
Runtime Manual

ACUCOBOL-GT®

Version 8.1.3

Micro Focus
9920 Pacific Heights Blvd.

San Diego, CA 92121
858.795.1900

© Copyright Micro Focus 1998-2010. All rights reserved.

Acucorp, ACUCOBOL-GT, Acu4GL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
extend, and “The new face of COBOL” are registered trademarks or registered service marks of
Micro Focus. “COBOL Virtual Machine” is a trademark of Micro Focus. Acu4GL is protected by
U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX is a registered trademark of the Open Group in the United States and
other countries. Solaris is a trademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

Microsoft, ActiveX, Windows, Win32, and Windows NT are registered trademarks of Microsoft
Corporation in the United States and/or other countries. HP-UX is a trademark of the
Hewlett-Packard Company. DB2 Connect is a trademark, and IBM, AIX, CICS, DB2, Informix,
MQSeries, AS/400, OS/390, PowerPC, RS/6000, TXSeries, WebSphere, pSeries, and zSeries are
registered trademarks of IBM in the United States. UNIX is a registered trademark of the Open
Group in the United States and other countries. Oracle is a registered trademark, and Oracle 8i,
Oracle9i, Pro*C, Pro*COBOL, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Btrieve is a registered trademark of Pervasive Software Inc. Sybase is a trademark of
Sybase, Inc. Linux is a registered trademark of Linus Torvalds. Other brand and product names are
trademarks or registered trademarks of their respective holders.

E-01-UG-100501-Runtime Manual-8.1.3

Contents

Chapter 1: Introduction
1.1 Overview.. 1-2

1.1.1 Available Runtime Systems... 1-2
1.1.1.1 Windows runtime systems... 1-2

1.1.2 Runtime Configuration File... 1-3

Chapter 2: Setting Up Your Terminals
2.1 How the Terminal Manager Works ... 2-2

2.1.1 Terminal Manager Functions... 2-3
2.1.2 Alternate Terminal Manager (ATM)... 2-4

2.2 Getting Your Terminals Ready.. 2-5
2.2.1 Step One—Terminal Identification ... 2-5
2.2.2 Step Two—Terminal Definition.. 2-7

2.2.2.1 Windows special considerations.. 2-7
2.2.3 Step Three—Configuration Variables ... 2-8

2.3 The Keyboard Interface ... 2-9
2.3.1 Key Mapping ... 2-10

2.3.1.1 Key interpretation.. 2-10
2.3.1.2 Key translation... 2-11
2.3.1.3 Keyboard configuration... 2-11

2.3.2 Redefining the Keyboard... 2-16
2.3.2.1 The KEYBOARD variable.. 2-16
2.3.2.2 The KEYSTROKE variable .. 2-19
2.3.2.3 Table of keys ... 2-31
2.3.2.4 Additional Windows keys ... 2-34
2.3.2.5 Special keys ... 2-37
2.3.2.6 Default keyboard ... 2-39
2.3.2.7 Modification examples .. 2-41

2.4 The Display Interface... 2-41
2.4.1 Adding Color ... 2-42
2.4.2 The SCREEN Option... 2-45

2.4.2.1 SCREEN examples.. 2-56
2.4.3 Additional Configuration Variables .. 2-57
2.4.4 Double-Byte Character Handling .. 2-59

2.5 Restricted Attribute Handling .. 2-60
2.5.1 Restricted Video Modes .. 2-61

Contents-ii
2.5.1.1 Restrictions ..2-63
2.6 The Terminal Database File ...2-64

2.6.1 Required Functions ..2-69
2.6.2 Additional Screen Functions..2-71
2.6.3 Video Attributes...2-72
2.6.4 Color ..2-73

2.6.4.1 One-color terminals ...2-74
2.6.5 Function Keys and Other Keys ..2-75

2.6.5.1 User-defined keys ..2-75
2.6.6 Line Drawing ...2-75

2.6.6.1 Multi-character sequences for graphics ...2-77
2.6.7 Graphical Window and Control Emulation ..2-78
2.6.8 Mouse Support for X Terminals ..2-81
2.6.9 Initialization ...2-82
2.6.10 Print Functions ...2-83
2.6.11 Continued Entries ..2-83

Chapter 3: Runtime Configuration File
3.1 Introduction..3-2

3.1.1 Variable Syntax..3-2
3.1.2 Variable Usage...3-3
3.1.3 Configuration filename Resolution..3-4
3.1.4 Nested configuration files ..3-5

3.2 Configuration File Variables..3-6
3D_LINES ..3-6
4GL_COLUMN_CASE..3-7
7_BIT ..3-7
A_CHECKDIV...3-8
A_DEBUG..3-8
A_DISPLAY...3-9
A_EXTFH_FUNC ..3-9
A_EXTFH_LIB ..3-10
A_EXTFH_SIMPLE_OPEN_OUTPUT ..3-11
A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQ...3-11
A_JAVA_CHARSET ...3-12
A_JAVA_GC_COUNT ..3-12
A_JAVA_TRACE_FILENAME ..3-12
A_JAVA_TRACE_VALUE...3-13
A_LICENSE_RETRIES...3-14

 Contents-iii
A_OPERATING_SYSTEM... 3-14
A_REMOVE_EMPTY_ERROR_FILE ... 3-15
A_RETRY_DELAY... 3-15
A_SEQ_DEFAULT_BLOCK_SIZE.. 3-15
A_SYSLOG_HOSTNAME.. 3-16
A_SYSLOG_ON_RUNTIME_ERROR... 3-16
ACCEPT_AUTO.. 3-16
ACCEPT_TIMEOUT... 3-17
ACTIVE_BORDER_COLOR.. 3-17
ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT .. 3-17
ACU_USER_DIR... 3-19
ACUCOBOL .. 3-19
AGS_BLOCK_SLEEP_TIME ... 3-19
AGS_MAX_SEND_SIZE .. 3-20
AGS_RECEIVE_BUFFER_SIZE.. 3-20
AGS_SEND_BUFFER_SIZE .. 3-20
AGS_SOCKET_COMPRESS.. 3-21
AGS_SOCKET_ENCRYPT .. 3-21
AGS_TCP_NODELAY.. 3-22
alfred Configuration variables .. 3-22
ALLOW_FS_OVERRIDE ... 3-22
ANSI_OUTPUT_IN_DEBUG ... 3-23
APPLY_CODE_PATH .. 3-23
APPLY_FILE_PATH... 3-24
AUTO_DECIMAL... 3-24
AUTO_PROMPT ... 3-25
AXML_CREATE_SCHEMA .. 3-25
AXML_CREATE_STYLE... 3-25
AXML_ENCODING.. 3-26
AXML_EXACT_TABLE_MATCH.. 3-27
AXML_IGNORE_EMPTY_DATA... 3-27
AXML_SCHEMA_DOC ... 3-27
AXML_SCHEMA_NAME .. 3-28
AXML_SCHEMA_NAMESPACE_DATA... 3-29
AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE......................... 3-29
BACKGROUND_INTENSITY ... 3-30
BELL .. 3-31
BOXED_FLOATING_WINDOWS... 3-31
BTRV_MASS_UPDATE... 3-31

Contents-iv
BTRV_NOWRITE_WAIT...3-32
BTRV_USE_REPEAT_DUPS...3-32
BUFFERED_SCREEN...3-32
CALL_HASH_SIZE...3-33
CANCEL_ALL_DLLS...3-33
CARRIAGE_CONTROL_FILTER..3-33
CBLHELP...3-34
CGI_AUTO_HEADER ..3-35
CGI_CLEAR_MISSING_VALUES ..3-35
CGI_CONTENT_TYPE...3-35
CGI_NO_CACHE ..3-37
CGI_STRIP_CR ...3-37
CHAIN_MENUS..3-38
CHECK_USING...3-38
CISAM_COMPRESS_KEYS ..3-39
CLOSE_ON_EXIT...3-39
COBLPFORM ..3-40
CODE_CASE ...3-40
CODE_MAPPING..3-41
CODE_PREFIX..3-43
CODE_SUFFIX..3-43
CODE_SYSTEM..3-44
COLOR_MAP ..3-45
COLOR_MODEL...3-45
COLOR_TABLE ..3-47
COLOR_TRANS..3-49
COLUMN_SEPARATION ..3-50
COMPRESS_FACTOR..3-50
COMPRESS_FILES...3-50
CONTROL_CREATION_EVENTS ..3-51
CURRENCY...3-51
CURSOR_MODE...3-51
CURSOR_TYPE ..3-52
DEBUG_NEWCOPY...3-52
DECIMAL_POINT ..3-53
DEFAULT_FILESYSTEM ..3-53
DEFAULT_FONT..3-54
DEFAULT_HOST..3-55
DEFAULT_MAP_FILE ...3-56
DEFAULT_PROGRAM ..3-56

 Contents-v
DEFAULT_TIMEOUT .. 3-56
DISABLED_CONTROL_COLOR .. 3-57
DISPLAY_SWITCH_PERIOD.. 3-57
DLL_CONVENTION .. 3-58
DLL_SUB_INTERFACE... 3-58
DLL_USE_SYSTEM_DIR .. 3-59
DOS_BOX_CHARS .. 3-59
DOS_SYS_EMULATE.. 3-60
DOUBLE_CLICK_TIME .. 3-60
DUPLICATES_LOG.. 3-61
DYNAMIC_FUNCTION_CALLS .. 3-61
DYNAMIC_MEMORY_LIMIT .. 3-63
ECN-3699 ... 3-63
EDIT_MODE ... 3-64
EF_UPPER_WIDE... 3-64
EF_WIDE_SIZE... 3-64
EOF_ABORTS... 3-64
EOL_CHAR ... 3-65
ERRORS_OK... 3-65
EXIT_CURSOR ... 3-66
EXPAND_ENV_VARS ... 3-66
EXTEND_CREATES... 3-67
EXTFH_KEEP_TRAILING_SPACES.. 3-67
EXTERNAL_SIZE... 3-67
EXTRA_KEYS_OK... 3-68
F10_IS_MENU... 3-68
FAST_ESCAPE.. 3-69
FAST_SIGN_DECODE... 3-69
FIELDS_UNBOXED ... 3-69
FILE_ALIAS_PREFIX ... 3-70
FILE_CASE.. 3-72
FILE_CONDITION.. 3-72
FILE_IO_PEEKS_MESSAGES .. 3-73
FILE_IO_PROCESSES_MESSAGES... 3-73
FILE_PREFIX .. 3-74
FILE_STATUS_CODES.. 3-75
FILE_SUFFIX .. 3-75
FILE_TRACE... 3-75
FILE_TRACE_FLUSH .. 3-76
FILE_TRACE_TIMESTAMP.. 3-76

Contents-vi
filename ... 3-76
filename_DATA_FMT ...3-77
filename_FILESYSTEM ..3-79
filename_HOST..3-79
 filename_INDEX_FMT...3-80
filename_LOG ..3-82
FILENAME_SPACES..3-82
filename_VERSION ...3-83
filesystem_DETACH ..3-84
FLUSH_ALL ..3-85
FLUSH_COUNT ..3-86
FLUSH_ON_ACCEPT...3-87
FLUSH_ON_CLOSE ...3-87
FLUSH_ON_COMMIT..3-87
FLUSH_ON_OPEN..3-87
FONT ..3-88
FONT_AUTO_ADJUST ..3-89
FONT_SIZE_ADJUST...3-89
FONT_WIDE_SIZE_ADJUST ..3-90
FOREGROUND_INTENSITY ..3-91
FREEZE_AX_EVENTS...3-91
FULL_BOXES ...3-92
GRID_BUTTONS_CAUSE_GOTO ..3-93
GRID_NO_CELL_DRAG..3-93
GUI_CHARS ..3-93
HELP_PROGRAM...3-94
HINTS_OFF ...3-95
HINTS_ON...3-95
HOT_KEY ..3-95
HP_TERMINAL_ATTRIBUTE_HANDLING ...3-97
HTML_TEMPLATE_PREFIX ..3-98
ICOBOL_FILE_SEMANTICS ..3-98
ICON...3-99
IMPORT_USES_CELL_SIZE ...3-99
INACTIVE_BORDER_COLOR..3-100
INCLUDE_PGM_INFO...3-100
INPUT_STATUS_DEFAULT ...3-100
INSERT_MODE...3-101
INTENSITY_FLAGS...3-101
IO_CREATES ..3-102

 Contents-vii
IO_FLUSH_COUNT.. 3-102
IO_READ_LOCK_TEST... 3-103
IO_SWITCH_PERIOD .. 3-103
ISOLATE_FILE_CREATES ... 3-103
JAVA_LIBRARY_NAME... 3-104
JAVA_OPTIONS ... 3-104
JUSTIFY_NUM_FIELDS.. 3-104
KBD.. 3-105
KEY_MAP ... 3-105
KEYBOARD .. 3-105
KEYSTROKE... 3-105
LC_ALL ... 3-106
LICENSE_ERROR_MESSAGE_BOX ... 3-110
LISTS_UNBOXED .. 3-110
LITERAL_ENTRY .. 3-110
LOCK_DIR... 3-110
LOCK_OUTPUT.. 3-111
LOCK_SORT ... 3-111
LOCKING_RETRIES .. 3-111
LOCKS_PER_FILE ... 3-111
LOG_BUFFER_SIZE .. 3-112
LOG_DEVICE ... 3-112
LOG_DIR ... 3-112
LOG_ENCRYPTION... 3-112
LOG_FILE.. 3-113
LOGGING .. 3-113
LOGICAL_CANCELS... 3-113
MAKE_ZERO .. 3-114
MASS_UPDATE.. 3-114
MAX_ERROR_AND_EXIT_PROCS ... 3-115
MAX_ERROR_LINES .. 3-115
MAX_FILES .. 3-116
MAX_LOCKS.. 3-116
MENU_ITEM... 3-116
MESSAGE_BOX_COLOR.. 3-117
MESSAGE_QUEUE_SIZE.. 3-117
MIN_REC_SIZE .. 3-117
MONOCHROME... 3-118
MOUSE .. 3-118
MOUSE_FLAGS.. 3-121

Contents-viii
NO_CONSOLE ..3-122
NO_LOG_FILE_OK ..3-122
NO_TRANSACTIONS ..3-122
NT_OPP_LOCK_STATUS..3-123
NESTED_AX_EVENTS ..3-123
NO_BARE_KEY_LETTERS...3-124
NUMERIC_VALIDATION ...3-125
OLD_ARIAL_DIMENSIONS ...3-125
OPEN_FILES_ONCE ..3-125
OPTIMIZE_CONTROL_RESIZE ...3-126
OPTIMIZE_INDIVIDUAL_LINKAGE ..3-126
PAGE_EJECT_ON_CLOSE ..3-126
PAGED_LIST_SCROLL_BAR ...3-127
PARAGRAPH_TRACE ...3-127
PERFORM_STACK...3-127
PRELOAD_JAVA_LIBRARY ..3-128
PROFILE_TYPE ..3-128
PROMPTING ...3-128
QUEUE_READERS...3-129
QUIT_MODE ...3-129
QUIT_ON_FATAL_ERROR...3-131
QUIT_TO_EXIT ..3-131
RECURSION..3-131
RECURSION_DATA_GLOBAL ..3-133
REL_DELETED_VALUE ...3-133
REL_LOCK_READ_THROUGH..3-133
RENEW_TIMEOUT ..3-134
RESIZE_FRAMES...3-134
RESIZE_FREELY..3-134
RESTRICTED_VIDEO_MODE ..3-135
RMS_NATIVE_KEYS...3-135
SCREEN ...3-135
SCREEN_COL_PLUS_BASE ...3-136
SCREEN_TRACE ..3-136
SCRIPT_STATUS..3-136
SCRN ..3-137
SCROLL ...3-137
server_MAP_FILE ...3-137
server_PASSWORD ..3-138
server_port_PASSWORD..3-139

 Contents-ix
SHARED_CODE ... 3-139
SHARED_LIBRARY_EXTENSION .. 3-141
SHARED_LIBRARY_LIST .. 3-141
SHARED_LIBRARY_PREFIX... 3-142
SHUTDOWN_MESSAGE_BOX .. 3-143
SORT_DIR ... 3-143
SORT_FILES ... 3-143
SORT_MEMORY .. 3-144
SPACES_ZERO ... 3-144
SPOOL_FILE ... 3-144
STD_FIXED_FONT... 3-145
STOP_RUN_ROLLBACK .. 3-146
STRIP_TRAILING_SPACES.. 3-146
SWITCH_PERIOD... 3-146
SYSINTR_NAME.. 3-147
TC_AUTO_UPDATE_FAILED_MESSAGE ... 3-147
TC_AUTO_UPDATE_FAILED_TITLE... 3-147
TC_AUTO_UPDATE_NOTIFY_FAIL... 3-148
TC_AUTO_UPDATE_QUERY... 3-148
TC_AUTO_UPDATE_QUERY_MESSAGE.. 3-148
TC_AUTO_UPDATE_QUERY_TITLE ... 3-149
TC_AX_EVENT_LIST.. 3-149
TC_CHECK_ALIVE_INTERVAL.. 3-150
TC_CHECK_INSTALLER_TIMESTAMP... 3-150
TC_CONTINUITY_WINDOW... 3-150
TC_CONTROL_SYNC_LEVEL... 3-151
TC_DELAY_ACTIVATE.. 3-152
TC_DELAY_PRE_EVENT_OPS.. 3-153
TC_DISABLE_AUTO_UPDATE ... 3-153
TC_DISABLE_SERVER_LOG... 3-153
TC_DOWNLOAD_CANCEL_MESSAGE... 3-154
TC_DOWNLOAD_DESCRIPTION.. 3-154
TC_DOWNLOAD_DIALOG .. 3-155
TC_DOWNLOAD_DIALOG_TITLE ... 3-155
TC_EVENT_LIST.. 3-155
TC_EXCLUDE_EVENT_LIST... 3-156
TC_INSTALLER_ARGS... 3-156
TC_INSTALLER_CLIENT_FILE... 3-156
TC_INSTALLER_RUN_ASYNC ... 3-157
TC_INSTALLER_SERVER_FILE.. 3-157

Contents-x
TC_INSTALLER_TARGET_DIR...3-157
TC_INSTALLER_UI_LEVEL...3-158
TC_MAP_FILE ..3-158
TC_NESTED_AX_EVENTS...3-158
TC_QUIT_MODE ..3-159
TC_REQUIRES_BUILD_NUMBER ..3-159
TC_RESTRICT_AX_EVENTS ...3-160
TC_SERVER_LOG_FILE ...3-160
TC_SERVER_TIMEOUT ..3-161
TC_TV_SELCHANGING..3-161
TEMP_DIR...3-162
TEMPORARY_CONTROLS...3-162
TEXT ..3-163
TRACE_STYLE...3-166
TRANSLATE_TO_ANSI ..3-166
TREE_ROOT_SPACE ...3-167
TREE_TAB_SIZE ..3-168
TRX_HOLDS_LOCKS ..3-168
UPPER_LOWER_MAP ...3-169
USE_CICS ..3-170
USE_EXECUTABLE_MEMORY...3-170
USE_EXTSM ...3-171
USE_LARGE_FILE_API...3-171
USE_LOCAL_SERVER ..3-171
USE_MPE_REDIRECTION ..3-171
USE_MQSERIES ...3-172
USE_SYSTEM_QSORT ..3-172
USE_WINSYSFILES...3-172
V_BASENAME_TRANSLATION..3-173
 V_BUFFERS ...3-174
V_BUFFER_DATA ...3-174
V_BULK_MEMORY...3-174
V_FORCE_OPEN ..3-175
V_INDEX_BLOCK_PERCENT..3-175
V_INTERNAL_LOCKS ..3-176
V_LOCK_METHOD..3-176
V_MARK_READ_CORRUPT ..3-179
V_NO_ASYNC_CACHE_DATA..3-179
V_OPEN_STRICT ...3-180
V_READ_AHEAD...3-180

 Contents-xi
V_SEG_SIZE ... 3-180
V_STRIP_DOT_EXTENSION.. 3-181
V_VERSION .. 3-181
V23_GRAPHICS_CHARACTERS ... 3-182
V30_MEASUREMENTS... 3-182
V31_FLOATING_POINT.. 3-182
V42_FLOATING_POINT.. 3-183
V43_PRINTER_CELLS .. 3-183
V52_BITMAP_BUTTONS.. 3-183
V52_BITMAPS .. 3-184
V52_GRID_GOTO... 3-184
V60_LIST_VALUE ... 3-184
V62_MAX_WINDOW... 3-185
V71_ALIGNED_ENTRY_FIELD... 3-186
V71_FONT_WIDTHS ... 3-186
WAIT_FOR_ALL_PIPES.. 3-187
WAIT_FOR_FILE_ACCESS .. 3-187
WAIT_FOR_LOCKS... 3-188
WARNINGS... 3-189
WARNING_ON_RECURSIVE_ACCEPTS ... 3-190
WHITE_FILL... 3-190
WIN_ERROR_HANDLING.. 3-191
WIN_F4_DROPS_COMBOBOX .. 3-191
WIN_SPOOLER_PORT .. 3-192
WIN3_CLIP_CONTROLS... 3-192
WIN3_EF_PADDED ... 3-193
WIN3_GRID... 3-193
WIN32_3D ... 3-194
WIN32_CTL_INPUT_STATUS.. 3-195
WIN32_NATIVECTLS.. 3-195
WINDOW_INTENSITY.. 3-196
WINDOW_TITLE.. 3-196
WINPRINT_NAMES_ONLY.. 3-197
WRAP... 3-198
XFD_DIRECTORY ... 3-198
XFD_PREFIX .. 3-199
XTERM_PROGRAM .. 3-200

Contents-xii
Chapter 4: Runtime Options
4.1 Using the Runtime ...4-2
4.2 List of Runtime Options...4-3

Chapter 5: Runtime Debugger
5.1 About the Debugger ...5-2
5.2 Entering the Debugger ...5-5
5.3 Cursor and Mouse Handling in Source-Level Debugging...5-7
5.4 Debugger Commands...5-8

5.4.1 Source-level Commands ..5-9
5.4.2 Other Commands ...5-11
5.4.3 Multi-threading Issues ...5-15
5.4.4 Getting Help...5-16
5.4.5 File Menu...5-16
5.4.6 View Menu ..5-19
5.4.7 Run Menu ..5-21
5.4.8 Source Menu ..5-23
5.4.9 Data Menu..5-26
5.4.10 Breakpoints Menu..5-31
5.4.11 Selection Menu ..5-34
5.4.12 Help Menu ...5-38
5.4.13 The Toolbar..5-38

5.5 File Tracing ..5-40
5.6 Screen Tracing ...5-42
5.7 Macro Debugger ..5-43
5.8 Specifying Addresses ..5-44

5.8.1 Variables ..5-44
5.8.2 Program Addresses ..5-46

5.9 Debugger Restrictions..5-46
5.10 Using the Abend Diagnostic Report (ADR) ..5-47

5.10.1 Generating a Report ...5-49
5.10.2 ADR Restrictions ...5-50

Chapter 6: File Status Codes
6.1 Standards for File Status Codes ...6-2
6.2 Table of Codes ...6-2
6.3 Input/Output Error Codes for Error 23s ...6-8
6.4 Vision Secondary Error Codes for Error 98s ...6-13

 Contents-xiii
6.5 Transaction Error Codes .. 6-14
6.5.1 Primary Error Codes .. 6-15
6.5.2 Secondary Error Codes for Error 01.. 6-16

6.6 IBM DOS/VS Error Codes .. 6-17

Chapter 7: Utilities
7.1 Object File Utility — cblutil .. 7-2

7.1.1 Object Libraries ... 7-2
7.1.2 Creating Object Libraries .. 7-3

7.1.2.1 Creating remote object libraries .. 7-5
7.1.3 Getting Object Information.. 7-6
7.1.4 Generating Native Code .. 7-7

7.2 Vision File Utility — vutil... 7-9
7.2.1 Examining File Information .. 7-10
7.2.2 Testing File Integrity ... 7-12
7.2.3 Rebuilding Files... 7-14
7.2.4 Resetting User Counts ... 7-21
7.2.5 Resetting Internal Revision Number ... 7-21
7.2.6 Extracting Records From a File... 7-22
7.2.7 Recovering Deleted Records ... 7-23
7.2.8 Creating Empty Files ... 7-24

7.2.8.1 Responding to vutil generated prompts .. 7-25
7.2.8.2 Specifying file attributes in advance ... 7-27

7.2.9 Unloading to Binary and Line Sequential Format... 7-30
7.2.10 Loading a File .. 7-32
7.2.11 File Size Summary Report... 7-35
7.2.12 Converting RM/COBOL-85 Indexed Files ... 7-35
7.2.13 Converting C-ISAM Files ... 7-35
7.2.14 Converting Micro Focus Files ... 7-37
7.2.15 Changing Record Size ... 7-39
7.2.16 Setting the Comment Field .. 7-40
7.2.17 Miscellaneous Commands ... 7-40
7.2.18 Default Settings of vutil... 7-41

7.3 File Transfer Utility — vio .. 7-41
7.3.1 vio Options .. 7-43
7.3.2 Windows Considerations ... 7-47
7.3.3 vio Examples ... 7-48
7.3.4 Known Limitations .. 7-49

7.4 Indexed File Record Editor (alfred)... 7-50
7.5 logutil ... 7-50

Contents-xiv
7.5.1 Syntax and Options ..7-50
7.5.2 logutil Report Headings ...7-53

7.6 The Profiler ..7-54
7.6.1 Using the Profiler...7-55
7.6.2 Configuring the Profiling Tools...7-56
7.6.3 Understanding the Report ..7-58
7.6.4 Understanding the XML Data File ..7-60

7.7 External Sort Utility — AcuSort..7-64
7.7.1 AcuSort Command Format ..7-64
7.7.2 AcuSort Instructions ..7-65

7.7.2.1 CHAR-ASCII and SIGN-ASCII..7-65
7.7.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions7-65
7.7.2.3 SORT/MERGE instructions ..7-66
7.7.2.4 USE/GIVE instructions ...7-68
7.7.2.5 INCLUDE/OMIT instructions...7-70

7.7.3 Code Sample ..7-74
7.7.4 AcuSort Environment Variables ..7-75

7.8 Remote Preprocessing Utility — Boomerang..7-77
7.8.1 License Requirements and Installation ..7-78
7.8.2 Server Setup and Configuration...7-78

7.8.2.1 Step 1: Creating an Alias File..7-79
7.8.2.2 Step 2: Creating a Configuration File..7-87
7.8.2.3 Step 3: Creating an Access File ...7-87
7.8.2.4 Step 4: Starting the Server ...7-88

7.8.3 Server commands...7-88
7.8.4 Client-side Operation – Remote Precompiling ..7-89
7.8.5 Client Commands ..7-90
7.8.6 Working with INCLUDE files...7-92

Chapter 8: Shared Memory
8.1 Shared Memory Management with acushare...8-2
8.2 Using Shared Memory ...8-2

8.2.1 Indicating Programs to Share...8-4
8.3 Using acushare ...8-5

acushare -start ...8-5
acushare -kill...8-6
acushare -clean..8-7
acushare -version ..8-7
acushare (with no options) ..8-7

8.4 Runtime Error Handling...8-8

 Contents-xv
Index

Contents-xvi

1
 Introduction
Key Topics

Overview ... 1-2
Available Runtime Systems .. 1-2
Runtime Configuration File .. 1-3

1-2 Introduction
1.1 Overview

This Runtime Manual provides a summary of the options, variables, error
codes, and utilities used with the ACUCOBOL-GT® runtime system, also
known as the COBOL Virtual Machine™. The runtime system is part of the
extend® family of solutions.

After a program is successfully compiled with the ACUCOBOL-GT compler,
it is ready for immediate execution with the ACUCOBOL-GT runtime.
There is no link step. Programs called during execution are loaded
dynamically. See Chapter 4, “Chapter 4: Runtime Options,” for details on
starting the runtime. For more information on the use of both the compiler
and the runtime, see Chapter 2, “Compiler and Runtime,” in the
ACUCOBOL-GT User’s Guide.

1.1.1 Available Runtime Systems

On UNIX, Linux, OpenVMS, and MPE/iX systems, the runtime executable
is named “runcbl” or “runcbl.exe”. On some UNIX systems, the runtime is
provided as a shared object library named “libruncbl.so” or “libruncbl.a”. In
this manual, the runtime executable is often referred to as runcbl.

1.1.1.1 Windows runtime systems

Several types of runtimes are available on Windows systems, each of which
supports a distinct type of deployment. Each runtime is licensed separately.

• The standard Windows runtime is encapsulated in a dynamic link library
(DLL), and is started via the program named “wrun32.exe”. This
runtime is used for all standard Windows deployments.

• Thin client deployments use a special runtime named “acuthin.exe”. For
more information about thin client technology, see Chapter 1, section
1.3.2, “Thin Client,” in the AcuConnect® User’s Guide.

Overview 1-3
• The Windows Console runtime, named “crun32.exe”, supports
applications originally developed for Extended DOS or other
character-based systems. The console runtime uses the Windows
Console API and runs in a virtual DOS window. For more information,
see section 1.2.3.1 in Book 1, ACUCOBOL-GT User’s Guide.

• The Alternate Terminal Manager (ATM) runtime, named “run32.exe”,
allows users to use a 32-bit Windows server in much the same way that
some UNIX servers are used. With the ATM runtime, the user can telnet
to the Windows server (with a third-party telnet service) to execute
character-based ACUCOBOL-GT programs in the telnet window. The
ATM is described in more detail in Chapter 4 of ACUCOBOL-GT User’s
Guide.

• To support Windows-based deployment of Web applications, there is a
special Web runtime and CGI runtime. For more information on these
options, see A Programmer’s Guide to the Internet.

Unless otherwise indicated, the references to “Windows” in this manual
denote the following versions of the Windows operating systems: Windows
XP, Windows Vista, Windows 7, Windows 2003, Windows 2007, Windows
2008 R2. In those instances where it is necessary to make a distinction
among the individual versions of those operating systems, we refer to them
by their specific version numbers (“WindowsXP,” “Windows Vista,” etc.).

1.1.2 Runtime Configuration File

Users of the ACUCOBOL-GT runtime can modify many aspects of the
runtime environment on a site-by-site or user-by-user basis without
recompiling. This is accomplished through a text file known as the runtime
configuration file.

1-4 Introduction
In addition, the runtime can be configured with operating system
environment variables.

For example, the location of data files, names of devices, text of error
messages, file buffering, and screen editing functionality can all be
maintained outside of the compiled programs. For complete information, see
Chapter 3, “Chapter 3: Runtime Configuration File.”

All runtimes include a built-in source-level debugger. The end user may
cooperate with the application developer to use some of the debugging
capabilities. For more information, see Chapter 5, “Chapter 5: Runtime
Debugger.”

By default, the ACUCOBOL-GT runtime uses the Vision indexed file system
to manage its indexed data files. On VMS/OpenVMS systems, the RMS file
system is used. Several utilities are available to work with Vision files and
transaction management log files. These utilities include vutil, vio, logutil,
and alfred. These utilities are described in Chapters 7 through 10.

On most UNIX and Linux systems, the acushare utility program supports
three key deployment services:

• ACUCOBOL-GT runtime license management

• ACUCOBOL-GT runtime shared memory management

• AcuServer® license management (for deployments using AcuServer)

Object code

Environment

variables

ACUCOBOL-GT

runtime system

runcbl

COBOL

configuration file

(cblconfig)

Overview 1-5
For more information, see Chapter 8, “Chapter 8: Shared Memory.”

1-6 Introduction

2
 Setting Up Your Terminals
Key Topics

How the Terminal Manager Works ... 2-2
Getting Your Terminals Ready .. 2-5
The Keyboard Interface.. 2-9
The Display Interface.. 2-41
Restricted Attribute Handling .. 2-60
The Terminal Database File .. 2-64

2-2 Setting Up Your Terminals
2.1 How the Terminal Manager Works

Terminal Manager is the name we give to the Runtime System module that
handles the input from the keyboard and the output to the screen. The
Terminal Manager interprets the keys that the user presses, translating each
keystroke into a function, such as a backspace. It also manages translation of
attributes from your ACUCOBOL-GT application program to the screen.

The Terminal Manager provides a consistent interface between
ACUCOBOL-GT programs and the particular machines on which they are
running. The manager minimizes any differences among the various
machines, operating systems, and terminals for which ACUCOBOL-GT is
available.

The Terminal Manager also provides support for the emulation of graphical
user interface (GUI) components, such as floating windows (modal and
modeless) and controls on text-mode systems, allowing you to customize the
characters used to emulate graphical components. For more information, see
section 2.6.7, “Graphical Window and Control Emulation.”

This chapter describes how the Terminal Manager handles your program’s
interaction with terminals, including both the screen display and the
keyboard. This chapter also explains how you can configure the Terminal
Manager and how it interacts with end users.

For example, in this chapter you’ll see how to specify what terminal you
have, and how to make choices like:

• Designating a special action key

• Changing the on-screen prompt character

• Adding or changing colors

• Controlling data display and entry format

• Sounding error alarms

How the Terminal Manager Works 2-3
Sometimes features built into a COBOL program can override the effects of
the values and variables described in this chapter. These situations can be
important to application program developers and to end users, and are
highlighted by notes at the appropriate places in this chapter.

2.1.1 Terminal Manager Functions

This diagram depicts how the Terminal Manager relates to hardware and
other software in your system:

Many Terminal Manager functions depend on the data in two files:

• The terminal database file, a text file that maps screen and keyboard
hardware signals of different terminals to common codes. The file
contains signal-to-code sets for many popular terminals. In this chapter,
the codes for screen and keyboard signals will generally be called
terminal function codes. The term key codes will be used to refer to the
subset of terminal function codes that deals with the keyboard.

COBOL program

runtime

system

Terminal

Manager

Terminal database

and

runtime config files

Screen

Keyboard

DISPLAY

statement
ACCEPT

statement

Screen/key

mapping instructions

2-4 Setting Up Your Terminals
Terminal function codes enable the Terminal Manager to handle I/O
between application programs and a variety of terminals without any
program changes; you only need to tell the Terminal Manager what
terminal you will be using. Some of the codes can also be used to
customize terminal actions, as described throughout this chapter.

• The runtime configuration file, a text file that includes variables that
help define how the screen, the keyboard, and the user’s keystrokes will
be handled. Relevant runtime configuration variables are described in
detail later in this chapter. These are often used in conjunction with the
key codes and terminal function codes mentioned above.

2.1.2 Alternate Terminal Manager (ATM)

The Alternate Terminal Manager (ATM) runtime is a special 32-bit Windows
runtime that allows you to use a 32-bit Windows server in much the same
way that many UNIX servers are used. With the ATM runtime, you can telnet
to the Windows server (with a third-party telnet service) to execute
character-based ACUCOBOL-GT programs in the telnet window. However,
the ATM runtime does not support program execution in the Console window
of the Windows server. The ATM runtime is licensed and installed separately
from the standard ACUCOBOL-GT Windows (graphical) runtime.

All major runtime functionality, except graphical support, is available with
the ATM runtime. Because it is for character-based programs, certain
Windows-specific features, such as pop-up dialog boxes, are not supported.
Note that the ATM runtime automatically detects and uses Acu4GL DLLs, if
present, and it supports calls to other DLLs.

Note: Should you need to relink the ATM runtime, see the instructions in
section 4.3.6 of A Guide to Interoperating with ACUCOBOL-GT.

Getting Your Terminals Ready 2-5
2.2 Getting Your Terminals Ready

This section describes your options as you prepare to use specific terminals
with your application. Your computer’s operating system and the
ACUCOBOL-GT software will handle communication with most terminals
without your doing anything. With some terminals, you will need or want to
specify some choices.

Before running a program that uses the Terminal Manager, you may need to
identify the type of terminal that will be used, and you may wish to customize
the interface. The process of setting up a specific terminal involves these
major steps:

2.2.1 Step One—Terminal Identification

The ACUCOBOL-GT runtime opens the terminal database file. Each entry
in the file consists of the name of a terminal, followed by its screen and
keyboard attributes, definitions, and codes. (Runtimes for some systems,
such as Windows, typically do not use a terminal database file. Check with
your Micro Focus extend Customer Service Representative if your terminal
is non-standard, to determine if you require the terminal database file.)

Identify the terminal

Inspect the terminal
definition; edit or build

entry if necessary

Check configuration
variables; edit if

necessary

2-6 Setting Up Your Terminals
The runtime first looks for the system variable A_TERMCAP; if that variable
is present, the runtime opens the file named in it as the terminal database file.
If the system variable A_TERMCAP is not present, the runtime opens the file
name shown in the table below. The file name varies with the operating
system (note that file names on UNIX systems are case-sensitive):

You must tell the Terminal Manager what terminal database file to use with
your ACUCOBOL-GT application. Either:

a) use the path and name specified in the table above, and do not set
A_TERMCAP (this approach works fine in most cases),

or

b) use a path and name of your choosing, and specify that path and name in
A_TERMCAP.

After the terminal database file is opened, the Terminal Manager needs to
know what terminal type is to be used, and where to locate the entry that
describes it. One of the system variables, A_TERM or TERM, holds the
name of the entry that is to be used.

The Terminal Manager looks first for the variable A_TERM. If it is present,
the Terminal Manager searches the terminal database file for the terminal
named in A_TERM. If A_TERM is not present, the Terminal Manager looks
for the variable TERM and then searches the terminal database file for the
terminal named in TERM. Setting TERM to the correct terminal name will
handle most situations. For information on exceptions, see section 2.2.2,
“Step Two—Terminal Definition.” If neither TERM nor A_TERM is
present, the Terminal Manager terminates the runtime with an error message.

System Terminal database file

UNIX /etc/a_termcap

MPE/iX /etc/a_termcap

VMS SYS$LIBRARY:A_TERMS.DAT

Getting Your Terminals Ready 2-7
The various operating systems handle TERM and A_TERM in different
ways:

• On VMS systems, TERM and A_TERM are symbols.

• On UNIX systems, they are environment variables; most UNIX systems
set the TERM variable at login time.

• The Windows console (character-mode) runtime does not use the
terminal database file, and so does not need to know the value of TERM.

• Graphical runtimes do not use the terminal database file, and so do not
need to know the value of TERM.

• The ATM runtime uses TERM and A_TERM as environment variables,
just like UNIX.

The terminal database file shipped with the ACUCOBOL-GT runtime
contains definitions of the characteristics of most popular terminals; you will
probably find yours listed. If the entry named in A_TERM or TERM
describes the terminal you will use with your ACUCOBOL-GT application,
then nothing more need be done.

2.2.2 Step Two—Terminal Definition

If the terminal database file entry named in A_TERM or TERM does not
describe the terminal you will use, you probably will not want to change the
value of TERM, because other software may rely on that value. Instead, take
these two steps:

1. Locate the terminal database file entry that correctly describes your
terminal, or create a new one and give it a new name. For more
information, see section 2.6, “The Terminal Database File.”

2. Set A_TERM to the name of that entry.

2.2.2.1 Windows special considerations

Neither the ACUCOBOL-GT graphical runtime nor the console runtime for
Windows uses a terminal database file when a standard Windows monitor is
used. If you choose to use a character-based terminal (such as the VT-100),

2-8 Setting Up Your Terminals
you will need both the alternate terminal manager runtime and a terminal
database file. These can be requested from your extend Customer Service
Representative at Micro Focus. Be aware that your programs will execute
less efficiently with this combination than with the standard Windows
runtime and a standard Windows monitor.

2.2.3 Step Three—Configuration Variables

Some behaviors of the terminal can be controlled by entries (variables) in the
runtime configuration file. The default name of this file, like that of the
terminal database file, varies according to the host operating system:

Options for naming and accessing the runtime configuration file, and
descriptions of many of the entries in it, are discussed in Chapter 4,
“Chapter 4: Runtime Options.” That chapter also discusses the
relationship between the runtime configuration file and the host computer’s
environment. This chapter discusses entries in the terminal database file and
the runtime configuration file, which are of particular importance to the
Terminal Manager.

System Runtime Configuration File

Windows \etc\cblconfi

UNIX and Linux /etc/cblconfig

MPE/iX /etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT

The Keyboard Interface 2-9
Entries in both the terminal database file and the runtime configuration file
are described throughout this chapter, grouped according to the functions that
they control. These are the basic areas of functionality that you will need to
consider in deciding what you need to modify or define:

2.3 The Keyboard Interface

The Terminal Manager handles both the screen display and keyboard input.
For more information, see section 2.4, “The Display Interface.”

This section addresses keyboard-related functions. The Terminal Manager
provides certain conventions for entering and editing data; these conventions
are described here.

Required
functions

Other screen
functions

Video
attributes

Color

Function
keys

Line
drawing

Initialization

Print
functions

2-10 Setting Up Your Terminals
2.3.1 Key Mapping

The mapping of keys to functions is one of the main activities of the Terminal
Manager. If you understand what happens when a user presses a key, you’ll
have a good feel for how you can control the interaction between the
keyboard and the COBOL application. The following diagram depicts the
overall process, from keystroke to COBOL program.

The following sections describe in detail the steps shown above.

2.3.1.1 Key interpretation

When the user presses a key, the keyboard sends a signal to the computer.
This signal needs to be interpreted and translated into a value, or
functionality, that the COBOL program can understand. This process begins
with the terminal database file.

Key
interpretation

Key
translation

Final
result

ACTION EXAMPLE

User presses key

Keyboard sends
hardware signal

Terminal database
file maps hardware
signal into key code

Runtime configuration
file translates key code

into functionality

COBOL program can
sometimes override
configuration setting

Key function
is executed

F1

\EOP

k1

Configuration file entry:
KEYSTROKE EDIT=Next Terminate=13k1

COBOL statement:
SET ENVIRONMENT "KEYSTROKE" TO

"Edit=End Terminate=13k1"

The cursor is moved to the end of the current
field and the ACCEPT terminates with a

CONTROL KEY value of 13

The Keyboard Interface 2-11
The terminal database file equates hardware signals to logical values. Unless
you are running on a system such as Windows, where the key interpretation
is built into the runtime, your terminal needs to be listed in the terminal
database file. Keystrokes at the terminal generate hardware signals, and each
hardware signal must be equated to a logical value if the application program
is to respond to the associated keystroke. These logical values, called key
codes, are listed in section 2.3.2.3, “Table of keys.”

We provide the definitions for many popular terminals in the terminal
database file that we send you. If the name of your terminal is included, you
will not need to change anything unless your particular terminal is different
from the standard configuration for its type. If that is the case, you may need
to change the entry.

Each entry in the terminal database file consists of the name of the terminal
(including all names by which you might typically refer to this terminal type),
followed by a series of character strings. Some of these strings are equations
that assign hardware signals from the keyboard to key codes that we provide.
Some of the strings consist of functional instructions to the terminal.

Terminal database file entries and the syntax rules that govern them are
described in section 2.6, “The Terminal Database File.”

2.3.1.2 Key translation

After the hardware signal has been equated to a key code, the runtime system
checks the runtime configuration file to determine if any special values or
functions have been attached to the key code.

This is the point at which statements in a COBOL program can override what
is specified in the runtime configuration file.

2.3.1.3 Keyboard configuration

Each terminal has several keys that are available to be used for special
purposes. Some of these keys are used as field termination keys, others are
used as editing keys. ACUCOBOL-GT supports a large number of special
keys, but in the default configuration, only the following are used:

Function Keys 1–20 Help

2-12 Setting Up Your Terminals
The Backspace and Line-Kill keys are whichever keys provide these
functions for your operating system. The Backspace key is the one that
erases individual characters from a command line; the Line-Kill key is the
one that can cancel a command line. On most systems, the key that performs
the Backspace function is the one labeled either “backspace” or “delete.”

The keyboard interface can be easily configured to meet a variety of needs.
The default configuration has the following characteristics:

1. The range of legal input characters is ASCII values 32 through 255.
Other characters outside this range are ignored unless covered by one of
the cases below.

2. The range of exception characters is ASCII values 1 through 31. If any
of these characters is typed, an exception condition exists and input to
the field is terminated. The exception key value is identical to the
ASCII value of the key. For example, if Control-E is typed, the
exception key value returned would be “5”. This rule does not apply to
characters specifically listed in rule 3.

3. The following table outlines the actions of other keys. In this table,
Action is the special action performed by the key. If a number is
present here, this key terminates the field and returns that number as its
termination key value. If the number is starred (*), this key also causes
an exception condition. If there are both a number and an action, the
key acts as a termination key when the action cannot be applied.

Arrow Keys Do

Page Up Page Down

Backspace Line-Kill

Home End

Insert Delete

Clear Clear to End

Carriage Return Control Keys

The Keyboard Interface 2-13
The Windows column names the keycap on the IBM-PC keyboard that
is used for this key. The Termcap column names the terminal database
file entry that corresponds to this key for UNIX and VMS systems.

Key Action Windows Termcap

Carriage Return 13 Enter

Tab Next Field (9) Tab

Host’s Backspace Backspace BkSp

Host’s Line-Kill Erase Field

Backtab Previous Field Shft-Tab kB

Home First Field Home kh

End Last Field End KE

Insert Auto-Insert Mode Ins KI

Delete Delete Character Del KX

Clear Erase Field Ctl-Home KC

Clear-to-End Erase Remainder Ctl-End kE

Left Arrow Left Left kl

Right Arrow Right Right kr

Up Arrow Previous-All (52*) Up ku

Down Arrow Next-All (53*) Down kd

Page Up Page-Up (67*) PgUp kP

Page Down Page-Down (68*) PgDn kN

Do (Command) 40* KD

Help 90* K?

F1–F10 1–10* F1–F10 k1–k0

F11–F20 11–20* Shft F1–F10 K1–K0

2-14 Setting Up Your Terminals
Note: Keys that terminate input with an exception condition are ignored by
ACUCOBOL-GT if the ACCEPT statement does not have an EXCEPTION
clause or a CONTROL KEY clause. However, if you use the “-Vx”
compile-time option, exception keys will be recognized even if the
ACCEPT statement does not contain an EXCEPTION or CONTROL KEY
clause.

When accepting data from the keyboard, the Terminal Manager runs in one
of two modes: “standard” mode or “auto” mode. In “standard” mode, the
only way to finish input is by typing one of the allowed termination keys; the
cursor may not leave the field. In “auto” mode, the cursor can leave the field;
when the user fills the field with data, it is immediately accepted and the
cursor moves on. The setting of “auto” mode or “standard” mode is
determined by the various clauses specified on the ACCEPT statement. For
details, see Chapter 6 of the Reference Manual, ACCEPT verb.

There are four methods for accepting a field (ACCEPT verb, Format 1),
depending on the mode and the presence of either the CONTROL KEY
clause or the ON EXCEPTION clause. These are:

Standard mode, no CONTROL KEY or ON EXCEPTION clause:

The field can be accepted only by a termination key. In the default
keyboard configuration, these are the Carriage Return and Tab keys.

Standard mode, with CONTROL KEY or ON EXCEPTION clause:

The field can be accepted by a termination key or by one of the
exception keys.

