
Borland
VisiBroker® 7.0

Security Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800

Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of applicable

patents. The furnishing of this document does not give you any license to these patents.

Copyright 1999–2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States

and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70Security
March 2006

2 VisiBroker Secur i ty Guide

i

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1

VisiBroker features. 2
VisiBroker Documentation 2

Accessing VisiBroker online help topics
in the standalone Help Viewer 3

Accessing VisiBroker online help topics
from within the VisiBroker Console. 3

Documentation conventions 4
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web 5
Borland newsgroups 5

Chapter 2
Getting Started with Security 7
VisiSecure overview 8

VisiSecure for Java 8
VisiSecure for C++. 8
Pluggability . 8
VisiSecure design flexibility 8
VisiSecure for Java features 8
VisiSecure for C++ Features. 9

Basic security model 9
Authentication realm (user domain) 10
Resource domain 10
Authorization domain 11

Distributed environments and VisiSecure SPI 11
Managing authentication and authorization

with JAAS . 11
Authentication and Identification 11

System identification. 12
Authentication and pluggability 12
Server and/or client authentication 12
Authenticating clients with usernames

and passwords 12
Authentication property settings 13
Public-key encryption 13
Asymmetric encryption 13
Symmetric encryption 14
Certificates and Certificate Authority 14
Digital signatures 14
Generating a private key and

certificate request 14
Distinguished names 15
Certificate chains 15

Certificate authentication 16
Certificate Revocation List (CRL) and revoked

certificate serial numbers 16
Negotiating Quality of Protection (QoP)

parameters . 16

Secure Transportation 17
JSSE and SSL pluggability 17
Setting the level of encryption 17

Supported cipher suites 17
Authorization. 18

Access Control List 18
Roles-based access control 18
Pluggable Authorization 19

Context Propagation 19
Identity assertions 19

Impersonation 20
Delegation 20

Trusting Assertions 21
Trust assertions and plug-ins 21
Backward trust 21
Forward trust 21

Temporary privileges 21
Using IIOP/HTTPS. 22

Netscape Communicator/Navigator 22
Microsoft Internet Explorer 22

Chapter 3
Authentication 25
JAAS basic concepts 25

Subjects . 25
Principals . 26
Credentials . 26

Public and private credentials 26
Authentication mechanisms and

LoginModules 27
Authentication realms. 27
LoginModules. 27

LoginContext class and LoginModule interface . . . 28
Authentication and stacked LoginModules 29

Associating a LoginModule with a realm 30
Syntax of a realm entry 31

Borland LoginModules 32
Basic LoginModule 32
JDBC LoginModule 34
LDAP LoginModule 35
Host LoginModule 35

Server and Client Identification 36
Setting the config file for client

authentication 36
System Identification 36
Formatted Target 37

GSSUP mechanism 37
Certificate mechanism 38

Using a Vault 38
Creating a Vault 39
VaultGen example 40

Client identification 41

ii

Chapter 4
Authorization 43
Defining access control with Role DB 43

Anatomy of Role DB. 44
Assertion syntax. 44

Using logical operators with assertions 45
Wildcard assertions 45

Other assertions. 46
Recycling an existing role 46

Authorization domains 46
Run-as Alias. 47
Run-as mapping. 47

CORBA authorization. 48
Setting up authorization for CORBA objects . . . 48

Chapter 5
Configuring Security Profiles
for Domains 51

Security Profiles 51
Enabling Security 53
Enabling SSL 53
Setting the Log Level 54
Configuring Authentication 54

Creating the config.jaas file 54
Configuring Authentication Using the

Management Console 55
Configuring Authorization 56

About the rolemap file 56
Configuring Authorization Using the

Management Console 56
Specifying VisiSecure properties 62

Associating a Profile with a Domain 63
Using a Vault for a Domain 63

Chapter 6
Making Secure Connections (Java) 65
JAAS and JSSE 65

JSSE Basic Concepts 65
Steps to secure clients and servers 66

Step One: Providing an identity 66
Username/password authentication,

using JAAS modules, for known realms . . . 66
Username/password authentication,

using APIs 67
Certificate-based authentication, using

KeyStores through property settings 67
Certificate-based authentication, using

KeyStores through APIs 67
Certificate-based authentication,

using APIs 67
pkcs12-based authentication, using

KeyStores. 67
pkcs12-based authentication, using APIs . . . 67

Step Two: Setting properties and Quality of
Protection (QoP) 68

Step Three: Setting up Trust68
Step Four: Setting up the Pseudo-Random

Number Generator 68
Step Five: If necessary, set up identity

assertion .68
Examining SSL related information69
Creating Custom Plugins 69

LoginModules 69
CallbackHandlers 69
Authorization Service Provider69
Trust Providers70

Chapter 7
Making Secure Connections (C++) 71
Steps to secure clients and servers71

Step One: Providing an identity 71
Username/password authentication,

using LoginModules, for known realms 72
Username/password authentication,

using APIs72
Certificate-based authentication, using

KeyStores through property settings 72
Certificate-based authentication, using

KeyStores through APIs72
Certificate-based authentication,

using APIs73
pkcs12-based authentication,

using KeyStores73
pkcs12-based authentication,

using APIs73
Step Two: Setting properties and Quality of

Protection (QoP) 73
Step Three: Setting up Trust73
Step Four: If necessary, set up identity

assertion .74
Examining SSL related information74
Creating Custom Plugins 74

LoginModules 75
CallbackHandlers 75
Authorization Service Provider75
Trust Providers76

Chapter 8
Security for the Web components 77
Security for the Apache web server77

Modifying the Apache configuration file
for mod_ssl77

Creating key and certificate files79
Verifying that mod_ssl is active 80

Enabling certificate passthrough to the
Borland web container81

Configuring Apache to “passthrough” the
SSL certificate and related information81

Configuring the mod_iiop IIOP connector
of the httpd.conf file to forward SSL
authentication. 82

iii

Security for the Borland web container 83
Securing your Borland web container 83
Securing your web application 83

Three-tier authorization scheme 84
Setting up “run-as” role 84

Chapter 9
Security Properties for Java 87

Chapter 10
Security Properties for C++ 91

Chapter 11
VisiSecure for C++ APIs 95
General API . 95

class vbsec::Current 95
Include File 95
Methods . 95

class vbsec::Context 96
Include File 96
Methods . 96

class vbsec::Principal 99
Include file 99
Methods . 99

class vbsec::Credential 99
Include File 99

class vbsec::Subject 100
Include File 100
Methods 100

class vbsec::Wallet 101
Include File 101
Methods 101

class vbsec::WalletFactory. 101
Include File 101
Methods 101

SSL API . 103
class vbsec::SSLSession 103

Include File 103
Methods 103

class vbsec::VBSSLContext 104
Include File 104
Methods 104

class ssl::CipherSuiteInfo 104
Include File 104

class CipherSuiteName 105
Include File 105
Methods 105

class vbsec::SecureSocketProvider 105
Include File 105
Methods 105

class ssl::Current 106
Include File 106
Methods 106

Certificate API. 109
class vbsec::CertificateFactory 109

Include File 109
Methods 109

class CORBAsec::X509Cert 111
Include File 111
Methods . 111

class CORBAsec::X509CertExtension 112
Include File 112

QoP API . 113
class vbsec::ServerConfigImpl 113

Include File 113
class ServerQoPPolicyImpl. 113

Include File 113
Methods . 113

class vbsec::ClientConfigImpl 114
Include File 114
Methods . 114

class vbsec::ClientQoPPolicyImpl 114
Include File 114
Methods . 114

Authorization API 115
class csiv2::AccessPolicyManager 115

Include File 115
Methods . 115

class csiv2::ObjectAccessPolicy 116
Include File 116
Methods . 116

Chapter 12
Security SPI for C++ 117
Plugin Mechanism and SPIs. 117
Providers. . 119

Providers and exceptions. 119
vbsec::LoginModule 120

Include File . 120
Methods . 120

vbsec::CallbackHandler 121
Include file . 121
Methods . 121

vbsec::IdentityAdapter 121
IdentityAdapters included with

the VisiSecure 121
Methods . 121
vbsec::MechanismAdapter 122
Methods . 123

vbsec::AuthenticationMechanisms. 123
Credential-related methods. 123
Context-related methods 124

vbsec::Target . 125
Methods . 125

vbsec::AuthorizationServicesProvider 126
Methods . 126

vbsec::Resource 127
Methods . 127

vbsec::Privileges. 127
Constructors 127
Methods . 127

vbsec::AttributeCodec 128
Methods . 128

iv

vbsec::Permission 130
Include file . 130
Methods . 130

vbsec::PermissionCollection 131
Include file . 131
Methods . 131

vbsec::RolePermission 131
Constructors. 131
Methods . 131

vbsec::TrustProvider. 132
Methods . 132

vbsec::InitOptions 133
Include file . 133
Data Members 133

vbsec::SimpleLogger 133
Include file . 133
Methods . 133

Index 135

 1: In troduct ion to Bor land Vis iBroker 1

Introduction to Borland VisiBroker
For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview
VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:

– VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three
implementations of the industry-leading Object Request Broker.

– VisiNaming Service, a complete implementation of the Interoperable Naming
Specification in version 1.3.

– GateKeeper, a proxy server for managing connections to CORBA Servers behind
firewalls.

– VisiBroker Console, a GUI tool for easily managing a CORBA environment.

– Common Object Services such as VisiNotify (implementation of Notification Service
Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

2 VisiBroker Secur i ty Guide

VisiBroker Documentat ion

VisiBroker features

VisiBroker offers the following features:

– “Out-of-the-box” security and web connectivity.

– Seamless integration to the J2EE Platform, allowing CORBA clients direct access to
EJBs.

– A robust Naming Service (VisiNaming), with caching, persistent storage, and
replication for high availability.

– Automatic client failover to backup servers if primary server is unreachable.

– Load distribution across a cluster of CORBA servers.

– Full compliance with the OMG's CORBA 2.6 Specification.

– Integration with the Borland JBuilder integrated development environment.

– Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation
The VisiBroker documentation set includes the following:

– Borland VisiBroker Installation Guide—describes how to install VisiBroker on your
network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

– Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

– Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), the
Interface Repository, and the Interface Repository, and Web Service Support.

– Borland VisiBroker for C++ Developer's Guide—describes how to develop VisiBroker
applications in C++. It familiarizes you with configuration and management of the
Visibroker ORB and how to use the programming tools. Also described is the IDL
compiler, the Smart Agent, the Location, Naming and Event Services, the OAD, the
QoS, Pluggable Transport Interface, RT CORBA Extensions, and Web Service
Support.

– Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

– Borland VisiBroker for C++ API Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

– Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

– Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

– Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

 1: In troduct ion to Bor land Vis iBroker 3

VisiBroker Documentat ion

– Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

– Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Important

Updates to the product documentation, as well as PDF versions, are available on the
web at http://www.borland.com/techpubs.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows

– Choose Start|Programs|Borland Deployment Platform|Help Topics

– or, open the Command Prompt and go to the product installation \bin directory,
then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

4 VisiBroker Secur i ty Guide

Contact ing Bor land support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at: http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:

– Name

– Company and site ID

– Telephone number

– Your Access ID number (U.S.A. only)

– Operating system and version

– Borland product name and version

– Any patches or service packs applied

– Client language and version (if applicable)

– Database and version (if applicable)

– Detailed description and history of the problem

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.

... Previous argument that can be repeated.
| Two mutually exclusive choices.

Symbol Indicates

Windows All supported Windows platforms.

Win2003 Windows 2003 only

WinXP Windows XP only

Win2000 Windows 2000 only

UNIX UNIX platforms

Solaris Solaris only

Linux Linux only

 1: In troduct ion to Bor land Vis iBroker 5

Contact ing Bor land support

– Any log files which indicate the problem

– Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web
http://www.borland.com

Online Support

http://support.borland.com (access ID required)

Listserv

To subscribe to electronic newsletters, use the online form at:

http://www.borland.com/products/newsletters

World Wide Web

Check http://www.borland.com/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:

– http://www.borland.com/products/downloads/download_visibroker.html (updated
VisiBroker software and other files)

– http://www.borland.com/techpubs (documentation updates and PDFs)

– http://info.borland.com/devsupport/bdp/faq/ (VisiBroker FAQs)

– http://community.borland.com (contains our web-based news magazine for
developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http://www.borland.com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note

These newsgroups are maintained by users and are not official Borland sites.

6 VisiBroker Secur i ty Guide

 2 : Gett ing Star ted wi th Secur i ty 1

Getting Started with Security
As more businesses deploy distributed applications and conduct operations over the
Internet, the need for high quality application security has grown.

Sensitive information routinely passes over Internet connections between web
browsers and commercial web servers; credit card numbers and bank balances are
two examples. For example, users engaging in commerce with a bank over the Internet
must be confident that:

– They are in fact communicating with their bank's server, not an impostor that mimics
the bank for illegal purposes.

– The data exchanged with the bank will be unintelligible to network eavesdroppers.

– The data exchanged with the bank software will arrive unaltered. An instruction to
pay $500 on a bill must not accidentally or maliciously become $5000.

VisiSecure lets the client authenticate the bank's server. The bank's server can also
take advantage of the secure connection to authenticate the client. In a traditional
application, once the connection has been established, the client sends the user's
name and password to authenticate. This technique can still be used once a
VisiSecure connection has been established, with the additional benefit that the user
name and password exchanges will be encrypted. VisiSecure provides support for any
number of authentication realms providing access to portions of distributed
applications. In addition, with VisiSecure you can create authorization domains that
delineate access-control rules for your applications.

VisiSecure overview
VisiSecure provides a framework for securing VisiBroker and BDOC. VisiSecure lets
you establish secure connections between clients and servers.

VisiSecure for Java

VisiSecure is 100% Java and supports all security requirements of the J2EE 1.3
specification. VisiSecure uses the Java Authentication and Authorization System
(JAAS) for authentication, the Java Secure Socket Extension (JSSE) for SSL
communications, and the Java Cryptography Extension (JCE) for cryptographic
operations. Most of the APIs for Java applications reflect the existing JDK or additional
Java standard APIs. Care has been taken not to duplicate APIs at the different security

2 VisiBroker Secur i ty Guide

VisiSecure overview

layers. In some cases, VisiSecure feature set exceeds the J2EE 1.3 security
requirements.

VisiSecure for C++

VisiSecure for C++ offers similar feature as VisiSecure for Java. See “VisiSecure for
C++ APIs” and “Security Properties for C++” for detailed information.

Pluggability

VisiSecure allows many security technologies to be plugged in. Pluggability is provided
at various levels. Security service providers can plug in and replace the entire set of
security services and application developers can plug in smaller modules to achieve
custom integration with their environment. The only layers which are not pluggable are
the CSIv2 layer and the transport layer which are tightly integrated with the internal
implementation of the VisiBroker ORB and interact heavily with each other.

VisiSecure design flexibility

Borland has designed VisiSecure to work with a variety of application architectures, so
that it can support many different current and future architectures. However, while
VisiSecure represents a powerful security architecture, alone it cannot fully protect
your servers. You must be responsible for physical security, and configuring you base
web server (host) and operating system services in the most secure manner possible.

VisiSecure for Java features

VisiSecure has the following features:

– Enterprise Java Beans (EJB) Container Integration: VisiSecure seamlessly
integrates EJB security mechanisms with the underlying CORBA Security Service
and CSIv2. CORBA offers enhanced features to the security architecture of your
bean. By utilizing VisiSecure, you have additional options over the relatively simple
EJB security model.

– Web Container Integration: VisiSecure integrates with the web container by
providing mechanisms to the web container that allow its own authentication and
authorization engines to propagate security information to other EJB containers, as
necessary. For example, a servlet trying to invoke an EJB container's bean will act
on behalf of the original browser client that triggered the initial request. Security
information supplied from the client will be propagated seamlessly to the EJB
container. In addition, the web container authentication and authorization engine can
be configured to use authentication LoginModules and authorization rolemaps
supplied by Borland.

– Security Services Administrator: The administration and configuration of
VisiSecure is performed using simple-to-use properties and supports tools like the
Java keytool.

– GateKeeper: You can use GateKeeper to enable authenticated connections across
a high-level firewall. This allows clients to connect to the server, even if the server
and the application client are on opposite sides of a firewall. Use of the GateKeeper
is fully documented in the VisiBroker GateKeeper Guide.

– Secure Transport Layer: VisiSecure utilizes SSL, the primary secure transport level
communication protocol on the Internet, as a secure transport layer. SSL provides
message confidentiality, message integrity, and certificate-based authentication
support through a trust model.

 2: Get t ing Star ted with Secur i ty 3

Basic securi ty model

VisiSecure for C++ Features

VisiSecure for C++ has the following features:

– Authentication and Authorization: The Authentication and Authorization model are
similar to VisiSecure for Java. This extends the capability of VisiSecure for C++
applications.

– Security Services Administrator: The administration and configuration of
VisiSecure is performed using simple-to-use properties.

– Secure Transport Layer: VisiSecure utilizes SSL, the primary secure transport-level
communication protocol on the Internet, as a secure transport layer. SSL provides
message confidentiality, message integrity, and certificate-based authentication
support through a trust model.

Basic security model
The basic security model describes VisiSecure and its components from a user's
perspective. This is the logical model that VisiSecure users need to understand,
configure and interact with. The security service groups entities of a system into the
following three logical groups (domains):

– Authentication realm (User domain): simply a database of users. Each
authentication realm describes a set of users and their associated credentials and
Privileges attributes.

– Resource Domain: represents a collection of resources of a single application. The
application developer defines the access control policies for access to resources in
the application.

– Authorization Domain: defines the set of rules that determines whether an access
attempt to a particular resource is allowed.

The following figure displays the relationship among these domains.

Figure 2.1 Interaction Among Different Domains in VisiSecure

These three VisiSecure domains are closely related.

4 VisiBroker Secur i ty Guide

Dist r ibuted environments and VisiSecure SPI

1 For authentication, you need an authentication realm. VisiBroker comes with a
simple one, or you can use an existing supported realm, like an LDAP server.

2 For authorization, you need to set up roles, and associate users with those roles.

3 Then, you need to set up a resource domain, and grant access to the resources in
that domain to certain roles.

Authentication realm (user domain)

An authentication realm, simply described, is a database of users. Each authentication
realm describes a set of users and their associated credentials and privileges, such as
the user's password and the groups to which the user belongs, respectively. Examples
of authentication realms are: an NT domain, an NIS or yp database, or an LDAP
server.

An authentication realm is defined both by the authentication technology it uses, as
well as a set of configuration options that point to the source of the data. For example,
if you are using LDAP, then the authentication realm specifies LDAP as the
authentication protocol, specifies the name of the server, and specifies other
configuration parameters. When you log on to a system, the system is authenticating
you. For more information, see “Authentication.”

Resource domain

A resource defines an application component that VisiSecure needs to protect.
VisiSecure organizes resources into resource domains containing every resource in an
application. This means every remote method or servlet that is exposed by a server is
essentially a resource.

The application developer defines access control policies for access to resources in the
application. These are defined in terms of roles. Roles provide a logical collection of
permissions to access a set of resources. For more information, see “Authorization.”

In addition, applications may choose to be more security aware and provide access
control for more fine grained resources such as fields, or access to external resources
such as databases. The EJB and Servlet specifications provide standard deployment
descriptor information that allow applications to define their access policies in terms of
the set of roles required to access a given method.

Authorization domain

The authorization domain allows users to act in given roles. VisiSecure grants
privileges to access resources based on these roles. When VisiBroker applications
pass user identities from one application to another, the identity contains user
information, and the permissions based on the specified roles. The caller's identity is
then matched with the required rules to determine whether the caller satisfies the
required rules. If the caller satisfies the rules, access is granted. Otherwise, access is
denied. For more information, see “Authorization.”

Distributed environments and VisiSecure SPI
For a distributed environment, in addition to the three domains that make up the basic
security model, the following must be considered:

– Distributed transmission of the authorization privileges
– Assertion and trusting assertion

The VisiSecure Service Provider Interface (SPI) provides interfaces and classes to
address secure transportation, assertion, and assertion trust. The transmission (or
interoperability) is handled by the underlying CSIv2 implementation. Because the
implementation of the SPI is closely bundled with the VisiBroker ORB, it cannot be
separated from the core as a generic SPI for other languages.

 2: Get t ing Star ted with Secur i ty 5

Managing authent icat ion and author izat ion wi th JAAS

Specifically, the VisiSecure SPI classes enable customization of your Security Service
in the following:

– Identification and Authentication
– Authorization (or access control decision making)
– Assertion trust

Managing authentication and authorization with JAAS
The Java Authentication and Authorization Service (JAAS) defines extensions that
allow pluggable authorization and user-based authentication. This framework
effectively separates the implementation of authentication from authorization, allowing
greater flexibility and broader vendor support. The fine-grained access control
capabilities allow application developers to control access to critical resources at the
granularity level that makes the most sense.

Authentication and Identification
Authentication is the process of verifying that an entity (human user, service, or
component, and such) is the one it claims to be. The authentication process includes:

1 acquiring credentials from the to-be-authenticated entity,

2 then verifying the credentials.

VisiSecure employs the JAAS framework to facilitate the interaction between the
entities and the system.

System identification

Any system first needs to identify itself before being allowed access to resources.
Client identification is always required for resource access. In a CORBA/J2EE
environment, the need for identification also exists for servers as well. Servers need
identification in two cases:

– One, when using SSL for transport layer security, the server typically needs to
identify itself to the client.

– Two, when mid-tier servers make further invocations to other mid-tier or end-tier
servers, they need to identify themselves before being allowed (potentially) to act on
behalf of the original caller.

For more information, see “System Identification”.

Authentication and pluggability

Authentication in VisiBroker is a JAAS implementation allowing pluggable
authentication. The JAAS logon service separates the configuration from
implementation. A low-level system programming interface called the LoginModule,
provides an anchor point for pluggable security modules.

At the same time as system identification, the authentication mechanism concept is
employed to represent the “format” for communicating (or transporting) authentication
information between various components of the security subsystem. The security
service provider for the authentication/identification process implements the specific
format (encoding and decoding process) that is to be used by the underlying core
system.

In a distributed environment, the authentication process is further complicated by the
fact that the representation of the entity and the corresponding credential must be
transported among peers in a generic fashion. Therefore, the VisiSecure Java SPI
employs the concept of the AuthenticationMechanism and defines a set of classes for
doing authentication/identification in a distributed environment.

6 VisiBroker Secur i ty Guide

Authent icat ion and Ident i f icat ion

Server and/or client authentication

With the VisiBroker implementation of JAAS, you can set different mechanisms of
authentication. You can have server authentication, where servers are authenticated
by clients using public-key certificates. You can also have client authentication. Clients
can be authenticated using passwords or public-key certificates. That is, the server can
be configured to authenticate clients with a password or clients with public-key
certificates.

Authenticating clients with usernames and passwords

If server-side authentication is not required, authentication can be accomplished using
a standard username/password combination. To authenticate clients using usernames
and passwords, several things need to happen. The server should expose a set of
realms to which it can authenticate a client. Each realm should correspond to a JAAS
LoginModule that actually does the authentication. Finally, the client should provide a
username and password, and a realm under which it wishes to authenticate itself. For
more information, see “Authentication.”

Authentication property settings

The authentication policy—whether it is server or client authentication and whether it is
done using public-key certificates or passwords—is determined by property settings.
For more information, see “Security Properties for C++” and “Security Properties for
Java.”

 2: Get t ing Star ted with Secur i ty 7

Authent icat ion and Ident i f icat ion

Public-key encryption

In addition to username/password-based authentication, VisiSecure also supports
public-key encryption. In public-key encryption, each user holds two keys: a public key
and a private key. A user makes the public key widely available, but keeps the private
key secret.

Data that has not been encrypted is often referred to as clear-text, while data that has
been encrypted is called cipher-text. When a public key and a private key are used with
the public-key encryption algorithm, they perform inverse functions of one another, as
shown in the following diagram.

– In the first case, the public key is used to encrypt a clear-text message into a cipher-
text message; the private key is used to decrypt the resulting cipher-text message.

– In the second case, the private key is used to encrypt a message (typically in the
case of digital signatures—that is, “signed” messages), while the public key is used
to decrypt it.

If someone wants to send you sensitive data, they acquire your public key and use it to
encrypt that data. Once encrypted, the data can only be decrypted with the private key.
Not even the sender of the data will be able to decrypt the data. Note that encryption
can be asymmetric or symmetric.

Asymmetric encryption

Asymmetric encryptions has both a public and a private key. Both keys are linked
together such that you can encrypt with the public key but can only decrypt with the
private key, and vice-versa. This is the most secure form of encryption.

Symmetric encryption

Symmetric encryption uses only one key for both encryption and decryption. Although
faster than asymmetric encryption, is requires an already secure channel to exchange
the keys, and allows only a single communication.

8 VisiBroker Secur i ty Guide

Authent icat ion and Ident i f icat ion

Certificates and Certificate Authority

When you distribute your public key, the recipients of that key need some sort of
assurance that you are indeed who you claim to be. The ISO X.509 standard defines a
mechanism called a certificate, which contains a user's public key that has been
digitally signed by a trusted entity called a Certificate Authority (CA). When a client
application receives a certificate from a server, or vice-versa, the CA that issued the
certificate can be used to verify that it did indeed issue the certificate. The CA acts like
a notary and a certificate is like a notarized document.

You obtain a certificate by constructing a certificate request and sending it to a CA.

Digital signatures

Digital signatures are similar to handwritten signatures in terms of their purpose; they
identify a unique author. Digital signatures can be created through a variety of
methods. Currently, one of the more popular methods involves an encrypted hash of
data.

1 The sender produces a one-way hash of the data to be sent.

2 The sender digitally signs the data by encrypting the hash with a private key.

3 The sender sends the encrypted hash and the original data to the recipient.

4 The recipient decrypts the encrypted hash using the sender's public key.

5 The recipient produces a one-way hash of the data using the same hashing
algorithm as the sender.

6 If the original hash and the derived hash are identical, the digital signature is valid,
implying that the document is unchanged and the signature was created by the
owner of the public key.

Generating a private key and certificate request

To obtain a certificate to use in your application, you need to first generate a private
key and certificate request. To automate this process, for Java applications you can
use the Java keytool, or for C++ applications you can use open source tools like
OpenSSL utility.

After you generate the files, you should submit the certificate request to a CA. The
procedure for submitting your certificate request to a CA is determined by the
certificate authority which you are using. If you are using a CA that is internal to your
organization, contact your system administrator for instructions. If you are using a
commercial CA, you should contact them for instructions on submitting your certificate
request. The certificate request you send to the CA will contain your public key and
your distinguished name.

Distinguished names
A distinguished name represents the name of a user or the CA that issued the user's
certificate. When you submit a certificate request, it includes a distinguished name for
the user that is made up of the components listed in the following table.

Tag Description Required Component

Common-Name The name to be associated with the user. Yes

Organization The name of the user's company or
organization.

Yes

Country The two character country code that identifies
the user's location.

Yes

Email The person to contact for more information
about this user.

No

Phone The user's phone number. No

 2: Get t ing Star ted with Secur i ty 9

Cert i f icate authent icat ion

Certificate chains
The ISO X.509 standard provides a mechanism for peers who wish to communicate,
but whose certificates were issued by different certificate authorities. Consider the
following figure, in which Joe and Ted have certificates issued by different CAs.

For Joe to verify the validity of Ted's certificate, he must inspect each CA in the chain
until a trusted CA is found. If a trusted CA is not found, it is the responsibility of the
server to choose whether to accept or reject the connection. In the case shown in the
preceding figure, Joe would follow these steps:

1 Joe obtains Ted's certificate and determines the issuing CA, Acme.

2 Since the Acme CA is not in Joe's certificate chain, Joe obtains the issuer of the
certificate for CA_2.

3 Because CA_2 is not a trusted CA, the server decides whether to accept or reject the
connection.

Note

The manner in which you obtain certificate information from a CA is defined by that CA.

Certificate authentication
Closely associated with authentication is the concept of trust. For practical purposes,
trust operates just like authentication. Trust can be applied at the transport level if a
certificate identity is presented, or at even higher levels (at the CSIv2 layer) where the
identity takes the form of a username/password.

Java

For trusting certificates with Java code, VisiSecure provides mechanisms to support
user-provided JSSE X509TrustManager that indicates whether a given certificate chain is
trusted. You can also specify a Java keystore where certificate entries are trusted
using standard Java properties.

Organizational Unit The user's department name. No

Locality The city in which the user resides. No

Tag Description Required Component

10 VisiBroker Secur i ty Guide

Cert i f icate Revocat ion List (CRL) and revoked cert i f icate ser ia l numbers

C++

For VisiBroker for C++ users, the a set of APIs that allow trustpoints (trusted
certificates) to be configured is provided as well. For more information, see “VisiSecure
for C++ APIs.”

Certificate Revocation List (CRL) and revoked certificate serial
numbers

C++ Only

When signed public key certificates are created by a Certificate Authority (CA), each
certificate has an expiration date that indicates when it is no longer valid. However, in
order to address the case where a certificate becomes invalid for some reason before
the date of expiration, the Certificate Revocation List (CRL) feature is provided for
VisiSecure for C++. For more information about Certificate Authorities (CA)s, see the
“Certificates and Certificate Authority”.

