Appendices

ACUCOBOLGT®

Version 8.1

Micro Focus

9920 Pacific Heights Blvd
San Diego, CA 92121
858.790.1900

© Copyright Micro Focs (IP) Ltd. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “The new face of COBOL” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

E-01-AP-080924-Appendix-8.1

Contents

Appendix A: Specifications

AL COBOL MOUUIBSvveviiieiiee sttt ettt ettt sbe e s be b sbeenbesbeenrenas A-2
y AN g T ES3E Ta o Lo A-2
AL EXEENSIONS ...eivieiiee ettt e st e e tee et e s bbeeebe e s beesrbeeabeestbeenbeesaee s sbeesbeeerbeens A-4
AL RESITICHIONS ..ottt ettt ettt st e et e e sbeeebe e sbeeenbeesbeesbeeebeeetbeenns A-10

Appendix B: ACUCOBOL-GT Reserved Words

LS8 001 01 V/=T) 1o 1R B-1
B.2 RESEIVEA WOIT LiSt......eviiiiiiiiieiie sttt sttt s bt ebta e s st e s s ssta e s sabae s sabee s B-2

Appendix C: Changes Affecting Previous Versions

C.1 Changes Afecting Version 8.1coveiiiieiiiiesisie st C-2
C.2 Changes Affecting Version 8.0 ..ot C-2
C.3 Changes AffECtiNg VEISION 7.2 ..ottt C-3
C.4 Changes AffeCting VErSION 7.1ccooiiiiiiiiiiiirieeie e C-4
C.5 Changes Affecting VErsion 7.0ccooviviiievirceeeieee e sre e C-5
C.6 Changes AffeCting VErsSiON 6.2c.coviiviiiiieririieeeeee e snens C-5
C.7 Changes AfeCting Version 6.1cccoeiiriieiiiienisiese et C-8
C.8 Changes Affecting Version 6.0 ..ot C-9
C.9 Changes Affecting Version 5.2cooiiiiiiiiiiieeeeees e e C-10
C.10 Changes Affecting VErsion 5.1cccviiiriiniiinieie et C-14
C.11 Changes Affecting Version 5.0cccccvvvivieiiniieieiees e C-17
C.12 Changes Affecting VErsion 4.3ccooieieiie e C-19
C.13 Changes Affecting VEISION 4.2cccvoieieiie e C-21
C.14 Changes AFfecting Version 4.1coce ittt e C-23
C.15 Changes Affecting VErsion 4.0cccoeiriiniiineie e C-23
C.16 Changes Affecting VErSioN 3.2.......cccciiiiiiineiniee e C-24
C.17 Changes Affecting VErsion 3.1ccocvviviieiieiiriieiceee e c-27
C.18 Changes Affecting VErSIiON 2.4cccoeiiiiieieeiece et C-28
C.19 Changes Affecting VErsion 2.3cccoiriiiieieeiecesiese et C-29
C.20 Changes AFfecting Version 2.1cccoiiiiiiiniieieeee et e C-30
C.21 Changes Affecting VErsion 2.0cccveiiiiniiineienee et C-33
C.22 Changes Affecting VErsion 1.5........cccviiiiiiniiineie e C-33
C.23 Changes Affecting VErsSion 1.4ccccvcovvvieiereeice e C-36

C.24 Changes Affecting VErsion 1.3cccoieiiiieiiiiec e C-39

Contents-ii

Appendix D: Compiler Error Messages

200 0 To 0T o) o D-2
[I A i = (0 £ D-2

Appendix E: File Status Codes

E.L INTrOQUCTION ..ottt bbb e ettt et st nne e E-2
E.2 TADIE OF COUBS....c.eeeiiee et s ene E-2
E.3 Vision Secondary Error Codes for Error 98s.........c.coveiiiiniieniene e E-8
E.4 Transaction ErrOr COUEScueiiiiiiiresieste et st e et E-10

E.4.1 Primary Error COUES.ociriiriiirieierieie ettt E-11

E.4.2 Secondary Error Codes for Error OL........ccccevvvieieieninsnnesie e e E-12
E.5 IBM DOS/VS ETOr COUESeveveieiirieierieienieie st st sre ettt sttt E-13

Appendix F: Intrinsic Functions

I 1o (oo [0 Tox 1 o o SRS SRRSO F-2
F.2 Function Definitions and RetUrNed ValUES...........coccveeiiiiiriiiiie e F-3

F.2.1 FUNCEION DEfiNItIONSooiiiiiie ettt sre e F-4
F.3 ABSOLUTE-VALUE (ABS) FUNCLIONccveiiiiiiiiseiseis e F-7
F.4 ACOS FUNCHION. ...ttt ettt ettt ettt s b et e st s ebe e sbaesabe e s beesabeesbessabeenbeesnbeenns F-8
eI AN N VL0 2 T Tox £ o o F-9
F.B ASIN FUNCHIONecviiticiece ettt ettt st s sbe st e sbeeraesbeebbebeeneenreenns F-10
F.7 ATAN FUNCLION .ottt ettt sttt ev e s be ettt sbeera et e sbs et e eneenreenes F-10
F.8 CHAR FUNCLION ...ttt sttt sttt e s e be e saaeebe e s taeebeesnee s F-11
F.O COS FUNCLION ..ttt ettt ettt et b e e bee s te e sbeesaeeebeestbeenbeesaee s F-11
F.10 CURRENT-DATE FUNCLION......cciiiiiiite ettt ettt s sva e v F-12
F.11 DATE-OF-INTEGER FUNCHON......cciti ittt ettt svaa e s srae e F-13
F.12 DAY-OF-INTEGER FUNCHON......c.ccciiiiiiiiiie ittt era e sre e F-14
F.13 FACTORIAL FUNCHION. ...ttt sttt st be e nre e F-15
F.14 INTEGER FUNCLIONviitiicie ettt ettt sttt et sba et st sreene F-15
F.15 INTEGER-OF-DATE FUNCLION......cccciiiitiitieieitt ettt sttt sv e sve s nreens F-16
F.16 INTEGER-OF-DAY FUNCLION......coioiiiitiieiitie et see s tte sttt s ettt e sebee s stes e sevaaessreee e F-16
F.17 INTEGER-PART FUNCION.ciiiiii ettt ettt et s ettt s eteee st veesstaa s sbesssrene s F-17
F.18 LENGTH FUNCLION ..cviittcie ettt ettt sttt st sbe bt enn v ene F-18
F.L1O LOG FUNCHIONeiti ettt sttt ettt a et e s te e sbe e sbaeebe e sraeenbeennee s F-19
F.20 LOGILO FUNCLIONviiiicte ettt sttt eve sttt sttt sbesbs et e ane v ens F-19
F.21 LOWER-CASE FUNCLION ...ocviiciiiieiceictie ettt st sttt sr s sra e F-20
Y A G =13 Tox [PR F-21

F.23 IMEAN FUNCLION 1ottt ettt ettt s e s et e st e e s et a e s st e e e ssbeeesbaesesabeesssreneas F-22

Contents-iii

F.24 MEDIAN FUNCLION ..ottt ittt sttt sre e sbe et sbeetr e baenbesbeensesbesnnesteannens F-22
F.25 MIDRANGE FUNCLION ...viiviiiiieiccte ettt sb et b e sts e sbe e sreanaens F-23
F.26 MIN FUNCLION ..ottt ettt ettt st et st e e be e b e s ebeeebee e beeebaesareeras F-24
[Y (@] 2N T4 Tox £ o] o PSR F-24
F.28 NUMVWAL FUNCLION ©1ictiiiticiiccteci ettt sttt sbe e sbe v e sbe e svesreesbesnaesreareens F-25
F.29 NUMVAL-=C FUNCLION 1.ttt sttt sttt ettt e b ste e sbesnnesbeenaens F-26
F.30 ORD FUNCLION......ciitiiice ettt ettt et s be e s be e s abe e s beesate e sbeesaeeenbeesees F-28
F.31 ORD-MAX FUNCHIONcoiiiiiitiiciccti ettt st sbe e s re e F-28
F.32 ORD-MIN FUNCLION 1.ttt ettt sttt sb et e st sve st sbe st sreaneens F-29
F.33 PRESENT-VALUE FUNCHIONoiitiei ittt ettt sttn st ev e s F-30
F.34 RANDOM FUNCLION w....oiitiiiicite ettt sttt sbe et sbe v sbeennesbesaesreeneens F-31
F.35 RANGE FUNCLION ..ottt ettt ettt sbe et esbeebesbeennesbeesaesbeennens F-32
F.36 REM FUNCLIONveiitiiiiec ettt sttt st et st be e sba e beesane s be e ebaesnre e e F-32
F.37 REVERSE FUNCLIONvcitiiiiiti ettt sttt sre et sbn st sve e F-33
F.38 SIN FUNCHION....ccuiiiitiecie ettt ettt s e b e e abe e steeeabe e sbe e snteenbeesnas F-33
F.39 SQRT FUNCLION . ..c..iiiieiceietieie sttt sr et st e s e eneeseerensennens F-34
F.40 STANDARD-DEVIATION FUNCLIONccviiiiiiiiec ettt sve e ne F-34
FLAL SUM FUNCLION 1..viiticitece ettt sttt s te et sbesbe e sbeebseebesneesaesbeesbesraesresreens F-35
F.A2 TAN FUNCHION ...ttt ettt sttt s be e s abe e be e saee e sbe e saaeenre e e F-36
F.43 UPPER-CASE FUNCLIONcviitiiiiiti ittt sbe et sbe st st F-37
F.44 VARIANCE FUNCHION ...ccviiiiiiiiic ettt sttt svs st sba et s ae F-37
F.45 WHEN-COMPILED FUNCLIONovviiiitie ettt sttt svtee st sana e F-38

Appendix G: Reserved for Future Use

Appendix H: Configuration Variables

[0 oo [0 Tod o o TSP H-2
H. 1.1 Variable SYNTaX.......cccoviiiiiiirinee ettt see e naens H-2
H.1.2 Variable USAQE........ccoviiiiiiie ittt H-3
H.1.3 Nested configuration fileS..........cccueiiiiiiiiece e H-4

H.2 Configuration VariableS..........c.oiiiiiiii e s H-5
BD_LINES ..ttt bt e e b e nreenb e H-5
AGL_COLUMN _CASEooeirceeeeeeeeie s sesie s H-6
A = 1 OSSOSO PSUTSRPPRPRRPRN H-7
A _CHECKDIV .ottt ettt H-7
AL DEBUG . ..ottt bbbt H-8
AUDISPLAY oo e bbbttt H-8
A _EXTFH_FUNC ..ot H-8

A EXTFH_LIB oo H-9

Contents-iv

A_EXTFH_SIMPLE_OPEN_OUTPUT ..ottt H-10
A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQccooiiiiiiieiieiieieet et H-10
A _JAVA _CHARSET ..ottt bbbt H-11
A_JAVA_GC_COUNT .ttt H-11
A_JAVA_TRACE_FILENAME ..o H-12
A_JAVA_TRACE_VALUE. ... H-12
A_LICENSE_RETRIESctoiiieiieeee et H-13
A_OPERATING_SYSTEM ..ottt H-14
A_REMOVE_EMPTY_ERROR_FILEc.coiiitiiriiiiiiriciee et H-14
A_RETRY_DELAY ..ottt ettt H-14
A_SEQ_DEFAULT_BLOCK_SIZE........ccooiireeiiriceneeeene e H-15
A_SYSLOG_HOSTNAMEoo ittt H-15
A_SYSLOG_ON_RUNTIME_ERROR........cccoeittririeieiririeieeeisee e H-15
ACCEPT_AUTO ..ttt bttt bbbt H-16
ACCEPT_TIMEOUT ..ottt bt H-16
ACTIVE_BORDER_COLORcoiiiiiitiieie ettt H-16
ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT ..ot H-17
ACU_USER_DIR ..ottt H-18
ACUGCOBOL ...ttt bbbt H-19
AGS_MAX_SEND_SIZE ..ottt H-19
AGS_RECEIVE_BUFFER_SIZEccoiiiiiiiiirieeeeee e H-19
AGS_SEND_BUFFER_SIZEccooiiiiiiiiieeee e H-20
AGS_SOCKET_COMPRESScootiiirireiinireeene s H-20
AGS_SOCKET_ENCRYPT ...ttt H-21
AGS_TCP_NODELAY ...ttt H-21
alfred Configuration Variables ... H-22
ALLOW_FS_OVERRIDEcceoitiitiit et H-22
ANSI_OUTPUT_IN_DEBUGcciiiiiiiiiriesese et H-22
APPLY _CODE_PATH ..ottt H-23
APPLY _FILE_PATH ..ottt H-23
AUTO_DECIMAL ...ttt H-24
AUTO_PROMPT ..ottt bttt bbbttt b e H-24
AXML_CREATE_SCHEMA ..ottt H-24
AXML_CREATE_STYLE ...ttt H-25
AXML_ENCODING ..ottt H-25
AXML_EXACT_TABLE_MATCH ..ottt H-26
AXML_IGNORE_EMPTY_DATA ..ottt H-26

AXML_SCHEMA _DOC.......cciiiiiiiiiiii s H-27

Contents-v

AXML_SCHEMA_NAMEcorieveeeeeeseeeeeeeseesseeeseeessessesseeesesseesseeesesssessee e H-28
AXML_SCHEMA_NAMESPACE_DATAomioeeeeeeseeeseeeeesessesesessssssssseessesseeees H-28
AXML_STYLESHEET_HREF and AXML_STYLESHEET _TYPE ...ovvvvvvveerrrenenn H-29
BACKGROUND_INTENSITY woovvoooreeeeeeeeoereeeeeseeeeessessseessesssessssessesssessssessesssesseees H-29
=1 X oY H-30
BOXED_FLOATING_WINDOWS........ovvecoeereeeeeereesseseeeeesseeseseseeesesseessseeessseeseee H-30
BTRV_MASS_UPDATEcoiroveeereeseeeeeeeesessseeeeeessesssesseeeseessessseosssessessssessesssesseees H-30
BTRV_NOWRITE_WAIT c.ccoriveeeeeeeeeeeeseeesee e sesssesseeeeseeesesssseesesssessseeesssesseees H-31
BTRV_USE_REPEAT _DUPS......coeiieeeereeseeeeeeeseesseesseessesssessseeesessessseeseesssesseees H-31
BUFFERED_SCREENvccooueeoveeeooeseessseesseesseesssessesssssssessessssssssessesssessssessesssesseees H-31
o7 NI SN S] 4 =S H-32
CANCEL_ALL_DLLS...vccooeeeveeereeeeeeeeeeseeeseeseeeeesssesseeeeseeseesseeesssseessseeeesesssseeens H-32
CARRIAGE_CONTROL_FILTER wvvveeooeeeeeeeeoeeeeeseeeseeeeseeseeseesseesseesesssesseesseeen H-32
CBLHELP .o eeee s esees s s eseseeessesssee e esessesees H-33
CGI_AUTO_HEADERoiovveeeeeeeesseeeeeeeeseseseeeesssssseseessssssssesesessessssessessesssseens H-34
CGI_CLEAR_MISSING_VALUEScormmeereveeeeeeseseeeeeessssessseeseessessssssseesessssesss H-34
CGI_CONTENT _TYPE ..o eeeeeeeeeeseeeseeeeeeseesseeeeesseessseeeesssessseeseeseesesees H-34
(1T I (e XN o7-Xo! 5 | H-36
CGI_STRIP_CR ceooooteeeeeeeseeeeeeeeeeeeeeseeesee e seseeaeeessesseeseseessssseseeeesessseeeesessssees H-36
CHAIN_IMENUS......ooivvveeeeeeeeeeee e seeseeseeessseseeseeesessseesseesssessseseeessessseseeesesssseees H-37
CHECK _USING.....orivvveeeeeeeeeeeeeeseseseseesesssesseeesseessessseossessssseesseessessseesesssssseesseeen H-37
CISAM_COMPRESS._KEY'Soocooeeervoeeeeseseeseseesessssssesssssssessssessessesssssssesssssssesnns H-38
CLOSE_ON_EXIT eoooevveeeeeeeeeeeeeeeeeeeseeeeeeseseseeeseeseesseeeeesseessseseessseseseessssessesees H-38
COBLPFORMcoomrieereeseseseeeeeeeseeeeeesseeeseessseseeeeesseesseeeeesesessseseeeeseseseeeesesseseens H-39
[070] 0 =3 o7 X{ NPT H-39
CODE_IMAPPING ..o evvveeeeeeeeeeeeeeseseeseeeseessseseeseessessseesseessesssseseeesssssseseeesesssseesns H-40
CODE_PREFIXcootiiovveeeeeseseseeeseeessssssessesssssssesseessssssessssesssssssesseessssssesesessssssseses H-42
(0300 =1 U= =l) OO H-42
CODE_SYSTEM....ooivvveeeeeeeeeeeeeeeeseeeseeseessseseeeeesssesseeeeessessssesesessessseeeeesessesees H-43
COLOR_IMAPoooeeieeeeeseeeeeeeeeeseeeeeeseee e eseeeeeeeeesseee e sssese e sesee s ssseens H-44
COLOR_IMODEL....oovvveeeeeeeeeeeeseeeseeseeseessssseeseesseesseesseseseessseseeessessseeesssesssseesns H-44
COLOR _TABLEoorivvveeeeeeeeeveeeeeeeseeseesseesssessesesssssseessesesesssesssesssessseesessessssseseons H-46
COLOR_TRANS.....eeeevveeeeeeeeeseeseeeesssseseesseeessssseessessssssesssesesssssessseesssssssssseessssssseneons H-48
COLUMN_SEPARATION ..o seeveeoeeeseseseessessessseessesssssssesesessssssssssessessssesseons H-49
COMPRESS_FACTORieoeveeeeeesseeeeeeeeseseseseeesessessseeesesseesssessesssessseessssessssees H-49
COMPRESS_FILES ..oov.ccooeeeeeeeeoeeeseseeeeeeesseesseeeeesseeseeesessesseseessesssesssesessssssee e H-49
CONTROL_CREATION_EVENTS -..ovvecoeeeeeeeeeeeesseseeeeesessessesessessesssseesesseesssees H-50
CURRENCY ..oovocooteeeeeeeeeeseeeeeseeeeeeesesseeseseessssseessesssssseesseesssssseseeessessseseeesesseseees H-50
CURSOR_IMODE ..eeoovvveeoeeeeeeeeseeeseseesesseeessssseessessesssesssessessssessseessssssessesesssseeseons H-50

CURSORL_TYPE ..ottt H-51

Contents-vi

DEBUG._NEWCOPYooomimveeeeeeseeeeeeeeeseseesseeessesesssessessesssseesesssessesesesssesseee s H-51
DECIMAL_POINT «.oovecooeeeeeeeeeeeeeesseeeeeesesssseesessesesseesseesessseeeeessessseeseesesesseee s H-52
DEFAULT_FILESYSTEM woovvecooeeeeeeeoeeseeseeeeeesseeeseeeseessesseeeeeessessseeesesssssssee s H-52
317N gl =1 N OO H-53
DEFAULT _HOST ..o eeeeeeeeeeeeseseeseeeeseeessseesessessesee s eessee s seee e H-54
DEFAULT_IMAP_FILE ...oooovveoeeeeeeeeeeeeeeee e eseeeeseeeseessesseeeeseeseeseseeseesssessee e H-55
DEFAULT_PROGRAM ...ccovvveoeeeeeeeeeeeeeeeeeeeeeeeesesseeeseesessesee e eeseeeseessesseees e H-55
DEFAULT_TIMEOUT ..ooooieeeeeeeeeseeeeeeeseeseeeeseseeeesseeesessesseseesesssssseeesesssssseeeseeeees H-55
DISABLED_CONTROL_COLOR ...ovvcooeeeeeeeeeeeeeeseeessessesseeeeseeseeseseessesssesseessesees H-56
DISPLAY _SWITCH_PERIODcoovvvveeeeeeeeseeeeeeeeeeeeeeeesesseseeesesseeeessesseseeeeseseneee H-56
DLL_CONVENTIONoooimvveeeeeeneeeeeeeeeeseseeeeeseesessseeseesesseseeseesseesesessessesseee e H-57
DLL_SUB_INTERFACEovvvcooeeeeeeeeeeeseeeeeeeeeseeeesseessesseseseeeeesee s ssesesessee e H-57
DLL_USE_SYSTEM _DIR w.ovvoeooieeeeeeeeeeseeeeeesesseeeseeessessesssseesesseseseeessesssesseee e H-58
DOS_BOX_CHARS........ooierveeeeeeeeeseeeeeesssssssseseesseessseesessesssseeeesssssseeesesssssseee e H-58
DOS_SYS_EMULATE ...ooerveeeeeeeeeseeeeeeesseseseeesssessseessessesseseeseessessseessessssssee e H-59
DOUBLE_CLICK_TIME w.oovveooooreeeeeeeeeeeeeeeoseseesseeeeeeeseeeesesseeseseeesessseeessseseseeeeseenees H-59
DUPLICATES_LOGceoeeeeeeeeeeeeeeeeeeeessseeseeesesesessseesessesseseesssseeesseesesesesseeesseene H-60
DYNAMIC_FUNCTION_CALLS ...ooveooeeeoeeeeeeeeeeeeeeeseesseeeeeee e H-61
DYNAMIC_MEMORY _LIMIT ...coovveceeeeeeeeeeeseeeeseeessesseseeeeseeseeeeseeseesesessee e H-62
EDIT_IMIODEcooooeeeeeeeeoeeeeeseeeeeeese s e eseesessesseeseesseesseesessssee e seee e sesesseee e H-62
EF_UPPER_WIDEovvocoooeeeeeeooeeeeeseeeeeeeeeesseeesesssesseeeseessesseseeeesssssseeeeesssssseee e H-63
=TV)] 4 = OO H-63
=0 = N=T0 =3 E OO H-63
EOL_CHARcoooeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseessee e eesssee e sesee s H-64
ERRORS_OKcooomiieeeeoeeseeeeeeseeesesseeeeseesesssssessesessesssesseesessssessessssesseesesssesseee s H-64
EXIT_CURSOR ...ooovvveeeeeeeeeeeeoeeeeessseeeeesssssssessesessesssessessesssseesesssssseeesesssesseees e H-65
EXPAND_ENV_VARSooivveeoeeeeeieeeeeeesessseeeoessseesssessessesssseesessessseessesssssseee e H-65
EXTEND_CREATESooeevveeeoeeeesseeesesssessseosssssesssesssssssssessessssssssesoesssssssesseenes H-66
EXTFH_KEEP_TRAILING_SPACESoovveeeeeereeeeeeeseeseeeeeeesseeseeeeeeeseessesseeesseenn H-66
EXTERNAL_SIZE w..oovvooooeeeeeeeeeeeeeeeeeeeeeeeseesseeeeeesessseeseesesseseeseeeseesese s seee e H-66
EXTRA_KEYS_OK ..oovocooeeeieeeeoeeeeeeeeeeeeeesseeeseoseesssesssessessesssseesesssesseeesesssessee e H-66
FL0_IS_IMENU .coooreeeeeoeeeeeeeeeeeeeeeeseeeeeeseeessseeseseseesseeeseesessesee s eseee s sseee e H-67
FAST ESCAPEoeevvveeeeeeeeeeeeeeesessseesseesesessesssssssssseseesessssesseesesssseeeeessssseeseesee H-67
ST Y81\ =10) (= o O H-68
FILE_ALIAS_PREFIXooovveooeeeeeeeeeeeeeseeeeeeeeeseesessseeseeseeseseessesseessee s seee e H-68
ST 7N =SSO H-70
=T = ol0] N[o] 1 (0] N TS H-71
FILE_1O_PEEKS_MESSAGES......ovvveeeeeeeeeeeeeesesesseeesessesssseessssssssseesesssesseeessseeee H-71
FILE_10_PROCESSES_MESSAGESoeeeieeereeeeeeeerresessseeeseeeeeessssssssseeeeseenee H-71

FILE_PREFIX .. oo s H-72

Contents-vii

FILE_STATUS_CODES.......ccoiiiiiiieriseneisieiee ettt H-73
FILE_SUFRFIX ..ottt ettt st H-73
FILE_TRAGCEottt ettt sttt et H-73
FILE_TRACE_FLUSHooiiii et e e H-74
FILE_TRACE_TIMESTAMP....coitiiiriiiitisieitet ettt H-74
FHIBNAIME .ottt H-74
fillename_DATA FMT ..ttt ena s H-75
filename_FILESYSTEM ..ottt sttt H-77
fHlENAME _HOST ... et beene e H-77
filename_INDEX_FMT ..ottt H-78
111 T=] = T T L TSP H-80
FILENAME_SPACES ...ttt st H-80
filename_VERSIONociioiiii ettt sreenes H-81
fileSYStEM _DETACH ..ot et bbb H-82
FLUSH _ALL oottt ettt sttt st H-83
FLUSH_COUNT ..ttt ettt st st sttt en e H-85
FLUSH_ON_ACCEPT .ottt sttt H-85
FLUSH_ON_CLOSE ..ottt sttt H-86
FLUSH_ON_COMMIT ..ottt H-86
FLUSH_ON_OPEN ...tiiiteiiteiitetste sttt sttt sttt sttt st H-86
FONT etttk bbb s bbb s bttt ettt st H-86
FONT_AUTO_ADJIUST ..ottt ettt st st st st H-87
FONT_SIZE_ADJUST ..ottt bttt H-88
FONT_WIDE_SIZE_ADJUST ..ottt H-89
FOREGROUND _INTENSITY ..ottt H-90
FREEZE_AX _EVENTS....oi ittt bbbttt H-90
FULL_BOXES ...ttt ettt sttt H-91
GRID_BUTTONS_CAUSE_GOTOovorrecierereeieeesseeseesiessessesssssesssesss o H-91
GRID_NO_CELL_DRAG ..ottt H-92
GUI_CHARS bbbttt sttt ettt H-92
HELP_PROGRAM ..ottt ettt H-93
HINTS _OFF .ottt ettt ettt et H-93
HINTS _ON ittt sttt sbe e eenbe s H-94
HOT _KEY ettt et ettt s be et st e et b nteste et H-94
HP_TERMINAL_ATTRIBUTE_HANDLINGcccectiiiriireinesesese e H-96
HTML_TEMPLATE_PREFIX ..ottt s e H-96
ICOBOL_FILE_SEMANTICS ..ottt H-97
1010]\ OO SRRSO H-97
IMPORT _USES_CELL_SIZEoiiveeeeeeereeereeieseesseeeessies s H-98

INACTIVE_BORDER_COLOR......cocciiiiiicistit s H-99

INCLUDE_PGM_INFO ...ttt s H-99

INPUT_STATUS_DEFAULT .vocovvoeeeseeeeeeeeeereessessseesssesseesssssessssssesssssssessessesssssseees H-99
INSERT _IMODEoormeeeeeeseeeeeesnsesesssessesssseeesssessssssessssssessssesesssssssssssseseessessssseees H-100
INTENSITY _FLAGS 1.ereeeeeveeeeeeeseesssseesesesseeesssessessesessssssesssssseessssssssssssssssssesssseeees H-100
IO _CREATES wovvvveeoeeeeeeeeeeeeeeseeeeessesesseeeesesseeessesessssssesssssseeesseesss e sssseee s H-102
1O _FLUSH_COUNT ...oooeeeveeeeceoreeeeeseeeeseseeeeseeesssseeessssseeeeseessssessseseeee s H-102
1O_READ_LOCK_TEST ovvvveveoeerreesesseseseseeeessessssssssssssseessesesssssessssseeesssssssseeees H-102
1O_SWITCH_PERIOD w.cevvvvveeeeoreeeeeseesesesseessessssssssssssssesessseesssssssssssesenssssssseeees H-102
ISOLATE_FILE_CREATES ..vvccovtrteesseseseseeeeosssesssssessssssssessssessssssssssssssesssesssssen H-103
JAVA_LIBRARY _NAME ... oooovvveeeooeeeseeeeeseeseseeesssesssesssssssssessesssssssssssssssseneeees H-103
TNV o 15 1) NP H-104
JUSTIFY _NUM_FIELDS w.cooovveeeeeeeoeesesseeeeeseseeeeeeeseesssseeessseeeeesesssssseessssssesses H-104
=10 TP H-104
KEY _IMAP ..o oo eeeseeeessseeeses e sessseeesees s ssss e sessesessseeee s H-105
2 =107 o Y H-105
2 S 1210 A H-105
L ALL oo eeeeseeeesese e ssseeee e s H-105
LICENSE_ERROR_MESSAGE_BOXriemrrrreeeeeeeeeersmsssesesssseseeeesssssssssesseee H-109
LISTS_UNBOXEDooovveveeeeoeseessseseeseseseeessesessssssssssssseeseesessessessssseeesssssssseeees H-110
LITERAL_ENTRY eooeeeovveeeeesenneesseessssesesessesesesssssssssssssesssesesssssssssssesesssssssseeees H-110
LOCK_DIR oovvvveeeereeoeeesseessesseeesssseesssssessessseesssesssssssssssssssesssssseesessesssssseessseessseeees H-110
1Yot o U1 1T H-110
LOCK_SORT wvvoveeeoereeeeeeeeeseeeeessesssseseeseseseeeesesessssseesssssseesesesesseseesessseeessssesssseeees H-111
LOCKING_RETRIES w...ovvvvveeeeereeesseseeseseeeeeeesssesseeeessssseeseesesssssesesssseeessesssseeees H-111
LOCKS_PER_FILE .eeeoovveveeeeeroeesseesssseseeessesessssssssssssseeessesesesssssssssssesessssssssseeees H-111
YT =TU = = YT V4 = H-111
Y c T 5] =i/ o] =3 H-112
YT o1 000000 H-112
I YcT =1 N[l =3% 2 [N O H-112
YT = T =3O H-112
1] N H-113
LOGICAL_CANCELS .oovvvvveeeoereeeeeeseeseseeeoeeesssssssesssssssesseeseasessesssssseessseessseeees H-113
=4 = Lo Y H-114
IMASS UPDATEoooeeeesveeeeeeeoseseseseeseesesssessssesesssesessssssseesssesesseesesssssseesesesssseeees H-114
MAX_ERROR_AND_EXIT_PROCSovoccommereneeeseeeeeeeessesesseeeessssseeesesssssssseeees H-115
MAX_ERROR_LINES +..vvvvveeeeerreeeesesesseseeeosesesssssssssssssssesseesessessessssseeesessssssseeees H-115
NSl = T =5 H-115
IMAX_LOCKS cvvvoeorereeeeeeeeeeseeeessseeesssssessessseessssessssssssssssseesessssessssssssssseesssssessssseees H-116
1= T =1 o H-116

MESSAGE_BOX_COLORccirieeeeeieeseeeeeeeeesseesseeeeesssesseeeseseesesseessessessseees H-117

Contents-ix

MESSAGE_QUEUE_SIZEovvvveeeeeeeesseeesseeeseeesneesssssssessssessesssessesssssesssssseenennns H-117
TN IR V4 =S H-117
IMONOCHROMEooccooooeeeeee e seeeeeeesssssessssssseeesseeeesssseessssssesessesssseeesssssseenenoes H-117
IMIOUSE .vvoooooooee e eeeeeeeessseees e sesesesses e se e esssseesseeeseeeseesssssseses e seeeessssseeenenene H-118
IMOUSE_FLAGS......ovvvveccveereeeseeeeeseeeeeesesesssssessssssseeessssessssssessssssesesessesssssessssseees H-121
NO_CONSOLEoooocooeeeeeee e eeeeeeeeeseesesseesesseseeseseesseseeessseseeesssesssseeesssesseees e H-122
LTI Tc T = I = o] O H-122
NO_TRANSACTIONS ..o eovveeeeeeeeeseeseesseseseeseseseeesseesssssseesseseessssssesesssesesesesesee H-122
NT_OPP_LOCK_STATUS...ooovvveeeorreresseseesseseseeseseesssssessssssssesssssesssssessssssesesssssssen H-123
NESTED. AX_EVENTS oeovveeeeeeseesessseessesesessssseeesseessssssssesssseesssseessssssssessssesen H-123
NO_BARE_KEY_LETTERS.ccoemmereeeeeeeeersessseseesssesseeesssssssssssssseeeeesssessseeees H-124
NUMERIC_VALIDATIONooovooooeoeeeeseeeeeeeeeoesesesssseeesseseeessssesssseeessssseeessesssseeen H-125
OLD_ARIAL_DIMENSIONSoorrmeeereeeeeeessesessseseesssseeeessseessssssesssssssenssssesssssen H-125
OPEN_FILES_ONGCE w.eooevovveveeoreeeeseseesessseseesseesssssesssssseeesssessssssssssssssenessesssseee H-125
OPTIMIZE_CONTROL_RESIZE w..oeeoeeovvveeeeoieseesssseesesseeeesessssssesssssssseenessesssssen H-126
OPTIMIZE_INDIVIDUAL_LINKAGE ...oovvvcoooeeeeeeeeeeeeeeeeeeeeesessesesessseeeessssseee H-126
PAGE_EJECT_ON_CLOSE ...oovvveeeeeereeeseseeeeeeeeeoeeseessesessesseeeesesssssseeseseseeeseessseeen H-126
PAGED_LIST_SCROLL_BARiiomeieeeeeeeeeeieoessssseeeesseseeessssesssseesssssseeseessseeen H-127
PARAGRAPH_TRACEoovvveeoereeeeseeseseseseeeosseesssssesssssseeessseessssesssssssenesessessnen H-127
PERFORM_STACK ...ooorueereeeeeeeeeesesessssesesssessessssssesssessssssssessssesssssessssssesessssssen H-127
PRELOAD_JAVA_LIBRARY ...coommmrrerreeeeeeisiessssssesssssseessesssssssssssssssensessssseee H-128
Yo S T = 1) =S H-128
Y0 V13 TN OO H-128
QUEUE_READERS. ... veeveeooeeeeeeeseeeessseseeoeseesseseesssssseeesesssssssessssssse s H-129
QUIT_IMODE ..o eeeeeeeesseeeesssesessseseeessseesseseesssssseeesesessssessssseseses s H-129
QUIT_ON_FATAL_ERRORermrrereseeeeeeesssessssssssssseeesesesssesessssssssesnessssssseee H-131
QUIT_TO_EXIT oo eeeeeeooseoesesssesessssseesssessssssssesssssssessssessssssesssssssenssesssseee H-131
RECURSION 1o vvveceeteoeees e eesesesesesessesseesssssseesssessssseessssesssenseesssssssssssssssenee H-131
RECURSION_DATA_GLOBALeierieeeeeeeeeeseeesseseeeeeeeseeeessessssssessssssee s H-133
REL_DELETED VALUE w..vvovveeeoooeeeeseeeeeeeeseeeeseseessssssssssesseessssessssssssssssseonssseen H-133
REL_LOCK_READ_THROUGHoereeireeeeveceorseesssseeseseeseeenessessssssssssssseesseseen H-133
NV 110 U1 oo H-134
RESIZE_FRAMES.........ooeeeeeeseeeeeeeseesessesessssssesssssssssessssssssesssseessssesssssssesesesssssee H-134
YA = = =Y = = I 25O H-134
RESTRICTED_VIDEO _MODEooioeoeeeeeeeesessesseeeesseseeesssessssseeessssseeessessssseen H-135
RMS_ NATIVE_KEYS....eeoooveeeeersereessssessssseseosessssssssssssseeessssssssssesssssssesessessssssen H-135
1121 N O H-136
SCREEN_COL_PLUS_BASEcotrrereeeeseeeeeeeosessssseesssssseessesessssssssssssensssesssssen H-136
SCREEN_ TRACEoeeeeeeevveeeeonoeeeeseeeesesesseesssesssssessssssseessssesssesssssssseeseessessseeees H-136

SCRIPT_STATUS ...t et H-137

Contents-x

SCRN Lt bbb bttt h bbb b b e b b et H-137
SCROLL 1ttt bbb e bbbt bbb e e H-137
SEIVEI _IMAP _FILE ...t H-138
SEIVEI_PASSWORD ..ottt H-139
SErver_POort_PASSWORD........ccco ittt sttt sna e neas H-139
SHARED _CODE......coiiiiiieiiesese sttt e H-140
SHARED_LIBRARY_EXTENSIONccoiiiiiiiiiiiieeeee e H-141
SHARED_LIBRARY _LIST ..ottt s H-141
SHARED_LIBRARY _PREFIX ...ttt H-143
SHUTDOWN_MESSAGE _BOX ...ttt H-143
SORT_DIR ettt b bbb r b n e H-143
SORT _FILES. ... oo H-144
SORT_MEMORY .ottt et e H-144
SPACES _ZERO ..ottt bbb e et H-145
SPOOL_FILE ...ttt bbb bbb e H-145
STD_FIXED _FONT ..ottt sttt st s H-146
STOP_RUN_ROLLBACK ...ttt H-146
STRIP_TRAILING_SPACES.coitie e H-147
SWITCH_PERIOD ...ttt e H-147
SYSINTR_UNADME ... bbb e H-147
TC_AUTO_UPDATE_FAILED _MESSAGE.......cccooiiiiiiiicieee e H-148
TC_AUTO_UPDATE_FAILED _TITLE ..cviiiieietrereeeeee e H-148
TC_AUTO_UPDATE_NOTIFY _FAIL ..ot H-148
TC_AUTO_UPDATE_QUERY ..ottt H-149
TC_AUTO_UPDATE_QUERY_MESSAGEcciiiiiiiictee e H-149
TC_AUTO_UPDATE_QUERY _TITLE......cctiotiiitierieeeecceee e H-150
TC_AX EVENT _LIST ottt e H-150
TC_CHECK _ALIVE_INTERVAL ..ottt H-151
TC_CHECK_INSTALLER_TIMESTAMPcoooiiiiiitiiie e H-151
TC_CONTINUITY_WINDOW ..ottt H-151
TC_CONTROL_SYNC _LEVEL ..ottt H-152
TC _DELAY _ACTIVATE ...ttt s e H-153
TC _DELAY _PRE _EVENT OPS ...ttt H-154
TC _DISABLE_AUTO _UPDATE.....i ittt H-154
TC_DISABLE_SERVER _LOGttt H-154
TC_DOWNLOAD_CANCEL_MESSAGEccooiiiriieiiiieieiee e H-155
TC_DOWNLOAD_DESCRIPTION ...ttt H-155
TC_DOWNLOAD _DIALOG ..ottt e H-156
TC_DOWNLOAD DIALOG _TITLE ..ooieiiiitetcesesesee e e H-156

TC _EVENT _LIST e H-156

Contents-xi

TC_EXCLUDE_EVENT _LIST w.ooooiooeeeeeeeeceseeseseeeeeeeeeesssesseeeseseseeesesesssseeeesenee H-157
TC_INSTALLER _ARGS.........oiieeiieieeeeeeeeeesesseseeeeeeesseeeeeesssssseeesssesseee s H-157
TC_INSTALLER_CLIENT _FILE . ioovoooeeeeeeeseeeeeeeeeeeeseeseseeee e eesessseeeseeenee H-157
TC_INSTALLER_RUN_ASYNC w..ooovveeeeeereeeeseeeeeeeeeeeesseesseseeeeeseeeeseesssseeeseeeeee H-158
TC_INSTALLER_SERVER_FILE...oooovvooooeiesoeseeeeeeeeeeeceseessesseeeseseeoe e H-158
TC_INSTALLER_TARGET _DIR.....oovvvooeeeeeeessseeeeeeeeeeesssesseeeseseseeesssessseseeeneeee H-159
TC_INSTALLER UL LEVEL....ooioooooeeeeeoeeseeseeeeeeeeeeesesssesseessesesee e H-159
O N2 = T = H-160
TC_NESTED_AX_EVENTS....eioeoeeeeeeeesesseesseeeeeeseeeesssssesseseseseseesseesssseeesesseee H-160
TC_QUIT _IMODE ... eeeeeee s eeeseeees e sesseee e H-160
TC_REQUIRES_BUILD_NUMBERceoiiimriroreeeeeeeesesssesseeeeeseeee e H-161
TC_RESTRICT_AX_EVENTS ..o sesesee s H-161
TC_SERVER _LOG_FILEc.oioiioeeeeoeeeeesseseeseeeeeeeeeeee s sesesee e H-162
TC_SERVER _TIMEOUTooooeeoieeeeeeeeeeeseeeseseeeeeeeseeee s sesessee s H-162
TC_TV_SELCHANGINGoooreeiieeeeeeeeeeseseeseeeeeeeeeeeeeeeseeseseeesssesseees s H-163
TEMP_DIR - oovvoeoeeoeeeeeseeeeeeeeeeeeeeesee s seseeeeee e eessseee e seeeseeee e H-164
TEMPORARY _CONTROLSooooimimoreeeeeessessseseeeseeeeeeeesessesseesesssssee s H-164
L1 =2 OO OO H-164
TRACE_STYLE ... eeeeeseseee s sesssse s sesssssee e H-167
TRANSLATE_TO ANSHocoooeeeeeeeeeeeeeeseeeeeseeeeeeeeseeeesesesseseeesesesseee s H-167
TREE_ROOT SPACEoovoooooieeeeeeeeeeeeeeeeeseeeeseeeeeeesseeoe s sesesseee e H-168
RIS = =T 4 = H-169
TRX_HOLDS_LOCKS ..ovvveoeoooeeesseeeeeeeeeeeseessesseeeeeeseeeeesssss e sessssessesssseeeeseeee H-169
UPPER_LOWER_MAPoovvoooooeeeeseeseeeeeeeeooeseseseseeeessseeeessssssseeesssssoee e H-170
WL o [t OO H-171
USE_EXECUTABLE_MEMORYcoioveeeeeeeeieseesseeeeseeeeeeeesssssssseessessse s H-171
USE_ EXTSM oo eeeeeeeeeses s eesseseee s ssseeee e H-172
USE_LARGE_FILE_ APl ...ooovoeeeeeeeeeseeeeeeeeeeeeeeseesesseeeeseeseeeessesseseeesssesseee s H-172
USE_LOCAL_SERVERoovvooeoeeeeesssseseeeeoeeeeesessssssesesssseeeessesssseeesessseees s H-172
USE_MPE_REDIRECTIONooooocooeesoeeeeeeeeeeeesessssesesseseeeeessssssseeesessseeees s H-172
USE_MQSERIESccoooeseeeeeeeeeeeeessssssseesesseseeesessssseseesssssseessessesseesssssseeeessse H-173
USE_SYSTEM_QSORT w.ccooveeeeeeeeeeeseseeeeeeeeeeeeessseseeeesseseeeessessssseessessse e H-173
USE_WINSYSFILES.......oooooeeeeeeeeeeesssseseeeeeeeeesesesssseeesssseeesesssesssseeesessseeesessssese H-173
V_BASENAME_TRANSLATIONoovvvocoooreeeseeeeeeeeeeeesseesesseesseseseeesesessseeeeeseeee H-174
V BUFFERSooooiieeeeeeeeeeeeseeseseeeeeessseeesesss e sessssese e ssseoee e eeeee H-175
AV =T ==l - 7N H-175
V_BULK_MEMORYooooooimiieimeeeeeoeessessesseeeesseeeeesesssssssssesssseeeessessssseessssseeens H-175
V=] o = o)== N OO H-176
V_INDEX_BLOCK_PERCENTovoovveeeeeeeeeeseeeeeeeseeeeesseesesseesseseseeesesessseeeeesenee H-176

V_INTERNAL_LOCKS ...ttt H-177

Contents-xii

V_LOCK_METHOD.....vvecooeeeeeeeeeoeeeseeeeeeesesseeseeeeesssseseseseeeesesssesseeseessseeesseeeseee H-177
V_MARK_READ_CORRUPToooomimeireeeeiesseeseeesesseseseseeeesesessseoeessssssseeeesssssseees H-180
V_NO_ASYNC_CACHE_DATA ...oiioreeeeoeeeeeeeeeseessesseseseesesessseeessssssseesssssssseees H-180
V_OPEN_STRICT woovvreevveeomeeeeesesessesseessseeseesssessssessesssssssesssesessssessesssssssesssssssseees H-181
V_READ _AHEAD.......oovveeoeeeeeeeeeeeeeeeeeeseeeeseeeeeseeeeeeseeesseeeeesesssseeeseeessse e H-181
VARSI IR 4 =3O H-181
V_STRIP_DOT_EXTENSION w...ovvccoieeeeeeeeeeeeeeeeeseseeseseeeessessseeeeesssessseeesesneseee H-182
VARV = =TT N oY H-182
V23_GRAPHICS_CHARACTERSooovvveeeeseeseeeeeeeeseeseseeeeesessseeeeessessssesssssseseees H-183
V30 MEASUREMENTScovvevveeeeeeseseseeeseeeeeeeeeseesseeeeeessseeesessessssseeeesssseee s H-183
V31 FLOATING_POINT c.coooieeeveeeeeseeeeeeeeeseeeeeeeeeeeeseeesseeeesseesseeeeeseeeessee s H-183
VZ0 3N = YN 1 [T =0]| N OO H-184
VA3 _PRINTER_CELLSocoouoeeeeeeeeeeeeseeeeeesseeeeeeseesseesseessesssesseeeeeessessseeseesseeees H-184
V52 _BITMAP_BUTTONS ...oooovvveeeeeeeeeeeeeeeseeeseeeeeeesssseseeseeesesssesessssssseeeesseseseees H-184
VB2 BITMAPS ..o eeeoeeeeeeeeeeeeeeseeessees s seeeeeeesesssee s sseeseeeeessseeeeeeseseees H-185
(Vi XK e1=1[oYK cTe] e YN H-185
VB0 _LIST VALUEovveeeeeeeeeeeeeeeeseeeeee e eeeeeeeeeeeeeseseeeeesesssee e seesssse s H-185
VB2 MAX_WINDOW.........coorieereeeeeseeeeeeeeeseeeeeeeeeeeesesesseeesssessseeeeesseesssee e H-186
V71_ALIGNED_ENTRY_FIELD ..ooomiiovveeeeeeeeeeeeeeeeeseeseeeeeeseseseseeeesssessseeessssesseee H-187
V71 FONT _WIDTHS oo eeseeeoeeees s eessees s sesssssseeeeeseessseeeeeseeees H-187
WAIT _FOR_ALL_PIPES ...coomiovveeeeeeeseeseeeeeesseesseeeesssssssseeeesssssseeseesssssssessessseseees H-188
WAIT_FOR_FILE_ACCESS......ovvveeeeeeeeeseeeeeeeeeeeeeeesseesseseeessseeeeessesssssseesssssseesss H-188
WAIT _FOR_LOCKS w..evveeeeeeeeeeeeeesseeeeeeeeeseeeseseeeeeeseessseeeessessseeeeseeessseesseseeseees H-189
WARNINGS ... oovveeeeeeeeeeeeeeeseeeeeeeeeseeeessees e eseeseeeseesssee s sseee e seeessee e esseeseee H-190
WARNING_ON_RECURSIVE_ACCEPTS.....ovvoeeeeeeeeeeeereeeseeseeeseesesessseeesssneseee H-191
WHITE_FILL ooveeeeoeeeeeeeeeseseeesseesseseeessseesessessseesseessesss e eeesesssessesseessseee e seees H-191
WIN_ERROR_HANDLING «..ccvveeeoeeeeeee s eeeeeseesseeseeeseesesssseeeessseessseeseeseseees H-192
WIN_F4_DROPS_COMBOBOXosemirreereeeeeeeeseseesssseeesssseeeeessesssssseeessseseessios H-192
WIN_SPOOLER _PORTcoooiiivreeeoeseeeeeeeeeesseeseseeesessesssseeeeesessseeeeesesessseesessneseee H-193
WIN3_CLIP_CONTROLSoiovveeeeeeneeeeeeesesseeseeeeesessesesesessesessseeeeeseessseeesssseeseees H-193
WINS_EF PADDED......ovvcoooeeeeeeeoeoeeseeeeeeeeesseesseeeeeessesssseseessessseeseesssssssesesssseseees H-194
WINB_ GRID ..oooeveeeeeeeeeeeeeoeeeeeeseeeseeeeseessseesessessesesseeseesss e e s ssseee e ssseee e seseeseees H-194
WWINB2_ 3D .cocooeeeeeeeeoeeeeeeseeesseesesesesessessesss e eseesseeeseeesesss s esesssseseeeesssseseeseeseees H-195
WINB2_CTL_INPUT_STATUS ..ooocoooeeeeeeeeeeeeeeeeeesessseeeseessseeeesssesssseeesessseeeessee H-196
WINB2 NATIVECTLS ovvveoooeeeeeeeeeeseeeeeeeeeseeeseeeeeseseeseseeeseeesessseeseessessseeeesseeeseee H-196
WINDOW_INTENSITY woovooooeeeeeeeeeeeeeeeesesseeeseeeeeesssessseeesesessseeeeessssssseeesssseseees H-197
WINDOW._TITLE covccoooeeeeeeeeeeeeeeeeeeesseseseesesesessseeseessesssseeeessessssesessssessseeeseseeseee H-198
WINPRINT _NAMES_ONLY w..ovvvooooeeeeeoeeeseesseeeeeessesseseeesesessseseesssssseesesssseseee H-198
WVRAP ..o eeeeeeeseeseseese s ee e e e e e s eeeessee e seees H-200

Contents-xiii

XED_PREFIX .o H-201
XTERM_PROGRAM ..ottt s H-201

Appendix |: ACUCOBOL-GT Library Routines

1.1 General Syntax and Library LiStccccovooiiiiiie i 1-2
ASCHIZHEX ..ottt st st sttt st s b e e bt se et et e bt tns I-2
ASCH20CT AL .ttt ettt sttt s b e bbb e bttt bttt et et st 1-3
CBL_AND ...ttt st sttt n ettt Re et b te et et ettt en e neeneeneas I-3
CBL_CLEAR_SCR ...ttt sttt I-4
CBL_CLOSE_FILE ..ottt I-5
CBL_COPY _FILE ..ottt ettt ettt et 1-6
CBL_CREATE_DIR ..ottt ettt 1-7
CBL_CREATE_FILE ..ottt 1-8
CBL_DELETE _DIRu.oiiiiiictisest sttt sttt 1-10
CBL_DELETE_FILE ..ottt ettt st 1-10
CBL_EQ ottt b ek et bbb e bbb na e anes 1-11
CBL_ERROR _PROC.......ccitiiiiieieite sttt ettt sttt st sttt saene e 1-12
CBL_EXIT _PROCiiititititeistee ettt sttt sttt sttt st sae e sae e snenesnenenns I-15
CBL_FLUSH_FILE ..cooitiiciice ettt st sttt sa e sb e sb e sne e nns 1-17
CBL_GET _CSR _POSottt sttt sttt sttt e ns 1-18
CBL_GET_EXIT_INFO ..ottt 1-19
CBL_GET_SCR_SIZE.ottt ettt sb e 1-21
CBL_NOT ittt ettt sttt b e bbb ettt et et ebe et seebe e ebe st ebeneebeneas 1-22
CBL_OPEN_FILE.....ciiiitiiitieitsteitse sttt sttt sttt st sttt sn s e 1-23
CBL_OR ettt ettt ettt ettt ettt r ettt e st enr et nes 1-24
CBL_READ _FILE ..ottt sttt sttt 1-25
CBL_READ_SCR_ATTRS ...ttt st 1-27
CBL_READ_SCR_CHARSo ittt sttt 1-28
CBL_READ_SCR_CHATTRS ...ttt 1-30
CBL_SET _CSR_POS ...ttt ettt sttt sttt sttt sttt saene e 1-31
CBL_SUBSYSTEM ..ottt sttt sttt sttt 1-32
CBL_SWAP_SCR_CHATTRS. ...ttt 1-34
CBL_WRITE_FILE ...ttt 1-35
CBL_WRITE_SCR_ATTRS ...e ittt sttt s sre b saene e 1-37
CBL_WRITE_SCR_CHARSottt sttt sbe s anes 1-38
CBL_WRITE_SCR_CHARS_ATTR ..ot ittt snere e 1-39
CBL_WRITE_SCR_CHATTRS ..ottt sttt 1-41
CBL_WRITE_SCR_N_ATTR ..ottt sttt st s 1-42

CBL_WRITE_SCR_N_CHARerrioeoeeeeeeceesseseesseeeeeeeseoeesseesessessssseseeesesesssesssesseees I-43

Contents-xiv

CBL_WRITE_SCR_N_CHATTR...c.iitttretrieireie ettt see e snere e I-44
CBL_WRITE_SCR_TTY .ttt sttt sttt st sa s sbe e sbasasneseanes 1-46
(07 = I (@] = USSP 1-47
CBASYINCPOLL ..ottt sttt sttt bete st sb e b esasbereaees 1-48
CHRASYNCRUN ..ottt ettt ns 1-49
CECALLEDBY ..ottt ettt sttt et et sb e bbbt anes 1-49
CEBCALLERR ...ttt sttt ettt et sttt ne b nbere e 1-50
CEBCHAIUN L.ttt ettt et st e b e st e beseete st e te s etesenteneas 1-51
CBCHDIR ..ottt bbbttt a ettt st et e sttt te b eteneereneas 1-563
CBCODESEToviectetete ettt ettt a e b et s b s st be e b b be e ne s ann I-55
CEBCONFIG ..ottt b bbbt b e b e bereanes I-56
CBCOPY ettt ettt et bbbttt et e bbb bt e 1-57
CODELETE ..ottt ettt ettt sttt 1-59
CEDISCONNERCT ..ottt ettt st et be b sttt e et tesbe e sbe e sberenaas 1-60
CEEXCEPINFO ...ttt ettt b et b et sa s nenn 1-61
CEEXITINFO ..ottt ettt et a bbb e enn 1-68
COFILEINFO ...ttt ettt sb bbb anes 1-69
COFILESYS .ottt ettt b e b b I-70
COFULLNADME ..ottt sttt et I-71
CEBGETCGH ottt ettt b e enn I-73
CEGETERRORFILEoviiiicie e I-75
CEGETEVENTDATA ..ottt ettt ettt nenn I-75
CEGETEVENTPARAM ..ottt I-77
CEGETLASTRILEOP ..ottt I-79
CEGETNETEVENTDATA ..ottt 1-80
COGETPID ..ottt ettt sttt a et bttt s e te st e st e seereneas 1-82
CEGETVARIANT <ottt b et b e enn 1-82
CBIAVA .ottt a et enen 1-84
CBIUSTIRY ettt bbbttt nn 1-94
COKEYMAP ...ttt ettt sttt bbbt e et e st sb et erenbereanes 1-95
CEKEYPROGRESScootieieiettiete ettt sttt st sn e st sbe s nnere e 1-96
CELIST-DIRECTORY ...oiiiiiiiiieiisieisieie ettt sttt nenn 1-97
COLOCALPRINT ..ottt sttt b e et be et 1-101
CBLOCKPID ..ottt sttt sttt sttt sttt ettt re b ene s 1-103
COMAKEDIR ..ottt ettt b e et sbe b 1-104
CSMEMCPY (Dynamic Memory ROULINE)ccvveirieririeririeenieiesieesieiesese s 1-105
COMYFILE ...ttt ettt ettt 1-106
CONARG ...ttt et ettt bttt 1-107
CHBOPENSAVEBOX ...cooiciiicti ettt sttt sa e bt sn st be b 1-107

CEPARAMSIZE ...ttt 1-116

Contents-xv

CEPARSEXFD ..ottt sttt ettt sttt ettt 1-118
CERECOVER ..ottt sttt bbbttt sttt sttt et 1-131
COREDIRECT ..ottt sttt sttt ettt sttt sttt et st 1-133
COBREGEXP ...ttt sttt ea ettt st ettt ns 1-135
CBRERR ...ttt b bbbttt ettt ettt et 1-142
CERERRNAME ...ttt ettt sttt ettt 1-144
CORESOURRCE.......c.cctiieitiiee sttt sttt sttt sttt sttt ettt bere et 1-144
CBRUN ..o sttt b bt ettt ettt be sttt et s et st 1-147
CESETERRORFILEci ittt sttt 1-147
CESETEVENTDATA ..ottt ettt et be st e sttt e et tenseneens 1-149
CESETEVENTPARAM ..ottt ettt 1-150
COSETVARIANT .ottt bbbt 1-152
CESLEEP ...ttt ettt 1-154
CESOCKET ..ttt sttt ettt ettt ettt st e st ettt s et et 1-155
CESYSLOG ...ttt st b e ettt ettt sttt ettt et 1-164
CBSYSTEM ...ttt ettt ettt et e te e be et e be s be st e testeete e e s 1-166
CSTOUPPER and CETOLOWER.........ccoiieniceirieete et 1-171
CEXIML bbbttt bbbkttt 1-172
DISPLAY _REG _¥ ..ottt ettt 1-191
Error and EXIt PrOCEAUIES.........coui ittt s 1-191
HEXZ2ASCH ..ottt bbbttt sttt st 1-192
IBIO ettt ettt e re et ebe et st e bttt eneens 1-193
LIBEGET_SYMBOL ...ttt 1-212
LIBSSET _SYMBOLccuiiiiiieiiiieit ettt 1-212
Routines to Handle DyNamicC IMEMOIYc.cccoiviieiieiesii e se e 1-213
MS$ALLOC (Dynamic Memory ROULING).........ccoeriiririeiiiririsiee st 1-214
MS$COPY (Dynamic Memory ROULINE)ccuvvrueieiiiririeieinisisiee et 1-215
MSFILL (Dynamic Memory ROULINE)........ccovviuieiinirieeenisesiee e 1-216
MS$FREE (Dynamic Memory ROULINE)cvveririeiriiiniiinieisenese e 1-217
MSGET (Dynamic Memory ROULINE)ccvcvveveeieiesisiereresiseesssesestssssessssssssesssessssenes 1-217
MSPUT (Dynamic Memory ROULINE)ccvivvevereeiienisieeesisiesssesessesssesassssssesssessssenes 1-218
OCTALZASCH ettt sttt st sttt b et 1-219
Routines to Handle the Windows RegiStry........cccoviriiriiniiiiresesese e 1-220
REG_CLOSE_KEY, DISPLAY_REG_CLOSE_KEYcccooommrimermnriereeressreenerenne. 1-222
REG_CREATE_KEY, DISPLAY_REG_CREATE_KEYcccccctvviiniiineineenieenine 1-223
REG_CREATE_KEY_EX, DISPLAY_REG_CREATE_KEY_EX....cccecvivrrivrrnnn. 1-225
REG_DELETE_KEY, DISPLAY_REG_DELETE_KEYcccccvnvienrienrenieesieenans 1-228
REG_DELETE_VALUE, DISPLAY_REG_DELETE_VALUE.........cccccvvivnnnnnn. 1-229
REG_ENUM_KEY, DISPLAY _REG_ENUM _KEYcc.cccoovmmrmmrinrrenrrrreenrinnsenne. 1-231

REG_ENUM_VALUE, DISPLAY_REG_ENUM_VALUE..........ccccoommmmmcermmmmrrrns 1-232

Contents-xvi

REG_OPEN_KEY, DISPLAY_REG_OPEN_KEYcccoceiviirrieirinreeennseieees 1-236
REG_OPEN_KEY_EX, DISPLAY_REG_OPEN_KEY_EX.....ccccccosmrenrnirnens 1-237
REG_QUERY_VALUE, DISPLAY_REG_QUERY_VALUE.......cccoonnnriiinnnn. 1-239
REG_QUERY_VALUE_EX, DISPLAY_REG_QUERY_VALUE_EXccc.... 1-241
REG_SET_VALUE, DISPLAY_REG_SET_VALUEccconiiirrieeneeens I-244
REG_SET_VALUE_EX, DISPLAY_REG_SET_VALUE_EX.....cccoiurnrricnnn, 1-245
RENAME ...ttt bbbttt b e 1-248
REBIO ettt bbbt b bt bbb s 1-249
SYSTEM ...ttt bbb bbb bbbt b et bbbt e 1-258
SBIO ettt b ettt e et 1-260
WEBITIMARP ...t 1-266
WEBROWSERINFO ..ot 1-281
WBFLUSH ..ottt 1-283
WWBFONT .ottt bbb bbbt bbbt bbbt bbbt bbbttt 1-285
WEFORGET ...ttt bbb bbbt bbbttt 1-296
WWSBGETC ...ttt ettt sttt et ns 1-297
WEGETURL ..ottt 1-298
SWINHELP .o 1-300
WEBKEYBUF ..ottt 1-305
WSBIMEENU ..ottt sttt 1-309
WEIMOUSE ..ottt bbbt b et bbbt 1-320

Mouse Handling: Sample COUeccooiiiririiiieeeeee e 1-326
WSEPALETTE ..ottt ettt ettt e 1-328
WEPROGRESSDIALOGooiiiiiiricresireiee st 1-335
WESTATUS ...t 1-341
WETEXTSIZE ...ttt 1-342
WINSPLAY SOUND ...ttt sttt 1-344
Printing with theWindows Print Spooler (-Q and -P)cccccviviinninnienneceie, 1-347

~Q SPIINTEIMAMES ..ottt 1-350

=P SPOOLER ..ottt bbbt 1-356

DiIreCt CONEIOL ..ot 1-356

Printing Multiple Jobs Simultaneously............cccocoiiiiiiiiiiiees 1-357
WINSPRINTER ..ottt sttt sttt 1-359

WINSPRINTER OP-COUES ...oeveieiiiririsieieieneresisieie sttt sttt 1-365

Printer Information Op-COOEScoeiriiiieire e 1-365

WINPRINT-GET-SETTINGS-SIZE........cccotiiiiiiiiiiesese e 1-366

WINPRINT-SETUP ..ottt e 1-366

WINPRINT-SETUP-USE-MARGINS........ccoiiiiiiiiecnesee e 1-368

WINPRINT-SUPPORTED.......ecittinieiitiiitenisies sttt e 1-368

WINPRINT-GET-SPOOL-ERR........ccooiiriiiriiiiiie e 1-369

WINPRINT-SET-JOB......ccoiiiiitiiiienie e s 1-370

Contents-xvii

WINPRINT-UPDATE-PRINTERSociitiiieercese e 1-372
WINPRINT-DATA OP-COUES......evrviririiririiisienisienisessieisieeste s ssesens 1-373
WINPRINT-GET-CAPABILITIES ..ottt 1-373
WINPRINT-GET-MARGINS.......cccocotiiiiiiiinisiesinesee e 1-374
WINPRINT-GET-PAGE-LAYOUT ...ttt 1-375
WINPRINT-GRAPH-DRAW ..ottt 1-376
WINPRINT-GRAPH-BRUSHccctiiiiriiincee e 1-382
WINPRINT-GRAPH-PENcceititititrireeese ettt 1-384
WINPRINT-PRINT-BITIMAP ..ottt e 1-387
WINPRINT-SET-CURSOR ..ottt 1-392
WINPRINT-SET-TEXT-COLOR.......ccoctiiiirierisenisinieeiee e 1-396
WINPRINT-SET-FONT ..ottt e 1-398
WINPRINT-SET-LINES-PER-PAGEcccvitritriiinninec e 1-399
WINPRINT-SET-MARGINS ..ottt 1-401
WINPRINT-SET-STD-FONTceotiiiriiiiiisienisiesisesieeiee st 1-403
WINPRINT-SET-BKMODEcoccotiiiiiiiiiiissiensee e 1-405
WINPRINT-SELECTION OP-COUESverveviriiririeiirierisierisieresiees et 1-406
WINPRINT-GET-CURRENT-INFO.......cociiiiinitiiiscec e 1-406
WINPRINT-GET-CURRENT-INFO-EXccccviiiiiiiiiieiniee s 1-408
WINPRINT-GET-NO-PRINTERSccoiiiiiiriirenesee e 1-410
WINPRINT-GET-PRINTER-INFO......cccotiiiiiriieiceceee e 1-412
WINPRINT-GET-PRINTER-INFO-EXcccecvniiiriiirinirieineisenesie s 1-414
WINPRINT-GET-PRINTER-STATUS ..ottt 1-416
WINPRINT-SET-PRINTERcctititiiiiiiisess e 1-418
WINPRINT-SET-PRINTER-EXcooiiiiiiiiiisieire e 1-421
WINPRINT-SETUP-EX ..ottt st 1-423
WINPRINT-COLUMN OP-COUEScovveviiiriiinisieisieisieesiesisie st sneens 1-425
WINPRINT-SET-DATA-COLUMNS. ..ottt 1-426
WINPRINT-CLEAR-DATA-COLUMNS ..ottt 1-427
WINPRINT-SET-PAGE-COLUMN.....ccooiiiiiiiiiiiiieec e 1-428
WINPRINT-CLEAR-PAGE-COLUMNScoviiiiiinieineses e 1-440
WINPRINT-GET-PAGE-COLUMNcoiiiiiiniiinininieisiecsie e 1-440
WINPRINT-COLUMN-ALIGN-VERTccotiiiiiiiirisinineniee e 1-442
WINPRINT-JOB-STATUS OP-COUESevviviiiriieieieiiieiisieicsie et 1-443
WINPRINT-GET-JOB-STATUS ..ottt 1-443
WINPRINT-SET-JOB-STATUS ..ottt 1-446
WINPRINT-MEDIA OP-COUES......coveiiiieieiiieienieienise et 1-448
WINPRINT-GET-PRINTER-MEDIAccooiiiiiiinrie e 1-448
USER-DATA OP-COUESevrerieitreiestieieesteeieeseesaesee e saestesseesessaessesssensesneessesnees 1-449
WINPRINT-GET-SETTINGS ..ottt 1-450
WINPRINT-SET-SETTINGS.cociitiiiieiisinse s 1-451

WINSVERSION ..ottt sttt 1-451

Specifications

Key Topics

(010 =@] I |V, oo U1 [T SR A-2
Limits and RaANGES......ccovivieerieree st st A-2
=] 1Y [0 o 1 A-4

[T 1 o1 K T0] o YRR A-10

A-2 m Specifications

A.1 COBOL Modules

ACUCOBOL-GT is an ANSI-85 COBOL compiler and runtime system
(ANSI X3.23-1985 and the ANSI X3.23-1989 supplement). ANSI COBOL
is divided into a series of required and optional modules, each of which has
various levels of implementation. ACUCOBOL-GT conforms to the
following levels for each of the required modules (range of levels in

parentheses):
Nucleus (1-2) Level 2
Sequential 1-O (1-2) Level 2
Relative 1-O (0-2) Level 2
Indexed 1-O (0-2) Level 2
Inter-Program Communication (1-2) Level 2
Sort-Merge (0-1) Level 1
Source Text Manipulation (0-2) Level 2
Segmentation (0-2) Level 1

ACUCOBOL-GT does not support the optional modules: Report Writer,
Communication, or Debug.