Auto mode, no CONTROL KEY or ON EXCEPTION clause:

The field can be accepted by a termination key or by filling the field
with data.

Auto mode, CONTROL KEY or ON EXCEPTION clause:

The field can be accepted by filling it with data, or by a termination key
or an exception key.

The Terminal Manager can control more than one field when the program is
doing an ACCEPT that refers to a Screen Section item (ACCEPT verb,
Format 2). In the course of this ACCEPT, the user can move between the

The Keyboard Interface 2-15
fields by using the Tab, Backtab, Left, Right, Up, Down, Home, and End
keys; the Tab key acts as a terminate key only in the last field. A Format 2
ACCEPT statement does not support the use of the CONTROL KEY clause;
the CRT STATUS phrase of the Special-Names paragraph may be
substituted. Data entry for a Screen otherwise falls into four categories much
like the above.

The termination and exception keys may be changed by runtime
configuration options, as described in section 2.3.2, “Redefining the
Keyboard.”

Note to RM/COBOL-85 users:

 The ACUCOBOL-GT default keyboard layout is very similar to that used by
RM/COBOL-85, but it is not identical. Consider these points:

1. Under MS-DOS, RM/COBOL-85 defines the Command key to be
Alt-C. When you are typing this key, it is easy to accidentally type
Control-C instead, which is the interrupt key in DOS. For this reason,
ACUCOBOL-GT uses Alt-D (for “Do”) instead.

2. ACUCOBOL-GT defines more editing keys than RM/COBOL-85
does. In particular, the Home, End, Clear, Clear-to-End, and Line-Kill
keys return exception values under RM/COBOL-85, while under
ACUCOBOL-GT they perform various field-editing functions.

3. ACUCOBOL-GT defines Page Up, Page Down, and Help keys that are
not defined under RM/COBOL-85. These keys are used by the
ACUCOBOL-GT debugger.

4. The default RM/COBOL-85 keyboard includes the following keys as
exception keys: Attention, Home, New Line, Tab Left, Erase Right,
Tab Right, Insert Line, Delete Line, and Send. Under
ACUCOBOL-GT, these keys either act as editing keys or are ignored.
Because these keys are generally not available on most keyboards (or,
in the case of the Tab Right and New Line keys, are ambiguous with
control keys), most applications do not use them. If you need to use
any of these keys, you can alter the ACUCOBOL-GT keyboard
configuration as described in section 2.3.2, “Redefining the
Keyboard.”

2-16 Setting Up Your Terminals
5. The RM/COBOL-85 layout varies from machine to machine. In the
interest of portability, the default ACUCOBOL-GT keyboard interface
is the same for all machines.

2.3.2 Redefining the Keyboard

The ACUCOBOL-GT keyboard interface may be modified via two variables
in the runtime configuration file. The KEYBOARD variable defines global
keyboard attributes. The KEYSTROKE variable defines the interpretation of
a particular key or key combination. These two variables enable you to tailor
the keyboard interface to your application.

2.3.2.1 The KEYBOARD variable

You can specify one or more KEYBOARD variables. Attributes that you can
set are identified by one or more sets of keywords and associated values,
separated from each other by spaces or tabs. The syntax is:

KEYBOARD keyword=value [keyword=value]...

Keywords are:

AUTO-RETURN=value

Some ACCEPT statements terminate automatically when the input
field is filled. When this occurs, the termination key value is the value
(a decimal number) defined by the AUTO-RETURN keyword. This
value is returned in the CONTROL KEY clause of the ACCEPT
statement. The default value is zero. You may also specify this option
with the configuration variable KBD_AUTO_RETURN.

CASE=value

The CASE option on the KEYBOARD configuration entry allows you
to cause all entries to be automatically converted to upper or
lowercase. Value may be set to “Upper”, “Lower”, or “Both”:

Upper: all ACCEPT statements convert keystrokes to upper case.

Lower: all ACCEPT statements convert keystrokes to lowercase.

Both: (default) causes no translation.

The Keyboard Interface 2-17
CASE may be overridden with the settings of the “UPPER” and
“LOWER” keywords on individual ACCEPT statements. For more
information, see Book 3, Reference Guide, section 6.4.9, “Common
Screen Options.”

The configuration variable KBD_CASE is also supported.

Note: The value of KEYBOARD CASE does not affect controls. To
get the same result on controls, use the UPPER or LOWER phrase on
the ACCEPT statement.

CHECK-NUMBERS=value

Normally, ACUCOBOL-GT requires that numeric data be entered for
numeric and numeric-edited fields that have the CONVERT phrase
specified for them. If value is “No”, any data can be entered, and the
runtime system will remove the non-numeric data from the user’s input
prior to converting. If value is set to “Yes” (the default), a non-numeric
entry will cause an error message to print and will force the user to
re-enter the field. If value is set to “Validate”, the runtime also checks
to make sure that the numbers entered are valid, as described by the
PICTURE clause for that field. The configuration variable
KBD_CHECK_NUMBERS can also be used to set this value.

CURSOR-PAST-END=value

By default, ACUCOBOL-GT does not let the cursor leave the field in
which data is being entered. When the final position is entered, the
cursor remains there and further entry is inhibited except for editing
keys. Setting value to “Yes” allows the cursor to move one character
past the end of the field instead. Input is still inhibited. The difference
between the two modes is essentially cosmetic and
CURSOR-PAST-END can be set to suit the user’s taste. The default
value is “No”. This value may also be specified with
KBD_CURSOR_PAST_END.

DATA-RANGE=value

Value defines the range of legal ASCII input values. Any character
received that falls outside of this range will not be accepted into the
input field, but may define other actions such as field editing or input
termination. Two decimal numbers, separated by a comma, express the
lower and upper bounds of the range. The maximum range is “1,255”.

2-18 Setting Up Your Terminals
The default range is “32,255”. This value may also be set using the
configuration variables KBD_DATA_RANGE_HIGH and
KBD_DATA_RANGE_LOW.

Note: If the same number(s) is included in both the DATA-RANGE
and EXCEPTION-RANGE, then DATA-RANGE takes precedence.

EXCEPTION-RANGE=value

This is similar to the DATA-RANGE keyword, except that value
defines the range of characters that generate default exception
handling. A key whose ASCII value falls within that range will
terminate input with an exception condition value that matches the
ASCII value of the key. That value is returned in the EXCEPTION
clause or the CONTROL KEY clause of the ACCEPT statement. The
default range is “1,31”. A character in this range that is also defined by
a KEYSTROKE variable acts as defined by that KEYSTROKE
variable, and may or may not terminate the input. The configuration
variables KBD_EXCEPTION_RANGE_HIGH and
KBD_EXCEPTION_RANGE_LOW may also be used to set this
value.

Note: If the same number(s) is included in both the DATA-RANGE
and EXCEPTION-RANGE, then DATA-RANGE takes precedence.

IMPLIED-DECIMAL=value

If value is “Yes”, an implied decimal point is inserted in certain fields
when the user does not explicitly type a decimal point. The last n digits
of the user’s input will be to the right of the decimal point, where n is
the number of decimal places specified in the receiving field. For
example, if the program is accepting a field with two decimal places,
and the user types “1535”, the value accepted (and echoed to the
screen) will be “15.35”. This is only done for numeric or
numeric-edited fields that are input with conversion, either explicit or
implicit. It never occurs for floating-point items. The default value is
“No”. The configuration variable KBD_IMPLIED_DECIMAL is also
supported.

The Keyboard Interface 2-19
RM-2-DEFAULT-HANDLING=value

RM/COBOL versions 2.1 and 2.2 have a configuration option that
allows for ACCEPT fields that do not receive any input (for example,
the user just types Return) to leave the receiving field unchanged.
Normally, the receiving field would be filled with spaces. If the
RM-2-DEFAULT-HANDLING value is “Yes”, ACUCOBOL-GT will
behave in this alternate fashion. You may also set this value using the
variable KBD_RM_2_DEFAULT_HANDLING.

Note: This option is recommended only if you are converting
programs written using this feature of RM/COBOL. Note that
RM/COBOL-85 does not contain this feature, so only programs
written for RM/COBOL version 2 should need to use it.

SCREEN-DEFAULT=value

If value is “Yes”, default data is taken from the screen for any ACCEPT
statement that does not have a default value specified for it (either
explicitly or implicitly). This will also allow for updating of the
current screen contents. The default value is “No”. This option can
also be specified using the configuration variable
KBD_SCREEN_DEFAULT.

2.3.2.2 The KEYSTROKE variable

The KEYSTROKE variable defines the actions to be taken for a single
keystroke. You need to add one KEYSTROKE line for each key that you
wish to redefine. The maximum number of allowed KEYSTROKE entries
is 170.

KEYSTROKE entries consist of keywords and associated values that
describe the action to be taken, plus the key code (a two-character name) of
the key, or key combination, being defined. All definable keys have such a
name. The key code is case-sensitive, although the rest of the KEYSTROKE
line is not. The ASCII value of the key (decimal) may be used instead of the
key code. Note that this is the only way to assign a value to the DEL key
(ASCII value 127). The syntax of the KEYSTROKE line is:

KEYSTROKE keyword=value [keyword=value] key-code

2-20 Setting Up Your Terminals
The key-code argument is one of the two-character codes shown in section
2.3.2.3, “Table of keys.” Keywords are separated from each other by spaces
or tabs. For example:

KEYSTROKE EDIT=Next TERMINATE=13 ^M

The following keywords may be used:

AT-END=value

If value is “Yes”, the key becomes a termination key that also causes
the AT END condition. This keyword may not be specified along with
either the TERMINATE or EXCEPTION keywords. The AT END
condition always returns a termination value of “-1” in the CONTROL
KEY clause. AT-END keystrokes are always allowed, but will cause
no action unless an AT END, EXCEPTION, or CONTROL KEY
clause is present in the ACCEPT verb. The default keyboard defines
no AT-END keys. See also the AT END phrase of the ACCEPT verb in
the ACUCOBOL-GT Reference Manual, Procedure Division.

DATA=value

This keyword is used to assign special characters to keys. DATA
associates a decimal ASCII value with a key; the Terminal Manager
will return this value to the COBOL program when the key is pressed.
If the DATA keyword is used, no other keywords may be specified for
this key.

EDIT=value

EDIT is used to define an editing action for a key. It must be assigned
one of the following values:

Alt Left

Auto-Insert Menu

Backspace Next

Default-Entry Next-All

Default-Next Next-Line

Delete Numeric-Default

Down Numeric-Next

End Page-Down

The Keyboard Interface 2-21
The EDIT keyword values specify various editing functions, described
below. EDIT keys may also be designated as termination keys. When
they are, the EDIT is applied and then the input is terminated. This rule
is slightly changed for the actions that move the cursor. With these
actions, the field terminates only if the cursor cannot be moved farther
in the requested direction. This is detailed in the descriptions of each
of the EDIT values.

In the following descriptions, the order of fields is the order in which
they appear in the Screen Section. Thus, the “next” field may not
necessarily be the next one on the physical display. This feature can be
used to design special purpose screens.

EDIT keyword values can be:

Erase-All Page-Up

Erase-EOS Previous

Erase Field Previous-All

Erase-Next Previous-Line

Erase-to-End Right

First Switch-Window

Home System-Menu

Insert-Off Toggle-Edit-Mode

Insert-On Toggle-Insert

Insert-Space Up

Last

Alt The character-based version of the runtime supports
the use of key letters in controls. The user can activate
a particular control by pressing a predesignated key in
combination with the control’s key letter.

Use the Alt function to designate the key to be pressed
in combination with the control’s key letter. On
Windows systems, the user presses the “Alt” key in
conjunction with the key letter.

2-22 Setting Up Your Terminals
Auto-Insert Auto-Insert causes all following characters to be
entered in insert mode. Auto insert mode is
automatically reset when the input terminates, or when
any other editing key is typed. This style of insertion is
the RM/COBOL-85 default method.

Backspace The Backspace function moves the cursor to the left
one character and deletes the character found there. If
the Backspace function occurs at the left-most field
position, it is ignored unless a TERMINATE or
EXCEPTION value has been assigned to the key, in
which case it is treated as a termination key.

Default-Entry The Default-Entry action erases the remainder of the
field starting at the cursor position, provided that the
cursor is not in the first position of the field. If the
cursor is in the first position, this action does nothing.
This editing action is intended to be tied to a
termination key (such as the “Return” key or the “Tab”
key), and to be used as a reasonable method of
handling fields that contain default values. If the
default is correct, this key is typed (which does nothing
to the field). If the default is wrong, the correct value
is entered and this key is typed (erasing the part of the
old field after the new input).

Default-Next Default-Next combines the Default-Entry action and
the Next (described below) action.

Delete Deletes the character that the cursor is on (if any).

Down If there are fields below the current cursor location, the
cursor moves to the one on the closest lower line. If
there is more than one field on this line, the cursor will
move to the one closest to its current horizontal
location. The cursor will try to stay in the same
column. If there are no fields beneath the current line,
then this action does nothing unless an EXCEPTION
or TERMINATE value has been assigned to it, in
which case it acts as a termination key.

End The cursor is moved to the end of the current field,
excluding any trailing prompt characters. If the cursor
is already at the end of the field, then this key is
ignored unless it has a TERMINATE or EXCEPTION
value, in which case it is treated as a termination key.

The Keyboard Interface 2-23
Erase-All All fields controlled by the ACCEPT statement are
erased and the cursor is moved to the home position of
the first field. This key may not be assigned a
TERMINATE or EXCEPTION value.

Note: Under Windows, the field in which the cursor is
currently positioned is erased, instead of all fields
controlled by the ACCEPT statement being erased.

Erase-EOS The current field is erased from the cursor location to
the end of the field, and all fields following the current
one are erased. The definition of “following field” is
based on the order of fields in the Screen Section. This
action may not be assigned a TERMINATE or
EXCEPTION value.

Note: Under Windows, the current field is erased from
the cursor location to the end of the field, but the fields
following the current one are not erased.

Erase-Field The field is erased, and the cursor is moved to the first
position of the field.

Erase-Next This action combines the functions of the Erase-to-End
action and the Next (described below) action.

Erase-to-End This function erases the field from the current cursor
position to the end of the field.

First The cursor is moved to the beginning of the first field
controlled by the ACCEPT statement. If the cursor is
already in the first field and the key has been assigned
a TERMINATE or EXCEPTION value, then the
ACCEPT terminates.

Home The cursor is moved to the beginning of the field. If
the cursor is already at the beginning and this key has
been assigned a TERMINATE or EXCEPTION value,
the ACCEPT terminates.

Insert-Off If insertion mode is currently in effect, it is turned off;
otherwise, it does nothing.

2-24 Setting Up Your Terminals
Insert-On This causes all following characters to be entered in
insert mode. This causes any trailing characters to be
moved one space to the right before the added
character is printed. Insertion mode stays in effect
until explicitly reset by an Insert-Off, an Auto-Insert,
or a Toggle-Insert action. Note that insertion mode
stays in effect across multiple ACCEPT statements.

Insert-Space A space character is inserted at the cursor position,
moving trailing characters over one position.

Last The cursor moves to the end of the last field controlled
by the ACCEPT statement. Trailing prompt characters
in the last field are ignored in determining the end of
the field. If this key has been assigned a TERMINATE
or EXCEPTION value and the cursor is already in the
last field, the ACCEPT terminates.

Note: Under Windows, with TERMINATE and
EXCEPTION value, if the cursor is at the last field, the
ACCEPT does not terminate and the cursor stays at the
current field.

Left The cursor is moved one position to the left; if it is
already in the leftmost field position, it moves to the
end of the previous field. If the cursor is in the leftmost
position of the first field, the key is ignored unless it
also has been assigned a TERMINATE or
EXCEPTION value, in which case the ACCEPT
terminates.

In the case of Windows, the left and right arrow keys
move the cursor inside a field but do not act as
terminators. Without TERMINATE and EXCEPTION
value, if the cursor is in the leftmost position of the first
field, the key is not ignored and the cursor is moved to
the last field.

Menu The key is defined as a Menu key. Pressing this key
will cause a program-defined menu to appear on the
screen.

Next Under Windows, without TERMINATE and
EXCEPTION value, if the cursor is in the last field, it
moves to the first field, instead of moving to the end of
the field.

The Keyboard Interface 2-25
Next-All The cursor moves to the beginning of the next field,
regardless of whether or not the next field has a
Tab-Stop. Thus a key with the “Next” action will skip
controls with the NO-TAB style, while a key with the
“Next-All” action will not.

By default, the Down key is assigned the Next-All
action. This makes the Down key behave more like it
does in a common Windows program. Assign the
Down keyword (described above) for a more
traditional, text-mode behavior.

Next-Line Next-Line functions the same as the Down action,
except that the cursor always moves to the beginning
of the leftmost field on the new line (instead of
maintaining the current cursor column).

Numeric-Default If the field is numeric, this key acts just like the
Default-Entry key. Typing this key at the first
character position of a numeric field leaves the field
unchanged and accepts the default value. Typing this
key when the cursor is not in the first position causes
erasure of the field from the cursor position to the end.
This key allows the user either to accept the default or
type over it without having to worry about blanking out
the trailing portion of the field.

If the field is alphanumeric, then this action does not
affect the field. Numeric-Default is usually made a
termination key, so that typing it causes the ACCEPT
to finish.

Numeric-Next If the field is numeric, this key acts just like the
Default-Next key. Typing this key at the first character
position of a numeric field leaves the field unchanged,
accepts the default value, and advances to the
beginning of the next field. Typing this key when the
cursor is not in the first position causes erasure of the
field from the cursor position to the end. The cursor is
then advanced to the beginning of the next field. This
key allows the user either to accept the default or type
over it without having to worry about blanking out the
trailing portion of the field.

If the field is alphanumeric, this key acts just like the
Next key. It advances the cursor to the beginning of
the next field and does not affect the current field.

2-26 Setting Up Your Terminals
Page-Down This keyword sets the key that pages down a multiline
entry field, list box, and combo box.

Page-Left This keyword sets the key that scrolls left one page.

Page-Right This keyword sets the key that scrolls right one page.

Page-Up This keyword sets the key that pages up a multiline
entry field, list box, and combo box.

Previous The cursor moves to the beginning of the previous
field. If the cursor is in the first field, it moves to the
beginning of the field unless the key has been assigned
a TERMINATE or EXCEPTION value, in which case
it acts as a termination key instead.

Previous-All The cursor moves to the beginning of the previous
field, regardless of whether or not the previous field
has a Tab-Stop. Thus a key with the “Previous” action
will skip controls with the NO-TAB style, while a key
with the “Previous-All” action will not.

By default, the Up key is assigned the Previous-All
action. This makes the Up key behave more like it
does in a common Windows program. Assign the Up
keyword (described below) for a more traditional,
text-mode behavior.

Note: Under Windows, without TERMINATE and
EXCEPTION value, if the cursor is in the first field, it
moves to the last field instead of moving to the
beginning of the field.

Previous-Line The cursor moves to the beginning of the leftmost field
on the next higher line. If there are no fields above the
current one, this action does nothing unless it has an
EXCEPTION or TERMINATE value, in which case it
acts as a termination key.

The Keyboard Interface 2-27
Right This function moves the cursor one position to the
right. This will not move the cursor onto any trailing
prompt characters (exception: if the prompt character
is a space and the field is being updated, the cursor will
move over the trailing spaces).

If the cursor is as far right as it is allowed to go, it will
move to the beginning of the next field. If there is no
following field, this key is ignored unless a
TERMINATE or EXCEPTION value has been
assigned, in which case the ACCEPT terminates.

In the case of Windows, the left and right arrow keys
move the cursor inside a field but do not act as
terminators. Without TERMINATE and EXCEPTION
value, if the cursor is as far right as it is allowed to go,
the key is not ignored and moves to the first field. (See
Book 2, User Interface Programming, section 11.4,
“Regarding Configuration Variables.”)

Scroll-Left This keyword sets the key that scrolls left one column.

Scroll-Right This keyword sets the key that scrolls right one
column.

Switch-Window This keyword defines the key that, when pressed,
causes the system to enter “switch window mode.” In
this mode, the user can press any key to cycle through
the modeless windows, with each window border
highlighted until the “Return” key is pressed. Window
switching order is from top to bottom.

System-Menu Use the System-Menu function to define the key used
to activate a floating window’s system menu on a
text-mode system.

Toggle-Edit-Mode This keyword defines the key that can be used to toggle
the presence of the combo box’s drop-down list and the
paged list box’s search box.

2-28 Setting Up Your Terminals
EXCEPTION=value

The purpose of this keyword is to create an exception key.
EXCEPTION assigns a decimal ASCII value to a key; the key becomes
a termination key that also causes an exception condition. The
assigned value is returned in the EXCEPTION clause or the
CONTROL KEY clause of the ACCEPT statement. See the
TERMINATE keyword below if you want to terminate input without
causing an exception condition. Note that ACUCOBOL-GT inhibits
exception keys when no EXCEPTION or CONTROL KEY clause is
present in the ACCEPT statement, unless the program was compiled
with the “-Vx” option.

HOT-KEY=value

ACUCOBOL-GT offers two methods for assigning hot keys: the
KEYSTROKE keyword HOT-KEY described here, and the HOT-KEY
runtime configuration variable described in Appendix H. Either or
both may be used, but the results are undefined if you assign the same
key using both formats. The total number of hot-key entries defined by
both methods cannot exceed 16.

A hot key is a key that is associated with a program, so that when the
key is pressed, the corresponding program is run. Value is the program
name, which must be specified in single or double quotes if it is
lowercase. The full configuration file entry looks like this:

KEYSTROKE HOT-KEY=program-name key-code

Toggle-Insert If insertion mode is currently in effect, it is turned off.
Otherwise, insertion mode is turned on.

Up If there are fields above the current cursor location, the
cursor moves to the one on the closest higher line. If
there is more than one field on this line, the cursor
moves to the field closest to its current location. The
cursor will try to stay in its current column. If there are
no lines above the current line with active fields, then
this key is ignored unless it has a TERMINATE or
EXCEPTION value, in which case it acts as a
termination key.

The Keyboard Interface 2-29
Pressing the key specified in key-code initiates execution of the program
just as if it were named in a CALL statement. The key-code argument is
one of the two-character key codes shown in section 2.3.2.3, “Table of
keys.”

For example, there is a screen printing sample program named
PRNTSCRN provided with ACUCOBOL-GT. If you want to be able
to initiate that program just by pressing the keyboard’s “F11” key, add
the following line to your configuration file:

KEYSTROKE HOT-KEY=F11 U1

Hot keys are active only during Format 1 and Format 2 ACCEPT
statements (these are the forms of the ACCEPT verb that allow the user
to enter data at the keyboard). When the user presses a hot key, the
current program status is saved, and the program associated with the hot
key is run. When the hot-key program exits (via the EXIT PROGRAM
statement), control is returned to the program that was running when the
hot key was pressed. The hot-key function does not save the original
contents of the screen. You can accomplish this by popping up a window
in your hot-key program, and then closing the window just before you
exit the hot-key program.

A hot-key program is automatically passed two parameters. The first
parameter is PIC X(200). It contains an image of the data in the field
that was being entered at the time the hot key was pressed. The second
parameter is a COMP-1 field that contains the length of the field being
entered. You can define the first parameter as a table that depends on
the second parameter like this:

LINKAGE SECTION.
01 CURRENT-FIELD.
 03 OCCURS 1 TO 200 TIMES
 DEPENDING ON FIELD-SIZE PIC X.

01 FIELD-SIZE PIC S9(4) COMP-1.

You are not required to declare or use either of these parameters in your
hot-key program; they are provided for convenience.

The hot-key program may modify its first parameter. Any
modifications made are reflected in the field that was being entered
when the hot-key program was called. You might use this capability to

2-30 Setting Up Your Terminals
perform a look-up function and then return the value found to the field
being entered. If you want to pass additional data to the hot-key
program, use EXTERNAL DATA ITEMS.

When a hot-key program is started, the value of the RETURN-CODE
special register is saved and then set to zero. The hot-key program may
alter this value. When the hot-key program exits, the value of
RETURN-CODE is checked. The following table shows the possible
values and the action that the calling program will take:

• If the value of RETURN-CODE is zero, the calling program
continues to a normal completion of the ACCEPT statement that
was active when the hot key was pressed.

• If the value is greater than zero, the calling program acts as if an
exception key (with that value) was pressed. This will terminate the
ACCEPT statement if it is of a format that allows exception keys.

• If the value is “-1”, the ACCEPT statement will act as if a “next
field” key were pressed by the user. This will cause the ACCEPT
statement to proceed to the next field. If there are no more fields (or
if there is only one field), then the ACCEPT statement will terminate
with a termination value of zero. The hot-key program should not
set RETURN-CODE to any negative value other than “-1”. Other
negative values are reserved for future use by ACUCOBOL-GT.

In any case, after the RETURN-CODE value established by the
hot-key program has been acted upon by the calling program,
RETURN-CODE is restored to the value it held before the hot-key
program was called.

If a hot-key program cannot be executed, an error message is displayed
to the user, and control returns to the ACCEPT statement.

Up to two hot-key programs per process may be active at once.

Value Action

0 continue ACCEPT

>0 generate exception if allowed

-1 activate “next field” logic

The Keyboard Interface 2-31
INVALID=value

If value is “Yes”, the key is ignored when it is typed. This keyword
may not be specified with any other keywords.

TERMINATE=value

This keyword is used to create a termination key. TERMINATE
assigns a decimal ASCII value to a key. When the key is pressed, the
ACCEPT is terminated and the assigned value is returned in the
CONTROL KEY clause of the ACCEPT statement. TERMINATE
does not cause the key to generate an exception condition when
pressed; to define an exception key, use the EXCEPTION keyword
instead.

2.3.2.3 Table of keys

The following tables list all of the keys that can be redefined. The tables list
the key’s full name, its two-character name (called the “key code”), and the
corresponding key used on a Windows keyboard (not all keys listed can be
redefined under Windows; see Note below). The key code is used in the
terminal database file on UNIX and VMS systems to identify the
corresponding key-sequence.

Note: On Windows systems, the alt key sequences, PrtSrcn, and F10 keys
are directly handled by Windows and cannot be referenced in COBOL. A list
of additional keys that can be redefined in Windows environments follows
the table below.

Key Key Code
 (terminal db file)

Windows
Keyboard

Host’s Backspace ZB BkSp

Host’s Line-Kill ZK -

Cntrl-A - Cntrl-Z ^A - ^Z Ctl A-Z

Escape ^[Esc

Control-\ ^\ Ctl-\

Control-] ^] Ctl-]

Control-^ ^^ Ctl-^

2-32 Setting Up Your Terminals
Control-_ ^_ Ctl-_

DEL 127 Ctl-BkSp

F1–F10 k1–k0 F1–F10

F11–F20 K1–K0 Shft F1–F10

Down Arrow kd Down

Home kh Home

Left Arrow kl Left

Right Arrow kr Right

Up Arrow ku Up

Insert Line kA Ctl-Ins

Tab Left kB Shft-Tab

Clear-to-End kE Ctl-End

Delete Line kL Ctl-Del

Page Down kN PgDn

Page Up kP PgUp

Cancel Kc -

Next Paragraph Kd Ctl-Down

Word Left Kl Ctl-Left

Word Right Kr Ctl-Right

Previous Paragraph Ku Ctl-Up

Exit Kx -

Attention KA -

Bottom KB Ctl-PgDn

Clear KC Ctl-Home

Command (Do) KD -

End KE End

Find KF -

Key Key Code
 (terminal db file)

Windows
Keyboard

The Keyboard Interface 2-33
The following table lists mouse-action “keys” that can be referenced by a
KEYSTROKE entry; this table has meaning only for graphical systems such
as Windows. The table lists the mouse action, the corresponding key code,
and the default exception value returned. See Book 2, User Interface
Programming, Chapter 7, “Using the Mouse,” for details on mouse handling.

Insert Character KI Ins

Page Left KL -

Mark (Select) KM -

Print KP -

Page Right KR -

Send KS -

Top KT Ctl-PgUp

Save KV -

Delete Character KX Del

Help K? -

User-defined keys 1–10
(1–6 on Windows)

U1–U0
(U1–6 on
Windows)

F11-F12;
Shft-F11-F12;
Ctl-F11-F12

User-defined keys 11–20 A1–A0 Ctl-1–Ctl-0

Action Key Code Exception Value

Mouse moved Mv 80

Left button pushed Ml 81

Left button released ML 82

Left button double-clicked M1 83

Middle button pushed Mm 84

Middle button released MM 85

Middle button double-clicked M2 86

Right button pushed Mr 87

Key Key Code
 (terminal db file)

Windows
Keyboard

2-34 Setting Up Your Terminals
The Host’s Backspace and Line-Kill keys are not identified in the terminal
database file. They are defined, instead, at the operating-system level. The
Backspace key is the key used to back up while you are typing command
lines (usually either “backspace” or “delete”). The Line-Kill key is the one
that is used to cancel an entire command line.

Control keys (Control plus another key) are not defined in the terminal
database file. They are directly mapped by the runtime system to the
corresponding control-key ASCII value. They can be referred to by either
their ASCII value or by the key code listed. The DEL key does not have a
key code; it can be referred to only by its ASCII value (127).

Some keys may have more than one name. When this occurs, the names have
the following precedence:

1. Host name

2. Terminal database file name

3. Control-key name (if applicable)

For example, if a terminal whose left arrow key produces a Control-H is
being used, and Control-H is the system’s backspace key, that key would be
treated as a Host’s Backspace key (ZB). If the host’s backspace were
redefined (by operating-system command) to be some other key, then this key
would be considered a Left Arrow key (kl). It would be considered a
Control-H (^H) only if the terminal database file were edited and the “kl”
definition changed or removed.

2.3.2.4 Additional Windows keys

These extra keys are available for 32-bit Windows systems in addition to
those listed in section 2.3.2.3, “Table of keys”:

Right button released MR 88

Right button double-clicked M3 89

Action Key Code Exception Value

Key Key code

Ctl-Ins (Insert Line) kA

Ctl-Del (Delete Line) kL

The Keyboard Interface 2-35
User-defined keys

User-defined keys 1–6 (U1–U6):

User-defined keys 11–20 (A1–A0):

Several function key combinations can also be redefined. These keys have
no specified default action, and the key combinations are recognized by the
Windows keyboard driver only after they are assigned a definition.

Key Key code

F11 U1

F12 U2

Shft-F11 U3

Shft-F12 U4

Ctl-F11 U5

Ctl-F12 U6

Key Key code

Ctl-1 A1

Ctl-2 A2

Ctl-3 A3

Ctl-4 A4

Ctl-5 A5

Ctl-6 A6

Ctl-7 A7

Ctl-8 A8

Ctl-9 A9

Ctl-0 A0

Key Key code

Alt-F1 a1

Alt-F2 a2

2-36 Setting Up Your Terminals
Note: Alt-F4 and Alt-F6 are reserved for use by Windows and are not
included in the table. Shift-Ctl-F10 may be used only if the configuration
option F10_IS_MENU is set to “false”. When F10_IS_MENU is set to the
default of “true”, then Shift-Ctl-F10 activates context menus (for example,
a control’s pull-down menu).

Alt-F3 a3

Alt-F5 a5

Alt-F7 a7

Alt-F8 a8

Alt-F9 a9

Alt-F10 a0

Alt-F11 U7

Alt-F12 U8

Shift-Ctl-F1 S1

Shift-Ctl-F2 S2

Shift-Ctl-F3 S3

Shift-Ctl-F4 S4

Shift-Ctl-F5 S5

Shift-Ctl-F6 S6

Shift-Ctl-F7 S7

Shift-Ctl-F8 S8

Shift-Ctl-F9 S9

Shift-Ctl-F10 S0

Shift-Ctl-F11 U9

Shift-Ctl-F12 U0

Key Key code

The Keyboard Interface 2-37
Keys that cannot be defined

Alt key sequences (except as noted in the preceding table), PrtSrcn, and F10
are directly handled by 32-bit Windows and cannot be referenced in COBOL.
You can free the F10 key to act as a user-defined key by using a configuration
variable. Setting the F10_IS_MENU variable to “0” inhibits the standard
menu activation capability for the F10 key. See Appendix H in Book 4 for
more details.

2.3.2.5 Special keys

The following keys deserve special attention.

Arrow keys

The left and right arrow keys can be configured to meet a variety of needs.

• As exception keys only. In this case, typing an arrow key will cause an
ACCEPT to terminate immediately with the arrow-key exception value.
The program can then take the appropriate action (such as moving a
highlight in the requested direction). To configure an arrow in this
manner, define an EXCEPTION value for it with the KEYSTROKE
runtime configuration variable.

• As edit keys only. In this case, the arrows will move the cursor within
the ACCEPT field, but will not move outside the boundaries of the field.
In this mode, the arrow key will never terminate the ACCEPT. To
configure an arrow in this manner, define the appropriate EDIT value for
it with the KEYSTROKE runtime configuration variable.

• As both exception keys and edit keys. In this mode, the arrows will act
as edit keys within the ACCEPT field, but will act as exception keys
when the user tries to move outside the field. This can be useful if you
are writing a “fill-in-the-form” style of application. To configure an
arrow in this manner, define both an EXCEPTION and an EDIT value
for it.

By default, the left and right arrows act as edit keys, and the up and down
arrows act as both edit and exception keys. You can change the behavior of
the arrows at runtime to switch between different modes if you need to. You

2-38 Setting Up Your Terminals
do this via the SET ENVIRONMENT verb and the appropriate
KEYSTROKE settings. For example, to configure the left arrow to act as an
editing key from within a program, use:

SET ENVIRONMENT “KEYSTROKE” TO “EDIT=Left kl”

Backspace vs. Left Arrow

On some terminals, the Backspace and Left Arrow keys send the same
hardware signal. If so, ACUCOBOL-GT’s key naming rules will treat both
as a (destructive) Backspace, because the host name takes precedence. You
can deal with this situation in one of several ways; some possibilities are:

• If you do not use the Left Arrow key as anything other than an edit key,
you can probably just use the defaults. You will not have the Left Arrow
capability, but most users prefer to have destructive Backspace instead.
Alternatively, if you prefer to have Left Arrow instead of destructive
Backspace you can, with a KEYSTROKE variable, define the
Backspace key to have the “Left” edit action.

• If you use the Left Arrow as an exception key, then you can leave the
destructive backspace action on the Backspace key and also give it an
exception code value. This will cause the Backspace key to act as a
destructive backspace while the cursor is in an ACCEPT field. The Left
Arrow exception value will be returned when the user backspaces off the
left edge of the field.

• Finally, you can use operating system commands to assign the host’s
Backspace key to another key. This will then cause the Backspace key
to be recognized as a Left Arrow key while the other key will take on the
characteristics of the Backspace key. If you wish to do this, a common
key to use as the alternate Backspace key is the Rub Out (or DEL) key.

Other combinations exist, but this should give you a general idea of ways to
address this issue.

Interrupt key

ACUCOBOL-GT has no way of defining a key to be the asynchronous
interrupt key. ACUCOBOL-GT makes use of the host’s definition for this
key. This has two effects:

The Keyboard Interface 2-39
1. If you want to define a special asynchronous interrupt key, you must do
so at the operating-system level.

2. Whichever key is used as the Interrupt key will be unavailable to you
as a normal key. This is because the host operating system acts on this
key prior to ACUCOBOL-GT’s ever receiving it. ACUCOBOL-GT
“sees” an interrupt when this key is typed; it never receives a character
for it.

2.3.2.6 Default keyboard

The default ACUCOBOL-GT keyboard is defined below in the language of
the KEYBOARD and KEYSTROKE runtime configuration variables.

KEYBOARD Data-range=32,255

KEYBOARD Exception-range=1,31

KEYBOARD Auto-Return=0 Screen-Default=No

KEYBOARD RM-2-Default-Handling=No

KEYBOARD Check-Numbers=Yes

KEYBOARD Cursor-Past-End=No

KEYSTROKE Terminate=13 ^M

KEYSTROKE Edit=Next Terminate=9 ^I

KEYSTROKE Edit=Previous kB

KEYSTROKE Edit=Backspace ZB

KEYSTROKE Edit=Erase-Field ZK

KEYSTROKE Edit=First kh

KEYSTROKE Edit=Last KE

KEYSTROKE Edit=Auto-Insert KI

KEYSTROKE Edit=Delete KX

KEYSTROKE Edit=Erase-Field KC

KEYSTROKE Edit=Erase-to-End kE

KEYSTROKE Edit=Left kl

KEYSTROKE Edit=Right kr

2-40 Setting Up Your Terminals
KEYSTROKE Edit=Up Exception=52 ku

KEYSTROKE Edit=Down Exception=53 kd

KEYSTROKE Exception=67 kP

KEYSTROKE Exception=68 kN

KEYSTROKE Exception=40 KD

KEYSTROKE Exception=90 K?

KEYSTROKE Exception=1 k1

KEYSTROKE Exception=2 k2

KEYSTROKE Exception=3 k3

KEYSTROKE Exception=4 k4

KEYSTROKE Exception=5 k5

KEYSTROKE Exception=6 k6

KEYSTROKE Exception=7 k7

KEYSTROKE Exception=8 k8

KEYSTROKE Exception=9 k9

KEYSTROKE Exception=10 k0

KEYSTROKE Exception=11 K1

KEYSTROKE Exception=12 K2

KEYSTROKE Exception=13 K3

KEYSTROKE Exception=14 K4

KEYSTROKE Exception=15 K5

KEYSTROKE Exception=16 K6

KEYSTROKE Exception=17 K7

KEYSTROKE Exception=18 K8

KEYSTROKE Exception=19 K9

KEYSTROKE Exception=20 K0

The Display Interface 2-41
2.3.2.7 Modification examples

Following are examples of some common modifications to the default
keyboard settings.

In the default keyboard, the “Tab” key is used to move from one field to the
next. The “Return” key is used to terminate the ACCEPT. If you want the
“Return” key to move the user to the next field instead of immediately
terminating the ACCEPT, the following entry in the runtime configuration
file will cause that to happen:

KEYSTROKE EDIT=Next TERMINATE=13 ^M

Alternately, you might want the “Return” key to clear the part of the field that
follows the cursor. If you want to do this along with the previous
modification, you can use either of these entries:

KEYSTROKE EDIT=Erase-Next TERMINATE=13 ^M
KEYSTROKE EDIT=Default-Next TERMINATE=13 ^M

These two lines have slightly different methods of handling how the field is
cleared. The first version always erases the field from the current cursor
location to the end. The second form does this only if the cursor is not in
the home position of the field. You can also use the actions “Erase-to-End”
or “Default-Entry” if you do not want the “Return” key to act as a “next
field” key.

2.4 The Display Interface

The Terminal Manager’s keyboard interface has been discussed above. The
display interface can also be configured. Its task is to implement, for a
particular terminal, those program instructions that specify display attributes.
You can accomplish most desired display options by defining, in the terminal
database file, the actions that terminal function codes will take. You can
specify some other display options by assigning values to special keywords
in the ACUCOBOL-GT runtime configuration file.

The steps listed below describe, in a simplified way, the overall process from
COBOL statement to screen display:

2-42 Setting Up Your Terminals
Function Code Generation

• The COBOL program sends output to the screen. (For example, the
COBOL statement might be: DISPLAY data-item HIGH.)

• The runtime configuration file may specify an attribute for the DISPLAY
keyword. (Continuing with the example, the configuration file might
include this entry: COLOR-MAP High=Blue.)

• The Terminal Manager maps the COBOL attributes to terminal function
codes. (High=HI Blue=C2)

Function Code Interpretation

• The terminal database file maps the function codes to a hardware signal.
(HI=\E[0;1m C2=\E[34m)

• The Terminal Manager sends a hardware signal to the screen. (\E[0;1m
\E[34m)

Final Result

• The display function is executed. (The data item characters are
displayed at high intensity in blue.)

This section and section 2.5, “Restricted Attribute Handling,” describe the
runtime configuration file options. The terminal database file function codes
and values are described in section 2.6, “The Terminal Database File.”

2.4.1 Adding Color

ACUCOBOL-GT allows you to add color, without reprogramming, to
programs that were originally written for black-and-white terminals. You
accomplish this by assigning color values to the runtime configuration
variable COLOR-MAP. The COLOR-MAP keyword is followed by one of
the following single attributes:
High, Low, Reverse, Blink, Underline, Default, or Exit; or by one of the
following hyphenated combinations of attributes:

The Display Interface 2-43
The single attribute, or attribute combination, is then followed by an equals
sign and one of the following color names:
Black, Blue, Green, Cyan, Red, Magenta, Brown, White

The named color becomes the foreground color that is displayed whenever
the corresponding attribute is used in a DISPLAY statement. For example, if
you want fields that are displayed as low-intensity to appear green, use the
following configuration file entry:

COLOR-MAP Low=Green

You can also assign a background color value. It follows the foreground
color and is separated from it by a comma. For example, to assign white
characters on a blue background for high-intensity fields, you would use the
following:

COLOR-MAP High=White,Blue

Note: No spaces should appear within the assignment.

You may specify more than one attribute in a single COLOR-MAP line.
Simply separate the attributes from each other by spaces. For example:

COLOR-MAP High=Green Low=Red Reverse=Blue

The following points should be noted:

1. The named video attribute is still used by the ACCEPT or DISPLAY.
For example, “Reverse=Blue” will result in a reverse-video blue field
while “High=Brown” will use high-intensity brown (on some terminals,
specifying High=Brown will cause yellow to be generated by any
DISPLAY HIGH phrase).

High-Reverse Low-Reverse

High-Blink Low-Blink

High-Reverse-Blink Low-Reverse-Blink

High-Underline Low-Underline

High-Reverse-Underline Low-Reverse-Underline

Reverse-Blink Reverse-Underline

2-44 Setting Up Your Terminals
2. If a particular ACCEPT or DISPLAY statement has a COLOR phrase,
that phrase will be used instead of the COLOR-MAP attributes in the
runtime configuration file. Note, however, that the COLOR-MAP will
apply to fields that use the FCOLOR or BCOLOR options of the
CONTROL phrase.

3. The attributes HIGH, LOW, and REVERSE are treated in a special
manner. If a statement uses more than one of the three, then the
attribute/color used will be in this order of preference:

1) REVERSE

2) HIGH

3) LOW

For example, a DISPLAY statement specifying both REVERSE and
HIGH will use the color associated with REVERSE.

Also, any one of these settings is used for all applicable cases, except
where specifically overridden by another setting. For example:

COLOR-MAP REVERSE=Red LOW-REVERSE=Blue

will use red for all statements that specify REVERSE except for
statements that explicitly specify REVERSE,LOW.

In all other cases, the configuration file entry must exactly match the
COBOL statement. For example, a configuration file attribute
HIGH-REVERSE would not apply to a program statement that included
HIGH,REVERSE,UNDERLINE.

Note that compiler options “-Vl” and “-Vh” cause LOW and HIGH
respectively to be implied for program statements; create your
COLOR-MAP as though LOW or HIGH were explicitly coded in the
program.

4. The DEFAULT attribute works a little differently. It is used to assign
the initial default colors for the screen. Its effect is the same as having
a DISPLAY WINDOW COLOR statement as the first statement of
your program.

The Display Interface 2-45
5. The EXIT attribute determines which colors ACUCOBOL-GT will set
when it terminates. These colors are also set when a call is made to the
“SYSTEM” library routine. On some machines these colors are
immediately changed by the operating system prompt and thus have no
effect.

6. You can assign values to the color map from within a COBOL program
through use of the SET ENVIRONMENT verb. You can turn off the
color map with the following statement:

SET ENVIRONMENT “COLOR-MAP” TO “OFF”

7. Note that on a XENIX console, if you use the XENIX command
“setcolor” to establish a high-intensity background color, you may get
unexpected results from ACUCOBOL-GT. This is because the
implementation of high-intensity background colors causes XENIX to
treat the “blink” bit as a background intensity bit instead. In addition,
because ACUCOBOL-GT can select only eight background colors, all
of the background colors used will be high-intensity, including black
(which shows up as a light gray).

For these reasons, we recommend that you avoid using a high-intensity
background color if you are using the XENIX console. As an
alternative, you may create a shell script to run ACUCOBOL-GT. This
script could set a low-intensity background color, run ACUCOBOL-GT,
and then reset the desired high-intensity background color.

2.4.2 The SCREEN Option

There is a runtime configuration variable called “SCREEN” that controls
many features of the video subsystem. This option works in the same manner
as the “KEYBOARD” variable. You can specify one or more SCREEN
variables. Attributes that you can set are identified by one or more sets of
keywords and associated values, separated from each other by spaces or tabs;
the syntax is:

SCREEN keyword=value [keyword=value]...

The following keywords are supported:

2-46 Setting Up Your Terminals
ALPHA-UPDATES=value

This option affects how alphanumeric fields with a default value are
displayed prior to entry. It works just like the EDITED-UPDATES
option (described below) except that it applies to alphanumeric fields
instead of numeric edited fields. The only acceptable value is
Unchanged.

Placing “Auto-Prompt” immediately after this option, using a comma
as a separator, allows the user to decide whether to change or replace
the default value. When Auto-Prompt is specified, the default value
will be displayed, and then the program will wait for the user to enter a
character. If the character entered is a data character, ACUCOBOL-GT
will fill the field with prompt characters (erasing what was there) and
then accept data as if this were a new field. If the character entered is
an editing character (such as an arrow key), then ACUCOBOL-GT
allows the user to edit the data normally. Sample syntax is shown here:

SCREEN ALPHA-UPDATES=Unchanged, Auto-Prompt

This option can also be specified as SCRN_ALPHA_UPDATES. The
Auto-prompt value can be specified with
SCRN_ALPHA_AUTO_PROMPT. For example, to set the above
syntax using these variables, you would enter:

SCRN_ALPHA_UPDATES Unchanged
SCRN_ALPHA_AUTO_PROMPT on

CONVERT-OUTPUT=value

This option affects only Screen Section DISPLAY statements. If this
keyword is set to “Yes”, all output fields will act as if the WITH
CONVERSION phrase were specified for them. This has two effects.
The first is that numeric fields will be converted from the internal
storage format to a readable form (including suppression of leading
zeros). The second is that the action of the JUSTIFY keyword (see
below) takes effect. This option is normally set to “No”, but is
provided as an alternate method of displaying numeric data in the
Screen Section. The configuration variable
SCRN_CONVERT_OUTPUT is synonymous with this option.

The Display Interface 2-47
EDITED-UPDATES=value

This option affects how numeric edited fields with a default value are
displayed prior to the user making an entry. The four possible values
are: Converted, Unchanged, Left-Adjust, and Formatted.

There is one exception to the rule that the number will always be
formatted just as described by the PICTURE clause. This is when “Z”
or “*” characters are placed after the decimal point in the PICTURE.
In this case, the entered characters will be treated like “9” characters
instead. This is necessary to allow the user to enter values between
zero and 1 when the default value is zero. If this rule did not exist,
when the user tried to enter the decimal point, the reformatter would
keep removing it. The same applies to any zero digits between the
decimal point and the first nonzero digit.

