 38
directories 38

IIS web server
connecting to web container 52
IIOP redirector 38, 52
IIOP redirector configuration 52, 54
IIOP redirector directory structure 38
versions supported 38

IIS/IIOP redirector
ISAPI filter 52
virtual directory 52
Windows 2000 configuration 52
Windows 2003 configuration 52
Windows XP configuration 52

info, iastool command 319
installing Borland AppServer 6.6 plug-in with

JBuilder 367
interceptors, lifecycle 20
internet, accessing CORBA 67
ISAPI filter, IIS/IIOP redirector 52

J
J2EE

APIs supported 11
connector architecture 261
VisiClient 93
VisiClient environment 93

JACC
authorization 239
configuring external providers 242
configuring provider 240
contracts 239
enabling/disabling provider 241
using 239

JAR files
deploying 315
server-side deployable 318
undeploying 334

Java
APIs for XML Registries 247
Server Pages, precompiling 312
Transaction API 169
types mapped to SQL types 120, 154

Java Session Service 57
automatic storage 64
configuration 59
JDataStore 59
JDBC datasource 59
jss.backingStoreType property 360
jss.debug property 359
jss.factoryName property 359
jss.maxIdle property 359
jss.passWord property 360
jss.pstore property 359
jss.softCommit property 359
jss.userName property 360
jss.workingDir property 359
programmatic storage 64
properties 59, 60, 358
session management 57
storage implementation 64
web components 64
See also JSS

Java Transaction Service 160
jts.allow_unrecoverable_completion property 361
jts.default_max_timeout property 362
jts.default_timeout property 362
jts.no_global_tids property 361
jts.no_local_tids property 361
jts.timeout_enable property 361
jts.timeout_interval property 361

388 AppServer Developer ’s Guide

jts.trace property 362
jts.transaction_debug_timeout property 362
properties 361

Java2WSDL tool, web services 80
JavaServer Pages (JSPs) 36
JAXR 247
JBuilder 367
JDataStore 10

DataExpress 57
JDBC 189

API modifications 170
configuring datasources 190
configuring properties 193
connecting from deployed modules 201
Connection Pooling 94
datasource and JSS 59
datasources 189
debugging 197
deployment descriptor contruction 199
enabling and disabling datasources 188
JDBC 1.x drivers 198

JMS 203, 221
configuring 205
configuring connection factories 205
connecting from deployed modules 209
connection factories 203
connection recovery 182
deployment descriptor elements 216
error recovery 182
OpenJMS 221
provider, clustering 181
security 216
security enabling for Tibco 220
security Tibco 220
transactions 214

JMX
agent, locating 29
client 21
clients, security 23
configuration 21
instrumentation 24
MBeans, custom 26
support 20
switching JDK 24

JNDI support 88
jndi-definitions module 186
JSP, definition 36
JSR-03 20
JSR-160 20
JSR-77 20, 24
JSS 57

automatic storage 64
configuration 59
connecting to web containers 39
failover 64
JDataStore 59
JDBC datasource 59
programmatic storage 64
properties 59, 60
session management 57
storage implementation 64
web components 64
See also Java Session Service

jss.backingStoreType for Java Session Service 360
jss.debug for Java Session Service 359
jss.factoryName for Java Session Service 359
jss.maxIdle for Java Session Service 359
jss.passWord for Java Session Service 360
jss.pstore for Java Session Service 359
jss.softCommit for Java Session Service 359
jss.userName for Java Session Service 360
jss.workingDir for Java Session Service 359
JTA 169
JTS, two-phase commit 161
jts.allow_unrecoverable_completion for Java

Transaction Service 361
jts.default_max_timeout for Java Transaction

Service 362
jts.default_timeout for Java Transaction Service 362
jts.no_global_tids for Java Transaction Service 361
jts.no_local_tids for Java Transaction Service 361
jts.timeout_enable for Java Transaction Service 361
jts.timeout_interval for Java Transaction Service 361
jts.trace for Java Transaction Service 362
jts.transaction_debug_timeout for Java Transaction

Service 362

K
key cache size 158
kill, iastool command 320

L
LifeRay

creating MySQL database 364
deploying custom portlets 365
using with AppServer 363

listhubs, iastool command 322
listpartitions, iastool command 321
listservices, iastool command 322
load balancing 62

corbaloc-based 62
IIOP connector 62
osagent-based 62
web component clustering 61

login information
protecting 338
running from a script file 338

logs Apache directory 35
logs IIS directory 38

M
manage, iastool command 323
Managed Objects, Partitions 16
managed sign-on, VisiConnect Container 266
management agent 369

starting 369, 379
Management EJB, using 27
management port (Borland) 378
Manifest

example 100
files, use of 100

MBeans 24
custom 26

MC4J 21

Index 389

MDB
connection recovery 182
dead queue 183
error recovery 182
fault tolerance 182
JMS provider clustering 181
queue configuration 183
rebind attempt 182
using with OpenJMS 228