The following sections summarize various extensions and limitations
ACUCOBOL-GT has with respect to the standard.

A.2 Limits and Ranges

ACUCOBOL-GT has the following limits:

Maximum Program Size: 16 MB code, 2 GB data
(compilation unit)

Maximum Program Size: Limited only by machine memory
(run unit)

Maximum Record Size: 64 MB (67,108,864)

Number of Indexed Keys: Primary + 119 alternates

Limits and Ranges m A-3

Number of Segments per Key:
Maximum Indexed Key Size:
Maximum Sort Key Size:
Maximum Number Sort Keys:
Maximum duplicate keys:

Maximum File Size:

Maximum Data Item Size
- Alphanumeric:

- Numeric:

- Edited

Maximum Table Indexes:
Maximum Open Files/Process:
Maximum Literal Size:
Maximum Paragraph Size:
Maximum Picture String:
SPECIAL-NAMES Switches:
Maximum number of OCCURS:
Maximum recursive CALL depth:

Maximum number of parameters in a
CHAIN statement

Maximum number in a “PERFORM
number TIMES” statement

16

250 bytes

32767 bytes

255

No limit (Vision)

Host system dependent

Logical limit: 128 terabytes, if Vision
Version 5 or 4 is used; for all other
Vision versions, the logical limit is
2048 MB

2GB

31 digits (default is 18, but can be set to
31 by using the “-Dd31” compiler
option. See Section 2.2.10 of the
ACUCOBOL-GT User’s Guide for
details).

255 bytes

15

32767

32767 characters
32767 bytes

100 Characters
26

2147483647
32767

50

2,147,483,647

A-4 m Specifications

Maximum number of Linkage Section 255
level-01 data items per program

Maximum number of ENTRY points 65536
per program

Maximum number of characters inan 2048
alphanumeric data item used in a
DISPLAY statement

A.3 Extensions

ACUCOBOL-GT contains many extensions to the ANSI standard. These are
summarized below:

» Terminal-oriented source format

e Compile-time modification of source by Identification Area flags
e The Identification Division is optional

¢ IS RESIDENT PROGRAM clause

< Anindex item may subscript a table other than the one it is associated
with. Index data items may be used any place a numeric data item is
allowed

* Apostrophes may be used to delimit nonnumeric literals. Hexadecimal
literals are allowed

« A procedure name may be the same as a data item name
< Initial paragraph name not required
« Paragraph names allowed in Area B

* Multiple-word SOURCE-COMPUTER and OBJECT-COMPUTER
names

e Data Division FILE SECTION header is optional

Extensions m A-5

The word ALPHABET is optional when you are declaring an
alphabet-name in the SPECIAL-NAMES paragraph

The ASSIGN TO clause may have a data item specified for the external
file name. Also, the external file name is optional in the clause

An optional device type may be specified in an ASSIGN clause

WITH COMPRESSION, WITH ENCRYPTION added to ASSIGN
clause

LINE and BINARY options in ORGANIZATION clause

COLLATING SEQUENCE clause

COMPRESSION CONTROL clause

LOCK MODE clause

LENGTH OF clause for data literals

RECORD-POSITION clause for data items

RESERVE clause with the NO or ALTERNATE options

Split key specification for indexed files

FILE STATUS clause for sort files

REDEFINES can reference an item that is itself a redefinition of an area

Additional SPECIAL-NAMES clauses: CONSOLE IS CRT, CRT
STATUS, CURSOR IS, EVENT STATUS, and NUMERIC SIGN
SEPARATE

SEGMENT-LIMIT clause (level 2 segmentation feature)
VALUE OF FILE-ID clause

USAGE COMP-1, COMP-2, COMP-3, COMP-4, COMP-5, COMP-6,
COMP-N, COMP-X, FLOAT, DOUBLE, and HANDLE

A-6 m Specifications

USAGE types:
SIGNED-SHORT UNSIGNED-SHORT
SIGNED-INT UNSIGNED-INT
SIGNED-LONG UNSIGNED-LONG

ADDRESS OF phrase in arithmetic expressions
Tables may contain up to 15 dimensions

A PICTURE string may contain up to 100 characters
Level 78 constant names

WHEN SET TO FALSE phrase for level 88 condition-names. A FALSE
phrase added to the SET statement

SCREEN SECTION

SCREEN SECTION BEFORE, AFTER, and EXCEPTION embedded
procedures

SCREEN SECTION EVENT procedures

IS SPECIAL-NAMES phrase in record description entry

CHAINING phrase added to Procedure Division header

Non-display data items may be specified in a NUMERIC class condition
USE statements may reference sort files

RETURN-CODE special register

ACCEPT with screen control

ACCEPT FROM SYSTEM-INFO, TERMINAL-INFO, INPUT
STATUS, LINE NUMBER, COMMAND-LINE, ESCAPE KEY,
CENTURY-DATE, CENTURY-DAY, STANDARD OBJECT, and
WINDOW HANDLE

ACCEPT FROM SCREEN

Extensions m A-7

ACCEPT CONTROL statement
ACCEPT ALLOWING messages phrase
ACCEPT external-form-item statement
ADD TABLE statement

CALL RUN statement

CALL PROGRAM statement

CALL THREAD statement

Literals allowed in the USING portion of a CALL statement. Also,
non-level 01 group items may be listed in the USING phrase

BULK-ADDITION phrase for OPEN statement
BY VALUE phrase for CALL statement
OMITTED/NULL phrase for CALL statement
NOT ON OVERFLOW accepted for CALL statement
ALL option for CANCEL statement

CHART option for CANCEL statement
CHAIN statement

CLOSE WINDOW statement

COMMIT statement

COPY RESOURCE statement

CREATE statement

DELETE FILE statement

DESTROY statement

DISPLAY with screen control

A-8 m Specifications

DISPLAY SUBWINDOW/WINDOW statement
DISPLAY FLOATING WINDOW statement
DISPLAY SCREEN statement

DISPLAY LINE statement

DISPLAY BOX statement

DISPLAY UPON WINDOW TITLE statement
DISPLAY UPON COMMAND-LINE statement
DISPLAY INITIAL WINDOW statement
DISPLAY INDEPENDENT WINDOW statement
DISPLAY TOOL-BAR statement

DISPLAY control-type statement

DISPLAY MESSAGE BOX statement
DISPLAY external-form-item statement
DRAW CHART statement

ENTER CHART DATA statement

ENTRY statement

GOBACK statement

INQUIRE CONTROL statement

INQUIRE WINDOW statement

LOCK THREAD statement

TRAILING option on INSPECT statement
MODIFY statement

NEXT SENTENCE statement

Extensions m A-9

WITH LOCK and ALLOWING phrases added to OPEN statement
MASS-UPDATE option on OPEN statement

WITH NO LOCK and ALLOWING phrases on READ statement
PERFORM THREAD statement

PREVIOUS option on READ statement

Literal allowed in FROM phrase of REWRITE and WRITE statements
SEND message statement

RECEIVE message statement

SET CHART ATTRIBUTE statement

SET FILE-PREFIX statement

SET ENVIRONMENT statement

SET EXCEPTION statement

SET TO ADDRESS OF statement

SET TO SIZE OF statement

SET HANDLE statement

SET THREAD statement

SET WINDOW statement

STOP THREAD statement

SUBTRACT TABLE statement

LESS THAN and LESS THAN OR EQUAL options on START
statement

UNLOCK statement

A-10 m Specifications

DECLARATIVE procedures may reference procedures outside of
DECLARATIVES

Recursive CALLs
Dynamically determined SORT keys
EXIT PERFORM, EXIT PARAGRAPH and EXIT SECTION

ROLLBACK clause for LOCK MODE phrase, on SELECT statement in
FILE-CONTROL paragraph

COMMIT statement may indicate end of transaction and cause changes
to be written to transaction log file

ROLLBACK statement

SET statement with ADDRESS OF clause sets address of linkage data
item to specified value

START TRANSACTION statement

SUPPRESS clause for the COPY statement

USE active_x_control_item and USE ole_object_item statements
USE FOR REPORTING statement

UNLOCK THREAD statement

WAIT statement

A.4 Restrictions

The current version of ACUCOBOL-GT has the following restrictions with
respect to the standard. Many of these will be lifted in future versions of
ACUCOBOL-GT.

The Procedure Division is required.

The ENTER statement is unsupported (obsolete feature).

Restrictions m A-11

e The RERUN clause is unsupported (obsolete feature).
e The COMMON clause of the PROGRAM-ID is unsupported.

 Nested source programs are unsupported.

ACUCOBOLGT Reserved

Wo

rds

Key Topics

Conventions

eIy A VZeTo YAV o] o I T

B-2 m ACUCOBOL-GT Reserved Words

B.1 Conventions

This appendix lists all the reserved words used by ACUCOBOL-GT. Words
that are reserved by ACUCOBOL-GT but not by the 1985 standard are
indicated as follows:

€)) Indicates that the word is reserved by a special feature of
ACUCOBOL-GT
(b) Indicates that the word is reserved by IBM DOS/VS. They are

treated as reserved words by ACUCOBOL-GT only if you
compile with the “-Cv” compiler option.

(h) Indicates that the word is reserved by HP COBOL. They are
treated as reserved words by ACUCOBOL-GT only if you
compile with the “-Cp” compiler option.

(i) Indicates that the word is reserved by both ACUCOBOL-GT and
Data General ICOBOL

n Indicates that the word is reserved by both ACUCOBOL-GT and
RM/COBOL

(s) Indicates that the word is reserved by ACUCOBOL-GT for use in
the Screen Section

(v) Indicates that the word is reserved by both ACUCOBOL-GT and
VAX COBOL

(8) Indicates that the word is reserved by the 1985 standard, but not
by the 1974 standard

*) Indicates that the word is reserved by the 1985 standard but not

used by ACUCOBOL-GT. These words are treated as user
symbols by the compiler. They may become reserved in the
future as more features of the 1985 standard are implemented, so
their use is not advised.

Reserved Word List m B-3

B.2 Reserved Word List

This section lists each reserved word in alphabetical order.A

ACCEPT ACCESS

ACTUAL (b,h) ADD

ADDRESS(a) ADVANCING

AFTER ALL

ALLOWING ALPHABET(8)
ALPHABETIC ALPHABETIC-LOWER(8)
ALPHABETIC-UPPER(8) ALPHANUMERIC(8)
ALPHANUMERIC-EDITED(8) ALSO

ALTER ALTERNATE

AND ANY(8)

APPLY (v) ARE

AREA AREAS

ASCENDING ASSEMBLY-NAME(a)
ASSIGN AT

ATTRIBUTE(a) AUTHOR

AUTO(i,s) AUTO-MINIMIZE(a)
AUTO-RESIZE(a) AUTO-SKIP(s)

AUTOMATIC(a) AUTOTERMINATE(v)

B-4 m ACUCOBOL-GT Reserved Words

BACKGROUND-COLOR(s) BACKGROUND-COLOUR(s)
BACKGROUND-HIGH(a) BACKGROUND-LOW(a)
BACKGROUND-STANDARD(a) BACKWARD(i)

BEEP(r,s) BEFORE
BELL(v,s) BIND(a)

BINARY (8,1) BLANK

BLINK(i,r,5) BLINKING(V)
BLOCK BOLD(v)

BOTTOM BOX(a)

BOXED(a) BULK-ADDITION(a)
BY

CALL CANCEL

CCOL(a) CD(*)

CELL(a) CELLS(a)
CENTERED(a) CENTURY-DATE(a)
CENTURY-DAY (a) CF(*)

CH(®) CHAIN(a)
CHAINING(a) CHARACTER
CHARACTERS CHART(a)
CLASS(8) CLASS-NAME(a)
CLINE(a) CLINES(a)
CLOCK-UNITS(*) CLOSE

COBOL(*¥) CODE(*)
CODE-SET COL(i,9)
COLLATING COLOR(a)

Reserved Word List m B-5

COLOUR(a)

COM-REG
COMMAND-LINE(a)
COMMUNICATION(*)
COMP-1(r,v)

COMP-3(r,v)

COMP-5(a)

COMP-N(a)
COMPRESSION(a)
COMPUTATIONAL-1(r,v)

COMPUTATIONAL-3(r,v)
COMPUTATIONAL-5(a)
COMPUTATIONAL-N(a)
COMPUTE
CONSOLE(s)
CONTAINS
CONTINUE(8)
CONTROLS(a)
CONVERT(r)

COPY

CORR

COUNT

CRT(s)

CULTURE(a)
CURRENT-DATE(b,h)
CYCLE(a)
CYL-OVERFLOW(b)

COLUMN
COMMA

COMMIT(a)

COMP

COMP-2(a)

COMP-4(r)

COMP-6(r)

COMP-X(a)
COMPUTATIONAL
COMPUTATIONAL-2(a)

COMPUTATIONAL-4(r)
COMPUTATIONAL-6(r)
COMPUTATIONAL-X(a)
CONFIGURATION
CONSTRUCTOR(a)
CONTENT(8)
CONTROL
CONVERSION(v)
CONVERTING(8)
CORE-INDEX(b)
CORRESPONDING
CREATE(a)

CSIZE(a)

CURRENCY
CURSOR(r)
CYL-INDEX(b)

B-6 m ACUCOBOL-GT Reserved Words

D

DATA
DATE-COMPILED

DATE
YYYYMMDD(a)

DAY-OF-WEEK(8)
DE(*)
DEBUG-ITEM(*)
DEBUG-NAME(*)
DEBUG-SUB-2(*)
DEBUGGING
DECLARATIVES
DELETE
DELIMITER
DESCENDING
DESTINATION(8)
DETAIL(*)
DISPLAY

DIVIDE
DOUBLE(a)
DRAW(a)
DYNAMIC

ECHO(r,v)
EJECT(b)
EMI(¥)
ENABLED
END

DATE
DATE-WRITTEN
DAY

DAY YYYYDDD(a)

DEBUG-CONTENTS(*)

DEBUG-LINE(*)
DEBUG-SUB-1(*)
DEBUG-SUB-3(*)
DECIMAL-POINT
DEFAULT(v)
DELIMITED
DEPENDING
DESCRIPTOR(v)
DESTROY (a)
DISABLE(¥)
DISPLAY-ST(b)
DIVISION
DOWN(a)
DUPLICATES

EGI(*)

ELSE
EMPTY-CHECK(s)
ENCRYPTION(a)
END-ACCEPT(a,r,v)

Reserved Word List m B-7

END-ADD(8)
END-CHAIN(a)
END-DELETE(8)
END-DIVIDE(8)
END-IF(8)
END-MOVE(a)
END-OF-PAGE
END-READ(8)
END-RETURN(S)
END-SEARCH(8)
END-STRING(8)
END-UNSTRING(8)
END-WAIT(a)
ENDING(a,b)
ENTRY(a, b)
EOL(r,s)

EOS(r,s)
ERASE(r,v)
ESCAPE(i,s)
EVALUATE(8)
EVERY(*)
EXCEPTION
EXIT
EXTENDED-SEARCH(r)

EXTERNAL-FORM(a)

END-CALL(8)
END-COMPUTE(8)
END-DISPLAY (a)
END-EVALUATE(8)
END-MODIFY (a)
END-MULTIPLY (8)
END-PERFORM(8)
END-RECEIVE(8)
END-REWRITE(8)
END-START(8)
END-SUBTRACT(8)
END-USE(a)
END-WRITE(8)
ENTER
ENVIRONMENT
EOP

EQUAL

ERROR

ESI(*)

EVENT(a)
EXAMINE(b,h)
EXCLUSIVE(h,i)
EXTEND
EXTERNAL(8)

B-8 m ACUCOBOL-GT Reserved Words

FALSE(8)

FILE

FILE-ID(v)

FILE-LIMITS(r)
FILE-PREFIX(a)

FINAL(*)

FLOAT(a)

FONT(a)

FOR
FOREGROUND-COLOUR(s)

FROM
FUNCTION

GENERATE(*)
GLOBAL(8)
GOBACK(r)

GREATER
GROUP(*)

HANDLE(a)
HEIGHT (a)
HIGH
HIGH-VALUES

FD

FILE-CONTROL
FILE-LIMIT(Y)
FILE-PATH(a)

FILLER

FIRST

FLOATING(a)

FOOTING
FOREGROUND-COLOR(S)
FREE(h)

FULL(i,s)

GIVING
GO
GRAPHICAL (a)

GRID(s)

HEADING(*)
HELP-1D(a)
HIGH-VALUE
HIGHLIGHT(s)

Reserved Word List m B-9

-0
ICON(a)
IDENTIFICATION
IF
INDEPENDENT (a)

INDEXED
INITIAL
INITIATE
INPUT-OUTPUT
INSPECT

INTO

IS

JUST
JUSTIFIED

KEPT(a)
KEY

LABEL
LAYOUT-DATA(a)
LEADING
LEFTLINE(s)

LENGTH-CHECK(s)

LIMIT(*)

I-O-CONTROL
ID
IDENTIFIED(a)
IN

INDEX

INDICATE(*)
INITIALIZE(8)
INPUT
INQUIRE(a)
INSTALLATION
INVALID

LAST

LAYOUT-MANAGER(a)

LEFT
LENGTH
LESS

LIMITS(*)

B-10 m ACUCOBOL-GT Reserved Words

LINAGE
LINE

LINES

LINKAGE
LOCK-HOLDING(v)
LOW-VALUE
LOWER(a)

MANUAL (a)
MASTER-INDEX(b)

MENU(a)
MESSAGE(a)
MODAL (a)
MODELESS(a)
MODULE(a)
MOVE
MULTIPLY

NAMESPACE(a)
NATIONAL-EDITED
NEGATIVE

NO

NOLIST(h)

NOT

NULL(a)

LINAGE-COUNTER
LINE-COUNTER(*)
LINK(a)

LOCK

LOW(r)
LOW-VALUES
LOWLIGHT(s)

MASS-UPDATE(a)
MEMORY

MERGE
MESSAGES(a)
MODE
MODIFY (a)
MODULES
MULTIPLE

NATIONAL
NATIVE
NEXT
NO-ECHO(s)
NOMINAL (b)
NOTE(b)
NULLS(a)

Reserved Word List m B-11

NUMBER
NUMERIC-EDITED(8)

OBJECT(a)
OCCURS

OFF

ON

OPEN

OR
ORGANIZATION

OTHERS(v)
OUTPUT
OVERLAPPED(a)

NUMERIC
NUMERIC-FILL(a)

OBJECT-COMPUTER
OF

OMITTED

ONLY(a)
OPTIONAL(8)
ORDER(8)
OTHER(8)

OTHERWISE(b)
OVERFLOW
OVERLINE(s)

PACKED-DECIMAL(8)

PAGE
PARAGRAPH(a)
PERFORM

PH(*)

PICTURE
PIXELS(a)
POINTER

POS(s)
POSITIONING(b)
PREVIOUS(a,i)
PRINTING(*)
PROCEDURE
PROCEED
PROGRAM
PROMPT(r,s)
PROTECTED(i,v)

QUEUE(¥)
QUOTE
QUOTES

RANDOM
READ

RECEIVE
RECORD-POSITION(a)

PADDING(8)

PAGE-COUNTER(*)
PASSWORD(b)
PF(*)

PIC

PIXEL(a)

PLUS

POP-UP(a)
POSITION
POSITIVE
PRINT-CONTROL (V)
PRIORITY (a)
PROCEDURES(*)
PROCESSING(b)
PROGRAM-ID
PROPERTY (a)
PURGE(*)

RD(*)
READERS(V)
RECORD
RECORDING(i)

Reserved Word List m B-13

RECORDS
REEL
REFERENCES(*)
RELEASE
REMARKS(a)
RENAMES
REPLACING
REQUIRED(i s)
REPORTING(*)
RERUN(*)

RESET(*)
RESIZABLE(a)
RETURNING
RETURN-UNSIGNED
REVERSE-VIDEO(s)
REWIND

RF(¥)

RIGHT

ROUNDED

SAME
SCROLL(a)
SEARCH
SECURE(i,s)
SEEK(r,h)
SEGMENT-LIMIT
SEND
SEPARATE

REDEFINES
REFERENCE(8)
RELATIVE
REMAINDER
REMOVAL
REPLACE(8)
REPORTING
REPORT(*)
REPORTS(*)
RESERVE
RESIDENT(a)
RETURN
RETURN-CODE
REVERSE(r)
REVERSED
REWRITE
RH(*)
ROLLBACK
RUN

SCREEN(i,s,v)
SD

SECTION
SECURITY
SEGMENT(*)
SELECT
SENTENCE
SEQUENCE

B-14 m ACUCOBOL-GT Reserved Words

SEQUENTIAL
SHADOW(a)
SIGNED-INT(a)
SIGNED-SHORT(a)
SKIP1(b)

SKIP3(b)
SORT-CORE-SIZE(b)
SORT-MERGE
SORT-RETURN(b)

SOURCE-COMPUTER

SPACES
STANDARD
STANDARD-2(8)
STATUS

STRING
STYLE(a)
SUB-QUEUE-2(*)
SUBTRACT
SUM(*)
SYMBOLIC(8)
SYNCHRONIZED
SYSTEM-INFO(a)

TAB()

TALLY (a)

TAPE
TERMINAL-INFO(a)

SET
SIGN
SIGNED-LONG(a)
SIZE

SKIP2(b)

SORT
SORT-FILE-SIZE(b)
SORT-MODE-SIZE(b)
SOURCE(*)

SPACE

SPECIAL-NAMES
STANDARD-1
START

STOP
STRONG-NAME(a)
SUB-QUEUE-1(*)
SUB-QUEUE-3(*)
SUBWINDOW(a)
SUPPRESS(b)
SYNC
SYSTEM(a)

TABLE(a)
TALLYING
TERMINAL(¥)
TERMINATE(*)

Reserved Word List m B-15

TEST(8)

THAN
THREAD(a)
THROUGH
TIME

TIMES
TITLE-BAR(3)
TOOL-BAR(3)
TRACK-AREA(b)
TRAILING

TRANSACTION-STATUS(a)

TRUE(8)

UN-EXCLUSIVE(h)
UNDERLINED(v)
UNLOCK(i,1,v)
UNSIGNED-LONG(a)

UNSTRING
UP
UPDATERS(v)
UPPER(a)
USE

VALUE
VALUES
VARYING
VERSION(a)

TEXT
THEN(@®)
THREADS(a)
THRU
TIME-OF-DAY (b,h)
TITLE(a)

TO

TOP

TRACKS(b)
TRANSACTION(a)
TRANSFORM(b)

TYPE(a,*)

UNDERLINE(s)
UNIT
UNSIGNED-INT(a)
UNSIGNED-SHORT (a)

UNTIL
UPDATE(r,v)
UPON
USAGE
USING

B-16 m ACUCOBOL-GT Reserved Words

VISIBLE(a)
W
WAIT () WHEN
WHEN-COMPILED(b) WIDE(a)
WIDTH(a) WINDOW(a)
WITH WORDS
WORKING-STORAGE WRAP(a)
WRITE WRITE-ONLY (b)
WRITE-VERIFY (b) WRITERS(v)
Y
YYYYDDD(8)
YYYYMMDD(8)
Z
ZERO
ZERO-FILL(S)
ZEROES

ZEROS

Changes Affecting Previous
Versions

Key Topics

Changes Affecting Version 8.1ccccevveeerevieniesnsn e eee s C-2
Changes Affecting Version 8.0ccccovvecevieiievienin e C-2
Changes Affecting Version 7.2 ..ot e C-3
Changes Affecting Version 7.1ccccceveeeevieniesn e e sese e s res s C-4
Changes Affecting Version 7.0ccccevvveceiieevesesie e C-5
Changes Affecting Version 6.2cccccerirenienene s e C-5
Changes Affecting Version 6.1cccevveeveevienesinsinsnsese e seeneenee e C-8
Changes Affecting Version 6.0cccevecevieeveviennin e C-9
Changes Affecting Version 5.2 ... C-10
Changes Affecting Version 5.1cccecevveeeenieniese e C-14
Changes Affecting Version 5.0cccccccvvvieiiie v C-17
Changes Affecting Version 4.3 ..o e C-19
Changes Affecting Version 4.2cccceveveivieniesiesin s seeseenee e C-21
Changes Affecting Version 4.1cccccoveciieevenieene e se e C-23
Changes Affecting Version 4.0 ... e C-23
Changes Affecting Version 3.2ccccceveeeenieniese e C-24
Changes Affecting Version 3.1cccccccvvieiine v C-27

Changes Affecting Version 2.4 ... e C-28

C-2 m Changes Affecting Previous Versions

ACUCOBOL-GT is generally backwards compatible with prior versions of
ACUCOBOL-GT and ACUCOBOL-85. There are, however, some changes
that can affect existing programs. These changes are detailed in this
appendix.

C.1 Changes Affecting Version 8.1

In Version 8.1, COBOL source code can now contain lines with a dollar sign
(%) in the indicator area, which may be used with the IF, ELSE, END,
DISPLAY, and SET statement to support conditional compiling.

The $ symbol is also a valid comment character. If a program uses $ as a
comment, and it is immediately followed by IF, ELSE, END, DISPLAY an
error will most likely be generated.

C.2 Changes Affecting Version 8.0

Comepiler

In previous versions, an END-PERFORM was required when the PERFORM
was nested in an EVALUATE statement. With Version 8.0, the compiler
accepts the WHEN verb as an implied END-PERFORM.

Interoperability

Comments in C8XML no longer include the expression:
"_.* - generated by ACUCOBOL-GT v.*\n*"

If you depend on having those comments, you will need to rework your
application in some way.

For .NET, the type checking rules for using overloaded methods ina COBOL
program are more stringent now. You must use COBOL types that match the
NETDEFGEN COPY file method declaration.

SIGNED-INT - int32.
UNSIGNED-INT - uint32.

Changes Affecting Version 7.2 m C-3

SIGNED-LONG - long.
SIGNED-SHORT - int16.
UNSIGNED-SHORT - uintl6.

PIC X(nn)- BSTR

pic 9- BOOLEAN

PIC X- BYTE

C.3 Changes Affecting Version 7.2

Compiler changes

In previous versions, ACUCOBOL-GT has performed the majority of its
arithmetic operations using a 40-digit decimal format (68 digits if using the
“-Dd31” compiler option). Starting with Version 7.3, ACUCOBOL-GT uses
a binary math package as its default. The decimal package remains in place
to handle certain high-precision cases and to maintain compatibility with
existing programs. Users of ACUCOBOL-GT can choose which package
they use: the binary package for enhanced performance or the decimal one for
compatibility with prior compilers. Use the “--decimalMath” (or “--dec”)
compiler option to use the decimal math format. Refer to section 2.1.13,
“Miscellaneous Options,” in ACUCOBOL-GT User’s Guide for more
information about these compiler options.

Prior to Version 7.3, cblutil produced instructions that ran under both
POWER and PowerPC architectures when generating PowerPC native code.
Starting with Version 7.3, this is no longer true. The reason is that the code
generator started using multiply and divide instructions in some important
cases, and some of these instructions changed. The existing “--ppc” compiler
option now produces 32-bit PowerPC code that is also compatible with
POWERS3, POWER4, and POWERS5 processors. This code does not run
correctly on POWER- or POWER2-based machines. A new “--power”
option produces code that is compatible with POWER and POWER?2
processors, as well as PowerPC and later POWER series processors. This
code can be significantly slower than code generated with “--ppc”, but it does
run on a wider range of machines. Please refer to section 2.1.2, “Native Code
Options,” in ACUCOBOL-GT User’s Guide for more information about
native code generation.

C-4 m Changes Affecting Previous Versions

Two compilation switches provide compatibility with Version 7.2:

-C72 Causes the compiler to generate code according to the rules used
by Version 7.2.

-Z72 Creates object code that can be run with a Version 7.2 runtime.

C.4 Changes Affecting Version 7.1

Compiler and runtime changes

Beginning with Version 7.2, the wheel mouse can be used for scrolling in a
center- or right-aligned entry field. To preserve the pre-7.2 behavior and
prevent scrolling in these situations, set the

V71 _ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true,
yes) or compile your code for compatibility with a version older than Version
7.2. The default value of this variable is “0” (off, false, no).

In Version 7.2, the runtime uses a different font measuring algorithm when it
computes font widths in Windows. With this change, the runtime now
validates the data returned by the Windows GetTextMetrics function and
corrects it when it is too large. The V71_FONT_WIDTHS configuration
variable setting allows you to use the pre-Version 7.2 rules. This variable can
have one of the following values:

-1 (default) The change is enabled for programs using Version 7.2 or later
semantics. In other words, the program has been compiled with Version
7.2 or later and the command line does not contain a compiler option for
pre-7.2 semantics.

0 The change is enabled.
1 The change is disabled and the Version 7.1 and earlier font measuring
code is used.

Two compilation switches provide compatibility with Version 7.1:

-C71 Causes the compiler to generate code according to the rules used
by Version 7.1.

-Z71 Creates object code that can be run with a Version 7.1 runtime.

Changes Affecting Version 7.0 m C-5

C.5 Changes Affecting Version 7.0

The following sections describe changes that can affect programs originally
written with ACUCOBOL-GT Version 7.0.

Compiler and runtime changes
Two compilation switches provide compatibility with Version 7.0:

-C70 Causes the compiler to generate code according to the rules used
by Version 7.0.

-Z70 Creates object code that can be run with a \Version 7.0 runtime.

In Version 7.1, the total size of parameters passed BY CONTENT is
increased to 2GB. For Version 7.0 and earlier, the total size limit is 64K. If
you compile with “-Z70”, your program has the 64K limit for parameters
passed BY CONTENT.

The maximum number of REPLACING elements in an INSPECT statement
is increased to 256. For Version 7.0 and earlier, the limit is 30.

C.6 Changes Affecting Version 6.2

The following sections describe changes that can affect programs originally
written with ACUCOBOL-GT Version 6.2.

UNIX: New default installation directory

On UNIX systems, the ACUCOBOL-GT development system (compiler,
runtime, utilities, etc.) has a new default directory location. The new location
is: “/opt/acucorp/720”. This change has been made to conform with the
\fersion 2.3 Filesystem Hierarchy Standard (FHS). Installing into the FHS
standard location provides consistency and improves system integration. For
more information about the FHS standard, please visit “www.pathname.com/
fhs/pub/fhs-2.3.html”.

C-6 m Changes Affecting Previous Versions

Initialization of external data items

Versions of ACUCOBOL-GT prior to Version 7.0 had the behavior of
initializing external data items to LOW-VALUES, even when the rest of
Working-Storage was initialized to spaces. Beginning with \Version 7.0, all
Working-Storage data items are initialized to spaces or the value specified
with the “-Dv” compile option. This includes external data items.

To maintain compatibility with programs that rely on the old behavior, you
can compile for semantic compatibility with Version 6.2 or earlier. Use the
“-C##” compile option to do this (for example, “-C62” for Version 6.2
compatibility). When you compile for compatibility with Version 6.2 or
earlier, external data items are initialized to null bytes, regardless of how the
rest of Working-Storage is initialized.

C functions

Starting with Version 7.0, ACUCOBOL-GT has added significant new
features to the C interface, allowing you greater flexibility for calling
COBOL programs from C and C++.

For existing programs, this means:

* The cobol() and cobol_no_stop() functions are still supported but have
been deprecated. The new function, acu_cobol(), extends the options
available in the C interface.

< Information on the deprecated cobol() and cobol_no_stop() functions is
not documented in Version 7.0. Refer to Appendix F in previous
versions of the ACUCOBOL-GT documentation set for this information.

Detailed descriptions of the current C functions are available in Chapter 6 of
A Guide to Interoperating with ACUCOBOL-GT.

Changes Affecting Version 6.2 m C-7

Compiler changes
Two compilation switches provide compatibility with Version 6.2:

-C62 Causes the compiler to generate code according to the rules used
by Version 6.2.

-262 Creates object code that can be run with a \Version 6.2 runtime.

Runtime changes

» The runtime now automatically corrects most reference modification
range errors. It applies the following rules:

a. A start reference less than 1 is treated as 1. For example, var(0:3)
is treated as var(1:3).

b. A length reference less than 0 is treated as 0. Moving a zero-byte
item is equivalent to moving spaces to the destination item. A
zero-byte destination is not affected by the move. Ina STRING
statement, a length of zero for a string source is treated as 1, not 0.

c. A start plus length reference that is past the end of the item is
treated as meaning to the end of the item. For example, if the var
is a PIC X(5) item, var(4:23) is treated as var(4:2).

The WARNINGS runtime configuration variable provides some control
over how reference modification range errors are handled. See its entry
in Appendix H.

» The behavior of the character-based tree view control has changed. In
previous versions, the MSG-TV-SELCHANGE message was not sent if
the COBOL program deleted an item. Nor was it sent when the COBOL
program first ACCEPTed a tree view control. Beginning with Version
7.0, the MSG-TV-SELCHANGE message is now sent in both cases.

» Beginning with Version 7.0, when the runtime reduces the size of a
window to fit the screen, it includes any fractional lines and columns that
fit, provided the COBOL program attempted to create a window with
fractional lines and columns. For example, if the program creates a 70.0
line window, but only a 66.4 line window fits on the display, the runtime
detects that no fractional lines were attempted, and truncates the number
of lines to 66.0. However, if you attempt to create a 70.1 line window,

C-8 m Changes Affecting Previous Versions

the runtime recognizes the fractional measurement and displays a 66.4
line window. In prior versions, the runtime always reduced the size of
the window to a whole number. To preserve the old behavior, set the
configuration variable V62_MAX_WINDOW to “1” (on, true, yes).

e Beginning with Version 7.0, the Web runtime uses
ANSI_FIXED_FONT as the standard font. Because some systems may
depend on the old font, this change is configurable. To use the font
standard from Versions 6.2 and earlier (SYSTEM_FIXED_FONT),
adjust the setting of the configuration variable STD_FIXED FONT,
described in Appendix H.

C.7 Changes Affecting Version 6.1

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 6.1.

Compiler changes

Programs that will be deployed on 64-bit Windows systems and that have
USAGE POINTER data items must be recompiled with \ersion 6.1.1 or
later. This is because, beginning with Version 6.1.1 (the introduction of
ACUCOBOL-GT for 64-bit Windows), the compiler and runtime
differentiate between USAGE LONG and USAGE POINTER data items.
This is necessary for 64-bit Windows.

Two compilation switches provide compatibility with Version 6.1:

-C61 Causes the compiler to generate code according to the rules
used by Version 6.1.

-261 Creates object code that can be run with a \ersion 6.1 runtime.

Changes Affecting Version 6.0 m C-9

Runtime changes

» Beginning with Version 6.2, on the HP €3000, if a program is compiled
with the “-Cp” option, OPEN OUTPUT statements create temporary
files. This is consistent with the behavior of native HP COBOL on the
platform. Prior to Version 6.2, OPEN OUTPUT statements created
permanent files.

» Beginning with Version 6.2, CSOPENSAVEBOX makes use of the
OPNSAV-FLAGS field of OPENSAVE-DATA. Prior versions ignored
the field.

C.8 Changes Affecting Version 6.0

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 6.0.

Compiler changes
Two compilation switches provide compatibility with Version 6.0:

-C60 Causes the compiler to generate code according to the rules
used by Version 6.0.

-Z60 Creates object code that can be run with a Version 6.0
runtime.

Alignment of literals

The compiler uses a new algorithm for aligning literals in memory. The
alignment is the smaller of the alignment specified by the “-Da” option
(which has a default value of “4™) or the largest power of 2 that is less than or
equal to the literal’s size. For example, a literal that requires 3 bytes of
memory will have an alignment of 2. You can use the “--noAlignLit” option
to turn off the new algorithm. See section 2.1.9, “Data Storage Options,” in
Book 1, ACUCOBOL-GT User’s Guide, for additional information on
“--noAlignLit.”

C-10 = Changes Affecting Previous Versions

Runtime changes

In Version 6.0 and earlier, the WIN$PRINTER functions
WINPRINT-PRINT-BITMAP, WINPRINT-SET-CURSOR, and
WINPRINT-GRAPH-DRAW, ignored the form feed status of a pending
print job, causing images or text to print on the wrong page. In Version
6.1 and later, calls to these functions automatically test for a pending
form feed before printing.

In Version 6.1, when a program is compiled with the “-Cp” switch and
run on an HP 3000, all OPEN OUTPUT statements create MPE files.
In prior versions, byte stream files were created.

In Version 6.0 and earlier, if a program argument was preceded by a
double dash (two dashes) it was effectively treated as if preceded by a
single dash. For example, “runcbl --dle errfile iobench” was executed as
if it were “runcbl -dle errfile iobench”. Beginning with Version 6.1, an
argument preceded by two dashes generates a runtime startup error,
unless you specifically modify exam_args (in “sub.c”) to ignore
command-line errors.

C.9 Changes Affecting Version 5.2

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 5.2.

Vision Version 5

Version 6.0 introduces a new Vision file format: Vision Version 5. Vision
Version 5 supports records up to 64 megabytes in size, block sizes up to 8192
bytes, very large pre-allocate and extension factors, and a virtually
unrestricted number of records that allow duplicates. \ersion 5 files cannot
be read by ACUCOBOL-GT Version 5.2.1 or earlier runtimes. For a
complete description of Vision Version 5, see section 6.1.3, “Indexed Files -
Vision” in Book 1, ACUCOBOL-GT User’s Guide.

Changes Affecting Version 5.2 m C-11

Windows console runtime

Version 6.0 introduces a new runtime for the Windows operating
environment that may be used to run applications originally deployed in the
Extended DOS environment, as well as other character-based applications.
The new runtime is called the console runtime. The name of the executable
is “crun32.exe”. The console runtime uses the Windows Console API and
runs in a virtual DOS window. The console runtime replaces the Extended
DOS runtime and is sold separately.

The console runtime can run ACUCOBOL-GT applications developed for
the Extended DOS environment provided that some minor changes are made.
For example, the console runtime supports printing capabilities based on the
Windows model. Program code that relies on DOS printing functions must
be modified.

The following runtime configuration variables are MS DOS-specific and are
not supported in Version 6.0:

132_MODE
A_WAIT_FOR_LICENSE
AUTO_BUFFER
DOS_OUTPUT_METHOD
DOS_WATCOM _10
LOCKED_RECORD_DELAY
USE_MOUSE

Web Plug-in discontinued

The browser industry has shifted away from its support of Internet plug-ins in
favor of ActiveX controls. For this reason, we developed and released an
ActiveX-based Web Runtime in ACUCOBOL-GT Version 5.2.1. Due to
lack of browser support, the ACUCOBOL-GT Web Plug-in is not offered or
supported in Version 6.0. For information on migrating from the Web
Plug-in to the Web Runtime, see section 5.11 of A Programmer’s Guide to
the Internet.

C-12 = Changes Affecting Previous Versions

List box and combo box handling of VALUE

In Version 5.2 and earlier, setting the VALUE of a combo box or list box
caused the first item in the list that started with the value of VALUE to be
selected, regardless of case. Beginning with Version 6.0, when a box’s
VALUE is set, the list is searched for an exact, case sensitive match with the
specified value. If the value is found, it is selected. If an exact match is not
found, the list is searched for an exact match regardless of case. If a match is
still not found, the list is searched again, this time for the first string that
contains the passed VALUE as a leading substring, regardless of case.

This change could affect the behavior of an existing application. The
configuration variable V60_LIST_VALUE allows you to select which search
algorithm, new or old, to use. See V60 LIST_VALUE in Appendix H.

Area A in RM COBOL compatibility mode

Starting with Version 6.0, when you compile for RM COBOL compatibility
(“-Cr”), in the Identification Division, Area A can start in either column 8 or
9 (ANSI format) or column 1 or 2 (terminal format). In prior versions, Area
A in the Identification Division started precisely in column 8 (ANSI format)
or column 1 (terminal format).

This change may cause warnings in programs that previously compiled
without warnings. To revert to the old rule, you can use the “--noRmMargin”
compiler option.

Image rendering for BITMAP controls

The image processing code used by Version 6.0 (and later) for BITMAP
controls is device-dependent. This may affect image rendering in some
programs, written for \ersion 5.2 or earlier, which rely on
device-independent bitmaps. If BITMAP controls are displaying incorrectly,
adjust the setting of the configuration variable, V52_BITMAPS, described
in Appendix H.

Changes Affecting Version 5.2 m C-13

Bitmap push button behavior change

If some event in the system forces the focus away from a text-based push
button after a click has been initiated but not finished, the click is voided.
Starting with Version 6.0, bitmap push buttons void the click just like a
text-based push button. This change applies only to programs compiled for
6.0 semantics or later.

Changes to data items used by C$REDIRECT

The definitions of the HANDLER-PRE-ALLOCATE-AMOUNT,
HANDLER-EXTENSION-AMOUNT, HANDLER-MAX-LREC-SIZE,
HANDLER-MIN-LREC-SIZE, and HANDLER-SEGMENT-OFFSETdata
items in “sample/handler.cpy” have changed.

Changes to data items used by 1$10

The definitions of the PRE-ALLOCATION-AMOUNT,
EXTENSION-AMOUNT, MAX-REC-SIZE, MIN-REC-SIZE, and
KEY-OFFSET data items in “sample/def/filesys.def” have changed.

Compiler changes

» Two compilation switches provide compatibility with Version 5.2;

-C52 Causes the compiler to generate code according to the rules
used by Version 5.2.

-Z52 Creates object code that can be run with a \ersion 5.2
runtime.

* When compiling for Version 6.0 or later format, table indexes and
USAGE INDEX data items are treated as 32-bit signed native binary
data items. In versions prior to 6.0, the default for indexes is to act as
16-bit unsigned portable binary data items. In rare cases, this change
from 16-bit to 32-bit indexes may cause problems with an existing
program. One case where this could be a problem is if you place
USAGE INDEX items in a data file. Another case would be if you rely
on undefined overflow behavior with arithmetic on 16-bit indexes.

C-14 = Changes Affecting Previous Versions

If you need to preserve indexes as 16-bit items, you can either compile
for an object format prior to Version 6.0, or you can compile using the
“--nodata32bit” option. This option inhibits the new data addressing
features of 6.0 and causes indexes to be kept as 16-bit data items.

C.10 Changes Affecting Version 5.1

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 5.1.

Licensing changes

The licensing mechanism changed with the release of Version 5.0. In
Version 5.2, this mechanism has been simplified:

* Node IDs are no longer used.

* When the license is installed, the Windows version of the Activator
creates a separate license file for each product, in the same manner as
UNIX.

» The Activator utility is not backwards compatible. You must use the
version of the Activator utility that corresponds to the version of the
product you are installing in order to create a proper license file.

A complete description of the current licensing mechanism is available in the
Getting Started book.

Compiler changes

» Two compilation switches provide compatibility with Version 5.1:

-C51 Causes the compiler to generate code according to the rules used by
Version 5.1.

-Z51 Creates object code that can be run with a Version 5.1 runtime.

o Compiler switch “-Zt” is not supported in Version 5.2.

Changes Affecting Version 5.1 m C-15

* Inversions prior to 5.2, the grid would not pass a
MSG-GOTO-CELL-MOUSE event to the program when the user
clicked on the cell containing the grid cursor. This was done to prevent
extraneous messages from being sent to the program. However, this
message can be useful in some cases, for example, to allow a user to
deselect something that is already selected. Therefore, in Version 5.2
and later, the runtime no longer filters out MSG-GOTO-CELL-MOUSE
messages just because the destination cell is the same as the current cell.

Note: This change is active only for programs compiled for Version
5.2 or later. This means that the Version 5.2 runtime will use the old
behavior when executing programs compiled with versions prior to
5.2, or compiled with the “-C51” or the “-Z51” switch. You can
disable the new behavior by setting the configuration variable
“V52_GRID_GOTO” to “0”.

* \ersion 5.2 introduces “ENTRY” as a new reserved word in
ACUCOBOL-GT. A program that compiled with a previous version of
the compiler will not compile with Version 5.2 if it uses “entry” in
certain places. For example:

If “entry” appears in a paragraph name in your program, the compiler
returns the error:

“ldentifier expected, ENTRY found”

If “entry” appears in a variable in your program, the compiler returns the
error:

“syntax error scanning ENTRY”

See Book 3, ACUCOBOL-GT Reference Manual, section 6.6,
“Procedure Division Statements,” ENTRY Statement, for usage syntax
and rules.

Runtime changes

e The ACUCOBOL-GT Version 5.2 runtime on SCO UNIX systems runs
in the ELF binary format. Prior to Version 5.2, the runtime ran in the
COFF format, but COFF does not support calling shared libraries so it

C-16 = Changes Affecting Previous Versions

was changed to ELF. If you have your own C routines that you used to
link to the runtime, you will need to recompile those C routines to create
ELF objects to link to the 5.2 runtime. For details on calling shared
library routines in UNIX environments, see Chapter 6 of A Guide to
Interoperating with ACUCOBOL-GT.

e Inversions prior to 5.2, the runtime would eliminate requests to resize a
screen control if the new size and position matched the control’s current
size and position on the screen. With the current version, the runtime
optimizes the control resize request using the SIZE and LINES indicated
(or implied) by your program instead of the current size and position.

These two ways of optimizing control resize requests produce nearly
identical results. However, there are a few cases where the results can
differ. For example, if you change the size of the subwindow that
contains the control in such a way that the control would crop differently,
then a comparison of the “actual” size shows a difference, while a
comparison of the “requested” size does not. In this case, earlier
versions of the runtime would resize the control, while the current
version will not.

This change was made to provide more predictable behavior and to
improve efficiency when the display service is on a remote machine.

If necessary, you can disable this behavior by setting
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no). This prevents
any optimization of control resizing operations. Note that this can result
in additional screen painting (in which controls may appear to flicker)
and should be used only as a short-term fix while any required coding
changes are made.

e The way the runtime handles mouse click events in COBOL programs
that contain both bitmap push buttons and multiple windows under the
control of a single thread has changed.

In Version 5.1 and earlier, in some cases, simply clicking down on the
mouse button when a bitmap push button was selected, generated a
CMD-CLICK event. This was not consistent with the way Microsoft
Windows handles these events.

Changes Affecting Version 5.0 m C-17

In Version 5.2 and later, clicking down on a bitmap pushbutton on a
non-active window running in the same thread will cause the current
ACCEPT to terminate with CMD-ACTIVATE event. The pushbutton is
not considered clicked until the COBOL program performs some action
that allows it to activate, such as ACCEPTing some control in the newly
activated window. For self-activating pushbuttons, this allows the
pushbutton to self activate. For non-self-activating pushbuttons, the new
ACCEPT will terminate with a CMD-GOTO so that the COBOL
program can ACCEPT the correct control.

This change is only available in COBOL objects compiled for Version
5.2 or later and run with a \Version 5.2 or later runtime. COBOL objects
compiled with Versions 5.1 or earlier will still exhibit the old behavior,
even if they are run with a Version 5.2 or later runtime.

* The resolution of the ACCEPT BEFORE TIME timer has been
substantially increased in Version 5.2. In rare cases, this could affect
existing programs. To forestall any such problems, the runtime
automatically uses the pre-5.2 resolution when running pre-5.2 objects
and objects compiled for pre-5.2 compatibility (e.g. “-C51").

C.11 Changes Affecting Version 5.0

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 5.0.

Compiler changes
Two compilation switches provide compatibility with Version 5.0:

-C50 Causes the compiler to generate code according to the rules used by
Version 5.0.

-Z50 Creates object code that can be run with a Version 5.0 runtime.

C-18 m Changes Affecting Previous Versions

Runtime changes

In versions prior to 5.1, a CMD-ACTIVATE event would be generated
only if there was an active ACCEPT statement running to receive it.
Under some (unusual) circumstances, this could cause the runtime to
enter a state where it believed the wrong window was active.

In Version 5.1, this rule is modified so that CMD-ACTIVATE events
are generated unless the window generating the event is in the process
of being built. 1t no longer matters whether or not an ACCEPT statement
is running. The new rule is needed to prevent the first ACCEPT in each
window from immediately terminating due to a queued
CMD-ACTIVATE event (generated by the window's own creation).

Note: This is a change in the rules for when CMD-ACTIVATE is
generated. As a result, it is possible for CMD-ACTIVATE events to
occur in cases where they did not previously. In order to prevent this
change from adversely affecting a working program, the new rule is
used only for programs compiled for 5.1 semantics. This means that
the 5.1 runtime will not behave any differently in this regard when
executing programs compiled with 5.0 or earlier (or compiled with the
“-C50” switch). You can explicitly enable this rule by setting the
configuration variable “ECN-1660" to “1” or disable it by setting it to
“0”. When the variable is set to “-1” (the default), the program
semantics apply as described above.

In Version 5.1, you can assign pop-up menus to labels. This change has
the side-effect that labels are now aware of mouse-clicks where
previously they were not. This matters only if you happen to have a label
and another control (like a push button) that overlap. Previously, the
push button would always get all the mouse events. In Version 5.1, the
label could start getting them. This can prevent the push button from
working (because it is not “seeing” the mouse clicks). Normally, you
would not overlap controls, but it can happen unintentionally if the label
contains only spaces.

Changes Affecting Version 4.3 m C-19

To correct this situation, make the controls not overlap or make label
invisible instead of setting it to spaces if you want to hide it. You can
inhibit this change by compiling for 5.0 or earlier semantics (this also
means that you must compile for 5.1 or later semantics if you want to
attach a pop-up menu to a label).

e The configuration variable V42_TRANSPARENT is now obsolete.
Transparent labels always appear transparently. If this variable is set in
your environment or in the runtime configuration file, it is simply
ignored.

C.12 Changes Affecting Version 4.3

Version 5.0 of ACUCOBOL-GT contains significant changes in the internal
workings of both the compiler and runtime. The following paragraphs
describe changes that can affect programs originally written with
ACUCOBOL-GT Version 4.3.

Licensing changes

With the Version 5.0 release, the licensing procedure for extend products has
been changed. All products still require a license file, but you no longer need
a separate license disk to install your products. Instead, you will receive a
pair of alphanumeric strings (keys) that must be entered to activate your
software. See your Getting Started book for details.

Compiler changes
Two compilation switches provide compatibility with Version 4.3:

-C43 Causes the compiler to generate code according to the rules used by
Version 4.3.

-Z43 Creates object code that can be run with a \Version 4.3 runtime.

» Priorto Version 5.0, the width of a printer cell was based on the average
width of the selected printer font. Now, the width of a printer cell is
computed in the same way that cells are computed for the screen, based
on the width of the “0” (zero) character. Note that proportional fonts

C-20 = Changes Affecting Previous Versions

may contain wider characters. This may affect the horizontal placement
of a bitmap on the page, the width of bitmaps and margins if they are
specified in cells, and the number of columns reported by the
WINPRINT-GET-PAGE-LAYOUT call. See the WIN$PRINTER in
Appendix |, “Library Routines”, for details.

The Arial font shipped with Windows 98 Version 2 is different from the
Arial font shipped with earlier versions of Windows and Windows NT.
The new font has a character width of 35 pixels, instead of the previous
23 pixel width. This can cause field overlap or screen distortions in
programs that rely on the size of the Arial font. If you do not want to
adjust your applications to accommodate the new wider version of the
Arial font, a new configuration variable,
OLD_ARIAL_DIMENSIONS will force the runtime to use the 23
pixel measurement. See Appendix H, “Configuration Variables,” for
details.

In previous versions, the command-line option for the logutil utility date
filter “-d” had problems comparing dates when the specified 2-digit year
was “00” or greater. Now, logutil requires that years be specified in a
4-digit format. 1f you enter a year less than 1900, logutil will report
“logutil: use 4 digit year specification.”

Starting with ACUCOBOL-GT 5.0 release, the compiler no longer
automatically assigns the “MULTILINE” style to an entry field with
LINES value of “2” or greater. Although Version 5.0 correctly handles
cases compiled with 4.x versions, in order for that to happen you need to
specify an appropriate source-compatibility flag (such as “-Z43”). Note
that the flag is not required if you had explicitly set the “MULTILINE”
style in your 4.x-version program.

Runtime changes

In previous versions, the UNIX runtime would use the name of the user
that started a runtime process to identify the user to acushare and count
the number of processes a user was executing simultaneously. In
Version 5.0, the user is defined as a unique terminal name. Each
terminal is counted as a unique user and requires one user license.
Background processes adopt the name of the terminal which started
them. There are 1024 processes per user allowed for each terminal
name.

Changes Affecting Version 4.2 m C-21

acushare 5.0 can be used with older runtimes and will report the
maximum processes and processes per user settings for those runtimes as
long as they have different serial numbers from the 5.0 runtime installed
on the machine. If a Version 4.3 and a Version 5.0 runtimes on the same
machine have the same serial number, acushare 5.0 supports both but
does not report maximum processes or processes per user.

Microsoft has changed standard input stream handling in Internet
Information Server 4.0. When you are running with the “-f” option or
when the A_CGI environment variable is set, the runtime reads only the
number of bytes set in the CONTENT_LENGTH environment variable
by the web server. The runtime no longer waits for an end of file
condition.

The runtime no longer differentiates between “UNIX-4" and “UNIX-V”
in the OPERATING-SYSTEM field of the SYSTEM-INFORMATION
structure. Instead, it reports “UNIX” for all UNIX operating systems.

C.13 Changes Affecting Version 4.2

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2.

Compiler changes

Two compilation switches provide compatibility with Version 4.2:

-C42 Causes the compiler to generate code according to the rules used by

\ersion 4.2.

-Z42 Creates object code that can be run with a \Version 4.2 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2.

The default ACCEPT size for a numeric-edited field now includes a
space for the sign only if the field is signed. You can set the program to
include a space for an implied sign by compiling for semantic
compatibility with an earlier version of ACUCOBOL-GT using a
compilation switch in the command line.

C-22 m Changes Affecting Previous Versions

One of the general rules for screen control entry has been modified: Prior
to Version 4.3, an ACCEPT statement used to set ACCEPT-CONTROL
to “1” if the event was a “message” (“MSG-...”) event. Starting with
version 4.3, if the reason for entry is a “notify” (“NTF-...”) event,
ACCEPT-CONTROL is set to “1”; otherwise it defaults to “0”).

The “-Fo” option has replaced the “-Z0” option. Both compiler options
produce the same results, but the “-Zo” option should be considered
obsolete.

The compiler option “- Rw” has been expanded to allow, in addition to
reserved words, the suppression of some non-reserved words, such as
control names (e.g., “entry-field”, “label’”) or property names (e.g.,
“max-text”, “bitmap-number”). If you tell the compiler to suppress a
non-reserved word, however, it will do so with the following warning:
“Unknown reserved word: non-reserved word.”

Runtime changes

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.2.

If a program is in the event procedure for an active control, and the
control activates and subsequently destroys another control, the control
whose event procedure is executing is reactivated. In previous versions,
the “active” control was left in an undefined state.

When using the library routine WIN$PRINTER with the 32-bit runtime,
the newer Windows PageSetup dialog box will appear by default. If you
wish to use the old 16-bit PrintSetup dialog box, you must use the
operation code WINPRINT-SETUP-OLD.

In all releases up to and including the ACUCOBOL-GT 4.2 release,
anytime you created an Entry-Field control with a LINES value of “2” or
greater, it was treated as a multiline entry field. In version 4.3, this rule
is modified so that a LINES value of “2” or greater implies MULTILINE
only if the “CELLS” phrase is not also used or implied.

Changes Affecting Version 4.1 m C-23

Calling COBOL from other languages

» Windows 95/98 and NT sites that are calling COBOL routines from C
with the “cobol” routine need to be aware of a change to the calling
convention. The calling convention has changed from “__cdecl” (the C
calling convention) to “__stdcall” (the Pascal calling convention, used
by Windows API routines). This was done to make integration with
Visual Basic and Delphi more straightforward.

Programs that call the “cobol” routine must be sure to include “sub.h”
(included with ACUCOBOL-GT in the “lib” directory). This includes a
declaration of the “cobol” routine for all platforms. This ensures that
you use the correct calling convention when calling the “cobol” routine.
If you have established routines that call “cobol”, these must be
recompiled in order to use the new calling convention.

C.14 Changes Affecting Version 4.1

C.15

Two compilation switches provide compatibility with Version 4.1:

-C41 Causes the compiler to generate code according to the rules used by
Version 4.1.

-Z41 Creates object code that can be run with a \Version 4.1 runtime.

Changes Affecting Version 4.0

Two compilation switches provide compatibility with Version 4.0:

-C40 Causes the compiler to generate code according to the rules used by
Version 4.0.

-Z40 Creates object code that can be run with a \Version 4.0 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 4.0.

C-24 m Changes Affecting Previous Versions

e The compiler option “-Zx” (while still supported) has been replaced with
“-Fx”. Both options cause the compiler to generate XFD files in a new
format (XFD Version 4). Version 4 XFD files include a list of all of the
fields contained in a file’s record description, including group items and
REDEFINES items. Items that are excluded from use by the rules of
XFD generation are marked with a condition number of 999. Versions
of Acu4GL and alfred prior to Version 4.1 require the old format of XFD
files. If you want to generate XFDs in the old format, use the new
compiler option “-Fx3” or use “-Z40”.

e The compiler option “-Za” now causes the compiler to test table indexes
against the upper bound of the current table size when you compile for
\ersion 2.4 or later semantics. Thus, if you have an OCCURS
DEPENDING ON table that could hold 20 elements physically, but
whose current size is 10 elements, the runtime will produce an error if
you access elements 11--20 when compiling with “-Za”.

Compiling for Version 2.3 or earlier (*-C23”) causes the compiler to test
against the physical upper bound.

C.16 Changes Affecting Version 3.2

Two compilation switches provide compatibility with Version 3.2:

-C32 Causes the compiler to generate code according to the rules used by
Version 3.2.

-232 Creates object code that can be run with a \ersion 3.2 runtime.

The following paragraphs describe changes that can affect programs
originally written with ACUCOBOL-GT Version 3.2.

e Under 32-bit Windows, the user name returned in ACCEPT FROM
SYSTEM-INFO is now retrieved from the system instead of from the
USER environment setting. The name retrieved is the user’s login name.
This change could affect installed programs in that a user’s name may
appear differently than it did with earlier runtimes. The runtime does not
provide a way to override this change, because doing so would present a
security hole under Windows NT.

Changes Affecting Version 3.2 m C-25

The default compile output file has been changed from “cbl.out” to
“{source-name}.acu”. This could affect the behavior of scripts used to
compile programs. Also, if no CODE-SUFFIX is specified, the runtime
tries a suffix of “.acu” before trying a blank suffix. This could affect
programs if you happen to use a blank suffix for objects and have files
named with the “.acu” extension in the same directory as your objects.
To work around this, simply set CODE-SUFFIX explicitly in your
configuration file. To specify a blank extension, simply add
“CODE-SUFFIX” with no value.

AUTO termination on a graphical screen now acts as if the “Tab” key
had been pressed.

Suppose a user is interacting with a screen that has an entry field
followed by a radio button group. Normally, when the user tabs to the
radio button group, control passes to the “group leader” (that is, the
button that is selected, or the first button in the group, if none is
selected). Prior to Version 4.0, if the entry field were defined with the
AUTO style, then when the field was full, control passed to the very next
item in the Screen Section. This might be a radio button that was not the
“group leader.”

The Version 4.0 runtime has been enhanced to treat this AUTO
termination case as if the “Tab” key had been pressed, so that control
passes to the “group leader” when the entry field becomes full.

If the program is compiled with the “-C##” option, where “##” is a
number less than 40 (such as “-C32” or “-C31"), this enhancement is
disabled, and the behavior reverts to that of earlier versions.

Starting with Version 4.0, the compiler uses a new rule when moving
LOW-VALUES or HIGH-VALUES to a numeric item.

Under standard COBOL, a MOVE of LOW-VALUES or
HIGH-VALUES to a numeric item has undefined effects. Prior to
Version 3.0, ACUCOBOL would treat these items as if they had legal
numeric values, convert them accordingly, and move the result. This
often results in a meaningless value, but can be useful for some numeric
data items.

C-26 = Changes Affecting Previous Versions

USAGE DISPLAY types, for example, would end up with
LOW-VALUES in their storage. Non-DISPLAY types ended up with
odd values. Some other COBOL systems would produce a value of zero
in binary numeric items when LOW-VALUES were moved to them.

In order to improve compatibility with these systems, ACUCOBOL-GT
was changed in Version 3.0 so that a MOVE of LOW-VALUES to a
numeric item moved ZERO to that item. There were two concerns with
this: (a) the compiler did not do this in every case, and (b) this changed
the behavior of some programs that were functioning under prior
versions of the runtime.

Starting with Version 4.0, the compiler uses the following rule when
moving LOW-VALUES or HIGH-VALUES to a numeric item:

When the constant LOW-VALUES or HIGH-VALUES is the source of
a MOVE statement whose destination is numeric, the move is treated as
if the destination were defined as class alphanumeric. This results in the
memory occupied by the numeric item being filled with LOW/
HIGH-VALUES.

This rule tends to produce the best results of both the pre-3.0 and
post-3.0 behavior--the useful cases work out the same. Also, this rule
expresses what most programmers believe should happen.

This new rule is used only for programs compiled for 4.0 semantics (this
is the default). If you use the “-C##” or “-Z##” option to compile for
earlier semantics, the compiler does not use this rule, and the runtime
adjusts to use the semantics that were in place for version “##”. For
example, if you compile with “-C24”, then the runtime will use the
pre-3.0 semantics for the meaning of MOVE LOW-VALUES to a
numeric item.

Changes Affecting Version 3.1 m C-27

C.17 Changes Affecting Version 3.1

Two compilation switches provide compatibility with Version 3.1:

-C31 Causes the compiler to generate code according to the rules used by

-Z31

Version 3.1.

Creates object code that can be run with a \Version 3.1 runtime.

The following section describes changes that can affect programs originally
written with ACUCOBOL-GT Version 3.1.

The Vision Version 4 indexed file system uses a dual file format.
Version 4 files cannot be read by ACUCOBOL-GT Version 3.1 or
earlier runtimes. For a complete description of Vision Version 4, see
section 6.1.3, “Indexed Files - Vision” in Book 1, ACUCOBOL-GT
User’s Guide. Note that runtimes beginning with Version 3.2 are able to
read any version of Vision file. To continue to use Vision Version 3
indexed files, see the entry for the V_VERSION configuration variable
in Appendix H.

Recursive PERFORM s are automatically enabled when you compile
your programs with Version 3.2 or later. Recursive PERFORMs are
required for the use of EVENT PROCEDURES. In very rare cases, this
can affect the flow of control in a program. A program would be
affected, for example, if it performs paragraph “A”, which performs
paragraph “B” and then returns from “A” before returning from “B”. If
you want, you can disable recursive PERFORMSs with either the “-C31”
(or earlier) flag or the “-Zr0” flag.

Beginning with Version 3.2, data in a list box column can no longer
overflow into the adjacent column (causing all columns to shift to the
right). Instead, the data is truncated if it doesn’t fit in the allotted space
for that column. There is no way to prevent this change.

Beginning with Version 3.2, list box columns have a small buffer
between them, so that the columns do not merge together when they are
full. This can cause partial loss of the last character in a column if your
columns are very close together. To correct this, set the configuration
variable COLUMN-SEPARATION to zero.

C-28 m Changes Affecting Previous Versions

Beginning with Version 3.2, in environments that use system messages,
such as Microsoft Windows, message processing during file 1/0
operations is no longer performed by default. This is due to problems
that can occur in programs that use multithreading, modeless windows,
or event procedures. To restore the old behavior, use the
FILE-IO-PROCESSES-MESSAGES configuration variable. Enabling
message processing should only be done under certain conditions. For a
complete description, see the entry for

FILE_IO_PROCESSES MESSAGES in Appendix H.

The IS NUMERIC test for COMP-3 fields is more rigorous beginning
with Version 3.2. In prior versions, any bit pattern was allowed in the
sign field. The runtime treated any bit pattern, other than 0x0D, as
indicating a positive value. Starting with Version 3.2, only signs of
0x0C, 0x0D and OxOF are treated as legal values in the IS NUMERIC
test. These values are the normal values for signs (there are two positive
values to match various other COBOLS). You can suppress this change
by compiling for compatibility with Version 3.1 (i.e. “-C31").

