Understanding
DevPartner:

DevPartner Studio Professional Edition
DevPartner Studio Enterprise Edition
DevPartner for Visual C++ BoundsChecker Suite

Release 9.0.1

Customer support is available from our Customer Support Hotline or via
our FrontLine Support Web site.

Customer Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
http://frontline.compuware.com

This document and the product referenced in it are subject to the following
legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2009 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)({i)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT 1III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of Com-
puware Corporation. Use, disclosure, or reproduction is prohibited with-
out the prior express written permission of Compuware Corporation.

DevPartner® and BoundsChecker are trademarks or registered trademarks
of Compuware Corporation.

Adobe® Reader copyright © 1984-2009 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: 5,987,249, 6,332,213, 6,186,677, 6,314,558, 6,760,903
B1,and 6,016,466

January 2, 2009

http://frontline.compuware.com

Table of Contents

Preface

Who Should Read This Manual i, xiii
What This Manual COVETS ittt ittt ittt et eeeeeeeen, Xiv
Conventions Used In This Manual, ba%
For More Information ittt XV

Chapter 1

Introducing DevPartner

What is DevPartner Studio? 1
Error Detection 2
Static Code Analysis 2
Coverage Analysis e 3
Memory Analysist 3
Performance Analysis e 4
In-Depth Performance Analysis 4
System CompariSOn e §)

DevPartner and Visual Studio i 5
Menus and Toolbars in Visual Studio 6
Using DevPartner in Visual Studio 8
Integrated Online Help 8

Visual Studio Team System Support i 8

Using Terminal Services and Remote Desktop 9
Licensing 10
Running Multiple Sessions Under Terminal Services 10

DevPartner in the Software Development Cycle 10

Chapter 2

Error Detection

What is Error Detection? 14
Using Error Detection OutoftheBox 14
Ready: Deciding the Scope of Error Detection Analysis 15
Set: Configuring Options and Settings 16
Go: Running Your Solution with Error Detection 17
Analyzing the Datain the ResultsPane 19
Saving Session Files e 23
Deciding When to Use ActiveCheck vs. FinalCheck 24
Understanding ActiveCheck i 24
Understanding FinalCheck i i, 25
Comparing ActiveCheck and FinalCheck — An Example 26
Using the Program Error Detected Dialog Box 27
Understanding the Actions You CanTake 27
Understanding the Memory and Resource Viewer Dialog Box 29
Exploring the Memory and Resource Viewer User Interface 30
Understanding the Suppression and Filtering Dialog Boxes 30
Suppressing EIrors 31
Filtering EITOrs oo e 34
Understanding Call Validation 36
Enabling Memory Block Checking 37
Using the Settings Dialog Box i, 37
Setting General Properties i e 38
Setting Data Collection Properties 39
Setting API Call Reporting Properties 40
Setting Call Validation Options i i 41
Setting COM Call Reporting Properties 42
Setting COM Object Tracking Options i, 43
Setting Deadlock Analysis Options 43
Setting Memory Tracking Options 45
Setting .NET Framework Analysis Options 48
Setting .NET Framework Call Reporting Properties 49
Setting Resource Tracking Options 49
Setting Modules and Files Options 50
Setting Fonts and Colors Options i, 52
Setting Configuration File Management Options 53
Tracking Windows Messages and Event Logging 54
Exporting Data to XML 54
Exporting Data from within Visual Studio 54
Exporting Data from the Error Detection Standalone Application 55

iv Understanding DevPartner

Exporting Data from the Command Line 55

Running Error Detection from the Command Line 56
Command Line Optionsand Syntax 56
Running FinalCheck from the Command Line 57

Submitting Data to Visual Studio Team System 58
Visual Studio Team System Support in DevPartner Error Detection 58

Chapter 3
Static Code Analysis

What is Code RevieWw? e 60
Using Code Review OutoftheBox 60
Ready: Deciding How You Want to Run the Review 61
Set: Selecting Options and Settings 62
Go: Starting Your Code Review Sessiono ... 64
Analyzing the Results and Repairing Violations 64
Saving Session Files 68
Setting Options o e 69
Configuring General Optionso, 70
Setting Naming Guidelines Options 74
Managing Suppressed Rules 76
Suppressing Rules e e 77
Viewing Summary Data e 78
Viewing Code VIolationst 80
Viewing Naming Violations i 82
Analyzing Hungarian Results i i 82
Analyzing Naming GuidelinesResults 83
Viewing Collected Metrics i 85
Understanding McCabe Metrics 86
Viewing Call Graph Data i 88
Understanding Call Graph References 89
Setting Call Graph Configuration Options 91
Using the Command Line Interface 93
Understanding the Error File i 95
Exporting Datato XML 96
Exporting Session Data from within DevPartner 96
Exporting Session Data from the Command Line 96
Exporting Session Data from a Batch Process 97
Understanding Naming Analysis 98
Understanding the Naming Guidelines Naming Analyzer 98
Understanding the Hungarian Naming Analyzer 101
Using the Code Review Rule Manager 103

¢ Table of Contents

\

Configuring Rules e 103

Configuring Triggerst 106
Configuring Rule Sets i 108
Configure Hungarian Name Sets, 111
Manipulating the Rule List 114
Creating New Rules Using Regular Expressions 116
Matching Lines Exceeding 90 Characters 117
Matching Tabs Used Instead Of Spaces 118
Matching Instances Where Code Catches System.Exception 118
Matching Methods Having More Than One Return Point 119
Enforcing Initialization Of Variables When They Are Defined 120
Matching Instances Of More Than One Statement Per Line 121
Ensuring Open Braces Are Placed On A Separate Line 122
Ensuring Loop Counters Are Not Modified Inside the Loop Bodies 122
Submitting Data to Visual Studio Team System 124
Visual Studio Team System Support in DevPartner Code Review 124

Chapter 4

Automatic Code Coverage Analysis

What is Coverage Analysis?t 126
Using Coverage Analysis OutoftheBox 126
Ready: Consider What You Wantto Analyze 126
Set: Properties and Optionsttt 127
Go: Collect Coverage Dataottt 128
Analyzethe Data i e 129
Saving Session Files 133
Setting Properties and Options 134
Solution Properties e 134
Project Properties e 135
(0015 Ue) o R J P 135
Excluding Images i e 136
About Instrumentation 137
Collecting Data from Various Types of Applications 138
Collecting Data From Managed Code 138
Collecting Data for Unmanaged Code, 139
Collecting Data from Multiple Processes oo, 141
Collecting Data from Remote Systems 141
Collecting Data From .NET Web Applications 142
Collecting Data from Classic Web Script Applications 145
Web Service Requirements i i 145
Deleting Temporary Files from NMSource 146
Configuring IIS for Data Collection 146

vi Understanding DevPartner

Configuring Internet Explorer for Coverage Analysis 147

Collecting Data from a Service ittt 147
Collecting Data from COM and COM+ Applications 147
Merging Session Data 148
Reviewing Merge Data i 149
Merge States e 150
ASP.NET Modulesin Merge Files oo, 151
Merge Settings 152
Exporting Coverage Data 152
Controlling Data Collection 153
Analyzing from the Command Lineo ... 153
Using the Coverage Analysis Viewer 153
What You Can Do in the Coverage Analysis Viewer 154
What you Cannot Do in the Coverage Analysis Viewer 154
Integration with DevPartner Error Detection 154
Submitting Data to Visual Studio Team System 155

Chapter 5

Finding Memory Problems

What is Memory Analysis? 158
Using Memory Analysis OutoftheBox 159
Ready: Consider What You Want to Analyze 159
Set: Propertiesand Options 160
Go: Collect Memory AnalysisData 160
Analyze the Memory AnalysisData 164
Saving Session Files e 169
Memory Problems in Managed Visual Studio Applications 170
How Memory Analysis HelpsYou it 171
Setting Properties and Options, 171
Solution Properties e 172
Project Properties 172
OPtIONS . . . 174
Starting a Memory Analysis Session i 174
Using the Session Control Window in Memory Analysis 175
Using the Object Reference Graph 179
Using the Call Graph to Identify Execution Paths 181
Using the Allocation Trace Graph 182
Viewing and Editing Source Code 184
Identifying Memory Problems i 186
Running a Memory Analysis Session i .. 187
Locating Memory Leaks e 188

o Table of Contents

vii

Running a Memory Leaks Analysis Session 189

Understanding Memory Leaks Analysis Results 190
Alternate Methods of Solving the Problem 195
Solving Scalability Problems with Temporary Objects 197
Examples of Scalability Problems 197
A Possible Cause: Temporary Objects e 197
Running a Temporary Objects Analysis Session 198
Identifying Scalability Problems 199
Analyzing Temporary Object Data 201
Interpreting Results to Fix Scalability Problems 203
Using RAM Footprint to Improve Performance 203
Measuring RAM Footprint 204
Optimizing Memory Use it 210
Analyzing Web Applications with Memory Analysis 211
Collecting Server-side Memory Data 211
Collecting Data from Multiple Processeso, 212
Prerequisites for Analyzing Web Applications 212
Running a Memory Analysis Session on a Web Application 213
If You Get Unexpected File Save Dialogs or Saved Session Files 214
If You Get a Security Exception 215
Using Memory Analysis In Your Development Cycle 215
Submitting Data to Visual Studio Team System 216

Chapter 6

Automatic Performance Analysis

What is Performance Analysis? i 218
Using Performance Analysis Outof theBox 218
Ready: Consider What You Wantto Analyze 219
Set: Properties and Optionsttt 219
Go: Collect Performance Data 220
AnalyzetheData 221
Saving Session Files 226
Setting Properties and Options 227
Solution Propertiest e 227
Project Properties e 227
OPHIONS . . oo e 229
Excluding Images i e 230
About Instrumentation L e 231
Collecting Data from Various Types of Applications 231
Collecting Data From Managed Code 232
Collecting Data from Unmanaged Code 233
Collecting Data from Multiple Processes e, 234

viii Understanding DevPartner

Collecting Data from Remote Systems 235

Collecting Data From .NET Web Applications 236
Collecting Data from Classic Web Script Applications 238
Web Application Data Collection Tips 239
Web Service Requirements i 240
Deleting Temporary Files from NMSource 240
Configuring IIS for Data Collection 241
Configuring Internet Explorer for Data Collection 242
Collecting Data from a Service ittt 242
Collecting Data from COM and COM+ Applications 242
Collecting Data for Recursive Functions 242
Analyzinga Call Graph 243
Child-side Analysis i 245
Parent-side Analysis i e 2435
Comparing SESSIONSo e 246
Interpreting Session Comparison Results 248
Exporting Performance Data i 248
Controlling Data Collection 249
Analyzing from the Command Line 249
Using the Performance Analysis Viewer 250
What You Can Do in the Performance Analysis Viewer 250
What you Cannot Do in the Performance Analysis Viewer 250
Performance Analysis Tips for .NET Applications 250
Submitting Data to Visual Studio Team System 252

Chapter 7

In-Depth Performance Analysis

What is Performance EXpert? e 254
Performance Expert and Performance Analysis 254
Using Performance Expert OutoftheBox 255
Ready: Consider What You Want to Analyze 255
Set: Propertiesand Options 256
Go: Collect Performance Expert Data 257
Analyzethe Data 259
Saving Session Files e 270
Setting Properties and Options 271
Solution Properties 271
Project Properties e 272
O IO . . . e 273
Finding Application Problems with Performance Expert 274
Accounting for Child Methods i i 275

¢ Table of Contents

ix

Usage SCeNATIOS . . .o vttt ettt ettt e 276

Identifiable Performance Problem 277
Scaling Problem in an Application 279
Performance Slow but No SpecificIssue 282
Collecting Data from Web Applications 282
Managed Code Only e 282
web.config Requirements e 283
Multiple Process Profiling i 283
Single Process Profilingon IIS6.0 283
No Remote Session File for Components Running Under DLLHOST 284
Source Code on Remote Machines 284
Session Files Saved to Open Solution 284
Automating Data Collection i 284
Using Command-line Switches 285
Using an XML Configuration File 285
Collecting Data from Distributed Applications 287
Enabling Remote Data Collection with DPAnalysis.exe 287
Saving Session Files on Remote Machines 288
Collecting Data with Terminal Services or Remote Desktop 288
Remote Profiling and Windows XP Service Pack 2 288
Firewalls and Remote Data Collection 290
Exporting DevPartner Data to XML Format 290
Using Performance Expert with Performance Analysis 291
Performance Expert in the Development Cycle 292
Submitting Data to Visual Studio Team System 294

Chapter 8

System Comparison

What is System Comparison?t 296
Using System Comparison OutoftheBox 297
Ready: Consider What You Want to Compare 298
Set: Prepare for System Comparisonoiuueeennneeennn. 299
Go: Make a Change and Create a Snapshot 300
Analyze Results e 301
The System Comparison Service tiiiitnnneeennn. 303
Changing Automatic Snapshot Settings 303
Categories of Differences i 304
Comparing Registry Keys e 308
Comparing Specific Files 309
Installing Without DevPartner 312
Running the Comparison Utility from the Command Line 313

X Understanding DevPartner

Software Development Kit 314

System Comparison Snapshot API 314
Taking a Snapshot e 315
Logging Messagesottt t it e 316
Reporting Progresst e 317

Writing a Plug-in 317
What is a Plug-in? e e 317
Plug-in Sample Step By Step Instructions 318
Creating and Testing Your Plug-in oo, 321
Modifying a Deployed Plug-in 322
Highlights of the Plug-in Schema 323
About the Redistributable Assemblies 324

Appendix A
About DevPartner Studio Enterprise Edition and TrackRecord

What Is DevPartner Studio Enterprise Edition? 325
The Development Process 326
The DevPartner Studio EE Solution 327
Improved Project Control o i 327
Higher Software Quality i 327
Improved Productivity 328
Feature Overview e 329
Requirements Management it 329
Merging Coverage Data i 329
Project Activity Tracking i i 330
Automatic Notification of Changes 330
Customizable Workflow 331
Remote Accessviathe Web 331
Central Store of Shared Information 331
About TrackRecord and DevPartner Studio 331
DevPartner Studio Interaction with TrackRecord 332
Defect SUbmisSSiONS e e 332
TrackRecord and DevPartner Studio Coverage Analysis 332

Appendix B
DevPartner Studio Supported Project Types

Supported Project Typeso oot e 335
Error Detection Supported Project Types 337
Code Review Supported Project Types 340
Coverage Analysis, Performance Analysis, Memory Analysis, and Performance Expert Supported
Project Types e 342

o Table of Contents xi

Appendix C

Starting Analysis from the Command Line

Introducing DPANalysis.eXettt 345
Running DPAnalysis.exe from the Command Line 346
Using DPAnalysis.exe with an XML Configuration File 349
XML Configuration File Element Reference 350
Profiling Web Applications with the XML Config File 361
Collecting Analysis Data from a Remote Machine 363

Appendix D
Analysis Session Controls

Introducing Session Control Files i .. 365
Creating a Session Control File Within Visual Studio 366
Using the Session Control API 367
Using the Session Control APIs with Managed Applications 369
Using the Session Control APIs with Unmanaged Applications 370
Saving Files through the Session Control API 371
Interactions and Precedence o i, 372

Appendix E
Exporting Analysis Data to XML

Introducing DevPartner Data Export 375
Exporting Analysis Datato XML i 376
Exporting Analysis Data to XML from the Command Line 376

Devpartner.Analysis.Export.exe Usage Examples 377
Index

xii Understanding DevPartner

Preface

¢ Who Should Read This Manual

€ What This Manual Covers

& Conventions Used In This Manual
& For More Information

This manual describes how to get started using your Compuware®
DevPartner® Studio software.

Who Should Read This Manual

This manual is intended for new DevPartner Studio users. Chapter 1
presents an overview of DevPartner Studio concepts; subsequent chapters
describe individual DevPartner components. Each component chapter
begins with a brief Ready, Set, Go procedure to get new users up and
running with DevPartner Studio.

Users of previous versions of DevPartner should read the Preface to the
Installing DevPartner manual to see how this version of DevPartner differs
from previous versions.

This manual contains information relevant to all DevPartner Studio
products, including the Professional and Enterprise Editions, and the
DevPartner for Visual C++ BoundsChecker Suite.

Note: The DevPartner for Visual C++ BoundsChecker Suite analyzes unman-
aged code only. The DevPartner memory analysis, static code analy-
sis, and Performance Expert features analyze managed code only,
and are therefore not supported in the DevPartner for Visual C++
Bounds-Checker Suite.

This manual assumes that you are familiar with the Windows interface,
with Microsoft Visual Studio, and with software development concepts.

xiii

What This Manual Covers

This manual contains the following chapters and appendixes:

L 4

xiv Understanding DevPartner

Chapter 1, Introducing DevPartner describes the concepts and com-
ponents of DevPartner.

Chapter 2, Error Detection, explains how to use DevPartner to
uncover errors in your C and managed and unmanaged C++ code.

Chapter 3, Static Code Analysis, explains how DevPartner helps you
locate a variety of errors in Visual Basic and Visual C# code.

Chapter 4, Automatic Code Coverage Analysis, describes how to use
DevPartner to track how much of your code is covered by your tests.

Chapter 5, Finding Memory Problems, describes how to use DevPart-
ner to diagnose application anomalies that can be caused by misuse
of memory and objects.

Chapter 6, Automatic Performance Analysis, explains how DevPart-
ner helps you locate bottlenecks and code in need of optimization.

Chapter 7, In-Depth Performance Analysis, explains how DevPart-
ner helps you analyze a variety of full system performance issues.

Chapter 8, System Comparison, describes how DevPartner helps you
identify differences between computer systems to assist with trouble-
shooting application development problems.

Appendix A, About DevPartner Studio Enterprise Edition and
TrackRecord, explains how to use DevPartner Studio with Compu-
ware enterprise tools.

Appendix B, DevPartner Studio Supported Project Types, contains
tables listing project types supported by each DevPartner Studio fea-
ture.

Appendix C, Starting Analysis from the Command Line, describes
the DPAnalysis.exe command line interface.

Appendix D, Analysis Session Controls, describes creating a session
control file for coverage, memory, performance, and Performance
Expert sessions.

Appendix E, Exporting Analysis Data to XML, describes exporting
coverage, performance, and Performance Expert data to an XML file.

Conventions Used In This Manual

This book uses the following conventions to present information.

¢ Screen commands and menu names appear in bold typeface. For

example:

Choose Item Browser from the Tools menu.

File names appear in monospace typeface. For example:

The Understanding DevPartner manual (Understanding DevPart-
ner.pdf) describes...

Variables within computer commands and file names (for which you
must supply values appropriate for your installation) appear in
italic monospace type. For example:

Enter http://servername/cgi-win/itemview.d11 in the Destina-
tion field...

For More Information

Refer to the feature-level online help for step-by-step instructions for
specific DevPartner Studio tasks.

View the DevPartner InfoCenter page from the Start > DevPartner menu
to learn more about DevPartner Studio components.

In addition to this manual, the following information is also included in
the DevPartner Studio documentation set:

4

L 4

2

The Installing DevPartner manual provides What’s New information, a
detailed list of system requirements, and installation instructions.

The DevPartner Studio Quick Reference provides an at-a-glance sum-
mary of DevPartner features accompanied by quick-start advice.

The DevPartner Advanced Error Detection Techniques manual provides
concepts and procedures to help you understand the use of your
Compuware® DevPartner Error Detection software.

The Known Issues file contains a list of known issues and technical
notes for DevPartner Studio. The file is available in your installation
directory, or you can refer to the ReadMe. htm file for a link to the
Known Issues file on the Web.

¢ Preface xv

xvi Understanding DevPartner

Chapter 1
Introducing DevPartner

& What is DevPartner Studio?

& DevPartner and Visual Studio

4 Visual Studio Team System Support

4 Using Terminal Services and Remote Desktop
& DevPartner in the Software Development Cycle

This chapter provides an introduction to DevPartner Studio Professional
Edition and DevPartner for Visual C++ BoundsChecker Suite. Use this
manual to understand the concepts underlying both DevPartner
products.

Note: The DevPartner for Visual C++ BoundsChecker Suite analyzes
unmanaged code only. The DevPartner memory analysis, static code
analysis, and Performance Expert features analyze managed code
only, and are therefore not supported in the DevPartner for Visual
C++ BoundsChecker Suite.

What is DevPartner Studio?

DevPartner Studio is a software tool that provides a variety of
programmer productivity features, such as automated error detection,
source code analysis, coverage analysis, memory analysis, performance
profiling, system performance analysis, and system comparison.

DevPartner can analyze a broad range of both managed and unmanaged
applications written in a variety of languages. Refer to Appendix B,
“DevPartner Studio Supported Project Types” for a complete list of
supported project types and languages.

The following sections summarize the features of DevPartner Studio.

Error Detection

Static Code Analysis

DevPartner Studio provides automated error detection for managed and
unmanaged programs. DevPartner error detection is built on
BoundsChecker™ technology, and is designed to locate the following
hard-to-find errors in your Windows-based applications:

Memory, resource, and COM interface leaks
Invalid use of Windows API calls

Invalid use of memory or pointers

Memory overrun errors

Un-initialized memory usage

Use of dangling pointers

Errors in .NET finalizers

L 2K R K R IR B 4

DevPartner error detection monitors your application from the moment
of creation until the final moments before the process is unloaded from
memory. You can monitor all DLL loads and unloads, static constructors
and destructors as well as the normal flow of your application. You can
also tune DevPartner error detection to collect only information
necessary to solve a particular problem by filtering out specific files or
portions of your application.

See “Error Detection” on page 13 for more information about DevPartner
error detection.

DevPartner helps developers write compliant Visual Basic and C# code
within Visual Studio. DevPartner identifies programming and naming
violations in the .NET Framework, analyzes method call structures, and
tracks overall code complexity.

The DevPartner software detects a variety of coding errors:

Variable naming inconsistencies
Violations of coding covenants
Win32 API validation errors
Common logic errors

.NET portability issues

Structured exception handling errors

L R IR IR R AR 2

Using an extensive and extensible rule set, DevPartner also assists in the
porting of legacy Visual Basic code by identifying constructs that will not
work in the .NET environment.

See “Static Code Analysis” on page 59 for more information about
DevPartner static code reviews.

2 Understanding DevPartner

Coverage Analysis

Memory Analysis

The DevPartner coverage analysis feature allows developers and test
engineers to be sure they are testing all of an application’s code. When
you run your tests with coverage analysis, DevPartner tracks all
applications, components, images, methods, functions, modules, and
individual lines of code covered by your tests. When your tests end,
DevPartner displays information about what code was exercised and
what code was not exercised.

DevPartner collects coverage data for managed code applications,
including Web and ASP.NET applications, as well as unmanaged C++
applications. (See Appendix B, “DevPartner Studio Supported Project
Types” for a complete list of supported technologies).

You can run the coverage analysis and error detection features
simultaneously. Knowing the percentage of code covered in your tests
will help you to have an appropriate level of confidence in your error
detection results.

See “Automatic Code Coverage Analysis” on page 125 for more
information about code coverage analysis.

DevPartner analyzes how memory is allocated by your managed Visual
Studio application. When you run your application under memory

analysis, DevPartner shows you the amount of memory consumed by an

object or class, tracks the references that are holding an object in

memory, and identifies the lines of source code within a method that are

responsible for allocating the memory.

More importantly, DevPartner presents memory data in context. This

enables you to navigate chains of object references and calling sequences

of the methods in your code. Presenting memory data in context
provides both an in-depth understanding of how your program uses

memory and the critical information you need to optimize memory use.

See “Finding Memory Problems” on page 157 for more information
about memory analysis.

Chapter 1 ¢ Introducing DevPartner

3

Performance Analysis

The DevPartner performance analysis feature analyzes your code for
performance bottlenecks. It pinpoints these bottlenecks to individual
lines of source code, and provides method-level insight into the way your
application uses third-party components, the operating system, and,
most importantly, the .NET Framework.

DevPartner supports performance profiling in Microsoft Visual Studio
2005 and Visual Studio 2008. (See Appendix B, “DevPartner Studio
Supported Project Types” for a complete list of supported technologies).

To improve performance of critical parts of your code, use DevPartner
performance analysis to locate performance bottlenecks and to verify
that the improvements you make really do impact performance.

See “Automatic Performance Analysis” on page 217 for more information
about analyzing an application’s performance.

In-Depth Performance Analysis

4

The DevPartner Studio Performance Expert feature takes performance
profiling a step further than DevPartner’s performance analysis feature.
For managed code Visual Studio applications, Performance Expert
provides a deeper analysis of the following hard-to-solve problems:

¢ CPU/thread usage

¢ File/disk I/O

¢ Network I/O

¢ Synchronization wait time

Performance Expert analyzes your application at run time and locates the
problematic methods in your code. It then allows you to view details
about individual lines in the method, or to examine parent-child calling
relationships to help you determine the best way to fix the problem.
When you decide on an approach, Performance Expert enables you to
jump directly to the problem lines in your source code, so you can
quickly fix problems.

See “In-Depth Performance Analysis” on page 253 for more information.

Understanding DevPartner

System Comparison

The DevPartner System Comparison utility compares two computer
systems, or compares the current state of a computer with a previous
state, allowing you to determine why your application:

¢ Works on one computer but not on another
¢ Works differently on different computers
¢ No longer works on a computer on which it previously worked

To compare systems, System Comparison creates XML files, called
snapshot files, that contain information about a computer system, such
as its installed products, system files, drivers, and many other system
characteristics. It then compares snapshot files and reports the
differences between them.

Unlike the other DevPartner features, System Comparison is not
integrated into the Visual Studio environment. It runs as a standalone
utility to minimize its impact on target systems.

System Comparison consists of a service that takes nightly snapshots of a
system, and the user interface that enables you to take snapshots
manually and to compare snapshots to find differences. System
Comparison also includes a command line interface and a Software
Development Kit (SDK). The SDK allows software developers to gather
additional information for comparison and to embed snapshot
functionality in deployed applications.

See “System Comparison” on page 295 for more information about the
System Comparison utility.

DevPartner and Visual Studio

DevPartner integrates seamlessly into the Visual Studio environment.
This integration makes it easy for you to use the capabilities of the
product as you write and debug your applications. You can perform code
analysis frequently as you develop an application without leaving the
development environment.

The DevPartner Studio software simultaneously supports application
development within the Visual Studio 2008 and Visual Studio 2005
environments. This support assists developers as they migrate code from
the older Microsoft environments to the latest .NET Frameworks.

Chapter 1 ¢ Introducing DevPartner 5

The following tables identify the DevPartner features available in various
Visual Studio environments.

Table 1-1. Installed Features for DevPartner Studio Professional Edition

Microsoft Visual Studio 2008 Microsoft Visual Studio 2005
Performance Analysis Performance Analysis

Coverage Analysis Coverage Analysis

Error Detection Error Detection

Static Code Analysis Static Code Analysis

Memory Analysis Memory Analysis

Performance Expert Performance Expert

Table 1-2. Installed Features for DevPartner for Visual C++ BoundsChecker Suite

Microsoft Visual Studio 2008 Microsoft Visual Studio 2005
Performance Analysis Performance Analysis

Coverage Analysis Coverage Analysis

Error Detection Error Detection

Menus and Toolbars in Visual Studio

DevPartner adds a menu and several toolbars to Visual Studio, and it adds
menu commands to several Visual Studio menus, including context
(right-click) menus. Menu commands and toolbars provide access to
session controls, the rules for static code reviews, options dialogs, and
instrumentation controls.

DevPartner adds a toolbar to Visual Studio to provide quick access to
DevPartner features. Figure 1-1 on page 7 illustrates the DevPartner
toolbar in Visual Studio 2008.

6 Understanding DevPartner

DevPartner

- | o | B 8%] -]| S

Error detection

~|
~|@

A ? A
Options

Instrument native code
Code review rules

Code review

Performance expert

Memory analysis

Performance analysis

Error detection with code coverage

Code coverage analysis

Figure 1-1. DevPartner Toolbar
DevPartner also places a session control toolbar in the IDE. When the

coverage analysis, memory analysis, performance analysis, and
Performance Expert features are active, the session control toolbar is

active.

‘m = € VSTOTESTPC - 1492 (WindowsApplicat =

Figure 1-2. The DevPartner Session Control toolbar
The DevPartner Session Control toolbar consists of three icons and a

process list.
B Stops data collection and takes a final data snapshot
& Takes a data Snapshot
% Clears data collected to the point at which the Clear action
executes
The process list focuses data collection on a single process for
applications that use multiple processes.

Chapter 1 ¢ Introducing DevPartner

Using DevPartner in

In addition to the menu and toolbars, DevPartner uses the Visual Studio
dockable windows and panes to display the results of analysis sessions. It
also uses the Solution Explorer to display the names of session files.
DevPartner also adds pages to Visual Studio Options, Solution Properties,
and Project Properties for configuring DevPartner code analysis
operations.

Visual Studio

The general work flow for using DevPartner within Visual Studio consists
of one or more of these general-purpose tasks:

¢ Open or create a Solution in Visual Studio

¢ Set options for code analysis operations

¢ Enable the analysis you want to perform from the DevPartner menu
or toolbar

¢ Run your application

¢ View the session results returned by DevPartner

DevPartner gives you wide flexibility in choosing the parts of your
application to monitor, selecting what data to view, and creating filters to
eliminate unwanted information.

DevPartner also gives you the option to perform many functions from
the command line. This capability provides a way to use DevPartner
functionality in automated batch processing operations, such as nightly-
build smoke tests.

Integrated Online Help

DevPartner provides extensive online help about each of its features. This
help should be the first place you turn for how-to and reference
information.

Provided in the same format as the rest of Visual Studio help, the
DevPartner online help appears in the Visual Studio help collection as a
separate book. The DevPartner Studio book contains a volume for each
DevPartner feature.

Visual Studio Team System Support

Visual Studio 2005 Team System is Microsoft's version control, defect
tracking, and process management software for Visual Studio 2005
software development projects. DevPartner Studio supports Microsoft
Visual Studio Team System if the Team System client software is installed
and a Team Foundation Server connection is available.

8 Understanding DevPartner

DevPartner Studio supports submission of a Work Item of the type Bug
to Visual Studio Team System. When you submit a Bug, DevPartner
automatically populates the Work Item form with selected session data.
To submit a Bug from DevPartner Studio, the active Team System project
must support a Work Item of the type Bug. DevPartner Studio
automatically adds data only to this type of Work Item.

You can submit a Work Item that includes DevPartner data from any of
the following views in a DevPartner session file:

¢ A method list or method table in a Coverage, Memory, or
Performance Analysis session file, or in a Performance Expert session
file

The code review Problems or Naming tabs

A list of errors or leaks in any Error Detection tab, or list of instances
in the Error Detection Modules or .NET Performance tabs

To submit a Team System Work Item from DevPartner Studio, in a
DevPartner session file right-click on a method or other eligible item and
choose Submit Work Item. DevPartner populates the Title and
Description or Symptom field. Fill in any other required data and save
the Work Item.

Note: If you use the Team Explorer context menus in Visual Studio,
DevPartner does not automatically populate the Work Item with
session data.

For more information about submitting data from DevPartner Studio to
Team System, see the Visual Studio Team System sections in the chapters
of this manual. Consult the Microsoft Visual Studio 2005 Team System
documentation for complete information on how to use Team System to
support your development and project management activities.

Using Terminal Services and Remote Desktop

DevPartner Studio supports Windows Terminal Services. You can use
Terminal Services to do anything you would be able to do using the
machine directly, such as:

¢ Configure DevPartner options on remote systems.
¢ Enable or disable analysis on remote systems.
¢ Profile an application that runs on a remote system.

Chapter 1 & Introducing DevPartner 9

Licensing

A Terminal Services connection requires one DevPartner concurrent
license per user display. A server connected through a Terminal Services
connection does not require the DevPartner Studio Remote Server
license.

Running Multiple Sessions Under Terminal Services

Multiple DevPartner sessions can run simultaneously on the Terminal
Server. Multiple sessions can be launched by a single user or multiple
users. If a single user launches two instances of the console, both
instances will share the same workspace settings because DevPartner
stores workspace settings on a per-user basis. If different users launch
instances of coverage analysis, workspace settings can be configured
separately for each instance.

Collected data will include activity in the server process from all users on
the Terminal Server. To better focus data collection during a session,
eliminate or limit extraneous application activity that uses the
monitored processes or invokes the monitored targets.

DevPartner in the Software Development Cycle

Software development projects consist of several phases, often referred to
as the software development life cycle. Software development life cycles
differ among development organizations, and DevPartner adapts to
virtually any development life cycle model.

Tip: Organizations may The following figure depicts the phases in a typical development life
define the actions cycle.
between phases as project
milestones. T N [~CF ™ N e
1 Define | Publish |__'“\| Plan [J ASSlg) Hand Of [j Test E] Release |:| Deploy [
'.""El" o —‘,/ b el 4 L’ // “ el

Figure 1-3. Typical Software Development Life Cycle Phases

Within each of these phases, DevPartner assists project managers,
development leads, developers, and testers to produce code as free from
errors, coding irregularities, performance bottlenecks, and memory
problems as possible.

During the Define and Plan phases, DevPartner Enterprise Edition’s
requirement definition and project-tracking capabilities help ensure clear
communication with the entire project team.

10 Understanding DevPartner

During the Develop and Test phases, which are often the most time-
consuming and precarious phases, DevPartner helps developers find and
resolve software defects, as well as fine-tune and test the application
under development. Information generated by DevPartner features can
be shared among development team members to foster communication.

During the Test phase, development organizations use internal load
testing and scenario-based testing to verify the operation of features in an
application under development. This internal testing continues until the
end of the development life cycle. DevPartner provides many advantages
during this phase of the development cycle. Using an active analysis
technology, DevPartner error detection and performance analysis
features can align with Compuware QACenter test tools, such as QARun
and QALoad, to provide supplemental advantages to streamline the
application testing process.

Finally, during the Deploy phase, a development team using DevPartner
can successfully build and release its application with a high degree of
confidence in the final product release. Inevitably, however, internal or
external customers may find problems that even the most sophisticated
technologies fail to uncover. Since such problems can adversely affect the
end-user experience, your development team needs to address them
when they arise. DevPartner Enterprise Edition helps you manage this
process with its defect detection, verification, and resolution capabilities.

As a team grows in size or an application grows in complexity, the
additional defect tracking and integration technologies of the DevPartner
Enterprise Edition can further enhance an organization’s productivity
during and after deployment. The DevPartner Enterprise Edition provides
integration between DevPartner and the Compuware TrackRecord and
Reconcile applications. See “About DevPartner Studio Enterprise Edition
and TrackRecord” on page 325 for more information about using
DevPartner in an enterprise environment.

Chapter 1 Introducing DevPartner 11

12 Understanding DevPartner

Chapter 2
Error Detection

What is Error Detection?

Using Error Detection Out of the Box

Deciding When to Use ActiveCheck vs. FinalCheck

Using the Program Error Detected Dialog Box
Understanding the Memory and Resource Viewer Dialog Box
Understanding the Suppression and Filtering Dialog Boxes
Understanding Call Validation

Using the Settings Dialog Box

Tracking Windows Messages and Event Logging

Exporting Data to XML

Running Error Detection from the Command Line

L 2K B 2K Z2BK B JER 2R JBR SR JE 2

4 Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with error
detection. The second section provides reference information for an in-
depth understanding of DevPartner error detection features.

Refer to the DevPartner online help for additional task-oriented
information about error detection. For information that goes beyond the
basics, refer to Advanced Error Detection Techniques, provided in PDF
format with the DevPartner software installation.

13

What is Error Detection?

DevPartner Studio is a comprehensive debugging solution for C and C++
development. Incorporating frequent checks with DevPartner error
detection into your application development cycle allows you to produce
stable, error-free code. DevPartner Studio automates error-detection and
analysis without adding time to the development process. The following
features help you identity elusive bugs that are beyond the reach of
traditional debugging and testing techniques:

¢ Comprehensive error detection

Flexible debugging environment
Integration with the Visual Studio debugger
Integration with Microsoft Visual Studio
Advanced error analysis

Open error-detection architecture

L R R IR I 2

Using Error Detection Out of the Box

The following Ready, Set, Go procedure introduces you to using
DevPartner error detection.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject being

described in the shaded box, read the additional text following the
box.

Note: Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create

and debug your application are sufficient for DevPartner to analyze
the application.

14 Understanding DevPartner

Ready: Deciding the Scope of Error Detection Analysis

Consider how you want to run DevPartner error detection on your code,
as well as the types of errors and memory leaks you need to locate.

Note: DevPartner error detection creates data files for each target
application. You must ensure that you have write access to the
directory containing the target executable before starting error
detection.

The following procedure assumes:

¢ Your solution contains unmanaged source code.
¢ You are running error detection in Visual Studio 2008 or Visual
Studio 2005.

Note: Referto “Error Detection Supported Project Types” on page 337 for a
comprehensive list of supported project types for DevPartner error
detection.

Deciding How to Run the Session

You can run DevPartner error detection in several ways, depending on
the needs of your situation:

¢ Run error detection interactively as part of your routine code
validation process (daily or weekly) from inside Microsoft Visual
Studio, or using the standalone application.

< All of the error detection features can be accessed in the Visual
Studio environment. You can configure DevPartner Studio
settings, check your program, and review detected errors.

¢ You can run DevPartner Studio as an independent application,
completely outside of Visual Studio, but will not have access to
the Visual Studio editor to edit your code.

¢ Automate error detection to run from a batch file or the command
line using bc.exe.

¢ When you use DevPartner Studio from a DOS command line, you
can set up automated testing scripts. See “Running Error
Detection from the Command Line” on page 56 for more
information.

¢ Instrument your code with FinalCheck for a thorough validation at
major development milestones (in Visual Studio only).

Chapter 2 @ Error Detection 15

Deciding the Types of Errors to Locate

You can use error detection to locate a wide variety of errors and leaks
that may arise in your code, as well as to track down any problems you
suspect you already have:

¢ Enable COM object tracking when you think you are using COM

objects properly, but want to be sure you have not introduced any
errors.

¢ Enable Deadlock Analysis when you want to ensure that you are
using synchronization objects properly, or if you have an application
that deadlocks occasionally and you are not sure why.

¢ Extend the memory tracking system to include your custom
allocators to ensure they are implemented without leaks or errors. To
describe your custom allocators, add descriptive information about
your allocators to the UserAllocators.dat file. Refer to “Working
with User-Written Allocators” in Advanced Error Detection Techniques.

Set: Configuring Options and Settings

You can customize DevPartner error detection to report specific types of
errors, while ignoring or filtering out any “noise” that you do not care
about.

For this procedure, you can use the default DevPartner properties and
options. No changes to the settings are required.

Note: Depending on how you are running DevPartner error detection,
there are several menu options to access the Settings dialog box (see
“Using the Settings Dialog Box” on page 37).

By default, error detection finds simple memory leaks, some memory
errors, and resource leaks. DevPartner error detection can also find every
instance the following types of errors, leaks, and events if you edit the
default configuration.

¢ API calls and validation errors

Potential deadlock situations

COM interface leaks

Memory allocations and deallocations

Windows messages and other significant events (see “Tracking
Windows Messages and Event Logging” on page 54)

L 2R R 2R 2

16 Understanding DevPartner

Additionally, you can configure DevPartner Studio to use FinalCheck.
With FinalCheck, error detection instruments your C or C++ application,
allowing it to pinpoint errors to the exact statement where they occurred.
FinalCheck takes longer to run and uses more resources, but locates and
pinpoints difficult-to-find memory, pointer, and leak errors.

In addition to configuring error detection for specific errors and leaks,
the error detection settings allow you to:

¢ Define error detection parameters

¢ Change the fonts and colors used in the display

¢ Save parameters as a configuration file to use again

¢ Load different configuration files into your current session

Go: Running Your Solution with Error Detection

You are now ready to run your solution under DevPartner error
detection.

1 Open your solution inside Visual Studio.
2 Select DevPartner > Start with Error Detection.

3 Exercise the parts of your program that you want to check for errors.
DevPartner error detection pops-up the Program Error Detected
dialog box each time it encounters a severe error (see Figure 2-1).
Other errors are not severe enough, or are common enough, and are
recorded and displayed in the Results pane (located in the upper
left of the error detection main window) so you can address them
later.

The Program Error Detected dialog box (see “Using the Program Error
Detected Dialog Box” on page 27) displays a description of the error,
followed by call stack information, and finally the code segment where
the error was detected (when available). For further explanation about
the error that was detected, click the Explain button.

Chapter 2 @ Error Detection 17

18

M Program Error Detected - BugBench.exe E|

A window was u:reétn-sd"by .t.hreald"EI;-;Iji-"Eii,ul:lse' thé'H'sgi\:a.\;‘é'it!.-"ar"".&i:'l.u::alllls' instead of
|"waitForSingleObject to avoid deadlocks ar uzer interface lockups' that may ocour.

Curent Cal Stack - Thread O [040FE4] | Creation - Thiead 0 [0:0FB4] | Creation - Thiead 0 [040FE- ¢ »

Function File Lire / Offset | #

AP_Questionablel =20fT hread ApiEir.cpp 407
ExecuteFunction bugbenchdlg. cpp E35
OnTest bugbenchdlg. cpp E39
_AfuDispatchCrdizg cmdtarg.cpp =
OnCmdksg cmdtarg. cpp a1
OnCrmdtd=g digcore.cpp a5
[P e | e S 0D
&duIl [#

MaitForZ3ingledhiject [hBadCne , 10000) |

CloseHandle [hBadOne |

A
£ >
[Explain l [Memaom/Resaurce Yiewer l [Subrnit...] [Copy l [Suppress..]
[] Dan't show this eror dialog :I'h|s ﬁun _.v.:
[] Dizable event logging _.This Run .v‘ [Debug]l Halt l| Continue

Figure 2-1. The Program Error Detected Dialog Box

Note:

&
&

4 If the Program Error Detected dialog box appears, respond in one of
the following ways, and then continue exercising your program:

If the Program Error Detected dialog box does not appear, you can
skip this step.

Explain - Give a more verbose explanation of the error.
Suppress - Open the Suppression dialog box and pre-populate it
with this error. Suppressing an error will prevent future
occurrences from being acted upon by error detection. See
“Understanding the Suppression and Filtering Dialog Boxes” on
page 30.

Debug - Open your code in the Visual Studio debugger at the
line that generated the error.

Halt - Terminate your program and place focus in the Results
pane.

Continue - Acknowledge the error and move on. The error is
placed in the Results pane for further review after the session is
complete.

Understanding DevPartner

5 Terminate your program when you are done checking it.
You will often find that your program has no natural end, and you
will need to terminate it when you have collected enough data. Use
one of the following three methods to terminate your program:

<& Click Halt on the Program Error Detected dialog box.
<& Select Stop Debugging from the Debug menu.
< Exit your program.

You have completed running a basic error detection session. Look in the
Results pane to analyze the data from the errors and leaks you detected.

Analyzing the Data in the Results Pane

The Results pane, located in the upper left of the main error detection
window (see Figure 2-2), uses a series of tabs for navigating through the
various types of information.

Results pane displaying Errors tab Details pane
DevPartner Err...7.exe).DPbcl* | 1k X
Type ||l AP failure: RegOpenkeyE=a retuned ink:2. Emor: The gestem
5-% TolalEwon = canhat find the file specified. _I
El- X APl Failure o
=X AP failure: RegOpenk.eyExh B2 int ReaDpenkeyErt [..] =
' E"-(t) Parameters v
- 3 AP failure: RealpenteyExd v "EI-% HKEY__ hKey = 0x15E
e el - dp char® IpSubKey = 0x001 20614 "ersion|ndepenc
- X AP faiue: ReadpenkeyE - @ unsigned int uDiptions = 0 -
[=- X AP failure: ReaDpenteyExb 4| - - T _>|_|
ailure: RegDpenk.e; urrent Call Stack - Threa 2 ud
X AP failure: RegOpenkeyExh C Call Stack - Thread 0 [0x0340] J
% AP faiure: FogOpenKeyEnh Function |_File | Line / Offset| =
CRegKey: Open atlbaze.h 4875
- % AP faiure: ReaOpenkeyEsd CRegParser:RegisterSubkeys statreg h 1187
CRegParser:RegisterSubkeys statreg.h 1307
- X AP failure: ReaDpenk eyk xd CRegParser:RegisterSubkeys statreg h 1307
. CRegParser:RegisterBuffer statreg.h 1044
- M &P failre: RegDpenkeyEwt CRegObject:RegisterFromPesou... statreg.h 400
. CRegObject::ResourceR egister statreg.h 412
- % AP failure: ReglpenkeyExd CAHModule:: UpdateReqistiyFrom. . atlbase b R432
= CComModule:UpdateR egistiyFro... atlbase.h 4121
o il e Fanl nank e . x
1| £ELEl r Beallmenlanf ot ’J_‘ UpdateR egisty wiewh 53
7 CCombd odule:: R egisterS erver atlbage.h E407
L TSy Leaksl L Gale X Errors Ii k] I bl DIIR eqisterServer iface con EZj
c:\pragram fileshcompuwarehdevpartner studio\erampleshbugbench7hface\view. h =
M public: 5
Ciiew() o
i
i
DECLARE_REGIS TRY_RESOURCEID DR WIEW] A \—'
DECLARE_PROTECT_FINAL_COMSTRUCT()
BEGIN_COM_MAP(Ciew]
COM INTERFACE EMTRYIIView! jﬂ

Source pane
Figure 2-2. The DevPartner Error Detection Main Window

After you complete a session, focus is directed to the Summary tab of the
Results pane to begin reviewing the data (see Figure 2-3).

Chapter 2 @ Error Detection 19

20

44 Other Leaks Detected:
X Ernors Detected:

X Memary Overrun
£fy MET Performance:
Madule Load Events:

=1 =1

o
o

Bl Summary | & Memary Leaks | 84 Other Leaks | X Ervors | £ NET Perfarmance %Modules * Transcript

Figure 2-3. Results Pane Displaying Summary Tab

The Summary tab provides an overview of all errors and leaks detected
in your session. Double-click on a specific event to navigate to a tab
containing more detail about the selected event.

1 Examine the Summary tab of the Results pane for an overview of
the errors and leaks detected.

2 Double-click on an error listed on the Summary pane.
Focus is switched to the tab pertaining to the type of error or leak.
This tab categorizes the errors and makes it easier to focus on
recurring errors, so you can diagnose and fix them.

3 Fully-expand a category and select a specific leak, error, or event.
The highest level of the list presents the categories of leaks, errors,
and events. Fully-expanding the category displays the individual
errors, leaks, and events detected (see Figure 2-4 on page 21).

Understanding DevPartner

Tip: You can also access
source code for a specific
error by right-clicking on
the specific error in one of
the Results pane tabs,
and selecting Edit Source.
This opens the source file
in the Source pane, and
places focus at the line of
code that generated the
error.

Type | Quantity |Location

<

EI Summary | & Memory Leaks | 3.5 COther Leellksf X Errors & MET Performance | @; Modules | Transcript

=X Total Erors 2

-1 X &Pl Faiure
AP failure: Globalllnlock.

main.bug, apier. cpp,
APl Handledlreadylnlocked - line 85

+- X Moveable termary Errar

¥

Figure 2-4. Errors Tab Displaying Selected Error

The Results pane includes the following tabs: Memory Leaks, Other
Leaks, Errors, .NET Performance, Modules, and Transcript (see Figure
2-4 on page 21). From these tabs, you may want to perform other actions
to categorize or evaluate the data presented:

¢ To sort the data on these tabs, click a column header (such as Type,
Quantity, or Deallocator in the Other Leaks tab).

¢ For additional information about an event on a tab, right-click on the
event and choose Explain.

¢ To view an event in the context of other events in your application,
right-click on the event and choose Locate in Transcript. The
Transcript tab provides a chronological list of all events that
occurred within your application

4 Examine the Details pane (see Figure 2-2 on page 19).

The top of the Details pane describes the selected error in detail.
Below the description is the current call stack.

Chapter 2 @ Error Detection 21

22

The upper right section of the main error detection window is the Details
pane (see Figure 2-2 on page 19). The type of information displayed in
the Details pane depends on the currently selected event. The error or
event is always described in more detail, but the Details pane can also
display call stacks, P/Invoke use-count graphs, COM use-counts, and
more.

5 Examine the call stack.

Depending on the type of error, the call stack can show where the
error or leak was detected, or where it was allocated. If more than
one call stack is available, you can switch between them using the
drop-down list.

The bottom section of the main error detection window is called the
Source pane (see Figure 2-2 on page 19). The Source pane displays the
source file associated with the currently selected call stack. The source
code changes when you select a different call stack in the Details pane.

6 Examine the Source pane.

The Source pane is displaying the code associated with the
currently selected call stack, and highlighting the location where
the error or leak was detected or allocated.

7 Review the source code to determine why an error or leak was
detected.

8 Right-click in the Source pane and select Edit Source.

The source file is opened in the Visual Studio editor, at the same
location displayed in the Source pane.

9 Edit your source code to repair the error, and save your solution.

You have now identified and been placed inside the editor to resolve an
error or leak in your code using DevPartner error detection.

Understanding DevPartner

Saving Session Files

Tip: You can configure
error detection to prompt
you to save session files
when you select File >
Close using the General
settings.

Saving your session file allows you to refer back to these results. You
might want to open a saved session file for several reasons:

¢ To look back at the kinds of leaks and errors you have previously
encountered

¢ To export the session data to XML at a later date (see “Exporting Data
to XML” on page 54):
¢ To disseminate the data to other parties
¢ To compare the data between various sessions
¢ To build a database of trends

¢ To continue fixing the errors discovered in this session later

Note: Session files are saved with a .dpbc1 extension. The default location
for session files is in the same directory as your executable.

10 Select File > Save Selected Items As to save your session file.

11 Use the Save File As dialog to select a location and name for the
session file.

If you are running error detection in Visual Studio, or running the
standalone application, the steps to save the session file vary.

Saving the Session File from Visual Studio
1 Select File > Save Selected Items As.

2 Use the File Save As dialog to select a location and name for the
session file.

Saving the Session File from the Standalone Application
1 Choose File > Save Session Log As.

2 Use the Save As dialog to select a location and name for the session
file.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running an error detection session,
continue reading the rest of this chapter for additional information. Refer to the
Advanced Error Detection Techniques guide for more in-depth discussion of
advanced topics, or refer to the DevPartner online help for task-based
information.

Chapter 2 @ Error Detection 23

Deciding When to Use ActiveCheck vs. FinalCheck

DevPartner Studio can analyze Windows applications with both
ActiveCheck™ and FinalCheck™ technologies.

Understanding ActiveCheck

24

ActiveCheck technology refers to the standard operation of checking for
errors, leaks, and events without instrumentation of the source code.
Because it does not require instrumentation of your code, ActiveCheck
detects errors in your program without requiring you to recompile or
relink. ActiveCheck is enabled in every error detection session.

ActiveCheck can do the following:

¢ Report API validation errors at run-time

¢ Report memory and resource leaks when your program terminates

¢ Isolate errors to the line where the memory or resource was allocated
or the error was generated

¢ Identify potential deadlocks

When you run your program under DevPartner Studio with ActiveCheck,
it automatically analyzes your program as it runs. DevPartner Studio
monitors your program’s API calls, memory allocations and
deallocations, windows messages, and other significant events, then uses
this data to detect errors and to provide a complete trace of your
program'’s execution. You can even check programs that do not have
source code available.

Because ActiveCheck requires no compilation or relinking overhead, you
can use it daily. Use ActiveCheck throughout the software development
cycle to find API validation errors, deadlocks, resource leaks, and COM
interface leaks.

Table 2-1 and Table 2-2 list errors detected by ActiveCheck.

Understanding DevPartner

Table 2-1. API, COM, and Memory Errors Detected by ActiveCheck

APl and COM Errors Memory Errors

* COM interface method failure e Dynamic memory overrun

¢ Invalid argument * Freed handle is already unlocked

¢ Invalid COM interface method e Handle is already unlocked
argument ¢ Memory allocation conflict

* Parameter range error * Pointer references unlocked memory

¢ Questionable use of thread block

e Windows function failed e Stack memory overrun

* Windows function not implemented e Static memory overrun

Table 2-2. Deadlock-related, .NET, and Pointer and Leak Errors Detected by

ActiveCheck
Deadlock-related Pointer and Leak
Errors ‘NET Errors Errors
e Deadlock e Finalizer errors ¢ Interface leak
¢ Potential deadlock e GC.Suppress finalize o Memory leak
e Thread deadlocked not called e Resource leak
e Critical section errors * Dispose attributes

errors
e Semaphore errors

¢ Unhandled native
exception passed to
* Event errors managed code

e Handle errors

e Mutex errors

* Resource usage and
naming errors

e Suspicious or
questionable resource
usage

¢ Windows event errors

Understanding FinalCheck

FinalCheck is a patented technology that inserts diagnostic logic into
your code when you compile it. With FinalCheck, DevPartner Studio can
pinpoint errors to the exact statement where they occurred.

Chapter 2 @ Error Detection 25

Use FinalCheck for key project milestones and for detecting errors that
are difficult to find. FinalCheck is a superset of ActiveCheck that finds all
the errors ActiveCheck finds, plus those listed in Table 2-3.

Table 2-3. Additional Errors Detected by FinalCheck

Memory Errors Pointer and Leak Errors

¢ Reading overflows buffer * Array index out of range
¢ Reading uninitialized memory ¢ Assigning pointer out of range
e Writing overflows buffer e Expression uses dangling pointer

e Expression uses unrelated pointers

e Function pointer is not a function

* Memory leaked due to free

e Leak due to leak

e Memory leaked due to reassignment
* Memory leaked leaving scope

e Returning pointer to local variable

e Leak due to unwind

e Leak due to module unload

e Leak due to thread ending

Comparing ActiveCheck and FinalCheck — An Example

If you allocate a block of memory using new or malloc and store the
pointer in a local variable, DevPartner Studio records that information. If
you later re-assign another value into the local variable without first
either deallocating the memory block or assigning the pointer to another
variable, you have created a leak in your application.

¢ Using ActiveCheck: DevPartner Studio reports that the block
allocated by malloc or new was leaked and points to the line where
the memory was allocated. The error is reported when your
application exits.

¢ Using FinalCheck: DevPartner Studio reports the location where the
block was allocated and highlights the line where you assigned the
new value into the last remaining variable referencing the block. The
error is reported when it occurs.

26 Understanding DevPartner

Using the Program Error Detected Dialog Box

DevPartner Studio displays the Program Error Detected dialog box (see
Figure 2-5 on page 27) when it detects a severe error in your application.

The top of the Program Error Detected dialog box describes the error
detected. Below the error description is one or more tabs, each associated
with a call stack corresponding to a location within your application.
Review the reported error and the source information to help locate the
source of the problem and correct it.

I Program Error Detected - BugBench.exe E|

EA Window was creat;.injthread DK_DFE4_ Use tI;aI*IEWC:HtF_or”AI_:'IEaﬁs instead of E
X iWaitForSingIeDbiect to avoid deadlocks or uzer interface 'lockups’ that may ocour. i
|

Cottent CallStack - Thread O [00FBA] | Creston - Thvead O [040FE4] | Creaton- Thresd 0 00FB: < *

Function File Ling / Offzet A
AP|_Questionablel se0fT hread ApiEl. Cpp 407
ExecuteFunction bugbenchdlg.cpp E95
OnTest bugbenchdlg.cpp B39
_AfsDispatchCmdid g cmdtarg.cpp a1
OnCmdkd=g cmdtarg.cpp 381
OnCrndhzg digcore.cpp o]

[P PP | L, | ma P
gdwID) ; ~

| WaitFor3ingledbiject (hBadOne , 10000) |
CloseHandle ([hBadOne)

} v
L | ?
[Ewplain | [Memow/Resource Viewer | [submi. |[Copy][Suppress. |
[Don't show this eror dialog | This Fun v
[Disable event logging | This Fun v| | Debus |[Hat || Contirue |

Figure 2-5. The Program Error Detected Dialog Box

Understanding the Actions You Can Take

Explain, Memory and Resource Viewer, Debug, Copy and Suppress
buttons appear on the Program Error Detected dialog box. If you
installed DevPartner Studio Enterprise Edition with TrackRecord
integration, you also have a Submit button available.

Explain

Click Explain to obtain detailed explanations of each error, sample code,
and a list of possible solutions to correct the problem.

Chapter 2 @ Error Detection 27

28

Memory and Resource Viewer

Click Memory/Resource Viewer to view a detailed accounting of
memory and resources that have not been freed. For more information,
see “Understanding the Memory and Resource Viewer Dialog Box” on
page 29, and the Advanced Error Detection Techniques guide.

Submit

Submit is only available if TrackRecord is part of your DevPartner
installation. Click Submit to open a new defect or new task page in
TrackRecord.

Copy

Click Copy to transfer the contents of all windows and tabs (except the
Source pane) to the clipboard. You can then paste this information into
other applications.

Suppress

Click Suppress to open a dialog box that enables you to suppress the
current error. For more information on how and why to use suppressions,
refer to “Understanding the Suppression and Filtering Dialog Boxes” on
page 30, and the Advanced Error Detection Techniques guide.

Debug

Debug appears at the bottom of the dialog box when you are working in
Visual Studio, but is not available in the standalone application. Click
Debug to open your code in the Visual Studio debugger.

Halt

Click Halt to stop the application. This effectively kills the process, and
there might be other means by which you would rather stop your
application.

Continue

Click Continue to acknowledge the error, close the dialog box and
continue executing the application. The error is saved to the session file
for later reviewing in the Results pane.

Understanding DevPartner

Understanding the Memory and Resource Viewer Dialog Box

Access the Memory and Resource Viewer by clicking the Memory/
Resource Viewer button in the Program Error Detected dialog box. The
Memory and Resource Viewer allows you to analyze memory and
resource allocations that have not been freed.

For example, most memory analysis tools can not determine what
happens with memory during the execution of an application. Leaked
memory or resources are only reported after the application stops. The
DevPartner Studio Memory and Resource Viewer provides a “snapshot”
of the memory and resources, taken at any point in a program’s
execution. You can also “mark” the currently allocated memory blocks or
resources, limiting the view of blocks allocated after a program’s
initialization or over the course of a transaction.

These capabilities can be especially useful in situations where:

& 24/7 server applications may never end during regular use

¢ An application may hang from resource exhaustion

¢ An application may consume large amounts of memory that is
automatically cleaned up at program termination

Details Source Memory contents Stack

:%; DevPartner, [Error Detection Memory and Resource Viewer

% Location (cgmbined] Thread ID Eyte Count Addres ™ | I oEEoR Yo glbj ?;g];g]; gggg
main.bug. leakegapp. O=05c4 100 (0x00BbS: ODOBB9AS0 00csfbfb 4O4E.
Leak MemorpLe - line 39 | | |
main.bug. leaken!cpp. O=05c4 10 (0x00bb3.
Leak_LeakFromScape - ine 1
11 | I I
main.bug. leaker. cpp. Ow05ecd 10 (Ox00BRS,
Leak_LeakFromFeassign -
line 73 | P =] 2
main.bug. leaker.cpp. O=05:4 10 (0=00bbS:
Leak LeakFromFree - line 65 ey il el
main bug, leaker. cpp, [10 0006, Leak_LeakFromsScope leaker cpp s
Leak LeakFromFree - line B5 CEugBenchDlg:Executef ... bughenchd... =215
main bug, leaker.cpp, gimme | 0x05cd 10 Ox00bbe’ CBugBenchDlg:OnTest bugbenchdl... v 633
- line 91 - | - | i _AfDispatchCmdMsg cmdtarg.cpp oM
main bug, leaker cpp, gimme D054 10 Ox00bbe" CCmdT arget-OnCradksg emdtarg.cpp 3
el g 11 1 .
mfc30d.dll, dllinit.cpp. DIk ain 0054 B4 | (0x00bbE"
- line 519 | | |
main.bug, main.cpp. DiMain - 0x05c4 B4 0x00bba!
line:
mfc30d.dll, plex.cpp. | O=05c4 52 0x00bb3
< ¥

& Memory 84 Resources | B summar J

cihydocuments and [Sectingshbihdbbohtestibughenchlmain leakery . cpp

if (10 == i} ~
{
I| char * p = jchar *jmalloc [10) |

i
2 b

Showing all tems -v [Help] [Save] [ark and E\ose] [Cloze I

Figure 2-6. The Memory and Resource Viewer Dialog Box.

Chapter 2 @ Error Detection 29

Exploring the Memory and Resource Viewer User Interface

To access the Memory and Resource Viewer dialog box, click Memory/
Resource Viewer in the Program Error Detected dialog box.

The Memory and Resource Viewer dialog box is made up of four panes:

¢ Memory contents pane
Displays the content of memory blocks in a variety of formats. Not
available for resources.

¢ Details pane
Includes separate Memory, Resources, and Summary tabs. Displays
details about each memory and resource allocation.

¢ Stack pane
Displays a memory dump and callstack information for entries in the
Memory tab; displays a description and callstack information for
entries in the Resources tab.

¢ Source pane

Displays the source code corresponding to a callstack entry (when it
is available).

Saving Memory and Resource Viewer Contents

Click Save to record the current contents of the Memory and Resource
Viewer dialog box as a text file that you can review later.

Setting a Reference Point

Click Mark and Close to set a reference point for recording memory and
resource data. This lets you compare memory and resource allocations
before and after the event where you marked the reference point.

Understanding the Suppression and Filtering Dialog Boxes

30

DevPartner Studio provides Suppression and Filter dialog boxes, which
allow you to reduce the data collected or displayed. The intent of either
method is to limit the data to a manageable subset for analysis.

For example, you can suppress call validation errors from FindResourceA
in Kernel32 or for all calls in Kernel32. After you make this selection, you
can apply it to a variety of different selection criteria within your
application. DevPartner Studio defaults to the least restrictive option (see
Figure 2-7).

Understanding DevPartner

Suppressing Errors

From the Suppression
Files Dialog Box

When you apply a suppression or filter, you can also:

¢ Enter a comment to describe why a given suppression or filter was
created.

¢ Choose to apply the suppression or filter to the current run or future
runs.

¢ Create suppression or filter files as a way to store the suppression or
filter instructions for reuse or to share.

By suppressing errors, you instruct DevPartner Studio to skip over any

future occurrences of those errors. Suppressed errors are not recorded in

the log and they are not displayed in the Program Error Detected dialog

box. To suppress an error:

¢ Click Suppress when the error appears in the Program Error
Detected dialog box.

¢ Right-click on a specific error in one of the panes of the error
detection main window, and select Suppress.

Creating and Saving Suppression Files

You can create multiple suppression files, and in so doing create
additional suppression libraries for the various DLLs that make up a large
application. You can easily reuse or share suppressions among members
of a development team.

Note: When you first open an .EXE in DevPartner error detection, a default
suppression file is created in the same directory as the .EXE you are
checking.

The following sections describe the ways you can create a suppression file
in DevPartner error detection.

To create a suppression file from the Suppression Files dialog box, follow
these steps:

1 Access the Suppression Files dialog box.

¢ Visual Studio: Select DevPartner > Error Detection Rules >
Suppressions.
¢ Standalone: Select Program > Rules > Suppressions.

2 Click Add.

3 Type the name you want to assign to the suppression file in the File
Name text box, then click Open.

4 Click Yes to confirm.

Chapter 2 @ Error Detection 31

From the Suppression

32

The suppression file you created is added to the Available Suppres-
sion Files list in the top pane of the Suppression Files dialog box.

Click OK.

At this point the suppression file has been created, but is empty until
you add some suppressions (see “Adding Entries to a Suppression
File” on page 33).

Note: The suppressions you add are not saved until you close the current

error detection session.

To create a suppression file from the Suppression dialog box, follow

Dialog Box these steps:

1

After you complete a session, right-click on a specific error in the
Memory Leaks, Other Leaks, Errors, .NET Performance, or
Modules tab, and select Suppress.

In the Suppression dialog box, click the browse button (...) to the
right of the Location field. The Add Suppression File dialog box
opens.

Type the name you want to assign to the suppression file in the File
Name text box, then click Open.

Click Yes to confirm.

Click OK.

At this point, the suppression file contains the instruction to suppress
the error that you right-clicked in Step 1.

Note: The instruction you just added, and any subsequent suppressions

Understanding DevPartner

you add, are not saved until you close the current error detection
session.

Adding Entries to a Suppression File

To add an entry to a suppression file, follow these steps:

1

4

In the Results pane, select a tab: Memory Leaks; Other Leaks;
Errors; Modules; or Transcript.

Right-click a specific error, leak, or module within that tab and select
Suppress. The Suppression dialog box opens (see Figure 2-7 on page
34).

Select the type of suppression to add.

The top pane displays various suppression options. The selections
vary depending on the event you select (whether it is an error, a leak,
or a module), and the context in which error detection encountered
it.

If needed, type a comment to describe the suppression entry.

Note: Comments can be valuable when you update a suppression file,

7

especially if the suppression is address-based and a third-party
vendor ships a new or updated library.

To save this suppression to use again, select the Save Suppression
Information check box.

To specify the location of the suppression file in which to add this
entry, select a file from the Location drop down menu.

¢ If you make no selection, the entry is added to the default
program suppression file.

¢ If you have not yet added suppression files to your program, the
default program suppression file is the only choice.

<& To specify a suppression file in another location, click the browse
button (...) (immediately to the right of the Location drop down
menu) and select a different suppression file.

Click OK to continue.

Note: The entries you add are not saved until you close the current error

detection session.

Chapter 2 @ Error Detection 33

Filtering Errors

34

From the Filter Files
Dialog Box

X

Suppression

Suppress Deadlock Felated Error:

(3 All zallz to kernel32 dIVE nterCriticalS ection
) All zalls to kemel32. dll

) Arywhere

Enar is:

30 lpublic: intthisc
‘wiithin mfc90d. il (file afstls.cpp)
“whithin mfc30d.dil* [any file]

“within “lpublic: int __thizcall CThreadSlotD ata::AllocSlotvoid) [file afstls.cpp)
Within *1* [file afstlz.cpp)

“within *lpublic: int __thiscall CThreadSlotD ata: :éllocS ot void] [any file]

‘when a specified module is on the callstack... ~

.ﬁdd a comment [_optiona_l].
; |

Mote: The suppression chazen here affects the caollection of future
enors. Previously collected errors are not suppressed.

Perzsistence

S ave suppression infarmation,

This choice can be zaved 2o that this eror will be suppreszed the
next time the program is checked.

Location |Default Project Suppression File w E]
[Save ta file on each update

I 0K I[Cancel][Help]

Figure 2-7. The Suppression Dialog Box (The Filtering Dialog Box Uses the Same
Design).

Filtering hides events already recorded in a .DPBCL log file. DevPartner
Studio finds these errors but either hides them from view in the Results
pane or displays them with the appearance you specified under Fonts
and Colors. To select errors that you want to filter:

¢ Right-click on a specific error in one of the panes of the error
detection main window, and select Filter.

¢ Select a specific error in one of the panes of the error detection main
window, and click the Filter button on the toolbar.

If you remove a filtering instruction, the associated errors are no longer
filtered and appear in the Results pane.

Creating a Filter File

There are two ways to create a filter file.

To create a filter file from the Filter Files dialog box, follow these steps:
1 Open the Filter Files dialog box.

2 Click Add.
The Add Filter File dialog box opens.

Understanding DevPartner

From the Filter Dialog
Box

3 Type the name you want to assign to the filter file in the File Name
text box, then click Open.
4 Click Yes to confirm.

The filter file you created is added to the Available Filter Files list in
the top pane of the Filter files dialog box. At this point, the filter file
is empty and has no effect on your view of program results.

Note: The filters you add are not saved until you close the current error
detection session.

To create a filter file from the Filter dialog box, follow these steps:

1 After you complete a session, right-click a specific event or error in
the Memory Leaks, Other Leaks, Errors, Modules, or Transcript
tab, then select Filter. The Filter dialog box opens (see Figure 2-7 on
page 34).

2 Click the browse button (...) to the right of the Location field.

The Add Filter File dialog box opens.

3 Type the name you want to assign to the filter file in the File Name
text box, then click Open.

4 Click Yes to confirm.

At this point, the filter file contains the instruction to hide the error
or event that you selected in Step 1.

Note: The filter you just added, and any subsequent filters you add, are not
saved until you close the current error detection session.

Adding Entries to a Filter File
To add an entry to an existing filter file, follow these steps:

1 In the Results pane, select a tab: Memory Leaks; Other Leaks;
Errors; Modules; or Transcript.

2 Right-click a specific error, leak, or module within that tab and select
Filter. The Filter dialog box opens (see Figure 2-7 on page 34).

3 Select an option.

These options are listed in the top pane of the dialog box. The selec-

tions vary depending on the event you select (whether it is an error, a
leak, or a module), and the context in which error detection encoun-
tered it.

4 If needed, type a comment to describe the entry.

Note: Comments can be valuable when you update a filter file, especially if
the filter is address-based and a third-party vendor ships a new or
updated library.

Chapter 2 @ Error Detection 35

5 If you want to save this entry to use again, select the Save Filter
Information check box.

6 To specify the location of the filter file in which to save this entry,
select a file from the Location drop down menu.

¢ If you make no selection, the entry is added to the default
program filter file.

¢ If you have not yet added filter files to your program, the default
program filter file is the only choice.

¢ To specify a filter file in another location, click the browse button
(...) (immediately to the right of the Location drop down menu)
and select a different filter file.

7 Click OK to continue.

Note: The entries you add are not saved until you close the current error
detection session.

@ Viewing and Hiding Filtered Errors

- Use the View Filtered Errors toolbar icon to toggle between viewing and
hiding filtered errors in the Results pane.

Removing Filter Entries

To remove a filter entry you no longer want, select DevPartner > Error
Detection Rules > Filters. Select the filter file containing the entry, and
clear its associated check box.

Understanding Call Validation

When you enable Call Validation, DevPartner Studio validates over 5,000
Windows API calls. DevPartner Studio checks for a large number of
events, including (but not limited to) the following:

¢ Handle and pointer errors
Flags

Range checks

API and method failures
Invalid structure sizes
Memory access failures

L R R IR R 2

36 Understanding DevPartner

If you determine that flag checking or range checking generates
unwanted errors that do not apply to the problem you are solving, clear
the Flag, range and enumeration arguments check box. Call Validation
continues checking return values and, more importantly, handles, and
pointers passed to or from Windows calls.

Enabling Memory Block Checking

When you enable memory block checking, Call Validation performs a
more detailed analysis of all calls to the C run-time library and a number
of other calls. Memory block checking decreases overall performance, but
may be useful when diagnosing hard-to-find errors. By default, this
setting is disabled.

Using the Settings Dialog Box

Tip: Use the
configuration file
management functions in
the Settings dialog box to
save sets of error-checking
parameters as
configuration files. When
you are working with
multiple projects, you can
load, edit, and associate
these configuration files
with the different projects
on which you are
working.

The DevPartner Studio settings enable you to:

¢ Select only the types of data collection needed for a particular
problem

Enable or disable portions of each major type of data collection
Control what portions of your program are analyzed

Use the default DevPartner Studio settings to find the most common
errors with the minimum impact on performance

You can access the Settings dialog box in the following ways:
¢ Standalone: Select Program > Settings

¢ Visual Studio: Select Tools > Options and then select DevPartner >
Error Detection from the tree view.

The Settings dialog box has a tree view that shows the major settings
categories. When you select a category, the dialog box displays the
detailed settings for the category.

The DevPartner Studio standalone application and the integrated Visual
Studio version use the same tree view and settings dialog boxes.

All groups of settings follow the same basic structure. You can enable or
disable major types of data collection by selecting the top-level check box
in the dialog box.

There are other settings under each top-level check box that further
define how DevPartner Studio analyzes your application. Change the
settings to customize your error detection process.

Chapter 2 @ Error Detection 37

For example, you can make trade-offs between detecting a broad or
narrow range of errors:

4

4

Broad range — Many data types, many related settings selected

<& Detects more errors

¢ Has potential for more false positives

< Reduces performance (due to larger number of errors detected)
¢ Creates larger log files

Limited range — Few data types, few related settings selected

¢ Provides a narrow focus on a particular function

Detects fewer errors

Can miss relevant errors

Has a greater chance of seeing only those errors pertaining to the
problem at hand

Provides faster performance

¢ Creates smaller log files

(ORI

&

Setting General Properties

38

General properties are the first to display when you access the Program
Settings dialog box.

L 4

Log events: Select to enable event logging. (You can also enable
event logging from other parts of DevPartner error detection.)

Display error and pause: Controls the display of the Program Error
Detected dialog box, which pops up for certain errors, pausing
execution of your program.

Prompt to save program results: When selected, you are prompted
to save program results before you exit the program or close the error
detection session.

Show memory and resource viewer when application exits: When
selected, DevPartner error detection opens the Memory/Resource
Viewer dialog box upon exiting the application you are testing.

Source file search path: Specify full paths to the source file(s) you
want to include in this configuration.

The following settings are only available in the error detection
standalone application:

2

L 4

Understanding DevPartner

Override symbol path: Specify the full path to the symbol file(s) you
want to include in this configuration. Click the ellipsis button (...) to
the right of this field to open the Symbol Path dialog box.

Working directory: Specify the working directory for the target
process.

Note: If an application will not start up, the problem might be caused by a
working directory that is read-only. Some applications require write
access to the working directory.

¢ Command line arguments: Specify any arguments to be passed
through the command line to your application.

Note: If DevPartner error detection fails to correctly start your application,
check the command line arguments. These arguments are especially
important for COM server applications.

Setting Data Collection Properties

The Data Collection program settings control the following parameters
for error detection:

¢ Call parameter encoding depth: Specify the amount of detail
gathered on the parameters of a call. A low value speeds up
processing, but does not report deeper levels of detail referenced by
pointers. A higher value reports deeper call details, but slows down
processing and increases the size of the log file.

¢ Maximum call stack depth on allocation: Specify the maximum
depth of the call stack tracked for every allocation. Because
allocations are made frequently and do not often result in errors,
performance might suffer if you select a large value. Also, selecting a
larger value can greatly increase error detection memory usage in the
application under test.

¢ Maximum call stack depth on error: Specify the maximum depth
of the call stack walked through for reported errors. You can set this
value as high as you require without an adverse effect on
performance, as long as you have enough log file space.