MEJB
deploying 27
using 27

merge, iastool command 324
Message Driven Bean, using with OpenJMS 228
Message Driven Beans

ejb.mdb.init-size 355
ejb.mdb.local_transaction_optimization

property 355
ejb.mdb.maxMessagesPerServerSession

property 355
ejb.mdb.max-size 355
ejb.mdb.rebindAttemptCount property 356
ejb.mdb.rebindAttemptInterval property 356
ejb.mdb.unDeliverableQueue property 356
ejb.mdb.unDeliverableQueueConnectionFactory

property 356
ejb.mdb.use_jms_threads property 355
ejb.mdb.wait_timeout 356
ejb.transactionManagerInstanceName

property 353, 356
Message-Driven Beans 175

client view of 176
clustering 181
connecting to JMS connection factories 177
EJB 2.0 specification and 176
failover and fault tolerance 181
JMS and 175
transactions 184

metadata 87
Microsoft Internet Information Services web server. See

IIS
migrate, iastool command 325
modes, OpenJMS 228

N
named sequence table, primary key generation 157
Naming service 10
newconfig, iastool command 325

O
one-phase commit, VisiConnect 266
online Help Topics, accessing 3
OpenJMS 221

changing datasource 224
configuring for 2PC optimization 225
configuring JNDI objects 222
connection modes 224
creating tables 225
modes 228
running 228
specifying partition level properties 226
using MDB with 228

optimistic concurrency 127
SelectForUpdate 127
SelectForUpdateNoWAIT 127
UpdateAllFields 128
UpdateModifiedFields 128
VerifyAllFields 128
VerifyModifiedFields 128

optimisticConcurrencyBehavior, table properties 142
optimization, 2PC optimization for OpenJMS 225
Optimizeit, running with Partitions 16
osagent and web components 39

P
Partition

Borland web container ENV variables 37
server.xml 36, 41
services 9, 18

configuring 18
statistics gathering 19

thread pool 29
Tomcat configuration files 41
web container env variables 37
web container service 36
web services 73, 74

Partition Lifecycle Interceptors 10, 20
deploying 260
interception points 20
interceptor class 258
interceptor class example 259
module-borland.xml DTD 257

partition properties, specifying for OpenJMS 226
Partition Services

Borland web container 36
Java Session Service (JSS) 57
VisiConnect 273

Partitions 9, 13
classloading policies 19
clustering 31
configuring in XML 339
configuring properties 17
creating 14
custom MBeans 26
deploying archives 17
deploying JAR files 315
JMX client 21
JMX configuration 21
JMX support 20
JSR-03 20
JSR-160 20
JSR-77 20
lifecycle interceptors 10, 20
locating JMX agent 29
logging 17
MBeans 24
overview 13
Partition services 18
partition.xml reference 339
running 15
running Managed Objects 16
running unmanaged 15
running with Optimizeit 16
security management 19
undeploying JAR files 334

390 AppServer Developer ’s Guide

partitions (Borland), starting in JBuilder 379
partition.xml reference 339
password credential storage 271
password information

protecting 338
running from a script file 338

patch, iastool command 326
PDF documentation 2
pessimistic concurrency 127
ping, iastool command 327
plugin, IIOP 41
policies, Partition classloading 19
ports

changing Borland management 378
VisiBroker Smart Agent 369

precompiling JSPs 312
primary keys 155

automatic generation 157
generating 155, 156, 157
key cache size 158
named sequence table 157

privileged port, Apache web server 34
process() method and ReqProcessor IDL 69
process, Partitions 13
Profiler, running with Partitions 16
properties

container-level 347
EJB 347, 351
EJB common 351
EJB customization 350
EJB security 358
ejb.classload_policy 348
ejb.collect.display_detail_statistics 350
ejb.collect.display_statistics 350
ejb.collect.statistics 350
ejb.collect.stats_gather_frequency 350
ejb.copy_arguments 347
ejb.default_transaction_attribute 351
ejb.findByPrimaryKeyBehavior 354
ejb.finder.no_custom_marshal 349
ejb.interop.marshal_handle_as_ior 349
ejb.jdb.pstore_location 349
ejb.jsec.doInstanceBasedAC 357
ejb.jss.pstore_location 349
ejb.logging.doFullExceptionLogging 349
ejb.logging.verbose 349
ejb.maxBeansInCache 352
ejb.maxBeansInPool 352
ejb.maxBeansInTransactions 352
ejb.mdb.init-size 355
ejb.mdb.local_transaction_optimization 355
ejb.mdb.maxMessagesPerServerSession 355
ejb.mdb.max-size 355
ejb.mdb.rebindAttemptCount 356
ejb.mdb.rebindAttemptInterval 356
ejb.mdb.threadMax 350
ejb.mdb.threadMaxIdle 350
ejb.mdb.threadMin 350
ejb.mdb.unDeliverableQueue 356
ejb.mdb.unDeliverableQueueConnection