Beginning with Version 3.2, the DESTROY handle-1 statement now
sets the value of handle-1 to NULL if the statement succeeds. In prior
versions the value of handle-1 was not changed. You can prevent the
setting of handle-1 to NULL by compiling for compatibility with
Version 3.1 (i.e. “-C31").

C.18 Changes Affecting Version 2.4

The following section details changes that can affect programs originally
written with ACUCOBOL-85 Version 2.4.

Support for 16-bit MS-DOS compilers and runtimes has been
eliminated. Support remains for 32-bit (Extended) DOS systems and for
32-bit and 16-bit Windows systems. This change does not affect the
formal capabilities of ACUCOBOL-GT, but it does have some practical
consequences.

Primary among these is that ACUCOBOL-GT no longer supports the
dynamic loading and linking of assembly language routines. \Version 2.4
runtimes (and earlier) for 16-bit MS-DOS provided support for calling
assembly language routines directly with the CALL verb. In

Changes Affecting Version 2.3 m C-29

ACUCOBOL-GT Version 3.1 and later, if you want to use an assembly
language routine you must link it directly into the ACUCOBOL-GT
runtime in the same way that C routines are included.

Users who require 16-bit DOS support should use Version 2.4.

C.19 Changes Affecting Version 2.3

The following section details changes that can affect programs originally
written for the Version 2.3 ACUCOBOL-85 compiler.

Compiler changes

New directory structure

Beginning with Version 3.0, a new directory structure is created when you
load your media. See the “READ_ME? file for the location of all extend
files. Note that the new directory structure may not be compatible with
scripts you have in use at your site.

Runtime changes

Relinking the runtime

If you relink the runtime, be aware that the Makefile in the “lib” subdirectory
leaves the rebuilt runtime in the “lib” subdirectory. This change allows you
to rebuild the runtime system and test it without overwriting the original
runtime, and without renaming it. However, be sure to move the rebuilt
runtime to the “bin” subdirectory, or move it to a directory in your path.

Alternate file systems

Check the “RELEASE” notes to verify the compatibility of older versions of
extend interfaces to alternate file systems such as Btrieve and INFORMIX.

C-30 = Changes Affecting Previous Versions

C.20 Changes Affecting Version 2.1

The following section details changes that can affect programs originally
written for the Version 2.1 ACUCOBOL-85 compiler.

Compiler changes
MS-DOS requirements

For machines using MS-DOS, ACUCOBOL-GT Version 3.0 requires
MS-DOS version 3.0 or later. ACUCOBOL-85 Version 2.1 required only
MS-DOS version 2.0.

Support for 64-bit architectures

Beginning with Version 3.0, ACUCOBOL-GT fully supports 64-bit
machines without restriction. At the current time, the only machine that fits
this classification is the DEC Alpha machine running OSF (Open/VMS also
runs on the Alpha machine, but it runs in 32-bit mode). Version 2.1 of
ACUCOBOL-85 also runs on 64-bit machines, but it contains some
restrictions.

In Version 2.1, the following items are restricted:

« Since RETURN-CODE is only 32 bits in size, it cannot hold a “long”
value properly. This makes it inappropriate for receiving “pointer” or
“long” return values from a C subroutine.

* USAGE POINTER data items are also 32 bits, and so cannot actually
hold a real machine address.

« Thedirect C interface cannot be used for “pointer” or “long” parameters
since the 2.1 compiler does not allow you to pass a 64-bit item BY
VALUE.

Beginning with Version 3.0, these restrictions do not apply. We made certain
changes to the rules of ACUCOBOL-85, beginning with Version 2.3. These
changes affect only a few existing COBOL programs, but they have the

Changes Affecting Version 2.1 m C-31

potential of causing a working program to stop working. Because of this,
there is a method available to inhibit these changes. See the “-Dw” option in
section 2.1.9 of the ACUCOBOL-GT User’s Guide.

The specific changes are:

USAGE POINTER data items now occupy 8 bytes instead of 4 bytes.
This allows a USAGE POINTER item to hold a full address on any
machine architecture. On a machine that is smaller than 64-bits, only the
first 32 bits of the POINTER item are used. The rest of the item is
treated as FILLER.

This is the change that is most likely to affect existing programs. You
can be affected if you have POINTER data items as part of a group item,
since the group item’s size will change. If you have this case, then either
allow the size of the group to change and adjust any external references
or redefinitions of it, or use the option described below to keep
POINTER items in 4 bytes.

The special register RETURN-CODE was changed from PIC S9(9)
COMP-5 to USAGE SIGNED-LONG. For a description of
SIGNED-LONG, see the ACUCOBOL-GT Reference Manual section
5.7.1.8, “USAGE clause.” This change allows RETURN-CODE to hold
64-bit values on 64-bit machines, and so it can be used to hold any return
value from a called routine. This change should not affect any existing
program.

You may now pass 8-byte data items BY VALUE to a called routine. If
you are on a 16- or 32-bit machine, then only the low-order 32 bits are
actually passed. On a 64-bit machine, all 64 bits are passed. This
provides a portable solution to the problem of passing “long” data. This
change does not affect any existing programs.

For related topics, see the

“-Dw” option in section 2.1.9 of the ACUCOBOL-GT User’s Guide.

“USAGE clause,” section 5.7.1.8 of the ACUCOBOL-GT Reference
Manual.

CALL RETURNING syntax in the entry for the CALL statement in
section 6.6 of the ACUCOBOL-GT Reference Manual.

C-32 m Changes Affecting Previous Versions

« next section on “RETURN-CODE Changes.”

RETURN-CODE changes

As discussed in the previous section, the special register RETURN-CODE
has changed. In versions of ACUCOBOL-85 prior to 2.3, RETURN-CODE
was implicitly defined as:

77 RETURN-CODE PIC S9(9) COMP-5, EXTERNAL.

In Version 2.3 and later, it is defined as:
77 RETURN-CODE SIGNED-LONG, EXTERNAL.

This change should have no noticeable effect on existing code, but it allows
RETURN-CODE to be used sensibly on 64-bit machines. This change is
inhibited if you compile for compatibility with a prior version of
ACUCOBOL-85. For example, if you use “-C21” to maintain source
compatibility with Version 2.1, then this change does not take place.

There is also a special register that redefines RETURN-CODE called
RETURN-UNSIGNED. lts definition is:

77 RETURN-UNSIGNED
REDEFINES RETURN-CODE UNSIGNED-LONG, EXTERNAL.

You should use RETURN-UNSIGNED when handling pointer or “unsigned
long” data types that are returned from an external routine. If you use
RETURN-CODE in these cases, you can get errors if the value is large
enough to set the high-order bit of RETURN-CODE. The problem is that
these values are negative when interpreted as signed values, therefore
COBOL will remove the sign if you move them to an unsigned destination.

The RETURN-UNSIGNED special register is not defined if you compile for
compatibility with prior versions of ACUCOBOL-85.

Runtime changes

For machines using MS-DOS, ACUCOBOL-GT Version 3.1 and later
versions do not run under standard 16-bit DOS but do support 32-bit
Extended DOS. Version 3.0 requires MS-DOS version 3.0 or later.
ACUCOBOL-85 Version 2.1 required only MS-DOS version 2.0.

Changes Affecting Version 2.0 m C-33

C.21 Changes Affecting Version 2.0

The following section details changes that can affect programs originally
written for the Version 2.0 ACUCOBOL-85 compiler.

Compiler changes

The “-Ca” compiler flag was still available in Version 2.0, but was not
documented. (It was synonymous with the “-Va” flag.) Since Version 2.1,
“-Ca” has a new and different meaning. So, you must now use “-Va” to
cause opposite video intensities to be used for ACCEPT and DISPLAY
statements.

C.22 Changes Affecting Version 1.5

The following sections detail changes that can affect programs compiled with
the Version 1.5 ACUCOBOL-85 compiler.

Compiler changes

Note: All of the changes described in this section can be inhibited with the
“-C5” compile-time option, which causes the compiler to use
ACUCOBOL-85 Version 1.5 semantics. The “-Z5” option (which
produces object files compatible with Version 1.5) will also inhibit these
changes.

» Since the release of Version 2.0, indexed, relative, and binary sequential
files can have variable-length records. You might have syntax in your
existing programs that implies variable-length records, even though your
files on disk are fixed-length. If this is the case, you will receive error
“39” when you try to open your existing files after recompiling your
programs. This type of error will occur most frequently with files that
have multiple records declared for them (more than one “01” entry in the
file’s FD). In order to prevent the error, compile with either the “-C5” or
“-Cf” compile-time option. The “-Cf” option causes the compiler to
assume fixed-length records for these kinds of files.

C-34 m Changes Affecting Previous Versions

The function of the RETURN-CODE special register was expanded in
Version 2.0. This register is used to return a status value to the operating
system or calling program. The return status of the SYSTEM library
routine is also stored here. This can cause an existing program to behave
differently if you set RETURN-CODE to a particular value and then call
the SYSTEM routine. This can also cause programs that return zero to
the operating system (the default value of RETURN-CODE) to return a
non-zero value if they call SYSTEM. Note that this change affects
programs only after they have been recompiled with Version 2.0 or later.
You can inhibit the change with the “-C5” compile-time option.

The CALL PROGRAM verb behaves differently since Version 2.1. If
you used CALL PROGRAM under Version 1.5, use the “-C5” option to
maintain compatibility when you compile with Version 3.0. Also note,
that since Version 2.1 the “-Ci” option implies the recursive PERFORM
switch “-Zr”.

Under Version 1.5, the “-V¢” compile-time option caused ACCEPT
statements that entered numeric fields to be treated as if the CONVERT
phrase were specified for them. Since Version 2.1, this option also
implies the CONVERT phrase for numeric edited fields.

Under Version 1.5, the WRITE and REWRITE verbs did not check the
length of the record for legality. Since Version 2.1, an illegally sized
record returns error “44”.

The option “-Zz” causes spaces in a USAGE DISPLAY numeric item to
be treated as the value zero. Because this action was formerly handled
by the SPACES-ZERO runtime option, if you have a mix of object files
from Version 3.0 or later and from any versions prior to Version 2.0,
then you should use “-Zz” to create the new objects and should also add
the SPACES-ZERO option to your runtime configuration file to handle
prior versions.

Runtime changes

The changes described in this section take effect when you install the latest
runtime system.

Important: Beginning with Version 2.0 and continuing through Version
3.1, the ACUCOBOL-GT runtime was delivered with Version 3 of the
Vision file system. Version 3.2 and later versions are delivered with

Changes Affecting Version 1.5 m C-35

Vision Version 4. The Vision file system is used on all
ACUCOBOL-GT implementations except VAX systems running VMS
and Alpha Micro systems running AMOS. Vision Version 3 introduced
a new file format that is portable across all machines, and is (generally)
smaller. Vision Version 4 introduced a dual file format, in which the
indexes are kept in a separate file from the data. When you are installing
the latest version of the runtime system, you have three choices:

a. You can leave your existing data files in place. ACUCOBOL-GT
will continue to use them. However, any new data files created by
Version 3.2 or later will have the new Vision Version 4 format.
This is the default behavior.

b. You can convert all of your files to the new format with the
“rebuild” option of “vutil”. In particular, running “vutil -rebuild
-3” on your data files will convert them to the Vision Version 3
format, and running “vutil -rebuild -4” on your data files will
convert them to the Vision Version 4 format.

c. You can continue to use the old format for all of your data files,
including any newly created ones. To do this, add the line:

V-VERSION 2

to your “cblconfig” file. This will ensure that any newly created
files use the old format.

The default method of editing numeric and numeric edited fields on the
screen changed slightly when Version 2.0 was released. In Version 1.5,
when a user was editing an existing value, the user could type over the
value. This left any trailing digits in place, and sometimes caused
confusion. Beginning with Version 2.0, if the user starts typing over an
existing field, the current contents are erased first. If the user instead
starts by editing the field (by using an arrow key or an editing key), then
the default value remains on the screen and the user can modify it.

This behavior is controlled by the “NUMERIC-UPDATES” and
“EDITED-UPDATES?” configuration options. If you already have the
following entries in your configuration file, then the default change will
not affect you. If you do not have these entries and want to maintain
exact compatibility with Version 1.5, then you should add the following
to your configuration file:

C-36 m Changes Affecting Previous Versions

SCREEN Numeric-Updates=Converted
Edited-Updates=Converted

C.23 Changes Affecting Version 1.4

The following sections describe changes that can affect programs compiled
with the Version 1.4 ACUCOBOL-85 compiler. These are the same changes
that occur when you move from Version 1.4 to Version 1.5.

Compiler changes

The following changes can affect programs when they are re-compiled. Note
that all of these changes can be suppressed by the “-C4” compile-time
option, which causes the compiler to use Version 1.4 semantics. Also note,
that the “-Z4” compile-time option (which produces 1.4 compatible object
files) will also inhibit these changes. Note that there are several important
changes, especially if you are using VAX COBOL compatibility mode. You
should use “-C4” until you can evaluate the extent to which these changes
affect your programs.

Important: Under Version 1.4, USAGE BINARY data items are treated
as identical to USAGE COMP-1 data items. Since Version 2.1, USAGE
BINARY items are treated as defined by the ANSI standard. This results
in data items that are different except for data items described as PIC S9,
S9(2), S9(3) or S9(4). If you have any USAGE BINARY data items in
files, you will need to specify “-C4” to maintain compatibility with your
existing files until you can change your programs.

Important: The internal format of COMPUTATIONAL data items is
different under the following circumstances:

a. You are using VAX COBOL compatibility mode; or

b. You use the “-Zb” or “-Db” compile-time options.

Under previous versions, a data item that fit one of these conditions is
stored as a COMP-1 data item if it is small enough (PI1C S9(4) or
smaller), otherwise, it is stored as a COMP-2 data item. Since Version
2.1, these items are stored as BINARY. This is the same as COMP-1 for
the small data items, but is different for the larger ones. If either of these

Changes Affecting Version 1.4 m C-37

cases applies to your programs, and you store COMPUTATIONAL data
items in files, then you should use “-C4” to maintain compatibility with
your files until you can modify your programs.

In previous versions of ACUCOBOL-85, COMP-3 data items are
always treated as signed. They are also rounded up to an odd number of
digits. Beginning with Version 2.0, they act as described by their picture
clauses.

In Version 1.4, COMP-6 data items always have an even number of
digits. Since Version 2.1, they have the number of digits specified in
their picture clauses.

Since the release of Version 2.1, specifying CONVERT on a DISPLAY
of a numeric edited data item causes that item to have its leading spaces
stripped and causes the item to be justified according to the rules applied
to numeric data items. Under Version 1.4, output conversion of numeric
edited items has no effect.

In Version 1.4, specifying the CONTROL KEY phrase or the ON
EXCEPTION Key-Name phrase for an ACCEPT statement implies
automatic termination of a field when that field is filled. Since the
release of Version 2.1, this behavior is specified by the AUTO phrase.
Because of the nature of the ACCEPT rules, this change does not affect
programs using RM/COBOL compatibility mode.

Versions of ACUCOBOL-85 prior to 2.1 do not support file errors 14 or
24 for relative files when the relative key data item is too small to hold
the relative record number. Version 2.1 and all later versions return the
appropriate error in this case.

Since Version 2.1, assigning a file to the device name PRINTER without
explicitly assigning an external file name causes the file to be assigned to
“PRINTER” when you are using VAX COBOL compatibility mode.
Under previous versions, the file is assigned to the same name as its
internal file name.

In Version 1.4, the SYNCHRONIZED clause has no effect. Since
Version 2.1, data item synchronization occurs.

C-38 m Changes Affecting Previous Versions

The rules for the meaning of the ON EXCEPTION phrase of the
ACCEPT statement have changed. For versions prior to Version 2.0,
this phrase catches numeric conversion errors. If the Key-Name option
is used, it also catches exception keys. Since Version 2.0, it always
catches exception keys and does not catch numeric conversion errors
(these errors are handled automatically by the terminal manager).
Specifying “-C4” or “-Ve2” retains the original meaning of this phrase.
Programs using RM/COBOL compatibility mode are unlikely to be
affected by this change.

Since Version 2.0, closing a window moves the cursor to the position it
occupied when that window was created. Before \Version 2.0, the cursor
moved to the home position of the restored window.

Many new reserved words have been added since Version 2.0. Most of
these can be treated as user-defined words through use of the new “-Rs”
and “-Ri” compile-time options. A few new words not covered by these
options have also been added. If they conflict with your current
programs, you can individually treat them as user-defined words with the
“-Rw” option.

Several compile-time options were renamed in Version 2.0. The original
names are still supported, however, so this change does not affect
existing programs or compile scripts, except for the “-Ca” option
described earlier.

Runtime changes

The following changes occur when the latest runtime is installed.

The default meaning of the Tab key has changed. Under Version 1.4, the
Tab key is an exception key that has a key value of “9”. Beginning with
Version 2.0, the Tab key is a termination key with a key value of “9”.
The only difference is that under the previous version, the Tab key is
allowed only when exception keys are allowed and it causes the ON
EXCEPTION phrase to execute. If you depend on this behavior, you can
add the following line to your configuration file:

KEYSTROKE Exception=9 /I

This change was made so that the Tab key could function as a “next
field” key when you are using the Screen Section.

Changes Affecting Version 1.3 m C-39

» Several other keys were redefined in Version 2.0 for use with the Screen
Section. These changes do not affect existing programs, however,
because the new defaults have the same effects as the old ones when used
with field-level ACCEPT statements.

e The maximum number of files that can be opened by the runtime was
reduced from 64 to 32 in Version 2.0. This was done to save memory.
If you need more than 32 files, you can set the maximum to any value
you want (up to 255) with the MAX_LOCKS configuration option. See
Appendix H for details.

» A subtle change has been made in the processing of the user’s
environment. In previous versions, an entry in the user’s environment
always takes precedence over an entry in the runtime’s local
environment. Beginning with Version 2.0, an entry in the user’s
environment takes precedence at the time the local environment is
initially created. This change allows the SET ENVIRONMENT verb to
have an affect on an entry initially defined in the user’s environment.

» Since Version 2.1 the cursor does not leave the field when the field is
filled. Instead, it stays in the last character position and inhibits further
data entry. This difference is cosmetic, but if you prefer the method used
by previous versions, you can add the following line to your
configuration file:

KEYBOARD Cursor-Past-End=Yes

C.24 Changes Affecting Version 1.3

If you are upgrading directly from Version 1.3, then several changes affect
you. These changes are the same as those you encounter when you move
from Version 1.3 to Version 1.4, except that the current runtime does not
support linked object files produced by the Version 1.3 compiler.

C-40 m Changes Affecting Previous Versions

Compiler changes

The following changes affect programs when they are re-compiled. You can
specify the “-C3” option to suppress these differences. Note that
specifying “-C3” also implies the “-C4” flag discussed above. You can also
produce Version 1.3 object files with the “-Z3” compile-time option.

Under Version 1.3, a line sequential file accessed by a program compiled
with RM/COBOL compatibility mode automatically has short records
padded with spaces to fill the record area. Beginning with Version 2.0,
only line sequential files with automatic trailing space removal have
their records padded with spaces. This change was made to
accommodate the behavior of RM/COBOL-85.

A numeric data item that is the object of a DISPLAY statement with the
CONVERT option is left-justified when RM/COBOL compatibility
mode is used under any version since 2.1. In Version 1.3, the data item
is right-justified. This change was made to accommodate the behavior
of RM/COBOL-85.

Under Version 1.3, the default SIZE of an ACCEPT field is always equal
to the number of assignable character positions in the data item, plus 1 if
the data item is signed, and plus another 1 if the data item contains digits
to the right of the decimal point. Beginning with Version 2.0, this
amount is used only if the destination is numeric or edited and the
CONVERT phrase is used. Otherwise, the default SIZE is the physical
size of the receiving field. The difference is subtle and is unlikely to
affect any current programs. This change was made to better simulate
the behavior of RM/COBOL.

In RM/COBOL compatibility mode, a field accepted with the ECHO
phrase is redisplayed in a converted form only if the UPDATE phrase is
also used. In Version 1.3, the field is redisplayed in a converted form
only if the CONVERT phrase is used. This change was made to better
simulate the behavior of RM/COBOL.

Certain line sequential files now have automatic trailing-space removal
applied to them. This depends on the device type specified in the file’s
ASSIGN clause. This will generally not affect existing programs except
that files with automatic trailing space removal may not be opened for I/
O (due to the unpredictable record size). This affects only those
programs that do REWRITES on sequential files. 1f you have a program

Changes Affecting Version 1.3 m C-41

that does REWRITES on a sequential file, you should check to make sure
that the device type is not one that specifies automatic trailing space
removal. For more information, see Book 3, ACUCOBOL-GT
Reference Manual, section 4.3.1, “FILE-CONTROL Paragraph,” under
General Rules.

Runtime changes

The following changes occur when the latest runtime is installed. These
changes can generally be compensated for by various configuration options.

Since Version 3.0, the runtime does not support linked object files
produced by the Version 1.3 compiler. If you have any linked object
files, then you must convert them to the library format introduced in
Version 1.4. Note that the normal object files produced by the 1.3
compiler are still supported.

The default keyboard configuration has changed. The new default is
very similar to the default RM/COBOL configuration. Also, the
KEY-MAP and EDIT-MODE configuration variables are no longer
supported. These have been replaced by the more powerful
KEYBOARD and KEYSTROKE entries. Most users of Version 1.3
ACUCOBOL-85 reconfigured the keyboard with the KEY-MAP
variable to simulate the RM/COBOL keyhoard. Most will not need to
make any changes since this is the new default.

Users who used the default ACUCOBOL-85 keyboard under Version
1.3 will have to reconfigure the keyboard to meet the Version 1.3
standard. Other users may need to make minor changes to match their
previous configuration. For details on the new default configuration and
the KEYBOARD and KEYSTROKE variables, see the
ACUCOBOL-GT User’s Guide, section 4.3.2, “Redefining the
keyboard.” Also, see the sample configuration file supplied with the
compiler.

Under Version 1.3, files opened with the EXTEND phrase are
automatically created if they do not exist. Beginning with Version 2.1,
they are not. This change was made to match the ANSI standard. You
can maintain the Version 1.3 behavior by setting the configuration
variable “EXTEND-CREATES*" to “1” in the configuration file.

C-42 » Changes Affecting Previous Versions

¢ InVVAX COBOL compatibility mode, a missing file opened for I/O is not
automatically created. Under Version 1.3, it was. This change was
made because the most recent release of the VAX COBOL compiler was
changed this way.

« Several VAX COBOL file status codes have been changed. This change
was made to match changes made to the VAX COBOL compiler.

* When you are using the RM/COBOL-85 or RM/COBOL version 2 file
status codes, a corrupted indexed file is now returned as file error “98”
instead of file error “30”.

« Assingle DISPLAY may now wrap around more than one screen row.
Under Version 1.3, lines are truncated. If the 1.3 behavior is desired, set
the configuration variable “WRAP* to the value “0”.

« An ACCEPT or DISPLAY statement that references a row past the
bottom edge of the window now causes that window to scroll. Under
Version 1.3, the statement is (largely) ignored. You can cause a similar
effect by setting the configuration variable “SCROLL" to “0”.

e The syntax of the COLOR-MAP configuration variable has changed
slightly. See the ACUCOBOL-GT User’s Guide, section 4.4.1, “Adding
Color.”

* Obiject files produced by versions of ACUCOBOL-85 prior to Version
1.3 may not be executed by the latest runtime system. These programs
must be recompiled with a 1.3 (or later) compiler. This change was
made to reduce the size of the runtime system and to improve its
performance. You can use the “-info” option of “ccbl” to locate object
files created by a pre-1.3 version of ACUCOBOL-85. These will be
object files that contain a “vers” value of “2” or less.

D Compiler Error Messages

Key Topics

a1 010 18103 110 o HHT SRR
IS A0 = 0] R

D-2 m Compiler Error Messages

D.1 Introduction

The ACUCOBOL-GT compiler produces a wide range of informative
messages, including both Errors and Warnings. An Error message is more
severe than a Warning and, unlike a Warning, inhibits production of an object
file by the compiler.

The following list contains the Error messages produced by the compiler. In
many cases, the meaning of an error message is clear from the message itself.
Where this is not the case, a brief explanation follows the message. In this
listing, the term “%s” represents some string that will replace the “%s” before
you see the message. In most cases, the string will be a user-defined value,
such as a file name, a record name or an item name.

The listing is in alphabetical order. Note, however, that the first few pages
list messages that begin with dynamically generated strings. The
alphabetical ordering ignores the string (which replaces the “%s” in the
listings). Therefore, if an error message starts with a dynamic string, look it
up in this list by using the generic portion of the message that follows the
string.

D.2 List of Errors

$

%

“$SELSE without a corresponding SIF”

“$END without a corresponding $SIF”

Either $ELSE or $END was encountered, and there is no
corresponding $IF.

“%s: a section and a paragraph have the same name”

A section name may be the same as a data name, but must otherwise be
a unique user-defined word.

“%s and %s must be the same size”

List of Errors m D-3

“%s cannot be moved to ALPHABETIC”

“%s cannot be moved to ALPHANUMERIC”

“%s cannot be moved to ALPHANUMERIC EDITED”
“%s cannot be moved to NUMERIC”

“%s cannot be moved to NUMERIC EDITED”

“%s contains no input fields”

You have attempted to ACCEPT a screen item that includes no TO or
USING phrase.

“%s: Data item > 64K illegal here”

“%s: data item exceeds 2GB”

The maximum data item size in ACUCOBOL-GT is 2 GB. See Section
5.1.6, “Large Data Handling,”, in Book 3, ACUCOBOL-GT
Reference Manual. For a list of compiler limits, see Section A.2,
“Limits and Ranges”.

“%s expected, %s found”

“%s: File record exceeds 64MB”
The maximum record size allowed in ACUCOBOL-GTprograms
compiled to Version 6.0 object format or later is 64 megabytes. See
Section A.2, “Limits and Ranges”.
“%s: File record exceeds 32K”
The maximum record size allowed in ACUCOBOL-GT programs
compiled to Version 5.2 or earlier object format is 32 kilobytes.
“%s ignored for OPEN INPUT”

“%s: illegal level 77"

Level-number 77 entries may not have subordinate items except for
level 88 items.

“%s: incorrect number of arguments”

“%s: incorrect size for KEY AREA”
The KEY AREA must be in multiples of seven.

D-4 m Compiler Error Messages

“%s is ambiguous”
The name here could be interpreted to be more than one thing.

“%s’ is an invalid destination”
Data cannot be stored in a literal value.

“%s is not a KEY of %s”

SEARCH ALL requires that the compared item be referenced in the
KEY IS phrase in the OCCURS clause of the searched table.

“*%1’ is not a property or method of ‘CLASS %2’ “
“%s is not a START key of %s”
“%s is not numeric”

“%s: key must not be in a table”

The data item specified in the KEY phrase of a SORT or MERGE
statement may not be subordinate to an OCCURS clause.

“%s may not be used as a CODE-SET”

A Format 2 Alphabet entry may be used in a COLLATING
SEQUENCE phrase, but not in a CODE SET phrase.

“%s may not belong to %s”
Key-table of the KEY AREA phrase of the SORT verb must name a
data item that is not located in the record for sort-file.

In an INSPECT CONVERTING statement, the convert-string must be
the same length as the compare-string.

“‘%1’ must be a ‘get’ property of ‘%2"”
“'%1’ must be a ‘put’ property or method of ‘%2"”

“%s must belong to %s”

The data item specified in the KEY phrase of a SORT or MERGE
statement must be a data item in the record description associated with
sort-file.

“%s: must have only one value for SEARCH ALL”

A level 88 referenced in a SEARCH ALL statement may not specify a
series or a range in its VALUE clause.

List of Errors m D-5

“%s: needs INDEXED BY phrase in declaration”

The subject of a SEARCH statement must be a data item that contains
an OCCURS clause including an INDEXED BY phrase.

“%s: no FALSE value defined”

You cannot SET cond-name TO FALSE unless cond-name has a
WHEN SET TO FALSE phrase associated with its defining level 88
entry.

“%s not a key of %s”

“%s: not a table”

The subject of a SEARCH statement must be a data item that contains
an OCCURS clause including an INDEXED BY phrase.

“%s not allowed here”

“%s not an ALPHABET name”

You have attempted to use something in a place where an ALPHABET
name must be specified. It has not been defined to be an ALPHABET
name.

“%s: not defined”

%s was used in a $IF, but is not defined either with a level 78 item or
with a “/CONSTANT” compile switch.

“%s not unique in first 18 characters”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This message occurs if a field name is not unique within the first 18
characters. The “%s” is the name found. You can either change the
field name or apply the NAME directive.

“%s: Procedure name not unique”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has been defined more than once in the program.

D-6 m Compiler Error Messages

“%s record larger than %s record”

In the USING phrase of the SORT or MERGE statement, in-file
records may not be larger than sort-file records. In the GIVING
phrase, sort-file records may not be larger than out-file records.

“%s: requires version %s runtime”

Some compiler options (like “-Z4” and “-Z5") cause the compiler to
generate an object file that can be run on a version of the runtime that
is older than the compiler you are using. These compiler options won’t
allow you to compile new features that the old runtime can’t handle.
When you attempt to compile such features into an object file for an
older runtime, this error will be produced.

“%s: Screen name not allowed in this context”

You have attempted to use a form of the ACCEPT or the DISPLAY
verb that does not allow the use of a screen name from the Screen
Section.

“%s subject to DEPENDING ON phrase”

If the source or receiving item for a screen entry has an OCCURS
clause, it may not include the DEPENDING phrase.

“%s: unknown XFD directive”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The compiler did not recognize the directive you used. The “%s” is the
directive found. Check for a typographical error.

“*** %s overflow ***”

“This table currently allows %s entries”
“Sorry, you cannot make this table any bigger!”
or

“You can increase this with the “-T%s” option”

“For example, you might try ““-T%s %s”"”’

List of Errors m D-7

The compiler uses several internal tables to which it has given an
arbitrary maximum size. Your code requires a greater table size than
the default. This message tells you which table maximum has been
exceeded and whether you can try recompiling with an increased size.
The tables are:

Table Compile Flag Default Value

Identifiers/statement - the maximum td 4096
number of items in each statement

Subscripts/statement - the maximum te 256
size for OCCURS

The compiler always suggests double the default value in the error
message. Because higher values increase table size (using more
memory), the values should not be set any bigger than they need to be.

“ACCEPT FROM DATE only returns two-digit year data”
“ACCEPT FROM DAY only returns two-digit year data”
“ALL expected”

“ALL ignored here”

“ALL index not allowed here”

“alphanumeric value expected”

“ALTER para must start with GO TO: %s”

“Ambiguous identifier: %s”

The identifier here could be interpreted to be more than one thing. If
two group items use the same field name and the field is referred to in
the program, the field name must be qualified by the name of the next
higher group item with a unique name.

“Ambiguous symbol: %s”

“Arithmetic expression expected”

D-8 m Compiler Error Messages

“AT value must be 4 or 6 digits”

“Bad CHART STATUS definition”
“Bad CRT STATUS definition”
“Bad CURSOR definition”

“Bad picture”

“Bad picture for DATE: keyname”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The PICTURE in a DATE directive must be six or eight bytes in
length, either alphanumeric or numeric with no sign.

“Bad SCREEN CONTROL definition”
“Badly formed condition”

“Badly formed ID: %s”

See the rules for COBOL Words, in Section 2.1.1.1 of the
ACUCOBOL-GT Reference Manual.

“Badly formed number: %s”

See the rules for Numeric literals, in Section 2.1.2.1 of the
ACUCOBOL-GT Reference Manual.

“BY CONTENT parameters exceed maximum size”

For Version 7.0 and earlier, the maximum parameter size is 64K. For
later versions, the maximum limit is 2GB.

“BY expected”

The REPLACE statement and the REPLACING phrase require the
word BY.

“BY VALUE parameter %s illegal size”

List of Errors m D-9

“BY VALUE parameter %s illegal type”
“BY VALUE parameter %s mis-aligned”
“BY VALUE parameter may not be a literal”

“BY VALUE parameter must be an integer”

“Can’t recover from earlier error, Good bye!”

“CELL phrase used inconsistently”
The CELL phrase appears in either the LINE or CLINE phrase, but not
in both. Or, the CELL phrase appears in either the COL or CCOL
phrase, but not in both. The CELL phrase must be specified in each of
the LINE/CLINE or COL/CCOL phrases (or omitted from the pair).

“Class already specified”

The same category of data may not be specified more than once in the
REPLACING phrase of an INITIALIZE statement.

D-10 m Compiler Error Messages

“Class name not allowed here: %s”
“Clause repeated”

“COMP-X/N item too large”
“Compilation aborted”

“Compiled screen description too large”
“Compiler error: Picture”

“Condition name not allowed here: %s”
“Conditional expression expected”

“Configuration: %s"”

“Data item exceeds 2GB”

The maximum data item size allowed in ACUCOBOL-GTprograms is
2 GB. For a list of compiler limits, see section A.2, “Limits and
Ranges.”

“Data item exceeds 64K”

The maximum data item size allowed in ACUCOBOL-GT programs
compiled to Version 5.2 or earlier object format is 32 kilobytes.

“Data item not allowed here: %s”

“Data-item: Redefined data item with value moved”

The compiler generates this error when it detects that a data item with
value, already written into the object code, is being redefined too large
for the current data segment. If compiled, the resulting COBOL object
would attempt to force the runtime to write to memory it has not
allocated, likely resulting in a crash.

“Data missing from key segment keyname”

You have compiled with the “-Zx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

List of Errors m D-11

Some part of the named key could not be placed in the dictionary. This
usually occurs because of filler. For example:

01 my-record.
03 my-key.
05 filler pic XxX.
05 field-1 pic xx.
If my-key is declared as a record key, you will receive this error
because the area of the key described by “filler” is not included in the
dictionary.

To correct this error, ensure that every character that is part of the key
is included in some field that is part of the dictionary. Use an XFD to
give a field name to each filler, to ensure that fillers are included.

Example:

01 my-record.
03 my-key.
*((xFfd name=myFfiller))
05 filler pic xx.
05 field-1 pic xx.

“Dest may not be edited: %s”

“Different number of SYMBOLIC names and values”

There must be a one-to-one correspondence between occurrences of
“name” and “number” in the SYMBOLIC CHARACTERS clause of
the SPECIAL-NAMES paragraph.

“Directive word too long: keyname”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

With one exception, the words contained in a directive, including field
names, cannot exceed 30 characters. The value of a WHEN directive
may consist of up to 50 characters. You have exceeded the limit.

D-12 m Compiler Error Messages

“Disk full”
“Duplicate ACCESS”
“Duplicate ASSIGN”

“Duplicate ENTRY point name: %s”
The ENTRY point name has already been used in this program.

m

“Duplicate interface ‘%s

“Duplicate NOT %s phrase”

Various NOT phrases may be used in the context of specific statements
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).
The compiler has encountered more than one such NOT phrase in a
statement.

“Duplicate ORGANIZATION”

“Duplicate paragraph name: %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has been defined more than once in the section.

“Duplicate RECORD KEY”

“Duplicate STATUS”

“edited item too large”
The maximum edited data item size in ACUCOBOL-GT is 255 bytes.

“ELSE, END-IF or ’." required after NEXT SENTENCE”

“END-PERFORM required”

The compiler has encountered code in which a scope delimiter is
required for a PERFORM statement.

“Entry for product ‘compiler’ in file ‘%2’ is corrupt”
The license file contains garbled information about the compiler

product. The compiler cannot be executed until the license file has
been repaired. Contact Technical Support.

List of Errors m D-13

“Error file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“Error: input file is Vision format”

You have specified a Vision format file as input to “vutil -load”. The
source file must be the name of the binary, relative, or line sequential
file. See Section 3.3.10 of the User’s Guide for details on this command.

“Errors found, size information suppressed”

“EVALUATE nesting level exceeded”
The maximum depth of EVALUATE statement nesting is 10 levels.

“Evaluation version - expires %1/%2/%3"

“Exception handlers require recursion (-Zr)”

“EXIT SECTION outside of SECTION”
EXIT SECTION must be used within a SECTION.

“Expecting condition after NOT”
“EXTERNAL file in SAME AREA illegal”

“EXTERNAL in REDEFINES”

The REDEFINES clause and the EXTERNAL clause may not be
applied to the same data item.

“EXTERNAL name must be unique”

The same name may not be given to more than one file or data item that
is declared EXTERNAL within a program.

“Extra segment exceeds 64K”

The “extra segment” is that part of the object file that contains
descriptors and other miscellaneous elements. This category is
restricted to 64 KB. The main factor here is the number of different
items that are referenced in the Procedure division.

D-14 m Compiler Error Messages

“FD already defined for file”

“Field xxx causes duplicate database data”

This is a warning message that can appear if you compiled with the
“-Fx” option. The data dictionary was built, and the interface will
operate correctly. The warning informs you that your record definition
should be restructured. Your current definition is set up in such a way
that:

« you have overlapping key fields, and

« both keys must be represented in the database as separate items.

The interface will handle this situation correctly. 1t will keep the
overlapping keys updated simultaneously, so that they always have the
same value. However, the warning alerts you that you have the same
data represented twice in the database. This is dangerous, because
someone at the site might access the database via SQL and accidentally
change only one of the keys.

Here’s an example of the problem, and a description of how to correct
it (the example assumes that both key-1 and key-2 have been declared

as keys):
01 order-record.
03 key-1.
05 field-a pic x(5).
05 field-b pic 9(5).-
05 key-2

redefines field-b pic x(3).
This example will generate the warning message.

Because “key-2” is a key, it must also be represented in the XFD. It
doesn’t correspond exactly to any other data field, so it must be entered
as a separate field in the XFD.

In the COBOL view of the file, “key-1" and “key-2” overlap. But the
requirements of XFD storage force the same data (known to COBOL
as “field-b”) to be physically represented twice in the XFD. Any
updates to the data from any ACUCOBOL-GT program will correctly
update both fields. Updates from outside of ACUCOBOL-GT carry no
such guarantee.

List of Errors m D-15

In this example, you can correct the situation by breaking “field-b” into
two columns, so that “key-2” corresponds exactly to another data field:

01 order-record.

03 key-1.
05 field-a pic x(5).
05 Tfield-b.
07 field-bl pic x(3).-
07 field-b2 pic 9(2)
05 key-2

redefines field-b pic x(3).

“Figurative constant not allowed: %s”

A figurative constant (zero, space, quote, etc.) cannot be used in this
context.

“Figurative constant not allowed here: %s”

“File %s in multiple areas”

The named file appears in more than one SAME RECORD AREA
clause.

“File %s undefined”

A file named in the 1-O-CONTROL paragraph must be defined by a
SELECT clause in the FILE-CONTROL paragraph.

“File must be a SORT file”

“FILLER cannot be EXTERNAL”
“Floating-point literal not allowed here”
“Floating-point VALUE not allowed here”
“FOOTING larger than page size”
“FOOTING must be > 0”

“FROM/TO/USING error”

FROM, TO, and USING can be used only once each in a particular
screen item description. USING cannot be used with either FROM or
TO in the same description.

D-16 m Compiler Error Messages

“Function argument %s must be alphanumeric”

“Function argument %s must be numeric”

“GIVING data item for file %s is too small”

“GROUP expected after USE”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The “use group” directive must include both words.

“ID greater than 60 characters: %s...”
“0bs” is truncated to 60 characters.

“Identifier expected, %s found”

“Identifier unresolved: %s OF %s”

An attempt to qualify an identifier, as in “field of record”, failed.
Check the spelling of the qualifier.

“lllegal ACCESS”

SEQUENTIAL is the only ACCESS MODE legal with
ORGANIZATION SEQUENTIAL.

“lllegal arithmetic expression”

“lllegal BLANK ZERO”

The BLANK WHEN ZERO clause can be used only for numeric or
numeric edited elementary items. The picture of the item may not

include “*” or “s”.

List of Errors m D-17

“lllegal class condition”
“Illegal clause(s) for sort file”

“lllegal color value”

The FOREGROUND-COLOR and BACKGROUND-COLOR phrases
take a literal in the range 0-7.

“lllegal COMPRESSION value”
The COMPRESSION factor may not be greater than 100.

“lllegal condition”

“lllegal hex literal”
Hexadecimal literals must consist of the digits “0”-“9” or “A”-“F".

“lllegal indicator: ‘%s’”

The indicator area of a COBOL line may contain ” *, -, “*” “g” “[”
“D”, or, in Terminal mode, “\D”.

“Illegal INITIALIZE item: %s”
The destination may not contain a RENAMES clause.

“lllegal JUSTIFIED clause”

The JUSTIFIED clause can be applied only to alphabetic and
alphanumeric data items. It must be applied to an elementary item,
rather than to the group item.

“Illegal KEY phrase”

The KEY phrase of a READ statement can be used only with
ORGANIZATION INDEXED files and cannot be used with a READ
NEXT or a READ PREVIOUS.

“Illegal level for OCCURS”
The OCCURS clause may not be used on a level 01 or a level 88 item.

“lllegal level number”

A level 77 item cannot be included in the File Section or in the Screen
Section. The Screen Section allows only levels 1-49 and level 78.

D-18 m Compiler Error Messages

“lllegal level number: %s”

“Illegal OCCURS value”

Ina Format 1 OCCURS, the table-size must be more than zero. “lllegal
or missing ASSIGN variable of %s”

“lllegal or missing BOTTOM variable of %s”
“lllegal or missing DEPENDING ON variable of %s”
“lllegal or missing FOOTING variable of %s”
“lllegal or missing KEY variable of %s”

“lllegal or missing LINAGE variable of %s”

“lllegal or missing PADDING variable of %s”
“lllegal or missing STATUS variable of %s”

“lllegal or missing TOP variable of %s”

“Illegal parameter: %s”

“lllegal parameter: literal”
Generated by the compiler if low-values or other figurative constants
are passed to ActiveX or COM methods or properties as parameters
where the method or property expects a “by reference” parameter:
This is the same error message you get when passing a figurative
constant as a USING parameter in a CALL statement. One way to tell
that the ActiveX/COM method expects a “by reference” parameter is
by viewing the entry in the COPY file for that control or object. If the
type has "BYREF" or if the numeric value divided by 16384 is odd,
then you may not pass a figurative constant.

“lllegal picture: %s”
“Illegal POINTER: %s”

“lllegal receiver for source type: %s”
The compiler has encountered an illegal MOVE.

“lllegal REDEFINES”

List of Errors m D-19

“lllegal RENAMES”

“lllegal replacement size: %s”

Inan INSPECT REPLACING statement, the replace-string must be the
same length as the target-string.

“lllegal SD clause: %s”

“lllegal sign condition”
The sign condition can be applied only to an arithmetic expression.

“lllegal SIGN/USAGE for file with CODE-SET”

“Illegal source type for CONVERSION”

The compiler will allow MOVE WITH CONVERSION only of
alphanumeric items.

“Illegal statement in current declarative”

Occurs when a program attempts to execute a disallowed statement in
the context of a USE FOR REPORTING declarative or a file
declarative that has been triggered by a status “22” for a file open with
BULK-ADDITION. In both of these cases, the declarative is triggered
as part of the file operation (instead of after the operation completes)
and several restrictions apply. The program may not perform any file
operations or start or stop any run units (including chaining). In
addition, the program that contains the declarative may not perform an
EXIT PROGRAM.

Note: The program continues running after printing this statement
(halting the program at this point would corrupt the data file).

This error message indicates a programming error that should be
corrected. There is no way to disable the error message. You can find
the offending statement by running the program under the debugger.
When the statement executes, the runtime will break to the debugger
with this message and place the cursor at the statement.

“lllegal table size: %s”
Your compiler command line has specified an illegal value for a
user-resizable table (“-ta”, “-th”, etc.). See the internal table list near
the beginning of this section.

D-20 m Compiler Error Messages

“illegal USAGE”
“Inconsistent picture”

“INDEXED key not in record: %s"”
The key to an Indexed record must be defined within the record.

“INDEXED key outside of smallest record: %s”

In an Indexed file with variable record size, the offset of the end of the
key must be within the bounds of the smallest possible record size.
Multiple record definitions (01 levels) within a file description may
generate a variable length record file.

“Indexing not allowed in this context”

“INSPECT TRAILING syntax error”

“Interface definition ‘%s’ not found”

*k kI

“*** Internal error #%s

The compiler has encountered a syntax error for which it does not have
a useful descriptive message. Anytime you get such a message from
the compiler, notify Technical Support. If we are already aware of
your particular syntax problem, we can tell you what to fix in your
source. We may even have a more recent version of the compiler that
detects the error more elegantly. If we have not been made aware of
this oversight, your call will allow us to find and correct it.

“INTO identifier may not be reference modified”

Ina STRING ... INTO statement, the destination may not be in the
form “... INTO dest-field (2:4)”. If you want to start modifying the
destination field at a position other than the leftmost, use the POINTER
phrase.

“Invalid CODE-SET file type”
CODE-SET may be specified in the FD of sequential files only.

“Invalid CLSID “%s"”

“Invalid directive syntax”
The $SET directive was used incorrectly.

“Invalid GIVING data item for file %s”

List of Errors m D-21

“INVALID KEY illegal in this context”

The INVALID KEY phrase of the DELETE statement may not be used
with a file declared ACCESS MODE SEQUENTIAL. The INVALID
KEY phrase of the REWRITE statement may not be used for
ORGANIZATION SEQUENTIAL or ORGANIZATION RELATIVE
files if either uses ACCESS MODE SEQUENTIAL.

“Invalid switch number: %s”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

“Invalid syntax in COPY statement”

“Key bigger than 250 bytes: %s”
The maximum indexed key size in ACUCOBOL-GT is 250 bytes.

“KEY must be first: %s”

More than one KEY IS phrase is allowed in each OCCURS clause. If
one KEY IS phrase references the data-name of the entry that contains
the OCCURS clause, it must be the first KEY IS phrase in the clause.

“KEY not found in table: %s”

The key named in the KEY IS phrase of the OCCURS clause must be
contained within the table.

“Large REDEFINES of a regular variable with a value: %1 redefines %2”
“LENGTH ignored in this context”

“License file ‘%s’ inaccessible”

The license file cannot be located. The message displays the name of
the license file that the compiler is trying to locate. The compiler
cannot execute without a valid license file.

“License file ‘%s’ is invalid”

D-22 m Compiler Error Messages

“LINAGE must be > 0”

“LINAGE required for END-OF-PAGE processing”
“LINAGE requires SEQUENTIAL organization”
“LINAGE-COUNTER is a reserved data item”

“LINKAGE not listed in USING: %s”

An item defined in the Linkage Section is not referenced in the USING
phrase of the Procedure Division statement.

“Listing file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“literal expected”
“Literal must be alphanumeric”

“Literal too long”

Prior to version 1.5, an ALL literal not associated with another data
item had to be a single character.

“May not be a SEQUENTIAL file”

A Format 1 DELETE statement may not be used on a file with
ORGANIZATION SEQUENTIAL. “May not be alphanumeric: %s”

“May not be alphanumeric edited: %s”
“May not be edited: %s”

“May not be floating-point: %s”

“May not be numeric: %s”

“May not be numeric edited: %s”

List of Errors m D-23

“May not INQUIRE on style %s"”

You may not use a style name in the INQUIRE statement. You can
only inquire the value of an element of a control. Because styles do not
have values, using a style name with INQUIRE is not meaningful.

“May not modify or invoke ActiveX Controls in DISPLAY”

“May not specify both LINES and SIZE”

While it is acceptable to specify both height and length for a BOX, a
LINE can have only one dimension.

“meaningless WHEN phrase”
“MERGE illegal in DECLARATIVES”

“Mismatching OCCURS structure”

If an OCCURS clause applies to a screen entry with TO or USING, the
receiving item must have an OCCURS of the same number. With
FROM, the source item must have an OCCURS of the same number or
no OCCURS at all.

m

“Missing ‘)
“Missing ASSIGN clause”

“Missing closing quote”
A quoted string must have both opening and closing quotes.

“Missing continuation line quote”

If a continued line ends with a nonnumeric literal without a closing
quotation mark, the first non blank character in Area B of the
continuation line must be a quotation mark.

“Missing COPY file: “%s’”

The filename specified after the word COPY is not found in the
directory in which it is expected. Consider whether it is spelled
correctly, or check your COPYPATH environment variable.

“Missing COPY filename”

The filename specified after the word COPY is not found. Consider
putting the file name in quotes.

D-24 m Compiler Error Messages

“Missing directive”
The $SET directive was used incorrectly.
“Missing END-%s"
Several statements in COBOL, among them IF, SEARCH, PERFORM,
and EVALUATE, can have their scope delimited by the END-
(END-IF, END-SEARCH, END-PERFORM) phrase. The compiler
has encountered code in which such a scope delimiter is required.
“Missing exponent”
A digit in the range 0-9 must follow the E in a floating point literal.

“Missing field name after WHEN”

You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

A valid field name, or the word OTHER, must be specified with the
“when” directive.

“Missing KEY phrase in definition: %s”

“Missing library filename”
The OF phrase of the COPY statement has no pathname specified.

“Missing operand”

“Missing or invalid object expression”

“Missing PARA/SECTION” “Can’t recover, good bye!”
“Missing period”

“Missing RECORD KEY clause”

“Missing SELECT for this file”

“Missing switch number”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

List of Errors m D-25

“Missing value”

“Missing WHEN phrase”

The SEARCH statement and the EVALUATE statement always
require a WHEN phrase.

“Missing ‘=" in XFD directive”
You have compiled with the “-Fx” option. The object file was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

The “name” directive requires an “=" sign. The “when” directive
requires a comparison operator.

“Mnemonic name required”

Each system-name in the SPECIAL-NAMES paragraph must be
associated with a mnemonic name.

“Modification of %s not allowed”

LINAGE-COUNTER may never be explicitly modified by the
program.

“Modification of screen item”

It is not legal to ACCEPT or DISPLAY an item defined in the Screen
Section using reference modification.

“More subscripts needed: %s”

An item subordinate to an OCCURS clause has been referenced with a
number subscripts or indexes less than its level of nesting.

“More than 64K of parameters illegal for this CALL”
“Multiple pictures”

“Mutltiple USE for %s mode”

The INPUT, OUTPUT, I-O, and EXTEND phrases may each be
specified in only one USE statement in a Procedure Division.

“Multiple USE for file: %s”

A particular file may not appear in more than one USE statement in a
program.

D-26 m Compiler Error Messages

“Multiple USE for OBJECT”

“Must be a GROUP item: %s”

Both the source and the destination of a MOVE CORRESPONDING
statement must be group items.

“Must be alphanumeric: %s”

“Must be in Working-Storage or Linkage: %s”
“Must be INDEXED file: %s”

“Must be integer: %s”

“Must be level 01 WORKING-STORAGE for EXTERNAL”

A data item can be declared EXTERNAL only if it is defined in the
Working Storage section. The item must be at level 01 or level 77.
(Except for the ability to take subordinate items, level 77 is often
implied where level 01 is specifically mentioned.)

“Must be SEQUENTIAL”

A file must be ORGANIZATION SEQUENTIAL to CLOSE REEL,
CLOSE UNIT, CLOSE NO REWIND, WRITE NO CONTROL, or
WRITE ADVANCING.

“Must be size 1 in this context: %s”
“Must be USAGE DISPLAY: %s"”

“Must not be subscripted: %s”

“Native character specified twice, ordinal value = %s”

When you specify an ALPHABET in the SPECIAL-NAMES
paragraph, each character may appear only once.

“Needs DELIMITED BY to use COUNT”
“Needs DELIMITED BY to use DELIMITER”

“NEXT/PREVIOUS illegal for RANDOM ACCESS”

List of Errors m D-27

“No entry for product ‘compiler’ in file ‘%2’

The license file does not contain an entry for the compiler product.
The compiler cannot be executed until the license file is corrected.
Contact Technical Support.

“No FD for %s”

“No records defined for file”

“No SELECT for file: %s”
“Non-native object file produced”

“Not a condition-name: %s”
Only level 88 items may be SET to TRUE or FALSE.

“Not a file: %s”

The USE statement must include INPUT, OUTPUT, I-0O, and
EXTEND or the name of a file described in the Data Division.

“Not a record of a file: %s”

“Not a record of a SORT file: %s”
The RELEASE statement may act only on the records of sort files.

“NOT, END-ACCEPT or *.’ required after NEXT SENTENCE”

“Null ENTRY point name”
The program has used

as an ENTRY point name.

“number too large”
The maximum numeric data item size in ACUCOBOL-GT is 18 digits.

“Number too large: %s”
“Numeric literal not allowed here”

“NUMERIC fest is constant, because of the type of variable being tested”

The compiler issues this warning in cases where the item being tested
isabinary item. This test should always return TRUE for binary items,
since binary items can't be non-numeric. You can optimize your
COBOL program by removing constant tests.

D-28 m Compiler Error Messages

“numeric value expected”

“Numeric VALUE not allowed here”

“Object file name is the same as the source name”

Your ccbl command has instructed the compiler to name one of its
output files with the same name you’ve given for the source code file.

“Object wrong type for subject”

If the subject of an EVALUATE statement is, or can be evaluated to
be, TRUE or FALSE, the object must be a phrase that is, or can be
evaluated to be, TRUE or FALSE (e.g., EVALUATE TRUE WHEN a
=b...,, or EVALUATE a > b WHEN FALSE ...). Otherwise, the object
must be something that would balance the subject in a conditional
expression (e.g., EVALUATE fieldl WHEN “a” ...).

“OCCURS DEPENDING illegal in Screen Section”
“OCCURS DEPENDING in OCCURS illegal”
“OCCURS DEPENDING must be last in group: %s”

“Offset too large: %s”

When you are using a subscript of the form “(data-item + integer)”, the
integer can be no greater than 32767.

“Only 1 level of OCCURS allowed”
Nested OCCURS are not permitted in the Screen Section.

List of Errors m D-29

“Operation has no effect”
“ORGANIZATION clash”

“*** Out of Main Memory! ***”

“Pic 'V’ illegal in COMP-X/N"
COMP-X and COMP-N items can be defined with only ‘9’ or only ‘X’
symbols.

“PICTURE and/or VALUE clash in Screen Section”

The PICTURE and VALUE clauses may not both be specified for the
same screen description entry, either explicitly or implicitly by the use
of FROM, TO, or USING.

“Picture required for floating-point in this context”

A screen item must have a picture. If you are using a FLOAT item with
USING or FROM, give it a picture within the Screen Section.

“Picture too long”
The maximum picture string in ACUCOBOL-GT is 100 characters.

“Pixel AT value must be 8 digits”

When using the AT verb together with the PIXEL verb, 8 digits are
mandatory to specify the position, or the variable being used must be a
PIC 9(8).

“Positive integer required”

The value for this field must be greater than zero and include no
decimal fraction. A subscript or index must be a positive integer.

“PREVIOUS illegal for sequential file”
This refers to ORGANIZATION SEQUENTIAL.

“Procedure name not allowed here: %s”

“Procedure name required”
GO TO must always be followed by a paragraph or section name.

D-30 m Compiler Error Messages

“Program code exceeds 1MB”

The maximum size of the code portion of an ACUCOBOL-GT object
file is 1 MB. The size of the program code is largely determined by the
size of the Procedure division of the program. If you cannot streamline
the instructions in the Procedure division to fit within this restriction,
you might split the logic into two programs, one called by the other.

“Program data exceeds 32 segments”

The 1 MB restriction on the program data is monitored in terms of
segments. The factors determining this size are as described above.

“Program data exceeds 64K”

The maximum size of the data portion of an ACUCOBOL-GT object
file for any version prior to 1.5 is 64 KB. Thus, this restriction might
be encountered when you are using the “-Z4” compiler option.
Starting with Version 1.5, the maximum program data size is 1 MB.
The size of the data is basically the sum of the sizes of the items in the
data division (including File Descriptions) and of the literal strings
used within the program (including the Procedure Division).

“Program-wide CURSOR already defined”

The CURSOR phrase of the ACCEPT statement may not be specified
if a CURSOR phrase is specified in the program’s Configuration
Section.

“Radio Buttons cannot have array elements in a VALUE or USING phrase”
This error is generated at the occurrence of a radio button control in the
screen section whose VALUE (or USING) is an array. This is not
allowed due to the internal functionality of how data is copied to
COBOL data items once the screen section terminates.

“Record belongs to SORT file: %s”

WRITE and REWRITE statements may not apply to records of files
described with an SD rather than an FD in the File Section.

List of Errors m D-31

“REDEFINES not allowed in Screen Section”
“REDEFINES of an OCCURS item illegal under ANSI”
“Reference modification of numeric function is illegal”
“Reference modifier illegal in this context”

“Reference modifier out of range”

Using reference modification, either the start position is beyond the
end of the referenced item, or the calculated end position would be.

“RELATIVE key in record: %s”
The key to a Relative record must be defined outside of the record.

“RELATIVE Key is required”

A relative key must be indicated if ACCESS DYNAMIC or ACCESS
RANDOM MODE is specified.

“RELATIVE key must be PIC 9: %s”

“REMAINDER may not be used if any operand is External Floating-Point”
“Repeated OCCURS”

“REPLACING LEADING/TRAILING requires literals”

“REPLACING not allowed on nested COPY”

“RETURN-CODE is a reserved data item”

“Screen item subject to OCCURS”

It is not legal to ACCEPT or DISPLAY an item defined in the Screen
Section with or subordinate to an OCCURS clause.

“SEARCH ALL must have only one WHEN”

“SEARCH statement missing WHEN phrase”
A SEARCH statement must have a WHEN phrase.

D-32 m Compiler Error Messages

“SECTION required”

The use of Declaratives is part of a Format 1 Procedure Division. The
Format 1 Procedure Division requires the use of Sections.

“Segment %s exceeds 64K”

When you are using segmentation, an individual segment may not be
larger than 64 KB.

“Segments must be in order”

When segment numbers are used on the SECTION header, they must
be used in ascending order.

“SELECT for this file inconsistent with a SORT file”

“SIZE or LINES phrase required”

A DISPLAY LINE statement requires that either the length or height
be specified.

“Sorry, multiple TALLYING counters not supported”

“Sorry, this compiler may not be used on a stand-alone basis”
Some of our customers are licensed to include a limited-use version of
the ACUCOBOL-GT compiler in their software application for sale to
their own customers. Any attempt to activate such a compiler from the
command line, rather than from inside the application, will produce an
error.

“SORT file not allowed here”

A Sort file is a file described with an SD rather than an FD in the File
Section.

List of Errors m D-33

“SORT illegal in DECLARATIVES”

“Source name too long: %s”

“Special name not allowed here: %s”
“START illegal for RANDOM ACCESS files”
“START illegal for SEQUENTIAL files”

“Statement too large at code address %s”

The maximum Paragraph size in ACUCOBOL-GT is 32767 bytes. (A
statement cannot be larger than the maximum paragraph.)

“Status name not allowed here: %s”
“STATUS variable %s should be X(2)”
“String must be 1 character in context: ‘%s’”
“Style name not allowed here”

“Subscript may not be table item: %s”

A data item used as a subscript may not itself be subordinate to an
OCCURS clause.

“Subscript out of bounds: %s”

The subscript or index on a table entry is less than 1 or greater than the
number in the OCCURS that defines the table.

“Subscript required: %s”

An item subordinate to an OCCURS clause has been referenced
without a subscript or index.

“Symbol not in LINKAGE: %s”
“Symbol not in WORKING-STORAGE: %s”

“SYMBOLIC name expected”

The SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES
paragraph must include at least one “name” naming a symbolic
character.

D-34 m Compiler Error Messages

“SYMBOLIC value must be between 1 and %s”

The “number” in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph must be in the range of ordinal positions
in the alphabet being referenced.

“SYNC not allowed in Screen Section”
“Syntax error”
“Syntax error: %s”

“syntax error scanning %s”

“This constant not allowed: %s”

“This evaluation copy of ACUCOBOL has expired!”

“Please call customer support if you would like to upgrade to a full
version or if you wish to extend your evaluation period.”

“TO value too small in OCCURS”

The maximum value cannot be less than the minimum value for a
Format 2 OCCURS clause.

“Too few parameters: %1 required, %2 found”
“Too many ALPHABETS (max 100)”

“Too many delimiters (max 30)”

“Too many destinations (max 30)”

“Too many destinations (max 50)”

“Too many ENTRY points (max 65536)"
The program has more than 65536 ENTRY statements.

“Too many ENTRY point pages (max 65536)”

It would take more than 65536 object file pages to write out the
ENTRY point table.

List of Errors m D-35

“Too many errors, compilation aborted”

The compiler has a limit on the number of errors it will track on any
one compile cycle. Please correct some of the errors encountered to
this point, and try again.

“Too many EXTERNAL items (max 256)”

“Too many files open by the current process”

Vision returns this system error (30) when its attempt to create an
additional file segment is stopped because the limit imposed by
MAX_FILES has been reached. Error code is one of the following:
94,10; 97; or 97,10; depending on the setting of
FILE-STATUS-CODES.

“Too many INITIALIZE destinations (max 50)”
“Too many key segments (max 6)”
“Too many keys (max 120)”

“Too many level 01 linkage items (max 255)”
The program has more than 255 level 01 linkage items.

“Too many operands (max 60)”
“Too many parameters: %1 is the maximum, %2 found”

“Too many REPLACING operands (max %s)”

For Version 7.0 and earlier, the maximum number is 30. For later
versions, the maximum limit is 256.

“Too many sending items (max 100)”
“Too many source items (max 50)”

“Too many subscripts: %s”

An item subordinate to an OCCURS clause has been referenced with a
number of subscripts or indexes greater than its level of nesting.

D-36 m Compiler Error Messages

“Too Many <symbols> (max <symbols>))”

Generated if compiling for debug and the number of symbols is larger
than 65535, or the number of bytes in all symbols is larger than
1048560. This latter limit only happens if compiling with -Znn with nn
< 80.

“Too many SYMBOLIC CHARACTERS in this clause (max 100)”
“Too many table dimensions (max 15)”

“Too many USING parameters (max 255)"

“Unable to find ““%s"""

“Undefined data item: %s”
The data item referred to has not been defined in the Data Division.

“Undefined procedure: %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM has not been defined in the program.

“Undefined procedure: %s OF %s”

The paragraph or section you are trying to ALTER, GO TO, or
PERFORM does not exist in the program within the qualifier you have
specified for it.

“Unknown mode: %s”

As part of our compatibility with other dialects of COBOL, the
ACUCOBOL-GT compiler allows the use of the RECORDING
MODE clause. Only “F”, “V”, “S” and “U” modes are permitted.

“Unknown reserved word: %s”

“Unknown special name: %s”

The mnemonic-name in a Format 6 ACCEPT statement or in a Format
9 DISPLAY statement has not been defined in the Special-Names
paragraph.

List of Errors m D-37

“Unknown switch: %s”

The switch named in the SPECIAL-NAMES paragraph must be one of
SWITCH-1 through SWITCH-26, SWITCH 1 through SWITCH 26, or
SWITCH “A” through SWITCH “Z”.

“Unmatched ELSE”

The ELSE phrase must always be used in a one-to-one relationship
with IF in an IF statement.

“Unmatched END-%s”
Several statements in COBOL, among them IF, SEARCH, PERFORM,
and EVALUATE, can have their scope delimited by the END-
(END-IF, END-SEARCH, END-PERFORM) phrase. Such END-
phrases must exist in matched pairs with their companion verbs. The
compiler has encountered such a scope delimiter, but found no
matching verb preceding it.

“Unmatched NOT %s phrase”

Various NOT phrases may be used in the context of specific statements
(READ ... NOT AT END, COMPUTE ... NOT ON SIZE ERROR).
The compiler has encountered such a NOT phrase outside of its proper
statement.

“Unsupported operation”
“USAGE conflict”

“USAGE must be DISPLAY”
“USE statement missing”

USING parameter <name> not aligned and may cause problems in the called
subprogram
This is a warning message that can be generated if compiling with the
“-Wa” option. This warns that a passed parameter is a group or is
binary, and whose alignment is not an even multiple of the alignment
specified by the “-Da#” option.

USING parameter <name> is not an 01-level item
This is a warning message that can be generated if compiling with the

“-W1” option. The ANSI COBOL standard requires that parameters
passed to subprograms be 01-level items. ACUCOBOL-GT does

D-38 m Compiler Error Messages

restrict them as such; however, there are valid reasons for restricting
their use. See the ACUCOBOL-GT User’s Guide, chapter 2 for details
on this warning message.

“VALUE illegal on item > 64K”

“VALUE in EXTERNAL"
External data items may not have a VALUE phrase.

“VALUE in REDEFINES”

A Format 1 VALUE clause may not appear on a data item that is
subordinate to a REDEFINES clause.

“Value must be 80 or 132”

The DISPLAY SCREEN SIZE statement must specify either an
80-column or a 132-column display.

“Value should be a name: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This error occurs when the item to the right of an “=" should be a name
and it isn’t. For example, it would be an error to use a quoted string
with the “name” directive: $XFD NAME="some text”.

The “%s” in the message is the value found.

“Value should be numeric: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This error occurs when the item to the right of an “=" should be
numeric and it isn’t. The “%s” in the message is the value found.

List of Errors m D-39

“Value should be a literal: %s”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This error occurs when the item to the right of an “=" should be a literal
and it isn’t. The “%s” in the message is the value found. A literal is
either a quoted string or a numeric integer.