Using the VisiSecure for C++ Certificate Revocation List (CRL) feature, you can set up
CRLs and check peer certificates against this list during SSL handshake
communication.

The CRL files must be in DER format and are stored in a directory. To input a CRL into
VisiSecure for C++, you need to set the vbroker.security.CRLRepository property to the
directory where the CRL files reside. For more information on VisiSecure for C++
properties, see “Security Properties for C++.”

Note

There can be more than one CRL file within the CRL Repository directory structure.

Once the CRLs are loaded, VisiSecure examines all certificates sent by a peer during
SSL handshake. If any of the peer certificates appears in the CRLs, an exception will
be thrown and the connection will be refused.

Negotiating Quality of Protection (QoP) parameters
When clients and servers communicate, they both need to agree on some parameters
for the Quality of Protection (QoP) that will be provided. The resource host (the server)
will:

– publish all the QoP parameters that it can support, and

– impose a set of required QoP parameters on the clients.

Note

By definition, a required QoP is also a supported QoP.

For example, a server may support and require secure transport (SSL) while it may
support authentication but not require it. This is useful, for example, in the case where
some resources are not sensitive and anonymous access is acceptable. For more
information about QoP and QoS parameters:

C++

See “QoP API”.

Java

See com.borland.security.csiv2 and “Security Properties for Java.”

 2 : Gett ing Star ted wi th Secur i ty 11

Secure Transportat ion

Secure Transportation
VisiSecure functions in two transport environments:

– using IIOP over plain sockets

– using secure sockets (SSL)

In intranet scenarios, it may be safe to transfer information (including sensitive data,
such as user authentication credentials) using IIOP over plain sockets. However, when
the network environment is not trusted (such as the Internet, or even an intranet), you
need to guarantee integrity (the message was not modified or tampered with during
transmission) and confidentiality (the message cannot be read by anybody even if they
intercepted it during transmission) of messages being transmitted over the network.
This is achieved by using secure sockets (SSL).

JSSE and SSL pluggability

Java

VisiSecure uses Java Secure Sockets Extension (JSSE) to perform SSL
communication. VisiSecure SPI Secure Socket Provider class provides access to the
underline SSL implementation. Any appropriate implementation following Java Secure
Socket Extension (JSSE) framework can be easily plugged in independent of other
provider mechanisms. The only necessary step is mapping the interfaces (or, in
another word, callback methods) defined to the corresponding JSSE implementation.
For more information on the SPI Secure Socket Provider class, see VisiSecure SPI for
Java and “Security SPI for C++.”

For the “out-of-box” installation of VisiBroker, the JSSE implementation provided by
Java SDK is used.

Setting the level of encryption

The SSL product uses a number of encryption mechanisms. These mechanisms are
industry-standard combinations of authentication, privacy, and message integrity
algorithms. This combination of characteristics is referred to as a cipher suite.

The client and server have a static list of supported cipher suites. This list is used
during the handshake phase of the connection to determine which cipher suite will be
used. The client sends a list of all cipher suites it knows to the server. The server then
takes this information and determines which cipher suites both the server and client
understand. By default, the server selects the strongest available cipher suite.

While this cipher suite order ensures strong security, you may want to adopt a different
cipher suite order based on application-specific security requirements. When you want
to change the order of the cipher suites, use the Quality of Protection (QoP) API
function calls; you can retrieve a list of the currently available cipher suites, then set the
list to a new order so weaker cipher suites are used before stronger cipher suites.

Note

You cannot add new cipher suites. You can modify only the order of the cipher suites
that are available and remove cipher suites you do not want to use.

Supported cipher suites
A cipher suite is a set of valid encoding algorithms used to encrypt data. Cipher suites
have different security levels and can serve different purposes. For example, some
ciphers provide for authentication while others do not; some provide for encryption and
others do not. Segments of the name of the cipher indicate what the cipher suite does
or does not provide.

12 VisiBroker Secur i ty Guide

Authorizat ion

The following table shows the cipher name segments and what these segments mean.

The list of supported ciphers for VisiSecure for Java, is determined by the JSSE
package used. As for VisiSecure for C++, the list can be located at csstring.h file
bundled with the installation.

Authorization
Authorization occurs after the user proves who he or she is (Authentication).
Authorization is the process of making access control decisions on requested
resources for an authenticated entity based on certain security attributes or privileges.
Following Java Security Architecture, VisiBroker adopts the notion of permission in
authorization. In VisiSecure, resource authorization decisions are based on
permissions. Borland uses a proprietary authorization framework based on users and
roles to accomplish authorization. For example, when a client accesses a CORBA or
Web request enterprise bean method, the application server must verify that the user
of the client has the authority to perform such an access. This process is called access
control or authorization.

Access Control List

Authorization is based on the user's identity and an access control list (ACL), which is a
list roles. Typically, an access control list specifies a set of roles that can use a
particular resource. It also designates the set of people whose attributes match those
of particular roles, and thus are allowed to perform those roles.

Roles-based access control

VisiSecure uses an access control scheme based on roles. The deployment descriptor
maintains a list of roles that are authorized to access each enterprise bean method.
VisiSecure uses a role database (a file whose default name is roles.db) to do the
association between user identities and EJB roles. If a user is associated with at least
one role, the user may access the method. For more information, see “Authorization.”

Pluggable Authorization

VisiSecure provides the ability to plug-in an authorization service that can map users to
roles. The implementer of the Authorization Service provides the collection of
permission objects granted access to certain resources. A new class, RolePermission is
defined to represent “role” as permission. The Authorization Services Provider in turn
provides the implementation on the homogeneous collection of RolePermissions
contained for an association between given privileges and a particular resource.

Cipher name Description

RC4 (through RC8) Symmetric encryption used in the cipher

MD5 Data integrity mechanism.

Data is sent clear, but a hash code is used at the receiving end to ensure
data integrity.

SHA Data integrity mechanism

WITH Authentication with encryption

ANON Uses DLT, an anonymous key exchange algorithm

NULL No encryption

EXPORT Public key size is limited.

Note: The larger the size of a public/private key, the more secure that
key is. This option is typically used for international (outside the United
States) users.

EXPORT1024 The maximum key size is limited to 1024 bytes.

 2 : Gett ing Star ted wi th Secur i ty 13

Context Propagat ion

The Authorization Service is tightly connected with the concept of Authorization
domain—each domain has exactly one Authorization Services Provider
implementation. The Authorization domain is the bridge between VisiSecure system
and the authorization service implementation. During the initialization of the ORB itself,
the authorization domains defined by the property vbroker.security.authDomains are
constructed, while the Authorization Services Provider implementation is instantiated
during the construction of the Authorization domain itself.

The Authorization Domain defines the set of rules that determine whether a user
belongs to a logical “role” or not.

For more information, see “Authorization.”

Context Propagation
In addition to ensuring the confidentiality and integrity of transmitted messages, you
need to communicate caller identity and authentication information between clients and
servers. This is called delegation. The caller identity also needs to be maintained in the
presence of multiple tiers in an invocation path. This is because a single call to a mid-
tier system may result in further calls being invoked on other systems which must be
executed based on the privileges attributed to the original caller.

In a distributed environment, it is common for a mid-tier server to make identity
assertions and act on behalf of the caller. The end-tier server must make decision on
whether the assertion is trusted or not. When propagating context, the client transfers
the following information:

– Authentication token—client's identity and authentication credentials.

– Identity token—any identity assertion made by this client.

– Authorization elements—privilege information that a client may push about the
caller and/or itself.

Identity assertions

Identity assertion occurs when several servers with secure components are involved in
a client request. At times, it is necessary for a server to act on behalf of its clients—
when a client request is passed from one server to another. This is typical in the case
where a client calls a mid-tier server, and the server further needs to call an end-tier
server to perform a part of the service requested by the client. At such times, the mid-
tier server typically needs to act on behalf of the client. In other words, it needs to let
the end-tier server know that while it (the mid-tier server) is communicating with the
end-tier server, access control decisions must be based on the original caller's
privileges and not its privileges.

For example, a client request goes to Server 1, and Server 1 performs the
authentication of the identity of the client. However, Server 1 passes the client request
to Server 2, which may in turn pass the request to Server 3, and so forth. See the
following diagram:

14 VisiBroker Secur i ty Guide

Context Propagat ion

Each subsequent server (Server 2 and Server 3) can assume that the client identity
has been verified by Server 1 and thus the identity is trusted. The server that ultimately
fulfills the client request, such as Server 3, need only perform the access control
authorization.

By default the identity is authenticated only at the first tier server and is asserted. It is
the asserted identity that propagates to other tiers.

Impersonation
Impersonation is the form of identity assertion where there is no restriction on what
resources the mid-tier server can access on the end-tier server. The mid-tier server
can perform any task on behalf of the client.

Delegation
The inverse of impersonation, delegation is the form of identity assertion where the
client explicitly delegates certain privileges to the server. In this case, the server is
allowed to perform only certain actions as dictated by the client. VisiSecure performs
only simple delegation.

Trusting Assertions

A server (end-tier) may choose to accept or not accept identity assertions. In the case
where it chooses to accept identity assertions, there are trust issues that present
themselves. While the server may know that the peer is authentic, it must also confirm
that the peer has the privilege to assert another caller or act on behalf of the caller.
Since the caller itself is not authenticated by the end-tier, and the end-tier accepts the
mid-tier's assertion, the end-tier needs to ensure that it trusts the mid-tier to have
performed proper authentication of the original caller. It, in turn, trusts the mid-tier's
trust in the authenticity of the caller.

 2 : Gett ing Star ted wi th Secur i ty 15

Context Propagat ion

There may be many peers to an end-tier system, some who are trusted as mid-tiers,
and some that are just clients. Therefore, the privilege to speak for other callers must
be granted only to certain peers.

Trust assertions and plug-ins
When a remote peer (server or process) makes identity assertions while acting on
behalf of the callers, the end-tier server needs to trust the peer to make such
assertions. The Security Provider Interface (SPI) allows you to plug in a Trust Services
Provider to determine whether the assertion is allowed (trusted) for a given caller and a
given set of privileges for the asserter. Specifically, you use the TrustProvider class to
implement trust rules that determine whether the server will accept identity assertions
from a given asserting subject. For more information, see sec-api-doc in the Help
sytem, and the “Security SPI for C++.”

Backward trust
Backward trust is provided “out of the box”, and is the form of trust where the server
has rules to decide who it trusts to perform assertions. With backward trust, the client
has no say whether the mid-tier server has the privilege to act on its behalf.

Forward trust
Forward trust is similar to delegation in that the client explicitly provides certain mid-tier
servers the privilege to act on its behalf.

Temporary privileges

At times, a server needs to access a privileged resource to perform a service for a
client. However, the client itself may not have access to that privileged resource.
Typically, in the context of an invocation, access to all resources are evaluated based
on the original caller's identity. Therefore, it would not be possible to allow this
scenario, as the original caller does not have access to such privileged resource. To
support this scenario, the application may choose to assume an identity different from
that of the caller, temporarily while performing that service. Usually, this identity is
described as a logical role, as the application effective requires to assume an identity
that has access to all resources that require the user to be in that role.

16 VisiBroker Secur i ty Guide

Using I IOP/HTTPS

Using IIOP/HTTPS
You can make use of HTTPS, featured in most browsers. The following guidelines
should be followed:

– The VisiBroker proxy server GateKeeper must be running with SSL enabled on the
exterior.

– An applet that only uses IIOP/HTTPS requires no pre installation of software (either
classes or native libraries) on the client as long as the browser or applet viewer is
HTTPS enabled.

– An applet using IIOP/HTTPS cannot use the X509Certificate[] class to set or
examine identities. All certificate and private key administration is handled by the
browser. Furthermore, when the ORBalwaysTunnel parameter in the applet tag is set to
true, the ORB cannot resolve SSLCurrent objects.

– To enable an applet to use only IIOP/HTTPS, set ORBalwaysTunnel to true in the
HTML page. If ORBalwaysTunnel is set to false (or unspecified) the ORB first tries to
use IIOP/SSL, which requires the SSL classes and native SSL library to be installed
locally.

– In general, IIOP/HTTPS is not available to Java applications because HTTPS is not
supported by the JDK. However, there are no restrictions in VisiBroker for Java that
prevent the addition of HTTPS support to the JDK and the use of IIOP/HTTPS in
Java applications.

Netscape Communicator/Navigator

You can freely use Netscape Communicator with IIOP/HTTPS, however, some
versions of Navigator require the installation of the CA certificate before allowing an
IIOP/HTTPS connection. Follow these guidelines to use IIOP/HTTPS with Netscape
Navigator:

– Make sure your server certificates are issued by a CA already trusted by Navigator.

– Install the root certificate into Navigator as a trusted certificate. Opening a certificate
file (for example, cacert.crt in bank_https) gives you the opportunity to install the
certificate.

– Use the GateKeeper to download the root certificate to the browser. The bank_https
example shows how to do this.

– Commercial CAs usually provide a link that allows you to install their root certificate.

– GateKeeper, by default, does not ask for the client identity. You can enable this
function by setting ssl_request_client_certificate to true in the GateKeeper
configuration file.

Microsoft Internet Explorer

To use IIOP/HTTPS with Microsoft Internet Explorer, you must make sure that the
HTTPS connection requires no user interaction. For example, if the browser visits a
HTTPS site with an untrusted root certificate, the browser will ask for permission before
establishing an HTTPS connection. The Microsoft JVM, due to a known bug, fails on
this connection.

Here are several examples that illustrate this condition and ways in which you can
work:

– Internet Explorer ships with a list of trusted Network Server Certificates Authority. If
your server certificate is not issued by one of the trusted CAs, (the certificates
shipped with bank_https, for example) IE asks for permission before establishing an
HTTPS connection. The IIOP/HTTPS operation fails because the Microsoft JVM

 2 : Gett ing Star ted wi th Secur i ty 17

Using I IOP/HTTPS

does not seem to support an HTTPS connection that requires user interaction. There
are a number of ways to handle this situation:

– Make sure your server certificates are issued by a CA already trusted by Internet
Explorer.

– Install the root certificate into IE as a trusted Network Server certificate. Opening a
certificate file (for example, cacert.crt in bank_https) gives you the opportunity to
install the certificate.

– Use the GateKeeper to download the root certificate to the browser. The
bank_https example shows how to do this.

– Commercial CAs usually provide a link that allows you to install their root
certificate.

– GateKeeper, by default, does not ask for the client identity. Although, you can enable
this function by setting ssl_request_client_certificate=true in the GateKeeper
configuration file, you cannot use IIOP/HTTPS because the browser asks for
permission before responding with the user's credentials.

Internet Explorer optionally requires the Common Name field within the server
certificate to be the same as the host name of the server. From the View|Internet
Options menu, select the Advanced tab and scroll to the Security section. Make sure
the box next to Warn about invalid site certificates is not checked to use a server
certificate that does not contain the host name of the server.

18 VisiBroker Secur i ty Guide

 3: Authent icat ion 1

Authentication
The first layer of security protection for any system is authentication (as well as identity
representation). This layer defines the process of verifying the entities are who they
claim to be. Most of the time, credentials are required to verify the identity of an entity.

VisiSecure employs the Java Authentication and Authorization Service (JAAS)
framework to facilitate the interaction between the entities and the system. At the same
time, the authentication mechanism concept is employed to represent the format
(encoding and decoding process) for communicating or transporting authentication
information between various components of the security subsystem.

JAAS basic concepts
The Borland Security Service (BSS) employs the Java Authentication and
Authorization Service (JAAS) framework to facilitate the interaction between the
entities and the system. Those who are new to the JAAS should familiarize themselves
with the terms JAAS uses for its services. Of particular importance are the concepts of
subjects, principals, and credentials.

Subjects

JAAS uses the term subject to refer to any user of a computing service or resource.
Another computing service or resource, therefore, is also considered a subject when it
requests another service or resource. The requested service or resource relies on
names in order to authenticate a subject. However, different services may require
different names in order to use them.

For example, your email account may use one username/password combination, but
your ISP requires a different combination. However, each service is authenticating the
same subject—;namely yourself. In other words, a single subject may have multiple
names associated with it. Unlike the example situation, in which the subject himself
must know a set of usernames, passwords, or other authentication mechanisms at a
specific time, JAAS is able to associate different names with a single subject and retain
that information. Each of these names is known as a principal.

2 VisiBroker Secur i ty Guide

JAAS basic concepts

Principals

A principal represents any name associated with a subject. A subject could have
multiple names, potentially one for each different service it needs to access. A subject,
therefore, comprises a set of principals, such as in the code sample below:

Java

public interface Principal {
 public String getName();
}
public final class Subject {
 public Set getPrincipals()
}

C++

class Principal {
 public:
 std::string getName() const=0;}
class Subject {
 public:
 Principal::set& getPrincipals();
}

Principals populate the subject when the subject successfully authenticates to a
service. You do not have to rely on public keys and/or certificates if your operational
environment has no need for such robust technologies.

To return the principle name(s) for a subject from the application context, use
getCallerPrincipal.

Note

Principals participating in transactions may not change their principal association within
those transactions.

Credentials

In the event that you want to associate other security-related attributes with a subject,
you may use what JAAS calls credentials. Credentials are generic security-related
attributes like passwords, public-key certificates, and such. Credentials can be any
type of object, allowing you to migrate any existing credential information or
implementation into JAAS. Or, if you want to keep some authentication data on a
separate server or other piece of hardware, you can simply store a reference to the
data as a credential. For example, you can use JAAS to support a security-card reader.

Public and private credentials
Credentials in JAAS come in two types, public and private. Public credentials do not
require permissions to access them. Private credentials require security checks. Public
credentials could contain public keys, and such, while private credentials are private
keys, encryption keys, sensitive passwords, and such. Consider the following subject:

Java

public final class Subject {
 ...
 public Set getPublicCredentials()
}

C++

class Subject {
 public:

 3: Authent icat ion 3

JAAS basic concepts

 Credential::set& getPrivateCredentials();
}

No additional permissions would be necessary to retrieve the public credentials from
the subject, except in the case:

4 VisiBroker Secur i ty Guide

Authent icat ion mechanisms and LoginModules

Java

public final class Subject {
 ...
 public Set getPrivateCredentials()
}

C++

class Subject {
 public:
 Credential::set& getPrivateCredentials();
}

For Java, permissions are required for code to access private credentials in a Subject.
For cpp, all codes are local and therefore trusted. No permission required to access
both public and private credentials. For more information on permissions in Java,
consult the JAAS Specification from Sun Microsystems.

Authentication mechanisms and LoginModules
An authentication mechanism represents the encoding/decoding for communicating
authentication information between various components of the security subsystem. For
example, it represents how LoginModules communicate with the mechanism and how
the mechanism on one process communicates with an equivalent mechanism on
another process.

VisiSecure includes several common LoginModules for server and client authentication
as well as the Security Provider Interface classes for Java and C++ that enable you to
“plug-in” security service provider implementations of authentication and identification.

Authentication realms

An authentication realm represents a single user authentication mechanism,
customized to point to a datasource which contains user information . This allows the
authentication mechanism to be independent of the actual user database and therefore
be used with multiple user databases that support the same authentication
mechanism. For example, if a vendor writes an authentication module to work with
LDAP, that mechanism can then be used to interact with different LDAP directories in
different environments, without having to rewrite or otherwise modify the authentication
mechanism.

For more information on the authentication realm (user domain), see “Basic security
model”.

LoginModules

A LoginModule defines an authentication mechanism and provides the code to interact
with a specific type of authentication mechanism. Each LoginModule is customized
using authentication options that point it to a specific data source and provide other
customizable behavior as defined by the author of the LoginModule.

Each LoginModule authenticates to a particular authentication realm (any
authenticating body or authentication provider—;for example, an NT domain). An
authentication realm is represented by a configuration entry in a JAAS configuration
file. A JAAS configuration entry contains one or more LoginModule entries with
associated options to configure the realm. For more information, see “Associating a
LoginModule with a realm”.

 3: Authent icat ion 5

LoginContext c lass and LoginModule interface

LoginContext class and LoginModule interface
VisiSecure uses the class LoginContext as the user API for the authentication
framework. The LoginContext class uses the JAAS configuration file to determine which
authentication service to plug-in under the current application.

Java

public final class LoginContext {
 public LoginContext(String name)
 public void login()
 public void logout()
 public Subject getSubject()
}

C++

class LoginContext{
 public:
 LoginContext(const std::string& name, Subject *subject=0,
CallbackHandler *handler=0);
 void login();
 void logout();
 Subject &getSubject() const;
}

The authentication service itself uses the LoginModule interface to perform the relevant
authentication.

Java

public interface LoginModule {
 boolean login();
 boolean commit();
 boolean abort();
 boolean logout();
}

C++

class LoginModule {
 public:
 virtual bool login()=0;
 virtual bool logout()=0;
 virtual bool commit()=0;
 virtual bool abort()=0;
}

It is possible to stack LoginModules and authenticate a subject to several services at
one time.

6 VisiBroker Secur i ty Guide

LoginContext c lass and LoginModule interface

Authentication and stacked LoginModules

Authentication proceeds in two phases in order to assure that all stacked LoginModules
succeed (or fail, otherwise).

1 The first phase is the “login phase,” during which the LoginContext invokes login()
on all configured LoginModules and instructs each to attempt authentication.

2 If all necessary LoginModules successfully pass, the second, “commit phase”
begins, and LoginContext calls commit() on each LoginModule to formally end the
authentication process. During this phase the LoginModules also populate the
subject with whatever credentials and/or authenticated principals are necessary for
continued work.

Note

If either phase fails, the LoginContext calls abort() on each LoginModule and ends all
authentication attempts.

 3: Authent icat ion 7

Associat ing a LoginModule wi th a realm

Associating a LoginModule with a realm
The Borland VisiBroker Server uses the JAAS configuration file to associate a
LoginModule with a realm and store that information. The JAAS configuration file
contains an entry for each authentication realm. The following is an example of a JAAS
configuration entry:

MyLDAPRealm {
 com.borland.security.provider.authn.LDAPModule required URL=ldap://
directory.borland.com:389
}

The following figure shows the elements of a realm entry in the JAAS configuration file.

Figure 3.1 Realm entry in a JAAS config

A server can support multiple realms. This allows clients to authenticate to any one of
those realms. In order for a server to support multiple realms, all you need to do is
configure the server with that many configuration entries. The name of the
configuration entries is not predefined and can be user defined, for example
PayrollDatabase.

Note

There must be at least one LoginModule with the authentication requirements
flag=required.

8 VisiBroker Secur i ty Guide

Associat ing a LoginModule with a realm

Syntax of a realm entry

Each realm entry has a particular syntax that must be followed. The following code
sample shows the generic syntax for a realm entry:

//server-side realms for clients to authenticate against
realm-name {
 loginModule-class-name required|sufficient|requisite|optional
 [loginModule-properties];
 ...
};

Note

The semicolon (“;”) character serves as the end-of-line for each LoginModule entry.

The following four elements are found in the realm entry:

– Realm Name—;the logical name of the authentication realm represented by the
corresponding LoginModule configuration

– LoginModule Name—;the fully-qualified class name of the LoginModule to be used

– Authentication Requirements Flag—;there are four values for this flag—required,
requisite, sufficient, and optional. You must provide a flag value for each
LoginModule in the realm entry. Overall authentication succeeds only if all required
and requisite LoginModules succeed. If a sufficient LoginModule is configured and
succeeds, then only the required and requisite LoginModules listed prior to that
sufficient LoginModule need to have succeeded for the overall authentication to
succeed. If no required or requisite LoginModules are configured for an application,
then at least one sufficient or optional LoginModule must succeed. The four flag
values are defined as follows:

– required—;the LoginModule is required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list for each
realm.

– requisite—;the LoginModule is required to succeed. If it succeeds, authentication
continues down the LoginModule list in the realm entry. If it fails, control
immediately returns to the application—that is, authentication does not proceed
down the LoginModule list.

– sufficient—;the LoginModule is not required to succeed. If it does succeed,
control immediately returns to the application—again, authentication does not
proceed down the LoginModule list. If it fails, authentication continues down the
list.

– optional—;the LoginModule is not required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

– LoginModule-specific properties—;each LoginModule may have properties that
need to be provided by the server administrator. The necessary properties for each
LoginModule provided by Borland are described below.

 3: Authent icat ion 9

Bor land LoginModules

Borland LoginModules
Borland provides the following common LoginModules for server and client
authentication. These LoginModules are used for both client authentication and
authentication of the Borland VisiBroker Server itself to its operating environment.

Not all LoginModules have the same properties, and your own LoginModules may have
different properties as well. Each LoginModule included with VisiBroker is described
below, its syntax and properties explained, and a realm entry code sample is provided.

– BasicLoginModule—this LoginModule uses a proprietary schema to store and
retrieve user information. It uses standard JDBC to store its data in any relational
database. This module also supports the proprietary schema used by the Tomcat
JDBC realm.

– JDBC LoginModule—this LoginModule uses a standard JDBC database interface to
authenticate the user against native database user tables.

– LDAP LoginModule—similar to the JDBC LoginModule, but uses LDAP as its
authentication back-end.

– Host LoginModule—for authentication to the operating system hosting the server.
This is the only LoginModule supported for C++.

Basic LoginModule

This LoginModule uses a proprietary schema to store and retrieve user information. It
uses standard JDBC to store its data in any relational database. This module also
supports the proprietary schema used by the Tomcat JDBC realm.

realm-name {
 com.borland.security.provider.authn.BasicLoginModule authentication-
requirements-flag
 DRIVER=driver-name
 URL=database-URL
 TYPE=basic|tomcat
 LOGINUSERID=user-name
 LOGINPASSWORD=password
 [USERTABLE=user-table-name]
 [GROUPTABLE=group-table-name]
 [GROUPNAMEFIELD=group-name-field-of-GROUPTABLE]
 [PASSWORDFIELD=field-name]
 [USERNAMEFIELDINUSERTABLE=field-name]
 [USERNAMEFIELDINGROUPTABLE=field-name]
 [DIGEST=digest-name]
};

10 VisiBroker Secur i ty Guide

Borland LoginModules

The elements in square brackets (“[..]”) are used only if authenticating to the Tomcat
Realm, where they would be required. Otherwise, the remaining properties are
sufficient.

Premium {
 com.borland.security.provider.authn.BasicLoginModule required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/userauthinfo1.jds"
 Realm="Basic"
 LOGINUSERID="CreateTx"
 LOGINPASSWORD="";
};

Since password should never be stored in clear text, VisiSecure always performs
digest on the password and stores the result into database. The digesttype option
defines the digest algorithm for this. By default, an SHA algorithm is used for basic-
typed schema, while MD5 is used for tomcat-typed schema. You can change it by
including and setting a digesttype option. In the case the corresponding digest type
engine cannot be found by the JVM, SHA is used instead. If an SHA engine cannot be
found either, the authentication will always fail.

JDBC LoginModule

This LoginModule uses a standard JDBC database interface for authentication.

Property Description

DRIVER Fully-qualified class name of the database driver to
be used with the password backend. For example,
com.borland.datastore.jdbc.DataStoreDriver

URL Fully-qualified URL of the database used for the
realm.

TYPE The schema to use for this realm. This LoginModule
supports the schema used by the Tomcat JDBC
realm and can be made to use that schema. Set this
to “TOMCAT” to use the Tomcat schema. Set this to
“basic” to use the Borland schema.

Note: If this property is set to “TOMCAT,” all other
properties in square braces (“[..]”) must also be set.

LOGINUSERID Username needed to access the password backend
database.

LOGINPASSWORD Password needed to access the password backend
database.

[USERTABLE] Table name under which the username/password to
be authenticated is stored.

[USERNAMEFIELDINUSER-TABLE] The field name in USERTABLE where the userID
can be read.

[USERNAMEFIELDIN-GROUPTABLE] The field name in GROUPTABLE where the userID
can be read, different from that in the USERTABLE.

[PASSWORDFIELD] The field name in USERTABLE containing the
password for the username to be authenticated.

[GROUPTABLE] Table name under where the group information for
the user is stored. When TYPE is set to “TOMCAT,”
the attribute represented by entries in this table are
treated as roles rather than groups.

[GROUPNAMEFIELD] Name of the field in GROUPTABLE containing the
group name to be associated with the user. When
TYPE is set to “TOMCAT,” the attribute represented
by entries in this table are treated as roles rather
than groups.

[DIGEST] The algorithm to use for digesting the password. This
defaults to SHA under basic circumstances, but
defaults to MD5 when TYPE is set to “TOMCAT”.

 3: Authent icat ion 11

Bor land LoginModules

realm-name {
 com.borland.security.provider.authn.JDBCLoginModule authentication-
requirements-flag
 DRIVER=driver-name
 URL=database-URL
 [DBTYPE=type]
 USERTABLE=user-table-name
 USERNAMEFIELD=user-name-field-of-USERTABLE
 ROLETABLE=role-table-name
 ROLENAMEFIELD=field-name
 USERNAMEFIELDINROLETABLE=field-name
};

LIMS {
 com.borland.security.provider.authn.JDBCLoginModule required
 DRIVER="com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:/Security/java/prod/userauthinfo.jds"
 USERTABLE=myUserTable
 USERNAMEFIELD=userNames
 ROLETABLE=myRoles
 ROLENAMEFIELD=roleNames
 USERNAMEFIELDINROLETABLE=userRole
 USERNAME="\n"
 PASSWORD="\n";
};

LDAP LoginModule

Similar to the JDBC LoginModule, but using LDAP as its authentication backend.

realm-name {
 com.borland.security.provider.authn.LDAPLoginModule authentication-
requirements-flag
 INITIALCONTEXTFACTORY=connection-factory-name

Property Description

DRIVER Fully-qualified class name of the database
driver to be used with the realm. For example,
com.borland.datastore.jdbc.DataStoreDriver

URL Fully-qualified URL of the database used for
the password backend.