¢ NLB file directory: (This field is required) Select the location where

generated NLB (optimized type library) files are saved. Typically this
is the same location as your project, so that removal of the project
and NLB files is simplified. If you specify a directory that does not
exist, error detection prompts you to select a valid directory when
you run your application. You can also use the Browse button (...) to
browse your system and specify the directory where you want to save
generated NLB files.

Note: NLB files contain all API description file information required for error
detection.

Chapter 2 @ Error Detection 39

Setting API Call Reporting Properties

Tip: Deselect an API Use API call reporting to record calls that your application makes to
function when you know system functions, as well as the parameters and return values. DevPartner

that your program makes
API calls that you do not
need to check. Limiting

error detection records structure information for return values and
parameters based on the Encoding Depth specified under Data

the data collection helps Collection settings.

improve performance.

To enable API call reporting, and make the API check boxes and modules

active, select the Enable API call reporting check box. The following
settings control API logging for error detection:

Tip: Selecting Collect *
window messages will
dramatically increase log

file size. For best results, L 4
select this feature only to

debug window message
problems.

Collect window messages: Select to collect windows control
messages as part of API logging.

Collect API method calls and returns: Select to collect the API
method calls and returns for the modules selected in the API module
tree view.

View only modules needed by this application: Select this check
box to display only the API modules needed by your program in the
tree view. Clear the check box to expand this tree view and display all
available API modules.

API Modules Tree View: Displays the API modules associated with
the project. Click the plus (+) symbol next to an item to see the
functions it contains. Check boxes next to each item enable you to
select specific modules or functions for API logging.

Enabling call reporting can significantly increase the size of the log file.
To minimize log file size, consider collecting call reporting data only for a
selected portion of your application. Here are some ways to limit the
portion to be checked:

4

40 Understanding DevPartner

Use the check boxes in the Modules tree view to deselect API
modules that do not need to be checked.

Use Modules and Files to limit the scope of logging.

Add API calls that enable or disable event logging to your
application. Refer to the comments included in NmApiLib.h. This file,
part of the DevPartner software installation, defines the event
reporting APIs exported by DevPartner error detection.

Turn off event logging.

Setting Call Validation Options

Tip: Many COM methods
in normal use report a
“Not Implemented” error.
Disabling this check might
significantly reduce the
number of errors reported.

When enabled, Call Validation monitors calls from your application to
the operating system libraries and COM method calls. It attempts to
validate the parameters passed, and check that the call returned a value
indicating success. The following elements control aspects of Call
Validation for error detection:

4

Enable call validation: Select this check box to enable call
validation components.

Enable memory block checking: Select this check box to enable
validation of more extensive memory checking of parameters
referring to memory. This feature is inactive until you select Enable
memory tracking under Memory Tracking in the Program Settings
tree view.

Note: When you select Enable memory block checking, DevPartner error

detection performs more extensive checking. The results might be
more accurate and might catch more bugs. Sessions with this feature
enabled will take longer to complete.

Fill output arguments before call: Select this check box to fill
output arguments with the pattern specified in the Memory
Tracking settings under Fill on allocation.

COM failure codes: Select this check box to enable checking of any
COM method return values.

Check for COM "Not Implemented" return code: Select this check
box to enable checking for the HRESULT E_NOTIMPL ("Not
Implemented") return code. DevPartner error detection checks only
COM interfaces that are included in DLLs selected under DLLs to
check for API errors (failures or invalid arguments) in this dialog
box.

API failure codes: Select this check box to enable the checking of
return values from APIs residing in the selected DLLs.

Check invalid argument errors (COM or API): Select one or both of
these check boxes to enable the checking of the arguments
(parameters) to APIs in the selected DLLs and/or COM interfaces that
error detection supports.

Chapter 2 @ Error Detection 41

Tip: To improve
performance and reduce
the number of errors
reported, select these
features only as required.
To reduce the number of
false call validation errors,
select Handle and
Pointer Arguments and
clear Flag, Range and
Enumeration Arguments.

Tip: Disabling DLLs from
this list can reduce the
number of unwanted
errors. It can also improve
performance.

¢ Category: (Handle and pointer arguments or Flag, range and
enumeration arguments) Available when you select one or both
Check invalid argument errors selections (COM or API). Select one
or both of these check boxes to enable argument checking based on
the type of argument.

¢ Check statically linked C run-time library APIs: Available when
you select API failure codes or Invalid argument errors: API. Select
this check box to enable the checking of static C run-time calls. If
you are not using the static C run-time library, clear this selection to
avoid seeing errors in third-party libraries.

¢ DLLs to check for API errors (failures or invalid arguments):
Available when you select API failure codes or Invalid argument
errors: API. Select this check box to enable API argument and return
value checking in the listed DLLs.

Note: You can use a tool (such as Depends, provided with Visual Studio) to

find the DLLs and APIs within a DLL that your application uses.

Enabling Memory Overwrite Detection on API Calls

Checking for damage to memory blocks caused by API calls (such as
strcpy) is not enabled by default. To enable memory overwrite detection
on API calls, follow these steps:

1 Select the Enable memory tracking check box.
In the Program Settings tree view, select Call Validation.

Select the Enable call validation check box.

A W N

Select the Enable memory block checking check box.

Setting COM Call Reporting Properties

Tip: Select only the
interfaces you need to
check. Decreasing the
number of interfaces
checked decreases the size
of the log file and
improves performance.

Use COM call reporting to record calls to COM interfaces as well as the
returns for the interfaces selected in the All Interfaces tree. DevPartner
error detection will record parameter values and the returned HRESULT.

To enable COM call reporting, and activate the list of COM interfaces,
select the Enable COM method call reporting on objects that are
implemented in the selected modules check box. Use the following
controls to configure COM call reporting:

¢ Report COM method calls on objects implemented outside of the
listed modules: Select this check box to configure error detection to
report the COM method calls and returns for the interfaces not listed
in the All Interfaces tree.

42 Understanding DevPartner

¢ All Components Tree View: Displays the COM interfaces associated
with the project. Click the plus (+) symbol next to the All
Components entry to see a complete list of COM interfaces. Check
boxes next to each item let you select specific interfaces for COM call
reporting.

Setting COM Object Tracking Options

Tip: To improve
performance, select a
subset of All COM Classes.
Consider selecting all
COM classes only when
running an initial pass of
your application, or when
making a final QA pass.

Use COM object tracking to monitor your program for leaked COM
objects. Object leaks are displayed in the Other Leaks tab of the Results
pane. When you select an object leak error in the Other Leaks tab, you
can examine the calls to AddRef () and Release() on your object to try to
locate the missing call to Release().

To enable COM object tracking, and activate the All COM Classes tree
view, select the Enable COM object tracking check box.

Using the All COM Classes tree view, select the COM classes that you
want to monitor. If you do not see the COM class for your application,
click Refresh from Registry to update the list.

Note: When selecting a subset of COM classes, note that most vendors
name their objects with a common prefix.

Setting Deadlock Analysis Options

Use Deadlock Analysis to monitor multi-threaded applications for
deadlocks. This includes the following types of analysis:

¢ Monitoring and reporting of deadlocks as they occur in the
application

¢ Monitoring the usage patterns of the synchronization objects within
your application for potential deadlocks

To enable Deadlock Analysis, and activate the other Deadlock Analysis
controls, select the Enable deadlock analysis check box.

The following settings control the Deadlock Analysis behavior:

¢ Assume single process: When selected, error detection assumes that
all named synchronization objects used within your application are
used only within the process. Clear this check box to relax some of
the deadlock detection rules associated with named synchronization
objects.

Chapter 2 @ Error Detection 43

¢ Enable watcher thread: Select this check box to create a watcher
thread in your application to monitor for localized deadlocks. By
default, this feature is disabled to prevent error detection from
interfering with your application.

If your application becomes unresponsive and appears to deadlock,
enabling this feature allows error detection to perform more detailed
analysis of your application.

Note:

If you write complex DLL_THREAD_ATTACH logic that does not expect
to encounter extra threads in the process, you should not enable this
option.

¢ Generate errors when: Use the following selections to specify when
error detection should report deadlock errors:

<&
<
<
Note:
<
Tip: You can use the <o
Report wait limits or
actual waits exceeding
feature to enforce a
maximum wait policy
within your application.
Note:

44

Understanding DevPartner

A critical section is re-entered: Select to generate a warning if
you attempt to re-enter a critical section that your thread already
owns. Although re-entering a critical section is not an error, your
application must enter and leave the critical section the same
number of times.

A wait is requested on an owned mutex: Select to generate a
warning if you attempt to wait on a mutex that your thread
already owns.

Number of historical events per resource: Enter the number of
call stacks to record for each synchronization object reported in
an error or warning.

The stack information associated with each synchronization
object enables you to determine why a synchronization object is
in a given state. This can help you debug deadlock situations.

Increasing the number of call stacks maintained for each
synchronization object consumes additional memory in your
application and has an effect on application performance.

Report synchronization API timeouts: Select to report an error
when a wait on a synchronization object times out without the
wait being successfully completed.

Enable this option to monitor synchronization object API failures
without having to enable API call reporting for all Windows calls.

Report wait limits or actual waits exceeding (seconds): Active
after you select Report timeouts. Error Detection checks the time-
out value passed to synchronization object wait calls. If the time-
out values exceed the limit you specify here, the call is reported
as an error.

Any wait specified as INFINITE will not be flagged as an error.

Tip: If you are performing
security audits, consider
enabling the Warn about
named resources feature
to determine if
unexpected named
resources are visible
outside the process.
Named resources are
visible outside the process
and should have proper
security applied to them
to prevent unauthorized
use.

¢ Synchronization Naming Rules: Select from these object standards:

¢ Don't warn about resource naming: If selected, error detection
does not warn you about named or unnamed resources
encountered in your application.

¢ Warn about named resources: Select to generate warnings for
each named synchronization resource encountered within your
application. You can use this check to locate named resources
that can be manipulated outside of the application.

¢ Warn about unnamed resources: Select to generate warnings for
each unnamed synchronization resource encountered in your
application. You can use this check to find unnamed resources
that might need to be named to be used by other processes or to
meet a corporate naming convention.

Note: By default, error detection does not produce warnings for either
named or unnamed resources encountered during program

execution.

Setting Memory Tracking Options

When you enable Memory Tracking, DevPartner error detection:
¢ Monitors all calls in your application that allocate and free memory
¢ Reports on memory not freed at the end of the application

Additionally, if you have built your application with FinalCheck
instrumentation and you select Enable FinalCheck, error detection:

¢ Records instances where the last reference to an allocated block of
memory goes out of scope

¢ Reports memory and pointer errors at the statement level throughout
the run

To enable Memory Tracking, and activate all of the memory tracking
options, select the Enable memory tracking check box.

Note: You must select the Enable memory tracking check box before you

can enable Memory block checking under the Call Validation
settings.

The following settings control the behavior of Memory Tracking:

Chapter 2 @ Error Detection 45

46

¢ Enable leak analysis only: Select this check box to disable

everything in Memory Tracking, with the exception of monitoring
for leaks. Memory Tracking will not look for overruns, use of
uninitialized memory, or dangling pointers. Call Validation memory
block checking is also disabled because Memory Tracking is not
evaluating any memory allocated by system modules.

Note: Some of the COM interface hooks will not get handled completely

when this feature is enabled.

¢ Enable FinalCheck: Select this check box to enable FinalCheck.

Understanding DevPartner

When selected, error detection performs additional checks on
FinalCheck instrumented modules. When disabled, these checks are
not performed.

Show leaked allocator blocks: Select this check box to enable the
reporting of leaks on blocks that are used for suballocations.
Suballocated blocks are normally created by memory allocation
functions such as malloc or new. If you are writing your own memory
allocators, enable this feature to monitor all memory in your
application, including buffers that are suballocated into blocks
returned from functions such as malloc or new. DevPartner error
detection monitors your custom memory allocators only after you
list them in UserAllocators.dat. For more information about
UserAllocators.dat, read the chapter “Working with User-Written
Allocators” in the Advanced Error Detection Techniques guide.

Enforce strict reallocation semantics: Select this check box to
enable strict enforcement of semantics. When error detection
enforces strict reallocation semantics, a pointer to memory that has
been reallocated is treated as though it were a dangling pointer, and
using that pointer generates an error. If strict reallocation semantics
are not enabled, a reallocated pointer may be used as long as it points
to the same memory location as the new pointer, and no errors are
generated. For example:

char *ptrA = (char *) malloc(1l7);

// ptrA is now validly pointing to 17 bytes of memory.

char *ptrB = (char *) realloc(ptrA, 15);

// ptrB is now validly pointing to 15 bytes of memory.

// With strict semantics, ptrA is now an invalid pointer,
regardless of the value.

// Without strict semantics, ptrA is still valid as Tong as it
equals ptrB

Enable Guard Bytes: When enabled, guard bytes are inserted at the
end of allocated memory blocks to detect memory overrun errors.
Overruns can cause heap corruption or stack corruption, that, in
turn, can cause random crashes and unexpected data overwrites.

¢ Pattern: Enter the hexadecimal guard byte pattern. This pattern
is used to determine if allocated memory blocks are overrun.

¢ Count: Select the number of guard bytes to be used. If you
encounter random heap corruption errors but error detection is
not reporting heap-overrun errors, consider increasing the
number of guard bytes. Doing so will increase memory usage, but
might detect a hard to find heap corruption error.

Check heap blocks at runtime: Specify how often the entire heap
will be checked to see if guard bytes have been overwritten.
DevPartner error detection always checks each block for overrun
when it is freed. There are three options for additional checks:

¢ On free

¢ Use adaptive analysis

¢ On all memory API calls

Enable fill on allocation: When enabled, the fill pattern specified is
applied to memory as it is allocated.

¢ Pattern: Specify the hexadecimal fill pattern to be used.

Check uninitialized memory: When selected, newly allocated
memory is initialized with a known pattern and then checked for
that pattern when the memory is referenced.

¢ Size: Select the minimum number of bytes to check for the fill
pattern. To reduce the number of false error reports, increase this
value.

Enable poison on free: Select this check box to enable poisoning of
memory upon freeing it.

¢ Pattern: Enter the pattern to be written to the memory location
that is being poisoned.

Chapter 2 @ Error Detection 47

Setting .NET Framework Analysis Options

48

Use .NET Framework analysis when you develop applications that use a
mixture of unmanaged and managed code and unmanaged resources.
Applications that use both managed and unmanaged code might incur a
performance penalty. The data you gather here can help you evaluate the
extent and severity of any such penalty. If you discover problems and
lack the time to fix all of them, this analysis can help you decide which
are the most serious.

To enable the .NET Framework analysis controls in this panel, select the
Enable .NET analysis check box. Use the following controls to configure
.NET Framework analysis:

¢ Exception monitoring: Select this check box to monitor instances
where unmanaged or legacy code throws exceptions that are not
handled, and are passed back to the managed code.

Note: Exceptions passed from unmanaged to managed code are likely to
generate errors because the necessary handles are no longer in
unmanaged code. You should carefully review any exceptions noted.
Possible errors include partially initialized data structures, memory
leaks, resource leaks, and so on.

¢ Finalizer monitoring: Select this check box to monitor incorrect use
of unmanaged resources, such as failing to call the appropriate
dispose method (leaks) or incorrect implementation of classes that
encapsulate unmanaged resources.

¢ COM interop monitoring: Select this check box to monitor which
class IDs are causing transitions between managed and unmanaged
or legacy code. This function also identifies which interface IDs are
used.

Note: You can use COM interop monitoring to determine which methods
are being called frequently. If you find methods called many times,
consider porting the object to avoid transitions. If re-writing is not an
option, consider adding a new method that transfers data in bulk to
reduce the number of transitions.

¢ PInvoke interop monitoring: Select this check box to count the
number of times unmanaged or legacy code is called (broken out by
DLLs and, if possible, by APIs). This helps you determine why your
application is going into unmanaged or legacy code.

Note: Plnvoke interop monitoring provides a count of the PInvoke calls that
your application makes. The Plnvoke interop monitoring report can
be used to monitor managed to unmanaged transitions. Review the
list to determine if excess calls are being made.

Understanding DevPartner

¢ Interop reporting threshold: Assuming x is the value specified in
this field: when the number of times the application makes call_A is
greater than or equal to x, add call_A to the .NET Analysis results.
This enables you to filter out calls that happen only a limited number
of times. As you lower this threshold, more calls are included in your
results.

Note: The interop reporting threshold allows you to exclude COM
transitions from being reported in the COM interop and PInvoke
interop monitoring reports. DevPartner error detection only reports
transitions if the number of transitions is greater than or equal to the

value specified.

Setting .NET Framework Call Reporting Properties

Tip: .NET Framework Call
Reporting can generate a
large amount of data,
and cause system
slowdowns. Enable .NET
Framework Call Reporting
only when necessary to
debug and understand
the framework, and even
then select only the
assemblies you need to
check. Limiting the
number of assemblies
selected in the All types
tree view decreases the
size of the log file and
improves performance.

Use .NET Framework Call Reporting to record calls to, and returns from,
.NET interfaces. DevPartner error detection attempts to differentiate
between “User Assemblies” and “System Assemblies” for .NET modules
based on where the NLB file for an assembly is found.

To enable .NET Framework Call Reporting, and activate the list of .NET
assemblies, select the Enable .NET method call reporting check box.

The All Types Tree View displays the .NET assemblies associated with the
project. Click the plus (+) symbol next to the All types entry to expand
the tree. The tree contains branches for both .NET User Assemblies and
.NET System Assemblies. Check boxes next to each item enable you to
select specific assemblies for .NET Framework call reporting.

Setting Resource Tracking Options

When you enable Resource Tracking, error detection:

¢ Monitors all calls in your application that allocate and free system
resources other than memory

¢ Reports resources that have not been freed when your application
ends

To enable Resource Tracking, and activate the list of resources, select the
Enable resource tracking check box. When you select a check box in the
associated list, error detection tracks the resources created by that DLL.

You can further refine resource tracking to a particular set of resources by
selecting from one or more resource de-allocation APIs. For example, to
exclude all registry related resources, clear the RegCloseKey check box
under the ADVAPI.DLL resource.

Chapter 2 @ Error Detection 49

Setting Modules and Files Options

Tip: You may need to
explicitly add a module to
this list so that you can
then exclude it from
evaluation. DevPartner
error detection
automatically includes
any modules that are not
listed under Modules and
Files. When you need to
exclude a module that is
not listed, you must first
add the module, and then
clear its check box to
exclude it.

Use the Modules and Files settings to specify the modules that make up
the application.

Note: Excluding modules, or components of modules, does not affect
instrumentation at all. You can only limit instrumentation by using
the Instrumentation Manager.

DevPartner error detection automatically evaluates all modules in your

program. Use the Modules and Files settings to:

¢ Exclude modules from evaluation

¢ Exclude components within a module from evaluation

¢ Add modules you want to evaluate

Modules and Files includes the following settings:

¢ Modules and Files List: Shows the modules being checked.

¢ To exclude an entire module from checking, clear the check box
next to that module.

¢ To expand a module and view its contents, click the plus symbol
to the left of the module path.

¢ To exclude specific items within a module, expand the module
then clear the check box next to the item(s) to be excluded.

Note: After you clear a check box next to a module or an item within a

module, it appears on the list but is not analyzed when you run error
detection on your application.

The check box next to a module name is colored yellow if one or
more of its components has been cleared.

Disabling all the modules in the Modules and Files settings will not
prevent reporting of some error types. DevPartner error detection
always reports memory overruns within any module, and other types
of events originating from the MFCxxxx.d11 libraries.

¢ Show leaks and errors only if source code is available: Select this
check box to limit reported leaks and errors to those having source
code available. When enabled, this option might reduce the number
of leaks and errors reported. When disabled (the default condition),
all leaks and errors are reported.

¢ Add module: Click to open the Choose Module to Add dialog box;
use this dialog box to select and add the module.

50 Understanding DevPartner

Directory Icon

¢ Remove module: Click to remove a selected module from the
Modules and Files list. Active only when a module is selected.

Note: You cannot remove the main executable.

¢ System directories: Click to open the System Directories dialog box.

Setting System Directories Options

Use the System Directories dialog box to exclude entire directories that

you do not need to check. For example, a directory may contain modules

that generate errors that you have already dealt with. Excluding

directories that you do not need to check can speed up your error

detection sessions.

Note: DevPartner error detection reports all errors of undetermined origin
and all errors that will cause catastrophic failure of your application.
Such errors are reported even though they might occur in modules
within an excluded directory.

The following settings are available for the System Directories dialog
box.

¢ Add: Opens the System Directory to Add dialog box. Use this dialog
box to select a directory to add to the list of directories excluded from
checking by error detection.

Remove: Click to remove a selected system directory from the list.

OK: Click to close the System Directories dialog box and save any
changes you have made.

¢ Cancel: Click to close the System Directories dialog box and discard
any changes you have made.

The directory icon next to each path name in the System Directories list
indicates two different possible conditions:

¢ Single Directory: Indicated by a single folder icon. Only the
immediate contents of the selected directory are included.

¢ Directory and All Sub-directories: Indicated by a three-folder icon.
The selected directory and all sub-directories are included.

To toggle between the two options, click the icon next to the directory
name.

Note: In some instances you may find that you need to explicitly add
critical third-party DLLs that are contained in an excluded directory.
Explicitly adding these third-party DLLs might reveal problems you
may not otherwise locate. To explicitly add a DLL, use the Modules
and Files settings.

Chapter 2 @ Error Detection 51

Setting Fonts and Colors Options

52

Fonts and Colors control the appearance of items that appear in the tabs
of the error detection window. For example, you can increase the font
size of the error data you view most frequently, or decrease font sizes to
display more information in a tab.

Use the following controls to define the fonts and colors:

4

L 4

Show settings for: Lists the different tabs that appear in the Results
pane. Select the tab for which you are changing fonts and colors.

Use Defaults: Click to discard all current settings and restore the
original fonts and colors.

Displayable items: Select an item from this list to change its font or
color properties.

Font: Select a font to use for the currently selected item under
Displayable items.

Size: Select a font size to use for the currently selected item under
Displayable items.

Item foreground: Shows the foreground color for the current
selection in the Displayable items list. Select a foreground color
from this drop-down menu or click Custom to the left of the menu
to define a custom foreground color.

Item background: Shows the background color for the current
selection in the Displayable items list. Select a foreground color
from this drop-down menu or click Custom to the left of the menu
to define a custom background color.

Bold: When selected, the text for the displayable item appears in a
bold font.

Tab Size: Use this control to specify the indent size for code
displayed in the Source Code pane.

Note: This control is available only when the Show settings for selection is

2

Understanding DevPartner

Source Pane and the Displayable items selection is Main.

Sample Text Box: A text box at the bottom of the Fonts and Colors
window shows how the current displayable item appears with the
combination of fonts and colors selected.

Setting Configuration File Management Options

Use the Configuration File Management settings to manage
configuration files. The title bar of the Program Settings dialog box
displays the configuration file currently in use.

Note: When you change a setting in the Program Settings dialog box, an

asterisk appears after the configuration file name until you save the
properties, reload the file, or load a different file. If you load a
different file or reload the file without saving, any changes to the
current file are lost.

Use the following controls to define the Configuration File functionality:

L 4

Configuration file name: The full path and name of the
configuration file.

Reload: Loads the current configuration file again, discarding any
changes. This returns you to the last saved version of the current
configuration file.

Load: Opens the Load From dialog box.
¢ Select Internal User Defaults to load your user default settings.

¢ If you select Configuration File, the Load Configuration File
dialog opens. Use this to select a different configuration file to
load.

Save: Saves all active changes in the currently loaded configuration
file.

Save As: Opens the Save Configuration File dialog box. Use this to
save the current configuration settings under a different file name.

Reset: Resets all the program property settings to the default factory
settings.

Save Defaults: Save the current settings as your user defaults. All new
projects will use these settings.

Delete Defaults: Delete the user default configuration settings and
revert to factory settings. All new projects will use the factory
settings.

Chapter 2 @ Error Detection 53

Tracking Windows Messages and Event Logging

Windows is an event-driven environment in which much of your
program is executed in response to Windows messages and other events.
DevPartner Studio intercepts events as they occur, and logs them. You
can use these logs to see a complete history of events that led to a
problem.

DevPartner Studio logs the following events:

¢ Windows messages.
These events show how your program reacted to Windows messages.

¢ API calls and API returns along with argument information.
These events define the order in which procedures are executed in
your program.

Output debug string messages from the program you are checking.

Error messages.

Exporting Data to XML

DevPartner allows you to export comprehensive session results data to
XML, providing you with a simple way to port your results data into
various report formats, email, an internal Web page, etc.

Exporting Data from within Visual Studio

Follow these steps when you are using Error Detection from within
Visual Studio to export all data from the currently displayed session file
to an XML file:

1 Open an Error Detection session file.

2 Select File > Export DevPartner Data.
A Save As dialog box appears.

3 Choose the location for the exported data file.

4 Click OK.

54 Understanding DevPartner

Exporting Data from the Error Detection Standalone Application

Follow these steps when you are using the Error Detection standalone
application to export all data from the currently displayed session file to
an XML file:

1 Open an Error Detection session file.

2 Select File > Export Data.
A Save As dialog box appears.

3 Choose the location for the exported data file.

4 Click OK.

Exporting Data from the Command Line

You can elect to generate an XML file from the session file data when you
run error detection from the command line by passing the proper flags to
BC.exe at execution time, or by calling BC.exe and specifying a pre-
existing session file.

DevPartner error detection uses the DPSErrorDetection.xsd schema file
located in the error detection installation directory when generating the
XML output. Do not edit this file.

If DevPartner cannot export your session data to XML, it generates an
error message describing the problem it encountered.

Running a Session and Exporting Data

When you specify an executable, error detection runs a session on the
executable and then generates XML output from the results:

BC.exe [/B session.DPbc1] [/XLS|D] xmlfile.xml] target.exe [args]

The S and D flags used with /X allow you to export either Summary or
Detail information to XML.

Note: When you specify an executable, you must still specify an
corresponding session file using the /B flag.
Converting an Existing File

When you specify a session file only (session.DPbc1), error detection
converts the specified session file to XML and saves the output:

BC.exe [/B session.DPbcl] [/XLS|D] xmifile.xml]

Chapter 2 @ Error Detection 55

Running Error Detection from the Command Line

You can run DevPartner Studio from a DOS command line, using bc.exe
or bc.com.

Note: For legacy support of the 7.x versions, DevPartner error detection
allows you to continue using bc7.com in your script files.

& bc.exe starts the Ul for DevPartner Studio standalone.

¢ bc.comis asmall console program that spawns bc.exe and waits for
it to complete.

The difference between bc.exe and bc. comis important for batch scripts.
Invoking bc. exe directly starts DevPartner Studio and continues on to
the next command without waiting for bc.exe to complete. If the next
step in the script is to check for a result, it will not be available.

Note: If you type only bc, the OS chooses bc. com instead of bc. exe.

For more information, refer to Using Error Detection from the
Command Line in DevPartner Advanced Error Detection Techniques.

Command Line Options and Syntax

56

Brackets [] indicate that a command is optional.
BC.exe [/7?]
BC.exe session.DPbcl

BC.exe [/B session.DPbc1] [/C configfile.DPbcc] [/M] [/NOLOGO]
L/XCS|D] xmlfile.xm11 [/0UT errorfile.txt] [/S1 [/W workingdir]
target.exe [args]

Table 2-4. Command Line Options

Option Action

/? Display usage information
session.DPbcl Open an existing session file
/B session.DPbcl Run in batch mode and save the session file to a log file

session.DPbcl

/C configfile.DPbcc Use the configfile.DPbcc options
M Start BC. exe and minimize when running
/NOLOGO Do not show the splash screen when loading BC . exe

Understanding DevPartner

Table 2-4. Command Line Options

Option Action

/X xmlfile.xml Generate XML output and save to the specified file.
When you specify an executable, error detection runs a
session on the executable and then generates XML
output from the results.
When you specify a session file only (session.DPbcl),

error detection converts the specified session file to XML
and saves the output.

Note: When you specify an executable, you

must still specify an corresponding session
file using the /B switch.

/XS xmlfile.xml The /X flag used with the S modifier instructs error
detection to only save Summary data to the xml file.
Information about the running of the error detection
session (Session data) is always exported.

/XD xmlfile.xml The /X flag used with the D modifier instructs error
detection to only save Details data to the xml file.
Information about the running of the Error Detection
session (Session data) is always exported.

/OUT errorfile.txt Output any error messages to a text file

/S Run in silent mode. Do not open the Program Error
Detected dialog box on errors.

/W workingdirectory Set the target's working directory

target.exe [args] The executable to launch and its arguments

Note: You must specify the full directory path to your program executable
if it is not located on the current path (the environment variable
listing the directories that the system searches in order to find an
executable).

Running FinalCheck from the Command Line

You can also run FinalCheck from the command line. For more
information, refer to the following topics in the Checking a Program with
FinalCheck section of the online help.

¢ Running FinalCheck from the Command Line
¢ NMCL Options
¢ NMLINK Options

Chapter 2 @ Error Detection 57

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the
Team Explorer client is installed and a Team Foundation Server
connection is available.

Visual Studio Team System Support in DevPartner Error Detection

58

You can submit data as a Work Item of the type Bug for a selected item
in the following Error Detection tabs:

4

2
2
L 4
L 4

Errors tab — submit a selected error

Memory leaks tab — submit a selected leak
Modules tab — submit a selected instance

Other leaks tab — submit a selected leak

NET Performance tab — submit a selected instance

When you submit a Bug, DevPartner populates the Work Item form with
data from the tab. For more information about DevPartner Studio
integration with Visual Studio Team System, see “Visual Studio Team
System Support” on page 8.

Understanding DevPartner

Chapter 3
Static Code Analysis

What is Code Review?

Using Code Review Out of the Box
Setting Options

Suppressing Rules

Viewing Summary Data

Viewing Code Violations

Viewing Naming Violations
Viewing Collected Metrics

Viewing Call Graph Data

Using the Command Line Interface
Exporting Data to XML
Understanding Naming Analysis
Using the Code Review Rule Manager

L 2K R 2R JBE R 2K 2R R 2R JER R 2R NN 2

Creating New Rules Using Regular Expressions

*

Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with code review.
The second section provides reference information for an in-depth
understanding of some DevPartner Studio code review functions.

Refer to the DevPartner Studio online help for additional task-oriented
information about code review.

59

What is Code Review?

DevPartner code review helps developers write best-practices compliant
Visual Basic and Visual C# code in Visual Studio. DevPartner code review
identifies programming and naming violations, analyzes method call
structures, and tracks overall code complexity.

Note: The code review feature analyzes managed code only, and is not

supported in the DevPartner for Visual C++ BoundsChecker Suite.

The DevPartner code review feature delivers the following functionality:

¢ Static code analysis and review

DevPartner code review performs a comprehensive static code
analysis of your source code in Visual Studio, and displays results in
the DevPartner Code Review window.

Automated command-line batch processing

You can execute a batch review of your solution from the command
line. You can run these automated batch reviews in conjunction with
a nightly build. You can also save time by using an automated batch
review on large applications while you perform other tasks.

Data export to XML

DevPartner code review allows you to export session results in XML
format, providing you with a simple way to transform your results
data into report formats, e-mail, an internal Web page, etc. You can
export your data to XML from code review after running a session,
from the command line, or as part of an automated batch process.

Rules management and customization
The Rule Manager lets you configure rules used by code review to
enforce code compliance with the standards you set. You can also

group rules into sets for use in a review session, and create your own
custom rules.

Using Code Review Out of the Box

60

The following Ready, Set, Go procedure introduces you to using
DevPartner code review.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject being
described in the shaded box, read the additional text following the
box.

Understanding DevPartner

Note: DevPartner code review creates data files for each target application.

You must ensure that you have write access to the directory
containing the target executable before starting code review.

Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create
and debug your application are sufficient for DevPartner to analyze
the application.

Ready: Deciding How You Want to Run the Review

DevPartner code review is very flexible, with several different
configurations you should consider for any session.

2

The following procedure assumes:

You are running a review of a Visual Basic or Visual C# single-
developer solution.

You are running code review in Visual Studio 2008 or Visual Studio
2005.

All of the projects in your solution compile without errors.

All projects to be reviewed are set to output debug information.

Note: Refer to “Code Review Supported Project Types” on page 340 for a

comprehensive list of supported project types for code review.

Deciding What Rules to Enforce — You can use a wide variety of code
review rules to enforce industry best practices in your code. You can
also create custom rules and rule sets using the Rule Manager if you
have additional standards to enforce.

Selecting the Naming Guidelines to Enforce — DevPartner code
review can use built-in naming analyzers to ensure your code follows
industry-accepted naming standards.

Collecting Metrics Data — You can collect metrics data during your
review, which displays code complexity results (complexity, bad fix
probability, and understanding level), based on McCabe Metrics.

Collecting Call Graph Data — You can collect call graph data
(representing all potential inbound and outbound calls) during your
review.

Excluding Projects in Your Solution — DevPartner code review
includes all projects in your solution by default. If you know there
are projects in your solution that you do not want code review to
analyze, you can exclude them.

Chapter 3 & Static Code Analysis 61

Set: Selecting Options and Settings

62

Note: You must have all selected projects set to output debug information.
If a selected project is not set to output debug information for any
available build configurations, when code review runs you will be
warned about build errors, and that project will be excluded from

future sessions.

DevPartner code review is flexible and customizable. Use the General
options page (see Figure 3-1 on page 62) to customize code review. To
access the General options page, select DevPartner > Options and then
select DevPartner > Code Review from the Options tree view.

For this procedure, you can use the default DevPartner properties and
options. No changes to the settings are required.

Options

=

-Enviranment

-Projects and Solutions
-Source Cankral

- Tewxk Editar

evPartner

(- Analysis

=

=

I+

Suppressed Rules
[#-Error Detection
+-Database Tools
[#- Debugging
[+l Device Tools
[#-HTML Designer
- Windows Forms Designer

Projects to be reviewed

| Project Language Path

| o ConsoleApplicationl Visual Basic ... C:\Documents and Settings'l,Adri
= | &
Rule set: ibéfau": |

Maming analysis to use:

Collect metrics Always generate a batch file
Collect call graph data Always save review results

[erampt For session File name

[QK l [Cancel

Figure 3-1. DevPartner Code Review General Options

¢ Selecting a Rule Set — You can choose a rule set from the Rule Set list
prior to running your review. The Default rule set includes all
Medium and High priority rules supplied by code review, which
enables you to enforce common best practices in the industry.
Table 3-2 on page 72 provides a list of the standard rule sets that
come with code review.

Note: You can use the Rule Manager (see “Using the Code Review Rule
Manager” on page 103) to create custom rules and rule sets.

Understanding DevPartner

¢ Selecting a Naming Guideline — You can choose a naming guideline
from the Naming Analysis To Use list. The default behavior is for
code review to enforce naming guidelines modeled after the
Microsoft .NET naming conventions. However, you can enforce the
Hungarian Notation naming convention instead, or enforce none at
all.

¢ Enabling or Disabling Collection of Metrics Data — Select the Collect
Metrics check box to enable collection of McCabe Metrics data (see
“Collecting McCabe Metrics” on page 73). Clear the check box to
disable this functionality.

¢ Enabling or Disabling Collection of Call Graph Data — Select the
Collect Call Graph Data check box to enable collection of static
method call data. Clear the check box to disable this functionality.

If you run your review with this function enabled, the Call Graph
tab in the Results window displays a static graphical representation of
the inbound and outbound call path corresponding to the method or
property selected from the Solution Tree in the far left pane.
Note: Call paths are statically generated. This means that the graph shows
the potential method calls in the call path, rather than the dynamic
method calls made during program execution.

¢ Excluding Unwanted Projects — A check box next to each project in
the Projects To Be Reviewed text box controls whether that project
will be analyzed by code review (see Figure 3-1 on page 62). Clear the
check box associated with any projects you do not want code review
to analyze.

Note: You must have all selected projects set to output debug information.
If a selected project is not set to output debug information for any
available build configurations, when code review runs you will be
warned about build errors, and that project will be excluded from
future sessions.

Chapter 3 & Static Code Analysis 63

Go: Starting Your Code Review Session

The process of DevPartner analyzing your code is referred to as the
session. When the review is completed, the session data is displayed in
the Results window (see Figure 3-2 on page 65), and will be saved to a file
when you exit code review.

1 Open your solution in Visual Studio.

2 Select DevPartner > Perform Code Review.

DevPartner performs a code review on all projects in the solution.
The Results window opens, and a status bar on the Summary pane
tracks the progress of the session.

You have completed running a basic code review session, and the data
has been compiled in the Results window for you to analyze.

Analyzing the Results and Repairing Violations

The Results window is your focus once you have completed running a
review of your solution. The session data is displayed in the Results
window, and you use it to begin identifying, locating, and repairing
violations.

1 Examine the Problems tab of the Results window (see Figure 3-2) to
see code violations found during the review.

2 Ensure the Severity column is sorting the violations from highest to
lowest priority (default behavior). Toggle the column between
ascending and descending order, if required, by clicking the column
heading.

64 Understanding DevPartner

Code Review DevPartner View by |i§t Results Tabs
Toolbar Solution Tree (shown disabled) Details Pane

L DevPartner Code Review)’ Staft Page |~ Object Erowser Bitsd
.{j P y@ Vlewby -
B [} SpeedBump.Met _/ Summary]f_l”ruhlems}’ﬂaming |’_ﬁatrics |’ga|| Graph 4 b
E CEharp @ ‘r
E Drriver SpeedBump.Met % ,
"—'}E VB Fixed | Suppressed | Rule | Title Se.. /| Project File IMethod Class i
|i| 1099 Literal, hard-coded string found inc... High Csharp SpeedBump.cs EndTiming Forml ot
1099 Literal, hard-coded string found inc... High VB WEdotMet . b ClearTiming Forml
I:‘ 1099 Literal, hard-coded string found inc... High VB YEdotMet. b EndTiming Farmil
D 1099 Literal, hard-coded string found in ... High VB WEdothet . th BubbleSartBtn_... Faormi
D 1099 Literal, hard-coded string found inc... High VB WEdothet.tb BubbleSartBtn_... Farmi
D 1099 Literal, hard-coded string found inc... High VB YEdotMet. yb GuickSortBtn_C... Farmi
D 1036 Reflecting errors fram unmanaged ... High Drriver Driver.cs MativeCppSpee... Farml
I:‘ 1092 Literal, hard-coded string found inc... High CSharp SpeedBump.cs ClearTiming Forml _ILI
NIET] | »
Literal, hard-coded string found in code
Trigger: Detected Literal, hard-coded, string in code [Occurrences: 1
:| DOriginal Source Line: labell. Text = sPrefix + " " + ts. ToString(; v
:| Location: SpeedBump.cs
4
Explanation
A literal, hard-coded string was found in the source file,
Repair
Add a resource file to vour project and place this literal string in this resource file, The resource file should contain the literal hard-
coded string values, bitrmap (brnp), icon (ico), or cursor images (.cur) images and other data. Use the ResourceManager class to
rettieve the information such as literal strings from the resource file,
The folowing example code uses the ResourceManager class to refrieve a string literal: ﬂ
Figure 3-2. DevPartner Code Review Results Window
Tip: Typically, you There are several tabs available in the Results window that separate the
want to correct the session data into distinct categories.
most critical code Sel he S b . o h
violations ﬁrst. The * elect the ummary tab to examine a report summarizing the
Problems tab is violations of various types that were discovered during the review
designed to sort the (see “Viewing Summary Data” on page 78).

code violations in order

. . ¢ Select the Problems tab to view the code violations discovered
of severity, allowing

ou to easily select the during the review. The default behavior of the Problems tab is to sort
;/zigh est pri o);ity the list of violations from highest severity to lowest (see “Viewing
violations first. Code Violations” on page 80).

¢ Select the Naming tab to view the naming violations discovered
during the review. This list also provides suggestions for repair, when
applicable, and will be empty if the review was configured to ignore
naming (see “Viewing Naming Violations” on page 82).

Chapter 3 & Static Code Analysis 65

¢ Select the Metrics tab to view code complexity results (Complexity,
Bad Fix Probability, and Understanding Level), based on McCabe
Metrics (see “Viewing Collected Metrics” on page 835).

¢ Select the Call Graph tab for a graphical representation of the
method calls (see “Viewing Call Graph Data” on page 88).

Filtering Results

After running a code review session, the results can include a lot of data,
making it difficult to focus on one area to repair. Use the Code Review
Solution Tree (see Figure 3-2 on page 65) to filter the results by selecting a
project, file, or method. Filtering the data limits what is displayed,
allowing you to focus on the results that are most important to you.

Analyzing Code Violations

By default, the Problems tab has focus in the Results window following a
code review. The Problems tab displays the code violations found in the
current solution. An associated Details pane (see Figure 3-2 on page 635)
below the Problems tab provides more explanation, examples, references
to MSDN and other sources explaining the problem, and suggested
repairs (when available) for the selected code violation.

3 Select the first code violation listed on the Problems tab (highest
priority). The Details pane is populated with information about the
selected code violation. The Trigger and Location headings tell you
why you had a code violation and where the violation was located.

4 Scroll down and examine the Explanation, code samples (if
available), and suggested Repair for the code violation. Follow any
external links to more explanations about the violation for
additional information.

5 Double-click on the code violation listed on the Problems tab.

DevPartner opens a new window containing the Visual Studio
editor and your source code, with focus placed at the line of code
where the problem exists.

6 Repair the code violation using the Visual Studio editor.
7 Return to the Problems tab in the code review Results window.

8 Select the Fixed check box to indicate that you corrected the
violation.

66 Understanding DevPartner

9 Select the next code violation in the Problems tab, repeating steps S
through 8 until you feel you addressed enough code violations for
this session.

Note: DevPartner code review attempts to keep track of changes to line
numbering, and maintain synchronization between the violations
and the source code. After enough modifications, though, the
results can lose synchronization with the source code, and line
numbers might change. You may wish to re-run a code review
session after modifying the source code to any great extent, and
continue repairing violations with the new Problems tab list.

You have now resolved code violations in your solution using code
review.

Analyzing Naming Violations

The Naming tab lists naming violations that code review finds during a
review. The appearance of the Naming tab varies depending on the type
of naming analysis you selected on the General options page (see Figure
3-4 on page 70) prior to the review. An associated Details pane (like the
one associated with the Problems tab in Figure 3-2 on page 65) below the
Naming tab provides more explanation, resources, and suggested repairs
(when available) for the selected naming violation.

Note: The Details pane is not available when you are using Hungarian

naming.
'//é_ummary]/ﬁ_roblems/l@_aming]/_ﬁetrics |/Qa|| Graph l 4 I
70 of 70 vio
biody bytBody Local beekef] Generate
member... strMemberMame Local string CreateEr
preamble bytPreamble Local byte[] Generate
schemaRe... Unknown Local smiTextR... YerifyDo
writer Unknown Local Syskem. I, Generate
validators... Unknown Local ¥miReade... WerifwDm
schema Unknatn Laocal Strearm WeriFyDio
options Unknown Local System.C... Generate
temp Unknown Local global::Sy... Resource
contentR... Unknown Local Syskem.I... Generate
EnC Unknown Local System.T... Generate
field Unknown Local Syskem.C... CreateEr
compileUnit Unknown Local System.C... Generate
classAccess strilassAccess Local skring Created|
provider Unknown Local CodeDom... Generate
doc Unknown Local amiDocurm,., Generate
Field Unknown Local Syskem.C... CreateFi
enumFlag... blnErumFlagsa... Local baal CreateEr
typeDecla... Unknown Local System.C... CreateEr _
E e e e e : ,L]J

Figure 3-3. Naming Tab and Details Pane

Chapter 3 & Static Code Analysis 67

10 Select the Naming tab to identify the naming violations discovered
during the session (see Figure 3-3). All naming violations found
during the review are listed in this tab. When available, a suggestion
for proper naming appears beside the violation.

11 Select the first naming violation on the Naming tab.
The Details pane is populated with information about the selected
naming violation (see Figure 3-3).
Note: If you selected Hungarian naming, no Details pane would be
available.

12 Examine the detailed explanation and/or suggestion for proper
naming (when available). Follow any external links if you want
more information about the violation.

13 Double-click on the naming violation in the Naming tab list to go
to the source.

14 Repair the naming violation.

15 Return to the Naming tab in the code review Results window.
16 Select the Fixed check box to indicate you corrected the violation.

17 Select the next naming violation in the Naming tab, repeating steps
11 through 16 until you feel you addressed enough naming
violations for this session.

You have now resolved naming violations in your solution using code
review.

Saving Session Files

68

Saving your session file allows you to refer back to these results. You
might want to open a saved session file for several reasons:

¢ To export the session data to XML at a later date (see “Exporting Data
to XML"” on page 96).

¢ To continue fixing the violations discovered in this session later.

Note: The default behavior of code review is to save your session file for you
when you exit, unless you clear the Always save review results
setting under General options (see “Configuring General Options”
on page 70).

Understanding DevPartner

Setting Options

1 With focus in the Results window, select File > Save Code Review
Session As.
2 Enter a name for the session file and click Save.

By default, code review will save the session file as
SolutionName.dpmdb in the same location as your solution.

DevPartner saves session files as part of the active solution. They appear
in the DevPartner Studio virtual folder in Solution Explorer. DevPartner
code review session files take the .dpmdb extension.

By default, DevPartner physically saves the session files in your project’s
output folder. DevPartner automatically increments the file name based
on the contents of the default directory (for example, MyApp.dpmdb,
MyAppl.dpmdb, and so on). If you save session files to a location other
than the default directory, you must manage the file naming.

For projects that do not have an output directory, such as a Visual Studio
2005 Web site project, DevPartner physically saves the files to the project
directory.

Session files generated from the command line are not automatically
added to the project’s solution. You can manually add externally
generated session files to an open solution in Visual Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a code review session,
continue reading the rest of this chapter for more information.

Use the many available options to customize code review behavior. Your
specific settings are preserved in a preferences database on your system.
DevPartner provides three option pages to modify code review options:

¢ General Options
¢ Naming Guidelines Options
¢ Suppressed Rules

Chapter 3 & Static Code Analysis 69

Configuring General Options

The General options page contains code review settings that you can
modify prior to a code review. To access the General options, from the
DevPartner menu select Options, then select DevPartner > Code
Review > General from the Tree View.

Options

B Environment Prajects ta be reviewed
E‘ -Projects and Solutions Project Language Path
I Souece Control W Consolefpplication1 Visual Basi D ts and Settings)Ad
E}.Text Editar L onsalespplcation Isual basicIlI oCcurments an 1= |ngs'l, I
(=) DevPartner

- Analysis

- Code Review

i | | B

- Maming Guidelines
- Suppressed Rules Rule set: iDeFauIt el lHame set
[+ Error Detection

E “DatebaceTonle Haming analysis to use: |Naming Guidelines |
[#- Debugging L .

¥ Device Tools
[# HTML Designer Collect metrics Always generate a batch File

[Windows Forms Designer Collect call graph data Always save review results
[1Prompt For session file name

[. (814] [Cancel

Figure 3-4. General Options Page

Selecting Projects To Be Reviewed

You can choose some or all of the projects in a solution from the Projects
to be reviewed list. The contents will be empty if:

¢ You did not load a C# or Visual Basic solution in Visual Studio.
¢ You loaded a solution containing only C++ projects.

The Projects to be reviewed list contains the following information.

Table 3-1. Projects To Be Reviewed List

Item Description

Check Box The corresponding project will be reviewed when checked

Project The name of the project

70 Understanding DevPartner

Table 3-1. Projects To Be Reviewed List (Continued)

Item Description

Language Visual Studio language associated with the project:

* Visual Basic

o C#

e Web Site

Note: The Web Site language type is only available in
Visual Studio 2005 or later. It pertains to language-

independent projects that use ASP.NET
technologies.

Path The path and name of the listed project

If you never made selections to the list of projects, DevPartner reviews all
projects in the current solution by default. Once you edit the list of
projects, DevPartner saves the state of included or excluded projects for
the next time you work with this solution. The following caveats apply:

¢ You must select at least one project in order to review a solution.
Otherwise, DevPartner will not let the code review proceed.

¢ You must have all selected projects set to output debug information.
If a selected project is not set to output debug information for any
available build configurations, you will be warned about build errors,
and that project will be excluded from future sessions.

¢ If you select one or more projects that no longer exist in the solution,
DevPartner will review the remaining projects.

¢ If you inadvertently delete all the projects in a solution that you later
attempt to review, DevPartner will alert you that your selected
projects no longer exist in the solution and will suggest that you
make appropriate changes on the General options page.

Note: You cannot select individual files, classes, or methods within a given
project.

Selecting Rule Sets

You can select a rule set from the Rule set list to apply to a code review.
The Rule set list contains all DevPartner-supplied and user-configured
rule sets. The selected rule set is preserved and used each time you run a
session on the current solution.

Note: Make sure that you select a valid rule set that contains rules and
already exists in the rules database. Attempting to use a rule set
that has been removed via the Rule Manager, or is empty could
invalidate the results.

Chapter 3 & Static Code Analysis 71

You can create and customize rules (along with their associated triggers,
which cause the rules to fire when they are violated), and create and
manage rule sets, using the Rule Manager (see “Using the Code Review
Rule Manager” on page 103).

Table 3-2. Standard Rule Sets

Rule Set Name Description

All Rules Provides a master rule set which, out of the box:
e Contains all DevPartner rules in the rules database

e Contains any user-configured rules in the rules
database

e Ensures a comprehensive code review

Date Formatting Checks for proper formatting and use of date values,
in particular 2-digit year formatted dates

Default Contains high and medium priority rules

Design Time Properties Checks for design time properties and property
values of forms and controls to assist with good user
interface design

Internationalization Assists with localization, string handling, and
comparison for the international market

Logic Checks for proper program logic, good .NET
Framework programming practices, error handling,
type checking, and garbage collection

Performance Checks for code that negatively impacts performance

Naming Guidelines Searches for .NET Framework naming discrepancies
that involve two or more identifiers in the source
code

Web Applications Checks for good ASP.NET development, HTML tag

use, validation, performance, caching, and state

72 Understanding DevPartner

Tip: You should choose
a naming analysis
type. Otherwise,
DevPartner will bypass
critical analysis
functions. Only choose
None to temporarily
ignore naming
anomalies while
concentrating on other
programming
problems.

Selecting a Type of Naming Analysis

Use the Naming analysis to use list to choose the type of naming
analysis to apply to a review. Your choices include:

¢ Naming Guidelines (default): Patterned after the Visual Studio .NET
Framework naming guidelines.

Note: You must also set options on the Naming Guidelines options page
to ensure a more precise review (see “Setting Naming Guidelines
Options” on page 74).

¢ Hungarian: Patterned after the Hungarian Notation naming

convention (see “Understanding the Hungarian Naming Analyzer”
on page 101).

Note: You must also choose a valid Hungarian name set. The name set

choice does not apply to the Naming Guidelines naming analysis.

¢ None: DevPartner will bypass naming analysis, and the Naming tab
will be empty following the code review.

Selecting Name Sets

If you perform a Hungarian naming analysis on your source code, make
sure that you also choose a valid Hungarian name set (by default, the
Default name set is associated with the default DevPartner-supplied rule
sets).

You can create and manage name sets using the Rule Manager. (see
“Using the Code Review Rule Manager” on page 103).

Collecting McCabe Metrics

When you select Collect metrics, code review collects data that displays
code complexity statistics, including complexity, bad fix probability, and
understanding level. These metrics follow the industry-standard McCabe
Metrics (see “Understanding McCabe Metrics” on page 86). The Metrics
tab displays an aggregate of all items pertaining to the node selected on
the Code Review Solution Tree.

Chapter 3 & Static Code Analysis 73

Collecting Call Graph Data

When you select the Collect call graph data check box, code review
collects information about all potential inbound and outbound calls to
methods or properties, and displays a graphical representation of the
results on the Call Graph tab. Individual nodes in the call graph
represent the inbound and/or outbound call path for the selected
method or property. The call graph shows a static representation of the
potential method calls in the call path, rather than the dynamic calls
made during program execution.

Generating Batch Files

When you select Always generate a batch file, DevPartner generates a
batch file during the next interactive code review performed in Visual
Studio. You can use this batch file to run a batch review from the
command line on the same solution.

Note: If you use the /r option when running reviews in a batch file or from
the command line, you should turn off Always generate a batch
file, or backup and rename your batch file. Otherwise, your batch file
will be overwritten. See “Using the Command Line Interface” on
page 93

Saving Review Results

When you select the Always save review results check box, DevPartner
saves the session file as SolutionName.dpmdb in the same location as your
solution following a code review. DevPartner displays the saved session
file the Visual Studio Solution Explorer.

Prompting for Session File Name

When you select the Prompt for session file name check box,
DevPartner will prompt you to specify a location and name for the
session file before it begins the review.

Setting Naming Guidelines Options

74

The Naming Guidelines options page includes choices that ensure a

more precise review. To access the Naming Guidelines options, from the

DevPartner menu select Options, then select DevPartner > Code

Review > Naming Guidelines from the Tree View.

Note: Selections on this page are disabled until you select the Naming
Guidelines naming analyzer from the Naming analysis to use list on
the General options page (Figure 3-4 on page 70).

Understanding DevPartner

Options @ [z|

[#- Enviranment Maming Guidelines
[#- Projects and Saolutions
[#- Source Conkral

[#- Text Editar

What ko analyze: () all public or protected identifiers
%) &l identifiers regardless of access or scope

(= DevPartner Choose dictionary: ;P.merican Endglish v :
- Analysis L
E: Include naming analysis for:
= Code Review A0

General Identifier A~ | When checking local and private variables
uses

Maming Guidelines ¥ Mamespaces

Suppressed Rules Il Classes © Camel case
[#-Error Detection vl Interfaces (D pascal case
[#]- Database Tools v Methods
- Debugging ¥ Delegates

[+l Device Tools & meio
[#]- HTML Designer Mamespace opkions:
[#- Windows Forms Designer

Company name: |

Technology name: | |

K H Cancel]

Figure 3-5. Naming Guidelines Options Page

Choosing Identifiers to Analyze

In the What to analyze section, select the type of identifiers to include
in the analysis:

¢ All public or protected identifiers (default): DevPartner code
review will examine public or protected identifiers and internal
protected identifiers. However, this option excludes local and private
identifiers.

¢ All identifiers regardless of access or scope: DevPartner code review
will examine all identifiers, regardless of access or scope.

Choosing a Dictionary

From the Choose dictionary list, select the dictionary database to apply
to the naming analysis. DevPartner will search for naming violations
based on the selected dictionary. American English is the default
dictionary.

Choosing the Scope of Naming Analysis

In the Include naming analysis for list, select the corresponding check
boxes for one or more identifiers for DevPartner to analyze. By default, all
identifiers are selected.

Note: Checking the Variables check box might affect other variable-
specific selections on this options page (such as What to analyze).

Chapter 3 & Static Code Analysis 75

Selecting Camel Case or Pascal Case

Select your capitalization preference for DevPartner to use when
validating named Variables. The two options are Camel case and Pascal
case. Camel case refers to a variable where the initial word is lower-case
but the secondary word is capitalized, such as integerBonus. Pascal case
refers to a variable where each word in the name is capitalized, such as
IntegerBonus.

Note: This option is unavailable (grayed out) if you did not already select

Variables from the Include naming analysis for list. It is also
unavailable if you have selected All public or protected identifiers.

Selecting Namespace Options

If you checked the Namespaces check box in the Include naming
analysis for field, you can specify additional namespace options.

¢ Company name: Enter a string for your company's name.
¢ Technology name: Enter a string for your company's technology.

DevPartner code review will verify namespaces for appropriate use of
capitalization, complete words, presence of reserved words, use of
numbers, etc. DevPartner code review will also verify that each
namespace follows the recommended namespace syntax:
CompanyName.TechnologyName [.Feature] [.Design]. When you pI‘OVide a
company name and/or technology name, code review will check that the
namespace is constructed using these entries.

Managing Suppressed Rules

76

The Suppressed Rules options page contains a list of rules that have been
suppressed in the Problems tab (see Figure 3-6). Suppressed rules may be
temporarily unsuppressed by selecting the check box next to the
suppressed rule in the Suppressed Rules options page. To access the
Suppressed Rules options, from the DevPartner menu select Options,
then select DevPartner > Code Review > Suppressed Rules from the
Tree View.

Understanding DevPartner

Options

[+ Environment
[#- Projects and Saolutions
[#- Source Contral
[#- Text Editar
=) DevPartner
- Analysis
[=- Code Review
General
Maming Guidelines
Suppressed Rules
[+~ Error Detection
[#]- Database Tools
[#- Debugging
[+ Device Tools
[#-HTML Designer
[+ Windows Forms Designer

Suppressed Rules

Clearing the checkbox corresponding to the rule will remave the
suppression and include that rule in the code review analysis,

Currently suppressed code review rules:

Fule Tikle Scope

1561 Option Strick or Expli... C:\Documents and Setti...
1081 Main() without event... C\Documents and Setti...

PIX)

oK l [Cancel

Figure 3-6. Suppressed Rules Options Page

Suppressing Rules

Suppressing a rule tells code review not to fire that rule in future sessions.
Suppressing a rule is very different from filtering a code violation:

¢ When you suppress a rule, it is never fired, no data is collected, and
nothing is preserved in the session file.
¢ When you filter code violations, the underlying rules still fire, the
data is collected and saved in the session file, but is not displayed.

You can save rule suppressions locally in an individual solution or
universally across all solutions. You must first perform a code review
before you can select a rule to suppress.

1 Click the Problems tab on the Results window.

The Problems tab lists the code violations.

2 Select a code violation to suppress its underlying rule.

3 Access the Suppress Rule dialog box in one of two ways:

¢ Click the Suppress Rule toolbar button.
¢ Right-click on the highlighted rule line, and select Suppress Rule
from the context menu.

4 Choose the scope where you want to suppress the selected rule:

< Suppress this rule everywhere in this solution: Affects future
reviews of the current solution

Chapter 3 & Static Code Analysis

¢ Universally across all solutions: Universal effect on future
reviews of all solutions

Note: When you select universal suppression, the preference database
clears any solution-based suppressions for the rule and applies this
universal setting across all solutions.

If you attempt to suppress a rule in the current solution and code review
determines that the rule has already been suppressed in other solutions,
the Suppress Rule dialog box will prompt you to apply universal
suppression instead. You still can choose to suppress it only in the
current solution.

Viewing Summary Data

78

The Summary tab consolidates summarized results data in a single
location, while details about each aspect of the session are displayed on
the other corresponding tabs. Some items on the Summary tab are
dynamic. As items on the Problems or Naming tabs are marked as Fixed,
the Summary tab dynamically reflects the update. If the review included
unusual exceptions (such as running a review with an empty rule set),
the Summary tab reflects that message in the header section. Scroll
down the Summary tab to view each summary table.

Understanding DevPartner

Saummary | Problems FMaming FMetrics FCall Graph

SpeedBump.Met

DevPartner Code Review Summary
Solution: SpeedBump.iet

Summary of Problems *

Type . Problems
Mames Total
CioM Inkerop 1} 1}
Cratabase 0
Crate a
Crezign Time Properties i}

-

Envar/Exception Handling

Garbage Collection]
Intermationalization £
Language i}
Lagic 1}
Maint ainability 1
Petfarmnance 1

Figure 3-7. Summary Tab

Fixed | High Medium | Low

ool oo o] O

fm= O R e e N = 1 e N e N e N e Y e e |

—_

1]

0
0
0

-

fm R e R e R e

Severity

1]

o o o o o o o o O O

¢ The Summary of Problems table lists the categories of rules that
were assessed in your review. It indicates the number of violations
discovered and the number you have marked as fixed. It then breaks

down the total number of violations by severity category.

¢ Summary of Naming Guidelines lists the categories that you
originally selected on the Naming Guidelines options page to be

included in the review (Figure 3-5 on page 75). The table displays a

summary of the naming identifiers selected on the Naming
Guidelines options page, and indicates the number of violations

found.

Note: This table only appears on the Summary tab if you selected Naming
Guidelines on the General options page prior to the review (Figure
3-4 on page 70). This table is not available for the Hungarian naming

analyzer.

Chapter 3 & Static Code Analysis

79

¢ Summary of Call Graph Data summarizes information about the
call graph analysis captured during the review, including the total
number of methods and properties analyzed, and the number that
appear to be uncalled.

Note: This table only appears on the Summary tab if you selected Collect
Call Graph Data on the General options page prior to the review
(Figure 3-4 on page 70).

¢ Summary of Counts includes individual statistics gathered about the
code review session itself, including how long it took to run, the
number of lines in the solution, the number of comparisons made,
etc.

¢ Review Settings lists configuration and review-related data. This
information is useful for record keeping and troubleshooting.

¢ Project List provides information for each project in the solution,
including whether each project had compile errors, or was
successfully reviewed.

Viewing Code Violations

Code Violations ——»p

Details Pane——p

By default, the Problems tab has focus in the Results window following a
code review. The Problems tab displays code violations found in the
current solution. A Details pane below the list of code violations provides
further explanation, examples, and possible repairs when you select a
specific violation.

Summary Problems | Haming | fetrics | Cal Graph 4

Sp
F Suppressed Rule | Title Sev.. Project File Method Class Type A

|| 1050 Structured error handier nat found low CSharp SpeedBump.cs Updatesiot Formi ErrorfEx...
Fl 1619 Braces should nat be optional for co... War... CSharp SpesdBump.cs Updatesiot Formt Standards
O 1622 Use spaces instead of tabs wWar,. Coharp SpeedBump.cs Updatesiot Forml Standards
O 1619 Braces shoud not be optional for co... War... CSharp SpeedBump.cs Updatedl Farmi Standards

| 4] 1050 Structured error handler not Found low CSharp SpeedBump.cs Updatel Forml ErrorfEx. .|
e >

A

— Structured error handler not found

Trigger: Detected no structured exception handling at this level [Occurrences:1]
Original Source Line: private void UpdateSiotInt3z2 islot)
Location: SpeedBump.cs

Explanation

A structured error handler was not found in this Wisual Basic JNET procedure or Wisual C# .NET method. It may be benefidal to add at least
a try catch block to this code for mare fine-grained error handling.

Repair

Add a3 structured error handler to trap and manage error conditions.,

isual C# NET example:

zubli: void foo()

try
1 -

B

Figure 3-8. Problems Tab and Details Pane

80 Understanding DevPartner

Tip: Each code
violation can include
additional hyperlinks
for Trigger, Original
Source Line, and
Location.

Understanding the Problems Tab

The following table describes the information provided on the Problems
tab.

Table 3-3. Contents of Problems Tab

Column Description

Fixed Status of the code violation
The checkbox is checked when fixed
Suppressed Status of the rule suppression
Suppressed, or blank for not suppressed
Rule Number assigned to that code violation
Title Title of the rule
Severity Severity level (High, Medium, Low, Warning)
Project Project where the violation exists
File File where the violation exists
Method Method where the violation exists
Class Class of the fired rule
Type Rule type

Details Pane

When you select a code violation on the Problems tab, more detailed
information appears in the Details pane (see Figure 3-8 on page 80). The
contents are generated from the rules stored in the code review rules
database (system-supplied and user-configured). The following table lists
the information provided in the Details pane.

Table 3-4. Contents of Details Pane

Heading Description

Rule title (shown in red) Title of the rule

Trigger Name of the trigger; appears as a hyperlink that lets
you go to the original source line (see “Configuring

Triggers” on page 106)

Original Source Line Line of code that caused the rule to fire

Location Origin of the code violation

Explanation Code violation description

Chapter 3 ¢ Static Code Analysis 81

Table 3-4. Contents of Details Pane (Continued)

Heading Description

Repair Recommendation to fix the problem

Notes Additional comments, such as external links to
Microsoft MSDN knowledge base articles

Viewing Naming Violations

The Naming tab lists naming violations that code review finds during a
review. The appearance of the Naming tab varies depending on the type
of naming analysis you selected on the General options page prior to the
review (Figure 3-4 on page 70). See “Understanding Naming Analysis” on
page 98 for more information about each naming analyzer.

Note: The Naming tab displays results from one or the other, but not from

both naming analyzers. If None was selected, the Naming tab will
be empty following a code review.

Analyzing Hungarian Results

82

Figure 3-9 shows how the Naming tab appears when the Hungarian
naming analyzer is selected on the General options page (Figure 3-4 on

page 70).

SUMMary]/P_roblems Naming I/_ﬁetrics |/gall Graph] q I
| betBody brytel] GGenerate
; memberh... strMemberhame Local string CreateEr
L] preamble beetPreamble Local brvkel] Generate
: schemafe... Unknown Local smiTextR... WerifyDo
; wiriter Unknown Local System.l... Generate
- validators,,. Unknown Local smiReade... WerifyDo
: schema Unknown Local Stream WerifyDon
: options Unknown Local System.C... (aenerate
: kemp Unknown Local global::5y... Resource
: contentR... Unknown Local System.l... Generate
: Enc Uniknown Local Systemn.T... Generate
: Figld Uniknown Local Systemn.C... CreateEr
: compilelnit Unknawn Local System.C... faenerate
: classhcoess strClassfccess Local skring Created]
: provider Unknown Local CodeDomn... Generate
: doc Unknown Local smiDocum,.. Generate
: field Uniknown Local Systemn.C... CreateFi
: enunmFlag... blnEnumFlagsa... Local boal CreateEr
; typeDadla... Unknown Local System.C... CreateEr =

Figure 3-9. Naming Tab for Hungarian Naming Analysis

Understanding DevPartner

Analyzing Naming Guidelines Results

Naming
Violations —P

Details
Pane —»

Figure 3-10 shows a two-panel representation of the naming results when

the Naming Guidelines naming analyzer is selected on the General
options page (Figure 3-4 on page 70). Notice the Naming tab in the
upper panel and the Naming Details pane in the lower panel. Naming

Guidelines analysis also enables the View by list above the Naming tab.

Wiew by Variables

S Surmmary 'P_roblems/_ﬁaming Metrics Call Graph'

Fixed Marne Suggested
|:] Elements elements
D bMeedUpdate needUpdate
|:] i See Explanation
D r See Explanation
g iMidval See Explanation

Private ink[] Forml SpeedBu. .. SpeedBu. ..
Private System.B... Form1 SpeedBu. .. SpeedBu...
Local System.In... DoRando... Forml SpeedBu. .. SpeedBu...
Local System.R... DoRando... Forml SpeedBu... SpeedBu...
Local Systemn.In... QSort Farml SpeedBu... SpeedBu...

Access Type Method Class Mamespace | File

Project
CSharp
CSharp
Csharp
CSharp
CSharp

I

Current Name: r
Scope: Local

original Source Line: Random r = new Randormil);

Recommendations
Option 1: See Explanation

Explanation

Marming guidelines discourage single-character string fragments because they can be misinterpreted by other developers, Ensure

that the identifier is named properly 1o avoid conflusion.

Notes
Refer to MSDMN Help: Maming Guidelines

Refer to: How the Maming Guidelines Maming snalyzer \Works

Figure 3-10. Naming Tab for Naming Guidelines Naming Analysis

The following table lists the information provided on the Naming tab,

regardless of the naming analyzer selected.

Table 3-5. Contents of Naming Tab

Column Description

Fixed Status of the naming violation
Select this check box when a violation is fixed.
Name User-defined name for the data type

Chapter 3 & Static Code Analysis

83

Table 3-5. Contents of Naming Tab (Continued)

Column Description

Suggested Suggested name

Suggested names vary, depending on which naming analyzer is

selected (see “Understanding Naming Analysis” on page 98)

¢ If code review cannot suggest a name based on Hungarian
naming conventions, Unknown appears in this column.

¢ If code review cannot suggest a name based on Naming
Guidelines, asterisks appear in this column. An explanation
also appears on the Naming Details pane (Figure 3-10 on page

83).
Access Category of access within the current solution
Type Type of identifier
Method Method where the data type is declared
Class Class where the data type is declared
Namespace Namespace where the data type is declared
File File where the data type is declared
Project Project where the data type is declared

Understanding the Naming Details Pane

If you selected Naming Guidelines and made additional choices on the
Naming Guidelines options page (Figure 3-5 on page 75), a Details pane
appears below the Naming tab, providing additional details about the
selected naming violation.

Note: The Details pane is only available for the Naming Guidelines naming
analyzer, not Hungarian.

Table 3-6. Contents of Naming Details Pane

Item Description

Current name Corresponds to the item selected in the
upper panel

Scope Indicates the scope of the identifier

Original Source Line Displays the source line that pertains to the

selected naming violation in the upper panel

Recommendations Suggests one or more suitable names, based
on the Naming Guidelines naming analyzer
(see “Understanding the Naming Guidelines
Naming Analyzer” on page 98)

84 Understanding DevPartner

Table 3-6. Contents of Naming Details Pane (Continued)

Item Description

Explanation Provides an explanation for why this violation
was flagged as a problem

Note: If code review cannot suggest a better
name, an explanation appears in this pane.
DevPartner code review also shows a series of
asterisks in the Suggested column of the
upper panel of the Naming tab.

Notes Optionally includes a hyperlink to the
Naming Guidelines knowledge base in the
.NET Framework General Reference

Viewing Collected Metrics

The Metrics tab (Figure 3-11) displays code complexity results
(complexity, bad fix probability, and understanding level), based on
McCabe Metrics (see “Understanding McCabe Metrics” on page 86).

Sumnmary | Broblems | Hlaming }Mekrics FCall Graph | a0

Project Complexity Bad Fix % ©

= 5 harp] 5

& *BubbleSortBtn_Click SpeedBump... CSharp 5 5

& CSharpBen_Click Driver.cs Diiver 1 1 Simple: 4

& ®NativeCppBtn_Click Driver.cs Drriver 1 1 Simple !

“@Forml SpeedBump... CSharp 1 1 Simple 16
#*Faorml_Load Driver.cs Diiver 1 1 Simple: 2

¥NativeCppSpeed... Driver.cs Driver 1 1 Simple i

#*®Updatesiat SpeedBump... CSharp 2 1 Simple 5

+"hispose SpeedBump... CSharp 3 1 Simple 10
&*Main Driver.cs Driver 1 1 Simple i

#“Dispose Driver.cs Diiver 3 1 Simple 10
& SwapEm SpeedBump... CSharp 2 1 Simple 15
2"RandomizeBtn_Click. SpeedBump... CSharp 1 1 Simple 4

S QuickSortBtn_Click SpeedBump... CSharp 2 1 Simple 9

& PEndTiming SpeedBump... CSharp 1 1 Simple 4

& StartTiming SpeedBump... CSharp 1 1 Simple 4

“WwForml Driver.cs Driver 1 1 Simple 9

4 *Forml_Load SpeedBump... CSharp 1 1 Simple 3

4*DoRandomize SpeedBump... CSharp i 1 Simple 19
& Updateall SpeedBump... CSharp 2 1 Simple: 5

4#ClearTiming SpeedBump... CSharp 1 1 Sirriple: 3

Figure 3-11. Metrics Tab

Chapter 3 & Static Code Analysis 85

The Metrics tab only displays data if you selected the Collect metrics
check box on the General options page prior to the review (Figure 3-4 on
page 70). Table 3-7 lists the information provided on the Metrics tab.

Table 3-7. Contents of Metrics Tab

Heading Description

Method Method name where the code complexity issue originated
File File name where the issue originated

Project Project where the issue originated

Complexity Degree of complexity regarding a particular component;

this metric is related to McCabe Cyclomatic Complexity

Bad Fix % Likelihood that a new bug will occur in the code when
trying to fix a known bug

Understanding How straightforward the code logic is to decipher and
maintain
Lines of Code Total lines of code within the selected component;

breakdown of individual line counts appear on the
Summary tab

Understanding McCabe Metrics

86

When you collect McCabe Metrics, the Metrics tab displays code
complexity statistics, including: complexity, bad fix probability, and
understanding level. These metrics follow the industry-standard McCabe
Metrics. The Metrics tab displays an aggregate of all items pertaining to
the node selected on the Code Review Solution Tree.

Complexity

Complexity (also called Cyclomatic Complexity or McCabe's complexity)
represents an industry standard established as part of McCabe Metrics.
Complexity is considered a broad measure of soundness and confidence
for a program. This measure provides a single ordinal number that can be
compared to the complexity of other programs. It is often used in concert
with other software metrics. As one of the more widely accepted software
metrics, it is intended to be independent of language and language
format. The complexity number denotes a stronger measure of a
program's structural complexity than counting the number of lines of
code.

Understanding DevPartner

Complexity measures the degree of complexity in a module's decision
structures by measuring the number of linearly-independent paths
through a program module. Each component is analyzed individually
and then all possible decision points are calculated, e.g., If-Then-Else and
Select Case statements. With Select Case, each case is a separate decision
point.

McCabe Metrics defines Cyclomatic Complexity for each module as
e - n + 2, where:

e: is the number of edges in the control flow graph
n: is the number of nodes in the control flow graph

Cyclomatic complexity represents the minimum number of paths that
should be tested. The more complex the code, the more intense the
testing effort will be for that component.

Bad Fix Probability

Bad fix probability represents the likelihood of inadvertently inserting a
new bug while attempting to fix a known one. Bad fix probability looks
at a procedure and assesses the odds of introducing a new bug. Well-
written code would typically generate a lower bad fix probability percent.
Derived from McCabe Metrics, bad fix probability correlates with the
understanding level and complexity results.

Understanding Level

Similar to complexity and bad fix probability, understanding level
evaluates how easily a developer can interpret and maintain the code.
Understanding level evaluates code as follows:

Table 3-8. Understanding Level Metric

Range Understanding Level

Less than 5 Simple

Between 5 and 10 Simple to moderate
Between 11 and 20 Moderate

Between 21 and 30 Moderate to high
Between 31 and 50 High

Between 51 and 94 High to untestable
Greater than 94 Untestable

Chapter 3 & Static Code Analysis 87

Correlating All Metrics

The following table shows how all three metrics correlate with each
other.