“VALUE size error: %s”

All literals used in a VALUE clause must have a value which falls
within the range of allowed values for the item’s PICTURE clause.
Nonnumeric literals may not exceed the size of the item. Numeric
items must have numeric literals. Alphabetic, alphanumeric, group,
and edited items must have nonnumeric literals.

“VALUE specified for group”

When a VALUE clause is applied to a group item, no subordinate item
may contain a VALUE clause.

“Value too large for context: %s”

The number you are using is too large. There are many cases in which
64 KB is the maximum size.

“VALUE too long: %s”
The maximum length for a floating point literal is 30.

“VALUE type error: %s”

All literals used in a VALUE clause must have a value within the range
of allowed values for the item’s PICTURE clause. Nonnumeric literals
may not exceed the size of the item. Numeric items must have numeric
literals. Alphabetic, alphanumeric, group, and edited items must have
nonnumeric literals.

“Variable file name requires “File” directive”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

D-40 m Compiler Error Messages

This message occurs when the compiler cannot assign a name to the

“ xfd” file because the ASSIGN phrase for the file names a variable file
name. In this case, you must use a “file” directive to name the “.xfd”
file.

“Verb expected, %s found”

“Warning: -Dcm ignored when using -Z%s”

The data storage option “-Dcm” is being ignored because you are
generating object code for a runtime version that does not support that
storage convention.

“Warning: -Dcn ignored when using -Z%s”

The NCR sign coding convention indicated by “-Dcn” requires a
Version 2.4 or later runtime. The “-Dcn” flag has been ignored by the
compiler.

“Warning: cannot generate native code from pre-5.0 object, *-Z%1’ flag ig-
nored”

“Warning: COLLATING SEQUENCE ignored for non-INDEXED files”
“Warning: native code not supported on current host, ‘-n’ ignored”
“Warning: PADDING CHARACTER ignored for non-SEQUENTIAL files”
“Warning: Paragraph Name found in Area B.”

“WHEN OTHER must be last”

No other WHEN phrase may follow WHEN OTHER in an
EVALUATE statement.

“WHEN subject may not be reference modified”

SEARCH ALL does not allow the compared item to be reference
modified.

List of Errors m D-41

“WHEN unexpected”

“WHEN variable xxx not found in record”

You have compiled with the “-Fx” option. The object code was
generated, but a data dictionary could not be built, for the reason listed
below. Remove the error condition and recompile to obtain a data
dictionary.

This happens if you have a “when” directive that mentions a variable
that doesn’t exist in the record.

“WHEN, END-SEARCH or *.’ required after NEXT SENTENCE”
“Writing %s code”

“Wrong number of parameters: %1 expected, %2 found”

File Status Codes

Key Topics

INTFOAUCTION ..ttt et sbe e s et E-2
TabIe Of COUEBS....cuveiviitiectecti e st be e E-2
Vision Secondary Error Codes for Error 98S.......ccccevvevvvveveneennnne. E-8
Transaction Error COUESccvvivieiieeiie ettt e re e E-10

IBM DOS/VS Error COUESccveieiiitiieee ettt st ses s sressne e E-13

E-2 m File Status Codes

E.1 Introduction

ACUCOBOL-GT conforms to five different standards regarding the values
of file status codes. These codes are those used by RM/COBOL-85 (ANSI
85), RM/COBOL version 2 (ANSI 74), Data General ICOBOL, VAX
COBOL, and IBM DOS/VS COBOL. By default, ACUCOBOL-GT uses the
RM/COBOL-85 set. You can change the current set by changing the
configuration variable FILE_STATUS _CODES (see also the
ACUCOBOL-GT User’s Guide, Section 2.8.3, “File Status Codes”).

The table in the next section describes the various file status codes returned
by each condition. Some of the status values in the table have a second
two-character code listed. This code distinguishes between different causes
for the same FILE STATUS code. You can obtain this second code value by
calling the ACUCOBOL-GT library routine CSRERR described in
Appendix I. Where a second code is not listed, its value is “00”.

For file systems that support READ PREVIOUS, wherever READ NEXT is
mentioned, you may assume that READ PREVIOUS is also implied. Anend
of file for READ NEXT is analogous to a beginning of file for READ
PREVIOUS.

E.2 Table of Codes

Regardless of which set of status codes is being used:
* Any code that starts with a “0” is considered successful.
« Any code that starts with a “1” is considered to be an “at end” condition.

e Any code that starts with a “2” is considered to be an “invalid key”

condition.
85 74 Vax DG IBM Condition
00 00 00 00 00 Operation successful.

Table of Codes m E-3

85

74

Vax

DG

IBM

Condition

02

02

00

00

00

The current key of reference in the record just read
is duplicated in the next record. (read next)

02

02

02

00

00

The operation added a duplicate key to the file
where duplicates were allowed. (write, rewrite)

05

00

05

00

10

Optional file missing. If the open mode is I-O or
EXTEND, then the file has been created. This is

also returned by DELETE FILE if the file is not

found. (open, delete file)

07

00

07

00

00

A CLOSE UNIT/REEL statement was executed
for a file on a non-reel medium. The operation
was successful.

oM

oM

oM

oM

00

The operation was successful, but some optional
feature was not used. For example, if you opened
afile that specified an alternate collating sequence,
but the host file system did not support that
feature, then the open would succeed, but it would
return this status.

10

10

13

10

10

End of file. (read next)

14

00

14

00

00

A sequential READ statement was attempted for a
relative file, and the number of digits in the
relative record number is larger than the size of the
relative key data item. (read next)

21

21

21

21

21

Primary key was written out of sequence, or the
primary key on a rewrite does not match the last
record read. This error occurs only for an indexed
file open with the sequential access mode. (write,
rewrite)

22

22

22

22

22

Duplicate key found but not allowed. (write,
rewrite)

23

23

23

23

23

Record not found.

24

24

24

24

24

Disk full for relative or indexed file. (write)

E-4 m File Status Codes

85 74 Vax DG IBM Condition

24,01 | 00 24,01 | 00 24 A sequential WRITE statement was executed for a
relative file, and the number of digits in the
relative record number was larger than the size of
the relative key data item. (write)

30, xx | 30,xx | 30,xx [30,xx | 30 Permanent error. This is any error not otherwise
described.

The secondary code value is set to the host
system’s status value that caused the error. See
your operating system user manual for an
explanation, and C3RERR in Appendix .

34 34 34 34 34 Disk full for sequential file or sort file. (write,
sort)

35 94,20 | 35 91 93 File not found. (open, sort)

37,01 | 95,01 | 37,01 | 91,01 | 93 The file being opened is not on a mass-storage
device which is required for the file type or the
requested open mode. (open)

37,02 | 95,02 | 37,02 [91,02 | 93,02 | Attemptto open asequential file with fixed-length
records as a Windows spool file.

37,07 [90,07 | 39,07 | 91,07 | 93 User does not have appropriate access permissions
to the file. (open)

37,08 | 95,08 | 37,08 | 91,08 | 93 Attempt to open a print file for INPUT. (open)

37,09 | 95,09 | 37,09 [91,09 | 93 Attempt to open a sequential file for 1/0 and that
file has automatic trailing space removal specified.
(open)

37,99 | 95,99 | 37,99 [91,99 | 93,99 [A Windows or Windows NT runtime that is not
network-enabled tried to access a file on a remote
machine.

38 93,03 | 38 92 93 File previously closed with LOCK by this run unit.

(open)

Table of Codes m E-5

85 74 Vax DG IBM Condition

39, xx | 94, xx | 39,xx | 9A, xx | 95 Existing file conflicts with the COBOL
description of the file. (open)
The secondary error code may have any of these
values:
01 - mismatch found but exact cause unknown
(this status is returned by the host file system)
02 - mismatch found in file’s maximum record
size
03 - mismatch found in file’s minimum record size
04 - mismatch found in the number of keys in the
file
05 - mismatch found in primary key description
06 - mismatch found in first alternate key
description
07 - mismatch found in second alternate key
description
The list continues in this manner for each alternate
key.

41 92 41 91 93 File is already open. (open)

42 91 42 92 92 File not open. (close)

42 91 94 91 92 File not open. (unlock)

43 90,02 | 43 92 23 No current record defined for a sequential access
mode file. (rewrite, delete)

44 97 44 92 21 Record size changed. The record being rewritten

is a different size from the one existing in the file,
and the file’s organization does not allow this.
(rewrite)

This status code can also occur if the record is too
large or too small according to the RECORD
CONTAINS clause for the file. (write, rewrite)

E-6 m File Status Codes

85 74 Vax DG IBM Condition

46 96 46 92 21 No current record. This usually occurs when the
previous operation on the file was a START that
failed, leaving the record pointer undefined. (read
next)

47,01 | 90,01 | 47,01 | 92,01 | 13 File not open for input or I-O. (read, start)

47,02 | 91,02 | 47,02 | 92,02 | 13 File not open. (read, start)

48,01 | 90,01 | 48,01 | 92,01 | 13 A file that is defined to be access mode sequential
is open for I-O, or the file is open for INPUT only.
(write)

48,02 | 91,02 | 48,02 | 92,02 | 13 File not open. (write)

49,01 | 90,01 | 49,01 | 92,01 | 13 File not open for 1-O. (rewrite, delete)

49,02 | 91,02 | 49,02 | 92,02 | 13 File not open. (rewrite, delete)

93 93 91 94 93 File locked by another user. (open)

94,10 | 94,10 | 97 97,10 | 93 Too many files open by the current process.
(open)

94,62 | 94,62 | 39,62 [92,62 | 93 One of the LINKAGE values for this file is illegal
or out of range. (open, write)

94,63 | 94,62 | 39,62 [92,62 | 93 Key not specified (specifying a table whose size is
zero) in a SORT or MERGE statement

98, xx | 98, xx | 30,xx | 9B, xx | 93 Indexed file corrupt. An internal error has been
detected in the indexed file. The secondary status
code contains the internal error number. The file
should be reconstructed with the appropriate
utility.

99 99 92 94 23 Record locked by another user.

9A 9A 9A 9A 23 Inadequate memory for operation. This most

commonly occurs for the SORT verb, which
requires at least 64K bytes of free space. (any)

Table of Codes m E-7

85 74 Vax DG IBM Condition

9B 9B 9B 9B 23 The requested operation is not supported by the
host operating system. For example, a deferred
file system initialization failed, or a READ
PREVIOUS verb was executed and the host file
system does not have the ability to process files in
reverse order. (any)

If you are using AcuXML, this error results when
the program tries to open a file EXTEND or 1-O.
With AcuXML, programs are able to open files
INPUT or OUTPUT only.

9C 9C 9C 9C 23 There are no entries left in one of the lock tables.
The secondary error code indicates which table is
full:

01 - operating system lock table

02 - internal global lock table (see the
MAX_LOCKS configuration variable)

03 - internal per-file lock table (see the
LOCKS_PER_FILE configuration variable)

9D, xx | 9D, xx | 9D, xx | 9D, xx | 92 This indicates an internal error defined by the host
file system. The “xx” is the host system’s error
value. This is similar to error “30”, except that
“xx" is specific to the host file system instead of
the host operating system. For example:

02 - In Acu4GL or AcuXML, 9D,02 indicates that
an XFD file is corrupt. This could be the result of
a parsing error.

03 - In Acu4GL or AcuXML, 9D,03 indicates that
an XFD file is missing. This could be the result of
a parsing error.

05 - In AcuXML, 9D,05 indicates that there was
an XFD parsing error, so AcuXML was unable to
read a record.

Refer to the specific product documentation for
more details on the host file system’s error codes.

E-8 m File Status Codes

85

74

Vax

DG IBM Condition

9E, xx

9E, xx

9E, xx

9E, xx | 92 This indicates an error occurred in the transaction
system. The exact nature of the error is shown by
the contents of TRANSACTION-STATUS. See
section E.4, “Transaction Error Codes.”

9Z

9z

9z

9z 92 This indicates that you are executing the program
with a runtime that has a restriction on the number
of records it can process. You have exceeded the
record limit.

E.3 Vision Secondary Error Codes for Error 98s

Following is a brief description of the secondary error codes for error 98s for
the Vision file system.

01
02
03

04
05
06
07
08

09
12
13
20
21

The file size listed in the file’s header does not match the actual file size.
The header’s next record pointer points to an area that is invalid.

Unique ID used to distinguish duplicate keys has already been used and
cannot be used with a new key.

Missing tree terminator key.

An error was detected while performing a bulk read of a record.
The key being deleted from the tree was not found in the tree.
A child node was not found in its parent.

An 1/0O error occurred when the runtime was trying to read key
information out of the file’s header.

A pointer in a node points past the end of the file.

A node in the free node list was not marked as a free node.

A record in the deleted record list was not marked as a deleted record.
Non-zero key prefix on first key in node.

Key prefix larger than key size.

Vision Secondary Error Codes for Error 98s m E-9

22

31

42

68
69
81
82

83

84

85

86

87

89

90

99

Key prefix or key size larger than maximum key size.

A record pointer in a Vision Version 3 file points to a record-chain
value. In a Version 3 file, record pointers should always point to the
start of a record, never to a record-chain value.

The unique record counter has been exhausted. Rebuild the file to
correct the error.

A Vision 4 or 5 data segment is not found during an open.
A Vision 4 or 5 index segment is not found during an open.
Invalid data found in record header when a compressed record was read.

Invalid data found in record header when a non-compressed record was
read.

When a record was read, an /O error occurred or the record was too
short.

When a record link was read, an 1/O error occurred or the link was too
small.

Record contains invalid record compression codes--the record would
uncompress into a record that was larger than the maximum record size.

During a record write, a read of a record-chain value failed, probably
due to an end-of-file condition.

Vision Version 4 or 5 detects that it is about to write a record to an area
of a file that does not contain an appropriate record header. An
appropriate record header indicates that a record currently does not exist
at this address.

In Vision Version 4 or 5, on open, a data segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

In Vision Version 4 or 5, on open, an index segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

Vision Version 4 or 5 has tried to open the 65,537th data or index
segment for this file. Vision can only support 65,536 data segments and
65,536 index segments per logical file.

E-10 = File Status Codes

E.4 Transaction Error Codes

A transaction management error is one that follows a START
TRANSACTION, COMMIT, ROLLBACK or call to CSRECOVER, or one
that occurs during some other file operation within a transaction (resulting in
an error 9E). Error codes associated with these are stored in the
TRANSACTION-STATUS register. This section lists and describes the
primary and secondary transaction error codes.

Transaction Error Codes m E-11

E.4.1 Primary Error Codes

Following is a list of the primary error codes for the transaction management
system.

01 This is returned from a ROLLBACK statement or call to
C$RECOVER when an error occurs in an external routine. For a list
of the secondary codes for this error, see section E.4.2, “Secondary
Error Codes for Error 01.”.

02 An attempt to open the log file failed because the maximum number of
files per process would be exceeded. This is returned from a START
TRANSACTION or call to CSRECOVER.

03 An attempt to open the log file failed because some element of the
specified directory path is non-existent. This is returned from a START
TRANSACTION statement or call to CSRECOVER.

04 An attempt to open the log file failed because the user has insufficient
access privileges for the file. This is returned from a START
TRANSACTION statement or call to CSRECOVER.

05 This indicates an operating system error that is not otherwise covered by
one of the standard error conditions. You can determine the exact nature
of this error by examining the value of the secondary error code.

06 This indicates that the log file is corrupted. The error is returned when
the program encounters an unexpected end of file, or when an invalid
transaction type code is found during recovery.

07 An attempt to open the log file failed because the file is locked
(MS-DOS only). This is returned from a START TRANSACTION
statement or a call to CSRECOVER.

08 This indicates that the system ran out of dynamic memory.
09 This indicates that a write failed because the disk is full.
10 This is returned from a START TRANSACTION statement or call to

C$RECOVER when no log file was specified in the LOG-DIR
configuration variable.

11 This is returned from a ROLLBACK or COMMIT statement when an
unexpected end of file is reached while the rollback log file is being read.
12 A START TRANSACTION, ROLLBACK or COMMIT failed because

the last transaction in the log file is incomplete.

E-12 m File Status Codes

13 This error is returned in the TRANSACTION-STATUS register from a
WRITE, REWRITE, CLOSE, or DELETE if the file was not opened
within a transaction. Note that, if the FILE-CONTROL paragraph for
the file contains the WITH ROLLBACK phrase, all OPENs are
automatically performed within a transaction.

14 This is a file-system specific error that is not one of the standard errors,
and not an error returned by the operating system. The secondary and
tertiary error codes indicate the exact meaning, which is file-system
dependent.

16 This error is returned when the runtime is executing a START
TRANSACTION while another transaction is already active.

99 This warning indicates that the requested transaction operation is not
supported by a host file system. The transaction operation is still
attempted for other file systems.

E.4.2 Secondary Error Codes for Error 01

The following is a list of the secondary error codes for transaction error 01.

Secondary Error Corresponding
file-status error

01 operating system error (see tertiary code for 30
system-specific error code)

02 illegal parameter 39,01

03 attempt to open more files than system allows 94,10

04 open mode does not allow operation 48,01 or 49,01

05 requested record is locked 99

06 index file is corrupt 98,xx

07 duplicate key where duplicates not allowed 22

08 requested record not found 23

10 disk became full while adding a new record 24

11 file locked against requested open mode 93

12 record size mismatch during rewrite 44

IBM DOS/VS Error Codes m E-13

Secondary Error Corresponding
file-status error
14 out of dynamic memory 9A
15 requested file does not exist 35
16 inadequate access permissions to file 37,07
17 requested operation not supported 9B
18 out of lock-table entries 9C
19 file-system specific error 9D

E.5 IBM DOS/VS Error Codes

IBM DOS/VS COBOL has a form of the USE statement in the
DECLARATIVES section that is not normally recognized by
ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in
effect.

When an error handler introduced by this statement is invoked, the runtime
puts special error codes into the eight-byte data item data-name-1. For more
information and the list of codes, see Chapter 5, “IBM DOS/VS COBOL
Conversions,” in the Transitioning Your COBOL Applications to
ACUCOBOL-GT book.

Intrinsic Functions

Key Topics

INtrodUCtiONeeeeiiie e

Function Definitions and Returned Values

F-2 m Intrinsic Functions

F.1 Introduction

Intrinsic functions are subprograms that are built into the ACUCOBOL-GT
library. They save time by simplifying common tasks that your COBOL
programs might need to perform. For example, intrinsic functions can
perform statistical calculations, convert strings from upper to lower case,
compute annuities, derive values for trigonometric functions such as sine and
cosine, and perform general utility tasks such as determining the compile date
of the current object file.

Intrinsic functions are sometimes called built-in or library functions.

To access an intrinsic function, you include it inside a COBOL statement
(typically a MOVE or COMPUTE statement). Here’s an example of a
statement that uses the “min” intrinsic function:

move function min(3,8,9,7) to my-minimum.

This COBOL statement can be translated into: move the result derived from
performing the “min” function on the literals “3, 8, 9, and 7” to the variable
“my-minimum.”

Note the presence of the required word “function,” followed by the name of
the function (“min”) and then its parameters.

Each intrinsic function is evaluated to a data value. This value is stored in a
temporary storage area that you cannot access directly in your program. The
only way to get the derived value of an intrinsic function is to provide the
name of a data item into which the resulting value should be placed. In the
example shown above, the variable “my-minimum” receives the derived
value of the “min” function.

In the example above, the parameters passed to the “min” function are
literals. It is also permissible to pass data items, as shown here:

compute my-sine = function sin(angle-a).

Function Definitions and Returned Values m F-3

Note: When the return value of a function is a double, the precision of the
return value is limited to that supported by the underlying hardware.

However, if your COBOL program is compiled for 31-digit support
(“-Dd31”), numeric functions are computed using special floating point
arithmetic that is accurate to approximately 33 digits, regardless of the
floating-point representation on the host machine.

The functions that return a double include: ABS, ABSOLUTE-VALUE,
ACOS, ANNUITY, ASIN, ATAN, COS, LOG, LOG10, MEAN,
MEDIAN, MIDRANGE, NUMVAL, NUMVAL-C, PRESENT-VALUE,
RANDOM, REM, SIN, SQRT, STANDARD-DEVIATION, TAN, and
VARIANCE.

F.2 Function Definitions and Returned Values

The definition of a function identifies the following:
» For alphanumeric functions, the size of the returned value

» For numeric and integer functions, the sign of the returned value and
whether the function is an integer

» For some other cases, the value returned

Data item functions are elementary data items and return alphanumeric,
numeric, or integer values. Data item functions are treated as elementary data
items and cannot be receiving operands. Types of data item functions are as
follows:

» Alphanumeric functions--these are of the class and category
alphanumeric. The number of character positions in this data item is
specified in the function definition. Alphanumeric functions have an
implicit usage of DISPLAY.

* Numeric functions--these are of the class and category numeric. A
numeric function is always considered to have an operational sign.

* A numeric function may be used only in an arithmetic expression.

F-4 m Intrinsic Functions

< A numeric function may not be referenced where an integer operand is
required, even though a particular reference may yield an integer value.

« Integer functions--these are of the class and category numeric. A
numeric function is always considered to have an operational sign.

« An integer function may be used only in an arithmetic expression.

« An integer function can be referenced where an integer operand is
required and where a signed operand is allowed.

F.2.1 Function Definitions

The table below summarizes the functions that are now available.

The Arguments column defines the type and number of arguments as

follows:
A alphabetic
I integer
N numeric

alphanumeric

The Type column defines the type of the function as follows:

I integer
N numeric

Z alphanumeric

Function Definitions and Returned Values m F-5

Function-name Arguments | Type Value returned
ABSOLUTE-VALUE | N1 N Absolute value of the
(or ABS) argument passed
ACOS N1 Arccosine of N1
ANNUITY N1, N2 Ratio of annuity paid
for 12 N2 periods at
interest rate of N1 to
initial investment of one
ASIN N1 Arcsine of N1
ATAN N1 Arctangent of N1
CHAR 11 Character in position 11
of program collating
sequence
COoSs N1 N Cosine of N1
CURRENT-DATE None Current date and time
and difference from
Greenwich Mean Time
DATE-OF-INTEGER | I1 | Standard date
equivalent
(YYYYMMDD) of
integer date
DAY-OF-INTEGER 11 | Julian date equivalent
(YYYYDDD) of
integer date
FACTORIAL 11 | Factorial of 11
INTEGER N1 | The greatest integer not
greater than N1
INTEGER-OF-DATE | 11 | Integer date equivalent
of standard date
(YYYYMMDD)
INTEGER-OF-DAY 11 | Integer date equivalent
of Julian date
(YYYYDDD)
INTEGER-PART N1 | Integer part of N1

F-6 m Intrinsic Functions

Function-name Arguments | Type Value returned
LENGTH AlorNlor | I Length of argument
X1
LOG N1 N Natural logarithm of N1
LOG10 N1 N Logarithm to base 10 of
N1
LOWER-CASE Alor X1 X All letters in the
argument are set to
lowercase
MAX Al..orll.. | Dependson | Value of maximum
or N1...or arguments.* [argument
X1...
MEAN N1... N Arithmetic mean of
arguments
MEDIAN N1... N Median of arguments
MIDRANGE N1... N Mean of minimum and
maximum arguments
MIN Al..orll.. | Dependson | Value of minimum
or N1...or arguments* | argument
X1...
MOD 11,12 | 11 modulo 12
NUMVAL X1 N Numeric value of
simple numeric string
NUMVAL-C X1, X2 N Numeric value of

numeric string with
optional commas and
currency sign

ORD Alor X1 | Ordinal position of the
argument in collating
sequence

ORD-MAX Al..or | Ordinal position of

N1... or maximum argument
X1...
ORD-MIN Al..or | Ordinal position of

N1...or X1 minimum argument

ABSOLUTE-VALUE (ABS) Function m F-7

Function-name Arguments | Type Value returned

PRESENT-VALUE N1, N2... N Present value of a series
of future period-end
amounts, N2n at a
discount rate of N1

RANDOM 11 N Random number

RANGE I11...or N1... | Dependson | Value of maximum

arguments argument minus value

of minimum argument

REM N1, N2 N Remainder of N1/N2

REVERSE Alor X1 X Reverse order of the
characters of the
argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD- N1... N Standard deviation of

DEVIATION arguments
SUM I11...or N1... | Dependson | Sum of arguments
arguments

TAN N1 N Tangent of N1

UPPER-CASE Alor X1 X All letters in the
argument are set to
uppercase

VARIANCE N1... N Variance of argument

WHEN-COMPILED None X Date and time program
was compiled

*A function that has only alphabetic arguments is type alphanumeric.

F.3 ABSOLUTE-VALUE (ABS) Function

The ABSOLUTE-VALUE (or ABS) function returns a single numeric value
which is the absolute value of the argument passed.

F-8 m Intrinsic Functions

Usage
FUNCTION ABSOLUTE-VALUE (argument-1)
or
FUNCTION ABS (argument-1)

Parameter

Argument-1 must be class numeric.
Returned Value

The returned value is a single numeric value which is the absolute value of
argument-1.

F.4 ACQOS Function

The ACOS function returns a numeric value in radians that approximates the
arccosine of argument-1. The type of this function is numeric.

Usage
FUNCTION ACOS (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less
than or equal to “+1”.

Returned Value

The returned value is the approximation of the arccosine of argument-1 and
is greater than or equal to zero and less than or equal to pi. This function will
produce results accurate to only about 17 digits, even when argument-1
contains more than 18 digits (for example, if you have compiled your
program for 31-digit support.)

ANNUITY Function = F-9

F.5 ANNUITY Function

Usage

The ANNUITY function (annuity immediate) returns a numeric value
representing the amount of each payment in a series of equal periodic
payments whose total value is 1.0, where argument-1 is the interest rate per
period, argument-2 is the number of periods (usually 12), and each payment
is applied at the end of its period. The type of this function is numeric.

a numeric value that approximates the ratio of an annuity paid at the end of
each period for the number of periods specified by argument-1 and is applied
at the end of the period before the payment. The type of this function is
numeric.

FUNCTION ANNUITY (argument-1 argument-2)

Parameters

1. Argument-1 must be class numeric.
2. The value of argument-1 must be greater than or equal to zero.

3. Argument-2 must be a positive integer.

Returned Values

1. When the value of argument-1 is zero, the value of the function is the
approximation of:

1 / argument-2

2. When the value of argument-1 is not zero, the value of the function is
the approximation of:

argument-1 / (1 - (1 + argument-1) ** (- argument-2))

Note: This function will produce results accurate to only about 17 digits,
even when argument-1 contains more than 18 digits (for example, if you
have compiled your program for 31-digit support.)

F-10 m Intrinsic Functions

F.6 ASIN Function

The ASIN function returns a numeric value in radians that approximates the
arcsine of argument-1. The type of this function is numeric.

Usage
FUNCTION ASIN (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than or equal to “-1” and less
than or equal to “+1”.

Note: This function will produce results accurate to only about 17 digits,
even when argument-1 contains more than 18 digits (for example, if you
have compiled your program for 31-digit support.)

Returned Value

The returned value is the approximation of the arcsine of argument-1 and is
greater than or equal to “-pi/2” and less than or equal to “+pi/2”.

F.7 ATAN Function

The ATAN function returns a numeric value in radians that approximates the
arctangent of argument-1. The type of this function is numeric.

Usage
FUNCTION ATAN (argument-1)

Parameter

Argument-1 must be class numeric.

CHAR Function m F-11

Returned Value

The returned value is the approximation of the arctangent of argument-1 and
is greater than “-pi/2” and less than “+pi/2”.

F.8 CHAR Function

The CHAR function returns a one-character alphanumeric value that is a
character in the program collating sequence having the ordinal position that
corresponds to the value of argument-1. The type of this function is
alphanumeric.

Usage
FUNCTION CHAR (argument-1)

Parameters

1. Argument-1 must be an integer.

2. The value of argument-1 must be greater than zero and less than or
equal to the number of positions in the collating sequence.

Returned Values

1. If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first
literal specified for that character position in the ALPHABET clause.

2. If the current program collating sequence was not specified by an
ALPHABET clause, the value returned will be the character in the
ASCII character set occupying the ordinal position of the argument.

F.9 COS Function

The COS function returns a numeric value that approximates the cosine of an
angle or arc, expressed in radians that is specified by argument-1. The type
of this function is numeric.

F-12 m Intrinsic Functions

Usage
FUNCTION COS (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Value

The returned value is the approximation of the cosine of argument-1 and is
greater than or equal to “-1” and less than or equal to “+1”.

F.10 CURRENT-DATE Function

The CURRENT-DATE function returns a 21-character alphanumeric value
that represents the calendar date, time of day, and local time differential
factor provided by the system on which the function is evaluated. The type
of this function is alphanumeric.

Usage
FUNCTION CURRENT-DATE

Returned Values

1. The character positions returned, numbered from left to right, are
described in the table below.

Character | Contents

Position

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range
01 through 12.

7-8 Two numeric digits of the day of the month, in the range
01 through 31.

9-10 Two numeric digits of the hours past midnight, in the
range of 00 through 23.

DATE-OF-INTEGER Function m F-13

Character | Contents

Position

11-12 Two numeric digits of the minutes past the hour, in the
range 00 through 59.

13-14 Two numeric digits of the seconds past the minute, in the
range 00 through 59.

15-16 Two numeric digits of the hundredths of a second past a
second, in the range 00 through 99. The value 00 is
returned if the system on which the function is evaluated
does not have the facility to provide the fractional part of a
second.

17 The character '0'. This is reserved for future use.

18-19 The characters '00'. This is reserved for future use.

20-21 The characters '00". This is reserved for future use

2. If the system does not have the facility to provide fractional parts of a
second, the value 00 is returned in character positions 15 and 16.

3. If the system does not have the facility to provide the local time
differential factor, the value 00000 is returned in character positions 17
through 21.

4. Currently, we do not support the information contained in positions 17-
through 21. These fields will contain 0.

5. The returned value can be reference modified. For example:
MOVE FUNCTION CURRENT-DATE (1:4) TO YEARDATE.

F.11 DATE-OF-INTEGER Function

The DATE-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to standard date form (YYYYMMDD). The type of
this function is integer.

Usage
FUNCTION DATE-OF-INTEGER (argument-1)

F-14 m Intrinsic Functions

Parameter

Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600 in the Gregorian calendar.

Returned Values

1. The returned value represents the 1ISO standard date equivalent to the
integer specified in argument-1.

2. The returned value is in the form YYYYMMDD, where YYYY
represents a year in the Gregorian calendar; MM represents the month
of that year; and DD represents the day of that month.

F.12 DAY-OF-INTEGER Function

The DAY-OF-INTEGER function converts a date in the Gregorian calendar
from integer date form to Julian date form (YYYYDDD). This type of
function is integer.

Usage
FUNCTION DAY-OF-INTEGER (argument-1)

Parameter

Argument-1 is a positive integer that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Returned Values

1. The returned value represents the Julian equivalent of the integer
specified in argument-1.

2. The returned value is an integer of the form YYYYDDD, where
YYYY represents a year in the Gregorian calendar, and DDD
represents the day of that year.

FACTORIAL Function m F-15

F.13 FACTORIAL Function

The FACTORIAL function returns an integer that is the factorial of
argument-1. The type of this function is integer.

Usage
FUNCTION FACTORIAL (argument-1)

Parameter

Argument-1 must be an integer greater than or equal to zero.
Returned Values

1. If the value of argument-1 is zero, the value “1” is returned.

2. If the value of argument-1 is positive, its factorial is returned.

F.14 INTEGER Function

The INTEGER function returns the greatest integer value that is less than or
equal to the argument.

Usage
FUNCTION INTEGER (argument-1)

Parameter
Argument-1 must be class numeric.
Returned values

1. When standard arithmetic is specified, argument-1 is not rounded.

2. The returned value is the greatest integer less than or equal to the value
of argument-1. For example, if the value of argument-1 is “ -1.5”,
“-2” is returned. If the value of argument-1 is “+1.5”, “+1” is
returned.

F-16 m Intrinsic Functions

F.15 INTEGER-OF-DATE Function

The INTEGER-OF-DATE function converts a date in the Gregorian calendar
from standard date form (YYYYMMDD) to integer date form. The type of
this function is integer.

Usage
FUNCTION INTEGER-OF-DATE (argument-1)

Parameter

Argument-1 must be an integer of the form YYYYMMDD, whose value is
obtained from the calculation (YYYY * 10,000) + (MM * 100) + DD.

* YYYY represents the year in the Gregorian calendar. It must be an
integer greater than 1600.

* MM represents a month, and must be a positive integer less than 13.

» DD represents a day, and must be a positive integer less than 32 provided
that it is valid for the specified month and year combination.

Returned Value

The returned value is an integer that is the number of days the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian
calendar.

F.16 INTEGER-OF-DAY Function

The INTEGER-OF-DAY function converts a date in the Gregorian calendar

from Julian date form (YYYYDDD) to integer date form. The type of this
function is integer.

Usage
FUNCTION INTEGER-OF-DAY (argument-1)

INTEGER-PART Function m F-17

Parameter

Argument-1 must be an integer of the form YYYYDDD, whose value is
obtained from the calculation (YYYY * 1000) + DDD.

* YYYY represents the year in the Gregorian calendar. It must be an
integer greater than 1600.

» DDD represents the day of the year. It must be a positive integer less
than 367 provided that it is valid for the year specified.

Returned Value

The returned value is an integer that is the number of days the date

represented by argument-1 succeeds December 31, 1600 in the Gregorian
calendar.

F.17 INTEGER-PART Function

The INTEGER-PART function returns an integer that is the integer portion
of argument-1. The type of this function is integer.

Usage
FUNCTION INTEGER-PART (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Values

1. If the value of argument-1 is zero, the returned value is zero.

2. If the value of argument-1 is positive, the returned value is the greatest
integer less than or equal to the value of argument-1. For example, if
the value of argument-1 is “+1.5”, then “+1” is returned.

F-18 m Intrinsic Functions

3.

If the value of argument-1 is negative, the returned value is the least
integer greater than or equal to the value of argument-1. For example,
if the value of argument-1 is “-1.5”, then “-1” is returned.

F.18 LENGTH Function

The LENGTH function returns an integer equal to the length of the argument
in character positions. This type of function is integer.

FUNCTION LENGTH (argument-1)

Usage

Parameters
1.
2.

Argument-1 may be a non-numeric literal or a data item of any class or
category.

If argument-1 (or any data item subordinate to argument-1) is
described with the DEPENDING phrase of the OCCURS clause, the
contents of the data item referenced by the data-name specified in the
DEPENDING phrase are used at the time the LENGTH function is
evaluated.

Returned Values

1.

If argument-1 is a non-numeric literal or an elementary data item, or if
argument-1 is a group data item that does not contain a variable
occurrence data item, the value returned is an integer equal to the length
of argument-1 in character positions.

If argument-1 is a group data item containing a variable occurrence
data item, the returned value is an integer determined by evaluation of
the data item specified in the DEPENDING phrase of the OCCURS
clause for that variable occurrence data item. This evaluation is
accomplished according to the rules in the OCCURS clause dealing
with the data item as a sending data item.

The returned value includes implicit FILLER characters, if any.

LOG Function m F-19

Note: This function is similar in functionality to the Format 8 Set SET
statement: “SET result-item TO SIZE OF data-item”.

F.19 LOG Function

The LOG function returns a numeric value that approximates the logarithm
to the base e (natural log) of argument-1. The type of this function is

numeric.
Usage

FUNCTION LOG (argument-1)
Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

The returned value is the approximation of the logarithm to the base e of
argument-1.

F.20 LOGI10 Function

The LOG10 function returns a numeric value that approximates the logarithm
to the base 10 of argument-1. The type of this function is numeric.

Usage
FUNCTION LOG10 (argument-1)

F-20 m Intrinsic Functions

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be greater than zero.

Returned Value

Returned value is the approximation of the logarithm to the base 10 of
argument-1.

F.21 LOWER-CASE Function

The LOWER-CASE function returns a character string that is the same
length as argument-1 with each uppercase letter replaced by the
corresponding lowercase letter. The type of this function is alphanumeric.

Usage
FUNCTION LOWER-CASE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least
one character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each
uppercase letter is replaced by the corresponding lowercase letter.

2. The character string returned has the same length as argument-1.

3. If the computer character set does not include lowercase letters, no
changes take place in the character string.

4. This function only translates characters with a numeric value of 0-128.
Anything above that (such as é, with a value of 130) must be mapped
to its associated upper- or lower-case character using the configuration
variable UPPER-LOWER-MAP.

MAX Function m F-21

Note: This function is similar to the library routine CSTOLOWER
except that the original data is not modified, and the entire string is
converted.

5. The returned value can be reference modified. For example:
MOVE FUNCTION LOWER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.22 MAX Function

The MAX function returns the content of the argument-1 that contains the
maximum value. The type of this function depends upon the argument types

as follows:
Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric Numeric (some arguments may be integer)
Usage
FUNCTION MAX ({argument-1} ...)
Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the content of the argument-1 having the greatest
value. The comparisons used to determine the greatest value are made
according to the rules for simple conditions.

F-22 m Intrinsic Functions

2. If more than one argument-1 has the same greatest value, the content
of the argument-1 returned is the leftmost argument-1 having that
value.

3. If the type of the function is alphanumeric, the size of the returned
value is the same as the size to the selected argument-1.

F.23 MEAN Function

The MEAN function returns a numeric value that is the arithmetic mean
(average) of its arguments. The type of this function is numeric.

Usage
FUNCTION MEAN ({argument-1} ...)

Parameters

Argument-1 must be class numeric.

Returned Values
1. The returned value is the arithmetic mean of the argument-1 series.

2. The returned value is defined as the sum of the argument-1 series
divided by the number of occurrences referenced by argument-1.

F.24 MEDIAN Function

The MEDIAN function returns the content of the argument whose value is
the middle value in the list formed by arranging the arguments in sorted
order. The type of this function is numeric.

Usage
FUNCTION MEDIAN ({argument-1} ...)

MIDRANGE Function m F-23

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the content of the argument-1 having the middle
value in the list formed by arranging all the argument-1 values in sorted
order.

2. If the number of occurrences referenced by argument-1 is odd, the
returned value is such that at least half of the occurrences referenced by
argument-1 are greater than or equal to the returned value, and at least
half are less than or equal. If the number of occurrences referenced by
argument-1 is even, the returned value is the arithmetic mean of the
values referenced by the two middle occurrences.

3. The comparisons used to arrange the argument-1 values in sorted order
are made according to the rules for simple conditions.

F.25 MIDRANGE Function

The MIDRANGE (middle range) function returns a numeric value that is the
arithmetic mean (average) of the values of the minimum argument and the
maximum argument. The type of this function is humeric.

Usage
FUNCTION MIDRANGE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values
The returned value is the arithmetic mean of the greatest argument-1 value
and the least argument-1 value. The comparisons used to determine the

greatest and least values are made according to the rules for simple
conditions.

F-24 m Intrinsic Functions

F.26 MIN Function

The MIN function returns the content of the argument-1 value that contains
the minimum value. The type of this function depends upon the argument
types as follows:

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments may be integer) | Numeric

Usage
FUNCTION MIN ({argument-1} ...)

Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the content of the argument-1 having the least
value. The comparisons used to determine the least value are made
according to the rules for simple conditions.

2. If more than one argument-1 has the same least value, the content of
the argument-1 returned is the leftmost argument-1 having that value.

3. If the type of the function is alphanumeric, the size of the returned
value is the same as the size of the selected argument-1.

F.27 MOD Function

The MOD function returns an integer value that is argument-1 modulo
argument-2. The type of this function is integer.

NUMVAL Function = F-25

Usage

FUNCTION MOD (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be integers.

2. The value of argument-2 must not be zero.

Returned Values

1. The returned value is argument-1 modulo argument-2. The returned

value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 /

argument-2))

2. The following illustrates the expected results for some values of
argument-1 and argument-2:

argument-1 argument-2 Return
11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

F.28 NUMVAL Function

The NUMVAL function returns the numeric value represented by the
character string specified by argument-1. Leading and trailing spaces are

ignored. The type of this function is numeric.

Usage

FUNCTION NUMVAL (argument-1)

F-26 m Intrinsic Functions

Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item
whose content has one of the following two formats:

[space] [+] [space] {digit [. [digit]]} [space]
[-1 {. digit }

or

[space] {digit [. [digit]]l} [space] [+] [space]

{. digit } -1

[CR]

[DB]
where space is a string of zero or more spaces, and digit is a string of one
to 18 digits.

2. The total number of digits in argument-1 must not exceed 18. If your
program has been compiled for 31-digit support (“-Dd31"),
argument-1 must not exceed 31.

3. If the DECIMAL-POINT IS COMMA clause is specified in the
SPECIAL-NAMES paragraph, a comma must be used in argument-1
rather than a decimal point.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18. If your program has been
compiled for 31-digit support (“-Dd31”), up to 31digits may be
returned.

F.29 NUMVAL-C Function

The NUMVAL-C function returns the numeric value represented by the
character string specified by argument-1. Any optional currency sign
specified by argument-2 and any optional commas preceding the decimal
point are ignored. The type of this function is numeric.

NUMVAL-C Function = F-27

Usage
FUNCTION NUMVAL-C (argument-1 [argument-2])

Parameters

1. Argument-1 must be a non-numeric literal or alphanumeric data item
whose content has one of the following formats:

[space] [+] [space] [cs] [space] {digit [, digit] ... [- [digit]]} [space]

[-] {. digit }
or
[space] [cs] [space] {digit [, digit] ... [- [digit]]} [space] [+ 1 [space]
{. digit } [-1
[CR]
o8]

where space is a string of zero or more spaces, cs is the string of one or
more characters specified by argument-2, and digit is a string of one or
more digits.

2. If the DECIMAL-POINT IS COMMA clause is specified in the
SPECIAL-NAMES paragraph, the functions of the comma and decimal
point in argument--1 are reversed.

3. The total number of digits in argument-1 must not exceed 18. If your
program has been compiled for 31-digit support (“-Dd31”),
argument-1 must not exceed 31.

4. Argument-2, if specified, must be a non-numeric value represented by
argument--1.

5. If argument-2 is not specified, the character used for cs is the currency
symbol specified for the program.

Returned Values

1. The returned value is the numeric value represented by argument-1.

2. The number of digits returned is 18. If your program has been
compiled for 31-digit support (“-Dd31”), up to 31digits may be
returned.

F-28 m Intrinsic Functions

F.30 ORD Function

The ORD function returns an integer value that is the ordinal position of
argument-1 in the collating sequence for the program. The lowest ordinal
position is “1”. The type of this function is integer.

Usage
FUNCTION ORD (argument-1)

Parameter

Argument-1 must be one character in length, and must be class alphabetic or
alphanumeric.

Returned Value

The returned value is the ordinal position of argument-1 in the collating
sequence for the program.

F.31 ORD-MAX Function

The ORD-MAX function returns a value that is the ordinal number of the
argument-1 that contains the maximum value. The type of this function is

integer.
Usage

FUNCTION ORD-MAX ({argument-1} ...)
Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1. The returned value is the ordinal number that corresponds to the position
of the argument-1 having the greatest value in the argument-1 series.

ORD-MIN Function m F-29

The comparisons used to determine the greatest valued argument are
made according to the rules for simple conditions.

If more than one argument-1 has the same greatest value, the number
returned corresponds to the position of the leftmost argument-1 having
that value.

F.32 ORD-MIN Function

The ORD-MIN function returns a value that is the ordinal number of the
argument that contains the minimum value. The type of this function is
integer.

Usage

FUNCTION ORD-MIN ({argument-1} ...)

Parameters

If more than one argument-1 is specified, all arguments must be of the same
class.

Returned Values

1.

The returned value is the ordinal number that corresponds to the position
of the argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least valued argument-1 are
made according to the rules for simple conditions.

If more than one argument-1 has the same least value, the number
returned corresponds to the position of the leftmost argument-1 having
that value.

F-30 m Intrinsic Functions

F.33 PRESENT-VALUE Function

The PRESENT-VALUE function returns a value that approximates the
present value of a series of future period-end amounts specified by
argument-2 at a discount rate specified by argument-1.

Usage
FUNCTION PRESENT-VALUE (argument-1 {argument-2} ...)

Parameters
1. Argument-1 and argument-2 must be of the class numeric.
2. The value of argument-1 must be greater than -1.

Returned Value

The returned value is an approximation of the summation of a series of
calculations with each term in the following form:

argument-2 / (1 + argument-1) ** n
There is one term for each occurrence of argument-2. The exponent, n, is

incremented increased from one by in increments of one for each term in the
series.

Example
COMPUTE RSULT = FUNCTION PRESENT-VALUE (DISCOUNT-RATE, 2000).

Note: In this example, DISCOUNT-RATE and RSULT are numeric data
items. I1f DISCOUNT-RATE has the value “0.08”, the value returned and
stored in RSULT is approximately “1851.85".

RANDOM Function = F-31

F.34 RANDOM Function

The RANDOM function returns a numeric value that is a pseudo-random
number (one of a sequence of numbers generated by an algorithm so as to
have an even distribution over a range of values and minimal correlation
between successive values) from a rectangular distribution. The type of this
function is numeric.

Usage
FUNCTION RANDOM [(argument-1)]

Parameters

1. Ifargument-1is specified, it must be zero or a positive integer. It is used
as the seed value to generate a sequence of pseudo-random numbers.

2. If a subsequent reference specifies argument-1, a new sequence of
pseudo-random numbers is started.

3. If the first reference to this function in the run unit does not specify
argument-1, a seed value will be provided by the runtime.

4. In each case, subsequent references without specifying argument-1
return the next number in the current sequence.

Returned Values

1. The returned value is greater than or equal to zero and less than one.

2. For a given seed value on a given implementation, the sequence of
pseudo-random numbers will always be the same.

Example
77 random_num pic s9(4)v99.

move function random() to random_num.

F-32 m Intrinsic Functions

F.35 RANGE Function

The RANGE function returns a value that is equal to the value of the
maximum argument minus the value of the minimum argument. The type of
this function depends on the argument types as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) Numeric

Usage
FUNCTION RANGE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.
Returned Value
The returned value is equal to the greatest value of argument-1 minus the

least value of argument-1. The comparisons used to determine the greatest
and least values are made according to the rules for simple conditions.

F.36 REM Function

The REM function returns a numeric value that is the remainder of
argument-1 divided by argument-2. The type of this function is numeric.

Usage
FUNCTION REM (argument-1 argument-2)

Parameters

1. Argument-1 and argument-2 must be class humeric.

2. The value of argument-2 must not be zero.

REVERSE Function m F-33

Returned Value

The returned value is the remainder of argument-1 / argument-2. It is
defined as the expression:

Argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1/
argument-2))

F.37 REVERSE Function

Usage

The REVERSE function returns a character string of exactly the same length
as argument-1 and whose characters are exactly the same as those of
argument-1, except that they are in reverse order. The type of this function
is alphanumeric.

FUNCTION REVERSE (argument-1)

Parameter

Argument-1 must be class alphabetic or alphanumeric, and must be at least
one character in length.

Returned Value

F.38 SIN

If argument-1 is a character string of length n, the returned value is a
character string of length n such that for 1< j < n, the character in position j
of the returned value is the character from position n-j+1 of argument-1.

Function

The SIN function returns a numeric value that approximates the sine of an
angle or arc, expressed in radians, that is specified by argument-1. The type
of this function is numeric.

F-34 m Intrinsic Functions

Usage
FUNCTION SIN (argument-1)

Parameter
Argument-1 must be class numeric.
Returned Value

The returned value is the approximation of the sine of argument-1 and is
greater than or equal to “-1” and less than or equal to “+1”.

F.39 SQRT Function

The SQRT function returns a numeric value that approximates the square
root of argument-1. The type of this function is numeric.

Usage
FUNCTION SQRT (argument-1)

Parameters

1. Argument-1 must be class numeric.

2. The value of argument-1 must be zero or positive.
Returned Value

The returned value is the absolute value of the approximation of the square
root of argument-1.

F.40 STANDARD-DEVIATION Function

The STANDARD-DEVIATION function returns a numeric value that
approximates the standard deviation of its arguments. The type of this
function is numeric.

SUM Function m F-35

Usage
FUNCTION STANDARD-DEVIATION ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the standard deviation of the
argument-1 series.

2. The returned value is calculated as follows:

a. The difference between each argument-1 value and the arithmetic
mean of the argument-1 series is calculated and squared.

b. The values obtained are then added together. This quantity is
divided by the number of values in the argument-1 series.

c. The square root of the quotient obtained is then calculated. The
returned value is the absolute value of the square root.

3. If the argument-1 series consists of only one value, or if the
argument-1 series consists of all variable occurrence data items and the
total number of occurrences for all of them is one, the returned value is
zZero.

F.A41 SUM Function

The SUM function returns a value that is the sum of the arguments. The type
of this function depends upon the argument type as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments may be integer) | Numeric

F-36 m Intrinsic Functions

Usage
FUNCTION SUM ({argument-1} ...)

Parameters
Argument-1 must be class numeric.
Returned Values

1. The returned value is the sum of the arguments.

2. If the argument-1 series are all integers, the value returned is an
integer.

3. If the argument-1 series are not all integers, a numeric value is
returned.

F.42 TAN Function

The TAN function returns a numeric value that approximates the tangent of

an angle or arc, expressed in radians, that is specified by argument-1. The
type of this function is numeric.

Usage
FUNCTION TAN (argument-1)

Parameter

Argument-1 must be class numeric.

Returned Value

The returned value is the approximation of the tangent of argument-1.

UPPER-CASE Function m F-37

F.43 UPPER-CASE Function

The UPPER-CASE function returns a character string that is the same length
as argument-1 with each lowercase letter replaced by the corresponding
uppercase letter. The type of this function is alphanumeric.

Usage
FUNCTION UPPER-CASE (argument-1)

Parameter

Argument-1 must be class numeric or alphanumeric and must be at least one
character in length.

Returned Values

1. The same character string as argument-1 is returned, except that each
lowercase letter is replaced by the corresponding uppercase letter.

2. The character string returned has the same length as argument-1.

3. This function only translates characters with a numeric value of 0-128.
Anything above that (such as é, with a value of 130) must be mapped
to its associated upper- or lower-case character using the configuration
variable UPPER-LOWER-MAP.

Note: This function is similar to the library routine CSTOUPPER
except that the original data is not modified, and the entire string is
converted.

4. The returned value can be reference modified. For example:
MOVE FUNCTION UPPER-CASE(FILE-NAME)(1:4) TO TMP-STRING.

F.44 VARIANCE Function

The VARIANCE function returns a numeric value that approximates the
variance of its arguments. The type of this function is numeric.

F-38 m Intrinsic Functions

Usage
FUNCTION VARIANCE ({argument-1} ...)

Parameters
Argument-1 must be class numeric.

Returned Values

1. The returned value is the approximation of the variance of the
argument-1 series.

2. The returned value is defined as the square of the standard deviation of
the argument-1 series.

3. If the argument-1 series consists of only one value, or if the
argument-1 series consists of all variable occurrence data items and the
total number of occurrences for all of them is one, the returned value is
zero.

F.45 WHEN-COMPILED Function

The WHEN-COMPILED function returns the date and time the program was
compiled as provided by the system on which the program was compiled.
The type of this function is alphanumeric.

Usage
FUNCTION WHEN-COMPILED

Returned Values

1. The character positions returned, numbered from left to right, are
described in the table below.

Character Positions | Contents

1-4 Four numeric digits of the year in the Gregorian
calendar.

WHEN-COMPILED Function m F-39

Character Positions | Contents

5-6 Two numeric digits of the month of the year, in the
range 01 through 12.

7-8 Two numeric digits of the day of the month, in the
range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in
the range of 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in
the range 00 through 59.

13-14 Two numeric digits of the seconds past the minute,
in the range 00 through 59.

15-16 Two numeric digits of the hundredths of a second

past a second, in the range 00 through 99. The
value 00 will be returned for all systems

17 The character ‘0°. This field is reserved for future
implementation.
18-19 The characters ‘00°. This field is reserved for

future implementation.

20-21 The characters ‘00°. This field is reserved for
future implementation.

The returned value is the date and time of compilation of the source
program that contains this function. If the program is a contained
program, the returned value is the compilation date and time associated
with the separately compiled program in which it is contained.

Note: The returned value must denote the same time as the
compilation date and time if provided in the listing of the source
program and in the generated object code for the source program,
although their representations and precisions may differ.

The returned value can be reference modified. For example:
MOVE FUNCTION WHEN-COMPILED (1:4) TO YEARDATE.

Reserved for Future Use

As a convenience to long-time ACUCOBOL-GT programmers and users, we
have retained this empty appendix so that Appendix H, “Runtime
Configuration Entries”, and Appendix I, “ACUCOBOL-GT Library
Routines” can continue to be located in their historic positions.

H Configuration Variables

Key Topics

g0 oTo [V Ty o] o ST
Configuration variables ...

H-2 m Configuration Variables

H.1 Introduction

Many aspects of the runtime system can be controlled through runtime
configuration variables. This mechanism provides a great deal of flexibility,
because these variables can be modified by each runcbl site as well as
directly by an ACUCOBOL-GT program.

H.1.1 Variable Syntax

Configuration variables are maintained in a runtime configuration file. This
standard text file can be modified by the host system’s text editor. Each entry
in the runtime configuration file consists of a single line. All entries start
with a keyword, followed by one or more spaces or tabs, and then one or
more values.

Some examples of runtime configuration variables are:

AUTO_PROMPT 0

BELL 1
COMPRESS_FACTOR 70
CURSOR_TYPE 3
MENU_ITEM Edit=Delete 200
SCROLL on

For all runtime configuration variables, “=" placed between the keyword and
the first value is optional, and is interchangeable with a space.

For some runtime configuration variables, the words “on”, “true”, and “yes”
are synonyms for “1”, and the words “off”, “false”, and “no” are synonyms
for “0”. The entry for each variable in this appendix indicates when these

synonyms are allowed.

runcbl uses the following rules to decide what the configuration file is
called:

1. Ifthe “-c” runtime option is used, the configuration file is the one named
by that option; otherwise,

2. If the operating system environment variable “A_CONFIG” is defined,
its value is the name of the configuration file; otherwise,

Introduction m H-3

3. The configuration file is named according to the host operating system.
This depends on the operating system used by the machine, as outlined
in the following table.

System Configuration File

Windows \etc\cblconfi

UNIX/Linux [etc/chlconfig

MPE/iX [etc/chblconfig

VMS SYSS$LIBRARY:A_CONFIG.DAT

Caution: Do not give a data file a name that is the same as a configuration
variable name. Doing so can cause problems if you map the data filename
through a configuration entry. For example, if you have a data file named
“CURRENCY™, the runtime may confuse the data file with the
configuration variable of the same name, inadvertently changing the default
currency character.

H.1.2 Variable Usage

The configuration file is optional, as are all of its contents. For this reason,
no errors in the configuration file are ever reported. The “-I” runcbl option
can help debug configuration file problems.

In the descriptions of some runtime configuration variables, you will find
comments about behavior under the Windows environment; unless otherwise
noted, these comments apply to all 32-bit versions of the Windows operating
system.

Runtime configuration variables may be placed in either the runtime
configuration file or the machine’s environment. When they are placed in the
runtime configuration file, upper- and lower-case names are equivalent, as
are hyphens and underscores. When placed in the machine’s environment,
the keywords must be all upper case and must use underscores instead of
hyphens. For more details about the configuration process, see the
ACUCOBOL-GT User’s Guide, section 2.8, “Runtime Configuration.”

H-4 m Configuration Variables

All configuration variables that have a default value are used by and affect
the runtime in the same way that they would if they were in the configuration
file. That isto say, a configuration variable that has a default value is treated
as if it appears in the configuration file set to the default value.

The values of many runtime configuration variables may be changed at
runtime with the SET ENVIRONMENT verb. The syntax is:

SET ENVIRONMENT env-name TO env-value

Env-name may specify either the literal name of the variable or a data-item
whose value is the name of the variable. If you specify the actual name of the
variable, such as CODE_CASE, then you must enclose the name in quotes.
Env-value is the value to which env-name will be set. If it is a numeric data
item, then it is treated as if it were redefined as an alphanumeric data item.

Most configuration variables can be read with the ACCEPT FROM
ENVIRONMENT statement. If the variable to be read is numeric, then the
receiving field must be defined either as a numeric field or as an
alphanumeric field of five or more characters. If it is defined as
alphanumeric and is longer than five characters, then the value that is read
from the environment will occupy the leftmost five characters of the field and
the remainder will be space-filled.

H.1.3 Nested configuration files

Itis possible to use multiple configuration files by nesting one inside another.
Within the configuration file, you can specify another file to process with the
following syntax:

ICOPY filename

No name expansion is done to filename (for example FILE_PREFIX is not
applied) so you must specify a file that the runtime can find. You can include
remote name syntax if you are using AcuServer® or AcuConnect®.
Otherwise, the file must be an absolute path or a path relative to the current
directory.

Configuration variables m H-5

For example, if you have some configuration variables in a global place such
as “/etc/cblconfi”, then individual users can execute the runtime using this
configuration file instead of the usual one. The settings in the usual
configuration file take effect also, because their settings are copied in with
ICOPY:

#Get all the standard variables
Icopy /etc/cblconfi

#Now set personal settings
COMPRESS_FILES 1

H.2 Configuration variables

This section contains an alphabetical list of the runtime configuration file
variables. Many of these variables are also described in other parts of the
documentation set.

3D_LINES

This variable has meaning only on graphical systems such as Windows. Set
this variable to “1” (on, true, yes) to cause the runtime to display lines and
boxes with 3-D shading. This makes the lines appear to be inscribed into the
surface of the screen. The variable is especially helpful in giving a 3-D look
to a program originally designed on a character system. Only black lines on
a non-black background are shown with shading. Other lines are displayed
normally.

The set of colors available to ACUCOBOL-GT significantly impacts how
effective the shading will be. Normally, the shading is most effective when
the background is low-intensity white. The other low-intensity colors are
next best.

The shading is only marginally effective with a high-intensity background.
For this reason, the 3D_LINES setting is not used when a high-intensity
background is drawn. Note that, by default, ACUCOBOL-GT shows
background colors in high-intensity, so you will need to use at least one other

H-6 m Configuration Variables

configuration variable to arrange for a low-intensity background color. For
example, the BACKGROUND_INTENSITYvariable could be set to “1” to
force a low-intensity background.

You may freely change the way lines are displayed in COBOL by using the
SET ENVIRONMENT verb to set 3D-LINES prior to displaying a line or a
box.

e Setting it to “1” (on, true, yes) gives you the 3-D effect.

e Setting it to “0” (off, false, no) gives you normal lines.

The runtime remembers which lines are drawn with 3-D, so you don’t need
to keep track of this yourself. Note, however, that if you attach a 3-D line to
a non-3-D line, the intersection will use the 3D-LINES setting currently in
effect.

The default value is “0”.

4GL_COLUMN_CASE

When set to “unchanged”, this variable causes the runtime to leave the case
and hyphen usage of the field names found in XFDs unchanged. XFDs are
used with the Acu4GL interface, AcuXDBC, or AcuXML. They are also
required for international character mapping with AcuServer and they pro-
vide useful information to the alfred record editor. By default, the runtime
converts all field names to lower case and all hyphens to underscores.

For AcuXML, the case and hyphen usage of the XFD must match the XML
file exactly, and 4GL_COLUMN_CASE should be set to “unchanged”. For
Acu4GL, however, you should be aware that most databases do not accept
hyphens in column names. If you set this variable to “unchanged” to protect
case, you may need to modify the XFD by hand to replace hyphens with
underscores.

Configuration variables m H-7

7_BIT

When this configuration variable is set to “1” (on, true, yes),
ACUCOBOL-GT supports 7-bit communications instead of 8-bit. This
variable is designed specifically for machines that use 7-bit communications
with parity enabled. When 7_BIT is set to the default of “0” (off, false, no),
8-bit communications are used.

A_CHECKDIV

This variable allows you to specify an alternate runtime response to a divide
by zero condition when the statement does not include a SIZE ERROR
clause.

In COBOL, a division by zero produces a size error condition. The SIZE
ERROR clause allows the programmer to specify actions to take when this
condition occurs. If there is no SIZE ERROR clause, by default in
ACUCOBOL-GT the results are undefined. You can use the A_ CHECKDIV
configuration variable to specify alternate handling.

A _CHECKDIV can be set to:

NONE “0” The default setting. This setting retains the
or: default behavior of the runtime: the results
are undefined.

ABEND or: “17, This setting causes the runtime to catch the
STOP, divide by zero condition and exit with the
ABORT error message: “Attempt to divide by zero”.

MOVE_ZERO or: “27, This setting causes the runtime to move
ZERO_RESULT zeroes to the destination item(s) and
, MOVE_ZEROS continue.

H-8 m Configuration Variables

A_DEBUG

This variable is available for applications such as online transaction servers
that call ACUCOBOL-GT through the C API (see Chapter 6 of A Guide to
Interoperating with ACUCOBOL-GT). The default value is “0”. With the
default setting, the debugger launches when the debug_method flag in the C
interface is set to “1”.

Set this variable to “1” to turn on the ACUCOBOL-GT debugger in an xterm
window the first time you call the C interface. The debugger shuts down
when the program that caused it to launch shuts down.

A_DISPLAY

This variable is available for applications such as online transaction servers
that call COBOL through the C API. The value of A_DISPLAY overrides
the value of the DISPLAY environment variable. Set A_DISPLAY to the
value of your X server host name or IP address in the runtime configuration
file (or /etc/cblconfig). For example:

A_DISPLAY myvpn123._myhostname.com:0

A_EXTFH_FUNC

The value of this variable is an EXTFH function name needed for the EXTFH
interface. If you are using a library that contains an EXTFH function name
other than “cics_xfh”, “cobol_extfh”, or “EXTFH”, you also need to set one
or more of these variables to specify the function name:

A_EXTFH_FUNC Specifies a function to be used by all file types
(indexed, relative, and sequential).

A EXTFH_IDX_FUNC Specifies a function name to be used by indexed
file types.

A EXTFH_REL_FUNC Specifies a function name to be used by relative
file types.

A EXTFH_SEQ FUNC Specifies a function name to be used by
sequential file types.

Configuration variables m H-9

For example, to specify a function name to use for all file types:
A_EXTFH_FUNC=myExtfh

Or, to specify a different function for indexed, relative, and sequential files:
A_EXTFH_IDX_FUNC=my IdxExtfh

A_EXTFH_SEQ_FUNC=mySeqExtfh
A_EXTFH_REL_FUNC=myRelExtfh

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overrides the DLL_CONVENTION variable setting. For information about
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

A_EXTFH_LIB

The value of this variable is an EXTFH shared library or DLL file name. You
can use this variable to dynamically load an EXTFH library without relinking
the ACUCOBOL-GT runtime. For example:

A_EXTFH_LIB libraryname.so

You can also use the following variables to specify library names for
indexed, relative, and sequential files. The ACUCOBOL-GT runtime uses
A _EXTFH_LIB as the default EXTFH library for all three file types. If one
or more of these three variables is also set, the runtime uses its value instead
of A_EXTFH_LIB for the corresponding file type.

A_EXTFH_IDX_LIB Specifies the EXTFH library to use for indexed
files.
A _EXTFH_REL_LIB Specifies the EXTFH library to use for relative files.

A EXTFH_SEQ LIB Specifies the EXTFH library to use for sequential
files.

You can specify these variables in the runtime configuration file or as
operating system environment variables.

H-10 m Configuration Variables

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overrides the DLL_CONVENTION variable setting. For information about
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

See section 11.6, “Working With an EXTFH Interface,” in A Guide to
Interoperating with ACUCOBOL-GT, for information on specifying
EXTFH library and function names to use with the EXTFH interface.

A_EXTFH_SIMPLE_OPEN_OUTPUT

This variable is only used in UniKix environments, and the UniKix
application automatically sets this variable to “1” (TRUE). When set to “1”
(TRUE), an OPEN OUTPUT statement will cause the EXTFH functions to
bypass the “make” process, and will open the file as OUTPUT. When set to
“0” (FALSE), or not set at all, the EXTFH functions will execute the “make”
process, and will open the file as EXTEND.

A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQ

These variables indicate whether the filesystem you are accessing with the
the EXTFH interface can or cannot handle variable length files. Setting this
variable to the default of “1” (on, true, yes) causes the EXTFH interface to
pass the minimum and maximum record lengths to the file system for
variable length files as defined in the COBOL program. Setting this variable
to “0” (off, false, no) causes the EXTFH interface to ignore the variable
record length defined in the COBOL program and instead pass a record
length equal to the maximum record length.

You can specify the variable separately for indexed, relative, and sequential
files. For example:

A_EXTFH_VARIABLE_IDX=0

A_EXTFH_VARIABLE_REL=0
A_EXTFH_VARIABLE_SEQ=1

Configuration variables m H-11

When the file system does not process variable length files, set these
configuration variables to “0” and the EXTFH interface treats variable length
records as fixed lengths.

If the file system does process variable length files, set the configuration
variables to “1” (or do not set them at all).

A_JAVA_CHARSET

This variable specifies the character set that the runtime should use when
mapping Java strings or PIC X data items containing characters outside of the
ISO-8859-1 range. The default setting is "1S0-8859-1". If you have data
outside the 1S0-8859-1 range (for example, an umlaut or Euro symbol),
specify a different character set that contains those characters.

