
Borland
AppServer™ 6.7

Development Plug-in
for Eclipse Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800

Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of applicable

patents. The furnishing of this document does not give you any license to these patents.

Copyright 1999–2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States

and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

BAS67WTPGuide
December 2006

2 AppServer Plug-In for Ecl ipse Guide

i

Chapter 1
Introduction to Borland AppServer 1

AppServer features 2
Borland AppServer Documentation 2

Accessing AppServer online help topics. 3
Accessing AppServer online help topics

from within a AppServer GUI tool 3
Documentation conventions 3

Platform conventions 3
Contacting Borland support 4

Online resources. 4
World Wide Web 4
Borland newsgroups 4

Chapter 2
Installing the Borland AppServer
Development Plug-in 5

Before you Begin 5
Installing the BAS Development Plug-in 6

Chapter 3
Overview 7
Introduction . 7
Understanding the User Interface. 8

Project Explorer View 9
Understanding the Project Structure 9

DDEditor View 9
Deployment Descriptor Outline Tree View 10

Chapter 4
Working with Projects 11
Creating Projects 11
Validating Projects 11
Exporting Projects 12
Reloading Projects 12
Saving Projects . 12
Fixing Projects . 12

Chapter 5
EJB Modelling 13
Understanding the Project Structure 13
 . 14
Working with EJB Projects 14

Creating EJB Projects 14
Creating a New EJB Project 14
Creating an EJB Project Using Existing Source

Code and Deployment Descriptor Files 14
Working with Beans 15

Creating Session Beans 15
Creating Entity Beans 16
Creating Message Beans 17
Renaming Beans 18
Deleting Beans 18
Building Beans. 18
Working with Container-managed Relationships . 18

Creating a relationship 18
Defining CMR field for a bean 18

Configuring Table Reference 19
Creating User-defined Business Methods 19
Updating the Interface Type for Entity and Session

Beans . 20
Updating the Session Type for Session Beans . . 20
Updating the Persistence Type for Entity Beans . 20

Modelling Bean Artifacts 21
Understanding Artifacts. 21

Entity Bean Artifacts. 21
Session Bean Artifacts 26
Message Bean Artifacts 30

Creating Instances of Artifacts 33
Renaming Instances of Artifacts 33
Deleting Artifacts 34

Chapter 6
Web Modelling 35
Understanding the Project Structure. 35
Working with Web Projects 35

Creating Web Projects 35
Creating a New Web Project 35
Creating a Web Project Using Existing Source

Code and Deployment Descriptor Files . . . 36
Working with Servlets 37

Creating Servlets 37
Adding Browser JSP File 37
Renaming Servlets 38
Deleting Servlets 38

Modelling Web Artifacts 38
Understanding Artifacts. 38
Creating Instances of Artifacts 41
Renaming Instances of Artifacts 41
Deleting Artifacts 41

Chapter 7
Configuring the Borland AppServer
Development Plug-in in Eclipse 43

Adding Borland AppServer as an Installed Server
Runtime Environment 43

Defining a New Server in Eclipse 44
Starting and Stopping Local Borland AppServer in

Eclipse . 44

Chapter 8
EAR Modelling 45
Working with EAR Projects 45

Creating EAR Projects 45
Adding J2EE Module Dependencies 45
Modelling EAR Artifacts 46

Understanding Artifacts. 46
Creating Instances of Artifacts 48
Renaming Instances of Artifacts 48
Deleting Artifacts 48

Chapter 9
Application Client Modelling 49
Working with Application Client Projects. 49

Creating Client Projects 49

Contents

ii

Creating a Client Project Using Existing Source
Code and Deployment Descriptor Files . . . 50

Modelling Application Client Artifacts. 51
Understanding Artifacts 51
Creating Instances of Artifacts 53
Renaming Instances of Artifacts 53
Deleting Entity Beans 54
Deleting Artifacts 54

Chapter 10
Deploying Borland AppServer Projects
from Eclipse 55

Deploying Projects to Borland AppServer 55
Configuring Deployments Settings 55
Deploying Projects to Borland AppServer 56

Chapter 11
Debbuging in WTP 57
Setting Up Client Debugging in Eclipse 57
Running the Client in Debug Mode 57

 1 : Int roduct ion to Bor land AppServer 1

Introduction to Borland AppServer
Borland AppServer (AppServer) is a set of services and tools that enable you to build,
deploy, and manage distributed enterprise applications in your corporate environment.

The AppServer is a leading implementation of the J2EE 1.4 standard, and supports the
latest industry standards such as EJB 2.1, JMS 1.1, Servlet 2.4, JSP 2.0, CORBA 2.6,
XML, and SOAP. Borland provides two versions of AppServer, which include leading
enterprise messaging solutions for Java Messaging Service (JMS) management (Tibco
and OpenJMS). You can choose the degree of functionality and services you need in
AppServer, and if your needs change, it is simple to upgrade your license.

The AppServer allows you to securely deploy and manage all aspects of your
distributed Java and CORBA applications that implement the J2EE 1.4 platform
standard.

With AppServer, the number of server instances per installation is unlimited, so the
maximum of concurrent users is unlimited.

AppServer includes:

– Implementation of J2EE 1.4.

– Apache Web Server version 2.2.3

– Borland Security, which provides a framework for securing AppServer.

– Single-point management of leading JMS management solutions included with
AppServer (Tibco, and OpenJMS).

– Strong management tools for distributed components, including applications
developed outside of AppServer.

2 AppServer Plug-In for Ecl ipse Guide

Borland AppServer Documentat ion

AppServer features
AppServer offers the following features:

– Support for BAS platforms (please refer to http://support.borland.com/
kbcategory.jspa?categoryID=389 for a list of the platforms supported for AppServer).

– Full support for clustered topologies.

– Seamless integration with the VisiBroker ORB infrastructure.

– Integration with the Borland JBuilder integrated development environment.

– Enhanced integration with other Borland products including Borland Optimizeit
Profiler and ServerTrace.

– AppServer allows existing applications to be exposed as Web Services and
integrated with new applications or additional Web Services. Borland Web Services
support is based on Apache Axis 1.2 technology, the next-generation Apache SOAP
server that supports SOAP 1.2.

Borland AppServer Documentation
The AppServer documentation set includes the following:

– Borland AppServer Installation Guide—describes how to install AppServer on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

– Borland AppServer Developer's Guide—provides detailed information about
packaging, deployment, and management of distributed object-based applications in
their operational environment.

– Borland Management Console User's Guide—provides information about using the
Borland Management Console GUI.

– Borland Security Guide—describes Borland's framework for securing AppServer,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

– Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), and the
Interface Repository.

– Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

The documentation is typically accessed through the Help Viewer installed with your
AppServer product. You can choose to view help from the standalone Help Viewer or
from within a AppServer GUI tool. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all AppServer books and reference documentation, a
thorough index, and a comprehensive search page.

The PDF books, Borland AppServer Developer's Guide and Borland Management
Console User’s Guide are available online at
http://info.borland.com/techpubs/appserver.

http://support.borland.com/kbcategory.jspa?categoryID=389
http://support.borland.com/kbcategory.jspa?categoryID=389
http://info.borland.com/techpubs/appserver

 1: In troduct ion to Bor land AppServer 3

Documentat ion convent ions

Accessing AppServer online help topics

To access the online help, use one of the following methods:

Windows

Choose Start|Programs|Borland Deployment Platform|Help Topics

or, launch the Web browser and open <AppServer_Home>/doc/index.html.

UNIX

Launch a Web browser and open <AppServer_Home>/doc/index.html.

Accessing AppServer online help topics from within a AppServer
GUI tool

To access the online help from within a AppServer GUI tool, use one of the following
methods:

– From within the Borland Management Console, choose Help|Help Topics

– From within the Borland Deployment Descriptor Editor (DDEditor), choose Help|Help
Topics

Documentation conventions
The documentation for AppServer uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The AppServer documentation uses the following symbols to indicate platform-specific
information:

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.

| Two mutually exclusive choices.

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

4 AppServer Plug-In for Ecl ipse Guide

Contact ing Bor land support

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

– Name

– Company and site ID

– Telephone number

– Your Access ID number (U.S.A. only)

– Operating system and version

– Borland product name and version

– Any patches or service packs applied

– Client language and version (if applicable)

– Database and version (if applicable)

– Detailed description and history of the problem

– Any log files which indicate the problem

– Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web

Check http://www.borland.com regularly. The AppServer Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

– http://www.borland.com/downloads/download_appserver.html (AppServer software
and other files)

– http://support.borland.com (AppServer FAQs)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the AppServer.
Visit http://www.borland.com/newsgroups for information about joining user-supported
newsgroups for Enterprise Server and other Borland products.

Note

These newsgroups are maintained by users and are not official Borland sites.

World Wide Web: http://www.borland.com

Online Support: http://support.borland.com (access ID required)

http://www.borland.com
http://support.borland.com
http://support.borland.com
http://www.borland.com
http://www.borland.com/downloads/download_appserver.html
http://support.borland.com
http://www.borland.com/newsgroups

 2: Instal l ing the Borland AppServer Development Plug- in 5

Installing the Borland AppServer
Development Plug-in
This chapter explains how to install the Borland AppServer (BAS) development plug-in
for Eclipse.