Factory 356
ejb.mdb.use_jms_threads 355
ejb.mdb.wait_timeout 356
ejb.module_preload 348

ejb.no_sleep 348
ejb.security.transportType 358
ejb.security.trustInClient 358
ejb.sfsb.aggressive_passivation 349
ejb.sfsb.factory_name 349
ejb.sfsb.instance_max 357
ejb.sfsb.instance_max_timeout 357
ejb.sfsb.keep_alive_timeout 349
ejb.sfsb.passivation_timeout 357
ejb.system_classpath_first 348
ejb.trace_container 348
ejb.transactionCommitMode 353
ejb.transactionManagerInstanceName 353, 356
ejb.use_java_serialization 347
ejb.useDynamicStubs 348
ejb.usePKHashCodeAndEquals 348
ejb.xml_validation 348
ejb.xml_verification 348
Entity Beans 352
Java Session Service 60
JSS 60, 358
jss.backingStoreType 360
jss.debug 359
jss.factoryName 359
jss.maxIdle 359
jss.passWord 360
jss.pstore 359
jss.softCommit 359
jss.userName 360
jss.workingDir 359
JTS 361
jts.allow_unrecoverable_completion 361
jts.default_max_timeout 362
jts.default_timeout 362
jts.no_global_tids 361
jts.no_local_tids 361
jts.timeout_enable 361
jts.timeout_interval 361
jts.trace 362
jts.transaction_debug_timeout 362
MDBs 355
Session Service 60
Stateful Session Beans 357

Providers
web services 74, 75, 76
web services examples 78

proxy Apache directory 35
pservice, iastool command 328

R
RA managed sign-on 266
realm information

protecting 338
running from a script file 338

redirector, IIS/IIOP configuration 54
References, links 97
remote debugging, Borland servers 381
remote interface, obtain reference to 82
removestubs, iastool command 329
ReqProcessor IDL 68

process()method 69
ReqProcessor Interface Definition Language (IDL) 67
resource adapters 272

VisiConnect 273

Index 391

res-ref-name 95
res-ref-names 97
restart, iastool command 330
RMI-IIOP connector

configuring 22
using 21

S
Scheduler Service 251

1PC optimization 253
clustering support 256
configuring database to persist data 252
partition service properties 253
relevant Quartz properties 255
using 251

script file
-file option 338
passing a file to iastool 338
piping a file to iastool 338
running iastool utilities from 338

Security
ejb.security.transportType property 358
ejb.security.trustInClient property 358

security
enabling for Tibco 220
in Partitions 19
JMS 216
JMX clients 23
policy ra.xml processing 272

server-config.wsdd file, web services 77, 78
server-side stub file, generating 318
ServerTrace, running with Partitions 16
server.xml 36

IIOP connector configuration 41
server.xml file 41
Service Broker, web services 73
Service Provider, web services 73
Service Requestor, web services 73
services, Partition 18
servlet 36
session bean

remote interface, reference to 82
remove instances of 85
transaction attributes 168

session management 57
web component clustering 61

Session Service 10
automatic storage 64
programmatic storage 64
properties 60, 358
storage implementation 64
web components 64

Sheduler Service, configuring 251
Smart Agent 39, 369

and web components 39
smart session handling, IIOP connector 62, 63
SOAP

Web services 77
web services 73

Software updates 5
SQL types mapped to Java types 120, 154
square brackets 3
stack trace, generating 316

start, iastool command 331, 332
stateful service 61
Stateful Session Beans

ejb.jsec.doInstanceBasedAC property 357
ejb.sfsb.instance_max property 357
ejb.sfsb.instance_max_timeout property 357
ejb.sfsb.passivation_timeout property 357

Stateful Sessions
aggressive passivation 104
caching 103
passivation 103
secondary storage 105
simple passivation 103
stateful storage timeout 105

stateless service 61
stateless session bean, exposing as a web service 74
statistics, Partition 19
stdout.log, generating a stack trace 316
stop, iastool command 333
stub file, generating 318
Support, contacting 4
switching JDK for JMX 24
symbols

brackets [] 3
ellipsis ... 3
vertical bar | 3

system configuration information 319
system contracts, VisiConnect 263

T
table properties, optimisticConcurrencyBehavior 142
Technical Support, contacting 4
thread dump, generating 316
thread pool

auxiliary 30
default 29
Partition 29

Tibco Admin Console 219
Timer Service 251
Tomcat-based web container 36

adding environment variables 37
configuration files 36
connecting to JSS 39
ENV variables 37
IIOP configuration 41
IIOP connector 41
JavaServer Pages 36
server.xml 36, 41
servlets 36

transaction
bean-managed 167
characteristics of 159
client management of 87
commit protocol 160
container support for 160
container-managed 166, 167
continuing 173
declarative management of 166
definition of 159
distributed 161

two-phase commit 161
EJBException 171
enterprise bean management of 166

392 AppServer Developer ’s Guide

exceptions 171
application-level 172
continuing 172
handling of 172
rollback 172
system-level 171

flat 160
global and local 167
Java Transaction API 169
Java Transaction Service 160
management 159