Table 3-9. Correlation of McCabe Metrics

Code Complexity Bad Fix Probability Understanding

Range Percent Level Interpretation
Less than 5 1% Simple

Between 5 and 10 5% Simple to moderate
Between 11 and 20 | 10% Moderate

Between 21 and 30 | 20% Moderate to high
Between 31 and 50 | 30% High

Between 51 and 94 | 40% High to untestable
Greater than 94 60% Untestable

Viewing Call Graph Data

The Call Graph tab displays a static view of the inbound and outbound
call path corresponding to the method or property selected from the
Code Review Solution Tree (see Figure 3-12 on page 88).

Wiew by all)

o §ummary. 1 Problems -'ﬂaming t ﬂetrics #Call Graph

E-E @ b

£ Fomt
&% DoRandomizef)
&2 Fomt &2 Fomt
‘j‘ Qon() rj‘ SwapEm(])
&2 Formi £ Fomi &2 Fomi
59 RandomizsBin_Cick{) &® Bubbl=Sonfin Cick() 59 Updam=Siat])
Form1
gg Formi 5 Updet=l)

5% QuickSonBn_Cickl)

Figure 3-12. Call Graph Tab Showing Example of Call Graph Representation.

88 Understanding DevPartner

Note: Call paths are statically generated, not dynamically. This means that
the graph shows the potential method calls in the call path, rather
than the dynamic calls made during program execution.

The Call Graph tab is empty if:

¢ You did not select the Collect call graph data check box on the
General options page (Figure 3-4 on page 70) prior to the code
review. Call graph data was not collected during the review. To
perform call graph analysis and collect call graph data, select this
option and then perform another code review.

¢ You selected the check box, but did not select a method or property
on the Code Review Solution Tree (see Figure 3-2 on page 65). Data
was collected but no call graph appears until you select a method or
property node on the Code Review Solution Tree.

Understanding Call Graph References

The Call Graph tab depicts potential inbound/outbound call references
in a call path by tracing the call hierarchy for the selected method or
property. The display area shows the potential entry and exit points for
each method or property. The call references start at the root node with
all calls performed in reference to the root node. The call references
continue until control returns to the root node, or the call is completed
from the root node. The following types of call references appear in the
display area:

Root Node

The root node refers to the method or property selected to be the starting
point of the call graph. All other nodes either call into the root node or
are called by it. The root node (Figure 3-13) appears as a light yellow
rectangle with a wide blue border, which distinguishes it from all other
nodes in the display area.

22 i

E’Q Cleanupl)

Figure 3-13. Example of Root Node

Inbound Calls

Inbound refers to methods or properties that directly or indirectly call
into the root node. The inbound calls (Figure 3-14) are shown as light
blue rectangular nodes, which differentiates them from the root node.

Chapter 3 & Static Code Analysis 89

Outbound Calls

Outbound refers to methods or properties that are directly or indirectly
called by the root node. As with the inbound calls, the outbound calls
(Figure 3-14) appear as light blue rectangular nodes. They are connected
by a series of arrows, pointing away from the root, to show the potential
direction of the call path.

LIl
Cleanupl(])

Figure 3-14. Example of Inbound or Outbound Call Node

Uncalled References

Uncalled refers to a method or property that is defined in the code but

never referenced within the files that form an application component.

The Call Graph tab identifies uncalled methods on a node using either
the label Uncalled or the symbol (!).

1l .
Cleanupl) - Unecalled with label

g.; Ll .
EQ‘! e with icon

Figure 3-15. Two Examples of Uncalled Identification

Recursive and Circular Call References

The Call Graph tab can graphically show instances of recursive or
circular call references that exist in the selected path of execution.

¢ Recursive: Method or property that calls itself in the path of

execution.

A calls B;

B calls B
9:: FacurziveC al gg RecurziveCal
=i RecursiveCall) é‘ Al

Figure 3-16. Example of Recursive Call Graph

¢ Circular: Method or property that indirectly calls back into a
previously called method or property in the path of execution.

90 Understanding DevPartner

A calls B;
B calls C;
C calls back to A

gg CircularZalls

5% B0

Q: CircularCalls %‘; CircularCalls g{; CireularCalls
= CircularCalls() El‘ Al Er‘ =l

Figure 3-17. Example of Circular Call Graph

Setting Call Graph Configuration Options

Bt ow

5% pan)

1

o
3; Dof oeeeurg |

DevPartner code review provides four ways to configure how a call graph
appears in the Call Graph tab. Access these options either from the Call
Graph toolbar or by right-clicking on the background area of the Call
Graph tab.

Number of Levels

Choose the number of levels to be displayed on the Call Graph tab. The
call graph shows a specified number of levels of methods or properties
that call into (inbound) and are called from (outbound) the root node.
You can choose between one and six levels (six, default). The following
example shows two levels selected. The plus signs (+) on the nodes to the
right of the call graph indicate that more levels of call references are
available for viewing.

g 1

3: o :_5‘ DRk .;t ColFpke TP
(part of level 1) i 1 2
B w g2 owi 2w
.-i‘ Dok 3‘ CperPidaoa(] _é' copcomPahl]

Figure 3-18. Shows Two-level Configuration

Chapter 3 & Static Code Analysis 91

Node Style

You can choose the node style that will be applied to the Call Graph tab.
All call graph node styles show the class name, as well as the method or
property name. Some node styles also include icons indicating the access
type of the class, method, or property: public, private, internal, or
protected. These are standard Solution Tree icons. Other icons,
representing uncalled methods and properties, only appear in the call
graph.

The following table shows examples of the various node styles.

Note:

Table 3-10. Node Styles

Node Style

Some examples show root node and others use standard node

(inbound or outbound). See “Understanding Call Graph
References” on page 89 for more information on how nodes are

differentiated.

Description

Uncalled
Representation

Examples

without icons

Single label Shows the class name, thena | The designation - Uil Clesnup()
period, followed by the Uncalled appends the : e
method or property name, method or property
but without icons name. Inbound/outbound

Top and bottom labels Shows the class name The designation - Lt
appearing on the first line and | Uncalled appends the leanupl)
the method or property name | method or property

i th t, but th d line.
appearing on the next, bu name on the second line Inbound/outbound

One image and label

Shows a standard method or
property icon, plus the class
name, then a period, followed
by the method or property

The corresponding icon
includes an exclamation
point icon (!).

=0 Ukl Cleanupl)

. Root
name, all on the same line
One image and two labels | Shows an icon for the method | The corresponding icon i
or property, along with the includes an exclamation & Elcanupl
class name on thefirst lineand | pointicon (!).
the method or property name
on the second line Root
Two images and two Shows an upper-level icon for | The explanation point :
labels the class followed by the class | icon (!) icon appears g'; Hil
name, and a lower-level icon | between the data type 5% Cleanupl)
for the method or class, icon and the name.
followed by its name Root

92 Understanding DevPartner

Scaling

Choose the relative size of the call graph on the Call Graph tab. Two
scaling options are available:

¢ To fit in available space (default)

This selection lets you scale the call graph so that all the nodes fit
within the display area. By default, scroll bars are not available with
this choice. If you reconfigure the call graph using the other options,
the contents will be resized without the inclusion of scroll bars.

¢ By percent of full size

This selection lets you enlarge or shrink the contents in the display
area by one of these fixed percentage values: 100%, 80%, 75%, 66%,
or 50%. This choice allows you to zoom into sections of a large or
complicated call sequence. Moreover, when the contents are
redrawn, the selected method or property (root node) is clearly
visible in the display area. Scroll bars are also available.

Layout

Choose how the call graph nodes will be laid out on the Call Graph tab.
Your choices include:

¢ Horizontal

The nodes appear in a left-to-right orientation in the display area.
The methods or properties calling into the selected node (also called
the root node) are located to its left. The methods or properties that
the selected node calls into branch to the right.

¢ Vertical

The nodes appear in a top-to-bottom orientation in the display area.
The methods or properties calling into the selected root node are
located above the root node. The methods or properties that the
selected node calls into are located below it.

Using the Command Line Interface

You can run a batch script from the command line interface (using
CRBatch.exe) to review large solutions with many managed projects, or
as an overnight or automated build process. The command line interface
streamlines the code review process by bypassing user interaction.

Note: If the solution file is set to read-only, Visual Studio will interrupt the
batch review with an error message.

Chapter 3 & Static Code Analysis 93

94

When you select Always generate a batch file on the General options
page, code review generates a batch file during the next interactive code
review performed in Visual Studio. You can use this batch file to run the
batch review on the same solution.

Note: If you use the /r option, you should disable Always generate a batch
file, or backup and rename your batch file. Otherwise, your batch file
will be overwritten.

The command line interface generates an HTML-formatted summary file
(CR_solution-name.htm) in the solution directory after a review
completes. This file is identical in content to the session file generated
interactively.

You can script a batch procedure that reviews your solution, and then:

¢ E-mails the generated summary and session files to another location

¢ Saves the summary file to a local intranet for later viewing from that
location, or from an external Internet Web site

¢ Calls crRExport.exe to export the data to XML for even more
formatting and display options (see “Exporting Data to XML” on
page 96)

If code review cannot execute a batch review, it creates an error file,
CR_solution-name.err. If the batch file fails on an attempted export to
XML, it creates an error file CREXPORT sessionfiledatabasename.err.
Both error log files are created in the same path as the session file.

Syntax and Options

Run a code review session from the command line or batch file using the
following command line syntax and options:

CRBatch.exe [/?] /f filename [/v] [/r] [/vs version]

Table 3-11. Command Line Options

Option Definition

/? Displays the list of command line options for CRBatch.exe

/f filename Identifies the configuration file to use in the review (mandatory)
/v or Instructs the command line interface to report errors in a message
/verbose box and to set the exit code used by the batch procedures

(optional, although useful when physically debugging
configuration files)

/r or Instructs the command line to examine the results of the review
[results for coding problems and naming violations, and return a specific
error code if either or both error types were found (optional)

Understanding DevPartner

Table 3-11. Command Line Options

Definition
/vs "9.0" or Indicates the Visual Studio .NET Framework version where the
/vs "8.0" batch review will execute:

9.0 (2008) or 8.0 (2005)

Understanding the Error File

The following error codes are returned to a calling batch process when
the command line interface exits.

Table 3-12. Command Line Error Codes

Error Number Message

0 Successful

1 No configuration file specified

2 Configuration file does not exist

3 No solution file was specified

4 Solution file does not exist

5 CRBatch initialization error

6 Invalid command line argument

7 Create Visual Studio process failed

8 License check failed

9 Visual Studio exited with an error

10 Visual Studio version number incorrect
11 Unexpected error

12 Coding problems found

13 Naming violations found

14 Coding problems and naming violations found
70 Attempt to create error file (. ERR) failed

If a batch-generated review encounters a build error or compile errors
exist in the solution being reviewed, the batch review will stop
unexpectedly without generating a session or summary file. An error
message is appended to the error file.

Chapter 3 & Static Code Analysis 95

Note: Error 11 is returned for unexpected runtime errors. The error details
(error message and stack-trace) are written to the .ERrR file.

Exporting Data to XML

DevPartner code review allows you to export session results data to XML,
providing you with a simple way to port your results data into report

formats, e-mail, an internal Web page, etc. You can export your data to
XML:

¢ From code review, after running a code review session
¢ From the command line, using a saved session file
¢ In an automated batch process, using a saved session file

The ppcRExport.xsd schema file, located in the CodeReview installation
directory, describes the contents and XML format for exported data.

Exporting Session Data from within DevPartner

After completing a code review, you can export all data from the current
session file to an XML file. Select Export DevPartner Data from the File
menu and provide a name for the export file. By default the file is saved

in the same location as the solution, but the file will not appear in the
solution explorer.

Note: You must maintain focus in the code review session window to
export code review data.

This process always exports all session data, including inbound methods
from the call graph data. To be more selective about what categories of
data you export to XML, use the command line.

If code review cannot export your session data to XML, it generates an
error message describing the problem it encountered.

Exporting Session Data from the Command Line

96

DevPartner code review includes a command line utility, CRExport.exe,
that exports the results of a code review session to an XML file. To export
session data you must specify the session file and the output file using
the mandatory command line arguments. For example:

CRExport.exe /f C:\MyResults\WebAppl.DPMDB /e C:\MyXML\WebAppData

Optional command line arguments also let you specify the categories of
data to export from the session database file.

Note: If you call cCRExport.exe without passing it any of the optional
arguments, it exports all session data, including inbound methods.

Understanding DevPartner

This behavior is equivalent to passing CRExport.exe the /a i
arguments, or initiating the data export from within DevPartner.

If the export utility cannot create the export file, it generates an error log
file, CREXPORT sessionfiledatabasename.err, in the same path as the
session file.

Syntax and Options

Export your session data to XML via the command line or batch file
using the following command line syntax and options:

CRExport.exe [/?] /f sessionfile /e xml exportfile [/a | /ai | /p |
/m | /n | /s | /c | /c i]

Table 3-13. Command Line Options

Option Definition

/? Displays the list of command line options for CRExport.exe

[f sessionfile Identifies the session database to use for this export
(mandatory)

/e xml_exportfile Identifies the XML file to receive the exported data
(mandatory)

/a Exports all data for the specified session, including the

outbound methods for call graph data, but Inbound methods
are not exported

/ai Exports all data for the specified session, including inbound
and outbound methods for call graph data

/p Exports the problems data for the specified session

/m Exports the metrics data for the specified session

/n Exports the naming analysis data for the specified session
/s Exports the code size data for the specified session

/c Exports the outbound, or called, methods in the call graph

data for the specified session

[ci Exports the call graph data, including inbound and outbound
methods, for the specified session

Exporting Session Data from a Batch Process

You can use CRExport.exe along with CRBatch.exe as a single batch
process to conduct a code review, and then export the session data to
XML. This feature is especially useful when you already run a code review
via batch process:

Chapter 3 & Static Code Analysis 97

¢ As part of a nightly build process
¢ On very large applications
¢ To automate your quality control testing

Understanding Naming Analysis

The code review feature incorporates two kinds of naming analysis
capabilities:

¢ Naming Guidelines

The naming analyzer supports the .NET Framework. See
“Understanding the Naming Guidelines Naming Analyzer” on page
98.

¢ Hungarian

The Hungarian naming analyzer is a legacy naming analyzer in code
review. See “Understanding the Hungarian Naming Analyzer” on
page 101.

Note: You can also choose None from the Naming analysis to use list on
the General options page (Figure 3-4 on page 70) to bypass naming
analysis altogether.

Understanding the Naming Guidelines Naming Analyzer

The Naming Guidelines naming analyzer is patterned after the Visual
Studio .NET Framework naming guidelines. These naming guidelines
ensure that consistent, predictable, and manageable naming practices are
applied to .NET Framework types in a managed class library.

Note: Choose Naming Guidelines from the Naming analysis to use list on
the General options page (Figure 3-4 on page 70), plus make
additional selections on the Naming Guidelines options page
(Figure 3-5 on page 75) to ensure a more precise review.

The Naming Guidelines naming analyzer examines:

Parameters
Classes
Namespaces
Methods
Delegates
Enums
Structs
Interfaces
Variables

L R R K IR IR R R R 4

98 Understanding DevPartner

The naming analyzer looks for naming violations in the source code
related to capitalization, case sensitivity, abbreviations and acronyms,
and syntax for namespaces and other .NET Framework identifiers.

The following sections describe guidelines that the Naming Guidelines
naming analyzer follows.

Capitalization

When it finds a naming violation, code review attempts to suggest a
more appropriate name on the Naming tab using the capitalization style
that you selected on the Naming Guidelines options page — Camel or
Pascal.

Table 3-14. Capitalization Styles Used in Naming Guidelines Naming Analyzer

Capitalization First Concatenated Subsequent Examples of

Style Word Concatenated Words Suggested Names
Camel case Not initial-capped Initial-capped redColor

Pascal case Initial-capped Initial-capped RedColor

Case Sensitivity

DevPartner code review discourages using case sensitivity to differentiate
identifiers in the source code. Case insensitivity is strongly encouraged
because it supports interoperation between case-sensitive and case-
insensitive programming languages and also reduces confusion between
two similarly-named identifiers. Developers should avoid names that
vary only by case. Rather, they should use names that are functional in
either case-sensitive or case-insensitive programming languages.

Abbreviations and Acronyms

DevPartner code review supports the use of generally accepted
abbreviations and acronyms. DevPartner code review determines proper
naming based on:

¢ The number of letters for the abbreviation or acronym
¢ The position of the abbreviation or acronym in the identifier name

Namespace Syntax

DevPartner code review supports the .NET Framework naming
convention for namespaces. The namespace name starts with the
company name, followed by the technology name, and optionally ends
with the feature and/or design name. Here is an example of the syntax:

Chapter 3 & Static Code Analysis 99

100

CompanyName .TechnologyName [.Feature] [.Design]

By default, code review recommends Pascal case for namespaces (see
“Selecting Camel Case or Pascal Case” on page 76). The period character
(.) separates each logical concatenated word. Enter the namespace
information in the Namespace options field on the Naming Guidelines
options page (Figure 3-5 on page 735) prior to the review.

Syntax for Other .NET Framework Identifiers

DevPartner code review checks for properly named .NET Framework
identifiers in the source code. Here are some examples of what code
review looks for:

2

Understanding DevPartner

Numeric characters

DevPartner code review checks whether numbers are part of the
identifier name. While code review does not remove the numeric
characters, it does flag the name as a violation.

Underscore characters

DevPartner code review looks for instances of the underscore
character (_) in the identifier name. The underscore character is
discouraged in the Naming Guidelines naming analyzer. DevPartner
code review removes the underscore character except in the
following cases:

¢ If the underscore is a leading character (i.e., _redColor)
& Ifit is used in a method name
¢ It its removal introduces another naming violation

Casing for constants

DevPartner code review follows Pascal or Camel casing for constants
(depending on the case selection you made on the Naming
Guidelines options page), rather than all uppercase. For example,
code review would change the constant HTTP_PORT in:

private const int HTTP PORT = 80

¢ To HttpPort based on Pascal
¢ To httpPort based on Camel

Delegate

If a delegate identifier name includes the word delegate (regardless of
case) along with one or more identifiable words, code review removes
the word delegate as long as it does not introduce another violation.
For example, the name, MyDelegateWord, would be renamed as
MyWord.

Understanding the Hungarian Naming Analyzer

DevPartner code review includes the Hungarian naming analyzer,
patterned after the Hungarian Notation naming convention.

With Hungarian naming, variable names include specific character(s)
that identify a particular scope-level or data-type prefix for the variable in
question. For example, the data-type prefix int signifies an integer, such
as integer variable Port; and the scope-level prefix g signifies global, as
ing intPort.

DevPartner code review uses the Hungarian naming analyzer in a code
review when the Hungarian option is selected from the Naming
analysis to use list on the General options page (Figure 3-4 on page 70).
DevPartner code review also uses the currently selected name set. When
you start a code review, the naming analyzer evaluates scope-level
prefixes and data-type prefixes for every variable in the code. If
applicable, code review makes recommendations consistent with the
name set (Default preferred) and displays the naming results on the
Naming tab (Figure 3-9 on page 82) following the code review.

Note: The Hungarian naming analyzer does not evaluate parameter names.

The following tables list examples of scope-level and data-type prefix
combinations that are evaluated in the Hungarian naming analyzer, as
specified in the current name set.

Table 3-15. Scope Prefix

Scope Prefix

Global g_
Member m_
Local "

Table 3-16. Data Type Prefix

Data Type Prefix

string str
int int
int i
boolean bool
bool bln

Chapter 3 & Static Code Analysis 101

102

The qualifiers on a variable declaration determine the scope, such as the
boundaries where the variable exists. For example, code review considers
a variable with public status as having a global scope because it is
accessible outside the class.

The default name set contains scope prefixes that you can edit using the
Rule Manager. You can also customize variable and object names, based
on Hungarian Notation, using the Rule Manager.

Constructing a Hungarian Naming Suggestion

The Hungarian naming analyzer makes a more appropriate suggestion
when it encounters one or more of the following anomalies in your
source code:

¢ [t finds an incorrect or missing scope prefix (e.g., m_for global,
instead of g)

¢ [t finds an incorrect or missing data type prefix (e.g., short, instead of
intShort for integer type)

¢ You selected the Warn if the first letter after the prefix is not
capitalized check box (on the New Rule Set or Edit Rule Set dialog
box in the Rule Manager) to apply to the Hungarian name set, but
the first letter of the variable name following the prefix, is not
capitalized.

The naming analyzer combines the following: Scope Level Prefix + Data
Type Prefix. If you have not specified a scope-level prefix in the
Hungarian name set, the suggested name would begin with the data type
prefix.

DevPartner code review will display Unknown on the Naming tab,
rather than attempt to suggest a name if code review cannot recognize
the data type for a variable because:

¢ The data type does not exist in the current Hungarian name set

¢ You have selected the Warn if unknown objects are found check
box on the New Rule Set or Edit Rule Set dialog box in the Rule
Manager to apply to the name set

See “Using the Code Review Rule Manager” on page 103 for more
information on managing name sets.

Understanding DevPartner

Using the Code Review Rule Manager

Configuring Rules

DevPartner code review contains an extensible rules database that is
based on the Microsoft Visual Studio programming standards. The rules
database is maintained and stored in the Rule Manager standalone
application. With Rule Manager, you can configure rules, triggers, and
rule sets. You can also configure Hungarian name sets that the Hungarian
naming analyzer uses during a code review. The Rule Manager
automatically stores any modifications you make to the code review rules
database. These modifications become immediately available when you
configure and perform your next code review.

Access Rule Manager by selecting Compuware DevPartner Studio >
Utilities > Code Review Rule Manager from the Start menu.

Use the Rule Manager to create, edit, and delete rules. You can also add
HTML links to the rule descriptions to provide more information for
developers trying to resolve violations.

Creating Rules

Use the New Rule dialog box to create and configure a new rule. To
create a new rule, complete the following steps:
1 Select Rule > New Rule.

The New Rule dialog box opens with the General tab displayed by
default. The title bar shows the pre-assigned rule number. The status
bar shows the current Owner and Last Edit details (see Figure 3-19).

Chapter 3 & Static Code Analysis 103

104

Note:

Until you create a Trigger and Expression for the rule, it will not fire.

£ New Rule: 7004 {=0(E3]
~General | Description |“Preview | Triggers Expression Builder 4
Rule: 004 @ This rule will not firel Thiz rule haz no tiggers and no trigger exprezzion.
“Title: [New Rule 7004
Type: |User-D efined Rule j
Severity: |High ﬂ
Rule sets: [T Date Farmatting Fules
Jv Default

Owner: EFHDEEO

I~ Design Time Properties
I Intemationalization Rules
[Logic Rules

[T Maming Guidelines

[~ Performance Rules

[~ Security Rules

[” Standards

[T web Applications

o]

Cancel Apply Help

Last Edit:

Figure 3-19. New Rule Dialog Box

2

Understanding DevPartner

Set up the new rule using the following tabs (in this order):
a General — to enter general rule properties

b Description — to enter details about the rule

¢ Preview — to review current entries

d Triggers — to configure up to five triggers for the rule
e

Expression Builder — to build trigger expression(s) for each
trigger

Click the Description tab and add a description for the rule.

You can use the Description tab to provide HTML links that direct
developers to external resources to help resolve coding issues. These
links will appear in the lower panel (Description pane) of the
Problems tab following a code review session.

Click the Triggers tab, and add a trigger for your rule.
See “Configuring Triggers” on page 106 for more information on
creating a trigger.

Select the Expression Builder tab to build a trigger expression.
You can build an expression for each trigger you just configured on
the Triggers tab. For more information on building trigger
expressions, refer to the Rule Manager online help.

Editing Rules

Use the Edit Rule dialog box to modify existing rule properties. The Edit
Rule dialog box contains all the same fields as the New Rule dialog box
(see Figure 3-19 on page 104). To edit an existing rule, complete the
following steps:
1 Select Rule > Edit Rule.
The Edit Rule dialog box opens with the General tab displayed by
default. The title bar shows the rule number and title. The status bar
shows the current Owner and Last Edit details.
2 Modify the existing rule using the following tabs (in this order):
a General — to modify existing rule properties
b Description — to modify details about the rule
¢ Preview — to review current entries
d Triggers — to modify settings for the existing triggers
e

Expression Builder — to modify trigger expression(s) for each
trigger

Deleting Rules

You can only delete user-configured rules that reside in All Rules, not
any DevPartner-supplied rules. When you delete a user-defined rule from
All Rules, the Rule Manager automatically deletes it from any other rule
sets where it also resides.

Note: Editing a DevPartner-supplied rule removes it from system ownership
but does not change it to user-defined status. You cannot delete it
from All Rules.

To delete a rule, complete the following steps:

1T Select All Rules from the Rule Set list.
The rules in All Rules appear in the Rule List pane.

Chapter 3 & Static Code Analysis 105

Configuring Triggers

106

Rule i Title i Severit | Type | Language | Cwiner AJ
1002 Return value from kMainf) may be inco... Medium Logic Wisual CH.... DewPartner
1003 Method containg multiple sting conca... Medium Performance Visual Basi.. DevPartner
1004 Use of @ spmbol found M edium Maintainab... Visual CH... DevPartner
1005 Hidden method found W arning Maintainab... Visual Bagi.. DevPartner
1006 Mainf) called frorm within application High Logic Wisual Basi.. DewPartner
1007 Fully qualified name uzed W arning Maintainab... Vizual Basi.. DevPartner
1008 |dentifier names differing only in case f.. Warning Maintainab... Visual CH.... DevPartner
1010 Redinn of aray found b ediurn Performance Visual Basi.. DevPartner
1012 Paszsing clazses and structs to or from... Warning COM Interop Wizual Basi.. DevPartner
1ma Fotential performance problem with cl... High Garbage C... Vigual Bazi.. DevPartner
104 Pozzible reference to self created ino... High Garbage C... VigualBazi.. DevPartner -

J -

Figure 3-20. Rules List Pane
2 Select one or more user-defined rules in the Rule List pane.

3 Select Rule > Delete Selected Rules from Rules Database.
The Rule Manager deletes the selected rule(s) from the All Rules rule
set.

Note: This action cannot be undone.

Note: Delete Selected Rules from Rule Database is only enabled in the
Rule menu once you have selected All Rules from the Rule Set list.

Select the Triggers tab to configure up to five triggers that will fire a rule.

Note: Although some DevPartner-supplied rules use macros, you cannot
edit or configure a trigger for any rules that are macro-based.

If no triggers are associated with the rule you are configuring, the
Existing Triggers list box is the only visible field and appears empty. In
addition, the Add button becomes available so that you can add a new
trigger to the setup.

If one or more triggers already appear in Existing Triggers, the other
fields applicable to the trigger's Type are displayed, and required fields
appear with an asterisk. The Add and Delete buttons are available for
setup.

Adding a Trigger

Complete the following steps to add a trigger:

Understanding DevPartner

1 Click the Add button to add a new trigger.

The Rule Manager displays a default name, New Trigger n, in the
Trigger Name field. For example, if this is your first trigger, the name
will be New Trigger 1 (Figure 3-21).

Note: When you reach the five trigger limit, the Add button on this pane
automatically becomes unavailable.

£” New Rule: 7004 LEx
J/g'eneral i'if)escr:iﬁt.i-o_n | I':'-regi-ew/: _i riggers.' Expressi;:un BL-liIder;

Existing Triggers

=

Delete

= Trigger Mame:]New Trigger 1

Type: {Eode _:J [~ Fire When NOT True
= Language: I Wisual Bazic Soope: |Elass L]
I Visual CH

= Regular Expression:

ak | Cancel Apply Help

Owner BFHDBED [Last Edit: |

Figure 3-21. New Trigger Tab

2 Enter or change the trigger name.
Do not use left [or right 1 brackets, such as in [Checkstring]. If you
type in bracket characters, the Rule Manager will ignore these
keystrokes. Brackets delimit multiple triggers in a trigger expression
within the Expression field on the Expression Builder pane. An
attempt to manually insert brackets invalidates a trigger expression.

3 Select a trigger type from the Type list.

The trigger type selection determines the remaining parameters for
the trigger being configured (see Table 3-17).

Table 3-17. Trigger Types

Type Function

Code Detects problems in the actual source code

Web Form Page Ensures compliance with HTML and/or ASP.NET tag
construction

Chapter 3 Static Code Analysis 107

Table 3-17. Trigger Types

Type Function

Design Time Isolates the trigger firings to specific Visual Studio .NET

Property properties

Web.config Ensures compliance with elements in ASP.NET Web.config
files

4 Configure all the required fields for the selected trigger type.
Depending on the Type selected, you will have to supply different
parameters for your trigger. For more information on configuring
your specific trigger type, refer to the Rule Manager online help.

5 Add a regular expression for your rule to the Regular Expression text
box (see “Creating New Rules Using Regular Expressions” on page
116).

Deleting a Trigger

To delete a trigger listed in Existing Triggers, complete the following
steps:
1 Select the trigger and click Delete.

A confirmation message appears.

2 Click Yes to confirm or No to abort this action.

Note: You cannot delete a trigger if it is already being used in a trigger
expression.

Configuring Rule Sets

108

Rule sets are collections of rules you can use in a code review session.
DevPartner code review includes a selection of pre-configured rules sets.
You might find you want to work with custom rule sets, and you can use
the Rule Manager to create, edit, or delete rule sets.

Creating Rule Sets

The Rule Manager includes a master rule set called All Rules. However,
you can create additional rule sets tailored to your project-specific
requirements. To create a new rule set, complete the following steps:
1 Select File > New Rule Set.

The New Rule Set dialog box appears (Figure 3-22).

Understanding DevPartner

New Rule Set

Rule Set Mame: [T

Diezcription: Enter a description

Hungarian Mame Sets

Uze Set: |DE[au|[j

[% am if unknown objects are found

[“am if the first letter after the prefis is not capitalized

: | Cancel Help I

Figure 3-22. New Rule Set Dialog Box

2 Enter a rule set name in the Rule Set Name field (up to thirty

characters).

3 Enter a brief description for the new rule set in the Description field
(optional).

4 Select a Hungarian name set from the Use Set list in the Hungarian
Name Sets section of the dialog box.

Note:

Name sets in the Rule Manager only support the Hungarian naming
analyzer, patterned after the Hungarian naming convention. They do
not support the Naming Guidelines naming analyzer, patterned after

the Visual Studio .NET naming guidelines.

5 Choose how you prefer Hungarian naming violations to appear on
the Naming tab:

<&

If you select Warn if unknown objects are found, code review
will specify a naming violation as Unknown if it cannot make a

suggestion.

If you select Warn if the first letter after the prefix is not

capitalized, code review will make a suggestion.

6 Click OK.
The Rule Manager validates the new rule set.

7 Populate the rule set with rules by:

¢ Creating new rules (see “Creating Rules” on page 103).

Chapter 3 & Static Code Analysis

109

110

¢ Opening an existing rule set in order to select, copy, and paste
rules into the new rule set.

Editing Rule Sets

To edit the properties of a rule set, complete the following steps:

1
2

Select an existing rule set from the Rule Set list.

Select File > Rule Set Properties.

The Edit Rule Set dialog box appears. The Edit Rule Set dialog box
has the same available fields as the New Rule Set dialog box (see
Figure 3-22 on page 109).

Enter a rule set name in the Rule Set Name field (up to thirty
characters).

Enter a brief description for the new rule set in the Description field
(optional).

Select a Hungarian name set from the Use Set list in the Hungarian
Name Sets section of the dialog.

Note: Name sets in the Rule Manager only support the Hungarian naming

analyzer, patterned after the Hungarian naming convention. They do
not support the Naming Guidelines naming analyzer, patterned after
the Visual Studio .NET naming guidelines.
Choose how you prefer Hungarian naming violations to appear on
the Naming tab:

¢ If you select Warn if unknown objects are found, code review
will specify a naming violation as Unknown if it cannot make a
suggestion.

<& If you select Warn if the first letter after the prefix is not
capitalized, code review will make a suggestion.

Click OK.
The Rule Manager validates the changes to the rule set properties.

Deleting Rule Sets

To delete an existing rule set, complete the following steps:

1

Select a rule set from the Rule Set list.

Note: You can delete user-defined rule sets, but not DevPartner-supplied

2

Understanding DevPartner

rule sets.

Select File > Delete Rule Set.
The Delete Rule Set dialog box appears.

3 Click Delete.
Note: This action cannot be undone.

Configure Hungarian Name Sets

Use the Rule Manager to create, edit, duplicate, or delete Hungarian
Name Sets used by the Hungarian Naming Analyzer during a code review
session. To access the Hungarian Name Sets dialog box, select File >
Hungarian Name Sets.

** Hungarian Mame Sets

Mame Set JElbiects]Uariables J Mew

Edit
Duplicate

175

LCloze Help

Figure 3-23. Hungarian Name Sets Dialog Box

Creating a Hungarian Name Set
Complete the following steps to create a new Hungarian Name Set:

1 Click New.

The New Hungarian Name Set dialog box opens (Figure 3-24 on
page 112).

2 Replace Untitled in the uppermost field with a unique name for the
name set.

3 Click Create.

After you click Create, the Add, Edit, and Delete buttons are
enabled.

4 Select the applicable language to apply to this new name set.

Chapter 3 Static Code Analysis 111

112

Once you select the language, the Rule Manager verifies the new
name.

* New Hungarian Name Set

[Fi=w Htmgatian Name Ge

& isual Basic " Wisual CH# Add

~Wariahles ijects.' q4
' Edt |

Yariable Type Frefis I
Lelete

Local: |
tember: |

Public: |

aK Close | Hep |

Figure 3-24. New Hungarian Name Set Dialog Box

Editing a Hungarian Name Set

Complete the following steps to edit an existing Hungarian name set:

1

Select a name set on the Hungarian Name Sets dialog box (see Figure
3-23 on page 111).
Click Edit.

The Edit Hungarian Name Set dialog box opens. The Edit
Hungarian Name Set dialog box is much like the New Hungarian
Name Set dialog box (see Figure 3-24 on page 112)

Edit the language, variables, and objects associated with the name set
as you see fit.

Note: You cannot edit the name of a Hungarian name set.

Understanding DevPartner

Duplicating a Hungarian Name Set

You can duplicate a Hungarian name set, allowing you to create a new
name set following an existing name set as a template. To duplicate a
Hungarian name set complete the following steps:

1 Select a name set on the Hungarian Name Sets dialog box (see Figure
3-23 on page 111).

2 Click Duplicate.
The Duplicate Hungarian Name Set dialog box opens (see Figure 3-
25).

3 Replace Copy of <name> in the uppermost field with a unique
name.

4 Click Create.

After you click Create, the Add, Edit, and Delete buttons are
enabled. Rule Manager verifies the name set.

* Duplicate of Hungarian Name Set: Default

ll:op_l,l of Mew Hungartian Mame Set Create
' “fisual Basic T Aisual C# o]
~Wariables | Ohbijects qk |
Wariable Type Prefix s]
Boolean bin
Buyte bt
Char C
Callection cal
Cumency cur
DataRow dr
DataSet dz
Date dt
DateTime dtm
Decimal dec i
< |
Local: |
ernber: |
Public: |
Cloze Help

Figure 3-25. Duplicate Hungarian Name Set Dialog Box

Chapter 3 & Static Code Analysis 113

Deleting a Name Set

To delete a Hungarian Name Set, complete the following steps:

Note: You can only delete a user-defined Hungarian Name Set that is not
currently in use by a rule set.

1 Select File > Hungarian Name Sets.
The Hungarian Name Set dialog box opens (see Figure 3-23 on page
111).

2 Select the name set to delete.
The Rule Manager highlights all the variables and objects associated
with that Hungarian name set within each tabbed pane, and disables
the Add, Edit, and Duplicate buttons.

3 Click Delete.

The Delete Hungarian Name Set dialog box opens.

4 Click OK to delete the selected name set.
The Hungarian Name Sets dialog box reappears.

Note: This action cannot be undone.
5 Click OK.

Manipulating the Rule List

114

There are two ways you can manipulate the rules displayed in the Rule
List:

Filter the Rule List View

Use the Filter pane, located on the left side of the Rule Manager window
below the Rule Set list, to filter contents appearing in the Rule List pane
(see Figure 3-20 on page 106).

1 Select a rule set from the Rule Set list.

The Rule Manager automatically lists all rules in the database when
you select All Rules in Set. Select an individual rule set to filter
selections.

2 Click the Filter tab (Figure 3-26 on page 115).

Understanding DevPartner

Tip: You can also select
recent search strings
from the Contains
list.

/" Filter | #4 Find q b

Select at least one item from each categony:

- All rules in set [484)
+- [#] Type
+- [#] Severity
- Language
+|- [#] Owiner

Figure 3-26. Filter and Find Tabs

3 Select (or clear) at least one item from each group at Filter options.

You can select the group check box or click + to expand and make
individual choices from within the group.

You must pick at least one item from each group. If you do not, then
a mouse pointer will direct you to the area needing attention. The
groups include:

¢ Type — Rules coincide with programming technologies.

¢ Severity — Choices include High, Medium, or Low, and
Warning. Use Warning to call attention to a particular coding
problem.

¢ Language — Only languages that apply to the selected rule set
will appear.

¢ Owner — DevPartner-supplied rules reference the identifier
DevPartner. All other rules become the ownership of the
individual who created the rule. The Rule Manager will only
display owners that apply to the selected rule set.

4 Click Apply to filter the current view.

Find a Specific Rule

Use the Find tab, located on the left side of the Rule Manager window
below the Rule Set list, to search for one or more rules.

1

3
4

5

Select a rule set to search in from the Rule Set list.
If you choose All Rules in Set, all rules in the rules database appear.

Click the Find tab to display search options (see Figure 3-26 on page
115).

Select a criteria from the Search Rule Set For list.
Enter a string at Contains to define the specific search condition.

Click Find.

To perform a subsequent search, choose either of the Search In options:

Chapter 3 & Static Code Analysis 115

¢ All rules in set — To initiate a new search
¢ Current results — To continue searching within the current results

You can optionally change search criteria, noted above, and then click
Find again.

Creating New Rules Using Regular Expressions

116

You can create your own rules in code review and use them to identify
many suspect coding practices. DevPartner code review rules make
extensive use of regular expressions, which provides a robust and
versatile method for searching text.

Regular expressions are widely used, well-documented, and can be
written to match patterns in HTML, Visual Basic, and Visual C# syntax.
DevPartner code review uses the same regular expression engine as
Microsoft Visual Studio and supports the same syntax.

DevPartner code review makes it easier to use regular expressions in its
rules by limiting the scope of any given rule to certain parts of the code.
For example, a rule can apply to the entire file, just methods, or only
while blocks. Since rules can specify a scope, the regular expressions can
focus on a targeted part of the code.

DevPartner code review also assists the regular expression search by
removing comments from a code block. Removing comments before
executing the review reduces false positives.

The following sections provide examples of actual code review rules and

explain the regular expressions that drive them.

Note: To learn more about how to write regular expressions for your code
review rules, refer to the following resources:

¢ Forta, Ben. Teach Yourself Regular Expressions in 10 Minutes.
Indiana: Sams Publishing, 2004.

¢ Friedl, Jeffrey E.F. Mastering Regular Expressions. 2nd ed.
California: O'Reilly, 2002.

¢ Goyvaerts, Jan. Regex Tutorial, Examples and Reference.
1 Feb. 2006 <http://www.regular-expressions.info>.

<& Microsoft Corporation. .NET Framework Regular Expressions. 2006.
<http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpguide/html/cpconcomregularexpressions.asp>

Understanding DevPartner

Matching Lines Exceeding 90 Characters

Best practice coding standards recommend that a line of code should not
exceed 90 characters. A code review rule enforces this standard by
searching for lines that exceed 90 characters. The following regular
expression ensures lines do not exceed 90 characters in length:

(?-s).{91,}

This regular expression first sets the Single Line option to False, causing
the expression to evaluate all characters up to, but not including, the
newline character (\n) as a single line. This evaluation treats each line of
code, from its beginning to the newline (\n) character, as a distinct and
different line.

Next, the rule incorporates the most elementary aspect of regular
expressions — matching single characters. This rule uses the period (.)
metacharacter to match any single character on the line.

The rule follows the period (.) with a repeating match metacharacter
{91, }. Repeating match metacharacters specify that a match must repeat
a certain number of times, or within a certain range of instances. In this
rule, it specifies the expression is true only if any single character is
matched 91 or more times; the second value in the range is left empty,
because the rule only cares if the number of matches exceeds 90
characters. Table 3-18 describes the basic repeating match
metacharacters.

Table 3-18. Repeating Match Metacharacters

Character Meaning

+ Matches one or more instances of the preceding character

* Matches zero or more instances of the preceding character

? Matches zero or one instance of the preceding character

{n} Matches an exact number of instances of the preceding character

(2,6 where n represents the number of required repetitions

{n} These braces are also used to designate a range of repetition, such
as from two to six times, by including the upper and lower limit
separated by a comma
Omitting the upper limit matches against a minimum number of
instances without an upper bound

Chapter 3 Static Code Analysis 117

Matching Tabs Used Instead Of Spaces

Best practice coding standards recommend that spaces be used instead of
tabs. The number of spaces represented by a tab can differ between
editors, and this difference can cause the source code to have a different
appearance in each editor. To enforce a consistent appearance of the
source, spaces should be used. The following regular expression is used in
a code review rule that searches for the use of tabs inside of methods:

(?s)\t.*

This regular expression sets the Single Line option to True, causing the
expression to evaluate every character on every line up to and including
newline characters (\n), as part of a single line.

Next, the rule specifies a match against the tab character by using a
metacharacter (\t). Without further change, the regular expression
would find every occurrence of a tab character in the method. Instances
where multiple tabs are used in a method, such as for indenting lines,
would fire the rule for each tab in that method. That is not the intended
behavior of the rule.

This rule should evaluate to true if at least one tab is used in the method,
but not every time it encounters a tab in the method. To accomplish this
result, the rule needs the period (.) metacharacter followed by a
repeating match metacharacter specifying zero or more instances.

Table 3-18 on page 117 shows the repeating match metacharacter to use
is the asterisk (*). Adding these last two metacharacters specifies that the
rule must evaluate to true the first time it encounters a tab character, and
then capture every following character in the method.

Matching Instances Where Code Catches System.Exception

118

Avoid catching system.Exception to handle your errors because it does
not catch errors at a fine enough level of detail to allow for the proper
differentiation of error types. Error handling code blocks should intercept
and handle errors at the finest granularity as possible, since doing so can
make a program more robust and less likely to crash. The following
regular expression is used in a code review rule designed to find instances
in the code where Visual Basic syntax is used to catch system.Exception:

Catch\s\w+\sAs\s (System\.) ?Exception

The first part of this expression locates any instance of the literal word
catch in the code. Since the rule should not match instances where catch
is the first part of a longer word, the literal text is followed by the
metacharacter for whitespace (\s).

Understanding DevPartner

Visual Basic syntax uses the word catch followed by a variable name
(used to hold the exception object). The variable is followed by more
whitespace, and the literal word as.

The rule needs regular expression functionality to locate a legal variable
name, followed by more whitespace, and the word As. The metacharacter
\w, paired with the repeating match metacharacter +, will locate one or
more instance of any alphanumeric character (upper or lower case) or the
underscore character. Adding \sas\s finishes the search for a legal
variable name followed by whitespace and the word As.

So far, the regular expression will locate the following code:

Catch MyExceptionObject As

This regular expression would successfully locate all code that is catching
exceptions. However, the rule should only match against code that
catches system.Exception. The regular expression requires further
refinement.

To ensure that the regular expression only matches instances where the
code catches system.Exception, it searches for the literal words System
and Exception separated by a period. Since the period is a metacharacter,
the rule needs to specify a match on a literal period by preceding it with
the backslash, removing its special character status.

If the rule now has system\.Exception as part of the regular expression,
there is still a problem. It is acceptable syntax for the catch of
System.Exception to leave off the system. and only use the term
Exception. One last modification to the regular expression makes the
matching of system. optional. Wrapping System\. in parenthesis makes
it a subexpression, which can be followed by the » metacharacter to
specify zero or one match.

Matching Methods Having More Than One Return Point

Best practice coding standards recommend that methods have only one
return point. Having more then one return point could cause code to be
hard to understand. The following regular expression is used in a code
review rule that locates instances where a method has more than one
return point. Most of the pieces making up this expression have been
used in previous rules, but there are a couple of new things to examine.

(?s) (\breturn\b.*) {2, }
First the rule sets the Single Line option to true, using (?s), to focus on
the entire method. To consider the method as a whole, the rule needs to

evaluate every character on every line, up to and including newline
characters (\n), as part of a single line.

Chapter 3 & Static Code Analysis 119

Another part of the expression used in earlier rules is the repeating match
metacharacter at the end. This expression uses {2, } to modify the
preceding subexpression (contained in parenthesis), requiring that there
must be two or more matches within the method.

The subexpression, (\breturn\b.*), is the part of the regular expression
doing most of the work. It is written as a subexpression to allow the
whole block to be modified by the repeating match metacharacter. The
metacharacter \b is a word boundary. By surrounding the literal text
return with the word boundary metacharacters, the regular expression
looks for instances of the word standing alone, not as part of a larger
word.

Note: The previous example followed the literal text catch by the
whitespace metacharacter \s to ensure it would only find instances
where Catch was a whole word. This is a good example of flexible
regular expressions. That rule could have used the word boundary
metacharacter \b, but did not.

The final . * within the subexpression searches for a match of zero or
more instances of any character. The rule is now complete, and will
search entire methods for two or more instances of the word return,
followed by zero or more characters.

Enforcing Initialization Of Variables When They Are Defined

120

As a best practice, to keep code concise and easy to understand, variables
should always be initialized when they are defined. The following regular
expression is from a code review rule that locates instances where a
variable is defined, but not initialized:

(?-s) \bDim\b (?!.*=) (2! .*\bnew\b)

Since the rule needs to evaluate each line of code by itself, the first thing
it does is set the Single Line option to false.

Next, the regular expression is going to look for the word pim. It wraps
the literal text pim with word boundary metacharacters \b to ensure it
only considers whole words.

The subexpression implements the concept of looking ahead or behind.
The ability for regular expressions to look ahead or behind gives them
additional flexibility.

Understanding DevPartner

Looking ahead or behind means that a subexpression in the regular
expression is searching for a match. Instead of matching and returning
the specified text itself, like a simple string match would, the
subexpression only verifies that the match exists. Finding a match causes
the subexpression to evaluate to true, which then allows the rest of the
regular expression to succeed or fail according to its other qualifiers. This
kind of looking ahead and behind is referred to as a positive look ahead or
positive look behind, because the subexpression evaluates to true when it
finds text that matches.

The syntax for the positive look ahead and positive look behind is:

¢ Positive look ahead (?=subexpression)
¢ Positive look behind (?<=subexpression)

Similarly, negative look ahead and negative look behind work by searching
for text that does not match the subexpression specified in the
statement.

The syntax for the negative look ahead and negative look behind is:

¢ Negative look ahead (?!subexpression)
¢ Negative look behind (?<! subexpression)

The regular expression for this rule needs to use the negative look ahead
construct to detect when there is not an equal sign (=) to the right of the
Dim keyword, with or without a space preceding it. The subexpression
(2! .*=) handles that negative look ahead.

The last part of the expression, (?!.*\bnew\b), uses another negative
look ahead to evaluate to true if the word new does not exist to the right
of the pim keyword, with or without a preceding space.

The complete rule now has a regular expression that evaluates to true
whenever it encounters a line of code where the word pim is not followed
by an equal sign (=) or the word new.

Matching Instances Of More Than One Statement Per Line

In order to increase readability and maintainability of code, only one
statement should ever be placed on a single line (with the exception of
loop syntax). The following regular expression is from a code review rule
that locates instances where a line contains more than one statement:

(?<!for.*);.*;

It might appear that the easiest way to detect more than one statement
on a given line would be to determine if any line contains more than one
semicolon. In fact, this search is the essence of the regular expression in

this rule, but it needs to also take into account the possibility of a
semicolon being associated with the for keyword.

Chapter 3 & Static Code Analysis 121

To exclude any instances where the keyword for is associated with a
semicolon, the rule uses the negative look behind construct (?<!for.*)
to look back on any line where it encounters a semicolon, making sure
the word for is not there. The remaining part of this regular expression
(; .*;) will search for a semicolon followed by any number of other
characters, and then another semicolon.

Ensuring Open Braces Are Placed On A Separate Line

Best practice coding standards recommend that open braces should be
placed at the beginning of their own separate line following the
statement that begins the block. The following regular expression is from
a code review rule that locates instances where open braces are not
placed on their own separate line:

(?m) "\ s*\wt (?=.%2\{) . *28$

There are several new concepts at work in this expression. The rule first
sets the Multi Line option to true with (?m). This setting changes the
behavior of two other metacharacters — Line Beginning (*) and Line
End (s). By enabling the multi-line option, ~ and $ capture the beginning
and end of each line rather than the entire string being searched.

Once multi-line mode is enabled, the regular expression searches for the
beginning of the line (»), followed by one or more whitespace characters
(\s*), and one or more word characters (\w+). This sets up the basis that
the regular expression will use. If it finds one or more word characters,
there should be no open braces on the line.

The positive look ahead subexpression (2=.*2\{) searches through each
line looking for any character followed by an open brace. The backslash
before the open brace removes its metacharacter status. Once the rule
determines that a line contains a character followed by an open brace,
and the open brace is not on a line by itself, . =2 at the end of the regular
expression allows it to capture the remaining text right to the end of the
line (matched by the s metacharacter).

Ensuring Loop Counters Are Not Modified Inside the Loop Bodies

122

Changing the loop counter inside the body of the loop could cause
unpredictable results, and makes code harder to understand. The
following regular expression is from a code review rule that locates any
instance where a loop counter is modified inside of the loop body:

(?s) \bfor\b\s*\ (\s*\w+\s+ (?<VARNAME>\w+) . *\) . *\b\k<VARNAME>\Db\s*=

Understanding DevPartner

This regular expression is extremely long because it has to do a lot of
work to enforce the rule. To identify and store the loop counter variable
name, the regular expression must first capture the for keyword, left
parenthesis, and loop counter type.

The first half of the regular expression is gathering required information.
It locates a line with the for keyword, followed by any number of
whitespace characters, a left parenthesis, more whitespace characters,
one or more word characters, more whitespace, and finally uses a
subexpression to capture the variable name.

The subexpression (2<vARNAME>\w+) captures the name of the loop
counter and store it in the variable, VARNAME.

Note: This construct can use any variable name, as long as the name does
not contain any punctuation and does not begin with a number.

Once it has captured the name of the loop counter, the last part of the
regular expression captures any remaining characters and the right
parenthesis. It then begins searching through the loop body for an
instance of the loop counter, followed by an equal sign, using the
following construct:

. *\b\k<VARNAME>\b\s*=

This part of the expression is the essence of the rule. Prior to reaching
this point, the regular expression has determined the name of the loop
counter and has placed the scope of its search within the loop body. This
final part of the expression now matches all characters up to the value of
VARNAME (the loop counter), and then looks for an equal sign following
the counter.

The fact that the loop counter is followed by an equal sign indicates it is
being set to some value, or modified. Since the counter should never be
modified inside of the loop body, the rule has found a violation.

Chapter 3 & Static Code Analysis 123

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the
Team Explorer client is installed and a Team Foundation Server
connection is available.

Visual Studio Team System Support in DevPartner Code Review

You can submit data to Visual Studio Team System as a Work Item of the
type Bug for an item selected in any of the following tabs in a code
review session file:

¢ DProblems tab (see “Viewing Code Violations” on page 80)
¢ Naming tab (see “Viewing Naming Violations” on page 82)

When you submit a Bug, DevPartner populates the Work Item form with
data from the tab. For more information about DevPartner Studio
integration with Visual Studio Team System, see “Visual Studio Team
System Support” on page 8.

124 Understanding DevPartner

Chapter 4

Automatic Code Coverage
Analysis

What is Coverage Analysis?

Using Coverage Analysis Out of the Box

Setting Properties and Options

About Instrumentation

Collecting Data from Various Types of Applications
Merging Session Data

Exporting Coverage Data

Controlling Data Collection

Analyzing from the Command Line

Using the Coverage Analysis Viewer

L 2K B 2K Z2BK B JER 2R JBR SR JE 2

Integration with DevPartner Error Detection
4 Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with coverage

analysis. The second section provides reference information for an in-
depth understanding of DevPartner Studio’s coverage analysis feature.

Refer to the DevPartner Studio online help for additional task-oriented
information about coverage analysis.

125

What is Coverage Analysis?

DevPartner Studio’s coverage analysis feature allows developers and test
engineers to be sure that they are testing all of an application’s code.
When you run your tests with coverage analysis, DevPartner tracks all
components, images, methods, functions, modules, and individual lines
of code covered by your tests. When your tests end, DevPartner displays
information showing you what code was exercised and what code was
not exercised.

DevPartner can collect coverage data for managed applications,
including Web and ASP.NET applications, as well as unmanaged (native)
C++ applications.

Using Coverage Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using
DevPartner to analyze code coverage.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject being
described in the shaded box, read the additional text following the box.

Note: Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create
and debug your application are sufficient for DevPartner to analyze
the application.

Ready: Consider What You Want to Analyze

Before using code coverage, consider what you want to analyze.

The following procedure assumes:

You are working in Visual Studio 2005 or 2008.

*

You are testing a single-process, managed application.

*

You can build and run your application.

*

Your solution includes a startup project.

Note: Refer to “DevPartner Studio Supported Project Types” on page 335
for a comprehensive list of supported project types for DevPartner
coverage analysis.

126 Understanding DevPartner

When analyzing your applications, decide what data you are interested
in collecting before beginning your coverage session. In some cases, there
are steps you need to take before beginning a session. For example, some
set-up would be required if:

¢ there are modules you want to omit from the coverage analysis
¢ if there are unmanaged modules that you would like analyzed
¢ if you want to include code run on a remote server

For this procedure, all managed, local code in your application will be
analyzed.

Set: Properties and Options

Once you have decided what code you want included in the coverage
analysis, you can set several properties and options to focus your data
collection.

For this procedure, you can use the default DevPartner properties and
options. No additional set-up is required.

Using Solution Properties and Project Properties, you can choose whether
your analysis session data should include information for .NET
assemblies and COM that runs outside your application. Using
DevPartner Options, you can change display options, exclude parts of
your application from analysis, or create a session control file to manage
data collection. Refer to “Setting Properties and Options” on page 134 if
you would like more information about customizing your settings.

Chapter 4 @ Automatic Code Coverage Analysis 127

Go: Collect Coverage Data

128

After considering what you want to analyze and setting the appropriate
properties and options, you are ready to collect coverage data.

From Visual Studio, open the solution associated with your
application.

Select DevPartner > Start with Coverage Analysis to begin a
coverage analysis session.

During a session, the Session Control Toolbar options are active.

B = ¥ MHTI01515001 - 3904 (Driver.exe] =

DevPartner session controls let you focus your coverage analysis on
any phase of your application. You can use the session controls to
stop data collection, take a snapshot of the data currently collected
and then continue recording, or clear data collected but not yet
saved in a snapshot.

Run the code you want to analyze.

Click the Snapshot icon # . (Click twice if necessary to bring
focus to the session window.) When you take a snapshot,
DevPartner creates a file containing the collected data, called a
session file, and displays the session file data.

Return to your application and continue running your tests.

When you are finished running your tests, exit your application.
The final session file displays in Visual Studio.

Note: If a security exception message displays when attempting to collect

data for a managed application, refer to page 138 for information
about changing your security policy.

You can analyze coverage in conjunction with the DevPartner error
detection feature. Knowing how much of your code was covered by your
tests helps you gauge the comprehensiveness of your error detection
data. Refer to “Integration with DevPartner Error Detection” on page 154
for more information about running a session with both error detection
and coverage analysis.

Understanding DevPartner

Analyze the Data

When you take a snapshot or exit your application, DevPartner displays
the session file in Visual Studio, as shown in Figure 4-1 on page 129. The
session window consists of:

¢ The filter pane, which lists the source files and images in your
application and shows the lines covered in each as a percentage of
the total lines in the file.

¢ The session data pane, which contains three tabs and two coverage
meters that display data for the item selected in the filter pane.

¢ The coverage meters, displayed above the tabs in the session data

pane, summarize the line and function coverage for the item selected
in the filter pane.

Driver8.dpcov*| Driversnap3.dpcov*

=-EE1 All{ 68,8% of 740 lines)
=} Q MHT101515001 - 4468 (Drive S 141 of 162 lines executed [8?.02]
= 2 i
= ? E_Elurégeh(a?:j,? glfnifolén: E— 13 of 15 methods called (56.7%]
o :ﬁ dg;lp(e;?diﬂpofls:; Method List | SaurcelvE dothet. vb] | Session Summery _
*% Spesdump YBdol et % Covered Called Ll

& OP_J5cript.dil { 57,29 ame ok Executed
-7 Driver.exe { 92.4% of | SPeedBump.YEdothlet. Form1.BubbleSortBtn_ClickiByva. .. 0.0] 13
% SpeedBump Drive SpeedBurnp.YEBdotMet, Form1. Clear Timingvaid) 0.0 i} 3
- ManagedcPR.dl { 94 SpeedBumnp. YEdotiet, Form1. Dispose(BwWal disposing ... 62.5 1 3
= : "' | SpeedBump.YEdotiet.Forml.SwapEmiByYal a As Int3z... al.8 937 z
Methods Not Covered SpeedBurp. VBdothet, Farma.,,ctor(vaid) 100.0 1 o
Methods Less Than 20% Covered SpeedBump. YEdotiet, Form1. InitializeCamponent{void) 100.0 1 a
Filter Crver 30 Lines, Less Than 10% Cc | SpeedBumnp.YEdothet, Formi.DoR.andomizelvoid) 100.0 1 a
_.> SpeedBump. YBdothet, Forml . Update Slot(Byyal iSlot As. .. 0.0 2,174 i}
Pane SpeedBump. YEdothlet. Form1. Updateal{void) 100.0 1 a
SpeedBumnp.YEBdotMet, Form1.RandomizeBtn_Click{ByYa... 100.0 1 i}
SpeedBumnp. YEdotiet, Form1.QSort{Byval iLeft As Ink3... 100.0 599 a
Session >SpeedBump.'v'BdotNet.Forml.QuickSortBtn_CIick(By\n'aI 100.0 1 i]
Data SpeedBump.YBdotMet, Form1.Forml_Load{BvVal sende. .. 100.0 1 i}
SpeedBumnp. YEdothet, Form1. Start Timing{Bywwal sPlaceh. .. 100.0 1 a
Pane SpeedBump.YEdothet. Formi . EndTiming(Ew\al sPrefix ... 100.0 1 i}

Figure 4-1. Coverage Analysis Session Window

Using the Filter Pane and the Session Data Pane

In addition to listing files and images in your application, the filter pane
also included a set of filters you can use to help you focus on the data
that is most significant to you.

To begin evaluating your data, start by using a filter to reduce the
amount of data displayed, and then examine the Method List to find
methods that were least covered by your tests.

Chapter 4 @ Automatic Code Coverage Analysis 129

130

1 In the filter pane, click on the Methods Less Than 20% Covered
filter. This will reduce the displayed data and help you focus on
methods that were least exercised.

2 Examine the data on the Method List tab to discover how much
of each method was adequately covered by your tests.

If there are aspects of your application that were inadequately
covered, you can revise your tests to cover more of your
application’s functionality.

Viewing Source Code

The Source tab displays the source code for the item selected in the filter
pane. Use the Source tab to help you identify the functionality that
requires more test coverage.

_Driver.dpcov*®| Driversnap3.dpeov® | =
[=] Al { 68.8% of 740 lines)
- [=) MHT101515D01 - 4468 (Drive I 141 of 162 lines executed [B7.0%)
=423 Source (68.8% of 740 lin
=27 cSharp.di { 0,0% of :
4% SpeedBump.CSha
=7 vB.dil { 87.0% of 162
%% SpeedBump.YEdol Count Source A

- oP_Iseript.di | 87.2% :
= Driver.exe (92.4% ol

] 13 of 15 methods called [86.7%)

Method List Source[VBdotMet vb] Session Summary|

1 End Sub
4% SpeedBump.Drive
-7 ManagedCPp.dil { 94.; - ; :
Methods Mot Caverad h, Protected Overloads Overzides Sub Dispose(ByUal disg
1 If dispesing Then
Methods Less Than 20% Covered o 1f Wot (component= Is Wothingl Then
Ower 30 Lines, Less Than 10% Cc 0 conpenents.Disposel]
o End If
1 End If
4, MyBass.Dispose(dispesing)
1 End Sub

._.

<By=tem Diagnestics.DebuggerSeepThrough(]> Private §
1 Dim resources &s System REesources ResourcaManage

Figure 4-2. The Source Code Tab

Understanding DevPartner

You can display the code for a specific method in a source file by
double-clicking on the method in the Method List.

3 On the Method List tab, double-click a method with a low value
in the % Covered column. The source code for that method is
displayed on the Source tab, as shown in Figure 4-2

The Source tab indicates coverage data for each line of code.
DevPartner highlights the lines that were executed (green by
default), not executed (purple by default), and lines that cannot
be executed, such as comments (gray by default).

The Count column displays the number of times the line was
executed.

Note: To present source code data for managed applications, DevPartner
requires program database file (PDB) information.

On the Source tab, you can right-click on a line to view the context
menu, from which you can go to the previous unexecuted line, the next
unexecuted line, choose the columns to display, or choose another
source file to view.

Viewing Session Summary Data

The Session Summary tab displays a synopsis of the coverage analysis
session.

Chapter 4 @ Automatic Code Coverage Analysis 131

132

Driver8.dpcoy* | DriverSnap3.dpoov - X
= All { 68.5% of 740 lines)
=[] MHT101515001 - 4465 (Drive | | ——— 141 of 162 lines executed [87.03%)
= Source | 63.8% of 740 lin
=3 | CSh(arp di EU 0% of * I 13 of 15 methods called [86.7%]
= ; 0% of
%% SpeedBump.CSha - =
57 VB 67.0% of 162 | Method List] SourcelVBdatiet vb]| Session Summary |
SpeedBurnp, VEdol DevPartner - Coverage Analysis Session Summary ~
o o
#-7 DP_JScripk.dll { 87,25
= :] Driver.exe { 92.4% ol |[Started: 4/19/2007 2:27:01 M
¥ SpeedBump.Drive | |Ended: 4/13/2007 Z:27:48 PM
+1- ManagedCPP.di { 941
Executable: C:hDocuments and Settingsh PNUDLHOWMy Do
Methods Mot Covered
Methods Less Than 20% Covered | [Soumend Args:
Exit Code: u}

Orver 30 Lines, Less Than 10% Cc

Processor Speed: £793 Mhz
of IProcessors: z
0% Version: Microsoft Windows XP

411 Images

Percent of Lines Executed: 65.8

Humber of Lines: 740

Hunber of Lines Executed: 502

Humber of Lines Not Executed: 231
Percent of Methods Called: 62.4
Humber of Methods: 7z

Humber of Methods Called: 50

Humber of Methods Not Called: 2z

Figure 4-3. The Session Summary Tab

by someone else.

4 Click on the Session Summary tab.

The Session Summary includes contextual information about the
session, such as the date and time of the session, the processor speed
and operating system, and so on. This information can be useful
when viewing an older session file, particularly one that was created

The summary also includes coverage data from the filter pane and
the Method List tab, showing data for both the files and the
methods that were analyzed.

5 Scroll through the tab to view the session summary data.

Understanding DevPartner

Saving Session Files

When you have finished reviewing coverage data you can save the
session file. If you have created more than one session file, you can
merge the coverage data from multiple session files.

1 Close the session file window in Visual Studio to save the session
tile. When prompted, accept the default file name and location.
By default, the file is saved in the project’s output directory.

2 If there are multiple coverage session files for this solution, you
might be prompted to merge the files, or the merge might occur
automatically, depending on the Merge setting in your solution
properties. Refer to “Solution Properties” on page 134 for
information about the Automatically Merge Session Files

property.

DevPartner saves session files as part of the active solution. They appear
in the DevPartner Studio virtual folder in Solution Explorer. Coverage
session files take the .dpcov extension.

By default, DevPartner physically saves the session files in your project's
output folder. DevPartner automatically increments the file name based
on the contents of the default directory (for example, MyApp.dpcoy,
MyAppl.dpcov, and so on). If you save session files to a location other
than the default directory, you must manage the file naming and
numbering.

For projects that do not have an output directory, such as a Visual Studio
2005 Web site project, DevPartner physically saves the files to the project
directory.

Session files generated from the command line are not automatically
added to the project's solution. You can manually add externally
generated session files to an open solution in Visual Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a coverage analysis session,
continue reading the rest of this chapter for additional information, or refer to
the DevPartner online help for task-based information.

Chapter 4 @ Automatic Code Coverage Analysis 133

Setting Properties and Options

Solution Properties

Before beginning a coverage analysis session, it is often useful to fine-
tune data collection to include or omit certain types of information. Use
Solution Properties, Project Properties, and DevPartner Options to better
focus your analysis session.

To view coverage properties available at the solution level, select the
solution in the Solution Explorer and press F4 to view the Properties
Window.

Properties

SpeedBump.Net Solution Properties -

|2 DevPartner Coverage, Memory and Performance Analysis

Aukomnatically Merge Session Fil G g R =k =11 w
Collect From .MET True

E Misc
{Mame) speedBump.Net
Active config Debug|Mixed Platforms
Description
Startup project Driver

Figure 4-4. Solution Properties
The following solution properties affect coverage analysis:

¢ Automatically Merge Session Files - Controls merge behavior for
coverage analysis sessions (described in “Merging Session Data” on
page 148).

¢ Collect from .NET - Visible only for managed code applications. Set
this property to false if you do not want DevPartner to collect
information for .NET assemblies.

This property affects only coverage analysis and performance analysis
sessions. Memory analysis and Performance Expert always collect
data from managed applications, even when this value is set to false.

Note: The Collect from .NET property is not available with DevPartner for
Visual C++ Boundschecker Suite.

¢ Startup project - Your solution must include a startup project. If the
solution contains multiple startup projects, DevPartner will prompt
you to choose a startup project for the session.

134 Understanding DevPartner

Project Properties

To review project level properties, select a project in the Solution
Explorer and review the properties that can be set for projects within the
solution.

Properties

Driver Project Properties -

Bl DevPartner Coverage, Memory and Performance Analysis|

Collect ZOM Information False
Exclude Cthers True
Instrurent Inline Functions False

Insktrumentation Level Line
Track Swstem Objects Trug
E DevPartner Performance Expert
Include Project in Session Yes
E Misc
Project File Driver.cspraj
El Policy
Palicy File

Figure 4-5. Project Properties

The following project properties affect coverage analysis:

¢ Collect COM Information - DevPartner collects method level data
based on DLL exports and COM interfaces. Select False if you do not
want DevPartner to collect information for COM that runs outside
your application.

¢ Instrument Inline Functions - DevPartner always collects coverage
data for inline functions in managed applications.

¢ For unmanaged code, set this property to True to instrument inline
functions. Inline functions are not instrumented by default if inline
optimizations are enabled.

All properties persist unless you explicitly change them.
Options

To review DevPartner option settings for coverage analysis sessions,
choose DevPartner > Options > Analysis.

Chapter 4 @ Automatic Code Coverage Analysis 135

Options @E|

[#- Emvironment

- Projects and Solutions LIEHEE |_1 &) v|
[Source Control —
5 Scale .

- Text Editor Microseconds ¥/
(= DevPartner Units

—————
IS | Bytes |

Display
Exclusions - Coverage
Exclusions - Performance
Session Control File
#-Code Review
[#- Error Detection
[#- Database Tools
[+ Debugging
- Device Tools
[#- HTML Designer
[# Windows Forms Designer

oK] [Cancel

Figure 4-6. Analysis Options

¢ The Display option allows you to set the precision, scale, and units
used when displaying your data.

¢ The Exclusions option allows you to omit one or more images from
data collection. Refer to “Excluding Images” for more information on
excluding images.

¢ The Session Control File option allows you to create a set of rules
and actions to control the data that DevPartner collects as your
application or module runs. Refer to “Analysis Session Controls” on
page 365 for more information about session control files.

Other Visual Studio options, such as the Environment > Fonts and
Colors options, also affect DevPartner features.

Excluding Images

When you run an application under coverage analysis, DevPartner
collects data for all source and system images. However, you can use
Exclusions to omit one or more images from analysis.

While viewing Analysis Options (DevPartner > Options > Analysis)
select Exclusions - Coverage.
From the Show list at the top of the page, select one of the following:

¢ Global exclusions
¢ Local exclusions in current user directory
¢ Local exclusions in executable directory

136 Understanding DevPartner

The Local exclusions in current user directory and Local exclusions in
executable directory options are available only when a solution is open
and the executable directory differs from the current working directory.

Click Insert [i7}] to add an image to the exclusion list. Type a name, or
browse to the image you want to exclude. Allowable file types for
exclusion are .exe, .d11, .ocx, and .netmodule. Use the Files of type list

to limit the types of files displayed.

If you choose a .NET module (.netmodule), only the unmanaged parts of
the module are excluded.

To remove an image from the list of exclusions, select the item and click
Delete |}(|

To save a copy of the exclusion list (nmexclud. txt) to another location,
click Save To. Global exclusions are saved in nmexclud. txt in the
\Analysis subdirectory in the DevPartner installation directory. Local
exclusions are saved in nmexclud.txt for the application in the current
working directory or in the application executable directory.

Exclusions do not apply to files compiled with Native C/C++
Instrumentation. For example, if you attempt to exclude an
instrumented unmanaged C/C++ image, DevPartner still collects
information for that file, although no system call information is
collected. If you wish to exclude an unmanaged C/C++ image from data
collection, do not instrument that image.

About Instrumentation

When you run a managed application, DevPartner inserts hooks into the
byte code for each assembly as it is loaded by the compiler, a process
called instrumentation. This code contains instructions that DevPartner
uses to collect coverage data while your application is running.
DevPartner instrumentation does not change the actual files on disk; it
only modifies the in-memory representation of files as they execute.

Chapter 4 @ Automatic Code Coverage Analysis 137

Unlike managed code, which DevPartner instruments at runtime, you
must instrument unmanaged C/C++ code when you compile it. To
instrument unmanaged code, DevPartner inserts hooks directly into your
source code. DevPartner provides an Instrumentation Manager in which
you specify the type of instrumentation to be used and specify any
projects in the solution to exclude from instrumentation. (Refer to
“Collecting Data for Unmanaged Code” on page 139 for more
information about the Instrumentation Manager.) When you rebuild the
unmanaged project, the hooks are inserted. To remove the hooks, turn
off instrumentation by deselecting the Native C/C++ Instrumentation
option from the DevPartner menu, and rebuild the project.

Collecting Data from Various Types of Applications

This section provides information about using DevPartner coverage
analysis to collect data from different types of applications.

DevPartner supports all Visual Studio managed code languages, as well as
unmanaged C/C++. DevPartner can also collect coverage data for JScript
and VBScript Web applications when using Internet Explorer (IE) or
Internet Information Services (IIS).

Refer to “DevPartner Studio Supported Project Types” on page 335 for a
complete list of languages and project types supported in each version of
Visual Studio.

Collecting Data From Managed Code

138

Many applications you will develop in Visual Studio will be managed
applications, such as C#, Visual Basic, and managed C++ applications.

When attempting to collect data for a managed application, a security
exception message will display if your security policy prevents
DevPartner instrumentation of your code. By default, assemblies must
have the SkipVerification permission to be profiled. If you remove this
permission from the permission set of the policy under which the code
executes, or add imperative security declarations to the assembly that
cause this permission to be revoked, you will not be able to profile the
assembly.

To remedy this condition, enable secure profiling in one of two ways.

¢ Set the following global environment variable and retry profiling the
application:
NM_NO_FAST_INSTR=1

Understanding DevPartner

This solution allows you to work around this issue, although it does
exact a slight performance penalty.

¢ Change the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any
imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help
for more information on security policy in Visual Studio.

Collecting Data for Unmanaged Code

When you build your unmanaged C++ application for coverage profiling
with Native C/C++ Instrumentation, DevPartner works with the
compiler to add instructions to your application image to collect
coverage data at run time.

To instrument unmanaged code, open the solution that contains the
unmanaged C/C++ project for which you want to collect data and choose
DevPartner > Native C/C++ Instrumentation Manager.

DevPartner Native C/C++ Instrumentation Manager g|

Mative C and C++ code can be instrumented when you build oK
waur solution. {Instrumentation does naot apply to managed

code within instrurmented projects.) & |
ance

Instrumentation is required For performance and coverage
analysis, and also provides additional error detection Help
capabilities.

Instrument the projects checked below when I build my salution

Choose a type of instrumentati

Check the projects ko be instrumented
Mative PP Instrument &l
ManagedCPP
JS5cripk Instrumnent Mone

Figure 4-7. The Instrumentation Manager

Select the Instrument the projects checked below when I build my
solution check box and select a type of instrumentation. The type of
instrumentation you choose must match the type of analysis you
subsequently run.

Chapter 4 @ Automatic Code Coverage Analysis 139

140

Select the projects to be instrumented. By default, DevPartner will
instrument all unmanaged code in the solution. Deselect modules to be
omitted.

Click OK and rebuild the solution. DevPartner instruments the
unmanaged C/C++ projects you selected. Select Start with Coverage
Analysis to begin the analysis session.

DevPartner saves the project selections you make in the Instrumentation
Manager with the solution. Once you use the Instrumentation Manager
to configure instrumentation, you can turn instrumentation on and off
with the Native C/C++ Instrumentation option from the DevPartner
menu or the Native C/C++ Instrumentation button on the DevPartner
toolbar. Use the Instrumentation Manager only to change settings.

To remove instrumentation from your application at a later time,
deselect the Native C/C++ Instrumentation option from the DevPartner
menu. The next time you start a coverage analysis session or rebuild the
solution, Visual Studio will rebuild the solution without
instrumentation.

Note: If your application calls unmanaged Visual Studio components, you
must compile these components with DevPartner instrumentation
for coverage analysis in Visual Studio. See the DevPartner Studio
online help in Visual Studio for more information.