Before you Begin
Before you install the Borland AppServer development plug-in for Eclipse, ensure that
you have the following installed:

– Borland Application Server

– Eclipse 3.2 (http://download.eclipse.org/webtools/downloads/drops/R1.5/R-1.5.0-
200606281455/)

– WTP 1.5 (http://download.eclipse.org/webtools/downloads/drops/R1.5/R-1.5.0-
200606281455/)

– XDoclet 1.2.3 (http://sourceforge.net/project/showfiles.php?group_id=31602).
Download the file named xdoclet-bin-1.2.3.zip.

– JDK 5.0

http://download.eclipse.org/webtools/downloads/drops/R1.5/R-1.5.0-200606281455/
http://download.eclipse.org/webtools/downloads/drops/R1.5/R-1.5.0-200606281455/

6 AppServer Plug-In for Ecl ipse Guide

Instal l ing the BAS Development Plug- in

Installing the BAS Development Plug-in

To install the Borland AppServer development plug-in for Eclipse:

1 Save your project and exit Eclipse.

2 From the <APPSERVER_HOME>/etc/eclipse directory, copy the following folders:

a com.borland.bas.jst.server

b com.borland.enterprise.ui

c com.borland.enterprise.util

d com.borland.visibroker.sdk.core

3 Paste these folders to the <ECLIPSE_HOME>/plugins folder.

4 Start Eclipse.

Caution

if the system displays the Error in Loading Class and Dependency File dialog box
after you start Eclipse, delete the .bundledata.<x> file from <ECLIPSE_HOME>\
configuration\org.eclipse.osgi, where <x> is the version number of the bundledata
file.

Note

You must ensure that you enable the XDoclet builder and set the XDoclet
preferences correctly in Eclipse. To set XDoclet Runtime preferences in Eclipse,
select Windows|Preferences and click XDoclet.

 3: Overview 7

Overview
This chapter provides an overview about the Borland AppServer development plug-in
for Eclipse.

Introduction
The Borland AppServer development plug-in for Eclipse enables you to do the
following:

– Add the Borland AppServer as an installed runtime environment in Eclipse, Add the
Borland AppServer as a new server, and start and stop the Borland AppServer in
Eclipse

– Work with EJB projects. For more information on working with EJB projects, see
“Working with EJB Projects”.

– Work with Web projects. For more information on working with Web projects, see
“Working with Web Projects”.

– Work with EAR projects. For more information on working with WAR projects, see
“Working with EAR Projects”.

– Work with Application Client projects. For more information on working with EJB
projects, see “Working with Application Client Projects”.

8 AppServer Plug-In for Ecl ipse Guide

Understanding the User Interface
Borland AppServer development plug-in provides the following views:

– Project Explorer view

– Editor view for the standard deployment descriptor file. The editor view contains the
following:

– Deployment Descriptor editor view.

– Outline tree view.

The screen below describes the Eclipse user interface after you install the Borland
AppServer development plug-in for Eclipse.

 3: Overview 9

Project Explorer View

The Project Explorer view displays various files associated with a project. It also
enables you to validate, deploy, and export the project.

Understanding the Project Structure

EJB Project
The EJB project contains the following:

– META-INF folder. This contains standard and vendor deployment descriptor files.

– ejb-jar.xml

– ejb-borland.xml

– XDoclet’s merge files. These merge files are called by the Borland AppServer
XDoclet Builder to merge custom data to the standard deployement descriptor file
(ejb-jar.xml).

– session-beans.xml

– entity-beans.xml

– message-driven-beans.xml

Note

We recommend that you do not modify these XDoclet merge files.

– Backup directory. Important business logic is often implemented in the abstract bean
class. To prevent losing valuable code when you delete an EJB, the Boroland
AppServer development plug-in backs up the abstract Bean class to the Backup
directory.

Web Project
The Web project contains the following:

– The WebContent\WEB-INF directory. This contains standard and vendor deployment
descriptor files.

– web.xml

– web-borland.xml

DDEditor View

The DDEditor view provides a user-friendly interface that enables you to configure and
edit deployment descriptor artifacts. To activate the DDEditor view, click the DDEditor
tab.

10 AppServer Plug-In for Ecl ipse Guide

Deployment Descriptor Outline Tree View

The Deployment Descriptor Outline Tree view displays the deployment descriptor
navigation tree. To display the Deployment Descriptor Outline Tree view, select
Window|Show view|Outline. This view enables you to to do the following:

– Model various deployment descriptor files.

For information on modelling EJB projects, see “Modelling Bean Artifacts”.

For information on modelling Web projects, see “Modelling Web Artifacts”.

For information on modelling EAR projects, see “Modelling EAR Artifacts”.

For information on modelling Application Clients, see “Modelling Application Client
Artifacts”.

– Validate the Project. For more information on validating projects, see “Validating
Projects”.

– Export the Project. For more information on exporting projects, see “Exporting
Projects”.

– Reload the project. The Borland AppServer development plug-in for Eclipse enables
you to reload the deployment descriptor tree based on the physical deployment
descriptor files.

To reload your project, in the Outline view, right-click on the project and select
Reload.

– Save the project. The Borland AppServer development plug-in for Eclipse enables
you to perform an implicit save operation. This option persists the data in memory to
the disk.

To save your project, in the Outline view, right-click on the project and select Save.

– Fix the Project. The Borland AppServer development plug-in for Eclipse enables you
to fix projects. To fix your project, in the Outline view, right-click on the project and
select Fix Project.

When you select the Fix Project option, the Borland AppServer development plug-in
performs the following tasks:

– Adds Borland AppServer functionality to an imported project.

– Fixes Borland AppServer functionalities for the project. For example, the Borland
AppServer Builder and the Borland AppServer nature.

– Fixed merge file entries for the project.

– Persists the deployment descriptor data in memory to the disk.

– View Borland AppServer development plug-in for Eclipse Help. To view the Borland
AppServer development plug-in for Eclipse help, in the Outline tree view, right-click
on the project node and select Borland AppServer Project Help.

 4: Working wi th Projects 11

Working with Projects
This chapter explains how the Borland AppServer development development plug-in
enables you to create, validate, export, reload, save, and fix projects.

Creating Projects
You can create a new project or create a project using existing source code and
deployment descriptor file.

For information on creating EJB Projects, see “Creating EJB Projects”.

For information on creating Web Projects, see “Creating Web Projects”.

For information on creating EAR Projects, see “Creating EAR Projects”.

For information on creating Application Client Project, see “Creating Client Projects”.

Validating Projects
The Borland AppServer development plug-in for Eclipse enables you to validate the
deployment descriptor files and verify whether the project is ready for deployment. This
menu option validates Borland’s deployment descrioptor files and standard descriptor
files. When you validate a project, the Validation dialog box displays errors or warnings
encountered while validating the project.

To validate your project:

1 In the Project Explorer view, right-click on the project and select Borland|Validate.

Or

In the Outline view, right-click on the project and select Validate.

2 Look at the validation results displayed in the Validation dialog box, and click OK.

12 AppServer Plug-In for Ecl ipse Guide

Exporting Projects
The Borland AppServer development plug-in for Eclipse enables you to export Borland
AppServer’s module as an archive, which include stubs and skeletons.

To export your project:

1 In the Project Explorer view, right-click on the project and select Borland|Export As.

Or

In the Outline view, right-click on the project and select Export.

2 Select the EJB project to export from the EJB Module drop-down list.

3 In the Destination field, enter the complete path and JAR file name for the EJB
module.

4 To include source files in the exported JAR file, select the Export source files check
box.

5 Optional: If you are exporting to an existing JAR file and you do not want to be
warned about overwriting it, select Overwrite existing file.

6 Click Finish.

Reloading Projects
The Borland AppServer development plug-in for Eclipse enables you to reload the
deployment descriptor information and rebuild the entire project based on the physical
deployment descriptor files.

To reload your project, in the Outline view, right-click on the project and select Reload.

Saving Projects
The Borland AppServer development plug-in for Eclipse enables you to perform an
implicit save operation. This option persists the data in memory to the disk.

To save your project, in the Outline view, right-click on the project and select Save.

Fixing Projects
The Borland AppServer development plug-in for Eclipse enables you to fix projects.
When you select the Fix Project option, the Borland AppServer development plug-in
performs the following tasks:

– Fixes Borland AppServer functionalities for the project. For example, the Borland
AppServer Builder and the Borland AppServer nature.

– Fixed merge file entries for the project.

– Persists the deployment descriptor data in memory to the disk.

To fix your project, in the Outline view, right-click on the project and select Fix Project.

 5: EJB Model l ing 13

EJB Modelling
This chapter explains how the Borland AppServer development development plug-in
for Eclipse enables you to work with EJB projects, work with beans, and model EJB
artifacts.

Understanding the Project Structure
The EJB project contains the following:

– META-INF folder. This contains standard and vendor deployment descriptor files.

– ejb-jar.xml

– ejb-borland.xml

– XDoclet’s merge files. These merge files are called by the XDoclet Builder to merge
custom data to the standard deployement descriptor file (ejb-jar.xml).

– session-beans.xml

– entity-beans.xml

– message-driven-beans.xml

– relationship.xml

– assembly-descriptor.xml

Note

We recommend that you do not modify these XDoclet merge files.

– Backup directory. When a user deletes an EJB, the Boroland AppServer
development plug-in will back up the abstract Bean class to the Backup directory.

14 AppServer Plug-In for Ecl ipse Guide

Working with EJB Projects

Creating EJB Projects

You can create a new EJB project or create an EJB project using existing source code
and deployment descriptor file.

Creating a New EJB Project
1 Choose File|New|Project.