VisiConnect 265
manager 11

VisiTransact 160
Mandatory attribute 168
nested 160
Never attribute 168
NotSupported attribute 168
properties 160
recovery 161
Required attribute 168
RequiresNew attribute 168
rollback 172
Supports attribute 168
transaction attributes 168
two-phase commit 161, 162
understanding 159

transactions, VisiConnect 265
two-phase commit

best practices 162
completion flag 161
distributed transactions 161
transactions 162
tunneling databases 162
VisiTransact 160
when to use 162

type mapping 120, 154

U
UDDI web services 73
uncompress, iastool command 334
undeploy, iastool command 334
unmanage, iastool command 335
unmanaged objects, Partitions 15
UriMapFile.properties 47, 56, 71

Apache to CORBA connections 70
usage, iastool command 336
UserTransaction interface 87, 169
using

MEJB 27
RMI-IIOP connector in MC4J console 21

V
verify, iastool command 336
VisiBroker

ORB, making available to JBuilder 369
Smart Agent 369

VisiClient 98
about 93
deployment descriptors 94
example 98

VisiClient Container, embedding into existing
application 99

VisiConnect
component managed sign-on 266
connection management 264
description 270
managed sign-on 266
overview 273
Resource Adapter managed sign-on 266
security 266
using 273

VisiConnect Service, overview 273
VisiExchange component 33, 41, 67

W
WAR file 36, 37

containing web services 77
web services 77, 78
WEB-INF directory 37

WAR files, precompiling Java Server Pages 312
web application

WAR file 37
WEB-INF directory 37

Web Application Archive File (WAR file) 36, 37
web component connection, modifying 41
web components 33

and Smart Agent (osagent) 39
clustering 61, 64

Web Container 36
adding environment variables 37
configuration files 36
connecting to JSS 39
ENV variables 37
JavaServer Pages 36
server.xml 36
servlets 36

web container 11
IIOP configuration 41
IIOP connector 41
server.xml 41

Web module 37

Index 393

web server
Apache 33
connecting to CORBA 67
directory structure 35
.htaccess files 35
IIOP configuration 45, 69
IIOP connector 41

Web Service Deployment Descriptor (WSDD) web
services 77

Web service Providers 74, 75, 76, 78
Web services 73

Apache ANT tool 79
Apache Axis 74, 75
Apache Axis Admin tool 80
Apache Axis samples 79
architecture 73
Axis Toolkit libraries 78
creating a WAR 78
deploy.wssd file 75
EJB provider 76, 78
examples 78, 79
Java2WSDL tool 80
overview 73
Partitions 74
provider examples 78
Providers 77
providers 75, 76
RPC provider 75
server-config.wsdd file 78
Service Broker 73
Service Providers 73
service providers 74, 75
Service Requestor 73

SOAP 73, 77
stateless session bean 74
tools 79
UDDI 73
WAR file 77
WSDD 77
WSDL2Java tool 80
XML 75, 77
xml 73

Web Services pack 33, 41, 67
Web Services, server-config.wsdd file 77
web-borland.xml 36, 37
WebClusters.properties file 46, 55, 70
WebClusters.properties, Apache to CORBA

connections 70
webcontainer_id attribute 70
WEB-INF directory 37
web.xml 37
Windows 2000, IIS/IIOP redirector configuration 52
Windows 2003, IIS/IIOP redirector configuration 52
Windows XP, IIS/IIOP redirector configuration 52
World Wide Web, Borland updated software 5
writing, MEJB client 27
WSDL2Java tool, web services 80

X
XML

DTD 95, 96
VisiClient 94

grammar 95
Web services 77
web services 73, 75

394 AppServer Developer ’s Guide

	Developer’s Guide
	Contents
	Ch 1: Introduction to Borland AppServer
	AppServer features
	Borland AppServer Documentation
	Accessing AppServer online help topics in the�standalone Help�Viewer
	Accessing AppServer online help topics from�within�a�AppServer GUI tool

	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Ch 2: Borland AppServer overview and architecture
	AppServer architecture overview
	AppServer services overview
	Web Server
	JMS
	Smart Agent
	2PC Transaction Service

	The Partition and its services
	Connector Service
	EJB Container
	JDataStore Server
	Lifecycle Interceptor Manager
	Naming Service
	Session Storage Service
	Transaction Manager
	Web Container

	Borland AppServer and J2EE APIs
	JDBC
	Java Mail
	JTA
	JAXP
	JNDI
	RMI-IIOP
	Other Technologies
	Optimizeit Profiler and Optimizeit ServerTrace

	Ch 3: Partitions
	Partitions Overview
	Creating Partitions
	Running Partitions
	Running unmanaged Partitions
	Running managed Partitions
	Running Partitions with Optimizeit Profiler or ServerTrace
	Partition logging