Mixed-mode C++ Files

With unmanaged (native) C++, you can compile your application as
managed code with the /c1r option, but mark sections of your code with
ffpragma (native). The compiler generates native code for any methods
defined in the #pragma section. DevPartner does not support mixed-
mode C++ files. When profiling a program that includes a C++ file with
both managed and unmanaged (native) sections, DevPartner collects
coverage data only for the managed code portions, not the native code
portions from #fpragma. To collect data for unmanaged C++ code, place
the unmanaged code in a separate file and instrument it, as described in
“Collecting Data for Unmanaged Code” on page 139.

Understanding DevPartner

Collecting Data from Multiple Processes

Applications may run more than one process. For example, when you
profile an ASP.NET application you may see the browser process
(iexplore), the IIS process (inetinfo), and the ASP worker process
(aspnet_wp or w3wp).

When you run a multi-process application under coverage analysis, the
DevPartner Session Control toolbar displays the active processes in the
process selection list.

B 5 ¥ MHTI01515D01 - 3904 (Driver.exe) -

Figure 4-8. Session Control Toolbar with the Process Selection List

Use the process selection list to focus data collection. When you take a
snapshot, DevPartner creates a session file with data for the process
selected in the process selection list.

Collecting Data from Remote Systems

You can use DevPartner to enable coverage data collection for application
components running on a remote system. For example, you might want
to collect coverage data for both client and server portions of a client/
server application. With DevPartner, you can collect coverage data for
client and server processes as you run the client application.

To collect data simultaneously from a client system and a remote system,
install DevPartner on the client and install DevPartner and the
DevPartner Remote Server license on the remote system. See Installing
DevPartner (DPS Install.pdf) and the Distributed License Management
Licensing Guide (Compuware Licensing Guide.pdf) for more information
about the Remote Server license.

Note: A server connected through a Terminal Services connection does not
require the DevPartner Remote Server license. See “Using Terminal
Services and Remote Desktop” on page 9 for information on
Terminal Services.

On the remote system, select the relevant projects and review the
DevPartner properties to ensure that they match the options set on the
client system. DevPartner restarts server processes, such as IIS, after you
change options. This restart is necessary for changes to take effect.

Be sure to specify instrumentation if you are analyzing an unmanaged
C++ application. If your application calls unmanaged C++ components,
you must instrument those components if you want to collect data from
them, as described in “Collecting Data for Unmanaged Code” on page
139.

Chapter 4 @ Automatic Code Coverage Analysis 141

Correlated Data

When you use IE and IIS as browser and Web server, or you use COM to
make inter-process calls, DevPartner automatically recognizes a client/
server relationship between the processes. To preserve the relationship
between the methods of DCOM obijects or the relationship between
HTTP client and server (IE and IIS), DevPartner automatically correlates
the data from those sessions. It then combines the correlated data with
the client session data into a single session file.

The correlated session file contains the coverage data for both the client
and server portions of your application. The correlated session file
appears in Visual Studio, like any other session file, with _co appended to
the file name, as in appname_CO.dpcov.

You can use DevPartner > Correlate > Coverage Files to manually
combine data from different session files when there is no COM-based
relationship or client/server relationship between IE and IIS. You can also
use the NMCORRELATE command line utility to manually combine data.

Collecting Data From .NET Web Applications

142

If you develop Web Forms, XML Web Services, or ASP.NET applications,
you can use DevPartner to collect coverage data for both client and server
portions of your application. You can configure DevPartner to collect
data for IIS and ASP.NET running on the local machine or on a remote
server.

If your Web application calls unmanaged (native) C++ components, you
must instrument them using the DevPartner commands in Visual Studio.
To collect data for native C++ components called by your application,
you must instrument and rebuild the objects with Native C/C++
Instrumentation, as described in “Collecting Data for Unmanaged Code”
on page 139. Be sure to instrument for coverage analysis. DevPartner
collects data for only one analysis type in a session.

Note: DevPartner session files are saved with the current solution. Opening
a Web project from 1IS directly, as opposed to opening the project
through Visual Studio, may cause a different solution file to be used.
DevPartner session files created in the first solution would not be
visible in the second solution.

Prerequisites

For DevPartner coverage analysis to successfully profile an ASP.NET
application, the following two conditions must be met:

Understanding DevPartner

The project must include a web.config file.

The web.config file must include a compilation element with the
debug attribute set to true. For example:
<compilation debug="true”/>

DevPartner can also collect data for in-process or out of process
components called by your application.

Analyze ASP.NET Applications without Debugging

For optimum results, run coverage analysis without debugging.

[- - B - 5 &

@ Start with Coverage Analysis

n{’ Start Without Debugging with Coverage Analysis

Figure 4-9. Start Without Debugging Option

Only one script debugger can be active at one time. If you debug a Web
application with debugging, both Visual Studio and DevPartner attempt
to load a script debugger. A message displays indicating that the script
debugger failed to attach to IE. The session continues without
interruption despite the error message.

To avoid the error message, you can either disable script debugging in
iexplore or run coverage analysis without debugging.

Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save
dialog box after quitting an ASP.NET application, or find that unexpected
session files have been saved if you have configured DevPartner to
automatically save session files.

When you run coverage analysis on an ASP.NET application, DevPartner
collects data for IE as the primary profiled process. DevPartner also saves
session data for secondary processes, such as an ASP.NET worker process
(w3wp or aspnet_wp). When the primary process terminates, DevPartner
stops data collection and generates a final correlated session file that
contains both client data (for IE) and server data (for IIS and ASP.NET)
worker processes. You can also take a snapshot of the server process alone
by selecting the process in the Session Control toolbar.

Chapter 4 @ Automatic Code Coverage Analysis 143

144

In most cases the client and server processes are terminated by user
action. However, the ASP.NET worker process can also shut down
automatically during profiling. This can occur if you have edited the
processModel Attributes section of the machine.config file on the

system on which the process runs in one of the following ways:

L 4

Changed the value of the requestLimit or requestQueuelLimit
attribute from “Infinite” to a value low enough to cause the process
to be shut down during the session

Changed the value of the timeout or id1eTimeout attribute from
Infinite to a value low enough to cause the process to be shut down
during the session

Changed the value of the memoryLimit attribute to a percentage low
enough to cause the process to recycle during the session

When the process is shut down, DevPartner takes a final snapshot and
generates a session file. DevPartner handles the session file in one of the
following ways:

L 4

If the ASP.NET worker process is the selected process in the Session
Control toolbar, DevPartner opens the session file in Visual Studio
and adds it to the solution. This action is repeated for each instance
of the ASP.NET worker process that is spawned and terminated.

If the ASP.NET worker process is not the selected process, the session
file is cached. When the IE client process is terminated, or when a
snapshot of the IE process is taken, DevPartner creates a session file
for IE, and a correlated session file that includes data for IE, IIS, and
all instances of the ASP.NET worker process spawned and terminated
up to that point.

When the analysis session has ended, DevPartner will continue to display
the File Save dialog box or automatically save session files for instances
of the ASP.NET worker process that are spawned and terminated.

To avoid generation of extra session files due to frequent termination of
the ASP.NET worker process, you can edit the machine.config file and set
the limiting attribute to a value high enough to prevent premature
termination of the process.

Caution: Always make a backup copy before editing the machine.config

file.

Understanding DevPartner

Collecting Data from Classic Web Script Applications

When you run a classic Web script application with DevPartner coverage
analysis enabled, DevPartner gathers data for HTML files and]Script and
VBScript source files. If the scripting languages invoke in-process or out-
of-process components, such as COM objects, DevPartner can collect
data for these as well.

Instrumentation for the scripting languages occurs at run-time, just as it
does for managed .NET languages. However you do need to instrument
any unmanaged code components, such as COM objects, that you want
monitored.

Note: The following procedure is unique to classic Web script applications.
To collect data for Web Forms, XML Web services, and ASP.NET
applications you develop in Visual Studio, run the application just as
you would run any other managed application.

To collect data for a classic Web script application, choose Start >
Programs > Compuware DevPartner Studio > Utilities > Web Script
Coverage.

IE opens with DevPartner Coverage Analysis loaded. In addition to IE, a
Session Control toolbar appears, which you can use to control data
collection.

In the DevPartner-enabled instance of IE, open the HTML page or Web
application for which you want to collect coverage data and exercise the
application. Optionally, use the Session Control toolbar to focus data
collection as the application executes.

Exit IE or, if using the Session Controls, execute a Stop action. The Save
Session dialog box displays and the session file is automatically saved.

Web Service Requirements

For DevPartner coverage analysis to detect a Web service, the service
must meet at least one of the following requirements:

¢ The Web service must be derived from the
System.Web.Services.WebService base class.

¢ The Web service must contain the WebService attribute.

For DevPartner coverage analysis to detect a Web method, the method
must contain the WebMethod attribute.

Chapter 4 @ Automatic Code Coverage Analysis 145

Deleting Temporary Files from NMSource

While analyzing scripts for coverage under IE or IIS, DevPartner creates
an NMSource directory to hold temporary copies of the script source. This
source is displayed in the Source tab of the Session window when you are
analyzing session data.

Because this source may be needed at any time, DevPartner does not
delete files from NMSource. The size of this directory can grow quickly,
particularly when you are analyzing server programs under IIS.

You should regularly review the source files in the NMSource directory and
delete any related to projects that are no longer active. NMSource is
located in the \Program files\Internet Explorer directory.

Configuring IIS for Data Collection

146

To collect coverage data for IIS/ASP.NET applications running on a
remote server, set the following configuration options.
Note: If IIS runs on a remote server, you must install DevPartner (and a

Remote Server license) on that system and set the options described
below on the remote system.

Script Debugging

You can set the following options in the Default Web Site Properties, or
in the WebApplication Properties for a specific application, of the IIS
manager. The following options apply to IIS 5.0 or 6.0.

On the Home Directory or Directory tab, click Configuration. On the
Application Debugging tab, set the Debugging Flags to:

¢ Enable ASP server-side script debugging
¢ Enable ASP client-side script debugging

Host Process Settings

If your Web application runs in the d11host process, you may need to
change the Application Protection options to enable DevPartner to
collect coverage analysis data. You can set these options in the Default
Web Site Properties, or in the WebApplication Properties for a specific
application, of the IIS manager. The following options apply to IIS 5.0 or
6.0.

On the Home Directory or Directory tab, in the Application Settings
section, set the Application Protection to one of the following:

Understanding DevPartner

¢ Low (IIS Process) Your application runs in the inetinfo process.
DevPartner restarts IIS when you enable data collection and collects
data from this process as your application runs.

¢ High (Isolated) Your application runs as a separate instance of
d17host. DevPartner recognizes the new process and collects data as
your application runs.

When you have finished collecting data, restart IIS to remove DevPartner
data collection from the process.

Configuring Internet Explorer for Coverage Analysis

To collect coverage analysis data from IE, select Tools > Internet
Options... On the Advanced tab, set Disable script debugging (Internet
Explorer) to OFF and set Disable script debugging (Other) to OFFE.

Collecting Data from a Service

To run a coverage analysis session for a service, use DPAnalysis.exe.
With DPAnalysis.exe, you can run sessions directly from the command
line or through an XML configuration file.

Collecting Data from COM and COM+ Applications

You can collect data for an application that makes calls to COM or
DCOM components with DevPartner.

If you profile an application that uses a mix of unmanaged COM and
.NET objects (COM+), DevPartner collects line-level data for .NET
portions of the application. DevPartner collects line-level data for
unmanaged code components if they have been instrumented with
DevPartner Native C/C++ Instrumentation. DevPartner can also collect
line-level data for your unmanaged COM obijects, if you first instrument
them for coverage data collection. You can do this by building the project
with instrumentation for coverage analysis in Visual Studio.

If you profile a C++ object, or any unmanaged code component that has
not been instrumented, DevPartner collects only method-level data
based on COM interfaces and DLL exports.

Chapter 4 @ Automatic Code Coverage Analysis 147

Merging Session Data

148

When you are testing your application using DevPartner, it is unlikely
that you will execute all of your code in one session. It is important to be
able to gather coverage data collected in several sessions and analyze
your total coverage statistics. To accumulate coverage data, you can
merge the session files. Merging is the process of accumulating data from
multiple sessions into a single file.

Files that contain merged session data are called merge files (.dpmrg).
DevPartner can associate many merge files with a single project.
DevPartner saves merge files as part of the active solution. They appear in
the DevPartner Studio virtual folder in Solution Explorer.

Note: You cannot merge correlated session files or Web Script session files
produced from running IE. You can merge server-side session files
from IIS.

To create a merge file, select DevPartner > Merge Coverage Files to
create a new merge file or add data to an existing merge file. Merge files
can also be created automatically, as described in “Merge Settings” on
page 152.

When you merge session data, DevPartner:

¢ Maintains a record of all the images and methods that were loaded in
any of the contributing session or merge files.

¢ Compares percent covered values and returns the superset of the
data. For example, if you merge a session with 30% methods covered
and a session with 20% methods covered, you probably have not
reached 50% coverage. There are likely parts of the code that were
executed in both sessions.

¢ Uses data from the session or merge file that ran the latest image to
determine if the methods and images are new, changed, or removed.
DevPartner uses the time stamps of the images to determine the latest
image.

¢ Calculates percent volatility values for each source and image.
Percent volatility represents the percent of methods that changed in
your code between sessions. It demonstrates your code stability.

¢ Maintains information about the files involved in the merge, when
the merge occurred, and who performed the merge.

Understanding DevPartner

Reviewing Merge Data

DevPartner displays merge data in the Merge Data window. The
Merge Data window contains the filter and Merge Data panes. The
Merge Data pane contains the Method List, Source, Merge History,
and Merge Summary tabs.

Method List tab
Source tab

Merge History tab
Merge Summary tab

Filter Pane Coverage meters

ER=FH 84.2#2 of 317 lines)
= Q DTWO30033002 - 0§
=53 Source { 84.2%
= BugBenchDal
BugBenc — ’ > s
:g BugBencI _Metho List I Sourcg[Memq_r__l,l_._cs_]_. Merge History _Mer_g_g Summar_l_,!:
= Dueng ol B 3 Lires Covered
Methods No:ioii?:;nd o B 3 Methods Covered
Methods Less Than 20% 80 1 W 3 olatility
Ower 30 Lines, Less Thar 704
Removed Methods
60 4
a0 4
40 4
30 4
20 4
104
0
ugbenchdotnet!. dpeoy / bugbenchdotnet2. dpcov bugbenchdotnet. dpooy
< S

Figure 4-10. Merge Data Window

¢ The Method List tab uses the State column in merge files. DevPartner
uses the State column to distinguish methods that are new, changed,
or removed between sessions.

¢ The Merge History tab displays a graphical representation of the
progression of the % Lines Covered, % Methods Covered, and
% Volatility values for the current merge file.

¢ % Lines Covered is the percentage of lines in your source code
that were executed.

< % Methods Covered is the percentage of methods in your source
code that were called.

< % Volatility is the percentage of methods whose source code has
changed since the last merge.

Chapter 4 @ Automatic Code Coverage Analysis 149

Merge States

If you have performed less than five merges in a merge file,
DevPartner displays the Merge History tab as a bar chart. If you have
performed five or more merges in a merge file, DevPartner displays
the Merge History tab as a line chart.

Hold your cursor over a point on the graph to see specific data for
that merge.

To show or hide a bar or line, choose or clear the check box in the key

¢ The Merge Summary tab displays summary information about the
sessions and merge files that were merged into the file. It also
contains information about each of the instrumented images used
during the sessions, including the Percent Volatility for each image.

Note that if the source files have changed, merging coverage session files
affects the synchronization of the method data that appears on the
Method List tab and the line data that appears on the Source tab.

If you change your code, DevPartner tracks those changes and adjusts the
coverage data accordingly. It uses merge states to distinguish between
changed, new, and removed methods and images. DevPartner displays
information about these states in the State column on the Method List.

Methods

A method’s state can be new, changed, removed, or unchanged. The
State column indicates new and changed methods; a blank entry in the
State column indicates that the method has not changed.

Removed methods are displayed in the Removed Methods filter. They
are not used to calculate coverage statistics.

DevPartner does not distinguish between major and minor code changes.
For example, when you make a change to a method that changes the
number of lines in the method (for example, add or remove a comment),
DevPartner marks the method as Changed. When you merge sessions
that used executable files with different optimization options,
DevPartner interprets this difference as a change and might mark some
methods as Changed.

150 Understanding DevPartner

Tip: To quickly determine
the last session file you
merged, examine the
Merge History on the
merge file Merge
Summary tab.

Images

Images can be loaded in one session and not in another. When an image
is not loaded, DevPartner cannot determine what methods are in the
image, or compare the image and its methods to find changes in relation
to another session.

An image’s state can be new, activated, or inactive. Activated images are
images that were present in another session in the merge file and have
been reloaded. An inactive state can result from several conditions.

¢ DevPartner marks an image as inactive if the image has been
removed.

¢ DevPartner marks an unmanaged code image as inactive any time it

is not loaded. For example, if your application uses an unmanaged
DLL but you do not load it during a session, when you merge that
session with an earlier session that did load the DLL, DevPartner
marks it as inactive. To obtain a complete coverage picture for an
application that includes both unmanaged and managed code
projects, make sure you run the unmanaged code portions of the
application in the final coverage session you add to the merge file.

¢ DevPartner marks an unmanaged code image as inactive if the image
was excluded from coverage data collection using the Exclude
option, described on page 136.

¢ In managed applications, DevPartner marks an assembly as inactive
only if the assembly (and all references to it) are removed from the
application.

Inactive images are displayed in the Inactive Source filter in the filter
pane. They are not used to calculate coverage statistics. DevPartner
displays a value of 0% for the Inactive Source filter. When the Inactive
Source filter is expanded, DevPartner shows coverage values for the
individual inactive images. These values reflect coverage data for the
sessions in which the images were active.

ASP.NET Modules in Merge Files

When you run a coverage session, DevPartner uses a repeatable algorithm
to generate names for .aspx files compiled into an assembly. Because the
algorithm is repeatable, DevPartner assigns the same name each time the
assembly is registered. This feature provides a consistent name for each
assembly, allowing you to accurately track changes for the assembly.

Chapter 4 @ Automatic Code Coverage Analysis 151

Merge Settings

This naming operation takes place only when you run a coverage session.
The default Visual Studio behavior remains unchanged when you build
or rebuild a project that includes an . aspx file. Visual Studio assigns a
randomly generated eight-character name to each .aspx file. When you
edit the .aspx file and rebuild the assembly, Visual Studio assigns a new
random eight-character name.

When you generate session files, you control the default merge behavior
by setting the merge property for the solution.

To set the merge property, select the solution in the Visual Studio
Solution Explorer and display the Visual Studio Properties window.
Choose a property under Automatically Merge Session Files in the
DevPartner Coverage, Memory and Performance Analysis properties.

¢ If you want to selectively accumulate coverage data and be prompted
to merge sessions you did not merge, use the Ask me if I would like
to merge it setting.

¢ If you want to selectively accumulate coverage data and not be
prompted about sessions you did not merge, use Close without
prompting.

¢ If you want to accumulate coverage data in a merge file automatically
for every session, use Merge it automatically.

Exporting Coverage Data

You can export coverage data in XML format or in CSV format. Exporting
data in XML or CSV format facilitates using your own or third-party
software to analyze the data, integrate the data with data produced by
other tools, and archive the data in a data warehouse.

¢ You can export DevPartner coverage session files (with the .dpcov
extension) and merged coverage files (with the .dpmrg extension) to
XML format. When a saved coverage session file is open, the Export
DevPartner Data command is available on the File menu. Refer to
“Exporting Analysis Data to XML"” on page 375 for information
about exporting in XML format.

You can also export data from the command line, as described in
“Exporting Analysis Data to XML” on page 375.

152 Understanding DevPartner

¢ You can export Method List data to a comma-delimited (CSV) text
file. Click the Method List tab, display the columns you want to
export, right-click in the Method List and choose Export Method
List from the context menu. You can open the comma-delimited text
file in Microsoft Excel or another spreadsheet application.

Controlling Data Collection

DevPartner gives you three ways to control when coverage data is
collected during the use of your application:

¢ You can use the session control toolbar to interactively control data
collection as your program runs.

¢ You can use a session control file to assign session control actions to
specific methods in your application modules.

¢ You can use the Session Control API to control data collection in your
program.

Using the session control toolbar or Session Control API allows you to
control data collection anywhere within a method. Using a session
control file allows you to control collection only at the entrance to or
exit from a method.

Using a session control file and using the Session Control API are
described in “Analysis Session Controls” on page 3685.

Analyzing from the Command Line

To automate data collection or run analysis sessions from the command
line, use DPAnalysis.exe, the DevPartner command-line executable. For
information on using DPAnalysis.exe, refer to “Starting Analysis from
the Command Line” on page 34S5.

Using the Coverage Analysis Viewer

DevPartner Studio provides a lightweight Coverage Analysis Viewer for
analyzing coverage session files independently of Visual Studio. To
launch the viewer, do any of the following:

¢ On the Start menu, select Programs > Compuware DevPartner
Studio > Coverage Analysis Viewer.

Chapter 4 @ Automatic Code Coverage Analysis 153

Double-click a .dpcov session file in Windows Explorer.

Run a coverage analysis session using DPAnalysis.exe on the
command line. DevPartner displays the session data in the Coverage
Analysis Viewer.

What You Can Do in the Coverage Analysis Viewer

With a session file open, you can view, sort, save, or print coverage
session data. In addition, you can:

2

L 2R 2R 2

View the source code for a method

Sort the data on the Method List tab

Export the contents of the file as XML

Export the contents of the Method List in CSV format

What you Cannot Do in the Coverage Analysis Viewer

L 4

Instrument an unmanaged application for coverage analysis

¢ Start a coverage session
¢ Add files to a Visual Studio solution

Note: Session files generated outside of Visual Studio are not automatically

added to the project's solution. You can manually add externally
generated session files to an open solution in Visual Studio.

Integration with DevPartner Error Detection

154

You can use DevPartner error detection with coverage analysis to collect
coverage data and check for errors during the same session when you run
your managed application or unmanaged C/C++ application. You must
instrument unmanaged C/C++ applications for Error Detection and
Coverage with the Native C/C++ Instrumentation Manager before
collecting data.

Refer to “Error Detection” on page 13 for more information about error
detection with DevPartner.

Understanding DevPartner

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the
Team Explorer client is installed and a Team Foundation Server
connection is available. Refer to “Visual Studio Team System Support” on
page 8 for general information about Team System support.

In a coverage analysis session file, you can submit data for a method
selected in the Method List tab in a DevPartner coverage analysis session
file as a Work Item to Visual Studio Team System.

When you submit a Bug, DevPartner populates the Work Item form with
data from the visible columns in the Methods List tab. To change the
method data you submit in the Work Item, change the columns
displayed in the Method List.

Chapter 4 @ Automatic Code Coverage Analysis 155

156 Understanding DevPartner

Chapter 5
Finding Memory Problems

What is Memory Analysis?

Using Memory Analysis Out of the Box

Memory Problems in Managed Visual Studio Applications
Setting Properties and Options

Starting a Memory Analysis Session

Using the Session Control Window in Memory Analysis
Identifying Memory Problems

Running a Memory Analysis Session

Locating Memory Leaks

Solving Scalability Problems with Temporary Objects
Using RAM Footprint to Improve Performance
Analyzing Web Applications with Memory Analysis

L 2K IR K JBK B R 2R B JEE JBK 2N 2N 4

Using Memory Analysis In Your Development Cycle

*

Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with memory
analysis. The second section provides reference information for an in-
depth understanding of how to use DevPartner memory analysis.

Refer to the DevPartner online help for additional task-oriented
information about memory analysis.

157

What is Memory Analysis?

158

The DevPartner memory analysis feature enables you to analyze memory
allocation in your managed Visual Studio application.

DevPartner memory analysis presents memory data in context, enabling
you to navigate chains of object references and calling sequences of the
methods in your code. This provides an in-depth view of how your
program uses memory and the critical information that you need to
optimize memory use.

When you run your application under memory analysis, DevPartner
shows you the amount of memory used by an object or class, tracks the
references that hold an object in memory, and identifies the lines of
source code within a method that are responsible for allocating the
memory.

DevPartner memory analysis includes three analysis types: Memory
Leaks, Temporary Objects, and RAM Footprint. You can perform all three
types of memory analysis in a single memory analysis session.

Each analysis type contains a real-time graph, a dynamically updated
class list, and several session controls that enable you to control data
collection and other memory-related events, such as forcing a garbage
collection on the active process and creating a detailed view of the heap.

Note: The DevPartner memory analysis feature analyzes managed code
only, and is therefore not supported in the DevPartner for Visual C++
Bounds-Checker Suite.

Because memory analysis is integrated into Visual Studio, you can use it
to test applications as you develop them. You can also run memory
analysis sessions from the command line, or as part of an automated test
scenario, by using the DevPartner command-line executable
DPAnalysis.exe with traditional command-line switches or an XML
configuration file. For information, see “Starting Analysis from the
Command Line” on page 345.

Understanding DevPartner

Using Memory Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using one of
the three DevPartner Studio memory analysis features: Memory Leaks
analysis.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject described
in a shaded box, read the additional text following the box.

Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create and
debug your application are sufficient for DevPartner to analyze the
application.

Ready: Consider What You Want to Analyze

Does your application performance slow down over time or when you
perform certain operations? Does your application perform poorly under
load conditions or when other applications are running? If you see any
of these symptoms in your application you may be experiencing
memory-related issues.

DevPartner memory analysis collects data only from managed
applications. In order to collect memory analysis data for your
application, the solution must contain at least one managed code project
(for example, C#, Visual Basic, or managed C++). It must also include a
startup project. If the solution includes multiple startup projects,
DevPartner prompts you to choose a startup project for the session.

The following procedure assumes:

You are working in Visual Studio 2008 or Visual Studio 2005.
You are testing a single-process, managed application.

You can build and run your application.

Your solution contains at least one managed code project.

* 6 o o

Your solution includes a startup project.

Note: Refer to “DevPartner Studio Supported Project Types” on page 335
for a comprehensive list of supported project types for DevPartner
memory analysis.

Chapter 5 @ Finding Memory Problems 159

The amount of memory consumed by your application has a major
impact on how well the application performs. The larger the amount of
memory allocated, the more likely it is that the application will tun
slowly and scale poorly.

Leaked memory—the allocation of memory that is not reclaimed—can
bloat your application’s RAM footprint. Automatic garbage collection
relieves you of the responsibility to explicitly free the objects that you
create, so memory is not “leaked” in the classic C++ sense, but it is still
possible to retain references to objects that the program will never use
again.

As long as a reference to an object exists, the referenced object is
considered to be a live object by the garbage collector; a live object
cannot be collected. This condition, like leaked memory in C++, is
undesirable. Such references can be difficult to track down and that is
where memory analysis helps you.

This procedure assumes a single process application, but you can use
DevPartner Studio to analyze complex, multi-process applications. Refer
to “Collecting Data from Multiple Processes” on page 212 for additional
information on how to profile multi-process applications.

Set: Properties and Options

There are a minimal set of configuration settings specific to memory
analysis sessions.

For this procedure, you can use the default DevPartner properties and
options. No additional set-up is required.

If you find that your application slows down too much while running
memory analysis, you may be able to improve performance by excluding
system objects from the analysis. See “Setting Properties and Options” on
page 171 for details on changing the Track System Objects setting and
other memory analysis settings.

Go: Collect Memory Analysis Data

160

Before starting a Memory Leaks analysis, it is useful to understand the
workflow of the analysis.

By clicking Start/Stop, you will mark the beginning and end of a
tracking period for new memory allocations, excluding all other memory
allocations by the application.

Understanding DevPartner

When you click View Memory Leaks some or all objects that were
allocated during the tracking period are done with their tasks and are
ready to be garbage collected.

Memory analysis analyzes all of the allocations collected during the
tracking period and identifies leaks as objects that still have live
references and cannot be collected.

View Memory Leaks forces a garbage collection and creates a session file
to display these leaked objects in several graphic and list views. In the
scenario depicted in Figure 5-1, Memory Leaks Analysis Workflow
Timeline, on page 161, the Memory Leaks session file would contain two
leaked objects B and C that survived garbage collection. From the data,
you will need to decide which leaked objects are expected and which
ones are real leaks.

Note: Garbage collection can be a system garbage collection or user-
initiated by selecting either the Garbage Collection icon or the View
Memory Leaks icon.

Memory Allocations

X - not tracked, not garbage collected (expected)

Y - not tracked, garbage collected

A - tracked, garbage collected

B - tracked, not garbage collected (expected)

C - tracked, not garbage collected, possible problem

Start Start Garbage Stop View

memory tracking collection tracking Memory Application
analysis period (optional) period Leaks end
| X | | | | |

| v | | | I |

| A | | ! |

| B ' ' ' |

| | C | | | !

I L ' + + ;
Timeline >

Figure 5-1. Memory Leaks Analysis Workflow Timeline

You are now ready to perform a Memory Leaks analysis.

1 In Visual Studio, open the solution associated with your
application.

2 Choose DevPartner > Start Without Debugging with Memory
Analysis. Wait for the application to start and for the DevPartner
Memory Analysis window to display the Session Control
Window.

Chapter 5 @ Finding Memory Problems 161

Memory Leaks tab —

D

[8] Memary Leaks]El it

Start/Stop Tracking || 213 | [View Memay Leake 5 11
/

View Memory Leaks/ [System Memory BB Frofiled Memory

o

Garbage Collection

Pause displa)/
Process List

Elapsed time
Real-time Graph Top 20 classes by: | Tracked instance count B!
Class name | Mamespace | Instance count | Size (bytes) | Trackedin = | Tracked size (b | b
Shing System 1mz 80,932 183 13.870
RuntimeT ypeHandle[] System 144 2.084 116 1.536
Signature System 113 5712 a1 4,368
Runtimet ethadinfal] System Reflection 92 3448 a7 2,072
. RuntimePropertylnfol] System Reflection il 2,508 a0 2,492
Top 20 Class List ———(1\.piable HashtableEru System Collections 57 2062 57 2062
CerfurrayList Systern Reflection B8 928 55 980
RuntimeMethodinfo System R eflection 249 13,944 53 2.968
tethodlnfof] Supstemn. Reflection 53 864 51 816
RuntimePropertylnfo System Reflection a1 2,856 51 2,856
RuntimeConstructorinfo] System Reflection a1 1.408 47 1.216
RuntimeFieldinfal] Suystern Reflection 48 1.392 45 1.344 e

Figure 5-2. Memory Analysis Session Control Window

Click the Memory Leaks tab.

4 Warm up the application by exercising the features that you plan
to test. Warming up the application eliminates initialization
allocations from the tracking period.

5 Click Start/Stop to start tracking new memory allocations and
exclude previous memory allocations.

6 Exercise the application feature that you are collecting data from
and run it through a complete cycle, but do not stop the
application.

For this procedure, limit the tracking period to exercising a single
feature within your application. This reduces the complexity of the
session data and improves performance.

The patterns that appear in the session control window graph as you
exercise your application provide the initial diagnosis of the way your
application is using memory. Different memory problems show
characteristic patterns, so the real-time graph provides an important clue
as to the existence and nature of a problem. This helps determine what
kind of memory analysis to perform.

162 Understanding DevPartner

For example, a steadily rising pattern that does not return to baseline or
respond as expected to garbage collection may indicate leaked memory.

For in-depth information on other characteristic patterns in the real-time
graph, see “Using the Session Control Window in Memory Analysis” on
page 175.

For a complex application, the number of classes displayed in the list
may be large. Right-click in the list and choose Show Top 20 Classes
with Source from the context menu to limit the class list to your
application’s source code methods.

7 Click Force Garbage Collection to issue a garbage collection
on the active process.

[@] Memory Leaks]@ AM Footp
o3 ! View Memory Leaks [
[System Memeory [Profiled Memory

3

=

g

5

=

]
00:11:14 00:11:19 00:11:24 00:11:25 00:11:35 00:11:43
Elapsed time
Top 20 classes by Tracked instance cournt b

lass name | Namespace | Instance count Size (bytes) | Trackedin © | Tracked size (byte
Stack System Collections EE] 74z Kl 744
DeviceContext Syatem windows Forms. | 32 2048 kil 1.984
Obiect] System 55 27 952 il 1.736
BufferedGraphicz System. Drawing 13 a72 13 a7z
Stiing System 861 B9.726 3 340
MativeMethods. TRACKM SystemwWindows. Forms 10 240 (o) 48
YWeakReference System 14 224 2 32
Graphics System. Drawing 1 32 1 32
fdyS carceR esournce BugBenchDoth st 3 48 1 16

Figure 5-3. Session Control Window After Garbage Collection

8 Examine the list in the lower half of the Session Control window.
The list shows information about the classes that contain objects
with active references after the garbage collection.

9 Click Start/Stop E to stop the tracking period and exclude new
memory allocations. If your application is active in the
background, the values contained in the list may change, but the
tracked instances do not increase.

Chapter 5 ¢ Finding Memory Problems 163

10 Click View Memory Leaks to force another garbage collection and
create a Memory Leaks analysis session file.

11 Close the application.
Memory analysis automatically creates a second file, a Temporary
Obijects analysis session file, which is in focus in Visual Studio.

12 Click the Leak...Analysis Snap.dpmem tab to bring the Memory
Leaks snapshot session file into focus.

Analyze the Memory Analysis Data

Region#25 59,614
. . Region#17 57,742
Details for Objects that Region#44 57.160
refer to the most leaked ~ Region#214 52,846
Region# 184 44,356
memory
0 20,000 40,000 50,000

Details for Methods that
allocate the most leaked
memory

The Memory Leaks analysis session file records all objects allocated

during the tracking period that had an active reference at the time you
clicked View Memory Leaks. Use the session file to examine objects,
methods, and critical execution paths so you can answer the question
“Why are these objects still in memory?”.

Memory Leaks analysis helps you identify unneeded objects in the
context of the application and to find the best point in the reference
chain to remove the references that keep these objects in memory.

DevPartner Memany Analysiz - Memaony l2ak analysiz

Objects that refer to the most leaked memory

Leaked memory referred to by ohject (bytes)

Show Complete Details

Methods that allocate the most leaked memory

QueryWindow.Main 314,526
QueryWindow.regi... 312,976
Region.PopulateRic... 312,936

MapZoomForm..ctor 980
QueryWindow.map... 980

100,000 150,000 200,000 250,000 300,000 350,000
Leaked memory allocated by method (bytes)

50,000

Show Complete Details

Figure 5-4. DevPartner Memory Analysis - Memory Leaks Analysis Summary

164 Understanding DevPartner

List of referring objects —pm

Navigation Frame

The DevPartner Memory Analysis - Memory leaks analysis
summary contains bar charts for Objects that refer to the most
leaked memory and Methods that allocate the most leaked
memory.

The remainder of this procedure guides you through inspecting
details in both summaries.

1 Click Show Complete Details below Objects that refer to the
most leaked memory.

Note: Refer to “Using the Object Reference Graph” on page 179 for in-

depth information on working with memory analysis session files.

Return to summary

\

Object Reference Graph

Allocation Trace Graph—__|
Tab

Source Tab

Object Reference Graph | Allocation Trace Graih Source

- ‘BugBenchDotN...isSnap.dpmem | Start Page | - !)
DevPartner Memory Analysis - Memory leak Cbijects that refer to the most leaked memory =
Referring object MNamespa| Leaked objects Leaked size (bytes) © | Call stacks Additional ref
Foot instances of System Windows. Forms. Int <gecroots 177 8,496 1]
Object(J#44:Sting T able Syztem 27 2476 1
Urreachable Object <gcroot 33 2122 1
Root instances of System. Drawing. BufferedGr - <gcroots 22 968 1]
WeakReference[[#1 Syztem 5 a0 1]

Culturelnfofs Swyztem, 1 48 1]
BufferedGraphicsContextfl Swyztem. 1 32 1]
Button$td Swyztem. 1 24 o
Button$3 Swyztem. 1 24 1]
FictureB o« Swyztem. 1 24 1] 3
< ' 3

— 5 |

context
I;— e = Rootinstanmsof _ = BufferedGraphicssont=:t = Buf G
— 1,068 44 100
|
7 context
v

Figure 5-5. DevPartner Memory Analysis - Memory Leaks Object Reference Details

Chapter 5 @ Finding Memory Problems

165

166

Examine the DevPartner Memory Analysis - Memory Leaks view
that displays a list of referring objects sorted by Leaked size (byte).
The Referring object responsible for the most leaked memory
appears at the top of the list.

The tabs at the bottom of the window display an Object Reference
Graph, Allocation Trace Graph, and a Source window.

Choose the Object Reference Graph tab and then select a
referring object in the list at the top.

When you select a referring object from the list, the Object
Reference Graph highlights the selected object.

In the Object Reference Graph, hover the mouse over an object
node to get information about the leaked memory associated with
that object.

Drag the navigation frame in the overview pane to focus on
various parts of the Object Reference Graph.

Right-click a Referring object in the list and choose View leaked
objects referenced by this object. The default sort order is
Referenced size (bytes), which highlights the amount of memory
that could be freed if the object was collected.

You should understand why the objects are still referenced and at
this stage, you can decide where in the code you want to break the
references (if needed).

If you need more information or deeper program understanding, use the
tabbed views to examine object references, identify the execution paths
that allocated the memory, and locate the lines responsible for source
code.

¢ The Object Reference Graph provides a graphical representation of

objects and the related object references. The display depicts each
object with related information such as memory used by itself and its
children, or the percentage of memory used by the object.

¢ The Allocation Trace Graph provides a graphical representation of

the execution paths in your code. This gives you the context of where
the object was allocated.

¢ The Source window displays the related source code for each object.

Understanding DevPartner

Consider the expensive object references and decide whether or not the
application can be optimized by managing the object references

differently.

Return to previous BugBenchDotH. . .isSnap.dpmem | Start Page - X
DevPartner Memory Analysis - Memary leak bt TatTerer o et ek emor g 4 =2
Referring object Namespa Leaked objects Leaked size (bytes) ¢ | Call stacks Additional references
Foat instances of 5 pstem.wfindows.Forms. Intemal. <gcrooty 177 0,496 0 2
Object[]#44:5ting Table System 27 2476 2| 4
Unreachable Object <goroots 39 2122 1 2
Root instances of System Diawing BulleredBraphics <gerooty 22 968 i 1
‘WeakReference[]H Systern 5 a0 0 1
Culturelnfo#s Sustern, 1 48 0 1
BufferedGraphicsCaontextH1 System, 1 32 0 1
Buitori | |
Buttondt3 1 24 1} 1
PictureB ot Systemn, 1 24 0 1
CheckBoxttl Sustern, 1 24 0 1
Buttandt1 System, 1 24 0 3
frmBugBenchDotNET #1 BugBen 1 16 1} 1

Navigation Frame Root instances of BugBenchDolNet MyScarceResou <geroots 1 16 i 1

== e
B frmBugBenchDotNET.Mainfvoid)
. B frmBugBenchDotNET...cor{void)
Execution Path |

Allocation Trace Graph tab

Ohiject Reference Graph | Allocation Trace Graph Source

Figure 5-6. DevPartner Memory Analysis - Allocation Trace Graph

7 When you decide that you want to make changes, select the
Allocation Trace Graph tab to see the execution paths that
created the object and allocated the memory.

8 Choose the Source tab and select an object in the Object List.
Notice the source code reference change for each object that you
select.

9 Right-click an object in the list and choose Edit source to display
the related source code line in the Visual Studio editor.

Note: There is no editable source code available for system objects.

10 Close the Visual Studio editor.

For an in-depth example, see “Objects that Refer to the Most Leaked
Memory” on page 193. For various techniques to access source code, see
“Navigating the Source Tab” on page 184.

After you identify source code that correlates to an object reference, you
start to see memory management beyond the object level to the inter-
relationships between objects and object references. From here, begin
making decisions on whether or not the object references can be
managed differently to improve application performance.

Chapter 5 @ Finding Memory Problems 167

Obiject reference management changes could involve using smaller
objects, weak references, different sequencing of object references, or
limiting the number of layers of abstraction.

For Web applications, awareness of a client-server relationship may allow
you to capitalize on a garbage collection on the server when scalability is
a focus.

Return to Summary

DevPartner Memory Analysis - Memory leak Methads that allocats the most leaked memnory: =

| = DTw/030033002 [100.0 2| | Method name | Namespace Execution co| Leaked size | Leaked size (% | Leaked size incl | Leaked size inclu <
= 54 C\Documents and Sei Bugl Toth 5,444
=B AppDomain - Bugk g pgBenchD BugBenchDioth 1 3,442
=¥ Assembly - Bug| o8 kD BugBenchDolt 2 246

D flmBugBerl frmBugBenchl BugBenchDotd

Method List

Navigation Frame

| = frmBugBenchDotNE ... :_ 336% = frmBugBenchDotNE...
525% 100.0 %

Expand or collapse i
calling sequences | — 3%

.. . /_» 0.2% E frl!!BugBe\r.:thl!NE...
Critical execution path o

0.0% = frmBugBenchDotNE...
100.0 %

Source tab
0.0 %
3|
\ < >

| Call Graph | Souice

Figure 5-7. DevPartner Memory Analysis - Method List Call Graph

11 Select the DevPartner Memory Analysis - Memory leaks analysis
session file tab and click = to return to the Summary page.
In addition to the Objects that refer to the most leaked memory,
you can analyze the Methods that allocated the most leaked
memory.

12 From the Summary page, choose Show Complete Details for
Methods that allocate the most leaked memory.

The Method List displays source methods that allocated the most
leaked memory.

13 Select a method in the Method List to display the Call Graph.

168 Understanding DevPartner

Saving Session Files

14 In the Call Graph window, hover your mouse over a method node
or the line between method nodes. Compare the leaked size
contributed by the method node and its children.

The critical execution path is highlighted with a bold, gold-colored
line.

15 Use the + and - controls to expand and collapse the calling
sequences to various levels for method nodes.

16 In the list above, right-click on a method name and select View
Source from the context menu.

17 In the list, right-click on a method name and choose View

Summary.

For an in depth example, see “Methods that Allocate the Most Leaked
Memory” on page 196.

When you have finished reviewing memory analysis data you can save
the session files.

1 Close both session file windows in Visual Studio. DevPartner
prompts you to save the session file.

2 Click Ok to save the file with the default file name and location.

DevPartner saves session files as part of the active solution. They appear
in the DevPartner Studio virtual folder in Solution Explorer. Memory
analysis session files take the .dpmem extension.

By default, DevPartner physically saves the session files in your project's
output folder. DevPartner automatically increments the file name based
on the contents of the default directory (for example, MyApp-
TemporaryObjectSnapl.dpmem, MyApp-LeakAnalysisSnapl .dpmem, and so
on). If you save session files to a location other than the default directory,
you must manage the file naming and numbering.

For projects that do not have an output directory, such as a Visual Studio
2005 Web site project, DevPartner physically saves the files to the project
directory.

Session files generated from the command line utility are not
automatically added to the project's solution. You can manually add
externally generated session files to an open solution in Visual Studio.

Chapter 5 @ Finding Memory Problems 169

The remainder of this chapter provides reference information and an in
depth exploration of each DevPartner memory analysis feature: Memory
Leaks, Temporary Objects, and RAM Footprint.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a memory analysis session,
continue reading the rest of this chapter for additional information, or refer to
the DevPartner online help for task-based information.

Memory Problems in Managed Visual Studio Applications

170

Managed Visual Studio applications benefit from a sophisticated memory
management environment with garbage collection. Unlike unmanaged
(native) C++, in which you explicitly free the memory that you allocate,
the garbage collector frees memory once the object for which it was
allocated is no longer in use, or more accurately, no longer “reachable”
by the application.

Because of the built-in memory management in managed code projects,
many developers assume that managed languages relieve them of the
headaches traditionally associated with memory management. However,
memory allocation and use in managed Visual Studio programs can still
cause performance bottlenecks and resource depletion.

Does your application exhibit any of the following symptoms?

¢ Performance slows down over time

< Runs slowly, or slows down noticeably when you perform certain
operations

¢ Performs poorly under load conditions

¢ Performs poorly when other applications are running

Any of these symptoms indicate that your application has a performance
problem. Refer to the following lists of questions to better understand if
the problem is related to memory use.

¢ Several application classes must load before the program executes a
particular function and each application class uses memory.
¢ Does your program load classes that are only related to perform-
ing current tasks?
¢ How many instances of a particular class does your application
create and are all instances needed?

Understanding DevPartner

¢ Obiject allocation also incurs memory use which may lead to

performance problems.

< Do you know if your program allocates too many objects, or allo-
cates them efficiently?

¢ Does the garbage collector clear the objects that your program
allocates?

¢ Are the objects being collected as expected, or do the objects
remain in memory long past their usefulness?

How Memory Analysis Helps You

The DevPartner memory analysis feature provides a comprehensive view
of memory use in your managed application. DevPartner provides three

different types of memory analysis to help you isolate different kinds of

memory-related problems. Regardless of which type of analysis you use,

all types include the following features:

¢ Real-time graph — DevPartner presents a live view of memory use in
your application while it runs. This view appears in the Session
Control Window. You can see how much memory is being used by
your application code (profiled code), system and other application
code (excluded code), and how memory consumption compares to
the memory reserved for the managed heap.

¢ Dynamic list of classes — DevPartner updates the list of profiled
classes in real time while your application runs. This shows you the
number of objects allocated and number of bytes used by each class,
as your application runs.

¢ Detailed heap views — You can capture a snapshot of a detailed
view of the managed heap at any time during program execution.
DevPartner stores this data in a session file that you can then use to
analyze memory problems in depth. DevPartner provides multiple
ways to drill down into the session data, so you can see how your
application uses memory and ultimately identify the methods or
lines of code responsible for the most memory use.

Setting Properties and Options

Before beginning a memory analysis session, it is often useful to fine-
tune data collection to include or omit certain types of information. Use
Solution Properties, Project Properties, and DevPartner Options to better
focus your analysis session.

Chapter 5 @ Finding Memory Problems 171

Solution Properties

Project Properties

To view properties that affect memory analysis at the solution level,
select the solution in the Solution Explorer and press F4 to view the
Properties Window.

Properties

SpeedBump.Met Solution Properties -

9peedBump.Met

Active config Debug|Mixed PlatForms
Automatically Merge Session Files Merge it automatically
Collect from JMET True

Descripkion

Startup project Driver

Figure 5-8. Solution Properties
The following Solution properties may affect memory analysis:

¢ Collect from .NET - Running your managed application with
memory analysis overrides this property if it is set to False. Memory
analysis always collects data from managed applications.

¢ Startup project - If your solution includes multiple projects, you can
change the startup project. The Project properties for the startup
project govern data collection for all projects active in the session.

Note that your solution must include a startup project. If the solution
contains multiple startup projects, DevPartner prompts you to choose a
startup project for the session before analysis begins.

Only projects for which the Action in the Common Properties >
Startup Projects page of the solution properties is set to Start are
included in the prompt dialog. If the desired startup project does not
appear in the prompt, open the solution properties page and set the
Action for the project to Start. If you choose a new startup project for a
subsequent session, review the properties for the new startup project to
ensure the data collection options are correct.

To review project level properties, select a project in the Solution
Explorer and review the properties that can be set for projects within the
solution.

172 Understanding DevPartner

Changes that you make here affect coverage analysis, memory analysis,
performance analysis, and Performance Expert.

E: DevPartner Coverage, Memory and Performance Analysis|
Callect COM Information False
Exclude Others True
Instrument Inline Functions False
Instrumentation Lewvel Line
Track System Objects Trug
E DevPartner Performance Expert
Include Project in Session Yes
B Misc
Praject File Driver.cspraj

Figure 5-9. Project Properties
The following project-level property affects memory analysis:

¢ Track System Obiject - Set this property to False to ignore system or
third-party object allocations when tracking allocated objects in
memory analysis sessions.
The default state, True, enables you to see memory allocations made
by system or other non-profiled resources

Chapter 5 ¢ Finding Memory Problems 173

Options

To review DevPartner option settings for memory analysis sessions,
choose DevPartner > Options > Analysis.

Options
[#- Environment s —
[Projects and Solutions Liecion |_1 1 |
[#- Source Contraol —
& Scale :
- Text Editar Microseconds v_l
(=) DevPartner Units =

—_—
! Bytes w |

Display

Exclusions - Coverage
Exclusions - Performance
Session Control File

[#- Code Review

[+ Error Detection
[#- Database Tools
[#- Debugging
[#- Device Tools
[#- HTML Designer
[#- Windows Forms Designer

Ok] [Cancel

Figure 5-10. Analysis Options
¢ Precision - Choices are one, two, three, or four decimal places
¢ Units - Choices are Bytes, Kilobytes, or Megabytes

¢ The Session Control File option allows you to create a set of rules
and actions to control the data that DevPartner collects as your
application or module runs. Refer to “Creating a Session Control File
Within Visual Studio” on page 366 for more information about
session control files.

Other Visual Studio options, such as the Environment > Fonts and
Colors options, also affect DevPartner features.

Starting a Memory Analysis Session

You may choose to run a memory analysis session with or without
debugging. From the DevPartner menu, the only option is to start a
memory analysis session without debugging. After you open a project or
solution, the selection to the right of the memory analysis icon allows
you to start the session with or without debugging.

174 Understanding DevPartner

1 - % ,
Start without Debugging with Memory Analysis
Start with Memory Analysis

Figure 5-11. Memory Analysis Icon With Option To Start With Or Without
Debugging

Start Without Debugging with Memory Analysis is the default setting
for memory analysis due to ease of understanding analysis results, and
improved performance. You may instrument your code with break points
and Start with Memory Analysis with debugging to isolate the
performance of specific sections in your code.

An alternative to setting break points to isolate sections of your code is to
use either the sessionControl. txt file or the Session Control API to
perform memory analysis actions while your program runs. Refer to
“Creating a Session Control File Within Visual Studio” on page 366 for
more information about session control files.

Using the Session Control Window in Memory Analysis

When you start a new memory analysis session, DevPartner opens the
Session Control Window. Each tab in the Session Control Window
corresponds to one of the types of memory problems you can analyze:
Memory Leaks, Temporary Objects, and RAM Footprint. Each tab
contains a view of the real-time graph, the dynamically updated class list,
and several session controls that enable you to control data collection
and other memory-related events, such as garbage collection. The data
shown in the class list and the session controls available differ slightly,
depending on the tab selected.

Chapter 5 ¢ Finding Memory Problems 175

[@] Memary Leaks |[&] RaM Footprnt | B Temporary Objects I
£ [@ViewMemowLeaks E1| y [CIBEG4SNDT 1576 [Diiver.coe) =
[System Memory [Profiled Memory
500,000 4

g 400,000

& 300,000

g 200,000

= 100,000

0
00:00:13 00:00:20 00:00:26 00:01:19 00:01:31
Elapsed time

Class name | Mamespace | Instance count | Size (bytes)| Tracked instance © | Tracked size (bytes) I;
Stiing System 25838 185,418 103 4746
Graphics Syztem.Drawing is} RED iz} RED
PaintE ventirgs System.wWindows F 34 1.496 M 1.496
RuntimeT ype System 107 1.712 1kl 176
Mativebdethods. TR System.\Windows F 7 168 7 168
FropertyStore. Obje System.Windows.F - 14 h28 7 264
EventHandlerList System.Componen 14 168 7 84
CreateParams Spstem Windows.F 14 728 7 364
Control. ControlMati — System.\Windows. F - 14 E72 7 336
FropertyStore Spstem Windows.F 14 224 7 112
Stringf] System 17 |00 E 228 o
Obiject]] System 263 23.768 B 392
Enum.HashEntry System 9 144 E 96
ungigned long(] 9 e E 336
EventHandlerList.Li System.Componen 12 240 5 100 LI

Figure 5-12. DevPartner Memory Analysis Session Control Window

Patterns in the Real-time Graph

Observe the real-time graph when you start a session. The pattern that
appears in the graph as you exercise your application shows initial
diagnosis of how your application is using memory. Different memory
problems show characteristic patterns, so the real-time graph provides
the first clue as to the existence of a problem and the nature of the
problem. This helps determine what kind of memory analysis to perform.

¢ A steadily rising pattern that does not return to baseline or respond
as expected to garbage collection may indicate leaked memory. Run
Memory Leaks analysis.

¢ A pattern that does return to baseline but is characterized by periodic
spikes in memory use indicates that your application is creating lots
of objects as it runs. Run Temporary Objects analysis.

¢ If your application consistently consumes nearly all the reserved
system memory in the managed heap, and the amount is large
relative to the anticipated resources of your target users’ systems, you
may want to reduce the overall memory footprint of your
application. Run RAM Footprint.

176 Understanding DevPartner

Dynamic Class List

The class list shows the 20 profiled classes that consume the most
memory. The list is updated dynamically as your application runs under
memory analysis. Use the class list to observe which classes are associated
with increases in memory consumption or increases in object creation.
Because the list is updated in real time, you may be able to spot potential
problem areas as you exercise your application.

The following columns are available in the class list. Columns that
indicate data is displayed in units present data in bytes, kilobytes, or
megabytes, depending on the options that you set in DevPartner
Analysis Display Options.

¢ To change the sort order of the class list, select a column heading in
the Top 20 Classes by list.

¢ To limit the class list to classes for which source code is available,
right-click anywhere in the list and choose Show Top 20 Classes
with Source from the context menu.

Note: When you display the class list with the Show Top 20 Classes with

Source option, array classes appear in the list if the array element
type is in the source code.

Table 5-1. Column Headings In The Dynamic Class List For Memory Analysis

Columns Data Displayed

Class names Name of the class

Namespace Namespace of the class

Instance count Number of objects of this class currently in memory

Size (units) Amount of memory used by instances of this class.
Default sort for Temporary Object and RAM Footprint
analysis.

Tracked instance Number of tracked objects of this class currently in

count (Visible in memory.

MG;”)‘O"Y Leaks analysis pefault sort in Memory Leaks analysis.
only

Tracked size (units) Amount of memory used by all of the tracked objects of
(Visible in Memory this class that are currently in memory.
Leaks analysis only)

Note: Tracked objects are objects allocated after the user clicks Start
Tracking and before the user toggles the selection to Stop Tracking.

Chapter 5 ¢ Finding Memory Problems 177

178

DevPartner Memory Analysis Session Control Window

The Session Control window provides a number of ways to interactively
control data collection and display.

Table 5-2. Memory Analysis Session Control Window Features

Session Control Function

Process Use the list of processes at the upper right of the tabbed
area to choose a process to monitor. New processes (that
are configured to be profiled) are added to the list as they
begin to execute. The default selection is the launched
(start-up) process.

Start/Stop Tracking Starts or stops tracking memory allocations (toggle).
When you click this button, the graph changes color to

indicate the portion tracked.
(Memory Leaks only)

Clear All Memory Clears all memory data collected to this point. Does not
7 affect garbage collection.

(Temporary Objects

only)

Force Garbage Forces a garbage collection on the active process.

Collection

Pause Display Pauses the display (toggle) but does not stop data

El collection. When Pause is clicked again, the graph display
begins redrawing the current memory use activity.

View Session Results

As your application runs, you can capture a snapshot of memory use by
clicking the appropriate View... button. This creates a session file that
contains memory usage data. You can create as many session files as you
need during a given run of your application. Capturing a snapshot does
not stop data collection.

Table 5-3. Snapshot Commands For Memory Analysis View Session Results

Snapshot

e eyt Function

View Memory Leaks Forces a garbage collection on the active process and
opens a session file that displays detailed memory leaks
data.

Understanding DevPartner

Table 5-3. Snapshot Commands For Memory Analysis View Session Results

Snapshot -

o Function

View Temporary Creates a session file that displays detailed temporary
Objects objects data. Does not force a garbage collection on the

active process.

View RAM Footprint Forces a garbage collection and opens a session file
displaying detailed RAM footprint data.

Unsaved session files open automatically in Visual Studio after they are
created and all session files become part of the active solution when
saved. They appear in the DevPartner Studio virtual folder in the
Solution Explorer pane.

Session files first appear in the form of a Results Summary. Use the
Results Summary to drill into the session data and locate problem areas
in source code.

Session File Integration

When your application execution stops, DevPartner displays the results
of the memory analysis sessions in a Session window in Visual Studio.
DevPartner stores the collected data in a memory analysis session file,
with a . dpmem extension.

DevPartner automatically adds the session files to the DevPartner Studio
folder that you can view in the Solution Explorer for the active solution.
To review an existing memory analysis session file, double-click the file
in Solution Explorer.

From the Session window, you can analyze results within the
development environment. Drill down into the data to examine object
references or the call relationships of the methods that allocated the
objects, jump to the source code for a particular method, and open the
source code for any method for editing in Visual Studio.

Using the Object Reference Graph

When analyzing objects that remain in memory, you want to understand
what prevents them from being collected by the garbage collector. The
Object Reference Graph shows the complete chain of objects between
the selected object and the garbage collection root or roots that are
keeping the selected object alive.

Chapter 5 ¢ Finding Memory Problems 179

180

Note: The Object Reference Graph does not show all referring objects,
but those referring objects that point to a garbage collection root.
For reasons of completeness, the graph also occasionally shows
objects in the object reference path even if they are not on the

shortest path to a garbage collection root.

Objects that refer to the most leaked memaory =

- X

Mamespa| Leaked objects

- ‘BugBenchDotN. . .is5nap.dpmem | Start Page
DevPartner Memory Analysis - Memory leak
Referring object
Foot instances of System. \Windows. Forms. Int <gcrook:
Object{#44:Sting T able System
Unreachable Object <gerook:
Foot instances of System.Drawing BufferedGr <gcroot>
‘weakReference[J#1 System
Culturelnfolts Systern.
BufferedGraphicsContesti Sypstem,
Buttontt4 Sypstem,
Button$3 Sypstem.
PictureB ol System.
<.

I: e = Rootinstanesof _
o 1,068
<
Obiject Reference Graph | Allocation Trace Graph | Source

177
27
39
22

bl |l boad o lon

context

Moraphicsiantast B

Leaked size (bytes) © | Call stacks Additional ref

8436
2476
2122
968
a0

43

32

24

24

24

To oo oo oo = = o

Figure 5-13. Memory Analysis Object Reference Graph

The Object Reference Graph automatically redraws when you select an

object in the Object List.

The Object Reference Graph consists of two frames:

¢ The left frame presents an overview pane of the Object Reference
Graph. The overview pane contains a navigation frame that allows
you to quickly locate and view different parts of a large graph.

¢ The right frame presents the object reference relationships for the
object you selected in the Object List.

The node highlighted in yellow represents the selected object. Numeric
data on the node indicates leaked size or referenced size, depending on
context. Object reference paths are indicated by lines with arrows
indicating the order of reference. Labels on the connecting lines indicate
the member variable that holds the reference.

Understanding DevPartner

Using the Call Graph to Identify Execution Paths
The Call Graph consists of two frames:

¢ The left frame shows an overview pane of the Call Graph that is
useful to navigate a large graph. As you move the navigation frame
in the overview, the view in the right frame changes dynamically.

¢ The right frame shows the Call Graph. Methods are shown as nodes.
Links between nodes represent calling relationships. Expand nodes to
view the order of program execution.

DevPartner Memory Analysis - Memory leak Methods that alocate the most leaked memary
= @, DTw030033002 (100.0 2 | Method name | Execution co| Leaked size | Leaked size (% | Leaked size incl | Leaked size incl
B-E& C:\Documents and Se Bu N T
= &' AppDomain - BUGE (1B fienchD BugBenchDotN 1 3442

=% Assembly - Budl b penchD BugBenchDotN 2 345
D fimBugBer frmBugBenchD BugBenchDoth

4

| 2 frmBugBenchDotNE... i_ 336 % =| frmBugBenchDotNE ...
{ 825 % H 100.0 %

34%

0.2 % =| frmBugBenchDotNE ...

100.0 %

o =1 Furs Durn Do ok MnslE

Figure 5-14. Memory Analysis Call Graph

Call graphs are read left to right. The first node initially shown in the
Call Graph is the base node. This represents the method selected in the
Method List. Nodes to the left of the selected node are called parent
nodes. Nodes to the right of a node are called child nodes.

The upper half of the node shows the node name, which is the name of
the function or method being displayed by the node. The bottom half
shows the node value, which is a percentage value associated with the
node. This value is the percentage of memory the node is using of the
total memory being used by the node (and all of its child nodes).

The smaller rectangles on the left and right sides of the nodes are called
links. They represent either a method call or invocation. The percentages
on the lines tying nodes together are called link values and show a
percentage value associated with the link. The link value shows the
percentage of memory that child (and its children) are using of the total
memory being used by its parent node.

Chapter 5 ¢ Finding Memory Problems 181

Nodes that have no associated parent/child nodes are called “dead end
nodes”. They represent the end of a path of execution, either at the start
or end of an order of method calls.

To show the Method name list and associated Call Graph for temporary
objects, click Show Complete Details from the Entry points that
allocate the most memory graph or the Methods that use the most
memory graph.

Once the Method name list and associated Call Graph appears, you can
display Call Graphs for the methods in the Method name list by
selecting a method in the Method name list. To view the source code for
a method, select the node representing a method and click the Source
tab at the bottom of the Call Graph window.

Critical Paths

When you display a Call Graph, DevPartner Studio computes the critical
path for the selected method and all of its children. The critical path is
the sequence of child method calls that resulted in the largest cumulative
memory allocation. The critical path is highlighted with a bold, gold-
colored line.

Using the Allocation Trace Graph

182

DevPartner displays the method calls that allocated memory in the
Allocation Trace Graph. The Allocation Trace Graph is available in
RAM Footprint and Memory Leaks session files. It is visible in any view
that includes an object list.

Understanding DevPartner

_BugBenchDotN. . .is5nap.dpmem | Start Page

w4
i, | %

DevPartner Memory Analysis - Memory leak Objects that refer to the most leaked memory
Referring object Mamespa Leaked objects Leaked size (bytes) 1 | Callstacks | Additional references
Root instances of System Windows Forms | ntermal <gerooty 177 8.496 a 2
Object[|#44:Sting Table System 27 2,476 1 1
Unreachable Objsct <geroaty 39 2122 il 2
Root instances of System.Drawing BufferedGraphics <geroaty 22 968 a 1
wieakR eferencelJ#1 System 5 a0 1} 1
Culhurelnfo#t System. 1 48 1} 1
BulteredGraphicsContexti1 a 1
EButtonitd
Button#t3 1} 1
PictureBox# 1 0 1
CheckBox#1 1 0 1
Button#l 1 1} 1
fimBugBenchDotMETH1 BugBen 1 16 1} 1
Raot instances of BugBenchD otMet MyScarceResou <goroat> 1 16 a 1
= :
B frmBugBenchDotNET.Main{void)
5 frmBugBenchDotNET...cor{void)

& DotHET. Initi

Obigct Reference Graph | Allocation Trace Graph | Source

Figure 5-15. Memory Analysis Allocation Trace Graph

To display the Object List and associated Allocation Trace Graph, do
one of the following:

¢ Click Show Complete Details under the Objects that refer to the
most leaked memory (Memory Leaks) or Objects that refer to the
most allocated memory (RAM Footprint) graph in a memory
analysis Results Summary.

¢ Drill down from the Methods that allocate the most leaked
memory (Memory Leaks) or the Methods that allocate the most
memory (RAM Footprint) view in a Memory Analysis Results
Summary.

To view the Allocation Trace Graph for an object, do one of the
following:

¢ Select the object in the Object List and click the Allocation Trace
Graph tab at the bottom of the session file window.

¢ Right-click an object in the Object List and choose View Allocation
Trace Graph from the context menu.

DevPartner redraws the Allocation Trace Graph for the selected object.

To view and edit the source code for any node in the Allocation Trace
Graph, right-click on the node and choose Edit Source from the context
menu. DevPartner opens your source code for editing, at the selected
method.

Chapter 5 @ Finding Memory Problems 183

Viewing and Editing Source Code

184

Selecting the Source tab displays source code for the profiled application.

A Source tab view can be accessed from many points in the DevPartner
memory analysis session windows, either by context menus, or by simply
clicking the Source tab at the bottom of the session window. In addition
to source code, the Source tab includes data about the individual lines of
source code. The data available on the Source tab will vary, depending
on the type of memory analysis performed and your data column display
choices.

In addition to viewing data about your source code, you can jump
directly to the source code in the Visual Studio editor by choosing Edit
Source from one of the DevPartner memory analysis context menus.
DevPartner opens the source file for editing at the line that corresponds
to the object node, method node, or line of code in the Source tab from
which you executed the Edit Source command.

Note: If the source code does not display or contains unintelligible
characters, DevPartner may not have been able to determine the
encoding of the source file.

If you know the encoding, right-click in the source pane and choose
Encoding... from the context menu. Select the correct encoding in
the dialog and click OK to display the source file.

From this context menu, you can also change to a different source
file.

The Source tab consists of a view of application source code and includes
data columns that contain information about the source methods used
by your application. The data columns available are tailored to the
context in which the Source tab appears. Different sets of data columns
are available in Memory Leaks analysis, Temporary Objects analysis, and
RAM Footprint analysis sessions.

Navigating the Source Tab

You can jump to the relevant line of source code on the Source tab from
any object or method (for which you have source code) in the session
window.

¢ From any Memory Leaks, RAM Footprint, or Temporary Objects
results summary, click Show Complete Details to drill down into the
session data

¢ In the session window, click the Source tab (at the bottom of the
window)

Understanding DevPartner

Viewing Source Code

Use the following techniques to view the related source code in memory
analysis.

Table 5-4. Viewing Source Code

View or Graph Viewing Source Code

Object View Select an object in the Object List and click
the Source tab.

Object Reference Graph or Right-click an object node and choose View

Allocation Trace Graph Source on the context menu.

Method View Select a method in the Method List and click
the Source tab.

Call Graph Right-click a method node in the Call Graph
and choose View Source on the context
menu

Editing Source Code

Use the following techniques to edit related source code in memory
analysis.

Table 5-5. Editing source code

Graph or List Editing Source Code

Object Reference Graph or Right-click an object node and choose Edit

Allocation Trace Graph Source on the context menu. DevPartner
opens the source file in Visual Studio for
editing

Call Graph, Object List, or Right-click a method in the Object List,

Method List Method List, or a node in the Call Graph and

choose Edit Source on the context menu.
DevPartner opens the source file in Visual
Studio for editing.

Customizing the Source Tab Data Columns

¢ Right-click on a column heading and use Choose Columns to
change the data columns displayed in the Source tab. Source tab
columns are not sortable.

Chapter 5 ¢ Finding Memory Problems 185

Changing the Source File

¢ Right-click on the title bar of the Source tab window and use Choose
Another Source File... to select a different source file. This creates a
new mapping for the source file. It does not affect any other source
paths.

Identifying Memory Problems

186

Consider the following scenario:

When your Quality Assurance team reports the first test results for your new
managed application, you are pleased to learn that it does what it is supposed
to do. But in later tests, QA runs longer test cycles and reports that the longer
the application runs, performance slows down.

That is not what you want to hear. How do you know what part of your
application to examine first? When you find the problem, how do you correct
it?

To find problems in your application, run the application under
DevPartner memory analysis. You do not have to wait until you suspect a
memory problem to use DevPartner. Make testing your application’s
memory use with DevPartner a routine part of the development process.

DevPartner helps you quickly learn how your application uses memory
resources, revealing current or potential problem areas.

After you start a memory analysis session without debugging, use the
Session Control Window to observe how your program uses memory.

The real-time graph presents a visual representation of memory use. The
class list updates dynamically to show the classes that use the most
memory as your program runs. Right-click the class list to switch
between the Top 20 classes and the Top 20 classes with source.

The Session Control buttons in the user interface allow you to take a
snapshot of the managed heap for detailed analysis.

Understanding DevPartner

When you run a memory analysis session, you can choose to examine
one of three important potential problem areas:

¢ Memory leaks
¢ Temporary object creation
¢ Overall RAM footprint

Table 5-6. Symptoms And Analysis Tools

Symptom Analysis Tool

Performance degrades over time; recovers on Memory Leaks
restart. Performance improves after restarting the
application, but degrades again.

Scalability problems; temporary performance Temporary Objects
degradation. Memory Leaks
Sluggish performance, does not improve after RAM Footprint
restarting the application. Temporary Objects

First choose the appropriate memory analysis feature for the symptom
that your application exhibits. You eventually want to run your
application under all three types of memory analysis. Even if you do not
find a problem, the thorough analysis enhances your understanding of
how your program uses memory resources.

Running a Memory Analysis Session

Tip: Pay careful attention
to the shape of the real-
time graph as you run
your application. You can
often diagnose a memory
problem immediately by
observing and learning
from the pattern of the

graph.

The first thing you notice when running any memory analysis session is
the real-time graph on the Session Control Window. The real-time
graph provides a visual representation of how your application uses
memory resources. Observe the pattern the graph takes as you exercise
your application. Different memory usage scenarios create characteristic
patterns, so the real-time graph provides the first clue to the existence
and nature of a memory problem.

[SystemMemory [I] Profiled Memary
500,000 |

400,000
300,000
200,000
100,000

Memory {bytes)

0
00:00:00 00:00:03 00:00:08
Elapsed time

Figure 5-16. Memory Analysis Session Control Window Real-time Graph.

Chapter 5 ¢ Finding Memory Problems 187

For example, if the graph shows a rising pattern that never returns to
baseline, as in Figure 5-16, your application is probably leaking memory.
You may suspect that the progressive slowdown of your application that
your QA team noticed is consistent with a memory leak, but the real-time
graph confirms that diagnosis.

If the graph returns to the baseline, but you see periodic spikes in
memory use, your application is creating large numbers of objects as it
runs. Granted, the allocated memory is being freed, but such an
application may not scale well under load.

If your application slows down in response to an increase in users or
inputs, the slowdown could indicate a scalability issue. Again, the real-
time graph indicates the nature of the problem, enabling you to
immediately point your diagnostic efforts in the right direction.

Even in the absence of a suggestive pattern, the real-time graph provides
important information. For example, if your application consistently
consumes nearly all of the memory allocated for the managed heap, and
that amount is large relative to the anticipated resources of your target
users’ systems, you may want to reduce the overall memory footprint of
your application. The next sections in this chapter provide detailed
information about such cases and their implications for application
performance.

Locating Memory Leaks

188

The amount of memory consumed by your application has a major
impact on how well the application performs. The larger the amount of
memory allocated, the more likely it is that the application will run
slowly and scale poorly.

Leaked memory—the allocation of memory that is not reclaimed—can
bloat your application’s RAM footprint. Automatic garbage collection
relieves you of the responsibility to explicitly free the objects that you
create, so memory is not “leaked” in the classic C++ sense, but it is still
possible to retain references to objects that the program will never use
again.

As long as a reference to an object exists, the referenced object is
considered to be a live object by the garbage collector; a live object
cannot be collected. This condition, like leaked memory in C++, is
undesirable. Such references can be difficult to track down and that is
where memory analysis helps you.

Consider Memory Leaks analysis.

Understanding DevPartner

Running a Memory Leaks Analysis Session

The Ready, Set, Go section “Using Memory Analysis Out of the Box” on
page 159 also includes a procedure for using the Memory Leaks feature.
The following is a quick summary of that process.

Isolating Memory Leaks with the Memory Leaks Feature

1 Start your application under memory analysis. Use the Memory
Leaks tab in the Session Control Window.

2 Exercise the relevant features of your program to force any startup
initialization to complete. The application warm-up also excludes
initialization memory allocations from your analysis.

3 Click Start/Stop to begin tracking only newly allocated objects.
4 Exercise the feature of your program that you wish to test.

5 Click Force garbage collection to force a garbage collection on the
active process.

6 Click Start/Stop again to end the tracking period and to exclude any
new memory allocations.

7 Check the Tracked instance count and Tracked size columns in the
Class List. If you see that objects have been allocated but not
collected, click View Memory Leaks to capture a view of the
managed heap that shows the tracked objects that remain after
garbage collection.

Note: View Memory Leaks appears only after you click Start/Stop
tracking for the first time.

DevPartner displays a snapshot of the state of the managed heap. The
data is displayed as a Memory Leaks Results Summary. From the results
summary page, you can drill into the memory use data, identify the
problem, and locate the method(s) responsible in the source code.

Note: To enable DevPartner to properly identify most garbage collection
roots in Memory Leaks or RAM Footprint sessions, Start Without
Debugging with Memory Analysis. If you attempt to collect
Memory Leaks or RAM Footprint data for an application started
under Start with Memory Analysis (with debugging), all garbage
collection roots will appear as “unidentified GC roots” in the
session data.

Chapter 5 @ Finding Memory Problems 189

Understanding Memory Leaks Analysis Results

190

DevPartner Memory Leaks analysis defines a memory leak as any object
that is allocated on the managed heap during a specified period of time,
and has not been freed when you collect memory data. Memory Leaks
analysis helps to reveal where your application holds memory that
should be freed. Use this information to determine how to change your
code so this memory will be freed.

To uncover memory leaks, run your application under the DevPartner
Memory Leaks analysis feature and exercise the application in a way that
should free previously allocated objects.

If memory use consistently rises and does not decrease (or does not
decrease as you would expect it to) in response to garbage collection,
your application could be leaking memory.

For example, see Figure 5-17. The real-time graph in this figure shows a
rise in memory use that did not return to baseline after garbage
collection. If you look at the Tracked instance count column for the
classes that belong to your application, you notice that garbage
collection is not collecting some tracked objects. Look for the number of
uncollected instances in the Tracked instance count column in the
Session Control Window.

Understanding DevPartner

|4 Memomy Leaks ||E| R Footpring I B Temporaw Objects |
o5 [ErviewMemoy Leaks 9| n [C106645M01 - 1576 [Diiver =se) =l
I:' System Memory - Profiled Memary
500,000

g 400,000

& 300,000

g 200,000

= 100,000

V]
00:00:13 00:00:20 00:00:26 00:01:19 00:01:31 00:01:38
Elapsed time

Class name | Mamespace | Instance count | Size (bytes)| Tracked instance % | Tracked size {bytes) I;
String System 2538 185.418 103 4,746
Graphics Syztem.Drawing i) REO 35 BED
PaintE venthrgs SpstemWindows F - 34 1.436) 1.496
RuntimeT ype Sypstem 107 1,712 1 176
MativeMethods. TR SestemWindows F 7 168 T 168
FropertyStore. Obje Spstemwindows F - 14 R0 T 264
EventH andlerLizt Syztem.Componen 14 168 T o4
CreateParams SystemWindows F 14 T8 7 364
Contral. ControlMati — SpstemWindows F 14 E72 7 336
PropertyStore SestemWindows.F 14 224 7 112
String[] System 17 aon b 228 e
Object]] System 2E3 23,768 G 392
Enum.HaskE ntry Syztem 9 144 E 95
unzignad langf] 9 R72 b 336
EventHandlerList.Li Spstem.Componen 12 240 5 100 LI

Figure 5-17. Session Control Window Data Display

Once DevPartner alerts you to a possible leak, use the Memory Leaks
Results Summary (session file) that DevPartner creates to locate the
source of the leak so you can fix it. The Memory Leaks analysis results
summary gives you the following ways to drill down into your data:

¢ Objects that Refer to the Most Leaked Memory
¢ Methods with the Most Leaked Memory

Each chart shows the top five objects or methods that are associated with
leaked memory. To see more information about the top five objects or
methods, click Show Complete Details for that chart.