The New Project dialog box appears.

2 Select EJB|BAS EJB Project and click Next.

3 In the Project name field, enter a name for this EJB project.

4 Select a Borland AppServer 6.7 runtime target from the Target Runtime drop-down
list. For example, BAS v6.7.

5 Click Finish.

Creating an EJB Project Using Existing Source Code and Deployment
Descriptor Files
1 Choose File|New|Project.

The New Project dialog box appears.

2 Select EJB|BAS EJB Project and click Next.

3 In the Project name field, enter a name for this EJB project.

4 Select BAS v6.7 from the Target Runtime drop-down list.

5 If you want to add this EJB project to an EAR project, check the Add project to an
EAR and select the EAR project name from the EAR Project Name drop-down list or
create a new EAR project by clicking New. For more information on creating an EAR
project, see “Creating EAR Projects”.

6 Click Finish.

7 Copy the existing descriptor files to the <Workspace_Home>\<projectname>\
<ejbModule>\META-INF directory, where <Workspace_Home> is the Eclipse
workspace directory for this project and <projectname> is the name of the project
you specified in step 3, and <ejbModule> is the source directory.

8 Copy the existing source code to the <Workspace_Home>\<projectname>\
<ejbModule> directory, where <Workspace_Home> is the Eclipse workspace
directory for this project, <projectname> is the name of the project you specified in
step 3, and <ejbModule> is the source directory.

9 To reload and build the project, select the project and choose File|Refresh.

10 In the Project Explorer view, double-click on the project you created.

11 In the Project Explorer view, double-click on the deployment descriptor that belongs
to the project.

12 In the Outline view, expand the root node.

13 Right-click on the root node and select Save to ensure that the deployment decriptor
information is saved into the merge file.

 5: EJB Model l ing 15

Working with Beans

Creating Session Beans

1 In the Project Explorer view, double-click the Deployment Descriptor node.

2 To create a new session bean, in the Outline view, right-click on the project name
and select New Session Bean.

3 From the Project drop-down list, select the project that will contain the new session
bean.

4 In the Folder field, enter the folder for the new bean.

5 In the Java package field, enter the package name for the new bean.

Note

By convention, package names should begin with a lowercase letter.

6 In the Class name field, type a name for the enterprise bean.

Note

By convention, class names should begin with an uppercase and you must use the
word Bean as a suffix to the class name. You can use Unicode characters for the
bean name, but Unicode characters are not supported for enterprise bean packages
and classes associated with enterprise beans.

7 Click Next.

8 In the EJB Name field, enter the name of the enterprise bean class.

9 In the JNDI Name field, enter the logical name used by the server to locate an
enterprise bean at runtime.

10 in the Display Name field, enter a short name for the enterprise bean. This is used
by tools.

11 in the Description field, enter a description for the bean.

12 From the State Type drop-down list, select the state type for the new bean. For
more information on updating the state type for the bean, see “Updating the Session
Type for Session Beans”.

13 From the Transaction Type drop-down list, select Container.

14 Click Finish.

16 AppServer Plug-In for Ecl ipse Guide

Creating Entity Beans

1 In the Project Explorer view, double-click the Deployment Descriptor node.

2 In the Outline view, right-click on the project name and select New Entity Bean.

3 From the Project drop-down list, select the project that will contain the new entity
bean.

4 In the Folder field, enter the folder for the new bean.

5 In the Java package field, enter the package name for the new bean.

Note

By convention, package names should begin with a lowercase letter.

6 In the Class name field, type a name for the enterprise bean.

Note

By convention, class names should begin with an uppercase and you must use the
word Bean as a suffix to the class name. You can use Unicode characters for the
bean name, but Unicode characters are not supported for enterprise bean packages
and classes associated with enterprise beans.

7 Click Next.

8 In the EJB Name field, enter the name of the enterprise bean class.

9 In the Schema field, enter a schema name to specify the abstract schema of the
bean.

10 In the Display Name field, enter a short name for the enterprise bean. This name is
used by tools.

11 In the description field, enter a description for the bean.

12 From the CMP Version drop-down list, select 2.x.

13 Select a Usecase for the new bean.

a Import attributes from table specifies that the CMP entity bean attributes will be
imported from a database table.

1 Click Next.

2 To select an available connection definition, click a connection in the Available
Connection Definitions list, and then click Next.

To create a new JDBC connection definition, perform the following:

– Click New.

– In the Connection Parameters window, specify the required JDBC
connection parameters on the Connection parameters page of the New
Connection wizard.

– Select a database manager, a JDBC driver, and specify other connection
details. To specify JDBC connection filters, clear the Disable filter check box
and specify appropriate connection filters.

– Click Finish.

 5: EJB Model l ing 17

b Define new attributes specifies that the CMP entity bean attributes will be user-
defined. Click Next.

1 To create a CMP attribute for the entity bean, click Add.

2 To specify a name for the attribute, click in the Name field and enter a name.

3 To specify a type for the attribute, click in the Type field and enter a type.

4 To make the attribute a key field for the entity bean, select the Primary Key
check box.

5 To specify a table name for the entity bean, enter a name in the Table field.

6 To add more attributes, repeat steps 1 to 4.

14 Click Next.

15 Click Finish.

Creating Message Beans

1 In the Project Explorer view, double-click the Deployment Descriptor node.

2 To create a new message bean, in the Outline view, right-click on the project name
and select New Message Bean.

3 From the Project drop-down list, select the project that will contain the new message
bean.

4 In the Folder field, enter the folder for the new bean.

5 In the Java package field, enter the package name for the new bean.

Note

By convention, package names should begin with a lowercase letter.

6 In the Class name field, type a name for the enterprise bean.

Note

By convention, class names should begin with an uppercase and you must use the
word Bean as a suffix to the class name. You can use Unicode characters for the
bean name, but Unicode characters are not supported for enterprise bean packages
and classes associated with enterprise beans.

7 Click Next.

8 In the EJB Name field, enter the name of the enterprise bean class.

9 In the JNDI Name field, enter the logical name used by the server to locate an
enterprise bean at runtime.

10 in the Display Name field, enter a short name for the enterprise bean. This is used
by tools.

11 in the Description field, enter a description for the bean.

12 From the State Type drop-down list, select the state type for the new bean.

13 From the Transaction Type drop-down list, select Container.

14 Click Finish.

18 AppServer Plug-In for Ecl ipse Guide

Renaming Beans

1 In the Outline view, right-click on the session bean, message bean, or entity bean,
and select Rename.

2 In the New name field, enter the new name for the bean.

3 Click OK.

Deleting Beans

1 In the Outline view, right-click on the session bean, message bean, or entity bean,
and select Delete.

The Delete Artifact dialog box appears.

2 Click Yes.

Building Beans

When you build beans individually, the XDoclet builder is forced to run so that the
updated content in the abstract bean file is exposed to various interfaces and to the
deployment descriptor. To build a bean, right-click on the bean and select Build.

Working with Container-managed Relationships

Creating a relationship
1 Right-click on Relationship and select New Relation.

2 In the Relation name field, enter a name for this relationship.

3 Select the appropriate EJBs in the From EJB and To EJB drop-down lists.

4 Click OK.

Defining CMR field for a bean
1 In the Outline view, expand the Relationships node.

2 Expand the EJB relation you created.

3 Click on the relationship role.

4 In the Name field, enter a name for the CMR field.

5 Select the appropriate CMR Field type from the Type drop-down list.

6 In the Description box, enter a description for the CMR field.

 5: EJB Model l ing 19

Configuring Table Reference
1 In the Outline view, expand the Relationships node.

2 Expand the EJB relation you created.

3 Right-click on the relationship role and select Configure Table Reference. You can
perform the following actions:

a Create a relationship of table reference. To do this:

1 Select the columns of the table on the left.

2 Select the columns of the table on the right.

3 Click Link.

4 Click OK.

b Add cross table. You can use the Add Cross Table button to add an intermediate
table that enables you to relate two unrelated tables. This is often the case for
many-to-many relationships.

1 Select the columns of the table on the left.

2 Click Add Cross table.

3 Select the appropriate table from the Cross table drop-down list.

4 Select the columns of the table on the right.

5 Click Link Cross Table.

6 Click OK.

c Remove Link

1 Select the link from the list.

2 Click Remove Link.

3 Click OK.

d Remove cross table

1 Select cross table link from the list.

2 Click Remove Cross Table.

3 Click OK.

Creating User-defined Business Methods

Note

You can add a new method only to an an EJB that uses Xdoclet to generate source
code.

1 In the Outline view, right-click on the bean and select new Method.

The New Method dialog box appears.

2 Enter the appropriate information and click OK.

20 AppServer Plug-In for Ecl ipse Guide

Updating the Interface Type for Entity and Session Beans

By default, when you create a new session bean, the interface type is set to remote
and when you create an entity bean, the interface type is set to local.

Note

You can update the interface type only if you are using Xdoclet to generate source
code.

To update the interface type for entity and session beans:

1 In the Outline view, right-click on the bean and select Interface Type.

The Change Interface Type dialog box appears.

2 Select the appropriate interface type.

3 Click OK.

Updating the Session Type for Session Beans

By default, when you create a new session bean, the session type is set to Stateless.

To update the session type for session beans:

1 In the Outline view, right-click on the session bean and select Session Type.

The Change Session Type dialog box appears.

2 Select the appropriate session type.

3 Click OK.

Updating the Persistence Type for Entity Beans

By default, when you create a new entity bean, the persistence type is set to Container
(container-managed persistence).