Converted is the default setting. When this setting is used, the default
value is displayed in a standardized format. This format has
an optional leading minus (-) sign, followed by the number,
with no leading zeros and no internal formatting characters.

Unchanged is an alternate setting. When this setting is used, the default
value is displayed without any changes. All of the editing
characters appear, and leading spaces are shown. Note that
the LEFT, RIGHT, or CENTER phrase will affect the display.
After the value has been displayed, the user can edit it
normally.

Left-Adjust is identical to Unchanged, except that any leading spaces are
removed before the value is displayed.

Formatted is fundamentally different from the other options in that it
affects the way the number is entered, not just the format of
the default value. When “Formatted” entry is selected, the
number is continuously reformatted by the ACCEPT
statement to match the editing specification of the item being
entered. This means that the value will always appear to the
user in its “final” form. This is similar to the way numbers are
entered on most calculators. Selecting this option has many
minor effects on the actions of various editing keys. These
are not detailed here, but the actions of the editing keys are
analogous to their actions on non-formatted fields.

2-48 Setting Up Your Terminals
When the “Formatted” option is used with left justification, the entry
action is also left justified. When it is used with the centering option,
the entry occurs as if the field were right justified, and the final result
is centered when the user leaves the field.

Place “Auto-Prompt” immediately after this option, using a comma as
a separator, to allow the user to decide whether to change or replace the
default value. When Auto-Prompt is specified, the default value will
be displayed, and then the program will wait for the user to enter a
character. If the character entered is a data character, ACUCOBOL-GT
will fill the field with prompt characters (erasing what was there) and
then accept data as if this were a new field. If the character entered is
an editing character (such as an arrow key), the program allows the
user to edit the data normally. Sample syntax is shown here:

SCREEN EDITED-UPDATES=Converted, Auto-Prompt

This option can also be specified as SCRN_EDITED_UPDATES. The
Auto-prompt value can be specified with
SCRN_EDITED_AUTO_PROMPT.

ERROR-BELL=value

This option determines when the error bell will be sounded. Possible
values are:

For example, to use the “All” setting, add the following line to your
runtime configuration file:

SCREEN ERROR-BELL=All

You may also use the configuration variable SCRN_ERROR_BELL to
set these values. The variable SCRN_WARN is synonymous with
SCREEN ERROR-BELL=All.

Yes: ring the bell on an entry error, but not on field-full. This is the
default setting.

No: do not ring the bell on entry error or field-full.

All: ring the bell whenever the user makes an entry error or attempts to
enter data into a full field.

The Display Interface 2-49
ERROR-BOX=value

This option affects whether an error box appears when an entry error
has occurred. Examples of entry errors are entering a letter in a
numeric field or entering a number in the wrong format. When value
is set to “yes” (the default), the error message is displayed in a box. If
value is set to “no”, the error is reported based on the entry in the
SCREEN ERROR-LINE variable (below). The configuration variable
SCRN_ERROR_BOX may also be specified.

ERROR-COLOR=value

This keyword is given a numeric value that represents the colors used
in error messages generated by the runtime system. Value is the
arithmetic sum of the numbers representing the colors and other
attributes used in error messages generated by the runtime system. The
following color values are accepted:

You may specify other video attributes by adding the following values:

Color Foreground Background

Black 1 32

Blue 2 64

Green 3 96

Cyan 4 128

Red 5 160

Magenta 6 192

Brown 7 224

White 8 256

Reverse video 1024

Low intensity 2048

High intensity 4096

Underline 8192

Blink 16384

Protected 32768

2-50 Setting Up Your Terminals
Only one foreground color and one background color may be specified.
If either is missing, the corresponding default for the current terminal
window is used. High intensity and low intensity may not both be
specified. If neither is specified, the default intensity is used.

For example, to get a blinking white foreground on a blue background,
you would specify:

SCREEN ERROR-COLOR=16456

(16456 = 8+64+16384)

The default value is “4096”, which causes the error messages to use the
current colors with a high-intensity foreground. The configuration
variable SCRN_ERROR_COLOR is also supported.

ERROR-LINE=value

Value is the line number you wish error messages to appear on. The
runtime system pops up a one-line window on this line to display the
message, and then removes it after the user responds. If this is set to a
negative value, the line used will be that many lines up from the bottom
of the screen. For example, “Error-Line=-2” implies that the
next-to-last line should be used. The default value is “-1”. You may
also specify the configuration variable SCRN_ERROR_LINE to set
this value.

FORM-FEED=value

This option lets you use “Control-L” for a form feed. Setting this
variable to “yes” and putting “Ctl-L” in a DISPLAY statement allows
a form feed to occur. In effect, this clears the screen and puts the cursor
at screen position (0,0). Setting this variable to “no” disallows a form
feed. The default value is “no”. This can also be specified as
SCRN_FORM_FEED instead of SCREEN FORM-FEED.

INPUT-DISPLAY=value

This option determines what happens when the DISPLAY verb
operates on an input field described in a Screen Section entry. There
are four choices: “None”, “Value”, “Spaces”, and “Prompt”.

None: The field is not displayed.

Prompt: The field is displayed with the field’s prompt character (usually
underscore).

The Display Interface 2-51
The configuration variable SCRN_INPUT_DISPLAY is also supported.

INPUT-MODE=value

This option affects pre-display of data in a Screen Section ACCEPT.
The options are “Predisplay”, “Update”, and “Normal”.

You may also specify the SCRN_INPUT_MODE configuration
variable.

JUSTIFY=value

The JUSTIFY setting determines the default justification of converted
numeric and numeric-edited fields. If “Left” is chosen, leading spaces
are removed from these fields when they are displayed. If “Right” is
chosen, the leading spaces are retained. Finally, if “Auto” is chosen
(the default), left justification is used if the program was compiled in
RM/COBOL compatibility mode; otherwise, right justification is used.
Note that justification affects only fields that have the CONVERT
phrase specified or implied for them. The configuration variable
SCRN_JUSTIFY is also supported.

Spaces: The field is displayed as spaces. This is the default value.

Value: The current value of the field is displayed. This will be zero for
numeric and numeric-edited fields, and spaces for other fields.

Predisplay
:

A Screen Section ACCEPT statement will cause the current
value of each input and update field to be displayed.
(Whatever is present in the Screen Section is displayed; this is
not necessarily the same as the contents of Working-Storage).
Each field is then entered as an update field (i.e., the value can
be edited).

Update: Each input field is treated as an update field. This causes the
field’s current value to echo on the screen when the field is
visited.

Normal: Causes no echoing of input-only fields.

2-52 Setting Up Your Terminals
NUMERIC-UPDATES=value

This option affects how numeric fields with a default value are
displayed prior to entry. This option works just like the
“EDITED-UPDATES” option described above, except that it applies to
numeric fields instead of numeric edited fields. The possible values
are Converted and Unchanged.

Place the phrase Auto-Prompt immediately after this option, using a
comma as a separator, to allow the user to decide whether to change or
replace the default value. When Auto-Prompt is specified, the default
value will be displayed, and then the program will wait for the user to
enter a character. If the character entered is a data character,
ACUCOBOL-GT will fill the field with prompt characters (erasing
what was there) and then accept data as if this were a new field. If the
first character entered is an editing character (such as an arrow key),
then ACUCOBOL-GT allows the user to edit the data normally.
Sample syntax is shown here:

SCREEN NUMERIC-UPDATES=Converted, Auto-Prompt

This option can also be specified as SCRN_NUMERIC_UPDATES. For
the Auto-prompt value, use SCRN_NUMERIC_AUTO_PROMPT.

PROMPT=value

The value of the PROMPT setting determines the default prompt
character. The default value is underscore. To specify an alternate
prompt, place the character immediately after the equals (=) sign. To
specify a space as the prompt character, leave the value empty (for
example, “Prompt= “). You may also specify the configuration
variable SCRN_PROMPT to set this value. The
SCRN_PROMPT_DEFAULT variable is equivalent to setting
SCREEN PROMPT to the default value.

PROMPT-ALL=value

By default, a prompt character is shown only in the field containing the
cursor. If value is “Yes”, the prompt character is shown in every field
managed by the ACCEPT statement. The prompt characters are
removed when the ACCEPT is terminated. Prompts never appear in
SECURE fields. Default is “No”. The configuration variable
SCRN_PROMPT_ALL is synonymous with this option.

The Display Interface 2-53
Note: Setting the SCREEN keyword PROMPT-ALL to the value
“Protected” will have the same effect as setting PROMPT-ALL to
“Yes”, except that prompt characters will not be displayed in protected
fields.

PROMPT-ATTR=value

You may specify a prompt attribute. This attribute is used whenever
the PROMPT is specified or implied for a Screen Section ACCEPT
statement. The PROMPT-ATTR keyword is followed by a single
attribute: High, Low, or Reverse. For example:

SCREEN PROMPT-ATTR=HIGH

The configuration variable SCRN_PROMPT_ATTR is also supported.
The usage is:

SCREEN_PROMPT_ATTR HIGH

REFRESH-LINES=value

Value specifies the number of screen lines to redisplay after the user
has finished entering data into a field. This option is useful when the
terminal or terminal emulator can accept Asian phonetic characters and
translate them into ideograms. The entered characters will often
overflow the displayed input field, but after translation, the resultant
ideogram(s) will not. This option will “clean up” the screen by
redisplaying the affected lines with the ideograms in place. For
example:

SCREEN REFRESH-LINES=3

After accepting input data, the Terminal Manager will redisplay the
contents of the input field, the remainder of the line, and the two lines
below it.

If the CODE_SYSTEM runtime configuration variable (see section
2.4.4, “Double-Byte Character Handling”) is nonzero, specifying an
Asian double-byte character system, the default value of
REFRESH-LINES is “1”. If the CODE_SYSTEM runtime
configuration variable is set to “0”, indicating a single-byte ASCII or
EBCDIC character system, the default value of REFRESH-LINES is
“0”. You may also use the configuration variable
SCRN_REFRESH_LINES to set these values.

2-54 Setting Up Your Terminals
REFRESH-MODE=value

This option, like REFRESH-LINES, supports double-byte character
sets. Value specifies when lines should be refreshed after an ACCEPT.
Setting this variable to a value of “0” means that the lines are never
refreshed, “2” indicates that lines are always refreshed. The default
value of “1” specifies that lines are refreshed only if double-byte
characters are entered. For example:

SCREEN REFRESH-MODE=1

The configuration variable SCRN_REFRESH_MODE is synonymous
with this option.

SHADOW-STYLE=value

This option determines the way window shadows are displayed. It may
have one of the following four values:

None: When this setting is used, shadows are not displayed.

Dim: This setting displays a one-character border around the right and
bottom edges of the window. This border displays the underlying
data in low-intensity with a white foreground and a black
background; in effect, the border is translucent. This border looks
best when the shadowed window and the window it overlays do
not both have black backgrounds.

Black: This setting displays a black border on the right and bottom edges
of the window. On the right edge, this border is one character
wide. On the bottom edge, the border is one-half character high.
This gives a fairly uniform appearance to the border. The border
depends on the existence of an “upper-half” block character on the
display device.

For machines that use a terminal database file, this character
should be specified as the 12th character in the GM code in the
terminal database file (GM defines the various graphics
characters). Also, we recommend that you specify a “lower-half”
character as the 13th GM character. If such characters do not exist,
then the bottom border is a full character high. The Black setting
is the default shadow style.

The Display Interface 2-55
The configuration variable SCRN_SHADOW_STYLE is also
supported.

SIZE=value

This keyword has meaning only on graphical systems such as
Windows. It is used to change the default virtual screen size. Value is
the desired number of rows and columns, separated by a comma.

For example, to set the initial virtual screen size to 30 rows by 80
columns, you would make the following entry:

SCREEN SIZE=30,80

The comma is required.

The size of your virtual screen is independent of the size of the
application window or the underlying hardware. In other words, the
virtual screen can be larger than the physical screen. You may set any
screen size up to a maximum of 100 rows and 200 columns. If you do
not specify a size, the default is 25 rows and 80 columns. You may also
use the configuration variables SCRN_SIZE_COLS and
SCRN_SIZE_ROWS to set this option.

The SIZE option sets only the initial screen size. After the application
begins, the screen size can be changed with the DISPLAY SCREEN
SIZE verb.

If the virtual screen is too large to be fully displayed on the physical
screen, the user will have to scroll to view all of the rows and columns.

WINDOW=value

This keyword has meaning only on graphical systems such as
Windows. Normally, the initial size of an application’s window is
determined by the host. You can change this initial size with the
WINDOW keyword. Value is the desired number of rows and
columns, separated by a comma.

Lines: This setting causes the right and bottom edges to be shown with a
border made from the line drawing set. This setting is not as
appealing as the Dim or Black settings when color or reverse-video
backgrounds are being used. When the background is black,
however, this setting is preferable to the other two.

2-56 Setting Up Your Terminals
For example, if you wanted your initial window to contain 10 rows and
70 columns, you would enter:

SCREEN WINDOW=10,70

The WINDOW configuration option recognizes several special values.
If either the row or column is set to a negative number, the initial
window is minimized (turned into an icon). If either value is set to “999”
or larger, the initial window is maximized instead. Finally, if either value
is zero, the initial window size is determined by the host system (this is
the default).

The application window size may never be bigger than the virtual screen
size, nor may the window size be larger than what can be physically
displayed on the user’s screen. This physical limit will change
depending on the resolution of the user’s screen and the size of the font
you are using. The ACUCOBOL-GT runtime will automatically reduce
the requested window size to meet these limits.

You may enter the SIZE and WINDOW options on the same line. For
example, if you wanted your application to be able to use 30 lines by 80
columns, and you wanted to start with the window maximized (thus
showing the entire virtual screen), you would enter:

SCREEN SIZE=30,80 WINDOW=999,999

Note: The SIZE and WINDOW options set only the initial screen and
window size. After the application begins, the user is free to change
the window size with various system controls, and the application is
free to change the screen size with the DISPLAY SCREEN SIZE verb.

The configuration variables SCRN_WINDOW_X and
SCRN_WINDOW_Y are also supported for this option.

2.4.2.1 SCREEN examples

The following sample recaps the default settings and provides an example of
how to specify SCREEN configuration entries.

SCREEN Convert-Output=No

SCREEN Edited-Updates=Converted, Auto-Prompt

The Display Interface 2-57
2.4.3 Additional Configuration Variables

Several miscellaneous runtime configuration variables affect the Terminal
Manager. These are described below.

Note that for the variables AUTO_PROMPT, BELL, MONOCHROME,
SCROLL and WRAP, the settings 1, on, true, and yes are synonymous, as
are the values 0, off, false and no.

AUTO_PROMPT

When set to a nonzero value, the AUTO-PROMPT runtime
configuration variable causes every ACCEPT statement without a
PROMPT phrase to be treated as if PROMPT SPACES were specified.
This has the effect of erasing the field where the data is about to be
entered. This is provided primarily for compatibility with
ACUCOBOL-85 version 1.1, which behaved this way. The default
setting for this variable is zero.

BELL

When set to a zero value, the BELL variable suppresses all bells
generated by ACCEPT and DISPLAY statements. This will make
ACUCOBOL-GT totally quiet even if WITH BELL phrases are used
on DISPLAY statements. The default setting is one.

SCREEN Error-Bell=Yes

SCREEN Error-Color=4096 Error-Line=-1

SCREEN Input-Display=Spaces Input-Mode=Normal

SCREEN Prompt=_ Justify=Auto

SCREEN Numeric-Updates=Converted, Auto-Prompt

SCREEN Alpha-Updates=Unchanged

SCREEN Shadow-Style=Black

2-58 Setting Up Your Terminals
HOT_KEY

This variable associates an exception value or values with a program.
When a key with a specified exception value is pressed, the
corresponding program is run. This variable is described in detail in
Appendix H.

MONOCHROME

When set to a nonzero value, this variable disables color output for
Windows machines with graphics video cards.

ACUCOBOL-GT assumes that all Windows machines with graphics
video cards have color monitors (because the card has color abilities).
If you have a monochrome monitor attached to such a machine, the
results can be difficult to see. You can tell ACUCOBOL-GT to disable
color output for these monitors through the Monochrome option.
When this is set to a nonzero value, ACUCOBOL-GT will use only
black and white. The default value is zero. Note that you may change
this in your program by using the SET ENVIRONMENT verb;
ACUCOBOL-GT examines the MONOCHROME setting each time it
does screen output.

RESTRICTED_VIDEO_MODE

This variable controls the rules ACUCOBOL-GT uses when displaying
data on a terminal with “non-hidden” attributes (sometimes called
“magic cookies”). See section 2.5, “Restricted Attribute Handling,”
later in this chapter for a discussion.

SCROLL

When set to zero, the SCROLL variable inhibits screen scrolling,
except scrolling caused by explicit SCROLL phrases in ACCEPT and
DISPLAY statements. If a line wraps on the bottom line of the screen,
the screen will not be scrolled if SCROLL is set to zero, but the line
wrapping will still occur; it will overwrite the bottom line. Normally,
ACUCOBOL-GT will scroll the screen to bring a DISPLAY line onto
the screen if its line number is past the bottom edge of the screen.
When SCROLL is set to zero, this does not occur and the cursor
location becomes undefined (see the Note at the end of this section).

The Display Interface 2-59
WRAP

The WRAP variable controls whether line wrapping is allowed.
Normally, a DISPLAY statement that does not fit onto one line will
wrap around to the next line. When WRAP is set to zero, this does not
occur and the DISPLAY statement is truncated at the end of the line.
Also, ACUCOBOL-GT normally wraps around to bring the column
position specified for an ACCEPT or DISPLAY statement onto the
screen. If WRAP is set to zero, the cursor location becomes undefined
(see the Note at the end of this section).

Note: If WRAP or SCROLL is set to zero, the screen cursor location
can be placed into an undefined state. This can occur, for example, if
the WRAP setting causes a DISPLAY statement to truncate. This
would leave the cursor conceptually just off the right edge of the
screen. When this occurs, ACUCOBOL-GT inhibits further DISPLAY
statements until the cursor is placed back on the screen via one of the
normal positioning rules (ACUCOBOL-GT continues to track the
cursor’s logical location). Should an ACCEPT statement execute in an
undefined location, ACUCOBOL-GT places the ACCEPT field in the
home position of the current window.

2.4.4 Double-Byte Character Handling

Asian character sets contain large numbers of ideographic characters that
represent an entire or partial word or concept. They may also contain
interspersed phonetic characters. They therefore may consist of tens of
thousands of characters. Because one 8-bit byte can hold only 256 unique
codes, these languages require at least two bytes to represent each character,
in order to accommodate the full range.

Most double-byte characters occupy two full character screen positions (each
byte corresponds to one screen position). Such data may be entered into and
displayed from USAGE DISPLAY data items. Most COBOL applications
can therefore accept and store double-byte data without modification.

Problems can arise when double-byte data is displayed on the screen. For
example, during an ACCEPT, one byte of a double-byte character may be
deleted or overwritten. When a window is displayed, the edge of the window
might cover one byte of a double-byte character. In these circumstances, the

2-60 Setting Up Your Terminals
pairing of bytes can change, and the resulting codes may represent entirely
different characters. On most machines this confuses the operating system’s
display driver. To overcome these potential problems, the runtime must
follow two rules:

1. Always display both bytes of a double-byte character together (never
display only part of a double-byte character).

2. Always overwrite, or change the attributes of, both bytes of a
double-byte character together (never overwrite, or change the
attributes of, only part of a double-byte character).

These rules must be obeyed when an ACCEPT handles cursor movement,
cursor placement, text selection, delete, backspace, and character overtyping.

The rules must also be followed when the edges of windows are displayed, to
avoid covering parts of double-byte characters.

To implement these rules, the runtime needs to know which of several
double-byte character encoding schemes is being used. It gets this
information from the value of the configuration variable “CODE-SYSTEM.”
See Appendix H for a detailed discussion of this variable.

2.5 Restricted Attribute Handling

The ACUCOBOL-GT Terminal Manager assumes that video attributes can
be applied individually to each character on the screen. This is the way most
personal computers work with ANSI-conforming terminals. Several popular
terminals, however, do not behave this way. This section discusses how
ACUCOBOL-GT treats these terminals and what restrictions they impose.

Note: The rest of this section does not apply to Windows implementations
of ACUCOBOL-GT except those using the alternate runtime with a
terminal database file. If you are a Windows user and plan to move your
programs to UNIX or VMS systems, you may want to read this section to
familiarize yourself with the restrictions these environments impose.

Some terminals implement video attributes by a method that conflicts with
the assumptions of the Terminal Manager. These terminals have special
characters that show on the screen as a space, but set a display attribute for

Restricted Attribute Handling 2-61
succeeding characters. That attribute is applied until another attribute-setting
character is found. If one of these special characters is overwritten, its
attribute will not be set.

UNIX documentation calls these attribute characters “magic cookies.” They
are also sometimes called “non-hidden attributes.” Two terminals that use
this style of attribute handling are the Televideo 925 and the Wyse 50.

This type of terminal poses special problems. One issue is where to place the
attribute character. If it is placed in the first location of the field, the data in
the field will be moved over one character position, resulting in a different
display than on other types of terminals or personal computers. If it is placed
just before the field, it might overwrite some valid data. Combining attribute
characters with windows is even more intricate. The next section describes
the rules ACUCOBOL-GT follows when accessing this type of terminal.

2.5.1 Restricted Video Modes

The action of ACUCOBOL-GT on a terminal with “non-hidden” attributes is
determined by the setting of the RESTRICTED_VIDEO_MODE runtime
configuration variable. This variable can take several different settings to
control the rules ACUCOBOL-GT uses for these terminals.

Note: The following rules do not apply to intensity. These terminals can
apply intensity attributes individually to each screen position. The
Terminal Manager treats high and low intensity in the normal manner for
these types of terminals.

By default, the RESTRICTED-VIDEO-MODE value is zero, which causes
the Terminal Manager to ignore attributes other than intensity; the application
will run correctly, but without any video attributes. This is convenient when
you are running a program that has not been written to conform to the
following rules.

To use video attributes with these terminals, you must set
RESTRICTED-VIDEO-MODE to a nonzero value; the syntax is:

RESTRICTED-VIDEO-MODE value

Optional values are:

2-62 Setting Up Your Terminals
1 When the variable is set to “1”, the Terminal Manager uses rules that
tend to emphasize getting the fields in the right location over getting all
the attributes correct. These rules are as follows:

Every ACCEPT and DISPLAY is preceded by the appropriate
attribute-setting character.

This character is placed immediately to the left of the beginning of the
field. Note that this may overwrite existing data.

If the field position is column 1 of the current window, and the attribute
is normal white on black, the attribute-setting character is not
displayed.

If the field position is column 1 of the current window, and the attribute
is other than white on black, the field is moved over to column 2 to
allow space for the attribute character.

The field is then accepted or displayed using the normal rules.

If the screen location immediately after the end of the field does not
contain an attribute-setting character, a normal white-on-black attribute
character is placed there. If this statement is an ACCEPT statement,
this is done before the ACCEPT occurs. The current cursor location is
then set according to the normal ACUCOBOL-GT rules (this will cause
the cursor location to be where this terminating attribute character is
located).

If the field position is column 1 of the current window, and the attribute
is other than white on black, the field is moved over to column 2 to
allow space for the attribute character.

The field is then accepted or displayed using the normal rules.

If the screen location immediately after the end of the field does not
contain an attribute-setting character, a normal white-on-black attribute
character is placed there. If this statement is an ACCEPT statement,
this is done before the ACCEPT occurs. The current cursor location is
then set according to the normal ACUCOBOL-GT rules (this will cause
the cursor location to be where this terminating attribute character is
located).

3 When RESTRICTED-VIDEO-MODE is set to “3”, the Terminal
Manager follows all the rules listed under value “1” except for rule (c).
This causes all ACCEPT and DISPLAY statements that reference
column 1 to be placed in column 2. This setting prevents you from
placing data in column 1, but causes all fields placed in column 1 to line
up vertically regardless of which attributes they use.

Restricted Attribute Handling 2-63
These rules give a certain amount of flexibility, but also have restrictions.
These are discussed in the next section.

2.5.1.1 Restrictions

The following restrictions apply to programs that plan to use “non-hidden
attribute” terminals. The restrictions are largely based on physical attributes
of these terminals. In essence, by setting RESTRICTED-VIDEO-MODE to
a nonzero value, you are declaring to ACUCOBOL-GT that you are willing
to work with some restrictions beyond those imposed by other types of
terminals. The end user should be aware that moving an application to this
type of terminal from a “normal” type may result in unexpected effects.

The following restrictions apply:

1. Under the current version of ACUCOBOL-GT, this style of attribute
handling may be applied only at the field and Screen Section levels. If
you are using one of these types of terminals, the REVERSED and
COLOR phrases of the DISPLAY WINDOW, DISPLAY LINE, and
DISPLAY BOX verbs will be ignored.

2. The Terminal Manager makes no attempt to control the screen
attributes present when a window is created. If you create a pop-up
window over one-half of a reverse-video field, and then you clear that
window, the reverse-video field will suddenly extend across the screen
when the terminating attribute character is erased. You should keep
fields either wholly contained in a window or wholly outside a
window.

5 When RESTRICTED-VIDEO-MODE is set to “5”, the Terminal
Manager follows all the rules listed under “1” except for rule (b). The
attribute character is placed in the first position of the field, and the
field is moved to the right one character. This setting will cause all
fields to shift to the right by one, but will not overwrite data if two fields
are adjacent.

7 When RESTRICTED-VIDEO-MODE is set to “7”, the Terminal
Manager follows all the rules listed for “1” except for rules (b) and (c).
Thus, every ACCEPT and DISPLAY will always be preceded by an
attribute character, and this character will always occupy the first field
position. This value emphasizes getting the attributes correct over
getting the fields in the correct screen location.

2-64 Setting Up Your Terminals
3. The various RESTRICTED-VIDEO-MODE settings can interact with
SCROLL and WRAP settings in unexpected ways. For example, if
you have a field wrap-around, the video attribute used for that field
will also wrap around for some terminals, but not for others. On the
other hand, if you set WRAP to zero and cause a field to be truncated,
the terminating attribute character will not be placed on the screen, and
the video attribute may wrap around to the next line on some terminals.
Care should be taken with fields that wrap around or scroll the screen.

4. If you position one field within another, you will affect the attributes of
the characters that follow the contained field. Keep your fields
separate from each other and supply enough space between fields to
hold the attribute characters.

These restrictions are relatively easy to work with until you start working
extensively with windows. When working with windows, try to keep the use
of attributes to a minimum (particularly reverse-video) to avoid difficulties.
You can use high and low intensity or boxes to organize your screen. Just use
reverse-video for special highlighting.

If you intend to use video attributes on these types of terminals, you should
make sure that you fully test your programs on one of them.

2.6 The Terminal Database File

The terminal database file, which is similar to the termcap file supplied with
many UNIX systems, may be edited to add new terminals to the ones it
currently supports. Existing entries in the file may also be edited, if needed,
to describe your terminal.

Each line of this file is either blank, a comment (marked by a “#” in
column 1), or a definition of a terminal. You can continue a “line” on
following lines by ending the line to be continued with a “\” (see below for an
example). The “\” character must be the last character on the line.

A terminal definition consists of several fields, separated by colons. The end
of the line marks the end of the definition. The first field is always the name
of the terminal. Several names can be placed here, separated by a vertical bar
(“|”). The rest of the fields consist of codes that describe various terminal

The Terminal Database File 2-65
functions. Most of these codes are followed by an equals sign and a coded
string that describes how to operate that particular function.

Here is a generic representation of a terminal database file entry, where TNn
is a terminal name, tf is a terminal function code, and cs is a coded string to
accomplish the function (some terminal function codes are self-defining and
do not need a coded string):

TN1|TN2|TN3:\
:tf[=cs]:tf[=cs]:tf[=cs]:\
:tf[=cs]:tf[=cs]:

The coded string that describes a function is just a representation of the
control-sequence (or sequences) that the terminal uses to activate that
function. These strings consist of the literal characters used in the
control-sequence. Several special forms are recognized to aid in describing
the control-sequence. The following abbreviations are supported:

The following is a list of all of the supported function codes. The most
commonly used codes will be treated in detail in the following sections.

\E an escape character

\n a new line (control-J)

\r a carriage return (control-M)

\t a tab (control-I)

\b a backspace (control-H)

\f a form-feed (control-L)

^X X is any character, treated as control-X

\nnn three digits treated as an octal value

AC Attributes used by clear screen

AT Special color for IBM 3164 terminal

B1 - B8 Background color 1-8

BL Blink

C1 - C8 Foreground color 1-8

DI De-initialization string

2-66 Setting Up Your Terminals
DL Default intensity is low

DP Disable print mode

EP Enable print mode

GA Graphics on and off are characters

GE Graphic escape

GF Graphics off

GM Graphics map

GO Graphics on

GX Graphics movement glitch

HI High-intensity, normal video

LO Low-intensity, normal video

NM Normal Video (only if ìsgî set)

NS Screen does not scroll when corner is used

OC One color can be displayed at a time

RA Reverse video, alternate intensity

RB Reverse video, blink

RU Reverse video, underline

RV Reverse video

UL Underline

W3 Set terminal width to 132 columns

W8 Set terminal width to 80 columns

al Insert (add) line

bc Backspace cursor (defaults to ^H)

cd Clear to end-of-screen

ce Clear to end-of-line

cl Clear screen

cm Cursor positioning

co Number of screen columns (default 80)

dl Delete line

The Terminal Database File 2-67
The following codes are also available to represent various keys. Most
terminals have only a subset of this full set.

do Down one line (defaults to ^J)

is Initialization string

is1 Additional initialization string

is2 Additional initialization string

li Number of screen lines (default 24)

nd Non-destructive space

sg Standout-mode glitch (uses magic cookies)

tc Continue description with another entry

up Cursor up one line

ve Set cursor to normal

vi Set cursor to invisible

vs Set cursor to bright

K1 - K0 Function keys 11 - 20

K? Help

KA Attention

KB Bottom

KC Clear

KD Do (command)

KE End

KF Find

KI Insert character

KL Page left

KM Mark (select)

KP Print

KR Page right

KS Send

2-68 Setting Up Your Terminals
All of the function codes described with lower-case characters are identical to
ones found in the UNIX termcap file. These sequences can be taken
verbatim from termcap and included in the ACUCOBOL-GT terminal
database file when you are adding a new terminal entry.

To help with this discussion, an example of an entry for a DEC VT-100 will
be developed. At each step of the example, the new portion of the entry will
be in bold type. Initially, we need to assign a set of names that we want to
use to refer to the terminal. For example:
vt100|vt-100|DEC VT-100:

KT Top

KV Save

KX Delete character

Kc Cancel

Kl Word left

Kr Word right

Kx Exit

k1 - k0 Function keys 1 - 10

kA Insert line

kB Tab left

kE Clear to end

kL Delete line

kN Page Down

kP Page Up

kd Down arrow

kh Home

kl Left arrow

kr Right arrow

ku Up arrow

U1 - U0 User defined key 1 - 10

A1 - A0 User defined key 11 - 20

The Terminal Database File 2-69
This allows for any of the names “vt100”, “vt-100” or “DEC VT-100” to be
used for the TERM or A_TERM variable. By convention, the last name in
the list is a long, descriptive name.

2.6.1 Required Functions

In order for the Terminal Manager to run, four functions must be defined for
the terminal; all of the remaining functions are optional. These required
functions are Cursor-positioning (cm), Clear-screen (cl),
Clear-to-end-of-line (ce), and Clear-to-end-of-screen (cd). If these
functions are not present when the Terminal Manager tries to run, an error
will be printed and the program halted.

The Clear-screen function should clear the entire screen and home the cursor.
The clear-to-end-of-line function should clear from the cursor position to the
end of the current line. The clear-to-end-of-screen function should clear from
the cursor position to the end of the screen.

The Terminal Manager starts by establishing a window that is the size of the
screen. By default, a screen size of 24 by 80 is assumed. If this is not correct,
you can set the Lines (li) and Columns (co) fields to the correct size. These
settings are made with a “#” instead of an “=”. For example, if you have a
25-line terminal, the proper setting is “li#25”.

Continuing with our example, the DEC VT-100 clears the screen by sending
an “ESC[2J”. Unfortunately, this does not home the cursor. This can be
accomplished by sending “ESC[;H”. These can be sent in either order.
Clearing to the end of line is done by sending “ESC[K” and clearing to the
end of the screen by “ESC[J”. The terminal has the default screen
dimensions, so we do not need to add the “co” or “li” options. Our entry now
reads:
vt100|vt-100|DEC VT-100:\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:

2-70 Setting Up Your Terminals
Cursor positioning is accomplished by a special encoded form. The program
must specify varying information in the control-sequence (the row and
column numbers). Special abbreviations are allowed to encode this
information. These abbreviations and their meanings are:

For example, the ADM-3A terminal positions the cursor by sending an
“ESC=” followed by the row and column offset by a space character. The
code for this is “\E=%+ %+ ” (note spaces).

The VT-100 positions the cursor by sending an “ESC[” followed by the row,
a semicolon, the column and then an “H”. The row and column are sent as
ASCII strings and the home position is row 1, column 1. The correct string
is “\E[%i%d;%dH”.
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:

%d Inserts the row or column number here in ASCII. For example,
row 5 would be inserted here as “5”.

%2 Acts like “%d” except that it always prints as two digits. Row 5 is
inserted as “05”.

%3 Acts like %2 except that three digits are used.

%. Inserts the row or column number here literally. Row 5 would be
inserted here as a decimal 5 (ASCII control-E). Note that if this
type is used, Cursor-up (up) and Backspace-cursor (bc) must also
be defined.

%+x Acts like “%.” except that x is added to the row or column number
first. If the sequence were “%+ ” (note the trailing space), then
row 5 would be inserted here as the sum of the space character and
5, “%” in ASCII. This form is quite common.

%>xy This does not insert anything in the string. If the row or column
number is greater then x, y is added; otherwise, this has no effect.

%r Normally the row is inserted first, and then the column. This
reverses the order.

%i Normally the row and column numbers are relative to zero.
Including this causes them to be relative to 1.

%% Sends a literal “%”.

The Terminal Database File 2-71
2.6.2 Additional Screen Functions

Several additional functions are available to manipulate the screen display.
These should be included if the terminal supports these features. The
functions are: insert-line (al), delete-line (dl), non-destructive-space (nd),
backspace-cursor (bc), cursor-down (do), cursor-up (up), set-width-132
(W3) and set-width-80 (W8).

The four cursor movement commands are available to optimize cursor
motion. The non-destructive-space function should move the cursor to the
right one column; the backspace-cursor function should move the cursor left
one column. Finally, the cursor-down function should move the cursor down
one line and cursor-up should move it up one line. If omitted, cursor-down
defaults to a line-feed character, and backspace-cursor defaults to a
backspace character. There are no defaults for non-destructive-space and
cursor-up.

The insert-line function should insert a blank line at the cursor line, moving
the cursor line and all following lines downward. The delete-line function
should delete the cursor line, moving all following lines up and inserting a
blank line at the bottom of the screen.

NS should be added to the terminal database file entry for a terminal that does
not scroll if the lower right corner of the screen is filled. This tells the
ACUCOBOL-GT program that it is all right to use this position. NS is the
complete sequence (... :NS: ...).

The set-width functions should change the display between 132-column
mode and 80-column mode. Both must be specified to use this feature.

You can also specify when the cursor should be visible. These entries should
handle cursor modification:

ve = set cursor to normal
vs = set cursor to bright
vi = set cursor to invisible

After “vi” has rendered the cursor invisible, “ve” is used to make it visible.

If your terminal does not have both a normal and a bright cursor, set the “ve”
entry to turn the cursor on and do not use the “vs” entry.

2-72 Setting Up Your Terminals
The VT-100 supports only one of these functions: Non-destructive-space.
This is accomplished by sending “ESC[C”. Our current entry is now:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:\
:nd=\E[C:

2.6.3 Video Attributes

To correctly configure attributes for a terminal, you must first determine
which style of attribute setting—ANSI or “magic cookie”—it uses. You can
do this most easily by typing the sequence to turn on reverse video at your
terminal. If the cursor moves one character and a reverse-video bar appears,
you have a “magic cookie” style of terminal. If nothing happens, type some
characters. These should show up in reverse video. If they do, you have an
ANSI style terminal that allows for independent attributes for each screen
position. If you do not get reverse-video at all, you did something wrong.

If you include RV, UL, BL, RU, or RB in your terminal database file entry,
the HI and LO functions must be included. These two functions set the
terminal to normal video/high intensity and normal video/low intensity,
respectively. If intensity is not being used, these should both just set normal
video.

On all machines except Windows, the runtime system ignores the difference
between high-intensity spaces and low-intensity spaces when the background
color is black. If your terminal is set up to run with black-on-white characters
(reverse video) as its default, you should add the entry VB (visible
background) to the description of that terminal. This causes spaces to be
handled consistently.

If a “magic cookie” style terminal is being used, HI and LO should not set
normal video, but should just set the appropriate intensity. The function NM
should be added to set normal video instead. Also, the function sg must be
included to tell the Terminal Manager that this is a “magic cookie” type
terminal. The sg setting does not take a value, it just has to be present.

A few “magic cookie” terminals ignore HI and LO, so that reverse video
fields appear the same regardless of which intensity is used. If you are
experiencing this situation, add RA to the terminal’s description. This sets

The Terminal Database File 2-73
the terminal into reverse video using the terminal’s alternate intensity
(usually low intensity). If RA is used, RV sets reverse video in the terminal’s
default intensity.

The function DL should be included in a definition if the default intensity for
the terminal is low-intensity. This function is not set to a value, it is just
included in the terminal definition.

On some terminals, a clear screen operation uses the currently selected video
attribute. For example, if reverse-video were the current attribute, then a
clear screen would cause the entire screen to become reverse-video. If the
terminal has this property, AC should be included to indicate this.
ACUCOBOL-GT will use this to optimize certain screen displays.

Continuing the example, the VT-100 allows the independent setting of each
attribute. It cannot independently reset the attributes, but that is not required
by the Terminal Manager. Low-intensity, normal-video can be set with
“ESC[m”. High-intensity can be set with “ESC[1m”. Reverse video is
initiated by sending “ESC[7m”, underline with “ESC[4m” and blink with
“ESC[5m”. The terminal normally runs in low-intensity, so the DL flag is
used. All of these modes can be combined by placing the appropriate
attribute numbers together in one command string and separating them with
semicolons.

Our new entry becomes:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
 :LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
 :UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
 :RB=\E[5;7m:DL:

Note the setting of “\E[0;1m” for HI. The initial zero ensures that the
terminal is set to normal modes before the high-intensity mode is set.

2.6.4 Color

The Terminal Manager can support terminals that support ANSI-style
attribute handling. This style allows for independent setting of the
background and foreground colors and does not interfere with the setting of

2-74 Setting Up Your Terminals
other video attributes such as underlining. Color terminals that meet these
criteria can enable color by adding entries to turn on the various foreground
and background colors. Use the following table of attribute codes to set the
correct color entries; if your terminal has fewer than eight colors, you should
still make all eight entries for both foreground and background, repeating
colors as necessary:

Terminal definitions for color terminals do not need the RV, RB, and RU
entries, because the Terminal Manager sends the appropriate foreground and
background color codes instead.

2.6.4.1 One-color terminals

Some terminals can display text in only one color at a time. On these
terminals it is impossible to display text with separate foreground and
background colors, unless one of the colors is black. The termcap code OC
(one color) tells the runtime to use special color handling to accommodate a
terminal of this type.

If this code is present in the terminal’s database entry, the runtime displays
text using the correct color combinations set from COBOL, so long as either
the foreground or background color is set to black. If neither the foreground
nor the background is set to black, the runtime displays text using the
foreground color (the background color is disregarded).

To use this code, add it to the terminal database entry preceded and followed
by a colon (:OC:).

Foreground Background Color

C1 B1 Black

C2 B2 Blue

C3 B3 Green

C4 B4 Cyan

C5 B5 Red

C6 B6 Magenta

C7 B7 Brown

C8 B8 White

The Terminal Database File 2-75
2.6.5 Function Keys and Other Keys

Function keys and other special keys are simple to deal with. The various key
entries are set to the values that those keys send when they are pressed. All
of the key entries are optional. The table at the beginning of this section lists
all of the available key codes.

As a minimum, you should define the arrow keys and some function keys.
Most programs use these keys.

2.6.5.1 User-defined keys

The User-defined keys (“U1” - “U0”) are available for any keys that are not
defined in the table above. These can be used for special purposes.

The VT-100 has the four arrow keys and function keys 1 through 4. The
function keys send “ESCO” followed by a distinguishing character, and the
arrow keys send “ESC[“ and a distinguishing character.

The new entry is:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:\
:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:

2.6.6 Line Drawing

Some terminals support a line drawing set. This is used by the Terminal
Manager when boxes are drawn around windows. The Terminal Manager
turns on the “graphics” mode by sending the GO code, then sends normal
characters that correspond to the lines, and then sets the terminal back to
normal mode with GF.

2-76 Setting Up Your Terminals
The GM function lists the normal characters that draw the line segments.
This is either a six- or eleven- or thirteen-character string. The characters
listed in the GM function correspond, in order, with the following line
segments:
1. horizontal line
2. vertical line
3. upper left corner
4. upper right corner
5. lower left corner
6. lower right corner

This is the six-character set.

If the terminal has the following line segments, the characters that correspond
to them should be included (in order) to make the eleven-character set:

four three-way intersections:
7. missing bottom line
8. missing left line
9. missing top line
10. missing right line
11. the four-way intersection

This is the eleven-character set. If the terminal has the following block
characters, the characters that correspond to them should be included (in
order) to make the thirteen-character set:
12. upper-half block
13. lower-half block

On a few terminals, the graphics-on and graphics-off sequences are treated as
character attributes. In particular, turning off graphics also sets the terminal
to its default video attributes. If this is the case, then the code GA (graphics
are attributes) should be included in the terminal description. A few
terminals also cannot move the cursor while in graphics mode. If this is the
case, the code GX (graphics movement glitch) should be included.

Some terminals do not need to send a graphics-on or a graphics-off sequence.
For these terminals, the line-drawing characters are available in the default
character set. If this applies to your terminal, then just give the GM setting
without the GO or GF settings.

The Terminal Database File 2-77
2.6.6.1 Multi-character sequences for graphics

Some terminals require more than one character in the escape sequence that
draws a graphical line segment. For example, the two-character sequence
“\E\202” might be required to draw a single horizontal line character.

ACUCOBOL-GT permits up to three characters to be specified in an escape
sequence that draws a single line segment. The three characters are stored
separately and “assembled” into a single sequence by the Terminal Manager.

When these multiple-character sequences are used, the GO (graphics on) and
GF (graphics off) codes serve special purposes. GO is used to store the first
character in the sequence, and GF is used (if needed) to store the third
character.

You tell the runtime (by including the GE code) that GO should be sent to the
terminal before each GM graphical character that is sent, and GF should be
sent after each GM graphical character.

Also you must make sure that the GM character list contains the appropriate
characters. To handle the example mentioned above, in which a horizontal
line segment requires the two-character sequence “\E\202”, you would add
two codes to the terminal database entry: “:GE:” and “:GO=\E:”, and also add
“\202” to the GM character list in position one (horizontal line character).

Some VT-100 emulators support line drawing by using alternate character
sets. They turn on graphics by sending “ESC(0” and turn it off by sending
“ESC(B”. The entry is:
vt100|vt-100|DEC VT-100 :\

:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:

2-78 Setting Up Your Terminals
2.6.7 Graphical Window and Control Emulation

The character-based version of the runtime emulates graphical windows and
controls by displaying characters with particular attributes that approximate
the look and feel of a graphical system.

The following standard characters are used by default to represent various
graphical components:

“-”, “|”, “+”, “=“, “*”, “.”,

“^”, “v”, “<“, “>“, “ “, “#”

Terminals that support a line drawing set or a special extended character set,
or both, can be configured to use these special characters. The configuration
method is similar to the one used for line drawing, described in section 2.6.6,
“Line Drawing.”

To support the substitution of line drawing characters and extended
characters, there are two terminal database (“a_termcap”) functions:
GO-GUI-MAP and GF-GUI-MAP.

The GO-GUI-MAP function uses a list of standard characters that
correspond to line segments and other special characters when displayed in
the terminal’s graphics mode. This is similar to the GM function used for
line drawing. The Terminal Manager turns the terminal’s graphics mode on
by sending the GO code. The GO code is followed by normal characters
which are interpreted by the terminal into their corresponding special
characters. When all of the special character elements have been displayed,
the terminal is set back to normal mode with GF.

The GF-GUI-MAP function provides a method for specifying substitute
standard characters for some or all of the graphical components. When these
characters are used, they are displayed in normal (not graphics) mode. The
Terminal Manager gives preference to the characters specified in
GO-GUI-MAP. If a character in the list is preceded with “\0” (backslash,
zero), the Terminal Manager uses the corresponding character in the
GF-GUI-MAP. If the character cannot be determined from the
GO-GUI-MAP or GF-GUI-MAP functions (either list may be incomplete or
there may be a “\0” in the same position in both lists), the Terminal Manager

The Terminal Database File 2-79
uses the default character. For more information about defining the list of
special characters, see the entry for GUI_CHARS in Book 4, Appendices,
Appendix H.

The characters listed in the GO-GUI-MAP and GF-GUI-MAP correspond, in
order, to the following graphical components. The character in parentheses
is the default character:

Note: Some of these graphic components may not be used in the current
version of ACUCOBOL-GT.

When a program executes, the runtime evaluates the terminal’s display
capabilities and determines the special display attributes to apply to select
control elements. These control elements include the control’s key letter,
push-button text, and a key letter that is part of the push-button text when the
user presses the button with the mouse. The runtime applies the first
supported capability to each element as follows.

1. System menu button (*)

2. Floating window title left corner (+)

3. Floating window title right corner (+)

4. Floating window title fill character (=)

5. Minimizer (.)

6. Maximizer (^)

7. Scroll bar up button (^)

8. Scroll bar down button (v)

9. Scroll bar left button (<)

10. Scroll bar right button (>)

11. Scroll bar page area ()

12. Scroll bar thumb (#)

13. Left entry field box and check box character ([)

14. Right entry field box and check box character (])

2-80 Setting Up Your Terminals
Key letter:

1. Underline

2. Intensity toggle (opposite intensity—for example, if the control is
displayed in high intensity, the key letter is displayed in low intensity)

3. Reverse video

Selected push-button text:

1. Reverse video

2. Underline

3. Intensity toggle

Key letter in selected push-button text:

If the selected push-button text attribute is reverse video, apply to the key
letter:

1. Intensity toggle

2. Underline

3. Reverse video (the key letter is indistinguishable from the other text)

If the selected text attribute is underline, apply to the key letter:

1. Intensity toggle

2. Underline (the key letter is indistinguishable from the other text)

If the selected text attribute is intensity toggle, apply to the key letter:

Intensity toggle (key letter is indistinguishable from the other text)

Reconstructing the screen

On a character-based system, during program execution when a control is
resized, moved, hidden, or removed (destroyed), the runtime applies the
following procedure to reconstruct and display the screen:

The Terminal Database File 2-81
1. The screen is reconstructed in memory, in a virtual screen, before being
displayed to the physical screen.