Chapter 5 ¢ Finding Memory Problems 191

DievPartner Memoaiy Analpsiz - Memony leak analysis

Objects that refer to the most leaked memary

Region#25 59,614
Region#17 57,742
Region#dd 57,160
Region#214 52,846
Region#184 44 356
[} 20,000 40,000 60,000

Leaked memory referred to by object (bytes)

Shaow Complete Details:

Methods that allocate the most leaked memory

QueryWindow. Main 314,526
QueryWindow.regi... 312,976
Region. PopulateRic. .. 312936

MapZoomForm..ctor 980
QueryWindow.map... 980

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000
Leaked memory allocated by method (bytes)

Show Complete Details

Figure 5-18. Results Summary Appears When You Click View Memory Leaks

The starting point you choose depends on the problem that you want to
solve and your preferred approach to the problem. For example:

¢ If you notice that a limited set of specific objects are being leaked,
you can use the Objects that refer to the most leaked memory
graph to quickly see which objects hold references to the leaked
objects.

¢ If you are familiar with the source code for the allocating method and
can tell by examining the source code whether the leaked object
should have been cleared, you may want to start with the Methods
that allocate the most leaked memory chart.

From both the objects and methods charts, you can quickly switch to a
view that shows another aspect of your data.

When viewing complete details for Objects that refer to the most
leaked memory, you can select these views:

¢ Object Reference Graph
¢ Allocation Trace Graph
¢ Source

When viewing complete details for Methods that allocate to the most
leaked memory, you can select these views:

¢ Call Graph
¢ Source

192 Understanding DevPartner

The following example uses Objects that refer to the most leaked
memory as a starting point.

Objects that Refer to the Most Leaked Memory

The following example shows a case where a limited set of objects causes
leaked memory. The example also presents other possible approaches for
problem diagnosis.

The garbage collector cannot clear an object as long as there is at least
one existing reference to that object. When your application runs, it
creates objects. Some objects are needed for as long as the program runs.
These are permanent, or long-lived objects. However, most objects
should become eligible for garbage collection once they are no longer
referenced by another object.

Objects that refer to the most leaked memory

Region#255 82,890
Region#259 61,740
Region#19 61,436
Region#43 60,722
Region#39 59,060
] 20,000 40,000 60,000 80,000 100,000

Leaked memory referred to by object (bytes)

Show Complete Details

Figure 5-19. Objects That Refer To The Most Leaked Memory

The chart in Figure 5-19 shows the top five objects that hold references to
the most leaked memory. These objects prevent the leaked objects from
being freed. Referring objects that account for the biggest memory hit
appear at the top of the chart. The data indicates that a particular set of
objects is responsible for the leaked memory. Use this chart as the
starting point to drill into session data and locate the source of the
memory leaks.

Clicking Show Complete Details (below the bar graph; see Figure 5-20
on page 194) opens a detailed display for objects that refer to leaked
memory.

The top panel of this display lists all of the objects that refer to leaked
memory, as displayed in the chart in Figure 5-20. This list includes the
top five objects displayed in the original bar graph and other objects that
refer to smaller amounts of leaked memory.

Chapter 5 @ Finding Memory Problems 193

194

DevPartner Memory Analysis - Memory leak analysis Objects that refer to the most leaked memary =

Referring object |Namespace |Leaked ohjects | Leaked size (by = |Ca|| stacks |F'.dditi0na| reference |+

Regioni 2565 Compuware.DevF | 755

Region#259 Compuware.DevP 760 B1,740 0 il
Reqgion#t1d CompuwareDevP 750 B1.436 0 1
Reqgiontd3 Compuware DevP 760 BD.722 0 1
Regiontt33 Compuware DevP 755 55,080 a 1
Region#261 Compuware DewP 755 £3.934 0 1
Region#t2a Compuware.DevP 755 58,254 0 1
Reqion#t27 CompuwareDevP 750 56,254 0 1
Region#d3 CompuwareDevP 740 55,390 0 1 LI
D mmimn H D Cmrmms i me s DD TR FE Mo n 1

Figure 5-20. List Of Objects That Refer To The Most Leaked Memory

The default setting is to sort the objects by the Leaked size (total size of
the leaked objects referred to by the selected object) column. You can also
sort the list by any of the other columns to help you see patterns in the
data. If you right-click an item in the list and choose View leaked
objects referenced by this object, you see the objects that were actually
leaked.

| tances... ~
window
1 control
1 S Label#1
516

0k [o] propartyStore
= s st#22 ams 5 Object[#41 - PropertyStore#1
3 £7] 288 |

. v
shnaits” v||% | >

| Object Reference Graph _Allocation Trace Graph || Source |

Figure 5-21. The Object Reference Graph Shows Why an Object is Still in Memory

Select a referring object that you want to examine. It is important to be
able to quickly understand the sequence of references that keep these
objects in memory. Click the Object Reference Graph tab to view the
reference graph. The Object Reference Graph shows why the garbage
collector did not clear the selected object. The display shows the chain of
objects between the selected object and the garbage collection root(s)
that are keeping the object alive.

Scroll down the list of objects to evaluate the other objects. Some object
reference graphs are quite simple, while others may be quite complex.
You may find evidence that indicates conditions such as many references
to small objects or a few references to large objects. The goal is to use this
graph to determine the point in the chain of referring objects where it is
most efficient to eliminate the leak.

Understanding DevPartner

The chain of referring objects shown in the Object Reference Graph can
range greatly in complexity. In many cases, there are multiple referrers
and the graph becomes very complex. Drag the navigation frame in the
overview pane or click on a node to change the nodes displayed in the
detail pane. If an analysis presents you with a complex graph, simplify
the view by right-clicking a node and selecting Show Fewer Referrers.
You can also drag nodes within the graph for easier viewing.

The labels such as elements on the connecting arrows represent the
referring data member in the next class in the graph. Bracketed numbers
identify arrays. If you know your code well, the labels speed up the
process of identifying potential problem areas.

You can also right-click a node and select Edit Source to open the related
source code within Visual Studio, or view the related source code by
selecting the Source tab. DevPartner highlights the line in the method
that allocated the object in the graph.

To increase program understanding, you can view the source for each
node in the graph sequentially and see the events that led to the
allocation of the memory that leaked. DevPartner offers alternate ways to
view these program events. For example, the Allocation Trace Graph
shows who called each method that allocated the selected object.

You can go directly from the object in the list to the source code. In real-
world problem solving, you should drill down using an appropriate
method for the problem that you are trying to solve or that corresponds
to the way you think about your code.

Alternate Methods of Solving the Problem

The preceding example focused on use of the object reference path to
locate the source of a leak. There are other ways to approach the memory
leak source. For example:

¢ Look at the Allocation Trace Graph to determine who called the
method that allocated the object. From there go to the source code.

¢ Go directly to the source code from the list of objects.

Remember that DevPartner presents different views of your data on the
DevPartner Memory Analysis - Memory leaks analysis summary. The
first example used Objects with the Most Leaked Memory. However,
depending on the complexity of the data, or on your own preferences,
you could examine a problem from any of the following graphs on the
DevPartner Memory Analysis - Memory leaks analysis summary.

Chapter 5 @ Finding Memory Problems 195

Methods that Allocate the Most Leaked Memory

The following graph, which appears in the lower half of the DevPartner
Memory Analysis - Memory leaks analysis summary, shows the top five
methods that allocated objects that were leaked. When you click Show
Complete Details, DevPartner provides a list of all methods that leaked
objects, with access to a Call Graph view and to the source code for the
method, if available.

Methods that allocate the most leaked memory

QueryWindow.Main 1,084,192
QueryWindow.regionL... 1,084,108
Region.PopulateRichT... 1,084,068

0 200,000 400,000 600,000 800,000 1,000,000 1,200,00¢

Leaked memory allocated by method (bytes)

Show Complete Details

Figure 5-22. Methods That Allocate The Most Leaked Memory

Select a method in the Method List to see the objects that were allocated
from the method that were leaked. You can also view the source code for
the method which shows the lines that allocated the leaked objects along
with statistics about the number and size of objects leaked on the line.

DevPartner Memory Analysis - Memory leak Methods that alocate the most leaked memory

= E DTw/030033002 (100.0 2 | Method name | Mamespace Execution co| Leaked size | Leaked size (% | Leaked size incl | Leaked size incl
= % C:ADocuments and Se L ot 1 B.444

= E&' AppDomain - BUGE| [y fenchD BugBenchDotN 1 3442 6% 3.442

& ag Assembly - Bug frmBugBenchD BugBenchDath

: D frmBugBer frmBugBenchl BugBenchDoth

S
[l

IE frm&ngllenchl}utﬂE...; 3B6% = frmBugBenchDotNE ... |
L £2.9% = 100.0 %
4%
0.2 % =| frmBugBenchDotNE ... |
100.0 %
0.0%

Figure 5-23. Details For Methods That Allocate The Most Leaked Memory
For example, to drill into to the data:
¢ Right-click a method in the Method List.

¢ From the selected method, go to a list of the objects allocated by the
method or to a Call Graph for the method.

196 Understanding DevPartner

¢ [From an object in the Object List, view a list of referenced objects, an
Object Reference Graph, or an Allocation Trace Graph.

¢ From a method, or a node in a Call Graph or Allocation Trace
Graph, view source code with object allocation data for individual
lines.

¢ [From a method or object in a list, or a node in a Call Graph, Object
Reference Graph, or Allocation Trace Graph, or a line of source
code; choose Edit Source to open the source to the appropriate line
for editing.

Solving Scalability Problems with Temporary Objects

When performing memory analysis with DevPartner, you can use
Temporary Objects analysis to diagnose and correct scalability problems.

Examples of Scalability Problems

Scalability problems surface when an application runs well until users
work with the application more intensively. For a client-server
application, this might happen when the number of users increases. For a
standalone application, this might happen after numerous text
manipulations or mathematical computations. These can be labeled as
scalability problems. As the scale of the work done by the application
increases, performance degrades.

A Possible Cause: Temporary Objects

One possible cause of scalability problems is the creation of too many
temporary objects. In this case, object creation becomes a performance
bottleneck—a problem that requires correction.

Creating and using objects is important within managed Visual Studio
programs. Unfortunately, some coding techniques have the side-effect of
creating many objects.

Part of the problem is the creation of objects such as those created with
the string class. It takes processing cycles to create objects and later
destroy these objects. If you can reduce the number of objects created,
you can generally expect better performance.

Chapter 5 ¢ Finding Memory Problems 197

Obiject Life Span

DevPartner tracks the objects allocated by your code and categorizes
them based on how long it takes for them to be collected. There are three
categories:

¢ Short-lived — collected at the first garbage collection after the object
was allocated (generation 0)

¢ Medium-lived — collected at the second garbage collection after
allocation (generation 1)

¢ Long-lived — survives across many (or all) garbage collections during
the run of the program (generation 2)

Note: The Microsoft .NET Framework garbage collector supports three
generations, designated 0, 1, and 2. Objects allocated since the last
run of the garbage collector are in generation 0. Objects that survive
one garbage collection after allocation become generation 1 objects.
Generation 1 objects that survive one or more additional garbage
collections become generation 2 objects.

DevPartner combines short- and medium-lived object allocations in a
temporary objects category.

Medium-lived objects have the greatest impact on performance, and
cause the garbage collector to work harder than necessary. Individual
short-lived objects have less impact on garbage collection, although there
is still a performance penalty for calling the object’s constructor.
However, creating large numbers of short-lived objects may cause
bottlenecks and memory shortages.

If you believe that your code has scalability issues, use DevPartner to
monitor memory used by your code as it executes. If the real-time graph
in the Session Control Window shows an up-and-down, wavelike
pattern—which suggests that your application is creating many
temporary objects—you can use DevPartner to analyze the application
for temporary object creation.

DevPartner categorizes the results of temporary object analysis by entry
points and by methods. Regardless of which technique that you use to
drill into the data, DevPartner helps you see how much memory the
temporary objects consume and identify the specific lines of code that
allocate the temporary objects.

Running a Temporary Objects Analysis Session

Use the following procedure to analyze your application for problems
caused by temporary object creation:

198 Understanding DevPartner

1 Start your application under memory analysis. Use the Temporary
Objects tab in the Session Control Window.

2 Exercise your application, then do one of the following to see the
parts of your program that have allocated the most temporary
objects:

a Click View Temporary Objects when you observe a system
garbage collection (the falling pattern) in the Session Control
Window.

b Click the Force Garbage Collection icon, then immediately click
View Temporary Objects.

¢ Quit the program. DevPartner forces a garbage collection and
creates a temporary objects session file.

Note: If you are running your application in the debugger, do not use the
debugger to stop your application. DevPartner will not produce a
session file in response to this action. Quit the application normally
to generate a session file.

3 To examine the temporary object allocation behavior for a specific
part of your application, click Clear all memory to clear the
collected temporary object allocation data. Afterwards exercise the
relevant part of your application, force a garbage collection, and click
View Temporary Objects.

Note: DevPartner always creates a temporary objects session file when you
quit an application running under memory analysis. DevPartner also
creates a temporary objects session file in response to the snapshot
action executed in a session control file or the Session Control API.

DevPartner displays a snapshot of the state of the managed heap. The
data is displayed as a Temporary Objects Results Summary. From the
results summary page you can drill into the object creation data, identify
the problem, and locate the method(s) responsible in the source code.

Identifying Scalability Problems

DevPartner enables you to locate potential trouble spots and then drill
down into your application’s use of temporary objects to identify
problems and improve the overall quality of your code.

Real-time Graph

The real-time graph provides a high level view that enables you to
identify problematic areas.

Chapter 5 @ Finding Memory Problems 199

200

If your application is creating large numbers of short- and medium-lived
objects, you see a peak in profiled memory in the real time graph which
diminishes when the garbage collector runs. If you exercise the feature
again after garbage collection, you see another peak which is caused by
creating a new group of temporary objects.

[System Memory [Profiled Memory

20,000,000
15,000,000
10,000,000

5,000,000

Memory (bytes)

0
00:00:00 00:00:03 00:00:08 00:00:15
Elapsed time

Figure 5-24. Real-time Graph Showing a Pattern that Suggests Excessive Temporary
Object Creation

The classes responsible for the most objects appear in the list of profiled
classes which are sorted by the Size column. This highlights the classes
whose objects consume the most temporary memory. Also notice the
Instance Count which shows how many object instances were created
for each class.

Figure 5-24 shows a real-time graph that suggests excessive temporary
object creation. Spikes in the graph show where your application is
creating lots of objects. Excessive object creation can create major
performance or scalability issues in a managed application and especially
in server applications. Even if scalability is not an issue, methods that
allocate many short-lived objects often indicate easy-to-fix performance
problems.

Viewing Temporary Objects

Click View Temporary Objects to collect data at a specific point in your
application. DevPartner displays a Temporary object analysis page that
categorizes the data by entry points and by methods that create the most
temporary objects.

An entry point is a profiled method that is called by excluded (that is,
system or third-party) code. When your application runs, monitoring
begins with the first call to a profiled, or user-code, method. (User-code
methods are methods in your application source code.) This is called an
entry point. All calls made to other user-code methods from that point
are considered to be part of the entry point.

Understanding DevPartner

Methods that are called only by other user-code methods are not entry
points. However, such methods could be responsible for large amounts of
temporary memory use. The second chart on the Results Summary
highlights methods that allocate lots of temporary memory, but are not
necessarily entry point methods. Thus, if a child method called by an
entry point is the major memory allocator in your application, you can
locate that method in Methods that use the most memory without
having to follow the Call Graph for the entry point method that called
it.

From the Results Summary view you can drill into the data in order to
understand how much memory the objects allocated by these methods
are consuming, and to identify the lines of code that are creating the
short- and medium-lived objects.

Analyzing Temporary Object Data

Clicking Show Complete Details that is below either chart opens a
detailed view of all the entry points, or all the methods in your
application that allocated temporary memory. In addition to the
complete list of methods, the view includes a Call Graph and a Source
tab.

The available data columns in the Method List provide more extensive
data about your application’s methods than those in the list of profiled
classes on the Session Control Window.

Call Graph

Click on an entry point in the entry points list or a method in the
method list to view a Call Graph for the method. The Call Graph shows
the selected method and its child methods, and highlights the critical
path with a bold, gold-colored line. The critical path is the sequence of
child method calls that resulted in the largest cumulative memory
allocation for the selected method.

Methods appear as nodes in the Call Graph. Each node can display data
about memory allocated by the method. In addition, the links between
nodes can display data about memory allocated by that branch of the
graph. The data is expressed as percentages of memory allocated.

¢ Nodes - The percentage of memory allocated by the method that is
attributable to the body of the method itself.

¢ Links - The percentage of memory allocated by the method that is
attributed to child methods that are executed in that branch.

Chapter 5 @ Finding Memory Problems 201

202

This is how DevPartner shows you not only which methods are
responsible for the temporary objects your application creates, but
exactly where in the paths of execution the allocations occur.

Drag the Navigation Frame in Click to expand or collapse Critical path
O\erwew Pane parent/child branches highlighted
QuaryWindow Main 7.93 % Query Window. .cor 0.19% ueryWindow Ini_
== -4 0.43 % = » 0.04% = " 100.00 %
30.94% 0.00 %
0.04 % » QueryWindow req_ = 297 %b Regionlist,GetEn
0.12 9% 100,00 %
054 % E.79 %
% Region. ToSting 0,00 9% Region. ToString
> 100,00 % > 100,00 %
> Queny¥indow Dis _ - QueryWindowreg_ -
100,00 % 0,12 %

»

RegionlistGetWo _

100,00 % .

4 sl
I

Hover mouse to view additional data Use the context menu to redraw

for a method node or a link value graph with a new base node

Figure 5-25. A Call Graph for an Entry Point Method Shows the Critical Path

Right-click on any node in the Call Graph to:

¢ Redraw the Call Graph for the selected node
¢ View source code for the selected node
¢ Edit source code for the selected node

Source View

When you view the source code for an entry point or method in the
Entry points that allocate the most memory or the Methods that use
the most memory method lists, DevPartner opens the Source tab view
to the selected method. In addition to the source code, DevPartner
provides detailed information about the memory allocated by individual
lines in your application code. The information includes how often the
line executed; the number of short-, medium-, and long-lived objects,
including or excluding child objects, allocated on the line; and the
accumulated sizes (memory load) of these objects.

Understanding DevPartner

Interpreting Results to Fix Scalability Problems

The following list suggests some of the possible ways to interpret
memory analysis results to fix memory-related scalability problems.

L 4

Look at the Temporary Objects analysis page to determine if an
entry point or non-entry point method consumes the most
temporary memory.

If the largest consumer of temporary objects is an entry point, drill
down using the Entry points that allocate the most memory view
to determine which methods in the entry point’s execution path
require the most temporary space and should be modified or called
less often.

If the largest consumer is a non-entry point method, drill down using
the Methods that use the most memory view to determine which
parts of your code to modify.

Compare the number of short- and medium-lived objects, as well as
the amount of temporary space they consume. Use this information
to determine which parts of your code to modify.

If both short- and medium-lived objects consume similar amounts of
temporary space, you can run a performance analysis to find out how
much time the constructor uses to create the temporary object.

Use the Call Graph to understand the relationship between methods
that allocate temporary memory. Examine characteristics of different
methods: percentages of memory consumed; actual bytes used; and
numbers of temporary objects created. Use this information to
identify which method to modity.

Use the Source tab to identify specific lines in your code that allocate
temporary objects. Examine the kind and sizes of objects created, and
how often the line is executed. Use this information to identify more
efficient ways to use objects.

Using RAM Footprint to Improve Performance

Some managed applications consume hundreds of megabytes of RAM
while they are running. This chapter examines some specific memory
problems in this chapter: memory leaks, which can cause your
application to consume more and more memory as it runs until it
eventually exhausts the heap, and periodic spikes in memory use caused
by excessive temporary object creation, which can lead to scalability
issues. These problems adversely impact your application’s memory use.

Chapter 5 @ Finding Memory Problems 203

These problems also contribute to your application’s memory footprint.
Your application may be well-behaved with respect to these errors—but
performance may still seem slow, especially when run in various end-user
environments.

One possible cause of sluggish performance is that your application may
use excessive amounts of memory as it runs. What is excessive? That
depends on the environment—hardware and software—in which your
application is used. You may have a good idea of the end user
environment, but the environment can change. For example, the end
user may run several other applications at the same time as they run
yours which competes for memory resources. Nor can you force hardware
upgrades on your users every time you release a new version of your
application. All of this makes a strong argument for keeping your
application’s memory footprint small.

More specifically, the memory use addressed here is the RAM footprint,
not just overall memory use. The biggest effect to application
performance—and your end-users’ perception of your application—is to
force the application to rely on the operating system’s virtual memory
system. Paging managed objects into virtual memory greatly decreases
application performance.

What can you do to optimize your application’s use of RAM resources?
DevPartner provides RAM Footprint analysis as part of its memory
analysis capability. Run RAM Footprint analysis regularly as you develop
your application. The way your application uses RAM resources is most
likely a result of application design and architecture. It is much easier to
re-design a feature early in the development process than to wait until
the application is ready for beta release.

Measuring RAM Footprint

Tip: See the DevPartner
Studio online help for
procedures related to
measuring a RAM
Footprint.

DevPartner helps you focus your performance tuning effort on the areas
that have the greatest impact on RAM consumption. When you run your
application under RAM Footprint analysis, DevPartner enables you to:

¢ View the real-time graph of your application’s RAM consumption,
and view the real-time list of profiled classes associated with the most
bytes of memory.

¢ Take snapshots of the managed heap which you use to examine the
objects responsible for the most memory use.

To measure RAM footprint:

204 Understanding DevPartner

1 Start your application under memory analysis. Use the RAM
Footprint tab in the Session Control Window.

2 Exercise your application to get it into a steady state for which you
wish to examine memory use.

3 Click View RAM Footprint to see a detailed snapshot of the managed
heap at that point in time.

4 Remember that the garbage collector only runs when available
memory is exhausted, so the memory graph may not accurately
represent the amount of memory in use at a given time. When your
program is in an idle steady state, click Force garbage collection to
force the garbage collector to run and update the memory graph.

DevPartner displays a snapshot of the state of the managed heap. The
data is displayed as a RAM Footprint Results Summary. From the results
summary page you can drill into the session data and locate the objects
and methods responsible for the most memory use.

Note: To enable DevPartner to properly identify most garbage collection
roots in Memory Leaks or RAM Footprint sessions, Start Without
Debugging with Memory Analysis. If you attempt to collect
Memory Leaks or RAM Footprint data for an application started
under Start with Memory Analysis (with debugging), all garbage
collection roots will appear as “unidentified GC roots” in the
session data.

Use the RAM Footprint analysis page to gain an in-depth understanding
of how your application uses memory. The RAM Footprint Results
Summary gives you the following ways to examine and drill down into
your data:

¢ Object Distribution
¢ Objects that refer to the most allocated memory
¢ Methods that allocate the most memory

Which you use first will depend on the data presented and, to some
extent, on the way you tend to think about your application.

Object Distribution

DevPartner presents the distribution of objects in memory as a pie chart
so you can immediately see the proportion of memory used by your
application (Profiled objects) relative to that used by system code
(System obijects).

Chapter 5 @ Finding Memory Problems 205

206

Interpreting the Object Distribution chart:

Objed Distribution

A—z?,sss bytes

205,516
bytes

I Profiled objects
[] System objects

Figure 5-26. DevPartner Memory Analysis Object Distribution Chart

L 4

If your application (Profiled objects) is the largest wedge in the pie,
and memory use is moderate to high relative to expected resources in
the target deployment environment, you should determine which
parts of your application allocate the most memory. To do this, use
the Objects that refer to the most allocated memory or the
Methods that allocate the most memory chart to drill down into
the data. Ultimately, you want to locate in source code those parts of
the application that you can change or restructure to use less
memory.

If the Profiled Objects part of the pie chart is small, your application
is not the main allocator of memory. This is a good thing. But if the
application still seems sluggish or if overall memory use is high, you
may want to investigate how your application is using unmanaged
code or system resources. Unmanaged code can pin objects in
memory. Visual Studio applications often spend a great deal of time
in the .NET Framework; you may find that you can call .NET
Framework methods more efficiently, or less often.

Drill into the RAM footprint data by using either of the following two
analysis paths:

L 4

4

Understanding DevPartner

Obijects that refer to the most allocated memory

Methods that allocate the most memory

Obijects that refer to the most allocated memory

Obijects that refer to the most allocated memory shows the objects that
held references to live objects at the time the session file was generated.
The size displayed is the total of all objects referenced from this instance.

¢ Click Show Complete Details to drill into the data for these objects.

Obijects that refer to the most allocated memory enables you to focus
on instances of objects that are responsible for the largest amounts of
memory. Organizing the data by instances of objects that hold references
to allocated memory highlights large objects, that is, the objects for
which a maximum amount of memory would be reclaimed if the object
could be garbage collected.

While an individual object might be small, it becomes much larger, i.e., a
large object, when you include the memory consumed by the objects to
which it refers. When the garbage collector runs, it cannot collect objects
that are referenced by other objects. Thus an object that refers to many
other objects may account for a considerable amount of memory. If you
can collect such an object, you can also collect any other objects to
which it holds a unique reference. Such large objects are obvious targets
when you are trying to reduce an application’s RAM footprint.

The Obijects that refer to the most allocated memory view includes a
list of live object instances with data about each object’s impact on
memory at the time the session file was created. It also includes a tabbed
window in which you can view an Object Reference Graph, Allocation
Trace Graph, and Source view.

This view helps you identify the largest objects in memory. Referenced
Size data includes memory attributable to all child objects for which the
object is the only parent. Considered singly, objects tend to be small.
However, an object with several child objects, each of which may also
have child objects, plus per-object overhead for parent and child objects,
may actually consume a large amount of memory.

DevPartner uses the Object Reference path to roll up the bytes
associated with child objects and attributes them to the parent object.
The advantage of this view is that the view lets you focus on those
objects that provide the biggest benefit if you can change the way they
are allocated.

Once you zero in on the objects that consumed the largest amount of
memory, you may immediately see changes that you could make to
reduce memory consumption. However, you may want to investigate
further to understand the implications of freeing or changing the way
the application uses a particular object.

Chapter 5 @ Finding Memory Problems 207

208

¢ Double-click the selected object in the instance list, or use the
context menu to view the live objects referenced by the selected
object.

Live Objects Referenced by <object name>

The Live objects referenced by object view shows you all of the live
objects which are referenced in memory that are referenced by the
selected parent object. In other words, these child objects could also be
collected if the parent object could be collected.

All Objects Referenced by <object name>

The All objects referenced by object view displays an instance list of the
objects referenced by an object selected in the Live Objects Referenced
by object window.

Like its parent windows, the data presented in All Objects Referenced by
object is organized by instances of objects that hold references to
allocated memory. This view enables you to further examine the chain of
references that are keeping objects in memory. In the All Objects
Referenced by object window, you can examine the entire chain of
objects referenced by any of the child objects in Live Objects Referenced
by obiject.

You can continue to drill down from any object and view all the objects
to which it holds a reference through the entire sequence of object
references.

The Object Reference and Allocation Trace Graphs

All of the Object views discussed above include an Object Reference
Graph and an Allocation Trace Graph.

The Object Reference Graph shows live objects in memory at the time
that the session file was created. A live object is an object on which
methods can be invoked. When the garbage collector runs, the collector
identifies the objects that have valid references. A valid reference means
that an object is reachable from the application's garbage collection
roots. Reachable objects are marked as live objects and cannot be
collected. The Object Reference Graph shows these object references
and helps to explain why the objects are still in memory.

Understanding DevPartner

== - E Re. = R ag... w oy, MainAssembly = Assembly#s
2432 il - 2332 i o

= Hashtable.buck...

buckets

< sl

Object Reference Graph Allocation Trace Graph || Source

Figure 5-27. The Object Reference Graph

Methods in your application allocate objects and the memory that the
objects use. It is useful to know the sequence of method calls that
allocated memory. The Allocation Trace Graph shows the method calls
that allocated an object.

-

frmBugBenchDotNET.Main(void)
frmBugBenchDotNET..ctor(void)

= frmBugBenchDotNET. InitializeCompanent (v...

Object Reference Graph | Allocation Trace Graph | Source |

Figure 5-28. The Allocation Trace Graph

Methods that Allocate the Most Memory

The Methods that allocate the most memory view displays a Method
List showing the source methods that allocated the most live memory for
the application. This view displays methods that allocate the most
memory in the managed heap, but cannot be freed by garbage collection
while the application is in its current state.

The Live size including children (%) column indicates the percentage
of memory used by the method (and its child methods) relative to total
allocated memory in the managed heap at the time the session file was
created. The display focuses attention on the most memory intensive
methods.

Chapter 5 @ Finding Memory Problems 209

In addition to a view of the source code, this view also includes a Call
Graph which shows the execution path responsible for the memory
allocation. See “Call Graph” on page 201 for more information.

Live Objects Allocated by This <method name>

The Live objects allocated by this <method name> view displays a list
of the live object instances allocated by the method that you selected in
the Methods that allocate the most memory view. In this case the view
is limited to live objects allocated by the methods that were selected in
the previous window. This enables you to drill down from the methods
in your application that were the largest allocators of live memory. From
here, examine the objects that were not available for garbage collection
when the RAM footprint snapshot was taken.

Note: The list of allocated objects includes objects created by non-profiled
(system) methods that are called by the user-code method selected
in the Methods That Allocate the Most Memory view. For
example, if your method uses methods in the WinForm:s library,
objects allocated by those methods appear in the list of allocated
objects.

In order to understand how your application allocates objects, drill down
to examine all of the objects referenced by any live object allocated by
the method under study. The All objects referenced from this instance
view is identical to the view described under “All Objects Referenced by
<object name>" on page 208.

Through an entire sequence of object references, continue to drill down
from any object and view all the objects to which it holds a reference.

Optimizing Memory Use

210

Once you understand how your application uses memory, you can begin
to optimize memory use. Objects are typically the largest memory
consumers, so start your analysis with them.

Your application probably creates several objects as it runs. To optimize
performance, do you simply reduce the number of objects created? How
do you know where to focus your performance tuning efforts?

Fortunately, DevPartner does much of the cost/benefit calculating for
you. Remember that individual objects may be small, but when you
consider objects with their children, some objects are much larger than
others. DevPartner uses the concept of large object to alert you to those
objects which, with their child objects, are large consumers of memory.
Focusing your tuning efforts on these object allocations promises the
most rapid route to a reduced RAM footprint.

Understanding DevPartner

Be aware of medium-lived objects. Medium-lived objects survived the
first garbage collection to move to generation 1; they are collected during
the second garbage collection after the transaction completes. This is the
new amount of memory your transaction requires. If you could reduce
the number of objects allocated, you could probably improve
performance.

Look at live objects at several points as your application executes. Have
you allocated objects that are unneeded for the remainder of the
transaction? Could you share any live objects between multiple
transactions? Have you allocated any objects that the application will not
need until a later time? If the answer is yes to any of these questions and
you can change how your application allocates objects, you can probably
reduce the RAM footprint and improve performance.

Analyzing Web Applications with Memory Analysis

With DevPartner Studio, you can analyze memory use in managed Web
applications developed in Visual Studio, including applications that use
Web Forms, XML Web services, and ASP.NET. To collect server-side data,
DevPartner Studio must be installed on the server system.

If the server application runs on a remote machine, install DevPartner
Studio and the DevPartner Studio Remote Server license on the remote
system to collect the server data. See Installing DevPartner Studio (DPS
Install.pdf) and the Distributed Licensing Management Installation Guide
(CPWR License Install.pdf) for more information. To configure data
collection on the server, use the DevPartner memory analysis properties
in Visual Studio.

Note: DevPartner session files are saved with the current solution. Opening
a Web project from 1IS directly, as opposed to opening the project
through Visual Studio, may cause a different solution file to be used.
DevPartner session files created in the first solution would not be
visible in the second solution

Collecting Server-side Memory Data

You may want to collect memory analysis data for parts of a Web or
client/server application. With DevPartner, you can collect memory data
for managed code in any process as you run the client application.

Chapter 5 @ Finding Memory Problems 211

To collect remote process data, install DevPartner on the client and
DevPartner and the DevPartner Remote Server license on the remote
machine. Use this configuration to collect data for a distributed
application as it is actually deployed. See Installing DevPartner (DPS
Install.pdf) and the Distributed Licensing Management License Installation
Guide (LicInst4.pdf) for more information.

Collecting Data from Multiple Processes

Web or client/server applications may run more than one process, but
DevPartner collects memory analysis data for only managed applications.
For example, when you profile an ASP.NET application, DevPartner does
not collect data for the browser process (iexplore). However, DevPartner
collects data for managed code that runs in the aspnet_wp OI w3wp
processes.

Note: DevPartner session files are saved with the current solution. Opening
a Web project from 1IS directly, as opposed to opening the project
through Visual Studio, may cause a different solution file to be used.
DevPartner session files created in the first solution would not be
visible in the second solution.

When you run such applications under memory analysis, the memory
analysis session control window in Visual Studio displays the server and
surrogate processes in the process selection list. Use the process list to
focus data collection.

See “Starting Analysis from the Command Line” on page 345 for
information on using DPAnalysis.exe and an XML Configuration file to
profile multi-process applications.

Prerequisites for Analyzing Web Applications

212

For DevPartner memory analysis to successfully profile an ASP.NET
application, the following two conditions must be met:

¢ The project must include a web. config file.

¢ The project must be configured for debugging. To do this, the
web.config file must include a compilation element with the debug
attribute set to true. For example:
<compilation debug="true” />

Understanding DevPartner

Running a Memory Analysis Session on a Web Application
Follow these steps to analyze memory use in a Web application:

1 In Visual Studio, open the Solution that contains the project for the
application.

2 Review the DevPartner Coverage, Memory and Performance
properties for the projects within the solution.

3 Select the project in the Solution Explorer.

4 To display the Properties Window, select View > Properties Window.

Note: Logging off or rebooting the system changes the analysis option only
if you are connected to a Terminal Server through a Terminal Services
Client or to any system through Remote Desktop.

If you reboot or start up slower computers with memory analysis
enabled, the Service Control Manager may report hangs in the
startup of SMTP, FTP, and WWWP services. You can safely ignore
these messages. All of the services will start up successfully. The
hangs are reported because DevPartner instruments 1S when
memory analysis is enabled and these services depend on IIS.

5 If the server components do not run on the local machine, use the
DevPartner data collection properties to set up remote data collection
options.

6 Depending on the type of data you wish to collect, and the version of
IIS on the server, you may need to make configuration changes to IIS.

Tip: See the online help 7 In Visual Studio, choose DevPartner > Start Without Debugging
for information about with Memory Analysis, or click Start with Memory Analysis on the
configuration changes for DevPartner toolbar.

11S.
Use the memory analysis session control window to select which

of the following types of analysis to perform:
Memory Leaks

Temporary Objects

RAM Footprint

For further guidance on selecting the type of analysis to perform,
see “Identifying Memory Problems” on page 186.

8 In the Session Control Window, select a server process for which
you want to collect data. Exercise the application from the client and
click View... to take snapshots of the managed heap as desired. You
can select another server process in the same session and take
additional snapshots if desired.

Chapter 5 @ Finding Memory Problems 213

9 DevPartner collects memory data for the ASP.NET or IIS process as
you exercise the client. No data is collected for the Internet Explorer
(client) process.

10 Use the Session Control buttons on the memory analysis Session
Control Window to control data collection. As an alternative, you
can use a session control file or the Session Control API to automate
data collection.

If You Get Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save
dialog after quitting an ASP.NET application, or find that unexpected
session files have been saved if you have configured DevPartner to
automatically save session files.

In memory analysis sessions, DevPartner does not collect data for
Internet Explorer. (DevPartner collects memory analysis data only for
managed code.) Thus, the ASP.NET worker process (w3wp Or aspnet_wp)
becomes the primary profiled process when running memory analysis on
an ASP.NET application. DevPartner stops data collection and generates a
final session file whenever the primary profiled process ends. In most
cases, this occurs in response to a user action. However, the ASP.NET
worker process can also shut down automatically during profiling if you
have edited the process Model Attributes section of the machine.config
file on the system on which the process runs in one of the following
ways:

¢ Changed the value of the requestLimit Or requestQueueLimit
attribute from “Infinite” to a value low enough to cause the process
to be shut down during the session

¢ Changed the value of the timeout or idleTimeout attribute from
“Infinite” to a value low enough to cause the process to be shut down
during the session

¢ Changed the value of the memoryLimit attribute to a percentage low
enough to cause the process to recycle during the session

When the process is shut down, DevPartner takes a final snapshot,
generates a session file, and ends the session. If IE (the client process
launched by the user) is still active, the IE process can spawn new
instances of the ASP.NET worker process. Each of these ASP.NET worker
processes will generate a session file when it terminates, resulting in a
saved session file, or a File Save dialog. However, this session data is not
part of the original memory analysis session, and is usually of little value.

214 Understanding DevPartner

To remedy this situation, you can edit the machine.config file and set
the limiting attribute to a value high enough to prevent premature
termination of the process.

Caution: Always make a backup copy before editing the machine.config
file.

DevPartner will continue to collect analysis data whenever the ASP.NET
worker process runs and terminates until you explicitly disable analysis
under DevPartner Coverage, Memory, and Performance Analysis in
the Visual Studio properties window.

If You Get a Security Exception

When attempting to collect data for a managed application, a security
exception message displays if your security policy prevents DevPartner
instrumentation of your code. By default, assemblies must have the
SkipVerification permission to be profiled. If you remove this
permission from the permission set of the policy under which the code
executes, or add imperative security declarations to the assembly that
cause this permission to be revoked, you will not be able to profile the
assembly.

To remedy this condition, enable secure profiling in one of two ways.

¢ Set the following global environment variable and retry profiling the
application:
NM_NO_FAST_INSTR=1
This solution allows you to work around this issue, although it does
exact a slight performance penalty.

¢ Change the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any
imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help
for more information on security policy in Visual Studio.

Using Memory Analysis In Your Development Cycle

You do not have to wait until you suspect that you have problem to
begin testing. If you run DevPartner memory analysis early and often,
and know what to look for when you analyze your application, you can
correct problems early, at a point when problems are both easier to
identify and require less risk to fix.

Chapter 5 @ Finding Memory Problems 215

Memory problems in managed applications are often the result of larger
design and architecture decisions, rather than simple coding errors. For
example, one source of memory loss is an object that is not collected
because of an out-dated reference to it that is not freed. This can be the
result of revisions made in another part of the code. The later these
problems are identified in the development cycle, the more difficult and
expensive they are to fix.

As a result, it is valuable to use memory analysis as part of a continuous
testing program throughout the development cycle. You will benefit
from using memory analysis during unit testing to get an understanding
of how the individual modules handle memory. Once you identify and
fix areas that need improvement, retest to verify the fix. Then, as you
integrate the modules into your application, repeat your memory testing
again to ensure that new memory problems do not appear.

Submitting Data to Visual Studio Team System

216

You can submit data for a method selected in any method list view in a
DevPartner memory analysis session file as a Work Item to Visual Studio
Team System. Valid work items include a selected method on the
following analysis types:

¢ Memory Leaks - methods that allocate the most leaked memory
¢ RAM Footprint - methods that allocate the most memory

¢ Temporary Objects - methods that use the most memory and entry
points that allocate the most memory.

When you submit a Bug, DevPartner populates the Work Item form with
data from the visible columns in the view. To change the method data
you submit in the Work Item, right-click any column header and select
Choose Columns... from the context menu.

For more information about DevPartner Studio integration with Visual
Studio Team System, “Visual Studio Team System Support” on page 8.

Understanding DevPartner

Chapter 6

Automatic Performance
Analysis

What is Performance Analysis?

Using Performance Analysis Out of the Box

Setting Properties and Options

Collecting Data from Various Types of Applications
Analyzing a Call Graph

Comparing Sessions

Exporting Performance Data

Controlling Data Collection

Analyzing from the Command Line

Using the Performance Analysis Viewer

L 2K B 2K Z2BK B JER 2R JBR SR JE 2

Performance Analysis Tips for .NET Applications
4 Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with performance
analysis. The second section provides reference information for an in-
depth understanding of DevPartner Studio’s performance analysis
feature.

Refer to the DevPartner Studio online help for additional task-oriented
information about performance analysis.

217

What is Performance Analysis?

DevPartner Studio’s performance analysis feature allows you to find
bottlenecks that slow down the performance of your application,
regardless of whether the bottleneck is in your code, in third party
components, or in the operating system.

DevPartner performance analysis:

¢ analyzes performance as your components are really used, even if the
components are on distributed systems.

¢ allows you to target data collection on a specific phase of your
application, so you can focus your performance tuning efforts.

¢ can distinguish between time spent in threads of your application
and time spent in threads of other running applications, so you get
accurate, reproducible results that are independent of outside
influences.

Using Performance Analysis Out of the Box

The following Ready, Set, Go procedure introduces you to using
DevPartner to analyze code performance.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject being
described in the shaded box, read the additional text following the
box.

Note: Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create
and debug your application are sufficient for DevPartner to analyze
the application.

218 Understanding DevPartner

Ready: Consider What You Want to Analyze

Before using performance analysis, consider what you want to analyze.

The following procedure assumes:
¢ You are testing a single-process, managed application.

¢ You can build and run your application.

¢ Your solution includes a startup project.

Note: Refer to “DevPartner Studio Supported Project Types” on page 335
for a comprehensive list of supported project types for DevPartner
performance analysis.

When analyzing your applications, decide what data you are interested
in collecting before beginning your performance session. In some cases,
there are steps you need to take before beginning a session. For example,
some set-up would be required if:

¢ there are modules you want to omit from the performance analysis
¢ there are unmanaged modules that you would like analyzed
¢ you want to include code run on a remote server

For this procedure, all managed, local code in your application will be
analyzed.
Set: Properties and Options

Once you have decided what code you want to analyze, you can set
several properties and options to focus your data collection.

For this procedure, you can use the default DevPartner properties and
options. No additional set-up is required.

Using Solution Properties and Project Properties, you can choose whether
your analysis session data should include information for .NET
assemblies, COM that runs outside your application, time spent in
threads of other running applications, line-level or method-level
analysis, and so on. Using DevPartner Options, you can change display
options, exclude parts of your application from analysis, or create a
session control file to manage data collection. Refer to “Setting Properties
and Options” on page 227 if you would like more information about
customizing your settings.

Chapter 6 @ Automatic Performance Analysis 219

Go: Collect Performance Data

After considering what you want to analyze and setting the appropriate
properties and options, you are ready to collect performance data.

1 From Visual Studio, open the solution associated with your
application.

2 Select DevPartner > Start without Debugging with Performance
Analysis to begin a performance analysis session.

During a session, the Session Control Toolbar options are active.

B = ¥ MHTI01515001 - 3904 (Driver.exe] =

DevPartner session controls let you focus your performance analysis
on any phase of your application. You can use the session controls
to stop data collection, take a snapshot of the data currently
collected and then continue recording, or clear data that has been
collected but not yet saved in a snapshot.

3 Run the code you want to analyze.

4 Click the Snapshot icon % . (Click twice if necessary to bring focus
to the session window.) When you take a snapshot, DevPartner
creates a file containing the collected data, called a session file, and
displays the session file data.

5 Return to your application and continue running your tests.

6 When you are finished running your tests, exit your application.
The final session file displays in Visual Studio.

Note: If a security exception message displays when you attempt to collect
data for a managed application, refer to page 232 for information
about changing your security policy.

You can analyze performance with or without debugging. Generally, run
performance analysis without debugging as results from non-debug
sessions are easier to interpret. If you run your application in the
debugger, some timing values might be larger than expected, especially if
breakpoints were hit during the session.

220 Understanding DevPartner

Analyze the Data

When you take a snapshot or exit your application, DevPartner displays
the session file in Visual Studio, as shown in Figure 6-1. The session
window consists of:

¢ The filter pane, which lists the source files and images in your
application. The filter pane shows the time spent in each file as a
percentage of the time spent in the session. The filter pane also
provides a set of filters you can use to focus on the most significant
data.

¢ The session data pane, which contains the Method List, Source, and
Session Summary tabs. The session data pane displays data for the
file or filter selected in the filter pane.

/ DriverS.dpprf“' D_riv_er_anp‘t.dppr_f* [Driv_er_S_napS_‘_dppr_F* | i X
= Methad List | 5 ouice [SpeedBump.cs] | Session Summary
— - ! : | . :
= g‘l‘!'ITIDISISDUI : 3716 {Driver) Method i o with .
=3 E_El”rce {2.9%) Marie Method | Children 3
=] CSharp.dll{ 1.8%) ;
RlzetLastwin32Error 0.2 10,2 3,63, 0.3
. % Speedgump.Coharp.Fomi, SpeedBnp.cs, (18%) [5yster peflcton Assenbly ItemalietSat.,. 46 75 6 TAma
Filt =] Driverexe (1.1%) GdpDrawLinel 17 S8 87 19.
ter > % SpeedBump.Driver.Farmi, Driver.cs, { 1,1%) RHBllocateHeap 1.1 L1 19, 0.6
pane [t System (97.1%) DCIBeginAccess 11 1.1 8710 12.1
Tap 20 Source Methads MarshalingContral. .ctor 1.0 213 1 101,227.6
Top 20 Methods ;;&sItEer;frawing.Graphics.DrawLine gg ;é g,;?g lgg
Top 20 Called Source Methods RtIFrQeH:;?s = g i
Session Top 20 Caled Methods System, Windows, Farms,Form, WndProc 0.a 9.9 1,468 53.5
data tem, Configuration. BaseConfigurationRe. .. 0.8 7.0 5 153917
pane SpeedBump Driver.Form 1. char{void) 0.7 44,6 1 69,3331
SpeedBump.CSharp, Form1 Updateslot{Int32) 0.7 76 4,348 15.6
System,\Windows., Forms Mativeindow. Call... 0.6 473 2,752 23.4
GetProcessHeap 0.6 06 227,. 0.3 v
~imbeme e deiie Faime e ~amboal e dF. o oo Adm A sAA An 7

Figure 6-1. Performance Analysis Session Window

Using the Filter Pane and the Session Data Pane

To begin evaluating your data, start by using a filter and examining the
Method List to find methods that occupied a significant percentage of
your program’s processing time.

1 In the Filter pane, click on the Top 20 Source Methods filter. This
will reduce the displayed data and help you focus on your source
methods.

Knowing the time spent in system files is useful when assessing
performance, but using this filter to eliminate system files from the
display can help you focus your performance tuning efforts.

Chapter 6 @ Automatic Performance Analysis 221

222

2 Examine the data on the Method List tab. The Method List tab
displays information about the amount of time spent in each
method.

Scanning the Method List for methods with high values in one or more
of the columns will help you target specific areas for performance
improvement.

3 On the Method List tab, look at the % in Method column, which
shows the time spent in the method as a percentage of the time
spent in the session. (By default, the data is sorted in descending
order by the % in Method column. If not, click the column header.)

4 Look at the % with Children column, which shows time spent in
the method and its child methods as a percentage of the time spent
in the session.

5 Look at the Average column, which shows the average execution
time of the method.

After you examine the values in these columns, you will have an idea of
which areas of your code to target for improvement.

Viewing a Call Graph

Some performance issues become apparent only when seen in the
context of the calls made between parent and child methods. In these
cases, examining a Call Graph can be helpful. A Call Graph is a
graphical representation of the calling relationships of your application’s
methods.

i
1>

E GdipDraw
= | P 54,059

B —— 5 | SpeedumpMana_
= 1.009%

99,625 92.59%,

= 1.00%

S peedbump Mana_
p= = 98719 z
e 1.29% o SystemDeaing Gra_
99503 _gwic] ' Spesanpdtna_ =t
SpeedBump Mana_ SR SpesdBump.ManagedCPP.Forml. UpdateSlot
< L.00% 1.29% is spent by the Function body.
= 1009
98,639,
92.14% g
Bl -
< 1003
< 1009
Speedump Mana_

1,109
< 1003

K| | _'!;l

Figure 6-2. The Call Graph

Understanding DevPartner

You can access the Call Graph from the context menu in the Method
List, Source tab, or from the Call Graph icon =, .

6 Right-click on a method in the Method List and choose Go to Call
Graph on the context menu. The method’s Call Graph displays,
with the critical path highlighted in your default system color.

Note: The following steps are an introduction to using Call Graphs.
More information about Call Graphs is presented in “Analyzing a
Call Graph” on page 243.

7 Click the plus/minus icons at the edges of any node to expand or
collapse the view of parent (left) or child (right) nodes. Compare the
percentage figure shown in a node with the percentage shown on
the lines to child nodes to follow the path(s) that might be causing
performance problems.

8 Hover the mouse-pointer over a node or over the percentage value
on a link between method nodes to view a more detailed
description.

9 Identify a method that is a target for potential performance
improvement. Right click and select Go to Method Source from the
context menu. (If you select a system method, the source will not be
available.)

The method’s source code is displayed on the Source tab in the
session window, but the call graph still has focus.

10 Close the Call Graph to begin working with the source code.

Chapter 6 @ Automatic Performance Analysis 223

Viewing Source Code

The Source tab displays the source code for the selected file or method.
Use the Source tab to help you identify the lines of code that might be
causing performance problems.

[')'r'i;e'r'f;.dpprf‘ug_ Driver_sljgps.c_lpprf* | - X

= All { Modules: 33 Metl || athod List| Source [SpeedBump.es] | Session Summary
[8) MHT101515001 - |] '

[Source (9.6° Count % with Child.. = Time .. = Source 28
5] System { a0l 2| 01 252130 BubbleSonBin Enabled = tue;
d 2 0o 57
Top 20 Source Metha rivate void LpdateSlotInt32 iSlat
Top 20 Methods 16 9 3
Top 20 Called Source i;g:}g 155 {112 e %l‘[aéT.D[avrl_[i'gT“tj]laCkPeE'l 0, i?lot, Elements[iSlat]. iSlat);
. . B89, if [Elements[iSlot] < numElems;
Top A Caled Mathoo) 35505 176| 41656 slate: DraLine{whitePer, Elsments[iSlot] + 1, Slat, numElens, Slat);
47.916 0.4 872706 '
private void Updateall]
2 0o 0.4
2 0o 03 far [Int32 i = 0; isnumE lems; i++]
£00 05| 108,000.2 UpdateSlati):
2 0o 0s bMeedUpdate = falze;
2 0o 36 }
private void RandomizeBtn_Click[object sender, System.Eventirgs]
2 0o 0.4
2 1.4 332161.7 ['oR andomize);
2 051084732 Updates);
2 0o 439 '

Figure 6-3. The Source Code Tab

11 The source code for the selected method is displayed on the
Source tab, as shown in Figure 6-3. The Source tab displays
performance session data about each executed line of code.

DevPartner highlights the slowest line in each method.
Determine if there is an opportunity for performance
improvement and modify the code accordingly.

Comparing Sessions

After locating and correcting performance problems, you can run
another performance session and compare the session files from before
and after your changes. DevPartner displays a comparison window
showing the differences between the sessions. For more information
about comparing sessions, refer to “Comparing Sessions” on page 246.

224 Understanding DevPartner

Viewing Session Summary Data

The Session Summary tab displays a synopsis of the performance

analysis session.

: Driver.dppr'f" Driver.cs |

Driver.cs [Design] | - X

= All { Modules: 31
2=} MHT101515T
-0 Source {

- 3] System {

Top 20 Source M
Top 20 Methods
Top 20 Called S0
Top 20 Called Me

| Methad List | Source [managedcpp.h] Session Summary

DevPartner - Performance Analysis Segzion Summary P
Started: 4/24/2007 5:05:50 AM
Ended: 4/24/2007 9:17:33 AN
Executable: C:hDocuments and Settingsh PNUDL
Command Args:
Exit Code: o
Processor Speed: 2793 Mhz
of IProcessors: z
0% Versiom: Microsoft Windows HP

of Called Methods (with thread starts):3, 3659
§ of Calls: 5,395,624
Total Timing: 9,68 ,282.0 Microseconds

MHTIO01E51EDOL - ZE08 (Driwer)
MNumber of Called Methods: 3,370
Percent of Time Spent on Machine: loo.0

Instrumented Source Images

ManagedCPP.dl1l
Humber of Called Methods: 13
Percent of Time Spent in Image: 1.4

Figure 6-4. The Session Summary Tab

12 Click on the Session Summary tab.

The Session Summary includes contextual information about the
session, such as the date and time of the session, the processor
speed and operating system, and so on. This information can be

useful when viewing an older session file, particularly one that was
created by someone else.

The summary also includes performance data from the filter pane
and the Method List tab, showing data for both the files and the
methods that were analyzed.

13 Scroll through the tab to view the session summary data.

Chapter 6 @ Automatic Performance Analysis

225

Saving Session Files

When you have finished reviewing performance data you can save the
session file.

1 Close the session file window in Visual Studio. DevPartner prompts
you to save the session file.

2 Click Ok to accept the default file name and location.

DevPartner saves session files as part of the active solution. They appear
in the DevPartner Studio virtual folder in Solution Explorer.
Performance analysis session files take the .dpprf extension.

By default, DevPartner physically saves the session files in your project's
output folder. DevPartner automatically increments the file name based
on the contents of the default directory (for example, MyApp.dpprf,
MyAppl.dpprf, and so on). If you save session files to a location other
than the default directory, you must manage the file naming and
numbering.

For projects that do not have an output directory, such as a Visual Studio
2005 Web site project, DevPartner physically saves the files to the project
directory.

Session files generated from the command line are not automatically
added to the project's solution. You can manually add externally
generated session files to an open solution in Visual Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a performance analysis
session, continue reading the rest of this chapter for additional information, or
refer to the DevPartner online help for task-based information.

226 Understanding DevPartner

Setting Properties and Options

Solution Properties

Project Properties

Before beginning a performance analysis session, it is often useful to fine-
tune data collection to include or omit certain types of information. Use
Solution Properties, Project Properties, and DevPartner Options to
better focus your analysis session.

To view performance properties available at the solution level, select the
solution in the Solution Explorer and press F4 to view the Properties
Window.

Properties
SpeedBump.Net Solution Properties -
= (A n
{Mame) SpeedBump.Net
Active config Debug|Mixed Platforms
Aukomatically Merge Session Files Merge it automatically
Collect From JMET True
Description
Startup projeck Driver

Figure 6-5. Solution Properties
The following solution property affects performance analysis:

¢ Collect from .NET - Visible only for managed code applications. Set
this property to false if you do not want DevPartner to collect
information for .NET assemblies.

This property affects only coverage analysis and performance analysis
sessions. Memory analysis and Performance Expert always collect
data from managed applications, even when this value is set to false.

Note: The Collect from .NET property is not available with DevPartner for
Visual C++ Boundschecker Suite.

¢ Startup project - Your solution must include a startup project. If the
solution contains multiple startup projects, before analysis begins
DevPartner prompts you to choose a startup project for the session.

To review project level properties, select a project in the Solution
Explorer and review the properties that can be set for projects within the
solution.

Chapter 6 @ Automatic Performance Analysis 227

228

Properties - 0 x

Dr

@)=
®E

iver Project Properties -

2= &

Colleck COM Information False
Exclude Others True

Include Project in Session Yes
Instrument Inline Functions Falze
Instrumentation Lewvel Line

Palicy File

Project File Driver . csproj
Track System Cbjects True

Figure 6-6. Project Properties

The following project properties affect performance analysis:

2

Understanding DevPartner

Collect COM Information - DevPartner collects method level data
based on DLL exports and COM interfaces. Select False if you do not
want DevPartner to collect information for COM that runs outside
your application.

Exclude Others - Excludes time spent in threads of other running
applications. The resulting session data includes only time spent in
threads of your application.

While collecting performance information, DevPartner monitors
context switching and tracks how much of the CPU time is spent
working in threads outside of the application. After collecting the
timing data, DevPartner subtracts the time spent in other threads
from the clock time to determine exactly how much time was spent
in your application.

Select True to enable this feature; select False to disable it.

Instrument Inline Functions - Set this property to True to
instrument inline functions. (Instrumentation is described in “About
Instrumentation” on page 231.) Inline functions are not
instrumented by default if inline optimizations are enabled.

When working with managed C++ applications, DevPartner does not
collect data for functions explicitly inlined with the __forceinline
keyword, even if you choose True for the Instrument Inline
Functions property.

Options

¢ Instrumentation Level - Choose Method or Line. (Instrumentation

is described in “About Instrumentation” on page 231.)

¢ Method: Method-level instrumentation allows your performance

analysis session to run faster, but provides only method-level

data.

¢ Line: Line-level instrumentation enables you to drill down to

specific lines in your source code. When working with .NET
applications, if you choose Line as your Instrumentation Level
and install a JIT-compiled assembly in the global assembly cache

(GACQ), DevPartner performance analysis cannot provide line-

level data about the assembly. DevPartner is unable to instrument
the JIT-compiled assembly. To collect line-level data, do not pre-

JIT assemblies when running performance analysis.

All property settings persist unless you explicitly change them.

To review DevPartner option settings for performance analysis sessions,
choose DevPartner > Options > Analysis.

Options

[#- Environment

[#- Projects and Solutions
[Source Conkrol

[+ Text Editar

(=l DevParkner

Display
Exclusions - Coverage
Exclusions - Performance
Session Cantral File

|- Code Review

[} Error Detection

[Database Tools

[#- Debugging

- Device Toaols

[#- HTML Designer

[+ Windows Forms Designer

B

Precision |_1 1 2
x |

Scale Microseconds v |
: —_——
Units [Etes |

PIX

QK

l ’ Canicel

Figure 6-7. Analysis Options

¢ The Display option allows you to set the precision, scale, and units
used when displaying your data.

Chapter 6 @ Automatic Performance Analysis

229

Excluding Images

¢ The Exclusions option allows you to omit one or more images from
data collection. Refer to “Excluding Images” on page 230 for more
information on exclusions.

¢ The Session Control File option allows you to create a set of rules
and actions to control the data that DevPartner collects as your
application or module runs. Refer to “Analysis Session Controls” on
page 365 for more information about session control files.

Other Visual Studio options, such as the Environment > Fonts and
Colors options, also affect DevPartner features.

When you run an application under performance analysis, DevPartner
collects data for all source and system images. However, you can use the
Exclusions option to omit one or more images from analysis.

While viewing Analysis Options (DevPartner > Options > Analysis)
select Exclusions - Performance.

From the Show list at the top of the page, select one of the following:

¢ Global exclusions
¢ Local exclusions in current user directory
¢ Local exclusions in executable directory

The Local exclusions in current user directory and Local exclusions in
executable directory options are available only when a solution is open
and the executable directory differs from the current working directory.

Click Insert -1 to add an image to the exclusion list. Type a name, or
browse to the image you want to exclude. Allowable file types for
exclusion are .exe, .d11, .ocx, and .netmodule. Use the Files of type list
to limit the types of files displayed.

If you choose a .NET module (.netmodule), only the unmanaged parts of
the module are excluded.

To remove an image from the list of exclusions, select the item and click
Delete |}(|

Select the Exclude system images check-box to exclude
uninstrumented system DLLs from DevPartner performance profiling.

Global exclusions are saved in nmexclud.txt in the \Analysis
subdirectory in the DevPartner installation directory. Local exclusions are
saved in nmexclud. txt in the application executable directory or in the
current working directory. To save a copy of the exclusion list
(nmexclud.txt) to another location, click Save To.

230 Understanding DevPartner

Note: To fully monitor a running application, DevPartner always profiles a
few specific Win32 APIs. As a result, certain system DLLs cannot be
excluded individually and will always appear in the System Images
list of the session file, unless you select Exclude system images to
exclude all system images.

Exclusions do not apply to files compiled with Native C/C++
Instrumentation. For example, if you attempt to exclude an
instrumented unmanaged C/C++ image, DevPartner still collects
information for that file, although no system call information is
collected. If you wish to exclude an unmanaged C/C++ image from data
collection, do not instrument that image.

About Instrumentation

When you run a managed application, DevPartner inserts hooks into the
byte code for each assembly as it is loaded by the compiler, a process
called instrumentation. This code contains instructions that DevPartner
uses to collect performance data while your application is running.
DevPartner instrumentation does not change the actual files on disk; it
only modifies the in-memory representation of files as they execute.

Unlike managed code, which DevPartner instruments at runtime, you
must instrument unmanaged C/C++ code when you compile it. To
instrument unmanaged code, DevPartner inserts hooks directly into your
source code. DevPartner provides an Instrumentation Manager in which
you specify the type of instrumentation to be used and specify any
projects in the solution to exclude from instrumentation. (Refer to
“Collecting Data from Unmanaged Code” on page 233 for more
information about the Instrumentation Manager.) When you rebuild the
unmanaged project, the hooks are inserted. To remove the hooks, turn
off instrumentation by deselecting the Native C/C++ Instrumentation
option from the DevPartner menu, and rebuild the project.

Collecting Data from Various Types of Applications

This section provides information about using DevPartner performance
analysis to collect data from different types of applications.

DevPartner supports all Visual Studio managed code languages, as well as
unmanaged C/C++. DevPartner can also collect performance data for
JScript and VBScript Web applications when using Internet Explorer or
I1S.

Chapter 6 @ Automatic Performance Analysis 231

Refer to Appendix B, “DevPartner Studio Supported Project Types” for a
complete list of languages and project types supported in each version of
Visual Studio.

Collecting Data From Managed Code

232

Many applications you will develop in Visual Studio will be managed
applications, such as C#, Visual Basic, and managed C++ applications.

DevPartner requires PDB (program database file) information to collect
detailed information about your managed application source code. If no
source data appears on the Source tab or source files do not appear in the
Filter pane make sure .pdb files are being generated.

Managed application files for which no PDB information is available
appear in the System folder in the Filter pane.

When attempting to collect data for a managed application, a security
exception message will display if your security policy prevents
DevPartner instrumentation of your code. By default, assemblies must
have the SkipVerification permission to be profiled. If you remove this
permission from the permission set of the policy under which the code
executes, or add imperative security declarations to the assembly that
cause this permission to be revoked, you will not be able to profile the
assembly.

To remedy this condition, enable secure profiling in one of two ways.

¢ Set the following global environment variable and retry profiling the
application:
NM_NO_FAST_INSTR=1
This solution allows you to work around this issue, although it does
exact a slight performance penalty.

¢ Change the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any
imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help
for more information on security policy in Visual Studio.

Understanding DevPartner

Collecting Data from Unmanaged Code

When you build your unmanaged C++ application for performance
profiling with Native C/C++ Instrumentation, DevPartner works with
the compiler to add instructions to your application image to collect
performance data at run time. For example, DevPartner is called each
time a method is entered and each time a method is exited. DevPartner
uses this information to determine the execution time of the method.

To instrument unmanaged code, open the solution that contains the
unmanaged C/C++ project for which you want to collect data and choose
DevPartner > Native C/C++ Instrumentation Manager.

DevPartner Native C/C++ Instrumentation Manager

X
Mative C and C++ code can be instrumented when you build
wour solution, {Instrumentation does not apply to managed
code within instrumented projects.)
Instrumentation is required for performance and coverage
analysis, and also provides additional error detection
capabilities,

Instrument the projects checked below when T build my solution

Choose a bvpe of instrumentation

|Performance or coverage analysis

Check the projects to be instrumented
MativeCPP Instrument &l
Managed PP
J5cript Instrument Mone

Figure 6-8. The Instrumentation Manager

Select the Instrument the projects checked below when I build my
solution check box and select a type of instrumentation. The type of
instrumentation you choose must match the type of analysis you
subsequently run.

Select the projects to be instrumented. By default, DevPartner will
instrument all unmanaged code in the solution. Deselect modules to be
omitted.

Click OK and rebuild the solution. DevPartner instruments the
unmanaged C/C++ projects you selected. Click Start with Performance
Analysis on the DevPartner toolbar to begin the analysis session.

Chapter 6 @ Automatic Performance Analysis 233

DevPartner saves the project selections you make in the Native C/C++
Instrumentation Manager with the solution. Once you use the
Instrumentation Manager to configure instrumentation, you can turn
instrumentation on and off with the Native C/C++ Instrumentation
option from the DevPartner menu or the Native C/C++
Instrumentation button on the DevPartner toolbar. Use the Native
C/C++ Instrumentation Manager only to change settings.

To remove instrumentation from your application at a later time,
deselect the Native C/C++ Instrumentation option from the DevPartner
menu. The next time you start a performance analysis session or rebuild
the solution, Visual Studio will rebuild the solution without
instrumentation.

Note: If your application calls Visual Studio components, you must compile
these components with DevPartner instrumentation for performance
analysis in Visual Studio. See the DevPartner Studio online help in
Visual Studio for more information.

Mixed-mode C++ Files

With unmanaged (native) C++, you can compile your application as
managed code with the /c1r option, but mark sections of your code with
ffpragma (native). The compiler generates native code for any methods
defined in the #pragma section. DevPartner does not support mixed-
mode C++ files. When profiling a program that includes a C++ file with
both managed and unmanaged (native) sections, DevPartner collects
coverage data only for the managed code portions, not the native code
portions from #pragma. To collect data for unmanaged C++ code, place
the unmanaged code in a separate file and instrument it, “Collecting
Data from Unmanaged Code” on page 233.

Collecting Data from Multiple Processes

234

An application may run more than one process. For example, when you
profile an ASP.NET application you may see the browser process
(iexplore), the IIS process (inetinfo), and the ASP worker process
(aspnet_wp or w3wp).

When you run a multi-process application under performance analysis,
the DevPartner Session Control toolbar displays the active processes in
the process selection list.

B & ¥ MHTL01515001 - 3904 (Driver.exe) -

Figure 6-9. Session Control Toolbar with the Process Selection List

Understanding DevPartner

Use the process selection list to focus data collection. When you take a
snapshot, DevPartner creates a session file with data for the process
selected in the process selection list.

Collecting Data from Remote Systems

You can collect performance data for application components running
on remote systems. For example, you might want to collect performance
data for both client and server portions of a client/server application.
With DevPartner, you can collect performance data for client and server
processes as you run the client application.

To collect data simultaneously from a client system and a remote system,
install DevPartner on the client and install DevPartner and the
DevPartner Remote Server license on the remote system. See Installing
DevPartner (DPS Install.pdf) and the Distributed License Management
Licensing Guide (Compuware License Guide.pdf) for more information
about the Remote Server license.

Note: A server connected through a Terminal Services connection does not
require the DevPartner Remote Server license. See “Using Terminal
Services and Remote Desktop” on page 9 for information on
Terminal Services.

On the remote system, select the relevant projects and review the
DevPartner properties to ensure that they match the options set on the
client system. DevPartner restarts server processes, such as IIS, after you
change options. This restart is necessary for changes to take effect.

Be sure to specify instrumentation if you are analyzing an unmanaged
C++ application. If your application calls unmanaged C++ components,
you must instrument those components if you want to collect data from
them, as described in “Collecting Data from Unmanaged Code” on page
233.

Correlating Data

When you use Internet Explorer (IE) and Internet Information Server
(IIS) as browser and Web server, or you use COM to make inter-process
calls, DevPartner automatically recognizes a client/server relationship
between the processes. To preserve the relationship between the methods
of DCOM obijects or the relationship between HTTP client and server (IE
and IIS), DevPartner automatically correlates the data from those
sessions. It then combines the correlated data with the client session data
into a single session file.

Chapter 6 @ Automatic Performance Analysis 235

The correlated session file contains the performance data for both the
client and server portions of your application. The correlated session file
appears in Visual Studio, like any other session file, with _co appended to
the file name, as in appname_CO.dpprf.

When you view a correlated session file in the Call Graph window, you
can follow a COM call stack from the calling method to the called
method. DevPartner scales the server-side data to match the clock speed
of the client system.

You can use DevPartner > Correlate > Performance Files to manually
combine data from different session files when there is no COM-based
relationship or client/server relationship between IE and IIS. You can also
use the NMCORRELATE command line utility to manually combine data, as
described in “Starting Analysis from the Command Line” on page 345.

Collecting Data From .NET Web Applications

236

If you develop Web Forms, XML Web Services, or ASP.NET applications,
you can use DevPartner to collect performance data for both client and
server portions of your application. You can configure DevPartner to

collect data for IIS and ASP.NET running on a local or remote machine.

To collect data for unmanaged C++ components called by your
application, you must instrument and rebuild the objects with Native
C/C++ Instrumentation, as described in “Collecting Data from
Unmanaged Code” on page 233. If your Web application calls C++
components, you must instrument them using the DevPartner
commands in Visual Studio. Be sure to instrument for performance
analysis. DevPartner collects data for only one analysis type in a session.
Note: DevPartner session files are saved with the current solution. Opening
a Web project from 1IS directly, as opposed to opening the project
through Visual Studio, may cause a different solution file to be used.
DevPartner session files created in the first solution would not be
visible in the second solution.

Prerequisites

For DevPartner performance analysis to successfully profile an ASPNET
application, the following two conditions must be met:

¢ The project must include a web.conf1ig file.

¢ Theweb.config file must include a compilation element with the
debug attribute set to true. For example:
<compilation debug="true”/>

Understanding DevPartner

DevPartner can also collect data for in-process or out of process
components called by your application.

Analyze ASP.NET Applications without Debugging

For optimum results, run performance analysis without debugging.

W'lﬂ@' °¢:*-J° j‘“‘

ﬂﬁ: Start Without Debugging with Perfarmance Analysis

[%l Skark with Performance Analysis

Figure 6-10. Start Without Debugging Option

Only one script debugger can be active at one time. If you debug a Web
application with debugging, both Visual Studio and DevPartner attempt
to load a script debugger. A message displays indicating that the script
debugger failed to attach to IE. The session continues without
interruption despite the error message.

To avoid the error message, you can either disable script debugging in
iexplore or run performance analysis without debugging.

Unexpected File Save Dialogs or Saved Session Files

Under certain circumstances, you may see an unexpected File Save
dialog box after quitting an ASP.NET application, or find that unexpected
session files have been saved if you have configured DevPartner to
automatically save session files.

When you run performance analysis on an ASP.NET application,
DevPartner collects data for Internet Explorer as the primary profiled
process. DevPartner also saves session data for secondary processes, such
as an ASP.NET worker process (w3wp or aspnet_wp). When the primary
process terminates, DevPartner stops data collection and generates a final
correlated session file that contains both client data (for IE) and server
data (for IIS and ASP.NET) worker processes. You can also take a snapshot
of the server process alone by selecting the process in the Session Control
toolbar.

In most cases the client and server processes are terminated by user
action. However, the ASP.NET worker process can also shut down
automatically during profiling. This can occur if you have edited the
processModel Attributes section of the machine.config file on the
system on which the process runs in one of the following ways:

Chapter 6 @ Automatic Performance Analysis 237

¢ Changed the value of the requestLimit or requestQueuelimit
attribute from “Infinite” to a value low enough to cause the process
to be shut down during the session

¢ Changed the value of the timeout or idleTimeout attribute from
Infinite to a value low enough to cause the process to be shut down
during the session

¢ Changed the value of the memoryLimit attribute to a percentage low
enough to cause the process to recycle during the session

When the process is shut down, DevPartner takes a final snapshot and
generates a session file. DevPartner handles the session file in one of the
following ways:

¢ [If the ASP.NET worker process is the selected process in the Session
Control toolbar, DevPartner opens the session file in Visual Studio
and adds it to the solution. This action is repeated for each instance
of the ASP.NET worker process that is spawned and terminated.

¢ If the ASP.NET worker process is not the selected process, the session
file is cached. When the IE client process is terminated, or when a
snapshot of the IE process is taken, DevPartner creates a session file
for IE, and a correlated session file that includes data for IE, IIS, and
all instances of the ASP.NET worker process spawned and terminated
up to that point.

When the analysis session has ended, DevPartner will continue to display
the File Save dialog box or automatically save session files for instances
of the ASP.NET worker process that are spawned and terminated.

To avoid generation of extra session files due to frequent termination of
the ASP.NET worker process, you can edit the machine.config file and set
the limiting attribute to a value high enough to prevent premature
termination of the process.

Caution: Always make a backup copy before editing the machine.config
file.

Collecting Data from Classic Web Script Applications

238

When you run a classic Web script application with DevPartner
performance analysis enabled, DevPartner gathers data for HTML files
and JScript and VBScript source files. If the scripting languages invoke in-
process or out-of-process components, such as COM objects, DevPartner
can collect data for these as well.

Understanding DevPartner

Instrumentation for the scripting languages occurs at run-time, just as it
does for managed .NET languages. However you do need to instrument
any unmanaged components, such as COM objects, that you want
monitored.

Note: The following procedure is unique to classic Web script applications.
To collect data for Web Forms, XML Web services, and ASP.NET
applications you develop in Visual Studio, run the application just as
you would run any other .NET application.

To collect data for a classic Web script application, choose Start >
Programs > Compuware DevPartner Studio > Utilities > Web Script
Performance.

Internet Explorer (IE) opens with DevPartner Performance Analysis
loaded. In addition to IE, a Session Control toolbar appears, which you
can use to control data collection.

In the DevPartner-enabled instance of IE, open the HTML page or Web
application for which you want to collect performance data and exercise
the application. Optionally, use the Session Control toolbar to focus data
collection as the application executes.

Exit Internet Explorer or, if using the Session Controls, execute a Stop
action. The Save Session dialog box displays and the session file is
automatically saved.