[DBTYPE=
ORACLE|SYBASE|SQLSERVER|INTERBASE]

Supported database types. If this option is
specified, the table information is
preconfigured and need not be specified. The
username/password still need to be specified
to allow access to the system tables.

USERTABLE Table name under where the database stores
users.

USERNAMEFIELD The field name in USERTABLE containing the
usernames.

ROLETABLE Table name where the database stores the
roles of users.

ROLENAMEFIELD Field name in ROLETABLE where role information
is stored.

USERNAMEFIELDINROLE-TABLE The username field name in the ROLETABLE.

USERNAME The username needed to access the
password backend database.

PASSWORD The password needed to access the
password backend database.

12 VisiBroker Secur i ty Guide

Server and Cl ient Ident i f icat ion

 PROVIDERURL=database-URL
 SEARCHBASE=search-start-point
 USERATTRIBUTES=attribute1, attribute2, ...
 USERNAMEATTRIBUTE=attribute
 QUERY=dynamic-query
};

Host LoginModule

The HostLoginModule is used to authenticate to a UNIX or NT-based network.

realm-name {
 com.borland.security.provider.authn.HostLoginModule authentication-
requirements-flag;
};

No additional properties are necessary for the Host LoginModule.

Snoopy {
 com.borland.security.provider.authn.HostLoginModule required;
};

Server and Client Identification
In addition to the many clients and users that need to be authenticated to the various
VisiBroker services, the Borland VisiBroker Server itself needs to be provided with its
own identity. This allows the server to identify itself when it communicates with other
secure servers or services. It also allows end-tier servers to trust assertions made by

Property Description

INITIALCONTEXTFACTORY The InitialContextFactory class that is used by JNDI to bind to LDAP.

PROVIDERURL The URL to the LDAP server of the form ldap://<servername>:<port> .

SEARCHBASE The search base for the Directory to lookup.

USERATTRIBUTES This option controls the attributes that are retrieved for a given user. This is a comma
separated list of attributes that will be retrieved and stored for an authenticated user.
These attributes can then be used in the authorization rules to determine whether a user
belongs to a given role.

USERNAMEATTRIBUTE This attribute represents what the user types in as the username. If set to uid, it would
allow users to type their uid when asked for a username. If set to mail, it would allow the
user to type their email when asked for a user name. When set to DN, the user will types
their full DN to authenticate themselves.

QUERY The Query options provides a mechanism to dynamically query the LDAP for other
information and represent the results as attributes. For example, a user can be a
member of a set of groups. It is useful to extract this information as the GROUP attribute so
that it can be used in rules in the authorization domain. To achieve this, you can specify
a query. Queries are of the format:

query.<suffix>="<attrname>=<ldap filter>";

The suffix can be anything that uniquely identifies this entry and there can be
any number of queries specified. To insert the user's DN as part of the query,
you should use {0}. The LDAPLoginModule will then replace the {0} with the
actual DN of the user. For example, to query groups and store the results in the
GROUP attribute, you say:

query.1="GROUP=(&(ou=groups)(uniquemember={0}))";

This will select all the groups (whose ou attribute has the value groups) that the
user belongs to whose uniquemember attribute contains the user's DN, then
stores the CN of the objects returned as the result as the values for the GROUP
attribute for that user. If the attribute name specified is ROLE, then this attribute's
treatment is exactly like that of the JDBCLoginModule. This mechanism can be
used to store user roles in LDAP.

 3: Authent icat ion 13

Server and Cl ient Ident i f icat ion

this server in the case where this server acts on behalf of other clients. In general, any
system that needs to engage in secure communication as a client, must be configured
to have an identity that represents the user/client on whose behalf it is acting. When
using SSL with mutual authentication, a server also needs a certificate to identify itself
to the client.

Setting the config file for client authentication

Each process uses its own configuration file containing the configuration for the set of
authentication realms that the system supports for client authentication.

To set the location of the configuration file:

– Set the vbroker.security.authentication.config property to the path of the
configuration file.

System Identification

The security configuration uses properties and a configuration file to define the
identities that represent the system. This configuration file is populated with all the
LoginModules necessary for authentication to the various realms to which this process
needs to authenticate.

For example:

Set the property vbroker.security.login=true
Set the property vbroker.security.login.realms=payroll,hr
Set the following realm information in a file reference by
vbroker.security.authentication.config=<config-file>
Set the property vbroker.security.callbackhandler=<callback-handler>

In the <config-file> setup the following:

payroll {
com.borland.security.provider.authn.HostLoginModule required;
};

hr {
 com.borland.security.provider.authn.BasicLoginModule required
 DRIVER=com.borland.datastore.jdbc.DataStoreDriver
 URL="jdbc:borland:dslocal:../userdb.jds"
 TYPE=BASIC
 LOGINUSERID=admin
 LOGINPASSWORD=admin;
};

In this code sample:

– The process will already know something about the realms to which it needs to
authenticate through the property vbroker.security.login.realms.

– The process knows it will authenticate to the host on which it is running (logically
representing the “payroll” realm), and so sets itself up to invoke this LoginModule.

– The process also knows that it must log into the “hr” realm, and so sets up a
LoginModule to this end as well.

The format of the realm information passed into vbroker.security.login.realms is as
follows:

<authentication Mechanism>#<Authentication Target>

This format is called Formatted Target.

14 VisiBroker Secur i ty Guide

Server and Cl ient Ident i f icat ion

Formatted Target

A “realm” represents a configuration entry that represents an authenticating target. In
the absence of a configuration file (such as in a client process, or for certificates, which
have no representation in a JAAS config file), there needs to be a way to represent a
target realm. This is done using a “formatted target”. A formatted target is of the form:

<authentication mechanism>#<mechanism specific target name>

For example:

Realm1, Realm3, GSSUP#Realm4, and Certificate#ALL.

An authentication mechanism represents a “format” for communicating authentication
information between various components of the security subsystem. For example, it
represents how LoginModules communicate with the mechanism and how the
mechanism on one process communicates with an equivalent mechanism on another
process. The mechanism specific target name represents how the mechanism
represents this target.

GSSUP mechanism
VisiSecure provides a mechanism for a simple username/password authentication
scheme. This mechanism is called GSSUP. The OMG CSIv2 standard defines the
interoperable format for this mechanism. The LoginModule to mechanism interaction
model is defined by Borland. This is because the mechanism implementation needs to
translate the information provided by a LoginModule to information (to a specific
format) it can transmit over the wire using CSIv2.

As mentioned above, the target name for a mechanism is specific to that mechanism.
For the GSSUP mechanism, the target name is a simple string representing a target
realm (for example, in the JAAS configuration file, on the receiving tier). So, if a server
has a configuration file with one realm defined, for example “ServerRealm”, a client
side representation of this realm would be:

GSSUP#ServerRealm

Note

For convenience, since the GSSUP mechanism is always available in VisiBroker, you
can omit the “GSSUP#” from the target name. However, this is only for the GSSUP
mechanism. When the security service interprets a “realm” name, it first attempts to
resolve the realm name with a local JAAS configuration entry. If that fails, it treats that
realm name as representing “GSSUP#”.

Certificate mechanism
The Certificate mechanism is a mechanism that is used for identification using
certificates. This mechanism is different from GSSUP; certificates are used instead of
username/password, and these identities are used at the SSL layer and not at the
higher CSIv2 over IIOP layer.

You can put certificates into VisiSecure using certificate login or wallet APIs. When
using wallet APIs, you need to specify the usage through the constant definitions in the
vbsec.h file, class vbsec::WalletFactory. For more information, see “class
vbsec::WalletFactory”.

Using certificate login, you need to specify the target realm using the following format:

Certificate#<target>

Note

If you do not specify the usage, the default is ALL.

 3: Authent icat ion 15

Server and Cl ient Ident i f icat ion

The following describes the available targets defined for the certificate login
mechanism.

A process can have either a client and server identity that are different or an identity
that is used in all roles, but not both. In other words, you cannot establish an identity in
the Certificate#CLIENT and the Certificate#ALL targets simultaneously.

Note

For backward compatibility, wallet properties and SSL APIs are supported; certificate
identities established this way are only treated as Certificate#ALL.

Using a Vault

When running clients, the security subsystem has the opportunity to interact with users
to acquire credentials for authentication. This is done using a callback handler as
defined by JAAS. However, when running servers (your Visibroker server or a
Partition), it is not desirable or even possible to have user interaction at start up time. A
typical example of this if the server is started as a service at the startup time of a host
or from a automated script of some sort.

The vault was designed to provide the identity information to the security subsystem in
such environments. Note that the vault itself is not directly tied to the security
subsystem. It is merely a tool to replace the user interaction. In other words, a vault
does not contain authenticated credentials. The security service will perform all
appropriate authentication, but will receive information from the vault rather than by
interacting with a callback handler. Due to the fact that no user interaction is required,
the data in the vault, while sufficiently secure, does contain sensitive information (the
usernames and passwords). Hence the vault file that is used for authentication of such
servers must be protected using host security mechanisms (file permissions for
example) or other equivalent approaches.

Creating a Vault
To create a vault, you can use the vaultgen command-line tool from your installation's
bin directory. It's usage is as follows:

vaultgen [<driver-options>] -config <config.jaas-file> -vault <vault-name>
[<options>] <command>

<driver-options> are optional, and can be any of the following:

– -J<option>: passes a -J Java option directly to the JVM

– -VBJVersion: prints VBJ version information

– -VBJDebug: prints VBJ debugging information

– -VBJClasspath: specify a classpath that will precede the CLASSPATH environment
variable

– -VBJProp <name=value>: passes the name/value pair to the VM

– -VBJjavavm: specify the path to the Java VM

– -VBJaddJar <jar-file>: appends the JAR file to the CLASSPATH before executing the
VM

Target Description

Certificate#CLIENT Identifies this process in a client role. When a user establishes an
identity for this target, the certificate identity established will be used
when this process acts as a client. In other words, this certificate will
identify this process when it establishes outgoing SSL connections.

Certificate#SERVER Identifies this process in a server role. When a user establishes an
identity for this target, this process will use the certificate identity
established to identify itself when it is accepting SSL connections.

Certificate#ALL Identifies this process in all roles. This identity is used in both of the
above roles.

16 VisiBroker Secur i ty Guide

Server and Cl ient Ident i f icat ion

-config <config.jaas-file> points to the location of the config.jaas file containing the
realms the identities in the vault will authenticate to. -vault <vault-name> is the path to
the vault to be generated. You can also specify an existing vault in order to add
additional identities to it.

<options> are other optional arguments, and can be any of the following:

– -?, -h, -help, -usage: prints usage information

– -driverusage: prints usage information, including driver options

– -interactive: enables an interactive shell

<command> is the command you want vaultgen to execute. You can select any one of the
following:

– login <realm|formatted-target>: establishes an identity in the vault for a given realm
or formatted target. The identity is first established when the vault is used for login
during system startup.

– logout <realm|formatted-target>: removes an identity from the vault for a given realm
or formatted target.

– runas <alias> <realm>: configures a run-as alias with the identity provided for a given
realm.

– removealias <alias>: removes a configured run-as alias from the vault.

– realms: lists the available realms for this configuration.

– mechanisms: lists the available mechanisms (for formatted targets) for this
configuration.

– aliases: lists configured aliases in the vault.

– identities: lists configured identities in the vault.

 3: Authent icat ion 17

Server and Cl ient Ident i f icat ion

VaultGen example
Let's look at an example of VaultGen. Let's say we want to create a vault called MyVault
for use with a domain called base. First, we need to know which security profile the
domain is using so that we can reference its config.jaas file. We check the value of the
domain's vbroker.security.profile property in the domain's orb.properties file:

#
Security for the user domain
#
Disable user domain security by default
vbroker.security.profile=default
vbroker.security.vault=${properties.file.path}/../security/scu_vault

The name of the security profile is default. This tells us that the path to the profile's
config.jaas file is:

c:/BDP/var/security/profiles/default/config.jaas

Now we can check which realms are contained in the profile for which we want to
create identities. We navigate to the installation's bin directory, and use the realms
command:

c:\BDP\bin> vaultgen -config ../var/security/profiles/default/config.jaas -
vault myVault realms

vaultgen tells us the following realms are available:

The following realms are available:
- UserRealm
- MikeRealm
- BenRealm

Next we execute vaultgen using the login command:

c:\BDP\bin> vaultgen -config ../var/security/profiles/default/config.jaas -
vault myVault login UserRealm

vaultgen prompts us for the username and password for the UserRealm, which we enter.
We then repeat the process for each additional realm. At the end of each command,
vaultgen informs us that it has logged-in the new identity and saved changes to
MyRealm.

Logged into realm BenRealm
Generating Vault to MyVault

The vault is created in the directory you specify in the command, in this case the bin
directory. A good place to put the actual vault files are in the domain's security
directory, located in:

<install-dir>/var/domains/<domain-name>/adm/security/

18 VisiBroker Secur i ty Guide

Client identification

There are situations, however, where the client process does not have any information
on the realm that it needs to authenticate against. In this case, by default the client
consults the server's IOR for a list of available realms, and the user is given the option
to choose one to which to supply username and password. This username/password
will be used by the server, which will consult its configuration file for the specified
realm, and use the information collected from the client as data for its specified
LoginModule.

For example, if the following is the server side configuration file, then the information
collected or entered by a user will be used for its JDBCLoginModule.

SecureRealm{
 com.borland.security.provider.authn.JDBCLoginModule required
 DRIVER=F"com.borland.datastore.jdbc.DataStoreDriver"
 URL="jdbc:borland:dslocal:../userdb.jds"
 USERNAMEFIELD="USERNAME"
 GROUPNAMEFIELD="GROUPNAME"
 GROUPTABLE="UserGroupTable"
};

The default behavior of the process can be changed through properties. You can set
the retry count by setting vbroker.security.authentication.retryCount. The default is 3.
The security properties including those for authentication are listed and described in
the “Security Properties for Java” and “Security Properties for C++.”

 4: Author izat ion 1

Authorization
Authorization is the process of verifying that the user has the authority to perform the
requested operations on the server. For example, when a client accesses an enterprise
bean method the application server must verify that the user of the client has the
authority to perform such an access. Authorization occurs after authentication
(confirming the user's identity).

Authorization is based on the user's identity and an access control list (ACL), which is a
list of who can access designated functions. Typically, an access control list specifies a
set of roles that can use a particular resource. It also designates the set of people
whose attributes match those of particular roles, and who are then allowed to perform
actions in those roles.

Borland uses an access control scheme based on roles. The deployment descriptor
maintains a list of roles that are authorized to access each enterprise bean method.
The Borland Security Service uses a role database (Role DB) to associate user
identities with EJB roles. If a user is associated with at least one allowed role, the user
may access the method.

Defining access control with Role DB
Role DB is a text file containing the roles and the access IDs associated with those
roles. Each role in Role DB constitutes a role entry.

In VisiBroker, the Role DB file is located with the Security Profiles in the Borland
Deployment Platform installation footprint:

<install-dir>/var/security/profiles/<profile-name>/

The default Role DB, default.rolemap, is located in:

<install-dir>/var/security/profiles/default/default.rolemap

In VisiBroker, the location of the rolemap file is specified through the property
vbroker.security.domain.<authorization-domain>.rolemap_path

The Role DB file is used to determine the access rights of principals (client identities).
Each role defined in the Role DB has client identities assigned to it. Access rights are
granted based on roles rather than specific client identities. For example, the
application may recognize a Sales Clerk role. User identities for all sales clerks can be
assigned to the Sales Clerk role. Later, the Sales Clerk role is granted the right to
perform certain operations, such as an add_purchase_order method, for example. All
sales clerks associated with the Sales Clerk role are able to perform
add_purchase_order.

2 VisiBroker Secur i ty Guide

Def in ing access control wi th Role DB

Anatomy of Role DB

The Role DB file itself has the following form, and can contain multiple role entries:

role-name {
 assertion1 [, assertion2, ...]
 ...
 [assertion-n]
 ...
}
role-name2 {
 assertion3 [, assertion4, ...]
 ...
 [assertion-n]
 ...
}

A role entry is made up of a role name and a list of rules within curly braces (“{}”). A role
must be made up of one or more rules. Each rule is a single line containing a list of
comma-separated assertions for proper access identifications. Similarly, each rule
must contain one or more assertions.

Each line in the Role Entry is a rule. Rules are read top-to-bottom, and authorization
proceed until one succeeds or none succeed. That is, each rule is read as though
separated by an “OR” operator. Assertions are separated on the same line by a comma
(“,”). Assertions are read left-to-right, and all assertions must succeed in order for the
rule to succeed. That is, each assertions in a rule is read as though separated by an
“AND” operator.

Each rule must contain all necessary security information for a given Principal's
security credentials. That is, each principal must have at least those attributes required
from the rule—or exactly all the listed attributes. Otherwise authorization will not
succeed.

Assertion syntax

There are a variety of ways to specify rules using logical operators with attribute/value
pairs that represent the access identifications necessary for authorization. There is
also a simplified syntax using the wildcard character (“*”) to give your rules more
flexibility. Both of these are discussed below.

 4: Author izat ion 3

Def in ing access control with Role DB

Using logical operators with assertions
Two logical operators are available in specifying attribute/value pairs.

A value can be any string, but the wildcard character, “*” has special uses. For
example, the attribute/value pair GROUP=* matches for all GROUPs. The following role
has two associated rules:

manager {
 CN=Kitty, GROUP=*
 GROUP=SalesForce1, CN=*
}

The role manager has two rules associated with it. In the first rule, anyone named Kitty
is authorized for manager, regardless of Kitty's associated group at the time. The second
rule authorizes anyone in the group SalesForce1, regardless of their common-name
(CN).

Wildcard assertions
For complicated security hierarchies, it may be prudent to only look for only one or two
attributes from the hierarchy in order to authorize a principal. Borland's security
hierarchy starts with GROUPs at the top, then branching out into ORGANIZATIONs
(O) and ORGANIZATIONAL UNITS (OU), and finally settling on COMMON NAMEs
(CN).

For example, you may want to define a security role called SalesSupervisor that allows
method permissions for managers of the sales force. (For this example, “sales” is the
ORGANIZATION and “managers” is the ORGANIZATIONAL UNIT. You could do so
with the following rule:

SalesSupervisor {
 GROUP=*, O=sales, OU=managers, CN=*
}

This rule does not specify values for GROUP or for COMMON NAME (presumably
because they are not necessary). But remember, each rule must represent all possible
values for a Principal's credentials. There are other means of representing this same
information in a smaller space using wildcard assertions.

You make a wildcard assertion by placing the wildcard character (“*”) in front of the
assertion(s) in one of two ways. You may place the wildcard character in front of a
single assertion, meaning that all possible security attributes are accepted but they
must contain the single assertion. Or, you may place the wildcard character in front of a
list of assertions separated by commas within parentheses. This means all possible
security attributes are accepted but they must contain the assertions listed in the
parentheses.

Operator Description Example

attribute = value equals: attribute must equal value for authorization rule to
succeed.

CN=Russ Simmons

attribute != value not equal: attribute must not equal value for authorization
rule to succeed.

CN!=Rick Farber

4 VisiBroker Secur i ty Guide

Authorizat ion domains

Making use of wildcard assertions, the role could also look like this:

SalesSupervisor {
 *O=sales, *OU=managers
}

Or, even more simply:

SalesSupervisor {
 *(O=sales, OU=managers)
}

All three code samples are different versions of the same rule.

Other assertions

Each role provides limited extensibility to others. You may, as a part of a role entry,
specify a role=existing-role-name assertion that can extend an earlier role. You can
also use customized code as your authorization mechanism rather than Role DB
syntax by using the Authorization Provider Interface.

Recycling an existing role
You can refer to the rules from an existing role by using the rule-reference assertion—
role=role-name. For example, let's say we have a group of marketers who are also
sales supervisors that need to be authorized to the same code as Sales Supervisors.
Building upon the SalesSupervisor code sample, we can create a new role entry as
follows:

MarketSales {
 role=SalesSupervisor
 *(OU=marketing)
}

Now, everyone in role SalesSupervisor has access to the MarketSales role, as does
anyone in the “marketing” OU.

Authorization domains
Each Role DB file is associated with an authorization domain. An authorization domain
is a security context that is used to separate role DBs and hence their authorization
permissions. For more information on the authorization domain in the context of the
basic security model, see “Basic security model”.

EJBs can be deployed to multiple security contexts with different permissions and
roles.

Note

An authorization domain is associated with an EJB in its deployment descriptor.

You may use as many authorization domains as you wish, provided they are all
registered with the VisiBroker ORB. You must do the following for each of your
authorization domains:

– give it a name,

– set up default access,

– set up the Role DB,

– and set up alias(es).

 4: Author izat ion 5

CORBA author izat ion

To accomplish these items, the following properties must be set. For more information
about these properties, see “Security Properties for Java” or “Security Properties for
C++”:

Run-as Alias

Note

Run-as aliases are not available under C++.

A Run-as Alias is a string identifying an authentication identity. It is defined in the vault
and scoped within the VisiBroker ORB. This alias then represents a particular user.
The identity is mapped to the alias using either the Context APIs or by defining it in the
vault. The vault can contain a list of run-as aliases and the corresponding
authenticating credentials for the identity to run-as. In both cases, the authenticating
credentials (from the vault or wallet) are passed to the LoginModules, which
authenticate those credentials and set them as fully authenticated identities
corresponding to those credentials in the run-as map.

Authorization domains are then configured to run-as a given alias for a role in that
domain. When a request is made to run-as a given role, then the authorization domain
for that context is consulted to get the corresponding run-as alias. The run-as map is
then consulted to get the identity corresponding to that alias, and this identity is used.

Run-as identities can also be configured to be certificate identities and not just
username/password identities.

Run-as mapping

Note

Run-as mapping is not available under C++.

Setting the vbroker.security.domain.<domain-name>.runas.<role-name> property
effectively maps an alias to a bean's run-as role. Upon successful authorization, but
before method invocation, the container checks the Run-as role specified in the EJB's
deployment descriptor for the called method. If a run-as role exists, the container
checks to see if there is an alias as well. If there is, when the bean makes an outgoing
invocation it switches to the identity for that alias.

If, however, no alias is specified (that is, the run-as role name is set to use-caller-
identity), the caller principal name is used.

CORBA authorization
Authorization in the CORBA environment allows only identities in specific roles for a
given object can access that object. An object's access policy is specified by means of

Property Description

vbroker.security.authDomains=<domain1>
[, <domain2>, <domain3>, ...]

A list of the authorization domain names

vbroker.security.domain.<domain-
name>.defaultAccessRole=grant|deny

Whether or not to grant access to the domain by
default in the absence of security roles for
<domain-name>

vbroker.security.domain.<domain-
name>.rolemap_path=<path>

Path of the Role DB file associated with the
authorization domain domain-name. Although
this can be a relative path, Borland recommends
you make this path fully-qualified.

vbroker.security.domain.<domain-
name>.runas.<role-name>=<alias>|use-
caller-identity

Use this property to set up an identity for the run-
as role <role-name>. The alias denotes an alias in
the vault. Use use-caller-identity to use the
caller principal itself as the principal identity for
the run-as role.

6 VisiBroker Secur i ty Guide

CORBA author izat ion

a Quality of Protection policy for the Portable Object Adapter (POA) hosting the object
in question. Note that access policies can only be applied at the POA level.

Rolemaps are also used to implement authorization for CORBA objects. Similarly, the
J2EE roles and concepts therein are also used in the CORBA environment.

Setting up authorization for CORBA objects

In order to set up authorization for an object, you need to perform the following:

1 Create a ServerQopPolicy.

2 Initialize the ServerQopPolicy with a ServerQopConfig object.

3 Implement an AccessPolicyManager interface, which takes the following form:

Java

interface AccessPolicyManager {
 public java.lang.String domain();
 public com.borland.security.csiv2.ObjectAccessPolicy getAccessPolicy(
 org.omg.PortableServer.Servant servant, byte[] object_id byte []
adapter_id);
}

C++

class AccessPolicyManager {
 public:
 virtual char* domain() =0;
 ObjectAccessPolicy_ptr getAccessPolicy(PortableServer_ServantBase*
_servant,
 const ::PortableServer::ObjectId& id,
 const::CORBA::OctetSequence& _adapter_id) =0;
}

This interface should return the authorization domain from the domain() method and
uses it to set the access manager in the ServerQopConfig object. The domain specifies
the name of the authorization domain associated with the proper rolemap. You set the
location and name of the rolemap by setting the property:

 vbroker.security.domain.<authorization-domain-name>.<rolemap-path>

 4: Author izat ion 7

CORBA author izat ion

where <authorization-domain-name> is a tautology, and <rolemap-path> is a relative path
to the rolemap file. The getAccessPolicy() method takes an instance of the servant, the
object identity, and the adapter identity and returns an implementation of the
ObjectAccessPolicy interface.

1 Implement the ObjectAccessPolicy interface that returns the required roles and a run-
as role for accessing a method of the object. There is no difference between J2EE
and CORBA run-as roles in Borland's implementation. The ObjectAccessPolicy
interface takes the following form:

Java

interface ObjectAccessPolicy {
 public java.lang.String[] getRequiredRoles(java.lang.String method);
 public java.lang,String getRunAsRole(java.lang.String method);
}

C++

class ObjectAccessPolicy {
 public:
 getRequiredRoles (const char* _method) =0;
}

The getRequiredRoles() method takes a method name as its argument and returns a
sequence of roles. The getRunAsRole() method returns a run-as role, if any, for
accessing the method.

Identities can be supplied using Callback Handlers. For more details, see
“Authentication.”

8 VisiBroker Secur i ty Guide

 5: Conf igur ing Secur i ty Prof i les for Domains 1

Configuring Security Profiles
for Domains
If you have Borland VisiBroker installed, you can define related sets of security
parameters for each domain on your system. To enable a profile, you must set certain
domain properties. Each profile is configured with the proper security properties,
rolemaps, and configuration files. This section explains how to configure security
profiles and provide the necessary data for VisiSecure to secure your applications.

Security Profiles
VisiSecure allows you to configure repositories of security information called profiles.
Profiles contain the config.jaas file for defining LoginModules for authentication, as
well as the authentication rolemap, Role DB. Profiles might also contain user
databases and script files.

Profiles are defined in your installation's security directory, located in:

<install_dir>/var/security/profiles/<profile_name>

You can provide a unique name for each of your profiles. The <profile_name> directory
must contain at least the following files:

– config.jaas: the JAAS authentication configuration file, in which your LoginModules
are defined.

– <role_db>.rolemap: the Role DB file containing authorization data.

– security.properties: the central repository for the security properties that help define
the operation of the VisiSecure service.

2 VisiBroker Secur i ty Guide

Secur i ty Prof i les

Profiles can also be viewed and configured using the Management Console. To view
Security Profiles using the Management Console:

1 From the Hubs View, expand the Management Hubs node.

2 Expand the Agents node.

3 Select the Agent for the domain whose Security Profiles you wish to view.

4 Select the individual Security Profile.

 5: Conf igur ing Secur i ty Prof i les for Domains 3

Secur i ty Prof i les

Enabling Security

For a domain to be secure, it must have an enabled Security Profile associated with it.
To enable a Security Profile:

1 From the Hubs View, navigate to the profile you want to edit.

2 Right-click the profile and select Configure from the context menu. The Edit Default
Properties dialog appears.

3 Check the “Security Enabled” check box.

4 Click OK.

4 VisiBroker Secur i ty Guide

Secur i ty Prof i les

Enabling SSL

To use SSL, your Security Profile must have it enabled. To turn on SSL in a profile:

1 From the Hubs View, navigate to the profile you want to edit.

2 Right-click the profile and select “Configure...” from the context menu. The Edit
Default Properties dialog appears.

3 Check the Secure Sockets Enabled check box.

4 Click OK.

 5: Conf igur ing Secur i ty Prof i les for Domains 5

Secur i ty Prof i les

Setting the Log Level

To set the Log Level for a Security Profile:

1 From the Hubs View, navigate to the profile you want to edit.

2 Right-click the profile and select Configure from the context menu. The Edit Default
Properties dialog appears.

3 Select the desired Logging Level from the Log Level drop-down list.

4 Click OK.

Configuring Authentication

You can configure authentication for your profile by either creating a config.jaas file by
hand or by using the Borland Management Console.

Creating the config.jaas file
The config.jaas file contains the data necessary to authenticate a user to one or more
realms and defines an authentication mechanism and provides the code to interact with
a specific type of authentication mechanism. For example, a config.jaas file could look
like this:

UserRealm {
 com.borland.security.provider.authn.BasicLoginModule required
 DRIVER=com.borland.datastore.jdbc.DataStoreDriver
 URL="jdbc:borland:dslocal:${config.jaas.path}/userdb.jds"
 TYPE=BASIC
 LOGINUSERID=admin
 LOGINPASSWORD=admin;
};

This defines a realm called UserRealm, which requires the use of the BasicLoginModule. It
also provides information on the database used and how to login to it. For information
on LoginModules, their options, and the grammar of realm entries such as this, see
“Authentication.”