Be aware of a common misconception that ISO-8859-1 is equivalent to
Windows-1252. This is mostly true, but there are characters in the range
0x80 — 0x9F that differ. Windows-1252 uses these numbers for letters and
punctuation, while the 1SO-8859-1 uses these for control codes.

A_JAVA_GC_COUNT

A _JAVA GC_COUNT is a 32-bit value that determines how often the
runtime calls the JVM garbage collector. The JVM garbage collector will run
at unknown times, in order to deallocate memory which is no longer being
used. Setting this to a non-zero value allows you to be a little more
intentional about running the garbage collector. The value is the number of
times C$JAVA is called before the runtime calls the JVM garbage collector.
The default value is 9883, so every 9883 calls to C3JAVA will explicitly call
the JVM garbage collector. (For more info on the JVM garbage collector, see
your JVM documentation.)

H-12 m Configuration Variables

A_JAVA_TRACE_FILENAME

A JAVA_TRACE_FILENAME is the name of the file where the trace
information is sent. This filename can include all of the format specifiers that
the runtime error file can include. If this file can’t be opened for writing (for
any reason), no trace information is collected.

A_JAVA_TRACE_VALUE

To track calls to the JVM made on behalf of the COBOL program, you can
set one of the following three configuration variables:
A_JAVA_TRACE_VALUE, A_JAVA_TRACE_FILENAME, and
A_JAVA_GC_COUNT.

A _JAVA_TRACE_VALUE is a 32-bit value that determines the types of
calls to trace. Add any of the following values together to create a single
value to set.

1 - Show calls that return simple types (boolean, byte, character, short,
integer, long, float, double).

2 - Show method calls that return simple types.

4 - Show string calls that return string references (that must be released).

8 - Show string calls that return simple types.

16 - Show calls that return references to a Java object (that must be released).

32 - Show method calls that return references to a Java object (that must be
released).

64 - Show calls that return references to a Java array or array elements (that
must be released).

128 - Show calls that return other array information.

256 - Show calls to the exception routines (some of which must be released).

Configuration variables m H-13

512 - Show calls to get IDs (Method Identifiers or Field Identifiers).

1024 - Show calls to field functions that return references to a Java object
(that must be released).

2048 - Show calls to field functions that return simple types.

4096 - Show other types of calls that return references to a Java object (that
must be released).

8192 - Show calls to release a reference to a Java object.
16384 - Show other calls to the Java runtime.

Note for there to be no memory leaks, any call that returns a reference to a
Java object (that must be released) needs to be paired with a call to release
that reference. If the COBOL program gets that reference, it is responsible
for releasing the reference. If the runtime gets the reference for internal
purposes, the runtime is responsible for releasing the reference.

For example, setting A_JAVA_TRACE_VALUE to 13684 shows all calls to
the JVM that obtain or release a reference to a Java object. Setting

A JAVA_TRACE_VALUE to -1 is equivalent to setting it to 32767 (which
is the sum of all the above values), and has the added benefit of tracing new
options that may be added in the future. However, for finding memory leaks,
this may be too much information.

A_LICENSE_RETRIES

This variable affects UNIX networks with multiple-user licenses for the
runtime. When set to a positive, non-zero value, this entry causes the runtime
to retry (“value” times) any failed attempt to register with the network license
manager, acushare. The configuration variable A_ RETRY_DELAY
specifies how many seconds the runtime will wait between retries.

The default value is “0” (no retries).

H-14 m Configuration Variables

A_OPERATING_SYSTEM

As of Version 5.0, the runtime no longer differentiates between “UNIX-V”
and “UNIX-4" in the OPERATING-SYSTEM field of the
SYSTEM-INFORMATION data item. Instead, the value “UNIX” is used for
all UNIX platforms. If you have an existing program that depends on one of
the older values, set A_ OPERATING_SYSTEM to a value of “UNIX-V” or
“UNIX-4". Then, when an ACCEPT FROM SYSTEM-INFO statement is
executed, this value overrides the value returned by the function. The default
value is empty.

A_REMOVE_EMPTY_ERROR _FILE

Use this variable to prevent the accumulation of 0 byte files when using
format specifiers such as “%p” (to include the process id) in the error file
name. When this variable is set to “1” (on, true, yes), the runtime deletes its
error file if the runtime has never written to that file. Note that on some
operating systems, if your error file is shared by multiple processes (i.e., the
file name does not include the process id or some other unique session
information), setting A_ REMOVE_EMPTY_ERROR_FILE to “1” may
cause error messages to be lost. For example, on UNIX if the error file is
empty when one runtime exits, that runtime would delete the file. The file
will remain deleted even if another runtime process subsequently writes a
message to it. The default value for this variable is “0” (off, false, no).

A_RETRY_DELAY

This variable affects UNIX networks with multiple-user licenses. If

A LICENSE_RETRIES is set to a positive integer value, then the value of
A_RETRY_DELAY determines how many seconds the runtime will wait
between repeated attempts to register itself with the network license
manager, acushare.

The default value is “10”.

Configuration variables m H-15

A_SEQ_DEFAULT_BLOCK_SIZE

This configuration variable determines the size of the buffer to use when
accessing a sequential file whose definition has no BLOCK CONTAINS
clause. When set, A_ SEQ DEFAULT_BLOCK_SIZE specifies the size of
the buffer in characters, rounded up to the nearest power of 2 that is greater
than or equal to that value. The default value is “0”, which sets the block size
to one record. Note that this variable does not apply to print files or to files
with names that start with a hyphen followed by “D” or “P”.

Youcanset A_ SEQ DEFAULT BLOCK_SIZE in the environment to allow
the “vutil -load” command to buffer the input file according to the variable’s
value. The maximum buffer size is 1 GB. If this variable is not set, the
default buffer block size is 4096 bytes. If it is set to “0”, “vutil -load”
performs record-based 1/0 on a sequential file.

A_SYSLOG_HOSTNAME

This variable applies only on Windows and works in conjunction with the
A_SYSLOG_ON_RUNTIME_ERROR configuration variable. Set

A _SYS HOSTNAME to the server name or IP address on which the event
log is located. Do not include any slashes with the server name. The default
value for this variable is empty. Then set

A _SYSLOG_ON_RUNTIME_ERROR to “1” (on, true, yes). Shutdown
messages will be sent to the event log on the local machine.

A_SYSLOG_ON_RUNTIME_ERROR

When this variable is set to “1” (on, true, yes), on a fatal error, the runtime
will send its shutdown error message to the UNIX syslog daemon, console,
or Windows event log. The runtime uses the same logic as the C$SYSLOG
routine. (See C$SYSLOG in Appendix | for more information). The error
message also includes the name of the runtime error file so that the
administrator can view it for more information. The default value for this
variable is “0” (off, false, no).

H-16 m Configuration Variables

ACCEPT_AUTO

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option). The ACCEPT_AUTO
configuration variable causes the runtime to treat all Format 1 ACCEPT
statements as if the AUTO phrase is used, whether or not AUTO appears in
the statement. Set this variable to “1” (on, true, yes) to enable this behavior.
The default value is “0” (off, false, no).

ACCEPT_TIMEOUT

This variable causes all ACCEPT statements to time out just as if there was a
BEFORE TIME phrase present in the ACCEPT statement. The value
assigned to ACCEPT_TIMEOUT is the timeout period, in seconds. This
timeout value is applied to every ACCEPT statement that can have a
BEFORE TIME phrase specified for it. If a particular ACCEPT statement
has a BEFORE TIME phrase explicitly coded for it, that phrase takes
precedence and ACCEPT_TIMEOUT does not apply to that statement. The
default value of ACCEPT_TIMEOUT is “0”, which indicates no timeout
value.

ACTIVE_BORDER_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of the characters used to form the border (box) around the active
floating window. ACTIVE_BORDER_COLOR can be set to a variety of
numeric values that express combinations of color and video attributes. See
the documentation for the COLOR phrase in the “Common Screen Options”
section of the ACUCOBOL-GT Reference Manual (Section 6.4.9).

If ACTIVE_BORDER_COLOR is set to “0”, the active window’s border is
drawn with the colors and video attributes specified in the COBOL program
when the window is initially created. The default value is “0”.

Configuration variables m H-17

ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT

These configuration variables are used to enable and configure the Abend
Diagnostic Report (ADR) facility. For a complete description of the ADR,
see Section 3.1.9, in Book 1, ACUCOBOL-GT User’s Guide.

ACU_DUMP

This variable enables the Abend Diagnostic Report. The default value is “0”
(off, false, no). Set ACU_DUMP to “1” (on, true, yes) to turn on the ADR.

ACU_DUMP_FILE

This variable specifies the name of the report file. It allows the following
special parameters:

» If the file name starts with a plus sign (“+), the report is appended to the
specified file. By default, a new report overwrites the specified file.

 If the name contains the string “%p”, when the report is generated that
string is replaced with the process ID (PID) of the runtime from which
the report originates.

» If the name contains the string “%d”, that string is replaced with the
current date in the form YYYYMMDD where YYYY is the year, MM
month and DD day.

» If the name contains the string “%t”, that string is replaced with the
current time in the form HHMMSSTTT where HH is the hour, MM
minute, SS second and TTT milliseconds.

 If the name contains the string “%u”, that string is replaced with the
username.

 If the name contains the string “%h”, that string is replaced with the
hostname.

The default value for ACU_DUMP_FILE is “acudump.%p”.

H-18 m Configuration Variables

ACU_DUMP_WIDTH

This variable controls the width of the report and has a default value of 80
characters. The minimum allowed value is 79 and the maximum is 2048.
Note that because the report uses dynamically computed columns for its
hexadecimal data, making the report very wide can reduce readability by
introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This variable limits how many elements of each table item to list. The default
value is 1000. Note that if you increase this value substantially, and if you
have tables that allow for large numbers of elements, you may get very large
reports.

In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:

01 MY-TABLE-R = (group)

05 TABLE-ENTRY (1) = 1 h20202020 31
05 TABLE-ENTRY(2) = 2 h20202020 32
05 TABLE-ENTRY(3) = 3 h20202020 33
05 TABLE-ENTRY(4) = 4 h20202020 34
05 TABLE-ENTRY(5) = 5 h20202020 35

Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

ACU_USER_DIR

The ACU_USER_DIR configuration variable specifies the default location
of a user debugger settings file. In the past, the ACUCOBOL variable has
been used for this purpose. When set, ACU_USER_DIR specifies the
directory for the user’s debugger settings (“.adb”) file. The default value is
“NULL", which causes the runtime to use the ACUCOBOL variable.

Configuration variables m H-19

ACUCOBOL

This variable holds the full path to the ACUCOBOL-GT installation
directory. For example, if the runtime is installed in “C:\Program
Files\Acucorp\AcucbI8xx\AcuGT\bin”, you would set this configuration
variable to:

ACUCOBOL C:\Program Files\Acucorp\AcucblI8xx\AcuGT

This variable is used to locate extensions to the runtime.

AGS_MAX_SEND_SIZE

This variable allows you to control the size of a basic socket packet
exchanged between extend applications that use sockets to communicate.
The default value is 16000. In the vast majority of cases, the default value
provides excellent results. However, when performance problems are traced
to packet size, you can change the size with AGS_ MAX_SEND_SIZE. The
value of this variable is checked every time that data is sent to the socket.
When a program changes the value, the new value is applied the next time
that data is sent to the socket.

AGS_RECEIVE_BUFFER_SIZE

This variable determines the size of the low-level receive buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The receive-buffer-size is passed directly to a call
to setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

H-20 m Configuration Variables

AGS_SEND_BUFFER_SIZE

This variable determines the size of the low-level send buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The send-buffer-size is passed directly to a call to
setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

AGS_SOCKET_COMPRESS

This variable determines the type of data compression performed at the
internal socket layer. AGS_SOCKET_COMPRESS must be set before any
socket communication is done, and cannot be changed via SET
ENVIRONMENT. This variable has three possible values:

NONE This is the default setting. When
AGS_SOCKET_COMPRESS is set to
this value, no compression is performed.

ZLIB When AGS_SOCKET_COMPRESS is
set to this value, socket data is
compressed using the same algorithm as
the gzip compression utility.

RUNLENGTH When AGS_SOCKET_COMPRESS is
set to this value, simple compression is
done, based on counting repeated bytes
of data.

RUNLENGTH compression tends to be very fast, while ZLIB compression
tends to compress the data more, but is slower as a result.

Configuration variables m H-21

Windows supports ZLIB compression, but not all UNIX machines do. For
those machines that do not, RUNLENGTH compression will be used
whether this variable is set to ZLIB or RUNLENGTH. When the
compression algorithm is being negotiated with a server, the method that both
machines support will be used.

AGS_SOCKET_ENCRYPT

To turn on encryption at the internal socket-layer, set the configuration
variable AGS_SOCKET_ENCRYPT to “1” (on, true, yes). It must be set
before any socket communication is performed, and cannot be changed via a
SET ENVIRONMENT statement.

Note: If the variables AS_ CLIENT_ENCRYPT and/or
THIN_CLIENT_ENCRYPT are set to “1”, AGS_SOCKET_ENCRYPT is
also set to “1” automatically.

AGS_TCP_NODELAY

This variable determines whether the Nagle algorithm is used when sending
socket buffer messages. This algorithm automatically delays sending small
socket packets for a short period of time in order to increase network
efficiency by sending them in a batch. Setting this variable to the default of
“1” (on, true, yes) causes socket packets to be sent immediately (not using the
algorithm), while setting this variable to “0” (off, false, no) causes socket
packets to be delayed (using the algorithm). The TCP-NODELAY socket
option is used as follows:

setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &tcp_nodelay, sizeof(int));

The value of this variable is sent to a lower-level socket layer not controlled
by ACUCOBOL-GT. It may not have any noticeable effect.

H-22 m Configuration Variables

alfred Configuration variables

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a
sample program and is located in the “sample” folder under “AcuGT”. You
can download detailed information on using and configuring alfred in PDF
format from the Support > Examples & Utilities >Acucorp Samples >
Acucorp Technical Articles and Tips section of the Micro Focus website
(www.microfocus.com).

ALLOW_FS_OVERRIDE

This variable enables you to determine if the actual EXTFH return status will
be returned, or if the return status should be translated by the runtime. The
default setting is “True” or “1” and will cause the actual EXTFH return status
to be returned to the user. Setting this variable to “False” or “0” will cause
the EXTFH return status to be translated by the runtime

ANSI_OUTPUT_IN_DEBUG

This variable prevents a COBOL program that uses ANSI-style DISPLAY
statements from interfering with the runtime debugger window. This
variable accepts two possible values: “CANVAS” or “TERMINAL”.

When set to “CANVAS” (the default setting) the runtime constructs a default
canvas on which to place the ANSI output. This prevents the ANSI output
from interfering with the debugger window. Note that if your COBOL
program sends escape sequences to the terminal, this mode will cause those
escape sequences to not have the intended result.

When set to “TERMINAL”, the runtime will send ANSI output to the
terminal, possibly interfering with the view of the debugger window. This is
how the runtime behaved before the implementation of this new feature.

Note that this configuration variable must be set before the runtime initializes
the terminal manager, which means you cannot set this variable from a
COBOL program.

Configuration variables m H-23

APPLY_CODE_PATH

When set to “1” (on, true, yes), this variable causes the CODE_PREFIX
variable to be applied to object files with full path names (those beginning
witha “/” (forward slash). Otherwise, CODE_PREFIX is not applied to files
with full path names. For example, if your application specifies the file:

/accounting/objects/payroll

and your CODE_PREFIX variable is set to:
CODE_PREFIX /master_obj

and APPLY_CODE_PATH is set to “on”, the runtime will look for your file
in:

/master_obj/accounting/objects/payroll

The default value of APPLY_CODE_PATH is “0” (off, false, no).

APPLY_FILE_PATH

When set to “1” (on, true, yes), this variable causes the FILE_PREFIX
variable to be applied to data files with full path names (those beginning with
“/”, forward slash). Otherwise, FILE_PREFIX is not applied to files with full
path names. For example, if your application specifies the file:

/accounting/data/ind.dat

and your FILE_PREFIX variable is set to:
FILE_PREFIX /master_data

and APPLY_FILE_PATH is set to “on”, the runtime will look for your file
in:

/master_data/accounting/data/ind.dat

The default value of APPLY_FILE_PATH is “0” (off, false, no).

H-24 m Configuration Variables

AUTO_DECIMAL

When set to “1” (on, true, yes), this variable checks the data item descriptions
of numeric entry fields with a decimal point for the number of digits that must
be filled to the right of the decimal point. When all the digits after the decimal
point are entered, the field will terminate if the AUTO_TERMINATE phrase
is specified. The number of digits to the right of the decimal point can vary,
depending on how many are indicated in the picture of each numeric entry
field. You must specify AUTO_TERMINATE phrase for this feature to
work.

The exception to this is when an entry field has an AUTO_DECIMAL
property specified, in which case, the coded value will be used.

The default value of this variable is “0” (off, false, no).

AUTO_PROMPT

When set to “1” (on, true, yes), this variable causes all ACCEPT statements
without a PROMPT clause to be treated as if they had a PROMPT SPACES
clause. This causes the screen to be erased at the field position prior to the
data’s being entered. This variable is provided for compatibility with
ACUCOBOL-85 Version 1.3 and earlier, which behaved this way. The
default setting is “0” (off, false, no).

AXML_CREATE_SCHEMA

This variable is designed for use with AcuXML for instances when you want
to include a schema or schema name with your XML output. In order for this
variable to have an effect, AXML_CREATE_STYLE must be set to
“schema” and AXML_SCHEMA_NAME must name the schema file.
Once these conditions are met, this variable tells AcuXML whether to create
a schema file with XML output, or simply include the name of a schema file
in the output.

By default, when AXML_CREATE_STYLE is set to schema, AcuXML
creates a schema file for all XML output. Because only one schema is
typically required, you should set AXML_CREATE_SCHEMA to “FALSE”

Configuration variables m H-25

after the first time a schema is created. Then, only the name of the schema
file will be included in the output XML file. Similarly, if you already have a
schema file and don’t want AcuXML to overwrite it, set this variable to
“FALSE.”

AXML_CREATE_STYLE

This variable is designed for use with AcuXML. Use it to define the type of
XML output that ACUCOBOL-GT should generate when it creates XML
files. It can be setto “DTD”, “SCHEMA” or “NONE”. Set this variable to
“NONE?” if you want the resulting XML file to be raw XML. Setitto “DTD”
if you want the output to include a Document Type Definition of the elements
in the document. Often, the party with whom you trade data may require that
your XML document include a DTD.

Set this variable to “SCHEMA” if you want ACUCOBOL-GT to create a
schema to describe the XML documents that it writes. Schemas provide the
highest level of detail about the contents of the associated XML document,
and are typically required for development purposes. If you set this variable
to “SCHEMA”, you must use the AXML_SCHEMA_NAME variable to
name the schema file.

Please note that creating a schema for a file that was run through the xml2fd
utility with a schema won’t result in an identical schema. In addition, note
that setting this variable to “schema” causes a schema to be created for every
XML output file by default. Once the first schema is created, you should set
AXML_CREATE_SCHEMA to “FALSE” to prevent schemas from being
created on subsequent XML outputs.

AXML_ENCODING

This variable is designed for use with AcuXML. Use it when you want to
specify a character encoding method for the XML files that
ACUCOBOL-GT creates. By default, the XML output generated by
ACUCOBOL-GT is mapped to the UTF-8 encoding system (compatible with
the US-ASCII character set). If you want to use a different encoding system,

H-26 m Configuration Variables

for instance a European encoding system that includes the British pound
character (£), change this variable to reflect the new system name. For
example:

AXML_ENCODING 1s08859-1

This variable causes encoding information to be added to the header of XML
files created by ACUCOBOL-GT. With the configuration file entry shown
above, the following header would be included:

<?xml version="1.0" encoding=""1s08859-1"7?>

This header causes the 1ISO-8859-1 Latin encoding system to be applied to
the data file as desired.

AcuXML supports the following encoding systems:

UTF-8, default [8-bit Unicode Transformation Format, backwards
compatible with US-ASCII]

US-ASCII

e UTF-16 [16-bit Unicode Transformation Format]

1ISO-8859-1 [Latin 1, European encoding]

AXML_EXACT_TABLE_MATCH

This variable affects the behavior of AcuXML. By default, all tables in an
FD must match data in the XML file with respect to the values of the indices.
Therefore, AXML_EXACT_TABLE_MATCH is setto “1” (on, true, yes) by
default. To disable this requirement, set
AXML_EXACT_TABLE_MATCH to “0” (off, false, no).

AXML_IGNORE_EMPTY_DATA

Set this variable to “TRUE” to omit empty and zero-filled data from
AcuXML’s output file. In this case, AcuXML will not write tags for
alphabetic data items that are all blank or numeric data items that are “0”.
When you set this variable from your COBOL program, it affects any records

Configuration variables m H-27

written via AcuXML from that point on. Note that setting this variable to
“TRUE” could cause AcuXML to generate parts of an XML file that are not
consistent with any DTD or schema associated with the file. As a result, use
this variable with care.

The default value of “FALSE” causes AcuXML to generate tags for all data
items in the file. If your records are mostly empty, this may be overkill.

AXML_SCHEMA_DOC

This variable is designed for use with AcuXML. Use it when you want to add
a documentation element to the schema that ACUCOBOL-GT creates when
it writes an XML file (such as whenever a sequential file is OPEN
OUTPUT).

If you do not require specific documentation in the schema file, or if you did
not request that schemas be created for XML output, you can omit this
variable.

If this variable is set, its value is included in the documentation element of the
resulting schema. For example, if you set this variable as follows:

AXML_SCHEMA_DOC This is the documentation to be
included in the file...

The schema will include the following data:

<xs:annotation>
<xs:documentation>
This is the documentation to be included in the file.
Created by AcuXML version 6.0.0 on 2002/05/16
</xs:documentation>
</xs:annotation>

Note: For information on working with XML data, see section 11.2 in A
Guide to Interoperating with ACUCOBOL-GT.

H-28 m Configuration Variables

AXML_SCHEMA_NAME

This variable is designed for use with AcuXML. Use it to define the name of
the schema file that ACUCOBOL-GT writes, if any, when it creates an XML
file. If this variable is not set, or if it is set to a file name that cannot be
created (for whatever reason), a schema is not created.

Note: To tell ACUCOBOL-GT to create a schema, use the
AXML_CREATE_STYLE and AXML_CREATE_SCHEMA variables.

AXML_SCHEMA_NAMESPACE_DATA

This variable is designed for use with AcuXML for instances when you want
to include a schema or schema name with your XML output and you want
precise control over the schema namespace string shown in the output. The
default value of this variable is:

xmIns:xs=\"http://ww._w3.0rg/2001/XMLSchema-instance\"
xs :noNamespaceSchemalLocation=\""%s\"

By default, when ACUCOBOL-GT writes XML output (and a schema has
been requested), it substitutes the “%s” in this variable with the name of the
schema file specified with the AXML_SCHEMA_NAME configuration
variable. For instance, if AXML_SCHEMA_NAME is set to “myschema”,
ACUCOBOL-GT will include the following line in the XML output:

xmIns:xs=\"http://ww._w3.0rg/2001/XMLSchema-instance\"
Xs:noNamespaceSchemalLocation=\""myschema.xsd\"

If you need something different than “myschema.xsd” written in the
namespace output, add this variable to your configuration file and alter the
namespace value in the quotes to meet your requirements.

Note: If you want to include a single “%” character in the namespace, add
a second percent sign “%%"” to the definition of this variable.

In general, the value of this variable is used in the standard C library printf()
function as the first argument, and all printf() rules apply.

Configuration variables m H-29

AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE

These variables are designed for use with AcuXML. Use them when you
want to associate an XML style sheet with the XML documents that
ACUCOBOL-GT creates. When you set these variables to a non-blank
value, ACUCOBOL-GT includes an XML-stylesheet comment in the
beginning of the resulting XML files. For instance, the following entry:

AXML_STYLESHEET_TYPE text/css

causes the following comment to be added to the beginning of the XML file:

<?xml-stylesheet type="text/css'?>

If you set both of these variables, as in the following example,

AXML_STYLESHEET_TYPE text/css
AXML_STYLESHEET_HREF mystyle.css

then a comment like the following is added to the file:

<?xml-stylesheet type="text/css" href="mystyle.css"?>

If you do not require specific stylesheet data in the XML file, you can omit
these variables.

BACKGROUND_INTENSITY

This variable is used to choose a background intensity. Use one of these

values:
0 The runtime uses the default intensity, which is based on your
hardware and operating environment. Under Windows, the default
background intensity is high-intensity. The default value is “0”.
1 The runtime uses low-intensity.

2 The runtime uses high-intensity.

H-30 m Configuration Variables

There are two important exceptions:

< The runtime always assigns low-intensity to the background if the
background color is black. Using high-intensity would cause the
background to be dark gray, which tends to make the screen look muddy.

* Many devices do not support a background intensity independent from
the foreground intensity (most terminals, for example). When that is the
case, the runtime declares the background intensity to be low-intensity.

BELL

When set to “0” (off, false, no), this variable will inhibit all bells generated
by ACCEPT and DISPLAY statements. Note that this will override explicit
WITH BELL clauses as well as implicit bells. The default setting is “1” (on,
true, yes).

BOXED_FLOATING_WINDOWS

When this variable is set to “1” (on, true, yes) all floating windows displayed
on character-based hosts are drawn with a border (box). If this variable is set
to “0” (off, false, no), floating windows are drawn with a border only when
the BOXED phrase appears in the statement that creates the window. The
default value for this variable is “0” (off, false, no). This variable has an
affect only on character-based host systems.

BTRV_MASS_UPDATE

When this variable is set to “1” (on, true, yes), a Btrieve file is opened in
exclusive mode. No other processes may open the file at the same time.
When this variable is set to “0” (off, false, no), a Btrieve file is opened in
accelerated mode, and other processes may open the file.

Configuration variables m H-31

BTRV_NOWRITE_WAIT

When a user tries to write to a locked file, the Btrieve interface performs a
15-second “wait and retry” operation before it reports an error condition (99)
to the runtime. Setting the BTRV_NOWRITE_WAIT configuration
variable to “TRUE” (the default) prevents this operation from occurring, and
the error condition is reported immediately. Setting
BTRV_NOWRITE_WAIT to “FALSE” causes the interface to perform the
wait and retry operation.

BTRV_USE_REPEAT_DUPS

This variable controls whether duplicate keys are created as LINKED
duplicates (the Btrieve default) or REPEATING duplicates. When set to the
default value of “FALSE”, the Btrieve interface creates all duplicate keys as
LINKED duplicates. When set to “TRUE”, the Btrieve interface creates all
duplicate keys as REPEATING duplicates.

In cases where a large number of users are accessing files, you may
experience better performance if you set this variable to “TRUE”. See the
Pervasive documentation for information on REPEATING duplicates and
why you may want to use them.

BUFFERED_SCREEN

This variable controls how the Terminal Manager should buffer its output on
UNIX systems. Normally, all queued output is sent to the screen after each
DISPLAY statement. If this value is set to “1” (on, true, yes), then output is
sent only when the internal buffer is full, an ACCEPT statement is executed,
or an internal 1-second timer expires. This can speed up output on some
systems by reducing the number of times the operating system is called. It
will also cause a short delay before messages are seen. We recommend
keeping this setting at the default “0” (off, false, no) unless you are
experiencing poor screen performance.

H-32 m Configuration Variables

CALL_HASH_SIZE

The setting of this variable controls the size of the hash table that tracks
CALL statements to COBOL subprograms. Each CALL statement tracks its
last resolution (target object, entry point, and owning thread). When the
resolution is unchanged in a subsequent execution of the CALL statement,
the CALL uses the saved information, contributing to improved
performance. Each program contains its own copy of this table, so the size
should generally be set to a small value.

The default value for CALL_HASH_SIZE is “31”. The only reason to
change this setting is if your programs contain hundreds of individual CALL
statements that target distinct objects. In this case, you may see a small
performance improvement by setting CALL_HASH_SIZE to a larger value.
You can disable the tracking of these CALL statements by setting the value
of CALL_HASH_SIZE to “0”.

Note that this mechanism consumes a small amount of memory for each
CALL statement. This memory is recovered when the calling object is
removed from memory. The amount is machine-specific, but is normally
well under 100 bytes per CALL.

CANCEL_ALL_DLLS

This variable is used to change the default behavior of a CANCEL ALL
statement. The default behavior is for CANCEL ALL to free all DLLs and
UNIX/Linux shared object libraries loaded with a prior CALL statement.
Setting CANCEL_ALL_DLLS to “0” (off, false, no) indicates that CANCEL
ALL should not free any DLLs or shared object libraries. If you want to free
a particular DLL or shared library when CANCEL_ALL DLLS s setto “0”,
you must specify the DLL’s name in a CANCEL statement.

The default value of CANCEL_ALL_DLLS is “1” (on, true, yes).

CARRIAGE_CONTROL_FILTER

The value of this variable affects how carriage control characters are treated
when found in LINE SEQUENTIAL data files.

Configuration variables m H-33

RM/COBOL version 2 handles carriage control characters in a line sequential
file differently on different systems. By default, both ACUCOBOL-GT and
RM/COBOL-85 remove carriage control characters from input records for
line sequential files. This is the ANSI standard. RM/COBOL version 2,
however, does not remove form-feed characters on MS-DOS machines and
does not remove form-feed or carriage return characters on UNIX systems.
Some existing RM/COBOL version 2 programs depend on this behavior.

You can retain any or all of these characters in the input record by setting
CARRIAGE_CONTROL_FILTER to a value as follows:

1 form-feed characters are retained
2 carriage return characters are retained
4 line-feed characters are retained

You can specify two or three characters to be retained by adding the
appropriate values together. For example, a value of “6” retains carriage
returns and line feeds (2 plus 4). Setting the variable to “0” causes the default
action of removing all three characters.

The default value is “0”.

Note: On VMS systems, carriage control information is not placed directly
into data records and is instead maintained separately. For this reason, the
CARRIAGE_CONTROL_FILTER setting has no effect on VMS systems
and should not be considered portable to those machines.

CBLHELP

Define the CBLHELP configuration variable to the location of the “cblhelp”
debugger help file. The definition must include the path and filename. For
example:

CBLHELP /home/acucobol8/etc/cblhelp

H-34 m Configuration Variables

CGI_AUTO_HEADER

This variable is used when you are writing a Common Gateway Interface
(CGlI) program in COBOL. Itallows you to suppress the output of the HTML
header.

Set CGI_AUTO_HEADER to “0” (off, false, no) if you want to suppress the
output of the HTML header. This can be useful when you want to execute a
CGl program and include its output into an existing flow of HTML text. For
example, with server-side includes, or SSI, you can instruct the Web server
to execute a subprogram in the manner of CGI and then incorporate its output
right into the HTML document before sending it to the requesting client. The
default value is “1” (on, true, yes).

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_CLEAR_MISSING_VALUES

This variable is used when you are writing a Common Gateway Interface
(CGlI) program in COBOL. It allows you to control the behavior of the
ACCEPT statement when CGlI variables do not exist in the CGI input data.

By default, ACCEPT sets the value of numeric data items to zero and
non-numeric data items to spaces if a CGI variable does not exist. Set the
CGI_CLEAR_MISSING_VALUES configuration variable to “0” (off, false,
no) if you do not want ACCEPT to change the value of the data item if the
corresponding CGl variable is missing from the CGI input data.

CGI_CONTENT_TYPE

By default, the output generated by your CGI program is mapped as HTML
content. To associate your CGI output with a MIME content type other than
“text/html”, use the CGI_CONTENT_TYPE configuration variable. This
variable lets you control the content type information in the header of output
files created by ACUCOBOL-GT. Such information informs recipients of
the type of content that they are about to receive.

Configuration variables m H-35

Using this variable, you can configure your CGI program for many types of
output, including eXtensible Markup Language (XML) or Wireless Markup
Language (WML) for Wireless Application Protocol (WAP) devices like
mobile phones.

Whichever format you choose, the US-ASCII character set is applied to the
output by default. If you want the CGI output to be mapped to an alternate
character set such as 1SO-8859-1 (Western European), then you can specify
the character encoding set to use with the variable as well.

Include this variable in your runtime configuration file as follows:
CGI_CONTENT_TYPE contenttype; charset=encoding_set

Where contenttype is the MIME content type of the generated output, and
encoding_set is the preferred character encoding set to use.

For example, the WML content type for WAP mobile phones is “text/
vnd.wap.wml”. To associate your CGI output with WML, include the
following in your configuration file:

CGI_CONTENT_TYPE text/vnd.wap.wml

If you want your WML output to be mapped to the Western European
character set, include the following:

CGI_CONTENT_TYPE text/vnd.wap.wml; charset=iso-8859-1

The content type for eXtensible Markup Language (XML) documents is
“text/xml”. If your program generates XML data, include the following:

CGI_CONTENT_TYPE text/xml

Caution: To avoid overriding other Content-Type associations, we suggest
that you create a different configuration file for each of the MIME
Content-Type associations that you make in your Web server setup.

Please note that if you use this variable, the external forms indicated in your
program’s DISPLAY syntax must contain the appropriate content. In other
words, if you associate your program with the “text/xml” content type, the
forms must be “.xml” documents with XML syntax. If you associate it with

H-36 m Configuration Variables

“text/vnd.wap.wml”, the forms must be “.wml” documents with WML
syntax. Your program can DISPLAY virtually any type of data, as long as
the Content-Type ID corresponds to the external form file that you provide.

Be aware that if you do not use the proper file extension for your external
form documents, the Web server will interpret the data as HTML and display
the wrong data. WML and XML are also more sensitive to syntax errors than
HTML.

In addition, note that the capabilities of the configuration entry
CGI_NO_CACHE may be affected by the content type that you choose.

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_NO_CACHE

This variable allows you to choose whether the HTML output of your
Common Gateway Interface (CGI) program will be cached by the requesting
client.

The default value is “1” (on, true, yes), which means there is no caching. By
default, the runtime generates “Pragma: no-cache” in the HTML response
header that gets sent to the standard output stream. If you set
CGI_NO_CACHE to “0” (off, false, no), the runtime suppresses this line of
the response header, and the requesting client caches the output.

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_STRIP_CR

When this variable is set to “1” (on, true, yes), the runtime automatically
removes carriage return characters from data entered in HTML
TEXTAREAS (multiple line entry-fields). Stripping the carriage returns
from this kind of input prevents double-spacing problems, as well as conflicts
that may arise if the data is used in a context that does not expect a carriage
return character to precede each line feed character. Some browsers send a

Configuration variables m H-37

carriage return line feed sequence to the CGI program, and when this
sequence is written to a file on operating systems that terminate text lines
with line feed characters only, the file may appear to be double spaced. The
default value for this variable is “0” (off, false, no).

For example, if you enter the following three lines in a TEXTAREA for a
field called “thetext”:

Sometext line 1

Sometext line 2
Sometext line 3

The browser sends the following to the CGI program:
thetext=Sometext+l ine+1%0D%0ASometext+1 ine+2%0D%0ASometext+l ine+3%0D%0A

If the CGI_STRIP_CR is set to “1” (on, true, yes), the runtime strips the
carriage return characters so that the input line is the following:

thetext=Sometext+line+1%0ASometext+line+2%0ASometext+1ine+3%0A

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CHAIN_MENUS

When this variable is set to “1” (on, true, yes), the runtime system
automatically destroys any menu displayed by a program performing a
CHAIN or CALL PROGRAM. This destruction is accomplished with the
WMENU-DESTROY-DELAYED operation of the WSMENU library
routine. The effect is that the menu is not actually destroyed until the
chained-to program displays a new menu. Setting this variable to “0” (off,
false, no) inhibits the destruction of the menu. The default value is “off”.

CHECK_USING

When this value is “1” (on, true, yes), the runtime system tests each use of a
LINKAGE data item to make sure that the item passed by the calling program
is at least as large as the item declared by the called program. This ensures
that unallocated memory is not accidentally referenced.

H-38 m Configuration Variables

Setting this value to “0” (off, false, no) inhibits the parameters size matching
test. It also inhibits the runtime test that verifies that all parameters of a
subprogram are passed by the caller.

The default value is “1”. If you set this value to “0”, you should test your
programs carefully to avoid corrupting memory.

Note: Itis common for programs in some OLTP environments to specify a
data item length as a negative value. By default, this produces a runtime
error. Set CHECK_USING to “0” to override the default behavior.

CISAM_COMPRESS_KEYS

This variable allows you to turn off key compression in C-ISAM files. By
default, the ACUCOBOL-GT interface to C-ISAM uses the key compression
feature of C-ISAM. But some C-ISAM emulators do not understand the
compressed keys and cannot read the files created. This variable allows you
to turn off the compression.

When the variable is set to “0” (off, false, no), key compression is not used.
When it’s set to the default of “1” (on, true, yes), key compression is used.
Note that this value is examined each time a file is created, so its setting can
be changed for each file. The setting is meaningful only when the file is
created. After that, the file retains its compression mode.

CLOSE_ON_EXIT

When set to “1” (on, true, yes), this variable enables the automatic closing of
all files except print files when a program performs an EXIT PROGRAM
statement. When set to “2” it enables the automatic closing of all files when
a program exits. When set to “0” (off, false, no), no files will be
automatically closed. For more information, see the ACUCOBOL-GT
User’s Guide, section 2.8.5, “File Handling Options.” The default

value is “0”.

Configuration variables m H-39

COBLPFORM

This configuration variable is used to define and print to printer channels
C01-C12. Specify the line numbers for each channel with the COBLPFORM
configuration variable. Null entries are ignored. Those channels that have
line number zero, function-names S01-S052, CSP, or are undefined, are set
to line 1.

Example 1
COBLPFORM 1:3:5:7:9:11:13:15:17:19:21:23

In this example CO1 equals 1, C02 equals 3, and so on.

Example 2
COBLPFORM :3::5: :9

In this example, C01 equals 3, C02 equals 5, C03 equals 1, and C04 equals 9.
You can specify only a single line number for each channel.

In example 2 above, channels C05 - C12 are undefined. If a print statement
specifies channel C05 - C12, the line is printed at line 1. In addition, in the
example shown, C03 equals 1 because its value is a space and therefore
undefined.

Any WRITE BEFORE/AFTER PAGE statements cause positioning to be at
line 1. Each line advance increases the line number by one. A request to skip
to a line number less than or equal to the current line causes a new page to
begin. The appropriate number of line feeds are then generated.

CODE_CASE

This configuration variable allows you to adjust the case of an object file
name that is specified in a CALL statement. It has five possible values:

NONE or “0” (the default) object file names are not
translated
LOWER or “1” object file names are translated to lower case,

including directory (path) elements

H-40 m Configuration Variables

UPPER or “2” object file names are translated to upper case,
including directory (path) elements

LOWER_BASE or “3” object file names are translated to lower case,
excluding directory (path) elements

UPPER_BASE or “4” object file names are translated to upper case,

excluding directory (path) elements

Translation occurs before the CODE_SUFFIX and CODE_PREFIX
configuration options are applied. You should make sure that those variables
specify the correct case. For a complete description of the runtime CALL
handling procedure, see Section 2.10.1 in Book 1, ACUCOBOL-GT

User’s Guide.

CODE_MAPPING

This configuration variable allows you to modify CALL, CHAIN, and
CANCEL names at runtime. This can be particularly useful if you are using
AcuServer or AcuConnect. When this variable is set to “1” (on, true, yes),
every CALL, CHAIN, and CANCEL statement checks the current
configuration for a name that matches the CALL name. This is handled in the
same way that file name processing is done (the environment is checked for
an uppercase version of the name, with any hyphens treated as underscores).
If a matching name is found, its value is substituted. This is done recursively
until no more matching names are found.

After this substitution occurs, the CALL name handling proceeds normally
(and includes any effects of CODE_PATH, CODE_SUFFIX, and
CODE_CASE).

For example, with CODE_MAPPING set to “1”, if your configuration file
had the following entry:

MYPROG @sun:/app/myprog

Then CALL “MYPROG” would act the same as CALL “@sun:/app/
myprog”.

Configuration variables m H-41

Thin client applications may find the CODE_MAPPING mechanism useful
for automatically adding the “@[DISPLAY]:” prefix to the name of the DLL
to run on the display host. For example, if your configuration file includes
the entry:

mylib.dll @[DISPLAY]:mylib.dlI

Then the statement
CALL “mylib.dIl”

is interpreted as
CALL “@[DISPLAY]:mylib.dll”

causing “mylib.dll” to run on the display host.

Those wanting to specify the DLL calling conventions will also find
CODE_MAPPING useful. For example, if you use the following
configuration entries:

funcA=funcA@__stdcall
funcB=funcB@__cdecl

then the statement
CALL "funcA"

calls funcA using the stdcall calling convention and
CALL **funcB"

calls funcB using the cdecl convention.

For more information about calling DLLs from thin client applications, see
section 7.2.6 of the AcuConnect User’s Guide. For information on calling
DLLs in general, refer to Chapter 3 of A Guide to Interoperating with
ACUCOBOL-GT.

The default value for this variable is “0” (off, false, no).

H-42 m Configuration Variables

CODE_PREFIX

This variable defines a set of directories that the runtime searches to locate a
program object file. The default value is “.” (current working directory).
Code and data file search paths are described in more detail in Section 2.8.2

of the ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths. Entries are separated
by spaces. A space is a valid separator on all systems. Alternatively, on
UNIX systems you can also separate entries with a colon. On Windows
systems a semicolon can be used. On VMS systems a comma can be used.

Include a “~” (carat) to specify the directory containing the calling program.
For example:

CODE_PREFIX . /cobbin

causes the runtime to search the current working directory, followed by the
“cobbin” root directory, followed by the directory containing the calling
program.

You can specify a directory path that contains embedded spaces if you
surround the path with quotation marks. For example:

CODE_PREFIX C:*“program files” C:\Customers

Remote name notation is allowed if your runtime is client-enabled. See
User’s Guide Section 5.2.1 and Section 5.2.2 for more information about
client-enabled runtimes and remote name notation.

Up to 4096 characters can be specified for the value of this variable.

CODE_SUFFIX

The value of this variable is automatically appended to the end of program
filenames when those names do not contain explicit suffixes. A suffix is the
portion of a filename that follows a period. For example, if

CODE__ SUFFIX is set to “COB”, then CALL “PGMFILE” causes the
runtime to look for the file “PGMFILE.COB”. The default value is empty.

Configuration variables m H-43

CODE_SYSTEM

The runtime configuration variable CODE_SYSTEM tells the runtime if
double-byte character data is being accepted or displayed, and which code
system (that is, which standard for encoding Japanese and other Asian
character sets, for example) is being used. Each code system has a range of
values that it allows within each byte of a two-byte character, so identifying
the code system allows the runtime to recognize character boundaries when
it is processing double-byte data for ACCEPT and DISPLAY statements.

Setting CODE_SYSTEM to the proper value allows your COBOL
applications to handle input and display of double-byte character data
without source program changes. The syntax is:

CODE_SYSTEM setting

The table below shows the possible settings of the CODE_SYSTEM
variable, the code system to which each setting refers, and some examples of
operating systems to which the particular code system applies:

Setting Code System Op. System Examples
BIG5 Big Five (Taiwan) Chinese DOS, Windows
DBC Acucorp Generic other double-byte machines
Double-byte Coding
Scheme
EUC Extended UNIX Most UNIX machines
GB Code of Chinese Graphic Chinese DOS, Windows

Character Set (People’s
Republic of China)

KSC Korean Character Standard Korean DOS
sJC Shift JIS Code (Japanese DOS/V, Windows, some
Industrial Standard) UNIX machines

The default “0” means ASCII or EBCDIC single-byte characters.

H-44 m Configuration Variables

The following table shows the decimal values that the respective code
systems allow for each byte of the two-byte character:

Code System Setting 1st byte 2nd byte

BIG5 161 - 254 64 - 126

(second format) 161 - 254 161 - 254

DBC 128 - 255 128 - 255

EUC 142 161 - 223

(second format) 161 - 254 161 - 254

GB and KSC 161- 254 161 - 254

SJC 129 - 159 64 - 252 (not 127)
(second format) 224 - 239 64 - 252 (not 127)

Note: The first and second byte values are co-dependent; that is, both
values must fall within the respective ranges shown in the table. If either
value is not within its allowable range, then each byte will be treated as a
single character.

COLOR_MAP

This variable can be used to assign colors to programs that do not contain
explicit color settings. This is described in Section 4.4.1 of ACUCOBOL-GT
User’s Guide. The default value is empty.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

COLOR_MODEL

This variable is typically used when a character-based application is moved
to a graphical environment. Use the COLOR_MODEL setting to perform
uniform changes to your program’s color scheme. These changes are

Configuration variables m H-45

represented by rules that act on your colors. An example of a rule is
“exchange the foreground and background colors”. Use COLOR_MODEL
to change your color scheme in a global way.

The default color model is model “0”. It causes no changes to occur to your
color scheme. The remaining 10 models are “1” through “10”.

e The odd-numbered models transform only those parts of your program
that are entirely black and white. Any character position that contains
any color is left unchanged.

» The even-numbered models apply the changes regardless of color.
When selectinga COLOR_MODEL, you can ignore the even-numbered
models if you are satisfied with the color portions of your program.

Each color model is actually a composite; it’s the equivalent of two or more
configuration file variable settings:

COLOR_MODEL | Equivalent Configuration File Variable Settings

“1” COLOR_TRANS “5”
INTENSITY_FLAGS “34”
BACKGROUND_INTENSITY “1”
“2” COLOR_TRANS “4”
INTENSITY_FLAGS “34”
BACKGROUND_INTENSITY “1”

“3” COLOR_TRANS “3”
INTENSITY_FLAGS “34”
“4” COLOR_TRANS “1”
INTENSITY_FLAGS “34”
“5” COLOR_TRANS “1”
INTENSITY_FLAGS “129”
“6” COLOR_TRANS “1”

INTENSITY_FLAGS “129”
BACKGROUND_INTENSITY “2”

H-46 m Configuration Variables

COLOR_MODEL | Equivalent Configuration File Variable Settings
“r” COLOR_TRANS “3”
INTENSITY_FLAGS “161”
“8” COLOR_TRANS “1”
INTENSITY_FLAGS “161”
“9” COLOR_TRANS “3”
INTENSITY_FLAGS “193”
“10” COLOR_TRANS “1”
INTENSITY_FLAGS “193”

For more information, see Chapter 9 in Book 2, ACUCOBOL-GT User
Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

COLOR_TABLE

This variable is typically used when a character-based application is moved
to a graphical environment. Use the COLOR_TABLE variable to cause
transformations of individual color combinations. For example, a
COLOR_TABLE entry might cause a red foreground on a black background
to be translated to a white foreground on a blue background.

Follow the word COLOR_TABLE with the original foreground and
background numbers, separated by a comma. Follow these by an equals sign
and then the new foreground and background numbers, separated by a
comma.

For example, to transform the color combination of foreground 5 on
background 2, to foreground 13 on background 2, you would use:

COLOR_TABLE 5, 2 = 13, 2

Configuration variables m H-47

These are the possible values for foreground and background settings:

Color Color value
low-intensity Black 1
low-intensity Blue 2
low-intensity Green 3
low-intensity Cyan 4
low-intensity Red 5
low-intensity Magenta 6
low-intensity Brown 7
low-intensity White 8
high-intensity Black 9
high-intensity Blue 10
high-intensity Green 11
high-intensity Cyan 12
high-intensity Red 13
high-intensity Magenta 14
high-intensity Brown 15
high-intensity White 16

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

H-48 m Configuration Variables

COLOR_TRANS

This variable is typically used when a character-based application is moved
to a graphical environment. It determines how the initial colors in an
application are transformed. By default, it is set to “0”, which causes no
transformation. It may be set to any of these values:

1 This mode causes the foreground and background colors to be
exchanged for each other. This is equivalent to running the entire
program in reverse-video.

2 This causes white to be exchanged for black and black to be exchanged
for white. The foreground and background colors are transformed
independently. For example, a green foreground on a black background
would turn into a green foreground on a white background. This setting
usually has the effect of transforming a black background into white
while maintaining the general color scheme of the application.

3 The foreground and background colors are exchanged for each other,
but only if they are both black or white. If either the foreground or
background contains a color other than black or white, then nothing
happens. This is equivalent to running the monochrome parts of your
program in reverse-video while maintaining the color portions
unchanged.

4 The foreground and background colors are exchanged for each other,
but only if the background is black. This mode ensures that you never
have a black background.

5 If the colors are foreground white and background black, they are
exchanged for each other. Otherwise, nothing happens.

Generally speaking, you could use the COLOR_TRANS variable as a
starting point in converting an application to appear more natural under
Windows. (It’s easier to start with COLOR_MODEL instead.) Note that if
your application is entirely black-and-white, then the first three
COLOR_TRANS options are essentially identical. See Chapter 9 in Book
2, ACUCOBOL-GT User Interface Programming for color mapping
suggestions.

Configuration variables m H-49

COLUMN_SEPARATION

This configuration variable sets the default separation distance between
columns in a list box. The value is expressed in 10ths of characters. For
example, to place a 1/2 character space between list box columns, you would
assign a value of “5”. See the description of the list box SEPARATION
property for more information. The default value of
COLUMN_SEPARATION is “5”.

COMPRESS_FACTOR

This variable is used to define the compression factor that is applied to
indexed files (if the indexed file system supports compression; Vision does).
COMPRESS_FACTOR is applied when a file is created with the WITH
COMPRESSION phrase in the ASSIGN clause of the file’s SELECT and the
COMPRESSION CONTROL VALUE phrase is either omitted or specifies a
value of “1”. If the COMPRESS CONTROL VALUE phrase specifies a
value other than one, that value is used and the value of
COMPRESS_FACTOR is ignored.

COMPRESS_FACTOR can be set to any value within the range zero to 100.
Zero specifies no compression. Values from 2-100 are treated as a
percentage that specifies how much of the space saved by file compression is
removed from the compressed records. A value of 1, the default, is a special
case that causes the standard default compression factor of 70 to be applied.
Note that a file’s compression factor is set when the file is created and cannot
later be changed except by recreating the file or rebuilding the file with vutil.
For more information about Vision record compression, see Book 1,
ACUCOBOL-GT User’s Guide, section 6.1.6.1, “Compression.”

COMPRESS_FILES

Setting this configuration variable to “1” (on, true, yes) causes
ACUCOBOL-GT to treat all indexed files as if they had the WITH
COMPRESSION phrase specified for them. This affects the status of newly
created files only. When the configuration variable is set to the default value

H-50 m Configuration Variables

of “0” (off, false, no), only those files with the WITH COMPRESSION
phrase specified will be compressed. You can specify the amount of
compression with the COMPRESS_FACTOR configuration variable.

CONTROL_CREATION_EVENTS

This variable applies to those using ActiveX controls in their
ACUCOBOL-GT programs. Use it if you want to allow events during the
creation of an ActiveX control. By default, the runtime ignores events from
all controls while it is creating an ActiveX control. If it did not, subsequent
operations on the ActiveX control could fail.

If you are using a control that delivers significant information using events
and you don’t want to miss those events while you are creating a new control,
set the CONTROL_CREATION_EVENTS variable to “1” (On, True, Yes).
Alternatively, you could avoid creating an ActiveX control when you are
expecting an event.

By default, this variable is set to “0” (Off, False, No).

CURRENCY

This configuration variable can be used to set the desired currency character
at runtime. It is followed with the desired character. The default is to use the
character specified in the source program’s CURRENCY phrase (or “$” if
the CURRENCY phrase is absent).

CURSOR_MODE

This configuration variable determines when the cursor should be visible. It
has three values:

1 always visible

2 always invisible

3 invisible except during ACCEPT statements, then visible

Configuration variables m H-51

The default value is “3”. Note that a change to the value does not take effect
until the next ACCEPT or DISPLAY statement. The sample program
MENUBAR.CBL contains examples of how to modify the cursor from
within a program. The cursor is always set to Normal, Visible when the
runtime exits or when the SYSTEM library routine is called.

CURSOR _TYPE

This configuration variable determines the way the cursor looks on
character-based systems. It can be set to one of the following values (“3” is
the default):

normal cursor (usually underscore)
bright cursor (usually block)

normal cursor except when in insert mode, then bright

A WD

vertical bar (when available)

DEBUG_NEWCOPY

This variable determines whether a new copy of a COBOL program being
debugged is loaded from disk whenever the debugger is active. By default,
DEBUG_NEWCOPY is “True” so that you can continue to use the logical
cancel and code caching feature while the debugger is active.

Set DEBUG_NEWCOPY to “False” if you want to keep caching enabled and
have the debugger use the copy of the program in the cache instead of reading
a new copy from disk. You must then do one of two things:

 Start the debugger before the first execution of the program in the current
process

» Inatransaction processing system, use the CICS command, CEMT SET
PROGRAM(program_name) NEWCOPY, to load a new copy of the
program to be debugged.

H-52 m Configuration Variables

Note: The ACUCOBOL-GT debugger periodically reads source code from
the object file on disk. When the program is cached (as the result of a
logical cancel), the object file is closed and could be replaced or deleted.
For the debugger to function correctly, it must keep the object file open and
ensure that the object code in the disk file is identical to the code in
memory. Therefore, if the program has been cached (using
LOGICAL_CANCELS and DYNAMIC_MEMORY_LIMIT), the
debugger unloads the program from the cache, reopens the object file, and
reloads the object code from memory. For more information, see section
6.3, “Memory Management,” in Book 1, ACUCOBOL-GT User’s Guide.

DECIMAL_POINT

This configuration variable sets the character to be used as the program’s
decimal point. Follow it with the desired character. If you use this variable
to set the decimal point to a comma, then the place and function of the
decimal point and comma are reversed (just like the phrase
DECIMAL_POINT IS COMMA). The default is to use the decimal point
specified by the program’s source.

Note: You do not have to change the value of DECIMAL_POINT to match
the decimal point used by floating point values received from external
components. The runtime automatically makes the correct adjustment.

DEFAULT_FILESYSTEM

This variable determines the file system to be used if no
filename_FILESYSTEM variable is set for a file and none of the other file
system variables are set for the file type. The other variables you can use to
specify a different file system for indexed, relative, or sequential files, are:

DEFAULT_IDX_FILESYSTEM
DEFAULT_REL_FILESYSTEM
DEFAULT_SEQ_FILESYSTEM

Configuration variables m H-53

For example, setting:
DEFAULT_IDX_FILESYSTEM EXTFH

causes all indexed files to go through the EXTH interface. Unless another
file system is specified, ACUCOBOL-GT uses its native file handler for
relative and sequential files.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for the
existing configuration variable, DEFAULT_HOST.

By default, all file access is handled by the ACUCOBOL-GT native file
handler. For those file types you want to access using an EXTFH library, you
need to set one or more of these configuration variables to “EXTFH".

For example, to use the DB2 library to access indexed files, you would set the
following two configuration variables:

A _EXTFH_LIB=/usr/lpp/cics/lib/libxfhdb2sa.a(libxfhdb2_shr.o)
DEFAULT_IDX_FILESYSTEM=EXTFH

For information on specifying EXTFH library and function names to use with
the EXTFH interface, see section 11.6, “Working With an EXTFH
Interface,” in A Guide to Interoperating with ACUCOBOL-GT.

DEFAULT_FONT

This variable defines which font to use for the DEFAULT_FONT (for a
description of this font, see Format 3, ACCEPT Statement in Book 3,
ACUCOBOL-GT Reference Manual). When DEFAULT_FONT is set to “0”
(the normal setting), the font used depends on the host system as follows:

System Font Used

Graphical system MEDIUM-FONT
Non-graphical system FIXED-FONT

H-54 m Configuration Variables

You can set DEFAULT_FONT to one of the following values to use a
different font. The following words are valid settings:

Setting Font Used
TRADITIONAL TRADITIONAL-FONT
FIXED FIXED-FONT

LARGE LARGE-FONT
MEDIUM MEDIUM-FONT
SMALL SMALL-FONT

Due to the way the runtime initializes the windowing subsystem, the
DEFAULT_FONT setting is effective only when it is placed in the
configuration file or the host system’s environment. Setting
DEFAULT_FONT from inside a COBOL program has no effect.

DEFAULT_HOST

When the application program is opening an existing file or creating a new
file, you need to tell the runtime which file system to use. You accomplish
this with one of two configuration variables: DEFAULT _HOST or
filename_HOST.

DEFAULT_HOST filesystem

designates the file system to be used for files that are not individually
assigned. If this variable is not given a value, and if you have not individually
assigned a file system (with filename_HOST), the Vision file system is used.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for
DEFAULT_HOST.

Configuration variables m H-55

DEFAULT_MAP_FILE

Use this variable to point to the character map file used for translating
international character sets between machines that use differing character
codes. The map file is a simple text file that you create with an editor of your
choice. Each line in the map file must contain two values in either decimal
or hexadecimal: the character code of the character on the client machine, and
the character code of the same character on the remote machine. Use a # sign
to indicate a comment.

The runtime first searches for the configuration variable server MAP_FILE
and, if it is found, uses that setting to locate the map file. If that variable is

not set, the runtime searches for DEFAULT_MAP_FILE. If this variable is
not set, then no character translation is done.

Example:
DEFAULT_MAP_FILE = c:\etc\pc_iso.txt

DEFAULT_PROGRAM

Use this variable to specify the name of the program to be run by default if no
program name is specified on the command line. The name you give here is
treated exactly as it would be if you had typed it on the command line. The
default is “cbl.out”.

Remote name notation is allowed for this variable if your runtime is
client-enabled. See ACUCOBOL-GT User’s Guide Section 5.2.1 and
Section 5.2.2 for more information about client-enabled runtimes and remote
name notation.

DEFAULT_TIMEOUT

This variable is used by the runtime and Web Runtime to define the length of
time, in seconds, that they will wait for a response from acuserve before
timing out. The default value for this variable is 25 seconds. Some networks

H-56 m Configuration Variables

have long connect times and the default value may not be long enough to
allow the application to connect. For example, to change the timeout default
of 25 seconds to one minute, you would set the following:

DEFAULT_TIMEOUT = 60

If the runtime or Web Runtime receives an error before the specified time,
they will time out immediately. This variable only works with AcuServer
client runtimes and AcuServer client Web Runtimes.

DISABLED_CONTROL_COLOR

This variable allows character-based hosts to use color and video attributes to
distinguish disabled screen controls from enabled controls. It can be set to a
variety of numeric values that express combinations of attributes. When it is
set to “0” (off, false, no), disabled controls appear the same as enabled ones.
See COLOR Phrase in Book 3, ACUCOBOL-GT Reference Manual, for a
description of other numeric values that can be used.

DISPLAY_SWITCH_PERIOD

This variable helps to determine how frequently the program’s threads will
switch control. After a thread performs the value of
DISPLAY_SWITCH_PERIOD display operations, the runtime switches
control to another thread (if one exists). Note that because a single
DISPLAY statement can compile into multiple “display operations,” and
because thread switching is also affected by other program operations (such
as file 1/0), it is impossible to predict or control when a thread will change
control based on the presence of DISPLAY statements in the source.

By setting DISPLAY_SWITCH_PERIOD to lower values, you cause
windows that are updated by multiple threads to update more uniformly, but
more time will be spent in the thread switching code. Setting
DISPLAY_SWITCH_PERIOD to higher values will decrease the switching
overhead, but will also cause the windows to update in blocks. In most cases,
applications that use threads will run well with the default setting of “10”.

Configuration variables m H-57

DLL_CONVENTION

This variable allows you to specify the calling convention used to call DLLs.
When this variable is set to “0”, the cdecl (standard C) interface is used.
When this variable is set to “1”, the stdcall (Pascal/WINAPI) interface is
used. The default for this variable is “0”.

Note that there are a few ways to override the DLL_CONVENTION setting:

* You can specify a list of DLL names and calling conventions in the
SHARED_LIBRARY_LISTconfiguration variable. This variable can
be set in the environment, in the runtime configuration file, or
programmatically with the SET ENVIRONMENT statement.

* You can specify the calling convention for individual library functions in
the COBOL CALL statement.

* You can set the CODE_MAPPING variable to “1”, then use
configuration entries to specify the calling convention for individual
functions.

* You can specify a list of DLL names and calling conventions using the
“-y” runtime option. (see the “-y” listing in Section 2.3.1,
ACUCOBOL-GT User’s Guide.)

In all of these cases, the runtime uses the specified calling convention and
ignores the value of the DLL_CONVENTION configuration variable. See
Chapter 3 in A Guide to Interoperating with ACUCOBOL-GT for more
details about calling DLLs.

DLL_SUB_INTERFACE

This variable identifies the routine to be used as the “sub” interface routine
within a DLL. It applies only to Windows systems. Set
DLL_SUB_INTERFACE to the name of the routine you want to use. This
name may be “sub” or any hame you choose. The runtime checks
DLL_SUB_INTERFACE when a DLL is loaded. You may change its value
afterwards without any effect on DLLs that have already been loaded.

H-58 m Configuration Variables

If DLL_SUB_INTERFACE is empty (default), the runtime does not look for
a “sub” interface routine in a called DLL.

DLL_USE_SYSTEM_DIR

When a program calls an unloaded DLL, the value of this variable determines
whether the runtime attempts to find the DLL in the Windows and System
folders. When set to the default value “1” (on, true, yes), the runtime looks
in the Windows and System folders. When set to “0” (off, false, no) the
runtime does not look in the Windows and System folders. See Chapter 3 in
A Guide to Interoperating with ACUCOBOL-GT for more details about
calling DLLs.

DOS_BOX_CHARS

This variable allows you to redefine the line drawing characters used with the
Windows console (DOS-box) runtime. The value of DOS_BOX_CHARS is
a list of characters that draw the line segments. It should be a list of 13
space-delimited characters that correspond, in order, to the line segments as
listed below. To redefine the DOS line drawing characters, specify the
characters you want in the following order:

1. horizontal line
vertical line
upper left corner
upper right corner

lower left corner

o o A~ w N

lower right corner

Four three-way intersections -
7. missing bottom line
8. missing left line

9. missing top line

Configuration variables m H-59

10. missing right line

and -

11. the four-way intersection
12. upper-half block

13. lower-half block

These line drawing characters may also be specified by decimal value.
Characters that are not available on a particular machine should be specified
with the decimal value “0”.

The default value for DOS_BOX_CHARS depends on the
CODE_SYSTEM configuration variable. If CODE_SYSTEM is not set, or
is set to “0” (or ASCII or EBCDIC), the default is:

DOS_BOX_CHARS 196 179 218 191 192 217 193 195 194 180 197 223 220

If CODE_SYSTEM is set to a non-zero value, which is the case in the
ACUCOBOL-GT JPN version, the default is:

DOS_BOX_CHARS 6 51 2 3 4212522231600

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

DOS_SYS_EMULATE

When set to “1” (on, true, yes), this variable causes a program running in the
Windows console runtime to run as if it’s in a DOS environment. One of its
effects is that it prevents such a program from attempting to display GUI
screens. Itis setto “0” (off, false, no) by default. This variable has meaning
only in Windows environments.

DOUBLE_CLICK_TIME

This variable has meaning only on systems that support a mouse. It controls
the “double-click” rate on systems that do not control it themselves.

H-60 m Configuration Variables

Specify the maximum time (in hundredths of a second) allowed between two
clicks that are to be interpreted as a double-click. For example, if
DOUBLE_CLICK_TIME were set to “75” (three-quarters of a second), then
any two clicks that occur at least that close together would be considered a
double-click rather than two single clicks.

The default value is “50” (one-half of a second).

DUPLICATES_LOG

This variable is used during bulk addition of Vision files. It causes Vision to
write files rejected for having illegal duplicate keys to a log file. Set
DUPLICATES_LOG to the name of a file in which to store the records. If
this log file already exists, it is overwritten. You should use a separate log file
for each file opened with bulk addition. You can do this by changing the
setting of DUPLICATES_LOG between OPEN statements, as follows:

SET ENVIRONMENT ““DUPLICATES_LOG” TO “filel.rej”
OPEN OUTPUT FILE-1 FOR BULK-ADDITION

SET ENVIRONMENT “DUPLICATES_LOG” TO “file2.rej”
OPEN EXTEND FILE-2 FOR BULK-ADDITION

If no duplicate records are found, the log file is removed when the Vision file
is closed. If DUPLICATES_LOG has not been set, or is set to spaces, no log
file is created.

Note: The duplicate-key log file may not be placed on a remote machine
using AcuServer. The log file must be directly accessible by the machine
that is running the program.

See Section 6.1.6.3, “Bulk addition mode for Vision,” in Book 1,
ACUCOBOL-GT User’s Guide, for instructions on how to read the log file.

Configuration variables m H-61

DYNAMIC_FUNCTION_CALLS

This variable allows you to specify a list of functions or function name
prefixes that the runtime treats as dynamic functions and therefore searches
first, before searching the disk for COBOL programs. This speeds the
resolution of calls to functions in the current process or in a shared library.

The runtime checks call names for matches in the list specified in the
variable. If a match is found, the runtime attempts to call the routine directly
in the current process and in each of the loaded shared libraries. If these
attempts fail, the runtime attempts to load a COBOL program with the
specified name.

Set DYNAMIC_FUNCTION_CALLS to a space- or comma-delimited list of
names of frequently called functions that are linked into the current process
or in one of the loaded shared libraries.