	Configuring Partitions
	Application archives
	Working with Partition services
	Partition handling of services
	Configuring individual services
	Configuring VisiNaming Service Clusters for�AppServer

	Gathering Statistics
	Security management and policies
	Classloading policies
	Partition Lifecycle Interceptors

	JMX support in Partitions
	Configuring the JMX Agent
	Partition monitoring
	Using the RMI-IIOP connector in MC4J console
	Configuring the RMI-IIOP connector
	Creating a secure JMX client

	Switching between JDK 1.5 and MX4J JMX agents
	Partition level properties

	Partition MBeans
	Deploying custom MBeans
	Using Management EJB (MEJB)
	Deploying the MEJB
	Writing an MEJB client
	Event notification with MEJB
	Running multiple partitions with MEJB

	Locating the JMX agent

	Thread pools
	Default thread pool
	Auxiliary thread pool

	Clustering J2EE Applications with Borland AppServer 6.6

	Ch 4: Web components
	Apache web server implementation
	Apache configuration
	Apache configuration syntax
	Running Apache web server on a privileged port
	Using the .htaccess files
	Apache directory structure

	Borland web container implementation
	Servlets and JavaServer Pages
	Typical web application development process
	Web application archive (WAR) file
	Borland-specific DTD
	Adding ENV variables for the web container

	Microsoft Internet Information Services (IIS) web server
	IIS/IIOP redirector directory structure

	Smart Agent implementation
	Connecting an Apache web server to a Borland web container
	Connecting Borland web containers to Java Session Service

	Ch 5: Web server to web container connectivity
	Apache web server to Borland web container connectivity
	Modifying the Borland web container IIOP configuration
	Modifying the IIOP configuration in Apache
	Additional Apache IIOP directives

	Apache IIOP connector configuration
	Adding new clusters
	Adding new web applications

	Large data transfer
	Downloading large data
	Implementing chunked download
	Enabling chunked download
	Known content length versus unknown
	Chunked download with known content length
	Chunked download with unknown content length
	Browsers supporting only the HTTP 1.0 protocol
	Implementing non-chunked download

	Uploading large data
	Implementing chunked upload
	Enabling chunked upload
	Changing the upload buffer size
	Known content length versus unknown
	Chunked upload with known content length
	Chunked upload with unknown content length
	Implementing non-chunked upload

	IIS web server to Borland web container connectivity
	Modifying the IIOP configuration in the Borland web container
	Microsoft Internet Information Services (IIS) server-specific IIOP configuration
	How to Configure your Windows 2003/XP/2000 system on which IIS is running

	IIS/IIOP redirector configuration
	Adding new clusters
	Adding new web applications

	Ch 6: Java Session Service (JSS) configuration
	Session management with JSS
	Managing and configuring the JSS
	Configuring the JSS Partition service

	Ch 7: Clustering web components
	Stateless and stateful connection services
	The Borland IIOP connector
	Load balancing support
	OSAgent based load balancing
	Corbaloc based load balancing

	Fault tolerance (failover)
	Smart session handling

	Setting up your web container with JSS
	Modifying a Borland web container for failover
	Session storage implementation
	Programmatic implementation
	Automatic implementation

	Using HTTP sessions

	Ch 8: Apache web server to CORBA server connectivity
	Web-enabling your CORBA server
	Determining the urls for your CORBA methods
	Implementing the ReqProcessor IDL in your CORBA server
	The process() method

	Configuring your Apache web server to invoke a CORBA server
	Apache IIOP configuration
	Adding new CORBA servers (clusters)
	Mapping URIs to defined clusters

	Ch 9: Borland AppServer Web Services
	Web Services Overview
	Web Services Architecture

	Web Services and Partitions
	Web Service providers
	Specifying web service information in a deploy.wsdd file
	Java:RPC provider
	Java:EJB provider

	How Borland Web Services work
	Web Service Deployment Descriptors
	Creating a server-config.wsdd file
	Viewing and Editing WSDD Properties

	Packaging Web Service Application Archives
	Borland Web Services examples
	Using the Web Service provider examples
	Steps to build, deploy, and run the examples

	Apache Axis Web Service samples

	Tools Overview
	Apache ANT tool
	Java2WSDL tool
	WSDL2Java tool
	Axis Admin tool

	Ch 10: Writing enterprise bean clients
	Client view of an enterprise bean
	Initializing the client
	Locating the home interface
	Obtaining the remote interface
	Session beans
	Entity beans
	Find methods and primary key class
	Create and remove methods

	Invoking methods
	Removing bean instances
	Using a bean's handle

	Managing transactions
	Getting information about an enterprise bean
	Support for JNDI
	EJB to CORBA mapping
	Mapping for distribution
	Mapping for naming
	Mapping for transaction
	Mapping for security

	Ch 11: The VisiClient Container
	Application Client architecture
	Packaging and deployment
	Benefits of the VisiClient Container