Once the config.jaas file is complete, it is placed in the profile's folder.

6 VisiBroker Secur i ty Guide

Secur i ty Prof i les

Configuring Authentication Using the Management Console
To configure authentication using the Management Console:

1 From the Hubs View, navigate to the profile you want to edit.

2 Right-click the profile and select Configure from the context menu. The Edit Default
Properties dialog appears.

3 Click Authentication. The Authentication Settings dialog appears.

 5: Conf igur ing Secur i ty Prof i les for Domains 7

Secur i ty Prof i les

4 The editing window in the Authentication Settings dialog shows the contents of the
profile's config.jaas file. Edit or add realm entries. For more information, see
“Authentication.”

5 When you are finished, click OK.

8 VisiBroker Secur i ty Guide

Secur i ty Prof i les

Configuring Authorization

You can configure authorization by either creating your own Authorization Rolemap by
hand or by using the Management Console.

About the rolemap file
The authorization rolemap is captured in a .rolemap file. Typically, you would name this
file after your authorization domain (for example, a profile called “default” would
typically call its rolemap default.rolemap) but this is not required. The rolemap file, also
called Role DB, is a map of users to roles, or access control list. Typically, an access
control list specifies a set of roles that can use a particular resource. The rolemap
designates the set of people whose attributes match those of particular roles, and who
are then allowed to perform those roles.

VisiSecure provides a mechanism for specifying role names and a set of attributes
which define the roll. For example, the contents of Role DB could be:

ServerAdministrator {
 CN=*, OU=Security, O=Borland, L=San Mateo, S=California, C=US
 *(CN=admin)
 *(GROUP=administrators)
}

Customer {
 role=ServerAdministrator
 *(CN=borland)
 *(CN=pclare)
 *(CN=jeeves)
 *(GROUP=RegularUsers)
}

This defines two roles, ServerAdministrator and Customer along with a set of rules and
attributes which define them. For information on how to define roles and write a
customer rolemap, see “Authorization.”

Once the rolemap file is complete, it is placed in the profile's folder with the config.jaas
file.

 5: Conf igur ing Secur i ty Prof i les for Domains 9

Secur i ty Prof i les

Configuring Authorization Using the Management Console
You use the Authorization Settings dialog to configure Authorization for a Security
Profile. With this you can:

– View authorization rolemaps and rules.

– Add, edit, and remove authorization rolemaps for a domain.

– Add, edit, and remove roles within an authorization rolemap.

– Add, edit, and remove rules within a role.

To access the Authorization Settings dialog:

1 From the Hubs View, navigate to the profile you want to edit.

2 Right-click the profile and select Configure from the context menu. The Edit Default
Properties dialog appears.

10 VisiBroker Secur i ty Guide

Secur i ty Prof i les

3 Click Authorization. The Authorization Settings dialog appears.

The left pane of the Authorization Settings dialog presents a tree view of the roles and
their associated rules within the selected authorization domain. Selecting a node in the
tree displays information about that node. There are three levels of nodes:

– domain: this node level shows the name of the rolemap file corresponding to the
authorization domain. Its child nodes are roles. Selecting this node displays the
entire rolemap file.

 5: Conf igur ing Secur i ty Prof i les for Domains 11

Secur i ty Prof i les

– role: this node represents a particular role within the domain. Selecting this node
displays its role entry within the Role DB. Its child nodes are rules.

– rule: this node represents an access rule for its parent role. Selecting this node
displays the rule entry within the corresponding role entry.

12 VisiBroker Secur i ty Guide

Secur i ty Prof i les

Working with Authorization Rolemaps and Domains
To edit the authorization rolemap:

1 Open the Authorization Settings dialog.

2 Select the domain node in the left-hand pane. The authorization rolemap file
appears.

3 Edit the file in the content window.

4 When you are finished, Click OK.

To add a new authorization rolemap:

1 Open the Authorization Settings Dialog.

2 Click the Add button. The Add Domain dialog appears.

3 Enter a name for the new domain to which the new rolemap will belong and click
OK.

4 The new rolemap is presented in the Authorization Settings dialog. You can switch
to other rolemaps using the drop-down list at the top of the window.

5 Add roles and rules as necessary.

6 Click OK when you are finished.

To clone an existing rolemap:

1 Open the Authorization Settings Dialog.

2 Click Clone. The Clone Domain dialog appears.

3 Enter a name for the new domain to which the cloned rolemap will belong and click
OK.

4 The new rolemap is presented in the Authorization Settings dialog. You can switch
to other rolemaps using the drop-down list at the top of the window.

5 Add or edit roles and rules as necessary.

6 Click OK when you are finished.

To remove an authorization domain and its rolemap:

1 Open the Authorization Settings dialog.

2 Select the domain you wish to remove from the drop-down box at the top of the
Window.

3 Click the Remove button. The domain is deleted.

4 Click OK when you are finished.

 5: Conf igur ing Secur i ty Prof i les for Domains 13

Secur i ty Prof i les

Editing Individual Roles
To edit a rule for an existing authorization role:

1 Open the Authorization Settings dialog.

2 Select the rule node in the left-hand pane. The rule representation appears in the
content pane.

3 Click Edit button. The Edit Rule in Role dialog appears.

4 Edit the attribute, conditional operator, and value of the rule in the boxes provided.

5 If you would like to add an additional condition to the rule, click More Conditions. A
new row appears.

6 Add additional attributes, operators, and values as required. You can remove the
last condition by clicking the Fewer Conditions button.

7 To force strict access based on the rule, check the Match all conditions below
exactly and nothing else checkbox.

8 Click preview to display the edited rule.

9 Click OK when you are finished.

14 VisiBroker Secur i ty Guide

Adding and Removing Roles
To add a new role to a rolemap:

1 Open the Authorization Settings dialog.

2 Right click the domain node to which you want to add the role. Select New Role from
the context menu. The New Role dialog appears.

3 Give your new role a unique name within the authorization domain and Click OK.

4 The new role appears in the navigation pane. Click OK when you are finished.

To remove an existing role from a rolemap:

1 Open the Authorization Settings dialog.

2 Right click the role node you want to remove. Select Delete Role from the Context
menu.

3 The role is removed from the rolemap file. Click OK when you are finished.

Adding and Removing Rules
To add a rule to a role entry:

1 Open the Authorization Settings dialog.

2 Right click the role node to which you want to add the rule. Select New Rule from
the context menu. The New Rule in Role dialog appears.

3 Edit the attribute, conditional operator, and value of the rule in the boxes provided.

 5: Conf igur ing Secur i ty Prof i les for Domains 15

4 If you would like to add an additional condition to the rule, click More Conditions. A
new row appears.

5 Add additional attributes, operators, and values as required. You can remove the
last condition by clicking the Fewer Conditions button.

6 To force strict access based on the rule, check the Match all conditions below
exactly and nothing else checkbox.

7 Click preview to display the edited rule.

8 Click OK when you are finished. The new rule appears in the tree.

9 Click OK when you are finished.

To remove a rule from a role:

1 Open the Authorization Settings dialog.

2 Right click the rule you want to delete.

3 Select Delete Rule from the context menu. The rule is removed from the tree.

4 Click OK when you are finished.

Specifying VisiSecure properties

Each profile contains a security.properties file which allows you to customize the
behavior of VisiSecure. A typical properties file could look like the following:

Disable user domain security by default
vbroker.security.disable=false

Point the ORB at the authentication config files
vbroker.security.login=false
vbroker.security.authentication.config=${profile.path}/config.jaas

Name the supplied authorization domain
vbroker.security.authDomains=default
vbroker.security.authDomains.default=default

How to handle requests for methods not in the rolemap file - (grant|deny)
vbroker.security.domain.default.defaultAccessRule=grant
vbroker.security.domain.default.rolemap_path=${profile.path}/default.rolemap

16 VisiBroker Secur i ty Guide

Depending on whether your application is Java, C++, or both, you may have to set
different properties with different types of values. See “Security Properties for C++” and
“Security Properties for Java” for all the properties you can set in this file.

Once all the properties have been set, the security.properties file is placed in the
profile folder.

Associating a Profile with a Domain
Security profiles are associated with the various domains on your system by setting
properties. Once these properties are set, VisiSecure uses the settings found in the
associated security profiles to secure your domains. Each domain on your system has
an orb.properties file associated with it. This file is located in:

<install-dir>/var/domains/<domain_name>/adm/properties/orb.properties

To associate a profile and its settings with a domain:

1 Open the domain's orb.properties file.

2 Set the following property vbroker.security.profile to the name of the profile whose
settings you want to use for the domain. For example:

vbroker.security.profile=default

VisiSecure will now refer to the settings for the chosen security profile when performing
security operations for that domain.

Using a Vault for a Domain
If you are using a vault to store system identities, you associate it with a domain so that
it can be used. You do this by setting the domain's vbroker.security.vault property in
the domain's orb.properties file. Simply set the property to the location of the domain's
vault. For example:

vbroker.security.vault=c:/BDP/var/domains/base/adm/security/MyVault

Similar to the vault are other properties which only belong to the orb.properties file.
These include secure listener ports, thread monitoring, and so forth. As a general rule,
add only those properties to the profile that can be shared by multiple applications.
Otherwise, use the appropriate process-specific ORB properties file to specify the
property.

 6 : Making Secure Connect ions (Java) 1

Making Secure Connections (Java)
This section describes how to make secure connections for Java applications using
VisiSecure. A brief introduction to the Java Secure Socket Extension (JSSE) is
followed by the step-by-step details to securing an application.

JAAS and JSSE
VisiSecure uses the Java Authentication and Authorization Service (JAAS) to
authenticate clients and servers to one another in J2EE applications. It provides a
framework and standard interface for authentication users and assigning privileges.
The VisiBroker Server uses the Java Secure Socket Extension (JSSE) to provide
mechanisms for supporting SSL.

For information on the terms JAAS uses for its services, see “JAAS basic concepts”.

JSSE Basic Concepts

The VisiBroker ORB uses Internet Inter-ORB Protocol (IIOP) as its communication
protocol. The Java Secure Socket Extension (JSSE) enables secure internet
communications. It is a Java implementation of SSL and TLS protocols which include
the functionality of data encryption, server and client authentication, and message
integrity. JSSE also serves as a building block that can be simply and directly
implemented in Java applications.

JSSE provides not only an API but also an implementation of that API.
Implementations include socket classes, trust managers, key managers, SSLContexts,
and a socket factory framework, in addition to public key certificate APIs.

JSSE also provides support for the underlying handshake mechanisms that are a part
of SSL implementations. This includes cipher suite negotiation, client/server
authentication, server session-management, and licensed code from RSA Data
Security, Inc. JSSE uses Java KeyStores as a repository of Certificates and Private
Keys. Further information on KeyStores can be obtained from Sun Microsystems’ JDK
documentation. You can use JSSE properties for specifying trusted KeyStores and
identity KeyStores.

2 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client or secure
server. For CORBA users the properties are all stored in files that are located through
config files. Where ever appropriate the usage models for clients and servers are
separately discussed. All properties can be set in the VisiBroker Management Console
by right-clicking the node of interest in the Navigation Pane and selecting “Edit
Properties.”

Note

These steps are similar for both Java and C++ applications.

Important

All security information, including RoleDBs, LoginModule configurations, and such can
be set through the Management Console on the appropriate properties tabs.

Step One: Providing an identity

An identity can be a username/password/realm triad, or certificates can be used.
These can be collected through JAAS modules or through APIs.

Clients

For clients using usernames and passwords, there can be constraints about what the
client knows about the server's realms. Clients may have intimate knowledge of the
server's supported realms or none at all at the time of identity inquiry. Note also that
clients authenticate at the server end.

Servers

For servers using username and password identities, authentication is performed
locally since the realms are always known.

There can be constraints on certificate identities as well, depending on whether they
are stored in a KeyStore or whether they are specified through APIs.

Keeping these constraints in mind, the Borland VisiBroker Server supports the
following usage models, any of which could be used to provide an identity to the server
or client:

– “Username/password authentication, using JAAS modules, for known realms”

– “Username/password authentication, using APIs”

– “Certificate-based authentication, using KeyStores through property settings”

– “Certificate-based authentication, using KeyStores through APIs”

– “Certificate-based authentication, using APIs”

– “pkcs12-based authentication, using KeyStores”

– “pkcs12-based authentication, using APIs”

Username/password authentication, using JAAS modules, for known
realms
If the realm to which the client wishes to authenticate is known, the client-side JAAS
configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

 6: Making Secure Connect ions (Java) 3

Steps to secure c l ients and servers

Username/password authentication, using APIs
The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, go to the VisiSecure for
Java API and SPI sections.

public static void main(String[] args) {
 //initialize the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 com.borland.security.Context ctx = (com.borland.security.Context)
 orb.resolve_initial_references("VBSecurityContext");
 if(ctx != null) {
 com.borland.securty.IdentityWallet wallet =
 new com.borland.security.IdentityWallet(<username>,
 <password>.toCharArray(), <realm>);
 ctx.login(wallet);
 }
}

Certificate-based authentication, using KeyStores through property
settings
By setting the property vbroker.security.login.realms=Certificate#ALL, the client will
be prompted for keystore location and access information. For valid values, see
“Certificate mechanism”.

Certificate-based authentication, using KeyStores through APIs
You can use the same APIs discussed in ““Username/password authentication, using
APIs”” to login using certificates through KeyStores. The realm name in the
IdentityWallet should be CERTIFICATE#ALL, the username corresponds to an alias name in
the default KeyStore that refers to a Key entry, and the password refers to the Private
Key password (also the KeyStore password) corresponding to the same Key entry.

Certificate-based authentication, using APIs
If you do not want to use KeyStores directly, you can specify certificates and private
keys using the CertificateWalletAPI. This class also supports the pkcs12 file format.

X509Certificate[] certChain = ...list-of-X509-certificates...
PrivateKey privKey = private-key
com.borland.security.CertificateWallet wallet =
 new com.borland.security.CertificateWallet(alias,
 certChain, privKey, "password".toCharArray());

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

pkcs12-based authentication, using KeyStores
You can use the same APIs discussed in “Username/password authentication, using
APIs” to login using pkcs12 KeyStores. The realm name in the IdentityWallet should be
CERTIFICATE#ALL, the username corresponds to an alias name in the default KeyStore
that refers to a Key entry, and the password refers to the password needed to unlock the
pkcs12 file. The property javax.net.ssl.KeyStore specifies the location of the pkcs12
file.

pkcs12-based authentication, using APIs
See “Certificate-based authentication, using APIs”.

4 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

Step Two: Setting properties and Quality of Protection (QoP)

There are several properties that can be used to ensure connection Quality of
Protection. The VisiBroker ORB security properties for Java can be used to fine-tune
connection quality. For example, you can set the cipherList property for SSL
connections to set cryptography strength.

QoP policies can be set using the ServerQoPConfig and the ClientQoPConfig APIs for
servers and clients, respectively. These APIs allow you set target trust (whether or not
targets must authenticate), the transport policy (whether or not to use SSL or another
secure transport mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set access policies for POA
objects. For QoP API information, go to the VisiSecure for Java API and SPI book.

Step Three: Setting up Trust

Use the API setTrustManager for the proper security context to provide an
X509TrustManager interface implementation. If you have certificates that need to be
trusted, place them in a KeyStore and use javax.net.ssl.trustStore property to set it.
A default X509TrustManager provided by the security service will be used if one is not
provided.

Other trust policies are set in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)”.

Step Four: Setting up the Pseudo-Random Number Generator

Setting up the PRNG is required if you intend to use SSL communication. Construct a
SecureRandom object and seed it. Set this object as your PRNG by using the
com.borland.security.Context interface, setSecureRandom method. For detailed
information on the com.borland.security.Context interface, go to the VisiSecure for
Java API and SPI book.

Step Five: If necessary, set up identity assertion

When a client invokes a method in a mid-tier server which, in the context of this
request, invokes an end-tier server, then the identity of the client is internally asserted
by the mid-tier server by default. Therefore, if getCallerPrincipal is called on the end-
tier server, it will return the Client's principal. Here the client's identity is asserted by the
mid-tier server. The identity can be a username or certificate. The client's private
credentials such as private keys ore passwords are not propagated on assertion. This
implies that such an identity cannot be authenticated at the end-tier.

If the user would like to override the default identity assertion, there are APIs available
to assert a given Principal. These APIs can be called only on mid-tier servers in the
context of an invocation and with special permissions. For more information, go to the
VisiSecure for Java API and SPI book.

 6: Making Secure Connect ions (Java) 5

Examining SSL related informat ion

Examining SSL related information
Borland VisiBroker Server provides APIs to inspect and set SSL-related information.
The SecureContext API is used to specify a Trust Manager, PRNG, inspect the SSL
ciphersuites, and enable select ciphers.

Clients

To examine peer certificates, use getPeerSession() to return an SSLSession object
associated with the target. You can then use standard JSSE APIs to obtain the
information therein.

Servers

To examine peer certificates on the server side, you set up the SSL connection with
com.borland.security.Context and use the APIs with com.borland.security.Current to
examine the SSLSession object associated with the thread.

Creating Custom Plugins
There are various components of VisiSecure that allow for custom plug-ins. They are:

– LoginModules

– CallBack Handlers

– Authorization service provider via the SPI

– Assertion Trust via the SPI

LoginModules

You can implement your own LoginModules by extending
javax.security.auth.spi.LoginModules. To use the LoginModule, you need to set it in
the authentication configuration file, just like any other LoginModule. During runtime,
the new customized module will need to be loaded by the secured application.

The syntax of the authentication configuration is as follows:

<realm-name> {
 <class-name-of-customized-LoginModule> <required|optional>;
}

CallbackHandlers

You can implement your own callback by extending
javax.security.auth.callback.CallBackHandler. To use the callback, you need to set
the property vbroker.security.authentication.callbackHandler=<custom-handler-class-
name> in the security property file, just like any other callback handler. During runtime,
the new customized module will need to be loaded by the secured application.

Authorization Service Provider

Authorization is the process of making access control decisions on behalf of certain
resources based on security attributes or privileges. VisiSecure uses the notion of
Permission in authorization. The class RolePermission is defined to represent a “role” as
a permission. Authorization Services Providers in turn provide the implementation on
the homogeneous collection of role permissions that associate privileges with particular
resources.

Authorization service providers are tightly connected with Authorization Domains. Each
domain has exactly one authorization service provider implementation. During the
initialization of the ORB, the authorization domains defined by

6 VisiBroker Secur i ty Guide

Creat ing Custom Plugins

vbroker.security.authDomains is constructed, while the Authorization Service Provider
implementation is instantiated during the construction of domain itself.

To plugin authorization service, you need to set properties:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.MyCodec.property1=xxx
vbroker.security.adapter.MyCodec.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

Trust Providers

You can also plugin the assertion trust mechanism. Assertion can happen in a multi-
hop scenario, or explicitly called through the assertion API. Server can have rules to
determine whether the peer is trusted to make the assertion or not. The default
implementation uses property setting to configure trusted peers on the server side.
During runtime, peers must pass authentication and authorization in order to be trusted
for making assertions. There can be only one Trust Provider for the entire security
service.

To plugin the assertion trust mechanism, you will need to set the following properties:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

 7 : Making Secure Connect ions (C++) 1

Making Secure Connections (C++)
This section describes how to make secure connections for C++ applications using
VisiSecure.

Steps to secure clients and servers
Listed below are the common steps required for developing a secure client or secure
server. For CORBA users the properties are all stored in files that are located through
config files. Where ever appropriate the usage models for clients and servers are
separately discussed. All properties can be set in the VisiBroker Management Console
by right-clicking the node of interest in the Navigation Pane and selecting “Edit
Properties.”

Note

These steps are similar for both Java and C++ applications.

Important

All security information, including RoleDBs and LoginModule configurations, can be set
through the Management Console on the appropriate properties tabs.

Step One: Providing an identity

An identity can be a username/password/realm triad, or certificates can be used.
These can be collected through LoginModules or through APIs.

Clients

For clients using usernames and passwords, there can be constraints about what the
client knows about the server's realms. Clients may have intimate knowledge of the
server's supported realms or none at all at the time of identity inquiry. Note also that
clients authenticate at the server end.

Servers

For servers using username and password identities, authentication is performed
locally since the realms are always known.

There can be constraints on certificate identities as well, depending on whether they
are stored in a KeyStore or whether they are specified through APIs. The KeyStore in

2 VisiBroker Secur i ty Guide

Steps to secure cl ients and servers

VisiSecure for C++ refers to a directory structure similar to a trustpointRepository,
which contains certificate chain.

Keeping these constraints in mind, Borland VisiBroker supports the following usage
models, any of which could be used to provide an identity to the server or client:

– “Username/password authentication, using LoginModules, for known realms”

– “Username/password authentication, using APIs”

– “Certificate-based authentication, using KeyStores through property settings”

– “Certificate-based authentication, using KeyStores through APIs”

– “Certificate-based authentication, using APIs”

– “pkcs12-based authentication, using KeyStores”

– “pkcs12-based authentication, using APIs”

Username/password authentication, using LoginModules, for known
realms
If the realm to which the client wishes to authenticate is known, the client-side
configuration would take the following form:

vbroker.security.login=true
vbroker.security.login.realms=<known-realm>

Username/password authentication, using APIs
The following code sample demonstrates the use of the login APIs. This case uses a
wallet. For a full description of the four login modes supported, see “VisiSecure for C++
APIs” and “Security SPI for C++.”

int main(int argc, char* const* argv) {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb-
>resolve_initial_references("VBSecurityContext");
 Context* c = dynamic_cast<Context*> (obj.in());
 // Obtain a walletFactory
 CORBA::Object_var o = orb->resolve_initial_references("VBWalletFactory");
 vbsec::WalletFactory* wf = dynamic_cast<vbsec::WalletFactory*>(o.in());
 vbsec::Wallet* wallet = wf->createIdentityWallet(<username>, <password>,
<realm>);
 c->login(*wallet);
}

Certificate-based authentication, using KeyStores through property
settings
By setting the property vbroker.security.login.realms=Certificate#ALL, the client will
be prompted for keystore location and access information. For valid values, see
“Certificate mechanism”.

Certificate-based authentication, using KeyStores through APIs
You can use the same APIs discussed in ““Username/password authentication, using
APIs”” to login using certificates through KeyStores. The realm name in the
IdentityWallet should be CERTIFICATE#ALL, the username corresponds to an alias name in
the default KeyStore that refers to a Key entry, and the password refers to the Private
Key password (also the KeyStore password) corresponding to the same Key entry.

 7: Making Secure Connect ions (C++) 3

Steps to secure c l ients and servers

Certificate-based authentication, using APIs
If you do not want to use KeyStores directly, you can import certificates and private
keys using the CertificateFactoryAPI. This class also supports the pkcs12 file format.

CORBA::Object_var o = orb-
>resolve_initial_references("VBSecureSocketProvider");
vbsec::SecureSocketProvider* ssp =
dynamic_cast<vbsec::SecureSocketProvider*>(o.in());

const vbsec::CertificateFactory& cf = ssp->getCertificateFactory ();

The first argument in the new Certificate wallet is an alias to the entry in the KeyStore,
if any. If you are not using keystores, set this argument to null.

pkcs12-based authentication, using KeyStores
You can use the same APIs discussed in “Username/password authentication, using
APIs” to login using pkcs12 KeyStores. The realm name in the IdentityWallet should be
CERTIFICATE#ALL, the username corresponds to an alias name in the default KeyStore
that refers to a Key entry, and the password refers to the password needed to unlock the
pkcs12 file. The property javax.net.ssl.KeyStore specifies the location of the pkcs12
file.

pkcs12-based authentication, using APIs
See “Certificate-based authentication, using APIs”.

Step Two: Setting properties and Quality of Protection (QoP)

There are several properties that can be used to ensure connection Quality of
Protection. The VisiBroker ORB security properties for C++ can be used to fine-tune
connection quality. For example, you can set the cipherList property for SSL
connections to set cryptography strength.

QoP policies can be set using the ServerQoPConfig and the ClientQoPConfig APIs for
servers and clients, respectively. These APIs allow you set target trust (whether or not
targets must authenticate), the transport policy (whether or not to use SSL or another
secure transport mechanism specified separately), and, for servers, an
AccessPolicyManager that can access the RoleDB to set access policies for POA
objects.

Step Three: Setting up Trust

Setting up of trust can be done through property
vbroker.security.trustpointRepository=Directory:<path to directory>, where the
directory contains the trusted certificates.

Other trust policies are set in the QoP configurations. See “Step Two: Setting
properties and Quality of Protection (QoP)”.

4 VisiBroker Secur i ty Guide

Examining SSL related informat ion

Step Four: If necessary, set up identity assertion

When a client invokes a method in a mid-tier server which, in the context of this
request, invokes an end-tier server, then the identity of the client is internally asserted
by the mid-tier server by default. Therefore, if getCallerSubject is called on the end-tier
server, it will return the Client's principal. Here the client's identity is asserted by the
mid-tier server. The identity can be a username or certificate. The client's private
credentials such as private keys ore passwords are not propagated on assertion. This
implies that such an identity cannot be authenticated at the end-tier.

If the user would like to override the default identity assertion, there are APIs available
to assert a given Principal. These APIs can be called only on mid-tier servers in the
context of an invocation and with special permissions.

Examining SSL related information
Borland VisiBroker provides APIs to inspect and set SSL-related information. The
SecureContext API is used to inspect the SSL ciphersuites and enable select ciphers.

Clients

To examine peer certificates, use getPeerSession() to return an SSLSession object
associated with the target. You can then use standard JSSE APIs to obtain the
information therein.

Servers

To examine peer certificates on the server side, you set up the SSL connection with
com.borland.security.Context and use the APIs with com.borland.security.Current to
examine the SSLSession object associated with the thread.

Creating Custom Plugins
There are various components of VisiSecure that allow for custom plug-ins. They are:

– LoginModules

– CallBack Handlers

– Authorization service provider via the SPI

– Assertion Trust via the SPI

In order for VisiSecure for C++ to find user implementations, all plugins must use the
REGISTER_CLASS macro provided by VisiSecure to register their classes to the security
service. When specifying the registered class, the name of the class must be specified
in full together with the name space. Name spaces must be specified in a normalized
form, with either a “.” or “::” separated string starting from the outermost name space.
For example:

MyNameSpace {
 class MyLoginModule {

 }
}

would be specified as either MyNameSpace.MyLoginModule or MyNameSpace::MyLoginModule.

 7: Making Secure Connect ions (C++) 5

Creat ing Custom Plugins

LoginModules

You can implement your own LoginModules by extending vbsec::LoginModule. To use
the LoginModule, you need to set it in the authentication configuration file, just like any
other LoginModule. During runtime, the new customized module will need to be loaded
by the secured application.

The syntax of the authentication configuration is as follows:

<realm-name> {
 <class-name-of-customized-LoginModule> <required|optional>;
}

Note

There is implicit replacement of the character “.” to “::” by VisiSecure. Hence,
com.borland.security.provider.authn.HostLoginModule is equivalent to
com::borland::security::provider::authn::HostLoginModule.

CallbackHandlers

You can implement your own callback by extending vbsec::CallbackHandler. To use the
callback, you need to set the property
vbroker.security.authentication.callbackHandler=<custom-handler-class-name> in the
security property file, just like any other callback handler. During runtime, the new
customized module will need to be loaded by the secured application.

Authorization Service Provider

Authorization is the process of making access control decisions on behalf of certain
resources based on security attributes or privileges. VisiSecure uses the notion of
Permission in authorization. The class RolePermission is defined to represent a “role” as
a permission. Authorization Services Providers in turn provide the implementation on
the homogeneous collection of role permissions that associate privileges with particular
resources.

Authorization service providers are tightly connected with Authorization Domains. Each
domain has exactly one authorization service provider implementation. During the
initialization of the ORB, the authorization domains defined by
vbroker.security.authDomains is constructed, while the Authorization Service Provider
implementation is instantiated during the construction of domain itself.

To plugin authorization service, you need to set properties:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.MyCodec.property1=xxx
vbroker.security.adapter.MyCodec.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

6 VisiBroker Secur i ty Guide

Creat ing Custom Plugins

Trust Providers

You can also plugin the assertion trust mechanism. Assertion can happen in a multi-
hop scenario, or explicitly called through the assertion API. Server can have rules to
determine whether the peer is trusted to make the assertion or not. The default
implementation uses property setting to configure trusted peers on the server side.
During runtime, peers must pass authentication and authorization in order to be trusted
for making assertions. There can be only one Trust Provider for the entire security
service.

To plugin the assertion trust mechanism, you will need to set the following properties:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

The properties specified will be passed to the user plugin following the same
mechanism as above.

 8 : Securi ty for the Web components 1

Security for the Web components
The Borland VisiBroker Server allows you to secure the web components using the
conventions of encryption, authentication, and authorization.

Like the security measures provided by the J2EE standards, where security is set at
the module level, you can also secure web components by declaring the security
mechanism within their configuration files.