To update the persistence type for entity beans:

1 In the Outline view, right-click on the entity bean and select Persistence Type.

The Change Persistence Type dialog box appears.

2 Select the appropriate persistence type.

3 Click OK.

 5: EJB Model l ing 21

Modelling Bean Artifacts

Understanding Artifacts

Entity Bean Artifacts

EJB Local References
The ejb-local-ref element denotes an EJB reference that can be resolved by the EJB
container locally.

<xsd: element name="ejb-local-ref" type="borl:ejb-local-refType" minOccurs="0"
maxOccurs="unbounded"/>

<complexType name="ejb-local-refType">
<sequence>

<element name="ejb-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string" minOccurs="0"/>

</sequence>
</complexType>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>clerk</ejb-name>
 <bean-home-name>insurance/remote/clerk</bean-home-name>
 <timeout>5</timeout>
 <ejb-local-ref>
 <ejb-ref-name>ejb/insurance/claim</ejb-ref-name>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jms/insurance/ConnectionFactory</res-ref-name>
 <jndi-name>jms/xacf</jndi-name>
 </resource-ref>
 </session>
 <entity>
 <ejb-name>claim</ejb-name>
 <bean-local-home-name>Claim</bean-local-home-name>
 ...
 </entity>
 ...
 </enterprise-beans>
</ejb-jar>

EJB References
This element is used to define EJB references used by the bean. Each EJB reference
contains an ejb-ref-name used by the client application and its associated jndi-name.

<!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>

Example
<ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
</ejb-ref>

22 AppServer Plug-In for Ecl ipse Guide

Message Destination Refs
This element is used to define a message destination reference, such as a JMS Queue
or Topic within the context of an enterprise bean. Each message destination reference
contains an message-destination-ref-name used by the bean and an associated jndi-
name from which the desired object is resolved from a JNDI lookup.

<complexType name="message-destination-refType">
<sequence>

<element name="message-destination-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string"/>

</sequence>
</complexType>

<xsd: element name="message-destination-ref" type="borl:message-destination-
refType" minOccurs="0" maxOccurs="unbounded"/>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 ...
 <message-destination-ref>
 <message-destination-ref-name>jms/StockQueue</message-
destination-ref-name>
 <jndi-name>jms/queues/Queue1</message-destination-type>
 </message-destination-ref>
 ...
 </session>
 ...
 </enterprise-beans>
 </ejb-jar>

Resource Environment Refs
This element is used to define resource environment references used by the bean.
Each resource environment reference contains a res-env-ref-name used by the bean
and its associated jndi-name.

<!ELEMENT resource-env-ref (res-env-ref-name, jndi-name?)>

Example
<resource-env-ref>
 <res-env-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-env-ref>

Resource Reference
This element is used to define resource references used by the bean. Each resource
reference contains an res-ref-name used by the client application and its associated
jndi-name.

<!ELEMENT resource-ref (res-ref-name, jndi-name?)>

Example
<resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-ref>

 5: EJB Model l ing 23

CMP Fields
Basic field mapping is accomplished using the <cmp-field> element. In this element's
child nodes, you specify a field name and a corresponding column to which it maps.
Many users may employ coarse-grained entity beans that implement a Java class to
represent more fine-grained data. A third child node, <cmp-field-map>, defines a field
map between your fine-grained class and its underlying database representation, and
can be used instead of the <column-name> element.

<!ELEMENT cmp-field (field-name, (cmp-field-map* | column-name),property*)>

Example
<cmp-field>
 <field-name>orderNumber</field-name>
 <column-name>ORDER_NUMBER</column-name>
 </cmp-field>

Regenerating CMP Fields

a In the Outline view, select the entity bean node.

b Right-click on the entity bean node, and then select Extract CMP Fields from
Bean Class.

This regenerates CMP fields based on the bean class.

Finders
Use this element to define the finders used by the entity bean. When you construct a
finder method, you are actually constructing an SQL select statement with a where
clause. The select statement includes a clause that states what records or data are to
be found and returned. Under container-managed persistence, you must specify the
terms of the where clause using the child nodes of <finder>.

<!ELEMENT finder (method-signature, where-clause, load-state?)>

Example
<finder>
 <method-signature>findByStudent(Student s)</method-signature>
 <where-clause>SELECT course_dept, course_number FROM
 Enrollment WHERE student = :s[ejb/Student]</where-clause>
 <load-state>False</load-state>
</finder>

Properties
This element is used to specify property values for various resources included in or
referenced by the archive or its components. Each property entry specifies the
property's name, type, and value using the appropriate sub-elements.

<!ELEMENT property (prop-name, prop-type, prop-value)>

Example
<property>
 <prop-name>ejb.cacheCreate</prop-name>
 <prop-type>Boolean</prop-type>
 <prop-value>false</prop-value>
</property>

24 AppServer Plug-In for Ecl ipse Guide

Relationships
To specify relationships between tables, you use the <relationships> element. Within
the <relationships> element, you define an <ejb-relationship-role> containing the role's
source (an entity bean) and a <cmr-field> element containing the relationship. The
descriptor then uses <table-ref> elements to specify relationships between two tables,
a <left-table> and a <right-table>. You must observe the following cardinalities: One
<ejb-relationship-role> must be defined per direction; if you have a bi-directional
relationship, you must define an <ejb-relationship-role> for each bean with each
referencing the other. Only one <table-ref> element is permitted per relationship. If you
define a many-to-many relationship, you must also have the CMP engine create a
cross-table which models a relationship between the left table and the right table. This
is performed using the <cross-table> element.

<!ELEMENT relationships (ejb-relation+)>

Example
<relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>Customer</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>specialInformation</cmr-field-name>
 <table-ref>
 <left-table>
 <table-name>CUSTOMER</table-name>
 <column-list>CUSTOMER_NO</column-list>
 </left-table>
 <right-table>
 <table-name>SPECIAL_INFO</table-name>
 <column-list>CUSTOMER_NO</column-list>
 </right-table>
 </table-ref>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <relationship-role-source>
 <ejb-name>SpecialInfo</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

Tables
Specifies the name of a database table used by a CMP 2.x entity bean to populate its
fields.

<!ELEMENT table (#PCDATA)>

Example
<table>Course</table>

 5: EJB Model l ing 25

Message Destinations
This element is used to define a message destination, such as a JMS Queue or Topic,
that corresponds to a message-destination-link of one or more message-destination-
ref or message-driven elements in the standard descriptor of application component.
Each message destination contains an message-destination-name, that matches the
message-destination-link value, and an associated jndi-name from which the
destination object is resolved from a JNDI lookup.

<element name="message-destination" type="borl:message-destinationType"
minOccurs="0" maxOccurs="unbounded"/>

<complexType name="message-destinationType">
 <sequence>
 <element name="message-destination-name" type="xsd:string"/>
 <element name="jndi-name" type="xsd:string"/>
 </sequence>
</complexType>

Example
<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <message-destination>
 <message-destination-name>myAppQueue</message-destination-name>
 <jndi-name>jms/queues/TibcoQueue1</jndi-name>
 </message-destination>
 ...
 </assembly-descriptor>
</ejb-jar>

Security Roles
Provides the name of a security role and (if applicable) a deployment role used by
modules within the archive.

<!ELEMENT security-role (role-name, deployment-role?)>

Example
<security-role>
 <role-name>administrator</role-name>
 <deployment-role>administrator</deployment-role>
</security-role>

Interface Type
Entity beans can expose their methods with a remote interface or with a local interface.
The remote interface exposes the bean's methods across the network to other, remote
components. The local interface exposes the bean's methods only to local clients; that
is, clients located on the same EJB container.

Note

Deployment Descriptor files are regenerated every time you update the interface type
for the bean.

26 AppServer Plug-In for Ecl ipse Guide

Session Bean Artifacts

EJB Local References
The ejb-local-ref element denotes an EJB reference that can be resolved by the EJB
container locally.

<xsd: element name="ejb-local-ref" type="borl:ejb-local-refType" minOccurs="0"
maxOccurs="unbounded"/>

<complexType name="ejb-local-refType">
<sequence>

<element name="ejb-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string" minOccurs="0"/>

</sequence>
</complexType>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>clerk</ejb-name>
 <bean-home-name>insurance/remote/clerk</bean-home-name>
 <timeout>5</timeout>
 <ejb-local-ref>
 <ejb-ref-name>ejb/insurance/claim</ejb-ref-name>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jms/insurance/ConnectionFactory</res-ref-name>
 <jndi-name>jms/xacf</jndi-name>
 </resource-ref>
 </session>
 <entity>
 <ejb-name>claim</ejb-name>
 <bean-local-home-name>Claim</bean-local-home-name>
 ...
 </entity>
 ...
 </enterprise-beans>
</ejb-jar>

EJB References
This element is used to define EJB references used by the bean. Each EJB reference
contains an ejb-ref-name used by the client application and its associated jndi-name.

<!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>

Example
<ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
</ejb-ref>

 5: EJB Model l ing 27

Message Destination Refs
This element is used to define a message destination reference, such as a JMS Queue
or Topic within the context of an enterprise bean. Each message destination reference
contains an message-destination-ref-name used by the bean and an associated jndi-
name from which the desired object is resolved from a JNDI lookup.