	Document Type Definitions (DTDs)
	Example XML using the DTD

	Support of references and links
	Using the VisiClient Container
	VisiClient Container usage example
	Running a J2EE client application on machines not running AppServer

	Embedding VisiClient Container functionality into an existing application
	Use of Manifest files
	Example of a Manifest file

	Exception handling
	Using resource-reference factory types
	Other features
	Using the Client Verify tool

	Ch 12: Caching of Stateful Session Beans
	Passivating Session Beans
	Simple Passivation
	Aggressive Passivation

	Sessions in secondary storage
	Setting the keep alive timeout in Containers
	Setting the keep alive timeout for a particular session bean

	Ch 13: Entity Beans and CMP 1.1 in Borland AppServer
	Entity Beans
	Container-managed persistence and Relationships
	Implementing an entity bean
	Packaging Requirements
	Entity Bean Primary Keys
	Generating primary keys from a user class
	Generating primary keys from a custom class
	Support for composite keys

	Reentrancy

	Container-Managed Persistence in AppServer
	AppServer CMP engine's CMP 1.1 implementation
	Providing CMP metadata to the Container
	Constructing finder methods
	Constructing the where clause
	Parameter substitution
	Compound parameters
	Entity beans as parameters
	Specifying relationships between entities
	Container-managed field names

	Setting Properties
	Using the Deployment Descriptor Editor
	J2EE 1.2 Entity Bean using BMP or CMP 1.1

	Container-managed data access support
	Using SQL keywords
	Using null values
	Establishing a database connection
	Container-created tables
	Mapping Java types to SQL types

	Automatic table mapping

	Ch 14: Entity Beans and Table Mapping for CMP 2.x
	Entity Beans
	Container-managed persistence and Relationships
	Packaging Requirements
	A note on reentrancy

	Container-Managed Persistence in AppServer
	About the Persistence Manager
	Borland CMP engine's CMP 2.x implementation
	Optimistic Concurrency Behavior
	Pessimistic Behavior
	Optimistic Concurrency

	Persistence Schema
	Specifying tables and datasources
	Basic Mapping of CMP fields to columns
	Mapping one field to multiple columns
	Mapping CMP fields to multiple tables
	Specifying relationships between tables

	Using cascade delete and database cascade delete
	Database cascade delete support

	Ch 15: Using Borland AppServer Properties for CMP 2.x
	Setting Properties
	Using the Deployment Descriptor Editor
	The EJB Designer
	J2EE 1.3 and 1.4 Entity Bean

	Setting CMP 2.x Properties
	Editing Entity properties
	Editing Table and Column properties
	Entity Properties
	Table Properties
	Column Properties
	Security Properties

	Ch 16: EJB-QL and Data Access Support
	Selecting a CMP Field or Collection of CMP Fields
	Selecting a ResultSet

	Aggregate Functions in EJB-QL
	Data Type Returns for Aggregate Functions

	Support for ORDER BY
	Support for GROUP BY
	Sub-Queries
	Dynamic Queries
	Overriding SQL generated from EJB-QL by the CMP engine
	Container-managed data access support
	Support for Oracle Large Objects (LOBs)
	Container-created tables

	Ch 17: Generating Entity Bean Primary Keys
	Generating primary keys from a user class
	Generating primary keys from a custom class
	Implementing primary key generation by the CMP engine
	Oracle Sequences: using getPrimaryKeyBeforeInsertSql
	SQL Server: using getPrimaryKeyAfterInsertSql and ignoreOnInsert
	JDataStore JDBC3: using useGetGeneratedKeys
	Automatic primary key generation using named sequence tables
	Key cache size

	Ch 18: Transaction management
	Understanding transactions
	Characteristics of transactions
	Transaction support

	Transaction manager services
	Distributed transactions and two-phase commit
	When to use two-phase commit transactions
	Using multiple JDBC connections for access to multiple database resources from a single vendor in...
	Using multiple JDBC connections to the same database resource in the same transaction
	Using multiple disparate resources in a single transaction

	EJBs and 2PC transactions
	Example runtime scenarios

	Declarative transaction management in Enterprise JavaBeans
	Understanding bean-managed and container-managed transactions
	Local and Global transactions
	Transaction attributes

	Programmatic transaction management using JTA APIs
	JDBC API Modifications
	Modifications to the behavior of the JDBC API
	Overridden JDBC methods
	Java.sql.Connection.commit()
	Java.sql.Connection.rollback()
	Java.sql.Connection.close()
	Java.sql.Connection.setAutoCommit(boolean)

	Handling of EJB exceptions
	System-level exceptions
	Application-level exceptions
	Handling application exceptions
	Transaction rollback
	Options for continuing a transaction

	Ch 19: Message-Driven Beans and JMS
	JMS and EJB
	EJB 2.0 Message-Driven Bean (MDB)
	EJB 2.1 MDB