Security for the Apache web server
The Apache web server uses data transport encryption technology for security.
VisiBroker supports the mod_ssl module for this purpose. This module provides strong
cryptography for Apache Web Server via the Secure Sockets Layer (SSL v2/v3) and
Transport Layer Security (TLS v1) protocols by the help of the Open Source SSL/TLS
toolkit OpenSSL.

The VisiBroker Server provides mod_ssl which is now supported directly into the
Apache web server, and is based on OpenSSL version 0.9.6g.

Modifying the Apache configuration file for mod_ssl

To enable mod_ssl, you must modify the httpd.conf file located in: <install_dir>/var/
domains/<domain_name>/configurations/<configuration_name>/mos/
<apache_ManagedObject_name>/conf by un-commenting the following line:

LoadModule ssl_module <install_dir>/lib/<apache_ManagedObject_name>/mod_ssl.so

2 VisiBroker Secur i ty Guide

Secur i ty for the Apache web server

The following describes the mod_ssl directives:

<IfModule mod_ssl.c>
SSLEngine on
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
SSLCertificateFile <install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_ManagedObject_name>/conf/ssl.crt/server.crt
SSLCertificateKeyFile <install_dir>/var/domains/<domain_name>/configurations/
<configuration_name>/mos/<apache_ManagedObject_name>/conf/ssl.key/server.key
#
Uncomment the following to enable SSL certificate and related information to
be exported to the apache environment

#SSLOptions +StdEnvVars +ExportCertData

</IfModule>

Warning

The mod-ssl Apache module causes the Apache web server to become unstable when
used with the KeepAlive connection option on (the default). This is a known defect and
users should use caution after enabling the mod-ssl Apache module.

Important

The VisiBroker Server does not provide the key_file and certificate_file which must
be generated. See “Creating key and certificate files”.

For additional information on mod_ssl configuration, visit http://www.modssl.org/docs.

SSL-specific directive Description

SSLEngine The placement of the SSLEngine is significant. It can be placed either at the
server level, in which case the server will respond only to HTTPS connections or
within a particular virtual host, which can then be associated with a particular
port number (usually 443), so that both regular HTTP connections and HTTPS
connections can be handled.

SSLRandomSeed Determines the source of randomness used by the mod_ssl encryption facilities.
The randomness built into mod_ssl is sufficient to get you started, however, it is
not really random enough to be used in a truly secure environment. Preferably,
a UNIX random device such as /dev/random or /dev/urandom is used. The
SSLRandomSeed directive must be defined at the server level.

SSLCertificateFile The placement of the SSLCertificateFile is significant. It can be placed either at
the server level, in which case the server will respond only to HTTPS
connections or within a particular virtual host, which can then be associated with
a particular port number (usually 443), so that both regular HTTP connections
and HTTPS connections can be handled. This file can be given any name and
may be placed in any accessible directory.

SSLCertificateKeyFile The placement of the SSLCertificateKeyFile is significant. It can be placed either
at the server level, in which case the server will respond only to HTTPS
connections or within a particular virtual host, which can then be associated with
a particular port number (usually 443), so that both regular HTTP connections
and HTTPS connections can be handled. This file can be given any name and
may be placed in any accessible directory.

SSLOptions +StdEnvVars +ExportCertData By default, commented out. If you want to enable Certificate Passthrough, you
must uncomment this directive which instructs mod_ssl to export the SSL
certificate and related information passed to it by the browser into a shared
environment.

 8: Secur i ty for the Web components 3

Secur i ty for the Apache web server

Creating key and certificate files

The VisiBroker Server provides the “openssl” utility so that you can generate the
required key and certificate files for mod_ssl. The openssl utility is located in:

<install_dir>/bin/<apache_ManagedObject_name>/openssl/

– For Windows, after double-clicking the openssl executable, a command window
appears.

– For UNIX, simply follow the steps below.

Note

UNIX also requires a random data source for seeding. If you do not have a /dev/rand
device installed, you need to provide a file with a random number greater than 512
bytes in length.

The openssl executable first searches the environment for a variable named
“RANDFILE”. If that is found, that value is assumed to be a file containing at least 512
bytes of data. If the environment variable RANDFILE is not found, the executable
searches the root of your home directory for a <file_name>.rnd. If that is found, it is
assumed to contain at least 512 bytes of data for the seed. If you do not have a /dev/
rand device, and do not provide any other alternative, certificate generation will fail.

To generate the files:

1 Create a private key for your server:

OpenSSL> genrsa -out <key_file>

2 Generate a certificate request:

OpenSSL> req -new -key <key_file> -out <request_file> -config <install_dir>/bin/
<apache_ManagedObject_name>/openssl.cnf

3 Create a temporary certificate:

OpenSSL> req -x509 -key <key_file> -in <request_file> -out <certificate_file> -
config <install_dir>/bin/<apache_ManagedObject_name>/openssl.cnf

Using the configuration from:

<install_dir>/bin/<apache_ManagedObject_name>/openssl.cnf

You are prompted for the following information.

Note

Pressing Enter in response to each query (accepting each default value) is sufficient
for creating a temporary certificate.

Using configuration from
<install_dir>/bin/<apache_ManagedObject_name>/openssl.cnf
You are about to be asked to enter information that will be incorporated into
your certificate request.
What you are about to enter is what is called a Distinguished Name or a
DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (such as, city) []:
Organization Name (such as, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (such as, section) []:

4 VisiBroker Secur i ty Guide

Secur i ty for the Apache web server

Common Name (such as, YOUR name) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from
<install_dir>/bin/<apache_ManagedObject_name>/openssl.cnf

4 The key file created must be moved to the location specified in
SSLCertificateKeyFile.

5 The certificate file must be moved to the location specified in SSLCertificateFile.

Note

The generated certificate file is sufficient for testing purposes. However, in a production
environment, you must obtain a certificate signed by a recognized certificate authority
(CA).

Verifying that mod_ssl is active

In order to verify that mod_ssl is working, try to access your web server using https.
How you do this depends on where you have placed the SSLEngine directive (see
“Creating key and certificate files”).

– If SSLEngine is defined at the server level, all server access goes through mod_ssl.

– If SSLEngine is defined on the host level, you must direct your access to that particular
host by providing the correct port number or IP address.

When attempting to make a secure connection from a web browser, make sure that
you use “https” instead of “http” in your URL. For example:

https://host.domain.com:443/index.html

To find out more information about your web server, you can configure mod_info to
serve configuration information.

1 To enable mod_info, you must modify the httpd.conf file located in:

<install_dir>/var/domains/<domain_name>/configurations/<configuration_name>/
mos/<apache_ManagedObject_name>/conf

by un-commenting the following line:

LoadModule info_module <install_dir>/lib/<apache_ManagedObject_name>/mod_info.so

2 Next, you need to uncomment the following section of code:

<Location /server-info>
 SetHandler server-info
 Order deny, allow
Deny from all
 Allow from .your_domain.com
</Location>

Important

Do not uncomment the Deny from all directive.

3 Edit the Allow from .your_domain.com directive to match your domain.

Your Apache web server will now respond to the following query by displaying
server configuration information:

 8: Secur i ty for the Web components 5

Enabl ing cert i f icate passthrough to the Bor land web container

https://<server_name>/server-info

Note

This query does not require a secure “https” connection; mod_info configuration is
independent of the protocol used by the Apache web server. server.

Enabling certificate passthrough to the Borland web container
By enabling mod_ssl for your Apache web server, you can configure your web server
to handle “https” (SSL) type connections. As a result, any SSL authentication
information is consumed by the Apache web server. If you want your Borland web
container to manage the SSL authentication, the Apache web server and IIOP
connector need to pass the SSL authentication information through to the Borland web
container.

By implementing the VisiBroker “certificate passthrough” feature, you can give your
Borland web container access to all the browser-supplied SSL information, as if the
Apache web server is not between the browser and the web container. Additionally,
your Borland web container is given control of the SSL-based authorization. With this
feature, the web applications can use the auth-method CLIENT_CERT_AUTH even when the
Apache web server is in between the browser and the Borland web container.

Configuring Apache to “passthrough” the SSL certificate and
related information

Enabling certificate passthrough consists of the following two steps:

1 Configuring mod_ssl module of the httpd.conf file to export the SSL authentication
information passed to it by the browser into a shared environment.

This shared environment allows the mod_iiop IIOP connector to obtain this data for
subsequent forwarding to the Borland web container.

2 Configuring the mod_iiop IIOP connector to forward any SSL authentication
information to the Borland web container.

Configuring the mod_ssl module of the httpd.conf file for certificate passthrough
Modify the httpd.conf file located in: <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/<apache_ManagedObject_name>/conf by un-
commenting the sslOptions +StdEnvVars +ExportCertData directive in the mod_ssl
section. For example:

<IfModule mod_ssl.c>
BrowserMatch ^Mozilla/[2345] nokeepalive
SSLEngine on
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
SSLCertificateFile C:\BDP(b414)\var\domains\base\configurations\j2eeSample/mos/
ApacheWebServer/conf/ssl.crt/server.crt
SSLCertificateKeyFile C:\BDP(b414)\var\domains\base\configurations\j2eeSample/
mos/ApacheWebServer/conf/ssl.key/server.key

Uncomment the following to enable SSL certificate and related information to
be exported to the apache environment

#SSLOptions +StdEnvVars +ExportCertData

</IfModule>

6 VisiBroker Secur i ty Guide

Enabl ing cert i f icate passthrough to the Bor land web container

Configuring the mod_iiop IIOP connector of the httpd.conf file to
forward SSL authentication

As part of the certificate passthrough feature, a new IIOP configuration directive has
been added. The IIopEnableSSLExport directive instructs the IIOP connector to forward
SSL requests.

If the IIopEnableSSLExport directive is enabled and a client request is set as secure (has
a type of https), then the IIOP connector will attempt to locate a set of environment
variables. If a set of environment variables are found, then the IIOP connector forwards
the data on to the Borland web container as part of the request.

Modify the httpd.conf file located in: <install_dir>/var/domains/<domain_name>/
configurations/<configuration_name>/mos/<apache_ManagedObject_name>/conf by
un-commenting the appropriate directives, shown here:

<IfDefine !ModIIOPNoAutoLoad>
LoadModule iiop2_module C:/BDP(b414)/lib/<apache_ManagedObject_name>/
mod_iiop2.dll
IIopLogFile C:\BDP(b414)\var\domains\base\configurations\j2eeSample/mos/
ApacheWebServer/logs/mod_iiop.log
IIopLogLevel error
IIopClusterConfig C:\BDP(b414)\var\domains\base\configurations\j2eeSample/mos/
ApacheWebServer/conf/WebClusters.properties
IIopMapFile C:\BDP(b414)\var\domains\base\configurations\j2eeSample/mos/
ApacheWebServer/conf/UriMapFile.properties

Directive: IIopLookupLocalRefs true | false
Purpose: Allows apache to override the UriMapFile mapping if the reference is
found in the local doc tree.
Default: false - by default mod_iiop2 will not look for local references
prior to dispatching a matching reference to
tomcat.
#
#IIopLookupLocalRefs true
#
#
Directive: IIopChunkedUploading true | false
Purpose: Determines whether mod_iiop2 will attempt to chunk POSTed data
(uploads). Corresponds to the enabledChunking attribute of the Borland
WebContainer's IIOP connector.
Default: false - Mod_iiop2 will not attempt to chunk uploaded data.
#
#IIopChunkedUploading true
#
Directive: IIopUploadBufferSize n

Purpose: Allows mod_iiop to control the size of the 'chunk; of data POSTed to
the Borland WebContainer as part of a chunked upload. This directive is
ignored if IIopNoChunkedUploading is set to true.
Default: 4096
#
#IIopUploadBufferSize 4096
#
Directive: IIopReapIdleConnections n

Purpose: Directs the VisiBroker orb to attempt to reap 'n' idle connections
from the orb connection pool after every HTTP request. This can improve
performance on systems that have limited network resources.

Default: none - by default mod_iiop2 does not request the orb to reap idle
connections.

 8: Secur i ty for the Web components 7

Secur i ty for the Bor land web container

#
#IIopReapIdleConnections 50

uncomment the following to enable the "certificate passthrough" feature of
the IIOP connector
Note: you must have already un-commented the SSLOptions directive of the
mod_ssl module earlier

#IIopEnableSSLExport true

</IfDefine>

Security for the Borland web container
In order to protect access to your web resources, you must secure those resources.
The following steps are required for securing web resources using VisiBroker:

1 Set up security for your Borland web container

2 Set up security for each web application

Securing your Borland web container

By default, the Borland web container is set up to use the Borland Security Service
Realm (BSSRealm). To secure your Borland web container, you need to complete the
following:

1 Enable security

2 Configure Security authentication

3 Configure Security authorization

Securing your web application

The VisiBroker Server allows you to set security for each of your web applications by
protecting the URLs with which the application's resources are associated. To secure a
web application, you must first decide which URLs you want to protect. Once you
protect a URL, a user is not able to access it without entering a valid user name and
password.

Once you identify a web resource collection (servlets, JSPs, HTMLs, Gifs, and such)
and the associated URLs your want to protect, the steps to securing the web
application are:

1 Define new security roles: Assign users to a security role which is used to determine
who accesses the web resources and what actions are allowed when using the web
resources by way of a web browser.

2 Define the security constraints for the specific web resource files: Protect the URL
Patterns that map to certain servlets and JSPs.

3 Set up a login: Set the login option which controls the access to the servlets and
JSPs through their URL patterns.

For example, you may set up a “Developer” security role that can access the web
resources of the example.war file which contains the URL Pattern, jsp/security/
servlet/*.jsp.

8 VisiBroker Secur i ty Guide

Three-t ier author izat ion scheme

Three-tier authorization scheme
In addition to setting up security from your client browser to your Borland web
container, you can set up a three-tier authorization scheme to accommodate a more
complex client/server landscape. A three-tier authorization scheme can include a client
browser, a web container, and an EJB container.

Figure 8.1 Three-tier authorization scheme

The server-side has two different container components with a security mechanism in
each of them. So, when a user (John) sends a client request, his login ID is authorized
and authenticated at the Borland web container level.

Lets say that the client request requires the servlet running at the Borland web
container to access a bean in the EJB container. However, the EJB container does not
know the user, “John”. You have two options for extending security to the EJB
container.

– The first is to make the EJB container knowledgeable of all users.

– The second is to use the concept of “run-as”—When the web container makes an
EJB invocation, the web container will “run as” a user that the EJB container
recognize. The web application can be configured with a “run as” user to access the
third-tier component. The web application with the servlet making the EJB invocation
can be configured with “run as” user “web container”. In this case, though the real
user is “John”, the EJB container acknowledges the user as “web-container”.

Setting up “run-as” role

The Borland web container, supports the “run-as” configuration for web applications.
The web application can be set up with the “run-as” role which maps to a user.

To set up the “run as” configuration:

1 Open the .war file in the DDEditor.

2 In the Navigation pane, expand the .war file.

3 Select a servlet node.

4 Access the Properties pane, General tab.

5 In the Security Identity field, choose Run as from the drop-down menu.

6 In the Run section that appears, use the Descriptions field to type a short description
of the Run as.

7 In the Role field, use the pull-down menu to select the appropriate role from the list.

 8: Secur i ty for the Web components 9

Three-t ier author izat ion scheme

Note

In addition to setting the “run-as” role, you also must set a principal to map to the “run
as” role. For more information, see “Authorization domains”.

10 VisiBroker Secur i ty Guide

 9: Secur i ty Propert ies for Java 1

Security Properties for Java

Property Description Default

vbroker.security.logLevel Use this property to control the degree of logging. 0 means
no logging and 7 means maximum logging (debug
messages).

0

vbroker.security.secureTransport This property controls whether the transport connection is
encrypted or not. If set to true, transport messages are
encrypted. If set to false they are in the clear.

true

vbroker.security.alwaysSecure This property together with the secureTransport property
controls the default QoP on the client-side. If both set to true
then transport QoP is set to SECURE_ONLY, which means the
client will only accept secure transport. If either of them is set
to false then Client does not mandate security at the
transport layer.

false

vbroker.security.server.transport This property is used on the server side to define server
transport QoP. Acceptable values are CLEAR_ONLY, SECURE_ONLY
or ALL. This allows the client that needs either CLEAR_ONLY or
SECURE_ONLY to be able to connect to a server. This property
will take effect only when property secureTransport is true.

SECURE_ONLY

vbroker.security.disable If set to true, disables all security services. true

vbroker.security.transport.protocol This property is used to select a security transport protocol.
Possible values are SSL, SSLv2, SSLv3, TLS and TLSv1. For
information on these protocols, see the Sun Microsystems
documentation at: http://java.sun.com/products/jsse/doc/
guide/API_users_guide.html#SSC.

TLSv1

vbroker.security.requireAuthentication Server-side only property used to specify whether the client
is required to authenticate.

false

vbroker.security.enableAuthentication Server-side only property. This back-compatible property is
used for supporting PasswordBackEnd style authentication.
When set to true, the program will try to construct the
specified PasswordBackEnd for authenticating.

false

vbroker.security.authentication.
callbackHandler

Specifies the callback handler used for login modules to use
for interacting with user for credentials. You can specify one
of the following or your own custom callback handler:

com.borland.security.provider.authn.CmdLineCallbackHandler
com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while
HostCallbackHandler has password echo off.

n/a

2 VisiBroker Secur i ty Guide

Secur i ty Propert ies for Java

vbroker.security.authentication.config This specifies the path to the configuration file used for
authentication.

null

vbroker.security.authentication.retryCount Number of times to retry if remote authentication failed. 3

vbroker.security.authentication.
clearCredentialsOnFailure

By default, if the authorization realm finds the authenticator is
incorrect after the maximum number of retries have been
attained, the ORB retains the authenticator. If you want the
ORB to clear the authenticator (the credential) after the
maximum number of retries, set this property to true.

false

vbroker.security.login If set to true, at initialization-time this property tries to login to
all the realms listed by property
vbroker.security.login.realms.

false

vbroker.security.login.realms This gives a list of comma-separated realms to login to. This
is used when login takes place, either through property
vbroker.security.login (set to true) or API login using login().

n/a

vbroker.security.vault This property is used to specify the path to the vault file. This
property will take effect regardless of whether
vbroker.security.login is set to true or false.

n/a

vbroker.security.identity.
reauthenticateOnFailure

When set to true the security service will attempt to reacquire
authentication information using the CallbackHandler. This
property require the callback handler to be set either using
the appropriate property or at runtime by calling the
appropriate method.

false

vbroker.security.identity.enableReactiveLogin When set to true, the security service behaves as follows: If
the security service cannot find an identity for any of the
targets supported by a server it is attempting to communicate
with, it will then attempt to acquire credentials for one of the
targets in the target object's IOR. If a corresponding
authentication realm is available for this target (that the user
chooses to provide credentials for), then authentication is
also attempted locally.

Reactive login requires a callback handler to be set either
using the appropriate property or at runtime by calling the
appropriate method.

true

vbroker.security.authDomains Specifies a comma-separated list of available authorization
domains. For example:

vbroker.security.authDomains=<dom1>,<doma2>…

null

vbroker.security.domain.<domain_name>.
rolemap_path

Specifies the location of the RoleDB file that describes the
roles used for authorization. This is scoped within the domain
<domain_name> specified in vbroker.security.authDomains.

n/a

vbroker.security.domain.<domain_name>.
rolemap_enableRefresh

When set to true, enables dynamic loading of the RoleDB file
specified in
vbroker.security.domain.<domain_name>.rolemap_path property.
The interval of dynamic loading is specified by property
vbroker.security.domain.<domain_name>.rolemap_refreshTimeInSe
conds.

false

vbroker.security.domain.<domain_name>.
rolemap_refreshTimeInSeconds

Specifies the rolemap refresh time in seconds. 300

vbroker.security.domain.<domain name>.runas.
<run_as_role_name>

Specifies the name of the run-as role. The value can be
either use-caller-identity to have the caller principal be in the
run-as role, or specify an alias for a run-as principal for the
run-as role name.

n/a

vbroker.security.peerAuthenticationMode Sets the peer authentication Mode. Possible values are:

REQUIRE
REQUIRE_AND_TRUST
REQUEST
REQUEST_AND_TRUST
NONE

Note that the REQUEST and REQUEST_AND_TRUST modes cannot
receive peer certificate chains due to JSSE restrictions.

NONE

Property Description Default

 9: Secur i ty Propert ies for Java 3

Secur i ty Propert ies for Java

vbroker.security.trustpointsRepository Specifies a path to the directory containing trusted
certificates and CRLs or to a trusted Keystore whose values
are implementations of TrustedCertificateEntry. Default
values are either a directory, given in the format
Directory:<path_to_certs> or a Keystore, given in the format
Keystore:<path_to_keystore>.

n/a

vbroker.security.defaultJSSETrust If set to true, the JSSE default trust files like cacerts and
jssecacerts, if present in JRE, will be used to load trusted
certificates.

false

vbroker.security.assertions.trust.<n> This property is used to specify a list of trusted roles
(specified with the format <role>@<authorization_domain>). <n>
is a uniquely identified for each trust assertion rule as a list of
digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmin@default
means this process trusts any assertion made by the
ServerAdmin role in the default authorization domain.

n/a

vbroker.security.assertions.trust.all Setting to true will trust all the assertion made by peers. false

vbroker.security.server.requireUPIdentity Set this to true if the server requires the client to send a
Username/Password for authentication (regardless of
certificate-based authentication). This is a server-side
property.

n/a

vbroker.security.cipherList Set this to a list of comma-separated ciphers to be enabled
by default on startup. If not set, a default list of ciphersuites
will be enabled. These should be valid SSL Ciphers.

n/a

vbroker.security.controlAdminAccess Set this to true for enabling Server Manager operations on a
Secure Server.

false

vbroker.security.serverManager.authDomain Points to a security domain listed in
vbroker.security.authDomains. The specified domain is used
for the Server Manager's role-based access control checks.
A rolemap must be specified for the domain.

n/a

vbroker.security.serverManager.role.all Specifies the role name required for accessing all Server
Manager operations.

n/a

vbroker.security.serverManager.role.
<method_name>

Specifies the role name required for accessing the specified
method of the Server Manager.

n/a

vbroker.security.support.gatekeeper.
replyForSAS

This property is used with GateKeeper with security enabled.
When set to true, the username and password will not be
delegated to the backend server for authentication.

false

vbroker.security.domain.<domain_name>.
defaultAccessRule

Specifies whether to grant or deny access to the domain by
default in the absence of security roles for the provided
domain. Acceptable values are grant or deny.

grant

vbroker.se.iiop_tp.scm.ssl.listener.
trustInClient

A server side property. Set to true to have the server require
certificates from the client. These certificates must also be
trusted by the server by setting the appropriate server-side
trust properties. For more information, see the
vbroker.security.trustpointsRepository property and the
vbroker.security.defaultJSSETrust property.

false

vbroker.security.wallet.type A wallet is a set of directories containing encrypted private
keys and certificate chains for each identity. Use this
property to point to the directory containing the directories for
all identities, using the format: Directory:<path_to_identities>

n/a

vbroker.security.wallet.identity Use to point to a directory within the path defined in
vbroker.security.wallet.type that contains keys and/or
certificate information for a specific identity. Note that the
value of this property must consist only of lower-case letters.

n/a

vbroker.security.wallet.password Specifies the password used to decrypt the private key or the
password associated with the login.

n/a

Property Description Default

4 VisiBroker Secur i ty Guide

 10: Secur i ty Propert ies for C++ 1

Security Properties for C++

Property Description Default

vbroker.security.logLevel Use this property to control the degree of logging. Acceptable
values are: LEVEL_WARN, LEVEL_NOTICE, LEVEL_INFO, and
LEVEL_DEBUG strings.

LEVEL_WARN

vbroker.security.logFile Use this property to redirect the log output to a file. The
default log output is to std::cerr.

null

vbroker.security.secureTransport This property sets whether secure transport is supported or
not. If set to false, transport uses CLEAR_ONLY.

true

vbroker.security.alwaysSecure This is a client side only property. It determines whether to
use secure transport only or not.

Note: To use secure transport only, the secureTransport
property must also be set to true.

true

vbroker.security.server.transport This is a server side only property. It defines whether the
server transport is: CLEAR_ONLY, SECURE_ONLY or ALL. This
property will not take effect when the secureTransport property
is set to false.

SECURE_ONLY

vbroker.security.disable If set to true, disables all security services. false

vbroker.security.
requireAuthentication

A server side only property. Use to specify whether the client
is required to authenticate.

true

vbroker.security.authentication.
callbackHandler

Specifies the callback handler for login modules to use for
interacting with the user for credentials. You can specify one
of the following or your own custom callback handler. For
more information, see “VisiSecure for C++ APIs.”

com.borland.security.provider.authn.CmdLineCallbackHandler
com.borland.security.provider.authn.HostCallbackHandler

CmdLineCallbackHandler has password echo on, while
HostCallbackHandler has password echo off.

HostCallbackHandler

vbroker.security.authentication.
config

This specifies the path to the configuration file used for
authentication.

null

vbroker.security.authentication.
retryCount

Number of times to retry if remote authentication failed. 3

vbroker.security.login If set to true, at initialization-time this property tries to login to
all the realms listed by property
vbroker.security.login.realms.

true

2 VisiBroker Secur i ty Guide

Secur i ty Propert ies for C++

vbroker.security.login.realms This gives a list of comma-separated realms to login to. This
is used when login takes place, either through property
vbroker.security.login (set to true) or API login.

n/a

vbroker.security.vault This property is used to specify the path to the vault file. This
property will take effect regardless of whether
vbroker.security.login is set to true or false.

n/a

vbroker.security.identity.
reactiveLogin

When set to true, the security service behaves as follows. If
the security service cannot find an identity for any of the
targets supported by a server it is attempting to communicate
with, it then attempts to acquire credentials for one of the
targets in the target object's IOR. If a corresponding
authentication realm is available for this target (that the user
chooses to provide credentials for), then authentication is
also attempted locally.

Reactive login requires a callback handler to be set either
using the appropriate property or at runtime by calling the
appropriate method. The default handler is
HostCallbackHandler.

true

vbroker.security.authDomains Specifies a comma-separated list of available authorization
domains. For example:

vbroker.security.authDomains=domain1,domain2

n/a

vbroker.security.domain.<domain-name>.
rolemap_path

Specifies the location of the RoleDB file that describes the
roles used for authorization. This is scoped within the domain
<domain_name> specified in: vbroker.security.authDomains.

n/a

vbroker.security.domain.<domain_name>.
rolemap_enableRefresh

When set to true, enables dynamic loading of the RoleDB file
specified in
vbroker.security.domain.<domain_name>.rolemap_path property.
The interval of dynamic loading is specified by property
vbroker.security.domain.<domain_name>.rolemap_refreshTimeInSe
conds.

false

vbroker.security.domain.<domain_name>.
rolemap_refreshTimeInSeconds

Specifies the rolemap refresh time in seconds. 300

vbroker.security.
peerAuthenticationMode

Sets the peer authentication Mode. Possible values are:

REQUIRE—Peer certificates are required to establish a
connection. If the peer does not present its certificates, the
connection will be refused. Peer certificates will also be
authenticated, if not valid, the connection will be refused. If
required, transport identity can be established using these
certificates. In this mode, peer certificates are not required to
be trusted.

REQUIRE_AND_TRUST—Same as REQUIRE mode, except that
the peer certificates need to be trusted, otherwise the
connection will be refused.

REQUEST—Peer certificates will be requested. The peer is not
required to have certificates; no transport identity will be
established when peer does not have certificates. However,
if a peer does present certificates, the certificates will be
authenticated; if not valid, the connection will be refused. If
required, transport identity can be established using these
certificates. In this mode, peer certificates are not required to
be trusted.

REQUEST_AND_TRUST—Same as REQUEST mode except that the
peer certificates need to be trusted, otherwise the connection
will be refused.

NONE—Authentication is not required. During handshake, no
certificate request will be sent to the peer. Regardless of
whether the peer has certificates, a connection will be
accepted. There will be no transport identity for the peer.

REQUIRE_AND_TRUST

Property Description Default

 10: Secur i ty Propert ies for C++ 3

Secur i ty Propert ies for C++

vbroker.security.trustpointsRepository Specifies a path to the directory containing trusted
certificates. These are given in the form
Directory:<certs_dir>. For example:

vbroker.security.trustpointsRepository=Directory:c:\data\
identities\Delta

n/a

vbroker.security.assertions.trust.<n> Use to specify a list of trusted roles (specify with the format
<role>@<authorization_domain>). <n> is uniquely identified for
each trust assertion rule as a list of digits.