Web Application Data Collection Tips
Before you begin collecting data for analysis:

¢ Warm up the application by exercising it for several minutes. Be sure
to include the parts of the application in which you are interested.

¢ Execute the Clear session control action to discard data collected to
that point. This eliminates data collection for the many one-time
initializations that take place when you launch the application.

Exercise the modules you are analyzing.

¢ Click Snapshot on the Session Control toolbar. This will give you
performance data for a representative sample of your code.

¢ Allow time for HTML pages to completely load. When testing
manually, wait for the page to load. When creating scripts for
automated testing, build in wait time so pages can load completely.
Executing code on a page before the page is fully loaded may skew
your profiling data.

Chapter 6 @ Automatic Performance Analysis 239

¢ Be aware of caching. A Web application may return a page from the
cache instead of running your application code. If your test uses the
same input data repeatedly, caching will skew your results. If you do
not want to measure the effects of the cache, you can turn caching
off by editing the machine.config file and commenting out the line
that reads:

<add name="0QutputCache”
type="System.Web.Caching.OutputCacheModule”/>

Caution: Always make a backup copy before editing the machine.config
file.

Web Service Requirements

For DevPartner performance analysis to detect a Web service, the service
must meet at least one of the following requirements:

¢ The Web service must be derived from the
System.Web.Services.WebService base class.

¢ The Web service must contain the WebService attribute.

For DevPartner performance analysis to detect a Web method, the
method must contain the WebMethod attribute.

Deleting Temporary Files from NMSource

240

While analyzing scripts for performance under IE or IIS, DevPartner
creates an NMSource directory to hold temporary copies of the script
source. This source is displayed in the Source tab of the Session window
when you are analyzing session data.

Because this source may be needed at any time, DevPartner does not
delete files from NMSource. The size of this directory can grow quickly,
particularly when you are analyzing server programs under IIS.

You should regularly review the source files in the NMSource directory and
delete any related to projects that are no longer active. NMSource is
located in the \Program files\Internet Explorer directory.

Understanding DevPartner

Configuring IIS for Data Collection

To collect performance data for IIS/ASP.NET applications running on the
local machine or on a remote server, set the following configuration
options.

Note: If IIS runs on the local system, set the options described below on the
local system. If IIS runs on a remote server, you must install
DevPartner (and a Remote Server license) on that system and set the
options described below on the remote system.

Script Debugging

You can set the following options in the Default Web Site Properties, or
in the WebApplication Properties for a specific application, of the
Internet Information Services manager. The following options apply to
I1S 5.0 or 6.0.

On the Home Directory or Directory tab, click Configuration. On the
Application Debugging tab, set the Debugging Flags to:

¢ Enable ASP server-side script debugging
¢ Enable ASP client-side script debugging

Host Process Settings

If your Web application runs in the d11host process, you may need to
change the Application Protection options to enable DevPartner to
collect performance analysis data. You can set these options in the
Default Web Site Properties, or in the WebApplication Properties for a
specific application, of the Internet Information Services manager. The
following options apply to IIS 5.0 or 6.0.

On the Home Directory or Directory tab, in the Application Settings
section, set the Application Protection to one of the following:

¢ Low (IIS Process) Your application runs in the inetinfo process.
DevPartner restarts IIS when you enable data collection and collects
data from this process as your application runs.

¢ High (Isolated) Your application runs as a separate instance of
d17host. DevPartner recognizes the new process and collects data as
your application runs.

When you have finished collecting data, restart IIS to remove DevPartner
data collection from the process.

Chapter 6 @ Automatic Performance Analysis 241

Configuring Internet Explorer for Data Collection

To collect performance analysis data from Internet Explorer, select

Tools > Internet Options... On the Advanced tab, set Disable script
debugging (Internet Explorer) to OFF and set Disable script debugging
(Other) to OFF.

Collecting Data from a Service

To run a performance analysis session for a service, use DPAnalysis.exe.
With DPAnalysis.exe, you can run sessions directly from the command
line or through an XML configuration file. Refer to“Starting Analysis
from the Command Line” on page 345 for information on
DPAnalysis.exe.

Collecting Data from COM and COM+ Applications

You can collect data for an application that makes calls to COM or
DCOM components with DevPartner.

If you profile an application that uses a mix of unmanaged COM and
.NET objects (COM+), DevPartner collects line-level data for .NET
portions of the application. DevPartner collects line-level data for
unmanaged code components if they have been instrumented with
DevPartner native C/C++ instrumentation. DevPartner can also collect
line-level data for your Visual Basic COM objects, if you first instrument
them for performance data collection. You can do this by building the
project with instrumentation for performance analysis.

If you profile a C++ object, or any unmanaged code component that has
not been instrumented, DevPartner collects only method-level data
based on COM interfaces and DLL exports.

Collecting Data for Recursive Functions

242

A literal profile of an application that uses recursion contains double
counts of recursive functions. DevPartner eliminates this duplication by
detecting when it is already timing a function. It stops timing for the first
function call and starts a new accumulation for the second call. Refer to
the DevPartner Studio online help if you would like an in-depth
description of how DevPartner handles collecting data for recursive
functions.

Understanding DevPartner

Analyzing a Call Graph

A Call Graph is a graphical representation of of the calling relationships
of your application’s methods. Use of call graphs was introduced in the
Ready, Set, Go procedure earlier in this chapter. This section provides
additional details about using the Call Graph.

To view a Call Graph from a session file, either click the Show Call
Graph button or select a method from the Method List tab, right-click
and select Go to Call Graph. A separate Call Graph window appears.

DevPartner displays Call Graphs showing the chain of calls leading up to
a particular method call, and the methods that are subsequently called by

that method.

The nodes are displayed sequentially from left to right in the order in

which they were called. The first node initially shown in the Call Graph
is the base node. This represents the selected method or object. Nodes to
the left of a node are called “parent nodes.” Nodes to the right of a node

are called “child nodes.”

Move navigation Click to expand or Base node Critical path
frame in overview collapse parent/child highlighted and node(s)
pane to navigate branches outlined highlighted
prem * -f =
o » N GdipDrm
I | Ko FoT 54,055
= 1.00% =]
99,6296 92 .59%,
= SpesBumpMana_ g7 : e
ST 1.28% i 5mnmgm_ il
9150% _goi] i pesdiupidna =i
pecdBumpMana_ | = Lo0% SpeedBump . ManagedCPP. Form1 . UpdateSlat
=< 1.00% 1.29% Is spent by the Function body,
S = 1.00%
= 1009
Sp) 32.1.4%
137%
= 1,003
= 1.00%
Spag‘hllwlm% Mana _
= 1,009
4 of
Critical path \ / iti \
Titcal pa Hover mouse to Critical path
highlighted for parent view additional data highlighted for child
methods for a method node methods

Figure 6-11. Call Graph

or a link value

Chapter 6 @ Automatic Performance Analysis

243

244

The Call Graph consists of two frames:

¢ The left frame shows an overview of the Call Graph. This is useful to
see the entire Call Graph if the Call Graph has too many nodes to be
shown in the right frame without scrolling. As you expand or
collapse nodes in the right frame, the overview automatically
refreshes to display the current view. Alternatively, move the
navigation frame around in the overview to change the portion of
the graph displayed in the right frame. You can close the overview by
right-clicking anywhere in the right frame and deselecting the Show
Overview option.

¢ The right frame shows the base method node and all the methods
either called by it or that call it. Use the expand/collapse boxes to
show or hide the nodes to the right or left of the selected node.

The percentage value shown in each node represents the percentage
of time the node is using. The value shown on the lines to each child
node represent the time that child path is using, as a percentage of
the total time being used by its parent node.

Critical Paths

When you display a Call Graph, DevPartner computes the critical path
for the selected method and all of its children. The critical path is the
sequence of method calls that accounted for the largest percentage of
time attributable to the method and all of its child methods.

Navigating the Call Graph

You can drag the nodes to different locations on the window and the
Call Graph lines are automatically redrawn for you. This is useful if the
screen is cluttered with too many methods or if you want to reduce the
amount of screen taken up by the initial display of the base, parent, and
child nodes.

By default, only the child nodes are shown in expanded form. The
parent(s) of the base node are not shown. Click on the plus icon on the
left side of the base node to display the parent node for the base node. To
display the full path, you will need to expand the left icon for each
parent node until you reach the first method executed by the program
(typically named Program Start).

You can select nodes either individually or in a group. To select multiple
nodes, select one node, then while pressing the Ctrl or Shift key, select
the other nodes you want. You can then drag them as a group.

Understanding DevPartner

Child-side Analysis

Parent-side Analysis

Viewing Source Code

To view the source code for the base node, right-click on the base node
and select the Go to Method option on the context menu. You can only
view the source code for the base node.

Analyze the child (right) side of the Call Graph to understand what to
optimize.

Expand the child nodes to analyze whether the base method or a child
method is responsible for the most time.

¢ If the base node has several parallel branches, look for branches that
have the largest values on the link to the first child method.
Optimizing branches with higher values is likely to provide more
benefit in terms of performance.

¢ If the base method itself shows a high value, consider optimizing the
base method.

¢ [f a child branch is a large contributor to the time spent by the base
method, look for child nodes on that branch with high percentage
values.

Analyze the parent (left) side of the Call Graph to determine if the base
node branch is worth optimizing, or if it is feasible to eliminate or reduce
the number of times the base node is called.

Expand the parent nodes to the left of the base node. In particular,
examine the base node’s contribution to the time spent in its parent
branches. This will help you determine if optimizing the base node or its
child methods is worthwhile. If the base method is a large contributor to
several parents, or to an important parent in terms of overall program
execution, it is probably worth considering as a target for optimization.

Note: Values on the links between the base node and its parents are
independent, not additive. Each percentage value represents the
base node’s contribution to the time spent by that parent.

¢ If the base node has several parents, and one or more values on the
links to the base node is high, the base node may be a candidate for
optimization.

¢ If the values on the links to the parents are very small, optimizing the
base node branch will probably have little impact on parent method
performance.

Chapter 6 @ Automatic Performance Analysis 245

¢ To determine if the base node is the best choice to optimize, view a
new Call Graph with the parent selected as the base node. This will
show the importance of the original base node to the parent node’s
performance, relative to other children of that parent method.

When analyzing either the parent or child side of the Call Graph, you
can right-click a node and use the context menu to view the source code
for the method to see if you can determine why it is using so much time.

Comparing Sessions

To fine tune a program's performance, you first need to locate where
execution spends the most time so you can make adjustments to the
costliest code fragments. Then you want to compare how those
adjustments affect performance.

DevPartner gives you the ability to compare the results of one
performance session with those of another so you can see the impact of
optimizations you make on individual methods and on application
performance as a whole.

Before and after graphs Total clock time Browse to
for key Method List difference between select a new
columns / sessions basis session
Method List | Eaurce [fmBugBench.cs]| Session Summary \
L 5]
Basis session: C:\Documenhs and Settings|BFHDEED BugBenchDotMetibiniDebug! BugBenchDathet . dpprf
9% in Mathod 5 with Children Awerage Average with Children
]
| Bun .
T =
| 11 {
i | T TEELL
L | E Na i L] e
Method Sain | S with
Magme fMethod ‘ Children Called ‘A\-’erage fus)
REGetLastwWin3ZErrar 11.6 11.6 3,542,191 0.z
System.Reflection, Assembly inLoad 5.2 7.8 5 73.192.2
RtIRestorel astWin32Error: current value 1.7 1.7 508,263 0.2
- basis value {b 1.7 1.7 513,144 0.2
= difference = = 4,881 0.0
= percent change 0% 0% -1%p 0%
REFreeHeap 0.9 0.9 177,218 0.4
System. Configuration. RugtimeConfigurationRecord, Creat 0.8 12.4 5 11,669.5
zetProcessHeap 0.7 0.7 205,389 0.2
Syskem, Configuration.BaseConfigurationRecord, Init 0.6 11.2 5 8,511.1
MemberInfoCache” 1.Populate 0.6 31 ag 471.1
Sambmen WimAdeiim Emvrnmf & e bem] LU e AP [1 7 1 44 e A
Place cursor over column in the Place cursor over a method in the
“before and after” graphs to view Method List to view performance
details for methods in a ToolTip comparison details

Figure 6-12. Comparing Performance Sessions

246 Understanding DevPartner

You invoke session comparison by toggling the Compare command with
a session window open. The Compare command is available:

¢ Asatool bar button [«
¢ Asamenu item on a performance session window context menu

When you first invoke the Compare command, you are prompted to
choose a session file to be the basis session. DevPartner defaults to
tracking the currently active session as the current session. Once you
choose a basis session, the session window transforms to include a frame
that you can place over any method in the method list. The frame will
display a comparison between the basis and current session versions of
that method.

When choosing sessions for comparison, try to ensure that the sessions
compared were run in as near an identical fashion as possible. For
example, do not compare a session started in the debugger with one run
outside the debugger. To create more exact comparisons, consider using
the session control file or the Session Control API to control data
collection.

The upper right of the comparison window displays the overall time
difference between the current session and the basis session. The graphic
to left of the time display indicates whether the current session took
more or less time than the basis session. This is useful for a quick
comparison of sessions in which the application was exercised
identically.

The comparison shows the current value, basis value, difference, and
percent difference between the two versions of the chosen method. You
can use DevPartner performance filters to alter the views of your session
data.

At the top of the session window, four bar charts show a graphical view
of the same information for the top methods in the current session.

You can copy the information in the session comparison data box by
invoking the Copy Comparison command from the context menu
within the Method List. This command copies the data onto the
clipboard.

When you finish comparing, press Esc, or click the Compare icon.

Chapter 6 ® Automatic Performance Analysis 247

Interpreting Session Comparison Results

A session comparison shows the current value, basis value, difference,
and % difference between a method in the current session and the same
method in the basis session. DevPartner uses color to help you see at a
glance whether the value in the current session is larger or smaller than
that in the basis session. When the values for difference and percent
difference are dark blue, the values for the current session were better
(faster) than those of the basis session. Light blue means that the
performance values were slower in the current session.

Once you have determined what results your code changes accomplished
between sessions for any given method, search other methods in the
session to uncover any side effects of your initial code changes. Even
though an individual method's performance improved, the larger
program's performance may have degraded. In performance tuning, no
tool can substitute for thorough knowledge of the structure of your code.

When examining session comparison results, be aware of the following:

¢ A percentage is a ratio of two numbers. Percentages are additive only
when computed relative to the same total value.

¢ If one percentage value decreases, all other percentage values must
increase. In a complex program this may be difficult to notice, since
the percentage increase must be averaged across all the other
methods in the program.

¢ To interpret a subprogram’s timing, you must understand that
subprogram’s role in the enclosing program.

¢ Performance measurements have no meaning outside the context of
the program that produced them. It is not possible to generalize
about the effects of program changes without understanding the
program’s operation.

Once you are satisfied with the changes to the costliest method in your
program, you can turn your attention to other expensive methods.

Exporting Performance Data

248

You can export performance data in XML format or in CSV format.
Exporting data in XML or CSV format facilitates use of your own or third-
party software to analyze the data, integrate the data with data produced
by other tools, and archive the data in a data warehouse.

Understanding DevPartner

¢ You can export DevPartner performance session files (with the
.dpprf extension) to XML format. When a saved performance
session file is open, the Export DevPartner Data command is
available on the File menu. Refer to “Exporting Analysis Data to
XML"” on page 375 for information about exporting in XML format.

You can also export data from the command line, as described in
“Exporting Analysis Data to XML from the Command Line” on page
376.

¢ You can export Method List data to a comma-delimited CSV text file.
Click the Method List tab to make it active, display the columns you
want to export, right-click in the Method List and choose Export
Method List from the context menu. You can open the comma-
delimited text file in Microsoft Excel or another spreadsheet
application.

Controlling Data Collection

DevPartner gives you three ways to control when performance data is
collected during the use of your application:

¢ You can use the session control toolbar to interactively control data
collection as your program runs.

¢ You can use a session control file to assign session control actions to
specific methods in your application modules.

¢ You can use the Session Control API to control data collection in your
program.

Using the session control toolbar or Session Control API allows you to
control data collection anywhere within a method. Using a session
control file allows you to control collection only at the entrance to or
exit from a method.

Using a session control file and using the Session Control API is described
in “Analysis Session Controls” on page 365.

Analyzing from the Command Line

To automate data collection or run analysis sessions from the command
line, use DPAnalysis.exe, the DevPartner command-line executable. For
information on using DPAnalysis.exe, refer to “Starting Analysis from
the Command Line” on page 34S5.

Chapter 6 @ Automatic Performance Analysis 249

Using the Performance Analysis Viewer

DevPartner Studio provides a lightweight Performance Analysis Viewer
for analyzing performance session files independently of Visual Studio
2008 and Visual Studio 2005. To launch the viewer, do any of the
following:

¢ On the Start menu, select Programs > Compuware DevPartner
Studio > Performance Analysis Viewer.

Double-click a .dpprf session file in Windows Explorer.

Run a performance analysis session using DPAnalysis.exe on the
command line. DevPartner displays the session data in the
Performance Analysis Viewer.

What You Can Do in the Performance Analysis Viewer

With a session file open, you can view, sort, save, or print performance
session data. In addition, you can:

¢ View the source code for a method

Sort the data on the Method List tab

View the Call Graph for a method

Compare session data

Export the contents of the file as XML

Export the contents of the Method List in CSV format

L K R R R 2

What you Cannot Do in the Performance Analysis Viewer

¢ Instrument an unmanaged application for performance
¢ Start a performance session
¢ Add files to a Visual Studio solution

Note: Session files generated from the command line are not automatically
added to the project's solution. You can manually add externally
generated session files to an open solution in Visual Studio.

Performance Analysis Tips for .NET Applications

The following are strategies you can use to make the performance
analysis process more productive.

¢ Analyze source code
Use the Top 20 Source Methods filter to isolate application hotspots.

250 Understanding DevPartner

Tip: To avoid collecting
data for all system (non-
source) files, check
Exclude system images
on the DevPartner
Exclusions - Performance
options page. Once you
optimize your source
code, turn off this option
50 you can examine how
your application uses
system code, especially
the .NET Framework.

Use the Call Graph to examine the most expensive methods to
understand the costs associated with child methods called.

Compare the effect of different algorithms or logic changes by
running multiple performance sessions.

Understand Framework costs

Use % with Children on the Method List or Source tab to see how
much time you are spending in the .NET Framework.

Drill into the .NET Framework by examining child methods in the
Call Graph to understand which calls are expensive and why.

Rework the application to do less work or to call the .NET Framework
less often.

Understand start-up costs

Use the Clear session control before collecting performance data. The
.NET Framework performs many one-time initializations. To prevent
these from skewing performance results, warm up the application by
exercising all the features you want to profile, then Clear the data.
Next, run a test that exercises the same features to get a more
accurate performance picture.

Understand what you want to measure

Consider how your application behaves before you begin collecting
performance data. For example, if you are profiling a Web service or
ASP.NET application, think about how Web caching will affect your
results. If your test run inputs the same data repeatedly, your
application will fetch pages from the cache, skewing the performance
data. In such a case, you could take pains to insure variable input
data, or simpler, edit the machine.config file to turn off caching
while you test. Comment out the line that reads:

<add name="0QutputCache”
type=System.Web.Caching.OutputCacheModule”/>

Measure performance of mixed-mode applications

You may choose to write parts of a .NET application in unmanaged
C/C++. DevPartner allows you to collect performance data for both
managed and unmanaged portions of an application in a single run,
provided the unmanaged code is in a separate file and you
instrument the code before collecting data. Thus, you can compare
the effectiveness of unmanaged and managed code in the context of
the total application by comparing performance sessions.

Collect complete data for distributed applications

Chapter 6 @ Automatic Performance Analysis 251

Tip: Use the process list
on the Session Control
toolbar to take
performance snapshots of
each process in a
distributed multi-process
application.

When you analyze performance for a Web application, a multi-tier
client/server application, or an application that uses Web services,
include all remote application components in the analysis. Use a
DevPartner installation to configure performance data collection on
remote systems. If your application uses unmanaged C/C++
components, instrument the components for performance analysis
before collecting data. Recommendations regarding start-up costs,
.NET Framework costs, and awareness of application behavior apply
equally to collecting data for server-side components.

Understand the limitations of micro-profiling

Once you identify a bottleneck in your application, you may find it
convenient to create a smaller sample of code that duplicates the
problem area in the main application. You improve performance in
that sample by iterative performance comparisons and then move
the code back in to the main application. Is your application going to
be faster? Maybe. But you cannot know until you rerun your original
performance tests.

Simulate actual running conditions

Application memory footprint, multi-threading, thread priorities,
process security, network latency, server load, and other
contingencies can affect the way your code runs in ways that
performance testing of a single component may not reveal. You have
not measured application performance until you have simulated as
closely as possible the conditions under which your application is
going to be used.

Submitting Data to Visual Studio Team System

DevPartner Studio supports Microsoft Visual Studio Team System if the
Team Explorer client is installed and a Team Foundation Server
connection is available. Refer to “Visual Studio Team System Support” on
page 8 for general information about Team System support.

In a performance analysis session file, you can submit data for a method
selected in the Method List tab in a DevPartner performance analysis
session file as a Work Item to Visual Studio Team System.

When you submit a Bug, DevPartner populates the Work Item form with
data from the visible columns in the Methods List tab. To change the
method data you submit in the Work Item, change the columns
displayed in the Method List.

252 Understanding DevPartner

Chapter 7
In-Depth Performance Analysis

What is Performance Expert?

Using Performance Expert Out of the Box

Setting Properties and Options

Finding Application Problems with Performance Expert
Usage Scenarios

Collecting Data from Web Applications

Automating Data Collection

Collecting Data from Distributed Applications
Exporting DevPartner Data to XML Format

Using Performance Expert with Performance Analysis

L 2K B 2K Z2BK B JER 2R JBR SR JE 2

Performance Expert in the Development Cycle
4 Submitting Data to Visual Studio Team System

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with Performance
Expert. The second section provides reference information for an in-
depth understanding of the DevPartner Studio Performance Expert
feature.

Refer to the DevPartner Studio online help for additional task-oriented
information about Performance Expert.

253

What is Performance Expert?

DevPartner Studio contains many features designed to assist application
development, including a performance analyzer that helps you locate
bottlenecks in your code. Performance Expert takes performance analysis
a step further for managed Visual Studio applications by providing
deeper analysis of the following hard-to-solve problems:

¢ CPU/thread usage
+ File/disk I/O
¢ Network I/O

¢ Synchronization wait time

Note: Performance Expert analyzes managed code only, and is therefore
not supported in the DevPartner for Visual C++ BoundsChecker Suite.

Performance Expert analyzes your application at run-time and locates the
problem methods in your code. It then allows you to view details about
individual lines in the method, or to examine parent-child calling
relationships to help you determine the best way to fix the problem.
When you decide on an approach, Performance Expert enables you to
jump directly to the relevant lines in your source code, so you can
quickly fix problems.

Because Performance Expert is integrated into Visual Studio, you can use
it to test applications as you develop them. You can also run Performance
Expert sessions from the command line, or as part of an automated test
scenario, by using the DevPartner command-line executable DPAnaly -
sis.exe with traditional command-line switches or an XML configura-
tion file. For information, see “Starting Analysis from the Command
Line” on page 345.

DevPartner Performance Expert is designed for use by software designers,
software developers, and quality assurance (QA) engineers. It can also be
used by development management staff to identify problems in an
ongoing project.

Performance Expert and Performance Analysis

254

Why do you need Performance Expert? Think of this feature as a comple-
ment to traditional performance profiling. First, run your application
with performance analysis to get a baseline view of performance. Next,
run an identical session with Performance Expert to better understand
the nature of difficult problems, especially problems that involve disk or
network I/O, or synchronization issues. When you have fixed the
problem, run the application again with performance analysis and use

Understanding DevPartner

the performance analysis Session Comparison feature to verify the
improvement. For information on comparing performance analysis
sessions, see “Comparing Sessions” on page 246. For more information
on using Performance Expert in conjunction with performance analysis,
see “Using Performance Expert with Performance Analysis” on page 291.

Using Performance Expert Out of the Box

The following Ready, Set, Go procedure introduces you to using the
DevPartner Studio Performance Expert feature.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information about the subject
described in a shaded box, read the additional text following the box.

Note: Analyzing an application with DevPartner Studio does not require
elevated system privileges. The system privileges you use to create

and debug your application are sufficient for DevPartner to analyze
the application.

Ready: Consider What You Want to Analyze

What type of application will you be analyzing? Think about what steps,
if any, you need to take before beginning a Performance Expert session.

Performance Expert collects data only from managed applications. To
collect Performance Expert data for your application, the solution must
contain at least one managed code project (for example, C#, Visual Basic,
or managed C++). It must also include a startup project. If the solution

includes multiple startup projects, DevPartner prompts you to choose a
startup project for the session.

The following procedure assumes:

You are testing a single process, managed application.

*

You can build and run your application.

*

Your solution contains at least one managed code project.

*

Your solution includes a startup project.

Note: Refer to “DevPartner Studio Supported Project Types” on page 335

for a comprehensive list of supported project types for DevPartner
memory analysis.

Chapter 7 @ In-Depth Performance Analysis 255

Performance Expert monitors a single process when run from Visual
Studio, or when run with DPAnalysis.exe using traditional command-
line switches. Although you can collect Performance Expert data from
more than one process or service in a session by using DPAnalysis.exe
with an XML configuration file, it is usually best to target a single process
in a Performance Expert session. If your application runs in more than
one process, rerun the application, targeting the second process. For
more information about using DPAnalysis.exe, see “Automating Data
Collection” on page 284.

You can use Performance Expert to improve performance of any
managed Visual Studio application, including:

¢ ASP.NET Web applications

¢ ASP.NET Web services applications
¢ _NET Remoting server applications
¢ Windows Forms client applications
¢ Serviced components, e.g. COM+

Decide what data you are interested in collecting before beginning your
Performance Expert session. Think about how your application performs.
Does it slow down when you use certain features? If so, exercise that
feature when you run your application with Performance Expert. Has
traditional performance analysis indicated that excessive time is being
spent in methods that read or write data, or access network resources?
Performance Expert can provide additional information about disk and
network I/0, so target that feature in a Performance Expert session.

If your application includes a local client process and a remote server
process, are you interested in data from both processes? If so, you must
first install DevPartner Studio and a DevPartner Remote Server license on
the remote machine to collect the server data. Before collecting server-
side data, be aware that some IIS setup might be required.

Set: Properties and Options

256

Once you have decided what code you want included in the Performance
Expert session, you can set several properties and options to focus your
data collection.

For this procedure, you can use the default DevPartner properties and
options. No additional set-up is required.

Understanding DevPartner

Using Solution Properties or Project Properties, you can choose a startup
project for the session or exclude certain projects from the session, if
your solution contains multiple projects. Using DevPartner Options, you
can change display options or create a Session Control file to manage
data collection. Setting up your analysis session is described in “Setting
Properties and Options” on page 271.

Go: Collect Performance Expert Data

After considering what you want to analyze and setting the appropriate
properties and options, you are ready to collect Performance Expert data.

DevPartner supports the Visual Studio launch model. When you click the
Performance Expert icon or choose Start without debugging with
Performance Expert on the DevPartner menu, DevPartner rebuilds the
solution, launches the startup project for your application, and begins to
collect Performance Expert data.

DevPartner Performance Expert fg]
Snapshot
Clear /
Real-time graph —]

I 1 1 1 T 1 1
00:03:52 00:03:57 00:04:02 00:04:07 00:04:12 00:04:17 00:04:22
Elapsed time
I CPU (process time) M Disk (bytes transferredisec) M Mebwork (bytes transferredfsec)

Coverage meter \

‘ 52.0000 % of methods executed

Figure 7-1. Controlling Data Collection with the Performance Expert Window

Chapter 7 @ In-Depth Performance Analysis 257

Using the Real-Time

Graph

Using Clear and
Snapshot

Using the Coverage

258

Meter

1 In the Performance Expert window, click the Clear session control
at the upper left to clear startup and initialization data and focus
data collection on the problem feature.

2 Exercise the slow portion of your application.

3 Watch the Performance Expert window as you exercise your appli-
cation. The graph displays a line for CPU process time, and if
present, lines for disk and network activity. A spike in any of these
lines may indicate a potential trouble spot.

4 If you see something interesting, click the Snapshot session control.
DevPartner generates a Performance Expert session file and dis-

plays it in Visual Studio.

Using the Performance Expert Window

The Performance Expert real-time graph presents the last 30 seconds of
activity as you run your application. The graph always draws a line
reflecting CPU use. If your application does disk or network reads or
writes, the graph includes separate lines for disk I/O and network 1/O.

Use the real-time graph to monitor application activity. If you see
something interesting, for example, a spike in activity in the graph, you
can use the Snapshot button to take a snapshot of activity to that point.
Conversely, if nothing of interest has happened, use the Clear button to
clear data collected to that point.

The Clear and Snapshot buttons are located above the real-time graph,
at the upper left of the Performance Expert window. Use these session
controls to perform the following actions:

¢ Clear - Clears data collected to that point, or since the last clear
action. Use Clear to focus data collection and minimize the size of
the session results file.

¢ Snapshot - Creates a session results file that contains data collected
up to that point, or since the last clear action. Data collection contin-
ues. You can take multiple snapshots as your application runs.

The Coverage Meter is located below the real-time graph, at the lower
left of the session control window. The coverage meter displays the
percentage of your application methods that have been executed up to
that point in the session. Use the coverage meter to ensure that you have
tested all of your code under the Performance Expert. You can also use
the coverage meter in conjunction with the session control actions to
help focus data collection on certain parts of your application.

Understanding DevPartner

Analyze the Data

Note: Generally, run Performance Expert sessions without debugging.
Results from non-debug sessions are easier to interpret and do not
include the processing overhead caused by the debugger. If you run
your application in the debugger, some timing values might be
larger than expected, especially if breakpoints were hit during the
session. Expect tracing and other debug-only functionality to figure
highly in such session files.

5 When you finish collecting data, close your application.

When you close your application, DevPartner generates a final
Performance Expert session file. If you want to capture all the
session data in a single session file, it is not necessary to use the
Snapshot session control. Simply close the application.

When you take a data snapshot, or when you finish collecting data and
quit your application, DevPartner produces a Performance Expert session
file. The initial view of the data DevPartner has collected for your
application appears in the form of a results summary.

Paths that use tl‘_le most TPU
Form.Main | 10,418,100.0 | 3"3
Form, CtoF | 9,815,903.0 | | #
Service. CtoF 7,426,593.0 |1 ¢
Serwvice. .ctor | 2,386,8%.0 |
Form.ParseCption 163, 456,4
Form.FtoC | 26,761,444
0.0 CPU time in method {microseconds) 10,418,1100
Individual metl'_lods tl_'lat use th_a most CPU
Ser\rice.CtoF_ 7.426,693.0 |1 3"3
Serwvice. .ctor_ 2,387,093.0 | 4
Form.Main | 411,780.0
Form, ParseOption 1163,658.9
Service.FtoC:25,?4?.0-3”-}
Form. CtoF | 2,314.6
0.0 CPU time in method {microsecands) 7,426,695.0
' 43.5 % of methods executed Total elapsed time: 10,415,100.0 ys Total execution kime: 10,418,100.0 ps

Figure 7-2. The Performance Expert Results Summary

The results summary contains two bar graphs, reflecting two ways to
analyze the data to solve application problems:

Chapter 7 @ In-Depth Performance Analysis 259

Tip: An entry point
method is a source code
method that was not
called by another source
code method, i.e., an
entry point into source
code execution.

¢ Paths that use the most CPU displays entry point methods for the
top paths, or chains of method calls, that consumed the most CPU
cycles in the session. Path analysis enables you to quickly identify the
most expensive paths of method execution. You can:

¢ Fix the child methods responsible for poor performance

¢ Modify other methods in the calling sequence so they call the
expensive child methods less often

¢ Individual methods that use the most CPU displays the top meth-
ods in terms of CPU cycles consumed. Method analysis enables you
to quickly identify individual problem methods so you can fix them.

Notice the icons at the ends of the bars in Figure 7-2 on page 259. These
icons indicate that a method caused disk || or network | activity.

Deciding Where to Start

To begin evaluating the session data, compare the two bar graphs on the
results summary.

¢ Is the top path in the Paths that use the most CPU chart signifi-
cantly longer than the other paths in the chart?

¢ Does the top method in the Individual methods that use the most
CPU chart stand out from the other methods in the chart?

¢ Does the time value for a method seem excessive for what the
method does?

¢ Does the same method appear as expensive on both charts?

If the answer is yes to any of these questions, investigate that method.

260 Understanding DevPartner

Analyzing Paths that
Use the Most CPU

Before you analyze the data, learn to navigate the data views that you
can access from the results summary.

1 In the results summary, click on the top path in the Paths that use
the most CPU chart. The Path analysis window opens.

Notice that the Path analysis window includes Call Graph and
Call Tree tabs, and below, Source and Call Stacks tabs.

2 Click Back to Summary to return to the results summary.

3 In the results summary, click the top method in the Individual
methods that use the most CPU chart. The Methods window
opens.

Notice that the Methods window includes a list of the methods
executed in the session, and below, Source and Call Stacks tabs.

4 Click Back to Summary to return to the results summary.

If you drill down from the Paths that used the most CPU graph, you can
view Call Graph and Call Tree presentations of the session data. The
Call Graph shows the child methods called by the entry point method,
with the relative contributions of each to the time spent in the path. The
Call Tree presents a tree view of the same data but adds additional data
about each method in the form of user-configurable data columns.

If you choose to examine a method in the Individual methods that use
the most CPU graph, DevPartner presents a Methods table with user-
configurable data columns to assist your troubleshooting. To switch
between the Path analysis and Methods table views, click Back to
Summary in any details view.

The calculation of the Performance Expert session data differs between
the Paths that use the most CPU and the Individual methods that use
the most CPU views. In the Individual methods that use the most CPU
view, DevPartner excludes measurements for source code child methods
in computing data for CPU time, disk or network 1/O, and synchroniza-
tion lock wait time. Excluding source code child methods focuses atten-
tion on methods that, in themselves, consume large amounts of CPU
time. In contrast, DevPartner includes the impact of source code child
methods to their parent methods in the Paths that use the most CPU
view in order to highlight the most expensive paths of execution.

Chapter 7 @ In-Depth Performance Analysis 261

Back to Summary

All computations in both views include time or throughput attributable
to system or .NET Framework methods called by your source code
methods. Managed applications typically spend significant time execut-
ing .NET Framework code. Performance Expert charges the system data to
the lines in your source code that made the calls in order to focus atten-
tion on how your code interacts with the .NET Framework, that is, on the
parts of the application that you can modity.

In this procedure, we will first use Path analysis to analyze the relative
contribution of child methods called in the most expensive paths of
execution.

5 In the results summary, click on a method in the Paths that used

the most CPU chart to drill down to the Path analysis view. If the
Call Graph is not visible, click the Call Graph tab, at the left.

DevPartner highlights the critical or most expensive path of execu-
tion. Start your troubleshooting here.

~Driversnap.dppxp |

- X
> Back to Surmmary

Most expensive path _|

Call Graph tab —

Call Tree tab /

Slowest child
methods in all called ™ |
paths

Source tab

Call Stacks tab /

Path analysis

~

Farml, Mair Farml.Mana..t, Eventargs)

?2.7651 kS

Forml.Bubbl..t, Eventargs) Farml.=

12 96

\
Call Grgph

cf9.9923 U

E.6488 96 3BT %

Call Tree

0.0041 36
Slowest methods along all
called paths Formi..ckar{vaid) Formi.

Formi.Rando. t, EventArgs)
0.0000 '

s Formi L ob{Ink32) 2.3474 0.0L36

m—— Formi. . ob{IntSE)

0.2929 %
[

Farml.In.. enti{vaid)
Farm1.5..2, Ink32)

Farml.M . entargs)

Farml.Forml ..k, Eventargs) Forml.Quick..t, Eventargs)

Farml
0.0276
<

Method detail For : Form1.Main{void)
Source | Call Stacks

(CPL time

uding user children (s

| For each line in Form1.Mainfvoid)

0.0000

[1a5:
146;
147:
145:
L 140

static wvoid Main()
{

Application.Runinew Formwl ()]
H

262 Understanding Dev

Figure 7-3. Identifying Expensive Execution Paths in the Path Analysis Window

Partner

6

In the Call Graph:

To investigate a path, click the plus sign on a node to expand the
path to the right.

Click on any method to see the list of the slowest child methods it
called, regardless of path. This list exposes slow methods that may
not be part of the critical path.

To determine the relative contributions of different paths spawned
by the same method, compare the percentage values on the lines
that connect the selected method to each of its child paths. Investi-
gate the most expensive (highest percentage) paths first.

Hover over the horizontal bar at the bottom of each node with the
mouse pointer to see the percentage of time spent in the method
versus the time spent executing child methods. For an example, see
Figure 7-4 on page 263.

If most of the time is attributable to child methods, continue to
investigate the path. If most of the time was local to the method,
focus your efforts on that method.

The Call Graph helps you quickly locate expensive methods in the
calling sequence so you can focus your tuning efforts. In addition to
showing the impact of child methods, the nodes in the Call Graph
provide insight into what your methods do. For more information on
using the Call Graph, see “The Call Graph” on page 280.

a
[=%
o Farm.Main Farm.CtaF Service. CtaF
= 931 % | 757 %
= = :
= L
| 169% 243 %
2 [470 %% of time lncal to method, 96.1 % of time in children. | -
2y FOFTTT, Far S porT Service, .ckar
T 03%
0.09%

Farm.FtoC Service.FtoC
,33.2% g

0.3 %

=
4| | E

Figure 7-4. Assessing the Impact of Child Methods.

Chapter 7 @ In-Depth Performance Analysis 263

Tip: The term “user
children” refers to your
own application source
code methods, as
opposed to system code
or .NET Framework
methods also called by
your application code.

10 Does a node you plan to investigate contain one or more of the fol-
lowing icons?
" Indicates disk activity
+% Indicates network activity
B Indicates synchronization wait time

11 If so, hover over the icon with the mouse pointer to view the magni-
tude of the activity. If you think that the magnitude of the activity

merits further investigation, switch to the Call Tree tab for more
diagnostic help.

12 To view the Call Tree, click the Call Tree tab on the left side of the
session file window.

The Call Tree provides information similar to the Call Graph, but in the
form of a tree view. The most expensive paths are indicated by position
in the sort order of the table. The default sort column is CPU time
including user children.

As you saw above, the Call Graph provides information about the
relative contribution of child methods to their parent methods. In
contrast, the Call Tree offers more detailed data about what the methods
in your application actually do. This data is presented in the form of
sortable, user-configurable data columns. You can add these data
columns to the Call Tree view by right-clicking in any column header
and selecting Choose Columns... from the context menu. Before adding
data columns, you can preview the data they contain in the Properties
window in Visual Studio. To display the Properties window, choose View
> Properties Window.

Detail Grid Ikem -

A
Z

Disk read elapsed time (us)

Figure 7-5. Viewing Method Data in the Properties Window.

264 Understanding DevPartner

In the Call Tree:

13 To determine the relative contributions of different paths spawned
by the same method, compare the values in the CPU time includ-
ing user children column for each of the child paths. When sorted
by this column (the default sort), the most expensive paths appear
at the top of the tree view.

14 Use the Call Tree in conjunction with the Call Graph. For example,
if an expensive node in the Call Graph includes the network I/O
icon, switch to the Call Tree and add the network-related data col-
umns to the view.

To add data columns to the Call Tree view, right-click any column
header and select Choose Columns... from the context menu.

These data columns show you the number of network reads or
writes, how much time was spent reading or writing data across the
network, the amount of data read or written, and the number of
read or write errors.

If the node in the Call Graph included the disk I/O or wait time
icon, add those data columns to the Call Tree view. In this way, you
can quickly pinpoint the reason the problem node is so expensive.

Both the Call Graph and the Call Tree windows include a Source tab
and Call Stacks tab in the lower part of the window.

The Source tab enables you to view source code for your application's
methods, with metrics that indicate the expense of the lines that were
executed during the session. Use it to view expensive lines of code in
context, and to quickly locate lines that would be good candidates for
improvement. The Source tab includes a metric selector, as shown in
Figure 7-6 on page 266. The default metric in the Path analysis view is
CPU time including user children. Additional metrics, including disk
I/O, network I/O, and wait time, may be available depending on what
the method does. Selecting a new metric in the selector updates the
source pane so you can locate the most expensive line for that metric in
your source code.

Chapter 7 @ In-Depth Performance Analysis 265

Selected method in

DrivelSnap.dppxﬁ - X

Call Tree

Call Tree

Metric selector

Most expensive line

Call Graph

Back ta Summatyy
Path analysis

Method CPU time including user children (ps) Execution count #
Form1. StartTimingiString) 170.7034
Formi,EndTiming(String) 1526934 1

+ Form1.RandomizeBtn_Click{Object, EventArgs) 177,916.,9000 z
Form1,QuickSortBtn_Click{Object, Eventargs) 135,606,2000 1
= Forml,.ckor{void) 18,075.3400 1
Forml.Forml_LoadiObject, EventArgs) 1,270.2520 1
= Forml,.ctarivaid) 280,713, 4000 14
< >

Method detail For : Form1.InitislizeComponent(void)

\ Source | Call Stacks
| For each line in Form1.InitislizeComponentivoid)

CPU ke including user childres
Disk ackivity (bytes transferre
Wit kime (s}

G671 A -~

83: // WatchUpdateschk
89: i

I - this->WatchUpdatesChk->Checked = true;

a1: this->WatchUpdatesChk->Check3tate = Systewm: : Wi

Other significant / 92: this->WarchlUpdatesChk->Location = System: :Dram
o2 s flhin_ s llatrakibbndataaClale s hlowes = ff'.Tafﬂh'T“fﬂaPuthhlv
>

lines

266

<

Figure 7-6. Locating the Most Expensive Lines in the Source Tab

15

16

17

18

Use the Source tab in conjunction with the Call Graph and Call Tree.

Select a method of interest in the Call Tree tab. (If you have
returned to the Call Graph tab, you can select a method node.)
Select the Source tab. Notice that the most expensive line (mea-
sured by CPU time including user children) is highlighted in dark
red. Scroll through the Source pane and notice that other expensive
lines are highlighted in blue.

Did the method you selected have disk, network, or wait time activ-
ity? To quickly locate such methods in the Call Tree, look for meth-
ods with high values in those data columns. (In the Call Graph,
look for the disk, network, or wait time icon in the method node.)

Expand the metric selector (see Figure 7-6 on page 266) at the upper
left of the Source tab. If the selected method included disk I/O, net-
work [/O, or wait time, the metric appears in the list. Select a new
metric and scroll the source display to locate the most expensive
line for that metric. An expensive method may present multiple
opportunities for improvement.

Locate the line you want to fix in the Source tab. Double-click the
line to open the source file in Visual Studio for editing.

Understanding DevPartner

The Call Stacks tab enables you to view different instances or usages of
the expensive methods of your application. Each call stack is unique. In
some cases you may see call stacks that contain the same sequence of
method calls. However, if you look carefully, you will see that some of
the calls were made from different lines in at least one method.

Notice that as you select different methods in the Call Graph or Call
Tree, the Source tab scrolls to the most expensive line in each method.
Similarly, the Call Stack tab updates when you select a different method

For example, in Figure 7-6 on page 266, a child method is selected in the
Call Tree. If you plan to address the performance issue by fixing the child
method itself, look at the Source tab. On the Source tab, you would see
that the most expensive line in the method is highlighted. If the method
did disk I/O or network I/O, or had significant wait time, use the metric
selector to locate the most expensive lines for the selected metric. Once
you decide what you want to fix, double-click the source line to edit it in
Visual Studio.

On the other hand, if you plan to address the performance issue by
changing the way your application calls the child method, switch to the
the Call Stacks tab.

Use the Call Stacks tab in conjunction with the Call Graph or Call
Tree. The Call Stacks tab shows you all of the paths that called the
selected method, so you can evaluate changes to the method in the
context of all the ways the method is used in your application. Use the
Call Stacks tab to quickly locate the most expensive instances (usages)
of any method.

19 Select a method of interest in the Call Tree tab. (If you have
returned to the Call Graph tab, you can select a method there.)
Select the Call Stacks tab. Notice that DevPartner highlights the
line that called the selected method.

20 Expand the stack selector at the upper left of the Call Stacks tab.
Use the stack selector to locate the most expensive usages of the
method.

21 Locate the line you want to fix in the Call Stacks tab. Double-click
the line to open the source file in Visual Studio for editing.

22 If you cannot directly fix an expensive method, modify your code to
call the method less often, or not at all.

Chapter 7 @ In-Depth Performance Analysis 267

On the Call Stacks tab, you can examine all the calling sequences or
paths that called the method you selected in the Call Tree. In Figure 7-7
on page 268, note that the stack selector shows the percentage of time
attributable to each call stack, so you can quickly locate the most expen-
sive execution path. When you select a call stack, DevPartner shows all of
the methods that make up the stack, with the number of the line in each
method that called the next method on the stack. Selecting any method
in the call stack updates the source pane to highlight the line that called
the next child method. Double-click the calling source line to edit it in
Visual Studio.

Even if you plan to fix a slow child method rather than change the way it
is called, examine the Call Stacks tab for the method. It is a good idea to
understand all the ways your application uses a method before you
change it. Performance Expert makes it easy to do so.

Back ta Summatty
Path analysis
< Method CPU time including user children (us) Execution count | Elapsed time {ps) Disk activity (bytes
= || = Formi. Mainvoid) 5,503,437, 0000 1 30,208,6820.0000
3 (= Form1.CSharpBtn_ClickiCbject, Eventargs) 4,732,729.0000 1 9,543,603.0000
- = Form1.BubbleSortBtn_Click(Obiect, Ev... 4,236,076.0000 1 4,323,419,0000
2 = Farm1 . SwapEm({Int32, Int32) 4,193,047,0000 22421 4,278,153.0000
= | =l > 049,952,000 294 2 094 244000
. . Formi.Updateslot(Int32) 2,044,008.0000 22421 2,075,036.0000
Calling line e
Forml. StartTiming(String) 168.8421 1 168.8421
Form1.EndTimingiString) 65,4002 1 65,4002
+ Forml.RandomizeBtn_Click{Object, Ew... 176,544.4000 2 178,167,5000
+ Farml,QuickSortBtn_ClickiObject, Eve... 130,967,3000 1 131,590,7000 v
>
Stack Method detail For : Forml,Updateslot(Int32)
selector | Source | Call Stacks
Call stacks showing paths Yeat called Forml.UpdateSlotint32)
46,8500 % - Call stack 1 j (46,8500 % of tokal time in method is caused by this call stack)
- Location in source where SpeedBump.CSharp.Form1.SwapEm(Int32, Int32) called Forml.UpdateSlot{Int32)
| Method | Line Z04: Updateslot (a) ; 7
SpeedBumnp. CSharp. Forml.Upda as: UpdateSlat (b :
Methods CSharp.Forml,Swa ' pdarestotihl,
z06: ¥
peedBump,
on stack Sraadf e Frwrni ~Shar s 207: else v
< > 3 >

Figure 7-7. Identifying the Most Expensive Calling Paths that Used the Method

Analyzing Individual
Methods that Use the
Most CPU

268

So far, we have focused on drilling into the session data from the Paths
that use the most CPU bar chart on the results summary. You can also
analyze Performance Expert data by using the Individual methods that
use the most CPU bar chart. For example, if you realize that the top
method in this chart is consuming more time than you think it should,
you can click the method in the chart to examine it immediately.

Understanding DevPartner

Clicking the method opens a Methods table that lists the methods that
executed when you ran your application.

| Method | CPU time witha... I Execution count | Disk activity (bytes transfe.. | ‘Waik time (us) | Diskread count | [
selected —— g Tasssso 2 ‘
method | Service. .ctor 2,357,093.0 4 657,872 7,423.0 102
Farm.Main 411,750.0 1 o 0.0 o
Ca” Stacks Farm.ParseCption 163,658,9 4 o 0.0 o
Service,FroC 25,747.0 2 1] 999.2 1]
tab :
Farm.CkaF 2,314.6 2 1] 0.0 1] <
¢ >
Metric Method detail for: Service, ChoF
selector \\SDUrce Cal Stacks
|CPU time without user children {us) j For each line in Service, CkaF
7,426,672.0 0.0
= ; i
53]
54; I <remarks] =
Most expensi\/e line 551 [System.\Web. Services. Protocols, SoapDocumentMethodattribute"http: frempuri, orgfChe
. | 56 public System,Double ChoF{System. Double c) {
for selected metric M S 57 abiect[] results = this. Invoke("CtaF", new object{] {
e e e e e . o i [
< | ¥

Figure 7-8. Analyzing the Impact of Individual Methods.

23 To access the Individual methods that use the most CPU views,
click Back to Summary.

24 In the results summary, click on a method in the Individual meth-
ods that use the most CPU chart to drill down to the Methods
table.

DevPartner highlights the most expensive individual methods in
your application. By default, methods are sorted by CPU time spent
in the method, without user children, but including system calls.

25 To customize the column selection in the Methods table, right-click
any column header and select Choose Columns... from the context
menu.

Use the data columns to determine the most expensive aspects of
method performance.

By default, the Methods table is sorted by CPU time without user
children. This metric focuses on the performance of the method itself. In
contrast, the Paths that use the most CPU views include user, or source
code, child methods in the calculation.

Chapter 7 @ In-Depth Performance Analysis 269

Saving Session Files

Use the Source tab in conjunction with the Methods table. When you

select a method, the Source tab guides you directly to the most expen-

sive line in the method and displays the relative cost of other lines. The
most expensive line appears in dark red. Other lines that contribute to

time spent in the method appear in light blue.

26 Use the metric selector on the Source tab to locate the most expen-
sive lines for each available metric. A problem method may present
multiple opportunities for improvement.

Use the Call Stacks tab in conjunction with the Methods table. The
Call Stacks tab shows you all of the paths that called the selected
method, so you can evaluate changes to the method in the context of
all the ways the method is used in your application. Use the Call Stacks
tab to quickly locate the most expensive instances (usages) of any
method.

27 Locate the line you want to fix in the Source tab or in the Call
Stacks tab. Double-click the slow line and open the source in Visual
Studio for editing.

28 If you cannot directly fix an expensive method, modify your code to
call the method less often, or not at all.

Although the percent of time calculation in the Individual methods
that use the most CPU and Methods tables excludes time spent in
source code child methods, it includes time spent in system child
methods. You have probably noticed that managed applications spend a
good deal of time in the .NET Framework. Including system children in
the calculation focuses attention on methods in your source code that
exhibit problems in the way they interact with system code, which can
be especially critical in managed applications.

When you finish reviewing the Performance Expert data you can save the
session file or discard it.

1 Select the unsaved session file in Visual Studio. Choose File >
Save <filename>.dppxp.

2 If you close the session file window in Visual Studio before saving
the session, DevPartner prompts you to save the open session file.

270 Understanding DevPartner

DevPartner saves session files as part of the active solution. They appear
in the DevPartner Studio virtual folder in Solution Explorer. Performance
Expert session files take the .dppxp extension.

By default, DevPartner physically saves the session files in your project's
output folder. DevPartner automatically increments the file name based
on the contents of the default directory (for example, MyApp.dppxp,
MyAppl.dppxp, and so on). If you save session files to a location other
than the default directory, you must manage the file naming.

For projects that do not have an output directory, such as a Visual Studio
2005 Web site project, DevPartner physically saves the files to the project
directory.

Session files generated outside of Visual Studio are not automatically
added to the project's solution. You can manually add externally gener-
ated session files to an open solution in Visual Studio.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a performance analysis
session, continue reading the rest of this chapter for additional information, or
refer to the DevPartner online help for task-based information.

Setting Properties and Options

Solution Properties

Before beginning a Performance Expert session, it is often useful to fine-
tune data collection to include or omit certain types of information. Use
Solution Properties, Project Properties, and DevPartner Options to better
focus your analysis session.

To view properties that affect Performance Expert at the solution level,
select the solution in the Solution Explorer and press F4 to view the
Properties Window.

Chapter 7 @ In-Depth Performance Analysis 271

Project Properties

Properties

SpeedBump.Net Solution Properties -

(Mame) SpeedBump.Net

Active config Debug|Mixed Platforms
Automatically Merge Session Files Merge it automatically
Collect From MET True

Description

Skartup project Driver

Figure 7-9. Solution Properties
The following Solution properties may affect Performance Expert:

¢ Collect from .NET - Running your managed application with Perfor-
mance Expert overrides this property if it is set to False. Performance
Expert always collects data from managed applications.

¢ Startup project - If your solution includes multiple projects, you can
change the startup project. The Project properties for the startup
project govern data collection for all projects active in the session.

Note that your solution must include a startup project. If the solution
contains multiple startup projects, DevPartner prompts you to choose a
startup project for the session before analysis begins.

Only projects for which the Action in the Common Properties >
Startup Projects page of the solution properties is set to Start are
included in the prompt dialog. If the desired startup project does not
appear in the prompt, open the solution properties page and set the
Action for the project to Start. If you choose a new startup project for a
subsequent session, review the properties for the new startup project to
ensure the data collection options are correct.

To review project level properties, select a project in the Solution
Explorer and review the properties that can be set for projects within the
solution.

272 Understanding DevPartner

Properties a x

| Driver2003 Project Properties j

SEAE=

Project File

Palicy File

Figure 7-10. Project Properties for Performance Expert
The following project-level property affects Performance Expert:

¢ Include Project in Session - To exclude a project from Performance
Expert data collection, select No.

Options

To review DevPartner option settings for Performance Expert sessions,
choose DevPartner > Options > Analysis.

¢ The Display option allows you to set the precision, scale, and units
used when displaying your data.

¢ The Session Control File option allows you to create a set of rules
and actions to control the data that DevPartner collects as your
application or module runs. Refer to “Creating a Session Control File
Within Visual Studio” on page 366 for more information about
session control files.

Chapter 7 @ In-Depth Performance Analysis 273

Options

[#- Environment

=l DevPartner

Display
Exclusions - Coverage
Exclusions - Performance
Session Control File
[#- Code Review
[+ Error Detection
[#- Database Tools
[#- Debugging
[#- Device Tools
[#- HTML Designer
[#- Windows Forms Designer

Precision |_1 1 J|
Scale Microseconds v |

Units Bvtes - |

Ok] [Cancel

Figure 7-11. Analysis Options

Other Visual Studio options, such as the Environment > Fonts and

Colors options, also affect DevPartner features.

Finding Application Problems with Performance Expert

274

DevPartner Performance Expert helps you identify problems in managed
Visual Studio applications in the following critical areas:

¢ CPU/thread use (including wait and synchronization issues)

¢ File and disk I/O

¢ Network I/O

¢ Synchronization wait time

When run from Visual Studio, Performance Expert analyzes a single
process at a time. It reports data for any managed threads executing in
the selected process. To analyze an additional process, select the second
process and rerun Performance Expert. Performance Expert can also
analyze a distributed application that spans multiple machines. For infor-
mation about remote data collection, see “Collecting Data from Distrib-
uted Applications” on page 287.

Understanding DevPartner

DevPartner supports the Visual Studio launch model. When you click the
Performance Expert icon or choose Start without debugging with
Performance Expert on the DevPartner menu, DevPartner immediately
launches the startup project for your application and begins to collect
Performance Expert data.

In order to collect Performance Expert data for your application, the
solution must contain at least one managed code project (for example,
C#, Visual Basic, or managed C++). It must also include a startup project.
For more information, see “Setting Properties and Options” on page 271

If You Get a Security Exception

If you see a security exception message when you attempt to collect data
for a managed application, it means that your security policy prevented
DevPartner instrumentation of your code. By default, assemblies must
have the SkipVerification permission to be profiled. If you remove
this permission from the permission set of the policy under which the
code executes, or add imperative security declarations to the assembly
that cause this permission to be revoked, you will not be able to profile
the assembly.

To remedy this condition, enable secure profiling in one of two ways.

¢ Set the following global environment variable and retry profiling the
application:
NM_NO_FAST_INSTR=1
This solution allows you to work around this issue, although it does
exact a slight performance penalty.

¢ Change the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any
imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio online help
for more information on security policy in Visual Studio.

Accounting for Child Methods

The calculation of the Performance Expert session data differs between
the Paths that uses the most CPU and the Individual methods that use
the most CPU views. DevPartner excludes measurements for source code
child methods in computing data for CPU time, disk or network I/O, and
synchronization lock wait time in the Individual method analysis views.
In contrast, DevPartner includes the impact of source code child methods
to their parent methods in the Path analysis views.

Chapter 7 @ In-Depth Performance Analysis 275

Usage Scenarios

276

All computations in both views include time or throughput attributable
to system or .NET Framework methods called by your source code
methods. Managed applications typically spend a lot of time executing
Framework code. Performance Expert charges the system data to the lines
in your source code that made the calls in order to focus attention on
how your code interacts with the Framework, that is, on the parts of the
application that you can modify.

For more tips on collecting and analyzing the session data, see “Usage
Scenarios” below.

The typical methodology for resolving performance issues consists of the
following steps.

1 Locate the slowest line in a problem method and optimize it.
2 If you cannot optimize the line, remove it or execute it less often.

In the simplest cases, you may be able to locate the slowest line in a
method (e.g., by using the DevPartner performance analysis feature) and
either optimize it or call it less often. However, in real world application
development, many problems have more complex causes. You may be
able to identify the slowest method, only to find that a combination of
lines within the method is slowing execution. In such a case, additional
targeted data can help you analyze the problem quickly.

For example, if the slowest part of your application does a lot of network
I/0, the following metrics would likely help you understand the nature
of the problem:

¢ Total number of network reads and writes
¢ Number of bytes read or written

¢ Number of read or write errors

¢ Elapsed time for read or write operations

If your application did a lot of disk I/O, you would want to see metrics
that reflected read/write volume and the efficiency of those operations.
DevPartner Performance Expert reports exactly this kind of data.

You can use DevPartner Performance Expert to analyze application
performance in the areas of CPU and thread performance, disk I/O,
network I/O, and synchronization wait time. The following examples
will illustrate ways in which you can use Performance Expert to improve
application performance.

Understanding DevPartner

Identifiable Performance Problem

Scenario: Usability testers have reported that specific operations in your appli-
cation are too slow. As a developer, you want to locate the parts of your source
code that are responsible for the slow operations taking so long to complete and
fix them.

Assume that you have run the slowest part of your application under
Performance Expert as described in “Go: Collect Performance Expert
Data” on page 257. When you examine the session file, you immediately
see the method that took the longest time to execute at the top of the
Individual methods that use the most CPU graph. However, in a
complex application, a single slow method may affect performance less
than a sequence of moderately slow methods. The slowest calling
sequences appear in the Paths that use the most CPU graph. Do some
methods appear in both graphs? If so, these methods definitely deserve
scrutiny.

You also notice that some of the methods in the graphs are marked with
icons that indicate disk I/O or network I/O activity in the method. These
indicators tell you something about the kind of processing done by these
methods.

1 Disk activity
41 Network activity

At the bottom of the results summary, Performance Expert displays the
Total elapsed time and Total execution time. If the execution time is
very small relative to elapsed time, and you have exercised the applica-
tion in such a way that you are reasonably sure the difference is not
simply due to waiting on user input, check to see if some methods in
your application are spending more time waiting for locks than they
should.

Assume that you first decide to examine the top method in the Individ-
ual methods that use the most CPU graph. You understand that many
factors can affect CPU utilization: processor-intensive computations, disk
I/O, network 1/0, or inefficiently used synchronization objects. Similarly,
you know that wait time can have multiple causes: the resource your
method is waiting for could be shared within the same process, or with
an external process. But how do you quickly determine what is going on
in your application?

Click the top method in the Individual methods that use the most
CPU graph to open the Methods detail view for the method. Notice the
data in the columns in the Methods table. This information should help
you determine what the method is doing. If the method was marked
with the disk activity icon in the graph, right-click in the table and use

Chapter 7 @ In-Depth Performance Analysis 277

Metric
selector

Source | Call Stacks

the Choose Columns... dialog box to add all of the disk-related columns
to the table. You might find that the method is producing read or write
errors, or is using a large amount of time to write small amounts of data,
and is being executed many times.

The Source tab in the lower half of the Methods window shows you the
source code for any method you select in the table. When you click on a
method in the table, the source automatically scrolls to the line that

consumed the most CPU time and indicates the time attributable to that
line. The view also indicates graphically other lines that used CPU time.

|CPU tire including user children {us) j Far each line in Service, CkoF

ZPU time including user children (us)
Disk activity (bykes transferred)

Mebwork activicy (bybes transferred) E5: [Svstem.Web,Services, Protocols, SoapDocumentMethodAttributehttp: fftel A

[t tirpe (us) SE: public Syskemn, Dauble ChoF(Systenn, Double o) 4
57 ohject[] results = this, Invaoke!"CtaF", new object[] §
53 i
59 return {{3wstem, Double’resulks[0T));
&0 +
61:
62 I <remarks) =

L I _rn, maablie Siambens TA i am el e Dim i e Cf Caambmme Cimiibele = Ciimbmmn &= e llb

<

Figure 7-12. Locating Problem Lines in The Source Tab

If the method performed disk or network I/O, or had wait time, expand-
ing the metric selector at the upper left lists those selections, so you can
immediately locate the most significant line in the method for that
metric. For example, Choose Disk activity from the drop-down list to
immediately go to the line that transferred the most bytes, and to see
relative disk activity for other lines in the method. If the method
involves Wait time, check that view too. Notice which lines are associ-
ated with long wait times. In each view, DevPartner selects the most
expensive line by default. Comparing these views of the lines in the
method shows you where to focus your efforts much more quickly than
traditional debugging techniques.

When you have located an appropriate line to fix, double-click on it to
jump to that line in your source code in Visual Studio.

If a way to fix the problem is not obvious, click the Call Stacks tab to see
all the ways the method was used as your application executed. Is the
problem method called by more than one path? If so, examine the call
stacks that are responsible for the most time in the method.

278 Understanding DevPartner

Source Call Stacks |
Call stacks showing paths that called EntryPointsMain, B

2.5 % - Call stack 1 j (82,5 % of total time in method is caused by this call stack)
| Method Line | Location in source where ProgramUnderTest.EntryPoints,EntryPointsMain. & called EntryPoints
ProgramUnderTest Entry... 71 o0 if {done == rull) |~
Choose the most ProgramUnderTest.Entry... & Y B{100;
. ProgramUnderTest. Entry... 30 62 else
expensive call stack ProgramUnderTest.Entry... 18 |63 B{10; 2 jL
< >

Figure 7-13. Finding the Most Expensive Call Stack
Tip: Performance Expert Obviously, you want to look first at the parent path responsible for the
records a unique parent highest percentage of calls. Try to modify your code to eliminate the
branch if any method (or calls, or call less frequently. The Call Stacks tab includes a view of your
calling line in the same .
. source code. When you select a method in the stack, the source automat-
method) in the call stack - 4]
is different. ically scrolls to the line where the call to the next method in the stack
was made. A double-click opens the line in Visual Studio, so you can
quickly modify the calling sequence if necessary. Once you have made
the changes to your code, run the application again with Performance
Expert to verify the improvement.

Scaling Problem in an Application

Scenario: Your new Web application runs fine when you test it on your
machine. But when you allow additional users to access the application, it is
too slow. You have a looming deadline. How do you quickly determine what is
wrong?

You can collect Performance Expert data while stressing your application
with a load-testing tool. To do so, you will probably want to start and
stop your application with a command line tool or script. DevPartner
provides a command line utility called DPAnalysis.exe for this purpose.
For information on running a Performance Expert session from a
command line, see “Automating Data Collection” on page 284. For
example, you could do something like the following:

1 Start the application under Performance Expert with DPAnaly -
sis.exe.

2 Run the load-testing application.
3 Stop the application.
4 Examine the Performance Expert session data.

Assume that when you look at the session file, no single method in the
Individual methods that use the most CPU graph stands out as the
likely culprit. It is a complex application, and it is probable that several
methods contribute to the sluggish performance. Start your analysis with
the Paths that use the most CPU graph in the results summary. This

Chapter 7 @ In-Depth Performance Analysis 279

Tip: The percentages on
lines connecting a method
to the child methods it
called are additive; those
on lines connecting the
chain of methods in a
single path are not.

Call Graph

Call Tree

graph shows a list of methods, but in this case each method represents an
entry point. An entry point method is a method that was not called by
another source code method. In other words, it is an entry point into the
execution of code that you wrote. Most important, it marks the begin-
ning of an execution path that you can change, either by modifying the
methods, or the way they are called. The entry point method that corre-
sponds to the most expensive path of execution in your application
appears at the top of the graph. Click on the method to open the Path
analysis view.

The Call Graph

When you open the Call Graph from the results summary, notice that
DevPartner places the most expensive paths at the top of the Call Graph,
and highlights the most expensive child path whenever a path branches.
As you examine the data, investigate the most expensive child paths first.
To investigate a path, expand the nodes to the right.

To determine the relative contributions of different paths spawned by the
same method, compare the percentage values on the lines that connect
the selected method to each of its child paths. The value on each link
represents the percent of time in the parent method attributable to child
methods called in that path. Thus, in Figure 7-14 on page 280, the
method Form.Main called Form.CtoF, Form.ParseOption, and Form.FtoC.
The value on the line that links Form.Main to Form.CtoF is 98.1%, while
the remaining 1.9% is spread among the other called paths. This means
that the path Form.Main calls Form.CtoF accounted for 98.1% of the CPU
time spent in Form.Main that was attributable to the execution of child
methods. Start your troubleshooting with this path.

=]
Form.Main Farm.CkoF Service, CtaF
98,1 %% FE7 %
=1 = 1
1.6 % 243 %
4.0 % of time local fo method, 96.1 % of bme in children. | .
P, Par ST Service, .ctor
0.3'9%
0.0 %%
Farm, FroZ Service,FioC
99,2 % .

=

W -
-
| ;H

Figure 7-14. Understanding the Impact of Child Methods

280 Understanding DevPartner

As you investigate the called path, notice the horizontal bar at the
bottom of each node. The bar shows the relative percentages of time in
the method due to the method body compared to the child methods it
called. Hover over the bar with the mouse to see the actual percentages.
Use this bar to guide your tuning efforts. For example, if 4% of time is
spent in the method body, and 96% of time is attributable to child
methods, continue to investigate the most expensive called paths to
locate the child methods that are affecting performance. Fix those
methods or change your code so they can be called less often. If, on the
other hand, 96% of the time was spent in the method body, focus your
efforts there.

Also notice whether an expensive node contains the disk activity,
network activity, or wait time icons. Hover over the icon with the mouse
to view the magnitude of the activity. If a node contains one or more of
these icons, consider switching to the Call Tree view and adding the
appropriate data columns for more help in diagnosing the problem.

The Call Tree

The default sort of the Call Tree table is by CPU time including user
children. To gain an idea of where the bulk of the time is being spent,
scan the values in the other columns. Doing so will tell you whether wait
time, disk or network I/O, or CPU-intensive processing is the major
factor. If you need more detail, you can add additional columns, such as
disk or network reads, writes, and errors, to the display.

Method | CRU “I:-iFne_i.nc'I-L.ld.i_ng user chil. © Execution court “i;:-lap:

et
[wR}
.35“3 | E Forrn, Main 10,418, 100.0 _-
'=L_UJ- [=I- Form.CtoF osiE on=n 2
—| : st Called Methods 75,7 % -- Service.CtoF ,
|~ Service, CkaF [
>) 24,3 %% -- Service..ctar
= Service..ckor Choose Columns. .. S i;
E — Form.ParseCption 163,456.4 2
= [=F Farm,.FtoC 26,761.4 2
Service, FtoC 25,747.0 2
Service, .ckar 197.1 2
Form.ParseCption 202.5 2z

Figure 7-15. Displaying Additional Data for the Selected Method in the Call Tree

For example, if an expensive method in the Call Graph showed network
1/0, select it, switch to the Call Tree, and add all of the network-related
data columns to the table. To add columns, right-click in the Call Tree

Chapter 7 @ In-Depth Performance Analysis 281

Tip: The term “user” in
“user children” or “user
methods” refers to your
source code methods.

table and select Choose columns... from the context menu. For a full
explanation of the data reported in each column, see the Performance
Expert online help.

Whether you are using the Call Graph or Call Tree, the session file
window includes the Source and Call Stacks tabs. These tabs function as
they do in the Methods table, except that the data is calculated to
include data attributable to user, or source code, child methods. Use the
Source tab to immediately locate the most expensive line in any method
you select in the Call Graph or Call Tree. Use the Call Stacks tab to see
the relative impact of other paths that called the method and to locate
the line that called the selected method in the stack. Double-click a line
of code in either the Source or Call Stacks tab to jump to that line in
Visual Studio for editing.

Performance Slow but No Specific Issue

Suppose your application is generally sluggish, but you cannot identify a
specific issue. Performance tuning is an iterative process. You can still use
the techniques described above to try to improve performance.

¢ Run the application under Performance Expert.

¢ Go through the Paths that use the most CPU and try to optimize
the most expensive branches for each critical path.

¢ Go down the list of Individual methods that use the most CPU in
the same way and try to optimize the top methods in the list.

¢ Retest to verify improvement.

Collecting Data from Web Applications

Managed Code Only

You can collect Performance Expert data for any managed application,
including Web applications. When you run a Web application with
Performance Expert, be aware of the following.

Unlike some other DevPartner features, Performance Expert collects data
for managed applications exclusively. Therefore if your application uses
Internet Explorer as the client, do not expect to see Internet Explorer
data in the session file. DevPartner will display server-side data for your
ASP.NET or Web service application.

282 Understanding DevPartner

web.config Requirements

For DevPartner Performance Expert to successfully profile an ASP.NET
application, the following two conditions must be met:

¢ The project must include a web.config file.

¢ The project must be configured for debugging. To do this, the
web.config file must include a compilation element with the debug
attribute set to true. For example:

<compilation debug="true” />

Multiple Process Profiling

When run from the Visual Studio IDE or from the command line using
the DevPartner command line switches, Performance Expert collects data
for a single process or service per session. If your application runs in more
than one process, or if you need to collect data for a service, such as IIS,
as well as the process your target application runs in, you can use
DPAnalysis.exe (a command line executable version of DevPartner
analysis tools) and target an XML configuration file to manage the
session. For more information see “Using DPAnalysis.exe with an XML
Configuration File” on page 349.

Caution: Although you can collect data (in separate session files) from
two or more processes or services simultaneously by using DPAnaly-
sis.exe with an XML configuration file, Performance Expert is generally
best run on a single process at a time. Data collection overhead for mul-
tiple processes can affect interaction of the processes, as well as slowing
the applications and inflating elapsed time values. If you collect Perfor-
mance Expert data for multiple processes simultaneously, large timing
values for disk 1/0, network 1/0O, or synchronization wait time may
reflect inflation by profiling overhead. Rerun the session targeting a sin-
gle process to confirm that the timing values are large enough to merit
investigation.

Single Process Profiling on IIS 6.0

On IIS 6.0, DevPartner collects Performance Expert data for only one
worker process. On 1IIS there is one worker process per application pool.
Therefore, if you run a Web service and a Web service client on your
system, and both execute in the same application pool, Performance
Expert gathers data for both, even if you started the service under Perfor-
mance Expert and started the client in a separate instance of Visual
Studio without Performance Expert. If you change the application so the

Chapter 7 @ In-Depth Performance Analysis 283

client executes in a different application pool, Performance Expert
gathers data only for the application (in this case, the service) launched
with Performance Expert.

No Remote Session File for Components Running Under DLLHOST

When running Performance Expert for a process that interacts with
d11host.exe on a remote system, a final session file is not generated on
the remote system when d11host.exe terminates.

Source Code on Remote Machines

DevPartner Studio assumes that the source file exists on the same
machine as the open session file.

¢ If a File > Open dialog appears when you attempt to view the source
code, use it to browse to the correct location on the remote machine.

¢ If you have collected data for a remote ASP.NET application, you may
need to look up the value of the Local Path entry in the Virtual
Directory tab of the IIS settings for the target Web site in order to
browse to the source file.

Session Files Saved to Open Solution

DevPartner session files are saved with the current solution. Opening a
Web project from IIS directly, as opposed to opening the project through
Visual Studio, may cause a different solution file to be used. DevPartner
session files created in the first solution would not be visible in the
second solution.

Automating Data Collection

284

DevPartner Performance Expert supports command line execution
through an executable called DPAnalysis.exe. This file is located in your
\Program Files\Compuware\DevPartner Studio\Analysis\ directory.

Note: For installs on 64-bit versions of Windows, DevPartner Studio is
located at: \Program Files (x86)\Compuware\DevPartner
Studio\Analysis\.

You can run an application under Performance Expert from a command
prompt, or create batch files to automate data collection. You can launch
the Performance Expert session in two ways:

¢ Specify the target and arguments in standard MS-DOS command line
syntax

Understanding DevPartner

¢ Specify an XML configuration file that contains the targets and argu-
ments for the session

Using Command-line Switches

Consider the example we discussed in the section “Scaling Problem in an
Application” on page 279. Quality Assurance engineers can monitor
scalability (or any other aspects of the application) on a daily basis by
setting up an automated test (or suite of tests) to be run on the applica-
tion every night. To automate the tests, set up a batch file to

1 Start the application under Performance Expert
2 Start the load-testing application and any other tests you want to run
3 Stop the application when the tests are complete

DevPartner automatically generates the session log file when the applica-
tion exits.

The command line syntax to launch the session is:

DPAnalysis.exe /Exp /E /O /W /H [/P or /S] target {target
arguments}

/Exp Sets analysis type to DevPartner Performance Expert

/E Enables data collection for the specified process/service

/O Specifies the session file output directory and/or name

/W Specifies the working directory for the process

/H Specifies the host machine on which the target runs

/P or /S Specifies that the target is a process or a service; use only one

There is one restriction on the order in which the switches must appear:
The /P or /S switch must occur last. Everything that follows either switch
is interpreted as an argument to the process or service.

Using an XML Configuration File

To use an XML configuration file, the command line is even simpler:
dpanalyis.exe /C [pathJconfiguration_file.xml.