	Client View of an MDB
	MDB Configuration
	Connecting to a JMS Server from EJB 2.0 MDBs
	Connecting to message source from EJB 2.1 MDBs
	Changes to ejb-jar.xml
	Changes to ejb-borland.xml

	Clustering of MDBs
	Error Recovery
	Rebinding EJB 2.0 and EJB 2.1 MDBs configured with a JMS provider message source
	Redelivered messages for EJB 2.0 and EJB 2.1 MDBs configured with a JMS provider message source

	MDBs and Transactions

	Ch 20: Connecting to Resources with Borland AppServer: using the Definitions Archive (DAR)
	JNDI Definitions Module
	Migrating to DARs from previous versions of Borland AppServer

	Creating and Deploying a DAR
	Disabling and Enabling a Deployed DAR
	Packaging DAR Modules in an Application EAR

	Ch 21: Using JDBC
	Configuring JDBC Datasources
	Deploying Driver Libraries

	Defining the Connection Pool Properties for a JDBC Datasource
	Getting debug output
	Descriptions of AppServer's Pooled Connection States
	Support for older JDBC 1.x drivers
	Advanced Topics for Defining JDBC Datasources
	Connecting to JDBC Resources from J2EE Application Components

	Ch 22: Using JMS
	JMS 1.1 Common APIs
	Configuring JMS Connection Factories and Destinations
	Defining Connection Pool Properties for JMS Connection Factories
	Defining Individual JMS Connection Factory Properties
	Obtaining JMS Connection Factories and Destinations in J2EE Application Components
	J2EE 1.2 and J2EE 1.3
	J2EE 1.4

	JMS and Transactions
	Enabling the JMS services security
	Advanced Concepts for Configuring JMS Connection Factories and Destinations

	Ch 23: JMS provider pluggability
	Runtime pluggability
	Configuring JMS administered objects (connection factories, queues and topics)
	Setting Admin Objects Using Borland Deployment Descriptor

	Service Management for JMS Providers
	Tibco EMS 4.2
	Added value for Tibco
	Configuring Admin Objects for Tibco
	Auto Queue Creation Feature in Tibco
	Tibco Admin Console
	Configuring clients for fault tolerant Tibco connections
	Enabling Security for Tibco
	Disabling security for Tibco

	OpenJMS
	Configuring JNDI objects for OpenJMS
	Connection Modes in OpenJMS
	Changing the Datasource for OpenJMS
	Creating Tables for OpenJMS
	Configuring Datasource to Achieve 2PC Optimization
	Configuring Security with OpenJMS
	Specifying Partition Level Properties for OpenJMS
	OpenJMS Topologies
	Using Message Driven Beans (MDB) with OpenJMS

	Other JMS providers

	Ch 24: Integrating SonicMQ into Borland AppServer
	Installing SonicMQ
	Configuring SonicMQ Administered Objects in AppServer
	Resolving SonicMQ library modules in the AppServer environment
	Configuring Automatic Queue Creation for SonicMQ Queues deployed to AppServer

	Ch 25: Integrating WebSphereMQ into Borland AppServer (BAS)
	Supported Versions
	WebSphereMQ Configuration
	WebSphereMQ 5.3
	WebSphereMQ 6.0

	Configuring Admin Objects with WebSphereMQ
	Locating WebSphereMQ Library modules at runtime
	WebSphereMQ 6.0

	Ch 26: Using JACC
	JACC Contracts
	Provider Configuration Subcontract
	Policy Configuration Subcontract
	Policy Decision and Enforcement Subcontract

	How the JACC-based authorization works
	Configuring JACC provider in Borland AppServer
	Configuring a JACC provider using AppServer Management Console
	Configuring a JACC provider through the configuration file
	Enabling/Disabling the JACC provider
	Configuring external JACC providers

	Ch 27: Using ADLoginModule in BAS
	How ADLoginModule works
	User Principal Name
	Authentication

	Configuring ADLoginModule
	Detailed Configuration Options

	Ch 28: Using JAXR
	Using JAXR in BAS
	System Property
	JAXR Connection Properties
	BAS JAXR Example code

	Ch 29: Using the Scheduler Service
	Configuring the Scheduler Service
	Using JDataStore to persist scheduler events
	Configuring other databases to persist scheduler events
	Setting up for 2PC Optimization
	Partition Service properties for Scheduler Service
	Quartz properties used in AppServer
	Clustering support

	Ch 30: Implementing Partition Interceptors
	Defining the Interceptor
	Creating the Interceptor Class
	Creating the JAR file
	Deploying the Interceptor

	Ch 31: VisiConnect overview
	J2EE Connector Architecture
	Components
	System Contracts
	Connection Management
	Transaction Management
	One-Phase Commit Optimization

	Security Management
	Component-Managed Sign-on
	Container-Managed Sign-on
	EIS-Managed Sign-on
	Authentication Mechanisms
	Security Map
	Security Policy Processing