<complexType name="message-destination-refType">
<sequence>

<element name="message-destination-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string"/>

</sequence>
</complexType>

<xsd: element name="message-destination-ref" type="borl:message-destination-
refType" minOccurs="0" maxOccurs="unbounded"/>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 ...
 <message-destination-ref>
 <message-destination-ref-name>jms/StockQueue</message-
destination-ref-name>
 <jndi-name>jms/queues/Queue1</message-destination-type>
 </message-destination-ref>
 ...
 </session>
 ...
 </enterprise-beans>
 </ejb-jar>

Resource Environment Refs
This element is used to define resource environment references used by the bean.
Each resource environment reference contains a res-env-ref-name used by the bean
and its associated jndi-name.

<!ELEMENT resource-env-ref (res-env-ref-name, jndi-name?)>

Example
<resource-env-ref>
 <res-env-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-env-ref>

Resource Reference
This element is used to define resource references used by the bean. Each resource
reference contains an res-ref-name used by the client application and its associated
jndi-name.

<!ELEMENT resource-ref (res-ref-name, jndi-name?)>

Example
<resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-ref>

28 AppServer Plug-In for Ecl ipse Guide

Tables
Specifies the name of a database table used by a CMP 2.x entity bean to populate its
fields.

<!ELEMENT table (#PCDATA)>

Example
<table>Course</table>

Message Destinations
This element is used to define a message destination, such as a JMS Queue or Topic,
that corresponds to a message-destination-link of one or more message-destination-
ref or message-driven elements in the standard descriptor of application component.
Each message destination contains an message-destination-name, that matches the
message-destination-link value, and an associated jndi-name from which the
destination object is resolved from a JNDI lookup.

<element name="message-destination" type="borl:message-destinationType"
minOccurs="0" maxOccurs="unbounded"/>

<complexType name="message-destinationType">
 <sequence>
 <element name="message-destination-name" type="xsd:string"/>
 <element name="jndi-name" type="xsd:string"/>
 </sequence>
</complexType>

Example
<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <message-destination>
 <message-destination-name>myAppQueue</message-destination-name>
 <jndi-name>jms/queues/TibcoQueue1</jndi-name>
 </message-destination>
 ...
 </assembly-descriptor>
</ejb-jar>

Security Roles
Provides the name of a security role and (if applicable) a deployment role used by
modules within the archive.

<!ELEMENT security-role (role-name, deployment-role?)>

Example
<security-role>
 <role-name>administrator</role-name>
 <deployment-role>administrator</deployment-role>

</security-role>

 5: EJB Model l ing 29

Interface Type
Session beans can expose their methods with a remote interface or with a local
interface. The remote interface exposes the bean's methods across the network to
other, remote components. The local interface exposes the bean's methods only to
local clients; that is, clients located on the same EJB container.

Note

Deployment Descriptor files are regenerated every time you update the interface type
for the bean.

Properties
This element is used to specify property values for various resources included in or
referenced by the archive or its components. Each property entry specifies the
property's name, type, and value using the appropriate sub-elements.

<!ELEMENT property (prop-name, prop-type, prop-value)>

Example
<property>
 <prop-name>ejb.security.transportType</prop-name>
 <prop-type>Enumerated</prop-type>
 <prop-value>CLEAR_ONLY</prop-value>

</property>

30 AppServer Plug-In for Ecl ipse Guide

Message Bean Artifacts

EJB Local References
The ejb-local-ref element denotes an EJB reference that can be resolved by the EJB
container locally.

<xsd: element name="ejb-local-ref" type="borl:ejb-local-refType" minOccurs="0"
maxOccurs="unbounded"/>

<complexType name="ejb-local-refType">
<sequence>

<element name="ejb-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string" minOccurs="0"/>

</sequence>
</complexType>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>clerk</ejb-name>
 <bean-home-name>insurance/remote/clerk</bean-home-name>
 <timeout>5</timeout>
 <ejb-local-ref>
 <ejb-ref-name>ejb/insurance/claim</ejb-ref-name>
 </ejb-local-ref>
 <resource-ref>
 <res-ref-name>jms/insurance/ConnectionFactory</res-ref-name>
 <jndi-name>jms/xacf</jndi-name>
 </resource-ref>
 </session>
 <entity>
 <ejb-name>claim</ejb-name>
 <bean-local-home-name>Claim</bean-local-home-name>
 ...
 </entity>
 ...
 </enterprise-beans>
</ejb-jar>

EJB References
This element is used to define EJB references used by the bean. Each EJB reference
contains an ejb-ref-name used by the client application and its associated jndi-name.

<!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>

Example
<ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
</ejb-ref>

 5: EJB Model l ing 31

Message Destination Refs
This element is used to define a message destination reference, such as a JMS Queue
or Topic within the context of an enterprise bean. Each message destination reference
contains an message-destination-ref-name used by the bean and an associated jndi-
name from which the desired object is resolved from a JNDI lookup.

<complexType name="message-destination-refType">
<sequence>

<element name="message-destination-ref-name" type="xsd:string"/>
<element name="jndi-name" type="xsd:string"/>

</sequence>
</complexType>

<xsd: element name="message-destination-ref" type="borl:message-destination-
refType" minOccurs="0" maxOccurs="unbounded"/>

Example
<ejb-jar>
 <enterprise-beans>
 <session>
 ...
 <message-destination-ref>
 <message-destination-ref-name>jms/StockQueue</message-
destination-ref-name>
 <jndi-name>jms/queues/Queue1</message-destination-type>
 </message-destination-ref>
 ...
 </session>
 ...
 </enterprise-beans>
 </ejb-jar>

Resource Environment Refs
This element is used to define resource environment references used by the bean.
Each resource environment reference contains a res-env-ref-name used by the bean
and its associated jndi-name.

<!ELEMENT resource-env-ref (res-env-ref-name, jndi-name?)>

Example
<resource-env-ref>
 <res-env-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-env-ref>

Resource Reference
This element is used to define resource references used by the bean. Each resource
reference contains an res-ref-name used by the client application and its associated
jndi-name.

<!ELEMENT resource-ref (res-ref-name, jndi-name?)>

Example
<resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-ref>

32 AppServer Plug-In for Ecl ipse Guide

Tables
Specifies the name of a database table used by a CMP 2.x entity bean to populate its
fields.

<!ELEMENT table (#PCDATA)>

Example
<table>Course</table>

Message Destinations
This element is used to define a message destination, such as a JMS Queue or Topic,
that corresponds to a message-destination-link of one or more message-destination-
ref or message-driven elements in the standard descriptor of application component.
Each message destination contains an message-destination-name, that matches the
message-destination-link value, and an associated jndi-name from which the
destination object is resolved from a JNDI lookup.

<element name="message-destination" type="borl:message-destinationType"
minOccurs="0" maxOccurs="unbounded"/>

<complexType name="message-destinationType">
 <sequence>
 <element name="message-destination-name" type="xsd:string"/>
 <element name="jndi-name" type="xsd:string"/>
 </sequence>
</complexType>

Example
<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <message-destination>
 <message-destination-name>myAppQueue</message-destination-name>
 <jndi-name>jms/queues/TibcoQueue1</jndi-name>
 </message-destination>
 ...
 </assembly-descriptor>
</ejb-jar>

Security Roles
Provides the name of a security role and (if applicable) a deployment role used by
modules within the archive.

<!ELEMENT security-role (role-name, deployment-role?)>

Example
<security-role>
 <role-name>administrator</role-name>
 <deployment-role>administrator</deployment-role>

</security-role>

 5: EJB Model l ing 33

Properties
This element is used to specify property values for various resources included in or
referenced by the archive or its components. Each property entry specifies the
property's name, type, and value using the appropriate sub-elements.

<!ELEMENT property (prop-name, prop-type, prop-value)>

Example
<property>
 <prop-name>ejb.mdb.maxMessagesPerServerSession</prop-name>
 <prop-type>Integer</prop-type>
 <prop-value>1</prop-value>
</property>

Creating Instances of Artifacts

1 In the Outline view, right-click on the artifact and select New <artifact_name>, where
artifact_name is the name of the artifact you are creating. For example, if you want
to create a new EJB Reference, right-click on EJB Reference and select New EJB
Reference.

A dialog box appears.

2 Enter a name for the new artifact.

3 Click OK.

Renaming Instances of Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
rename. For example, if you want to rename an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Rename. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Rename.

A dialog box appears.

3 Enter the new name.

4 Click OK.

Deleting Entity Beans

1 In the Outline view, right-click on the entity bean and select Delete.

The Delete Artifact dialog box appears.

2 Click Yes.

34 AppServer Plug-In for Ecl ipse Guide

Deleting Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
delete. For example, if you want to delete an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Delete. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Delete.

The Delete Artifact message box appears.

3 Click Yes.

 6: Web Model l ing 35

Web Modelling
This chapter explains how the Borland AppServer development plug-in for Eclipse
enables you to work with Web projects, work with servlets, and model Web artifacts.

Understanding the Project Structure
The Web project contains the following:

– The WebContent\WEB-INF directory. This contains standard and vendor deployment
descriptor files.

– web.xml

– web-borland.xml

Working with Web Projects

Creating Web Projects

You can create a new Web project or create a Web project using existing source code
and deployment descriptor file.

Creating a New Web Project
1 Choose File|New|Project.

The New Project dialog box appears.

2 Select Web|BAS Dynamic Web Project and click Next.

3 In the Project name field, enter a name for this Web project.

4 Select a Borland AppServer 6.7 runtime target from the Target Runtime drop-down
list. For example, BAS v6.7.

5 Click Finish.

36 AppServer Plug-In for Ecl ipse Guide

Creating a Web Project Using Existing Source Code and Deployment
Descriptor Files
1 Choose File|New|Project.