2. The portion of the screen underneath the affected control is redrawn to
the virtual screen with the attributes and colors of the owning window
(this usually results in that area of the screen being filled with the
owning window’s background color).

3. Any controls that overlap the affected area are redrawn in the order in
which they were originally created.

4. The changed portions of the screen (constructed in memory) are
displayed to the physical screen.

2.6.8 Mouse Support for X Terminals

The Terminal Manager allows for limited mouse support for X terminals if
you are using a curses-compatible mouse. To make mouse events available
to your COBOL program, you need to do the following to your termcap file:

• use an escape sequence in the “is” termcap entry to enable mouse events

• use an escape sequence in the “DI” termcap entry to disable mouse
events at exit, and

• create a new entry, “km”, which is the lead-in sequence for a mouse
event. When the escape sequence for “km” is detected, the next three
characters are the event and character position of the mouse at the time
of the event.

Currently, the support is limited. In particular, the termcap file will return
information about which button was pressed, and where the mouse was at the
time the button was pressed. Though it will return information when a button
was released, it cannot tell which button was released. The runtime assumes
that the button last pressed is the button released and this assumption may be
incorrect. Double-clicks and information about motion are never returned.
The a_termcap entry for “xterm-mouse” is:
xterm-mouse|xterm emulator with mouse support (X window system):\
:cr=^M:do=^J:nl=^J:bl=^G:le=^H:ho=\E[H:\
:co#80:li#56:cl=\E[H\E[2J:bs:am:cm=\E[%i%d;%dH:nd=\E[C:up=\E[A:\
:ce=\E[K:cd=\E[J:UL=\E[4m:DL:\
:HI=\E[1m:RV=\E[7m:LO=\E[m:\

2-82 Setting Up Your Terminals
:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=^H:\
:k1=\E[11~:k2=\E[12~:k3=\E[13~:k4=\E[14~:\
:k5=\E[15~:k6=\E[17~:k7=\E[18~:k8=\E[19~:\
:k9=\E[20~:k0=\E[21~:ta=^I:pt:sf=\n:sr=\EM:\
:al=\E[L:dl=\E[M:ic=\E[@:dc=\E[P:\
:kh=\EO\000:kN=\E[6~:kP=\E[5~:\
:km=\E[M:\
:w8=\E[?3l:w3=\E[?3h: \
:ks=\E[?1h\E=:ke=\E[?1l\E>:\
:is=\E7\E[?47h\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l\E[?1h\E=\E[?1000h:\
:DI=\E[2J\E[?47l\E8\E[?1000l:\
:DI=\E[2J\E[?47l\E8:NS:\
:KX=\177:KI=\E[2~:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:\
:W8=\E[?3l:W3=\E[?3h:\
:hs:ts=\E[?E\E[?%i%dT:fs=\E[?F:es:ds=\E[?E:

2.6.9 Initialization

Initialization strings can be sent at the beginning of the session to ensure that
the terminal is in the proper state, or to program special function keys. This
is primarily used to program function keys and function key labels with
application specific information. The codes is, is1, and is2 are always sent at
the beginning of each session. You can specify a sequence to send at the end
of the session with DI.

Numeric Mode

With the VT-100, it is useful to set the numeric keypad to numeric mode (as
opposed to application mode). This is done by sending “ESC>“. The new
entry is then:

vt100|vt-100|DEC VT-100:\
:cl=\E[;H\E[2J:ce=\E[K:cd=\E[J:\
:cm=\E[%i%d;%dH:nd=\E[C:\
:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:\
:GO=\E(0:GF=\E(B:GM=qxlkmjvtwun:\
:is=\E>:

The Terminal Database File 2-83
2.6.10 Print Functions

The Terminal Manager also allows for limited support of a printer attached
directly to the terminal. You must ensure that communications between the
printer and terminal meet all the restrictions that the devices require (some
terminals, for example, require that the printer and the terminal run at the
same baud rate). The Terminal Manager supports two printer functions. The
Enable-print function (EP) causes data sent to the terminal to be also sent to
the printer; EP mode remains in effect until turned off by the Disable-print
function (DP).

Pass Through Mode

The VT-100 supports an attached printer. It has several print modes, but the
only one that the Terminal Manager supports is the “pass through” mode
where data sent to the terminal is passed through to the printer. This is
enabled by sending “ESC[5i” and disabled by sending “ESC[4i”.

The completed VT-100 entry is:
vt100|vt-100|DEC VT-100:\

:cl=\E[;H\E[2J:\
:ce=\E[K:cm=\E[%i%d;%dH:cd=E[J:\
:nd=\E[C:LO=\E[m:HI=\E[0;1m:RV=\E[7m:\
:UL=\E[4m:BL=\E[5m:RU=\E[4;7m:\
:RB=\E[5;7m:DL:k1=\EOP:k2=\EOQ:\
:k3=\EOR:k4=\EOS:ku=\E[A:\
:kd=\E[B:kr=\E[C:kl=\E[D:GO=\E(0:\
:GF=\E(B:GM=qxlkmjvtwun:is=\E>:\
:EP=\E[5i:DP=\E[4i:

2.6.11 Continued Entries

The tc function allows you to include, by reference, all the functions from
another terminal database file entry. The syntax is tc=entry, where entry is
the name of the database file entry whose functions are to be included.

For purposes of explanation, let us say the terminal database file entry you
are working on is called “entryA” and the one you wish to reference is called
“entryB”. Then, as the last function in entryA, you would write tc=entryB.

2-84 Setting Up Your Terminals
This will include all the functions from entryB in entryA. If there are
conflicts between the functions specified by entryA and entryB, the entryA
functions take precedence.

Also, any function in entryB can be “turned off” by naming it, followed by an
@ sign, in entryA. For example, if there is an AL function in entryB and you
wish to turn it off, simply say :AL@: in entryA.

For example, some VT-100s come with an “Advanced Editing” option that
includes, among other things, an add-line and delete-line function. The
complete entry for this might be:

vt100a|DEC VT-100 w/Advanced Editing:\
 :al=\E[L:dl=\E[M:tc=vt100:

The Terminal Database File 2-85

3
 Runtime Configuration File
Key Topics

Introduction ... 3-2
Configuration File Variables ... 3-6

3-2 Runtime Configuration File
3.1 Introduction

Many aspects of the runtime system can be controlled through runtime
configuration variables. This mechanism provides a great deal of flexibility,
because these variables can be modified by each runcbl site as well as
directly by an ACUCOBOL-GT program.

3.1.1 Variable Syntax

Configuration variables are maintained in a runtime configuration file. This
standard text file can be modified by the host system’s text editor. Each entry
in the runtime configuration file consists of a single line. All entries start
with a keyword, followed by one or more spaces or tabs, and then one or
more values. The limit for each configuration value entry is 4095 characters.

Some examples of runtime configuration variables are:
AUTO_PROMPT 0
BELL 1
COMPRESS_FACTOR 70
CURSOR_TYPE 3
MENU_ITEM Edit=Delete 200
SCROLL on

For all runtime configuration variables, “=” placed between the keyword and
the first value is optional, and is interchangeable with a space.

For the following configuration variables, a colon (:) may be used instead of
an equals sign (=) in the value portion of the entry:

COLOR-TABLE COLOR-MAP

FILE-CONDITION KEYBOARD

KEYSTROKE SCREEN

MENU-ITEM MOUSE

HOT-KEY

Introduction 3-3
In the above cases, allowing a colon instead of an equals sign in the value
portion of the entry makes it possible to specify these values in environment
variables. This accommodates systems that do not allow an equals sign in the
environment variable.

For some runtime configuration variables, the words “on”, “true”, and “yes”
are synonyms for “1”, and the words “off”, “false”, and “no” are synonyms
for “0”. The entry for each variable in this appendix indicates when these
synonyms are allowed.

In the keyword, all lower-case characters are treated as upper-case and all
hyphens are treated as underscores. Keywords longer than 60 characters are
truncated to 60 characters.

 Numeric Values within Variables

For some runtime configuration variables, a numeric value may be specified.
By default, this numeric value is interpreted as a decimal number. If desired,
you can specify the number using as a hexadecimal or base 16 number. To
do so, prepend the characters "0x" or "0X" to the number or append "h" or
"H".

The number itself is composed of the characters "0" through "9" and "A"
through "F" and "a" through "f".

3.1.2 Variable Usage

The configuration file is optional, as are all of its contents. For this reason,
no errors in the configuration file are ever reported. The “-l” runcbl option
can help debug configuration file problems.

In the descriptions of some runtime configuration variables, you will find
comments about behavior under the Windows environment; unless otherwise
noted, these comments apply to all 32-bit versions of the Windows operating
system.

Runtime configuration variables may be placed in either the runtime
configuration file or the machine’s environment. When they are placed in the
runtime configuration file, upper- and lower-case names are equivalent, as
are hyphens and underscores. When placed in the machine’s environment,

3-4 Runtime Configuration File
the keywords must be all upper case and must use underscores instead of
hyphens. For more details about the configuration process, see the
ACUCOBOL-GT User’s Guide, section 2.8, “Runtime Configuration.”

All configuration variables that have a default value are used by and affect
the runtime in the same way that they would if they were in the configuration
file. That is to say, a configuration variable that has a default value is treated
as if it appears in the configuration file set to the default value.

The values of many runtime configuration variables may be changed at
runtime with the SET ENVIRONMENT verb. The syntax is:

SET ENVIRONMENT env-name TO env-value

Env-name may specify either the literal name of the variable or a data-item
whose value is the name of the variable. If you specify the actual name of the
variable, such as CODE_CASE, then you must enclose the name in quotes.
Env-value is the value to which env-name will be set. If it is a numeric data
item, then it is treated as if it were redefined as an alphanumeric data item.

Most configuration variables can be read with the ACCEPT FROM
ENVIRONMENT statement. If the variable to be read is numeric, then the
receiving field must be defined either as a numeric field or as an
alphanumeric field of five or more characters. If it is defined as
alphanumeric and is longer than five characters, then the value that is read
from the environment will occupy the leftmost five characters of the field and
the remainder will be space-filled.

3.1.3 Configuration filename Resolution

runcbl uses the following rules to decide what the configuration file is
called:

1. If the “-c” runtime option is used, the configuration file is the one named
by that option; otherwise,

2. If the operating system environment variable “A_CONFIG” is defined,
its value is the name of the configuration file; otherwise,

Introduction 3-5
3. The configuration file is named according to the host operating system.
This depends on the operating system used by the machine, as outlined
in the following table.

Caution: Do not give a data file a name that is the same as a configuration
variable name. Doing so can cause problems if you map the data filename
through a configuration entry. For example, if you have a data file named
“CURRENCY”, the runtime may confuse the data file with the
configuration variable of the same name, inadvertently changing the default
currency character.

3.1.4 Nested configuration files

It is possible to use multiple configuration files by nesting one inside another.
Within the configuration file, you can specify another file to process with the
following syntax:

!COPY filename

No name expansion is done to filename (for example FILE_PREFIX is not
applied) so you must specify a file that the runtime can find. You can include
remote name syntax if you are using AcuServer® or AcuConnect®.
Otherwise, the file must be an absolute path or a path relative to the current
directory.

For example, if you have some configuration variables in a global place such
as “/etc/cblconfi”, then individual users can execute the runtime using this
configuration file instead of the usual one. The settings in the usual
configuration file take effect also, because their settings are copied in with
!COPY:

System Configuration File

Windows \etc\cblconfi

UNIX/Linux /etc/cblconfig

MPE/iX /etc/cblconfig

VMS SYS$LIBRARY:A_CONFIG.DAT

3-6 Runtime Configuration File
#Get all the standard variables
!copy /etc/cblconfi

#Now set personal settings
COMPRESS_FILES 1

3.2 Configuration File Variables

This section contains an alphabetical list of the runtime configuration file
variables. Many of these variables are also described in other parts of the
manual.

3D_LINES

This variable has meaning only on graphical systems such as Windows. Set
this variable to “1” (on, true, yes) to cause the runtime to display lines and
boxes with 3-D shading. This makes the lines appear to be inscribed into the
surface of the screen. The variable is especially helpful in giving a 3-D look
to a program originally designed on a character system. Only black lines on
a non-black background are shown with shading. Other lines are displayed
normally.

The set of colors available to ACUCOBOL-GT significantly impacts how
effective the shading will be. Normally, the shading is most effective when
the background is low-intensity white. The other low-intensity colors are
next best.

The shading is only marginally effective with a high-intensity background.
For this reason, the 3D_LINES setting is not used when a high-intensity
background is drawn. Note that, by default, ACUCOBOL-GT shows
background colors in high-intensity, so you will need to use at least one other
configuration variable to arrange for a low-intensity background color. For
example, the BACKGROUND_INTENSITY variable could be set to “1” to
force a low-intensity background.

You may freely change the way lines are displayed in COBOL by using the
SET ENVIRONMENT verb to set 3D-LINES prior to displaying a line or a
box.

Configuration File Variables 3-7
• Setting it to “1” (on, true, yes) gives you the 3-D effect.

• Setting it to “0” (off, false, no) gives you normal lines.

The runtime remembers which lines are drawn with 3-D, so you don’t need
to keep track of this yourself. Note, however, that if you attach a 3-D line to
a non-3-D line, the intersection will use the 3D-LINES setting currently in
effect.

The default value is “0”.

4GL_COLUMN_CASE

When set to “unchanged”, this variable causes the runtime to leave the case
and hyphen usage of the field names found in XFDs unchanged. XFDs are
used with the Acu4GL interface, AcuXDBC, or AcuXML. They are also
required for international character mapping with AcuServer and they pro-
vide useful information to the alfred record editor. By default, the runtime
converts all field names to lower case and all hyphens are converted to
underscores.

For AcuXML, the case and hyphen usage of the XFD must match the XML
file exactly, and 4GL_COLUMN_CASE should be set to “unchanged”. For
Acu4GL, however, you should be aware that most databases do not accept
hyphens in column names. If you set this variable to “unchanged” to protect
case, you may need to modify the XFD by hand to replace hyphens with
underscores.

7_BIT

When this configuration variable is set to “1” (on, true, yes),
ACUCOBOL-GT supports 7-bit communications instead of 8-bit. This
variable is designed specifically for machines that use 7-bit communications
with parity enabled. When 7_BIT is set to the default of “0” (off, false, no),
8-bit communications are used.

3-8 Runtime Configuration File
A_CHECKDIV

This variable allows you to specify an alternate runtime response to a divide
by zero condition when the statement does not include a SIZE ERROR
clause.

In COBOL, a division by zero produces a size error condition. The SIZE
ERROR clause allows the programmer to specify actions to take when this
condition occurs. If there is no SIZE ERROR clause, by default in
ACUCOBOL-GT the results are undefined. You can use the A_CHECKDIV
configuration variable to specify alternate handling.

A_CHECKDIV can be set to:

A_DEBUG

This variable is available for applications such as online transaction servers
that call ACUCOBOL-GT through the C API (see Chapter 6 of A Guide to
Interoperating with ACUCOBOL-GT). The default value is “0”. With the
default setting, the debugger launches when the debug_method flag in the C
interface is set to “1”.

Set this variable to “1” to turn on the ACUCOBOL-GT debugger in an xterm
window the first time you call the C interface. The debugger shuts down
when the program that caused it to launch shuts down.

NONE
or:

 “0” The default setting. This setting retains the
default behavior of the runtime: the results
are undefined.

ABEND or: “1”,
STOP,
ABORT

This setting causes the runtime to catch the
divide by zero condition and exit with the
error message: “Attempt to divide by zero”.

MOVE_ZERO or: “2”,
ZERO_RESULT
, MOVE_ZEROS

This setting causes the runtime to move
zeroes to the destination item(s) and
continue.

Configuration File Variables 3-9
A_DISPLAY

This variable is available for applications such as online transaction servers
that call COBOL through the C API. The value of A_DISPLAY overrides
the value of the DISPLAY environment variable. Set A_DISPLAY to the
value of your X server host name or IP address in the runtime configuration
file (or /etc/cblconfig). For example:
A_DISPLAY myvpn123.myhostname.com:0

A_EXTFH_FUNC

The value of this variable is an EXTFH function name needed for the EXTFH
interface. If you are using a library that contains an EXTFH function name
other than “cics_xfh”, “cobol_extfh”, or “EXTFH”, you also need to set one
or more of these variables to specify the function name:

For example, to specify a function name to use for all file types:
A_EXTFH_FUNC=myExtfh

Or, to specify a different function for indexed, relative, and sequential files:
A_EXTFH_IDX_FUNC=myIdxExtfh
A_EXTFH_SEQ_FUNC=mySeqExtfh
A_EXTFH_REL_FUNC=myRelExtfh

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overrides the DLL_CONVENTION variable setting. For information about

A_EXTFH_FUNC Specifies a function to be used by all file types
(indexed, relative, and sequential).

A_EXTFH_IDX_FUNC Specifies a function name to be used by indexed
file types.

A_EXTFH_REL_FUNC Specifies a function name to be used by relative
file types.

A_EXTFH_SEQ_FUNC Specifies a function name to be used by
sequential file types.

3-10 Runtime Configuration File
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

A_EXTFH_LIB

The value of this variable is an EXTFH shared library or DLL file name. You
can use this variable to dynamically load an EXTFH library without relinking
the ACUCOBOL-GT runtime. For example:
A_EXTFH_LIB libraryname.so

You can also use the following variables to specify library names for
indexed, relative, and sequential files. The ACUCOBOL-GT runtime uses
A_EXTFH_LIB as the default EXTFH library for all three file types. If one
or more of these three variables is also set, the runtime uses its value instead
of A_EXTFH_LIB for the corresponding file type.

You can specify these variables in the runtime configuration file or as
operating system environment variables.

If the library is a DLL, you can specify both the name of the DLL and the
calling convention to use. Any calling convention specified this way
overrides the DLL_CONVENTION variable setting. For information about
specifying DLLs and calling conventions, see section 3.3.2, “Loading DLLs
with Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

See section 11.6, “Working With an EXTFH Interface,” in A Guide to
Interoperating with ACUCOBOL-GT, for information on specifying
EXTFH library and function names to use with the EXTFH interface.

A_EXTFH_IDX_LIB Specifies the EXTFH library to use for indexed
files.

A_EXTFH_REL_LIB Specifies the EXTFH library to use for relative files.

A_EXTFH_SEQ_LIB Specifies the EXTFH library to use for sequential
files.

Configuration File Variables 3-11
A_EXTFH_SIMPLE_OPEN_OUTPUT

This variable is only used in UniKix environments, and the UniKix
application automatically sets this variable to “1” (TRUE). When set to “1”
(TRUE), an OPEN OUTPUT statement will cause the EXTFH functions to
bypass the “make” process, and will open the file as OUTPUT. When set to
“0” (FALSE), or not set at all, the EXTFH functions will execute the “make”
process, and will open the file as EXTEND.

A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL,
A_EXTFH_VARIABLE_SEQ

These variables indicate whether the filesystem you are accessing with the
the EXTFH interface can or cannot handle variable length files. Setting this
variable to the default of “1” (on, true, yes) causes the EXTFH interface to
pass the minimum and maximum record lengths to the file system for
variable length files as defined in the COBOL program. Setting this variable
to “0” (off, false, no) causes the EXTFH interface to ignore the variable
record length defined in the COBOL program, instead passing a record length
equal to the maximum record length.

You can specify the variable separately for indexed, relative, and sequential
files. For example:
A_EXTFH_VARIABLE_IDX=0
A_EXTFH_VARIABLE_REL=0
A_EXTFH_VARIABLE_SEQ=1

When the file system does not process variable length files, set these
configuration variables to “0” and the EXTFH interface treats variable length
records as fixed lengths.

If the file system does process variable length files, set the configuration
variables to “1” (or do not set them at all).

3-12 Runtime Configuration File
A_JAVA_CHARSET

This variable specifies the character set that the runtime should use when
mapping Java strings or PIC X data items containing characters outside of the
ISO-8859-1 range. The default setting is "IS0-8859-1". If you have data
outside the IS0-8859-1 range (e.g.an umlaut or Euro symbol) specify a
different character set that contains those characters.

Be aware of a common misconception that ISO-8859-1 is equivalent to
Windows-1252. This is mostly true, but there are characters in the range
0x80 - 0x9F that differ. Windows-1252 uses these numbers for letters and
punctuation while the ISO-8859-1 uses these for control codes.

A_JAVA_GC_COUNT

A_JAVA_GC_COUNT is a 32-bit value that determines how often the
runtime calls the JVM garbage collector. The JVM garbage collector will run
at unknown times, in order to deallocate memory which is no longer being
used. Setting this to a non-zero value allows you to be a little more
intentional about running the garbage collector. The value is the number of
times C$JAVA is called before the runtime calls the JVM garbage collector.
The default value is 9883, so every 9883 calls to C$JAVA will explicitly call
the JVM garbage collector. (For more info on the JVM garbage collector, see
your JVM documentation.)

A_JAVA_TRACE_FILENAME

A_JAVA_TRACE_FILENAME is the name of the file where the trace
information is sent. This filename can include all of the format specifiers that
the runtime error file can include. If this file can’t be opened for writing (for
any reason), no trace information is collected.

Configuration File Variables 3-13
A_JAVA_TRACE_VALUE

To track calls to the JVM made on behalf of the COBOL program, you can
set one of the following three configuration variables:
A_JAVA_TRACE_VALUE, A_JAVA_TRACE_FILENAME, and
A_JAVA_GC_COUNT.

A_JAVA_TRACE_VALUE is a 32-bit value that determines the types of
calls to trace. Add any of the following values together to create a single
value to set.

1 - Show calls that return simple types (boolean, byte, character, short,
integer, long, float, double).

2 - Show method calls that return simple types.

4 - Show string calls that return string references (that must be released).

8 - Show string calls that return simple types.

16 - Show calls that return references to a Java object (that must be released).

32 - Show method calls that return references to a Java object (that must be
released).

64 - Show calls that return references to a Java array or array elements (that
must be released).

128 - Show calls that return other array information.

256 - Show calls to the exception routines (some of which must be released).

512 - Show calls to get IDs (Method Identifiers or Field Identifiers).

1024 - Show calls to field functions that return references to a Java object
(that must be released).

2048 - Show calls to field functions that return simple types.

4096 - Show other types of calls that return references to a Java object (that
must be released).

3-14 Runtime Configuration File
8192 - Show calls to release a reference to a Java object.

16384 - Show other calls to the Java runtime.

Note for there to be no memory leaks, any call that returns a reference to a
Java object (that must be released) needs to be paired with a call to release
that reference. If the COBOL program gets that reference, it is responsible
for releasing the reference. If the runtime gets the reference for internal
purposes, the runtime is responsible for releasing the reference.

For example, setting A_JAVA_TRACE_VALUE to 13684 shows all calls to
the JVM that obtain or release a reference to a Java object. Setting
A_JAVA_TRACE_VALUE to -1 is equivalent to setting it to 32767 (which
is the sum of all the above values), and has the added benefit of tracing new
options that may be added in the future. However, for finding memory leaks,
this may be too much information.

A_LICENSE_RETRIES

This variable affects UNIX networks with multiple-user licenses for the
runtime. When set to a positive, non-zero value, this entry causes the runtime
to retry (“value” times) any failed attempt to register with the network license
manager, acushare. The configuration variable A_RETRY_DELAY
specifies how many seconds the runtime will wait between retries.

The default value is “0” (no retries).

A_OPERATING_SYSTEM

As of Version 5.0, the runtime no longer differentiates between “UNIX-V”
and “UNIX-4” in the OPERATING-SYSTEM field of the
SYSTEM-INFORMATION data item. Instead, the value “UNIX” is used for
all UNIX platforms. If you have an existing program that depends on one of
the older values, set A_OPERATING_SYSTEM to a value of “UNIX-V” or
“UNIX-4”. Then, when an ACCEPT FROM SYSTEM-INFO statement is
executed, this value overrides the value returned by the function. The default
value is empty.

Configuration File Variables 3-15
A_REMOVE_EMPTY_ERROR_FILE

Use this variable to prevent the accumulation of 0 byte files when using
format specifiers such as “%p” (to include the process id) in the error file
name. When this variable is set to “1” (on, true, yes), the runtime deletes its
error file if the runtime has never written to that file. Note that on some
operating systems, if your error file is shared by multiple processes (i.e., the
file name does not include the process id or some other unique session
information), setting A_REMOVE_EMPTY_ERROR_FILE to “1” may
cause error messages to be lost. For example, on UNIX if the error file is
empty when one runtime exits, that runtime would delete the file. The file
will remain deleted even if another runtime process subsequently writes a
message to it. The default value for this variable is “0” (off, false, no).

A_RETRY_DELAY

This variable affects UNIX networks with multiple-user licenses. If
A_LICENSE_RETRIES is set to a positive integer value, then the value of
A_RETRY_DELAY determines how many seconds the runtime will wait
between repeated attempts to register itself with the network license
manager, acushare.

The default value is “10”.

A_SEQ_DEFAULT_BLOCK_SIZE

This configuration variable determines the size of the buffer to use when
accessing a sequential file whose definition has no BLOCK CONTAINS
clause. When set, A_SEQ_DEFAULT_BLOCK_SIZE specifies the size of
the buffer in characters, rounded up to the nearest power of 2 that is greater
than or equal to that value. The default value is “0”, which sets the block size
to one record. Note that this variable does not apply to print files or to files
with names that start with a hyphen followed by “D” or “P”.

3-16 Runtime Configuration File
You can set A_SEQ_DEFAULT_BLOCK_SIZE in the environment to allow
the “vutil -load” command to buffer the input file according to the variable’s
value. The maximum buffer size is 1 GB. If this variable is not set, the
default buffer block size is 4096 bytes. If it is set to “0”, “vutil -load”
performs record-based I/O on a sequential file.

A_SYSLOG_HOSTNAME

This variable applies only on Windows and works in conjunction with the
A_SYSLOG_ON_RUNTIME_ERROR configuration variable. Set
A_SYS_HOSTNAME to the server name or IP address on which the event
log is located. Do not include any slashes with the server name. The default
value for this variable is empty. Then set
A_SYSLOG_ON_RUNTIME_ERROR to “1” (on, true, yes). Shutdown
messages will be sent to the event log on the local machine.

A_SYSLOG_ON_RUNTIME_ERROR

When this variable is set to “1” (on, true, yes), on a fatal error, the runtime
will send its shutdown error message to the UNIX syslog daemon, console,
or Windows event log. The runtime uses the same logic as the C$SYSLOG
routine. (See C$SYSLOG in Appendix I of the ACUCOBOL-GT
Appendices Manual for more information). The error message also includes
the name of the runtime error file so that the administrator can view it for
more information. The default value for this variable is “0” (off, false, no).

ACCEPT_AUTO

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option). The ACCEPT_AUTO
configuration variable causes the runtime to treat all Format 1 ACCEPT
statements as if the AUTO phrase is used, whether or not AUTO appears in
the statement. Set this variable to “1” (on, true, yes) to enable this behavior.
The default value is “0” (off, false, no).

Configuration File Variables 3-17
ACCEPT_TIMEOUT

This variable causes all ACCEPT statements to time out just as if there was a
BEFORE TIME phrase present in the ACCEPT statement. The value
assigned to ACCEPT_TIMEOUT is the timeout period, in seconds. This
timeout value is applied to every ACCEPT statement that can have a
BEFORE TIME phrase specified for it. If a particular ACCEPT statement
has a BEFORE TIME phrase explicitly coded for it, that phrase takes
precedence and ACCEPT_TIMEOUT does not apply to that statement. The
default value of ACCEPT_TIMEOUT is “0”, which indicates no timeout
value.

ACTIVE_BORDER_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of the characters used to form the border (box) around the active
floating window. ACTIVE_BORDER_COLOR can be set to a variety of
numeric values that express combinations of color and video attributes. See
the documentation for the COLOR phrase in the “Common Screen Options”
section of the ACUCOBOL-GT Reference Manual (section 6.4.9).

If ACTIVE_BORDER_COLOR is set to “0”, the active window’s border is
drawn with the colors and video attributes specified in the COBOL program
when the window is initially created. The default value is “0”.

ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH,
ACU_DUMP_TABLE_LIMIT

These configuration variables are used to enable and configure the Abend
Diagnostic Report (ADR) facility. For a complete description of the ADR,
see section 3.1.9, in Book 1, ACUCOBOL-GT User’s Guide.

ACU_DUMP

This variable enables the Abend Diagnostic Report. The default value is “0”
(off, false, no). Set ACU_DUMP to “1” (on, true, yes) to turn on the ADR.

3-18 Runtime Configuration File
ACU_DUMP_FILE

This variable specifies the name of the report file. It allows the following
special parameters:

• If the file name starts with a plus sign (“+”), the report is appended to the
specified file. By default, a new report overwrites the specified file.

• If the name contains the string “%p”, when the report is generated that
string is replaced with the process ID (PID) of the runtime from which
the report originates.

• If the name contains the string “%d”, that string is replaced with the
current date in the form YYYYMMDD where YYYY is the year, MM
month and DD day.

• If the name contains the string “%t”, that string is replaced with the
current time in the form HHMMSSTTT where HH is the hour, MM
minute, SS second and TTT milliseconds.

• If the name contains the string “%u”, that string is replaced with the
username.

• If the name contains the string “%h”, that string is replaced with the
hostname.

The default value for ACU_DUMP_FILE is “acudump.%p”.

ACU_DUMP_WIDTH

This variable controls the width of the report and has a default value of 80
characters. The minimum allowed value is 79 and the maximum is 2048.
Note that because the report uses dynamically computed columns for its
hexadecimal data, making the report very wide can reduce readability by
introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This variable limits how many elements of each table item to list. The default
value is 1000. Note that if you increase this value substantially, and if you
have tables that allow for large numbers of elements, you may get very large
reports.

Configuration File Variables 3-19
In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:
01 MY-TABLE-R = (group)
05 TABLE-ENTRY(1) = 1 h20202020 31
05 TABLE-ENTRY(2) = 2 h20202020 32
05 TABLE-ENTRY(3) = 3 h20202020 33
05 TABLE-ENTRY(4) = 4 h20202020 34
05 TABLE-ENTRY(5) = 5 h20202020 35
Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

ACU_USER_DIR

The ACU_USER_DIR configuration variable specifies the default location
of a user debugger settings file. In the past, the ACUCOBOL variable has
been used for this purpose. When set, ACU_USER_DIR specifies the
directory for the user’s debugger settings (“.adb”) file. The default value is
“NULL”, which causes the runtime to use the ACUCOBOL variable.

ACUCOBOL

This variable holds the full path to the ACUCOBOL-GT installation
directory. For example, if the runtime is installed in “C:\Program
Files\Acucorp\Acucbl8xx\AcuGT\bin”, you would set this configuration
variable to:

ACUCOBOL C:\Program Files\Acucorp\Acucbl8xx\AcuGT

This variable is used to locate extensions to the runtime.

AGS_BLOCK_SLEEP_TIME

This variable is used to specify the amount of wait time before attempting to
retry writing data to a socket. It can improve file I/O peformance times for
large files (32K or larger). The value of this variable by default is 10
milliseconds. The default value should provide performance at par with pre
7.3 versions.

This variable only has impact on UNIX/Linux.

3-20 Runtime Configuration File
AGS_MAX_SEND_SIZE

This variable allows you to control the size of a basic socket packet
exchanged between ACUCOBOL-GT applications that use sockets to
communicate. The default value is 16000. In the vast majority of cases, the
default value provides excellent results. However, when performance
problems are traced to packet size, you can change the size with
AGS_MAX_SEND_SIZE. The value of this variable is checked every time
that data is sent to the socket. When a program changes the value, the new
value is applied the next time that data is sent to the socket.

AGS_RECEIVE_BUFFER_SIZE

This variable determines the size of the low-level receive buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The receive-buffer-size is passed directly to a call
to setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

AGS_SEND_BUFFER_SIZE

This variable determines the size of the low-level send buffer for a socket
connection. For the value to have an affect, it must be set before any sockets
have been created. The default value is 16384. The default value should be
sufficient for most cases. The send-buffer-size is passed directly to a call to
setsockopt.

Note: The value of this variable is sent to a lower-level socket layer not
controlled by ACUCOBOL-GT. It may not have any noticeable effect.
Changes in this value are not seen in response to a “U” debugger command
listing the memory usage of the runtime.

Configuration File Variables 3-21
AGS_SOCKET_COMPRESS

This variable determines the type of data compression performed at the
internal socket layer. AGS_SOCKET_COMPRESS must be set before any
socket communication is done, and cannot be changed via SET
ENVIRONMENT. This variable has three possible values:

RUNLENGTH compression tends to be very fast, while ZLIB compression
tends to compress the data more, but is slower as a result.

Windows supports ZLIB compression, but not all UNIX machines do. For
those machines that do not, RUNLENGTH compression will be used
whether this variable is set to ZLIB or RUNLENGTH. When the
compression algorithm is being negotiated with a server, the method that both
machines support will be used.

AGS_SOCKET_ENCRYPT

To turn on encryption at the internal socket-layer, set the configuration
variable AGS_SOCKET_ENCRYPT to “1” (on, true, yes). It must be set
before any socket communication is performed, and cannot be changed via a
SET ENVIRONMENT statement.

Note: If the variables AS_CLIENT_ENCRYPT and/or
THIN_CLIENT_ENCRYPT are set to “1”, AGS_SOCKET_ENCRYPT is
also set to “1” automatically.

NONE This is the default setting. When
AGS_SOCKET_COMPRESS is set to this value,
no compression is performed.

ZLIB When AGS_SOCKET_COMPRESS is set to this
value, socket data is compressed using the same
algorithm as the gzip compression utility.

RUNLENGTH When AGS_SOCKET_COMPRESS is set to this
value, simple compression is done, based on
counting repeated bytes of data.

3-22 Runtime Configuration File
AGS_TCP_NODELAY

This variable determines whether the Nagle algorithm is used when sending
socket buffer messages. This algorithm automatically delays sending small
socket packets for a short period of time in order to increase network
efficiency by sending them in a batch. Setting this variable to the default of
“1” (on, true, yes) causes socket packets to be sent immediately (not using the
algorithm), while setting this variable to “0” (off, false, no) causes socket
packets to be delayed (using the algorithm). The TCP-NODELAY socket
option is used as follows:
setsockopt(s, IPPROTO_TCP, TCP_NODELAY, &tcp_nodelay, sizeof(int));

The value of this variable is sent to a lower-level socket layer not controlled
by ACUCOBOL-GT. It may not have any noticeable effect.

alfred Configuration variables

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a
sample program and is located in the “sample” folder under “AcuGT”. You
can download detailed information on configuring alfred (as well as detailed
user information) in PDF format from our Web site at the following address:
http://supportline.microfocus.com/examplesandutilities/index.asp.
From this page select ACUCOBOL-GT Technical Articles and Tips >
alfred Indexed File Record Editor

ALLOW_FS_OVERRIDE

This variable enables you to determine if the actual EXTFH return status will
be returned, or if the return status should be translated by the runtime. The
default setting is “True” or “1” and will cause the actual EXTFH return status
to be returned to the user. Setting this variable to “False” or “0” will cause
the EXTFH return status to be translated by the runtime

http://supportline.microfocus.com/examplesandutilities/index.asp
http://supportline.microfocus.com/examplesandutilities/index.asp

Configuration File Variables 3-23
ANSI_OUTPUT_IN_DEBUG

This variable prevents a COBOL program that uses ANSI-style DISPLAY
statements from interfering with the runtime debugger window. This
variable accepts two possible values: “CANVAS” or “TERMINAL”.

When set to “CANVAS” (the default setting) the runtime constructs a default
canvas on which to place the ANSI output. This prevents the ANSI output
from interfering with the debugger window. Note that if your COBOL
program sends escape sequences to the terminal, this mode will cause those
escape sequences to not have the intended result.

When set to “TERMINAL”, the runtime will send ANSI output to the
terminal, possibly interfering with the view of the debugger window. This is
how the runtime behaved before the implementation of this new feature.

Note that this configuration variable must be set before the runtime initializes
the terminal manager, which means you cannot set this variable from a
COBOL program.

APPLY_CODE_PATH

When set to “1” (on, true, yes), this variable causes the CODE_PREFIX
variable to be applied to object files with full path names (those beginning
with a “/” (forward slash). Otherwise, CODE_PREFIX is not applied to files
with full path names. For example, if your application specifies the file:

/accounting/objects/payroll

and your CODE_PREFIX variable is set to:
CODE_PREFIX /master_obj

and APPLY_CODE_PATH is set to “on”, the runtime will look for your file
in:

/master_obj/accounting/objects/payroll

The default value of APPLY_CODE_PATH is “0” (off, false, no).

3-24 Runtime Configuration File
APPLY_FILE_PATH

When set to “1” (on, true, yes), this variable causes the FILE_PREFIX
variable to be applied to data files with full path names (those beginning with
“/”, forward slash). Otherwise, FILE_PREFIX is not applied to files with full
path names. For example, if your application specifies the file:

/accounting/data/ind.dat

and your FILE_PREFIX variable is set to:
FILE_PREFIX /master_data

and APPLY_FILE_PATH is set to “on”, the runtime will look for your file
in:

/master_data/accounting/data/ind.dat

The default value of APPLY_FILE_PATH is “0” (off, false, no).

AUTO_DECIMAL

When set to “1” (on, true, yes), this variable checks the data item descriptions
of numeric entry fields with a decimal point for the number of digits that must
be filled to the right of the decimal point. When all the digits after the decimal
point are entered, the field will terminate if the AUTO_TERMINATE phrase
is specified. The number of digits to the right of the decimal point can vary,
depending on how many are indicated in the picture of each numeric entry
field. You must specify AUTO_TERMINATE phrase for this feature to
work.

The exception to this is when an entry field has an AUTO_DECIMAL
property specified, in which case, the coded value will be used.

The default value of this variable is “0” (off, false, no).

Configuration File Variables 3-25
AUTO_PROMPT

When set to “1” (on, true, yes), this variable causes all ACCEPT statements
without a PROMPT clause to be treated as if they had a PROMPT SPACES
clause. This causes the screen to be erased at the field position prior to the
data’s being entered. This variable is provided for compatibility with
ACUCOBOL-85 Version 1.3 and earlier, which behaved this way. The
default setting is “0” (off, false, no).

AXML_CREATE_SCHEMA

This variable is designed for use with AcuXML for instances when you want
to include a schema or schema name with your XML output. In order for this
variable to have an effect, AXML_CREATE_STYLE must be set to
“schema” and AXML_SCHEMA_NAME must name the schema file. Once
these conditions are met, this variable tells AcuXML whether to create a
schema file with XML output, or simply include the name of a schema file in
the output.

By default, when AXML_CREATE_STYLE is set to schema, AcuXML
creates a schema file for all XML output. Because only one schema is
typically required, you should set AXML_CREATE_SCHEMA to “FALSE”
after the first time a schema is created. Then, only the name of the schema
file will be included in the output XML file. Similarly, if you already have a
schema file and don’t want AcuXML to overwrite it, set this variable to
“FALSE.”

AXML_CREATE_STYLE

This variable is designed for use with AcuXML. Use it to define the type of
XML output that ACUCOBOL-GT should generate when it creates XML
files. It can be set to “DTD”, “SCHEMA” or “NONE”. Set this variable to
“NONE” if you want the resulting XML file to be raw XML. Set it to “DTD”
if you want the output to include a Document Type Definition of the elements
in the document. Often, the party with whom you trade data may require that
your XML document include a DTD.

3-26 Runtime Configuration File
Set this variable to “SCHEMA” if you want ACUCOBOL-GT to create a
schema to describe the XML documents that it writes. Schemas provide the
highest level of detail about the contents of the associated XML document,
and are typically required for development purposes. If you set this variable
to “SCHEMA”, you must use the AXML_SCHEMA_NAME variable to
name the schema file.

Please note that creating a schema for a file that was run through the xml2fd
utility with a schema won’t result in an identical schema. In addition, note
that setting this variable to “schema” causes a schema to be created for every
XML output file by default. Once the first schema is created, you should set
AXML_CREATE_SCHEMA to “FALSE” to prevent schemas from being
created on subsequent XML outputs.

AXML_ENCODING

This variable is designed for use with AcuXML. Use it when you want to
specify a character encoding method for the XML files that
ACUCOBOL-GT creates. By default, the XML output generated by
ACUCOBOL-GT is mapped to the UTF-8 encoding system (compatible with
the US-ASCII character set). If you want to use a different encoding system,
for instance a European encoding system that includes the British pound
character (£), change this variable to reflect the new system name. For
example:

AXML_ENCODING ISO-8859-1

This variable causes encoding information to be added to the header of XML
files created by ACUCOBOL-GT. With the configuration file entry shown
above, the following header would be included:

<?xml version="1.0" encoding="ISO-8859-1"?>

This header causes the ISO-8859-1 Latin encoding system to be applied to
the data file as desired.

AcuXML supports the following encoding systems:

• UTF-8, default [8-bit Unicode Transformation Format, backwards
compatible with US-ASCII]

Configuration File Variables 3-27
• US-ASCII

• UTF-16 [16-bit Unicode Transformation Format]

• ISO-8859-1 [Latin 1, European encoding]

AXML_EXACT_TABLE_MATCH

This variable affects the behavior of AcuXML. By default, all tables in an
FD must match data in the XML file with respect to the values of the indices.
Therefore, AXML_EXACT_TABLE_MATCH is set to “1” (on, true, yes) by
default. To disable this requirement, set
AXML_EXACT_TABLE_MATCH to “0” (off, false, no).

AXML_IGNORE_EMPTY_DATA

Set this variable to “TRUE” to omit empty and zero-filled data from
AcuXML’s output file. In this case, AcuXML will not write tags for
alphabetic data items that are all blank or numeric data items that are “0”.
When you set this variable from your COBOL program, it affects any records
written via AcuXML from that point on. Note that setting this variable to
“TRUE” could cause AcuXML to generate parts of an XML file that are not
consistent with any DTD or schema associated with the file. As a result, use
this variable with care.

The default value of “FALSE” causes AcuXML to generate tags for all data
items in the file. If your records are mostly empty, this may be overkill.

AXML_SCHEMA_DOC

This variable is designed for use with AcuXML. Use it when you want to add
a documentation element to the schema that ACUCOBOL-GT creates when
it writes an XML file (such as whenever a sequential file is OPEN
OUTPUT).

3-28 Runtime Configuration File
If you do not require specific documentation in the schema file, or if you did
not request that schemas be created for XML output, you can omit this
variable.

If this variable is set, its value is included in the documentation element of the
resulting schema. For example, if you set this variable as follows:

AXML_SCHEMA_DOC This is the documentation to be
included in the file...

The schema will include the following data:
 <xs:annotation>
 <xs:documentation>
 This is the documentation to be included in the file.
 Created by AcuXML version 6.0.0 on 2002/05/16
 </xs:documentation>
 </xs:annotation>

Note: For information on working with XML data, see section 11.2 in A
Guide to Interoperating with ACUCOBOL-GT.

AXML_SCHEMA_NAME

This variable is designed for use with AcuXML. Use it to define the name of
the schema file that ACUCOBOL-GT writes, if any, when it creates an XML
file. If this variable is not set, or if it is set to a file name that cannot be
created (for whatever reason), a schema is not created.

Note: To tell ACUCOBOL-GT to create a schema, use the
AXML_CREATE_STYLE and AXML_CREATE_SCHEMA variables.

Configuration File Variables 3-29
AXML_SCHEMA_NAMESPACE_DATA

This variable is designed for use with AcuXML for instances when you want
to include a schema or schema name with your XML output and you want
precise control over the schema namespace string shown in the output. The
default value of this variable is:
xmlns:xs=\"http://www.w3.org/2001/XMLSchema-instance\"
 xs:noNamespaceSchemaLocation=\"%s\"

By default, when ACUCOBOL-GT writes XML output (and a schema has
been requested), it substitutes the “%s” in this variable with the name of the
schema file specified with the AXML_SCHEMA_NAME configuration
variable. For instance, if AXML_SCHEMA_NAME is set to “myschema”,
ACUCOBOL-GT will include the following line in the XML output:
xmlns:xs=\"http://www.w3.org/2001/XMLSchema-instance\"
 xs:noNamespaceSchemaLocation=\"myschema.xsd\"

If you need something different than “myschema.xsd” written in the
namespace output, add this variable to your configuration file and alter the
namespace value in the quotes to meet your requirements.

Note: If you want to include a single “%” character in the namespace, add
a second percent sign “%%” to the definition of this variable.

In general, the value of this variable is used in the standard C library printf()
function as the first argument, and all printf() rules apply.

AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE

These variables are designed for use with AcuXML. Use them when you
want to associate an XML style sheet with the XML documents that
ACUCOBOL-GT creates. When you set these variables to a non-blank
value, ACUCOBOL-GT includes an XML-stylesheet comment in the
beginning of the resulting XML files. For instance, the following entry:

AXML_STYLESHEET_TYPE text/css

causes the following comment to be added to the beginning of the XML file:

3-30 Runtime Configuration File
<?xml-stylesheet type="text/css"?>

 If you set both of these variables, as in the following example,
AXML_STYLESHEET_TYPE text/css
AXML_STYLESHEET_HREF mystyle.css

then a comment like the following is added to the file:
<?xml-stylesheet type="text/css" href="mystyle.css"?>

If you do not require specific stylesheet data in the XML file, you can omit
these variables.

These variables may be toggled on and off during program execution. If you
have set these variables and want to generate a xml file without a xml style
sheet association, you can do this by adding these statements before opening
the xml file:

 SET ENVIRONMENT "AXML_STYLESHEET_TYPE" TO ""
 SET ENVIRONMENT "AXML_STYLESHEET_HREF" TO ""

Note: Setting these variables to NULL or SPACE will NOT toggle the
variable off.

BACKGROUND_INTENSITY

This variable is used to choose a background intensity. Use one of these
values:

0 The runtime uses the default intensity, which is based on your
hardware and operating environment. Under Windows, the default
background intensity is high-intensity. The default value is “0”.

1 The runtime uses low-intensity.

2 The runtime uses high-intensity.

Configuration File Variables 3-31
There are two important exceptions:

• The runtime always assigns low-intensity to the background if the
background color is black. Using high-intensity would cause the
background to be dark gray, which tends to make the screen look muddy.

• Many devices do not support a background intensity independent from
the foreground intensity (most terminals, for example). When that is the
case, the runtime declares the background intensity to be low-intensity.

BELL

When set to “0” (off, false, no), this variable will inhibit all bells generated
by ACCEPT and DISPLAY statements. Note that this will override explicit
WITH BELL clauses as well as implicit bells. The default setting is “1” (on,
true, yes).