The configuration file contains the necessary parameters for any type of
DevPartner analysis, including some options that are not available using
command line switches. For example, if you want to exclude application
components from a Performance Expert session, you must use the
ExcludelImages element in the configuration file.

Chapter 7 @ In-Depth Performance Analysis 285

286

<?xm]l wversion="1l_0" %=
“ProductConfiguration xmlns="http: /S vww. conpuware . con/products"x
=Puntimelnalysis Type="Expert" MarximumBSessionDuration="1000"/=
“Targets PunInParallel="trus">=
=Process CollectData="true" Spawn="true" NolWaitForCompletion="false">
“AnalysisOptions NO MACHS="1" NM METHOD GRANULARITY=""
SESSION DIR="c:“Zessions" SES3TON FILENAME="Clientipp.dppxp" /=
“Path>Clientipp. exe</Path>
=AroumentssJSargl Sagr? Jargd<SArgumentsi
=Workinghirectoryro\tenp </ MorkingDirectorys
“ExcludeInagess=
“Image=ClassLibraryl. dll</Inageax
=ImagerClassLibrary?_ dll=/Image>
= /ExcludeInagess
<fProcess>
<Serwvice Collectlata="false" Starc="true" RestartIfPwming="trues"
DestartACEnd0fPun="true">
“AnalysisOptions NM METHOD GRANULARITY="0O" SESSTION DIR=""
SESSION_FILENAME="" /=
“Nameriizadmin< MNames
“Hostrremotemachine</Host>
< /f8ervicer
=fTargets>

“</ProductConfimrations

Figure 7-16. Specifying Session Details in the XML Configuration File

To collect data for a process that runs on a remote machine, you must
specify a directory and file name. Use the SESSION_FILENAME and
SESSION_DIR elements in the Analysis options in the configuration file.

For detailed information about using the configuration file to manage
data collection, see “Using DPAnalysis.exe with an XML Configuration
File” on page 349.

QA engineers scan the session log file the following morning. If perfor-
mance numbers have deteriorated, QA sends the session log to the appro-
priate developers. In this way, QA tracks the health of the application
throughout the development cycle. If a problem appears, the develop-
ment team has the session log file to use in quickly determining the
nature of the problem. In addition, the development team knows that
the problem was caused by a code change from the previous day, greatly
reducing the amount of code it has to review to fix the problem.

For detailed information on using DPAnalysis.exe, see C, “Starting
Analysis from the Command Line”.

Understanding DevPartner

Collecting Data from Distributed Applications

DevPartner can collect Performance Expert data from distributed applica-
tion components that run on remote systems, provided the remote
systems are properly licensed for remote data collection. Before you
launch a remote session, be aware that a Performance Expert session
monitors a single process per run when run from Visual Studio or with
DPAnalysis.exe from the command line using traditional command line
syntax. Although the XML configuration file allows you to target more
than one process or service in a single run of the application, it is usually
best to target a single process in a Performance Expert session. If your
application runs in multiple processes, simply rerun the application
targeting the second process. Driving the application with a script or
batch file ensures that you exercise the application identically in both
sessions. For an overview, see “Automating Data Collection” on page
284.

If necessary, you can collect the data (in a separate session file) for the
second process or service in a single run of the application if you use
DPAnalysis.exe with the XML configuration file option. Although you
can collect data from two or more processes or services simultaneously,
be aware that data collection overhead for multiple processes can affect
interaction of the processes, as well as slowing the applications and
inflating elapsed time values. If you collect Performance Expert data for
multiple processes simultaneously, large timing values for disk I/O,
network I/O, or synchronization wait time may reflect inflation by profil-
ing overhead. Rerun the session targeting a single process to confirm that
the timing values are large enough to merit investigation.

Enabling Remote Data Collection with DPAnalysis.exe

DPAnalysis.exe cannot be used to spawn remote processes. It can only
be used to enable data collection for processes on remote machines. For
example, with the following command line:

DPAnalysis.exe /host remotemachine /p c:\MyDir\target.exe

DPAnalysis.exe will set up profiling for target.exe but will not attempt
to start it on the remote machine. When target.exe is started on the
remote machine (by whatever means), profiling will begin.

This is not the case for remote services, which can be started remotely.
For example:

DPAnalysis.exe /host remotemachine /s servicename

This command will enable profiling and attempt to start the service-
name service on remotemachine

Chapter 7 @ In-Depth Performance Analysis 287

Optionally, you can use the XML configuration file to specify the param-
eters in the command line examples above. For detailed information
about DPAnalysis.exe, see C, “Starting Analysis from the Command
Line”.

Saving Session Files on Remote Machines

Session files for all four types of analysis (coverage, memory, perfor-
mance, and Performance Expert) are saved on the remote machine in
remote profiling scenarios. A directory and session file name must be
provided on the command line or in the XML configuration file for
remote processes or services. The directory specified must already exist
on the remote machine. If no directory or file name is provided, a Save
As dialog will appear on the remote machine.

Viewing the session file

Copy the session file to a machine with DevPartner Studio installed, such
as the machine where the profiling was initiated and the client file is
saved.

On the command line or in the XML configuration file, specify a mapped
drive on the remote machine to save the session files to another machine
with DevPartner Studio installed, such as the machine where the profil-
ing was initiated.

Collecting Data with Terminal Services or Remote Desktop

DevPartner Studio supports Windows Terminal Services. For information
on using DevPartner Studio with Terminal Services, see “Using Terminal
Services and Remote Desktop” on page 9.

Remote Profiling and Windows XP Service Pack 2

288

Windows XP Service Pack 2 increased security levels for remote applica-
tions. The new security settings can prevent DevPartner from collecting
data on some server-side application components when profiled from
Visual Studio. To collect data from application components on a remote
machine, you must modify the security settings on all Windows XP SP 2
machines (both the remote machine and the client machine where
profiling is initiated) that participate in the session.

The procedures that follow describe three ways to alter Windows XP
Service Pack 2 security settings to allow remote profiling.

Understanding DevPartner

Add DevPartner Control Service to the Windows Firewall
Exclusion List

If the Windows Firewall service is enabled, add the DevPartner Control
Service to the Firewall's exclusion list. Follow these steps:

1 From the Start menu, select Control Panel.

2 From the Control Panel, select Windows Firewall, then select the
Exceptions tab.

3 On the Exceptions tab, click Add Program.

4 In the Add a Program dialog box, click Browse, then navigate to
NCS.exe. The default location for this executable is:

C:\Program Files\Compuware\DevPartner Studio\Analy-
sis\NCS.exe

Note: For installs on 64-bit versions of Windows, this executable is located
at: \Program Files (x86)\Compuware\DevPartner
Studio\Analysis\NCS.exe.

5 Click Open in the Browse dialog box to select NCS. exe, then click OK
to close the Add a Program dialog box.

6 On the General tab of the Windows Firewall control panel, clear the
Don't allow exceptions check box.

Modify Security Settings on Both Remote (Server) and Local
(Client) Machines

Follow these steps to modify the security settings:

1 In the Control Panel, open Administrative Tools > Local Security
Policy > Local Policies > Security Options.

2 Open the Properties page for DCOM: Machine Access Restrictions
in Security Descriptor Definition Language (SDDL) syntax.

3 Select Edit Security.
4 Add an Anonymous Logon user, if one does not already exist.
5 Give the Anonymous Logon user both Local and Remote access.

If Visual Studio is running when the settings are changed, you must
restart Visual Studio for the new settings to take effect.

Relax COM Security on the Client Machine

To relax COM security, follow these steps on the client machine where
profiling is initiated:

Chapter 7 @ In-Depth Performance Analysis 289

1 From the Start menu, select Control Panel.

2 From the Control Panel, select Administrative Tools; from the
Administrative Tools window, open Component Services.

3 In the Component Services window, navigate to My Computer,
right-click on My Computer and select Properties.

4 On My Computer Properties, select the COM Security tab.

5 Under Launch and Activation Permissions on the COM Security
tab, click Edit Limits and make these changes:

6 Click Add and enter NETWORK.

7 Make sure that the Allow check box is selected for Local Launch,
Remote Launch, Local Activation, and Remote Activation.

8 Under Launch and Activation Permissions on the COM Security
tab, click Edit Default and make these changes:

9 (Click Add and enter NETWORK.

10 Make sure that the Allow check box is selected for Local Launch,
Remote Launch, Local Activation, and Remote Activation.

Firewalls and Remote Data Collection

To collect session data from remote machines, the DevPartner software
connects to a previously installed service whenever DevPartner runs,
either within Visual Studio or via DPAnalysis.exe. This service listens for
interprocess communication traffic at the internet address 0.0.0.0 port
18441. This service connection may trigger some firewall alarms. You can
configure your firewall to trust this address to discontinue these alarms.
If your firewall is set to maximum security levels, it may prevent DevPart-
ner remote data collection. Reconfigure your firewall to enable data
exchange at the address 0.0.0.0 port 18441.

Exporting DevPartner Data to XML Format

You can export Performance Expert data to an XML format. Exporting
data in XML format allows you to more easily use your own or third-
party software to analyze the data, integrate the data with data produced
by other tools, and archive the data in a data warehouse.

You can export DevPartner Performance Expert session files (with the
.dppxp extension) to XML format. When a saved Performance Expert
session file is open, the Export DevPartner Data command is available
on the File menu.

290 Understanding DevPartner

You can also export XML data from the command line, as described in
“Exporting Analysis Data to XML"” on page 375.

In the DevPartner installation directory, the file DevPartnerPerforman-
ceExpertxx.xsd describes the XML schema that is used by Performance
Expert to export session files.

Using Performance Expert with Performance Analysis

Performance tuning is an iterative process. Use Performance Expert in
conjunction with the DevPartner Studio performance analysis feature.
First, run your application with performance analysis and save the
session file to capture a baseline view of performance. Then use Perfor-
mance Expert to troubleshoot difficult problems, especially problems
that involve disk or network I/O, or synchronization issues. When you
have fixed a problem, run the application in a performance analysis
session and use the performance analysis Session Comparison feature to
verify the improvement. For example:

1 Run your application with performance analysis.
2 Notice the methods that appear to be slowing performance.

3 If a way to fix the problem methods is not immediately obvious, run
an identical session with Performance Expert.

4 Check to see if the problem methods appear in the Paths that use
the most CPU or the Individual methods that use the most CPU
graphs.

5 Click the method in the Paths that use the most CPU graph to open
the Call Graph. The Call Graph shows the method in context and
indicates whether the method itself or its child methods are responsi-
ble for the performance issue.

6 Notice whether the problem method is marked with the disk, net-
work, or wait time icons.

If, for example, the method indicates network activity, switch to the
Call Tree tab and use the context menu to add the network-related
data columns to the view. The additional data can help you deter-
mine whether the problem is due to read activity, write activity, or to
read or write errors. If you drilled into the data from the Individual
methods that use the most CPU graph, you can add the data
columns to the Methods table.

7 Use the Call Stacks tab to see how many ways the problem method
was called, and which call stack was the most expensive.

Chapter 7 @ In-Depth Performance Analysis 291

8 Use the Source tab to locate the offending lines of code and jump to
the source file to edit in Visual Studio.

Once you have fixed the problem, run the application in a second perfor-
mance analysis session. Using the previous performance analysis session
file as a baseline, compare the sessions with the performance analysis
Session Compare feature to verify the improvement.

Performance Expert and performance analysis are complementary, but
there are differences in the way they compute timing data. If you run a
performance analysis session that includes system images and a Perfor-
mance Expert session on the same application, you may notice that the
performance analysis Top 20 Source Methods and the Performance
Expert Individual methods that use the most CPU do not contain
exactly the same methods, or that the methods do not appear in the
same order.

In a performance analysis session, the percent of time spent in a method
(% in Method column) is computed without user or system child
methods. In a Performance Expert session, the percent of time spent in
the methods that appear in the Individual methods that use the most
CPU and Methods tables includes time spent in system children.

If you have done any performance profiling, you may have noticed that
managed applications spend a lot of time executing methods in the .NET
Framework. Including system children in the Performance Expert results
focuses attention less on methods that take a long time to execute in
themselves, and more on methods in your source code that exhibit
problems in the way they interact with system code. You cannot do
anything about time spent in system code once it begins to execute, but
you can change how and when your code calls system code. Performance
Expert helps you quickly identify these problem areas.

Note: You cannot compare a performance analysis session file directly to a

Performance Expert session file. You can only compare performance
analysis session files.

Performance Expert in the Development Cycle

292

Use DevPartner Performance Expert throughout the software develop-
ment cycle. Many members of the engineering team can benefit from
using Performance Expert at several points in the software project life
cycle.

Understanding DevPartner

Software Designers

Software Developers

Quality Assurance
Engineers

Software designers must often develop prototypes that meet specific
requirements, for example, in response time or scalability. Before produc-
ing the final design, the designer must identify the operations and, if
possible, the methods, that are preventing the prototype from meeting
the performance requirements. Ideally, the designer would like to be able
to identify a few methods that, if fixed, would give a dramatic perfor-
mance boost.

Software designers can use Performance Expert during the design and
prototype phase to improve the speed and efficiency of their code. As the
design progresses, regular testing helps to ensure that the prototype code
meets minimal performance requirements. When the prototype is
handed off to the development team, developers can feel comfortable
reusing sections of the prototype, knowing that it has been tested for
several critical performance issues.

Software developers should use Performance Expert frequently during
development. Consider running Performance Expert in addition to unit
tests prior to code check-ins. Just as the unit tests ensure that the compo-
nent does what it is supposed to do without breaking other components,
Performance Expert provides early warning of potential performance
issues before the component is fully integrated into the application and
therefore more difficult to fix.

The software development team builds the application based on the
designer’s prototype and specification. As soon as the application (or
application components) can be tested and run, developers can integrate
Performance Expert into their automated testing routines in order to
identify potential CPU usage, file I/O, or network I/O issues as they are
coding and debugging. Developers can review the Performance Expert
session log each morning to see if the previous day’s coding has intro-
duced any new performance issues and address issues immediately.
When coding is complete, the development team submits the final
Performance Expert session log to document that performance goals have
been met.

Quality Assurance teams can use Performance Expert to continuously
monitor application performance. QA can easily integrate Performance
Expert into automated test suites to obtain a daily reading of application
performance in critical areas. When problems appear, QA teams can send
the session log to the development team or attach the log to a bug report
in a defect tracking system such as Compuware TrackRecord.

Designated engineers can review critical metrics in the session log files on
a daily basis. If the session log suggests a problem, the QA engineer can
send the log file to the responsible developer so the problem can be
addressed immediately.

Chapter 7 @ In-Depth Performance Analysis 293

Thus, all members of the software development team can benefit from
running Performance Expert, from the design phase to final quality
assurance testing. There is even a benefit for product management. At
each critical milestone, Performance Expert session logs, coupled with
before-and-after performance analysis session files, can be used to
document that the product meets performance expectations.

Submitting Data to Visual Studio Team System

294

DevPartner Studio supports Microsoft Visual Studio Team System if the
Team Explorer client is installed and a Team Foundation Server connec-
tion is available.

You can submit method-level data from a DevPartner Performance Expert
session file as a Visual Studio Team System Work Item of the type Bug.
The Submit Work Item command is available on the context menu for a
method selected in the following Performance Expert views:

¢ The Methods table in the Methods detail view
¢ The Call Tree in the Path analysis view

When you submit a Bug, DevPartner populates the Work Item form with
data from the visible columns in the Methods table or Call Tree view. To
change the method data you submit in the Work Item, change the
columns displayed in the method view.

For more information about DevPartner Studio integration with Visual
Studio Team System, see “Visual Studio Team System Support” on page 8.

Understanding DevPartner

Chapter 8
System Comparison

What is System Comparison?

Using System Comparison Out of the Box

The System Comparison Service

Categories of Differences

Comparing Registry Keys

Comparing Specific Files

Installing Without DevPartner

Running the Comparison Utility from the Command Line
Software Development Kit

L 2K R 2R JBK 2R JEK JER 2R 2N 2

System Comparison Snapshot API
& Writing a Plug-in

This chapter contains two sections. The first section provides a quick-
start procedure to get first-time users up and running with System
Comparison. The second section provides reference information for an
in-depth understanding of DevPartner’s System Comparison feature.

Refer to the DevPartner System Comparison online help for additional
task-oriented information about comparing systems.

295

What is System Comparison?

296

The DevPartner System Comparison feature compares two computer
systems, or compares the current state of a computer with a previous
state, allowing you to determine why your application:

¢ Works on one computer but not on another
¢ Works differently on different computers
¢ No longer works on a computer on which it previously worked

To compare systems, System Comparison creates XML files, called
snapshot files, that contain information about a computer system, such
as its installed products, system files, drivers, and many other system
characteristics. It then compares snapshot files and reports the
differences between them.

Unlike other DevPartner features, System Comparison is not integrated
into the Visual Studio environment. It runs as a standalone utility to
minimize its impact on target systems.

System Comparison consists of:
¢ aservice, which takes nightly snapshots of a system,

¢ auser interface, which enables you to take snapshots manually and
to compare snapshots to find differences

¢ a command line interface

¢ a Software Development Kit (SDK). The SDK allows software
developers to gather additional information for comparison and to
embed snapshot functionality in deployed applications.

Understanding DevPartner

3 Compuware DevPartner, System Comparison EI@'E'

This utility allowes you to compare the stake of a computer o past states, or to okther computers,

1t checks for differences in several areas including registry entries, system files, services, and installed
products.

Far mars information, visit the DevPartner System Comparison helo

Select the action you wish to perform

Compare this computer's current state to a prior state

Chooss this i your application is not working now but used to work on this computer.

Compare bwo snapshat files
Choose this if wour application waorks on one computer but nat on anather.

Create and save a snapshot

Choose this ta create and save a snapshat file of the current state of this computer.

This utility automatically takes nightly snapshots of this computer,

About DewPartner

Figure 8-1. The System Comparison User Interface

Using System Comparison Out of the Box

The following Ready, Set, Go procedure introduces you to using
DevPartner System Comparison.

To get up and running quickly, follow the steps presented in shaded
boxes. If you would like more information, read the additional text
following the box.

Note: Analyzing a system with DevPartner System Comparison does not
require elevated system privileges. The system privileges you use to
create files and work with applications on your system are sufficient
for DevPartner to analyze the system.

In the following procedure, you will make a minor change to your
computer, then compare your computer’s current state with its previous
state.

Chapter 8 @ System Comparison 297

Ready: Consider What You Want to Compare

Before running a system comparison, understand the goal of the
comparison.

The following procedure assumes:
¢ You have installed DevPartner System Comparison.

¢ The System Comparison service is running and has taken a
snapshot.

When System Comparison is installed, the service is started
automatically and takes its first snapshot within a few minutes of
starting. The service is listed as DevPartner Differ in your system'’s
Services list.

¢ You will compare different states of one computer.

By identifying exactly what you want to compare, you will ensure that

you set up the comparison appropriately. For example, your goal might
be one of the following, some of which might include additional set-up
steps:

¢ To check how installation or removal of a product impacts computer
services, settings, registry keys, or files. (Checking registry key or files
requires the additional set-up of modifying an XML file.)

¢ To determine if system changes may have caused a product to stop
working on a system on which it previously worked.

¢ To determine the extent of the impact that changes to a product will
make (for example, any impact on automated tests).

¢ To check that a new development system has all of the tools that
were available on a previous development system.

¢ To determine why a product does not work, or works differently, on a
certain system.

¢ To troubleshoot a product after it has been deployed to an end-user
site.

298 Understanding DevPartner

Set: Prepare for System Comparison

Once you have decided on the goal of the comparison, you might have
to perform some set-up tasks.

For this procedure, you can use the default DevPartner System
Comparison options. No additional set-up is required.

Some examples of situations that require set-up tasks include the
following:

¢ If you want to compare registry keys or specific files, set-up tasks
would include modifying the RegistrySections.xml or
FileSections.xml files, as described on page 308 and page 309

¢ If you want to compare data that is not gathered by default, set-up
tasks would include writing a custom plug-in, as described on page
317. Categories of data gathered by default are described in Table 8-1
on page 305.

¢ If you want to compare two systems, set-up tasks would include
installing System Comparison on the second computer, taking a
snapshot, and making that snapshot file available for comparison, as
described on page page 312.

Chapter 8 @ System Comparison 299

Go: Make a Change and Create a Snapshot

300

You are now ready to begin a system comparison. In this procedure you
will make a change to your computer and compare its current state with
its previous state.

1

To demonstrate how system differences are reported, you will have to
make some changes to your computer system before creating a
snapshot.

Note: Assuming it has been more than a few minutes since you

Navigate to the Control Panel > Administrative Tools > Services
window, and stop or start several services that will not impact your
work environment. For example, you might stop the Automatic
Updates service. (Take note of the services you modify so you can
restart them later.)

From the Start menu, select Programs > Compuware DevPartner
System Comparison.

In the System Comparison window, click Compare this
computer’s current state to a prior state.

A list of snapshot files displays. The System Comparison service
(described on page 303) automatically takes a daily snapshot of the
state of the machine, and the dates and times of these files are
listed.

installed System Comparison, there will be at least one file in
the list. If there are no files listed, check that the System
Comparison service is running. The service is identified as
DevPartner Differ in the services list.

From the list, select the date and time of the snapshot to use as the
basis of the comparison and click Compare.

System Comparison displays a Results window. The content of the
Results window is described in Analyze Results.

Understanding DevPartner

Analyze Results

Categories of
differences

Descriptions of __pt.

categories

Difference details

|3,|'28,|’2009 2:11 AM
|3/27}2009 211 &M
| 3}26/2009 7:55 AM
|3123)2009 2:11 &M
|3122}2009 2:11 &M
|3j2120092:11 AM
|3/20/2009 2:11 &M
|3/19/2009 8:01 AM
|3/16/20092:11 &M
13/15/2009 311 AM
|3/14/2009 3111 AM

Compare current state ko:

Th
- Wednesday
- Tuesday
- Monday
- Friday
- Thursday
- Wednesday
- Tuesday
- Monday
- Friday
- Thursday
- Wednesday

[Compare]

[Cancel

Figure 8-2. Li

st of Snapshot Files

When System Comparison compares two snapshots, it displays the
differences between them and all items in a results window, as shown in
Figure 8-3. (The Results window from this Ready, Set, Go procedure
might contain far less information than the results shown in the figure.)

mpuware DevPartner System Comparison

Differences by category

System Info (16)
System Files (128)
talled Products (46

Startup tems (2)
|E/Qutlook Components (B)
IS (2)

SAL Server (1)
Drivers (1)

Registry (0)

File (0)

MNet Security Paolicy (5)
Hardware (0)

User Environment (12)
Windows Update (0)

Category description:

Services

Shows differences in the
installed Services:

+ Service status
(Running, Stopped,
ete,

Account used by the
service

Service type
Services depended
on

S ervices 2 it smnessl 1007 compaied Show. | Differences excluding missing items ~|
ltem DTw030033002 (3/3/200910:08 AM - Tu. | DTW030033002 (10/20/2009207 PM -.. A
= Backgound Inteligent Transfer Service
Status Funning Stopped
= DevPartner Control Service
= NCS.ene
[30547.0
= DevPartner Differ
= Compunare. Diff Service exe
Wersion 903710 905830
= DevPattner Injection Service
= DPInCigS ervice.exe
Wersion 2202260 2202280
= Google Updater Service
= GoogleUpdaterService exe
Wersion 2.2.824.5515.beta 2.4.1368.5502 beta B
= Mobfes Framework Service
Status Funning Stopped
= OracleDBConsoleorc!
Startup Type Automatic Manual
Status Funning Stopped
= OracleOiaDb Og_homelSALPlus
Startup Type Automatic Manual
Status Funning Stopped
= OracleliaDbT (BPMame] THSListener
Startup Typs Automatic Manusl g
Details for: - DevPartner Conitral ServicefNCS. exe/Version
Walue on DTWO30033002 (932009 10:08 AM - Tuesday) Value on DTWO30033002 {10{20/2009 2:07 PM - Monday)
| 9.0.547.0 | s.0.693.0

Search the Internet for more information on this item

Figure 8-3. Results Window

Chapter 8 @ System Comparison

301

302

The upper left pane lists the categories that were compared and the
number of differences found in each category. The first category with a
non-zero number of differences is selected when the window initially
opens.

The bottom left pane displays a description of the selected category.

The right pane displays the details of the differences found in the
selected category.

1 Click on several categories to display their descriptions.

2 Click on the Services category to display differences in the
Difference details pane.

In the Difference details pane, the name of the item appears in the
first column. The second and third columns list the information
from the snapshots, with the name of the machine and full
timestamp of the comparison shown in the header row.

Items not in that snapshot are listed as "[missing]." [tems on a
computer are indicated by a check mark or the word "installed."

3 The two columns at the bottom of the details pane list the actual
data from the first and second snapshots for the selected item.

4 Near the bottom of the screen is the link Search the Internet for
more information on this item. Click the link to launch an
Internet search for items related to the currently selected difference
(for example, "windows system environment variables").

5 In the upper right corner of the Difference details pane, click on
the Show list. Use these options to filter the differences shown.

6 When you are done reviewing differences, click the back @ button
located in the upper right corner of the window, to return to the
main DevPartner System Comparison window.

The Results window shows differences and lists all items that are the
same in both snapshots, depending on which option you display in the
Show list.

Note that System Comparison considers version numbers when
evaluating differences. It considers components with different version
numbers to be different components. If a component exists in two
snapshots but the version number of the component is different, the
component is listed as missing.

Understanding DevPartner

To compare the current state with a different previous state, select a
different snapshot from the Difference details for current state
compared to: list in the results window.

When you have finished experimenting with System Comparison,
remember to restart the services you stopped earlier.

This concludes the Ready, Set, Go section of this chapter. Now that you have a
basic understanding of the mechanics of running a system comparison,
continue reading the rest of this chapter for additional information, or refer to
the System Comparison online help for task-based information.

The System Comparison Service

The System Comparison service, named DevPartner Differ,
automatically takes a snapshot of the state of your machine at 2:10 a.m.
daily if the machine is running. If the machine is powered off, it takes
the snapshot five minutes after the next start-up. When you install
System Comparison, it will take a snapshot a few minutes after the
System Comparison service starts.

The nightly snapshot service collects snapshots for 21 nights, then
begins deleting the oldest ones. You can change the number of retained
snapshots by modifying the value in the System Comparison utility’s
settings file, as described in “Changing the Number of Retained
Snapshots” on page 304. The size of snapshot files varies depending on
the amount of data collected. A typical file size is less than one megabyte.

The System Comparison service runs at minimum priority, but it does
consume some system resources for several minutes while it runs. If you
prefer, you can set the System Comparison service startup type to
manual, but you will lose the functionality of having snapshots created
automatically.

Changing Automatic Snapshot Settings

Both the timing of the automatic snapshot taken by the System
Comparison service and the number of snapshots retained are
determined by the values in the System Comparison utility settings file.

Chapter 8 @ System Comparison 303

The settings file (Compuware.Diff.Settings.xml) is located in the
Program Files\Compuware\DevPartner Studio\System Comparison\bin
directory.

Note: For installs on 64-bit versions of Windows, the settings file is located
at: \Program Files (x86)\Compuware\DevPartner
Studio\System Comparison\bin.

Changing the Number of Retained Snapshots

System Comparison retains 21 automatic snapshot files by default, after
which the oldest files are deleted. To change the number of retained
snapshot files, modify the SnapshotsToKeep key in the settings file. For
example, the following key would change the number of retained
snapshots to 30:

<add key="SnapshotsToKeep" value="30" />

Changing the Snapshot Hour and Minute

The System Comparison service takes an automatic snapshot of your
machine at 2:10 a.m. daily. (If the machine is powered off, it takes the
snapshot five minutes after the next start-up.) To change this default
time, specify an alternate time in the Settings file using the
SnapshotHour0To23 and SnapshotMinute0To59 keys. For example, the
following keys would change the automatic snapshot time to 3:42 a.m.

<add key="SnapshotHour0To23" value="3" />
<add key="SnapshotMinute0To59" value="42" />

Valid settings for the hour are 0 to 23. Valid settings for the minute are O
to 59.

You must restart the service for the new settings to take effect. If an
automatic snapshot has already been taken for the day, the new setting
will take effect on the next day. System Comparison takes only one
automatic snapshot per day.

Categories of Differences

304

When taking a snapshot, the System Comparison utility records the
existence, version, and status of the items listed in the following table.

Understanding DevPartner

You can add additional categories to customize data acquisition by
writing a System Comparison Plug-in, as described in “Writing a Plug-in”
on page 317.

Table 8-1. Categories of Differences

Category Differences Detected

System Info ¢ Operating system

e _.NET Framework

¢ Global Assembly Cache

* The Java Runtime

e System Environment variables
* File system case sensitivity

System Files * Operating system files in Windows\System32

* Windows File Protection Cache in
Windows\System32\d11cache - This folder contains
operating system files that are used to maintain Windows if
an operating system file is damaged. If a file is damaged or
missing, it is automatically replaced from this folder without
any intervention.

¢ Side-by-side assemblies in Windows\WinSxS

Installed The products detected. If the version number is available, it is
Products shown.

The information is read from the Add/Remove Programs
section of the registry.

Services Differences in the installed services:

e Service status (Running, Stopped, etc.)
e Account used by the service

¢ Service type

e Services depended on

Startup Items Startup differences. This information is read from the following:
e TheWin.ini file found in the Windows directory.
e The following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run

e If possible, version information is included from the program
file.

Chapter 8 @ System Comparison 305

Table 8-1. Categories of Differences

Category Differences Detected

IE/Outlook Internet Explorer and Outlook differences:

Components e Active Setup shows updated or missing Outlook / Internet
Explorer components extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\Installed Components

* Browser Helper objects extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Explorer\Browser
Helper Objects

* MIME mappings (mapping between MIME type and which
application handles the MIME) extracted from the registry
key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Active
Setup\MimeFeature objects.

¢ Internet Explorer extensions extracted from the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Intern
et Explorer\Extensions

¢ Internet settings extracted from the registry key
HKEY_CURRENT_USER\Software\Microsoft\Windows
\CurrentVersion\InternetSettings

N Differences in your Microsoft IIS installation, as available from
the IIS metabase, including differences in all installed Web
applications and their settings, such as:

¢ Web server differences
e SMTP server differences
e FTP server differences

SQL Server Differences in your Microsoft SQL installation:
e Microsoft SQL settings from the registry.
e Data about Microsoft SQL services and related services.

e Settings in the syscurconfigs and sysconfigures
tables in the master database for all installed instances. The
System Comparison utility attempts to connect to SQL
Server using integrated security. If SQL Server is not running,
differences in the master database will not be collected.

Note: For master database differences to be collected, the
account under which you are running must have sufficient
privilege to access these two tables.

Drivers Differences of all Drivers found:
¢ Installed drivers
e Status of drivers

306 Understanding DevPartner

Table 8-1. Categories of Differences

Category Differences Detected

Registry Differences in specific sections of the registry. By default, no
registry sections are collected, but differences in the following
registry sections can be collected:

HKEY_CLASSES_R0OOT

HKEY_LOCAL_MACHINE

You can customize the sections of the registry to collect by

editing the RegistrySections.xml file, found in the

Program Files\Compuware\DevPartner

Studio\System Comparison\data directory.

Note: For installs on 64-bit versions of Windows, the file is
located at: \Program Files (x86)\Compuware
\DevPartner Studio\System Comparison
\data.

You must have sufficient privilege to collect registry key data.

Files Differences in the contents of directories and file properties
from specific paths. By default, no files are included in the
collection. You can customize the paths to collect by editing
the FileSections.xml file, found in the Program
Files\Compuware\DevPartner Studio\System
Comparison\data directory.

Note: For installs on 64-bit versions of Windows, the file is
located at: \Program Files (x86)\Compuware
\DevPartner Studio\System Comparison

\data.
.NET Security Determines security policy differences on two separate system
Policy configurations, or security policy changes in time on the same
machine.

e Enterprise
* Machine
e User

Hardware e System (Manufacturer, Model, Number of Processors, and
System Type)

* Memory (in MegaBytes)

¢ Detailed information per processor (Description, Clock
Speed, Role, and Status)

User Differences in user environments that may affect program runs.
Environment These are dependent on which user took the snapshot.

e Environment Variables
e Accessibility Settings

¢ International Settings

Chapter 8 @ System Comparison 307

Table 8-1. Categories of Differences

Category Differences Detected
Windows Differences on the state of the Windows Update service. This
Update information may be useful to determine if a suspected update

may have changed underlying components.

Comparing Registry Keys

Registry settings are often of interest when comparing systems, but since
a system might have thousands of registry keys it is useful to narrow the
scope of keys to be compared. The file RegistrySections.xml, located in
the data directory of your installation path (Program
Files\Compuware\DevPartner Studio\System Comparison\data by
default) specifies the sections of the registry to be compared.

Note: For installs on 64-bit versions of Windows, the file is located at:
\Program Files (x86)\Compuware\DevPartner Studio\System
Comparison\data.

By default, no registry keys are included in your snapshots.

Note: If using this file with the System Comparison utility's Snapshot
Application Program Interface (API), this file must be in a \data
directory one level above the application's executable file. For
example, if the executable isin ...\App\bin\MyApp.exe then this
file must be ...App\data\RegistrySections.xml.

You can compare registry entries in HKEY_LOCAL_MACHINE and
HKEY_CLASSES_ROOT. Comparing other registry keys is not supported.

You can specify as many sections as you need.

You must have sufficient privilege to collect registry key data.

Syntax
<Section categoryName="XXX">YYY</Section>

308 Understanding DevPartner

Parameters

XXX A category name that will be displayed in the user interface. This
attribute is optional. When not specified the registry key will be used as
the category name.

YYY A registry key from which to start collecting recursively. The key does
not specify the prefix HKEY_LOCAL_MACHINE or HKEY_CLASSES_ROOT.
For example, to collect all of
KEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc use the
following:

<Section categoryName="Microsoft
RPC">SOFTWARE\Microsoft\Rpc</Section>

To collect all of LOCAL_MACHINE or CLASSES_ROOT keys you can
specify the special character '\'. For example, <Section
categoryName="A11">\</Section>. Be aware, though, that
collecting all registry keys is time consuming.

For keys of type REG_BINARY, only the first 20 bytes of each key are
collected.

Example

The following is a sample RegistrySections.xml file.

<RegistrySections>

<LocalMachine>

<!-- This is an example that would collect all registry keys under
RPC -->

<{Section categoryName="Microsoft RPC">SOFTWARE\Microsoft\Rpc</
Section>

</LocalMachine>

<ClassesRoot>

<I-- This is an example that would collect everything under
ClassesRoot, which would be many megabytes of data -->

<{Section categoryName="A11">\</Section>
<{Section categoryName="Shell Extensions">*\shellex</Section>

</ClassesRoot>
</RegistrySections>

Comparing Specific Files

By default, differences in individual files are not collected. Comparing
specific files is often of interest when comparing systems, but it is useful
to narrow the scope of files to be compared. Use the file
FileSections.xml, located in the data directory of your installation path
(Program Files\Compuware\DevPartner Studio\System
Comparison\data by default) to specify files to be compared.

Chapter 8 @ System Comparison 309

310

Note: For installs on 64-bit versions of Windows, the file is located at:
\Program Files (x86)\Compuware\DevPartner Studio\System
Comparison\data.

Required: If using this file with the System Comparison utility's Snapshot
Application Program Interface (API), this file must be in a \data
directory one level above the application's executable file. For
example, if the executable isin ... \App\bin\MyApp.exe then this
file must be ...App\data\FileSections.xml.

Each category of file to be included in the comparison is specified in a
separate section of FileSections.xml. You can specify as many sections
as necessary.

Syntax

<{Section [categoryName="XXX"] [filterPattern="{*,2}"]
[attributes="{yes,no}"] [programAttributes="{yes,no}"]
[recurseSubDirectories="{yes,no}"I>YYY</Section>

Understanding DevPartner

Parameters

categoryName

filterPattern

attributes

programAttributes

recurseSubDirectories

YYY

An optional attribute. XXX is a name that will be
displayed as a sub-category. When this attribute
is not present the category name will be the
directory path by default.

An optional attribute. It specifies a file filter using
the wildcard characters * (zero or more
characters) and ? (exactly one character). When
this attribute is not present, it is equivalent to
filter="* %7

An optional XML attribute. When not present, it
is equivalentto attributes="yes”.If this
attribute is equal to “yes”, the utility collects the
following:

flag read only
encrypted
file length
modified date

The Company and Product attributes are not
collected, nor are boolean file attributes such as
read-only or debug, unless they are set.

An optional attribute. When not present, it is
equivalent to programAttributes="yes”. If
this attribute is equal to “yes” and the file name
extension is any of “.exe”, “.d11”, “.ocx”,
“*.cpl”, the utility collects the following

program version information:

version

language
Setting programAttributes to “no” is useful, for
example, in a Quality Assurance environment
where one wants to verify if any files have been
deleted or added during the installation of a
product but you expect that some files properties

(like program version) to change at each
installation.

An optional XML attribute. When this attribute is
not present, it is equivalent to
recurseSubDirectories="yes” If this
attribute is equal to “yes”, the utility collects file
information for all sub-directories recursively.

The directory path from which to start collecting
file information recursively.

Chapter 8 @ System Comparison 311

Example

The following is an example FileSections.xml file.

-->
- <FileSections>
- <!-- These are examples of file sections: -->

<Section categoryName="My Product">c:\somedir\somesubdir</
Section>

<{Section categoryName="My bat files" attributes="yes"
filterPattern="*.bat" programAttributes="no"
recurseSubDirectories="no">c:\diff</Section>

{Section categoryName="My Test Files" attributes="yes"
programAttributes="yes" recurseSubDirectories="yes">D:\test</
Section>

<{/FileSections>

Installing Without DevPartner

312

DevPartner System Comparison installs separately from the rest of the
DevPartner features. This option might be useful when you need to
compare two different machines to see why an application behaves
differently on different systems. When comparing systems to find an
discrepancy between them, it is important to minimize the changes
made to those systems. Installing System Comparison alone, without the
overhead of Visual Studio or the rest of the DevPartner features, makes it
easier to focus on important differences between the systems being
compared.

To install System Comparison, from the DevPartner installation set-up
screen select Install DevPartner System Comparison and follow the
installation procedure.

System Comparison is included in the DevPartner license agreement,
therefore using System Comparison consumes a DevPartner license. Refer
to the DevPartner Studio Installation Guide for a detailed discussion of
license issues, but note the following:

¢ If you have a node-locked (single-seat) license or a concurrent license,
using System Comparison consumes one license while it is
performing a comparison. Starting the Comparison service and
taking snapshots with the service does not consume a license.

Understanding DevPartner

L 4

If you are running DevPartner under a 14-day evaluation period, the
14 days begins when you use the System Comparison user interface
to perform a comparison. It does not begin when the Comparison
service is installed, started, and takes a snapshot.

Running the Comparison Utility from the Command Line

Tip: For installs on 64-bit
versions of Windows, the
default installation
directory is located at:
\Program Files
(x86)\Compuware\
DevPartner
Studio\System
Comparison\.

You can automate data collection and comparison using the two
command line interfaces, CommandLine.exe and CommandLineDiff.exe.

L 4

4

Compuware.Diff.CommandLine.exe takes a snapshot of the current
condition of your computer system. By default, it stores the snapshot
in the last directory used to store snapshots, but you can specify an
alternate directory as a parameter to the command line.
Examples:
C:\Program Files\Compuware\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLine.exe

C:\Program Files\Compuware\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLine.exe c:\MySnaps

Compuware.Diff.CommandLineDiff.exe compares the values in two
existing snapshot files and writes the resulting differences to an
output file.

Note: If running on Windows Vista, ensure that you have sufficient
privileges to write to the output directory.

Required parameters are computers (it is a placeholder) and the

names of the files to be compared. Optionally, you can specify the

directory in which the output file will be written.

Examples:

C:\Program Files\Compuware\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLineDiff.exe
computers SnapFilel SnapFile?

C:\Program Files\Compuware\DevPartner Studio\System
Comparison\bin>Compuware.Diff.CommandLineDiff.exe
computers SnapFilel SnapFile2 C:\MyResults

The output file is an XML file that can be read programmatically
to check the results of the comparison. You cannot open this
output file with the System Comparison utility’s user interface.

The command line programs are located in the System Comparison
utility’s \bin directory (\Program Files\Compuware\DevPartner
Studio\System Comparison\bin by default).

Chapter 8 @ System Comparison 313

Software Development Kit

System Comparison includes a Software Development Kit (SDK) that
provides functionality for software developers, including:

¢ The ability to use the Snapshot Application Program Interface (API)

to embed function calls in an application to trigger a snapshot after
the application is deployed

The Snapshot API enables an application developer to control
snapshot capability from within a deployed application. Should
problems occur after the application is deployed, embedded API calls
can trigger a snapshot that can assist with diagnosing the problem.

The ability to write a System Comparison Plug-in to specify
additional information to be gathered during a snapshot

The categories of information gathered by the System Comparison
utility (described in Table 8-1 on page 305) are sufficient for most
comparisons. If you require additional information to adequately
compare systems, you can customize the System Comparison utility
by writing a data acquisition plug-in.

The API and plug-in functionality are described in the following sections.

System Comparison Snapshot API

314

The System Comparison Snapshot API enables you to control snapshot

capability from within a deployed application. When using the Snapshot
API, you can specify:

4

2

2

L 4

where the snapshot will be stored
what to do with messages or errors
how progress status is to be reported

where plug-ins are located, if custom plug-ins are used

Snapshot API information is located in two sub-directories under the
System Comparison installation directory:

4

Understanding DevPartner

The System Comparison\redistributable sub-directory contains
the assemblies customers are licensed to include in their application’s
installation.

The Snapshot API assemblies may be redistributed in accordance with
the Compuware Software License Agreement terms and conditions.
Licensing software is not required to take a snapshot. To be viewed
and compared, the snapshot must be sent to a licensed DevPartner

system.

¢ The \System Comparison\sdk\SnapshotAPI sub-directory contains a
sample application (SampleSnapshotAPI.cs) showing use of the API

in an application.

Review SampTeSnapshotAPI.cs for an understanding of how the API

can be used.

The Snapshot API is accessible from VB.NET, C#, and managed C++ and
can be used with applications built with .NET Framework 1.1 and 2.0.

The following describes the classes and methods implemented for the
Snapshot AP], as illustrated in the SampTeSnapshotAPI.cs application.

Note: If using the Snapshot API, your application’s directory path must
include a \data directory one level above the application's
executable file. The RegistrySections.xml and
FileSections.xml files must reside in the \data directory, even if
those files are not being used. For example, if your executable is in
...\App\bin\MyApp.exe, then
...App\data\RegistrySections.xml and
...App\data\FileSections.xml must exist.

Taking a Snapshot

Compuware.Diff.Collector implements the class SnapshotAPI. You can
use the class SnapshotAPI to take a snapshot.

Public SnapshotAPI

(ILoggable logger,
IProgressStatus
progressStatusinterestedParty,
String pluginsSubDirectoryName)

Logger: An instance of a class responsible for
handling events and errors. Optionally, pass
null, but implementing a logger is
recommended as it will make
troubleshooting problems much easier.

progressStatusinterestedParty: An instance
of a class responsible for handling progress
status messages. It may be important in your
application to provide feedback to the user,
since the snapshot operation may be lengthy.
Optionally, pass null.

pluiginsSubDirectoryName: The name of a
sub-directory of your executable's directory
that contains data acquisition assemblies. If
you do not have any plug-ins, you can
specify an empty existing directory or pass
null.

Chapter 8 @ System Comparison 315

Logging Messages

The SnapshotAPI class implements three methods:

public string TakeSnapshot Takes the snapshot and stores it in the
(String snapshotDirectory) specified directory.
public int GetNumberSteps () Provides the total number of steps the

progress status object will receive. You can
then design your progress status
accordingly. (See page 317 for information
on the ProgressStatus interface.)

public void Dispose () The snapshot object is a disposable object.

The following example illustrates the most fundamental snapshot
functionality:

using (SnapshotAPI snapshoter = new SnapshotAPI(null, null,
null))

{

string snapFile = snapshoter.TakeSnapshot (userSnapshotDirectory
)5l

This would take a snapshot but would not be very useful in a production
setting, as errors, messages, and progress would not be tracked.

You can control reporting of errors and messages returned during the
snapshot process using Compuware.Diff.LoggableInterface. In your
application, create a logging mechanism to implement this interface to
direct the messages to an appropriate output device. The sample
application, for example, implements a Consolelogger class that logs
messages to the console.

This interface consists of two methods:

void Log(string message) Call this method to log a normal status
message.

void LogError(string Call this method to log an error message.
message)

316 Understanding DevPartner

Reporting Progress

You can report and display the progress of the snapshot by implementing
the Compuware.Diff.ProgressStatus interface. This interface consists of
three methods:

void OneStep () The method to call back to notify the
interested party to increment the progress
display by one step.

void MultiSteps (int The method to call back to notify the
nbrSteps) interested party to increment the progress
display by several steps.

void UpdateStatus (String The method to call back to notify the
newStatus) interested party to process a new status.
The newsStatus string represents the new

status, which would typically be displayed
as part of a progress status Ul element.

Writing a Plug-in

What is a Plug-in?

The categories of information gathered by the System Comparison utility
(described in Table 8-1 on page 305) are sufficient for most comparisons.
If you require additional information to adequately compare systems,
you can customize the System Comparison utility by writing a data
acquisition plug-in. This section defines a data acquisition plug-in,
demonstrates how plug-ins work using supplied samples, and explains
how you can create your own data acquisition plug-in.

Required: Existing plug-ins created with versions of DevPartner Studio earlier
than 9.0 must be rebuilt before they can be used in DevPartner
Studio 9.0

A plug-in is a .Net assembly that contains one or more types that
implement the interface Compuware.Diff.PluginInterface.
IPluggableDataExtractor. A plug-in defines a high level category of data
to be gathered for comparisons. A plug-in extracts data and hands it to its
caller in an XML format by adding XML elements to a base element in a
hierarchical manner.

Chapter 8 @ System Comparison 317

Plug-ins reside in bin/plugins in the product installation directory.
Every .Net assembly in that directory will be automatically loaded by the
Comparison service and every type that implements the interface
IPluggableDataExtractor will be instantiated and placed in the list of
plug-ins to call when data is extracted.

To familiarize you with the mechanics of writing a plug-in, System
Comparison includes two sample files:

¢ A sample plug-in, SamplePlugin.cs, which demonstrates the
structure of a simple plug-in. This sample does not collect significant
data, but will always show a timestamp difference in the second data
point of the first sub-category. For details about the methods
implemented in a plug-in, refer to the file
IPTuggableDataExtractor.cs in \SDK\Plugin.

¢ A program to exercise the sample plug-in, TestDriver.cs, which
you can use to become familiar with the mechanics of the sample
plug-in. You can then use it to exercise your customized plug-ins.
Once your plug-ins are retrieving the information you expect, you
can then place them in the System Comparison bin/plugins
directory to exercise them with the System Comparison user interface
or command line interface.

Plug-in Sample Step By Step Instructions

Tip: Plug-ins can be
created with any currently
supported version of
Visual Studio. Use the
version of Visual Studio
that matches the version
of .NET Framework
containing features you
want to use.

To become familiar with the use of plug-ins, use the TestDriver.cs and

SamplePlugin.cs sample files. Both files are located in the \sdk\Plugin

directory (C:\Program Files\Compuware\DevPartner Studio\System

Comparison\sdk\Plugin by default).

Note: For installs on 64-bit versions of Windows, the default directory is
located at: \Program Files (x86)\Compuware\DevPartner
Studio\System Comparison\sdk\Plugin.

To build and test the sample files:
1 Create a solution using VIsual Studio.
2 In this solution, add two C# projects:

¢ ClassLibraryl (type class library): This project is used to develop
your plug-in.

¢ ConsoleApplicationl (type console): This project is used to debug
the plug-in.

318 Understanding DevPartner

Solution Explorer

@ projecks)
= IE'-li ClassLibraryl
—|- 4= References
= Compuware, DiFF . Caolleckorachema
= Compuware,DiFF.LoggableInterface
= Compuware, Diff . PluginInterface
= Syskemn
=23 Systemn.Data
=20 Swskern, XML
B AssemblyInfo.cs
B SamplePlugin. cs
= [E‘H Consoleapplication
- =y References
< ClassLibraryl
=3 Compuware, DiFF, Callectorachema
=2 Compuware, Diff . LoggableInterface
=3 Compuware, DiFF . PluginInterface
=21 System
=23 System.Data
=23 Syskenn, XML
| bin

: obj
App.ico
B AssemblyInfo.cs
B TestDriver.cs
3 In the ClassLibrary1 project:

a Add SamplePlugin.cs (located in C:\Program
Files\Compuware\DevPartner Studio\System
Comparison\sdk\Plugin by default).

Tip: For installs on 64-bit b Add a reference to the following assemblies (from the
versions of Windows, the redistributable directory, C:\Program

default directory is located Files\Compuware\DevPartner Studio\System

at: \Program Files Comparison\redistributable by default):

(x86)\Compuware\
DevPartner Compuware.Diff.PTuginInterface.dl]
Studio\System Compuware.Diff.LoggablelInterface.dl]1

Comparison\. Compuware.Diff.CollectorSchema.dl]1

4 Inthe ConsoleApplicationl project:
a Delete Classl.cs from the solution explorer, if it exists.

b Addthe TestDriver.cs file to the project (located in C:\Program
Files\Compuware\DevPartner Studio\System
Comparison\sdk\Plugin by default).

¢ Add reference to the following assemblies (from the
redistributable directory):

Chapter 8 @ System Comparison 319

Compuware.Diff.PTuginInterface.dl]
Compuware.Diff.Loggablelnterface.dl1
Compuware.Diff.CollectorSchema.d1]

d Add areference to ClassLibraryl.

e Set this project as the Startup project.

5 Build and run the solution. You can run in debug mode and step
through the sample to understand the basic functioning of a plug-in.
You will get an XML output file containing the sample plug-in data.
The file is called pluginOutput.xml and is in the directory from
which you ran the test driver.

-<testPlugin>

- <c n="Sample Data Extractor Plug-in">

- <c n="sampleSubCategoryl">

{s n="datal">datal actual value</s>

<s n="dataz2">data?2 actual value 4/3/2006 10:42:34 AM</s>
/ey

- <c n="sampleSubCategory2">

<{s n="datal">datal actual value</s>

{s n="data2">data? actual value</s>

</

/ey

</testPlugin>

After exercising the sample plug-in with TestDriver you can use it with
the System Comparison utility’s user interface or command line
interface:

1 Copy ClassLibraryl.d11 to the plugin subdirectory.

2 Use the System Comparison user interface or command line interface
to take a snapshot, then take a second snapshot.

3 Compare the two snapshots. Since the SamplePlugin collects
timestamp data, the two snapshots will show this difference.

320 Understanding DevPartner

] Compuware DevPartner System Comparison

Differences by category Difference detals

System Info (0) Sample Data Extractar Plug-n 1 differences/ compared Show: %AII differences
Systam Files () S =
Installed Products (1) [em MHT101515001 (3/31/2006 11:34 AM - Friday] | MHT101515001 (34

Senvices (1) [=8 sampleSubCategory

Startup ltems (0) data? dataZ actual value 3/31/2006 11:34:24 AM data? actual value 3
IE/Outlook Companents ()
15 (0)

SOL Server (0)

Drivers ([

Sample Data Extractor Plug-in(
Registry (1)
File (0)

Categary description

This plug-in 15 for
demonstrating the basic
structure of a plug-in It
does not collect real

data. Algo, it will

1 L

Figure 8-4. Results Window for the Sample Plug-in

Creating and Testing Your Plug-in

Once you are familiar with the mechanics of plug-ins you can begin to
design your customized plug-in to gather data that interests you.

When designing your plug-in, pay particular attention to the hierarchy
of data collected. Be sure that the hierarchy is designed to provide insight
into the values in which you are interested. When a non-matching value
is found in a data hierarchy, the rest of the data in that hierarchy is not
compared. (Refer to “Modifying a Deployed Plug-in” on page 322 for
information about changing the data hierarchy in subsequent versions of
a plug-in.)

You can exercise your plug-in with TestDriver to simplify
troubleshooting. Once you are satisfied with the plug-in output, you can
test it with the System Comparison command line interface:

1 Copy your plug-in to the product installation pTlugins sub-directory.
(You do not have to copy the TestDriver.exe file, which was used
only to test your plug-in.)

2 Run the command line program (<product
dir>\bin\Compuware.Diff.CommandLine.exe) on two machines that
have differences in the area your plug-in is collecting.

3 Compare the two snapshots with the System Comparison user
interface. You should see your differences.

Chapter 8 @ System Comparison 321

4 Restart the System Comparison service so it includes the data
specified by your plug-in when it creates snapshots.

Review the DifferEvent.log in your temporary directory (see the temp
environment variable for the exact location) to troubleshoot any
problems that occur. An event is logged if your plug-in is found and
instantiated. Subsequent errors that occur during load, unload, or get
data calls will also generate events in the log.

Also, any error you log via the ILoggable tracelogger parameter of the
IPluggableDataExtractor.GetData call will be written to this file. See
IPlTuggableExtractor.cs.

Modifying a Deployed Plug-in

322

After deploying a plug-in, you may decide to modify the data being
collected. When older snapshot files are compared with snapshots
created with the new version of your plug-in, the data collected will not
match. The System Comparison utility will identify the mismatch as a
difference, which could lead to confusion.

You can control how a mismatch is handled through use of major and
minor version numbers. When the major version number of a plug-in
differs between snapshots, the System Comparison utility will report that
the "Plug-in schemas are incompatible." If the minor version numbers
differ, the System Comparison utility will identify the status of the new
data as being "unknown" in the old snapshot.

If you change a plug-in to delete data or change the hierarchy of data
collected, changing the major version number is recommended. If you
change the plug-in to add data, changing the minor version is generally
sufficient.

To become familiar with this mechanism, you can experiment with
changing the version number in the SamplePlugin, which is initially set
to 1.0:

pubTic PluginSchemaVersion PluginVersion

{

get { return new PluginSchemaVersion(1, 0);!}
}

Note: If you need to replace or remove a plug-in, you first need to stop the
System Comparison service and exit the System Comparison user
interface to prevent the file from been locked by the operating
system.

Understanding DevPartner

Highlights of the Plug-in Schema

To familiarize yourself with the plug-in schema, you can check any
snapshot. A snapshot contains data from the plug-in. For details, refer to
the file diff-plugin-schema.xsd in \sdk\Plugin. The following is an
annotated sample XML fragment showing some of the elements and

attributes you can use.

<c

n="MyApplicatio
nll

descrip="text"

schema="1">

<c

n="MyCategory"

missing="text"

error="text">

<s
n="MyData"
search="t1
tzll

error="text">

Actual Data
Value

</s>
</c>

</e>

Outermost Category node is for your plug-in.

The name of your plug-in. This text appears in the list of
categories (on left in UI).

This text is shown in the bottom left of the Ul when your
category is selected.

Set this to "1". Change it when new versions of your
plug-in are incompatible with prior releases.

All nested categories are shown in the main window of
the UL

This is the name shown in the main window of the Ul,
and used for comparison.

Optional. This is the text you want shown when this
category is missing from the other snapshot. It can be
version information or something simple, like "installed".

Optional. If your plug-in gets an error while fetching data
for this category, you can include it here and it will be
displayed in the Ul.

All data is string data.

This is the name shown in the main window of the Ul,
and used for comparison.

Optional. Search terms for the "search" link in the Ul.
These are passed to Google.

Optional. If your plug-in gets an error while fetching
data, you can include it here and it will be displayed in
the UL

This is your data from the registry or some other setting.

Chapter 8 @ System Comparison 323

About the Redistributable Assemblies

The current version of Compuware.Diff.PTuginInterface.d11,
Compuware.Diff.LoggableInterface.d11 and
Compuware.Diff.CollectorSchema.d11 is 1.0.0.0. Customized plug-ins
will continue to work with future versions of the System Comparison
utility as long as the version number of these assemblies does not
change. If major modifications are made to the assemblies, the version
number will be incremented and you will have to rebuild your plug-ins
against the new assemblies.

324 Understanding DevPartner

Appendix A

About DevPartner Studio
Enterprise Edition and
TrackRecord

What Is DevPartner Studio Enterprise Edition?
The DevPartner Studio EE Solution

Feature Overview

About TrackRecord and DevPartner Studio
DevPartner Studio Interaction with TrackRecord

L 2K R JEE JEE R 2

TrackRecord and DevPartner Studio Coverage AnalysisThe
DevPartner coverage main dialog box opens and displays a
bar graph and statistics about the amount of lines and
functions exercised by your unit tests.

What Is DevPartner Studio Enterprise Edition?

DevPartner Studio Enterprise Edition (EE) can increase a manager’s ability
to predict when projects will reach a goal, such as a specified quality level
or a deployment status. It gives project managers the concrete project
details they need to keep software projects on schedule, and
development team members the tools they need to accomplish their
goals.

DevPartner Studio EE combines the features of several existing software
solutions, and integrates them to provide a new class of functionality. In
addition to the DevPartner features described in this manual, the
Enterprise Edition also includes the following components:

TrackRecord Advanced change request management, task management, and
workflow support for development teams

Reconcile Practical requirements management for software development
teams

325

DevPartner Studio EE provides multiple ways to capture, manipulate,
view, and track project data, including:

¢ Milestone-related summaries that provide a way to interpret and
understand critical-path project data

¢ Customizable work flow for tracking data in a way that fits a
company’s development process

¢ Remote access to project information via a World Wide Web interface

¢ E-mail notification of changes to crucial project information

The Development Process

326

Each software development group establishes its own process, which is
the set of steps that the group uses to get from the idea and design stage
of a project to the implementation and delivery stage. DevPartner Studio
EE fits in with a team’s current process, and provides features to assist the
fine-tuning of internal development procedures.

Examples of process include:

Written requirements

Systematic change control

Technical reviews

Quality assurance planning
Implementation planning

Automated source code control
Estimation updates at major milestones

L IR K K R R B 4

Projects that use no process often suffer from:

¢ Application redesigns and rewrites during testing

¢ Integration problems

¢ Defect corrections late in the development life cycle at great cost
¢ Expansion of requirements—a malady often called “thrashing”

Projects that use a well-managed process display a high degree of
certainty about the status of the project in relation to its plan. Process
also improves development team morale. In one 50-company survey,
60% of developers who rated morale as good or excellent worked for
firms that emphasized process, as compared to 20% whose firms were the
least process oriented.

DevPartner Studio EE adapts to a company’s existing software
development process, and provides tools to help teams enhance that
process if they so choose. It provides a way to formalize a team’s work
flow, to make people answerable to that work flow, and to audit the
entire process. Combining customizable work flow with automatic error
detection improves software quality and streamlines the development
process.

Understanding DevPartner

The DevPartner Studio EE Solution

DevPartner Studio EE provides solutions to problems commonly facing
software development teams:

¢ Improved project control
¢ Higher software quality through enhanced code reliability
¢ Improved productivity

Improved Project Control

Keeping projects under control involves the ability to determine easily:

¢ What tasks has the team completed?
What tasks remain uncompleted?

How volatile is the application’s code?
How thoroughly tested is the application?
How reliable is the application?

L K R I 2

Dynamic Tracking of Project Information

DevPartner Studio EE excels at tracking dynamic project information
using TrackRecord.

Numerous tools exist to plan software projects. These tools help
determine resource allocation, schedules, critical-path tasks, and other
vital information. Before DevPartner Studio EE, approved project plans
became static data points. During real projects, schedules slip,
programmers get pulled off projects to deal with escalated problems in
other projects, and delivery conditions change. Project planning tools
alone cannot easily help to deal with changing conditions, but the
DevPartner Studio EE connection between Microsoft Project and
TrackRecord allows dynamic recalculation of schedules.

Higher Software Quality

Developers and testing engineers will use DevPartner throughout the
software development cycle.

Finding Problems Before Your Users Do

DevPartner Studio EE differs from other software project enhancement
tools by encouraging a proactive and systematic approach to finding and
fixing program anomalies, from outright bugs to code bottlenecks. The
early location of a program’s problems contributes to high quality in the
final product. DevPartner Studio EE’s debugging features assist
developers, individually and collectively, throughout the development

Appendix A ¢ About DevPartner Studio Enterprise Edition and TrackRecord 327

cycle. DevPartner saves time for programmers by making errors easier to
find and repair, and easy report creation increases the likelihood that
developers will enter defect and feature reports.

Finding errors is just the start of a process. Errors need to be discovered,
recorded, reproduced, and assigned a priority for repair. TrackRecord
streamlines much of this process, which frees developers to be more
productive while guaranteeing that problems do not get lost or forgotten
in a hectic schedule.

Improved Productivity

328

As project milestones—crucial dates such as code freeze and deployment
dates—approach, dynamic displays of project data, such as number of
defects outstanding, code volatility, and team-wide code coverage
statistics, help everyone on the team assess their progress toward goals.

Every DevPartner Studio EE user can create a unique view of the
information in a project database.

¢ Managers can get a big-picture view of a project, can track whether
crucial tests are being run, and can control quality more tightly

¢ Developers can create lists of tasks needing immediate attention,
rank tasks according to priority, perform error checks and
performance tests on their code, and focus their daily activities

¢ Testers can track bugs and the status of known problems, merge data
generated by coverage runs, execute test plans, and organize daily
activity

¢ Writers can track when specifications get published, when features
get implemented, and when user interface changes get made

¢ Support coordinators can quickly locate information, such as known
defects and configurations tested, to help customers resolve problems

In this way, individual users will be more productive by quickly
retrieving just the information they need. Views such as the Milestone
Summary provide a context for the display of this information.

Every software development project is different, and every company has
different needs. Different parts of a single company need different
information about ongoing projects. DevPartner Studio EE satisfies these
requirements by offering flexibility in the design of projects, particularly
in the types of information that get tracked.

Understanding DevPartner

Although DevPartner Studio EE provides numerous pre-built views of
database information, every DevPartner Studio EE user will have unique
requirements for the storage and display of project information.
DevPartner Studio EE provides the flexibility to allow companies to
customize reports, forms, workflow, projects, and information types to fit
their needs.

Feature Overview

DevPartner Studio EE provides the tools for accumulating and sharing
software development project information. DevPartner Studio EE
provides a rich set of features to facilitate the process of keeping track of a
project under development.

Requirements Management

The crucial first step in any application development project is capturing
the right set of end-user requirements. Next, those requirements must be
effectively communicated to the development and testing teams.
Reconcile provides a way to capture, organize, and distribute project
requirements.

Using the familiar Microsoft Word as its editor, Reconcile provides a way
to gather and refine requirements. Then, development teams can use the
Reconcile Project Explorer to navigate requirement relationships.
Reconcile requirements can be synchronized with QADirector to
automatically create test procedures, and to correlate test results with test
plans.

Reconcile integration with TrackRecord makes possible the association of
defects and issues with project requirements. In this way, Reconcile and
TrackRecord allow every development team member to stay up-to-date
on project objectives.

Merging Coverage Data

The DevPartner Studio EE coverage feature generates information about
the amount of a component’s code that has been exercised or tested.
Since different developers will likely work on different components, this
individual coverage data will not tell a complete story about an
application project. Each developer’s local coverage report may need to
be merged with other coverage results to obtain a complete picture of
how much of the total project’s code has been exercised.

Appendix A ¢ About DevPartner Studio Enterprise Edition and TrackRecord 329

DevPartner Studio EE allows the merging of sets of coverage data based
on builds, configurations, users, or other criteria.

Project Activity Tracking

Tracking the various tasks and components of a software project helps to
deal with the problem of complexity. As team members work on a
specific task, new tasks needing attention at a future date often emerge.
DevPartner Studio EE provides a way to record and track those tasks so
that they will not get lost. Combining the work of individual developers
requires attention to detail, coordination, and accurate recording of
problems that will require consideration at a later date.

Tracking the level of testing being done, the number of faults being
discovered, and the amount of coverage activity taking place can help a
project manager anticipate and avoid problems. Two-way
communication between DevPartner Studio EE and Microsoft Project can
even automate schedule changes.

Automatic Notification of Changes

330

Timeliness promotes productivity. For example, prompt notification of:

¢ Newly-found high priority bugs helps managers reallocate resources
to deal with shifting task priorities

¢ Newly-assigned tasks helps developers schedule their time more
efficiently

While dynamic Outline reports provide the primary method for
notifying users about changes to project data, the DevPartner Studio EE
AutoAlert feature provides another way to notify one or more individuals
when a tracked event occurs. AutoAlert lets you define flexible criteria for
notifying remote or infrequent users of changes that might be of interest
to them.

Each user who receives automatic mail notification sets up the
notification criteria by creating special DevPartner Studio EE mail
queries. AutoAlert monitors the DevPartner Studio EE database,
periodically checking to see if any new items match the mail queries.

Whenever an item is entered or changed so that it matches one of the
mail queries, DevPartner Studio EE automatically sends an e-mail
message to the owner of the e-mail query. By using the TrackRecord
software’s flexible query engine, AutoAlert makes it possible for you to
receive mail notification based on almost any criteria.

Understanding DevPartner

Customizable Workflow

Every software development team needs a way to make sure that certain
tasks get completed, often in a specific order. Quality Assurance cannot
test a repaired defect, for example, until the fix gets logged as integrated
with the rest of the application under development. DevPartner Studio
EE allows, but does not require, setting up a workflow that works in this
manner.

DevPartner Studio EE provides a mechanism to implement an ordered
workflow. Teams can design this workflow to restrict who can move an
item of project data from one stage in the workflow life cycle to another.
The workflow and its enforcement policies can require certain
information under specified conditions. These policies provide a way to
make team members accountable to the process the project uses.

Remote Access via the Web

When members of a development team work at remote locations, they
can still have access to project data. The DevPartner Studio EE WebServer
provides remote access via standard Web connections to allow users to
view, enter, and change crucial project data.

Central Store of Shared Information

DevPartner Studio EE provides a robust client-server-based repository for
sharing information. This repository uses an object-oriented database
that is programmatically accessible through ActiveX (formerly OLE
automation) interfaces. The repository provides the underlying
infrastructure to enable groups to work together while each member
works separately.

An extensible and flexible database structure, based on information
types, forms the core of DevPartner Studio EE's repository, and provides
its power.

About TrackRecord and DevPartner Studio

TrackRecord is part of the DevPartner Studio Enterprise Edition suite of
software development tools. These applications automatically generate
and store information about the detection, diagnosis, and resolution of
software problems.

Appendix A ¢ About DevPartner Studio Enterprise Edition and TrackRecord 331

Developers can use TrackRecord to capture this information, along with
other project information, such as milestone dates, to help resolve
problems quickly and consistently.

Note: Integration of TrackRecord and DevPartner Studio is version

dependent. You might need to upgrade your DevPartner Studio or
TrackRecord software if you purchased the tools at separate times.

DevPartner Studio Interaction with TrackRecord

Defect Submissions

DevPartner Studio provides toolbar buttons and menu selections that
allow the submission of defects to TrackRecord databases.

DevPartner Toolbar Buttons

The DevPartner toolbar buttons let you enter DevPartner Defects.
Clicking these buttons opens a defect form, allowing you to key
information into the DevPartner Studio database.

Submitting a DevPartner Studio Defect starts with highlighting an item
from a DevPartner Studio debug display.

Entering a Defect from DevPartner
Complete the following steps to enter a defect from DevPartner:

1 Choose Submit Defect from a DevPartner menu or toolbar.

Alternatively, choose a Submit Defect button from a DevPartner feature
toolbar.

TrackRecord opens either a blank Defect form, or a form with some
fields prefilled with relevant data.

2 Enter other needed information into the defect report.

3 Click Save and Close.

TrackRecord and DevPartner Studio Coverage Analysis

DevPartner coverage users can merge session files that accumulate within
their private work space. These merged sessions indicate how much
testing that developer’s code has received over time.

332 Understanding DevPartner

With DevPartner Studio and TrackRecord, coverage sessions can be
merged and filtered across users and environments. Merging coverage
sessions from all the developers working on an application lets a manager
or test coordinator determine how much of an application’s total code
base has been exercised by test programs.

Refer to the coverage documentation and online help for information
about how to use DevPartner coverage.

Merging coverage sessions entails two steps: creating a coverage merge
set, and merging the sessions. A developer typically chooses what
coverage sessions should be merged and what sessions should be
excluded. Criteria for identifying sessions to merge can include the
following.

¢ Application component
Date

Memory

Milestone

Operating System
Person

Project

L 2R 2K 2R 2K 2R 4

You can match one of these selections to a specific value, to any value, or
to any value except one you specify.

Creating Criteria for Merge Coverage Operation

To create criteria for a merge coverage operation, complete the following
steps:

1 In TrackRecord, select Merge Coverage Sessions from the Tools
menu.

2 Select a target from the left-most list box.
3 Select a match criteria from the right-most list box.

4 If you selected “is equal to” in Step 2, select a value from the bottom
list box.

For example, if you selected “Operating System is equal to” in the
two top lists, you would select a value, such as “Windows 98,” from
the lower list.

5 Click Add.

6 Click Next to view the sessions that met your criteria.

Appendix A ¢ About DevPartner Studio Enterprise Edition and TrackRecord ~ 333

334

Merging Coverage Sessions

To merge coverage sessions, complete the following procedure:

1

Understanding DevPartner

Click the check box next to a session to toggle it on or off.

When checked, that session will be merged with the other files
selected. If unchecked, that session will not be merged with the other
selected files.

Click Merge.

The DevPartner coverage main dialog box opens and displays a bar
graph and statistics about the amount of lines and functions
exercised by your unit tests.

Appendix B

DevPartner Studio Supported
Project Types

& Supported Project Types
& Error Detection Supported Project Types
4 Code Review Supported Project Types

& Coverage Analysis, Performance Analysis, Memory Analysis,
and Performance Expert Supported Project Types

This chapter contains tables listing project types supported by each
DevPartner Studio feature listed above.

Supported Project Types

DevPartner Studio works in many software development environments
which include Visual Studio integrated development environments,
managed and unmanaged project types, and programming languages.

335

Table B-1 Supported Visual Studio Version and Language Reference

Integrated Development = Managed or

Environment Unmanaged IR
Visual Studio 2008 (VS2008) Managed Visual Basic
Visual C++
Visual C#
Unmanaged Visual C++
Visual Studio 2005 (VS2005) Managed Visual Basic
Visual C++
Visual C#
Visual J#
Unmanaged Visual C++

The following pages describe supported IDEs, project types, and
languages for each respective DevPartner Studio feature.

336 Understanding DevPartner

Error Detection Supported Project Types

Application projects build into an x86 executable. DevPartner error
detection supports the following project types:

Table B-2 Error Detection Support for Managed Project Types

Visual Studio
Version(s)

Application Project Types

Supported
Languages

VS§2008

MFC Application

MFC DLL

Win32 Console Application

Win32 Project

Win32 Smart Device Project (see note)

C++

Crystal Reports Application

Test Project

Windows Control Library
Windows Application

Windows Forms Application
Windows Forms Control Library
WPF Application’

WPF User Control Library'

WPF Custom Control Library’

WPF Browser Application’

C#, VB

Console Application
Windows Service

C++, C#, VB

1 XAML generated code; .NET Framework 3.0 or later

Appendix B ¢ DevPartner Studio Supported Project Types

337

338

Table B-2 Error Detection Support for Managed Project Types

Visual Studio

Version(s)

VS$2005

A - Supported
Application Project Types Languages
MEFC Application C++
MFC DLL
MEFC Active X Control
MFC ISAPI Extension DLL
Win32 Console Application
Win32 Project
Win32 Smart Device Project (see note)

Windows Forms Control Library

Calculator Starter Kit J#

Crystal Reports Application C#, J#, VB
Windows Control Library

Windows Application

Console Application C++, C#, |#,
Windows Service VB

MEFC - Microsoft Foundation Class

Note: Win32 Smart Device project types (Smart Device project types where
the Solution Platform is set to Win32) must be running on the
development machine, not an emulator, for DevPartner error
detection to support them.

Hosted projects are built into an x86 DLL, and need to be hosted in an
application if you want to test them. DevPartner error detection supports
the following project types only when hosted within another executable:

Understanding DevPartner

Table B-3 Supported When the Project is Hosted Within Another Executable

Visual Studio Supported Project Types When

Version(s) Hosted Within Another Executable

Supported
Languages

VS2008 ATL Project
ATL Server Project

ATL Smart Device Project
Extended Stored Procedure DLL

MEFC Active X Control

MFC DLL

MFC ISAPI Extension DLL

MFC Smart Device ActiveX Control
MFC Smart Device Application
MFC Smart Device DLL

Windows Forms Control Library

C++

Web Control Library

C#, VB

Class Library
Windows Control Library

C++, C#, VB

VS$2005 ATL Project
ATL Server Project

ATL Smart Device Project
Extended Stored Procedure DLL

MFC Active X Control

MFC DLL

MEFC ISAPI Extension DLL

MFC Smart Device ActiveX Control
MFC Smart Device Application
MFC Smart Device DLL

Windows Forms Control Library

C++

Web Control Library

C#, J#,
VB

Class Library
Windows Control Library

C++, C#, |#,
VB

ATL - Active Template Library
MEFC - Microsoft Foundation Class

Appendix B ¢ DevPartner Studio Supported Project Types 339

Code Review Supported Project Types

The following table lists project types supported by DevPartner Studio

code review.

Table B-4 Code Review Support for Managed Project Types

Visual Studio
Version(s)

Managed Project Type

Supported
Languages

VS§2008

ASP.NET Web Application

ASP.NET Web Service

ASP.NET Web Site

ASP.NET AJAX Server Control

ASP.NET AJAX Server Control Extender’
ASP.NET Server Control’

Class Library

Console Application

Crystal Reports Application

Mobile Web Application

Test Project?

Empty Workflow Project?

Sequential Workflow Console Application?
Sequential Workflow Library?

State Machine Workflow Console Application?
State Machine Workflow Library?
Workflow Activity Library?