The New Project dialog box appears.

2 Select Web|BAS Dynamic Web Project and click Next.

3 In the Project name field, enter a name for this Web project.

4 Select a Borland AppServer 6.7 runtime target from the Target Runtime drop-down
list. For example, BAS v6.7.

5 Click Finish.

6 Copy the existing descriptor files to the <Workspace_Home>\<projectname>\
WebContent\WEB-INF directory, where <Workspace_Home> is the Eclipse
workspace directory for this project and <projectname> is the name of the project
you specified in step 3.

7 Copy the existing JSP and HTML source to the <Workspace_Home>\
<projectname>\WebContent directory, where <Workspace_Home> is the Eclipse
workspace directory for this project and <projectname> is the name of the project
you specified in step 3.

Copy the existing Java source to the <Workspace_Home>\<projectname>\Src
directory, where <Workspace_Home> is the Eclipse workspace directory for this
project and <projectname> is the name of the project you specified in step 3.

8 To reload and build the project, select the project and choose File|Refresh.

9 In the Project Explorer view, double-click on the project you created.

10 In the Project Explorer view, double-click on the deployment descriptor that belongs
to the project.

11 In the Outline view, expand the root node.

12 Right-click on the root node and select Save to ensure that the deployment decriptor
information is saved into the merge file.

 6: Web Model l ing 37

Working with Servlets

Creating Servlets

1 In the Project Explorer view, double-click the Deployment Descriptor node.

2 In the Outline view, right-click on the project name and select New Servlet.

3 From the Project drop-down list, select the project that will contain the new servlet.

4 In the Folder field, enter the folder where the servlet class will be placed.

5 In the Java package field, enter the package name for the new servlet.

Note

By convention, package names should begin with a lowercase letter.

6 In the Class name field, type the class name for the servlet.

Note

By convention, class names should begin with an uppercase.

7 In the Superclass field, enter the super class for the servlet class.

8 Click Next.

9 Enter the initialization parameters of the servlet as name-value pairs.

10 In the URL Mappings box, enter the URL string to be mapped with the servlet.

11 Click Next.

12 Click Finish.

Adding Browser JSP File

1 In the Project Explorer view, right-click on the WebContent folder and select New|
JSP.

The New Java Server Page window appears with your folder selected

2 In the File name field, enter the file name of the JSP file.

Note

Ensure that you include the JSP extension in the file name.

3 To accept the defaults associated with a new JSP file, click Finish.

To link to a file in the file system and specify path variables, click Advanced.

To use a template file for the initial content of your JSP page, perform steps 4 to 6.

4 Click Next.

The Select JSP Template window appears.

5 Select the Use JSP Template check box, and then select one of the sample
templates.

6 Click Finish.

38 AppServer Plug-In for Ecl ipse Guide

Renaming Servlets

1 In the Outline view, right-click on the servlet and select Rename.

2 In the New name field, enter the new name for the bean.

3 Click OK.

Deleting Servlets

1 In the Outline view, right-click on the servlet and select Delete.

The Delete Artifact dialog box appears.

2 Click Yes.

Modelling Web Artifacts

Understanding Artifacts

EJB References

This element is used to define EJB references used by the web application. Each EJB
reference contains an ejb-ref-name used by the application and its associated jndi-
name.

<!ELEMENT ejb-ref (ejb-ref-name, jndi-name?)>

Example
<ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
</ejb-ref>

Resource Environment Refs

This element is used to map a resource environment reference used by the web
application to a name in JNDI. Each resource environment reference contains a res-
env-ref-name used by the bean and its associated jndi-name.

<!ELEMENT resource-env-ref (res-env-ref-name, jndi-name?)>

Example
<resource-env-ref>
 <res-env-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-env-ref>

 6: Web Model l ing 39

Resource References

This element is used to define resource references used by the web application. Each
resource reference contains an res-ref-name used by the application and its
associated jndi-name.

<!ELEMENT resource-ref (res-ref-name, jndi-name?)>

Example
<resource-ref>
 <res-ref-name>jdbc/CheckingDataSource</res-ref-name>
 <jndi-name>file:///net/machine/datasources/OracleDataSource</jndi-name>
</resource-ref>

Message Destination Refs

This element is used to define a message destination reference, such as a JMS Queue
or Topic. Each message destination reference contains an message-destination-ref-
name used by the web application and an associated jndi-name.

<element name="message-destination-ref" type="borl:message-destination-refType"
minOccurs="0" maxOccurs="unbounded"/>

<complexType name="message-destination-refType">
 <sequence>
 <element name="message-destination-ref-name" type="xsd:string"/>
 <element name="jndi-name" type="xsd:string"/>
 </sequence>
</complexType>

Example
<web-app>
 ...
 <message-destination-ref>
 <message-destination-ref-name>jms/StockQueue</message-destination-
ref-name>
 <jndi-name>jms/queues/Queue1</message-destination-type>
 </message-destination-ref>
 ...
</web-app>

40 AppServer Plug-In for Ecl ipse Guide

Message Destinations

This element is used to define a message destination, such as a JMS Queue or Topic,
that corresponds to message-destination-link of one or more message-destination-ref
elements in the web application. Each message destination contains an message-
destination-name, that matches the message-destination-link value, and an associated
jndi-name.

<element name="message-destination" type="borl:message-destinationType"
minOccurs="0" maxOccurs="unbounded"/>

<complexType name="message-destinationType">
 <sequence>
 <element name="message-destination-name" type="xsd:string"/>
 <element name="jndi-name" type="xsd:string"/>
 </sequence>
</complexType>

Example
<web-app>
 ...
 <message-destination>
 <message-destination-name>myAppQueue</message-destination-name>
 <jndi-name>jms/queues/TibcoQueue1</jndi-name>
 </message-destination>
 ...
</web-app>

Web Deploy Paths

Tomcat's server.xml file can define one or more hosts under one or more engines,
which themselves are under a given service. If you would like specify exactly where to
deploy the web application under the Tomcat container, use this element.

<web-deploy-path> <!ELEMENT web-deploy-path (service, engine, host)>

Example
<web-deploy-path>
 <service>tomcatX</service>
 <engine>cyrpi</engine>
 <host>it3</host>
</web-deploy-path>

Security Roles

Maps a role for the web application (found in web.xml) to a deployment-role in the
Borland Enterprise Server.

<!ELEMENT security-role (role-name, deployment-role?)>

Example
<security-role>
 <role-name>administrator</role-name>
 <deployment-role>administrator</deployment-role>
</security-role>

 6: Web Model l ing 41

Creating Instances of Artifacts

1 In the Outline view, right-click on the artifact and select New <artifact_name>, where
artifact_name is the name of the artifact you are creating. For example, if you want
to create a new EJB Reference, right-click on EJB Reference and select New EJB
Reference.

A dialog box appears.

2 Enter a name for the new artifact.

3 Click OK.

Renaming Instances of Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
rename. For example, if you want to rename an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Rename. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Rename.

A dialog box appears.

3 Enter the new name.

4 Click OK.

Deleting Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
delete. For example, if you want to delete an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Delete. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Delete.

The Delete Artifact message box appears.

3 Click Yes.

42 AppServer Plug-In for Ecl ipse Guide

 7: Conf igur ing the Bor land AppServer Development Plug- in in Ecl ipse 43

Configuring the Borland AppServer
Development Plug-in in Eclipse
This chapter explains how to configure the Borland AppServer (BAS) development
plug-in in Eclipse.

Adding Borland AppServer as an Installed Server Runtime
Environment

After you install the Borland AppServer development plug-in for Eclipse, you need to
add Borland AppServer as an installed server runtime environment and then define a
new server in Eclipse.

To add Borland AppServer as an installed server runtime environment:

1 In Eclipse, choose Window|Preferences.
The Preferences dialog box appears.

2 In the left pane, select Server|Installed Runtimes.

3 Click Add.
The New Server Runtime dialog box.

4 Select Borland|BAS v6.7 and click Next.

5 In the Borland AppServer Install Directory field, enter the path where you installed
Borland AppServer or click Browse to browse for the path.

6 Ensure that the values specified for all the fields are correct and then click Finish.

7 BAS v6.7 is listed in the Installed Server Runtime Environments list. Click OK.

44 AppServer Plug-In for Ecl ipse Guide

Def in ing a New Server in Ecl ipse

Defining a New Server in Eclipse
Defining Borland AppServer as a server in Eclipse enables you to start and stop
Borland AppServer from Eclipse.

To define a new server in Eclipse:

1 Choose File|New|Other.
The New dialog box appears.

2 Select Server|Server and click Next.

3 Select Borland|BAS v6.7 and click Finish.

Starting and Stopping Local Borland AppServer in Eclipse
1 Switch to the J2EE perpective view.

2 Switch to the Servers view.

3 To start the Borland AppServer server, in the Servers view, right-click the Borland
AppServer server and select Start.
To stop the Borland AppServer server, in the Servers view, right-click the Borland
AppServer server and select Stop.

 8: EAR Model l ing 45

EAR Modelling
This chapter explains how the Borland AppServer development plug-in for Eclipse
enables you to work with EAR projects, work with module dependencies, and model
EAR artifacts.