BOXED_FLOATING_WINDOWS

When this variable is set to “1” (on, true, yes) all floating windows displayed
on character-based hosts are drawn with a border (box). If this variable is set
to “0” (off, false, no), floating windows are drawn with a border only when
the BOXED phrase appears in the statement that creates the window. The
default value for this variable is “0” (off, false, no). This variable has an
affect only on character-based host systems.

BTRV_MASS_UPDATE

When this variable is set to “1” (on, true, yes), a Btrieve file is opened in
exclusive mode. No other processes may open the file at the same time.
When this variable is set to “0” (off, false, no), a Btrieve file is opened in
accelerated mode, and other processes may open the file.

3-32 Runtime Configuration File
BTRV_NOWRITE_WAIT

When a user tries to write to a locked file, the Btrieve interface performs a
15-second “wait and retry” operation before it reports an error condition (99)
to the runtime. Setting the BTRV_NOWRITE_WAIT configuration
variable to “TRUE” (the default) prevents this operation from occurring, and
the error condition is reported immediately. Setting
BTRV_NOWRITE_WAIT to “FALSE” causes the interface to perform the
wait and retry operation.

BTRV_USE_REPEAT_DUPS

This variable controls whether duplicate keys are created as LINKED
duplicates (the Btrieve default) or REPEATING duplicates. When set to the
default value of “FALSE”, the Btrieve interface creates all duplicate keys as
LINKED duplicates. When set to “TRUE”, the Btrieve interface creates all
duplicate keys as REPEATING duplicates.

In cases where a large number of users are accessing files, you may
experience better performance if you set this variable to “TRUE”. See the
Pervasive documentation for information on REPEATING duplicates and
why you may want to use them.

BUFFERED_SCREEN

This variable controls how the Terminal Manager should buffer its output on
UNIX systems. Normally, all queued output is sent to the screen after each
DISPLAY statement. If this value is set to “1” (on, true, yes), then output is
sent only when the internal buffer is full, an ACCEPT statement is executed,
or an internal 1-second timer expires. This can speed up output on some
systems by reducing the number of times the operating system is called. It
will also cause a short delay before messages are seen. We recommend
keeping this setting at the default “0” (off, false, no) unless you are
experiencing poor screen performance.

Configuration File Variables 3-33
CALL_HASH_SIZE

The setting of this variable controls the size of the hash table that tracks
CALL statements to COBOL subprograms. Each CALL statement tracks its
last resolution (target object, entry point, and owning thread). When the
resolution is unchanged in a subsequent execution of the CALL statement,
the CALL uses the saved information, contributing to improved
performance. Each program contains its own copy of this table, so the size
should generally be set to a small value.

The default value for CALL_HASH_SIZE is “31”. The only reason to
change this setting is if your programs contain hundreds of individual CALL
statements that target distinct objects. In this case, you may see a small
performance improvement by setting CALL_HASH_SIZE to a larger value.
You can disable the tracking of these CALL statements by setting the value
of CALL_HASH_SIZE to “0”.

Note that this mechanism consumes a small amount of memory for each
CALL statement. This memory is recovered when the calling object is
removed from memory. The amount is machine-specific, but is normally
well under 100 bytes per CALL.

CANCEL_ALL_DLLS

This variable is used to change the default behavior of a CANCEL ALL
statement. The default behavior is for CANCEL ALL to free all DLLs and
UNIX/Linux shared object libraries loaded with a prior CALL statement.
Setting CANCEL_ALL_DLLS to “0” (off, false, no) indicates that CANCEL
ALL should not free any DLLs or shared object libraries. If you want to free
a particular DLL or shared library when CANCEL_ALL_DLLS is set to “0”,
you must specify the DLL’s name in a CANCEL statement.

The default value of CANCEL_ALL_DLLS is “1” (on, true, yes).

CARRIAGE_CONTROL_FILTER

The value of this variable affects how carriage control characters are treated
when found in LINE SEQUENTIAL data files.

3-34 Runtime Configuration File
RM/COBOL version 2 handles carriage control characters in a line sequential
file differently on different systems. By default, both ACUCOBOL-GT and
RM/COBOL-85 remove carriage control characters from input records for
line sequential files. This is the ANSI standard. RM/COBOL version 2,
however, does not remove form-feed characters on MS-DOS machines and
does not remove form-feed or carriage return characters on UNIX systems.
Some existing RM/COBOL version 2 programs depend on this behavior.

You can retain any or all of these characters in the input record by setting
CARRIAGE_CONTROL_FILTER to a value as follows:

You can specify two or three characters to be retained by adding the
appropriate values together. For example, a value of “6” retains carriage
returns and line feeds (2 plus 4). Setting the variable to “0” causes the default
action of removing all three characters.

The default value is “0”.

Note: On VMS systems, carriage control information is not placed directly
into data records and is instead maintained separately. For this reason, the
CARRIAGE_CONTROL_FILTER setting has no effect on VMS systems
and should not be considered portable to those machines.

CBLHELP

Define the CBLHELP configuration variable to the location of the “cblhelp”
debugger help file. The definition must include the path and filename. For
example:

CBLHELP /home/acucobol8/etc/cblhelp

1 form-feed characters are retained

2 carriage return characters are retained

4 line-feed characters are retained

Configuration File Variables 3-35
CGI_AUTO_HEADER

This variable is used when you are writing a Common Gateway Interface
(CGI) program in COBOL. It allows you to suppress the output of the HTML
header.

Set CGI_AUTO_HEADER to “0” (off, false, no) if you want to suppress the
output of the HTML header. This can be useful when you want to execute a
CGI program and include its output into an existing flow of HTML text. For
example, with server-side includes, or SSI, you can instruct the Web server
to execute a subprogram in the manner of CGI and then incorporate its output
right into the HTML document before sending it to the requesting client. The
default value is “1” (on, true, yes).

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_CLEAR_MISSING_VALUES

This variable is used when you are writing a Common Gateway Interface
(CGI) program in COBOL. It allows you to control the behavior of the
ACCEPT statement when CGI variables do not exist in the CGI input data.

By default, ACCEPT sets the value of numeric data items to zero and
non-numeric data items to spaces if a CGI variable does not exist. Set the
CGI_CLEAR_MISSING_VALUES configuration variable to “0” (off, false,
no) if you do not want ACCEPT to change the value of the data item if the
corresponding CGI variable is missing from the CGI input data.

CGI_CONTENT_TYPE

By default, the output generated by your CGI program is mapped as HTML
content. To associate your CGI output with a MIME content type other than
“text/html”, use the CGI_CONTENT_TYPE configuration variable. This
variable lets you control the content type information in the header of output
files created by ACUCOBOL-GT. Such information informs recipients of
the type of content that they are about to receive.

3-36 Runtime Configuration File
Using this variable, you can configure your CGI program for many types of
output, including eXtensible Markup Language (XML) or Wireless Markup
Language (WML) for Wireless Application Protocol (WAP) devices like
mobile phones.

Whichever format you choose, the US-ASCII character set is applied to the
output by default. If you want the CGI output to be mapped to an alternate
character set such as ISO-8859-I (Western European), then you can specify
the character encoding set to use with the variable as well.

Include this variable in your runtime configuration file as follows:
CGI_CONTENT_TYPE contenttype; charset=encoding_set

Where contenttype is the MIME content type of the generated output, and
encoding_set is the preferred character encoding set to use.

For example, the WML content type for WAP mobile phones is “text/
vnd.wap.wml”. To associate your CGI output with WML, include the
following in your configuration file:

CGI_CONTENT_TYPE text/vnd.wap.wml

If you want your WML output to be mapped to the Western European
character set, include the following:

CGI_CONTENT_TYPE text/vnd.wap.wml; charset=iso-8859-I

The content type for eXtensible Markup Language (XML) documents is
“text/xml”. If your program generates XML data, include the following:

CGI_CONTENT_TYPE text/xml

Caution: To avoid overriding other Content-Type associations, we suggest
that you create a different configuration file for each of the MIME
Content-Type associations that you make in your Web server setup.

Please note that if you use this variable, the external forms indicated in your
program’s DISPLAY syntax must contain the appropriate content. In other
words, if you associate your program with the “text/xml” content type, the
forms must be “.xml” documents with XML syntax. If you associate it with
“text/vnd.wap.wml”, the forms must be “.wml” documents with WML
syntax. Your program can DISPLAY virtually any type of data, as long as
the Content-Type ID corresponds to the external form file that you provide.

Configuration File Variables 3-37
Be aware that if you do not use the proper file extension for your external
form documents, the Web server will interpret the data as HTML and display
the wrong data. WML and XML are also more sensitive to syntax errors than
HTML.

In addition, note that the capabilities of the configuration entry
CGI_NO_CACHE may be affected by the content type that you choose.

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_NO_CACHE

This variable allows you to choose whether the HTML output of your
Common Gateway Interface (CGI) program will be cached by the requesting
client.

The default value is “1” (on, true, yes), which means there is no caching. By
default, the runtime generates “Pragma: no-cache” in the HTML response
header that gets sent to the standard output stream. If you set
CGI_NO_CACHE to “0” (off, false, no), the runtime suppresses this line of
the response header, and the requesting client caches the output.

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CGI_STRIP_CR

When this variable is set to “1” (on, true, yes), the runtime automatically
removes carriage return characters from data entered in HTML
TEXTAREAS (multiple line entry-fields). Stripping the carriage returns
from this kind of input prevents double-spacing problems, as well as conflicts
that may arise if the data is used in a context that does not expect a carriage
return character to precede each line feed character. Some browsers send a
carriage return line feed sequence to the CGI program, and when this
sequence is written to a file on operating systems that terminate text lines
with line feed characters only, the file may appear to be double spaced. The
default value for this variable is “0” (off, false, no).

3-38 Runtime Configuration File
For example, if you enter the following three lines in a TEXTAREA for a
field called “thetext”:
Sometext line 1
Sometext line 2
Sometext line 3

The browser sends the following to the CGI program:
thetext=Sometext+line+1%0D%0ASometext+line+2%0D%0ASometext+line+3%0D%0A

If the CGI_STRIP_CR is set to “1” (on, true, yes), the runtime strips the
carriage return characters so that the input line is the following:

thetext=Sometext+line+1%0ASometext+line+2%0ASometext+line+3%0A

For information about writing a CGI program in COBOL, refer to Chapter 4
in A Programmer’s Guide to the Internet.

CHAIN_MENUS

When this variable is set to “1” (on, true, yes), the runtime system
automatically destroys any menu displayed by a program performing a
CHAIN or CALL PROGRAM. This destruction is accomplished with the
WMENU-DESTROY-DELAYED operation of the W$MENU library
routine. The effect is that the menu is not actually destroyed until the
chained-to program displays a new menu. Setting this variable to “0” (off,
false, no) inhibits the destruction of the menu. The default value is “off”.

CHECK_USING

When this value is “1” (on, true, yes), the runtime system tests each use of a
LINKAGE data item to make sure that the item passed by the calling program
is at least as large as the item declared by the called program. This ensures
that unallocated memory is not accidentally referenced.

Setting this value to “0” (off, false, no) inhibits the parameters size matching
test. It also inhibits the runtime test that verifies that all parameters of a
subprogram are passed by the caller.

Configuration File Variables 3-39
The default value is “1”. If you set this value to “0”, you should test your
programs carefully to avoid corrupting memory.

Note: It is common for programs in some OLTP environments to specify a
data item length as a negative value. By default, this produces a runtime
error. Set CHECK_USING to “0” to override the default behavior.

CISAM_COMPRESS_KEYS

This variable allows you to turn off key compression in C-ISAM files. By
default, the ACUCOBOL-GT interface to C-ISAM uses the key compression
feature of C-ISAM. But some C-ISAM emulators do not understand the
compressed keys and cannot read the files created. This variable allows you
to turn off the compression.

When the variable is set to “0” (off, false, no), key compression is not used.
When it’s set to the default of “1” (on, true, yes), key compression is used.
Note that this value is examined each time a file is created, so its setting can
be changed for each file. The setting is meaningful only when the file is
created. After that, the file retains its compression mode.

CLOSE_ON_EXIT

When set to “1” (on, true, yes), this variable enables the automatic closing of
all files except print files when a program performs an EXIT PROGRAM
statement. When set to “2” it enables the automatic closing of all files when
a program exits. When set to “0” (off, false, no), no files will be
automatically closed. For more information, see the ACUCOBOL-GT
User’s Guide, section 2.7.5, “File Handling Options.” The default value is
“0”.

3-40 Runtime Configuration File
COBLPFORM

This configuration variable is used to define and print to printer channels
C01-C12. Specify the line numbers for each channel with the COBLPFORM
configuration variable. Null entries are ignored. Those channels that have
line number zero, function-names S01-S052, CSP, or are undefined, are set
to line 1.

Example 1
COBLPFORM 1:3:5:7:9:11:13:15:17:19:21:23

In this example C01 equals 1, C02 equals 3, and so on.

Example 2
COBLPFORM :3::5: :9

In this example, C01 equals 3, C02 equals 5, C03 equals 1, and C04 equals 9.
You can specify only a single line number for each channel.

In example 2 above, channels C05 - C12 are undefined. If a print statement
specifies channel C05 - C12, the line is printed at line 1. In addition, in the
example shown, C03 equals 1 because its value is a space and therefore
undefined.

Any WRITE BEFORE/AFTER PAGE statements cause positioning to be at
line 1. Each line advance increases the line number by one. A request to skip
to a line number less than or equal to the current line causes a new page to
begin. The appropriate number of line feeds are then generated.

CODE_CASE

This configuration variable allows you to adjust the case of an object file
name that is specified in a CALL statement. It has five possible values:

NONE or “0” (the default) object file names are not
translated

LOWER or “1” object file names are translated to lower case,
including directory (path) elements

Configuration File Variables 3-41
Translation occurs before the CODE_SUFFIX and CODE_PREFIX
configuration options are applied. You should make sure that those variables
specify the correct case. For a complete description of the runtime CALL
handling procedure, see section 2.9.1 in Book 1, ACUCOBOL-GT
User’s Guide.

CODE_MAPPING

This configuration variable allows you to modify CALL, CHAIN, and
CANCEL names at runtime. This can be particularly useful if you are using
AcuServer or AcuConnect. When this variable is set to “1” (on, true, yes),
every CALL, CHAIN, and CANCEL statement checks the current
configuration for a name that matches the CALL name. This is handled in the
same way that file name processing is done (the environment is checked for
an uppercase version of the name, with any hyphens treated as underscores).
If a matching name is found, its value is substituted. This is done recursively
until no more matching names are found.

After this substitution occurs, the CALL name handling proceeds normally
(and includes any effects of CODE_PATH, CODE_SUFFIX, and
CODE_CASE).

For example, with CODE_MAPPING set to “1”, if your configuration file
had the following entry:

MYPROG @sun:/app/myprog

Then CALL “MYPROG” would act the same as CALL “@sun:/app/
myprog”.

UPPER or “2” object file names are translated to upper case,
including directory (path) elements

LOWER_BASE or “3” object file names are translated to lower case,
excluding directory (path) elements

UPPER_BASE or “4” object file names are translated to upper case,
excluding directory (path) elements

3-42 Runtime Configuration File
Thin client applications may find the CODE_MAPPING mechanism useful
for automatically adding the “@[DISPLAY]:” prefix to the name of the DLL
to run on the display host. For example, if your configuration file includes
the entry:

mylib.dll @[DISPLAY]:mylib.dll

Then the statement
CALL “mylib.dll”

is interpreted as
CALL “@[DISPLAY]:mylib.dll”

causing “mylib.dll” to run on the display host.

Those wanting to specify the DLL calling conventions will also find
CODE_MAPPING useful. For example, if you use the following
configuration entries:

funcA=funcA@__stdcall
funcB=funcB@__cdecl

then the statement
CALL "funcA"

calls funcA using the stdcall calling convention and
CALL "funcB"

calls funcB using the cdecl convention.

For more information about calling DLLs from thin client applications, see
section 7.2.6 of the AcuConnect User’s Guide. For information on calling
DLLs in general, refer to Chapter 3 of A Guide to Interoperating with
ACUCOBOL-GT.

The default value for this variable is “0” (off, false, no).

Configuration File Variables 3-43
CODE_PREFIX

This variable defines a set of directories that the runtime searches to locate a
program object file. The default value is “.” (current working directory).
Code and data file search paths are described in more detail in section 2.7.2
of the ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths. Entries are separated
by spaces. A space is a valid separator on all systems. Alternatively, on
UNIX systems you can also separate entries with a colon. On Windows
systems a semicolon can be used. On VMS systems a comma can be used.

Include a “^” (carat) to specify the directory containing the calling program.
For example:

CODE_PREFIX . /cobbin ^

causes the runtime to search the current working directory, followed by the
“cobbin” root directory, followed by the directory containing the calling
program.

You can specify a directory path that contains embedded spaces if you
surround the path with quotation marks. For example:

CODE_PREFIX C:\“program files” C:\Customers

Remote name notation is allowed if your runtime is client-enabled. See
User’s Guide sections 5.2.1 and 5.2.2 for more information about
client-enabled runtimes and remote name notation.

Up to 4096 characters can be specified for the value of this variable.

CODE_SUFFIX

The value of this variable is automatically appended to the end of program
filenames when those names do not contain explicit suffixes. A suffix is the
portion of a filename that follows a period. For example, if
CODE__SUFFIX is set to “COB”, then CALL “PGMFILE” causes the
runtime to look for the file “PGMFILE.COB”. The default value is empty.

3-44 Runtime Configuration File
CODE_SYSTEM

The runtime configuration variable CODE_SYSTEM tells the runtime if
double-byte character data is being accepted or displayed, and which code
system (that is, which standard for encoding Japanese and other Asian
character sets, for example) is being used. Each code system has a range of
values that it allows within each byte of a two-byte character, so identifying
the code system allows the runtime to recognize character boundaries when
it is processing double-byte data for ACCEPT and DISPLAY statements.

Setting CODE_SYSTEM to the proper value allows your COBOL
applications to handle input and display of double-byte character data
without source program changes. The syntax is:

CODE_SYSTEM setting

The table below shows the possible settings of the CODE_SYSTEM
variable, the code system to which each setting refers, and some examples of
operating systems to which the particular code system applies:

The default “0” means ASCII or EBCDIC single-byte characters.

Setting Code System Op. System Examples

BIG5 Big Five (Taiwan) Chinese DOS, Windows

DBC ACUCOBOL-GT Generic
Double-byte Coding
Scheme

other double-byte machines

EUC Extended UNIX Most UNIX machines

GB Code of Chinese Graphic
Character Set (People’s
Republic of China)

Chinese DOS, Windows

KSC Korean Character Standard Korean DOS

SJC Shift JIS Code (Japanese
Industrial Standard)

DOS/V, Windows, some
UNIX machines

Configuration File Variables 3-45
The following table shows the decimal values that the respective code
systems allow for each byte of the two-byte character:

Note: The first and second byte values are co-dependent; that is, both
values must fall within the respective ranges shown in the table. If either
value is not within its allowable range, then each byte will be treated as a
single character.

COLOR_MAP

This variable can be used to assign colors to programs that do not contain
explicit color settings. This is described in section 4.4.1 of ACUCOBOL-GT
User’s Guide. The default value is empty.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

COLOR_MODEL

This variable is typically used when a character-based application is moved
to a graphical environment. Use the COLOR_MODEL setting to perform
uniform changes to your program’s color scheme. These changes are
represented by rules that act on your colors. An example of a rule is

Code System Setting 1st byte 2nd byte

BIG5

(second format)

161 - 254

161 - 254

64 - 126

161 - 254

DBC 128 - 255 128 - 255

EUC

(second format)

142

161 - 254

161 - 223

161 - 254

GB and KSC 161- 254 161 - 254

SJC

(second format)

129 - 159

224 - 239

64 - 252 (not 127)

64 - 252 (not 127)

3-46 Runtime Configuration File
“exchange the foreground and background colors”. Use COLOR_MODEL
to change your color scheme in a global way.

The default color model is model “0”. It causes no changes to occur to your
color scheme. The remaining 10 models are “1” through “10”.

• The odd-numbered models transform only those parts of your program
that are entirely black and white. Any character position that contains
any color is left unchanged.

• The even-numbered models apply the changes regardless of color.
When selecting a COLOR_MODEL, you can ignore the even-numbered
models if you are satisfied with the color portions of your program.

Each color model is actually a composite; it’s the equivalent of two or more
configuration file variable settings:

COLOR_MODEL Equivalent Configuration File Variable Settings

“1” COLOR_TRANS “5”

INTENSITY_FLAGS “34”

BACKGROUND_INTENSITY “1”

“2” COLOR_TRANS “4”

INTENSITY_FLAGS “34”

BACKGROUND_INTENSITY “1”

“3” COLOR_TRANS “3”

INTENSITY_FLAGS “34”

“4” COLOR_TRANS “1”

INTENSITY_FLAGS “34”

“5” COLOR_TRANS “1”

 INTENSITY_FLAGS “129”

“6” COLOR_TRANS “1”

INTENSITY_FLAGS “129”

BACKGROUND_INTENSITY “2”

“7” COLOR_TRANS “3”

INTENSITY_FLAGS “161”

Configuration File Variables 3-47
For more information, see Chapter 9 in Book 2, ACUCOBOL-GT User
Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

COLOR_TABLE

This variable is typically used when a character-based application is moved
to a graphical environment. Use the COLOR_TABLE variable to cause
transformations of individual color combinations. For example, a
COLOR_TABLE entry might cause a red foreground on a black background
to be translated to a white foreground on a blue background.

Follow the word COLOR_TABLE with the original foreground and
background numbers, separated by a comma. Follow these by an equals sign
and then the new foreground and background numbers, separated by a
comma.

For example, to transform the color combination of foreground 5 on
background 2, to foreground 13 on background 2, you would use:

COLOR_TABLE 5, 2 = 13, 2

These are the possible values for foreground and background settings:

“8” COLOR_TRANS “1”

INTENSITY_FLAGS “161”

“9” COLOR_TRANS “3”

INTENSITY_FLAGS “193”

“10” COLOR_TRANS “1”

INTENSITY_FLAGS “193”

COLOR_MODEL Equivalent Configuration File Variable Settings

Color Color value

low-intensity Black 1

3-48 Runtime Configuration File
Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

low-intensity Blue 2

low-intensity Green 3

low-intensity Cyan 4

low-intensity Red 5

low-intensity Magenta 6

low-intensity Brown 7

low-intensity White 8

high-intensity Black 9

high-intensity Blue 10

high-intensity Green 11

high-intensity Cyan 12

high-intensity Red 13

high-intensity Magenta 14

high-intensity Brown 15

high-intensity White 16

Color Color value

Configuration File Variables 3-49
COLOR_TRANS

This variable is typically used when a character-based application is moved
to a graphical environment. It determines how the initial colors in an
application are transformed. By default, it is set to “0”, which causes no
transformation. It may be set to any of these values:

Generally speaking, you could use the COLOR_TRANS variable as a
starting point in converting an application to appear more natural under
Windows. (It’s easier to start with COLOR_MODEL instead.) Note that if
your application is entirely black-and-white, then the first three
COLOR_TRANS options are essentially identical. See Chapter 9 in Book 2,
ACUCOBOL-GT User Interface Programming for color mapping
suggestions.

1 This mode causes the foreground and background colors to be
exchanged for each other. This is equivalent to running the entire
program in reverse-video.

2 This causes white to be exchanged for black and black to be exchanged
for white. The foreground and background colors are transformed
independently. For example, a green foreground on a black background
would turn into a green foreground on a white background. This setting
usually has the effect of transforming a black background into white
while maintaining the general color scheme of the application.

3 The foreground and background colors are exchanged for each other,
but only if they are both black or white. If either the foreground or
background contains a color other than black or white, then nothing
happens. This is equivalent to running the monochrome parts of your
program in reverse-video while maintaining the color portions
unchanged.

4 The foreground and background colors are exchanged for each other,
but only if the background is black. This mode ensures that you never
have a black background.

5 If the colors are foreground white and background black, they are
exchanged for each other. Otherwise, nothing happens.

3-50 Runtime Configuration File
COLUMN_SEPARATION

This configuration variable sets the default separation distance between
columns in a list box. The value is expressed in 10ths of characters. For
example, to place a 1/2 character space between list box columns, you would
assign a value of “5”. See the description of the list box SEPARATION
property for more information. The default value of
COLUMN_SEPARATION is “5”.

COMPRESS_FACTOR

This variable is used to define the compression factor that is applied to
indexed files (if the indexed file system supports compression; Vision does).
COMPRESS_FACTOR is applied when a file is created with the WITH
COMPRESSION phrase in the ASSIGN clause of the file’s SELECT and the
COMPRESSION CONTROL VALUE phrase is either omitted or specifies a
value of “1”. If the COMPRESS CONTROL VALUE phrase specifies a
value other than one, that value is used and the value of
COMPRESS_FACTOR is ignored.

COMPRESS_FACTOR can be set to any value within the range zero to 100.
Zero specifies no compression. Values from 2-100 are treated as a
percentage that specifies how much of the space saved by file compression is
removed from the compressed records. A value of 1, the default, is a special
case that causes the standard default compression factor of 70 to be applied.
Note that a file’s compression factor is set when the file is created and cannot
later be changed except by recreating the file or rebuilding the file with vutil.
For more information about Vision record compression, see Book 1,
ACUCOBOL-GT User’s Guide, section 6.1.6.1, “Compression.”

COMPRESS_FILES

Setting this configuration variable to “1” (on, true, yes) causes
ACUCOBOL-GT to treat all indexed files as if they had the WITH
COMPRESSION phrase specified for them. This affects the status of newly
created files only. When the configuration variable is set to the default value

Configuration File Variables 3-51
of “0” (off, false, no), only those files with the WITH COMPRESSION
phrase specified will be compressed. You can specify the amount of
compression with the COMPRESS_FACTOR configuration variable.

CONTROL_CREATION_EVENTS

This variable applies to those using ActiveX controls in their
ACUCOBOL-GT programs. Use it if you want to allow events during the
creation of an ActiveX control. By default, the runtime ignores events from
all controls while it is creating an ActiveX control. If it did not, subsequent
operations on the ActiveX control could fail.

If you are using a control that delivers significant information using events
and you don’t want to miss those events while you are creating a new control,
set the CONTROL_CREATION_EVENTS variable to “1” (On, True, Yes).
Alternatively, you could avoid creating an ActiveX control when you are
expecting an event.

 By default, this variable is set to “0” (Off, False, No).

CURRENCY

This configuration variable can be used to set the desired currency character
at runtime. It is followed with the desired character. The default is to use the
character specified in the source program’s CURRENCY phrase (or “$” if
the CURRENCY phrase is absent).

CURSOR_MODE

This configuration variable determines when the cursor should be visible. It
has three values:

1 always visible

2 always invisible

3 invisible except during ACCEPT statements, then visible

3-52 Runtime Configuration File
The default value is “3”. Note that a change to the value does not take effect
until the next ACCEPT or DISPLAY statement. The sample program
MENUBAR.CBL contains examples of how to modify the cursor from
within a program. The cursor is always set to Normal, Visible when the
runtime exits or when the SYSTEM library routine is called.

CURSOR_TYPE

This configuration variable determines the way the cursor looks on
character-based systems. It can be set to one of the following values (“3” is
the default):

DEBUG_NEWCOPY

This variable determines whether a new copy of a COBOL program being
debugged is loaded from disk whenever the debugger is active. By default,
DEBUG_NEWCOPY is “True” so that you can continue to use the logical
cancel and code caching feature while the debugger is active.

Set DEBUG_NEWCOPY to “False” if you want to keep caching enabled and
have the debugger use the copy of the program in the cache instead of reading
a new copy from disk. You must then do one of two things:

• Start the debugger before the first execution of the program in the current
process

• In a transaction processing system, use the CICS command, CEMT SET
PROGRAM(program_name) NEWCOPY, to load a new copy of the
program to be debugged.

1 normal cursor (usually underscore)

2 bright cursor (usually block)

3 normal cursor except when in insert mode, then bright

4 vertical bar (when available)

Configuration File Variables 3-53
Note: The ACUCOBOL-GT debugger periodically reads source code from
the object file on disk. When the program is cached (as the result of a
logical cancel), the object file is closed and could be replaced or deleted.
For the debugger to function correctly, it must keep the object file open and
ensure that the object code in the disk file is identical to the code in
memory. Therefore, if the program has been cached (using
LOGICAL_CANCELS and DYNAMIC_MEMORY_LIMIT), the
debugger unloads the program from the cache, reopens the object file, and
reloads the object code from memory. For more information, see section
6.3, “Memory Management,” in Book 1, ACUCOBOL-GT User’s Guide.

DECIMAL_POINT

This configuration variable sets the character to be used as the program’s
decimal point. Follow it with the desired character. If you use this variable
to set the decimal point to a comma, then the place and function of the
decimal point and comma are reversed (just like the phrase
DECIMAL_POINT IS COMMA). The default is to use the decimal point
specified by the program’s source.

Note: You do not have to change the value of DECIMAL_POINT to match
the decimal point used by floating point values received from external
components. The runtime automatically makes the correct adjustment.

DEFAULT_FILESYSTEM

This variable determines the file system to be used if no
filename_FILESYSTEM variable is set for a file and none of the other file
system variables are set for the file type. The other variables you can use to
specify a different file system for indexed, relative, or sequential files, are:
DEFAULT_IDX_FILESYSTEM
DEFAULT_REL_FILESYSTEM
DEFAULT_SEQ_FILESYSTEM

3-54 Runtime Configuration File
For example, setting:
DEFAULT_IDX_FILESYSTEM EXTFH

causes all indexed files to go through the EXTH interface. Unless another
file system is specified, ACUCOBOL-GT uses its native file handler for
relative and sequential files.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for the
existing configuration variable, DEFAULT_HOST.

By default, all file access is handled by the ACUCOBOL-GT native file
handler. For those file types you want to access using an EXTFH library, you
need to set one or more of these configuration variables to “EXTFH”.

For example, to use the DB2 library to access indexed files, you would set the
following two configuration variables:
A_EXTFH_LIB=/usr/lpp/cics/lib/libxfhdb2sa.a(libxfhdb2_shr.o)
DEFAULT_IDX_FILESYSTEM=EXTFH

For information on specifying EXTFH library and function names to use with
the EXTFH interface, see section 11.6, “Working With an EXTFH
Interface,” in A Guide to Interoperating with ACUCOBOL-GT.

DEFAULT_FONT

This variable defines which font to use for the DEFAULT_FONT (for a
description of this font, see Format 3, ACCEPT FROM OBJECT in section
6.6 in Book 3, ACUCOBOL-GT Reference Manual). When
DEFAULT_FONT is set to “0” (the normal setting), the font used depends on
the host system as follows:

System Font Used

Graphical system MEDIUM-FONT

Non-graphical system FIXED-FONT

Configuration File Variables 3-55
You can set DEFAULT_FONT to one of the following values to use a
different font. The following words are valid settings:

Due to the way the runtime initializes the windowing subsystem, the
DEFAULT_FONT setting is effective only when it is placed in the
configuration file or the host system’s environment. Setting
DEFAULT_FONT from inside a COBOL program has no effect.

DEFAULT_HOST

When the application program is opening an existing file or creating a new
file, you need to tell the runtime which file system to use. You accomplish
this with one of two configuration variables: DEFAULT_HOST or
filename_HOST.

DEFAULT_HOST filesystem

designates the file system to be used for files that are not individually
assigned. If this variable is not given a value, and if you have not individually
assigned a file system (with filename_HOST), the Vision file system is used.

Note: The DEFAULT_IDX_FILESYSTEM variable is a synonym for
DEFAULT_HOST.

Setting Font Used

TRADITIONAL TRADITIONAL-FONT

FIXED FIXED-FONT

LARGE LARGE-FONT

MEDIUM MEDIUM-FONT

SMALL SMALL-FONT

3-56 Runtime Configuration File
DEFAULT_MAP_FILE

Use this variable to point to the character map file used for translating
international character sets between machines that use differing character
codes. The map file is a simple text file that you create with an editor of your
choice. Each line in the map file must contain two values in either decimal
or hexadecimal: the character code of the character on the client machine, and
the character code of the same character on the remote machine. Use a # sign
to indicate a comment.

The runtime first searches for the configuration variable server_MAP_FILE
and, if it is found, uses that setting to locate the map file. If that variable is
not set, the runtime searches for DEFAULT_MAP_FILE. If this variable is
not set, then no character translation is done.

Example:
DEFAULT_MAP_FILE = c:\etc\pc_iso.txt

DEFAULT_PROGRAM

Use this variable to specify the name of the program to be run by default if no
program name is specified on the command line. The name you give here is
treated exactly as it would be if you had typed it on the command line. The
default is “cbl.out”.

Remote name notation is allowed for this variable if your runtime is
client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and 5.2.2
for more information about client-enabled runtimes and remote name
notation.

DEFAULT_TIMEOUT

This variable is used by the runtime and Web Runtime to define the length of
time, in seconds, that they will wait for a response from acuserve before
timing out. The default value for this variable is 25 seconds. Some networks
have long connect times and the default value may not be long enough to

Configuration File Variables 3-57
allow the application to connect. For example, to change the timeout default
of 25 seconds to one minute, you would set the following:

DEFAULT_TIMEOUT = 60

If the runtime or Web Runtime receives an error before the specified time,
they will time out immediately. This variable only works with AcuServer
client runtimes and AcuServer client Web Runtimes.

DISABLED_CONTROL_COLOR

This variable allows character-based hosts to use color and video attributes to
distinguish disabled screen controls from enabled controls. It can be set to a
variety of numeric values that express combinations of attributes. When it is
set to “0” (off, false, no), disabled controls appear the same as enabled ones.
See section 6.4.9, “Common Screen Options, COLOR phrase” in Book 3,
ACUCOBOL-GT Reference Manual, for a description of other numeric
values that can be used.

DISPLAY_SWITCH_PERIOD

This variable helps to determine how frequently the program’s threads will
switch control. After a thread performs the value of
DISPLAY_SWITCH_PERIOD display operations, the runtime switches
control to another thread (if one exists). Note that because a single
DISPLAY statement can compile into multiple “display operations,” and
because thread switching is also affected by other program operations (such
as file I/O), it is impossible to predict or control when a thread will change
control based on the presence of DISPLAY statements in the source.

By setting DISPLAY_SWITCH_PERIOD to lower values, you cause
windows that are updated by multiple threads to update more uniformly, but
more time will be spent in the thread switching code. Setting
DISPLAY_SWITCH_PERIOD to higher values will decrease the switching
overhead, but will also cause the windows to update in blocks. In most cases,
applications that use threads will run well with the default setting of “10”.

3-58 Runtime Configuration File
DLL_CONVENTION

This variable allows you to specify the calling convention used to call DLLs.
When this variable is set to “0”, the cdecl (standard C) interface is used.
When this variable is set to “1”, the stdcall (Pascal/WINAPI) interface is
used. The default for this variable is “0”.

Note that there are a few ways to override the DLL_CONVENTION setting:

• You can specify a list of DLL names and calling conventions in the
SHARED_LIBRARY_LIST configuration variable. This variable can
be set in the environment, in the runtime configuration file, or
programmatically with the SET ENVIRONMENT statement.

• You can specify the calling convention for individual library functions in
the COBOL CALL statement.

• You can set the CODE_MAPPING variable to “1”, then use
configuration entries to specify the calling convention for individual
functions.

• You can specify a list of DLL names and calling conventions using the
“-y” runtime option.

In all of these cases, the runtime uses the specified calling convention and
ignores the value of the DLL_CONVENTION configuration variable. See
Chapter 3 in A Guide to Interoperating with ACUCOBOL-GT for more
details about calling DLLs.

DLL_SUB_INTERFACE

This variable identifies the routine to be used as the “sub” interface routine
within a DLL. It applies only to Windows systems. Set
DLL_SUB_INTERFACE to the name of the routine you want to use. This
name may be “sub” or any name you choose. The runtime checks
DLL_SUB_INTERFACE when a DLL is loaded. You may change its value
afterwards without any effect on DLLs that have already been loaded.

If DLL_SUB_INTERFACE is empty (default), the runtime does not look for
a “sub” interface routine in a called DLL.

Configuration File Variables 3-59
DLL_USE_SYSTEM_DIR

When a program calls an unloaded DLL, the value of this variable determines
whether the runtime attempts to find the DLL in the Windows and System
folders. When set to the default value “1” (on, true, yes), the runtime looks
in the Windows and System folders. When set to “0” (off, false, no) the
runtime does not look in the Windows and System folders. See Chapter 3 in
A Guide to Interoperating with ACUCOBOL-GT for more details about
calling DLLs.

DOS_BOX_CHARS

This variable allows you to redefine the line drawing characters used with the
Windows console (DOS-box) runtime. The value of DOS_BOX_CHARS is
a list of characters that draw the line segments. It should be a list of 13
space-delimited characters that correspond, in order, to the line segments as
listed below. To redefine the DOS line drawing characters, specify the
characters you want in the following order:

1. horizontal line

2. vertical line

3. upper left corner

4. upper right corner

5. lower left corner

6. lower right corner

Four three-way intersections -

7. missing bottom line

8. missing left line

9. missing top line

10. missing right line

and -

11. the four-way intersection

12. upper-half block

13. lower-half block

3-60 Runtime Configuration File
These line drawing characters may also be specified by decimal value.
Characters that are not available on a particular machine should be specified
with the decimal value “0”.

The default value for DOS_BOX_CHARS depends on the CODE_SYSTEM
configuration variable. If CODE_SYSTEM is not set, or is set to “0” (or
ASCII or EBCDIC), the default is:
DOS_BOX_CHARS 196 179 218 191 192 217 193 195 194 180 197 223 220

If CODE_SYSTEM is set to a non-zero value, which is the case in the
ACUCOBOL-GT JPN version, the default is:
DOS_BOX_CHARS 6 5 1 2 3 4 21 25 22 23 16 0 0

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

DOS_SYS_EMULATE

When set to “1” (on, true, yes), this variable causes a program running in the
Windows console runtime to run as if it’s in a DOS environment. One of its
effects is that it prevents such a program from attempting to display GUI
screens. It is set to “0” (off, false, no) by default. This variable has meaning
only in Windows environments.

DOUBLE_CLICK_TIME

This variable has meaning only on systems that support a mouse. It controls
the “double-click” rate on systems that do not control it themselves.

Specify the maximum time (in hundredths of a second) allowed between two
clicks that are to be interpreted as a double-click. For example, if
DOUBLE_CLICK_TIME were set to “75” (three-quarters of a second), then
any two clicks that occur at least that close together would be considered a
double-click rather than two single clicks.

The default value is “50” (one-half of a second).

Configuration File Variables 3-61
DUPLICATES_LOG

This variable is used during bulk addition of Vision files. It causes Vision to
write files rejected for having illegal duplicate keys to a log file. Set
DUPLICATES_LOG to the name of a file in which to store the records. If
this log file already exists, it is overwritten. You should use a separate log file
for each file opened with bulk addition. You can do this by changing the
setting of DUPLICATES_LOG between OPEN statements, as follows:

SET ENVIRONMENT “DUPLICATES_LOG” TO “file1.rej”
OPEN OUTPUT FILE-1 FOR BULK-ADDITION

SET ENVIRONMENT “DUPLICATES_LOG” TO “file2.rej”
OPEN EXTEND FILE-2 FOR BULK-ADDITION

If no duplicate records are found, the log file is removed when the Vision file
is closed. If DUPLICATES_LOG has not been set, or is set to spaces, no log
file is created.

Note: The duplicate-key log file may not be placed on a remote machine
using AcuServer. The log file must be directly accessible by the machine
that is running the program.

See section 6.1.6.3, “Bulk Addition Mode for Vision,” in Book 1,
ACUCOBOL-GT User’s Guide, for instructions on how to read the log file.

DYNAMIC_FUNCTION_CALLS

This variable allows you to specify a list of functions or function name
prefixes that the runtime treats as dynamic functions and therefore searches
first, before searching the disk for COBOL programs. This speeds the
resolution of calls to functions in the current process or in a shared library.

The runtime checks call names for matches in the list specified in the
variable. If a match is found, the runtime attempts to call the routine directly
in the current process and in each of the loaded shared libraries. If these
attempts fail, the runtime attempts to load a COBOL program with the
specified name.

3-62 Runtime Configuration File
Set DYNAMIC_FUNCTION_CALLS to a space- or comma-delimited list of
names of frequently called functions that are linked into the current process
or in one of the loaded shared libraries.

The asterisk “*” character can be appended to the end of a name as a wild
card. In this case, the characters before the asterisk are treated as a prefix and
match any call name that begins with that prefix. A value of asterisk (“*”)
alone matches all function names. Use this to cause the runtime to treat all
names as dynamic functions first before searching the disk or memory for a
COBOL program with a matching name.

The value of DYNAMIC_FUNCTION_CALLS is case insensitive. The
default value is empty.

DYNAMIC_FUNCTION_CALLS can be set in the environment,
configuration file, or programmatically with the SET verb. Set it to spaces to
clear the list.

When DYNAMIC_FUNCTION_CALLS is set in the configuration file,
there is no limit on the number of function names or overall size of the value
of the configuration variable. To specify a configuration file value on
multiple lines, you must prepend each line after the first with “-”. For
example:

DYNAMIC_FUNCTION_CALLS =
- func1,
- func2,
- func3

The line continuation processing removes all leading and trailing spaces so in
this case you must separate the values with a comma (that is, append a
comma to each line).

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration File Variables 3-63
DYNAMIC_MEMORY_LIMIT

The value of this variable indicates the maximum number of bytes of
dynamic memory that the ACUCOBOL-GT runtime will use to cache
canceled programs when the logical cancel mechanism is enabled. When the
total amount of memory exceeds the value of
DYNAMIC_MEMORY_LIMIT, the runtime releases all memory held by
programs that have been logically canceled.

Valid values are:

A discussion of memory management and physical and logical cancels is
located in section 6.3, “Memory Management,” in Book 1.
DYNAMIC_MEMORY_LIMIT is used in conjunction with the
LOGICAL_CANCELS configuration variable. See its entry in this
appendix.

ECN-3699

This variable relates to read-only entry fields. As of Version 8.1, read-only
entry fields were changed to conform to standard Windows behavior in that
the background color is always gray (regardless of the COBOL program's
Color setting). If you need the ability to change the color of read-only entry
fields, set the runtime configuration variable "ECN_3699" to "0".

The default behavior will not allow color changes and matches Windows
behavior: read-only entry fields have gray backgrounds.

-1 (the default) no memory limit. In transaction
processing systems, memory used by programs that
have been logically canceled is released only by the
CICS transaction, CEMT SET
PROGRAM(program_name) NEWCOPY

0 all cancels are physical; program memory is not
cached

1 to 2147483647 the maximum number of bytes of dynamic memory

3-64 Runtime Configuration File
EDIT_MODE

This is an obsolete entry that has been replaced by the KEYSTROKE
configuration variable. Its setting is ignored.

EF_UPPER_WIDE

This variable determines which font measure is used to compute the width of
an entry field with the UPPER style. If the value is “1” (on, true, yes), the
entry field is sized with the wide font measure. See section 5.9 in Book 2,
ACUCOBOL-GT User Interface Programming for a description of how
entry fields are measured. The default value of EF_UPPER_WIDE is “1”.

EF_WIDE_SIZE

This variable sets the boundary size that determines whether an entry field is
sized with the standard or wide font measure. An entry field that has a
specified width greater than the value of EF_WIDE_SIZE is always sized
with the standard font measure. Entry fields that are both non-numeric and
not larger than EF_WIDE_SIZE are sized with the wide font measure. See
section 5.9 in Book 2, ACUCOBOL-GT User Interface Programming for a
description of how entry fields are sized. The default value of
EF_WIDE_SIZE is “5”. Setting this variable to “0” causes all entry fields to
be sized with the standard font measure (exception: see EF_UPPER_WIDE
above). Note that setting the value of this variable to a number larger than
your largest entry field causes all entry fields to use the wide font measure.

EOF_ABORTS

This configuration variable can be used to handle two unexpected loop
conditions:

1. a loop that results when the runtime has been started with “-i” and an
input file terminates prematurely.

2. a loop that results when a terminal emulator disconnects unexpectedly.

Configuration File Variables 3-65
If the runtime is started with the “-i” option and a loop occurs when an input
file terminates prematurely, you can set EOF_ABORTS to “1” (on, true, yes)
to cause the runtime to shut down when an ACCEPT statement detects an
end-of-file condition.

On UNIX/Linux systems, if the runtime enters a loop due to an unexpected
disconnect from a terminal emulator, you can set EOF_ABORTS to a value
of “2” to cause the runtime to generate a hangup signal (SIGHUP) when it
detects an EOF on standard input (stdin).

The default value is “0” (off, false, no).

EOL_CHAR

This configuration variable determines the character that is used to mark the
end of each line when a pre-existing line sequential file is read. This should
be set to the ASCII value of the desired character. The default value is “10”
(line-feed). This option may be useful if you must process a line-oriented file
that has an unusual line terminator. This configuration variable has no effect
under VMS (RMS does not support it).

ERRORS_OK

Normally, if a file error occurs and there is no AT END, INVALID KEY, or
Declarative statement to handle it, the runtime system prints an error message
and halts. You can cause the runtime to ignore file errors and continue
processing by setting ERRORS_OK to either “1” (on, true, yes) or “2”
(FILESTATUS).

By default, ERRORS_OK is set to “0” (off, false, no).

When ERRORS_OK is set to “1”, if a file error occurs the runtime continues
as if no error occurred.

When ERRORS_OK is set to “2”, if a file error occurs and there are no
Declaratives but a file status variable is defined, the runtime ignores the error
and continues processing. However, if a file error occurs and there are no
Declaratives and a file status variable is not defined, the runtime halts.

3-66 Runtime Configuration File
Note: In general, it is not recommended that you configure the runtime to
ignore file errors.

EXIT_CURSOR

When a STOP RUN is executed, the ACUCOBOL-GT runtime system
normally places the cursor on the last line of the screen and then scrolls the
screen one line. This allows the operating system prompt to appear on a new
blank line at the bottom of the screen. To inhibit this behavior, set
EXIT_CURSOR to “0” (off, false, no). This causes the runtime system to
leave the cursor in its current location when the program exits. The default
value “1” (on, true, yes) causes the standard ACUCOBOL-GT cursor
positioning.

This variable has no effect on Windows systems.

EXPAND_ENV_VARS

Setting this variable to “1” (on, true, yes) causes the runtime to expand
environment variables in filename specifications. This is the last step of file
name interpretation process (see section 2.8, “File Name Interpretation,” in
Book 1, ACUCOBOL-GT User’s Guide). A file specification that includes a
“$” character will have all the characters from “$” to the end of the name or
to the next “/” or “\” replaced with the value of the matching environment
variable. For example, if the program attempts to open “$mydir/myfile”, the
environment and configuration file are searched for the variable “mydir”. If
found, its value is substituted. If not found, the replacement is null.
Referring to the preceding example, if “mydir” is not defined, the runtime
attempts to open “/myfile”.