For example, setting
vbroker.security.assertions.trust.1=ServerAdmin@default
means this process trusts any assertion made by the
ServerAdmin role in the default authorization domain.

n/a

vbroker.security.assertions.trust.all Setting to true will trust all the assertion made by peers. false

vbroker.security.server.
requireUPIdentity

A server side only property. If the server requires the client to
send a Username/Password for authentication (regardless of
certificate-based authentication), set to true. If
vbroker.security.login.realms is set, this property is
automatically set to true. However, you can override it by
explicitly setting it in the property file.

n/a

vbroker.security.cipherList Set this to a list of comma-separated ciphers to be enabled
by default on startup. If not set, a default list of cipher suites
will be enabled. These should be valid SSL Ciphers.

n/a

vbroker.security.wallet.type A wallet is a set of directories containing encrypted private
keys and certificate chains for each identity. Use this
property to point to the directory containing the directories for
all identities, using the format: Directory:<path_to_identities>

n/a

vbroker.security.wallet.identity Points to a directory within the path defined in
vbroker.security.wallet.type that contains keys and/or
certificate information for a specific identity.

n/a

vbroker.security.wallet.password Specifies the password used to decrypt the private key or the
password associated with the login.

n/a

vbroker.security.CRLRepository Use to specify the directory where you want the list of serial
numbers of revoked certificates (Certificate Revocation List
(CRL)), issued by the Certificate Authority (CA), to reside. All
files in the directory will be loaded and interpreted as CRL—
no longer valid. The CRL file must be in the DER format.

Once the CRLs are loaded, VisiSecure examines all
certificates sent by a peer during SSL handshake. If any of
the peer certificates appears in the CRLs, an exception will
be thrown and the connection will be refused. For more
information, see “Certificate Revocation List (CRL) and
revoked certificate serial numbers”.

n/a

Property Description Default

4 VisiBroker Secur i ty Guide

 11: Vis iSecure for C++ APIs 1

VisiSecure for C++ APIs
This section describes APIs that are defined in VisiSecure for C++. It is separated into
subsections including:

– General APIs

– SSL and Certificate APIs

– QoP APIs

– Authorization APIs

All classes are under namespace vbsec unless otherwise specified.

General API
The general VisiSecure API describes the Current and Context APIs. It provides API
information for Principals, Credentials, and Subjects. In addition, the Wallet API is
discussed.

class vbsec::Current

Current represents the view to the thread specific security context. Some calls are
relevant only in an request execution context. This object can be obtained through the
following code:

CORBA::Object_var obj = orb->resolve_initial_references("VBSecurityCurrent");
Current* c = dynamic_cast(obj.in());

Include File
The vbsec.h file should be included when you use this class.

Methods
void asserting (const vbsec::Subject* caller)

2 VisiBroker Secur i ty Guide

General API

Assert a subject as caller identity.

void clearAssertion ()

Clear an assertion made by any previous API call of asserting. The caller before the
assertion is made will be restored as the caller for next invocation. This API shall be
used in conjunction with asserting. Mismatching calls of these two methods may cause
undesired caller identities or unexpected exceptions.

const vbsec::Subject* getPeerSubject ()

Accesses the peer subject.

Returns

The pointer to a Subject object representing the peer.

const vbsec::Subject* getCallerSubject ()

Accesses the caller subject.

Returns

The pointer to a Subject object representing the caller.

const vbsec::SSLSession* getPeerSession (CORBA::Object* peer)

Get the peer SSLSession. This call returns the SSLSession of the client peer for this
request. This method cannot be called outside the context of a request.

Returns

The pointer to a SSLSession currently established.

Exceptions

BAD_OPERATION is thrown if this method is called outside the context of a request or when
called in a request context where the request was received over a clear TCP
connection.

class vbsec::Context

Context represents the security context under which a client will execute. This class can
be obtained through the following code:

CORBA::Object_var obj = orb->resolve_initial_references("VBSecurityContext");
Context* c = dynamic_cast(obj.in());

Include File
The vbsec.h file should be included when you use this class.

Methods
void login()

Login into the system. This logs-in to the realms defined in the property
vbroker.security.loginRealms. It traverses the list of realms specified and authenticates
against each realm.

void login (vbsec::CallbackHandler& handler)

Parameter Description

caller The caller name of the subject.

Parameter Description

peer A peer object retrieved from the bind.

 11: Vis iSecure for C++ APIs 3

General API

Use this to login to the system using the specified CallbackHandler to obtain the login
information.

void login (const std::string& realm)

Login into the system for a specific realm.

void login (const std::string& realm, vbsec::CallbackHandler& handler)

Login into the system for a given realm, using a given callback handler for acquiring
information.

void login (const vbsec::Wallet& wallet)

Login into the system with a wallet. Wallet can be created using WalletFactory API.

void login (const std::vector<const vbsec::Wallet*>& wallet)

Login into the system with a set of wallets specified as a vector.

const vbsec::Subject* getSubject (const std::string& realm)

Gets the Subject corresponding to a given realm.

Returns

A pointer to the Subject object representing the subject of the realm.

void loadVault (std::istream& stream, const CSI::UTF8String& vaultPass)

Loads a given vault. The identities in the vault are loaded into the system. No login
required when this method is used.

void logout()

Log the user out from all the realms.

void logout (const std::string& realm)

Parameter Description

handler The default callback handler to be use for acquiring information.

Parameter Description

realm The realm to login to.

Parameter Description

realm The realm to login to.

handler The default callback handler to be use for acquiring information.

Parameter Description

wallet The wallet to be used for login.

Parameter Description

wallet A wallet to be used for login

Parameter Description

realm The Realm for the Principal

Parameter Description

stream Stream that the vault information will be read from, in binary format.

vaultPass Password used to decrypt the vault information.

4 VisiBroker Secur i ty Guide

General API

Log the user out from a given realm.

void setCallbackHandler (vbsec::CallbackHandler* handler)

Set the default callback handler programmatically. This is similar to using the property
vbroker.security.authentication.callbackHandler.

void generateVault(std::ostream& stream, const CSI::UTF8String& password)

Generates a vault. The vault is written out to the stream that is passed in and encrypted
using the password provided (also used to decrypt the vault). The password may be
null. The vault contains all of the system's identities.

vbsec::Subject* authenticateUser (const vbsec::Wallet& wallet)

Authenticate the given wallet credential. The login will be performed using the wallet
but the authenticated subject will not be used as one of the system identities.

vbsec::Subject* importIdentity (const vbsec::Wallet& wallet)

Import a subject using the given wallet credential. No login is required with this method.
The subject will not be used as one of the system identities.

void setPRNGSeed (const CORBA::OctetSequence& seed)

Sets a seed for the pseudo-random generator used by the SSL layer.

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

Get the list of cipher suites that are available for use with the SSL layer. Note that this
is different from the getEnabledCipherSuites call in that not all the available cipher
suites may be currently enabled.

Returns

List of cipher suits that are available but may not be enabled for use with the SSL layer.

void enableCipherSuites (const ssl::CipherSuiteInfoList& suites)

Sets the cipher suites that should be enabled for all SSL sessions.

ssl::CipherSuiteInfoList* getEnabledCipherSuites()

Gets the set of cipher suites that are currently enabled for all SSL sessions.

Parameter Description

realm The realm to logout from.

Parameter Description

handler The CallbackHandler to be set.

Parameter Description

stream The stream that the vault information will be written into, in binary format.

password The password used to encrypt the vault information.

Parameter Description

wallet The wallet to be used for authentication

Parameter Description

wallet The wallet corresponding to the identity to be imported.

Parameter Description

seed The seed for the PRNG.

Parameter Description

suites An IDL-generated CipherSuiteInfoList type.

 11: Vis iSecure for C++ APIs 5

General API

Returns

Cipher suits that are currently enabled for all SSL sessions.

void setSSLContext (vbsec::VBSSLContext* ctx)

Sets the SSL context. This will allow establishing of an SSL session using the
information defined in VBSSLContext. A VBSSLContext can be created using the
SecureSocketProvider API.

VBSSLContext& getSSLContext()

Get the VBSSLContext that is set using the setSSLContext() or return a default
VBSSLContext object.

Returns

The VBSSLContext that will be used for any SSLSession establishment.

class vbsec::Principal

Principal represents the identity of a user. This is a virtual class.

Include file
The vbsec.h file should be included when you use this class.

Methods
std::string getName() const

Returns

The name of the Principal.

std::string toString() const

Get the string representation of the Principal.

Returns

The string representation of the Principal.

class vbsec::Credential

Credential represents the information used to authenticate an identity, such as user
name and password. This is a virtual class.

Include File
The vbsec.h file should be included when you use this class.

Parameter Description

ctx The VBSSLContext that is to be used for any SSL session establishment.

6 VisiBroker Secur i ty Guide

General API

class vbsec::Subject

Subject represents a grouping of related information for a single entity, such as a
person. Such information includes the Subject's identities as well as its security-related
attributes (passwords and cryptographic keys, for example).

Include File
The vbsec.h file should be included when you use this class.

Methods
Principal::set& getPrincipals()

Gets the principals in the subject.

Returns

The set of the principals in the subject. Modifying the content of the set will have no
effect on the subject.

void clearPrincipals()

Clears the principals from the subject. All principals in the subject are removed.

Credential::set& getPublicCredentials()

Get the public credentials in the subject—public keys for example.

Returns

The set of the public credential in the subject. Modifying the content of the set will have
no effect on the subject.

void clearPublicCredentials()

Clear the public credentials in the subject. All public credentials in the subject will be
destroyed and removed.

Credential::set& getPrivateCredentials()

Get the private credentials in the subject—private keys for example.

Returns

The set of the private credential in the subject. Modifying the content of the set will
have no effect on the subject.

void clearPrivateCredentials()

Clear the private credentials in the subject. All private credentials in the subject will be
destroyed and removed.

Principal::set getPrincipals (const type_info& info) const

Gets a set of principals in the subject which have the same runtime type information as
provided.

Returns

A set of the principals in the subject which have same runtime information as the given
one. Modifying the content of the set will have no effect on the subject.

Credential::set getPublicCredentials (const type_info& info) const

Get set of public credentials in the subject which have the same runtime type
information as provided.

Parameter Description

info The runtime type information that the returned principals shall have.

Parameter Description

info The runtime type information that the returned public credential shall have.

 11: Vis iSecure for C++ APIs 7

General API

Returns

A set of the public credential in the subject which have same runtime information as the
given one. Modifying the content of the set will have no effect on the subject.

Credential::set getPrivateCredentials (const type_info& info) const

Get set of private credentials in the subject which have the same runtime type
information as provided.

Returns

A set of the private credentials in the subject which have same runtime information as
the given one. Modifying the content of the set will have no effect on the subject.

class vbsec::Wallet

A Wallet is a holder of credentials usually used in login API calls. A Wallet can be
created using WalletFactory APIs and contain multiple types of credentials.

Include File
The vbsec.h file should be included when you use this class.

Methods
std::string getTarget () const

Get the target to which wallet authenticates.

Returns

The string representation of the target information.

void populateSubject (Subject& subject)

Populate the given subject with necessary credentials or other information for
authentication.

class vbsec::WalletFactory

WalletFactory is a factory class to create multiple types of wallets.

Include File
The vbsec.h file should be included when you use this class.

Methods
Wallet* createCertificateWallet (const std::string& name,
 const std::string& password,
 const std::string& alias,
 const std::string& keypassword,
 short usage)

Parameter Description

info The runtime type information that the returned private credentials shall have.

Parameter Description

subject The subject for the wallet to populate.

8 VisiBroker Secur i ty Guide

General API

Create a certificate wallet using a C++ keystore. The C++ keystore is similar to the
Java keystore but is implemented using a directory structure. When logging in with a
wallet created by this API, the certificate chain will be used in the SSL layer.

Returns

Certificate wallet that contains the given information.

Wallet* createCertificateWallet (const CORBAsec::X509CertList& chain,
 const CORBAsec::ASN1Object& privkey,
 const CSI::UTF8String& password)

Create a certificate wallet using a certificate chain, private key and password.

Returns

Certificate wallet that contains the given information.

Wallet* createIdentityWallet (const std::string& username,
 const std::string& password,
 const std::string& realm)

Create a identity wallet using a username, password and realm that the wallet to which
the wallet authenticates.

Returns

Identity wallet that contains the given information.

Wallet* createIdentityWallet (const std::string& username,
 const std::string& password,
 const std::string& realm,
 const std::vector<std::string>& groups)

Create a identity wallet using a username, password, realm to which the wallet
authenticates, and a set of group attributes.

Returns

Identity wallet that contains the given information.

Parameter Description

name The directory name of the keystore.

password The password for the keystore, not used for this release.

alias The alias to be used in the keystore.

keypassword The password for the private key of the given alias.

short usage The usage of the certificate information, CLIENT, SERVER or ALL.

Parameter Description

chain The certificate chain to create the wallet.

privkey The private key of the certificate chain.

password The password for the private key.

Parameter Description

username The username of the identity.

password The password for the identity.

realm The realm to which the wallet authenticates.

Parameter Description

username The username of the identity.

password The password for the identity.

realm The realm to which the wallet authenticates.

groups A set of group attributes to which the identity belongs.

 11: Vis iSecure for C++ APIs 9

SSL API

SSL API
This section explains the various SSL APIs that interact with VisiSecure's SSL
implementation.

class vbsec::SSLSession

SSLSession represents the session of the current SSL connection. The SSLSession can
be gotten from vbsec::Context using getPeerSession().

Include File
The vbssp.h file should be included when you use this class.

Methods
time_t getEstablishmentTime() const

Get the time when the SSL connection was established.

Returns

The time when the SSL connection was established.

const ssl::CipherSuiteInfo& getNegotiatedCipher() const

This method returns the negotiated cipher from the peer for a given SSL connection.

Returns

The negotiated cipher from the peer for a given SSL connection.

const CORBAsec::X509CertList& getPeerCertificates() const

Get the certificate chain of the peer.

Returns

Peer certificate chain.

const CORBAsec::X509Cert* getTrustpoint() const

Get the trust point by which the peer is trusted. Null will be returned if peer does not
have certificates or its certificates are not trusted.

Returns

The trust point by which the peer is trusted, or null if not.

char* getPeerAddress() const

Get the IP address of the peer.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx.

CORBA::UShort getPeerPort() const

Returns the peer port number used by this connection.

Returns

The port number of the peer on the connection.

void prettyPrint (std::ostream& os) const

Print the SSLSession information into the given output stream.

Parameter Description

os The output stream to print the SSLSession information.

10 VisiBroker Secur i ty Guide

SSL API

class vbsec::VBSSLContext

VBSSLContext contains information needed to establish an SSLSession. This object is
created using SecureSocketProvider::createSSLContext().

Include File
The vbssp.h file should be included when you use this class.

Methods
const CORBAsec::X509CertList& getCertificates() const

Get the certificate chain representing the identity to be used for the SSL layer.

Returns

The certificate chain representing the identity to be used for the SSL layer.

void setCipherSuiteList (const ssl::CipherSuiteInfoList& list)

This method is used to specify the ciphers available for the SSL connections.

const ssl::CipherSuiteInfoList& getCipherSuiteList() const

Return the ciphers that are currently used by the SSL layer.

Returns

The ciphers that are currently used by the SSL layer.

void addTrustedCertificate (const CORBAsec::X509Cert_var& trusted)

Programmatically add trusted certificate into the SSL context.

CORBAsec::X509CertList* getTrustedCertificates() const

Get list of certificates that are trusted.

Returns

List of certificates that are trusted.

class ssl::CipherSuiteInfo

CipherSuiteInfo is a structure containing two fields:

– CORBA::ULong SuiteID

– CORBA::String_var Name

This IDL structure contains two fields which describe ciphers according to the SSL
specification. The list of SuiteID values and their names is in the include file, ssl_c.h.

Include File
The ssl_c.hh file should be included when you use this class.

Parameter Description

list A list of ciphers that should be available for the SSL connections.

Parameter Description

trusted Certificate that is to be trusted.

 11: Vis iSecure for C++ APIs 11

SSL API

class CipherSuiteName

This class provides information about the ciphers used in the Security Service.

Include File
The csstring.h file should be included when you use this class.

Methods
static const char* toString (int tag)

Return a standard representation of a supported SSL cipher.

Returns

Returns a stringified description of the cipher.

static const int fromString (char* description)

Give the tag associated to the given cipher description.

Returns

The tag associated with the cipher name provided as the argument.

class vbsec::SecureSocketProvider

A SecureSocketProvider is the provider for secure socket connections. It provides the
function of creating the SSL context, handling SSL certificates, and managing other
secure socket-related information.

Include File
The vbssp.h file should be included when you use this class.

Methods
vbsec::VBSSLContext* createSSLContext (const CORBAsec::X509CertList& chain,
 const CORBAsec::ASN1Object& privkey,
 const CSI::UTF8String& password)

This method create a SSL context using the given information. The SSL context can
then be passed into vbsec::Context and used to establish an SSL connection.

Returns

VBSSLcontext containing the given information.

void setPRNGSeed (const ssl::Current::PRNGSeed& seed)

Parameter Description

tag tag associated with the cipher name.

Parameter Description

description The stringified description of the cipher.

Parameter Description

chain The certificate chain

privkey The private key object.

password The password for the private key.

12 VisiBroker Secur i ty Guide

SSL API

Sets a seed for the pseudo-random number generator used by the SSL layer.

const ssl::CipherSuiteInfoList& listAvailableCipherSuites() const

Gets the list of cipher suites that are available for use with the SSL layer. Note that this
is different from the getEnabledCipherSuites call in that not all the available cipher suites
may be currently enabled.

Returns

List of cipher suits that are available but may not be enabled for use with the SSL layer.

const CertificateFactory& getCertificateFactory() const

Gets a certificate Factory.

Returns

A CertificateFactory object.

class ssl::Current

The ssl::Current lets your client application or server object set its private key and
offer its certificate information to its peer. This interface also lets you configure the SSL
connection and associate your certificates and private key with an SSL connection.

Be aware that private keys and certificates contain header and trailer lines, which mark
the beginning and end of the key or certificate. All of the methods offered by this
interface for setting private keys and certificate chains require that these header and
trailer lines be present. The parsing rules for these lines is:

– The recognized header line format for certificates is:

-----BEGIN CERTIFICATE-----

– The recognized header line format for private keys is:

-----BEGIN ENCRYPTED PRIVATE KEY-----

– All header lines must end with a new line character.

– All trailer lines must be preceded with, and end with, a newline character. PEM-style
private keys have two additional header lines that other private keys do not have:
Proc-Type and DEK-Info. Both of these lines must be present and they must end with
new line characters.

This object can be obtained through the following code:

CORBA::Object_var obj = orb->resolve_initial_references("SSLCurrent");
ssl::Current_var current = ssl::Current::_narrow(obj);

Include File
The ssl_c.hh file should be included when you use this class.

Methods
CORBA::ULong getNegotiatedCipher(CORBA::Object_ptr peer)

This method returns the negotiated cipher from the peer for a given SSL connection.

Parameter Description

seed The seed for the PRNG.

Parameter Description

peer The peer from which you obtain the negotiated cipher.

 11: Vis iSecure for C++ APIs 13

SSL API

Returns

A value (tag) representing the cipher used. (Use CipherSuiteName::toString to get a
String representation.)

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

CORBAsec::X509CertList_ptr getPeerCertificateChain(CORBA::Object_ptr peer)

This method obtains the peer's certificate chain. It is usually invoked by a client
application to obtain information from a server, but a server can optionally request
information from a client.

Returns

A value representing the cipher used. (Use CipherSuiteName::toString to get a String
representation.)

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

char* getPeerAddress(CORBA::Object_ptr peer)

Returns a description of the socket parameters used by this connection.

Returns

Peer IP address in a string with the following format: xxx.xx.xx.xx

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

CORBA::Boolean isPeerTrusted(CORBA::Object_ptr peer)

Tests if the certificate chain of the peer is trusted—that is, if one certificate of the chain
is in the trustpoint.

Returns

true if the chain is trusted, false otherwise.

Exceptions

CORBA::BAD_OPERATION if the object is null or the connection is not using SSL.

trust::Trustpoints_ptr Trustpoints getTrustpointsObject()

Returns a reference to the trustpoint repository. Use this API to access trustpoints
object and set trustpoints.

Returns

A reference to the trustpoint repository, which should be assigned to a _var.

void setPRNGSeed (const ssl::Current::PRNGseed& seed)

Parameter Description

peer The peer from which you obtain the negotiated cipher.

Parameter Description

peer The peer from which you obtain the information.

Parameter Description

peer The peer from which you obtain the information.

14 VisiBroker Secur i ty Guide

SSL API

Sets a seed for the pseudo-random number generator used by the SSL layer.

void setPKprincipal (const CORBAsec::ASN1ObjectList chain,&
 const CORBAsec::ASN1Object& privkey,&
 const char* password);

This method is used in the client or the server to set the certificate chain and private
key that must be used for the SSL connections. This is required for servers and
optional for clients. Also look at the peerAuthenticationMode property documented in
“Security Properties for C++.”

Exceptions

CORBA::BAD_PARAM if the user name or password is null.

void setCipherSuiteList (const ssl::CipherSuiteInfoList& list)

This method is used in the client or the server to specify the ciphers available for the
SSL connections.

ssl::CipherSuiteInfoList* listAvailableCipherSuites()

Returns a list of cipher suites available in VisiSecure. You are responsible for freeing
memory.

Returns

A list of cipher suites.

ssl::CipherSuiteInfoList* getCipherSuiteList()

Returns the ciphers that are currently used by the SSL layer.

Returns

A list of cipher suites.

void setP12Identity (const CORBASEC::ASNIOBJECT& pks12cert, const char*
password)

Parameter Description

seed The OctetSequenceseed for the PRNG.

Parameter Description

chain The certificate chain.

privkey The private key used for the SSL connection.

password The password for the private key.

Parameter Description

list A comma-separated list of cipher suites.

Parameter Description

pks12cert PKCS#12 formatted data.

password The private key password.

 11: Vis iSecure for C++ APIs 15

Cert i f icate API

Certificate API
This API contains classes and methods for working with certificates.

class vbsec::CertificateFactory

This is a utility class for handling of certificates and keys.

Include File
The vbssp.h file should be included when you use this class.

Methods
CORBAsec::X509CertList* importCertificateChain (const CORBAsec::ASN1ObjectList&
certs) const

Import the certification chain in the form of CORBAsec::ASN1ObjectList into
CORBAsec::X509CertList, which could be use in VBSSLContext.

Returns

CORBAsec::X509CertList representation of the certificate chain for CORBA
transportation.

CORBAsec::X509CertList* importCertificates (const CORBAsec::ASN1ObjectList&
certs) const

Import the certification list in the form of CORBAsec::ASN1ObjectList into
CORBAsec::X509CertList. Certificates need not be related to each other. The original
order is preserved after importing.

Returns

CORBAsec::X509CertList representation of the certificate list.

CORBAsec::ASN1Object* importPrivateKey (const CORBAsec::ASN1Object& key) const

Convert the private key from BASE64 or PEM format to DER format.

Returns

DER format of the private key.

CORBAsec::X509CertList* importCertificateChain (const CORBAsec::ASN1Object&
pkcs12bytes,
 const CSI::UTF8String&
password) const

Parameter Description

certs ASN1ObjectList representation of the certificate chain.

Parameter Description

certs ASN1ObjectList representation of certificate list

Parameter Description

key ASN1ObjectList representation of private key object.

16 VisiBroker Secur i ty Guide

Cert i f icate API

Imports a certificate chain from pkcs12 binary.

Returns

CORBAsec::X509CertList representation of the certificate chain.

CORBAsec::ASN1Object* importPrivateKey (const CORBAsec::ASN1Object&
pkcs12bytes,
 const CSI::UTF8String& password) const

Import private key from pkcs12 binary.

Returns

CORBAsec::ASN1Object representation of the private key object.

const CertificateFactory& printCertificate (const CORBAsec::X509Cert&
certificate, std::ostream& stream) const

Print out the certification information into an output stream.

Returns

the CertificateFactory.

bool passwordForPrivatekey (const CSI::UTF8String& password, const
CORBAsec::ASN1Object& privkey) const

Test if the given password can decrypt the given private key object.

Returns

true if decryption is successful, false if not.

Parameter Description

pkcs12bytes ASN1ObjectList representation of pkcs12 binary.

password Password for the pkcs12 binary.

Parameter Description

pkcs12bytes ASN1ObjectList representation of pkcs12 binary.

password Password for the pkcs12 binary.

Parameter Description

certificate certificate to be printed.

stream stream to which to output.

Parameter Description

password The password to be tested.

privkey The private key object to be decrypted.

 11: Vis iSecure for C++ APIs 17

Cert i f icate API

class CORBAsec::X509Cert

This class represents an X509 certificate. When a client application binds to a CORBA
object, the client uses this interface to obtain the server’s certificate information. The
server can use this interface to obtain the client’s certification information, if the client
has a certificate.

Include File
The X509Cert_c.hh file should be included when you use this class.

Methods
char* getSubjectDN()

Returns the subject DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>, C=<value>

char* getIssuerDN()

Returns the issuer DN contained in the certificate.

Returns

The subject name is returned in the following format:

CN=<value>, OU=<value>, O=<value>, L=<value>, S=<value>, C=<value>

CORBA::OctetSequence * getSignatureAlgorithm()

Returns the signature algorithm used in the certificate.

Returns

The signature algorithm used in the certificate.

CORBA::OctetSequence * getHash(CORBASEC::HashAlgorithm algorithm)

Returns a hash of the certificate.

Returns

A hash of the certificate using the specified algorithm.

CORBAsec::ASN1Object_ptr getDER()

Returns the DER encoded form of this certificate.

Returns

The ASN.1 DER encoded form of this certificate (assign to a _var).

CORBAsec::SerialNumberValue_ptr getSerialNumber()

Retrieves the serial number of the certificate.

Returns

The serial number of the certificate.

CORBAsec::X509CertExtensionList_ptr getExtensions()

Returns all the extensions available in this certificate as a list of X509CertExtension.

Parameter Description

algorithm The hash algorithm. The possible values are: CORBASec::MD5, CORBASec::MD2 and
CORBASec::SHA1

18 VisiBroker Secur i ty Guide

Cert i f icate API

Returns

Returns all the extensions available in this certificate as a list of X509CertExtension. Or,
if this certificate has no extensions, the method returns an array of length null. The
extensions are not parsed.

CORBA::Boolean isValid (CORBA::ULong_out date)

Checks if a certificate date is between the valid start and end dates.

Returns

true if the certificate is valid, false otherwise.

CORBA::ULong startDate()

Gets the date from which a certificate’s validity starts.

Returns

Returns an int representing the number of seconds from midnight, January 1st, 1970.

CORBA::ULong endDate()

Gets the expiration date of the certificate.

Returns

Returns an int representing the number of seconds from midnight, January 1st, 1970.

CORBA::Boolean equals (CORBAsec::X509Cert_ptr other)

Compares two CORBAsec::X509Cert certificates.

Returns

Returns true (1UL) if the two certificates are identical; otherwise, returns false (0UL).

CORBA::Boolean isTrustpoint()

Checks if this certificate is a trustpoint—that is, if it is a trusted certificate

Returns

If the certificate is a trustpoint, returns true.

class CORBAsec::X509CertExtension

This class is an IDL structure that represents an X509 certificate extension, as follows:

struct X509CertExtension {
long seq;
sequence<long> oid;
boolean critical;
sequence<octet> value;
};

Parameter Description

date An out argument that is set to the expiration date of the certificate, using UNIX
time format.

Parameter Description

other The other certificate to compare to this certificate.

Parameter Description

seq A unique number of the extension in the certificate.

oid The oid of the extension.

value The value of the extension encoded according to the format specified by the oid.

 11: Vis iSecure for C++ APIs 19

Cert i f icate API

Include File
The X509Cert_c.hh file should be included when you use this class.

20 VisiBroker Secur i ty Guide

QoP API

QoP API
The following section details the Quality of Protection API provided with VisiSecure.

class vbsec::ServerConfigImpl

ServerConfigImpl is the implementation of the csiv2::ServerQoPConfig, which is an IDL
structure as follows:

ServerConfigImpl (
 CORBA::Boolean disable,
 CORBA::Short transport,
 CORBA::Boolean trustInClient,
 csiv2::AccessPolicyManager* access_manager,
 const CORBA::StringSequence& realms = _available,
 CORBA::Short requiredIdentityType = csiv2::ServerQoPConfig::UP_OR_PK,
 CORBA::Boolean supportIdentityAssertion = static_cast<CORBA::Boolean>(1)
);

To define the ServerQoPPolicy, you create this object which defines the various
characteristics of the policy.

Include File
The CSIV2Policies.h file should be included when you use this class.

class ServerQoPPolicyImpl

ServerQoPPolicyImpl is the implementation of the csiv2::ServerQoPPolicy. The
ServerQoPPolicyImpl object impacts the QoP behaviour of the server.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods
ServerQoPPolicyImpl (const csiv2::ServerQoPConfig_var& conf);

Parameter Description

disable Whether or not to disable security.

transport The transport mechanism to use. Valid values are:

■ csiv2::CLEAR_ONLY: no secure transport is necessary

■ csiv2::SECURE_ONLY: only secure connections are permitted

■ csiv2::ALL: any method of transport is allowed

trustInClient Whether or not the target requests the client to authenticate. This
value is set on CSIV2 layer.

access_manager An access manager for the QoP implementation, an
implementation of csiv2::AccessPolicyManager defined by the user. If
null, it uses a default value.

realms The available realms in which to implement the policy.

requiredIdentityType The required identity for the QoP policy implementation. The default
value is csiv2::ServerQoPConfig::UP_OR_PK. Possible values are:
csiv2:ServerQoPConfig::NO_ID, csiv2::ServerQoPConfig::UP,
csiv2::ServerQoPConfig::PK, csiv2::ServerQoPConfig::UP_OR_PK and
csiv2::ServerQoPConfig::UP_AND_PK

supportIdentityAssertion Whether or not the application supports Identity Assertion.