Working with EAR Projects

Creating EAR Projects

1 Choose File|New|Project.
The New Project dialog box appears.

2 Select J2EE|BAS Enterprise Application Project and click Next.

3 In the Project name field, enter a name for this EAR project.

4 Select a Borland AppServer 6.7 runtime target from the Target Runtime drop-down
list. For example, BAS v6.7.

5 Click Next.
The Project Facets screen appears.

6 Click Next.

7 Select, deselect, or add J2EE modules for this new EAR project.

8 Click Finish.

Adding J2EE Module Dependencies
1 In the Project Explorer view, right-click the EAR Project and select Properties.

2 From the left pane, select J2EE Module Dependencies.

3 Select, deselect, or add module dependencies.

4 Click Apply.

5 Click OK.

46 AppServer Plug-In for Ecl ipse Guide

Modelling EAR Artifacts

Understanding Artifacts

Module

This element represents a collection of one or more components that execute in the
same container type or deployment descriptors of that type. The module element must
contain one of the sub-elements ejb, java, or web; and hosts sub-element.

<xsd:element name="module" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:choice>

<xsd:element name="connector" type="xsd:string"/>
<xsd:element name="ejb" type="xsd:string"/>
<xsd:element name="java" type="xsd:string"/>
<xsd:element name="web">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="web-uri" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:choice>
<xsd:element name="hosts" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Example
<application>

<module>
<ejb>my-ejb.jar</ejb>

</module>
<module>

<web>
<web-uri>myweb.war</web-uri>

</web>
</module>
...

</application>

 8: EAR Model l ing 47

Property

This element is used to specify property values necessary for the application at
runtime. Each property entry specifies the property's name, type, and value using the
appropriate sub-elements.

<xsd:element name="property" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="prop-name" type="xsd:string"/>
<xsd:element name="prop-type" type="xsd:string" minOccurs="0"/>
<xsd:element name="prop-value" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Example
<application>

<module>
<ejb>my-ejb.jar</ejb>

</module>
<module>

<web>
<web-uri>myweb.war</web-uri>

</web>
</module>
<property>

<prop-name>vbroker.security.disable</prop-name>
<prop-type>security</prop-type>
<prop-value>false</prop-value>

</property>
</application>

Security Roles
Maps a role for the application (found in application.xml) to a deployment-role in the
Borland AppServer.

<xsd:element name="security-role" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="role-name" type="xsd:string"/>
<xsd:element name="deployment-role" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Example
<security-role>

<role-name>administrator</role-name>
<deployment-role>administrator</deployment-role>

</security-role>

48 AppServer Plug-In for Ecl ipse Guide

Creating Instances of Artifacts

1 In the Outline view, right-click on the artifact and select New <artifact_name>, where
artifact_name is the name of the artifact you are creating. For example, if you want
to create a new Security Role, right-click on Security Role and select New Security
Role.

A dialog box appears.

2 Enter a name for the new artifact.

3 Click OK.

Renaming Instances of Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
rename. For example, if you want to rename an instance of the Security Role
artifact, expand the Security Role node.

2 Right-click on the artifact instance and select Rename. For example, you have an
instance named Security_Role_1 under the Security Role artifact node. You need to
right-click on Security_Role_1 and select Rename.

A dialog box appears.

3 Enter the new name.

4 Click OK.

Deleting Entity Beans

1 In the Outline view, right-click on the entity bean and select Delete.

The Delete Artifact dialog box appears.

2 Click Yes.

Deleting Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
delete. For example, if you want to delete an instance of the Security Role artifact,
expand the Security Role node.

2 Right-click on the artifact instance and select Delete. For example, you have an
instance named Security_Role_1 under the Security Role artifact node. You need to
right-click on Security_Role_1 and select Delete.

The Delete Artifact message box appears.

3 Click Yes.

 9: Appl icat ion Cl ient Model l ing 49

Application Client Modelling
This chapter explains how the Borland AppServer development plug-in for Eclipse
enables you to work with Application Client projects and model Application Client
artifacts.

Working with Application Client Projects

Creating Client Projects

1 Choose File|New|Project.
The New Project dialog box appears.

2 Select J2EE|BAS Application Client Project and click Next.

3 In the Project name field, enter a name for this Application Client project.

4 Select a Borland AppServer 6.7 runtime target from the Target Runtime drop-down
list. For example, BAS v6.7.

5 Click Next.
The Project Facets screen appears.

6 Click Next.

7 In the Source Folder field, enter the source folder name.

8 Click Finish.

Note

If you want to run the client application, for example, a simple EJB client application,
ensure that you include the server runtime stubs, for example server.jar, in the client
project.

50 AppServer Plug-In for Ecl ipse Guide

Creating a Client Project Using Existing Source Code and Deployment
Descriptor Files
1 Choose File|New|Other.

The New Project dialog box appears.

2 Select J2EE|BAS Application Client Project and click Next.

3 In the Project name field, enter a name for this EJB project.

4 Select BAS v6.7 from the Target Runtime drop-down list.

5 If you want to add this EJB project to an EAR project, check the Add project to an
EAR and select the EAR project name from the EAR Project Name drop-down list or
create a new EAR project by clicking New. For more information on creating an EAR
project, see “Creating EAR Projects”.

6 Click Finish.

7 Copy the existing descriptor files to the <Workspace_Home>\<projectname>\
<clientModule>\META-INF directory, where <Workspace_Home> is the Eclipse
workspace directory for this project and <projectname> is the name of the project
you specified in step 3, and <clientModule> is the source directory.

8 Copy the existing source code to the <Workspace_Home>\<projectname>\
<clientModule> directory, where <Workspace_Home> is the Eclipse workspace
directory for this project, <projectname> is the name of the project you specified in
step 3, and <clientModule> is the source directory.

9 To reload and build the project, select the project and choose File|Refresh.

10 In the Project Explorer view, double-click on the project you created.

11 In the Project Explorer view, double-click on the deployment descriptor that belongs
to the project.

12 In the Outline view, expand the root node.

13 Right-click on the root node and select Save to ensure that the deployment decriptor
information is saved into the merge file.

 9: Appl icat ion Cl ient Model l ing 51

Modelling Application Client Artifacts

Understanding Artifacts

EJB References

This element is used to define EJB references used by the client. Each EJB reference
contains an ejb-ref-name used by the client application and its associated jndi-name (if
applicable).

<xsd: element name="ejb-ref" type="borl:ejb-refType" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:complexType name="ejb-refType">
 <xsd:sequence>
 <xsd:element name="ejb-ref-name" type="xsd:string"/>
 <xsd:element name="jndi-name" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

Example
<ejb-ref>
 <ejb-ref-name>ejb/Sort</ejb-ref-name>
 <jndi-name>sort</jndi-name>
</ejb-ref>

Message Destination Refs

This element is used to define a message destination reference, such as a JMS Queue
or Topic. Each message destination reference contains an message-destination-ref-
name used by the client application and an associated jndi-name.

<xsd:element name="message-destination-ref" type="borl:message-destination-
refType" minOccurs="0" maxOccurs="unbounded"/>

<xsd:complexType name="message-destination-refType">
 <xsd:sequence>
 <xsd:element name="message-destination-ref-name" type="xsd:string"/>
 <xsd:element name="jndi-name" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Example
<application-client>
 ...
 <message-destination-ref>
 <message-destination-ref-name>jms/StockQueue</message-destination-
ref-name>
 <jndi-name>jms/queues/Queue1</message-destination-type>
 </message-destination-ref>
 ...
</application-client>

52 AppServer Plug-In for Ecl ipse Guide

Message Destinations
This element is used to define a message destination, such as a JMS Queue or Topic,
that corresponds to message-destination-link of one or more message-destination-ref
elements in the application client. Each message destination contains an message-
destination-name, that matches the message-destination-link value, and an associated
jndi-name.

<xsd:element name="message-destination" type="borl:message-destinationType"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:complexType name="message-destinationType">
 <xsd:sequence>
 <xsd:element name="message-destination-name" type="xsd:string"/>
 <xsd:element name="jndi-name" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Example
<application-client>
 ...
 <message-destination>
 <message-destination-name>myAppQueue</message-destination-name>
 <jndi-name>jms/queues/TibcoQueue</jndi-name>
 </message-destination>
 ...
</application-client>

Resource Environment Refs
This element is used to define resource environment references used by the client.
Each resource environment reference contains a resource-env-ref-name used by the
client application and its associated jndi-name (if applicable). The resource-env-ref-
name element uniquely identifies a resource environment reference from the standard
deployment descriptor.

<element name="resource-env-ref" type="borl:resource-env-refType" minOccurs="0"
maxOccurs="unbounded"/>

<complexType name="resource-env-refType">
 <sequence>
 <element name="resource-env-ref-name" type="xsd:string"/>
 <element ref="borl:jndi-name"/>
 </sequence>
</complexType>

Example
<application-client>
 ...
 <resource-env-ref>
 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
 <jndi-name>jms/Queue1</jndi-name>
 </resource-env-ref>
 ...
</application-client>

 9: Appl icat ion Cl ient Model l ing 53

Resource References
This element is used to define resource references used by the client. Each resource
reference contains an res-ref-name used by the client application and its associated
jndi-name (if applicable). The res-ref-name element uniquely identifies a resource
reference from the standard deployment descriptor.