The default value is “0” (off, false, no).

Configuration File Variables 3-67
Note: The “$” character is a valid filename character in many file systems,
including NTFS and most UNIX file systems. If you want to use dollar
signs in your file names, you should not enable this option. In particular, if
a user chooses the name of the file, you should keep this option disabled.

If you also use FILE_ALIAS_PREFIX, note that when
EXPAND_ENV_VARS is set to “1”, FILE_ALIAS_PREFIX treats
“$FILE1” and “FILE1” the same.

EXTEND_CREATES

Setting this configuration variable to “1” (on, true, yes), causes OPEN
EXTEND statements to create a new file when the file being opened is not
present. The default value is “0” (off, false, no).

EXTFH_KEEP_TRAILING_SPACES

An EXTFH_KEEP_TRAILING_SPACES configuration variable allows you
to preserve trailing spaces in line sequential file records when using our
EXTFH module with EXTSM. Set this variable to “1” (on, true, yes) to
retain the trailing spaces, which is the runtime’s default behavior. With a
default value of “0” (off, false, no), trailing spaces are removed.

Note that a related configuration variable is the
STRIP_TRAILING_SPACES variable.

EXTERNAL_SIZE

ACUCOBOL-GT manages external data items by allocating them in pools.
The minimum size of each pool is set by the EXTERNAL_SIZE variable.
When a new external data item is needed, it is allocated from an existing
pool. If it doesn’t fit in any of the allocated pools, a new pool is allocated.
The size of this pool is the same as the size of the data item, but never smaller
than the value specified by the EXTERNAL_SIZE configuration variable.
Using this larger pool reduces memory fragmentation. Because external data

3-68 Runtime Configuration File
items remain allocated after programs are canceled, it’s best to allocate the
external data items together so they don’t break up the memory space. The
default value for EXTERNAL_SIZE is “8192”. The maximum value is
“32767”.

EXTRA_KEYS_OK

This configuration variable allows you to open an indexed file without
specifying all of that file’s alternate keys. When it is set to “1” (on, true, yes),
you may open an indexed file that contains more keys than are described by
your program, and no file error will occur. However, you will still receive a
file error if you open a file that does not contain all of the keys described in
your program. EXTRA_KEYS_OK is useful when you are adding new
alternate keys to an existing file because you do not need to rework your
existing programs. This configuration variable is ignored if you use a
Version 1.4 or earlier ACUCOBOL-85 object file.

The default value is “0” (off, false, no).

F10_IS_MENU

By convention, the F10 key is used by Windows and Windows NT to activate
program menus. This action is controlled automatically by the program. The
F10_IS_MENU configuration variable allows you to set the runtime to
handle the F10 key as a user defined-key. The default setting is “1” (on, true,
yes). When you change the setting to “0” (off, false, no) you inhibit the menu
activation capability. For example, action of Shift-Ctl-F10 may only be
defined by the user if F10_IS_MENU is set to “0”, otherwise this key
combination activates context menus. This variable does not affect the
behavior of the mouse. However, the mouse continues to work with the
menu.

Configuration File Variables 3-69
FAST_ESCAPE

This configuration variable determines how long the runtime will wait after
receiving an escape key before deciding that the key is actually intended as
an escape key, and not as the start of a function key sequence. (Increasing the
number causes the runtime to wait longer.) The default setting varies with
the machine. It is generally between 20 and 100.

This variable has no effect on Windows systems.

FAST_SIGN_DECODE

Version 7.3 introduced a new algorithm to decode sign bytes in USAGE
DISPLAY (sign incorporated) data items. The new algorithm is 3-4 times
faster than the previous one, but produces unexpected results for undefined or
non-initialized numeric data items.

This configuration variable turns on this faster algorithm introduced in
Version 7.3.

To use the Version 7.3 algorithm, set the FAST_SIGN_DECODE
configuration variable to "TRUE". If using this algorithm, numeric data items
must be defined/initialized, otherwise incorrect results may occur.

The default value is "FALSE" which means the pre-7.3 version of the
algorithm is used. The pre-7.3 version does not require numeric data items to
be defined/initialized.

FIELDS_UNBOXED

On most GUI systems, including Microsoft Windows, entry fields are boxed
by default. This can cause problems when you are converting applications
that have fairly full screen displays, because the box adds roughly 50% to the
height of the field. This can make it difficult to fit all the existing fields onto
the user’s screen.

3-70 Runtime Configuration File
FIELDS_UNBOXED provides a global method of removing boxes on entry
fields. If this field is set to “1” (on, true, yes), the system does not display a
box around entry fields. Technically this has three effects:

1. If it is set when the entry field is initially created, the NO-BOX property
is automatically implied.

2. If it is set when a floating window is initially created, the window’s
LABEL-OFFSET property is given a default value of “0”.

3. When an entry field is measured by the CELL phrase of the DISPLAY
FLOATING WINDOW statement, its height is measured without the
box.

On character-based systems, setting this variable to “1” (on, true, yes)
eliminates the display of the left and right delimiting symbols used in the
textual emulation of entry fields. (See GUI_CHARS for more information
about these delimiting symbols). Eliminating these symbols affects the
location at which the entry fields are displayed on character-based systems.

The default value for this option is “0” (off, false, no).

This variable can be overridden for individual entry fields in the program
with the BOXED style in the entry field definition.

FILE_ALIAS_PREFIX

This variable allows you to specify a list of strings to prefix to a file name
before searching for that name in the configuration file or environment. Data
and code file search paths are described in more detail in section 2.7.2 of the
ACUCOBOL-GT User’s Guide.

When searching for a file alias:

1. The runtime constructs the file alias name by prepending the first string
listed in FILE_ALIAS_PREFIX to the file name and searches for that
name in the environment or configuration file.

2. If the name is not found, the runtime constructs a new name by
prepending the second string in FILE_ALIAS_PREFIX to the file
name and searches for that alias.

Configuration File Variables 3-71
This process is repeated with each string in FILE_ALIAS_PREFIX until a
file alias name is found or the end of the list is reached.

For example, with:
SELECT file1-name ASSIGN TO "FILE1".

by default, the runtime looks for a configuration or environment variable
named “FILE1” and, if found, substitutes its value for the file name. If you
specify:
FILE_ALIAS_PREFIX "":DD_

the runtime first looks for “FILE1” and, if not found, looks for “DD_FILE1”.

The default value of FILE_ALIAS_PREFIX is an empty string (“”).
Specifying an empty string as an entry in FILE_ALIAS_PREFIX causes the
runtime to search for the file name itself as an alias name. Up to 4096
characters can be specified for the value of this variable.

Note: Separate strings by one or more spaces. A space is a valid separator
on all systems. On UNIX systems, you can also separate entries with a
colon. On Windows systems, a semicolon can be used and on VMS
systems, a comma can be used. Strings can be enclosed in quotation marks.
You can specify an empty string using two consecutive quotation marks.

Note on using with EXPAND_ENV_VARS:

If you use the EXPAND_ENV_VARS configuration variable and the file
name includes a dollar sign ($), the FILE_ALIAS_PREFIX logic is applied
to the environment variable name. For example, if EXPAND_ENV_VARS
is set to”1” (on, true, yes), “$FILE1” and “FILE1” are treated the same.

For example, with:
EXPAND_ENV_VARS=1
FILE_ALIAS_PREFIX=DD_

the following statement,
SELECT file1-name ASSIGN TO "DIR1/$DIR2/FILE1".

3-72 Runtime Configuration File
causes the runtime to search for an environment or configuration variable
named “DD_DIR2” (instead of “DIR2”) and, if found, substitute its value for
“$DIR2”.

FILE_CASE

This configuration variable allows you to adjust the case of data file names.
Possible values include:

Translation occurs before the FILE_PREFIX and FILE_SUFFIX
configuration options are applied. You should make sure that those variables
specify the correct case.

File name translation does not occur if the file name starts with -F, -D, or -P.
(See ACUCOBOL-GT User’s Guide, section 2.8, “File Name
Interpretation.”)

FILE_CONDITION

This configuration variable can be used to alter the File Status value of an
individual file status condition. We recommend that you use one of the four
pre-defined file status code sets instead. If you need to change an individual
status code, contact our Technical Support for assistance.

NONE

or “0”

(the default) data file names are not translated

LOWER

or “1”

data file names are translated to lower case,
including directory (path) elements

UPPER

or “2”

data file names are translated to upper case,
including directory (path) elements

LOWER_BASE
or “3”

data file names are translated to lower case,
excluding directory (path) elements

UPPER_BASE

or “4”

data file names are translated to upper case,
excluding directory (path) elements

Configuration File Variables 3-73
Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

FILE_IO_PEEKS_MESSAGES

This configuration variable tells the Windows runtime to automatically call
the Windows PeekMessage() API function between file operations. When
the FILE_IO_PEEKS_MESSAGES configuration variable is set to “1” (on,
true, yes), the runtime calls PeekMessage() with flags that tell it to simply
check for messages without removing them from the message queue. This
operation tells Windows that the application is alive and responding. The
default value of the variable is “0” (off, false, no).

FILE_IO_PROCESSES_MESSAGES

This configuration variable can be used to control whether the runtime
processes system messages while performing file I/O operations. When it is
set to “1” (on, true, yes), the runtime will process system messages while
doing file I/O operations. This was the default behavior prior to Version 3.2.
Note that the processing of system messages during file I/O should only be
enabled under special conditions, as described below.

To understand when it is appropriate to set this configuration variable, it is
important to be familiar with system messages and how the
ACUCOBOL-GT runtime and your program respond to them. For the
purposes of this discussion, system messages are the mechanism used by
graphical systems, such as Windows, to communicate with your program.
They are what the operating system uses to facilitate the communication of
user and system activity to the program. They are similar to
ACUCOBOL-GT’s events. Prior to Version 3.2, the runtime automatically
processed system events during file operations. This allows the user to
manipulate an application window (for example, minimizing it) while file I/
O operations are performed. If the application suspends the processing of
system messages, the system appears to the user to be frozen.

3-74 Runtime Configuration File
Starting with Version 3.2, this feature is turned off by default. This is
because the processing of messages outside of an ACCEPT statement can
cause flaws in a program that uses multithreading or modeless windows. It
also creates a state where event procedures can be called at unexpected times.
In addition, the controls of the application are not actually functional, though
they appear to be working to the user.

Generally speaking, setting this variable is useful only when the application
does not use multithreading, modeless windows, or event procedures.

Note: The proper way to process system messages while performing other
operations is to start a second thread that performs an ACCEPT statement
while the main thread continues with the work. This allows the system to
process messages under control of an ACCEPT, which provides a
well-defined point in your program from which event procedures can be
called.

FILE_PREFIX

This variable defines a set of directories that the runtime searches to locate a
data file. The default value is “.” (current working directory). Data and code
file search paths are described in more detail in section 2.7.2 of the
ACUCOBOL-GT User’s Guide.

Directories can be a mix of relative and absolute paths. Entries are separated
by one or more spaces. A space is a valid separator on all systems.
Alternatively, on UNIX systems you can also separate entries with a colon.
On Windows systems a semicolon can be used. On VMS systems a comma
can be used.

You can specify a directory path that contains embedded spaces if you
surround the path with quotation marks. For example:

FILE_PREFIX C:\“Sales Data” C:\“Customers”

Configuration File Variables 3-75
Remote name notation is allowed for the FILE_PREFIX variable if your
runtime is client-enabled (for indexed files, remote name notation requires
the Vision file system). See ACUCOBOL-GT User’s Guide sections 5.2.1
and 5.2.2 for more information about client-enabled runtimes and remote
name notation.

Up to 4096 characters can be specified for the value of this variable.

FILE_STATUS_CODES

This variable determines which set of file status codes to use. For details, see
the ACUCOBOL-GT User’s Guide, section 2.7.3, “File Status Codes.” The
default value is “85”.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

FILE_SUFFIX

The value of this variable is automatically appended to data file names that
do not contain an explicit suffix. A suffix is the portion of a file name that
follows a period. For example, if FILE_SUFFIX is set to “DAT”, then
opening a file called “EMPFILE” would actually open the file called
“EMPFILE.DAT”. The default value is empty.

FILE_TRACE

This variable allows you to start file tracing without opening the debugger.
Set this variable to a non-zero value to save information about all file OPENs,
READs, and WRITES in the error file. This is equivalent to specifying “tf n”
from the debugger (where n is an integer). The default is “0.” See section
3.1.4 of the ACUCOBOL-GT User’s Guide for more information about the
file trace feature.

3-76 Runtime Configuration File
FILE_TRACE_FLUSH

Set this variable to “1” (on, true, yes) to flush the error file after every
WRITE statement. This is equivalent to using “t flush” from the debugger.
The default is “0” (off, false, no). See section 3.1.4 of the ACUCOBOL-GT
User’s Guide for more information about the file trace feature.

FILE_TRACE_TIMESTAMP

Set this variable to “1” (on, true, yes) to cause file trace timestamp
information to be recorded in the error file. When this variable is enabled, a
timestamp is placed at the beginning of every line in the trace file. The
format of the timestamp is: HH:MM:SS.mmmmmm, where “mmmmmm” is
the finest resolution that the runtime can obtain from the system. The default
setting of this variable is “0” (off, false, no).

Timestamp information is included only when file trace information is
directed to a file. Timestamp output can add significant I/O overhead and
may have a noticeable impact on performance.

filename

This configuration variable allows you to map Vision 4 and 5 files to a
different directory. Vision examines the name of each physical file it
attempts to open to determine if the file should be mapped to a different
directory. The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores.

For example, assume you open “/usr/data/custfile.dat”, and a configuration
variable “CUSTFILE_DAT” has the value “/usr2/data/custfile.dat”. Vision
treats this value as the actual file name to open, and “custfile.dat” ends up in
the “/usr2/data” directory rather than “/usr/data”.

Because the extension is included in the configuration variable name, you can
place different parts of a multi-segment file in different directories. If no
name is found for a particular segment, then the segment name is used
unchanged. Note that you can move parts of a file around by simply moving

Configuration File Variables 3-77
the segment and adding/modifying its corresponding configuration name.
Name mapping is done directly by Vision (as opposed to, for example,
FILE_PREFIX, which is handled by the runtime). As a result, all programs
that use Vision (such as vutil and vio) use this variable when present. For
programs other than the runtime, the variable must be set in the environment
rather than the configuration file.

Two configuration variables can affect the value of this variable. They are:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.
See their respective entries in this appendix for details.

This variable is similar to the filename_VERSION configuration variable
described later in this appendix.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, section 2.7.1 for
more information.

filename_DATA_FMT

This configuration variable specifies a format for naming the data segments
of Vision 4 and 5 files. (See filename_INDEX_FMT for details about
naming the index segments, as both variables should be set to corresponding
patterns). The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores, followed by the
“_DATA_FMT” string. Note that by design, this variable does not modify
the first specified data segment. The first data segment retains the originally
specified name. The filenames of the additional segments of a Vision file are
generated from the name of the initial data segment. The
filename_DATA_FMT variable allows you to change the way the names of
the following data segments are formed, but the names still originate from the
name of the initial data segment. As long as the names are as expected (and
you have set filename_DATA_FMT and filename_INDEX_FMT
accordingly) the segments will be found properly.

3-78 Runtime Configuration File
Suppose that the regular name of your COBOL file is “/usr1/gl.dat”. The
variable you would use to set the data segment naming format for this file is
GL_DAT_DATA_FMT.

The variable must be set equal to a pattern that shows how to create the
segment names. The pattern shows how to form the base name and extension
for each segment. Part of this pattern is a special escape sequence (such as
%d) that specifies how the segment number should be represented. Choices
include %d (decimal segment numbers), %x (lowercase hexadecimal
numbers), %X (uppercase hexadecimal numbers), and %o (octal numbers).

For example, setting the variable GL_DAT_DATA_FMT=gl%d.dat would
result in data segments named /usr1/gl.dat (remember that the first data
segment is not affected), /usr1/gl1.dat, /usr1/gl2.dat, and so forth.

Escape sequence definitions:

The %d in the value of the filename_DATA_FMT above is a printf-style
escape sequence. Most reference books on the C language contain an
in-depth explanation of these escape sequences, and UNIX systems typically
have a man page (“man printf”) that explains them in detail. Here are the
basics:

• “%d” expands into the decimal representation of the segment number.

• “%x” expands into the hexadecimal representation (with lower case a-f)
of the segment number.

• “%X” expands into the hexadecimal representation (with upper case
A-F) of the segment number.

• “%o” expands into the octal representation of the segment number.

• You can add leading zeros to the number (to keep all the file names the
same length) by placing a zero and a length digit between the percent
sign and the following character. “%02d” would result in “00”, “01”,
“02”, and so forth, when expanded.

• To embed a literal “%” in the file name, use “%%”.

Configuration File Variables 3-79
The escape sequence can be positioned anywhere in the file name, including
the extension.

Note: While the runtime checks for this segment naming variable in the
runtime configuration file as well as in the environment, utilities such as
vutil and vio check only the environment. Therefore, if you are using this
variable with the runtime and vio or vutil, you must set the variable in the
environment and not in the configuration file.

Two configuration variables affect the value of this variable:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.
See their respective entries in this appendix for details.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, section 2.7.1 for
more information.

filename_FILESYSTEM

filename_FILESYSTEM is a synonym for filename_HOST. See the entry
for filename_HOST.

filename_HOST

Note: filename_FILESYSTEM is a synonym for filename_HOST.

If the program opens an existing file or creates a new one, you can tell the
runtime the file system to use with that file. The Vision file interface is used
by default. You specify the file system with one of two configuration
variables: DEFAULT_FILESYSTEM, or filename_HOST (syn.
filename_FILESYSTEM). DEFAULT_FILESYSTEM specifies the default
file system for all files (see the entry for DEFAULT_FILESYSTEM).
filename_HOST specifies the file system for an individual file. For example,

filename_HOST filesystem

3-80 Runtime Configuration File
assigns the specified data file to the named file system. Any file so assigned
uses the designated file system and not the one specified by
DEFAULT_FILESYSTEM. Filename must be the base name of the file and
cannot include the path or the file extension (any part of the name that
follows the first dot (“.”). For example, to specify that data file “IDX1.DAT”
be handled by the EXTFH interface, you would specify:

IDX1_HOST EXTFH
or

IDX1_FILESYSTEM EXTFH

You must specify only the base name of the file in filename.

To specify that the data file “DXML1.DAT” be handled by the XML
interface, you could specify:

DXML1_HOST XML

Note that XML can be specified only with sequential files.

 filename_INDEX_FMT

This configuration variable specifies a format for naming the index segments
of Vision 4 and 5 files. (See filename_DATA_FMT for details about
naming the data segments, as both variables should be set to corresponding
patterns). The configuration variable used is constructed from the file’s base
name and extension, with all letters converted to upper case and all
non-alphanumeric characters converted to underscores, followed by the
“_INDEX_FMT” string. Note that by design, this variable does not modify
the first specified index segment. The first index segment retains the
originally specified name. The filenames of the additional segments of a
Vision file are generated from the name of the initial index segment. The
filename_INDEX_FMT variable allows you to change the way the names of
the following data segments are formed, but the names still originate from the
name of the initial index segment. As long as the names are as expected (and
you have set filename_DATA_FMT and filename_INDEX_FMT
accordingly) the segments will be found properly.

Suppose that the regular name of your COBOL file is “/usr1/gl.dat”. The
variable you would use to set the format for naming the file’s index segments
is GL_DAT_INDEX_FMT.

Configuration File Variables 3-81
The variable must be set equal to a pattern that shows how to create the
segment names. The pattern shows how to form the base name and how to
form the extension for each segment. Part of this pattern is a special character
(such as %d) that specifies how the segment number should be represented.
Choices include %d (decimal segment numbers), %x (lowercase
hexadecimal numbers), %X (uppercase hexadecimal numbers), and %o
(octal numbers).

For example, setting the variable GL_DAT_INDEX_FMT=gl%d.idx would
result in index segments named /usr1/gl0.idx, /usr1/gl1.idx, /usr1/gl2.idx,
and so forth.

Escape sequence definitions:

The %d in the value of the filename_INDEX_FMT above is a printf-style
escape sequence. Most reference books on the C language contain an
in-depth explanation of these escape sequences, and UNIX systems typically
have a man page (“man printf”) that explains them in detail. Here are the
basics:

• “%d” expands into the decimal representation of the segment number.

• “%x” expands into the hexadecimal representation (with lower case a-f)
of the segment number.

• “%X” expands into the hexadecimal representation (with upper case
A-F) of the segment number.

• “%o” expands into the octal representation of the segment number.

• You can add leading zeros to the number (to keep all the file names the
same length) by placing a zero and a length digit between the percent
sign and the following character. “%02d” would result in “00”, “01”,
“02”, and so forth when expanded.

• To embed a literal “%” in the file name, use “%%”.

The escape sequence can be positioned anywhere in the file name, including
the extension.

3-82 Runtime Configuration File
Note: While the runtime checks for this segment naming variable in the
runtime configuration file as well as in the environment, utilities such as
vutil and vio check only the environment. Therefore, if you are using this
variable with the runtime and vio or vutil, you must set the variable in the
environment and not in the configuration file.

Two configuration variables affect the value of this variable:
V_BASENAME_TRANSLATION and V_STRIP_DOT_EXTENSION.
See their respective entries in this appendix for details.

Note: The filename translation performed by this configuration variable is
performed by Vision itself. The runtime can also perform filename
translation. See Book 1, ACUCOBOL-GT User’s Guide, section 2.7.1 for
more information.

filename_LOG

This configuration variable specifies individual log files to be used by the
transaction logging system. The format of the variable is:

 filename_LOG logfilename

where filename is the base name of the data file, and logfilename is the name
of the log file. filename should not include any directory names nor a file
extension. logfilename can include the absolute or relative directory path
ending with the name of the log file. If the log file is not found, a new file is
created with the specified name. Note that logfilename can have remote
name notation.

FILENAME_SPACES

When this configuration variable is set to “1” (on, true, yes), filenames may
contain embedded spaces and the runtime considers the last non-space
character as the end of the name. The default is “1”. When this configuration
variable is set to “0” (off, false, no), then filenames may not contain
embedded spaces and the name terminates at the first space character. For
example:

Configuration File Variables 3-83
C:\temp dir\my file name

is read as:
C:\temp

This affects the behavior of the library routines that take a filename as an
argument:
C$CHDIR
C$COPY
C$DELETE
C$FILEINFO
C$FULLNAME
C$MAKEDIR
C$RESOURCE
CBL_COPY_FILE
CBL_CREATE_DIR
CBL_DELETE_DIR
CBL_DELETE_FILE
I$IO
RENAME
W$BITMAP
W$KEYBUF
$WINHELP
WIN$PLAYSOUND

filename_VERSION

This configuration variable sets the Vision file format on a file-by-file basis.
The filename is replaced by the base name of the file (the filename minus
directory and extension). The meaning of the variable is the same as for
“V_VERSION”. This variable is useful if you want to have all your Vision
files in one format, with a few exceptions. For example, you might want to
maintain most of your files in Vision Version 3 format to conserve file
handles, but have a few files in Version 5 format to take advantage of the
larger file size. Note that this variable only affects the file format when it is
created. You can always rebuild the file in another format later.

3-84 Runtime Configuration File
This variable (and the “V_VERSION” variable) is most helpful when you are
using transaction management. The transaction system does not record the
format of the created file if an OPEN OUTPUT is done during a transaction,
because the transaction system is not tied to any particular file system. If you
need to recover a transaction, the system will recreate the OPEN OUTPUT
files using the settings of the “VERSION” variables.

The behavior of this variable is affected by the settings of the configuration
variables V_STRIP_DOT_EXTENSION and
V_BASENAME_TRANSLATION.

• If V_STRIP_DOT_EXTENSION is set to “0” (off, false, no), Vision
does not remove any dot extension when replacing the base name of the
file. This can be useful if you have two files that share a common name
before their dot extension.

• If V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision
includes the entire path of the file in the base name. This can be useful if
you have files with the same names stored in different directories.

filesystem_DETACH

This configuration variable detaches any file system from the runtime. The
syntax is:

 filesystem_DETACH n

where filesystem corresponds to the first five letters of the file system name
and n is a non-zero value. Examples of file systems that may be detached
using this feature are:

Btrieve BTRIE_DETACH

C-ISAM C_ISA_DETACH

Informix INFOR_DETACH

SQL Server MSSQL_DETACH

ODBC ODBC_DETACH

Oracle ORACL_DETACH

RMS RMS_DETACH

Configuration File Variables 3-85
The file systems may be detached only when the runtime is started, not
during execution. If you detach all file systems, the runtime will terminate
with an error message. For example, if you detach Vision with
VISIO_DETACH on a standard runtime, the runtime will terminate with this
message to std err: No file system available.

This feature automatically supports new file systems added to the runtime.

FLUSH_ALL

This configuration variable can be used to control the flushing of file buffers
to disk. It is one of several variables that control buffer flushing. See the
other entries in this appendix that begin with “FLUSH”.

This variable can take a combination of the following values:
1 (on, true, yes, all)
0 (off, false, no)
MASS_UPDATE
REMOTE

When this variable is set to “1”, files opened for MASS-UPDATE are flushed
along with other files. This means that the local cache used to hold the
MASS-UPDATE buffers is flushed whenever the operating system cache is
flushed.

When this variable is set to the default value of “0”, files opened for
MASS-UPDATE are not flushed.

Setting this variable to MASS_UPDATE causes the runtime to flush local
files, including files opened with MASS-UPDATE.

Setting this variable to REMOTE causes the runtime to flush local files not
opened with MASS-UPDATE, as well as remote files.

You can also set this variable to a combination of values. For example,
FLUSH_ALL MASS_UPDATE REMOTE

Sybase SYBAS_DETACH

Vision VISIO_DETACH

3-86 Runtime Configuration File
causes the runtime to flush all local files, including those opened with
MASS-UPDATE, as well as remote files.

Note on bitmask integer values:

Internally, the value of this configuration variable is converted to a bitmask,
and its bitmask integer value is determined by the keywords used to set it.
Keywords translate into integer values as follows:

FALSE, NO and OFF are equivalent to “0”

MASS_UPDATE is equivalent to “1”

REMOTE is equivalent to “2”

ALL, TRUE, YES and ON are equivalent to “–1”

When the runtime is started with the “-l” and “-e errfile” arguments, only the
integer value of FLUSH_ALL is recorded in the error file.

FLUSH_COUNT

This configuration variable allows you to flush the disk buffers after a certain
number of file updates has occurred. For example, if you set this
configuration variable to “10”, then the buffers will be flushed after every ten
updates to disk files. Only indexed files are counted. When the buffers are
flushed, the exact action depends on the operating system:

Windows Buffers are written to disk and the file’s directory
information is updated. This is roughly equivalent
to the action that occurs when a file is closed.

UNIX The “sync” system routine is called. This causes all
of UNIX’s cache to be written to disk. This
operation is only scheduled--it occurs when the
system finds time to do it. Because the system does
this every 30 seconds anyway, probably the only
reason to request a call to “sync” is if you have
unreliable power.

VMS VMS does not have a system cache, so this
configuration variable has no effect.

Configuration File Variables 3-87
Note: Setting this variable to a low non-zero value will improve the
chances of recovering a file after a power failure, but will decrease
performance. If FLUSH_COUNT is set to “0”, then the system buffers are
flushed only when a file is closed. The default setting is “0”.

FLUSH_ON_ACCEPT

This configuration variable causes the system’s buffers to be flushed
whenever a Format 1 or Format 2 ACCEPT statement is executed. You turn
on this configuration variable by setting its value to “1” (on, true, yes). The
default setting is “0” (off, false, no). Note that this variable is not
recommended for multi-user systems because of the performance penalty.

FLUSH_ON_CLOSE

This configuration variable applies only to Windows systems. When this
variable is set to “1” (on, true, yes), the cache buffers will be flushed to disk
when the file is closed. Versions prior to 4.3.1 flushed the cache buffers for
safety reasons. This, however, reduced system performance, significantly in
some programs. This feature is turned “off” by default.

FLUSH_ON_COMMIT

When this configuration variable is set to “0” (off, false, no), the COMMIT
verb will not request the host operating system to flush all buffers to disk.

If flushing is prevented, COMMIT and UNLOCK ALL have the same effect.
The default setting is “0” (off, false, no).

FLUSH_ON_OPEN

This variable causes the system’s buffers to be flushed on the first WRITE,
REWRITE, or DELETE that occurs after an indexed file is opened for I/O.
The purpose of this is to update the “user count” field in the file’s header to

3-88 Runtime Configuration File
keep it accurate. When this configuration variable is set to “1” (on, true, yes),
this feature is turned on; when set to “0” (off, false, no), it’s turned off. The
default setting is “0”.

FONT

This variable has meaning only on graphical systems such as Windows. You
determine the font used for accepting and displaying data on screen by setting
the configuration variable FONT to one of these values:

This setting must be made in the configuration file before you execute the
program. Altering the value of FONT from inside your program has no
effect.

By default, data is stored on disk using the same character set that was used
when the data was entered. Thus, if you use the graphical font to accept data,
that data is stored in the ANSI character set. If you use the MS-DOS font,
then data is stored in the OEM character set.

Data moved into a graphical environment from MS-DOS applications was
originally stored in the OEM character set. What happens if you now choose
the graphical font? As long as your application uses only standard ASCII
characters, the underlying representation is the same, and so the data is
completely interchangeable. See the variable TRANSLATE_TO_ANSI if
you are using non-ASCII characters.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

1 Use the graphical font (default). The character set for this font is
referred to as the “ANSI” set.

2 Use the “OEM” character set (MS-DOS font).

Configuration File Variables 3-89
FONT_AUTO_ADJUST

This variable allows you to disable an automatic font adjustment that is
applied on Windows machines. The runtime attempts to adjust automatically
for differences in the relative proportions between “small fonts” and “large
fonts.” You can inhibit the adjustment by setting this variable to “0” (off,
false, no).

The adjustment is provided because the internal scaling of fonts under
Windows changes between “small” and “large” fonts. Under small fonts,
digits are slightly wider than the average character. Under large fonts, digits
have the same width as the average character. ACUCOBOL-GT uses the size
of the font’s width for many calculations. Thus, the change in relative
proportion within a single font can cause problems for screens designed for
the small fonts. For example, a frame may not be big enough to hold its
contents. To prevent this problem, the runtime ensures that the “standard
font measure” is always a bit larger than the average character width in a font.
To disable this adjustment, set this variable to “0”.

Note: This variable computes the width of a printer font in the same way
that the width of a screen font is computed. You can suppress this behavior
by compiling with the “-C43” option.

FONT_SIZE_ADJUST

This variable allows you to adjust the size of the standard font measurement
that is computed for graphical controls (applies to variable-pitch fonts only).
The value of FONT_SIZE_ADJUST is added directly to the computed
standard font size. For example, a setting of “1” adds one pixel to the
computed width of the font. Because the standard font measure is used to
compute the width of nearly all controls, any adjustment made by this
variable will have a significant impact on the layout of your screens.

The adjustment to the standard font measure is made after the wide font
measure is computed (this is important to note because the wide font measure
depends on the standard font measure; to change the wide font measure, use
the FONT_WIDE_SIZE_ADJUST configuration variable).

3-90 Runtime Configuration File
After applying the adjustment, the runtime checks and ensures that the
computed font measure is not less than one (1) or greater than the widest
character in the font. If you find that the default size of most controls is
slightly smaller than you prefer, you might try setting
FONT_SIZE_ADJUST to a small value (typically 1).

Generally, it is recommended that FONT_SIZE_ADJUST (and
FONT_WIDE_SIZE_ADJUST) be left at its default value of “0”. You can
also use negative values, but there is rarely a need to do so.

To optimize performance, the runtime computes the font sizes only
occasionally. Although you can change the variable dynamically at runtime,
the exact time when the new setting will take effect is difficult to predict. For
this reason, we recommend that you either set it in your program prior to
constructing your initial screen, or directly in the configuration file.

Note: This variable computes the width of a printer font in the same way
that the width of a screen font is computed. You can suppress this behavior
by compiling with the “-C43” option.

FONT_WIDE_SIZE_ADJUST

This variable allows you to adjust the size of the wide font measurement
(applies to variable-pitch fonts only). The wide font measure is normally
used when the runtime is measuring small or upper-case entry fields. The
value of FONT_WIDE_SIZE_ADJUST is added directly to the computed
wide font size.

After applying the adjustment, the runtime checks and ensures that the
computed wide font measure is not smaller than the (adjusted) standard font
measure or larger than the widest character in the font. If your upper-case
fields are not quite as wide as you prefer, try setting this variable to a small
value (typically 1 or 2).

Generally, it is recommended that FONT_WIDE_SIZE_ADJUST (and
FONT_SIZE_ADJUST) be left at its default value of “0”. You can also use
negative values, but there is rarely a need to do so.

Configuration File Variables 3-91
Note: In order to improve performance, the runtime computes the font
sizes only occasionally. Although you can change the variable dynamically
at runtime, the exact time when the new setting will take effect is difficult
to predict. For this reason, we recommend that you either set it in your
program prior to constructing your initial screen, or directly in the
configuration file.

FOREGROUND_INTENSITY

Use this variable to set the default foreground intensity.

If your program specifies a default intensity, then the runtime will never
assign high-intensity if the foreground is black. As with the background, we
do this to prevent a washed-out appearance. There’s one exception to this
rule. The runtime will assign high-intensity to a black foreground if the
output device does not support independent background intensities. In this
case, the device will typically show the background in high-intensity and
keep the foreground black. Note that if your program explicitly sets
high-intensity, then that will be used regardless of the foreground color. The
default value for this variable is “0”.

FREEZE_AX_EVENTS

This configuration variable applies only in a thin client environment. During
the processing of an ActiveX event, the Windows and thin client runtimes
attempt to suspend subsequent ActiveX events until the first event has
completed. By default, the thin client runtime also attempts to suspend
ActiveX events whenever the application is not processing an ACCEPT
statement. To suspend and resume events, the runtime calls the ActiveX
function IOleControl::FreezeEvents().

0 The runtime uses the default intensity for the output device. For
Windows the default is low-intensity.

1 The runtime uses low-intensity.

2 The runtime uses high-intensity.

3-92 Runtime Configuration File
You might want to disable calls to “FreezeEvents” for ActiveX controls that
discard events while in a “FreezeEvents” state. For example, if a user
double-clicks in an ActiveX control, the control might generate three events:
mouse-down, mouse-up, and double-click. If the COBOL program
terminates an ACCEPT statement in response to the mouse-down event, the
runtime calls FreezeEvents(), and the ActiveX control might discard the
mouse-up and double-click events.

You can disable the FreezeEvents() logic by setting the
FREEZE_AX_EVENTS runtime configuration variable to “0” (off, false,
no) in the configuration file or programmatically with the SET verb. The
default value of FREEZE_AX_EVENTS is “1” (on, true, yes).

Note: The FreezeEvents() logic protects against unexpected nesting of
ActiveX events and against event procedures running unexpectedly during
a CREATE, DISPLAY, MODIFY, INQUIRE, or other operation that waits
for results from the thin client. Turning this feature off can cause
unexpected behavior.

For more information about ActiveX controls in a thin client environment,
refer to the AcuConnect User’s Guide.

FULL_BOXES

This variable applies only in text-mode environments. When FULL_BOXES
is set to “1” (on, true, yes) a full, four-sided box is drawn around boxed entry
fields. By default, to save screen space on character-based systems, only the
left and right edges of a box are drawn around boxed entry fields. The default
value of FULL_BOXES is “0” (off, false, no).

Note: This variable requires that the boxed entry field be defined as
MULTILINE.

Configuration File Variables 3-93
GRID_BUTTONS_CAUSE_GOTO

This variable applies to graphical programs that include one or more paged
grid controls. When GRID_BUTTONS_CAUSE_GOTO is set to “1” (on,
true, yes) and a user clicks a scroll button on the side of a paged grid, the
runtime checks to see if the grid has focus. If the grid does not have focus,
the runtime gives the grid the focus, generating any events that result
normally from that focus change. This usually means that a CMD-GOTO
event is sent to the COBOL program. The default value for this variable is
“0” (off, false, no).

GRID_NO_CELL_DRAG

This variable applies to graphical programs that include grid controls and sets
the NO-CELL-DRAG style as the default behavior for all grid controls, as
opposed to specifying NO-CELL-DRAG style individually for each grid
control. To configure the NO-CELL-DRAG style as the default setting, set
the GRID_NO_CELL_DRAG configuration variable to “1” (on, true, yes).
The default value is “0” (off, false, no) and will enable the user to drag a cell
in a GRID control unless you specify a NO-CELL-DRAG style on that
particular grid control.

GUI_CHARS

 This variable configures a character-based host runtime to substitute some
specific characters when it is performing textual emulation of graphical
controls. If the GF-GUI-MAP terminal database entry doesn’t exist or has
the character “0” (zero) in a particular character’s position, the runtime
examines the GUI_CHARS variable to determine what character to display.
GUI_CHARS is used only by character-based host runtimes.

The value of GUI_CHARS is a list of 14 space delimited characters strictly
ordered to correspond with the following graphical elements (defaults are in
parentheses):

1. System menu button (*)

2. Title left corner (+)

3. Title right corner (+)

3-94 Runtime Configuration File
The characters may be specified in ASCII or decimal form. To specify an
ASCII value, precede the value with a space. For example, to use “-” in place
of “=” for the title fill character, make the following entry in the runtime
configuration file:

GUI_CHARS 0 0 0 - 0 0 0 0 0 0 0 0 0 0

or
GUI_CHARS 0 0 0 -

The presence of a “0” (zero) following a space, causes the default character
to be used.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

HELP_PROGRAM

If the program uses help automation (see Book 2, ACUCOBOL-GT User
Interface Programming, Chapter 10), this variable should be assigned the
name of the help processor program. The help processor’s entry point is
always a COBOL program. The program can be the help processor itself, or
a shell to some other help processor, such as Windows Help. The default
value of HELP_PROGRAM is “AcuHelp”.

4. Title fill character (=)

5. Minimizer (.)

6. Maximizer (^)

7. Scroll bar up button (^)

8. Scroll bar down button (v)

9. Scroll bar left button (<)

10. Scroll bar right button (>)

11. Scroll bar page area ()

12. Scroll bar slider (#)

13. Left entry field box ([)

14. Right entry field box (])

Configuration File Variables 3-95
HINTS_OFF

Controls how long the pop-up hint is displayed before being erased. See
section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming for
a description of pop-up hints. Set this variable to the number of hundredths
of seconds to display the hint. The default value is “400” (four seconds). If
you set this value to “0”, the hint will remain displayed until some other event
(such as using the button or typing) causes it to disappear.

HINTS_ON

Controls how long the mouse must remain stationary over a bitmap button
before displaying its pop-up hint. For a description of pop-up hints, see
section 3.7.4 in Book 2, ACUCOBOL-GT User Interface Programming. Set
this variable to the number of hundredths of a second that the mouse must be
stationary. The default value is “75” (three-quarters of a second). If you set
this variable to “0”, pop-up hints will not be displayed. Setting this variable
to “1” or “2” is not recommended because it may result in the pop-up hint
being displayed while the mouse is moving across the button face (because
the mouse motion events may occur less than 0.02 seconds apart).

HOT_KEY

ACUCOBOL-GT offers two methods for assigning hot keys--the HOT_KEY
variable, described here, and the KEYSTROKE hot-key format described in
the ACUCOBOL-GT User’s Guide, section 4.3.2.2.

Using the HOT_KEY variable described below, you can easily assign a
whole range of keys to a single hot-key program and determine which key
activated the program. This lets you write a single program that handles an
entire menu. Each menu item can act as a “hot key” to call this program.

This HOT_KEY format differs from the KEYSTROKE hot-key described in
the User’s Guide in three ways:

• You assign a hot key by referencing its exception value instead of
referencing its key code. Thus, if you assign the same exception value to
several individual keys, you can associate these keys with the same
hot-key program by making one COBOL configuration file entry.

3-96 Runtime Configuration File
Similarly, menu items and individual keys can be assigned the same
exception value, and then associated with the same hot-key program in a
single configuration file entry.

• You may assign a range of exception values to activate the same
program. You could use this to write a menu handler by assigning all of
your menu items to a unique range and then assigning that range to a
single hot-key program.

• A hot-key program activated using the HOT_KEY format is passed an
additional parameter. This third parameter contains the value of the
exception key that activated the program. This is passed as a COMP-1
data item.

Use this variable to associate an exception value, or range of values, with a
program. HOT_KEY has the following format:

HOT_KEY program = value1 [, value2]

where program is the name of the program to run, value1 is the lower (or
only) exception value that activates the program, and value2 is the upper
value of the activation range. Value2 may be omitted; if it’s used it must
include the separating comma. You must place program in single or double
quotes if you require a lower-case program name.

For example, to assign a program called “mymenu” to exception values 100
through 200, use the following entry:

HOT_KEY “mymenu” = 100, 200

A special exception value named TIMEOUT may be specified as the first
exception value. When this value is used as the first exception value for a
HOT_KEY program, the runtime will execute the named program whenever
an ACCEPT BEFORE TIME times out. When that occurs, the second
exception value is ignored.

Remote name notation is allowed for the HOT_KEY variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and
5.2.2 for more information about client-enabled runtimes and remote name
notation.

Configuration File Variables 3-97
Multiple HOT_KEY entries may reference the same program. This allows
you to specify noncontiguous activation ranges. (Be aware that no more than
16 hot-key entries can be included in the COBOL configuration file. Using a
contiguous range of exception values assigns many keys while counting as
only one entry towards the limit.)

If you specify a value1 value of “0”, then all hot-key references to program
are removed. Within a given run unit, this is the only way to remove the
assignment of an exception value to a hot-key program after it has been
assigned. You will probably use SET ENVIRONMENT in your source code
to do this.

If you assign multiple hot-key programs to the same exception value, the
results are undefined.

You may assign different hot keys using both the HOT_KEY variable,
described here, and the KEYSTROKE hot-key format described in the
ACUCOBOL-GT User’s Guide, section 4.3.2.2. The results are undefined if
you assign the same key using both formats. The total number of hot-key
entries defined by both methods cannot exceed 16.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

HP_TERMINAL_ATTRIBUTE_HANDLING

When set to “1” (on, true, yes), if the previous character was written to a line
other than the current one this variable causes the runtime to set the attribute
for the character to be written even if the attribute has not changed. When set
to “0” (off, false, no), this variable causes the runtime to behave as it always
has. For example, if the terminal attribute has not changed then it will not be
set again. The default setting is “0” (off, false, no).

3-98 Runtime Configuration File
HTML_TEMPLATE_PREFIX

This variable is used to specify a series of directories for locating HTML
template files. This variable is similar to FILE_PREFIX and
CODE_PREFIX. It specifies a series of one or more directories to be
searched for the desired HTML template file. The directories are specified as
a sequence of space-delimited prefixes to be applied to the file name. All
directories in the sequence must be valid names. The current directory can be
indicated by a period (regardless of the host operating system). This is the
default.

Note: Remote name notation is not allowed for the
HTML_TEMPLATE_PREFIX variable, even if your runtime is
client-enabled.

ICOBOL_FILE_SEMANTICS

This variable affects the behavior of indexed and relative files when
reversing direction after reading past the beginning or end of a file.
Normally, if you perform a series of READ NEXTs that reach to the end of
the file (returning file status “10”), a subsequent READ PREVIOUS will
return the last record in the file. The file pointer’s position after each READ
NEXT is just past the end of the last record. Similarly, reading past the
beginning of the file and then doing a READ NEXT will return the first
record in the file.

Under ICOBOL, these conditions produce different results. The record
returned by the READ PREVIOUS is the second-to-last record in the file,
and the record returned by the READ NEXT is the second record in the file.
Essentially, when a series of READs passes either end of the file, the record
pointer remains on the first or last record.

Setting ICOBOL_FILE_SEMANTICS to “1” (on, true, yes) will cause the
runtime to emulate ICOBOL’s handling. This is useful when porting
ICOBOL programs to ACUCOBOL-GT. This option is effective only in
programs that have been compiled for ACUCOBOL-85 2.0, or later. The
default value is “0” (off, false, no).

Configuration File Variables 3-99
ICON

This variable has meaning only on graphical systems such as Windows. Use
this variable to designate a program’s minimized icon. (By default, it uses the
non-debugger icon provided with ACUCOBOL-GT.) Set ICON to the name
of the file that contains the icon. This file should be an “.ICO” file that
contains a 16-color icon. (Although the file may contain icons in other
formats, the runtime accesses only the 16-color icon.) The icon should be
created using an icon editor like the one in the Windows Software
Development Kit.

For example, if your custom icon were contained in the file
“PAYROLL.ICO” in the directory \ACCT\ICONS, you would add the
following line to your COBOL configuration file:

ICON \ACCT\ICONS\PAYROLL.ICO

The maximum icon size that can be used with the ICON variable is 32 x 32
bits. The runtime uses the first icon it finds in the icon file that fits its
maximum. If that icon is larger than the maximum, a memory access
violation may occur.

Note: The ICON configuration variable determines the icon used only
when your application is minimized. It does not determine the icon
displayed by the Program Manager.

IMPORT_USES_CELL_SIZE

This variable is used when importing graphical screens into the AcuBench
Screen Designer using the screen import utility.
IMPORT_USES_CELL_SIZE allows you to choose whether fields are
measured using the actual cell size of the imported screen or measured in
10-pixel by 10-pixel cells. The runtime checks this variable only if you are
importing screens. When IMPORT_USES_CELL_SIZE is set to the default
value of “1” (on, true, yes), the screen import utility captures the actual cell
size used to create windows. If this variable is set to “0” (off, false, no), the
screen import utility outputs information based on 10-pixel by 10-pixel cells.
Note that there is no need to set this variable when importing character
screens, which should always import with a cell size of 10-pixel by 10-pixel
cells. See the AcuBench documentation for more information on importing
screens.

3-100 Runtime Configuration File
INACTIVE_BORDER_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of the characters that form the border (box) around an inactive
floating window. INACTIVE_BORDER_COLOR can be set to a variety of
numeric values that express combinations of color and video attributes. See
the documentation for the COLOR phrase in the “Common Screen Options”
section of the ACUCOBOL-GT Reference Manual (section 6.4.9).

If INACTIVE_BORDER_COLOR is set to “0”, the inactive window’s
border is drawn with the colors and video attributes specified in the COBOL
program when the window is first created. The default value is “0”.

INCLUDE_PGM_INFO

This variable causes additional program information to be added to the string
passed to COBOL error procedures.

When INCLUDE_PGM_INFO is set to “1” (on, true, yes) the string passed
to COBOL error procedures is prepended with the current program name and
the address of the program failure. The address may not be exactly the same
as that in the COBOL listing, but it will be very close. (The given address is
the actual current program counter, which is typically slightly advanced from
the line on which the fault occurred.) When INCLUDE_PGM_INFO is set
to the default, “0” (off, false, no), the string contains only the text of the
intermediate error message.