 11: Vis iSecure for C++ APIs 21

QoP API

Constructor of the ServerQoPPolicyImpl object.

virtual csiv2::ServerQoPConfig_ptr config();

Get the ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

Returns

The ServerQoPConfigImpl object from the ServerQoPPolicyImpl.

class vbsec::ClientConfigImpl

ClientConfigImpl is the implementation of the csiv2::ClientQoPConfig. To define the
ClientQoPPolicy, you create this object which defines the various characteristics of the
policy.

Include File
The CSIV2Policies.h file should be included when you use this class

Methods
ClientConfigImpl (const CORBA::Short transport, const CORBA::Boolean
trustInTarget)

Constructor of ClientConfigImpl object.

class vbsec::ClientQoPPolicyImpl

ClientQoPPolicyImpl is the implementation of the csiv2::ClientQoPPolicy. The
ClientQoPPolicyImpl object impacts the QoP behaviour of the server.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods
ClientQoPPolicyImpl(const csiv2::ClientQoPConfig_var& conf);

Constructor for ClientQoPPolicyImpl object.

virtual csiv2::ClientQoPConfig_ptr config();

Returns the ClientConfigImpl object of this ClientQopPolicyImpl.

Returns

The ClientConfigImpl object of this ClientQopPolicyImpl.

Parameter Description

conf ServerQoPConfig object which contains the designed QoP configuration.

Parameter Description

transport The transport mechanism to use. Valid values are:

■ csiv2::CLEAR_ONLY: no secure transport is necessary

■ csiv2::SECURE_ONLY: only secure connections are permitted

■ csiv2::ALL: any method of transport is allowed

trustInTarget Whether or not to require the client to authenticate.

Parameter Description

conf ClientConfigImpl object to be use for the policy.

22 VisiBroker Secur i ty Guide

Authorizat ion API

Authorization API
The following section describes the classes and methods used for authorization in
VisiSecure.

class csiv2::AccessPolicyManager

AccessPolicyManager is used define your Access Policy for authorization a client's
method calls.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods
char* domain()

Returns the authorization domain name for the AccessPolicyManager.

Returns

The authorization domain name for the object that uses this AccessPolicyManager.

csiv2::ObjectAccessPolicy* getAccessPolicy (PortableServer_ServantBase*
servant,
 const PortableServer::ObjectId& id,
 const CORBA::OctetSequence&
adapter_id)

Returns the objectAccessPolicy for the servant with the objectId (id) and poa id.

Returns

ObjectAccessPolicy of the servant object.

Parameter Description

servant The CORBA servant object.

id the id of the servant object.

adapter_id The poa id of the servant object.

 11: Vis iSecure for C++ APIs 23

class csiv2::ObjectAccessPolicy

This class represents the access policy from AccessPolicyManager.

Include File
The CSIV2Policies.h file should be included when you use this class.

Methods
CORBA::StringSequence* getRequiredRoles (const char* method)

Returned the list of required roles to access the method.

Returns

A list of required roles to access the method.

char* getRunAsRole (const char* method)

Return the run-as role for the method. This method is not used in this release.

Returns

The run-as role configured to access the method.

Parameter Description

method The method name of interest.

Parameter Description

method The method name of interest.

24 VisiBroker Secur i ty Guide

 12: Secur i ty SPI for C++ 1

Security SPI for C++
This section describes the Service Provider Interface (SPI) classes as defined for
VisiSecure for C++. These SPI classes provide advanced security functionality and
allow other security providers to plug their own implementation of security services into
VisiSecure for use within the Borland Deployment Platform.

Plugin Mechanism and SPIs
VisiSecure for C++ provides interfaces for you to plug in your own security
implementations. In order for the ORB to find your implementation, all plugins must use
the REGISTER_CLASS macro provided by VisiSecure to register your classes. The name of
the class must be specified in full together with its namespace upon registration.
Namespace must be specified in a normalized form supported by VisiSecure, using
either a '.' or '::' separated-string starting from the outer namespace. For example:

MyNameSpace {
 class MyLoginModule {

 }
}

Thus MyLoginModule shall be specified as either MyNameSpace.MyLoginModule or
MyNameSpace::MyLoginModule.

There are six pluggable components:

– LoginModules: You can implement their own login models by extending
vbsec::LoginModule. To use the login module, you need to set it in the authentication
configuration file, just like any other login module.

– Callback handlers: You can implement their own callback by extending
vbsec::CallbackHandler. To use the callback, you need to set it in the authentication
configuration file, just like any other callback handler.

– Identity adapters, Mechanism adapters, and Authentication Mechanisms: these
interfaces are provided for users to implement their own authentication mechanisms
and identity interpretations. IdentityAdaptor is to interpret identities, MechanismAdaptor
is a specialized identity adaptor which also changes target information.
AuthenticationMechanism is a pluggable service to authenticate users.

2 VisiBroker Secur i ty Guide

Providers

To use these plug-ins, you need to set the vbroker.security.identity.xxx properties
to define the plug-ins and their properties. For example, an identity adapter or
mechanism adapter could specify:

vbroker.security.identity.adapters=MyAdapter
vbroker.security.adapter.MyAdapter.property1=value1
vbroker.security.adapter.MyAdapter.property2=value1

while an authentication mechanism would provide:

vbroker.security.identity.mechanisms=MyMechanism
vbroker.security.adapter.MyMechanism.property1=value1
vbroker.security.adapter.MyMechanism.property2=value2

The properties specified will be passed to the user plug-in during initialization as a
string map. The map contains truncated key/value pair like property1, value1.

– Attribute codec: This allows you to plug in an attribute codec to encode and decode
attributes in their own format. VisiSecure for C++ has one build-in codec, the ATS
codec.

To use your codec plug-in, you need to set properties to define the codecs and their
properties. For example:

vbroker.security.identity.attributeCodecs=MyCodec
vbroker.security.adapter.attributeCodec.property1=xxx
vbroker.security.adapter.attributeCodec.property2=xxx

The properties specified will be passed to the user plug-in during initialization as a
string map.

– Authorization service provider: You can plugin an authorization service for each
authorization domain. VisiSecure has its default implementation, which uses the
rolemap. Like the other pluggable services, you will need to define the authorization
service with properties which are then passed as string maps. For example:

vbroker.security.auth.domains=MyDomain
vbroker.security.domain.MyDomain.provider=MyProvider
vbroker.security.domain.MyDomain.property1=xxx
vbroker.security.domain.MyDomain.property2=xxx

– Trust provider: This allows you to plug in an assertion trust mechanism. Assertion
can happen in multi-hop scenario, or explicitly called through assertion API. The
server can have rules to determine whether the peer is trusted to make the assertion
or not. The default implementation uses property setting to configure trusted peers
on the server side. During runtime, the peer must pass authentication and
authorization in order to be trusted to make assertions.

Like the other pluggable services, you will need to define the authorization service
with properties which are then passed as string maps. For example:

vbroker.security.trust.trustProvider=MyProvider
vbroker.security.trust.trustProvider.MyProvider.property1=xxx
vbroker.security.trust.trustProvider.MyProvider.property2=xxx

There can be only one trust provider specified for the whole security service.

Providers
Each provider instance is created by the VisiSecure using a Java reflection API. After
the instance has been constructed, the initialize method, which must be provided by
the implementer, is called passing in a map of options specific for the implementation.
The options entries are defined by the implementers of the particular provider. Users
specify the options in a property file and the VisiSecure parses the property and passes

 12: Secur i ty SPI for C++ 3

Providers

the options to the corresponding provider. The following table shows the properties for
plugging in different provider implementations.

In the preceding table:

– The first column lists the provider module names.

– The second column lists the property you set to define each module. Use a comma
to separate multiple modules. For example, the following property has two additional
IdentityAdapter implementations installed for the ORB:

vbroker.security.identity.adapters=ID_ADA1,ID_ADA2

– The third column gives the interface each implementation must implement. The
interface defines a contract between the implementers and the core VisiSecure.

– The final column gives the options prefix for the specific module. The ORB parses
the property file and passes the corresponding entries to each of the modules in the
initial method as the (Map options) parameter. For example, for the ID_ADA1
IdentityAdapter defined in the previous example, all the entries with the
vbroker.security.identity.adapters.ID_ADA1 prefix will be passed to the initial
method of ID_ADA1 IdentityAdapter.

Providers and exceptions

During the initialization, if anything goes wrong the initialize method should throw an
instance of InitializationException. For certain categories of providers, there can be
multiple instances with different implementations co-existing. Each of them is identified
by the name within the VisiSecure system, which is passed as the first parameter in the
initialize method. While for some categories of providers there can be only one
instance existing for the whole ORB (such as in the case of the TrustProvider, in this
case, the initialize method has only one single parameter ?the options map.

Module Name Property to set Interface to implement Options Prefix

IdentityAdapter vbroker.security.identity.
adapters

vbsec::IdentityAdapter vbroker.security.identity.adapter.
<name>

AuthenticationMechanism vbroker.security.identity.
mechanisms

vbsec::
AuthenticationMechanisms

vbroker.security.identity.mechanism.
<name>

AttributeCodec vbroker.security.identity.
attributeCodecs

vbsec::AttributeCodec vbroker.security.identity.
attributeCodec.<name>

TrustProvider vbroker.security.
trustProvider

vbsec::TrustProvider vbroker.security.trust.trustProvider.
<name>

4 VisiBroker Secur i ty Guide

vbsec::LoginModule

vbsec::LoginModule
LoginModule serves as the parent of all login modules. User plugin login modules must
extend this class. Login modules are configured in the authentication configuration file
and called during the login process. Login modules are responsible of authenticating
the given subject and associating relevant Principals and Credentials with the subject.
It is also responsible for removing and disposing of such security information during
logout.

Include File
The vbauthn.h file should be included when you use this class.

Methods
void initialize (Subject* subj=0,
 CallbackHandler *handler=0,
 LoginModule::states* sharedStates=0,
 LoginModule::options* options=0)

This method initializes the login module.

Arguments

This method utilizes the following four arguments:

– subj: the subject to be authenticated.

– handler: the callback handler to use.

– sharedStates: additional authentication state provided by other login modules.
Currently not used.

– options: configuration options specified in the authentication configuration file.

Returns

Void.

bool login()

Performs the login. This is called during the login process. The login module shall
authenticate the subject located in the module and determine if the login is successful.

Returns

true if the login succeeds, false otherwise.

bool logout()

Performs the logout. This is called during the logout process. The login module shall
logout the subject located in the module and determine if the logout is successful. The
login module might remove any credentials or identities that were established during
login and dispose of them.

Returns

true if the logout succeeds, false otherwise.

bool commit()

Commits the login. This is part of the login process, called when the login succeeds
according to the configuration options specified in the pertinent login modules. The
login module then associates relevant Principals and Credentials with the Subject
located in the module if its own authentication attempt succeeded. Or if not, it shall
remove and destroy any state was saved before.

Returns

true if the commit succeeds, false otherwise.

 12: Secur i ty SPI for C++ 5

vbsec::Cal lbackHandler

bool abort()

Aborts the login. This is part of the login process, called when the overall login fails
according to the configuration options specified in the login modules. The login module
shall remove and destroy any state was saved before.

Returns

true if the abort succeeds, false otherwise.

vbsec::CallbackHandler
CallbackHandler is the mechanism that produces any necessary user callbacks for
authentication credentials and other information. Seven types of callbacks are
provided. There is a default handler that handles all callbacks in interactive text mode.

Include file

The vbauthn.h file should be included when you use this class.

Methods

void handle (Callback::array& callbacks)

Handle the callbacks.

Arguments

the array of callbacks to be processed.

Returns

Void.

vbsec::IdentityAdapter
IdentityAdapter binds to a particular mechanism. The main purpose of an
IdentityAdapter is to interpret identities specific to a mechanism. It is used to perform
the decoding and encoding between mechanism-specific and mechanism-independent
representations of the entities.

IdentityAdapters included with the VisiSecure

The following IdentityAdapters are provided with the VisiSecure:

– AnonymousAdapter, with the name "anonymous"

– DNAdapter, with the name "DN"

– X509CertificateAdapter (as an implementation of the sub-interface
AuthenticationMechanism)

– GSSUPAuthenticationMechanism (as an implementation of the sub-interface
AuthenticationMechanism)

Methods

Virtual void initialize (const std::string& name, ::vbsec::InitOptions&) =0;

This method initializes the IdentityAdapter with the given name and set of options.

6 VisiBroker Secur i ty Guide

vbsec:: Ident i tyAdapter

Arguments

This method takes the following two arguments:

– The IdentityAdapter name.

– A set of InitOptions for the specified IdentityAdapter.

Exceptions

Throws InitializationException if initialization fails.

virtual std::string getName() const=0;

This returns the name of the IdentityAdapter.

Returns

The name of the IdentityAdapter.

 12: Secur i ty SPI for C++ 7

vbsec:: Ident i tyAdapter

Exceptions

none

virtual ::CSI::IdentityToken* exportIdentity(::vbsec::Subject&,
::CSI::IdentityToken&) =0;

Exports the identity of the IdentityAdapter as an IdentityToken.

Arguments

The subject whose identity is to be exported.

Returns

An IdentityToken data.

Exceptions

Throws NoCredentialsException if no credentials recognized by this IdentityAdapter
are found in the subject.

virtual void importIdentity (::vbsec::Subject&, ::CSI::IdentityToken&) =0;

Imports the IdentityToken and populates the caller subject with the appropriate
principals associated with this identity.

Arguments

The subject whose identity is to be imported.

Exceptions

Throws NoCredentialsException if no credentials recognized by this IdentityAdapter
are found in the subject.

virtual ::vbsec::Privileges* getPrincipal (::vbsec::Subject&anp;) =0;

Returns a Principal representing this identity. This method is used for interfacing with
EJBs and servlets.

Arguments

The principal subject.

Returns

A principle object.

Exceptions

none

virtual ::vbsec::Privileges* getPrivileges (::vbsec::Subect&) =0;

Arguments

The target subject.

Returns

The privilege attributes for this target subject recognized by this IdentityAdapter.

Exceptions

none

virtual ::vbsec::setPrivileges (::vbsec::Privileges*) =0;

This methods sets the privilege attribute for the identity.

Arguments

The privilege attribute to be set for the identity.

8 VisiBroker Secur i ty Guide

vbsec:: Ident i tyAdapter

Exceptions

none

virtual void deleteIdentity (::vbsec::Subject&) =0;

This method deletes the principals and the credentials associated with the specified
target subject.

Arguments

The target subject for which the principals and the credentials recognized by this
IdentityAdapter are to be deleted.

Exceptions

none

vbsec::MechanismAdapter

Extending from IdentityAdapter, a MechanismAdapter has the additional capability of
changing the target information. This is very useful in the case where the mechanism
used in a remote site is not available locally. Therefore, the local identity must be
adapted before sending to the remote site.

In the out-of-box installation of VisiSecure, there is no class direct implementation of
MechanismAdapter, while a few classes implement the sub-interface
AuthenticationMechanism, which in turn gives the support of this interface.

Methods

virtual const ::CSI::StringOID_var getOid() const =0;

Returns a string representation of the mechanism OID. For example, the string
representation for a GSSUP mechanism would be oid:2.23.130.1.1.1.

Returns

The mechanism OID string.

Exceptions

none

virtual ::vbsec::Target* getTarget (const std::string& realm, const
std::vector<AppConfigurationEntry*>&) =0;

Given a realm name and a list of AppConfigurationEntry objects, returns the
corresponding target.

Arguments

This method takes the following two arguments:

– A realm name.

– A list of AppConfigurationEntry objects.

Returns

Returns the corresponding target object.

Exceptions

none

virtual ::vbsec::Target* getTarget (const ::CSI::GSS_NT_ExportedName&) =0;

Returns a Target object representing the encoded target representation.

 12: Secur i ty SPI for C++ 9

vbsec::Authent icat ionMechanisms

Arguments

A Target encoded in GSS Mechanism-Independent Exported Name format (as defined
in [IETF RFC2743]).

Returns

A Target object.

Exceptions

none

vbsec::AuthenticationMechanisms
This class represents a full-fledged mechanism which provides all the functionality
needed to support an authentication mechanism in conjunction with the CSIv2
protocol.

Included with VisiSecure are the following implementations for GSSUP based and
X509 Certificate based authentication mechanisms respectively:

– GSSUPAuthenticationMechanism

– X509CertificateAdapter

In addition to the methods inherited from its super interfaces, AuthenticationMechanism
also has the following categories of methods defined.

Credential-related methods

Use these methods to acquire and/or destroy credentials.

virtual ::vbsec::Subject* acquireCredentials (::vbsec::Target&,
::vbsec::CallbackHandler*) =0;

10 VisiBroker Secur i ty Guide

vbsec::Authent icat ionMechanisms

This method acquires credentials for a given target. The credentials acquired depend
on the mechanism and the information it requires for authentication.

Arguments

This method takes the following two arguments:

– A Target object.

– The callback handler to be used to communicate with the user for acquiring the
credentials for this Target.

Returns

The Subject containing the acquired credentials (will be null in the case where the
operation fails).

Exceptions

none

virtual ::vbsec::Subject* acquireCredentials (const std::string& target,
::vbsec::CallbackHandler*) =0;

This method acquires credentials for a given string representation of the Target. The
credentials acquired depend on the mechanism and the information it requires for
authentication.

Arguments

This method takes the following two arguments:

– A string representation of the Target.

– The corresponding callback handlers used to communicate with user for acquiring
the credential.

Returns

A subject object containing the acquired credentials (will be null in the case where the
operation fails).

Exceptions

none

virtual void destroyPrivateCredentials (::vbsec::Subject&) =0;

This method destroys the private credentials of the specified subject.

Arguments

The subject for which the private credentials are to be destroyed.

Exceptions

none

Context-related methods

virtual ::CORBA::OctetSeq* createInitContext (::vbsec::Subject&) =0;

Returns a mechanism-specific client authentication token. The token represents the
authentication credentials for the specified target.

Arguments

The target subject.

Returns

The authentication token for the specified target subject.

 12: Secur i ty SPI for C++ 11

vbsec::Authent icat ionMechanisms

Exceptions

Throws NoCredentialsException if no authentication credentials recognized by this
mechanism exist in this Subject.

virtual ::vbsec::Target* processInitContext (::vbsec::Subject&,
::CORBA::OctetSeq&) =0;

This method consumes the mechanism-specific client authentication token. The initial
authentication token is decoded and the method populates the given subject with the
corresponding authentication credentials.

Arguments

The subject to be populated with authentication credentials.

Exceptions

none

virtual ::CSI::GSSToken* createFinalContext (::vbsec::Subject&) =0;

This method creates a final context token to return to a client.

Arguments

The Subject.

Returns

A final context token.

Exceptions

none

virtual void processFinalContext (::vbsec::Subject&, ::CORBA::OctetSeq&) =0;

Consumes a final context token returned by the server.

Arguments

The target subject.

Exceptions

none

virtual ::CSI::GSSToken* createErrorContext (::vbsec::Subject&) =0;

Creates an error context token in the case of an authentication failure.

Arguments

The target subject.

Returns

An error context token.

Exceptions

none

virtual ::vbsec::Subject* processErrorContext (::vbsec::Subject&,
::CSI::GSSToken&, ::vbsec::CallbackHandler*) =0;

Consumes an error token returned from server. The callback handler is used to interact
with a user trying to reacquire credentials. If credentials are required, the client-side
security service attempts to establish the context again.

Arguments

This method takes the following two arguments:

12 VisiBroker Secur i ty Guide

vbsec::Target

– A target subject.

– A callback handler.

Exceptions

none

vbsec::Target
This class gives the runtime representation of a target authenticating principal. The
context includes names for the target required in different scenarios, such as the
display name, or the DER representation of the OID.

Methods

virtual std::string getName () const =0;

This method returns the display name of the target.

Returns

The target name string.

Exceptions

none

virtual ::CSI::OID getOid () const =0;

This method returns the target OID.

Returns

The target OID string.

Exceptions

none

virtual ::CORBA::OctetSeq getEncodedName () const =0;

This method returns the mechanism-specific encoding of the target name.

Returns

The encoded target name.

Exceptions

none

vbsec::AuthorizationServicesProvider
The implementer of the Authorization Service provides the collection of permission
objects granted access to certain resources. Whenever an access decision is going to
be made, the AuthorizationServicesProvider is consulted. The Authorization Service is
closely associated with the Authorization domain concept. An Authorization Service is
installed per each Authorization domain implementation, and functions only for that
particular Authorization domain.

The AuthorizationServicesProvider is initialized during the construction of its
corresponding Authorization domain. Use the following property to set the
implementing class for the AuthorizationServicesProvider:

vbroker.security.domain.<domain-name>.provider

 12: Secur i ty SPI for C++ 13

vbsec::Author izat ionServicesProvider

During runtime, this property is loaded by way of Java reflection.

Another import functionality of the Authorization Service is to return the run-as alias for
a particular role given. The security service is configured with a set of identities,
identified by aliases. When resources request to “run-as” a given role the
AuthorizationServices again is consulted to return the alias that must be used to “run-
as” in the context of the rules specified for this authorization domain.

Methods
virtual void initialize (const std::string& name, ::vbsec::InitOptions&
options) =0;

This method initializes an Authorization Services provider.

Arguments

This method takes the following arguments:

– A provider name.

– The provider options.

In addition to the provider's options, the following information is passed to facilitate the
interaction between this Authorization Service provider and the VisiBroker ORB:

Exceptions

Throws InitializationException if initialization of the Authorization provider fails.

virtual std::string getName() const =0;

Returns the name for this Authorization Service implementation.

Returns

The Authorization Service name.

Exceptions

none

virtual ::vbsec::PermissionCollection* getPermissions (const ::vbsec::Resource*
resource, const ::vbsec::Privileges* callerPrivileges) =0;

Returns a homogeneous collection of permission attributes for the given privileges as
well as the resource upon which the access is attempted.

Arguments

This method takes the following two arguments:

– The caller Privileges.

– The resource object upon which access is to be attempted.

Returns

A PermissionCollection object represents this subject's Permissions.

Exceptions

none

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for login in the current system.

LogLevel An integer value denoting the security logging level.

14 VisiBroker Secur i ty Guide

vbsec::Resource

vbsec::Resource
The Resource interface gives a generic abstraction of resource. The resource can be
anything upon which the access will be made, such as a remote method of a CORBA
object, or a servlet which is essentially a resource.

Methods

virtual std::string getName () const =0;

Returns the string representation of the resource being accessed.

Returns

Name of the resource.

Exceptions

none

vbsec::Privileges
The Privileges class gives an abstraction of the privileges for a subject. It is the
container of authorization privilege attributes, such as Distinguished Name (DN)
attributes, and such. The AuthorizationService makes the decision on whether the
subject has permission to access the certain resource based on the privileges object of
the subject.

The privileges object is stored inside the subject as one of the PublicCredentials. At the
same time, privileges hold one reference to the referring subject. Privileges also
contain a DN attributes map, as well as a map of other authorization attributes.

The Privileges class implements the javax.security.auth.Destroyable interface.

Constructors

Privileges (const std::string& name, ::vbsec::Subject& subject);

This constructor creates a privileges object with the given name and associates it with
the given subject.

Arguments

The method takes the following two arguments:

– Name of the Privileges object, which is actually the associated Subject's name.

– The target subject.

Exceptions

none

Methods

::vbsec::Subject& getSubject() const ;

This method returns the subject that the privileges object represents.

Returns

The target subject.

 12: Secur i ty SPI for C++ 15

vbsec::Priv i leges

Exceptions

none

std::string getSubjectName() const;

This method returns the name of the associated subject object.

Returns

The target subject.

Exceptions

none

const ::vbsec::ATTRIBUTE_MAP& getAttributes() const ;

This method returns the attribute map of the user.

Returns

The user's attribute map.

Exceptions

none

void setDBAttributes (const ::vbsec::ATTRIBUTE_MAP& map);

This method updates the DN Attributes of the user.

Arguments

The new DN Attributes Map.

Note

After the DN Attributes Map has been set, the Privileges object will set the underlying
DN Attributes Map as unmodifiable.

Exceptions

none

const ::vbsec::ATTRIBUTE_MAP* getDNAttributes() const;

This method returns the DN Attributes of the Privileges object, which can be null.

Returns

User's DN Attributes map, which is not modifiable.

Exceptions

none

bool isDestroyed() const;

This method checks whether the privileges object has been destroyed or not.

Returns

true|false

Exceptions

none

std::string toString() const;

This method overrides the default toString implementation of java.lang.Object, and
returns “Privileges for <subject name>” information.

16 VisiBroker Secur i ty Guide

vbsec::Attr ibuteCodec

Returns

List of privileges for each subject name.

Exceptions

none

vbsec::AttributeCodec
The AttributeCodec objects are responsible for encoding and decoding privileges
attributes of a given subject. This allows clients and servers to communicate privilege
information to each other. Though the privilege information is used as the basis for the
Authorization decision-making process, AttributeCodec selection is based on the
information presented in the IOR published by the server. Inside the IOR, the server
publishes information on the encoding scheme supported, while clients select an
AttributeCodec that supports the given encoding.

All the AttributeCodecs implementations are registered with the IdentityServices, which
is called upon during the import/export of the authorization elements process.

Methods

virtual void initialize (const std::string& name, vbsec::InitOptions& options)
=0;

This method initializes this instance of the AttributeCodec implementation. There can
be multiply implementations existing in one ORB, and each is addressed internally
using the name provided.

Arguments

This method takes the following arguments:

– A string of AttributeCodec implementation names.

– Provider options.

For the provider's options, the following additional information is also passed during the
initialization:

Exceptions

Throws InitializationException if initialization of this AttributeCodec object fails.

virtual std::string getName() const =0;

This method returns the name of the provider implementation.

Returns

The provider name string.

Exceptions

none

virtual CSIIOP::ServiceConfigurationList* getPrivilegeAuthorities() const =0;

This method returns a list of supported privilege authorities.

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for the current system for the purpose of logging.

LogLevel An integer value denoting the security logging level.

 12: Secur i ty SPI for C++ 17

vbsec::Attr ibuteCodec

Returns

A list of privilege authorities.

Exceptions

none

4. virtual CSI::AuthorizationElementType getSupportedEncoding() const = 0;

This method returns the supported AuthorizationElement type.

Returns

An AuthorizationElement type.

Exceptions

none

virtual bool supportsClientDelegation() const =0;

Returns whether this implementation supports ClientDelegation.

Returns

true|false

Exceptions

none

virtual CSI::AuthorizationToken* encode (const
CSIIOP::ServiceConfigurationList& privilege_authorities, vbsec::Privileges&
caller_privileges, vbsec::Privileges& asserter_privileges) =0;

This method encodes privileges as AuthorizationElements. This method encodes the
privilege attributes of the given caller and the given asserter, if there is one. It will
extract the privilege information from the subject and privilege map of the caller and the
asserter.

Additionally, an implementation of the AttributeCodec (if supports ClientDelegation)
may choose to verify whether the asserter is allowed to assert the caller based on the
client delegation information presented by this caller.

Arguments

This method takes the following arguments:

– A set of caller privileges attributes.

– A set of asserter privileges attributes.

Returns

Encoded caller and asserter privileges.

Exceptions

Throws NoDelegationPermissionException if the assertion is not allowed.

virtual void decode (const ::CSI::AuthorizationToken& encoded_attributes,
vbsec::Privileges& caller_privileges, vbsec::Privileges& asserter_privileges)
=0;

This method decodes authorization elements and populates the corresponding
privileges objects. This is the inversion process of the encode method. When a server
receives a set of encoded AuthorizationElements, it passes these elements to the
AttributeCodec for interpretation. Based on the encoding method, one particular
AttributeCodec consumes the attributes it understands. It may update the caller's or
asserter's Privileges, or may add RolePermission directly to the subject's public
credentials.

18 VisiBroker Secur i ty Guide

vbsec::Permission

Arguments

This method takes the following arguments:

– A set of encoded Authorization Elements.

– A set of caller privileges.

– A set of asserter privileges.

Returns

This method returns nothing. Upon a successful processing, this AttributeCode object
updates the caller's or asserter's Privileges maps as appropriate based on the
information available in the authorization elements.

Exceptions

Throws NoDelegationPermissionException if the assertion is not authorized.

vbsec::Permission
Permission represents the authorization information to access resources. Every
permission has a name, which can be interpreted only by the actual implementation.

Include file

The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the permission implies another given permission. This is used during the
authorization process to determine if the caller permissions imply the permissions
required by the resource. Access will be granted if the caller permissions imply the
required permission, or denied if not.

Arguments

the permission p to be evaluated.

Returns

true if the permission implies an existing permission, false otherwise.

bool operator==(const Permission& p) const

Checks if the permission equals another given permission.

Arguments

the permission p to be evaluated.

Returns

true if the permissions are equal, false otherwise.

std::string getName () const

Gets the name of the permission.

Returns

the name of the permission.

std::string getActions () const

 12: Secur i ty SPI for C++ 19

Get the actions of the permission as a string. It is only interpreted by the actual
implementation.

Returns

The string representation of the action for the permission.

std::string toString () const

Get the string representation of the permission.