The asterisk “*” character can be appended to the end of a name as a wild
card. Inthis case, the characters before the asterisk are treated as a prefix and
match any call name that begins with that prefix. A value of asterisk (“*)
alone matches all function names. Use this to cause the runtime to treat all
names as dynamic functions first before searching the disk or memaory for a
COBOL program with a matching name.

The value of DYNAMIC_FUNCTION_CALLS is case insensitive. The
default value is empty.

DYNAMIC_FUNCTION_CALLS can be set in the environment,
configuration file, or programmatically with the SET verb. Set it to spaces to
clear the list.

When DYNAMIC_FUNCTION_CALLS is set in the configuration file,
there is no limit on the number of function names or overall size of the value
of the configuration variable. To specify a configuration file value on
multiple lines, you must prepend each line after the first with “-”. For
example:

DYNAMIC_FUNCTION_CALLS =

- funcl,
- func2,
- func3

H-62 m Configuration Variables

The line continuation processing removes all leading and trailing spaces so in
this case you must separate the values with a comma (that is, append a
comma to each line).

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

DYNAMIC_MEMORY_LIMIT

The value of this variable indicates the maximum number of bytes of
dynamic memory that the ACUCOBOL-GT runtime will use to cache
canceled programs when the logical cancel mechanism is enabled. When the
total amount of memory exceeds the value of
DYNAMIC_MEMORY_LIMIT, the runtime releases all memory held by
programs that have been logically canceled.

Valid values are:

-1 (the default) no memory limit. In transaction
processing systems, memory used by programs that
have been logically canceled is released only by the
CICS transaction, CEMT SET
PROGRAM(program_name) NEWCOPY

0 all cancels are physical; program memory is not
cached

1t0 2147483647 the maximum number of bytes of dynamic memory

A discussion of memory management and physical and logical cancels is
located in Section 6.3, “Memory Management,” in Book 1.
DYNAMIC_MEMORY_LIMIT is used in conjunction with the
LOGICAL_CANCELS configuration variable.

EDIT_MODE

This is an obsolete entry that has been replaced by the KEYSTROKE
configuration variable. Its setting is ignored.

Configuration variables m H-63

EF_UPPER_WIDE

This variable determines which font measure is used to compute the width of
an entry field with the UPPER style. If the value is “1” (on, true, yes), the
entry field is sized with the wide font measure. See section 5.9 in Book 2,
ACUCOBOL-GT User Interface Programming for a description of how
entry fields are measured. The default value of EF_UPPER_WIDE is “1”.

EF_WIDE_SIZE

This variable sets the boundary size that determines whether an entry field is
sized with the standard or wide font measure. An entry field that has a
specified width greater than the value of EF_WIDE_SIZE is always sized
with the standard font measure. Entry fields that are both non-numeric and
not larger than EF_WIDE_SIZE are sized with the wide font measure. See
Section 5.9 in Book 2, ACUCOBOL-GT User Interface Programming for a
description of how entry fields are sized. The default value of

EF _WIDE_SIZE is “5”. Setting this variable to “0” causes all entry fields to
be sized with the standard font measure (exception: see EF_UPPER_WIDE
above). Note that setting the value of this variable to a number larger than
your largest entry field causes all entry fields to use the wide font measure.

EOF_ABORTS

This configuration variable can be used to handle two unexpected loop
conditions:

1. aloop that results when the runtime has been started with “-i” and an
input file terminates prematurely.

2. aloop that results when a terminal emulator disconnects unexpectedly.

If the runtime is started with the “-i” option and a loop occurs when an input
file terminates prematurely, you can set EOF_ABORTS to “1” (on, true, yes)
to cause the runtime to shut down when an ACCEPT statement detects an
end-of-file condition.

H-64 m Configuration Variables

On UNIX/Linux systems, if the runtime enters a loop due to an unexpected
disconnect from a terminal emulator, you can set EOF_ABORTS to a value
of “2” to cause the runtime to generate a hangup signal (SIGHUP) when it
detects an EOF on standard input (stdin).

The default value is “0” (off, false, no).

EOL_CHAR

This configuration variable determines the character that is used to mark the
end of each line when a pre-existing line sequential file is read. This should
be set to the ASCII value of the desired character. The default value is “10”
(line-feed). This option may be useful if you must process a line-oriented file
that has an unusual line terminator. This configuration variable has no effect
under VMS (RMS does not support it).

ERRORS_OK

Normally, if a file error occurs and there is no AT END, INVALID KEY, or
Declarative statement to handle it, the runtime system prints an error message
and halts. You can cause the runtime to ignore file errors and continue
processing by setting ERRORS_OK to either “1” (on, true, yes) or “2”
(FILESTATUS).

By default, ERRORS_OK is set to “0” (off, false, no).

When ERRORS_OK is set to “1”, if a file error occurs the runtime continues
as if no error occurred.

When ERRORS_OK is set to “2”, if a file error occurs and there are no
Declaratives but a file status variable is defined, the runtime ignores the error
and continues processing. However, if a file error occurs and there are no
Declaratives and a file status variable is not defined, the runtime halts.

Note: In general, it is not recommended that you configure the runtime to
ignore file errors.

Configuration variables m H-65

EXIT_CURSOR

When a STOP RUN is executed, the ACUCOBOL-GT runtime system
normally places the cursor on the last line of the screen and then scrolls the
screen one line. This allows the operating system prompt to appear on a new
blank line at the bottom of the screen. To inhibit this behavior, set
EXIT_CURSOR to “0” (off, false, no). This causes the runtime system to
leave the cursor in its current location when the program exits. The default
value “1” (on, true, yes) causes the standard ACUCOBOL-GT cursor
positioning.

This variable has no effect on Windows systems.

EXPAND_ENV_VARS

Setting this variable to “1” (on, true, yes) causes the runtime to expand
environment variables in filename specifications. This is the last step of file
name interpretation process (see section 2.9, “File Name Interpretation,”
in Book 1, ACUCOBOL-GT User’s Guide). A file specification that
includes a “$” character will have all the characters from “$” to the end of the
name or to the next “/” or “\” replaced with the value of the matching
environment variable. For example, if the program attempts to open
“$mydir/myfile”, the environment and configuration file are searched for the
variable “mydir”. If found, its value is substituted. If not found, the
replacement is null. Referring to the preceding example, if “mydir” is not
defined, the runtime attempts to open “/myfile”.

The default value is “0” (off, false, no).

Note: The “$” character is a valid filename character in many file systems,
including NTFS and most UNIX file systems. If you want to use dollar
signs in your file names, you should not enable this option. In particular, if
a user chooses the name of the file, you should keep this option disabled.

If you also use FILE_ALIAS_PREFIX, note that when
EXPAND_ENV_VARS is set to “1”, FILE_ALIAS_PREFIX treats
“$FILEL1” and “FILE1” the same.

H-66 m Configuration Variables

EXTEND_CREATES

Setting this configuration variable to “1” (on, true, yes), causes OPEN
EXTEND statements to create a new file when the file being opened is not
present. The default value is “0” (off, false, no).

EXTFH_KEEP_TRAILING_SPACES

AnEXTFH_KEEP_TRAILING_SPACES configuration variable allows you
to preserve trailing spaces in line sequential file records when using our
EXTFH module with EXTSM. Set this variable to “1” (on, true, yes) to
retain the trailing spaces, which is the runtime’s default behavior. With a
default value of “0” (off, false, no), trailing spaces are removed.

Note that a related configuration variable is the
STRIP_TRAILING_SPACES variable.

EXTERNAL_SIZE

ACUCOBOL-GT manages external data items by allocating them in pools.
The minimum size of each pool is set by the EXTERNAL_SIZE variable.
When a new external data item is needed, it is allocated from an existing
pool. If it doesn’t fit in any of the allocated pools, a new pool is allocated.
The size of this pool is the same as the size of the data item, but never smaller
than the value specified by the EXTERNAL_SIZE configuration variable.
Using this larger pool reduces memory fragmentation. Because external data
items remain allocated after programs are canceled, it’s best to allocate the
external data items together so they don’t break up the memory space. The
default value for EXTERNAL_SIZE is “8192”. The maximum value is
“32767”.

EXTRA_KEYS_OK

This configuration variable allows you to open an indexed file without
specifying all of that file’s alternate keys. When it is set to “1” (on, true, yes),
you may open an indexed file that contains more keys than are described by

Configuration variables m H-67

your program, and no file error will occur. However, you will still receive a
file error if you open a file that does not contain all of the keys described in
your program. EXTRA_KEYS_OK is useful when you are adding new
alternate keys to an existing file because you do not need to rework your
existing programs. This configuration variable is ignored if you use a
Version 1.4 or earlier ACUCOBOL-85 object file.

The default value is “0” (off, false, no).

F10_IS_MENU

By convention, the F10 key is used by Windows and Windows NT to activate
program menus. This action is controlled automatically by the program. The
F10_IS_MENU configuration variable allows you to set the runtime to
handle the F10 key as a user defined-key. The default setting is “1” (on, true,
yes). When you change the setting to “0” (off, false, no) you inhibit the menu
activation capability. For example, action of Shift-Ctl-F10 may only be
defined by the user if F10_IS_MENU is set to “0”, otherwise this key
combination activates context menus. This variable does not affect the
behavior of the mouse. However, the mouse continues to work with the
menu.

FAST_ESCAPE

This configuration variable determines how long the runtime will wait after
receiving an escape key before deciding that the key is actually intended as
an escape key, and not as the start of a function key sequence. (Increasing the
number causes the runtime to wait longer.) The default setting varies with
the machine. It is generally between 20 and 100.

This variable has no effect on Windows systems.

H-68 m Configuration Variables

FIELDS_UNBOXED

On most GUI systems, including Microsoft Windows, entry fields are boxed
by default. This can cause problems when you are converting applications
that have fairly full screen displays, because the box adds roughly 50% to the
height of the field. This can make it difficult to fit all the existing fields onto
the user’s screen.

FIELDS_UNBOXED provides a global method of removing boxes on entry
fields. If this field is set to “1” (on, true, yes), the system does not display a
box around entry fields. Technically this has three effects:

1. Ifitis set when the entry field is initially created, the NO-BOX property
is automatically implied.

2. Ifitis set when a floating window is initially created, the window’s
LABEL-OFFSET property is given a default value of “0”.

3. When an entry field is measured by the CELL phrase of the DISPLAY
FLOATING WINDOW statement, its height is measured without the
box.

On character-based systems, setting this variable to “1” (on, true, yes)
eliminates the display of the left and right delimiting symbols used in the
textual emulation of entry fields. (See GUI_CHARS for more information
about these delimiting symbols). Eliminating these symbols affects the
location at which the entry fields are displayed on character-based systems.

The default value for this option is “0” (off, false, no).

This variable can be overridden for individual entry fields in the program
with the BOXED style in the entry field definition.

FILE_ALIAS_PREFIX

This variable allows you to specify a list of strings to prefix to a file name
before searching for that name in the configuration file or environment. Data
and code file search paths are described in more detail in Section 2.8.2 of the
ACUCOBOL-GT User’s Guide.

Configuration variables m H-69

When searching for a file alias:

1. The runtime constructs the file alias name by prepending the first string
listed in FILE_ALIAS_PREFIX to the file name and searches for that
name in the environment or configuration file.

2. If the name is not found, the runtime constructs a new name by
prepending the second string in FILE_ALIAS_PREFIX to the file
name and searches for that alias.

This process is repeated with each string in FILE_ALIAS_PREFIX until a
file alias name is found or the end of the list is reached.

For example, with:
SELECT filel-name ASSIGN TO “FILE1™.

by default, the runtime looks for a configuration or environment variable
named “FILE1” and, if found, substitutes its value for the file name. If you
specify:

FILE_ALIAS_PREFIX ":DD_

the runtime first looks for “FILEL” and, if not found, looks for “DD_FILE1”.

The default value of FILE_ALIAS PREFIX is an empty string (“”).
Specifying an empty string as an entry in FILE_ALIAS_PREFIX causes the
runtime to search for the file name itself as an alias name. Up to 4096
characters can be specified for the value of this variable.

Note: Separate strings by one or more spaces. A space is a valid separator
on all systems. On UNIX systems, you can also separate entries with a
colon. On Windows systems, a semicolon can be used and on VMS
systems, a comma can be used. Strings can be enclosed in quotation marks.
You can specify an empty string using two consecutive quotation marks.

Note on using with EXPAND_ENV_VARS:

If you use the EXPAND_ENV_VARS configuration variable and the file
name includes a dollar sign ($), the FILE_ALIAS_PREFIX logic is applied
to the environment variable name. For example, if EXPAND_ENV_VARS
is set to”1” (on, true, yes), “SFILE1” and “FILEL” are treated the same.

H-70 m Configuration Variables

For example, with:

EXPAND_ENV_VARS=1
FILE_ALIAS_PREFIX=DD_

the following statement,
SELECT filel-name ASSIGN TO "DIR1/$DIR2/FILE1".

causes the runtime to search for an environment or configuration variable

named “DD_DIR2” (instead of “DIR2”) and, if found, substitute its value for
“$DIR2”.

FILE_CASE

This configuration variable allows you to adjust the case of data file names.
Possible values include:

NONE (the default) data file names are not translated
or “0”

LOWER data file names are translated to lower case,
or “1” including directory (path) elements

UPPER data file names are translated to upper case,
or “2” including directory (path) elements

LOWER_BASE data file names are translated to lower case,
or“3” excluding directory (path) elements

UPPER_BASE data file names are translated to upper case,
or “4” excluding directory (path) elements

Translation occurs before the FILE_PREFIX and FILE_SUFFIX
configuration options are applied. You should make sure that those variables
specify the correct case.

File name translation does not occur if the file name starts with -F, -D, or -P.
(See ACUCOBOL-GT User’s Guide, Section 2.9, “File Name
Interpretation™).

Configuration variables m H-71

FILE_CONDITION

This configuration variable can be used to alter the File Status value of an
individual file status condition. We recommend that you use one of the four
pre-defined file status code sets instead. If you need to change an individual
status code, contact Technical Support for assistance.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

FILE_IO_PEEKS_MESSAGES

This configuration variable tells the Windows runtime to automatically call
the Windows PeekMessage() API function between file operations. When
the FILE_10_PEEKS_MESSAGES configuration variable is set to “1” (on,
true, yes), the runtime calls PeekMessage() with flags that tell it to simply
check for messages without removing them from the message queue. This
operation tells Windows that the application is alive and responding. The
default value of the variable is “0” (off, false, no).

FILE_IO_PROCESSES_MESSAGES

This configuration variable can be used to control whether the runtime
processes system messages while performing file 1/0 operations. When it is
set to “1” (on, true, yes), the runtime will process system messages while
doing file 1/0 operations. This was the default behavior prior to Version 3.2.
Note that the processing of system messages during file 1/0 should only be
enabled under special conditions, as described below.

To understand when it is appropriate to set this configuration variable, it is
important to be familiar with system messages and how the
ACUCOBOL-GT runtime and your program respond to them. For the
purposes of this discussion, system messages are the mechanism used by
graphical systems, such as Windows, to communicate with your program.
They are what the operating system uses to facilitate the communication of
user and system activity to the program. They are similar to
ACUCOBOL-GT’s events. Prior to Version 3.2, the runtime automatically

H-72 m Configuration Variables

processed system events during file operations. This allows the user to
manipulate an application window (for example, minimizing it) while file I/
O operations are performed. If the application suspends the processing of
system messages, the system appears to the user to be frozen.

Starting with Version 3.2, this feature is turned off by default. This is
because the processing of messages outside of an ACCEPT statement can
cause flaws in a program that uses multithreading or modeless windows. It
also creates a state where event procedures can be called at unexpected times.
In addition, the controls of the application are not actually functional, though
they appear to be working to the user.

Generally speaking, setting this variable is useful only when the application
does not use multithreading, modeless windows, or event procedures.

Note: The proper way to process system messages while performing other
operations is to start a second thread that performs an ACCEPT statement
while the main thread continues with the work. This allows the system to
process messages under control of an ACCEPT, which provides a
well-defined point in your program from which event procedures can be
called.

FILE_PREFIX

This variable defines a set of directories that the runtime searches to locate a
data file. The default value is “.” (current working directory). Data and code
file search paths are described in more detail in Section 2.8.2 of the
ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths. Entries are separated
by one or more spaces. A space is a valid separator on all systems.
Alternatively, on UNIX systems you can also separate entries with a colon.
On Windows systems a semicolon can be used. On VMS systems a comma
can be used.

You can specify a directory path that contains embedded spaces if you
surround the path with quotation marks. For example:

FILE_PREFIX C:*“Sales Data” C:\“Customers”

Configuration variables m H-73

Remote name notation is allowed for the FILE_PREFIX variable if your
runtime is client-enabled (for indexed files, remote name notation requires
the Vision file system). See ACUCOBOL-GT User’s Guide Section 5.2.1
and Section 5.2.2 for more information about client-enabled runtimes and
remote name notation.

Up to 4096 characters can be specified for the value of this variable.

FILE_STATUS_CODES

This variable determines which set of file status codes to use. For details, see
the ACUCOBOL-GT User’s Guide, section 2.8.3, “File Status Codes.” The
default value is “85”.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

FILE_SUFFIX

The value of this variable is automatically appended to data file names that
do not contain an explicit suffix. A suffix is the portion of a file name that
follows a period. For example, if FILE_SUFFIX is set to “DAT”, then
opening a file called “EMPFILE” would actually open the file called
“EMPFILE.DAT”. The default value is empty.

FILE_TRACE

This variable allows you to start file tracing without opening the debugger.
Set this variable to a non-zero value to save information about all file OPENSs,
READs, and WRITES in the error file. This is equivalent to specifying “tf n”
from the debugger (where n is an integer). The default is “0.” See section
3.1.4, “File Tracing,”of the ACUCOBOL-GT User’s Guide for more
information about the file trace feature.

H-74 m Configuration Variables

FILE_TRACE_FLUSH

Set this variable to “1” (on, true, yes) to flush the error file after every
WRITE statement. This is equivalent to using “t flush” from the debugger.
The default is “0” (off, false, no). See section 3.1.4, “File Tracing,” of the
ACUCOBOL-GT User’s Guide for more information about the file trace
feature.

FILE_TRACE_TIMESTAMP

Set this variable to “1” (on, true, yes) to cause file trace timestamp
information to be recorded in the error file. When this variable is enabled, a
timestamp is placed at the beginning of every line in the trace file. The
format of the timestamp is: HH:MM:SS.mmmmmm, where “mmmmmm” is
the finest resolution that the runtime can obtain from the system. The default
setting of this variable is “0” (off, false, no).

Timestamp information is included only when file trace information is
directed to a file. Timestamp output can add significant 1/0 overhead and
may have a noticeable impact on performance.

filename

This configuration variable allows you to map Vision 4 and 5 files to a
different directory. Vision examines the name of each physical file it
attempts to open to determine if the file should be mapped to a different
directory. The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores.

For example, assume you open “/usr/data/custfile.dat”, and a configuration

variable “CUSTFILE_DAT” has the value “/usr2/data/custfile.dat”. Vision

treats this value as the actual file name to open, and “custfile.dat” ends up in
the “/usr2/data” directory rather than “/usr/data”.

Because the extension is included in the configuration variable name, you can
place different parts of a multi-segment file in different directories. If no
name is found for a particular segment, then the segment name is used

Configuration variables m H-75

unchanged. Note that you can move parts of a file around by simply moving
the segment and adding/modifying its corresponding configuration name.
Name mapping is done directly by Vision (as opposed to, for example,
FILE_PREFIX, which is handled by the runtime). As a result, all programs
that use Vision (such as vutil and vio) use this variable when present. For
programs other than the runtime, the variable must be set in the environment
rather than the configuration file.

Two configuration variables can affect the value of this variable. They are:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.

This variable is similar to the filename_VERSION configuration variable.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, Section 2.8.1 for
more information.

filename DATA FMT

This configuration variable specifies a format for naming the data segments
of Vision 4 and 5 files. (See filename_INDEX_FMT for details about
naming the index segments, as both variables should be set to corresponding
patterns). The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores, followed by the
“_DATA_FMT” string. Note that by design, this variable does not modify
the first specified data segment. The first data segment retains the originally
specified name. The filenames of the additional segments of a Vision file are
generated from the name of the initial data segment. The
filename_DATA_FMT variable allows you to change the way the hames of
the following data segments are formed, but the names still originate from the
name of the initial data segment. As long as the names are as expected (and
you have set filename_DATA_FMT and filename_INDEX_FMT
accordingly) the segments will be found properly.

Suppose that the regular name of your COBOL file is “/usrl/gl.dat”. The
variable you would use to set the data segment naming format for this file is
GL_DAT_DATA FMT.

H-76 m Configuration Variables

The variable must be set equal to a pattern that shows how to create the
segment names. The pattern shows how to form the base name and extension
for each segment. Part of this pattern is a special escape sequence (such as
%d) that specifies how the segment number should be represented. Choices
include %d (decimal segment numbers), %x (lowercase hexadecimal
numbers), %X (uppercase hexadecimal numbers), and %o (octal numbers).

For example, setting the variable GL_DAT_DATA_FMT=gl%d.dat would
result in data segments named /usrl/gl.dat (remember that the first data
segment is not affected), /usrl/gll.dat, /usrl/gl2.dat, and so forth.

Escape sequence definitions:

The %d in the value of the filename_DATA_FMT above is a printf-style
escape sequence. Most reference books on the C language contain an
in-depth explanation of these escape sequences, and UNIX systems typically
have a man page (“man printf”) that explains them in detail. Here are the
basics:

“%d” expands into the decimal representation of the segment number.

* “06Xx” expands into the hexadecimal representation (with lower case a-f)
of the segment number.

* “0pX” expands into the hexadecimal representation (with upper case
A-F) of the segment number.

* “00” expands into the octal representation of the segment number.

« You can add leading zeros to the number (to keep all the file names the
same length) by placing a zero and a length digit between the percent
sign and the following character. “%02d” would result in “00”, “01”,
“02”, and so forth, when expanded.

¢ To embed a literal “%” in the file name, use “%%".

Configuration variables m H-77

The escape sequence can be positioned anywhere in the file name, including
the extension.

Note: While the runtime checks for this segment naming variable in the
runtime configuration file as well as in the environment, utilities such as
vutil and vio check only the environment. Therefore, if you are using this
variable with the runtime and vio or vutil, you must set the variable in the
environment and not in the configuration file.

Two configuration variables affect the value of this variable:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, Section 2.8.1 for
more information.

filename FILESYSTEM

filename_FILESYSTEM is a synonym for filename_HOST. See the entry
for filename_HOST.

filename HOST

Note: filename_FILESYSTEM is a synonym for filename_HOST.

If the program opens an existing file or creates a new one, you can tell the
runtime the file system to use with that file. The Vision file interface is used
by default. You specify the file system with one of two configuration
variables: DEFAULT_FILESYSTEM, or filename_HOST (syn.
filename_FILESYSTEM). DEFAULT_FILESYSTEM specifies the default
file system for all files (see the entry for DEFAULT_FILESYSTEM).
filename_HOST specifies the file system for an individual file. For example,

filename_HOST filesystem

H-78 m Configuration Variables

assigns the specified data file to the named file system. Any file so assigned
uses the designated file system and not the one specified by
DEFAULT_FILESYSTEM. Filename must be the base name of the file and
cannot include the path or the file extension (any part of the name that
follows the first dot (“.””). For example, to specify that data file “IDX1.DAT”
be handled by the EXTFH interface, you would specify:

IDX1_HOST EXTFH

or
IDX1_FILESYSTEM EXTFH

You must specify only the base name of the file in filename.

To specify that the data file “DXML1.DAT” be handled by the XML
interface, you could specify:

DXML1_HOST XML

Note that XML can be specified only with sequential files.

filename INDEX_FMT

This configuration variable specifies a format for naming the index segments
of Vision 4 and 5 files. (See filename_DATA_FMT for details about
naming the data segments, as both variables should be set to corresponding
patterns). The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores, followed by the

“ INDEX_FMT?” string. Note that by design, this variable does not modify
the first specified index segment. The first index segment retains the
originally specified name. The filenames of the additional segments of a
Vision file are generated from the name of the initial index segment. The
filename_INDEX_FMT variable allows you to change the way the names of
the following data segments are formed, but the names still originate from the
name of the initial index segment. As long as the names are as expected (and
you have set filename_DATA_FMT and filename_INDEX_FMT
accordingly) the segments will be found properly.

Configuration variables m H-79

Suppose that the regular name of your COBOL file is “/usrl/gl.dat”. The
variable you would use to set the format for naming the file’s index segments
is GL_DAT_INDEX_FMT.

The variable must be set equal to a pattern that shows how to create the
segment names. The pattern shows how to form the base name and how to
form the extension for each segment. Part of this pattern is a special character
(such as %d) that specifies how the segment number should be represented.
Choices include %d (decimal segment numbers), %x (lowercase
hexadecimal numbers), %X (uppercase hexadecimal numbers), and %0
(octal numbers).

For example, setting the variable GL_DAT_INDEX_ FMT=gl%d.idx would
result in index segments named /usrl/gl0.idx, /usrl/gll.idx, /usrl/gl2.idx,
and so forth.

Escape sequence definitions:

The %d in the value of the filename_INDEX_FMT above is a printf-style
escape sequence. Most reference books on the C language contain an
in-depth explanation of these escape sequences, and UNIX systems typically
have a man page (“man printf”) that explains them in detail. Here are the
basics:

e “%d” expands into the decimal representation of the segment number.

* “0oX” expands into the hexadecimal representation (with lower case a-f)
of the segment number.

* “0pX” expands into the hexadecimal representation (with upper case
A-F) of the segment number.

» “90” expands into the octal representation of the segment number.

* You can add leading zeros to the number (to keep all the file names the
same length) by placing a zero and a length digit between the percent
sign and the following character. “%02d” would result in “00”, “01”,
“02”, and so forth when expanded.

e Toembed a literal “%” in the file name, use “%%”.

H-80 m Configuration Variables

The escape sequence can be positioned anywhere in the file name, including
the extension.

Note: While the runtime checks for this segment naming variable in the
runtime configuration file as well as in the environment, utilities such as
vutil and vio check only the environment. Therefore, if you are using this
variable with the runtime and vio or vutil, you must set the variable in the
environment and not in the configuration file.

Two configuration variables affect the value of this variable:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, Section 2.8.1 for
more information.

filename LOG

This configuration variable specifies individual log files to be used by the
transaction logging system. The format of the variable is:

filename_LOG logfilename

where filename is the base name of the data file, and logfilename is the name
of the log file. filename should not include any directory names nor a file
extension. logfilename can include the absolute or relative directory path
ending with the name of the log file. If the log file is not found, a new file is
created with the specified name. Note that logfilename can have remote
name notation.

FILENAME_SPACES

When this configuration variable is set to “1” (on, true, yes), filenames may
contain embedded spaces and the runtime considers the last non-space
character as the end of the name. The default is “1”. When this configuration

Configuration variables m H-81

variable is set to “0” (off, false, no), then filenames may not contain
embedded spaces and the name terminates at the first space character. For
example:

C:\temp dir\my file name

is read as:
C:\temp

This affects the behavior of the library routines that take a filename as an
argument:

C$CHDIR

C$COPY
C$DELETE
C$FILEINFO
C$FULLNAME
C$MAKEDIR
C$RESOURCE
CBL_COPY_FILE
CBL_CREATE_DIR
CBL_DELETE_DIR
CBL_DELETE_FILE
I$10

RENAME
WS$BITMAP
WS$KEYBUF
$WINHELP
WINSPLAYSOUND

filename_VERSION

This configuration variable sets the Vision file format on a file-by-file basis.
The filename is replaced by the base name of the file (the filename minus
directory and extension). The meaning of the variable is the same as for
“V_VERSION?”. This variable is useful if you want to have all your Vision
files in one format, with a few exceptions. For example, you might want to
maintain most of your files in Vision Version 3 format to conserve file

H-82 m Configuration Variables

handles, but have a few files in Version 5 format to take advantage of the
larger file size. Note that this variable only affects the file format when it is
created. You can always rebuild the file in another format later.

This variable (and the “V_VERSION” variable) is most helpful when you are
using transaction management. The transaction system does not record the
format of the created file if an OPEN OUTPUT is done during a transaction,
because the transaction system is not tied to any particular file system. If you
need to recover a transaction, the system will recreate the OPEN OUTPUT
files using the settings of the “VERSION” variables.

The behavior of this variable is affected by the settings of the configuration
variables V_STRIP_DOT_EXTENSION and
V_BASENAME_TRANSLATION.

e If V_STRIP_DOT_EXTENSION is set to “0” (off, false, no), Vision
does not remove any dot extension when replacing the base name of the
file. This can be useful if you have two files that share a common name
before their dot extension.

« If V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision
includes the entire path of the file in the base name. This can be useful if
you have files with the same names stored in different directories.

filesystem_DETACH

This configuration variable detaches any file system from the runtime. The
syntax is:

Filesystem_DETACH n

where filesystem corresponds to the first five letters of the file system name
and n is a non-zero value. Examples of file systems that may be detached
using this feature are:

Btrieve BTRIE_DETACH
C-ISAM C_ISA_DETACH
Informix INFOR_DETACH

SQL Server MSSQL_DETACH

Configuration variables m H-83

obBC ODBC_DETACH
Oracle ORACL_DETACH
RMS RMS_DETACH
Sybase SYBAS_DETACH
Vision VISIO_DETACH

The file systems may be detached only when the runtime is started, not
during execution. If you detach all file systems, the runtime will terminate
with an error message. For example, if you detach Vision with
VISIO_DETACH on a standard runtime, the runtime will terminate with this
message to std err: No file system available.

This feature automatically supports new file systems added to the runtime.

FLUSH_ALL

This configuration variable can be used to control the flushing of file buffers
to disk. It is one of several variables that control buffer flushing. See the
other entries in this appendix that begin with “FLUSH”.

This variable can take a combination of the following values:

1 (on, true, yes, all)
0 (off, false, no)
MASS_UPDATE
REMOTE

When this variable is set to “1”, files opened for MASS-UPDATE are flushed
along with other files. This means that the local cache used to hold the
MASS-UPDATE buffers is flushed whenever the operating system cache is
flushed.

When this variable is set to the default value of “0”, files opened for
MASS-UPDATE are not flushed.

Setting this variable to MASS_UPDATE causes the runtime to flush local
files, including files opened with MASS-UPDATE.

H-84 m Configuration Variables

Setting this variable to REMOTE causes the runtime to flush local files not
opened with MASS-UPDATE, as well as remote files.

You can also set this variable to a combination of values. For example,
FLUSH_ALL MASS_UPDATE REMOTE

causes the runtime to flush all local files, including those opened with
MASS-UPDATE, as well as remote files.

Note on bitmask integer values:

Internally, the value of this configuration variable is converted to a bitmask,
and its bitmask integer value is determined by the keywords used to set it.
Keywords translate into integer values as follows:

FALSE, NO and OFF are equivalent to “0”

MASS_UPDATE is equivalent to “1”

REMOTE is equivalent to “2”

ALL, TRUE, YES and ON are equivalent to “~1”

When the runtime is started with the “-I” and “-e errfile” arguments, only the
integer value of FLUSH_ALL is recorded in the error file.

Configuration variables m H-85

FLUSH_COUNT

This configuration variable allows you to flush the disk buffers after a certain
number of file updates has occurred. For example, if you set this
configuration variable to “10”, then the buffers will be flushed after every ten
updates to disk files. Only indexed files are counted. When the buffers are
flushed, the exact action depends on the operating system:

Windows Buffers are written to disk and the file’s directory
information is updated. This is roughly equivalent
to the action that occurs when a file is closed.

UNIX The “sync” system routine is called. This causes all
of UNIX’s cache to be written to disk. This
operation is only scheduled--it occurs when the
system finds time to do it. Because the system does
this every 30 seconds anyway, probably the only
reason to request a call to “sync” is if you have
unreliable power.

VMS VMS does not have a system cache, so this
configuration variable has no effect.

Note: Setting this variable to a low non-zero value will improve the
chances of recovering a file after a power failure, but will decrease
performance. If FLUSH_COUNT is set to “0”, then the system buffers are
flushed only when a file is closed. The default setting is “0”.

FLUSH_ON_ACCEPT

This configuration variable causes the system’s buffers to be flushed
whenever a Format 1 or Format 2 ACCEPT statement is executed. You turn
on this configuration variable by setting its value to “1” (on, true, yes). The
default setting is “0” (off, false, no). Note that this variable is not
recommended for multi-user systems because of the performance penalty.

H-86 m Configuration Variables

FLUSH_ON_CLOSE

This configuration variable applies only to Windows systems. When this
variable is set to “1” (on, true, yes), the cache buffers will be flushed to disk
when the file is closed. Versions prior to 4.3.1 flushed the cache buffers for
safety reasons. This, however, reduced system performance, significantly in
some programs. This feature is turned “off” by default.

FLUSH_ON_COMMIT

When this configuration variable is set to “0” (off, false, no), the COMMIT
verb will not request the host operating system to flush all buffers to disk.

If flushing is prevented, COMMIT and UNLOCK ALL have the same effect.
The default setting is “0” (off, false, no).

FLUSH_ON_OPEN

FONT

This variable causes the system’s buffers to be flushed on the first WRITE,

REWRITE, or DELETE that occurs after an indexed file is opened for 1/0.

The purpose of this is to update the “user count” field in the file’s header to
keep itaccurate. When this configuration variable is setto “1” (on, true, yes),
this feature is turned on; when set to “0” (off, false, no), it’s turned off. The
default setting is “0”.

This variable has meaning only on graphical systems such as Windows. You
determine the font used for accepting and displaying data on screen by setting
the configuration variable FONT to one of these values:

1 Use the graphical font (default). The character set for this font is
referred to as the “ANSI” set.

2 Use the “OEM?” character set (MS-DOS font).

Configuration variables m H-87

This setting must be made in the configuration file before you execute the
program. Altering the value of FONT from inside your program has no
effect.

By default, data is stored on disk using the same character set that was used
when the data was entered. Thus, if you use the graphical font to accept data,
that data is stored in the ANSI character set. If you use the MS-DOS font,
then data is stored in the OEM character set.

Data moved into a graphical environment from MS-DOS applications was
originally stored in the OEM character set. What happens if you now choose
the graphical font? As long as your application uses only standard ASCII
characters, the underlying representation is the same, and so the data is
completely interchangeable. See the variable TRANSLATE_TO_ANSI if
you are using non-ASCII characters.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

FONT_AUTO_ADJUST

This variable allows you to disable an automatic font adjustment that is
applied on Windows machines. The runtime attempts to adjust automatically
for differences in the relative proportions between “small fonts” and “large
fonts.” You can inhibit the adjustment by setting this variable to “0” (off,
false, no).

The adjustment is provided because the internal scaling of fonts under
Windows changes between “small” and “large” fonts. Under small fonts,
digits are slightly wider than the average character. Under large fonts, digits
have the same width as the average character. ACUCOBOL-GT uses the size
of the font’s width for many calculations. Thus, the change in relative
proportion within a single font can cause problems for screens designed for
the small fonts. For example, a frame may not be big enough to hold its
contents. To prevent this problem, the runtime ensures that the “standard
font measure” is always a bit larger than the average character width in a font.
To disable this adjustment, set this variable to “0”.

H-88 m Configuration Variables

Note: This variable computes the width of a printer font in the same way
that the width of a screen font is computed. You can suppress this behavior
by compiling with the “-C43” option.

FONT_SIZE_ADJUST

This variable allows you to adjust the size of the standard font measurement
that is computed for graphical controls (applies to variable-pitch fonts only).
The value of FONT_SIZE_ADJUST is added directly to the computed
standard font size. For example, a setting of “1” adds one pixel to the
computed width of the font. Because the standard font measure is used to
compute the width of nearly all controls, any adjustment made by this
variable will have a significant impact on the layout of your screens.

The adjustment to the standard font measure is made after the wide font
measure is computed (this is important to note because the wide font measure
depends on the standard font measure; to change the wide font measure, use
the FONT_WIDE_SIZE_ADJUST configuration variable).

After applying the adjustment, the runtime checks and ensures that the
computed font measure is not less than one (1) or greater than the widest
character in the font. If you find that the default size of most controls is
slightly smaller than you prefer, you might try setting
FONT_SIZE_ADJUST to a small value (typically 1).

Generally, it is recommended that FONT_SIZE_ADJUST (and
FONT_WIDE_SIZE_ADJUST) be left at its default value of “0”. You can
also use negative values, but there is rarely a need to do so.

To optimize performance, the runtime computes the font sizes only
occasionally. Although you can change the variable dynamically at runtime,
the exact time when the new setting will take effect is difficult to predict. For
this reason, we recommend that you either set it in your program prior to
constructing your initial screen, or directly in the configuration file.

Configuration variables m H-89

Note: This variable computes the width of a printer font in the same way
that the width of a screen font is computed. You can suppress this behavior
by compiling with the “-C43” option.

FONT_WIDE_SIZE_ADJUST

This variable allows you to adjust the size of the wide font measurement
(applies to variable-pitch fonts only). The wide font measure is normally
used when the runtime is measuring small or upper-case entry fields. The
value of FONT_WIDE_SIZE_ADJUST is added directly to the computed
wide font size.

After applying the adjustment, the runtime checks and ensures that the
computed wide font measure is not smaller than the (adjusted) standard font
measure or larger than the widest character in the font. If your upper-case
fields are not quite as wide as you prefer, try setting this variable to a small
value (typically 1 or 2).

Generally, it is recommended that FONT_WIDE_SIZE_ADJUST (and
FONT_SIZE_ADJUST) be left at its default value of “0”. You can also use
negative values, but there is rarely a need to do so.

Note: In order to improve performance, the runtime computes the font
sizes only occasionally. Although you can change the variable dynamically
at runtime, the exact time when the new setting will take effect is difficult
to predict. For this reason, we recommend that you either set it in your
program prior to constructing your initial screen, or directly in the
configuration file.

H-90 m Configuration Variables

FOREGROUND_INTENSITY

Use this variable to set the default foreground intensity.

0 The runtime uses the default intensity for the output device. For
Windows the default is low-intensity.

1 The runtime uses low-intensity.

2 The runtime uses high-intensity.

If your program specifies a default intensity, then the runtime will never
assign high-intensity if the foreground is black. As with the background, we
do this to prevent a washed-out appearance. There’s one exception to this
rule. The runtime will assign high-intensity to a black foreground if the
output device does not support independent background intensities. In this
case, the device will typically show the background in high-intensity and
keep the foreground black. Note that if your program explicitly sets
high-intensity, then that will be used regardless of the foreground color. The
default value for this variable is “0”.

FREEZE_AX_EVENTS

This configuration variable applies only in a thin client environment. During
the processing of an ActiveX event, the Windows and thin client runtimes
attempt to suspend subsequent ActiveX events until the first event has
completed. By default, the thin client runtime also attempts to suspend
ActiveX events whenever the application is not processing an ACCEPT
statement. To suspend and resume events, the runtime calls the ActiveX
function 10leControl::FreezeEvents().

You might want to disable calls to “FreezeEvents” for ActiveX controls that
discard events while in a “FreezeEvents” state. For example, if a user
double-clicks in an ActiveX control, the control might generate three events:
mouse-down, mouse-up, and double-click. If the COBOL program
terminates an ACCEPT statement in response to the mouse-down event, the
runtime calls FreezeEvents(), and the ActiveX control might discard the
mouse-up and double-click events.

Configuration variables m H-91

You can disable the FreezeEvents() logic by setting the
FREEZE_AX_EVENTS runtime configuration variable to “0” (off, false,
no) in the configuration file or programmatically with the SET verb. The
default value of FREEZE_AX_EVENTS is “1” (on, true, yes).

Note: The FreezeEvents() logic protects against unexpected nesting of
ActiveX events and against event procedures running unexpectedly during
a CREATE, DISPLAY, MODIFY, INQUIRE, or other operation that waits
for results from the thin client. Turning this feature off can cause
unexpected behavior.

For more information about ActiveX controls in a thin client environment,
refer to the AcuConnect User’s Guide.

FULL_BOXES

This variable applies only in text-mode environments. When FULL_BOXES
issetto “1” (on, true, yes) a full, four-sided box is drawn around boxed entry
fields. By default, to save screen space on character-based systems, only the
left and right edges of a box are drawn around boxed entry fields. The default
value of FULL_BOXES is “0” (off, false, no).

Note: This variable requires that the boxed entry field be defined as
MULTILINE.

GRID_BUTTONS_CAUSE_GOTO

This variable applies to graphical programs that include one or more paged
grid controls. When GRID_BUTTONS_CAUSE_GOTO is set to “1” (on,
true, yes) and a user clicks a scroll button on the side of a paged grid, the
runtime checks to see if the grid has focus. If the grid does not have focus,
the runtime gives the grid the focus, generating any events that result
normally from that focus change. This usually means that a CMD-GOTO
event is sent to the COBOL program. The default value for this variable is
“0” (off, false, no).

H-92 m Configuration Variables

GRID_NO_CELL_DRAG

This variable applies to graphical programs that include grid controls and sets
the NO-CELL-DRAG style as the default behavior for all grid controls, as
opposed to specifying NO-CELL-DRAG style individually for each grid
control. To configure the NO-CELL-DRAG style as the default setting, set
the GRID_NO_CELL_DRAG configuration variable to “1” (on, true, yes).
The default value is “0” (off, false, no) and will enable the user to drag a cell
in a GRID control unless you specify a NO-CELL-DRAG style on that
particular grid control.

GUI_CHARS

This variable configures a character-based host runtime to substitute some
specific characters when it is performing textual emulation of graphical
controls. If the GF-GUI-MAP terminal database entry doesn’t exist or has
the character “0” (zero) in a particular character’s position, the runtime
examines the GUI_CHARS variable to determine what character to display.
GUI_CHARS is used only by character-based host runtimes.

The value of GUI_CHARS is a list of 14 space delimited characters strictly
ordered to correspond with the following graphical elements (defaults are in

parentheses):

1. System menu button *)
2. Title left corner +)
3. Title right corner (+)
4. Title fill character =)
5. Minimizer)

6. Maximizer @)
7. Scroll bar up button @)
8. Scroll bar down button (v)
9. Scroll bar left button <)
10. Scroll bar right button >)
11. Scroll bar page area ()

Configuration variables m H-93

12. Scroll bar slider #)
13. Left entry field box D
14. Right entry field box M

The characters may be specified in ASCII or decimal form. To specify an
ASCII value, precede the value with a space. For example, to use “-” in place
of “=" for the title fill character, make the following entry in the runtime
configuration file:

GUI_CHARS 000-000000OO0OOOO

or
GUI_CHARS 0 0 O -

The presence of a “0” (zero) following a space, causes the default character
to be used.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

HELP_PROGRAM

If the program uses help automation (see Book 2, ACUCOBOL-GT User
Interface Programming, Help Automation), this variable should be
assigned the name of the help processor program. The help processor’s entry
point is always a COBOL program. The program can be the help processor
itself, or a shell to some other help processor, such as Windows Help. The
default value of HELP_PROGRAM is “AcuHelp”.

HINTS_OFF

Controls how long the pop-up hint is displayed before being erased. See
Section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming for
a description of pop-up hints. Set this variable to the number of hundredths

H-94 m Configuration Variables

of seconds to display the hint. The default value is “400” (four seconds). If
you set this value to “0”, the hint will remain displayed until some other event
(such as using the button or typing) causes it to disappear.

HINTS_ON

Controls how long the mouse must remain stationary over a bitmap button
before displaying its pop-up hint. For a description of pop-up hints, see
Section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming.
Set this variable to the number of hundredths of a second that the mouse must
be stationary. The default value is “75” (three-quarters of a second). If you
set this variable to “0”, pop-up hints will not be displayed. Setting this
variable to “1” or “2” is not recommended because it may result in the pop-up
hint being displayed while the mouse is moving across the button face
(because the mouse motion events may occur less than 0.02 seconds apart).

HOT_KEY

ACUCOBOL-GT offers two methods for assigning hot keys--the HOT_KEY
variable, described here, and the KEYSTROKE hot-key format described in
the ACUCOBOL-GT User’s Guide, Section 4.3.2.2.

Using the HOT_KEY variable described below, you can easily assign a
whole range of keys to a single hot-key program and determine which key
activated the program. This lets you write a single program that handles an
entire menu. Each menu item can act as a “hot key” to call this program.

This HOT_KEY format differs from the KEYSTROKE hot-key described in
the User’s Guide in three ways:

* You assign a hot key by referencing its exception value instead of
referencing its key code. Thus, if you assign the same exception value to
several individual keys, you can associate these keys with the same
hot-key program by making one COBOL configuration file entry.

Similarly, menu items and individual keys can be assigned the same
exception value, and then associated with the same hot-key program in a
single configuration file entry.

Configuration variables m H-95

* You may assign a range of exception values to activate the same
program. You could use this to write a menu handler by assigning all of
your menu items to a unique range and then assigning that range to a
single hot-key program.

e A hot-key program activated using the HOT_KEY format is passed an
additional parameter. This third parameter contains the value of the
exception key that activated the program. This is passed as a COMP-1
data item.

Use this variable to associate an exception value, or range of values, with a
program. HOT_KEY has the following format:

HOT_KEY program = valuel [, value2]

where program is the name of the program to run, valuel is the lower (or
only) exception value that activates the program, and value2 is the upper
value of the activation range. Value2 may be omitted,; if it’s used it must
include the separating comma. You must place program in single or double
quotes if you require a lower-case program name.

For example, to assign a program called “mymenu” to exception values 100
through 200, use the following entry:

HOT_KEY “mymenu” = 100, 200

A special exception value named TIMEOUT may be specified as the first
exception value. When this value is used as the first exception value for a
HOT_KEY program, the runtime will execute the named program whenever
an ACCEPT BEFORE TIME times out. When that occurs, the second
exception value is ignored.

Remote name notation is allowed for the HOT_KEY variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide Section 5.2.1 and
Section 5.2.2 for more information about client-enabled runtimes and remote
name notation.

Multiple HOT_KEY entries may reference the same program. This allows
you to specify noncontiguous activation ranges. (Be aware that no more than
16 hot-key entries can be included in the COBOL configuration file. Using a
contiguous range of exception values assigns many keys while counting as
only one entry towards the limit.)

H-96 m Configuration Variables

If you specify a valuel value of “0”, then all hot-key references to program
are removed. Within a given run unit, this is the only way to remove the
assignment of an exception value to a hot-key program after it has been
assigned. You will probably use SET ENVIRONMENT in your source code
to do this.

If you assign multiple hot-key programs to the same exception value, the
results are undefined.

You may assign different hot keys using both the HOT_KEY variable,
described here, and the KEYSTROKE hot-key format described in the
ACUCOBOL-GT User’s Guide, Section 4.3.2.2. The results are undefined
if you assign the same key using both formats. The total number of hot-key
entries defined by both methods cannot exceed 16.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

HP_TERMINAL_ATTRIBUTE_HANDLING

When set to “1” (on, true, yes), if the previous character was written to a line
other than the current one this variable causes the runtime to set the attribute
for the character to be written even if the attribute has not changed. When set
to “0” (off, false, no), this variable causes the runtime to behave as it always
has. For example, if the terminal attribute has not changed then it will not be
set again. The default setting is “0” (off, false, no).

HTML_TEMPLATE_PREFIX

This variable is used to specify a series of directories for locating HTML
template files. This variable is similar to FILE_PREFIX and
CODE_PREFIX. It specifies a series of one or more directories to be
searched for the desired HTML template file. The directories are specified as
a sequence of space-delimited prefixes to be applied to the file name. All
directories in the sequence must be valid names. The current directory can be
indicated by a period (regardless of the host operating system). This is the
default.

Configuration variables m H-97

Note: Remote name notation is not allowed for the
HTML_TEMPLATE_PREFIX variable, even if your runtime is
client-enabled.

ICOBOL_FILE_SEMANTICS

ICON

This variable affects the behavior of indexed and relative files when
reversing direction after reading past the beginning or end of a file.
Normally, if you perform a series of READ NEXTSs that reach to the end of
the file (returning file status “10”), a subsequent READ PREVIOUS will
return the last record in the file. The file pointer’s position after each READ
NEXT is just past the end of the last record. Similarly, reading past the
beginning of the file and then doing a READ NEXT will return the first
record in the file.

Under ICOBOL, these conditions produce different results. The record
returned by the READ PREVIOUS is the second-to-last record in the file,
and the record returned by the READ NEXT is the second record in the file.
Essentially, when a series of READs passes either end of the file, the record
pointer remains on the first or last record.

Setting ICOBOL_FILE_SEMANTICS to “1” (on, true, yes) will cause the
runtime to emulate ICOBOL’s handling. This is useful when porting
ICOBOL programs to ACUCOBOL-GT. This option is effective only in
programs that have been compiled for ACUCOBOL-85 2.0, or later. The
default value is “0” (off, false, no).

This variable has meaning only on graphical systems such as Windows. Use
this variable to designate a program’s minimized icon. (By default, it uses the
non-debugger icon provided with ACUCOBOL-GT.) Set ICON to the name
of the file that contains the icon. This file should be an “.1CO” file that
contains a 16-color icon. (Although the file may contain icons in other

H-98 m Configuration Variables

formats, the runtime accesses only the 16-color icon.) The icon should be
created using an icon editor like the one in the Windows Software
Development Kit.

For example, if your custom icon were contained in the file
“PAYROLL.ICQO” in the directory \ACCT\ICONS, you would add the
following line to your COBOL configuration file:

ICON \ACCT\ICONS\PAYROLL.ICO

The maximum icon size that can be used with the ICON variable is 32 x 32
bits. The runtime uses the first icon it finds in the icon file that fits its
maximum. If that icon is larger than the maximum, a memory access
violation may occur.

Note: The ICON configuration variable determines the icon used only
when your application is minimized. It does not determine the icon
displayed by the Program Manager.

IMPORT_USES_CELL_SIZE

This variable is used when importing graphical screens into the AcuBench
Screen Designer using the screen import utility.
IMPORT_USES_CELL_SIZE allows you to choose whether fields are
measured using the actual cell size of the imported screen or measured in
10-pixel by 10-pixel cells. The runtime checks this variable only if you are
importing screens. When IMPORT_USES_CELL_SIZE is set to the default
value of “1” (on, true, yes), the screen import utility captures the actual cell
size used to create windows. If this variable is set to “0” (off, false, no), the
screen import utility outputs information based on 10-pixel by 10-pixel cells.
Note that there is no need to set this variable when importing character
screens, which should always import with a cell size of 10-pixel by 10-pixel
cells. See the AcuBench documentation for more information on importing
screens.

Configuration variables m H-99

INACTIVE_BORDER_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of the characters that form the border (box) around an inactive
floating window. INACTIVE_BORDER_COLOR can be set to a variety of
numeric values that express combinations of color and video attributes. See
the documentation for the COLOR phrase in the “Common Screen Options”
section of the ACUCOBOL-GT Reference Manual (Section 6.4.9).

If INACTIVE_BORDER_COLOR is set to “0”, the inactive window’s
border is drawn with the colors and video attributes specified in the COBOL
program when the window is first created. The default value is “0”.

INCLUDE_PGM_INFO

This variable causes additional program information to be added to the string
passed to COBOL error procedures.

When INCLUDE_PGM_INFO is set to “1” (on, true, yes) the string passed
to COBOL error procedures is prepended with the current program name and
the address of the program failure. The address may not be exactly the same
as that in the COBOL listing, but it will be very close. (The given address is
the actual current program counter, which is typically slightly advanced from
the line on which the fault occurred.) When INCLUDE_PGM _INFO is set
to the default, “0” (off, false, no), the string contains only the text of the
intermediate error message.

For more about COBOL error procedures, see the entry for the
CBL_ERROR_PROC in Appendix I.

INPUT_STATUS_DEFAULT

The value of this variable is returned when an ACCEPT FROM INPUT
STATUS statement is executed on a machine that cannot determine the input
status of the terminal. This can be used to make a running program behave
correctly on a new machine. The value must be a single digit. The default
value is “0”.

H-100 = Configuration Variables

If the input is redirected (not attached to a terminal), the SCRIPT_STATUS
configuration variable determines whether ACCEPT FROM INPUT
STATUS returns the value of INPUT_STATUS _DEFAULT or returns the
actual status of the input file.

INSERT_MODE

This variable determines whether or not keystrokes are inserted in front of
any existing text when the user types an entry. Set this variable to “1” (on,
true, yes) to enable insertion. The default value is “0” (off, false, no), which
causes typing to replace existing text.

The user can change the state of INSERT_MODE with various key actions.
For example, pressing <insert> can enable insertion. This variable has no
affect on Windows controls.

INTENSITY_FLAGS

This variable takes effect only if you use COLOR_TRANS and only if it
changes your color scheme. After any color transformation is completed, the
runtime system then transforms the foreground and background intensities
according to the setting of INTENSITY _FLAGS. The value for this variable
is actually the sum of the values you choose from the list below. The default
value is “0”.

Configuration variables m H-101

Set INTENSITY_FLAGS to a combination of the following options by
adding their values together:

1 Exchanges the foreground and background intensities for each
other. This is useful if you are swapping a black background into
the foreground and want to assign the foreground’s intensity to
the background.

2 Causes the foreground intensity to be inverted. That is, if the
foreground is high-intensity, it becomes low-intensity.
Otherwise, it becomes high-intensity. This is useful if you are
transforming the background to white and the foreground to
black. Setting this will cause your low-intensity foreground to be
shown as gray while your high-intensity item will show as black.

4 Forces the foreground to high-intensity. This will not be applied
to a black foreground.

8 Forces the foreground to low-intensity. This may not be used if
“4” is used.

16 Causes the “4” or “8” setting to be used even if the

COLOR_TRANS setting had no effect. This is an override
switch that you can use to cause all foreground intensities to be
set to high or low.

32 Forces the background to high-intensity. This will not be applied
to a black background.

64 Forces the background to low-intensity. This may not be used if
*32” is used.

128 Forces the background to high-intensity, but only if it is black.
This may be used in conjunction with setting “32” or “64” for
special effects.

256 Causes the “32”, “64”, or “128” setting to be used even if the
COLOR_TRANS setting had no effect.

These transformations are performed in the order listed above. After this
variable is applied, the COLOR_TABLE setting is applied to the program.

H-102 = Configuration Variables

|IO_CREATES

Setting this configuration variable to a “1” (on, true, yes) causes the runtime
system to create a relative or indexed file when the program attempts to open
a nonexistent file for I1-O. This is provided for compatibility with some other
COBOL systems. The default value is “0” (off, false, no).

|O_FLUSH_COUNT

Use this variable to specify how often the runtime should flush pending
screen output during file operations. When set to a positive value, the
variable indicates the number of file operations to perform between each
screen flush. By default, IO_FLUSH_COUNT is set to 20.

For optimal performance, set I0_FLUSH_COUNT to zero (“0”). When
I0_FLUSH_COUNT is set to zero, COBOL file verbs will not automatically
flush pending screen output.

To reduce unexpected screen behavior, however, leave this variable at its
default setting. The overhead at the default setting is small.

|IO_READ_LOCK_TEST

When this variable is set to “1” (on, true, yes), the runtime will cause a read
with no lock to fail if the file is opened for I-O and the record is locked. This
setting will work with Vision files only. The setting is provided for
compatibility with some other COBOL systems. The default value is “0”
(off, false, no). The default behavior is to allow the read to succeed.

|IO_SWITCH_PERIOD

The value of this variable affects the frequency with which the program’s
threads change control based on file 10 activity. After a thread performs the
value of I0_SWITCH_PERIOD operations, the runtime switches control to

Configuration variables m H-103

another thread (if one exists). Note that because thread switching is also
affected by other program operations (such as display 1/0), it is impossible to
predict or absolutely control when a thread will change control.

The default value of IO_SWITCH_PERIOD is “10”. This value will provide
good results with most applications. To produce behavior that more closely
imitates that of Versions 6.1 and earlier, set IO_SWITCH_PERIOD to “1”.
Zero and negative values are invalid and will result in undefined behavior.

ISOLATE_FILE_CREATES

It is possible to experience unexpected file errors when trying to create a file
if another process is simultaneously creating or removing the same file name.
Setting ISOLATE_FILE_CREATES to “1” (on, true, yes) causes files to be
created with temporary names and then renamed when they are fully formed.
This prevents another process from interfering with the creation. This option
is effective only with Vision, and has undefined effects when used with other
file systems. We recommend that you use this option only if you are
experiencing unexpected errors when trying to create a file.

JAVA_LIBRARY_NAME

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. In this variable, specify the name of the DLL
that exports the Java Native Interface (JNI) API for loading the JVM. In the
case of JRE 1.4.2_04, the file is called “jvm.dIl” or “libjvm.so”. If the path
to the DLL is in the Path environment variable, the filename is sufficient
here; otherwise, this name should be fully qualified with the path.

For details see thee C$JAVA routine in Appendix I. For information on
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to
Interoperating with ACUCOBOL-GT.

H-104 = Configuration Variables

JAVA_OPTIONS

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. In this variable, specify the command-line
options that you want passed to the JVM when it is started.

Note that both CLASSPATH (java.class.path system property) and the
java.library.path must be configured in order for C$JAVA to locate the Java
class to run. The CLASSPATH is the location of “.jar” or “.class” files. The
java.library.path is the location DLLs or shared objects that are required
either by the runtime or by the Java Virtual Machine (JVM).

If these properties are not set in the environment, use JAVA_OPTIONS to set
CLASSPATH and java.library.path. For example:

JAVA_OPTIONS="-Djava. library.path="c:\usr\lib" -Xms128m
-Xmx128m -classpath /java/MyClasses/myclasses.jar”

JUSTIFY_NUM_FIELDS

KBD

When this variable is set to “1” (on, true, yes), all entry fields that have a
numeric or numeric-edited VALUE data item associated with them are right
justified (the same as if the RIGHT style were specified). You can inhibit this
for a given field by specifying the LEFT style for the entry field. Note that
this variable is examined only when each entry field is created and has no
further effect. The default value is “0” (off, false, no).

These variables can be used in conjunction with the KEYBOARD variable to
set global terminal attributes. For details, see the ACUCOBOL-GT User’s
Guide, section 4.3.2.1, “The KEYBOARD variable.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration variables m H-105

KEY_MAP

This is an obsolete variable that has been replaced by the KEYSTROKE
configuration variable. Its setting is ignored.

KEYBOARD

This variable sets global terminal attributes. For details, see the
ACUCOBOL-GT User’s Guide, section 4.3.2.1, “The KEYBOARD
variable.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

KEYSTROKE

This variable redefines the action of a particular keystroke. It can also
control mouse handling. For details on redefinition of keystrokes, see
section 4.3.2, “Redefining the Keyboard,” in Book 1, ACUCOBOL-GT
User’s Guide. Information on mouse handling is provided in Chapter 7 in
Book 2, ACUCOBOL-GT User Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

LC_ALL

This variable supports the transfer of double-byte character variables and
string literals and has meaning only on 32-bit Windows systems that support
double-byte characters (e.g., Asian Windows machines). It should not be set
in other environments and is needed only if you are passing data to a COBOL
program from another language, such as Visual Basic, and are using
C$GETVARIANT or C$SETVARIANT. By using the LC_ALL
configuration variable, you cause the runtime to set the locale to a particular

H-106 = Configuration Variables

value. You do not need to set this variable on Japanese machines. The
runtime automatically detects Japanese versions of Windows and
automatically sets the locale, LC_ALL, to “Japanese_Japan.932”.

The default value for this variable is “C”. The C locale assumes that all
characters are 1 byte and that their value is always less than 256. The value
of LC_ALL is in the format:

language[country[.code_page]]

or
.code_page

where “language” is one of the supported language strings, “country” is one
of the supported country or region strings, and “code_page” is the Windows
code page setting for the language and country. “country” and “code_page”
are optional. For example, the following are all equivalent:

LC_ALL Japanese

LC_ALL Japanese_Japan
LC_ALL Japanese_Japan.932
LC_ALL .932

For Korean double-byte character support under Windows use:
LC_ALL Korean

For Chinese use:
LC_ALL Chinese

or
LC_ALL Chinese-simplified

or
LC_ALL Chinese-traditional

The following are the supported language strings:

Chinese Chinese “chinese”
Chinese Chinese (simplified) “chinese-simplified” or “chs”

Chinese Chinese (traditional) “chinese-traditional” or “cht”

Configuration variables m H-107

Czech

Danish
Dutch

Dutch

English
English
English
English
English
English

Finnish
French
French

French

French
German
German
German
Greek
Hungarian
Icelandic
Italian
Italian
Japanese
Korean

Norwegian

Czech

Danish

Dutch (Belgian)

Dutch (default)
English (Australian)
English (Canadian)
English (default)
English (New Zealand)
English (UK)

English (USA)

Finnish
French (Belgian)
French (Canadian)

French (default)

French (Swiss)
German (Austrian)
German (default)
German (Swiss)
Greek

Hungarian
Icelandic

Italian (default)
Italian (Swiss)
Japanese

Korean

Norwegian (Bokmal)

“csy” or “czech”

“dan” or “danish”

“belgian”, “dutch-belgian”, or “nlb”
“dutch” or “nld”

LTS

“australian”, “ena”, or “english-aus”
“canadian”, “enc”, or “english-can”
“english”

“english-nz” or “enz”

“eng”, “english-uk”, or “uk”

“american”, “american english”,
“american-english”,

“english-american”, “english-us”,
“english-usa”, “enu”, “us”, or “usa”
“fin” or “finnish”

“frb” or “french-belgian”

“frc” or “french-canadian”

“fra” or “french”

“french-swiss” or “frs”
“dea” or “german-austrian”
“deu” or “german”

“des”, “german-swiss”, or “swiss”
“ell” or “greek”

“hun” or “hungarian”
“icelandic” or “isl”

“ita” or “italian”
“italian-swiss” or “its”
“japanese” or “jpn”

“kor” or “korean”

“nor” or “norwegian-bokmal”

H-108 m Configuration Variables

Norwegian Norwegian (default) “norwegian”

Norwegian Norwegian (Nynorsk) “non” or “norwegian-nynorsk”
Polish Polish “plk” or “polish”

Portuguese Portuguese (Brazilian) “portuguese-brazilian” or “ptb”
Portuguese Portuguese (default) “portuguese” or “ptg”

Russian Russian (default) “rus” or “russian”

Slovak Slovak “sky” or “slovak”

Spanish Spanish (default) “esp” or “spanish”

Spanish Spanish (Mexican) “esm” or “spanish-mexican”
Spanish Spanish (Modern) “esn” or “spanish-modern”
Swedish Swedish “sve” or “swedish”

Turkish Turkish “trk” or “turkish”

The following are the supported country/region strings:

Australia “aus” or “australia”
Austria “austria” or “aut”
Belgium “bel” or “belgium”
Brazil “bra” or “brazil”
Canada “can” or “canada”

Czech Republic “cze” or “czech”

Denmark “denmark” or “dnk”

Finland “fin” or “finland”

France “fra” or “france”

Germany “deu” or “germany”

Greece “grc” or “greece”

Hong Kong “hkg”, “hong kong”, or “hong-kong”
Hungary “hun” or “hungary”

Iceland “iceland” or “isl”

Ireland “ireland” or “irl”

Configuration variables m H-109

Italy

Japan
Mexico
Netherlands
New Zealand

Norway

Peoples Republic of

China

Poland

Portugal

Russia
Singapore
Slovak Republic
South Korea
Spain

Sweden
Switzerland
Taiwan

Turkey

United Kingdom

United States of
America

“ita” or “italy”

“japan” or “jpn”

“mex” or “mexico”

“nld”, “holland”, or “netherlands”

“new zealand”, “new-zealand”, “nz”, or “nzl”
“nor” or “norway”

“china”, “chn”, “pr china”, or “pr-china”

“pol” or “poland”
“prt” or “portugal”
“rus” or “russia”
“sgp” or “singapore”
“svk” or “slovak”
“kor”, “korea”, “south korea”, or “south-korea”
“esp” or “spain”
“swe” or “sweden”
“che” or “switzerland”
“taiwan” or “twn”
“tur” or “turkey”

“britain”, “england”, “gbr”, “great britain”,”uk”, “united
kingdom”, or “united-kingdom”

LTS ” o« LINT)

“america”, “united states”, “united-states”, “us”, or “usa”

LICENSE_ERROR_MESSAGE_BOX

This configuration variable prevents acushare licensing errors from
appearing in a message box, which requires a response from the user. The
error messages will instead go to the error output (stderr, or an error file if one

H-110 = Configuration Variables

is specified). Set LICENSE_ERROR_MESSAGE_BOX to 0 to prevent
these messages from appearing in a message box. The default value is 1,
which allows these messages to appear in a message box.

LISTS_UNBOXED

Meaningful only in character-based environments, this variable indicates
whether list boxes should be boxed (set to a value of “0”, off, false or no) or
unboxed (set to a value of “1”, on, true or yes). The default setting is “0”.

LITERAL_ENTRY

This variable can be used to loosen the literal match restrictions of ENTRY
point name matching logic. By default, the matching logic is case sensitive
and distinguishes between hyphens and underscores. Setting
LITERAL_ENTRY to “0” (off, false, no) causes the runtime to handle
ENTRY point name matching with case insensitivity (upper and lower case
equivalent) and to treat hyphens and underscores (“-”, “_") as equivalent.
The default value is “1” (on, true, yes).