For more about COBOL error procedures, see the entry for the
CBL_ERROR_PROC in Appendix I of the ACUCOBOL-GT Appendices
Manual.

INPUT_STATUS_DEFAULT

The value of this variable is returned when an ACCEPT FROM INPUT
STATUS statement is executed on a machine that cannot determine the input
status of the terminal. This can be used to make a running program behave
correctly on a new machine. The value must be a single digit. The default
value is “0”.

Configuration File Variables 3-101
If the input is redirected (not attached to a terminal), the SCRIPT_STATUS
configuration variable determines whether ACCEPT FROM INPUT
STATUS returns the value of INPUT_STATUS_DEFAULT or returns the
actual status of the input file.

INSERT_MODE

This variable determines whether or not keystrokes are inserted in front of
any existing text when the user types an entry. Set this variable to “1” (on,
true, yes) to enable insertion. The default value is “0” (off, false, no), which
causes typing to replace existing text.

The user can change the state of INSERT_MODE with various key actions.
For example, pressing <insert> can enable insertion. This variable has no
affect on Windows controls.

INTENSITY_FLAGS

This variable takes effect only if you use COLOR_TRANS and only if it
changes your color scheme. After any color transformation is completed, the
runtime system then transforms the foreground and background intensities
according to the setting of INTENSITY_FLAGS. The value for this variable
is actually the sum of the values you choose from the list below. The default
value is “0”.

Set INTENSITY_FLAGS to a combination of the following options by
adding their values together:

1 Exchanges the foreground and background intensities for each
other. This is useful if you are swapping a black background into
the foreground and want to assign the foreground’s intensity to
the background.

2 Causes the foreground intensity to be inverted. That is, if the
foreground is high-intensity, it becomes low-intensity.
Otherwise, it becomes high-intensity. This is useful if you are
transforming the background to white and the foreground to
black. Setting this will cause your low-intensity foreground to be
shown as gray while your high-intensity item will show as black.

3-102 Runtime Configuration File
These transformations are performed in the order listed above. After this
variable is applied, the COLOR_TABLE setting is applied to the program.

IO_CREATES

Setting this configuration variable to a “1” (on, true, yes) causes the runtime
system to create a relative or indexed file when the program attempts to open
a nonexistent file for I-O. This is provided for compatibility with some other
COBOL systems. The default value is “0” (off, false, no).

IO_FLUSH_COUNT

Use this variable to specify how often the runtime should flush pending
screen output during file operations. When set to a positive value, the
variable indicates the number of file operations to perform between each
screen flush. By default, IO_FLUSH_COUNT is set to 20.

4 Forces the foreground to high-intensity. This will not be applied
to a black foreground.

8 Forces the foreground to low-intensity. This may not be used if
“4” is used.

16 Causes the “4” or “8” setting to be used even if the
COLOR_TRANS setting had no effect. This is an override
switch that you can use to cause all foreground intensities to be
set to high or low.

32 Forces the background to high-intensity. This will not be applied
to a black background.

64 Forces the background to low-intensity. This may not be used if
“32” is used.

128 Forces the background to high-intensity, but only if it is black.
This may be used in conjunction with setting “32” or “64” for
special effects.

256 Causes the “32”, “64”, or “128” setting to be used even if the
COLOR_TRANS setting had no effect.

Configuration File Variables 3-103
For optimal performance, set IO_FLUSH_COUNT to zero (“0”). When
IO_FLUSH_COUNT is set to zero, COBOL file verbs will not automatically
flush pending screen output.

To reduce unexpected screen behavior, however, leave this variable at its
default setting. The overhead at the default setting is small.

IO_READ_LOCK_TEST

When this variable is set to “1” (on, true, yes), the runtime will cause a read
with no lock to fail if the file is opened for I-O and the record is locked. This
setting will work with Vision files only. The setting is provided for
compatibility with some other COBOL systems. The default value is “0”
(off, false, no). The default behavior is to allow the read to succeed.

IO_SWITCH_PERIOD

The value of this variable affects the frequency with which the program’s
threads change control based on file IO activity. After a thread performs the
value of IO_SWITCH_PERIOD operations, the runtime switches control to
another thread (if one exists). Note that because thread switching is also
affected by other program operations (such as display I/O), it is impossible to
predict or absolutely control when a thread will change control.

The default value of IO_SWITCH_PERIOD is “10”. This value will provide
good results with most applications. To produce behavior that more closely
imitates that of Versions 6.1 and earlier, set IO_SWITCH_PERIOD to “1”.
Zero and negative values are invalid and will result in undefined behavior.

ISOLATE_FILE_CREATES

It is possible to experience unexpected file errors when trying to create a file
if another process is simultaneously creating or removing the same file name.
Setting ISOLATE_FILE_CREATES to “1” (on, true, yes) causes files to be
created with temporary names and then renamed when they are fully formed.
This prevents another process from interfering with the creation. This option
is effective only with Vision, and has undefined effects when used with other
file systems. We recommend that you use this option only if you are
experiencing unexpected errors when trying to create a file.

3-104 Runtime Configuration File
JAVA_LIBRARY_NAME

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. In this variable, specify the name of the DLL
that exports the Java Native Interface (JNI) API for loading the JVM. In the
case of JRE 1.4.2_04, the file is called “jvm.dll” or “libjvm.so”. If the path
to the DLL is in the Path environment variable, the filename is sufficient
here; otherwise, this name should be fully qualified with the path.

For details on the C$JAVA routine, see Appendix I. For information on
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to
Interoperating with ACUCOBOL-GT.

JAVA_OPTIONS

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. In this variable, specify the command-line
options that you want passed to the JVM when it is started.

Note that both CLASSPATH (java.class.path system property) and the
java.library.path must be configured in order for C$JAVA to locate the Java
class to run. The CLASSPATH is the location of “.jar” or “.class” files. The
java.library.path is the location DLLs or shared objects that are required
either by the runtime or by the Java Virtual Machine (JVM).

If these properties are not set in the environment, use JAVA_OPTIONS to set
CLASSPATH and java.library.path. For example:
JAVA_OPTIONS=”-Djava.library.path="c:\usr\lib" -Xms128m
-Xmx128m -classpath /java/MyClasses/myclasses.jar”

JUSTIFY_NUM_FIELDS

When this variable is set to “1” (on, true, yes), all entry fields that have a
numeric or numeric-edited VALUE data item associated with them are right
justified (the same as if the RIGHT style were specified). You can inhibit this
for a given field by specifying the LEFT style for the entry field. Note that
this variable is examined only when each entry field is created and has no
further effect. The default value is “0” (off, false, no).

Configuration File Variables 3-105
KBD

These variables can be used in conjunction with the KEYBOARD variable to
set global terminal attributes. For details, see the ACUCOBOL-GT User’s
Guide, section 4.3.2.1, “KEYBOARD variable.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

KEY_MAP

This is an obsolete variable that has been replaced by the KEYSTROKE
configuration variable. Its setting is ignored.

KEYBOARD

This variable sets global terminal attributes. For details, see the
ACUCOBOL-GT User’s Guide, section 4.3.2.1, “KEYBOARD variable.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

KEYSTROKE

This variable redefines the action of a particular keystroke. It can also
control mouse handling. For details on redefinition of keystrokes, see section
4.3.2.2 in Book 1, ACUCOBOL-GT User’s Guide. Information on mouse
handling is provided in Chapter 7 in Book 2, ACUCOBOL-GT User
Interface Programming.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

3-106 Runtime Configuration File
LC_ALL

This variable supports the transfer of double-byte character variables and
string literals and has meaning only on 32-bit Windows systems that support
double-byte characters (e.g., Asian Windows machines). It should not be set
in other environments and is needed only if you are passing data to a COBOL
program from another language, such as Visual Basic, and are using
C$GETVARIANT or C$SETVARIANT. By using the LC_ALL
configuration variable, you cause the runtime to set the locale to a particular
value. You do not need to set this variable on Japanese machines. The
runtime automatically detects Japanese versions of Windows and
automatically sets the locale, LC_ALL, to “Japanese_Japan.932”.

The default value for this variable is “C”. The C locale assumes that all
characters are 1 byte and that their value is always less than 256. The value
of LC_ALL is in the format:

language[_country[.code_page]]

or
.code_page

where “language” is one of the supported language strings, “country” is one
of the supported country or region strings, and “code_page” is the Windows
code page setting for the language and country. “country” and “code_page”
are optional. For example, the following are all equivalent:

LC_ALL Japanese
LC_ALL Japanese_Japan
LC_ALL Japanese_Japan.932
LC_ALL .932

For Korean double-byte character support under Windows use:
LC_ALL Korean

For Chinese use:
LC_ALL Chinese

or
LC_ALL Chinese-simplified

Configuration File Variables 3-107
or
LC_ALL Chinese-traditional

The following are the supported language strings:

Chinese Chinese “chinese”

Chinese Chinese (simplified) “chinese-simplified” or “chs”

Chinese Chinese (traditional) “chinese-traditional” or “cht”

Czech Czech “csy” or “czech”

Danish Danish “dan” or “danish”

Dutch Dutch (Belgian) “belgian”, “dutch-belgian”, or “nlb”

Dutch Dutch (default) “dutch” or “nld”

English English (Australian) “australian”, “ena”, or “english-aus”

English English (Canadian) “canadian”, “enc”, or “english-can”

English English (default) “english”

English English (New Zealand) “english-nz” or “enz”

English English (UK) “eng”, “english-uk”, or “uk”

English English (USA) “american”, “american english”,
“american-english”,
“english-american”, “english-us”,
“english-usa”, “enu”, “us”, or “usa”

Finnish Finnish “fin” or “finnish”

French French (Belgian) “frb” or “french-belgian”

French French (Canadian) “frc” or “french-canadian”

French French (default) “fra” or “french”

French French (Swiss) “french-swiss” or “frs”

German German (Austrian) “dea” or “german-austrian”

German German (default) “deu” or “german”

German German (Swiss) “des”, “german-swiss”, or “swiss”

Greek Greek “ell” or “greek”

3-108 Runtime Configuration File
The following are the supported country/region strings:

Hungarian Hungarian “hun” or “hungarian”

Icelandic Icelandic “icelandic” or “isl”

Italian Italian (default) “ita” or “italian”

Italian Italian (Swiss) “italian-swiss” or “its”

Japanese Japanese “japanese” or “jpn”

Korean Korean “kor” or “korean”

Norwegian Norwegian (Bokmal) “nor” or “norwegian-bokmal”

Norwegian Norwegian (default) “norwegian”

Norwegian Norwegian (Nynorsk) “non” or “norwegian-nynorsk”

Polish Polish “plk” or “polish”

Portuguese Portuguese (Brazilian) “portuguese-brazilian” or “ptb”

Portuguese Portuguese (default) “portuguese” or “ptg”

Russian Russian (default) “rus” or “russian”

Slovak Slovak “sky” or “slovak”

Spanish Spanish (default) “esp” or “spanish”

Spanish Spanish (Mexican) “esm” or “spanish-mexican”

Spanish Spanish (Modern) “esn” or “spanish-modern”

Swedish Swedish “sve” or “swedish”

Turkish Turkish “trk” or “turkish”

Australia “aus” or “australia”

Austria “austria” or “aut”

Belgium “bel” or “belgium”

Brazil “bra” or “brazil”

Canada “can” or “canada”

Czech Republic “cze” or “czech”

Denmark “denmark” or “dnk”

Finland “fin” or “finland”

Configuration File Variables 3-109
France “fra” or “france”

Germany “deu” or “germany”

Greece “grc” or “greece”

Hong Kong “hkg”, “hong kong”, or “hong-kong”

Hungary “hun” or “hungary”

Iceland “iceland” or “isl”

Ireland “ireland” or “irl”

Italy “ita” or “italy”

Japan “japan” or “jpn”

Mexico “mex” or “mexico”

Netherlands “nld”, “holland”, or “netherlands”

New Zealand “new zealand”, “new-zealand”, “nz”, or “nzl”

Norway “nor” or “norway”

Peoples Republic of
China

“china”, “chn”, “pr china”, or “pr-china”

Poland “pol” or “poland”

Portugal “prt” or “portugal”

Russia “rus” or “russia”

Singapore “sgp” or “singapore”

Slovak Republic “svk” or “slovak”

South Korea “kor”, “korea”, “south korea”, or “south-korea”

Spain “esp” or “spain”

Sweden “swe” or “sweden”

Switzerland “che” or “switzerland”

Taiwan “taiwan” or “twn”

Turkey “tur” or “turkey”

United Kingdom “britain”, “england”, “gbr”, “great britain”,”uk”, “united
kingdom”, or “united-kingdom”

United States of
America

“america”, “united states”, “united-states”, “us”, or “usa”

3-110 Runtime Configuration File
LICENSE_ERROR_MESSAGE_BOX

This configuration variable prevents acushare licensing errors from
appearing in a message box, which requires a response from the user. The
error messages will instead go to the error output (stderr, or an error file if one
is specified). Set LICENSE_ERROR_MESSAGE_BOX to 0 to prevent
these messages from appearing in a message box. The default value is 1,
which allows these messages to appear in a message box.

LISTS_UNBOXED

Meaningful only in character-based environments, this variable indicates
whether list boxes should be boxed (set to a value of “0”, off, false or no) or
unboxed (set to a value of “1”, on, true or yes). The default setting is “0”.

LITERAL_ENTRY

This variable can be used to loosen the literal match restrictions of ENTRY
point name matching logic. By default, the matching logic is case sensitive
and distinguishes between hyphens and underscores. Setting
LITERAL_ENTRY to “0” (off, false, no) causes the runtime to handle
ENTRY point name matching with case insensitivity (upper and lower case
equivalent) and to treat hyphens and underscores (“-”, “_”) as equivalent.
The default value is “1” (on, true, yes).

LOCK_DIR

When set, this controls automatic device locking on UNIX systems. This is
described in section 6.1.5 of the ACUCOBOL-GT User’s Guide. The default
value is empty.

Configuration File Variables 3-111
LOCK_OUTPUT

When set to a “1” (on, true, yes), this configuration variable causes all files
open for OUTPUT to be locked for exclusive use. Setting this can
dramatically improve performance on VMS machines. Some other COBOL
systems lock files that are open for OUTPUT. The default value is “0” (off,
false, no).

LOCK_SORT

When this configuration variable is set to a “1” (on, true, yes), input files to
the SORT verb are opened for INPUT ALLOWING READERS. This can
improve the performance of the SORT verb slightly and also ensure that the
data being sorted is not modified. The default value is “0” (off, false, no).

LOCKING_RETRIES

This configuration variable is designed for Windows 98 systems. It gives
you some control over situations where a user must wait for access to a
shared file. The runtime will try repeatedly to acquire the file lock, up to 400
times by default. Set this variable to the number of attempts you would like
the runtime to make to acquire the file lock.

LOCKS_PER_FILE

This value determines the maximum number of record locks that can be held
on a file by a single process. This value affects only the files that are
maintaining multiple record locks. The default setting is “10”. The
maximum value is 32767 for Vision files. Setting this variable to its
maximum value can waste resources and is not recommended.

Note: If you increase the value of LOCKS_PER_FILE, you may wish to
increase the value of MAX_LOCKS as well.

3-112 Runtime Configuration File
LOG_BUFFER_SIZE

This sets the maximum buffer size, in bytes, for the transaction log file.
Acceptable values are from “0” to “32767”. LOG_BUFFER_SIZE is
examined before each write to the log file. Its default value is “512”. If
LOG_BUFFER_SIZE is set to “0”, then writes to the log file are synchronous
(unbuffered). This value can also be set inside a COBOL program with the
SET ENVIRONMENT verb.

LOG_DEVICE

Setting this value to “1” (on, true, yes) causes the transaction management
system to assume that the log file is actually a device, rather than a file. This
means that a special device locking method will be used on the log file (see
the ACUCOBOL-GT User’s Guide section 6.1.5, “Device Locking Under
UNIX”). It also guarantees that the log file will be opened “append” and that
no seeks will be performed on it. This allows for the use of a tape device for
the log file on many systems. The default setting is “0” (off, false, no).

LOG_DIR

This variable allows you to specify a directory to be used for holding the
temporary files generated by the transaction management system. The value
of LOG_DIR is treated as a prefix, much like FILE_PREFIX. If no directory
is specified, temporary files are placed in the current directory.

Note: In general, you should not use remote name notation in the
LOG_DIR variable. Although remote name notation is allowed for the
LOG_DIR variable, it is not advisable to place temporary files on a remote
server.

LOG_ENCRYPTION

If this value is set to “1” (on, true, yes), record images are encrypted before
they are written to the transaction log file. The default setting is “0” (off,
false, no).

Configuration File Variables 3-113
LOG_FILE

This identifies the name of the default log file for transaction management.
The default log file is opened at the beginning of the first transaction unless
NO_LOG_FILE_OK is set to “1.” If it does not exist, it is created. This
variable can be set programmatically with the SET ENVIRONMENT verb.
The default setting is empty. Unless you have set NO_LOG_FILE_OK to
“1”, you must set the LOG_FILE variable if you want to use transaction
management.

Remote name notation is allowed for the LOG_FILE variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and
5.2.2 for more information about client-enabled runtimes and remote name
notation.

LOGGING

Setting this variable to “0” (off, false, no) disables the logging of file updates
to the log file. This means that the data file recovery process (using the
library routine C$RECOVER) is impossible. However, because rollback
information is maintained internally by the runtime, the program can still use
the transaction management system to START, COMMIT, and ROLLBACK
transactions. This variable can be set programmatically with the SET
ENVIRONMENT verb. The default setting is “1” (on, true, yes).

LOGICAL_CANCELS

This variable is used to enable logical cancels. Logical cancels reduce
CALL overhead and can, as a result, improve performance. Cancels, both
logical and physical (the default), are initiated by the CANCEL verb or
through a function of the C interface. A discussion of memory management
and physical and logical cancels is located in section 6.3, “Memory
Management,” in Book 1. A description of the CANCEL verb is located in
section 6.6 of Book 3.

3-114 Runtime Configuration File
LOGICAL_CANCELS can be set to the following values:

LOGICAL_CANCELS is used in conjunction with the
DYNAMIC_MEMORY_LIMIT configuration variable, which specifies
the size of the dynamic memory pool for programs. See its entry in this
appendix.

MAKE_ZERO

When set to a “1” (on, true, yes), this configuration variable causes a numeric
data item that contains non-numeric data to be treated as zero when that item
is used in a numeric statement. Setting the value to “0” (off, false, no) causes
the item to be treated “as is” with whatever effects that will have. The default
value is “1” (on, true, yes).

MASS_UPDATE

When set to “1” (on, true, yes), this variable causes all OPEN...WITH LOCK
statements to be treated as if they were written OPEN...WITH
MASS_UPDATE. This does not apply to OPEN INPUT, however. Setting
this configuration variable will improve file performance for applications
that lock files, but may lead to file corruption if the program is killed before
it completes. For more information on this topic, see the ACUCOBOL-GT
User’s Guide, section 6.1.6 “Indexed File Considerations.” The default
value is “0” (off, false, no).

-1 (default) all cancels are physical cancels except for programs called from
CICS that have the “Resident” attribute set to TRUE.

0 all cancels are physical cancels. Cancels of programs called with
the C interface are treated as physical cancels even if the “cache”
field is set to “1”.

1 all cancels are logical cancels. Cancels of programs called with the
C interface are treated as logical cancels even if the “cache” field is
set to “0”.

Configuration File Variables 3-115
MAX_ERROR_AND_EXIT_PROCS

This variable sets the maximum number of error and exit procedures that a
program can install or call. The default is 64. If the limit is exceeded,
program execution is aborted. For more information about error and exit
procedures, see Error and Exit Procedures, CBL_ERROR_PROC,
CBL_EXIT_PROC, and CBL_GET_EXIT_INFO in Appendix I of the
ACUCOBOL-GT Appendices Manual.

MAX_ERROR_LINES

This variable sets the maximum number of lines that can be included in the
error file. It’s especially useful when you are using the file trace function of
the debugger. When the size of the error file reaches the number of lines
specified in this variable, the error file is rewound to its beginning, and
subsequent lines of output overwrite existing lines in the file. For example,
if you set the maximum to 300, then lines 301 and 302 would overwrite lines
1 and 2 in the file. Note that there is an upper limit of 32767, setting a larger
number causes odd behavior. The default value is “0”, which means do not
limit the size of the file.

When using the “-l” runtime option (which causes the configuration settings
to be logged in the trace file) the trace file wraps to the line below the
MAX_ERROR_LINES entry. For this reason, MAX_ERROR_LINES
should be the last entry in the runtime configuration file

To help you locate the end of the file, the message “*** End of log ***” is
output whenever the runtime shuts down. Line numbers are included in each
line of the file, in columns one through seven.

This variable is not available on VMS systems.

3-116 Runtime Configuration File
MAX_FILES

This variable sets the maximum number of files that can be opened by the
runtime system. The default value is “32”. Keeping this value small
conserves memory. Many operating systems limit the number of files that
can be opened by a single process, so you may have to make some
adjustments there too. The maximum value of MAX_FILES is 32767.

MAX_LOCKS

This value sets the maximum number of record locks that can be held by the
runtime system for all of the files together. The default value matches the
setting of MAX_FILES. Many operating systems also have limits on the
number of record locks that can be held, so you may have to make
adjustments there too. The maximum value is 32767 for Vision files. Setting
this variable to its maximum value can waste resources and is not
recommended.

Note: If you change the value of MAX_LOCKS, you should consider
changing the value of LOCKS_PER_FILE as well.

MENU_ITEM

This variable affects the behavior of pull-down menus.

The default action of a menu item is to return an exception value equal to the
item’s ID. You can change the default action of a particular item by using
MENU_ITEM.

Use MENU_ITEM in the same fashion as the KEYSTROKE variable, except
that the last entry on the line is the menu’s ID, not the key code. For example,
to cause a menu item whose ID is “200” to act the same as the Delete key, use
the following:

MENU_ITEM Edit=Delete 200

Configuration File Variables 3-117
Alternately, you could cause menu item “200” to call the “notepad” sample
program by using:

MENU_ITEM Hot_Key=“notepad” 200

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

MESSAGE_BOX_COLOR

This variable is used on character-based hosts to specify the color and video
attributes of characters displayed in a message box window.
MESSAGE_BOX_COLOR can be set to a variety of numeric values that
express combinations of color and video attributes. See the documentation
for the COLOR phrase in the “Common Screen Options” section of the
ACUCOBOL-GT Reference Manual (section 6.4.9).

If MESSAGE_BOX_COLOR is set to “0” (the default value), the message
box is displayed with the default window colors and attributes.

MESSAGE_QUEUE_SIZE

This variable sets the initial size of the message queue, in bytes. The message
queue is dynamically resized, as needed, to hold large messages. However,
it is not resized to hold multiple messages (instead, the sending threads wait
until the queue empties). Setting the value larger than the default will allow
more messages to be queued. Setting it to a smaller value will allow fewer
messages to be queued and conserves memory. The default size is 32767.

MIN_REC_SIZE

This configuration variable sets the minimum record size for print records,
and for line sequential files for which trailing space removal has been
specified. The default value is “1”. If set to “0”, then a record will be
reduced to zero size (except for the line delimiter) if the line is blank. You
may also set MIN_REC_SIZE to higher values to establish a minimum
record size other than one.

3-118 Runtime Configuration File
MONOCHROME

When set to “1” (on, true, yes), this configuration variable disables color
output for machines with graphics video cards. The default value is “0” (off,
false, no).

ACUCOBOL-GT assumes that machines with graphics video cards are color
machines. If you have a monochrome monitor attached to such a machine,
some program screens may be difficult to see. You tell ACUCOBOL-GT to
disable color output for these machines through the MONOCHROME
configuration variable. When this variable is set to a “1”, ACUCOBOL-GT
will use only black and white.

MOUSE

This variable has meaning only on systems with a mouse. When the user
selects a field in the Screen Section, the exact behavior depends on the field’s
underlying type. The runtime distinguishes between three classes of fields:
numeric, numeric-edited, and all others. These are referred to respectively as
NUMERIC, EDITED, and ALPHA.

You can control the behavior of the mouse with regard to each of these field
types with the MOUSE configuration variable. This variable takes as its
arguments one of the field-type names and two keywords. The first keyword
defines how the field is selected when the user presses the left button. The
second keyword indicates the shape that the mouse pointer should take while
in the field. The first keyword can be one of the following:

None Indicates that this type of field may not be selected with the mouse.
When this keyword is used, then the second keyword (which
defines the mouse’s shape) is ignored. The mouse adopts the shape
used for areas of the screen that are not part of any field.

Field Indicates that pressing the left button anywhere in the field will
cause the cursor to be positioned at the beginning of the field.

Character Indicates that pressing the left button in the field will position the
cursor at the character pointed to by the mouse. If this is past the
last non-prompt character in the field, the cursor will be placed just
after the last non-prompt character.

Configuration File Variables 3-119
The second keyword indicates the shape that the mouse pointer should take
while in the field. It can be one of the following:

You may also define the shape that the mouse will take when it is used in the
current field. Because the action of the mouse is the same for all field types
once they become the current field, the mouse shape is the same for all three
types. You set the desired shape using the Current keyword in the MOUSE
configuration variable. The default shape is the Bar shape.

Configuring the MOUSE variable

Depending on where you are setting the MOUSE variable, there are three
methods of setting its configuration:

1. If you want to implement this variable in a configuration file, the
variable can be set without using the equals sign. For example:

MOUSE_NUMERIC_SHAPE Bar

2. If you are setting the variable in the Windows environment, the
variable would look this:

SET MOUSE_NUMERIC_SHAPE=Bar

3. If you are setting the variable in your program using COBOL syntax,
the variable would look like this:

SET ENVIRONMENT “MOUSE_NUMERIC_SHAPE” TO “Bar”

The default configuration is as follows:

Arrow The mouse pointer appears in the default arrow shape.

Bar The mouse appears as a vertical bar. This is the “I-Bar” shape
typically used to indicate that the mouse can be positioned at a
particular character.

Cross The mouse appears as cross-hairs.

MOUSE_ALPHA_CHARACTER Bar

MOUSE_NUMERIC_FIELD Arrow

MOUSE_EDITED_FIELD Arrow

MOUSE_CURRENT Bar

3-120 Runtime Configuration File
You may place multiple entries on the MOUSE configuration line, but you
are not required to do so.

The following configuration variables can also be used to set the behavior of
the mouse:

To set field selection:
MOUSE_ALPHA_SELECT

MOUSE_EDITED_SELECT

MOUSE_NUMERIC_SELECT

To set cursor shape:
MOUSE_ALPHA_SHAPE

MOUSE_EDITED_SHAPE

MOUSE_NUMERIC_SHAPE

MOUSE_CURRENT_SHAPE

With these variables, you need to set the first and second keywords
separately. For example, to change the defaults shown above for a numeric
field, you would enter:

MOUSE_NUMERIC_SELECT character
MOUSE_NUMERIC_SHAPE bar

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration File Variables 3-121
MOUSE_FLAGS

This variable has meaning only on systems with a mouse. Indicate which
mouse actions will return an exception value to your program by setting the
value of the configuration variable MOUSE_FLAGS. Mouse actions that
you don’t want to deal with will be ignored. The value you set is actually one
or more values added together. The possible values are:

For example, if you wanted your program to receive an exception value
whenever the user pressed either the left or right button, you would set:

MOUSE_FLAGS 130

1 Causes ACUCOBOL-GT to use its automatic mouse handling facility.
(default)

2 Enables the “left button pushed” action.

4 Enables the “left button released” action.

8 Enables the “left button double-clicked” action.

16 Enables the “middle button pushed” action.

32 Enables the “middle button released” action.

64 Enables the “middle button double-clicked” action.

128 Enables the “right button pushed” action.

256 Enables the “right button released” action.

512 Enables the “right button double-clicked” action.

1024 Enables the “mouse moved” action.

2048 Forces the mouse pointer always to be the default arrow shape when you
are using automatic mouse handling. If this is not set, then the shape of
the mouse pointer varies depending on various other configuration
options. See MOUSE above.

16384 This causes all enabled mouse actions that occur within your
application’s window to return an exception value. If this is not set, then
only mouse actions that occur within the current ACUCOBOL-GT
window return a value. (The current ACUCOBOL-GT window is a
window created by your program with the DISPLAY WINDOW verb.)

3-122 Runtime Configuration File
NO_CONSOLE

This variable has meaning only on graphical systems that create an
application window, such as Windows. Set this variable to “1” (on, true, yes)
to indicate that you’ve built your own user interface entirely in C or that you
are using an interface created by a code-generating tool. This is equivalent to
executing the runtime system with the “-b” command-line option. When this
variable is set to “1”, the runtime won’t create its own application window.
Instead, your C code must build its own window. When you provide your
own user interface, you may not use ACCEPT or DISPLAY verbs in your
COBOL program (except for those that don’t interact with the screen or
keyboard).

The default value is “0” (off, false, no).

NO_LOG_FILE_OK

Setting this variable to “1” (on, true, yes) eliminates the need to specify a
default transaction log file with the LOG_FILE variable. When this variable
is set, the runtime will write transaction recovery information only to the log
files specified via the filename_LOG variables.

The default value is “0” (off, false, no).

NO_TRANSACTIONS

This variable allows you to disable ACUCOBOL-GT’s built-in transaction
management system. When NO_TRANSACTIONS is set to “1” (on, true,
yes), all calls to ACUCOBOL-GT’s built-in transaction management system
return without doing any work. This affects all file systems in use. The value
of NO_TRANSACTIONS is checked once, the first time a BEGIN,
COMMIT, or ROLLBACK is attempted and it is not checked again.
Therefore, although the variable can be set in the program, the effective
setting cannot be changed after the first transaction management action has
been attempted. The default value is “0” (off, false, no), meaning that the
built-in transaction management facility is enabled.

Configuration File Variables 3-123
NT_OPP_LOCK_STATUS

This configuration variable controls how files on a shared drive are opened if
you are working in the Windows opportunistic locking mode.
NT_OPP_LOCK_STATUS can take one of four values: CREATEFILE,
SAFE, GETFILETYPE, or FAST. The default value is “SAFE”, which is a
synonym for “CREATEFILE”.

If you set this variable to “GETFILETYPE” or “FAST” (synonyms for each
other), the runtime uses the fast method of opening files.

Note: If your Windows installations are not completely up to date with all
available patches from Microsoft, particularly those related to opportunistic
locking, the GETFILETYPE or FAST setting may cause file corruption
(error 98).

NESTED_AX_EVENTS

When an application dialog contains an ActiveX control that is assigned an
event procedure, the event handler sometimes triggers additional ActiveX
events. This variable determines whether or not the event procedure will be
nested.

Set this variable to “1” (on, true, yes) if you want the event procedure to be
nested. (This is the default). When NESTED_AX_EVENTS is set to “1”,
the runtime allows events to trigger while it is processing other events. It is
your responsibility to know when the event procedure is busy and reject
events when this is the case, or to look for specific events and properly handle
them. For example, consider this code:

AX-EVENT.
MOVE 1 TO MY-LOOP.
PERFORM UNTIL MY-LOOP = 10
* Do some stuff
ADD 1 TO MY-LOOP
END-PERFORM

3-124 Runtime Configuration File
When NESTED-AX-EVENTS is set to “1”, it is possible that when your
code is inside the event, possibly executing the loop for the fifth time, a new
event triggers, setting MY-LOOP back to “1”. The perform loop could
execute simultaneously in two threads on the same data, and the runtime
could crash. When you do not have reentrant events, MY-LOOP can only
become “1” one time. This is the case when NESTED-AX-EVENTS are set
to “0”.

Set NESTED_AX_EVENTs to “0” (off, false, no) if you do not want the
event procedure to be nested. Be aware, however, that this option may cause
you to lose certain events (typically events triggered by modifications made
in the event procedure).

When NESTED_AX_EVENTS is set to “0”, once a program has entered an
ActiveX control’s event procedure, new events are ignored. This prevents
the runtime from executing the same code, at the same time. However, events
that are imperative for the code execution may be refused.

Note: NESTED_AX_EVENTS applies only to the local runtime and has
no effect in thin client scenarios.

NO_BARE_KEY_LETTERS

This variable is related to the terminal manager KEYSTROKE EDIT=ALT
method of requiring users to press the Alt key along with the key letter to
move to a new control. In character mode and when accepting a
push-button, check box, or radial button, the runtime’s default behavior is to
terminate the accept if the key letter of a control is pressed, and move to that
control.

This behavior can be changed by setting NO-BARE-KEY-LETTERS to
“TRUE”. When set to “TRUE”, in order to move to these types of controls,
users will be required to press the key set by the KEYSTROKE setting
EDIT=ALT before pressing a key letter of that control. The default setting is
“FALSE”, which uses the behavior described in the previous paragraph.

Configuration File Variables 3-125
NUMERIC_VALIDATION

If this configuration variable is set to “1” (on, true, yes), the runtime checks
for proper format when data is converted to a numeric type (via a MOVE, for
example). When NUMERIC_VALIDATION is set to the default “0” (off,
false, no), numeric conversion checking does not occur.

OLD_ARIAL_DIMENSIONS

The Arial font shipped with Windows 98 Version 2 has a character width of
35 pixels, while the Arial font shipped with earlier versions of Windows and
Windows NT has a width of 23 pixels. This might cause field overlap or
screen distortions in programs that rely on the smaller version of the Arial
font. Setting this variable to “1” (on, true, yes) causes the runtime to use the
23-pixel measurement for fields, regardless of which version of Arial (35 or
23-pixel) is being used.

The default value of “0” (off, false, no) will cause fields to be sized
according to the version of Arial used.

Note: Because the 35-pixel version of Arial is wider, uppercase characters
may be truncated when their size is computed with the 23-pixel
measurement. Use of this variable may not compensate for all possible
character width sizing issues. Some reprogramming of your screens may
be required.

OPEN_FILES_ONCE

This variable allows different logical files that access the same physical file
to open the physical file only once. The default for this variable is “1” (on,
true, yes). This variable is valid only for UNIX runtimes.

3-126 Runtime Configuration File
OPTIMIZE_CONTROL_RESIZE

This configuration variable determines how the runtime optimizes control
resize requests. Prior to Version 5.2, the runtime would optimize away
requests to resize a screen control if the new size and position matched the
control’s current size and position on the screen. In Version 5.2, or later, the
runtime optimizes the control resize request using the SIZE and LINES
indicated (or implied) by the program. Setting
OPTIMIZE_CONTROL_RESIZE to “0” (off, false, no) prevents any
optimization of control resizing operations. The default of “1” (on, true, yes)
enables the new behavior. See Appendix C: Changes Affecting Previous
Versions, in the ACUCOBOL-GT Appendices Manual for more details.

OPTIMIZE_INDIVIDUAL_LINKAGE

This variable enables the runtime to perform address optimizations on each
Linkage item individually. In versions prior to 8.1 this optimization was
done either for all Linkage items or for none of them, which could result in
secenarios where optimizations could have occured on some items, but did
not.

The default and recommended setting is “1” (on) because the main effect is
improved CALL performance in a greater number of scenarios. Usually, the
only reason to turn this variable off is if a flaw is suspected in the
optimization.

PAGE_EJECT_ON_CLOSE

When set to “1” (on, true, yes), this variable will cause print files to print a
page advance record when the file is closed, unless the close contains the NO
REWIND phrase. This is provided for compatibility with RM/COBOL
version 2. The default value is “0” (off, false, no).

Configuration File Variables 3-127
PAGED_LIST_SCROLL_BAR

This variable applies only in text-mode environments.
PAGED_LIST_SCROLL_BAR can be set to “-1”, “0”, or “1”. The default
value is “-1”. When set to “-1”, the vertical scroll bar is displayed to the right
of a paged list box if the user interface configuration supports a mouse.
Otherwise, the right border appears just like the left border. The appearance
depends on whether the NO-BOX style is set and the values of the
FULL-BOXES and LISTS-UNBOXED configuration variable settings.

The runtime internally calls the W$MOUSE library routine with the
TEST-MOUSE-PRESENCE op-code to determine whether the user interface
supports a mouse. Note that mouse support is available for X terminals only
if the a_termcap entry includes the “km” function. (See the AcuCOBOL-GT
User’s Guide, section 4.6.8, “Mouse Support for X Terminals.”)

When PAGED_LIST_SCROLL_BAR is set to “1”, the vertical scroll bar is
always displayed to the right of a paged list box. When set to “0”, the vertical
scroll bar is never displayed to the right of a paged list box.

PARAGRAPH_TRACE

This variable is used for debugging purposes and turns on paragraph tracing.
Set this variable to “1” (on, true, yes) to turn on paragraph tracing from
within the configuration file or the COBOL program. This is equivalent to
the debugger “tp” command. The COBOL program must be compiled with
symbols (“-Gs”, or anything that implies that option) to get any error output.

PERFORM_STACK

This variable sets the depth to which PERFORM statements can be nested at
runtime when the “-Zr” compile-time option is used. The default value is
“128”. The maximum value is “10916”. Setting this variable to its maximum
value can waste resources and is not recommended.

3-128 Runtime Configuration File
PRELOAD_JAVA_LIBRARY

This variable is designed for those calling a Java program from COBOL via
the C$JAVA library routine. By default, the Java Virtual Machine (JVM) is
loaded by the runtime the first time it executes a CALL C$JAVA statement.
If you want to load the JVM when the runtime is started, set this
configuration variable to “1”. If you do not want to preload the JVM, set the
variable to “0”.

For details on the C$JAVA routine, see Appendix I. For information on
calling Java from COBOL using C$JAVA, see section 2.3.1 in A Guide to
Interoperating with ACUCOBOL-GT.

PROFILE_TYPE

This configuration variable provides an optional method of profiling
ACUCOBOL-GT on Windows called “COUNTER”. The counter method
uses the debugger to perform counting and appears to provide the most
accurate results in Windows environments.

Set the PROFILE-TYPE configuration variable to either “ASYNCH” or
“COUNTER”. When set to the default value of “ASYNCH”, the runtime
performs profiling the way it historically has. When set to the value
“COUNTER”, the runtime uses this method of profiling. Note that your
COBOL programs must be compiled with “-Gd” as well as “-Gs” options to
use the counter method.

The counter method is also available on UNIX and can be used if profiling
your COBOL results in a message similar to “profile timer expired”. This
method doesn’t completely solve that problem, but does substantially
mitigate it.

PROMPTING

This variable is used on character-based hosts to turn ENTRY-FIELD
prompting off or on. When PROMPTING is set to “0” (off, false, no)
prompting is not performed. The default value of PROMPTING is “1” (on,
true, yes).

Configuration File Variables 3-129
QUEUE_READERS

This configuration variable evens out user access by modifying the rules
Vision uses when several users are accessing a file. This variable applies to
UNIX machines. Because of restrictions, it is recommended only for sites
that are experiencing performance problems with updaters.

By default, the runtime allows multiple readers to access a file
simultaneously, while updaters require exclusive access to the file. When a
file has many readers, an updater can get blocked out of the file for a period
of time while the runtime waits for a moment when there are no active
readers. While this allows processes that read the file to have nearly
immediate access, updaters may need to wait for a noticeable amount of time.

The QUEUE_READERS configuration variable lets you request that the
runtime service each user in turn. This means a reader will have the same
priority for accessing a file as an updater does. Each user is processed in turn
so that access to files is evenly balanced among all the users.

By default, QUEUE_READERS is set to “0” (off, false, no). Set it to “1”
(on, true, yes) to force the readers to take turns instead of having immediate
access.

Because of technical limitations in the UNIX file system, if you use this
configuration variable you must provide read-write access to all indexed and
relative files that the runtime uses. This is true even for files that are open
only for input--UNIX requires that the runtime have write access to the files
in order to place the kind of lock that causes each user to take turns.

QUIT_MODE

This variable has meaning only on graphical systems such as Windows. It
gives you control over the Close action that appears on the System menu in a
graphical environment. You may use the QUIT_MODE variable with only
the main application window. All other windows return the CMD-CLOSE
event when they are closed. QUIT_MODE has no affect on windows created
with the NO-CLOSE phrase (see formats 11 and 12 of the DISPLAY
statement, in Book 3, ACUCOBOL-GT Reference Manual, section 6.6).

3-130 Runtime Configuration File
Many COBOL programs should not be shut down in an uncontrolled manner.
This is especially true of any application that updates several files in a row.
If the program is halted after updating the first file, but before updating the
last, the files are left in an inconsistent state. For this reason,
ACUCOBOL-GT allows you to control the Close action.

To do this, you set QUIT_MODE to a non-zero value. The value that you
specify affects the Close action as follows:

For example, if you set QUIT_MODE to “100”, then your program will
receive exception value 100 when the user selects the Close item. If you
wanted to call a special shutdown program when the user selected Close, you
could assign the Close action to a hot-key program:

MENU_ITEM Hot_Key =“shutdown” 100

In this example, the “shutdown” program might pop up a small window to
confirm that the user wanted to exit and, if so, do a STOP RUN.

If you start your program in “safe” mode with the “-s” runtime option, then
QUIT_MODE will be initialized to “-2” instead of “0”. This prevents the
user from using the Close menu item. A QUIT_MODE entry in the
configuration file takes precedence over the default handling of “-s”.

-2 Disable Close: disables the Close action entirely. The Close menu item
will appear gray on the System menu, and the user will not be able to select
it.

-1 Close only on input: the runtime disables the Close action except when it is
waiting for user input. This prevents the user from stopping the runtime in
the middle of a series of file operations, but still allows the user to quit the
application any time that the application is waiting for input.

 0 Always Close: the runtime halts the program whenever Close is selected
from the system menu.

>0 Program controlled Close: when a positive value is used, the Close item
becomes a standard menu item with an ID equal to the value of
QUIT_MODE. You may then handle the Close item just like any other
menu item.

Configuration File Variables 3-131
If a user attempts to end the Windows session when it is not allowed, a
pop-up message box asks the user to terminate the application first. You can
customize the message that appears in the box by setting the TEXT
configuration variable, message number 18.

Note: The QUIT_MODE setting affects only the main application
window. All other windows always return the event CMD-CLOSE when
the window is closed.

QUIT_ON_FATAL_ERROR

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option). The
QUIT_ON_FATAL_ERROR configuration variable causes the runtime to
call the MPE QUIT intrinsic when an error occurs. The MPE job control
word (JCW) is then set, and the MPE environment can determine if the
program terminated with a fatal error. When set to “1” (on, true, yes),
QUIT_ON_FATAL_ERROR calls the MPE QUIT intrinsic. The default
setting is “0” (off, false, no).

QUIT_TO_EXIT

When this variable is set to “1” (on, true, yes), the user must press the close
button on the title bar (or an alternate close mechanism provided by the
window) after the program executes a STOP RUN. The default value is “0”.

RECURSION

ACUCOBOL-GT allows a program to call itself, directly or indirectly. A
CALL statement that attempts to call an active program is termed a recursive
call.

To use recursive calls, you must set the configuration variable RECURSION
to “1” (on, true, yes). The default setting for RECURSION is “0” (off, false,
no), which disallows recursive calls.

3-132 Runtime Configuration File
When you allow recursive calls, an active program may be called again. This
causes a new copy of the program to be loaded into memory and executed, as
if it were the first call of that program. Files and data described in that
program are local to each copy of the program.

More specifically, the runtime assigns a recursion level to each recursively
called program. The first time a program is called, it is assigned a recursion
level of “0”. If that program is still active and it is called again, it receives a
recursion level of “1”. The recursion level is incremented by 1 for each
active copy of the same program.

When you call a program at a specific recursion level for the first time, it is
freshly loaded from disk and its Working-Storage data items are given their
initial values as defined by their VALUE clauses. Subsequent calls to a
program at the same recursion level will find the files and data left in the
same state that the program had when it last exited.

Files and data items are distinct between different recursion levels.

When you CANCEL a recursively called program, all of its inactive copies
are removed from memory. Active copies are left alone. Subsequent calls to
any of the canceled recursion levels will reload the program from disk and
reinitialize the files and data items.

If you need to share data between different active copies of the same
program, you can pass this data through the Linkage Section. Alternatively,
you can share both files and data items by declaring them as EXTERNAL
items. Yet another option is the RECURSION_DATA_GLOBAL
configuration option described below.

The runtime system shares the program code for recursively called programs.
Thus, while each recursion level has its own set of data, there is only one
copy of the Procedure Division code in memory, regardless of how many
active copies of the program there are. The runtime system does not,
however, share overlays. Each copy of the program in memory has its own
overlay area.

Configuration File Variables 3-133
RECURSION_DATA_GLOBAL

This configuration variable allows you to configure the runtime so that each
instance of a recursively called program shares the same data as the original
instance of the program. The primary reason for configuring the runtime in
this manner is if you are migrating code that relies on this behavior from
another COBOL system, such as HP COBOL.

When RECURSION_DATA_GLOBAL is set to “1” (on, true, yes), files and
data items in a recursive call of a program refer to the identical items in the
original call of that same program. This is true regardless of the entry point
into the program. Changes to data or file state made in any recursive instance
of the program are seen by all other instances of that program in the same run
unit.

Note that to use this feature, you must not only set the configuration variable
RECURSION_DATA_GLOBAL to “1”, you must also set the
RECURSION configuration variable to “1” to allow recursion (which is not
allowed under standard ANSI-85 COBOL rules).

The default is “0” (off, false, no).

REL_DELETED_VALUE

This configuration variable is helpful when you use relative files and need to
have a valid record that contains binary zeros. However, because binary
zeros are used as the deleted record marker, you have to be able to change this
marker. REL_DELETED_VALUE can hold the ASCII character value for
the new deleted record marker.

REL_LOCK_READ_THROUGH

This variable allows you to “read through” relative file record locks in
Windows environments. This means that READs that do not assert a lock are
allowed to READ a relative file record even if it is locked by another process.
To turn on the “read through” capability, all processes accessing the relative
file must set the configuration variable REL_LOCK_READ_THROUGH to
“1” (on, true, yes). When this variable is turned on, the Vision library uses an
alternate location for relative file record locks that does not block other
processes from reading the records. This is necessary because Windows has

3-134 Runtime Configuration File
“enforced” file locks that preclude all other access to the locked region.
Failure to set the configuration variable to the same value on all processes
accessing the relative file results in undefined behavior. This variable has no
effect on UNIX platforms. For more information about relative files and
record locking, refer to section 6.1, “Handling Files,” of the
ACUCOBOL-GT User’s Guide.

RENEW_TIMEOUT

When set to “1” (on, true, yes), this variable restarts the timeout used by
ACCEPT BEFORE TIME after each keystroke that the user makes. The
default setting is “0” (off, false, no), which means that the timeout is canceled
as soon as the user starts typing.