<xsd:element name="resource-ref" type="borl:resource-refType" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:complexType name="resource-refType">
 <xsd:sequence>
 <xsd:element name="res-ref-name" type="xsd:string"/>
 <xsd:element name="jndi-name" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Example
<application-client>
 ...
 <resource-ref>
 <res-ref-name>jdbc/SavingsDataSource</res-ref-name>
 <jndi-name>jdbc/datasources/Oracle</jndi-name>
 </resource-ref>
 ...
</application-client>

Creating Instances of Artifacts

1 In the Outline view, right-click on the artifact and select New <artifact_name>, where
artifact_name is the name of the artifact you are creating. For example, if you want
to create a new EJB Reference, right-click on EJB Reference and select New EJB
Reference.

A dialog box appears.

2 Enter a name for the new artifact.

3 Click OK.

Renaming Instances of Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
rename. For example, if you want to rename an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Rename. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Rename.

A dialog box appears.

3 Enter the new name.

4 Click OK.

54 AppServer Plug-In for Ecl ipse Guide

Deleting Entity Beans

1 In the Outline view, right-click on the entity bean and select Delete.

The Delete Artifact dialog box appears.

2 Click Yes.

Deleting Artifacts

1 In the Outline view, expand the artifact node that contains the instance you want to
delete. For example, if you want to delete an instance of the EJB References
artifact, expand the EJB References node.

2 Right-click on the artifact instance and select Delete. For example, you have an
instance named EJB_Reference_1 under the EJB References artifact node. You
need to right-click on EJB_Reference_1 and select Delete.

The Delete Artifact message box appears.

3 Click Yes.

 10: Deploying Borland AppServer Projects f rom Ecl ipse 55

Deploying Borland AppServer
Projects from Eclipse
This chapter explains how to deploy Borland AppServer projects from Eclipse.

Deploying Projects to Borland AppServer
The Borland AppServer development plug-in enables you to deploy Borland AppServer
projects, which you create in Eclipse, to the local and the remote Borland AppServer.

Configuring Deployments Settings

1 Right-click on the Borland AppServer project you want to deploy and select
Properties.
The Properties dialog box appears.

2 In the left pane, select Borland AppServer Server Settings.

3 Set the server name , deploy configuration name, and deploy partition name to
match that of the server. The server can be running remotely or on the local
machine.

4 Set the management port to the port that is set for the server.

5 Click OK.

56 AppServer Plug-In for Ecl ipse Guide

Deploying Projects to Borland AppServer

1 Save the project so that the information is saved in the appropriate descriptor file.

2 Right-click on the Borland AppServer project you want to deploy and select Borland|
Deploy.
The Deploy to Borland AppServer dialog box appears.

3 In the left pane, double-click on the projects that you want to deploy to the Borland
AppServer.

4 Click Next.

5 Click Deploy.

 11: Debbuging in WTP 57

Debbuging in WTP
This chapter describes the steps to set up debugging environments for Java clients
talking to J2EE modules deployed in Borland AppServer. Note that debugging server
code, for example, servlets or beans, are not supported in this release.

Setting Up Client Debugging in Eclipse
1 Select Run|Debug.

2 Right-click on Remote Java Application and select New.

3 Click the Arguments tab.

4 Add the following line in VM Arguments:
Dvbroker.agent.port=<your_osagent_port> -Djava.endorsed.dirs="<path_to_bas/lib/
endorsed>"

Running the Client in Debug Mode
1 Select Run|Debug.

2 Double-click the client profile.

58 AppServer Plug-In for Ecl ipse Guide

Index 59

Index

Symbols
... ellipsis 3
[] square brackets 3
| vertical bar 3

A
Application Client Modelling 49

Creating Client Projects 49
Creating Instances of Artifacts 53
Deleting Artifacts 54
Renaming Instances of Artifacts 53
Understanding Artifacts 51

B
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4
Borland Web site 4
brackets 3

C
commands

conventions 3
Configure

Adding an Installed Server Runtime Environment 43
New Server in Eclipse 44

Configuring the Plug-in in Eclipse 43
Creating Projects 11

D
Debbuging in WTP 57
Debugging

Running the Client in Debug Mode 57
Setting Up Client Debugging 57

Deploying Borland AppServer Projects from Eclipse 55
Deploying Projects

Configuring Deployments Settings 55
Deploying Projects to Borland AppServer 56

Developer Support, contacting 4
documentation 2

Borland AppServer Developer's Guide 2
Borland AppServer Installation Guide 2
Borland Security Guide 2
Management Console User's Guide 2
platform conventions used in 3
type conventions used in 3
VisiBroker for Java Developer's Guide 2
VisiBroker VisiTransact Guide 2

E
EAR Modelling 45

Adding J2EE Module Dependencies 45
Creating Instances of Artifacts 48
Deleting Artifacts 48
Renaming Instances of Artifacts 48
Understanding Artifacts 46
Working with EAR Projects 45

EJB Modelling 13
Container-managed Relationships 18

Creating EJB Projects 14
Creating Instances of Artifacts 33
Deleting Artifacts 34
Project Structure 13
Renaming Instances of Artifacts 33
Updating the Interface Type 20
Updating the Persistence Type 20
Updating the Session Type 20
User-defined Business Methods 19
Working with Beans 15

Exporting Projects 12

I
Installating

Before You Begin 5
Installing

BAS Development Plug-in 6

J
JBuilder 5, 7, 11, 43, 49, 55, 57

M
Modelling Application Client Artifacts 51
Modelling Bean Artifacts 21
Modelling EAR Artifacts 46
Modelling Web Artifacts 38

P
Projects

Creating Projects 11
Exporting Projects 12
Fixing Projects 12
Reloading Projects 12
Saving Projects 12
Validating Projects 11

R
Reloading Projects 12

S
Saving Projects 12
Software updates 4
square brackets 3
Starting and Stopping Local Borland AppServer in

Eclipse 44
Support, contacting 4
symbols

ellipsis ... 3
square brackets [] 3
vertical bar | 3

T
Technical Support, contacting 4

U
User Interface 8

60 AppServer DTDs

DDEditor View 9
Deployment Descriptor Outline Tree View 10
Project Explorer View 9

V
Validating Projects 11

W
Web Modelling 35

Adding Browser JSP File 37
Creating Instances of Artifacts 41
Creating Servlets 37
Creating Web Projects 35
Deleting Artifacts 41
Deleting Servlets 38
Project Structure 35
Renaming Instances of Artifacts 41
Renaming Servlets 38
Understanding Artifacts 38

Working with Projects 11
World Wide Web, Borland updated software 4

	Introduction to Borland AppServer
	AppServer features

	Borland AppServer Documentation
	Accessing AppServer online help topics
	Accessing AppServer online help topics from within a AppServer GUI tool

	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Installing the Borland AppServer Development Plug-in
	Before you Begin
	Installing the BAS Development Plug-in
	Overview
	Introduction
	Understanding the User Interface
	Project Explorer View
	Understanding the Project Structure

	DDEditor View
	Deployment Descriptor Outline Tree View

	Working with Projects
	Creating Projects
	Validating Projects
	Exporting Projects
	Reloading Projects
	Saving Projects
	Fixing Projects
	EJB Modelling
	Understanding the Project Structure
	Working with EJB Projects
	Creating EJB Projects
	Creating a New EJB Project
	Creating an EJB Project Using Existing Source Code and Deployment Descriptor Files

	Working with Beans
	Creating Session Beans
	Creating Entity Beans
	Creating Message Beans
	Renaming Beans
	Deleting Beans
	Building Beans
	Working with Container-managed Relationships
	Creating a relationship
	Defining CMR field for a bean
	Configuring Table Reference

	Creating User-defined Business Methods
	Updating the Interface Type for Entity and Session Beans
	Updating the Session Type for Session Beans
	Updating the Persistence Type for Entity Beans

	Modelling Bean Artifacts
	Understanding Artifacts
	Entity Bean Artifacts
	Session Bean Artifacts
	Message Bean Artifacts

	Creating Instances of Artifacts
	Renaming Instances of Artifacts
	Deleting Artifacts

	Web Modelling
	Understanding the Project Structure
	Working with Web Projects
	Creating Web Projects
	Creating a New Web Project
	Creating a Web Project Using Existing Source Code and Deployment Descriptor Files

	Working with Servlets
	Creating Servlets
	Adding Browser JSP File
	Renaming Servlets
	Deleting Servlets

	Modelling Web Artifacts
	Understanding Artifacts
	Creating Instances of Artifacts
	Renaming Instances of Artifacts
	Deleting Artifacts

	Configuring the Borland AppServer Development Plug-in in Eclipse
	Adding Borland AppServer as an Installed Server Runtime Environment
	Defining a New Server in Eclipse
	Starting and Stopping Local Borland AppServer in Eclipse
	EAR Modelling
	Working with EAR Projects
	Creating EAR Projects

	Adding J2EE Module Dependencies
	Modelling EAR Artifacts
	Understanding Artifacts
	Creating Instances of Artifacts
	Renaming Instances of Artifacts
	Deleting Artifacts

	Application Client Modelling
	Working with Application Client Projects
	Creating Client Projects
	Creating a Client Project Using Existing Source Code and Deployment Descriptor Files

	Modelling Application Client Artifacts
	Understanding Artifacts
	Creating Instances of Artifacts
	Renaming Instances of Artifacts
	Deleting Entity Beans
	Deleting Artifacts

	Deploying Borland AppServer Projects from Eclipse
	Deploying Projects to Borland AppServer
	Configuring Deployments Settings
	Deploying Projects to Borland AppServer

	Debbuging in WTP
	Setting Up Client Debugging in Eclipse
	Running the Client in Debug Mode