	Common Client Interface (CCI)
	Packaging and Deployment
	VisiConnect Features
	VisiConnect Partition Service
	Additional Classloading Support
	Secure Password Credential Storage
	Connection Leak Detection
	Security Policy Processing of ra.xml Specifications

	Resource Adapters

	Ch 32: Using VisiConnect
	VisiConnect service
	Service overview

	Connection management
	Configuring connection properties

	Security management with the Security Map
	Authorization domain
	Default roles
	Generating a resource vault

	Resource Adapter overview
	Development overview
	Editing existing Resource Adapters

	Resource Adapter Packaging

	Deployment Descriptors for the Resource Adapter
	Configuring ra.xml
	Configuring the transaction level type

	Configuring ra-borland.xml
	Changes to the Deployment Descriptors for Connectors 1.5

	Resource Adapter Classloader Considerations
	Connection Factories and Connections
	Message Listeners
	Correcting ClassCastExceptions

	Developing the Resource Adapter
	Connection management
	Transaction management
	Security management
	Packaging and deployment

	Deploying the Resource Adapter
	Application development overview
	Developing application components
	Common Client Interface (CCI)
	Managed application scenario
	Non-managed application scenario
	Code excerpts—programming to the CCI

	Deployment Descriptors for Application Components
	EJB 2.x example
	EJB 1.1 example

	Other Considerations
	Working with Poorly Implemented Resource Adapters
	Examples of Poorly Implemented Resource Adapters
	Working with a Poor Resource Adapter Implementation

	Ch 33: Borland AppServer Ant tasks and running AppServer examples
	General syntax and usage
	Name-value pair transformation
	Name-only argument transformation
	Multiple File Arguments

	Syntax and usage for iastool
	Omitting attributes
	Examples of iastool Ant tasks
	deploy
	merge
	ping
	restart

	Syntax and usage for java2iiop
	Example of java2iiop Ant task

	Syntax and usage for idl2java
	Example of idl2java Ant task

	Syntax and usage for appclient
	Building and running the Borland AppServer examples
	Deploying the example
	Running the example
	Undeploying the example
	Troubleshooting

	Ch 34: iastool command-line utility
	Using the iastool command-line tools
	compilejsp
	compress
	deploy
	dumpstack
	genclient
	gendeployable
	genstubs
	info
	kill
	listpartitions
	listhubs
	listservices
	manage
	merge
	migrate
	newconfig
	patch
	ping
	pservice
	removestubs
	restart
	setmain
	start
	stop
	uncompress
	undeploy
	unmanage
	usage
	verify

	Executing iastool command-line tools from a script file
	Piping a file to the iastool utility
	Passing a file to the iastool utility

	Ch 35: Partition XML reference
	<partition> element
	<jmx> element
	<mbean.server> element
	<mlet.service> element
	<http.adaptor> element
	<xslt.processor> element
	<rmi-iiop.adaptor> element

	<statistics.agent> element
	<security> element
	<container> element
	<user.orb> element
	<management.orb> element
	<shutdown> element
	<services> element
	<service> element
	<properties> element
	<archives> element
	<archive> element

	Ch 36: EJB, JSS, and JTS Properties
	EJB Container-level Properties
	EJB Customization Properties: Deployment Descriptor level
	Complete Index of EJB Properties
	Properties common for any kind of EJB
	Entity Bean Properties (applicable to all types of entities—BMP, CMP 1.1 and CMP 2)
	Message Driven Bean Properties
	Stateful Session Bean Properties
	EJB Security Properties

	Java Session Service (JSS) Properties
	Partition Transaction Service (Transaction Manager)

	Ch 37: Using LifeRay Portal 3.6.0 with AppServer 6.6
	Using Other Databases
	Deploying Portlet or J2EE modules to LifeRay module

	Ch 38: Integrating Borland AppServer 6.6 with JBuilder 2006
	Installing the Borland AppServer 6.6 plug-in
	Configuring JBuilder 2006 for Borland AppServer 6.6
	Displaying the Borland Management Console in JBuilder
	VisiBroker development with JBuilder
	Using the JBuilder Deployment Descriptor Editor to develop J2EE 1.4 applications
	Message Destinations page
	Message Destination Reference page
	Message-Driven Bean page
	Resource Environment References page
	Admin Object and Admin Object Properties page
	Resource Adapter page
	BES Connection Definition page

	Creating a run configuration for Borland AppServer 6.6 targeted projects
	Changing the management port

	Launching the partition in JBuilder 2006
	Deploying
	Remote debugging
	Preparing to remote debug partitions that are not managed in JBuilder
	Preparing to remote debug partitions with JBuilder
	Remote debugging from JBuilder

	Index
	Symbols – C
	D
	E
	F – I
	J
	K – M
	N – P
	R
	S – T
	U – W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-BoldObl
 /HelveticaInserat-Roman
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /Mono-NewBold
 /Mono-NewBoldItalic
 /Mono-NewItalic
 /Mono-NewRoman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