LOCK_DIR

When set, this controls automatic device locking on UNIX systems. This is
described in Section 6.1.5 of the ACUCOBOL-GT User’s Guide. The
default value is empty.

LOCK_OUTPUT

When set to a “1” (on, true, yes), this configuration variable causes all files
open for OUTPUT to be locked for exclusive use. Setting this can
dramatically improve performance on VMS machines. Some other COBOL
systems lock files that are open for OUTPUT. The default value is “0” (off,
false, no).

Configuration variables m H-111

LOCK_SORT

When this configuration variable is set to a “1” (on, true, yes), input files to
the SORT verb are opened for INPUT ALLOWING READERS. This can
improve the performance of the SORT verb slightly and also ensure that the
data being sorted is not modified. The default value is “0” (off, false, no).

LOCKING_RETRIES

This configuration variable is designed for Windows 98 systems. It gives
you some control over situations where a user must wait for access to a
shared file. The runtime will try repeatedly to acquire the file lock, up to 400
times by default. Set this variable to the number of attempts you would like
the runtime to make to acquire the file lock.

LOCKS_PER_FILE

This value determines the maximum number of record locks that can be held
on a file by a single process. This value affects only the files that are
maintaining multiple record locks. The default setting is “10”. The
maximum value is 32767 for Vision files. Setting this variable to its
maximum value can waste resources and is not recommended.

Note: If you increase the value of LOCKS_PER_FILE, you may wish to
increase the value of MAX_LOCKS as well.

LOG_BUFFER_SIZE

This sets the maximum buffer size, in bytes, for the transaction log file.
Acceptable values are from “0” to “32767”. LOG_BUFFER_SIZE is
examined before each write to the log file. Its default value is “512”. If
LOG_BUFFER_SIZE is setto “0”, then writes to the log file are synchronous
(unbuffered). This value can also be set inside a COBOL program with the
SET ENVIRONMENT verh.

H-112 = Configuration Variables

LOG_DEVICE

Setting this value to “1” (on, true, yes) causes the transaction management
system to assume that the log file is actually a device, rather than a file. This
means that a special device locking method will be used on the log file (see
the ACUCOBOL-GT User’s Guide Section 6.1.5, “Device Locking Under
UNIX™). Italso guarantees that the log file will be opened “append” and that
no seeks will be performed on it. This allows for the use of a tape device for
the log file on many systems. The default setting is “0” (off, false, no).

LOG_DIR

This variable allows you to specify a directory to be used for holding the
temporary files generated by the transaction management system. The value
of LOG_DIR is treated as a prefix, much like FILE_PREFIX. If no directory
is specified, temporary files are placed in the current directory.

Note: In general, you should not use remote name notation in the
LOG_DIR variable. Although remote name notation is allowed for the
LOG_DIR variable, it is not advisable to place temporary files on a remote
server.

LOG_ENCRYPTION

If this value is set to “1” (on, true, yes), record images are encrypted before
they are written to the transaction log file. The default setting is “0” (off,
false, no).

LOG_FILE

This identifies the name of the default log file for transaction management.
The default log file is opened at the beginning of the first transaction unless
NO_LOG_FILE OK issetto “1.” If it does not exist, it is created. This

variable can be set programmatically with the SET ENVIRONMENT verb.

Configuration variables m H-113

The default setting is empty. Unless you have set NO_LOG_FILE_OK to
“1”, you must set the LOG_FILE variable if you want to use transaction
management.

Remote name notation is allowed for the LOG_FILE variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and
Section 5.2.2 for more information about client-enabled runtimes and remote
name notation.

LOGGING

Setting this variable to “0” (off, false, no) disables the logging of file updates
to the log file. This means that the data file recovery process (using the
library routine CSRECOVER) is impossible. However, because rollback
information is maintained internally by the runtime, the program can still use
the transaction management system to START, COMMIT, and ROLLBACK
transactions. This variable can be set programmatically with the SET
ENVIRONMENT verb. The default setting is “1” (on, true, yes).

LOGICAL_CANCELS

This variable is used to enable logical cancels. Logical cancels reduce
CALL overhead and can, as a result, improve performance. Cancels, both
logical and physical (the default), are initiated by the CANCEL verb or
through a function of the C interface. A discussion of memory management
and physical and logical cancels is located in section Section 6.3, “Memory
Management,” in Book 1. A description of the CANCEL Statement is
located in section 6.6 of Book 3.

LOGICAL_CANCELS can be set to the following values:

-1 (default) all cancels are physical cancels except for programs called from
CICS that have the “Resident” attribute set to TRUE.

H-114 = Configuration Variables

0 all cancels are physical cancels. Cancels of programs called with
the C interface are treated as physical cancels even if the “cache”
field is set to “1”.

1 all cancels are logical cancels. Cancels of programs called with the
C interface are treated as logical cancels even if the “cache” field is
set to “0”.

LOGICAL_CANCELS is used in conjunction with the

DYNAMIC _MEMORY_LIMIT configuration variable, which specifies
the size of the dynamic memory pool for programs. See its entry in this
appendix.

MAKE_ZERO

When settoa “1” (on, true, yes), this configuration variable causes a numeric
data item that contains non-numeric data to be treated as zero when that item
is used in a numeric statement. Setting the value to “0” (off, false, no) causes
the item to be treated “as is” with whatever effects that will have. The default
value is “1” (on, true, yes).

MASS_UPDATE

When set to “1” (on, true, yes), this variable causes all OPEN...WITH LOCK
statements to be treated as if they were written OPEN...WITH
MASS_UPDATE. This does not apply to OPEN INPUT, however. Setting
this configuration variable will improve file performance for applications
that lock files, but may lead to file corruption if the program is killed before
it completes. For more information on this topic, see the ACUCOBOL-GT
User’s Guide, section 6.1.6, “Indexed File Considerations.” The default
value is “0” (off, false, no).

Configuration variables m H-115

MAX_ERROR_AND_EXIT_PROCS

This variable sets the maximum number of error and exit procedures that a
program can install or call. The default is 64. If the limit is exceeded,
program execution is aborted. For more information about error and exit
procedures, see Error and Exit Procedures, CBL_ERROR_PROC,
CBL_EXIT PROC, and CBL_GET_EXIT_INFO in Appendix I.

MAX_ERROR _LINES

This variable sets the maximum number of lines that can be included in the
error file. It’s especially useful when you are using the file trace function of
the debugger. When the size of the error file reaches the number of lines
specified in this variable, the error file is rewound to its beginning, and
subsequent lines of output overwrite existing lines in the file. For example,
if you set the maximum to 300, then lines 301 and 302 would overwrite lines
1 and 2 in the file. Note that there is an upper limit of 32767, setting a larger
number causes odd behavior. The default value is “0”, which means do not
limit the size of the file.

When using the “-I” runtime option (which causes the configuration settings
to be logged in the trace file) the trace file wraps to the line below the
MAX_ERROR_LINES entry. For this reason, MAX_ERROR_LINES
should be the last entry in the runtime configuration file

To help you locate the end of the file, the message “*** End of log ***” is
output whenever the runtime shuts down. Line numbers are included in each
line of the file, in columns one through seven.

This variable is not available on VMS systems.

MAX_FILES

This variable sets the maximum number of files that can be opened by the
runtime system. The default value is “32”. Keeping this value small
conserves memory. Many operating systems limit the number of files that
can be opened by a single process, so you may have to make some
adjustments there too. The maximum value of MAX_FILES is 32767.

H-116 = Configuration Variables

MAX_LOCKS

This value sets the maximum number of record locks that can be held by the
runtime system for all of the files together. The default value matches the
setting of MAX_FILES. Many operating systems also have limits on the
number of record locks that can be held, so you may have to make
adjustments there too. The maximum value is 32767 for Vision files. Setting
this variable to its maximum value can waste resources and is not
recommended.

Note: If you change the value of MAX_LOCKS, you should consider
changing the value of LOCKS PER_FILE as well.

MENU_ITEM

This variable affects the behavior of pull-down menus.

The default action of a menu item is to return an exception value equal to the
item’s ID. You can change the default action of a particular item by using
MENU_ITEM.

Use MENU_ITEM in the same fashion as the KEYSTROKE variable, except
that the last entry on the line is the menu’s ID, not the key code. For example,
to cause a menu item whose ID is “200” to act the same as the Delete key, use
the following:

MENU_ITEM Edit=Delete 200

Alternately, you could cause menu item “200” to call the “notepad” sample
program by using:

MENU_ITEM Hot_Key=“notepad” 200

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration variables m H-117

MESSAGE_BOX_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of characters displayed in a message box window.
MESSAGE_BOX_COLOR can be set to a variety of numeric values that
express combinations of color and video attributes. See the documentation
for the COLOR phrase in the “Common Screen Options” section of the
ACUCOBOL-GT Reference Manual (Section 6.4.9).

If MESSAGE_BOX_ COLOR is set to “0” (the default value), the message
box is displayed with the default window colors and attributes.

MESSAGE_QUEUE_SIZE

This variable sets the initial size of the message queue, in bytes. The message
queue is dynamically resized, as needed, to hold large messages. However,
it is not resized to hold multiple messages (instead, the sending threads wait
until the queue empties). Setting the value larger than the default will allow
more messages to be queued. Setting it to a smaller value will allow fewer

messages to be queued and conserves memory. The default size is 32767.

MIN_REC_SIZE

This configuration variable sets the minimum record size for print records,
and for line sequential files for which trailing space removal has been
specified. The default value is “1”. If set to “0”, then a record will be
reduced to zero size (except for the line delimiter) if the line is blank. You
may also set MIN_REC_SIZE to higher values to establish a minimum
record size other than one.

MONOCHROME

When set to “1” (on, true, yes), this configuration variable disables color
output for machines with graphics video cards. The default value is “0” (off,
false, no).

H-118 m Configuration Variables

ACUCOBOL-GT assumes that machines with graphics video cards are color
machines. If you have a monochrome monitor attached to such a machine,
some program screens may be difficult to see. You tell ACUCOBOL-GT to
disable color output for these machines through the MONOCHROME
configuration variable. When this variable is set to a “1”, ACUCOBOL-GT
will use only black and white.

MOUSE

This variable has meaning only on systems with a mouse. When the user
selects a field in the Screen Section, the exact behavior depends on the field’s
underlying type. The runtime distinguishes between three classes of fields:
numeric, numeric-edited, and all others. These are referred to respectively as
NUMERIC, EDITED, and ALPHA.

You can control the behavior of the mouse with regard to each of these field
types with the MOUSE configuration variable. This variable takes as its
arguments one of the field-type names and two keywords. The first keyword
defines how the field is selected when the user presses the left button. The
second keyword indicates the shape that the mouse pointer should take while
in the field. The first keyword can be one of the following:

None Indicates that this type of field may not be selected with the mouse.
When this keyword is used, then the second keyword (which
defines the mouse’s shape) is ignored. The mouse adopts the shape
used for areas of the screen that are not part of any field.

Field Indicates that pressing the left button anywhere in the field will
cause the cursor to be positioned at the beginning of the field.

Character Indicates that pressing the left button in the field will position the
cursor at the character pointed to by the mouse. If this is past the
last non-prompt character in the field, the cursor will be placed just
after the last non-prompt character.

Configuration variables m H-119

The second keyword indicates the shape that the mouse pointer should take
while in the field. It can be one of the following:

Arrow The mouse pointer appears in the default arrow shape.

Bar The mouse appears as a vertical bar. This is the “I-Bar” shape
typically used to indicate that the mouse can be positioned at a
particular character.

Cross The mouse appears as cross-hairs.

You may also define the shape that the mouse will take when it is used in the
current field. Because the action of the mouse is the same for all field types
once they become the current field, the mouse shape is the same for all three
types. You set the desired shape using the Current keyword in the MOUSE
configuration variable. The default shape is the Bar shape.

Configuring the MOUSE variable

Depending on where you are setting the MOUSE variable, there are three
methods of setting its configuration:

1. If you want to implement this variable in a configuration file, the
variable can be set without using the equals sign. For example:

MOUSE_NUMERIC_SHAPE Bar

2. If you are setting the variable in the Windows environment, the
variable would look this:

SET MOUSE_NUMERIC_SHAPE=Bar

3. If you are setting the variable in your program using COBOL syntax,
the variable would look like this:

SET ENVIRONMENT “MOUSE_NUMERIC_SHAPE” TO “Bar”

The default configuration is as follows:

MOUSE_ALPHA_CHARACTER Bar
MOUSE_NUMERIC_FIELD Arrow
MOUSE_EDITED_FIELD Arrow

MOUSE_CURRENT Bar

H-120 = Configuration Variables

You may place multiple entries on the MOUSE configuration line, but you
are not required to do so.

The following configuration variables can also be used to set the behavior of
the mouse:

To set field selection:
MOUSE_ALPHA_SELECT
MOUSE _EDITED_SELECT
MOUSE_NUMERIC_SELECT

To set cursor shape:
MOUSE_ALPHA_SHAPE
MOUSE_EDITED_SHAPE
MOUSE_NUMERIC_SHAPE
MOUSE_CURRENT_SHAPE

With these variables, you need to set the first and second keywords
separately. For example, to change the defaults shown above for a numeric
field, you would enter:

MOUSE_NUMERIC_SELECT character
MOUSE_NUMERIC_SHAPE bar

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration variables m H-121

MOUSE_FLAGS

This variable has meaning only on systems with a mouse. Indicate which
mouse actions will return an exception value to your program by setting the
value of the configuration variable MOUSE_FLAGS. Mouse actions that
you don’t want to deal with will be ignored. The value you set is actually one
or more values added together. The possible values are:

16
32
64
128
256
512
1024
2048

16384

Causes ACUCOBOL-GT to use its automatic mouse handling facility.
(default)

Enables the “left button pushed” action.

Enables the “left button released” action.

Enables the “left button double-clicked” action.
Enables the “middle button pushed” action.
Enables the “middle button released” action.
Enables the “middle button double-clicked” action.
Enables the “right button pushed” action.

Enables the “right button released” action.

Enables the “right button double-clicked” action.
Enables the “mouse moved” action.

Forces the mouse pointer always to be the default arrow shape when you
are using automatic mouse handling. If this is not set, then the shape of
the mouse pointer varies depending on various other configuration
options. See MOUSE above.

This causes all enabled mouse actions that occur within your
application’s window to return an exception value. If this is not set, then
only mouse actions that occur within the current ACUCOBOL-GT
window return a value. (The current ACUCOBOL-GT window is a
window created by your program with the DISPLAY WINDOW verb.)

For example, if you wanted your program to receive an exception value
whenever the user pressed either the left or right button, you would set:

MOUSE_FLAGS 130

H-122 = Configuration Variables

NO_CONSOLE

This variable has meaning only on graphical systems that create an
application window, such as Windows. Set this variable to “1” (on, true, yes)
to indicate that you’ve built your own user interface entirely in C or that you
are using an interface created by a code-generating tool. This is equivalent to
executing the runtime system with the “-b” command-line option. When this
variable is set to “1”, the runtime won’t create its own application window.
Instead, your C code must build its own window. When you provide your
own user interface, you may not use ACCEPT or DISPLAY verbs in your
COBOL program (except for those that don’t interact with the screen or
keyboard).

The default value is “0” (off, false, no).

NO_LOG_FILE_OK

Setting this variable to “1” (on, true, yes) eliminates the need to specify a
default transaction log file with the LOG_FILE variable. When this variable
is set, the runtime will write transaction recovery information only to the log
files specified via the filename_LOG variables.

The default value is “0” (off, false, no).

NO_TRANSACTIONS

This variable allows you to disable ACUCOBOL-GT’s built-in transaction
management system. When NO_TRANSACTIONS is set to “1” (on, true,
yes), all calls to ACUCOBOL-GT’s built-in transaction management system
return without doing any work. This affects all file systems in use. The value
of NO_TRANSACTIONS is checked once, the first time a BEGIN,
COMMIT, or ROLLBACK is attempted and it is not checked again.
Therefore, although the variable can be set in the program, the effective
setting cannot be changed after the first transaction management action has
been attempted. The default value is “0” (off, false, no), meaning that the
built-in transaction management facility is enabled.

Configuration variables m H-123

NT_OPP_LOCK_STATUS

This configuration variable controls how files on a shared drive are opened if
you are working in the Windows opportunistic locking mode.
NT_OPP_LOCK_STATUS can take one of four values: CREATEFILE,
SAFE, GETFILETYPE, or FAST. The default value is “SAFE”, which is a
synonym for “CREATEFILE”.

If you set this variable to “GETFILETYPE” or “FAST” (synonyms for each
other), the runtime uses the fast method of opening files.

Note: If your Windows installations are not completely up to date with all
available patches from Microsoft, particularly those related to opportunistic
locking, the GETFILETYPE or FAST setting may cause file corruption
(error 98).

NESTED_AX_EVENTS

When an application dialog contains an ActiveX control that is assigned an
event procedure, the event handler sometimes triggers additional ActiveX
events. This variable determines whether or not the event procedure will be
nested.

Set this variable to “1” (on, true, yes) if you want the event procedure to be
nested. (This is the default). When NESTED_AX_EVENTS is set to “1”,
the runtime allows events to trigger while it is processing other events. It is
your responsibility to know when the event procedure is busy and reject
events when this is the case, or to look for specific events and properly handle
them. For example, consider this code:

AX-EVENT.

MOVE 1 TO MY-LOOP.

PERFORM UNTIL MY-LOOP = 10
* Do some stuff

ADD 1 TO MY-LOOP
END-PERFORM

H-124 = Configuration Variables

When NESTED-AX-EVENTS is set to “1”, it is possible that when your
code is inside the event, possibly executing the loop for the fifth time, a new
event triggers, setting MY-LOOP back to “1”. The perform loop could
execute simultaneously in two threads on the same data, and the runtime
could crash. When you do not have reentrant events, MY-LOOP can only
become “1” one time. This is the case when NESTED-AX-EVENTS are set
to “0”.

Set NESTED_AX_EVENTSs to “0” (off, false, no) if you do not want the
event procedure to be nested. Be aware, however, that this option may cause
you to lose certain events (typically events triggered by modifications made
in the event procedure).

When NESTED_AX_EVENTS is set to “0”, once a program has entered an
ActiveX control’s event procedure, new events are ignored. This prevents
the runtime from executing the same code, at the same time. However, events
that are imperative for the code execution may be refused.

Note: NESTED_AX_EVENTS applies only to the local runtime and has
no effect in thin client scenarios.

NO_BARE_KEY_LETTERS

This variable is related to the terminal manager KEYSTROKE EDIT=ALT
(see Section 4.3.2.2, “The KEYSTROKE variable) method of requiring
users to press the Alt key along with the key letter to move to a new control.
In character mode and when accepting a push-button, check box, or radial
button, the runtime’s default behavior is to terminate the accept if the key
letter of a control is pressed, and move to that control.

This behavior can be changed by setting NO-BARE-KEY-LETTERS to
“TRUE”. When set to “TRUE”, in order to move to these types of controls,
users will be required to press the key set by the KEYSTROKE setting
EDIT=ALT before pressing a key letter of that control. The default setting is
“FALSE”, which uses the behavior described in the previous paragraph.

Configuration variables m H-125

NUMERIC_VALIDATION

If this configuration variable is set to “1” (on, true, yes), the runtime checks
for proper format when data is converted to a numeric type (viaa MOVE, for
example). When NUMERIC_VALIDATION is set to the default “0” (off,
false, no), numeric conversion checking does not occur.

OLD_ARIAL_DIMENSIONS

The Arial font shipped with Windows 98 Version 2 has a character width of
35 pixels, while the Arial font shipped with earlier versions of Windows and
Windows NT has a width of 23 pixels. This might cause field overlap or
screen distortions in programs that rely on the smaller version of the Arial
font. Setting this variable to “1” (on, true, yes) causes the runtime to use the
23-pixel measurement for fields, regardless of which version of Arial (35 or
23-pixel) is being used.

The default value of “0” (off, false, no) will cause fields to be sized
according to the version of Arial used.

Note: Because the 35-pixel version of Arial is wider, uppercase characters
may be truncated when their size is computed with the 23-pixel
measurement. Use of this variable may not compensate for all possible
character width sizing issues. Some reprogramming of your screens may
be required.

OPEN_FILES_ONCE

This variable allows different logical files that access the same physical file
to open the physical file only once. The default for this variable is “1” (on,
true, yes). This variable is valid only for UNIX runtimes.

H-126 » Configuration Variables

OPTIMIZE_CONTROL_RESIZE

This configuration variable determines how the runtime optimizes control
resize requests. Prior to Version 5.2, the runtime would optimize away
requests to resize a screen control if the new size and position matched the
control’s current size and position on the screen. In Version 5.2, or later, the
runtime optimizes the control resize request using the SIZE and LINES
indicated (or implied) by the program. Setting
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no) prevents any
optimization of control resizing operations. The default of “1” (on, true, yes)
enables the new behavior. See Appendix C, “Changes Affecting Previous
\ersions,” for more details.

OPTIMIZE_INDIVIDUAL_LINKAGE

This variable enables the runtime to perform address optimizations on each
Linkage item individually. In versions prior to 8.1 this optimization was
done either for all Linkage items or for none of them, which could result in
scenarios where optimizations could have occurred on some items, but did
not.

The default and recommended setting is “1” (on) because the main effect is
improved CALL performance in a greater number of scenarios. Usually, the
only reason to turn this variable off is if a flaw is suspected in the
optimization.

PAGE_EJECT_ON_CLOSE

When set to “1” (on, true, yes), this variable will cause print files to print a
page advance record when the file is closed, unless the close contains the NO
REWIND phrase. This is provided for compatibility with RM/COBOL
version 2. The default value is “0” (off, false, no).

Configuration variables m H-127

PAGED_LIST_SCROLL_BAR

This variable applies only in text-mode environments.
PAGED_LIST_SCROLL_BAR can be set to “-1”, “0”, or “1”. The default
value is “-1”. When set to “-1”, the vertical scroll bar is displayed to the right
of a paged list box if the user interface configuration supports a mouse.
Otherwise, the right border appears just like the left border. The appearance
depends on whether the NO-BOX style is set and the values of the
FULL_BOXES and LISTS UNBOXED configuration variable settings.

The runtime internally calls the WSMOUSE library routine with the
TEST-MOUSE-PRESENCE op-code to determine whether the user interface
supports a mouse. Note that mouse support is available for X terminals only
if the a_termcap entry includes the “km” function. (See the AcuCOBOL-GT
User’s Guide, section 4.6.8, “Mouse Support for X Terminals.”)

When PAGED_LIST_SCROLL_BAR is set to “1”, the vertical scroll bar is
always displayed to the right of a paged list box. When set to “0”, the vertical
scroll bar is never displayed to the right of a paged list box.

PARAGRAPH_TRACE

This variable is used for debugging purposes and turns on paragraph tracing.
Set this variable to “1” (on, true, yes) to turn on paragraph tracing from
within the configuration file or the COBOL program. This is equivalent to
the debugger “tp” command. The COBOL program must be compiled with
symbols (“-Gs”, or anything that implies that option) to get any error output.

PERFORM_STACK

This variable sets the depth to which PERFORM statements can be nested at
runtime when the “-Zr” compile-time option is used. The default value is
“128”. The maximum value is “10916”. Setting this variable to its maximum
value can waste resources and is not recommended.

H-128 m Configuration Variables

PRELOAD_JAVA _LIBRARY

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. By default, the Java Virtual Machine (JVM) is
loaded by the runtime the first time it executes a CALL C3JAVA statement.
If you want to load the JVM when the runtime is started, set this
configuration variable to “1”. If you do not want to preload the JVM, set the
variable to “0”.

See Appendix | for details on the C$JAVA routine. For information on
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to
Interoperating with ACUCOBOL-GT.

PROFILE_TYPE

This configuration variable provides an optional method of profiling
ACUCOBOL-GT on Windows called “COUNTER”. The counter method
uses the debugger to perform counting and appears to provide the most
accurate results in Windows environments.

Set the PROFILE_TYPE configuration variable to either “ASYNCH” or
“COUNTER”. When set to the default value of “ASYNCH?”, the runtime
performs profiling the way it historically has. When set to the value
“COUNTER?”, the runtime uses this method of profiling. Note that your
COBOL programs must be compiled with “-Gd” as well as “-Gs” options to
use the counter method.

The counter method is also available on UNIX and can be used if profiling
your COBOL results in a message similar to “profile timer expired”. This
method doesn’t completely solve that problem, but does substantially
mitigate it.

PROMPTING

This variable is used on character-based hosts to turn ENTRY-FIELD
prompting off or on. When PROMPTING is set to “0” (off, false, no)
prompting is not performed. The default value of PROMPTING is “1” (on,
true, yes).

Configuration variables m H-129

QUEUE_READERS

This configuration variable evens out user access by modifying the rules
Vision uses when several users are accessing a file. This variable applies to
UNIX machines. Because of restrictions, it is recommended only for sites
that are experiencing performance problems with updaters.

By default, the runtime allows multiple readers to access a file
simultaneously, while updaters require exclusive access to the file. When a
file has many readers, an updater can get blocked out of the file for a period
of time while the runtime waits for a moment when there are no active
readers. While this allows processes that read the file to have nearly
immediate access, updaters may need to wait for a noticeable amount of time.

The QUEUE_READERS configuration variable lets you request that the
runtime service each user in turn. This means a reader will have the same
priority for accessing a file as an updater does. Each user is processed in turn
so that access to files is evenly balanced among all the users.

By default, QUEUE_READERS is set to “0” (off, false, no). Set itto “1”
(on, true, yes) to force the readers to take turns instead of having immediate
access.

Because of technical limitations in the UNIX file system, if you use this
configuration variable you must provide read-write access to all indexed and
relative files that the runtime uses. This is true even for files that are open
only for input--UNIX requires that the runtime have write access to the files
in order to place the kind of lock that causes each user to take turns.

QUIT_MODE

This variable has meaning only on graphical systems such as Windows. It
gives you control over the Close action that appears on the System menuin a
graphical environment. You may use the QUIT_MODE variable with only
the main application window. All other windows return the CMD-CLOSE
event when they are closed. QUIT_MODE has no affect on windows created
with the NO-CLOSE phrase (see formats 11 and 12 of the DISPLAY
Statement, in Book 3, ACUCOBOL-GT Reference Manual, section 6.6).

H-130 = Configuration Variables

Many COBOL programs should not be shut down in an uncontrolled manner.
This is especially true of any application that updates several files in a row.
If the program is halted after updating the first file, but before updating the
last, the files are left in an inconsistent state. For this reason,
ACUCOBOL-GT allows you to control the Close action.

To do this, you set QUIT_MODE to a non-zero value. The value that you
specify affects the Close action as follows:

-2 Disable Close: disables the Close action entirely. The Close menu item
will appear gray on the System menu, and the user will not be able to select
it.

-1 Close only on input: the runtime disables the Close action except when it is
waiting for user input. This prevents the user from stopping the runtime in
the middle of a series of file operations, but still allows the user to quit the
application any time that the application is waiting for input.

0 Always Close: the runtime halts the program whenever Close is selected
from the system menu.

>0 Program controlled Close: when a positive value is used, the Close item
becomes a standard menu item with an ID equal to the value of
QUIT_MODE. You may then handle the Close item just like any other
menu item.

For example, if you set QUIT_MODE to “100”, then your program will
receive exception value 100 when the user selects the Close item. If you
wanted to call a special shutdown program when the user selected Close, you
could assign the Close action to a hot-key program:

MENU_ITEM Hot_Key =“shutdown” 100

In this example, the “shutdown” program might pop up a small window to
confirm that the user wanted to exit and, if so, do a STOP RUN.

If you start your program in “safe” mode with the “-s” runtime option, then
QUIT_MODE will be initialized to “-2” instead of “0”. This prevents the
user from using the Close menu item. A QUIT_MODE entry in the
configuration file takes precedence over the default handling of “-s”.

Configuration variables m H-131

If a user attempts to end the Windows session when it is not allowed, a
pop-up message box asks the user to terminate the application first. You can
customize the message that appears in the box by setting the TEXT
configuration variable, message number 18.

Note: The QUIT_MODE setting affects only the main application
window. All other windows always return the event CMD-CLOSE when
the window is closed.

QUIT_ON_FATAL_ERROR

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option). The
QUIT_ON_FATAL_ERROR configuration variable causes the runtime to
call the MPE QUIT intrinsic when an error occurs. The MPE job control
word (JCW) is then set, and the MPE environment can determine if the
program terminated with a fatal error. When set to “1” (on, true, yes),
QUIT_ON_FATAL_ERROR calls the MPE QUIT intrinsic. The default
setting is “0” (off, false, no).

QUIT_TO_EXIT

When this variable is set to “1” (on, true, yes), the user must press the close
button on the title bar (or an alternate close mechanism provided by the
window) after the program executes a STOP RUN. The default value is “0”.

RECURSION

ACUCOBOL-GT allows a program to call itself, directly or indirectly. A
CALL statement that attempts to call an active program is termed a recursive
call.

To use recursive calls, you must set the configuration variable RECURSION
to “1” (on, true, yes). The default setting for RECURSION is “0” (off, false,
no), which disallows recursive calls.

H-132 = Configuration Variables

When you allow recursive calls, an active program may be called again. This
causes a new copy of the program to be loaded into memory and executed, as
if it were the first call of that program. Files and data described in that
program are local to each copy of the program.

More specifically, the runtime assigns a recursion level to each recursively
called program. The first time a program is called, it is assigned a recursion
level of “0”. If that program is still active and it is called again, it receives a
recursion level of “1”. The recursion level is incremented by 1 for each
active copy of the same program.

When you call a program at a specific recursion level for the first time, it is
freshly loaded from disk and its Working-Storage data items are given their
initial values as defined by their VALUE clauses. Subsequent calls to a
program at the same recursion level will find the files and data left in the
same state that the program had when it last exited.

Files and data items are distinct between different recursion levels.

When you CANCEL a recursively called program, all of its inactive copies
are removed from memory. Active copies are left alone. Subsequent calls to
any of the canceled recursion levels will reload the program from disk and
reinitialize the files and data items.

If you need to share data between different active copies of the same
program, you can pass this data through the Linkage Section. Alternatively,
you can share both files and data items by declaring them as EXTERNAL
items. Yet another option is the RECURSION_DATA GLOBAL
configuration option.

The runtime system shares the program code for recursively called programs.
Thus, while each recursion level has its own set of data, there is only one
copy of the Procedure Division code in memory, regardless of how many
active copies of the program there are. The runtime system does not,
however, share overlays. Each copy of the program in memory has its own
overlay area.

Configuration variables m H-133

RECURSION_DATA_GLOBAL

This configuration variable allows you to configure the runtime so that each
instance of a recursively called program shares the same data as the original
instance of the program. The primary reason for configuring the runtime in
this manner is if you are migrating code that relies on this behavior from
another COBOL system, such as HP COBOL.

When RECURSION_DATA_GLOBAL is setto “1” (on, true, yes), files and
data items in a recursive call of a program refer to the identical items in the

original call of that same program. This is true regardless of the entry point
into the program. Changes to data or file state made in any recursive instance
of the program are seen by all other instances of that program in the same run
unit.

Note that to use this feature, you must not only set the configuration variable
RECURSION_DATA GLOBAL to “1”, you must also set the
RECURSION configuration variable to “1” to allow recursion (which is not
allowed under standard ANSI-85 COBOL rules).

The default is “0” (off, false, no).

REL_DELETED_VALUE

This configuration variable is helpful when you use relative files and need to
have a valid record that contains binary zeros. However, because binary
zeros are used as the deleted record marker, you have to be able to change this
marker. REL_DELETED_VALUE can hold the ASCII character value for
the new deleted record marker.

REL_LOCK_READ_THROUGH

This variable allows you to “read through” relative file record locks in

Windows environments. This means that READs that do not assert a lock are
allowed to READ a relative file record even if it is locked by another process.
To turn on the “read through” capability, all processes accessing the relative
file must set the configuration variable REL_LOCK_READ_THROUGH to
“1” (on, true, yes). When this variable is turned on, the Vision library uses an

H-134 = Configuration Variables

alternate location for relative file record locks that does not block other
processes from reading the records. This is necessary because Windows has
“enforced” file locks that preclude all other access to the locked region.
Failure to set the configuration variable to the same value on all processes
accessing the relative file results in undefined behavior. This variable has no
effect on UNIX platforms. For more information about relative files and
record locking, refer to section 6.1, “Handling Files,” of the
ACUCOBOL-GT User’s Guide.

RENEW_TIMEOUT

When set to “1” (on, true, yes), this variable restarts the timeout used by
ACCEPT BEFORE TIME after each keystroke that the user makes. The
default setting is “0” (off, false, no), which means that the timeout is canceled
as soon as the user starts typing.

RESIZE_FRAMES

This variable is used to turn off the automatic resizing of frames that is
performed on character-based hosts. By default, a character-based host
runtime automatically resizes frames to visually surround all controls whose
home coordinates are bounded by the frame. This makes it easier to maintain
applications that run on both character and graphical systems. To turn
automatic resizing off, set RESIZE_FRAMES to “0” (off, false, no). The
default value is “1” (on, true, yes).

RESIZE_FREELY

Normally, under a graphical host (such as Windows), the runtime will not
allow you to resize an AUTO-RESIZE window larger than its logical size (as
determined by the number of rows and columns the program requested when
it created the window). When the RESIZE_FREELY variable is set to “1”
(on, true, yes), the user can resize the window to any size. Maximizing the
window will cause the window to occupy the entire available screen. The
region of the window that lies outside of the logical area will not be
accessible by the program and will be shown as the background color of the
logical window (defined as the last background color to be applied to the

Configuration variables m H-135

entire window). Setting this option is essentially a cosmetic change to the
way your application looks when maximized. The default value is “0” (off,
false, no).

RESTRICTED_VIDEO_MODE

This value determines which rules will be followed when the program is
positioning attribute characters for “magic cookie” terminals (terminals
whose attributes occupy screen positions). For more details, see the
ACUCOBOL-GT User’s Guide, section 4.5, “Restricted Attribute
Handling.” The default is “0”.

RMS_NATIVE_KEYS

This variable is for use only on VAX/VMS systems. When it is set to “1”
(on, true, yes), it causes the runtime to specify a key type for numeric keys.
In order to make use of this variable, you must also create XFD files at
compile-time (“-Fx”), and you must set the configuration variable
XFD_DIRECTORY to point to the directory containing those XFD files.

When these steps have been taken, the runtime will create RMS files with
keys having either the packed decimal or integer attribute, under certain
conditions dictated by the RMS file system. In particular, a key will have the
packed decimal or integer attribute only if it is a single-segment key and only
if there is a single field in the key. In this case, a USAGE COMP-3 data item
in the key will receive the packed decimal attribute, and a USAGE COMP-5
data item (if it is 2, 4, or 8 bytes long) will receive the integer attribute.

One effect of having this attribute set on key fields is that the order of the data
is changed. Without this attribute, a file that has records with keys -3, -2, -1,
0, 1, 2, 3 would have those records ordered in this way: 0, 1, -1, 2, -2, 3, -3.

With this attribute, those records would be ordered in this way: -3, -2, -1, 0,

1, 2, 3. The default setting for this variable is “0” (off, false, no).

H-136 m Configuration Variables

SCREEN

This configuration variable controls a variety of screen configuration options.
For details, see the ACUCOBOL-GT User’s Guide, section 4.4.2, “The
SCREEN Option.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

SCREEN_COL_PLUS_BASE

This variable allows you to configure the COLUMN PLUS phrase in the
Screen Section. This capability is provided to improve compatibility with
other COBOLs. SCREEN_COL_PLUS_BASE allows you to choose the
behavior that works best for your program. It takes the following values:

-1

(default) This value causes the runtime to determine the behavior of the
COLUMN PLUS phrase based on whether ICOBOL compatibility has
been specified with the “-Ci” compile option. If so, “COLUMN + 1”
produces a space between items, and “COLUMN + 0” creates adjacent
items. If ICOBOL compatibility has not been specified, “COLUMN + 1”
produces adjacent items. This matches the prior behavior of
ACUCOBOL-GT.

This value causes column adjustments to start counting at zero. Inthis case,
“COLUMN + 0” produces adjacent items, and “COLUMN + 1” puts a
space between items.

This value causes column adjustments to start counting at one. In this case,
“COLUMN + 1” produces adjacent items, and “COLUMN + 2” puts a
space between items.

SCREEN_TRACE

This variable is used for debugging and turns on screen tracing. Set this
variable to “1” (on, true, yes) to turn on screen tracing from within the
configuration file or the COBOL program. This is equivalent to the debugger
“ts” command.

Configuration variables m H-137

SCRIPT_STATUS

This variable controls the behavior of ACCEPT FROM INPUT STATUS
when the input is not attached to a terminal. If SCRIPT_STATUS has its
default setting of “0” (off, false, no), an ACCEPT FROM INPUT STATUS
statement will return a fixed value when the program has redirected input.
The value returned is the value of the INPUT_STATUS DEFAULT
configuration variable.

When SCRIPT_STATUS is not “0”, and input is redirected, then ACCEPT
FROM INPUT STATUS will return the actual status of the script file (i.e., it
will return “1” (on, true, yes) unless the script file has been exhausted).

SCRN

This variable can be used in conjunction with the SCREEN variable to
control many attributes of the video sub-system. For details, see the
ACUCOBOL-GT User’s Guide, section 4.4.2, “The SCREEN Option.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

SCROLL

This variable affects when screen scrolling will occur. When it is set to “1”
(on, true, yes), scrolling and cursor positioning occur normally. When it is
set to “0” (off, false, no), screen scrolling will occur only as the result of a
SCROLL phrase in an ACCEPT or DISPLAY statement, and any DISPLAY
statement that references a line past the bottom of the current window will be
ignored. ACCEPT statements that reference a line past the bottom of the
current window will be placed in the home position of the window. The
default setting is “1”.

H-138 m Configuration Variables

server MAP_FILE

This variable is used to point to the character map file used for translating
international character sets between a client machine and a specific server
that uses different character codes. The map file is a simple text file that you
create with an editor of your choice. Each line in the map file must contain
two values in either decimal or hexadecimal: the character code of the
character on the client machine, and the character code of the same character
on the server. Use a # sign to indicate a comment.

The map file may be stored on either the client machine or the server
machine.

The server specified in the configuration variable name must match the
server specified in the remote name notation that points to the data files. For
example, if you are using AcuServer to access remote files on a machine
named sun3, you would use remote name notation to specify the directory
that contains the data files. It might look like this:

@sun3:/user/acct/inventory

Then, create a map file and use this configuration variable to point to the map
file:

sun3_map_Ffile @sun3:/user/acct/inventory/map.txt

If the map file is local, your value might look like this:
sun3_map_Ffile C:\usen\utility\map.txt

If the map file is located on a server, you must have the AcuServer product on
that server, to enable client access.

The runtime first searches for the configuration variable server_MAP_FILE
and, if it is found, uses that setting to locate the map file. If that variable is
not set, the runtime searches for DEFAULT _MAP_FILE. If that variable is
also not set, then no character translation is done.

Configuration variables m H-139

server PASSWORD

Designed to be defined in the environment (rather than in the configuration
file), server PASSWORD and its mate server_port PASSWORD make
working with AcuServer easier when the compiler and cblutil are called
repeatedly from the AcuBench integrated development environment. In this
scenario, when one of these variable is used, the user never has to enter a
password. When these variables are not used, if a password is required the
user must provide it repeatedly.

Set server_PASSWORD to the value of the password. For example:
MERCURY_PASSWORD=welrneB

where server is replaced by the name of the server.

The compiler checks the variable server_port_ PASSWORD first. If it isn’t
defined, server_PASSWORD is checked. If server_PASSWORD is not
defined, the user is prompted for a password. If either variable is defined, but
the value does not match the value in the AcuAccess file, the connection
attempt fails.

server_port PASSWORD

Designed to be defined in the environment (rather than in the configuration
file), server_port PASSWORD and its mate server PASSWORD make
working with AcuServer easier when the compiler and cblutil are called
repeatedly from the AcuBench integrated development environment. In this
scenario, when one of these variable is used, the user never has to enter a
password. When these variables are not used, if a password is required the
user must provide it repeatedly.

Set server_port_ PASSWORD when you want to connect to a server on a
particular port. For example, to set a password to connect to a server named
“MERCURY™ that is listening on port 4330, you can set the following:

MERCURY_4330_PASSWORD=welrneB

where server is replaced by the name of the server, and port is replaced by
the port number that AcuServer is using.

H-140 =» Configuration Variables

The compiler checks the variable server_port PASSWORD first. If itisn’t
defined, server_PASSWORD is checked. If server PASSWORD is not
defined, the user is prompted for a password. If either variable is defined, but
the value does not match the value in the AcuAccess file, the connection
attempt fails.

SHARED_CODE

For many UNIX machines, ACUCOBOL-GT supports the ability to have
multiple users share the same copy of a COBOL program’s object code in
memory. This configuration variable indicates which programs you want to
share code. Use of shared memory is recommended only if you have a
problem with limited memory and excessive swapping. In this case, the
advantage of reduced swapping will usually more than make up for the
overhead added by sharing memory. To use shared code for all of your
programs on UNIX, add the following line:

SHARED_CODE 1

This will cause all programs to attempt to share code. Every code segment
loaded into memory will be placed into shared memory until shared memory
is full. Further code segments will then be placed in conventional memory.
If the system runs out of shared memory and the shared code requests start
failing, each runtime will have its own copy of the program in its own
memory space.

Since shared memory is a limited resource under UNIX, you will usually
want to restrict the use of shared code to those programs where it will be most
beneficial. This will ensure that other programs do not use up all of the
available shared memory first. To do this, specify each program you want to
share as follows:

SHARED_CODE Programl
SHARED_CODE Program2
SHARED_CODE Program3

(The program name may also be enclosed in single or double quotes, for
example, “Program1” or ‘Program2’.) When you use this method,
“Programl”, “Program2”, and so forth are the PROGRAM-IDs from the

Configuration variables m H-141

programs’ Identification Divisions (note that a program’s object file name is
not used). If you use this method, then setting SHARED_CODE to “1” will
have no effect.

For additional information, see the ACUCOBOL-GT User’s Guide, section
2.12, ““acushare Utility Program.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

SHARED_LIBRARY_EXTENSION

This variable allows you to define the filename extension for UNIX/Linux
shared object libraries. The default value is “.s0”. This variable has meaning
only on systems that support UNIX shared libraries.

SHARED_LIBRARY _LIST

This variable allows you to specify the names of UNIX/Linux shared object
libraries or Windows DLLSs.

SHARED_LIBRARY_LIST can be set in one of three ways:

1. In the environment
2. In the runtime configuration file

3. Programmatically with the SET ENVIRONMENT statement

The runtime loads the listed objects on program startup or as the result of a
SET ENVIRONMENT statement. Names must be delimited by spaces,
colons (UNIX/Linux), or semicolons (Windows).

With DLLs, you can specify both the name of the DLL and the calling
convention to use. Any calling convention specified this way overrides the
DLL_CONVENTION variable setting. For information about specifying

H-142 = Configuration Variables

DLLs and calling conventions, see section 3.3.2, “Loading DLLs with
Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

You can also list objects without path information and use the
SHARED_LIBRARY_PREFIX configuration variable to specify a set of
directories that the runtime will search when attempting to load a shared
library.

Once loaded, functions exported by these libraries can be called directly.

The SET ENVIRONMENT statement can be used to set
SHARED_LIBRARY_LIST any number of times during program execution.
Each time it is set, the runtime loads the libraries listed. Previously loaded
libraries remain loaded. Libraries loaded with SHARED_ LIBRARY_LIST
remain in memory until the process exits. The CANCEL statement cannot be
used to unload the library.

On some systems, such as AlX, if the shared module is a member of an
archive, you must specify the name of the member in parentheses after the
name of the archive. For example:

SHARED_LIBRARY_LIST="/usr/opt/db2_08_01/lib/libdb2.a(shr.o)”

SHARED_LIBRARY_LIST is like the runtime “-y” option, except that it
does not require setting the SHARED_LIBRARY_EXTENSION variable,
and unlike “-y”, you can mix “.a” and “.s0” libraries in the list.

Note: The SHARED_LIBRARY_LIST configuration variable does not
load client-side DLLs for thin client applications that make calls using the
CALL verb “@[DISPLAY]:” syntax. These applications must explicitly
load the DLL by calling it with the CALL verb before calling a function
within the DLL.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration variables m H-143

SHARED_LIBRARY_PREFIX

This variable allows you to specify a set of directories that the runtime will
search when attempting to locate a shared library. The format of the value is
the same as that allowed for FILE_PREFIX. You can set
SHARED_LIBRARY_PREFIX in the configuration file, environment, or
programmatically with the SET verb.

The default value on Windows systems is empty.

The default value on UNIX and Linux systems is “/opt/acucorp/8xx/lib /opt/
acu/lib”. This helps the runtime find “libcInt.so” (or “libcint.sI””) when the
operating system’s shared library environment variable (e.g., LIBPATH,
LD_LIBRARY_PATH, SHLIB_PATH, etc.) is not set.

SHUTDOWN_MESSAGE_BOX

This variable allows you to specify whether or not you want the runtime’s
shutdown message to be displayed in a message box. If this variable is set to
“0” (off, false, no), the runtime will display the shutdown message to the
screen without a message box. The default value is “1” (on, true, yes).

SORT_DIR

This variable allows you to place temporary files used by the SORT verb in
another directory. By default these files are stored in the current directory.
You can specify an alternate directory to hold the sort files by setting the
configuration variable SORT_DIR to the desired directory. This value is
treated as a prefix, much like FILE_PREFIX. You can improve the
performance of the SORT verb by placing the temporary files on a fast
device. Take care, however, that the device has enough free space to hold
twice the size of the data to be sorted.

You may not use the SORT_DIR variable with AcuServer.

H-144 = Configuration Variables

Remote name notation is allowed for the SORT_DIR variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and
5.2.2 for more information about client-enabled runtimes and remote name
notation.

SORT_FILES

This configuration variable sets the number of temporary files used by
SORT. The acceptable range is from 4 to 64. The default value is “8”.

Increasing the number of files used will usually improve SORT performance,
particularly for large sorts. Note that you must have enough available file
handles to open all of the temporary files concurrently. In general, the
number of files available is more important than the amount of memory used.
If you are experiencing long sorts, try increasing the number of files before
you increase the amount of sort memory.

The SORT verb removes all of its temporary files, except for one, prior to
beginning its output phase.

SORT_MEMORY

This variable specifies the number of 64 KB blocks of memory that the
SORT verb will try to allocate when it executes. The acceptable range is
from 1 to 16384. The default value is “32”. Using a value lower than the
default can be useful if memory is tight on the host machine. Using a higher
value may enhance SORT performance.

Take care, when increasing the SORT_MEMORY setting, to ensure that you
do not assign too much memory to the runtime. For most operating systems,
the memory used by SORT is not returned to the system. While the runtime
may use the memory for other purposes, this memory is not available to other
programs until the runtime exits.

The SORT verb will attempt to allocate the amount of memory specified in
SORT_MEMORY. If the requested amount is not available, the runtime will
return an out of memory error.

Configuration variables m H-145

SPACES_ZERO

This configuration variable applies only to object files generated with
ACUCOBOL-85 Version 1.5 and earlier. For later object files, use the “-Zz”
compiler option. When SPACES_ZERO is “1” (on, true, yes), it alters the
method in which USAGE DISPLAY data items are used by the runtime
system. The main effect is that, in most cases, a data item containing spaces
will be treated as if it contained zeros. Note that this may not occur in all
instances because the ACUCOBOL-GT compiler may construct code that
directly acts on a data item without first converting it to a number. The
default value is “0” (off, false, no).

SPOOL_FILE

This configuration variable allows you to hold a pipe open when you close
the named file with the CLOSE WITH NO REWIND verb. This enables you
to gather multiple reports into a single job for the print spooler. For
additional details about pipes and file name interpretation, see the
ACUCOBOL-GT User’s Guide, section 2.9, “File Name Interpretation.”

The value given to the SPOOL_FILE variable must be the ASSIGN name of
a sequential file that has been attached to a pipe. The pipe must be attached
to the ASSIGN name in the COBOL configuration file via the “-P” option.
For example, suppose you have a file defined as follows:

SELECT PRINT_FILE
ASSIGN TO PRINT “PRINTER”

and that you have the following pipe defined in the COBOL configuration
file:

PRINTER -P Ip -s

Then, to specify that you want to keep the pipe open when the file is closed
WITH NO REWIND, you would add the following line to the COBOL
configuration file:

SPOOL_FILE PRINTER

The name specified for SPOOL_FILE is processed in the same way as the
external file name specified in the file’s ASSIGN clause.

H-146 m Configuration Variables

When the corresponding file is closed with a NO REWIND option, the pipe
is not closed. Instead, if the file is later opened again, the same pipe is used.
The pipe is not closed until a CLOSE verb without the NO REWIND option
is executed on that file, or until the run unit finishes. Only one pipe can be

held open in this manner.

STD_FIXED_FONT

This configuration variable allows you to set the standard font used by the
Windows version of the runtime. It can be set in the configuration file to one
of the following values:

-1 (default) The web runtime uses ANSI_FIXED_FONT. Other instances of
the runtime use SYSTEM_FIXED_FONT.

0 All runtimes use ANSI_FIXED_FONT for the standard font.

1 All runtimes use SYSTEM_FIXED_FONT for the standard font.

2 All runtimes use OEM_FIXED_FONT for the standard font.

If this variable has not been set, or has an invalid value, it will default to “-1”.

STOP_RUN_ROLLBACK

When this variable is set to “1” (on, true, yes), the system performs an
implied ROLLBACK rather than a COMMIT after a STOP RUN.

With a “0” (off, false, no) setting for this variable, the system performs an
implied COMMIT after a STOP RUN. The default value for this variable
is “0”.

Configuration variables m H-147

STRIP_TRAILING_SPACES

This variable provides an alternate method for determining which LINE
SEQUENTIAL files will have trailing spaces removed from records written
to them. At the time a LINE SEQUENTIAL file is opened, the value of this
variable is examined. If this variable is “1” (on, true, yes), then automatic
space suppression is applied to this file.

Otherwise, the file is processed according to the normal rules, as described in
the ACUCOBOL-GT User’s Guide, section 6.1.1, “Sequential Files.” The
default value for this variable is “0” (off, false, no).

Note that a related configuration variable is the
EXTFH_KEEP_TRAILING_SPACES variable.

SWITCH_PERIOD

This variable helps determine how frequently threads switch control. When
a thread executes SWITCH_PERIOD number of selected operations, the
threads switch control. The selected operations are generally comparisons.
Comparison operations are used to cause compute-bound threads to switch.

Setting the value of SWITCH_PERIOD lower will increase the overhead
spent switching threads, but increase the uniformity of thread execution.
Setting the value very low can significantly hurt performance. The default
value is “100".

SYSINTR_NAME

This variable defines the location of the SYSINTR file that may be used with
MPE emulation software. This variable must be specified with HFS syntax
and set to the full path of the SYSINTR file. For example:

SYSINTR_NAME /opt/mpux/etc/sysintr.txt

H-148 m Configuration Variables

TC_AUTO_UPDATE_FAILED_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. The
TC_AUTO_UPDATE_FAILED MESSAGE configuration variable lets you
specify the text in this message box. Its default value is

ACUCOBOL-GT Thin Client: Automatic update was
unsuccessful

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_FAILED_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. The
TC_AUTO_UPDATE_FAILED_TITLE configuration variable lets you set
the title bar text for this message box. Its default value is

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_NOTIFY_FAIL

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. If
you do not want the thin client to inform the user that the automatic update
has failed, set the TC_AUTO_UPDATE_NOTIFY_FAIL configuration
variable to “false” (0, off, no). The default value of this variable is “true” (1,
on, yes).

Configuration variables m H-149

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_QUERY

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
The default setting of “1” (on, true, yes) for the
TC_AUTO_UPDATE_QUERY configuration variable enables the display
of that message box. Setting this variable to “0” (off, false, no) prevents the
message box from appearing.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_QUERY_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
The value of the TC_AUTO_UPDATE_QUERY_MESSAGE configuration
variable determines the message displayed in that message box. The default
value of the variable depends on the circumstances that triggered the
automatic update. For example, if the automatic update is initiated by a
version or protocol number mismatch, the default message displayed is:

Incompatible server version

Server version: <srvvers>, client <clntvers>
Server protocol: <srvproto>, client <clntproto>
Press OK to automatically correct this problem

where <srvvers>, <clntvers>, <srvproto>, and <cIntproto> are replaced by
the server version, client version, server protocol number, and client protocol
number, respectively.

H-150 m Configuration Variables

For detailed information about other default values for this configuration
variable and about the thin client automatic update process, refer to section
7.4, “Thin Client Automatic Update,” in the AcuConnect User’s Guide.

TC_AUTO_UPDATE_QUERY_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
You use the TC_AUTO_UPDATE_QUERY_TITLE configuration variable
to specify the title bar text in that message box. The default value of this
variable is

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AX_EVENT_LIST

In thin client deployments, this variable lets you control which events your
program receives, giving you more control over the volume of network
traffic. It must be set in the configuration file and cannot be changed
programmatically with the SET verb. It contains the numeric value of a
single .NET or ActiveX event type or a list of .NET or ActiveX event types
separated by non-numeric characters like spaces or commas. Whether your
program receives these events depends on the value of
TC_EXCLUDE_EVENT_LIST. Ifits value is “0”, then your program
receives the events listed in TC_AX_EVENT _LIST. If
TC_EXCLUDE_EVENT _LIST is set to “1”, then the events listed in
TC_AX_EVENT_LIST are not sent to your program.

Configuration variables m H-151

TC_CHECK_ALIVE_INTERVAL

This variable allows you to set a time interval in seconds (a value between
“1” and “32767”) during which the server runtime checks for thin client
activity. This activity can be either regular thin client user interaction or, if
the user interface is inactive, two “ping” messages sent by the thin client
during the defined interval. If no thin client activity of any kind occurs
during a particular interval, the server runtime process exits. Setting this
variable to “0” disables the client activity check feature. The default value is
“300” (5 minutes).

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_CHECK_INSTALLER_TIMESTAMP

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The value of the
TC_CHECK_INSTALLER_TIMESTAMP configuration variable
determines whether the thin client compares the modification times of the
installer files on the client and on the server. If this variable is set to “1” (on,
true, yes) and the modification time of the client file is older than the time of
the server file, the automatic update process is initiated. If the installer file
does not exist on the client, then the comparison is made with the
modification time of the thin client executable (acuthin) currently running.
The default value for this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_CONTINUITY_WINDOW

If this configuration variable is set to “1” (on, true, yes), the Thin Client
creates an invisible window after the next window is created by the COBOL
application. This invisible window remains until the Thin Client shuts down.

H-152 = Configuration Variables

This variable must be set in the application's configuration file or in the
initialization code of the application so that it is applied to the initial window
created by the application.

The invisible window is needed because the GetMessage API routine
behaves differently under Windows 2000 and Windows XP than in older
versions of Windows. If an application has no open windows and it calls
GetMessage, the focus is transferred to another application. Once transferred,
the application cannot force the focus to return to the original application,
even if it subsequently creates a window to receive the focus. This situation
arises under the Thin Client if the COBOL application destroys all of its
windows before creating a new one.

Since this variable applies to a very specific situation, the default setting for
TC_CONTINUITY_WINDOW is “0” (off, false, no). You must set it
explicitly if you want to use this feature.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_CONTROL_SYNC_LEVEL

This variable determines which VALUE data items in a Screen Section are
updated when a BEFORE, AFTER or EXCEPTION procedure executes.
(This variable only affects BEFORE, AFTER and EXCEPTION procedures.
The values of all variables are made current anytime an ACCEPT
terminates.) The possible values for TC_CONTROL_SYNC_LEVEL are:

1 (default) Only the VALUE data item associated
with the current field is updated when its AFTER or
EXCEPTION procedure executes.

2 Only the VALUE data item associated with the
current field is updated when its BEFORE, AFTER
or EXCEPTION procedure executes.

3 All VALUE data items are updated when executing
any BEFORE, AFTER or EXCEPTION procedure.

Configuration variables m H-153

For best performance, we recommend leaving this variable at its default
setting of “1” unless that causes your program to perform incorrectly. In
which case, you can increase the setting of TC_CONTROL_SYNC_LEVEL
to “2” or “3” to adjust for problems in the application behavior.

Note: Alternatively, you can directly INQUIRE the value of a control in an
embedded procedure. This allows you to tune application performance
more precisely than TC_CONTROL_SYNC_LEVEL will allow.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_DELAY_ACTIVATE

This variable determines precisely when the thin client sends
CMD-ACTIVATE events to the server. Under the default setting of “1” (on,
true, yes), the client delays sending the event until after the Windows
notification routine receiving the event has completed. However, ActiveX
events are never delayed. The alternate setting of “0” (off, false, no) sends
the event to the server immediately when it is generated on the client.

We recommend leaving this variable at its default setting because the
Windows API occasionally alters actions taken by the program when they
occur within the scope of an activation notification. (For example, Windows
will sometimes override a “set focus” call.) Delaying the COBOL program's
response to the activation until after the Windows notification routine is
complete avoids these alterations.

If you experience an unexplained difference in window activation when
running under the thin client, try setting this variable to “0”. If this produces
the desired behavior, the handling of the CMD-ACTIVATE events by the
program is unusual and may not be performing as intended. For example, the
EVENT procedure that handles the CMD-ACTIVATE event may be
destroying an unrelated window instead of transferring control to the window
issuing the CMD-ACTIVATE event.

For more information about the thin client, refer to the AcuConnect
User's Guide.

H-154 m Configuration Variables

TC_DELAY_PRE_EVENT_OPS

This configuration variable applies only to the ACUCOBOL-GT Thin Client.
Using this variable, you can direct the thin client to buffer some requests
received from the server and process them later. When you set this variable
to “1”, the thin client buffers the requests received between the time that the
client sends an event to the server and the time that the server informs the
client that it has started the related event procedure. The events are processed
only after the event procedure starts in order to prevent the thin client from
processing requests that generate more events before the first event procedure
has started. The default value of TC_DELAY_PRE_EVENT_OPS is “0”.

Note: The buffering behavior described for this configuration variable was
introduced as the default behavior in Version 6.1. Beginning with Version
7.2, the buffering behavior is turned off by default.

TC_DISABLE_AUTO_UPDATE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You can disable the automatic update process by
setting the TC_DISABLE_AUTO_UPDATE configuration variable to “1”
(on, true, yes). The default value of this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DISABLE_SERVER_LOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a log file may be created on the server. This file contains a log of
the update operations and details about the failure. To prevent the creation of
this log file, set the TC_DISABLE_SERVER_LOG configuration variable to
“true” (1, on, yes). The default value of this variable is “false” (0, off, no).

Configuration variables m H-155

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_CANCEL_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. You can cancel the download
at any time from this dialog box. Use the
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable to specify
the message that appears when the download is cancelled. The default value
for this variable is

Please wait while the download is being cancelled . . .

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_DESCRIPTION

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. You use the
TC_DOWNLOAD_DESCRIPTION configuration variable to specify the
text that appears in the middle of the download progress dialog. Its default
value is

Downloading installation file. . .

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

H-156 m Configuration Variables

TC_DOWNLOAD_DIALOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. The default value of “1” (on,
true, yes) for the TC_DOWNLOAD_DIALOG configuration variable allows
the appearance of this dialog box. If you set this variable to “0” (off, false,
no), the progress dialog does not appear.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_DIALOG_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. The
TC_DOWNLOAD_DIALOG_TITLE configuration variable is used to
specify the title bar text in this dialog box. The default value of this variable
is

ACUCOBOL-GT Thin Client Automatic Update

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_EVENT_LIST

This configuration variable lets you control which events your program
receives, giving you more control over the rate of network traffic. It must be
set in the configuration file and cannot be changed programmatically with the
SET verb. It contains the numeric value of a single event type or a list of
event types separated by non-numeric characters like spaces or commas.
Whether your program receives these events depends on the value of

TC _EXCLUDE_EVENT_LIST. Ifits value is “0”, then your program

Configuration variables m H-157

receives the events listed in TC_EVENT_LIST. If
TC_EXCLUDE_EVENT_LIST is set to “1”, the events listed in
TC_EVENT_LIST are not sent to your program.

TC_EXCLUDE_EVENT _LIST

The value of this variable determines whether the events listed in
TC_AX_EVENT_LIST and TC_EVENT_LIST are sent to your program.
A value of “1” means the specified events are not sent to your program. The
default value is “0”.

TC_INSTALLER_ARGS

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The thin client uses the value of the
TC_INSTALLER_ARGS configuration variable as the command-line
options passed to the installer executable. For example, if you want
“msiexec.exe” to log all of its operations to a file named “msi.log”, then you
could set TC_INSTALLER_ARGS to “/log msi.log”.
TC_INSTALLER_ARGS has no default value.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER_CLIENT_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_CLIENT_FILE
configuration variable to specify the path and file name of the installer file
that you want to create on the client. The default value of this variable is

<APPDATA>\ACUCOBOL-GT\<installer_server_filename>

H-158 m Configuration Variables

where <APPDATA> is a special directory name for C:\Documents and
Settings\<user>\Application Data and <installer_server_filename> is the file
name specified in the TC_INSTALLER_SERVER_FILE configuration
variable.

For detailed information about special directory names like <APPDATA>
and about the thin client automatic update process, refer to section 7.4, “Thin
Client Automatic Update,” in the AcuConnect User’s Guide.

TC_INSTALLER_RUN_ASYNC

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_RUN_ASYNC
configuration variable when you want to prevent the thin client from
restarting after an automatic update or when your installer file handles the
automatic update process to completion. When you set this variable to “1”
(on, true, yes), the thin client starts the installer process asynchronously and
then exits immediately. It does not wait for the automatic update process to
complete and does not restart the application. The default value is “0” (off,
false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER _SERVER _FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You set the TC_INSTALLER _SERVER_FILE
configuration variable to the path and file name of the server installer file. Its
default value is

<runtime_path>/acuthin.msi

where <runtime_path> is the directory that contains the runcbl runtime
executable.

Configuration variables m H-159

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER_TARGET_DIR

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_TARGET_DIR
configuration variable to specify the location where you want the updated
thin client to be installed. This variable has no default value.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER _UI_LEVEL

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The keywords or numeric values in the
TC_INSTALLER_UI_LEVEL configuration variable control the Windows
installer interface. Set TC_INSTALLER_UI_LEVEL to NONE or “0” if you
do not want the Windows installer to display a user interface. Set this
variable to UNATTENDED or “1” if you want the Windows installer to
display informational and progress messages but to execute unattended. Set
the variable to INTERACTIVE, DEFAULT, or “2” if you want the Windows
installer to prompt for and accept user input for the installation process. Set
the variable to REDUCED or “3” if you want to use a reduced user interface.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

H-160 m Configuration Variables

TC_MAP_FILE

In thin client deployments, set this variable to point to the character map file
that defines the mapping of international characters between client and server
systems. A detailed description of international character handling is located
in the AcuConnect User’s Guide, section 4.5, “International Character
Handling.”

TC_NESTED_AX_EVENTS

This variable determines how thin client handles nested ActiveX events.
Because thin client processes Windows messages while waiting for
responses from the server, it is possible for new ActiveX events to be sent
while still waiting for an earlier event procedure to return, causing event
procedures to be nested within event procedures. Because nested event
procedures can cause unpredictable results, including memory access
violations (MAVSs), this variable is set to “0” (off, false, no) by default. 1f you
want to enable it, set it to “1” (on, true, yes).

TC_QUIT_MODE

This variable lets you control how your COBOL application shuts down
when no client activity occurs during the interval defined by

TC _CHECK_ALIVE_INTERVAL. Setting TC_QUIT_MODE to “-1”
(the default value) shuts your program down according to the value chosen
for the QUIT_MODE configuration variable. If you set this variable to “0”,
the runtime stops the program immediately.

When this variable is set to a value greater than “0” (up to “32767"), your
application has a program-controlled exit. When the runtime determines that
the thin client is no longer responding (no user interaction and no pings
during TC_CHECK_ALIVE_INTERVAL), the MSG-MENU-INPUT
event is sent to the program’s main window and EVENT-DATA-2 contains
the value defined by TC_QUIT_MODE. Your program can detect this in the
main window’s event procedure and you can perform whatever code you
desire. At this point there is no connection to the thin client, so user interface
operations may not be performed. You must end your shutdown code with
“STOP RUN” to terminate the runtime.

Configuration variables m H-161

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_REQUIRES_BUILD_NUMBER

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When the thin client executes, it compares its build
number with the value of the TC_REQUIRES BUILD NUMBER
configuration variable. If the value of this variable does not match the
client’s build number, the automatic update process is initiated. Set this
variable to the thin client build number required by the application. The
default value of this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_RESTRICT_AX_EVENTS

This variable controls whether the application will ignore ActiveX events
between ACCEPT statements (the termination of one ACCEPT and the
beginning of the next). Setting this variable to “1” (on, true, yes) enables this
behavior. The default value is “0” (off, false, no).