Returns

The string representation of the permission.

vbsec::PermissionCollection
PermissionCollection represents a collection of permissions.

Include file

The vbsecspishared.h file should be included when you use this class.

Methods

bool implies (const Permission& p) const

Evaluate if the PermissionCollection implies the given permission.

Arguments

the permission p to be evaluated.

Returns

true if the PermissionCollection implies the given one, false otherwise.

vbsec::RolePermission
The RolePermission class provides the basis for authorization and trust in the
VisiSecure system.

Constructors

RolePermission (const std::string& role)

This constructor creates a RolePermission object representing a logic role.

Arguments

A logical role string this RolePermission object represents.

Returns

A RolePermission object.

Exceptions

none

20 VisiBroker Secur i ty Guide

Methods

virtual bool implies (const Permission& permission) const;

This method checks whether the permission object passed in implies this
RolePermission object. The check is based on strict equality, as the method only
returns true (implies) when ALL the following conditions exist:

1 the permission object given is an instance of RolePermission, and

2 the name of the permission object given equals the name of this RolePermission.

Arguments

A Permission object to check.

Returns

True|False

Exceptions

none

virtual std::string getActions() const;

This method returns the action associated with this RolePermission.

Returns

Always returns null, since there are no actions associated with a RolePermission
object.

Exceptions

none

vbsec::TrustProvider
When a remote peer (server or process) makes identity assertions in order to act on
behalf of the callers, the end-tier server needs to trust the peer to make such
assertions. This is meant to prevent untrusted clients from making assertions.

The key method is isAssertionTrusted, which is called to determine whether the
assertion is trusted given the caller subject and asserter's privileges. This method is
called (by the underline implementation) after the corresponding authorization
elements transmitted from a client to the server have been consumed.

You use the TrustProvider class to implement trust rules which determine whether the
end-tier server accepts identity assertions from a given asserting subject. The
TrustProvider class is very closely related to the implementation of the AttributeCodec
objects and the privileges. For example, it is possible to provide the decision-making
implementation as follows:

1 Provide class implementations representing a proxy endorsement attribute,

2 AttributeCodec implements the necessary logic then passes the attributes and
imports them to the caller subject on the server-side. It is also necessary to return
true for the method supportsClientDelegation defined in the AttributeCodec
interface.

3 Provide the method implementation based on the proxy endorsement attribute of
the caller and the privileges of the asserter.

This type of evaluation of trust, which is based on rules provided by the caller, is
referred to as Forward Trust. Backward Trust is when the evaluation of trust is based
on the rules of the target. Backward Trust is the default provided with the VisiSecure
installation. For more information, see “Trust assertions and plug-ins”.

 12: Secur i ty SPI for C++ 21

Methods

virtual void initialize (::vbsec::InitOptions&, std::map<std::string,
std::string>&) =0;

This method initializes the TrustProvider. There can be only one instance of the
TrustProvider implementation existing for each process.

Arguments

For the provider's options, the following additional information is also passed during the
initialization:

Exceptions

Throws InitializationException if initialization of the TrustProvider fails.

virtual bool isAssertionTrusted (const ::vbsec::Subject&, const
::vbsec::Privileges&) =0;

This method verifies whether an assertion of the caller by the asserter with the
provided privileges is trusted or not. The implementation makes use of the internal trust
rules for this process to determine the validity of the assertion.

Arguments

This method takes the following two arguments:

– The caller.

– The set of asserter privileges.

Returns

true|false

Exceptions

none

vbsec::InitOptions
InitOptions is a data structure passed to user plug-ins during initialization calls that
facilitates the initialization process.

Include file

The vbsecspishared.h file should be included when you use this class.

Data Members

std::map<std::string, std::string>* options

A string map containing name/value pair presenting parsed property setting.

::PortableInterceptor::ORBInitInfo* initInfo

Object representing the ORB initialization information.

::IOP::Codec* codec

Name Description

ORB The ORB instance used for the current system.

Logger A SimpleLogger instance used for the current system for the purpose of logging.

LogLevel An integer value denoting the security logging level.

22 VisiBroker Secur i ty Guide

An IOP Codec object.

::vbsec::SimpleLogger* logger

A logger object.

int logLevel

The log level currently configured for the security service.

vbsec::SimpleLogger
SimpleLogger is a mechanism to log information of various levels. Currently it supports
four different levels: LEVEL_WARNING, LEVEL_NOTICE, LEVEL_INFO, and LEVEL_DEBUG, with
increasing detailed information. There is only one logger in the whole security service.

Include file

The vbsecspishared.h file should be included when you use this class.

Methods

::std::ostream& WARNING()

Returns the logging output stream for warning messages.

Returns

The logging output stream for LEVEL_WARNING.

::std::ostream& NOTICE()

Returns the logging output stream for notice messages.

Returns

The logging output stream for LEVEL_NOTICE, or a fake stream if the log level is set below
LEVEL_NOTICE.

::std::ostream& INFO()

 12: Secur i ty SPI for C++ 23

Returns the logging output stream for info messages.

Returns

The logging output stream for LEVEL_INFO, or a fake stream if the log level is set below
LEVEL_INFO.

::std::ostream& DEBUG()

Returns the logging output stream for debug messages.

Returns

The logging output stream for LEVEL_DEBUG, or a fake stream if the log level is set below
LEVEL_DEBUG.

24 VisiBroker Secur i ty Guide

Index 195

Symbols
[] brackets 4
| vertical bar 4

A
Access Control List 12
access control list 1
ACL 12, 1
AnonymousAdapter 5
Apache web server

configuration information 4
enabling Certificate Passthrough 2, 5
enabling mod_ssl 1
exporting SSL certificate and related information 2
httpd.conf file 1
IIOP connector 6
key and certificate files 2
mod_iiop 6
mod_ssl directives 1
mod_ssl module 1
security 1, 8
verifying mod_ssl 4

API, C++ security 1
APIs

security for C++ 1
SPI for C++ 1

assertion 4, 3
trusting 14

assertion syntax 2
extensible 4
using logical operators 2
value 3
wildcard 3

asymmetric encryption 7
AttributeCodec 3

interface 16
authenticated target 13
authentication 5

authentication mechanisms 4
Borland LoginModules 9
certificate-based using APIs 3, 2
certificate-based using KeyStores 3, 2
client 5
creating a vault 15
credentials 2
JAAS 1
JAAS config 7
LoginContext class 4
LoginModule 5
LoginModule and realm 7
LoginModule interface 4
LoginModules 4, 5
pkcs12-based using APIs 3
pkcs12-based using KeyStores 3
pluggability 5, 4
private credentials 2
public credentials 2
realm entry in config.jaas 7
realms 4
security profiles and 4
server 5

server and client 12
setting config file location 13
stacked LoginModules 5
system identification 5
username/password using APIs 3, 2
username/password using LoginModules 2
usernames and passwords 6
vault 15

authentication mechanism 4, 13
authentication mechanisms 4
authentication realm 3, 4
AuthenticationMechanism 5, 3
AuthenticationMechanisms 9
authorization 12, 1

Access Control List 12
access control list 1
basics 12
C++ API 21
CORBA 5
hierarchy 3
pluggability 12
Role DB 1
roles 12, 1
security profiles and 6
three-tier 7

authorization domains 3, 4
AuthorizationServiceProvider interface 12
AuthorizationServicesProvider 12

B
backward trust 15
Basic LoginModule

code sample 10
properties 10
realm entry syntax 9

BasicLoginModule 9
Borland Developer Support, contacting 4
Borland LoginModules 9

Basic LoginModule 9
Host LoginModule 12
JDBC LoginModule 10
LDAP LoginModule 11

Borland Security Service Realm(BSSRealm) 7
Borland Technical Support, contacting 4
Borland web container

enabling Certificate Passthrough 5
managing SSL authentication 5
security 7
three-tier authorization 7

Borland Web site 4, 5
BSSRealm, Borland web container security 7

C
C++ applications

providing security identities 1
securing 1
setting QoP 3

C++, security APIs 1
CA 7, 9

distinguished name 8
revoked certificates 9

Index

196 VisiBroker Secur i ty Guide

certificate authorities 9
Certificate Authority 7

distinguished name 8
Certificate Authority (CA)

Certification Revocation List (CRL) 9
revoked certificate serial numbers 9

certificate file, Apache web server 2
certificate mechanism 14
Certificate Passthrough

enabling 5
IIOP configuration directive 6
mod_ssl directive 2
to Borland web container 5

certificate request 8
certificate, cipher suites 11
certificates 7

chains 9
creating 8
distinguished name 8
generated files 8
generating 8
obtaining 8
public key 9
using at the SSL layer 14

Certification Revocation List
creating 9
file format 9
VisiSecure for C++ 9

cipher suites 11
supported 11

CipherSuiteName 10
cipher-text 6
clear-text 6
CN 3
commands, conventions 4
config.jaas 7

use with security profiles 4
constructors

Privileges class 14
RolePermission class 19
vbsec::Privileges 14
vbsec::RolePermission 19

CORBA authorization 5
setting up 6

CORBAsec
X509Cert 16
X509CertExtension 18

credentials 2
CRL 9
csiv2

AccessPolicyManager 22
ObjectAccessPolicy 22

D
.defaultAccessRule property 1
delegation 14
Developer Support, contacting 4
digital signatures 7
distinguished name 8
DN 8
DNAdapter 5
documentation 2

accessing Help Topics 3
Borland Security Guide 2
on the web 5

.pdf format 3
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker for .NET Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2

domain name> 1
domain, security profiles for 13
domain_name> 1
domains

authorization 4
Run-as 5
VisiBroker domain authorization properties 5

DS 7

E
encrypted hash 7
encryption

asymmetric encryption 7
public-key 6
setting level of 11
symmetric encryption 7

exceptions, Security Provider Interface for C++ (SPI) 3

F
files, certificate 8
formatted target 13
forward trust 15

G
GROUP 3
GSSUP mechanism 14
GSSUPAuthenticationMechanism 5, 9

H
hashes, encrypted 7
Help Topics, accessing 3
Host LoginModule 9

code sample 12
realm entry syntax 12

HTTPS 16

I
identities

setting up 13
setting up assertion 4, 3
ways to provide 2, 1

identity assertion
backward trust 15
delegation 14
forward trust 15
impersonation 14
trusting assertions 14

identity assertions 13
plug-ins 15

Index 197

Index

TrustProvider interface 15
IdentityAdapter 3, 5

AnonymousAdapter 5
DNAdapter 5
GSSUPAuthenticationMechanism 5
X509CertificateAdapter 5

IIOP connector, enabling Certificate Passthrough 6
IIOP over HTTPS 16

Microsoft IE 16
Netscape Communicator 16

impersonation 14
ISO X.509 7, 9

J
JAAS 5, 1

JSSE and 1
pluggable authentication 4
security profiles and 4

JAAS authentication 1
concepts 1
credentials 2
principals 1
subjects 1

JAAS authentication credentials
private 2
public 2

Java applications
providing security identities 2
securing 1
setting QoP 3

Java Authentication and Authorization Service
(JAAS) 5

JDBC LoginModule 9
code sample 11
properties 11
realm entry syntax 10

JSSE 11
basic concepts 1
JAAS and 1

JSSE X509TrustManager 9

K
key file, Apache web server 2

L
LDAP LoginModule 9

properties 12
Realm Entry syntax 11

logical operators for rules 3
LoginContext class 4
LoginModule

and realm 7
config.jaas 7

LoginModule interface 4
LoginModules 4

authentication 5
authentication mechanisms 4
BasicLoginModule 9
Borland provided 9
commit phase 6
Host LoginModule 9

JDBC LoginModule 9
LDAP LoginModule 9
realm 6
stacked 5

M
MechanismAdapter interface 8
method_name> 1
methods

AttributeCodec interface 16
AuthenticationMechanisms interface 9, 10
AuthorizationServicesProvider interface 13
IdentityAdapter interface 5
MechanismAdapter interface 8
Privileges class 14
Resource interface 14
RolePermission class 20
Target interface 12
TrustProvider interface 21
vbsec::AttributeCodec 16
vbsec::AuthenticationMechanisms 9, 10
vbsec::AuthorizationServicesProvider 13
vbsec::IdentityAdapter 5
vbsec::MechanismAdapter 8
vbsec::Privileges 14
vbsec::Resource 14
vbsec::RolePermission 20
vbsec::Target 12
vbsec::TrustProvider 21

mod_ssl
Apache web server security 1
directive 4
directives 1

N
n> 1
Newsgroups 5

O
O 3
online Help Topics, accessing 3
OU 3
overview 1

P
passwords authentication 6
PDF documentation 3
PKC, cipher suite 11
principals 1
private key 6

generating 8
priveleges, temporary 15
Privileges class 14
profiles 1

associating with domains 13
config.jaas and 4
creating 1
properties 12
rolemaps 6

properties

198 VisiBroker Secur i ty Guide

C++ security 1
Java security 1
security profiles 12

property 1
Providers, security (C++) 2
public key 6
public key certificate, cipher suites 11
public-key encryption 6

Q
QoP 10

C++ API 19
cipher suites 11
setting 3

Quality of Protection 10
Quality of Protection (QoP)

C++ API 19
cipher suites 11
setting 3

R
random number generator, seeding 4
realm entry

elements 8
elements in config.jaas 7
generic syntax 8
syntax 7

realms 4
resource domain 3
Resource interface 14
Role database 1

anatomy 1
code sample 2

Role Database, defining access control 1
Role DB 1

security profiles and 6
Role entry 2

rule 2
role, recycling rules 4
rolemap, security profiles and 6
.rolemap_enableRefresh property 1
.rolemap_path property 1
.rolemap_refreshTimeInSeconds property 1
RolePermission class 19
RolePermissions class 12
roles 12, 1
rule, using attribute/value pairs 3
Run-as alias 5
Run-as mapping 5

example 5
.runas.< 1
run_as_role_name> 1

S
SecureRandom object 4
Security

APIs (C++) 1
secure connections (C++) 1
secure connections (Java) 1

security
Apache web server 1
authentication 5, 1
authentication realm 3
authorization 12, 1

authorization domain 3
authorization hierarchy 3
basic model 3
basics 3
Borland web container 7
BSSRealm 7
C++ APIs 1
Certification Revocation List 9
client identification 18
design 2
distributed environments 13
IIOP over plain sockets 10
JAAS 5
JAAS authentication 1
JSSE 11
pluggability 2, 5
PRNG 4
profiles 1
properties and security profiles 12
providing identities 2, 1
providing identities (C++) 1
providing identities (Java) 2
Quality of Protection (QoP) 10
realms 4
resource domain 3
run-as role 8
securing individual domains 13
server identification 12
setting QoP 3, 4, 3
setting up trust 4, 3
SSL 10
steps to secure clients and servers 2, 1
system identification 5
usernames and passwords 6
vault 15
VisiSecure 1
VisiSecure features 2
web application 7
web components 1, 7, 8

security (C++)
AttributeCodec 3, 16
AttributeCodec methods 16
AuthenticationMechanism 3
AuthenticationMechanisms 9
AuthenticationMechanisms methods 9, 10
AuthorizationServicesProvider 12
AuthorizationServicesProvider methods 13
com.borland.seucurity.spi.IdentityAdapter 5
IdentityAdapter 3, 5
IdentityAdapter methods 5
MechanismAdapter 8
MechanismAdapter methods 8
Privileges class 14
Privileges constructors 14
Privileges methods 14
Resource 14
Resource methods 14
RolePermission 19
RolePermission constructors 19
RolePermission methods 20
Service Provider Interface (SPI) 1
Service Provider Interface (SPI) exceptions 3
SPI exceptions 3
SPI provider settings 3
Target 12
Target methods 12

Index 199

Index

TrustProvider 3, 20
TrustProvider methods 21
vbsec::AttributeCodec 16
vbsec::AuthenticationMechanisms 9
vbsec::MechanismAdapter 8
vbsec::RolePermission 19
vbsec::Target 12
vbsec::TrustProvider 20

security (Java)
AuthenticationMechanism 5
distributed environment 4, 5
Security Provider Interface (SPI) 4
SPI 4, 5

security profiles 1
associating with domains 13
authentication 4
authorization 6
config.jaas and 4
creating 1
properties 12
rolemaps 6
VisiSecure properties 12

security properties (C++) 1
security properties (Java) 1
Security Provider Interface for C++ (SPI)

AttributeCodec 3, 16
AuthenticationMechanism 3
AuthenticationMechanisms 9
AuthorizationServicesProvider 12
IdentityAdapter 3, 5
MechanismAdapter 8
Privileges class 14
Resource 14
RolePermission 19
Target 12
TrustProvider 3, 20

Security Provider Interface for Java (SPI) 4
TrustProvider interface 15

serial numbers, revoked 9
server identification 12
server, identity assertions 13
ServerQoPPolicyImpl 20
Service Provider Interface for C++ (SPI) 1
signatures, digital 7
Software updates 5
SPI 4

AttributeCodec 3
SPI (C++) 1

AttributeCodec 16
AuthenticationMechanism 3
AuthenticationMechanisms 9
AuthorizationServicesProvider 12
exceptions 3
IdentityAdapter 3, 5
MechanismAdapter 8
modules 3
Privileges class 14
provider settings 3
Resource 14
RolePermission 19
Target interface 12
TrustProvider 3, 20

SPI (Java) 5
SSL

authentication, Borland web container 5
cipher suite 11
communication 11
encryption 11
examining information 4
layer, using certificates 14

ssl
CipherSuiteInfo 10
Current 12

subjects 1
Support, contacting 4
symbols

brackets [] 4
ellipsis ... 4
vertical bar | 4

symmetric encryption 7

T
Target interface 12
Technical Support, contacting 4
temporary priveleges 15
three-tier authorization 7
Tomcat web container

enabling Certificate Passthrough 5
https type connections 5
security 7
three-tier authorization 7

trust
backward 15
forward 15
identity assertion 4, 3
setting 4, 3

Trust Management 9
TrustProvider 3
TrustProvider interface 20

U
user domain 3
usernames, authentication 6

V
vault 15

creating 15
VaultGen tool 15

VaultGen example 17
VaultGen tool 15
vbroker.security

alwaysSecure property 1
assertions.trust.< 1
assertions.trust.all property 1
authDomains property 1
authentication.callbackHandler property 1
authentication.clearCredentialsOnFailure property 1
authentication.config property 1
authentication.retryCount property 1
cipherList property 1
controlAdminAccess property 1
CRLRepository 9, 1
defaultJSSETrust property 1

200 VisiBroker Secur i ty Guide

disable property 1
domain.< 1
enableAuthentication property 1
identity.enableReactiveLogin property 1
identity.reactiveLogin property 1
identity.reauthenticateOnFailure property 1
logFile property 1
login property 1
login.realms property 1
logLevel property 1
peerAuthenticationMode property 1
requireAuthentication property 1
secureTransport property 1
serverManager.authDomain property 1
serverManager.role.< 1
serverManager.role.all property 1
server.requireUPIdentity property 1
server.transport property 1
support.gatekeeper.replyForSAS property 1
transport.protocol property 1
trustpointsRepository property 1
vault property 1
wallet.identity property 1
wallet.password property 1
wallet.type property 1

vbroker.security.authentication.config property 13
vbroker.security.callbackhandler property 13
vbroker.security.login property 13
vbroker.se.iiop_tp.scm.ssl.listener.trustInClient

property 1
vbsec::AttributeCodec 16

methods 16
vbsec::AuthenticationMechanisms 9

methods 9, 10
vbsec::AuthorizationServicesProvider 12

methods 13
vbsec::CertificateFactory 15
vbsec::ClientConfigImpl 21
vbsec::ClientQoPPolicyImpl 21
vbsec::Context 2
vbsec::Credential 5
vbsec::Current 1
vbsec::IdentityAdapter 5

methods 5
vbsec::MechanismAdapter 8

methods 8
vbsec::Principal 5
vbsec::Privileges 14

constructors 14
methods 14

vbsec::Resource 14
methods 14

vbsec::RolePermission 19
constructors 19
methods 20

vbsec::SecureSocketProvider 11
vbsec::ServerConfigImpl 20
vbsec::SSLSession 9
vbsec::Subject 6
vbsec::Target 12

methods 12
vbsec::TrustProvider 20

methods 21
vbsec::VBSSLContext 10
vbsec::Wallet 7
vbsec::WalletFactory 7

VisiBroker for C++, security properties 1
VisiBroker for Java, security properties 1
VisiBroker overview 1
VisiSecure 1

C++ APIs 1
properties and security profiles 12

VisiSecure API (C++)
AccessPolicyManager 22
authorization API 21
Certificate APIs 15
CertificateFactory 15
CipherSuiteInfo 10
CipherSuiteName 10
class Credential 5
ClientConfigImpl 21
ClientQoPPolicyImpl 21
Context 2
Current 1, 12
general APIs 1
ObjectAccessPolicy 22
Principal 5
QoP APIs 19
SecureSocketProvider 11
ServerConfigImpl 20
ServerQoPPolicyImpl 20
SSL APIs 8
SSLSession 9
Subject 5
VBSSLContext 10
Wallet 7
WalletFactory 7
X509Cert 16
X509CertExtension 18

VisiSecure APIs (C++) 1
VisiSecure for C++, Certification Revocation List 9
VisiSecure SPI (C++) 1

AttributeCodec 3, 16
AttributeCodec methods 16
AuthenticationMechanism 3
AuthenticationMechanisms 9
AuthenticationMechanisms methods 9
AuthorizationServiceProvider 12
exceptions 3
IdentityAdapter 3, 5
IdentityAdapter methods 5
MechanismAdapter 8
MechanismAdapter methods 8
Privileges 14
Privileges constructors 14
Privileges methods 14
Providers 2
Resource 14
Resource methods 14
RolePermission 19
RolePermission constructors 19
RolePermission methods 20
SPI modules 3
Target 12
Target methods 12
TrustProvider 3, 20
TrustProvider methods 21

VisiSecure SPI(C++), Service Provider Interface (SPI)
provider settings 3

Index 201

Index

W
web application security 7
web components, security 1, 7, 8
web container, security 7
wildcard assertion, code sample 4
wildcard assertions 3
World Wide Web

Borland documentation on the 5
Borland newsgroups 5
Borland updated software 5

X
X.509 certificates 9
X509CertificateAdapter 5, 9

202 VisiBroker Secur i ty Guide

	Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within the VisiBroker Console
	Documentation conventions
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Getting Started with Security
	VisiSecure overview
	VisiSecure for Java
	VisiSecure for C++
	Pluggability
	VisiSecure design flexibility
	VisiSecure for Java features
	VisiSecure for C++ Features

	Basic security model
	Authentication realm (user domain)
	Resource domain
	Authorization domain

	Distributed environments and VisiSecure SPI
	Managing authentication and authorization with JAAS
	Authentication and Identification
	System identification
	Authentication and pluggability
	Server and/or client authentication
	Authenticating clients with usernames and passwords
	Authentication property settings
	Public-key encryption
	Asymmetric encryption
	Symmetric encryption
	Certificates and Certificate Authority
	Digital signatures
	Generating a private key and certificate request
	Distinguished names
	Certificate chains

	Certificate authentication
	Certificate Revocation List (CRL) and revoked certificate serial numbers
	Negotiating Quality of Protection (QoP) parameters
	Secure Transportation
	JSSE and SSL pluggability
	Setting the level of encryption
	Supported cipher suites

	Authorization
	Access Control List
	Roles-based access control
	Pluggable Authorization

	Context Propagation
	Identity assertions
	Impersonation
	Delegation

	Trusting Assertions
	Trust assertions and plug-ins
	Backward trust
	Forward trust

	Temporary privileges

	Using IIOP/HTTPS
	Netscape Communicator/Navigator
	Microsoft Internet Explorer

	Authentication
	JAAS basic concepts
	Subjects
	Principals
	Credentials
	Public and private credentials

	Authentication mechanisms and LoginModules
	Authentication realms
	LoginModules

	LoginContext class and LoginModule interface
	Authentication and stacked LoginModules

	Associating a LoginModule with a realm
	Syntax of a realm entry

	Borland LoginModules
	Basic LoginModule
	JDBC LoginModule
	LDAP LoginModule
	Host LoginModule

	Server and Client Identification
	Setting the config file for client authentication
	System Identification
	Formatted Target
	GSSUP mechanism
	Certificate mechanism

	Using a Vault
	Creating a Vault
	VaultGen example

	Client identification

	Authorization
	Defining access control with Role DB
	Anatomy of Role DB
	Assertion syntax
	Using logical operators with assertions
	Wildcard assertions

	Other assertions
	Recycling an existing role

	Authorization domains
	Run-as Alias
	Run-as mapping

	CORBA authorization
	Setting up authorization for CORBA objects

	Configuring Security Profiles for Domains
	Security Profiles
	Enabling Security
	Enabling SSL
	Setting the Log Level
	Configuring Authentication
	Creating the config.jaas file
	Configuring Authentication Using the Management Console

	Configuring Authorization
	About the rolemap file
	Configuring Authorization Using the Management Console

	Specifying VisiSecure properties

	Associating a Profile with a Domain
	Using a Vault for a Domain
	Making Secure Connections (Java)
	JAAS and JSSE
	JSSE Basic Concepts

	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication, using JAAS modules, for known realms
	Username/password authentication, using APIs
	Certificate-based authentication, using KeyStores through property settings
	Certificate-based authentication, using KeyStores through APIs
	Certificate-based authentication, using APIs
	pkcs12-based authentication, using KeyStores
	pkcs12-based authentication, using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: Setting up the Pseudo-Random Number Generator
	Step Five: If necessary, set up identity assertion

	Examining SSL related information
	Creating Custom Plugins
	LoginModules
	CallbackHandlers
	Authorization Service Provider
	Trust Providers

	Making Secure Connections (C++)
	Steps to secure clients and servers
	Step One: Providing an identity
	Username/password authentication, using LoginModules, for known realms
	Username/password authentication, using APIs
	Certificate-based authentication, using KeyStores through property settings
	Certificate-based authentication, using KeyStores through APIs
	Certificate-based authentication, using APIs
	pkcs12-based authentication, using KeyStores
	pkcs12-based authentication, using APIs

	Step Two: Setting properties and Quality of Protection (QoP)
	Step Three: Setting up Trust
	Step Four: If necessary, set up identity assertion

	Examining SSL related information
	Creating Custom Plugins
	LoginModules
	CallbackHandlers
	Authorization Service Provider
	Trust Providers

	Security for the Web components
	Security for the Apache web server
	Modifying the Apache configuration file for mod_ssl
	Creating key and certificate files
	Verifying that mod_ssl is active

	Enabling certificate passthrough to the Borland web container
	Configuring Apache to “passthrough” the SSL certificate and related information
	Configuring the mod_iiop IIOP connector of the httpd.conf file to forward SSL authentication

	Security for the Borland web container
	Securing your Borland web container
	Securing your web application

	Three-tier authorization scheme
	Setting up “run-as” role

	Security Properties for Java
	Security Properties for C++
	VisiSecure for C++ APIs
	General API
	class vbsec::Current
	Include File
	Methods

	class vbsec::Context
	Include File
	Methods

	class vbsec::Principal
	Include file
	Methods

	class vbsec::Credential
	Include File

	class vbsec::Subject
	Include File
	Methods

	class vbsec::Wallet
	Include File
	Methods

	class vbsec::WalletFactory
	Include File
	Methods

	SSL API
	class vbsec::SSLSession
	Include File
	Methods

	class vbsec::VBSSLContext
	Include File
	Methods

	class ssl::CipherSuiteInfo
	Include File

	class CipherSuiteName
	Include File
	Methods

	class vbsec::SecureSocketProvider
	Include File
	Methods

	class ssl::Current
	Include File
	Methods

	Certificate API
	class vbsec::CertificateFactory
	Include File
	Methods

	class CORBAsec::X509Cert
	Include File
	Methods

	class CORBAsec::X509CertExtension
	Include File

	QoP API
	class vbsec::ServerConfigImpl
	Include File

	class ServerQoPPolicyImpl
	Include File
	Methods

	class vbsec::ClientConfigImpl
	Include File
	Methods

	class vbsec::ClientQoPPolicyImpl
	Include File
	Methods

	Authorization API
	class csiv2::AccessPolicyManager
	Include File
	Methods

	class csiv2::ObjectAccessPolicy
	Include File
	Methods

	Security SPI for C++
	Plugin Mechanism and SPIs
	Providers
	Providers and exceptions

	vbsec::LoginModule
	Include File
	Methods

	vbsec::CallbackHandler
	Include file
	Methods

	vbsec::IdentityAdapter
	IdentityAdapters included with the VisiSecure
	Methods
	vbsec::MechanismAdapter
	Methods

	vbsec::AuthenticationMechanisms
	Credential-related methods
	Context-related methods

	vbsec::Target
	Methods

	vbsec::AuthorizationServicesProvider
	Methods

	vbsec::Resource
	Methods

	vbsec::Privileges
	Constructors
	Methods

	vbsec::AttributeCodec
	Methods

	vbsec::Permission
	Include file
	Methods

	vbsec::PermissionCollection
	Include file
	Methods

	vbsec::RolePermission
	Constructors
	Methods

	vbsec::TrustProvider
	Methods

	vbsec::InitOptions
	Include file
	Data Members

	vbsec::SimpleLogger
	Include file
	Methods