Web Control Library

Windows Application

Windows Control Library

Windows Service

WPF Application3

WPF User Control Library3

WPF Custom Control Library3

WPF Browser Application?
WCEF Service Application

C#, VB

340 Understanding DevPartner

! As an ASP .NET Web Application
2 As a standard VB or C# application
3 XAML generated code; .NET Framework 3.0 or later

Table B-4 Code Review Support for Managed Project Types

Visual Studio
Version(s)

Supported
Languages

Managed Project Type

VS2005 ASP.NET Web Application
ASP.NET Web Service
ASP.NET Web Site

Class Library

Console Application C#, VB
Crystal Reports Application
Mobile Web Application
Web Control Library
Windows Application
Windows Control Library
Windows Service

Appendix B @ DevPartner Studio Supported Project Types 341

Coverage Analysis, Performance Analysis, Memory Analysis, and
Performance Expert Supported Project Types
The following table lists DevPartner Studio analysis supported projects.

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and
Performance Expert Supported Project Types

Visual Studio
Version(s)

Supported
Languages

Project Type

VS§2008 ATL Project C++
ATL Server Project

ATL Server Web Service
ASP.NET Web Service

CLR Console Application
CLR Empty Project

Shared Add-in

MFC ActiveX Control

MFC Application

MFC DLL

Win32 Console Application
Win32 Project

ASP.NET Web Site C#, VB
ASP.NET AJAX Server Control' 4
ASP.NET AJAX Server Control Extender’
ASP.NET Server Control'

ASP.NET Web Application

ASP.NET Web Service Application
Console Application

Crystal Reports Application

Reports Application

SQL Server Project

WPF Application?

WPF Browser Application?

WPF Custom Control Library?

WPF User Control Library?

WCF Service Application?

Test Project?

342 Understanding DevPartner

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and
Performance Expert Supported Project Types
Visual Studio Supported

Project Type Languages

Version(s)

V52008 (cont.) | Empty Workflow Project? C#, VB
Sequential Workflow Console Application?

Sequential Workflow Library3

State Machine Workflow Console Application?

State Machine Workflow Library3
Workflow Activity Library3

Visual Studio Add-in

Visual Studio Integration Package
Web Control Library

Windows Application

Windows Control Library

Class Library C++, C#, VB
Windows Forms Application
Windows Forms Control Library
Windows Service

1 JavaScript, Asynchronous XML
2 XAML generated code; .NET Framework 3.0 or later
3 As a standard VB or C# application

4 Coverage Analysis and Performance Analysis only
MFC - Microsoft Foundation Class

Appendix B ¢ DevPartner Studio Supported Project Types 343

344

Table B-5 Coverage Analysis, Performance Analysis, Memory Analysis, and
Performance Expert Supported Project Types

Visual Studio
Version(s)

Supported
Languages

Project Type

VS2005 ATL Project C++
ATL Server Project

ATL Server Web Service
ASP.NET Web Service

CLR Console Application
CLR Empty Project

Shared Add-in

MEFC ActiveX Control

MEFC Application

MFC DLL

Win32 Console Application
Win32 Project

ASP.NET Web Application C#, VB
ASP.NET Web Service Application
SQL Server Project

ASP.NET Web Site C#, J#, VB
Console Application

Crystal Reports Application

Visual Studio Add-in

Visual Studio Integration Package
Web Control Library

Windows Application

Windows Control Library

Class Library C++, C#, |#,
Windows Forms Application VB
Windows Forms Control Library
Windows Service

ATL - Active Template Library
MEFC - Microsoft Foundation Class

Note: DevPartner Studio coverage analysis and performance analysis
support VBScript and JScript in both classic ASP and client-side Web
script.

Understanding DevPartner

Appendix C

Starting Analysis from the
Command Line

4 Introducing DPAnalysis.exe

4 Running DPAnalysis.exe from the Command Line

& Using DPAnalysis.exe with an XML Configuration File
¢ Collecting Analysis Data from a Remote Machine

This appendix contains information about the DPAnalysis.exe
command line tool which works for: coverage analysis, memory analysis,
performance analysis, and Performance Expert.

Introducing DPAnalysis.exe

In addition to collecting analysis data while running your program in
Visual Studio, you can use DPAnalysis.exe to collect profiling
information without launching Visual Studio. DPAnalysis.exe collects
application data in conjunction with option switches or by pointing to
an XML configuration file.

345

Running DPAnalysis.exe from the Command Line

346

You can use DPAnalysis.exe from the command line, using switches or
an XML configuration file to direct the analysis session. The following
command line example launches a performance analysis session for the
application target.exe and saves the session file (.dpprf) to the
c:\output directory:

DPAnalysis.exe /perf /output c:\output\target.dpprf /p target.exe

Using DPAnalysis.exe from the command line, you can enable data
collection and spawn a single process or service. To spawn more than one
process with DPAnalysis.exe, see “Using DPAnalysis.exe with an XML
Configuration File” on page 349.

DPAnalysis.exe does not instrument unmanaged code. To collect
performance or coverage analysis data for an unmanaged application,
you must first instrument the application. See “Collecting Data for
Unmanaged Code” on page 139 for coverage analysis and “Collecting
Data from Unmanaged Code” on page 233 for performance analysis.

Use the following syntax and switches to run the four DevPartner Studio
analysis tools from the command line.

DPAnalysis.exe [/Perf|/Cov|/Mem|/Exp] [/E|/D|/R]

[/0 outputfilename] [/W workingdirectory] [/PROJ_DIR]

[/H hostmachine]l [/NOWAIT] [/NO_UI_MSG] [/NI1 [/F]

[/NO_MACH5 /NM_METHOD_GRANULARITY /EXCLUDE_SYSTEM_DLLS
/NM_ALLOW_INLINING /NO_OLEHOOKS

/NM_TRACK_SYSTEM_OBJECTS] {/P|/S} target.exe [target arguments]

Analysis Type Switches

Sets the run-time analysis type. The default is performance analysis.

/Cov[erage] Sets analysis type to DevPartner coverage analysis
/Explert] Sets analysis type to DevPartner Performance Expert
/Mem[ory] Sets analysis type to DevPartner memory analysis
/Perflormance] Sets analysis type to DevPartner performance analysis

Understanding DevPartner

Data Collection Switches

Enables or disables data collection for a given target, but does not launch
the target. These switches are optional.

/E[nablel] Enables data collection for the specified process or
service.

/D[isable] Disables data collection for the specified process or
service.

/R[epeat] Profiling occurs any time you run the specified process

until you use the /D switch to disable profiling.

Other Switches
These switches are optional.

/0Lutput] Specify the session file output directory or directory and
name.

/WlorkingDir] Specify the working directory for the target process or

service.

/PROJ_DIR Specify the directory of DevPartner Studio project, used to
locate playlists, etc.

/H[ost] Specify target's host machine.

/NOWAIT If you use /NOWAIT with multiple targets in a batch file,

DPAnalysis.exe launches process?2 immediately after
processl starts.

For example:

DPAnalysis.exe /Exp /NOWAIT /P
c:\temp\processl.exe

DPAnalysis.exe /Exp /NOWAIT /P
c:\temp\process2.exe

If you omit the optional /NOWAIT switch,
DPAnalysis.exe waits until process1 exits to start
process2 (default behavior).

/NO_UI_MSG Set this switch to "true" to suppress Ul error messages. The
default is “false”.

/N[ewconsole] Run the process in its own command window.

If using DPAnalysis.exe to analyze a console application
requiring keyboard input, you must use the /NewConsole
switch to open a console window to accept the input.

/FlLorcel Forces coverage analysis or performance analysis profiling of
unmanaged code applications that have not been
instrumented with DevPartner Native C/C++
Instrumentation.

Appendix C & Starting Analysis from the Command Line 347

Quoted Paths and the /O[utput] Switch

If you use a quoted path as the parameter for the output (/o) switch and
you do not include the file name, you must end the path in one of the
following ways:

/o “c:\test directory” End with a quote.

/o “c:\test directory\.” End with a back slash followed by a
period.

/o “c:\test directory/” End with a forward slash.

Analysis Options

These switches are optional.

/NO_MACH5 Disables excluding time spent on other
threads.
/NM_METHOD_GRANULARITY Sets data collection granularity to method-

level. Line-level is default (performance
analysis only).

/EXCLUDE_SYSTEM_DLLS Excludes data collection for system dlls
(performance analysis only).

/NM_ALLOW_INLINING Enable run-time instrumentation of inline
methods.

/NO_OLEHOOKS Disable collection of COM.

/NM_TRACK_SYSTEM_OBJECTS Track system object allocation (memory

analysis only).

Target Switch

Required. Pick only one. Identifies target to follow as either a process or
service. All arguments that follow the target name or path will be
arguments to the target.

/P[Lrocess] Specify a target process (followed by arguments to
process).

/S[ervice] Specify a target service (followed by arguments to
service).

/CLonfig] Specify the configuration file and path.

348 Understanding DevPartner

Using DPAnalysis.exe with an XML Configuration File

To manage analysis sessions with an XML configuration file, run
DPAnalysis.exe from the command line with the /config switch and a
properly structured XML configuration file as its target. For example:

DPAnalysis.exe /config c:\temp\configuration_file.xml

By using a configuration file, you can profile and manage multiple
processes or services. The ability to profile multiple processes can be
especially useful for analyzing Web applications.

Starting a session with DPAnalysis.exe launches a Session Control
toolbar for each profiled process on the system where you invoked
DPAnalysis.exe. Use the appropriate instance of the toolbar to execute
session control actions for each process.
The following is a sample configuration file:
<?xml version="1.0" ?>
<ProductConfiguration xmlns="http://www.compuware.com/products”>
<RuntimeAnalysis Type="Performance”
MaximumSessionDuration="1000" NoUIMsg="true" />
<Targets RunInParallel="true”>
<Process CollectData="true” Spawn="true”
NoWaitForCompletion="true”>
<AnalysisOptions NO_MACH5="1” NM_METHOD_GRANULARITY="1"
SESSION_DIR="c:\temp” />
<Path>ClientApp.exe</Path>
<Arguments>/argl /agr2 /arg3</Arguments>
<WorkingDirectory>c:\temp</WorkingDirectory>
<ExcludeImages>
<Image>ClassLibraryl.d11</Image>
<Image>ClassLibrary2.d11</Image>
</ExcludelImages>
</Process>
<Service CollectData="true” Start="true”
RestartIfRunning="true”
RestartAtEndOfRun="true”>
<AnalysisOptions NM_METHOD_GRANULARITY="0"
EXCLUDE_SYSTEM_DLLS="1" />
<Name>IISadmin</Name>

Appendix C & Starting Analysis from the Command Line 349

<Host>remotemachine</Host>
</Service>
</Targets>
</ProductConfiguration>

XML Configuration File Element Reference

Attributes

Type

MaximumSessionDura
tion

NoUIMsg

Element Information

Remarks

Example

The following information describes the elements of an XML
Configuration file.

Runtime Analysis Element

<RuntimeAnalysis Type = “type of analysis”
MaximumSessionDuration = “number of seconds”
NoUIMsg = "allow or suppress Ul error messages" />

None.

Required. Possible choices are: Performance, Coverage, Memory, or
Expert. These choices specify the analysis types for all targets listed.

Optional. If omitted, no default used. If specified, DPAnalysis.exe limits
a session run to this number of seconds. For example, if you specify:
MaximiumSessionDuration="60" and then begin profiling a service (with
RestartAtEndOfRun="true” for the service), after 60 seconds,
DPAnalysis.exe stops the service and then restarts the service.

Optional. If omitted, “false” is used by default. If set to “true”,

DPAnalysis.exe suppresses all UI error messages that may appear during
the duration of the session. Setting this to “true” is useful when sessions
are run unattended or when running a large number of consecutive tests.

Number of occurrences One
Parent elements ProductConfiguration
Contents None

Defines the type of analysis and maximum session time.

The following example shows a construction using RuntimeAnalysis
following a ProductConfiguration tag. In this example, the Type attribute
specifies a performance analysis with a maximum duration of 1000
seconds and suppression of Ul error messages.

<?xml version="1.0" ?>

<ProductConfiguration xmlns="http://www.compuware.com/products”>
<RuntimeAnalysis Type="Performance” MaximumSessionDuration="1000"
NoUIMsg="true" />

350 Understanding DevPartner

Attributes

Element Information

Remarks

Example

Targets Element

<Targets RunInParallel="true or false”>

</Targets>
RunInParallel

Optional. Specify true or false. Defaults to true if omitted. If you
specify more than one target, defines how the targets are run. When
RunInParallel is true, DPAnalysis.exe starts the target processes and
services one right after the other; multiple targets will run at the same
time (parallel). Otherwise, DPAnalysis.exe starts target N + 1 only after
process N has launched and exited; targets run one at a time (serial).

Number of occurrences One
Parent elements RuntimeAnalysis
Contents Process, Service

Required. Begins a block of one or more <Process> or <Service> entries.
Target processes and services are started in the order they are listed in the
configuration file.

The following example shows a construction using Targets to specify
analysis of one <Service> and two <Process> elements. Note that
RunInParallel is true so that, for this example, the targets would run in
parallel.

<Targets RunInParallel="true”>
<Service CollectData="true” Start="true”>
<AnalysisOptions NM_METHOD_GRANULARITY="0"
EXCLUDE_SYSTEM_DLLS="1" />
<Name>ServiceApp</Name>
<Host>remotemachine</Host>
</Service>
<Process CollectData="true” Spawn="true”
NoWaitForCompletion="true”>
<AnalysisOptions NO_MACH5="1"
NM_METHOD_GRANULARITY="1"
SESSION_DIR="c:\MyDir” />
<Path>ClientApp.exe</Path>
<WorkingDirectory>c:\temp</WorkingDirectory>

Appendix C & Starting Analysis from the Command Line 351

</Process>
<Process CollectData="true” Spawn="true”
NoWaitForCompletion="true”>
<AnalysisOptions NO_MACH5="1"
NM_METHOD_GRANULARITY="1"
SESSION_DIR="c:\MyDir” />
<Path>TestApp02.exe</Path>
<WorkingDirectory>c:\temp</WorkingDirectory>
</Process>
</Targets>

Process Element

<Process
CollectData = “true or false”
Spawn = “true or false”
NoWaitForCompletion = “true or false”
NewConsole = “true or false”
RepeatInjection = “true or false”

>
</Process>

Attributes Profiling occurs any time you run the specified process until you use the
/D switch to disable profiling.

CollectData

Optional. Specify true or false. Defaults to true if omitted. Specifies
whether profiling will be enabled for the target process.

Spawn

Optional. Specify true or false. Defaults to true if omitted. Specifies if
DPAnalysis.exe will spawn the specified target. Do not set to true for
aspnet_wp.exe or w3wp.exe. DevPartner cannot spawn the ASP.NET
worker process directly. Launch the ASP.NET worker process by opening
the target Web page.

352 Understanding DevPartner

Element Information

Remarks

Example

NoWaitForCompletion

Optional. Specify true or false. Defaults to false if omitted. The
default is to wait until the process has completed. If set to true, causes
DPAnalysis.exe to wait only until the target has started executing.
DPAnalysis.exe will not wait for processes on remote machines (using
the Host element). The MaximumSessionDuration attribute in the
RuntimeAnalysis element overrides NoWaitForCompletion.

NewConsole

Optional. Specify true or false. Defaults to false if omitted. Causes
DPAnalysis.exe to run the target in its own console window. The default
is to use the same console that you typed the DPAnalysis.exe command
line in. If you use DPAnalysis.exe to analyze a console application that
requires keyboard input, you must use the /NewConsole switch to open a
console window to accept the input.

RepeatInjection

Optional. Specify true or false. Defaults to false if omitted. Causes
DPAnalysis.exe to profile the target in every time it runs until you
explicitly specify false.

Number of occurrences One or more
Parent elements Target
Contents AnalysisOptions, Path, Arguments,

WorkingDirectory, Excludelmages

Specifies a target executable.

The following example shows a construction using Process and includes

AnalysisOptions, Path, Arguments, and WorkingDirectory tags.

<Targets RunInParallel="true”>

<Process CollectData="true” Spawn="true”
NoWaitForCompletion="true” NewConsole="true”>
<AnalysisOptions NO_MACH5="1” NM_METHOD_GRANULARITY="1"

SESSION_DIR="c:\MyDir” />

<Path>ClientApp.exe</Path>
<Arguments>/argl /agr2 /arg3</Arguments>
<WorkingDirectory>c:\temp</WorkingDirectory>

</Process>

</Targets>

Appendix C & Starting Analysis from the Command Line 353

354

Attributes

Analysis Options Element

Attributes that work with AnalysisOptions vary depending on the type
of analysis session you run. Refer to the table at the end of this
description. DPAnalysis.exe ignores attributes mismatched with the
type of analysis.
<AnalysisOptions

SESSION_DIR = “c:\MyDir”

SESSION_FILENAME = “myfile.dpcov”

NM_METHOD_GRANULARITY = “1”

EXCLUDE_SYSTEM_DLLS = “1”

NM_ALLOW_INLINING = “1”

NO_OLEHOOKS = “1~

NM_TRACK_SYSTEM_OBJECTS = “1”

NO_MACH5 = “1~

FORCE_PROFILING = *1”
/>

SESSION_DIR

Optional. Use with coverage analysis, memory analysis, performance
analysis, and Performance Expert. Specify a directory for saving the
session file generated by the profiled target. Without this attribute, the
resulting session file will be placed in the user's My Documents or
Documents directory. If both SESSION_DIR and SESSION_FILENAME are
absent, DPAnalysis.exe prompts you for the save location at the end of
the session.

SESSION_FILENAME

Optional. Use with coverage analysis, memory analysis, performance
analysis, and Performance Expert. Specify a session name for the session
file generated for this target. Without this attribute, DPAnalysis.exe
creates a unique name by combining the target's image name with a
number (for example, iexplorel.dpprf). If you specify a name but no
directory, the file will be placed in user's My Documents directory. If both
SESSION_FILENAME and SESSION_DIR are absent, DPAnalysis.exe prompts
you for the save location at the end of the session.

NM_METHOD_GRANULARITY

Optional. Use with performance analysis to set data collection
granularity to method-level (line-level is default). Specify a value of 1 to
set the attribute. Omitting the attribute disables it.

Understanding DevPartner

EXCLUDE_SYSTEM_DLLS

Optional. Use with performance analysis to exclude system images.
Specify a value of 1 to set the attribute. Omitting the attribute disables it.

NM_ALLOW_INLINING

Optional. Use with coverage analysis and performance analysis to specify
level of analysis detail. Enables run-time instrumentation of inline
methods. Equivalent to the Instrument Inline Functions property.
Specify a value of 1 to instrument inline functions. Omit the attribute to
disable it.

NO_OLEHOOKS

Optional. Use with performance analysis to activate tracking of system
objects. Specify a value of 1 to set the attribute. Omitting the attribute
disables it.

NM_TRACK_SYSTEM_OBJECTS

Optional. Use with memory analysis to ignore system or third-party
object allocations when tracking allocated objects. Specify a value of 1 to
set the attribute. Omitting the attribute disables it. The default state
(disabled) enables you to see memory allocations made when your
application uses system or other non-profiled resources.

NO_MACHS

Optional. Use with performance analysis and Performance Expert to
exclude time spent in threads of other running applications. Specify a
value of 1 to set the attribute. Omitting the attribute disables it.

FORCE_PROFILING

Optional. Use with coverage analysis and performance analysis to force
profiling of applications written without managed code or DevPartner
Native C/C++ Instrumentation. Specify a value of 1 to set the attribute.
Omitting the attribute disables it.

Appendix C & Starting Analysis from the Command Line 355

Performance

Attribute Coverage Memory Performance Expert
NM_METHOD_GRANULARITY X
EXCLUDE_SYSTEM_DLLS X
NM_ALLOW_INLINING X X
NO_OLEHOOKS X
NM_TRACK_SYSTEM_OBJECTS X
NO_MACH5 X X
FORCE_PROFILING X X

Element Information
Number of occurrences One or none per Process or Service
Parent elements Process, Service
Contents None

Remarks Optional. Defines runtime attributes for the specified target process or
service. Attributes correspond to coverage analysis, memory analysis, and
performance analysis properties accessible from the Properties Window
in Visual Studio.

Example The following example shows a construction using AnalysisOptions
within a Service.

<Service CollectData="true”>
<AnalysisOptions NM_METHOD_GRANULARITY="1"
EXCLUDE_SYSTEM_DLLS="1” NM_ALLOW_INLINING="1"
NO_OLEHOOKS="1">

</Service>

Path Element
<Path> c:\MyDir\target.exe </Path>
Attributes None.

Element Information

Number of occurrences One
Parent elements Process
Contents Path to the executable

356 Understanding DevPartner

Remarks

Example

Attributes

Element Information

Remarks

Example

Attributes

Element Information

Remarks

Required. Specify a fully qualified or relative path to the executable. You
can specify the executable name without the path if the executable exists
in the current directory.

The following example shows a construction using Path within a
Process element.

<Process CollectData="true”>
<Path>ClientApp.exe</Path>

</Process>

Arguments Element
<Arguments>/argl /arg2 /arg3</Arguments>

None.
Number of occurrences Zero or one per Process or Service
Parent elements Process, Service
Contents None

Optional. No default if omitted. Arguments to be passed to the target
process or service.

The following example shows a construction using Arguments within a
Process element.

<Process CollectData="true”>
<Arguments>/argl /agr2 /arg3</Arguments>

</Process>

Working Directory Element
<MWorkingDirectory> c:\MyWorkingDir </WorkingDirectory>

None.
Number of occurrences One per Process or Service element
Parent elements Process, Service
Contents Path to the target directory

Optional. No default if omitted. Set the working directory of the target
process or service.

Appendix C & Starting Analysis from the Command Line 357

Example

Attributes

Element Information

Remarks

Example

The following example shows a construction using WorkingDirectory
nested within a parent Process element.

<Process CollectData="true”>
<WorkingDirectory>c:\temp</WorkingDirectory>

</Process>

Exclude Images Element
<ExcludeImages>
<Image>ClassLibraryl.d11</Image>
<Image>ClassLibrary2.d11</Image>
</ExcludeImages>

None
Number of occurrences Zero or one per process or service
Parent elements Process, Service
Contents Image

Optional. No default if omitted. Provide a list of at least one image (no
maximum) which, if loaded by the target process or service, will not be
profiled.

The following example shows a construction using ExcludeImages.
within a Process element. Note the Image elements contained within
ExcludeImages.

<Process CollectData="true”>
<ExcludelImages>
<Image>ClassLibraryl.d11</Image>
<Image>ClassLibrary2.d11</Image>
</ExcludeImages>

</Process>

358 Understanding DevPartner

Service Element

<Service
CollectData = “true or false”
Start = “true or false”
RestartIfRunning = “true or false”
RestartAtEndOfRun = “true or false”
RepeatInjection = “true or false”
>

</Service>

Attributes None.
CollectData

Optional. Specify true or false. Defaults to true if omitted. Specifies
whether profiling will be enabled for the target service.

Start

Optional. Specify true or false. Defaults to true if omitted. Specifies if
DPAnalysis.exe will start the specified target. If set to false, profiling is
enabled for this target but it will not be started; profiling begins the next
time the service is started (by whatever means).

RestartIfRunning

Optional. Specify true or false. Defaults to false if omitted. When you
set RestartIfRunning to true, DPAnalysis.exe attempts to restart the
specified service if it is running on the host machine.

RestartAtEndOfRun

Optional. Specify true or false. Defaults to false if omitted. When you
specify true, DPAnalysis.exe attempts to restart the service (generating a
session file) at the end of the run.

RepeatInjection

Optional. Specify true or false. Defaults to false if omitted. Causes
DPAnalysis.exe to profile the target every time it runs until you
explicitly specify false.

Appendix C & Starting Analysis from the Command Line 359

Element Information

Remarks

Example

Attributes

Element Information

Remarks

Example

Number of occurrences The configuration file must contain at least one
Process or one Service element.

Parent elements Targets

Contents AnalysisOptions, Path, Arguments, Working
Directory, Excludelmages, Name, Host

Specifies a target service.
The following example shows a construction using Service within a
Targets element.
<Targets RunInParallel="true”>
<Service CollectData="true” Start="true”
RestartIfRunning="true” RestartAtEndOfRun="true”>
<Name>ServiceApp</Name>
</Service>
</Targets>

Name Element

<Name>MyServiceName</Name>

None
Number of occurrences One
Parent elements Service
Contents Service name

Required. The name of the service as registered with the service control
manager. This is the same name you would use with a NET START
command.

The following example shows a construction using Name within a
Service.
<Service CollectData="true”>

<Name>ServiceApp</Name>

</Service>

360 Understanding DevPartner

Attributes

Element Information

Remarks

Example

Host Element
<Host>hostmachine</Host>

None.
Number of occurrences For each Process or Service, zero or one
Parent elements Process, Service
Contents Name of the host machine

Optional. No default if omitted. Set the host machine of the target
process or service.

The following example shows a construction using Host within a
Service. Note that the example includes the required Name element.
<Service CollectData="true”>

<Name>ServiceApp</Name>

<Host>remotemachine</Host>

</Service>

Profiling Web Applications with the XML Config File

In general, there are three processes of interest for Web profiling: the
browser; the Web server; and the ASP.NET worker process. All three
entries can be contained in a single configuration file. Specify the
browser and the ASP.NET worker process within <Process> elements;
specify the Web server within a <Service> element where a <Name>
element identifies the service name. For IIS, this is iisadmin.
For example:
<?xm1 version="1.0" 2>
<ProductConfiguration xmins="http://www.compuware.com/products”>
<RuntimeAnalysis Type="Expert”/>
<Targets>
<Process CollectData="true”>
<AnalysisOptions
SESSION_DIR="z:\SessionFiles”/>
<Path>aspnet_wp.exe</Path>
<Host>remotemachine</Host>
</Process>

<Service CollectData="true” Start="true”

Appendix C & Starting Analysis from the Command Line 361

362

RestartIfRunning="true”
RestartAtEndOfRun="true”>
<AnalysisOptions
SESSION_DIR="z:\SessionFiles”/>
<Name>iisadmin</Name>
<Host>remotemachine</Host>
</Service>
<Process CollectData="true” Spawn="true”>
<AnalysisOptions
SESSION_DIR="c:\SessionFiles”/>
<Path>iexplore.exe</Path>
<Arguments>
http://remotemachine/WebApplication/
StartPage.aspx
</Arguments>
</Process>
</Targets>

</ProductConfiguration>
The configuration file above:

¢ Enables data collection for the ASP.NET worker process on
remotemachine.

¢ Enables data collection for inetinfo.exe (iisadmin) on the remote
machine and restarts it so profiling can begin.

¢ Opens a local browser to the local machine directed at a Web page on
the remote machine. This causes aspnet_wp.exe to be spawned on
the remote machine and profiling for it begins.

When the browser is closed on the local machine, IIS on the remote
machine will be restarted on the remote machine (killing aspnet_wp) and
session files will be automatically be saved to the respective save
directories. If you wish, you can use an existing mapped drive on the
remote machine to save the session files to the machine where profiling
was initiated, as shown by the z:\ drive in the <Process> and <Service>
elements in the example.

Understanding DevPartner

Sample Configuration Files

The DevPartner Studio installation includes these sample, read-only
configuration files. Use them as models to construct custom
configuration files.

Sample.Process.Config.xml
Sample.Service.Config.xml
Sample.WebApp.Config.xml

Sample.DCOM.Config.xml
Sample.ClassicASP_IIS_High_Isolation.Config.xml
Sample.ClassicASP_IIS_Low_Isolation.Config.xml
Sample.Multi_Process.Config.xml

The default installation places the files in this directory:

<install drive>:\Program Files\Compuware\DevPartner

Studio\Analysis\SampleConfigs\

Note: For installs on 64-bit versions of Windows, the default directory is
located at: \Program Files (x86)\Compuware\DevPartner
Studio\Analysis\SampleConfigs\

DPAnalysis.exe does not instrument unmanaged code. To collect
performance or coverage analysis data for an unmanaged application,
you must first instrument the application. See “Collecting Data for
Unmanaged Code” on page 139 for coverage analysis and “Collecting
Data from Unmanaged Code” on page 233 for performance analysis.

Collecting Analysis Data from a Remote Machine

If you use DPAnalysis.exe to collect data for an application that executes
on a remote machine, be aware of the following considerations:

¢ When using DPAnalysis.exe to run an application on a remote
system, use the command line or XML configuration file to specify a
directory and file name in order to save the session file.

¢ You can specify any directory to which you have write permission,
including an existing mapped directory to the local (client) machine
on which profiling was initiated.

¢ If you do not specify the directory and file name, DevPartner presents
a File Save dialog on the remote machine. You must have physical
access, a Terminal Services connection, or a Remote Desktop
connection to the machine in order to use the dialog. The File Save
dialog's default directory is the My Documents or Documents directory
of the active user account.

Appendix C & Starting Analysis from the Command Line 363

364 Understanding DevPartner

Appendix D
Analysis Session Controls

4 Introducing Session Control Files

& Creating a Session Control File Within Visual Studio
4 Using the Session Control API

4 Using the Session Control API

This appendix contains information about session control files and the
Session Control API, which can be used with DevPartner coverage

analysis, memory analysis, performance analysis, and Performance
Expert.

Introducing Session Control Files

Use the Session Control File options to create a set of rules and actions
to control the data DevPartner collects as your application runs.
DevPartner stores these rules and actions in a session control file
(SessionControl.txt) in your application's solution directory.

A session control file includes data collection actions for selected
methods so you can:

¢ Specify data collection actions at the entry to or exit from methods.
¢ Retain the session control file from session to session.

¢ Create entries in the session control file that affect coverage analysis,

memory analysis, performance analysis, and Performance Expert
sessions.

365

Creating a Session Control File Within Visual Studio

366

From Visual Studio 2005 or 2008, you can create the file through the
DevPartner > Options menu, as described below. Refer to “Using the
Session Control API” on page 367 for information on creating a session
control file with a text editor.

To create a session control file:
1 Choose DevPartner > Options.

2 In Options, choose DevPartner > Analysis > Session Control File.
The first time you set session control file options, you access an
empty session control (SessionControl.txt) file.

3 Click Add.

4 In the Module text box, choose or browse to locate the module for
which you want to collect data. The module instrumentation status
appears.

Note: All managed code modules display a “not instrumented” status. Only
unmanaged (native) C++ modules that have been built with native
C/C++ instrumentation show an “instrumented” status.

5 From the Methods list, choose a method for which you want to
record data.

Note: If you are choosing methods from a .NET module (.netmodule), the
Method List displays methods in namespace.classname.method
format. DevPartner Studio supports a maximum of 512 characters for
the qualified method name in the session control file. Names longer
than 512 characters are ignored and no session control action occurs
for that method.

6 Choose when you want the session control action to start.

7 Choose one of the following actions that you want to apply:

Stop recording (take final snapshot)
Take snapshot

Clear all recorded data

Start tracking (Memory leak analysis)
Stop tracking (Memory leak analysis)
Run GC (Memory analysis)

8 Click OK.

SO0 0

9 Repeat steps 3 through 8 until you have chosen all the methods you
want to include.

10 Click OK to close and save the session control file.

Understanding DevPartner

If you have a solution open in Visual Studio, DevPartner saves the session
control file in the solution directory.

Note: DevPartner searches for the SessionControl.txt file in the solution
directory that contains the application executable you are profiling. If
DevPartner does not find the file in the solution directory, it looks in
the output directory where your application executable is built. If
you place your SessionControl.txt file in another location,
DevPartner will not be able to recognize the session control
commands.

Entries in the session control file affect analysis sessions in coverage
analysis, memory analysis, performance analysis, and Performance
Expert.

Using the Session Control API

Call the Session Control API from anywhere in your source code to
control data collection for any Visual Studio application. Using the
session control text file allows DevPartner session control actions only on
entry to and exit from methods.

Appendix D @ Analysis Session Controls 367

368

DevPartner Session Control API functions

Clear

Snap

SaveNow

StartTrackingForLeakAnalysis

StopTrackingForLeakAnalysis

RunGC

Clears the data collected up to this point.
Data collection continues. Returns
NMStatusSuccess if data was
successfully cleared or
NMStatusFailure if data was not
cleared.

Takes a snapshot of the data being
recorded. Returns NMStatusSuccess if
the snapshot was successfully saved or
NMStatusFailure if snapshot was not
saved.

Takes a snapshot and stops data
collection. Takes the filename for the
method, if provided. Returns
NMStatusSuccess or
NMStatusFailure.

Starts tracking allocated objects.
(Memory Leak analysis only)

Stops tracking allocated objects.
(Memory Leak analysis only)

Runs the system garbage collector.
(Memory analysis)

Note: Make sure SaveNow is the last APl function call used in your code. It
stops data collection for the process, therefore all subsequent API

calls are ignored.

Note: The Snap Session Control API call produces a temporary objects
session file in memory analysis sessions. In order to capture memory
size data for objects allocated since the last garbage collection, insert
the RunGC API call before the Snap API call.

Understanding DevPartner

Location of API

The files below contain the session control API functions for use with
managed and unmanaged code, respectively. All are installed in the
\DevPartner Studio\Analysis directory of your DevPartner Studio
installation.

Managed code Visual DevPartner.Analysis.SessionControl.dl1
Studio applications

Unmanaged (native) code NmTxApi.h
C/C++ or C++ applications

Using the Session Control APIs with Managed Applications

To use the session control API functions in managed code Visual Studio
applications, you must reference
DevPartner.Analysis.SessionControl.d11 in your project.

This gives you access to the session control APIs in the DevPartner
namespace. You can insert calls to the API at appropriate points in your
code using the syntax shown below.
Clear

DevPartner.Analysis.SessionControl.Clear()
Snap

DevPartner.Analysis.SessionControl.Snap(<your session file
name>.dpxxx)

Where dpxxx is the extension for your analysis type: dpcov, dpmem,
dpprf, or dppxp.
SaveNow

DevPartner.Analysis.SessionControl.SaveNow(<your session file
name>.dpxxx)

Where dpxxx is the extension for your analysis type: dpcov, dpmem,
dpprf, or dppxp.

StartTrackingForLeakAnalysis
DevPartner.Analysis.SessionControl.StartTrackingForLeakAnalysis()

StopTrackingForLeakAnalysis
DevPartner.Analysis.SessionControl.StopTrackingForlLeakAnalysis()

RunGC
DevPartner.Analysis.SessionControl.RunGC()

Valid input for the Snap and SaveNow API functions includes:
¢ A file name

¢ A fully qualified path to a directory, terminated with a “\”
(backslash)

Appendix D @ Analysis Session Controls 369

¢ A fully qualified path including a file name
¢ Nothing (Null)

For information on how DevPartner treats the file and path information,
see “Saving Files through the Session Control API” on page 371.

If You Get a Security Exception

If you get a security exception when using the session control APIs to
profile a managed code application, it means that your security policy is
preventing normal DevPartner instrumentation of your code at runtime.
To remedy this, you must enable secure profiling.

Set the following global environment variable:
NM_NO_FAST_INSTR=1
Retry profiling the application.

Note: By default, assemblies need to have the SkipVerification
permission in order to be profiled. If you remove this permission
from the permission set of the policy under which the code executes,
or add imperative security declarations to the assembly that cause
this permission to be revoked, you will not be able to profile it. The
solution described above allows you to work around this issue,
although it does exact a slight performance penalty. If you choose
not to implement the solution described above, you can also enable
profiling of such assemblies with DevPartner Studio by either
changing the policy for the assembly using the .NET Framework
Configuration tool MMC snap-in, or by temporarily removing any
imperative security declarations in the assembly.

See the .NET Framework Developers Guide in the Visual Studio on-line help
for more information on security policy in Visual Studio.

Using the Session Control APIs with Unmanaged Applications

You can use the Session Control API to control coverage analysis and
performance analysis sessions for unmanaged C/C++.

Unmanaged (Native) C/C++ Projects

Before you can collect coverage data for your native C/C++ application,
you must rebuild your solution (or native C/C++ projects) with Native
C/C++ Instrumentation.

To use the Session Control API functions in native C/C++:

370 Understanding DevPartner

1 Include NmTxApi.h in a file to which you want to add Session Control
API calls. Add TxInterf.11ib to the link library list.

2 Insert calls to the Session Control API functions at appropriate points
in your code. See “Session Control API Syntax for Unmanaged
Projects” on page 371.

3 Rebuild the solution or individual native C/C++ projects with Native
C/C++ Instrumentation.

Unmanaged (Native) C++ Projects
Before you can collect coverage data for your native C++ application, you

must rebuild your project with instrumentation in Visual Studio.

Session Control APl Syntax for Unmanaged Projects

Refer to the information below for Session Control API syntax for
unmanaged projects.

Clear Clear()

Snap Snap(“<your session file name>.dpxxx”)
Where dpxxx is the extension for your analysis type: dpcov,
or dpprf.

SaveNow SaveNow(“<your session file name>.dpxxx”)

Where dpxxx is the extension for your analysis type: dpcov,
or dpprf.

Saving Files through the Session Control API

When you use the Session Control API to take data snapshots or create
final session files, you can specify the session file name and directory in
the API call.

File names and directories specified in Session Control API calls override
file names and directories specified by other means, for example, the
/output switch on the command line or the SESSION_FILENAME or
SESSION_DIR attributes in the XML configuration file.

¢ If you specify a file name and directory in the session control Snap or
SaveNow API call, DevPartner saves the file accordingly. If a file with
the same name exists in the directory, it will be overwritten.

¢ If you specify only a directory, DevPartner saves the session under a
unique file name based on the name of the target process. DevPartner
automatically increments the file name to avoid overwriting existing
files.

Appendix D @ Analysis Session Controls 371

¢ If you specify only a file name, DevPartner saves the session under
the specified name and determines the destination directory by the
means you used to start the application. If you started the application
from Visual Studio, the file is saved to the current project's solution
directory. If you started the application from the command line with
DPAnalysis.exe, the file is saved to the My Documents or
Documents directory of the active user account. If a file with the
same name exists in the directory, it will be overwritten.

¢ If you specify neither a file name nor a directory, DevPartner saves
the session with a unique file name and determines the destination
directory by the means you used to start the application, as above.
DevPartner automatically increments the file name to avoid
overwriting files.

Note: If your project does not have an output directory, for example, a

Visual Studio 2005 Web site project, DevPartner physically saves the
files to the project directory.

Note the following when specifying paths:

¢ DevPartner evaluates the path information relative to the current
working directory of the process being profiled. Be aware that in
some cases, the working directory can change as the application
executes.

¢ To ensure that you can easily locate your session files, it is a good
practice to specify the complete path.

¢ On the local machine, DevPartner creates the complete path if it does
not already exist. If you are collecting data on a remote machine, you
must specify an existing directory.

¢ If you intend to specify a path, but no file name, be sure to terminate
the path with a “\” (backslash). DevPartner treats characters
following the final backslash as a file name.

¢ [f the path contains invalid data, DevPartner saves the file as though
no directory was specified.

Interactions and Precedence

372

File names and directories specified in Session Control API calls override
file names and directories specified by any other means.

Recommendation: Set the file name and directory in either the API call
or the command line, but not both.

For example: If you specify only a directory (or a file name) in the
Session Control API, but specify a file name (or a directory) in the

Understanding DevPartner

DPAnalysis.exe command line or in the XML configuration file,
DevPartner combines the information to name and save the file. In this
example, if you intended to let DevPartner create unique file names, you
would have defeated your purpose.

Recommendation: To simplify file management, specify both snapshots
and the final session file with API calls.

For example: If you do not specify a final snapshot (SaveNow) through
the Session Control API, DevPartner takes a final snapshot when the
process terminates. If you started the application with DPAnalysis.exe,
DevPartner saves the final session file according to the options specified
on the command line or in the XML configuration file. If you started the
application from Visual Studio, DevPartner displays the unsaved session
data.

Appendix D @ Analysis Session Controls 373

374 Understanding DevPartner

Appendix E
Exporting Analysis Data to XML

4 Introducing DevPartner Data Export
& Exporting Analysis Data to XML
& Exporting Analysis Data to XML from the Command Line

This appendix contains information about exporting analysis data to
XML, which can be used with DevPartner coverage analysis, performance
analysis, and Performance Expert.

Introducing DevPartner Data Export

DevPartner allows you to export saved session files from coverage
analysis, performance analysis, and Performance Expert data to XML.
You can export the XML data from Visual Studio or from the command
line.

You can analyze the exported XML data using your own or third-party
software. For example:

¢ Use Export DevPartner Data on a development build server or QA
server where unit tests, functional tests, or regression tests are staged.
Analyze the exported XML data to monitor daily progress.

¢ Use Export DevPartner Data to collect data for longer-term analysis.
You can accumulate the XML data in a database or data warehouse in
order to:

¢ Integrate the data with development and QA methodologies,
tools and infrastructure

¢ Run custom analytics on the data

¢ Archive the data for historical or auditing purposes

375

Exporting Analysis Data to XML

From within Visual Studio, you can export saved DevPartner coverage
analysis (*.dpcov), coverage analysis merge (*.dpmrg), performance
analysis (*.dpprf), and Performance Expert (*.dppxp) data to XML
format.

To export to XML in Visual Studio:
1 Open a saved session file (see above).
2 Choose File > Export DevPartner Data.

By default, DevPartner saves the XML file in the folder where the session
file is saved and appends an .xm1 extension to the saved session file
name. For example, Chartl.dpcov.xml.

The file DevPartnerPerformanceCoveragexx.xsd defines the XML
Schema that DevPartner uses to export coverage analysis and
performance analysis data. The file
DevPartnerPerformanceExpertxx.xsd defines the XML Schema that
DevPartner uses to export Performance Expert data. Both schemas are
located in C:\Program Files\Compuware\DevPartner Studio\Analysis.

Note: For installs on 64-bit versions of Windows, DevPartner Studio is
located at: \Program Files (x86)\Compuware\DevPartner
Studio\Analysis\.

Exporting Analysis Data to XML from the Command Line

376

Usage

Options

As an alternative to using Visual Studio, you can use
DevPartner.Analysis.DataExport.exe from a command line to export
coverage analysis, coverage analysis merge, performance analysis, and
Performance Expert data to XML.

The utility is located in
C:\Program Files\Compuware\DevPartner Studio\Analysis.

Note: For installs on 64-bit versions of Windows, DevPartner Studio is
located at: \Program Files (x86)\Compuware\DevPartner
Studio\Analysis.

DevPartner.Analysis.DataExport.exe [sessionfilename |
pathtodirectory 1 { options }

/out[put]=<String> Specify the local or remote output directory for
exported XML files. Creates the directory if the
directory does not exist.

Understanding DevPartner

/rlecurse]

/f[ilename]=<String>

/showAll

/wlait]
/nologo
/help or /?

/summary

/method
/calltree

/maxpaths=<integer>

/maxmethods=<integer>

Search subdirectories for DevPartner session
files.

Specify the name of the XML output file.
Appends .xml to the name specified.

Shows all performance and coverage session
file data available in a performance or
coverage session file.

For example, if you export a performance
session file with this option, the resulting XML
file contains both performance and coverage
data fields.

This option is not available for Performance
Expert session files.

Wait for input before closing console window.
Do not display the logo or copyright notice.
Display help in the console window.

Export Performance Expert summary data
which includes a default maximum of the top
ten callpaths and the top ten methods that use
the most CPU resources. Use the

/maxpaths and /maxmethods options to
override the maximums.

The summary data displays by default.
Export Performance Expert method data.
Export Performance Expert call tree data.

Used only with Performance Expert. Exports
the specified number of the top call paths that
use the most CPU resources.

Used only with Performance Expert. Exports
the specified number of the top methods that
use the most CPU resources.

You can use an equal sign, a colon, or a space to separate an option from

the value or values you specify.

Devpartner.Analysis.Export.exe Usage Examples

The following examples show some of the ways you can use

DevPartner.Analysis.DataExport.exe.

Example 1: Export a coverage analysis session file to an XML file in the

same directory.

Appendix E ¢ Exporting Analysis Data to XML

377

378

DevPartner.Analysis.DataExport.exe
“c:\WindowsApplicationl\WindowsApplicationl.dpcov”

Output will be saved to:
c:\windowsAppTlicationl\WindowsApplicationl.dpcov.xml

Example 2: Export a performance analysis session file saved in one
location to another directory.

DevPartner.Analysis.DataExport.exe
“c:\WindowsApplicationl\WindowsApplicationl.dpprf”
/output="c:\temp”

Output will be saved to: c:\temp\WindowsApplicationl.dpprf.xm]

Example 3: Export multiple Performance Expert session files saved in the
same directory.

This example assumes two Performance Expert session files saved in the
same directory: WindowsApplicationl.dppxp and
WindowsApplication2.dppxp.

DevPartner.Analysis.DataExport.exe
“c:\WindowsApplicationl*.dppxp”

Output will be saved to:

c:\WindowsApplicationl\WindowsApplicationl.dppxp.xml
c:\WindowsApplicationl\WindowsApplication2.dppxp.xml

Example 4: Export multiple Coverage Analysis, Performance Analysis,
and Performance Expert session files saved in the same directory.

This example assumes three session files saved in the same directory:
WindowsApplicationl.dpprf; WindowsApplication2.dpcov; and
WindowsApplication3.dppxp

DevPartner.Analysis.DataExport.exe “c:\WindowsApplicationl”
Output will be saved to these three files:

c:\WindowsApplicationl\WindowsApplicationl.dpprf.xml
c:\WindowsApplicationl\WindowsApplication2.dpcov.xml
c:\WindowsApplicationl\WindowsApplication3.dppxp.xml

Example 5: Export a Performance Expert summary and change the
default output from the top ten methods to the top twenty methods that
use the most CPU resources.

DevPartner.Analysis.DataExport.exe
“c:WindowsApplicationlWindowsApplicationl.dppxp”
/summary /maxmethods=20

Output will be saved to:
c:WindowsApplicationlWindowsApplicationl.dppxp.xml

Understanding DevPartner

Index

Symbols

.dpmem file extension
memory analysis 179

.NET Framework analysis
error detection 48

.NET Framework call reporting
error detection 49

.NET Framework methods
coverage analysis 134, 227
performance analysis 230
Performance Expert 262

A
allocating memory

leaks from methods 196
allocation trace graph

memory analysis 166, 182, 195
analysis option element

XML configuration file 354
analysis session controls 365
analysis sessions

using the session control API 367
analyzing memory leaks

memory analysis 164
API

session control 368

system comparison 314
API call reporting, error detection 40
arguments element

XML configuration file 357
ASP.NET application

coverage analysis 142

memory profiling 212

performance analysis 236
ASP.NET modules in merge files 151
AutoAlert 330
automating data collection

Performance Expert 284

B
batch mode 346
bc.com 56
bc.exe 56
code review 93
DevPartner.Analysis.DataExport.exe 376
DPAnalysis.exe 345
error detection 56
Performance Expert 285
C
C++ 6.0
session control API 371
C/C++ project
session control API 370
calculation
Performance Expert data 261
Call Graph

code review 89
memory analysis 181, 201, 203
performance analysis 243
Performance Expert 261, 280
Call Stacks tab, Performance Expert 278, 282
Call Tree, Performance Expert 261, 281
call validation
error detection 36, 41
child methods
performance analysis 245
Performance Expert 261
Choose Columns dialog, Performance Expert 278
class list
memory analysis 171
classes profiled 171
code complexity

379

code review 85
code review
analyzing results 64
bad fix probability 86
batch mode 93
Call Graph 89
code complexity 85
code violations 80
collecting call graph data 61, 63
collecting metrics 85
collecting metrics data 61, 63
command line 93
excluding projects 61, 63
exporting data 96
filtering results 66
general options 70
getting started 60
Hungarian naming 101
metrics analysis 86
naming analysis 74, 98
naming guidelines, summary 79
naming violations 82
project types, supported 340
quick start 60
ready, set, go procedure 60
repairing violations 64
results window 65
Rule Manager 103
rules database 103
saving session files 68
selecting a rule set 62
selecting naming guidelines 61, 63
starting the session 64
summary of naming guidelines 79
summary of problems 79
collecting data
analysis, remote machines 363
coverage analysis 138
memory analysis 160
multiple processes, memory 212
Performance Expert 258
COM and DCOM
collecting coverage data 147
collecting performance data 242
COM call reporting
error detection 42
COM object tracking
error detection 43
combining coverage session files 142
command line
code review 93
DPAnalysis.exe 345

380 Understanding DevPartner

error detection 56
Performance Expert 279, 284
system comparison 313
XML export, analysis data 376
comparing sessions, performance 246
configuring IIS
coverage analysis 146
controlling analysis sessions
session control file 365
correlating data
coverage analysis 142
performance 235
coverage analysis
and Visual Studio Team System 155
classic Web script application 145
collecting from COM and DCOM 147
COM information property 135
configuring IE 147
correlated data 142
deleting temporary files 146
excluding images 136
exporting a CSV file 153
getting started 126
instrument unmanaged code 139
Instrumentation Manager 139
integration with error detection 154
managed project types, supported 342
merge property 134
merging session data 148
mixed code 140, 234
multiple processes 141
NMSource 146
overview 126
project types, supported 342
properties and options 134
quick start 126
ready, set, go procedure 126
remote systems 141
saving session files 133
security exception 138
session file names 133
session summary tab 131
source tab 131
startup project 134
unexpected file save dialog 143
viewer 153
volatility 148
Web applications 142
Web service 145
XML export 375
CPU/thread use 274
CRBatch.exe 94

CRExport.exe 96
critical path
in performance analysis 244
memory analysis 182, 201
Performance Expert 263, 282
CSV file
exporting from coverage 153
exporting performance data 248

data
collecting coverage analysis 138
collecting memory analysis 160
collecting performance analysis 231
collecting Performance Expert 258
combining performance 235
data calculation
Performance Expert 261
data collection
automating Performance Expert 284
data columns
adding to Performance Expert views 278
data export (XML)
code review 96
coverage, performance, Performance Expert 375
error detection 54
deadlock analysis
error detection 43
debugger
memory analysis 174
Performance Expert 259
deleting temporary files
performance analysis 240
development cycle
memory analysis 215
Performance Expert 292
DevPartner
and terminal services 9
and Visual Studio 5
and Visual Studio Team System &
installed features 6
instrumentation model 231
overview |
software development cycle 10
toolbar 7
Visual C++ BoundsChecker Suite Xiii
DevPartner Enterprise Edition 325
features 329
DevPartner.Analysis.DataExport.exe 376
differ service 303
differences found by system comparison 304

disk 1/0 274

displaying data, options for 229
distributed applications
memory analysis 211
Performance Expert 287
DPAnalysis.exe 346
analysis switches 346
command line 346
command line, analysis 345
sample XML configuration file 363
XML configuration file 349
dynamic class list
memory analysis 177

E

E-mail notification 330

error detection
NET Framework analysis 48
NET Framework call reporting 49
ActiveCheck 24
API call reporting 40
batch mode 56
call validation 36, 41
COM call reporting 42
COM obiject tracking 43
command line 56
configuration file management 53
data collection properties 39
deadlock analysis 43
deciding analysis scope 15
deciding error types 16
event logging 54
filter file 34
filtering errors 34
FinalCheck 25
fonts and colors 52
getting started 14
hiding filtered errors 36
leak errors 26
Locate in Transcript 21
managed project types 337
memory and resource viewer 29
memory block checking 37
memory errors 26
memory leak 29
memory overwrite detection 42
memory tracking 45
modules and files 50
pointer errors 26
program error detected 27
project types, supported 337
properties and options 37
quick start 14

o Index

381

ready, set, go procedure 14
resource leaks 29
resource tracking 49
results, interpreting 19
running 17
saving session files 23
settings 37
suppressing errors 31
suppression files 31
suppression libraries 31
system directories 51
viewing filtered errors 36
Visual Studio Team System 58
windows messages 54
event logging
error detection 54
example
exporting session files to XML 377
exclude images element
XML configuration file 358
excluding images
coverage 136
excluding time, performance property 228
exporting data
code review 96
coverage, performance, Performance Expert 375
CSV file from coverage 153
error detection 54
exporting to XML
examples 377

F
file element reference
XML configuration file 350
file 1/0 274
file save dialog, unexpected 143
file save dialog, unexpected 237
filter file
error detection 34
filtering errors
error detection 34
FinalCheck 25
Framework methods
coverage analysis 134, 227
performance analysis 230
Performance Expert 262

G

garbage collection
managed code 190
memory analysis 163

382 Understanding DevPartner

object life span 198
getting started

code review 60

coverage analysis 126

error detection 14

memory analysis 159

performance analysis 218

Performance Expert 255

system comparison 297

H
host element

XML configuration file 361
Hungarian naming, code review 101

identify execution paths 181
identifying

memory problems 186
IE

configuring for coverage analysis 147

configuring for performance analysis 242
IIS

configuring for coverage analysis 146

configuring for performance analysis 241
installing the system comparison utility 312
instrument inline functions, performance property
228
instrument unmanaged code

coverage analysis 139
instrumentation

coverage analysis 137

performance analysis 231
instrumentation level property, performance 229
Instrumentation Manager

coverage analysis 139

performance analysis 233
instrumenting code

performance analysis 233

L
language reference

Visual Studio 336
launch model

Visual Studio 275
live view

memory analysis 171
long-lived object 198

M

machine.config file, editing 144
managed code
garbage collection 190
memory problems 170
managed project
language reference 336
using the session control APT 369
managed project, supported
code review
coverage, performance analysis 342
error detection 337
McCabe metrics, collecting 85
measuring code changes 148
measuring RAM footprint 204
medium-lived objects 198
memory analysis
.dpmem file extension 179
allocation trace graph 166, 182, 195
analyzing collected data 164
ASP.NET application 212
Call Graph 181, 201, 203
class list 171
collecting data 160
critical path 182
defining memory leaks 190
development cycle 215
distributed applications 211
dynamic class list 177
features, benefits 171
force garbage collection 163
garbage collection 160, 188, 190
getting started 159
identifying scalability problems 199
interpreting real-time graph 200
interpreting results 191
introduction 158
leak analysis results 190
leaked memory graph 196
locating memory leaks 188
managing object references 167
memory leak definition 159
memory problems 159
memory related symptoms 170
multiple process data collection 212
navigating source tab 184
navigation frame 181
object distribution 205
object leaked memory graph 193
object life span 198
object reference 188, 207
object reference graph 166, 179

optimizing memory use 210
potential problem areas 187
project types, supported 344
properties and options 171
quick start 159
RAM footprint 204
ready, set, go procedure 159
real-time graph 171, 199
real-time graph patterns 176, 187
running a session 187
saving session files 169
scalability problem results 203
session control window 161, 175
session file 171
session file integration 179
source code view 166
source view 202
starting a session 174
temporary objects 197, 201
tools, symptoms 187
track system object 171
tracking leaks 161
viewing managed heap 171
viewing source code 184
Web applications 211
what is memory analysis? 158
memory and resource viewer
error detection 29
memory block checking
error detection 37
memory errors
error detection 26
memory leak
objects, methods 191
results summary 195
memory leaks
error detection 29
memory overwrite detection
error detection 42
memory problems
alternate approach 195
identifying 186
managed code, Visual Studio 170
symptoms 170
memory tracking
error detection 45
merge property, coverage analysis 134
merging session data with ASP.NET 151
merging session data, coverage 148
method
allocate most leaked memory 196
most leaked memory 191

o Index

383

mixed code
coverage analysis 140, 234
multiple processes
coverage analysis 141
memory analysis 212
performance analysis 234
Performance Expert 283, 287

N
name element

XML configuration file 360
naming analysis, code review 98
navigation frame

memory analysis 181
network I/O 274, 276
nmexclud.txt 137
NMSource 146, 240

O

object reference

memory analysis 160, 188

most allocated memory 207

most leaked memory 193
object reference graph

memory analysis 166, 179
object reference management

memory analysis 167
object sequencing for performance 167
options and properties 70

code review 69

coverage analysis 134

error detection 37

memory analysis 171

performance analysis 227

Performance Expert 271

P

parent methods
performance analysis 245
Performance Expert 261
path element
XML configuration file 356
performance
optimizing memory use 210
performance analysis 226
and Visual Studio Team System 252
call graph 243
collecting COM data 242
COM project property 228
comparing sessions 246

384 Understanding DevPartner

configuring IE 242
correlating data 235
critical path in call graph 244
display options 229
exclude others property 228
excluding images 230
exporting in CSV format 248
getting started 218
1IS, configuring 241
instrument inline functions 228
instrumentation level property 229
instrumenting code 233
managed project types, supported 342
multiple processes 2
NMSource 240
overview 218
project types, supported 342
quick start 218
ready, set, go procedure 218
recursive functions 242
remote systems 235
results 221
saving session files 226
security exception 232
session data 221
session summary tab 225
unexpected file save dialog 237
viewer 250
Web applications 236
Web script applications 238
XML export 375

Performance Expert
NET Framework methods 262
automating data collection 284
batch mode 285
Call Graph 261, 280
Call Stacks tab 278, 282
Call Tree 261
collecting data 258
command line 279, 284
data calculation 261
debugger 259
development cycle 292
distributed applications 287
DPAnalysis.exe 279, 284
exporting data to XML 290
multiple processes 283, 287
options and properties 271
path analysis vs. method analysis 261
project types, supported 344
properties and options 271
quick start 255

ready, set, go procedure 255

real-time graph 258

results summary 259

session controls 258

session files 270

session window 258

settings 271

solution properties 271

source code 278

source code on remote systems 284

startup project 272

system methods 262

troubleshooting 282, 288

usage scenarios 276

Web applications 282

XML configuration file 285

XML export 375

XML schema 291
plug-in, system comparison 317
process element

XML configuration file 352
profiled classes

memory analysis 171
program error detected, error detection 27
project types, supported

code review 340

coverage, performance analysis 342

error detection 337

memory analysis 344

Performance Expert 344
properties and options

code review 70

coverage analysis 134

error detection 37

memory analysis 171

performance analysis 227

Performance Expert 271

Q

quick start
code review 60
coverage analysis 126
error detection 14
performance analysis 218
Performance Expert 255
system comparison 297

R

RAM footprint
allocation trace graph 182
interpreting data 204

ready, set, go procedure
coverage analysis 126
performance analysis 218
Performance Expert 255
ready, set, go procedure
memory analysis 159
real-time graph
interpreting memory 187
Performance Expert 258
real-time graph patterns
memory analysis 176
Reconcile 329
recursive functions in performance analysis 242
registry keys, finding with system comparison 308
remote desktop 9
remote machines
collecting analysis data 363
remote systems
coverage analysis 141
memory analysis 211
performance analysis 235
Performance Expert 287
resource leaks
error detection 29
resource tracking
error detection 49
results
code review 64
coverage analysis 129
error detection 19
memory analysis, memory leak 190
memory analysis, real-time graph 200
memory analysis, scalability 203
performance analysis 221
Performance Expert 259
system comparison 301
Rule Manager, code review 103
runtime analysis element
XML configuration file 350

S

SamplePlugin.cs 318

saving session files
code review 68
coverage analysis 133
error detection 23
memory analysis 169
performance analysis 226
Performance Expert 270

scalability problem
interpreting results, fixing 203
memory analysis 199

¢ Index 385

solving memory issues 197
SDK

system comparison 314
security exception

coverage analysis 138

memory analysis 215

performance analysis 232

Performance Expert 275
service element

XML configuration file 359
session control API

analysis sessions 367

interactions and precedence 372

managed applications 369

saving session files 371

unmanaged applications 370
session control file

introducing 365

user interface, creating 366
session controls

coverage analysis 128

memory analysis 175

performance analysis 220

Performance Expert 258
session data

merging 148

performance analysis 221
session file integration

memory analysis 179
session files

comparing performance 246

memory analysis 171

naming, performance analysis 226

Performance Expert 270
saving, memory analysis 169
session control API 371
viewing outside Visual Studio 153
sessioncontrol.txt 365
settings
coverage analysis 134
error detection 37
memory analysis 171
performance analysis 227
Performance Expert 271
short-lived object 198
skipverification
security exception solution 215
snapshot API 314
snapshots
changing number kept 303
changing time 304
solution properties

386 Understanding DevPartner

coverage analysis 134

memory analysis 171

performance analysis 227

Performance Expert 271
solving memory problems

alternate approach 195
source code, viewing

code review 66

coverage analysis 131

memory analysis 184

on remote systems, Performance Expert 284

performance analysis 224

Performance Expert 278
source file

coverage analysis, changing 150

memory analysis, changing 186
source tab

memory analysis 184
source view

memory analysis 202
startup project

coverage analysis 134

memory analysis 159

performance analysis 227

Performance Expert 272
summary tab

coverage analysis 131
supported project types 335
suppressing errors

error detection 31
switches

DPAnalysis.exe 346
synchronization wait time 274
syntax

session control API 371
system comparison

analyzing results 301

categories of differences 304

changing settings 303

command line 313

finding files 309

gathering different data 317

getting started 297

installing 312

overview 296

plug-in 317

quick start 297

ready, set, go procedure 297

registry keys 308

SamplePlugin.cs 318

SDK 314

service 303

snapshot API 314

system methods
coverage analysis 134, 227
performance analysis 230
Performance Expert 262

T
target element

XML configuration file 351
temporary files

deleting, performance 240
temporary objects

analysis summary 203

memory analysis 197, 198, 201
terminal services 9
toolbar, DevPartner 7
track system object

memory analysis 171
tracking memory leaks

memory analysis 161
TrackRecord

integration with DevPartner 332

merging coverage sessions 332

submitting sessions 332

toolbar buttons 332

U
unmanaged applications
session control API 370
unmanaged project
language reference 336
using XML exported analysis data 375
utilities, command line
bc.com 56
bc.exe 56
CRBatch.exe 94
CRExport.exe 96
DPanalysis.exe 346
DPAnalysis.exe, options 346
XML export, analysis data 376

Vv

violations, code
code review 80
violations, naming
code review 82
Visual Studio
language reference 336
launch model 275
managing memory problems 170

Visual Studio integration 5
Visual Studio Team System
overview of support 8
submitting coverage data 155
submitting performance data 252
volatility, shown with coverage analysis 148

W
wait time 274
weak references 167
Web applications
coverage analysis 142
memory analysis 211
performance analysis 236
Performance Expert 282
project types, supported 335
Web script applications
coverage analysis 145
performance analysis 238
Web service
coverage analysis 145
performance analysis 240
web.config
coverage analysis requirements 143
performance analysis requirements 236
Performance Expert requirements 283
windows messages
error detection 54
working directory element
XML configuration file 357

X
XML
exporting code review data 96
XML configuration file
DPAnalysis.exe 349
file element reference 350
Performance Expert 285
sample files, location 363
XML schema
coverage, performance location 376
Performance Expert 291
XML schema file 376

o Index

387

	Table of Contents
	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	For More Information

	Introducing DevPartner
	What is DevPartner Studio?
	Error Detection
	Static Code Analysis
	Coverage Analysis
	Memory Analysis
	Performance Analysis
	In-Depth Performance Analysis
	System Comparison

	DevPartner and Visual Studio
	Menus and Toolbars in Visual Studio
	Using DevPartner in Visual Studio
	Integrated Online Help

	Visual Studio Team System Support
	Using Terminal Services and Remote Desktop
	Licensing
	Running Multiple Sessions Under Terminal Services

	DevPartner in the Software Development Cycle

	Error Detection
	What is Error Detection?
	Using Error Detection Out of the Box
	Ready: Deciding the Scope of Error Detection Analysis
	Set: Configuring Options and Settings
	Go: Running Your Solution with Error Detection
	Analyzing the Data in the Results Pane
	Saving Session Files

	Deciding When to Use ActiveCheck vs. FinalCheck
	Understanding ActiveCheck
	Understanding FinalCheck
	Comparing ActiveCheck and FinalCheck - An Example

	Using the Program Error Detected Dialog Box
	Understanding the Actions You Can Take

	Understanding the Memory and Resource Viewer Dialog Box
	Exploring the Memory and Resource Viewer User Interface

	Understanding the Suppression and Filtering Dialog Boxes
	Suppressing Errors
	Filtering Errors

	Understanding Call Validation
	Enabling Memory Block Checking

	Using the Settings Dialog Box
	Setting General Properties
	Setting Data Collection Properties
	Setting API Call Reporting Properties
	Setting Call Validation Options
	Setting COM Call Reporting Properties
	Setting COM Object Tracking Options
	Setting Deadlock Analysis Options
	Setting Memory Tracking Options
	Setting .NET Framework Analysis Options
	Setting .NET Framework Call Reporting Properties
	Setting Resource Tracking Options
	Setting Modules and Files Options
	Setting Fonts and Colors Options
	Setting Configuration File Management Options

	Tracking Windows Messages and Event Logging
	Exporting Data to XML
	Exporting Data from within Visual Studio
	Exporting Data from the Error Detection Standalone Application
	Exporting Data from the Command Line

	Running Error Detection from the Command Line
	Command Line Options and Syntax
	Running FinalCheck from the Command Line

	Submitting Data to Visual Studio Team System
	Visual Studio Team System Support in DevPartner Error Detection

	Static Code Analysis
	What is Code Review?
	Using Code Review Out of the Box
	Ready: Deciding How You Want to Run the Review
	Set: Selecting Options and Settings
	Go: Starting Your Code Review Session
	Analyzing the Results and Repairing Violations
	Saving Session Files

	Setting Options
	Configuring General Options
	Setting Naming Guidelines Options
	Managing Suppressed Rules

	Suppressing Rules
	Viewing Summary Data
	Viewing Code Violations
	Viewing Naming Violations
	Analyzing Hungarian Results
	Analyzing Naming Guidelines Results

	Viewing Collected Metrics
	Understanding McCabe Metrics

	Viewing Call Graph Data
	Understanding Call Graph References
	Setting Call Graph Configuration Options

	Using the Command Line Interface
	Understanding the Error File

	Exporting Data to XML
	Exporting Session Data from within DevPartner
	Exporting Session Data from the Command Line
	Exporting Session Data from a Batch Process

	Understanding Naming Analysis
	Understanding the Naming Guidelines Naming Analyzer
	Understanding the Hungarian Naming Analyzer

	Using the Code Review Rule Manager
	Configuring Rules
	Configuring Triggers
	Configuring Rule Sets
	Configure Hungarian Name Sets
	Manipulating the Rule List

	Creating New Rules Using Regular Expressions
	Matching Lines Exceeding 90 Characters
	Matching Tabs Used Instead Of Spaces
	Matching Instances Where Code Catches System.Exception
	Matching Methods Having More Than One Return Point
	Enforcing Initialization Of Variables When They Are Defined
	Matching Instances Of More Than One Statement Per Line
	Ensuring Open Braces Are Placed On A Separate Line
	Ensuring Loop Counters Are Not Modified Inside the Loop Bodies

	Submitting Data to Visual Studio Team System
	Visual Studio Team System Support in DevPartner Code Review

	Automatic Code Coverage Analysis
	What is Coverage Analysis?
	Using Coverage Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Coverage Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options
	Excluding Images

	About Instrumentation
	Collecting Data from Various Types of Applications
	Collecting Data From Managed Code
	Collecting Data for Unmanaged Code
	Collecting Data from Multiple Processes
	Collecting Data from Remote Systems
	Collecting Data From .NET Web Applications
	Collecting Data from Classic Web Script Applications
	Web Service Requirements
	Deleting Temporary Files from NMSource
	Configuring IIS for Data Collection
	Configuring Internet Explorer for Coverage Analysis
	Collecting Data from a Service
	Collecting Data from COM and COM+ Applications

	Merging Session Data
	Reviewing Merge Data
	Merge States
	ASP.NET Modules in Merge Files
	Merge Settings

	Exporting Coverage Data
	Controlling Data Collection
	Analyzing from the Command Line
	Using the Coverage Analysis Viewer
	What You Can Do in the Coverage Analysis Viewer
	What you Cannot Do in the Coverage Analysis Viewer

	Integration with DevPartner Error Detection
	Submitting Data to Visual Studio Team System

	Finding Memory Problems
	What is Memory Analysis?
	Using Memory Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Memory Analysis Data
	Analyze the Memory Analysis Data
	Saving Session Files

	Memory Problems in Managed Visual Studio Applications
	How Memory Analysis Helps You

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options

	Starting a Memory Analysis Session
	Using the Session Control Window in Memory Analysis
	Using the Object Reference Graph
	Using the Call Graph to Identify Execution Paths
	Using the Allocation Trace Graph
	Viewing and Editing Source Code

	Identifying Memory Problems
	Running a Memory Analysis Session
	Locating Memory Leaks
	Running a Memory Leaks Analysis Session
	Understanding Memory Leaks Analysis Results
	Alternate Methods of Solving the Problem

	Solving Scalability Problems with Temporary Objects
	Examples of Scalability Problems
	A Possible Cause: Temporary Objects
	Running a Temporary Objects Analysis Session
	Identifying Scalability Problems
	Analyzing Temporary Object Data
	Interpreting Results to Fix Scalability Problems

	Using RAM Footprint to Improve Performance
	Measuring RAM Footprint
	Optimizing Memory Use

	Analyzing Web Applications with Memory Analysis
	Collecting Server-side Memory Data
	Collecting Data from Multiple Processes
	Prerequisites for Analyzing Web Applications
	Running a Memory Analysis Session on a Web Application
	If You Get Unexpected File Save Dialogs or Saved Session Files
	If You Get a Security Exception

	Using Memory Analysis In Your Development Cycle
	Submitting Data to Visual Studio Team System

	Automatic Performance Analysis
	What is Performance Analysis?
	Using Performance Analysis Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Performance Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options
	Excluding Images

	About Instrumentation
	Collecting Data from Various Types of Applications
	Collecting Data From Managed Code
	Collecting Data from Unmanaged Code
	Collecting Data from Multiple Processes
	Collecting Data from Remote Systems
	Collecting Data From .NET Web Applications
	Collecting Data from Classic Web Script Applications
	Web Application Data Collection Tips
	Web Service Requirements
	Deleting Temporary Files from NMSource
	Configuring IIS for Data Collection
	Configuring Internet Explorer for Data Collection
	Collecting Data from a Service
	Collecting Data from COM and COM+ Applications
	Collecting Data for Recursive Functions

	Analyzing a Call Graph
	Child-side Analysis
	Parent-side Analysis

	Comparing Sessions
	Interpreting Session Comparison Results

	Exporting Performance Data
	Controlling Data Collection
	Analyzing from the Command Line
	Using the Performance Analysis Viewer
	What You Can Do in the Performance Analysis Viewer
	What you Cannot Do in the Performance Analysis Viewer

	Performance Analysis Tips for .NET Applications
	Submitting Data to Visual Studio Team System

	In-Depth Performance Analysis
	What is Performance Expert?
	Performance Expert and Performance Analysis

	Using Performance Expert Out of the Box
	Ready: Consider What You Want to Analyze
	Set: Properties and Options
	Go: Collect Performance Expert Data
	Analyze the Data
	Saving Session Files

	Setting Properties and Options
	Solution Properties
	Project Properties
	Options

	Finding Application Problems with Performance Expert
	Accounting for Child Methods
	Usage Scenarios
	Identifiable Performance Problem
	Scaling Problem in an Application
	Performance Slow but No Specific Issue

	Collecting Data from Web Applications
	Managed Code Only
	web.config Requirements
	Multiple Process Profiling
	Single Process Profiling on IIS 6.0
	No Remote Session File for Components Running Under DLLHOST
	Source Code on Remote Machines
	Session Files Saved to Open Solution

	Automating Data Collection
	Using Command-line Switches
	Using an XML Configuration File

	Collecting Data from Distributed Applications
	Enabling Remote Data Collection with DPAnalysis.exe
	Saving Session Files on Remote Machines
	Collecting Data with Terminal Services or Remote Desktop
	Remote Profiling and Windows XP Service Pack 2
	Firewalls and Remote Data Collection

	Exporting DevPartner Data to XML Format
	Using Performance Expert with Performance Analysis
	Performance Expert in the Development Cycle
	Submitting Data to Visual Studio Team System

	System Comparison
	What is System Comparison?
	Using System Comparison Out of the Box
	Ready: Consider What You Want to Compare
	Set: Prepare for System Comparison
	Go: Make a Change and Create a Snapshot
	Analyze Results

	The System Comparison Service
	Changing Automatic Snapshot Settings

	Categories of Differences
	Comparing Registry Keys
	Comparing Specific Files
	Installing Without DevPartner
	Running the Comparison Utility from the Command Line
	Software Development Kit
	System Comparison Snapshot API
	Taking a Snapshot
	Logging Messages
	Reporting Progress

	Writing a Plug-in
	What is a Plug-in?
	Plug-in Sample Step By Step Instructions
	Creating and Testing Your Plug-in
	Modifying a Deployed Plug-in
	Highlights of the Plug-in Schema
	About the Redistributable Assemblies

	About DevPartner Studio Enterprise Edition and TrackRecord
	What Is DevPartner Studio Enterprise Edition?
	The Development Process

	The DevPartner Studio EE Solution
	Improved Project Control
	Higher Software Quality
	Improved Productivity

	Feature Overview
	Requirements Management
	Merging Coverage Data
	Project Activity Tracking
	Automatic Notification of Changes
	Customizable Workflow
	Remote Access via the Web
	Central Store of Shared Information

	About TrackRecord and DevPartner Studio
	DevPartner Studio Interaction with TrackRecord
	Defect Submissions

	TrackRecord and DevPartner Studio Coverage Analysis

	DevPartner Studio Supported Project Types
	Supported Project Types
	Error Detection Supported Project Types
	Code Review Supported Project Types
	Coverage Analysis, Performance Analysis, Memory Analysis, and Performance Expert Supported Project Types

	Starting Analysis from the Command Line
	Introducing DPAnalysis.exe
	Running DPAnalysis.exe from the Command Line
	Using DPAnalysis.exe with an XML Configuration File
	XML Configuration File Element Reference
	Profiling Web Applications with the XML Config File

	Collecting Analysis Data from a Remote Machine

	Analysis Session Controls
	Introducing Session Control Files
	Creating a Session Control File Within Visual Studio
	Using the Session Control API
	Using the Session Control APIs with Managed Applications
	Using the Session Control APIs with Unmanaged Applications
	Saving Files through the Session Control API
	Interactions and Precedence

	Exporting Analysis Data to XML
	Introducing DevPartner Data Export
	Exporting Analysis Data to XML
	Exporting Analysis Data to XML from the Command Line
	Devpartner.Analysis.Export.exe Usage Examples

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