Ordinarily, the thin client runtime suspends all ActiveX events when the
application is not processing an ACCEPT statement. However, some
ActiveX controls do not support the ability to suspend and resume events
when an application is not processing an ACCEPT statement. As a result, in
a thin client environment, an event procedure may be run unexpectedly
during a CREATE, DISPLAY, MODIFY, INQUIRE, or any other operation
that waits for results from the thin client. Setting
TC_RESTRICT_AX_EVENTS provides some control over these ActiveX
events.

To determine if a particular ActiveX control supports suspending and
resuming events, check the control’s documentation or ask the control
vendor. Note that the control must implement the
“lOleControl::FreezeEvents()” function.

H-162 m Configuration Variables

For more information about ActiveX control handling, see Chapter 4 in A
Guide to Interoperating with ACUCOBOL-GT, and section 6.3 of the
AcuConnect User’s Guide.

TC_SERVER_LOG_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a log file may be created on the server. This file contains a log of
the update operations and details about the failure. The
TC_SERVER_LOG_FILE configuration variable can be used to configure
the location and name of that log file. The name can optionally include the
hostname of the client machine and the process ID of the server runtime that
was managing the automatic update at the time of the failure.

By default, this file is named “autoupdate.%c.%p.log”, where “%c” is
replaced by the client hostname and “%p” is replaced by the process ID of the
server runtime. The default location is the working directory specified in the
alias on the server. Note that the directory must exist at the time of the failure
for the log file to be created.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_SERVER_TIMEOUT

This variable lets you determine how many seconds (from “0” to “32767”)
the thin client waits for a response from the server. If the thin client receives
no response from the server in the specified time period, the following
message box appears:

The remote host is not responding.
Press OK to close this program.
Press Cancel to wait another %s seconds.

where “%s” is the value of TC_SERVER_TIMEOUT. The default value is
HZOH.

Configuration variables m H-163

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_TV_SELCHANGING

This variable is designed for thin client applications. It provides some
control over when the runtime generates Msg-Tv-Selchanging events for tree
view controls. Because most applications that use tree view controls do not
process Msg-Tv-Selchanging events, the thin client suppresses its generation
in some cases. This improves both performance and stability.
TC_TV_SELCHANGING recognizes the following values:

0 never generate Msg-Tv-Selchanging events

1 (default) generate Msg-Tv-Selchanging events when the selection
is about to change due to the user using the mouse or the keyboard
to change to current selection

2 always generate Msg-Tv-Selchanging events

The default setting of “1” allows you to detect user-initiated events in your
program while filtering out many other causes of the event.

If you know your program doesn’t handle any Msg-Tv-Selchanging events,
youcanset TC_TV_SELCHANGING to “0” to entirely inhibit generation of
the event. This can slightly improve performance.

If TC_TV_SELCHANGING is setto “1” and your program experiences odd
behavior with tree view controls under the thin client, you can try setting the
variable to “2” to generate all Msg-Tv-Selchanging events. This setting can
help you determine whether a Msg-Tv-Selchanging event is the cause of the
odd behavior. If this setting eliminates the odd behavior, it indicates that
your program relies on Msg-Tv-Selchanging events in cases other than the
user initiating a selection change.

For more information about the thin client, refer to the AcuConnect
User's Guide.

H-164 = Configuration Variables

TEMP_DIR

This variable lets you specify where certain temporary files used by the
ASSIGN clause will be created on VAX/VMS systems. These temporary
files are created when you use the %TMP% option for assigning a file to a
simulated pipe with “-P”. For more information, see the ACUCOBOL-GT
User’s Guide, section 2.9, “File Name Interpretation.”

TEMPORARY_CONTROLS

TEXT

By default, graphical controls are created as permanent controls. By setting
this configuration variable to “1” (on, true, yes), you cause controls to be
created temporary by default. This is useful when you are converting older
programs that assume that a screen update will overwrite any existing screen
data. You can make individual controls permanent or temporary explicitly by
using the PERMANENT and TEMPORARY styles (see Section 5.2 in
Book 2, ACUCOBOL-GT User Interface Programming).

This configuration variable controls the text of runtime messages. The
ACUCOBOL-GT runtime system displays a number of informational and
warning messages to the end user. Several of these messages can be
customized via entries in the configuration file.

For each message that you want to change, place the word “TEXT” in your
configuration file, followed by a message number from the list below, an “="
sign, and then the text you would like to use.

For example, the standard message #1 is “press return”. You can change that
message to “push enter” by placing this line in your configuration file:

TEXT 1=push enter

Note: There is no space before or after the equals sign, and the new
message is not in quotes.

Configuration variables m H-165

These are the standard runtime messages and their numbers:

Message # Text

“Press return”

“Number required”

“Entry required”

“Field must be filled with data”
“Too many hot keys active”
“Program missing or inaccessible”
“Not a COBOL program”

“Corrupted program”

© o0 N oo o B~ W N -

“Inadequate memory available”

=
o

“Unsupported version of object code”

[EEN
[N

“Program already in use”

=
N

“Too many external segments”

=
w

“Large-model program not supported”

=
[ee)

“Please end this application first”

[N
©

“Japanese objects not supported”

This message is displayed when a standard runtime attempts to
execute an object that contains Japanese COBOL extensions.

20 “Too many lines”

This message is displayed when the user exceeds the MAX-LINES
setting for a multiline entry field.

21 “License manager (acushare) not running”

This message is displayed when acushare is not running and the
runtime is unable to start it (e.g., because it is not in the path).

22 “Data must fit this format:”

This message is displayed when the user enters illegal data when
using the NUMERIC_VALIDATION configuration option.

23 “&O0k”
24 “&Yes”

H-166 m Configuration Variables

Message #

25
26

28

30
31

32
33
34
35
36

Text

“&No”
“&Cancel”

Messages 23, 24, 25, and 26 are used by character-based versions for
the message box facility.

“Unable to access the file “%s” due to heavy usage by other users.
Would you like to continue waiting for it?”

(See the configuration variable WAIT_FOR_FILE_ACCESS for
more information about this message.)

“Connection refused - perhaps AcuConnect is not running”
“Please enter a value between %Id and %Id”

This message is displayed when the user enters a value outside of the
allowed range for an entry-field (see MIN-VAL/MAX-VAL in the
entry-field reference). The first “%ld” is replaced by the MIN-VAL
setting. The second “%Id” is replaced by the MAX-VAL setting.
You may omit these if you desire. Note that the second character in
the sequence is the letter “I””, and not the number one (*“1”).

“Program contains object code for a different processor”
“Incorrect serial number”

“Connection refused - user count exceeded on remote server”
“License error”

“The remote host is not responding.\nPress OK to close this
program.\nPress Cancel to wait another %s seconds.

This message is displayed when Thin Client does not receive a
response from the server in the number of seconds specified in
TC_SERVER_TIMEOUT.

Use “\n” to separate lines and “%s” to substitute the number of
seconds (value of TC_SERVER_TIMEOQUT). If you don’t want to
display the number of seconds, omit the “%s”.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration variables m H-167

TRACE_STYLE

This variable allows you to customize the format of error and trace messages.
You can set it to the sum of one or more of the following values:

0

co A N

16

The default. No “ACU” prefix, process ID, time, or date is
included in the trace output.

Adds “ACU” prefix to each line of the trace output.
Adds the process ID.
Adds the time.

Adds the microseconds; has an effect only if “4” is also
specified.

Adds the date.

You can also set TRACE_STYLE to one of the following keywords, which
correspond to the indicated numerical values:

NONE 0
TIMESTAMP 12 -- The TIMESTAMP style is 4+8; it outputs timestamps

with microseconds.

APPSERVER 23 -- The APPSERVER style is 1+2+4+16; at the beginning

of each line of the error file it outputs “ACU” followed by
the date, the process ID, and the time without microseconds.

TRANSLATE_TO_ANSI

This variable has meaning only on graphical systems such as Windows. Itis
used only if:

you are using the graphical system’s font to accept data, and

you store your data using the OEM character set. (For example, Vision
files may contain OEM characters if they were created with a DOS
runtime.)

H-168 m Configuration Variables

Set the variable TRANSLATE_TO_ANSI to “1” (on, true, yes) to turn
on a character set translator. Then, if you use the graphical system’s font
for accepting data, the runtime will translate from one character set to the
other for you. Data that is accepted from the screen will be translated
into the OEM character set before it is stored on disk. Data stored in the
OEM character set will be translated to the ANSI character set before it
is displayed on screen. This also applies to the printer, if you are using
Windows spooling and the printer uses an ANSI font.

Setting TRANSLATE_TO_ANSI to the default, “0” (off, false, no), turns off
the translation process.

This variable can be set from within a COBOL program with the SET verb.
For example:

SET ENVIRONMENT “TRANSLATE_TO_ANSI” TO “YES”.
Note on ANSI and OEM characters:

The ANSI and OEM representations of the following standard English
characters are identical:

ABCDEFGH I JKLMNOPQRSTUVWXYZ
Abcdefghi jkImnopgrstuvwxyz
0123456789 <space>

V" #$%&"()Y*+,-./:
s<=>20LN1"_°“{11}~-

Only the representations of accented vowels and other special or non-English
characters are different.

TREE_ROOT_SPACE

This variable controls the number of screen columns between the left edge of
the Tree-View control and the root level text. TREE_ROOT_SPACE is used
only with the LINES-AT-ROOT property. If LINES-AT-ROOT is not
specified, the root level item text will be displayed starting at the leftmost
screen column inside the tree-view control.

Configuration variables m H-169

For example, if TREE_ROOT_SPACE is set to 5, there will be 5 screen
columns before the text of each root level item. The screen column where the
root level line will be drawn is determined by this formula:

root level-line = (TREE_ROOT_SPACE - 1)/2 + 1

Taking off from the previous example, if TREE_ROOT_SPACE=5, the root
level line will be drawn in screen column 3, counting from the left edge of the
Tree-View control.

This has the effect of centering the vertical root level line in the space
between the left edge of the Tree-View control and the last root level text.

The “+” or “-” button is displayed in the column to the right of this vertical
line if the TREE_ROOT_SPACE is set to a value greater than or equal to 2.
If the TREE_ROOT_SPACE is set to 1, the “+” or *“-” button appears in the
first screen column of the Tree-View control. The default value of
TREE_ROOT_SPACE is 2.

TREE_TAB_SIZE

This configuration variable is one of two variables that affect the appearance
of character-based Tree-View controls. TREE_TAB_SIZE controls the
number of screen columns between each level in the visual representation of
the tree. For example, if TREE_TAB_SIZE is set to 10, the horizontal
distance between the first character of text in the first level and the first
character of text in the succeeding levels of the tree will be 10 screen columns
each. The default value of TREE_TAB_SIZE is 3.

See TREE_ROOT_SPACE variable.

TRX_HOLDS_LOCKS

This configuration variable allows you to control which locks are released at
the end of a transaction. If this variable is setto “1” (on, true, yes), then locks
set using the READ statement that are not specifically released or replaced by
extended transaction locks (for example, by a REWRITE) are held at the end

H-170 m Configuration Variables

of the transaction. Locks are released during a transaction by any operation
that would ordinarily release them, unless those locks were replaced by
extended transaction locks.

If TRX_HOLDS_LOCKS is set to the default, “0” (off, false, no), then locks
are released at the end of a transaction, and the UNLOCK verb has no effect
during a transaction.

UPPER_LOWER_MAP

This variable allows you to define which upper-case characters correspond to
which lower-case characters, for characters outside of the standard ASCII
character set (those whose underlying decimal values are 128 or larger).

You might find this useful if you are experiencing problems with the UPPER
or LOWER option of the ACCEPT statement when non-standard characters
are entered (such as an “e” with an accent above it). The ACUCOBOL-GT
runtime system relies heavily on C library routines to handle conversions
between upper-case and lower-case characters. On many machines, these
routines do not handle characters outside of the standard ASCII character set
correctly.

To specify corresponding characters, use UPPER_LOWER_MAP followed
by pairs of characters, where the first character is the upper-case version and
the second character is the lower-case version. Separate the characters by a
space. Describe the characters either by typing them at the keyboard or by
entering the decimal value that represents them.

For example, on a standard IBM PC, the video card represents an upper-case
“U” with an umlaut (U) as character 154, and the lower-case “u” with an
umlaut () as 129. The upper-case “E” with an accent character is 144 (E)
and the lower-case “e” with an accent is 130 (é). To express this in the
configuration file, you would add the following line:

UPPER_LOWER_MAP 154 129 144 130

This could be extended to include all of the character pairs available.

Configuration variables m H-171

By default, Windows systems come with the UPPER_LOWER_MAP
defined to be the character pairs available on the standard video cards
produced by IBM. Note that using “code pages” can change this, so the
default may not work in all cases for these machines. For other machines, the
default is empty (which means that C library routines are used for
conversion). If you experience difficulties, UPPER_LOWER_MAP allows
you to define a mapping that reflects your hardware configuration.

Only characters whose decimal values are 128 or greater may be mapped by
this technique.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

USE_CICS

Set this variable to indicate to the runtime that the program makes calls to the
CICS interface. When USE_CICS is set to “1” (on, true, yes), the runtime
attempts to pass calls to functions that begin with the string “CICS” to the
CICS interface. If the named routine does not exist, the runtime uses the
normal search sequence to find a matching function. When USE_CICS is set
to the default value of “0” (off, false, no), the runtime does not perform any
special handling.

USE_EXECUTABLE_MEMORY

When set to “TRUE?”, this variable enables a COBOL program compiled for
Native Code (-n compiler option) to run on a Windows machine that has Data
Execution Protection (DEP) enabled for all processes. The default value is
“FALSE”.

H-172 = Configuration Variables

USE_EXTSM

Set this variable to indicate that the runtime should use an external sort
module. When USE_EXTSM is setto “1” (on, true, yes), the runtime uses the
linked-in EXTSM function to perform the SORT or MERGE operation.
When USE_EXTSM is set to the default value of “0” (off, false, no), the
runtime does not perform any special handling for SORT and MERGE verbs.

USE_LARGE_FILE_API

On UNIX systems, this variable allows you to turn on or off file system API
support for very large files (greater than 2 gigabytes). Support for large files
is enabled when USE_LARGE_FILE_API is setto “1” (on, true, yes). Some
UNIX systems do not support files greater than 2 gigabytes in size. In those
situations, setting this variable to the default of “0” (off, false, no) causes the
runtime to use the standard 32-bit file system API. This variable has no effect
on Windows platforms.

USE_LOCAL_SERVER

This variable is used by the runtime and Web Runtime to specify whether or
not you want to run client applications on the same machine as an AcuServer
file server. When USE_LOCAL_SERVER is set to the default of “0” (off,
false, no), AcuServer is bypassed when accessing local files that have remote
name notation. The remote name is stripped off and the file I/O operation is
handled by the runtime or Web Runtime. Set this variable to “1” (on true,
yes) to use AcuServer to access local files that have remote name notation.
This variable only works with AcuServer client runtimes and AcuServer
client Web Runtimes.

USE_MPE_REDIRECTION

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option) on machines that
support the MPE environment. With the use of the
USE_MPE_REDIRECTION configuration variable, input for an ACCEPT

Configuration variables m H-173

statement is read from the file specified by STDIN=, and output from a
DISPLAY statement is written to the file specified by STDLIST= on the
RUN command line. To enable this behavior, set
USE_MPE_REDIRECTION to “1” (on, true, yes). The default value is “0”
(off, false, no). In addition, when this variable is set, no terminal manager
escape sequences are written to the redirected output file.

USE_MQSERIES

Use this variable to indicate to the runtime that the program makes calls to
WebSphere MQ (formerly MQSeries). When USE_MQSERIES is set to “1”
(on, true, yes), the runtime attempts to pass calls to functions that begin with
the string “MQ” to the WebSphere MQ interface. If the named routine does
not exit, the runtime uses the normal search sequence to find a matching
function. When USE_MQSERIES is set to the default value of “0” (off,
false, no), the runtime does not perform any special handling.

USE_SYSTEM_QSORT

This variable instructs the runtime SORT routine to use the system gsort()
function, rather than the built-in sort function. Set USE_SYSTEM_QSORT
to “1” if you want to use the system gsort() function. The default value is “0”
and results in the use of the built-in sort function.

Some systems have gsort() functions that perform better than the built-in
function. Consider experimenting with this variable’s settings to determine
if this option yields better performance on your system. Pay particular
attention to the number of comparisons done during the sort, which can be
seen in the runtime trace output.

USE_WINSYSFILES

This variable specifies whether the runtime should recognize calls to modules
with the extensions “.drv” and “.ocx” as well as those with the extension
“dll”. By default, it is set to “1” (on, true, yes).

H-174 = Configuration Variables

For backwards compatibility, you can turn this feature off by setting it to “0”
(off, false, no). Then, only calls to “.dll” files are supported.

V_BASENAME_TRANSLATION

This variable allows you to tell Vision whether to include full path
information in the filename. By default, only the base name is included (the
filename with no extension and no path information). Retaining the path
information can be helpful in instances where Vision files of the same name
are stored in different locations and you want to map one of the segments
from one directory to a new location.

When V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision
uses the entire path of the file. When itissetto “1” (on, true, yes), the default
setting, Vision uses only the base name.

The setting of V_BASENAME_TRANSLATION affects the behavior of
three configuration variables that handle Vision filename translation:
filename, filename_DATA_FMT, and filename_INDEX_FMT. The
following illustrates how the configuration variables interact.

For the file “/user/data/recordl.vix™:

o If V_BASENAME_TRANSLATION is set to “on” (the default),
filename, filename_INDEX_FMT, and filename_DATA_FMT use
“RECORD1_VIX” as the base name.

e |fV_BASENAME_TRANSLATION is set to “off”, filename,
filename INDEX_FMT, and filename_DATA_FMT use
“ USER_DATA_RECORD1_VIX” as the base name (underscores
replace instances of “/” and “.”).

For a description of filename, filename_INDEX_FMT, and
filename_DATA_FMT, see their respective entries in this appendix.

Configuration variables m H-175

V_BUFFERS

This variable sets the number of indexed block buffers to allocate. These
buffers are used to improve the performance of indexed files. Each buffer is
512 bytes plus some overhead. Increasing the number of buffers can
improve file performance. Decreasing the number conserves memory. The
value of V_BUFFERS has no effect on versions of ACUCOBOL-GT that do
not use Vision files. The value of V_BUFFERS can range from zero (no
buffering) to 2097152. The default value is 64.

V_BUFFER_DATA

The setting of this variable determines whether or not Vision indexed file
data blocks (as opposed to key blocks) will be held in the memory-resident
disk buffers. When it is set to “1” (on, true, yes), both data blocks and key
blocks will use the buffers. When set to “0” (off, false, no), only key blocks
will use the buffers. Setting this value to “1” will usually improve
performance unless very few buffers are being used.

Note: Holding data blocks in the buffers slightly increases the chances of
losing data if a file opened for MASS_UPDATE is not closed properly
(power failure, etc.). The default setting of this variable is “1”.

V_BULK_MEMORY

Vision allocates a memory buffer for each file opened for bulk addition. The
size of this buffer is controlled by the V_BULK_MEMORY configuration
option. The default size of this buffer is 1 MB.

Note: The default size is fairly large because it is assumed that only a few
files will be open for bulk addition on a system at any one time. If this
buffer cannot be allocated, the OPEN fails with a status indicating
inadequate memory.

To change the size of the allocated memory buffer to, for example, 500 KB,
you would enter:

H-176 m Configuration Variables

V_BULK_MEMORY = 500 KB

V_FORCE_OPEN

This variable allows you to force the runtime to open broken files that would
normally cause an error 98. This means you can write COBOL programs to
recover these files in ways that are not available with vutil. Set
V_FORCE_OPEN to “1” (on, true, yes) to open the files. The default is “0”
(off, false, no).

Note: When this variable is set to “1”, make sure you do not also have the
V_OPEN_STRICT variable set to “1” because the settings conflict.

V_INDEX_BLOCK_PERCENT

This configuration variable allows you to specify index pre-allocate and
extension factors as a percentage of the factors applied to the data segment.
In Vision 4 and 5 files, the index data contained in the index segments is often
much smaller than the record data contained in the data segments. As a result,
a large pre-allocate or extension factor typically allocates many more index
blocks than are needed. This can be undesirable, especially if disk space is
tight.

Setting V_INDEX_BLOCK_PERCENT to a number less than 100 causes
fewer index blocks than data blocks to be created. Setting the variable to a
number greater than 100 causes more index blocks than data blocks to be
created. The valid range for V_INDEX_BLOCK_PERCENT is one through
1000. If the value specified is less than one, it will be promoted to one.
V_INDEX_BLOCK_PERCENT is set to 100 by default (the default
pre-allocate and extension factors for a file).

For example, if a file has an extension factor of 10, setting
V_INDEX_BLOCK_PERCENT to 50 causes 10 new data blocks and five
new index blocks to be created the next time the file is extended. Setting
V_INDEX_BLOCK_PERCENT to 200 causes 10 new data blocks and 20
new index blocks to be created the next time the file is extended.

Configuration variables m H-177

Note: The number of blocks pre-allocated will never be larger than that
which can fit in the initial data and index segments. If the pre-allocation
value specified or calculated from V_INDEX_BLOCK_PERCENT is
larger than the segment size, the pre-allocation amount is automatically
reduced to the segment size.

V_INTERNAL_LOCKS

This configuration variable allows you to control whether the runtime
enforces internal record or file locking. When V_INTERNAL_LOCKS is set
to “0” (off, false, no), Vision tracks locks but does not enforce internal record
or file locking. As a result, the runtime does not return a record or file locked
condition for a record or file that was previously locked by the same run unit.
When V_INTERNAL_LOCKS is set to the default of “1” (on, true, yes),
internal record and file locking are enforced.

Note: The Windows operating system enforces a single lock per process
on a region of a file. This means that if your program opens the same
physical file as two different logical files and then tries to lock the same
record in both “files”, the second lock will fail (with an error “99”) even if
V_INTERNAL_LOCKS issetto “0”. So V_INTERNAL_LOCKS 0
practically affects programs running on UNIX operating systems only.

V_LOCK_METHOD

This variable selects which locking method Vision will use to control
simultaneous access to indexed files. It affects only the Vision file system,
and only files directly accessed by the runtime (it does not apply to files
accessed via AcuServer).

The default setting of “0” (zero) causes Vision to lock the first byte of the file
for every access to the file (both reads and updates). This ensures that the
process is not interfered with by another process. This locking method is
always used by Vision Version 2 files.

H-178 m Configuration Variables

Setting this variable to “1” causes Vision to lock the first byte of the file for
all operations except random READs or READ NEXTs. These two
operations proceed without the lock. Instead they perform some additional
reads of the file, to ensure that they get consistent results. If they get
inconsistent results, they are retried, this time locking the first byte as other
operations do. This locking method is available only for Vision Version 3, 4,
and 5 files.

Note: This variable must have the same setting for all the runtimes
accessing a file, whether they are reading or writing to it. For example, if a
runtime set with V_LOCK_METHOD-=1 is reading from a file, any
runtimes that are writing to that same file must also have
V_LOCK_METHOD set to 1.

Lock method “1” can produce better performance on some machines. These
machines fall into two categories:

* Machines that take a long time to place a lock.

< Machines that do not queue lock requests, and are very busy. In this
case, some users typically get good performance, while others get poor
performance.

Setting V_LOCK_METHOD to “1” might help improve performance with
Vision Version 3, 4, or 5 files. For example, settingV_LOCK_METHOD to
“1” can be helpful on some Windows networks. A peer-to-peer network of
Windows 98 machines can exhibit problems reading Vision files when a
process performs a tight read loop. The problem usually surfaces as either an
error 30,33 or an unexpected error 99. This occurs because the runtime is
unable to place a lock on the header of the file after 400 attempts over a
20-second period. For other networks, setting V_LOCK_METHOD to “1”
can substantially reduce the number of lock requests made by the runtime and
can often resolve these problems.

To get statistics about header locks, select Trace Files level “3” in the
debugger (for example, “TF 3”). These statistics print on the runtime’s error
output each time a Vision file is closed. They cover the operations in that file
since it was last opened. You can also view these statistics (without the full
trace) by adding “256” to the lock method chosen (for example, setting
V_LOCK_METHOD to “257” selects method “1” and prints statistics).

Configuration variables m H-179

Setting the V_LOCK_METHOD variable to “2” enables “asynchronous
reads” of Vision files. This option is intended to further reduce the number
of file locks required to perform random READs and READ NEXTs.

The advantage of the “2” setting is that it is less likely to require retrying a
READ with a lock when a file is undergoing heavy modification. With
V_LOCK_METHOD=1, the READ is retried with a lock whenever it detects
that the file has been updated in any way; with V_LOCK_METHOD=2, the
READ is retried only when Vision encounters inconsistent data while
traversing the index tree or reading the record data. This leads to less locks
and therefore greater performance for machines with slow locking functions.

V_LOCK_METHOD=2 works only for Vision 4 and 5 files. A fundamental
requirement forthe V_LOCK_METHOD=2 feature to work properly is that
the operating system must provide atomic write operations. That is, if one
process is writing to a file, another process will always see the contents of the
file as it exists either before or after the write operation, never the
intermediate contents as the write operation runs. There is evidence that
Linux does not provide atomic writer operations and therefore it is not
recommended to use this setting in a Linux environment.

If any process reading a particular file is using V_LOCK_METHOD=2, all
other processes (runtimes) updating that file must be ACUCOBOL Version
5.0.0 or greater. This is because Version 5.0.0 contains changes that affect
the way Vision updates the tree structure of its files. These changes allow for
greater consistency of the tree from the viewpoint of an asynchronous reader.
This requirement is not enforced by Vision, however, so it is important for
the users to pay careful attention to the versions of programs accessing their
files to avoid receiving erroneous data. Therefore, before enabling this
option, make sure that all runtimes updating files on which asynchronous
reads are to be performed (V_LOCK_METHOD=2) are Version 5.0.0 or
later.

As with V_LOCK_METHOD=1, adding 256 to the value of the
V_LOCK_METHOD setting causes statistics about header locks to be
printed to the runtime’s error output each time a Vision file is closed. So,
setting V_LOCK_METHOD=258 selects method 2 and turns on the header
lock statistics.

H-180 m Configuration Variables

V_MARK_READ_CORRUPT

This variable allows you to configure Vision so that it does not mark a file as
broken if it encounters a corruption during a read or start operation. The
effect is that the user is allowed to retry the program. This may be useful
when the error is spurious (for example due to a network caching glitch). If
the user retries the program and once again receives a file-corrupt message,
then the file should be rebuilt or recovered normally. To enable this option,
set the configuration option “V_MARK_READ_CORRUPT” to “0” (off,
false, no). The default setting is “1” (on, true, yes).

V_NO_ASYNC_CACHE_DATA

This configuration variable turns on the caching of data blocks for file reads.
By default, Vision 4 and 5 do not cache data blocks in its internal cache (all
V_BUFFERS are allocated only to index blocks). This is required for the
asynchronous reads feature (V_LOCK_METHOD=2) to work properly
(each data record needs to be read/written in a single system call).

The default setting of this configuration variable is “0” (off).
If you are not using the asynchronous reads feature at all, you may turn on

the caching of data blocks by setting the V_NO_ASYNC_CACHE_DATA
configuration variable to “1”. This may improve READ performance.

Caution: Be certain that you do not use this configuration variable with
V_LOCK_METHOD-=2 in any combination, as silent data corruption may
result.

Configuration variables m H-181

V_OPEN_STRICT

By default, Vision allows OPEN INPUT on files that are marked as broken.
This behavior is intended to make it easier to recover records from broken
files. If you want to receive an error status when opening a file marked as
broken for INPUT, set V_OPEN_STRICT to “1” (on, true, yes). The default
setting of “0” (off, false, no) allows open input on broken files.

Note: When this variable is set to “1”, make sure you do not also have the
V_FORCE_OPEN variable set to “1” because the settings conflict.

V_READ_AHEAD

Setting this configuration variable to “0” (off, false, no) turns off Vision’s
read-ahead logic. This may improve performance in cases where highly
random file processing is being used. The default value is “1” (on, true, yes).

V_SEG_SIZE

This configuration variable sets the maximum size of a Vision 4 or 5 file
segment in bytes. The default value is 2,147,482,112 (i.e., 2GB - 1536),
except on older HP/UX machines where it is 1,073,740,288 (i.e., 1GB -
1536) due to an operating system limitation. You may not use larger values,
but you can set smaller ones. The default value is the maximum allowed.
The value specified will automatically be rounded down to a multiple of the
block size of the file being created. For example, if the defaultV_SEG_SIZE
value is used and a file with a block size of 1024 is created, the segment size
for that file will be 2,147,481,600 (i.e., 2GB — 2048).

Using a smaller value for the segment size can help if you do not have 2GB
free on any disk or for testing purposes. The minimum value allowed is
81,920 bytes. To minimize the number of files created, you should set this
value as high as possible.

H-182 m Configuration Variables

The segment size of a file is set at file creation time and cannot be modified
without recreating the file (i.e., using vutil —rebuild with a different
V_SEG_SIZE setting). vutil uses this variable, but since it does not use a
configuration file, this variable must be set in the environment.

V_STRIP_DOT_EXTENSION

The V_STRIP_DOT_EXTENSION variable determines whether or not
Vision strips a trailing “dot extension” (“.dat”) from the logical name of a
data file when generating file names for index and data segments (other than
the first data segment). Setting this variable to “0” prevents the extension
from being removed. For example, by default, the first index segment name
for the logical file “file.one” is “file.vix” (which would conflict with the
index segment of “file.two”). WhenV_STRIP_DOT_EXTENSION is set to
“0” (off, false, no), the index segment name is “file.one.vix”. The default
value for this variable is “1” (on, true, yes).

Note: The setting of this variable affects the behavior of four configuration
variables: filename, filename_DATA_FMT, filename_INDEX_FMT,
and filename_VERSION. See their respective entries in this appendix for
details.

V_VERSION

This variable specifies the version number of new Vision files that are
created. The default value is “5”, which produces Vision files in the format
of the current version (Version 5). The value “4” produces Version 4 files.
Version 5 and 4 files are generated in a dual file format, with data records
filed in one segment and overhead key information filed in another. The
value “3” produces Version 3 files, in which data and keys are stored in a
single file. The value “2” produces Version 2 files. Any value other than
“27, “3”, or “4” produces Version 5 files.

Configuration variables m H-183

V23_GRAPHICS_CHARACTERS

Programs written for and executed with UNIX versions of the runtime up to
and including Version 2.4.0 use hex values 1-8 to display line drawing
characters on the screen. Runtimes after Version 2.4.0 use hex values offset
by one (1). When older programs are used with runtimes released after
Version 2.4.0, line drawing characters do not display as expected. To use the
old values for line drawing characters, set this variable to “1” (on, true, yes).

If the variable is set to “0” (off, false, no) or is not set at all, the runtime will
use the newer offset values. This variable works only for UNIX systems.

V30_MEASUREMENTS

This configuration variable affects whether the runtime sizes certain controls
according to the rules from Version 3.0 or from the current version. If the
current measurement code is causing your application to display incorrectly,
then setting this variable to “1” (on, true, yes) will use Version 3.0 sizing
rules instead. When V30_MEASUREMENTS is set to the default “0” (off,
false, no), then the current sizing rules are in effect.

The related configuration variables, V31_MEASUREMENTS and
V32_MEASUREMENTS have the same effect of setting the sizing rules to
that of their respective versions.

V31_FLOATING_POINT

This configuration variable allows you to disable a correction that was made
to the way floating-point numbers are displayed. Because some loss of
precision in the display of “USAGE DOUBLE” fields was possible in
Version 3.1, an improvement was introduced. Setting this variable to “1”
(on, true, yes) means that the Version 3.1 method of displaying floating-point
numbers is used. When V31_FLOATING_POINT is set to the default “0”
(off, false, no), then the correction is in effect.

H-184 m Configuration Variables

V42_FLOATING_POINT

This variable affects how floating-point arithmetic is performed. Starting
with Version 4.3, floating-point arithmetic was enhanced to more closely
reflect the way that floating-point values are determined on the host system.
This enhancement can affect the behavior of existing programs. To revert to
the computation method used prior to Version 4.3, set the value of

V42 _FLOATING_POINT to “1” (on, true, yes). By default, this variable is
setto “0” (off, false, no).

V43_PRINTER_CELLS

This variable affects whether the runtime sets the width of a printer cell
according to the rules from Version 4.3 or from the current version. \ersion
4.3 (and prior versions) computed the width of a printer cell based on the
average width of a selected printer font. The width of a printer cell is
currently computed in the same way that cells are computed for the screen,
namely by the width of the “0” character. For fixed-width fonts, such as
Courier, these values are the same for all characters. For proportional fonts,
such as Times New Roman, some characters might be wider than the “0”
character.

If the current computation is causing your application to print incorrectly,
then setting this variable to “1” (on, true, yes) will use Version 4.3 rules
instead. When V43 PRINTER_CELLS is set to the default “0” (off, false,
no), then the current rules are in effect.

V52_BITMAP_BUTTONS

If some event in the system forces the focus away from a bitmap-based push
button after a click has been started but not finished, this variable determines
whether the click is voided. If you do not want the click to be voided, set this
variable to “1” (on, true, yes). The default setting is “0” (off, false, no).

Configuration variables m H-185

V52_BITMAPS

This variable determines whether your application uses device-dependent or
device-independent bitmaps for image processing. The following settings are
recognized:

1 Use Version 5.2 and earlier image-processing code
(device-independent) for bitmap controls.

0 Use Version 6.0 and later image-processing code
(device-dependent) for bitmap controls.

-1 (default) Dynamically apply the image-processing
code based on the program’s object semantics. For
programs compiled for pre-Version 6.0 semantics, use
the older imaging code. For programs compiled for
Version 6.0 or later semantics, use the newer code.

V52_GRID_GOTO

This configuration variable determines how the runtime behaves when a user
clicks in a grid control cell containing the cursor. Prior to Version 5.2, the
runtime would not pass a MSG-GOTO-CELL-MOUSE event to the program
when the user clicked in a grid cell containing the cursor. For programs
compiled with Version 5.2, or later, this event is passed to the program.
Setting V52_GRID_GOTO to “0” (off, false, no), maintains the pre-5.2
behavior. The default of “1” (on, true, yes) enables the new behavior, even
for programs compiled with Versions 5.1 or earlier and run with \Versions 5.2
or later. See Appendix C, “Changes Affecting Previous Versions,” for
more details.

V60_LIST_VALUE

This variable allows you to select the algorithm used by the runtime to match
a list box or combo box VALUE with an item in the control’s list.

H-186 m Configuration Variables

Prior to Version 6.0, setting the VALUE of a combo box or list box caused
the first item in the list that started with the value of VALUE to be selected,
regardless of case. Beginning with Version 6.0, when a box’s VALUE is set,
the list is searched for an exact, case sensitive match with the specified value.
If the value is found, it is selected. If an exact match is not found, the list is
searched for an exact match regardless of case. If a match is still not found,
the list is searched again, this time for the first string that contains the passed
VALUE as a leading substring, regardless of case. V60 _LIST _VALUE
allows you to specify which algorithm to use. It accepts the following values:

1 directs the runtime to use the Version 6.0 search algorithm

0 directs the runtime to use the pre-6.0 search algorithm (substring
search only)

-1 (default) directs the runtime to use the 6.0 search algorithm on
objects compiled for \Version 6.0 or later, and to otherwise use the
old search algorithm. This means that objects compiled for
compatibility with versions prior to 6.0 that are run with a Version
6.0 runtime will not exhibit the new behavior.

Vé62_MAX_WINDOW

Starting with Version 7.0, when the runtime reduces the size of a window to
fit the screen, it includes any fractional lines and columns that fit, provided
the COBOL program attempts to create a window with fractional lines and
columns. For example, if you create a 70.0 line window, but only a 66.4 line
window fits on the display, the runtime detects that no fractional lines were
attempted, and truncates the number of lines to 66.0. However, if you
attempt to create a 70.1 line window, the runtime recognizes the fractional
measurement and displays a 66.4 line window. To preserve the pre-7.0
behavior, set the configuration variable V62_MAX_WINDOW to “1” (on,
true, yes) and fractional lines and columns are always removed. The default
value is “0” (off, false, no).

Configuration variables m H-187

V71_ALIGNED_ENTRY_FIELD

Starting with Version 7.2, the wheel mouse can be used for scrolling in a
center- or right-aligned entry field. To preserve the pre-7.2 behavior, set the
V71_ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true,
yes). The default value of this variable is “0” (off, false, no).

V71_FONT_WIDTHS

Windows has a function called GetTextMetrics that returns information
about a font. This data is used by the runtime to compute the “maximum
character width” and “wide character width” of a font. The “maximum
width” amount is used to set a lower bound for how small an entry field can
be (to ensure that at least one character is always visible). The “wide width”
is used to scale small entry fields and uppercase entry fields. The “wide
width” is computed by averaging the maximum and average character
widths. Experimentation has shown that the “maximum character width”
data returned may be inaccurate, sometimes by very large margins.

With the use of the V71_FONT_WIDTHS configuration variable, the
runtime validates the data returned by the Windows function and corrects it
when it is too large. The change does not affect programs until they are
recompiled with Version 7.2 or later, or the change is specifically enabled
through the V71_FONT_WIDTHS configuration option. The variable can
have the following values:

-1 (default) The change is enabled for programs using Version 7.2 or later
semantics. In other words, the program has been compiled with Version
7.2 or later and the command line does not contain a compiler option for
pre-7.2 semantics.

0 The change is enabled.
1 The change is disabled and the Version 7.1 and earlier font measuring
code is used.

Please note the following issues regarding the use of this variable:

» The runtime's standard fonts are not affected by this configuration
variable setting.

H-188 m Configuration Variables

« Entry fields defined by physical units (CELLS or PIXELS) and all
screens created using the AcuBench Screen Designer will not change.

< Entry fields will not grow larger due to this configuration variable
setting. The majority will stay the same size, and a few might get
smaller.

» Fixed width fonts are not affected by this configuration variable setting.

WAIT_FOR_ALL_PIPES

This configuration variable determines if the runtime calls the wait system
call each time a “-P” file is closed. When WAIT_FOR_ALL_PIPES is set to
“0” (off, false, no), the runtime does not make this call until it is ready to
close the last pipe it knows about. Setting this configuration variable to the
default “1” (on, true, yes) means that the runtime calls the wait system call
when a “-P” file is closed.

WAIT_FOR_FILE_ACCESS

This configuration variable is designed for Windows 98 systems. It gives
you some control over situations where a user must wait for access to a
shared file. The runtime will try repeatedly to acquire the file lock, up to 400
times. If it has been unable to obtain a file lock after 400 tries, it will (by
default) display a message box, asking if the user would like to continue
waiting. If the user clicks the “Yes” button, then the runtime will try again
another 400 times (or the value of LOCKING_RETRIES). If the user clicks
the “No” button, then the runtime will return an error to the COBOL program
(such as file error 30,33 (system error) or file error 99 (record locked).

The WAIT_FOR_FILE_ACCESS variable lets you choose one of three
behaviors: either the user will always see the message box and make a choice,
or the program will always return an error code if it cannot acquire the lock,
or the runtime will always behave as if the user answered “yes” to the
message box.

Configuration variables m H-189

You can modify the text shown to the user in the message box via the TEXT
configuration variable. The message is number 28. To include the filename
in your message, insert “%s” at the place where you want the name of the file
to appear. You can introduce line breaks by including “\n” in the message.

Possible values for the WAIT_FOR_FILE_ACCESS variable are:

0 “No” Do not display message box if lock is not acquired. Send
error to COBOL program.

1 “Ask” Show the message box and ask the user. (Default)

2 “Yes” Do not show the message box. Assume that the user wants

to wait for the file. This ensures that the user eventually
can access the file, but introduces a small risk of an
infinite loop if the system’s lock table becomes corrupt.

For programs running in background (*“-b” runtime option), or programs with
redirected input or output, the “Ask” option is treated the same as the “Yes”
option.

WAIT_FOR_LOCKS

This determines how the runtime handles file status error 99 conditions on
record reads. This variable is not checked on record write operations. It can
have one of the following values:

0 Do not wait for locked records, return error 99.

1 Wait for the locked record if no Declarative is available for the file,
otherwise return error 99.

2 Always wait for the locked record, never return error 99.

Any other value (including the default value of “-1”) causes the runtime to
wait for locked records only if you have compiled for RM/COBOL
compatibility and the file does not have a Declarative.

H-190 = Configuration Variables

WARNINGS

This configuration variable controls whether a warning message is printed
and an error raised for the following conditions:

1. when non-numeric data is used in a context where numeric data is
required

2. when there is a reference modification range error

By default, the runtime silently corrects reference modification range errors
as follows:

« Astart reference less than 1 is treated as 1. For example, var(0:3) is
treated as var(1:3).

» Alength reference less than 0 is treated as 0. Moving a zero-byte item is
equivalent to moving spaces to the destination item. A zero-byte
destination is not affected by the move. Ina STRING statement, a
length of zero for a string source is treated as 1, not 0.

« Astart plus length reference that is past the end of the item is treated as
meaning to the end of the item. For example, if the var is a PIC X(5)
item, var(4:23) is treated as var(4:2).

WARNINGS can take the following values:

0 (off, false, no) No warning is printed.
1 (on, true, yes) A warning is printed. This is the default.

2 A warning is printed or sent to the error file. If you are in the debugger, an
automatic breakpoint occurs.

3 For a non-numeric error, a warning is printed, an intermediate error is
generated that calls the installed error procedures, if any, and the runtime is
halted. For more information on error procedures, see
CBL_ERROR_PROC in Appendix I.

Configuration variables m H-191

Note: The setting you select for WARNINGS applies to reference modifier
range errors when the start plus length reference is past the end of the item.

Reference modifiers that are equal to or less than zero are always silently

corrected as described above.

WARNING_ON_RECURSIVE_ACCEPTS

An event procedure may CALL another procedure which may contain
ACCEPT statements, which, in turn, may contain embedded procedures.
Although this is handled in the same fashion as nested PERFORMSs and is
perfectly legal, doing this poses the danger of going from one ACCEPT to
another uncontrollably. When the limit of 10 nested accepts is reached, the
program starts overwriting memory. It is possible to warn the user when the
limit is reached by giving this configuration variable a zero (*0”) value. This
gives users the opportunity to continue at their own risk. Giving
WARNING_ON_RECURSIVE_ACCEPTS a non-zero value suppresses the
warning.

To avoid overwriting memory, you may choose to re-code affected programs
to terminate the ACCEPT and perform the CALL after you exit from the
ACCEPT. You may also use CHAIN or CALL PROGRAM instead of the
regular CALL, if applicable.

WHITE_FILL

This variable has meaning only on graphical systems such as Windows.
Some graphical systems (such as Windows) use a “background brush” when
they resize a window. By default, the background brush color for
ACUCOBOL-GT is black (“0”, off, false, no). If you have arranged your
default background to be white, you will see a black flash when you resize the
window. This does not affect the final appearance of the window, but is
briefly noticeable while the window is being redrawn.

H-192 m Configuration Variables

Set WHITE_FILL to “1” (on, true, yes) to cause ACUCOBOL-GT’s
background brush to be set to white instead of black. Doing this will also
cause the initial screen that ACUCOBOL-GT paints to be white instead of
black.

Note: This variable must be set in the configuration file to be effective.
Modifying this variable with the SET ENVIRONMENT verb has no effect.

WIN_ERROR_HANDLING

This variable has meaning only on graphical systems such as Windows. Use
WIN_ERROR_HANDLING to control how hardware errors are handled.

When this variable is set to the default of “1” (on, true, yes), certain errors are
handled directly by the host environment, and do not automatically return a
file error code. For these errors, a dialog box is displayed that describes the
error and offers “Cancel” and “Retry” buttons. The user may correct the
error and press “Retry”. If the user presses “Cancel”, then your program
receives the file error that it would have normally received.

If you set WIN_ERROR_HANDLING to “0” (off, false, no), then the dialog
box is not shown, and your program receives the error directly.

WIN_F4_DROPS_COMBOBOX

This configuration variable applies only to programs running under
Windows.

If WIN_F4 DROPS_COMBOBOX is set to its default value of “1” (on, true,
yes), then combo boxes use the standard Windows handling for the <F4>
key. Pressing <F4> while a combo box is active causes it to drop its
drop-down list, and the COBOL program is not notified of an exception.

When this variable is set to “0” (off, false, no), pressing <F4> with a combo
box active causes the COBOL program to get the exception, but the combo
box does not drop its drop-down list.

Configuration variables m H-193

It is not possible to get both behaviors at the same time.

WIN_SPOOLER_PORT

This variable allows you to divert printer output to a file or port through the
Windows print spooler. Files created in this way are stored in binary
encoding. You may set the Windows print spooler with “-P SPOOLER” or
“-Q <printername>" with or without the DIRECT option. However, if you
omit the DIRECT option, the resulting file will include all the embedded
control codes formatting the print job for the original target printer.

By default, the value of WIN_SPOOLER_PORT is undefined. Set
WIN_SPOOLER_PORT to a valid filename or port. This can be done in a
configuration file, in the environment, or in the program. For example:

WIN_SPOOLER_PORT c:\mydir\myprint.prn

or
SET ENVIRONMENT "WIN_SPOOLER_PORT" TO "c:\mydir\myprint.prn™.

This will affect all print jobs performed in the current instance of the runtime.
Any graphics operations performed in the COBOL application, such as
WINPRINT-BITMAP or WINPRINT-GRAPH-DRAW, are preserved in the
file, and will print. However, these options may result in a very large binary
file.

The resulting file can be copied directly to any printer that is compatible with
the original target printer. For example, the following command:

COPY /B c:\mydir\myprint.prn LPT1

will send the file to LPT1, while the “/B” option tells the COPY command
that the file contains binary encoding.

WINS_CLIP_CONTROLS

This option is specific to the Windows versions of ACUCOBOL-GT. It
affects the way in which updates to a window interact with graphical controls
in a window. Normally, Windows allows updates to a parent window to

H-194 = Configuration Variables

show through any controls in that window. The controls are then updated to
create the proper final appearance. This is very fast, but it can cause controls
to flash when the background is being updated. When this option is set to “1”
(on, true, yes), the controls are clipped from the update region in the parent
window before the parent is repainted. This causes the controls to remain
relatively stable; however, screen repaints can be significantly slower,
particularly when the runtime is creating and destroying controls. The
default setting for this option is “0” (off, false, no). We recommend that you
experiment with both settings to see which you prefer. Note that this option
is examined when a floating window is created. Once a window is created,
changes to this option have no effect on that window.

Note: When turned on, this option causes the Windows
WS_CLIPCHILDREN style to be used whenever floating windows are
created.

WIN3_EF_PADDED

This configuration variable has meaning only on Windows systems. Under
Windows, unboxed entry fields include a small amount of extra space so the
cursor can be seen when it is placed after the last character position. This
space can be a problem if you want to convert a program and align screen
items. When WIN3_EF _PADDED is set to “0” (off, false, no), this extra
space does not appear in unboxed entry fields, and the entry field has only
enough space for its character positions. When this variable is set to the
default “1” (on, true, yes), the extra space appears in unboxed entry fields.

WIN3_GRID

This option is specific to Windows. When set to a non-zero value, it causes
a fine grid to be drawn in each floating window. The grid outlines the
character cells in the windows. This is intended as a debugging tool, to help
you see how various controls line up against the window’s character cells. It
can also help you adjust the layout of a screen.

Configuration variables m H-195

The grid is drawn using the color number that WIN3_GRID is set to (see the
COLOR phrase for the exact values). For example, setting WIN3_GRID to
“4” will draw a cyan grid. The grid is drawn with dashed lines. Every fifth
horizontal line and every tenth vertical line is drawn with a solid line.

WIN32_3D

This configuration variable causes the runtime to use the native 3-D features
of Windows when drawing controls with the 3-D style. This has an effect
only with the 32-bit Windows runtime. Turn this feature on by setting
WIN32_3D to “1” (on, true, yes). When set to the default of “0” (off, false,
no), the runtime supplies its own 3-D effects. The advantage of using the
native Windows 3-D is that you get a slightly more modern appearance and a
closer match to the appearance of other Windows programs. The
disadvantages are:

1. Windows always draws the border using the colors selected in the
system’s control panel. As a result, the effect looks right only when
placed on a window whose background is the USER-GRAY color. You
can accomplish this easily by creating STANDARD windows that
specify BACKGROUND-LOW.

2. The Windows 3-D effect is slightly larger than the runtime’s 3-D
effect. Windows draws a 1-pixel wide border around the control that is
the same color as the USER-GRAY color. This border is essentially
invisible against a window with the USER-GRAY background.
However, this border can overwrite anything else that may be
positioned there. The net effect is that you can’t place controls as close
together as you can with the runtime’s 3-D.

3. This 3-D style can be used only with the 32-bit runtime.

The runtime adjusts for the physical differences between the two styles.
Under either style, the position and usable size of the control’s interior should
be same.

H-196 m Configuration Variables

Note: This configuration setting can effect the behavior of an application
if it is using the latest Windows control styling, that is the
WIN32_NATIVECTLS configuration variable set to 1, true, or on. If
WIN32_3D has not been set by the user then the default value will be
overridden and set to false (0 or off). If the user has set WIN32_3D then
their settings will not be overridden and if it is set to true (1 or on) then 3D
drawing will occur over the top.

WIN32_CTL_INPUT_STATUS

Setting this variable to the default of “1” (on, true, yes) causes
ACCEPT...FROM INPUT STATUS to return a non-zero status if data is
available in a control. If setto “0” (off, false, no), then the data in the control
does not affect the status returned by ACCEPT...FROM INPUT STATUS.

This variable is only available in the Windows runtime and is not available to
the thin client.

WIN32_NATIVECTLS

This variable enables your application to use the Windows control style that
is in use on the workstation, (the workstation's theme is set to Windows XP
or Vista). To enable these visual styles, your application must be running on
an operating system that contains ComcCtl32.dll version 6, which is included
with Windows XP and Vista.

When setto "1" (on, true, yes), the application will display the current control
styling available on that operating system, the XP look and feel on the
Windows XP OS or the Vista look and feel on the Windows Vista OS.

Configuration variables m H-197

Note: In addition to visual differences, some XP and Vista controls have
different behaviors than their Windows classic counterpart (by Microsoft
design). The behavior differences if any, that our internal testing has
identified are documented in Book 2, Chapter 5 under the applicable
control. Alternatively, you can find a consolidated list in the 8.1 ECN List
(ECN 3734) located at the support section of the Micro Focus website.

The default setting is "0" (off, false, no) which prevents the runtime from
using the Windows control styling, and forces the “gray chiseled” or classic
Windows look.

Note: The configuration variable WIN32_3D can also change the look of
controls in an ACUCOBOL-GT application. It is generally recommended
that you leave WIN32_3D set to its default behavior of off or false when
setting WIN32_NATIVECTLS to on or true.

Note: The Windows OS allows users to configure (accessibility options)
whether or not keyboard shortcut names appear with underlines. For
example “ctrl+c” vs. “ctrl+c”. The WIN32_NATIVECTLS respects this
setting and will display shortcut names accordingly.

WINDOW_INTENSITY

This configuration variable controls whether the color settings specified in
the COLOR phrase of the DISPLAY WINDOW statement are used or
ignored by the runtime. When the value of this variable is set to “0” (off,
false, no), the COLOR intensity settings in all DISPLAY WINDOW
statements are ignored. When the value of this variable is set to “1” (on, true,
yes), which is the default, the runtime sets the windows intensity as specified.

H-198 m Configuration Variables

WINDOW_TITLE

This variable has meaning only on graphical systems such as Windows. The
ACUCOBOL-GT runtime system automatically sets the title of the
application window to the base name of the initial object file. For example,
if you run a program called “notepad.chx”, then the title on the main window
will be set to “Notepad”. The title is shown in lower-case except for the first
letter, which is made upper case.

You may provide an alternate title by setting WINDOW _TITLE to the
desired text. No translation of the text is done, so you should enter it using
the desired case.

Note: Setting WINDOW_TITLE from within a program has no effect,
because the WINDOW_TITLE setting determines only the window’s initial
title.

To change the title from within your program, use a DISPLAY statement.
The syntax is:

DISPLAY text UPON GLOBAL WINDOW TITLE

where text is an alphanumeric literal or variable. Enter the title with the
desired case. The title is always shown in the ANSI font, so if you are using
a different font, your text will be translated to ANSI.

To ensure that the WINDOW _TITLE variable operates as expected, make
sure that the first screen operation in your program is not DISPLAY
WINDOW with a title (the DISPLAY WINDOW title is stored in the same
place as the WINDOW_TITLE). Instead, do some other screen operation
first, such as “DISPLAY WINDOW, ERASE”.

WINPRINT_NAMES_ONLY

This variable allows you to generate a list of the names of printers installed
on a Windows PC. It does this by altering the behavior of some of the
operations of the WIN$PRINTER library routine. When
WINPRINT_NAMES_ONLY is set to a value of “1” (on, true, yes), the

Configuration variables m H-199

WINSPRINTER operations that retrieve printer information return only the
names of installed printers, rather than the real-time status of all available
printer capabilities.

This variable can be set in the configuration file or directly in your program
with the following code:

SET ENVIRONMENT "WINPRINT-NAMES-ONLY" TO '"1™.
Note on WIN$PRINTER library routine:

When this variable is turned on, the following operations of the
WINSPRINTER library routine are affected:

WINPRINT-GET-PRINTER-INFO
WINPRINT-GET-PRINTER-INFO-EX
WINPRINT-GET-CURRENT-INFO
WINPRINT-GET-CURRENT-INFO-EX

Instead of returning detailed information about the capabilities of each printer
(duplex, copying, etc.), the routine returns only the name of the printer. This
can provide a significant performance improvement, particularly with
networked printers.

If you are using the default printer settings, set the
WINPRINT_NAMES_ONLY variable to “1”, generate a list of printer names
using WINPRINTER-GET-PRINTER-INFO-EX (see the WIN$SPRINTER
documentation in the Appendices of the ACUCOBOL-GT manual set, or
refer to the sample program “prndemox.cbl”), and select the desired printer.

If you want to modify the printer settings, such as the number of copies or the
paper orientation, you should perform the steps described above, and then set
WINPRINT_NAMES_ONLY back to the default of “0” (off, false, no).
You may then use WINPRINT-GET-PRINTER-INFO-EX to obtain detailed
information about the capabilities of the selected printer.

For more information about Windows printing, refer to WIN$SPRINTER in
Appendix I.

H-200 = Configuration Variables

WRAP

The setting of this variable determines whether a DISPLAY statement will
wrap around or be truncated when it extends past one line. When it is set to
“0” (off, false, no), DISPLAY statements will be truncated. Also, any
DISPLAY statement that references a column past the right edge of the
current window will be ignored. An ACCEPT statement that references a
column past the right edge will be placed in the home position of the window.
The default value for this setting is “1” (on, true, yes).

XFD_DIRECTORY

This variable tells the runtime system the name of the directory that contains
the data dictionaries built by the ACUCOBOL-GT compiler. The default
value is the current directory.

For example, to tell the runtime that the dictionaries are stored in the
directory “/usr/inventory/dictionaries” you would enter:

xfd_directory /usr/inventory/dictionaries

See also the “-Fo” compile-time option, which tells the compiler where to put
the dictionaries. Unless you have moved the dictionaries, you should use the
same value for XFD_DIRECTORY that you used with the “-Fo” option.

If you have embedded an XFD file in an object library, the runtime will read
that file instead of an XFD file that has the same name but is stored in the
directory specified by XFD_DIRECTORY. The exception to this is when the
XFD_DIRECTORY configuration variable uses remote name notation.

Remote name notation is allowed for the XFD_DIRECTORY variable if
your runtime is client-enabled. See ACUCOBOL-GT User’s Guide sections
5.2.1 and 5.2.2 for more information about client-enabled runtimes and
remote name notation.

Configuration variables m H-201

XFD_PREFIX

This variable defines a series of directories to search for XFD files, rather
than indicating only one (as in XFD_DIRECTORY). Each directory is
searched in order until an XFD matching the name of the file is found. Once
a file with the same name is found, the runtime stops searching, even if other
files of the same name are located in a subsequent directory in the search
parameter. Only named directories are searched, not subdirectories.

Note: If the XFD you are searching for does not match the file
specifications (max-keys, max-rec-size, min-rec-size, and key parameters,
for example) of the file you are trying to open, the runtime will not continue
searching the directories listed in XFD_PREFIX until a correct XFD file is
found.

The default for XFD_PREFIX is empty. If this variable is set to any other
value, the configuration variable XFD_DIRECTORY (in which you specify
only one directory) is ignored. You can specify a directory path that contains
embedded spaces if you surround the path with quotation marks. Separate
entries using a semi-colon (;). For example:

XFD_PREFIX C:\ “Sales Data’;C:\Customers

You may specify up to 4096 characters for this variable. Remote name
notation is allowed for the XFD_PREFIX variable if your runtime is
client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and 5.2.2
for more information about client-enabled runtimes and remote name
notation.

XTERM_PROGRAM

Some users may want to debug with an xterm, but don't actually want to
debug with the xterm executable because it doesn't have some of the abilities
they need (such as displaying non-ASCII characters). You can specify the
executable used to show the debugger on UNIX by setting the
XTERM_PROGRAM runtime configuration variable.

H-202 = Configuration Variables

Its default value is “xterm”, but it can be set to any compatible program such
as dtterm or kterm. The runtime executes this program when it tries to create
the program for background debugging. Note that the runtime passes some
arguments to this program, so this program must be able to execute with
those arguments. These arguments are:

-title “title of the window”

-Scen

-display Xserver-name

The “-Sccn” option allows the program to be used as the input and output

channel for the runtime, and is absolutely required. Without this option, the
program won't know to display data from the runtime.

ACUCOBOLGT Library

Routines

Key Topics

General Syntax and Library List

I-2 m ACUCOBOL-GT Library Routines

.1 General Syntax and Library List

ACUCOBOL-GT has a large set of library routines built into the runtime
system. These routines may be accessed via the CALL verb. This appendix
describes each of these routines in detail. The routines are listed in
alphabetical order.

In the following descriptions, the phrase “Numeric parameter” indicates a
data item or literal that contains a numeric value in any of the following
formats:

 Signed or unsigned COMP-4 (or internal equivalent such as COMP-X)
e Unsigned PIC 9 USAGE DISPLAY

* PIC X containing digits (other data ignored)

e Unsigned numeric literal

< Alphanumeric literal containing digits (other data ignored)
Any routine that has a GIVING phrase specified in its USAGE may omit that

phrase. If this is done, then the routine’s return value will be placed into the
special register RETURN-CODE instead.

ASCII2HEX

ASCII2HEX converts binary data to its hexadecimal format. This routine is
the inverse of the HEX2ASCII routine.

Usage
CALL "ASCII2HEX"
USING ASCII-VALUE, HEX-VALUE
Parameters

ASCII-VALUE PIC X(2)

The input data area containing the ASCII representation of a unit of data.

General Syntax and Library List m |-3

HEX-VALUE PIC X(4)
The output data area to contain the hexadecimal value.

When you define the parameters, use the exact field sizes specified in the
calling conventions above, otherwise the runtime may terminate abnormally.

ASCII20CTAL

ASCII20CTAL converts binary data to octal format. This routine is the
inverse of the OCTAL2ASCII routine.

Usage
CALL "ASCII20CTAL"

USING ASCII1-VALUE, OCTAL-VALUE
Parameters
ASCII-VALUE PIC X(2)
The input data area containing the ASCII representation of a unit of data.
OCTAL-VALUE PIC X(8)

The output data area to contain the octal value.

When you define the parameters, use the exact field sizes specified in the
calling conventions above, otherwise the runtime may terminate abnormally.

CBL_AND

CBL_AND performs a binary, bitwise “and” operation on a series of bytes.

Usage

CALL "CBL_AND"
USING SOURCE, DEST, LENGTH
GIVING STATUS

I-4 m ACUCOBOL-GT Library Routines

Parameters
SOURCE PIC X(n)
The source bytes for the operation.
DEST PIC X(n)
The destination bytes for the operation.
LENGTH Numeric parameter (optional)

The number of bytes to combine. If omitted, then CBL_AND uses the
minimum of the size of SOURCE and the size of DEST.

STATUS Any numeric data item

The return status of the operation. Returns “0” if successful, “1” if not. This
routine always succeeds, so STATUS always contains a zero.

Description

For LENGTH bytes, each byte of SOURCE is combined with the
corresponding byte of DEST. The result is stored back into DEST. The bytes
are combined by performing an “and” operation between each bit of the
bytes. The “and” operation uses the following table to determine the result:

And 0 1
0 0 0
1 0 1

CBL_CLEAR_SCR

The CBL_CLEAR_SCR routine is one of a set of library routines that
facilitate reading and writing attributes on the screen. This routine clears the
entire screen using a specified character and attribute.

General Syntax and Library List m |-5

Usage
CALL "CBL_CLEAR_SCR™
USING CHARACTER, ATTRIBUTE
RETURNING STATUS-CODE
Parameters

CHARACTER PIC X COMP-X.

On entry, contains the character to write
ATTRIBUTE PIC X COMP-X.

On entry, contains the attribute to write
STATUS-CODE Any numeric type

Returns “1” if successful, or “0” if not successful

CBL_CLOSE_FILE

Usage
CAll "CBL_CLOSE_FILE"
USING HANDLE
RETURNING STATUS-CODE
Parameters

HANDLE (pic x(4) comp-x)

This is the handle returned from CBL_OPEN_FILE or
CBL_CREATE_FILE. Once this routine is called, the file handle should not
be used in future calls to READ or WRITE or CLOSE, or undefined results
will occur, including the possibility of a MAV.

I-6 m ACUCOBOL-GT Library Routines

Description

This routine is used for closing files and returns “0” on success and non-zero
if an error occurred. The error is a special encoding of the digit 9 with the
ANSI-74 error code, or the runtime system error number if no ANSI-74 error
code pertains to the error. If RETURN-CODE is non-zero after calling this
routine, you must process it as a file status, for example:

01 file-status-group.
03 file-status pic Xx comp-X.
03 redefines file-status.
05 fs-byte-1 pic x.
05 fs-byte-2 pic x comp-x.

call "CBL_CLOSE_FILE™ using parameters
if return-code not = 0
move return-code to file-status

At this point fs-byte-1 contains “9” and fs-byte-2 contains the ANSI-74 error
code, or a runtime system error number.

Note: This routine is written in C and is called via the “direct” method, so
it is not possible for the runtime to validate parameters for accuracy.
Passing unexpected parameters will result in undefined behavior and
possibly even a MAV.

CBL_COPY_FILE

CBL_COPY_FILE creates a copy of an existing file.

Usage
CALL "CBL_COPY_FILE™"
USING SOURCE-FILE, DEST-FILE,
GIVING COPY-STATUS
Parameters

SOURCE-FILE PIC X(n)

General Syntax and Library List m |-7

Contains the name of the file to copy. The name can contain a path and is
terminated by a space. If no path is given, the current directory is assumed.
Remote name notation is allowed for this parameter.

DEST-FILE PIC X(n)

Contains the destination file name. The name can contain a path and is
terminated by a space. If no path is given, the current directory is assumed.
Remote name notation is allowed for this parameter.

COPY-STATUS Any numeric type

Returns “0” if successful, or “1” if not.

Description

CBL_COPY_FILE creates an exact duplicate of SOURCE-FILE in
DEST-FILE.

The behavior of this routine is affected by the FILENAME_SPACES
configuration variable. The value of FILENAME_SPACES determines
whether spaces are allowed in a file name. See the entry for
FILENAME_SPACES in Appendix H for more information.

CBL_CREATE_DIR

CBL_CREATE_DIR creates a subdirectory. All of the directories in the
given path, except the last, must already exist.

CALL "CBL_CREATE_DIR"
USING DIR-NAME,
GIVING STATUS

Parameters

DIR-NAME PIC X(n)

I-8 m ACUCOBOL-GT Library Routines

Contains the name of the directory to be created. This should be either a full
path name or a name relative to the current directory. You may use remote
name syntax in combination with AcuServer to create a directory on a remote
machine. CBL_CREATE_DIR can make a directory only one level lower
than an existing directory and cannot create more than one level at a time.

STATUS Any numeric type

Returns “0” if successful, or “1” if not.

The behavior of this routine is affected by the FILENAME_SPACES
configuration variable. The value of FILENAME_SPACES determines

whether spaces are allowed in a file name. See the entry for
FILENAME_SPACES in Appendix H for more information.

CBL_CREATE_FILE

Usage
CAIl "CBL_CREATE FILE"
USING FILENAME, ACCESS-MODE, DENY-MODE, DEVICE, HANDLE
RETURNING STATUS-CODE
Parameters

FILENAME (PIC X(n))

This is the name of a file to create. If this file does not exist, the open fails
and sets return-code to “1”. The filename parameter can be blank-terminated
or terminated with low-values.

ACCESS-MODE (pic x comp-x)
This parameter is ignored (the file is always open for writing only), and the
file is created anew. This means that if the file exists, it is truncated to 0

bytes, and if it does not exist, it is created.

DENY-MODE (pic x comp-X)

General Syntax and Library List m |-9

Determines how other users can access the file: “0” to deny read and write
access by other users, “1” to deny write access, “2” to deny read access, and
“3” to all