RESIZE_FRAMES

This variable is used to turn off the automatic resizing of frames that is
performed on character-based hosts. By default, a character-based host
runtime automatically resizes frames to visually surround all controls whose
home coordinates are bounded by the frame. This makes it easier to maintain
applications that run on both character and graphical systems. To turn
automatic resizing off, set RESIZE_FRAMES to “0” (off, false, no). The
default value is “1” (on, true, yes).

RESIZE_FREELY

Normally, under a graphical host (such as Windows), the runtime will not
allow you to resize an AUTO-RESIZE window larger than its logical size (as
determined by the number of rows and columns the program requested when
it created the window). When the RESIZE_FREELY variable is set to “1”
(on, true, yes), the user can resize the window to any size. Maximizing the
window will cause the window to occupy the entire available screen. The
region of the window that lies outside of the logical area will not be
accessible by the program and will be shown as the background color of the
logical window (defined as the last background color to be applied to the
entire window). Setting this option is essentially a cosmetic change to the
way your application looks when maximized. The default value is “0” (off,
false, no).

Configuration File Variables 3-135
RESTRICTED_VIDEO_MODE

This value determines which rules will be followed when the program is
positioning attribute characters for “magic cookie” terminals (terminals
whose attributes occupy screen positions). For more details, see the
ACUCOBOL-GT User’s Guide, section 4.5, “Restricted Attribute
Handling.” The default is “0”.

RMS_NATIVE_KEYS

This variable is for use only on VAX/VMS systems. When it is set to “1”
(on, true, yes), it causes the runtime to specify a key type for numeric keys.
In order to make use of this variable, you must also create XFD files at
compile-time (“-Fx”), and you must set the configuration variable
XFD_DIRECTORY to point to the directory containing those XFD files.

When these steps have been taken, the runtime will create RMS files with
keys having either the packed decimal or integer attribute, under certain
conditions dictated by the RMS file system. In particular, a key will have the
packed decimal or integer attribute only if it is a single-segment key and only
if there is a single field in the key. In this case, a USAGE COMP-3 data item
in the key will receive the packed decimal attribute, and a USAGE COMP-5
data item (if it is 2, 4, or 8 bytes long) will receive the integer attribute.

One effect of having this attribute set on key fields is that the order of the data
is changed. Without this attribute, a file that has records with keys -3, -2, -1,
0, 1, 2, 3 would have those records ordered in this way: 0, 1, -1, 2, -2, 3, -3.
With this attribute, those records would be ordered in this way: -3, -2, -1, 0,
1, 2, 3. The default setting for this variable is “0” (off, false, no).

SCREEN

This configuration variable controls a variety of screen configuration options.
For details, see the ACUCOBOL-GT User’s Guide, section 4.4.2, “The
SCREEN Option.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

3-136 Runtime Configuration File
SCREEN_COL_PLUS_BASE

This variable allows you to configure the COLUMN PLUS phrase in the
Screen Section. This capability is provided to improve compatibility with
other COBOLs. SCREEN_COL_PLUS_BASE allows you to choose the
behavior that works best for your program. It takes the following values:

SCREEN_TRACE

This variable is used for debugging and turns on screen tracing. Set this
variable to “1” (on, true, yes) to turn on screen tracing from within the
configuration file or the COBOL program. This is equivalent to the debugger
“ts” command.

SCRIPT_STATUS

This variable controls the behavior of ACCEPT FROM INPUT STATUS
when the input is not attached to a terminal. If SCRIPT_STATUS has its
default setting of “0” (off, false, no), an ACCEPT FROM INPUT STATUS
statement will return a fixed value when the program has redirected input.
The value returned is the value of the INPUT_STATUS_DEFAULT
configuration variable.

-1 (default) This value causes the runtime to determine the behavior of the
COLUMN PLUS phrase based on whether ICOBOL compatibility has
been specified with the “-Ci” compile option. If so, “COLUMN + 1”
produces a space between items, and “COLUMN + 0” creates adjacent
items. If ICOBOL compatibility has not been specified, “COLUMN + 1”
produces adjacent items. This matches the prior behavior of
ACUCOBOL-GT.

0 This value causes column adjustments to start counting at zero. In this case,
“COLUMN + 0” produces adjacent items, and “COLUMN + 1” puts a
space between items.

1 This value causes column adjustments to start counting at one. In this case,
“COLUMN + 1” produces adjacent items, and “COLUMN + 2” puts a
space between items.

Configuration File Variables 3-137
When SCRIPT_STATUS is not “0”, and input is redirected, then ACCEPT
FROM INPUT STATUS will return the actual status of the script file (i.e., it
will return “1” (on, true, yes) unless the script file has been exhausted).

SCRN

This variable can be used in conjunction with the SCREEN variable to
control many attributes of the video sub-system. For details, see the
ACUCOBOL-GT User’s Guide, section 4.4.2, “The SCREEN Option.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

SCROLL

This variable affects when screen scrolling will occur. When it is set to “1”
(on, true, yes), scrolling and cursor positioning occur normally. When it is
set to “0” (off, false, no), screen scrolling will occur only as the result of a
SCROLL phrase in an ACCEPT or DISPLAY statement, and any DISPLAY
statement that references a line past the bottom of the current window will be
ignored. ACCEPT statements that reference a line past the bottom of the
current window will be placed in the home position of the window. The
default setting is “1”.

server_MAP_FILE

This variable is used to point to the character map file used for translating
international character sets between a client machine and a specific server
that uses different character codes. The map file is a simple text file that you
create with an editor of your choice. Each line in the map file must contain
two values in either decimal or hexadecimal: the character code of the
character on the client machine, and the character code of the same character
on the server. Use a # sign to indicate a comment.

The map file may be stored on either the client machine or the server
machine.

3-138 Runtime Configuration File
The server specified in the configuration variable name must match the
server specified in the remote name notation that points to the data files. For
example, if you are using AcuServer to access remote files on a machine
named sun3, you would use remote name notation to specify the directory
that contains the data files. It might look like this:

@sun3:/user/acct/inventory

Then, create a map file and use this configuration variable to point to the map
file:

sun3_map_file @sun3:/user/acct/inventory/map.txt

If the map file is local, your value might look like this:
sun3_map_file C:\user\utility\map.txt

If the map file is located on a server, you must have the AcuServer product
on that server, to enable client access.

The runtime first searches for the configuration variable server_MAP_FILE
and, if it is found, uses that setting to locate the map file. If that variable is
not set, the runtime searches for DEFAULT_MAP_FILE. If that variable is
also not set, then no character translation is done.

server_PASSWORD

Designed to be defined in the environment (rather than in the configuration
file), server_PASSWORD and its mate server_port_PASSWORD make
working with AcuServer easier when the compiler and cblutil are called
repeatedly from the AcuBench integrated development environment. In this
scenario, when one of these variable is used, the user never has to enter a
password. When these variables are not used, if a password is required the
user must provide it repeatedly.

Set server_PASSWORD to the value of the password. For example:
MERCURY_PASSWORD=we1rneB

where server is replaced by the name of the server.

Configuration File Variables 3-139
The compiler checks the variable server_port_PASSWORD first. If it isn’t
defined, server_PASSWORD is checked. If server_PASSWORD is not
defined, the user is prompted for a password. If either variable is defined, but
the value does not match the value in the AcuAccess file, the connection
attempt fails.

server_port_PASSWORD

Designed to be defined in the environment (rather than in the configuration
file), server_port_PASSWORD and its mate server_PASSWORD make
working with AcuServer easier when the compiler and cblutil are called
repeatedly from the AcuBench integrated development environment. In this
scenario, when one of these variable is used, the user never has to enter a
password. When these variables are not used, if a password is required the
user must provide it repeatedly.

Set server_port_PASSWORD when you want to connect to a server on a
particular port. For example, to set a password to connect to a server named
“MERCURY” that is listening on port 4330, you can set the following:

MERCURY_4330_PASSWORD=we1rneB

where server is replaced by the name of the server, and port is replaced by
the port number that AcuServer is using.

The compiler checks the variable server_port_PASSWORD first. If it isn’t
defined, server_PASSWORD is checked. If server_PASSWORD is not
defined, the user is prompted for a password. If either variable is defined, but
the value does not match the value in the AcuAccess file, the connection
attempt fails.

SHARED_CODE

For many UNIX machines, ACUCOBOL-GT supports the ability to have
multiple users share the same copy of a COBOL program’s object code in
memory. This configuration variable indicates which programs you want to
share code. Use of shared memory is recommended only if you have a
problem with limited memory and excessive swapping. In this case, the

3-140 Runtime Configuration File
advantage of reduced swapping will usually more than make up for the
overhead added by sharing memory. To use shared code for all of your
programs on UNIX, add the following line:

SHARED_CODE 1

This will cause all programs to attempt to share code. Every code segment
loaded into memory will be placed into shared memory until shared memory
is full. Further code segments will then be placed in conventional memory.
If the system runs out of shared memory and the shared code requests start
failing, each runtime will have its own copy of the program in its own
memory space.

Since shared memory is a limited resource under UNIX, you will usually
want to restrict the use of shared code to those programs where it will be most
beneficial. This will ensure that other programs do not use up all of the
available shared memory first. To do this, specify each program you want to
share as follows:

SHARED_CODE Program1
SHARED_CODE Program2
SHARED_CODE Program3

(The program name may also be enclosed in single or double quotes, for
example, “Program1” or ‘Program2’.) When you use this method,
“Program1”, “Program2”, and so forth are the PROGRAM-IDs from the
programs’ Identification Divisions (note that a program’s object file name is
not used). If you use this method, then setting SHARED_CODE to “1” will
have no effect.

For additional information, see the ACUCOBOL-GT User’s Guide, section
2.11, “The acushare Utility Program.”

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

Configuration File Variables 3-141
SHARED_LIBRARY_EXTENSION

This variable allows you to define the filename extension for UNIX/Linux
shared object libraries. The default value is “.so”. This variable has meaning
only on systems that support UNIX shared libraries.

SHARED_LIBRARY_LIST

This variable allows you to specify the names of UNIX/Linux shared object
libraries or Windows DLLs.

SHARED_LIBRARY_LIST can be set in one of three ways:

1. In the environment

2. In the runtime configuration file

3. Programmatically with the SET ENVIRONMENT statement

The runtime loads the listed objects on program startup or as the result of a
SET ENVIRONMENT statement. Names must be delimited by spaces,
colons (UNIX/Linux), or semicolons (Windows).

With DLLs, you can specify both the name of the DLL and the calling
convention to use. Any calling convention specified this way overrides the
DLL_CONVENTION variable setting. For information about specifying
DLLs and calling conventions, see section 3.3.2, “Loading DLLs with
Configuration Variables,” in A Guide to Interoperating with
ACUCOBOL-GT.

You can also list objects without path information and use the
SHARED_LIBRARY_PREFIX configuration variable to specify a set of
directories that the runtime will search when attempting to load a shared
library.

Once loaded, functions exported by these libraries can be called directly.

The SET ENVIRONMENT statement can be used to set
SHARED_LIBRARY_LIST any number of times during program execution.
Each time it is set, the runtime loads the libraries listed. Previously loaded

3-142 Runtime Configuration File
libraries remain loaded. Libraries loaded with SHARED_LIBRARY_LIST
remain in memory until the process exits. The CANCEL statement cannot be
used to unload the library.

On some systems, such as AIX, if the shared module is a member of an
archive, you must specify the name of the member in parentheses after the
name of the archive. For example:
SHARED_LIBRARY_LIST=”/usr/opt/db2_08_01/lib/libdb2.a(shr.o)”

SHARED_LIBRARY_LIST is like the runtime “-y” option, except that it
does not require setting the SHARED_LIBRARY_EXTENSION variable,
and unlike “-y”, you can mix “.a” and “.so” libraries in the list.

Note: The SHARED_LIBRARY_LIST configuration variable does not
load client-side DLLs for thin client applications that make calls using the
CALL verb “@[DISPLAY]:” syntax. These applications must explicitly
load the DLL by calling it with the CALL verb before calling a function
within the DLL.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

SHARED_LIBRARY_PREFIX

This variable allows you to specify a set of directories that the runtime will
search when attempting to locate a shared library. The format of the value is
the same as that allowed for FILE_PREFIX. You can set
SHARED_LIBRARY_PREFIX in the configuration file, environment, or
programmatically with the SET verb.

The default value on Windows systems is empty.

The default value on UNIX and Linux systems is “/opt/acucorp/810/lib /opt/
acu/lib”. This helps the runtime find “libclnt.so” (or “libclnt.sl”) when the
operating system’s shared library environment variable (e.g., LIBPATH,
LD_LIBRARY_PATH, SHLIB_PATH, etc.) is not set.

Configuration File Variables 3-143
SHUTDOWN_MESSAGE_BOX

This variable allows you to specify whether or not you want the runtime’s
shutdown message to be displayed in a message box. If this variable is set to
“0” (off, false, no), the runtime will display the shutdown message to the
screen without a message box. The default value is “1” (on, true, yes).

SORT_DIR

This variable allows you to place temporary files used by the SORT verb in
another directory. By default these files are stored in the current directory.
You can specify an alternate directory to hold the sort files by setting the
configuration variable SORT_DIR to the desired directory. This value is
treated as a prefix, much like FILE_PREFIX. You can improve the
performance of the SORT verb by placing the temporary files on a fast
device. Take care, however, that the device has enough free space to hold
twice the size of the data to be sorted.

You may not use the SORT_DIR variable with AcuServer.

Remote name notation is allowed for the SORT_DIR variable if your runtime
is client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and
5.2.2 for more information about client-enabled runtimes and remote name
notation.

SORT_FILES

This configuration variable sets the number of temporary files used by
SORT. The acceptable range is from 4 to 64. The default value is “8”.

Increasing the number of files used will usually improve SORT performance,
particularly for large sorts. Note that you must have enough available file
handles to open all of the temporary files concurrently. In general, the
number of files available is more important than the amount of memory used.
If you are experiencing long sorts, try increasing the number of files before
you increase the amount of sort memory.

The SORT verb removes all of its temporary files, except for one, prior to
beginning its output phase.

3-144 Runtime Configuration File
SORT_MEMORY

This variable specifies the number of 64 KB blocks of memory that the
SORT verb will try to allocate when it executes. The acceptable range is
from 1 to 16384. The default value is “32”. Using a value lower than the
default can be useful if memory is tight on the host machine. Using a higher
value may enhance SORT performance.

Take care, when increasing the SORT_MEMORY setting, to ensure that you
do not assign too much memory to the runtime. For most operating systems,
the memory used by SORT is not returned to the system. While the runtime
may use the memory for other purposes, this memory is not available to other
programs until the runtime exits.

The SORT verb will attempt to allocate the amount of memory specified in
SORT_MEMORY. If the requested amount is not available, the runtime will
return an out of memory error.

SPACES_ZERO

This configuration variable applies only to object files generated with
ACUCOBOL-85 Version 1.5 and earlier. For later object files, use the “-Zz”
compiler option. When SPACES_ZERO is “1” (on, true, yes), it alters the
method in which USAGE DISPLAY data items are used by the runtime
system. The main effect is that, in most cases, a data item containing spaces
will be treated as if it contained zeros. Note that this may not occur in all
instances because the ACUCOBOL-GT compiler may construct code that
directly acts on a data item without first converting it to a number. The
default value is “0” (off, false, no).

SPOOL_FILE

This configuration variable allows you to hold a pipe open when you close
the named file with the CLOSE WITH NO REWIND verb. This enables you
to gather multiple reports into a single job for the print spooler. For
additional details about pipes and file name interpretation, see the
ACUCOBOL-GT User’s Guide, section 2.8, “File Name Interpretation.”

Configuration File Variables 3-145
The value given to the SPOOL_FILE variable must be the ASSIGN name of
a sequential file that has been attached to a pipe. The pipe must be attached
to the ASSIGN name in the COBOL configuration file via the “-P” option.
For example, suppose you have a file defined as follows:

SELECT PRINT_FILE
ASSIGN TO PRINT “PRINTER”

and that you have the following pipe defined in the COBOL configuration
file:

PRINTER -P lp -s

Then, to specify that you want to keep the pipe open when the file is closed
WITH NO REWIND, you would add the following line to the COBOL
configuration file:

SPOOL_FILE PRINTER

The name specified for SPOOL_FILE is processed in the same way as the
external file name specified in the file’s ASSIGN clause.

When the corresponding file is closed with a NO REWIND option, the pipe
is not closed. Instead, if the file is later opened again, the same pipe is used.
The pipe is not closed until a CLOSE verb without the NO REWIND option
is executed on that file, or until the run unit finishes. Only one pipe can be
held open in this manner.

STD_FIXED_FONT

This configuration variable allows you to set the standard font used by the
Windows version of the runtime. It can be set in the configuration file to one
of the following values:

If this variable has not been set, or has an invalid value, it will default to “-1”.

-1 (default) The web runtime uses ANSI_FIXED_FONT. Other instances of
the runtime use SYSTEM_FIXED_FONT.

0 All runtimes use ANSI_FIXED_FONT for the standard font.

1 All runtimes use SYSTEM_FIXED_FONT for the standard font.

2 All runtimes use OEM_FIXED_FONT for the standard font.

3-146 Runtime Configuration File
STOP_RUN_ROLLBACK

When this variable is set to “1” (on, true, yes), the system performs an
implied ROLLBACK rather than a COMMIT after a STOP RUN.

With a “0” (off, false, no) setting for this variable, the system performs an
implied COMMIT after a STOP RUN. The default value for this variable
is “0”.

STRIP_TRAILING_SPACES

This variable provides an alternate method for determining which LINE
SEQUENTIAL files will have trailing spaces removed from records written
to them. At the time a LINE SEQUENTIAL file is opened, the value of this
variable is examined. If this variable is “1” (on, true, yes), then automatic
space suppression is applied to this file.

Otherwise, the file is processed according to the normal rules, as described in
the ACUCOBOL-GT User’s Guide, section 6.1.1, “Sequential files.” The
default value for this variable is “0” (off, false, no).

Note that a related configuration variable is the
EXTFH_KEEP_TRAILING_SPACES variable.

SWITCH_PERIOD

This variable helps determine how frequently threads switch control. When
a thread executes SWITCH_PERIOD number of selected operations, the
threads switch control. The selected operations are generally comparisons.
Comparison operations are used to cause compute-bound threads to switch.

Setting the value of SWITCH_PERIOD lower will increase the overhead
spent switching threads, but increase the uniformity of thread execution.
Setting the value very low can significantly hurt performance. The default
value is “100”.

Configuration File Variables 3-147
SYSINTR_NAME

This variable defines the location of the SYSINTR file that may be used with
MPE emulation software. This variable must be specified with HFS syntax
and set to the full path of the SYSINTR file. For example:

SYSINTR_NAME /opt/mpux/etc/sysintr.txt

TC_AUTO_UPDATE_FAILED_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. The
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable lets you
specify the text in this message box. Its default value is

ACUCOBOL-GT Thin Client: Automatic update was
unsuccessful

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_FAILED_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. The
TC_AUTO_UPDATE_FAILED_TITLE configuration variable lets you set
the title bar text for this message box. Its default value is

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

3-148 Runtime Configuration File
TC_AUTO_UPDATE_NOTIFY_FAIL

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a message box may appear informing the user of the failure. If
you do not want the thin client to inform the user that the automatic update
has failed, set the TC_AUTO_UPDATE_NOTIFY_FAIL configuration
variable to “false” (0, off, no). The default value of this variable is “true” (1,
on, yes).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_QUERY

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
The default setting of “1” (on, true, yes) for the
TC_AUTO_UPDATE_QUERY configuration variable enables the display
of that message box. Setting this variable to “0” (off, false, no) prevents the
message box from appearing.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AUTO_UPDATE_QUERY_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
The value of the TC_AUTO_UPDATE_QUERY_MESSAGE configuration
variable determines the message displayed in that message box. The default
value of the variable depends on the circumstances that triggered the
automatic update. For example, if the automatic update is initiated by a
version or protocol number mismatch, the default message displayed is:

Configuration File Variables 3-149
Incompatible server version
Server version: <srvvers>, client <clntvers>
Server protocol: <srvproto>, client <clntproto>
Press OK to automatically correct this problem

where <srvvers>, <clntvers>, <srvproto>, and <clntproto> are replaced by
the server version, client version, server protocol number, and client protocol
number, respectively.

For detailed information about other default values for this configuration
variable and about the thin client automatic update process, refer to section
7.4, “Thin Client Automatic Update,” in the AcuConnect User’s Guide.

TC_AUTO_UPDATE_QUERY_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When an event triggers the update process, the thin
client displays a message box informing the user that an upgrade is required.
You use the TC_AUTO_UPDATE_QUERY_TITLE configuration variable
to specify the title bar text in that message box. The default value of this
variable is

ACUCOBOL-GT Thin Client

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_AX_EVENT_LIST

In thin client deployments, this variable lets you control which events your
program receives, giving you more control over the volume of network
traffic. It must be set in the configuration file and cannot be changed
programmatically with the SET verb. It contains the numeric value of a
single .NET or ActiveX event type or a list of .NET or ActiveX event types
separated by non-numeric characters like spaces or commas. Whether your
program receives these events depends on the value of
TC_EXCLUDE_EVENT_LIST. If its value is “0”, then your program
receives the events listed in TC_AX_EVENT_LIST. If
TC_EXCLUDE_EVENT_LIST is set to “1”, then the events listed in
TC_AX_EVENT_LIST are not sent to your program.

3-150 Runtime Configuration File
TC_CHECK_ALIVE_INTERVAL

This variable allows you to set a time interval in seconds (a value between
“1” and “32767”) during which the server runtime checks for thin client
activity. This activity can be either regular thin client user interaction or, if
the user interface is inactive, two “ping” messages sent by the thin client
during the defined interval. If no thin client activity of any kind occurs
during a particular interval, the server runtime process exits. Setting this
variable to “0” disables the client activity check feature. The default value is
“300” (5 minutes).

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_CHECK_INSTALLER_TIMESTAMP

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The value of the
TC_CHECK_INSTALLER_TIMESTAMP configuration variable
determines whether the thin client compares the modification times of the
installer files on the client and on the server. If this variable is set to “1” (on,
true, yes) and the modification time of the client file is older than the time of
the server file, the automatic update process is initiated. If the installer file
does not exist on the client, then the comparison is made with the
modification time of the thin client executable (acuthin) currently running.
The default value for this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_CONTINUITY_WINDOW

If this configuration variable is set to “1” (on, true, yes), the Thin Client
creates an invisible window after the next window is created by the COBOL
application. This invisible window remains until the Thin Client shuts down.

Configuration File Variables 3-151
This variable must be set in the application's configuration file or in the
initialization code of the application so that it is applied to the initial window
created by the application.

The invisible window is needed because the GetMessage API routine
behaves differently under Windows 2000 and Windows XP than in older
versions of Windows. If an application has no open windows and it calls
GetMessage, the focus is transferred to another application. Once transferred,
the application cannot force the focus to return to the original application,
even if it subsequently creates a window to receive the focus. This situation
arises under the Thin Client if the COBOL application destroys all of its
windows before creating a new one.

Since this variable applies to a very specific situation, the default setting for
TC_CONTINUITY_WINDOW is “0” (off, false, no). You must set it
explicitly if you want to use this feature.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_CONTROL_SYNC_LEVEL

This variable determines which VALUE data items in a Screen Section are
updated when a BEFORE, AFTER or EXCEPTION procedure executes.
(This variable only affects BEFORE, AFTER and EXCEPTION procedures.
The values of all variables are made current anytime an ACCEPT
terminates.) The possible values for TC_CONTROL_SYNC_LEVEL are:

1 (default) Only the VALUE data item associated
with the current field is updated when its AFTER or
EXCEPTION procedure executes.

2 Only the VALUE data item associated with the
current field is updated when its BEFORE, AFTER
or EXCEPTION procedure executes.

3 All VALUE data items are updated when executing
any BEFORE, AFTER or EXCEPTION procedure.

3-152 Runtime Configuration File
For best performance, we recommend leaving this variable at its default
setting of “1” unless that causes your program to perform incorrectly. In
which case, you can increase the setting of TC_CONTROL_SYNC_LEVEL
to “2” or “3” to adjust for problems in the application behavior.

Note: Alternatively, you can directly INQUIRE the value of a control in an
embedded procedure. This allows you to tune application performance
more precisely than TC_CONTROL_SYNC_LEVEL will allow.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_DELAY_ACTIVATE

This variable determines precisely when the thin client sends
CMD-ACTIVATE events to the server. Under the default setting of “1” (on,
true, yes), the client delays sending the event until after the Windows
notification routine receiving the event has completed. However, ActiveX
events are never delayed. The alternate setting of “0” (off, false, no) sends
the event to the server immediately when it is generated on the client.

We recommend leaving this variable at its default setting because the
Windows API occasionally alters actions taken by the program when they
occur within the scope of an activation notification. (For example, Windows
will sometimes override a “set focus” call.) Delaying the COBOL program's
response to the activation until after the Windows notification routine is
complete avoids these alterations.

If you experience an unexplained difference in window activation when
running under the thin client, try setting this variable to “0”. If this produces
the desired behavior, the handling of the CMD-ACTIVATE events by the
program is unusual and may not be performing as intended. For example, the
EVENT procedure that handles the CMD-ACTIVATE event may be
destroying an unrelated window instead of transferring control to the window
issuing the CMD-ACTIVATE event.

For more information about the thin client, refer to the AcuConnect
User's Guide.

Configuration File Variables 3-153
TC_DELAY_PRE_EVENT_OPS

This configuration variable applies only to the ACUCOBOL-GT Thin Client.
Using this variable, you can direct the thin client to buffer some requests
received from the server and process them later. When you set this variable
to “1”, the thin client buffers the requests received between the time that the
client sends an event to the server and the time that the server informs the
client that it has started the related event procedure. The events are processed
only after the event procedure starts in order to prevent the thin client from
processing requests that generate more events before the first event procedure
has started. The default value of TC_DELAY_PRE_EVENT_OPS is “0”.

Note: The buffering behavior described for this configuration variable was
introduced as the default behavior in Version 6.1. Beginning with Version
7.2, the buffering behavior is turned off by default.

TC_DISABLE_AUTO_UPDATE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You can disable the automatic update process by
setting the TC_DISABLE_AUTO_UPDATE configuration variable to “1”
(on, true, yes). The default value of this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DISABLE_SERVER_LOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a log file may be created on the server. This file contains a log of
the update operations and details about the failure. To prevent the creation of
this log file, set the TC_DISABLE_SERVER_LOG configuration variable to
“true” (1, on, yes). The default value of this variable is “false” (0, off, no).

3-154 Runtime Configuration File
For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_CANCEL_MESSAGE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. You can cancel the download
at any time from this dialog box. Use the
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable to specify
the message that appears when the download is cancelled. The default value
for this variable is

Please wait while the download is being cancelled . . .

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_DESCRIPTION

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. You use the
TC_DOWNLOAD_DESCRIPTION configuration variable to specify the
text that appears in the middle of the download progress dialog. Its default
value is

Downloading installation file. . .

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

Configuration File Variables 3-155
TC_DOWNLOAD_DIALOG

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. The default value of “1” (on,
true, yes) for the TC_DOWNLOAD_DIALOG configuration variable allows
the appearance of this dialog box. If you set this variable to “0” (off, false,
no), the progress dialog does not appear.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_DOWNLOAD_DIALOG_TITLE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. During the automatic update installer file
download process, a progress dialog appears. The
TC_DOWNLOAD_DIALOG_TITLE configuration variable is used to
specify the title bar text in this dialog box. The default value of this variable
is

ACUCOBOL-GT Thin Client Automatic Update

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_EVENT_LIST

This configuration variable lets you control which events your program
receives, giving you more control over the rate of network traffic. It must be
set in the configuration file and cannot be changed programmatically with the
SET verb. It contains the numeric value of a single event type or a list of
event types separated by non-numeric characters like spaces or commas.
Whether your program receives these events depends on the value of
TC_EXCLUDE_EVENT_LIST. If its value is “0”, then your program
receives the events listed in TC_EVENT_LIST. If
TC_EXCLUDE_EVENT_LIST is set to “1”, the events listed in
TC_EVENT_LIST are not sent to your program.

3-156 Runtime Configuration File
TC_EXCLUDE_EVENT_LIST

The value of this variable determines whether the events listed in
TC_AX_EVENT_LIST and TC_EVENT_LIST are sent to your program. A
value of “1” means the specified events are not sent to your program. The
default value is “0”.

TC_INSTALLER_ARGS

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The thin client uses the value of the
TC_INSTALLER_ARGS configuration variable as the command-line
options passed to the installer executable. For example, if you want
“msiexec.exe” to log all of its operations to a file named “msi.log”, then you
could set TC_INSTALLER_ARGS to “/log msi.log”.
TC_INSTALLER_ARGS has no default value.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER_CLIENT_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_CLIENT_FILE
configuration variable to specify the path and file name of the installer file
that you want to create on the client. The default value of this variable is

<APPDATA>\ACUCOBOL-GT\<installer_server_filename>

where <APPDATA> is a special directory name for C:\Documents and
Settings\<user>\Application Data and <installer_server_filename> is the file
name specified in the TC_INSTALLER_SERVER_FILE configuration
variable.

For detailed information about special directory names like <APPDATA>
and about the thin client automatic update process, refer to section 7.4, “Thin
Client Automatic Update,” in the AcuConnect User’s Guide.

Configuration File Variables 3-157
TC_INSTALLER_RUN_ASYNC

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_RUN_ASYNC
configuration variable when you want to prevent the thin client from
restarting after an automatic update or when your installer file handles the
automatic update process to completion. When you set this variable to “1”
(on, true, yes), the thin client starts the installer process asynchronously and
then exits immediately. It does not wait for the automatic update process to
complete and does not restart the application. The default value is “0” (off,
false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER_SERVER_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You set the TC_INSTALLER_SERVER_FILE
configuration variable to the path and file name of the server installer file. Its
default value is

<runtime_path>/acuthin.msi

where <runtime_path> is the directory that contains the runcbl runtime
executable.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_INSTALLER_TARGET_DIR

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. You use the TC_INSTALLER_TARGET_DIR
configuration variable to specify the location where you want the updated
thin client to be installed. This variable has no default value.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

3-158 Runtime Configuration File
TC_INSTALLER_UI_LEVEL

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. The keywords or numeric values in the
TC_INSTALLER_UI_LEVEL configuration variable control the Windows
installer interface. Set TC_INSTALLER_UI_LEVEL to NONE or “0” if you
do not want the Windows installer to display a user interface. Set this
variable to UNATTENDED or “1” if you want the Windows installer to
display informational and progress messages but to execute unattended. Set
the variable to INTERACTIVE, DEFAULT, or “2” if you want the Windows
installer to prompt for and accept user input for the installation process. Set
the variable to REDUCED or “3” if you want to use a reduced user interface.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_MAP_FILE

In thin client deployments, set this variable to point to the character map file
that defines the mapping of international characters between client and server
systems. A detailed description of international character handling is located
in the AcuConnect User’s Guide, section 4.5, “International Character
Handling.”

TC_NESTED_AX_EVENTS

This variable determines how thin client handles nested ActiveX events.
Because thin client processes Windows messages while waiting for
responses from the server, it is possible for new ActiveX events to be sent
while still waiting for an earlier event procedure to return, causing event
procedures to be nested within event procedures. Because nested event
procedures can cause unpredictable results, including memory access
violations (MAVs), this variable is set to “0” (off, false, no) by default. If you
want to enable it, set it to “1” (on, true, yes).

Configuration File Variables 3-159
TC_QUIT_MODE

This variable lets you control how your COBOL application shuts down
when no client activity occurs during the interval defined by
TC_CHECK_ALIVE_INTERVAL. Setting TC_QUIT_MODE to “-1” (the
default value) shuts your program down according to the value chosen for the
QUIT_MODE configuration variable. If you set this variable to “0”, the
runtime stops the program immediately.

When this variable is set to a value greater than “0” (up to “32767”), your
application has a program-controlled exit. When the runtime determines that
the thin client is no longer responding (no user interaction and no pings
during TC_CHECK_ALIVE_INTERVAL), the MSG-MENU-INPUT
event is sent to the program’s main window and EVENT-DATA-2 contains
the value defined by TC_QUIT_MODE. Your program can detect this in the
main window’s event procedure and you can perform whatever code you
desire. At this point there is no connection to the thin client, so user interface
operations may not be performed. You must end your shutdown code with
“STOP RUN” to terminate the runtime.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_REQUIRES_BUILD_NUMBER

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. When the thin client executes, it compares its build
number with the value of the TC_REQUIRES_BUILD_NUMBER
configuration variable. If the value of this variable does not match the
client’s build number, the automatic update process is initiated. Set this
variable to the thin client build number required by the application. The
default value of this variable is “0” (off, false, no).

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

3-160 Runtime Configuration File
TC_RESTRICT_AX_EVENTS

This variable controls whether the application will ignore ActiveX events
between ACCEPT statements (the termination of one ACCEPT and the
beginning of the next). Setting this variable to “1” (on, true, yes) enables this
behavior. The default value is “0” (off, false, no).

Ordinarily, the thin client runtime suspends all ActiveX events when the
application is not processing an ACCEPT statement. However, some
ActiveX controls do not support the ability to suspend and resume events
when an application is not processing an ACCEPT statement. As a result, in
a thin client environment, an event procedure may be run unexpectedly
during a CREATE, DISPLAY, MODIFY, INQUIRE, or any other operation
that waits for results from the thin client. Setting
TC_RESTRICT_AX_EVENTS provides some control over these ActiveX
events.

To determine if a particular ActiveX control supports suspending and
resuming events, check the control’s documentation or ask the control
vendor. Note that the control must implement the
“IOleControl::FreezeEvents()” function.

For more information about ActiveX control handling, see Chapter 4 in A
Guide to Interoperating with ACUCOBOL-GT, and section 6.3 of the
AcuConnect User’s Guide.

TC_SERVER_LOG_FILE

This configuration variable applies only to the ACUCOBOL-GT Thin Client
automatic update feature. If the thin client automatic update process fails for
any reason, a log file may be created on the server. This file contains a log of
the update operations and details about the failure. The
TC_SERVER_LOG_FILE configuration variable can be used to configure
the location and name of that log file. The name can optionally include the
hostname of the client machine and the process ID of the server runtime that
was managing the automatic update at the time of the failure.

By default, this file is named “autoupdate.%c.%p.log”, where “%c” is
replaced by the client hostname and “%p” is replaced by the process ID of the
server runtime. The default location is the working directory specified in the

Configuration File Variables 3-161
alias on the server. Note that the directory must exist at the time of the failure
for the log file to be created.

For detailed information about the thin client automatic update process, refer
to section 7.4, “Thin Client Automatic Update,” in the AcuConnect User’s
Guide.

TC_SERVER_TIMEOUT

This variable lets you determine how many seconds (from “0” to “32767”)
the thin client waits for a response from the server. If the thin client receives
no response from the server in the specified time period, the following
message box appears:
 The remote host is not responding.
 Press OK to close this program.
 Press Cancel to wait another %s seconds.

where “%s” is the value of TC_SERVER_TIMEOUT. The default value is
“20”.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TC_TV_SELCHANGING

This variable is designed for thin client applications. It provides some
control over when the runtime generates Msg-Tv-Selchanging events for tree
view controls. Because most applications that use tree view controls do not
process Msg-Tv-Selchanging events, the thin client suppresses its generation
in some cases. This improves both performance and stability.
TC_TV_SELCHANGING recognizes the following values:

0 never generate Msg-Tv-Selchanging events

1 (default) generate Msg-Tv-Selchanging events when the selection
is about to change due to the user using the mouse or the keyboard
to change to current selection

2 always generate Msg-Tv-Selchanging events

3-162 Runtime Configuration File
The default setting of “1” allows you to detect user-initiated events in your
program while filtering out many other causes of the event.

If you know your program doesn’t handle any Msg-Tv-Selchanging events,
you can set TC_TV_SELCHANGING to “0” to entirely inhibit generation of
the event. This can slightly improve performance.

If TC_TV_SELCHANGING is set to “1” and your program experiences odd
behavior with tree view controls under the thin client, you can try setting the
variable to “2” to generate all Msg-Tv-Selchanging events. This setting can
help you determine whether a Msg-Tv-Selchanging event is the cause of the
odd behavior. If this setting eliminates the odd behavior, it indicates that
your program relies on Msg-Tv-Selchanging events in cases other than the
user initiating a selection change.

For more information about the thin client, refer to the AcuConnect
User's Guide.

TEMP_DIR

This variable lets you specify where certain temporary files used by the
ASSIGN clause will be created on VAX/VMS systems. These temporary
files are created when you use the %TMP% option for assigning a file to a
simulated pipe with “-P”. For more information, see the ACUCOBOL-GT
User’s Guide, section 2.8, “File Name Interpretation.”

TEMPORARY_CONTROLS

By default, graphical controls are created as permanent controls. By setting
this configuration variable to “1” (on, true, yes), you cause controls to be
created temporary by default. This is useful when you are converting older
programs that assume that a screen update will overwrite any existing screen
data. You can make individual controls permanent or temporary explicitly by
using the PERMANENT and TEMPORARY styles (see section 5.2 in
Book 2, ACUCOBOL-GT User Interface Programming).

Configuration File Variables 3-163
TEXT

This configuration variable controls the text of runtime messages. The
ACUCOBOL-GT runtime system displays a number of informational and
warning messages to the end user. Several of these messages can be
customized via entries in the configuration file.

For each message that you want to change, place the word “TEXT” in your
configuration file, followed by a message number from the list below, an “=”
sign, and then the text you would like to use.

For example, the standard message #1 is “press return”. You can change that
message to “push enter” by placing this line in your configuration file:

TEXT 1=push enter

Note: There is no space before or after the equals sign, and the new
message is not in quotes.

These are the standard runtime messages and their numbers:

3-164 Runtime Configuration File
Message # Text

1 “Press return”

2 “Number required”

3 “Entry required”

4 “Field must be filled with data”

5 “Too many hot keys active”

6 “Program missing or inaccessible”

7 “Not a COBOL program”

8 “Corrupted program”

9 “Inadequate memory available”

10 “Unsupported version of object code”

11 “Program already in use”

12 “Too many external segments”

13 “Large-model program not supported”

18 “Please end this application first”

19 “Japanese objects not supported”

This message is displayed when a standard runtime attempts to
execute an object that contains Japanese COBOL extensions.

20 “Too many lines”

This message is displayed when the user exceeds the MAX-LINES
setting for a multiline entry field.

21 “License manager (acushare) not running”

This message is displayed when acushare is not running and the
runtime is unable to start it (e.g., because it is not in the path).

22 “Data must fit this format:”

This message is displayed when the user enters illegal data when
using the NUMERIC_VALIDATION configuration option.

23 “&Ok”

24 “&Yes”

25 “&No”

Configuration File Variables 3-165
Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

26 “&Cancel”

Messages 23, 24, 25, and 26 are used by character-based versions for
the message box facility.

28 “Unable to access the file “%s” due to heavy usage by other users.
Would you like to continue waiting for it?”

(See the configuration variable WAIT_FOR_FILE_ACCESS for
more information about this message.)

30 “Connection refused - perhaps AcuConnect is not running”

31 “Please enter a value between %ld and %ld”

This message is displayed when the user enters a value outside of the
allowed range for an entry-field (see MIN-VAL/MAX-VAL in the
entry-field reference). The first “%ld” is replaced by the MIN-VAL
setting. The second “%ld” is replaced by the MAX-VAL setting.
You may omit these if you desire. Note that the second character in
the sequence is the letter “l”, and not the number one (“1”).

32 “Program contains object code for a different processor”

33 “Incorrect serial number”

34 “Connection refused - user count exceeded on remote server”

35 “License error”

36 “The remote host is not responding.\nPress OK to close this
program.\nPress Cancel to wait another %s seconds.

This message is displayed when Thin Client does not receive a
response from the server in the number of seconds specified in
TC_SERVER_TIMEOUT.

Use “\n” to separate lines and “%s” to substitute the number of
seconds (value of TC_SERVER_TIMEOUT). If you don’t want to
display the number of seconds, omit the “%s”.

Message # Text

3-166 Runtime Configuration File
TRACE_STYLE

This variable allows you to customize the format of error and trace messages.
You can set it to the sum of one or more of the following values:

You can also set TRACE_STYLE to one of the following keywords, which
correspond to the indicated numerical values:

TRANSLATE_TO_ANSI

This variable has meaning only on graphical systems such as Windows. It is
used only if:

• you are using the graphical system’s font to accept data, and

• you store your data using the OEM character set. (For example, Vision
files may contain OEM characters if they were created with a DOS
runtime.)

0 The default. No “ACU” prefix, process ID, time, or date is
included in the trace output.

1 Adds “ACU” prefix to each line of the trace output.

2 Adds the process ID.

4 Adds the time.

8 Adds the microseconds; has an effect only if “4” is also
specified.

16 Adds the date.

NONE 0

TIMESTAMP 12 — The TIMESTAMP style is 4+8; it outputs
timestamps with microseconds.

APPSERVER 23 — The APPSERVER style is 1+2+4+16; at the
beginning of each line of the error file it outputs “ACU”
followed by the date, the process ID, and the time without
microseconds.

Configuration File Variables 3-167
Set the variable TRANSLATE_TO_ANSI to “1” (on, true, yes) to turn
on a character set translator. Then, if you use the graphical system’s font
for accepting data, the runtime will translate from one character set to the
other for you. Data that is accepted from the screen will be translated
into the OEM character set before it is stored on disk. Data stored in the
OEM character set will be translated to the ANSI character set before it
is displayed on screen. This also applies to the printer, if you are using
Windows spooling and the printer uses an ANSI font.

Setting TRANSLATE_TO_ANSI to the default, “0” (off, false, no), turns off
the translation process.

This variable can be set from within a COBOL program with the SET verb.
For example:

SET ENVIRONMENT “TRANSLATE_TO_ANSI” TO “YES”.

Note on ANSI and OEM characters:

The ANSI and OEM representations of the following standard English
characters are identical:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Abcdefghijklmnopqrstuvwxyz
0123456789 <space>
! " # $ % & ' () * + , - . / :
; < = > ? @ [\] ^ _ ‘ { | } ~

Only the representations of accented vowels and other special or non-English
characters are different.

TREE_ROOT_SPACE

This variable controls the number of screen columns between the left edge of
the Tree-View control and the root level text. TREE_ROOT_SPACE is used
only with the LINES-AT-ROOT property. If LINES-AT-ROOT is not
specified, the root level item text will be displayed starting at the leftmost
screen column inside the tree-view control.

For example, if TREE_ROOT_SPACE is set to 5, there will be 5 screen
columns before the text of each root level item. The screen column where the
root level line will be drawn is determined by this formula:

root level-line = (TREE_ROOT_SPACE - 1)/2 + 1

Taking off from the previous example, if TREE_ROOT_SPACE=5, the root
level line will be drawn in screen column 3, counting from the left edge of the
Tree-View control.

This has the effect of centering the vertical root level line in the space
between the left edge of the Tree-View control and the last root level text.

The “+” or “-” button is displayed in the column to the right of this vertical
line if the TREE_ROOT_SPACE is set to a value greater than or equal to 2.
If the TREE_ROOT_SPACE is set to 1, the “+” or “-” button appears in the
first screen column of the Tree-View control. The default value of
TREE_ROOT_SPACE is 2.

TREE_TAB_SIZE

This configuration variable is one of two variables that affect the appearance
of character-based Tree-View controls. TREE_TAB_SIZE controls the
number of screen columns between each level in the visual representation of
the tree. For example, if TREE_TAB_SIZE is set to 10, the horizontal
distance between the first character of text in the first level and the first
character of text in the succeeding levels of the tree will be 10 screen columns
each. The default value of TREE_TAB_SIZE is 3.

See TREE_ROOT_SPACE variable.

TRX_HOLDS_LOCKS

This configuration variable allows you to control which locks are released at
the end of a transaction. If this variable is set to “1” (on, true, yes), then locks
set using the READ statement that are not specifically released or replaced by
extended transaction locks (for example, by a REWRITE) are held at the end

Configuration File Variables 3-169
of the transaction. Locks are released during a transaction by any operation
that would ordinarily release them, unless those locks were replaced by
extended transaction locks.

If TRX_HOLDS_LOCKS is set to the default, “0” (off, false, no), then locks
are released at the end of a transaction, and the UNLOCK verb has no effect
during a transaction.

UPPER_LOWER_MAP

This variable allows you to define which upper-case characters correspond to
which lower-case characters, for characters outside of the standard ASCII
character set (those whose underlying decimal values are 128 or larger).

You might find this useful if you are experiencing problems with the UPPER
or LOWER option of the ACCEPT statement when non-standard characters
are entered (such as an “e” with an accent above it). The ACUCOBOL-GT
runtime system relies heavily on C library routines to handle conversions
between upper-case and lower-case characters. On many machines, these
routines do not handle characters outside of the standard ASCII character set
correctly.

To specify corresponding characters, use UPPER_LOWER_MAP followed
by pairs of characters, where the first character is the upper-case version and
the second character is the lower-case version. Separate the characters by a
space. Describe the characters either by typing them at the keyboard or by
entering the decimal value that represents them.

For example, on a standard IBM PC, the video card represents an upper-case
“U” with an umlaut (Ü) as character 154, and the lower-case “u” with an
umlaut (ü) as 129. The upper-case “E” with an accent character is 144 (É)
and the lower-case “e” with an accent is 130 (é). To express this in the
configuration file, you would add the following line:

UPPER_LOWER_MAP 154 129 144 130

This could be extended to include all of the character pairs available.

3-170 Runtime Configuration File
By default, Windows systems come with the UPPER_LOWER_MAP
defined to be the character pairs available on the standard video cards
produced by IBM. Note that using “code pages” can change this, so the
default may not work in all cases for these machines. For other machines, the
default is empty (which means that C library routines are used for
conversion). If you experience difficulties, UPPER_LOWER_MAP allows
you to define a mapping that reflects your hardware configuration.

Only characters whose decimal values are 128 or greater may be mapped by
this technique.

Note: This variable cannot be read with the ACCEPT FROM
ENVIRONMENT statement.

USE_CICS

Set this variable to indicate to the runtime that the program makes calls to the
CICS interface. When USE_CICS is set to “1” (on, true, yes), the runtime
attempts to pass calls to functions that begin with the string “CICS” to the
CICS interface. If the named routine does not exist, the runtime uses the
normal search sequence to find a matching function. When USE_CICS is set
to the default value of “0” (off, false, no), the runtime does not perform any
special handling.

USE_EXECUTABLE_MEMORY

When set to “TRUE”, this variable enables a COBOL program compiled for
Native Code to run on a Windows machine that has Data Execution
Protection (DEP) enabled for all processes. The default value is “FALSE”.

Configuration File Variables 3-171
USE_EXTSM

Set this variable to indicate that the runtime should use an external sort
module. When USE_EXTSM is set to “1” (on, true, yes), the runtime uses the
linked-in EXTSM function to perform the SORT or MERGE operation.
When USE_EXTSM is set to the default value of “0” (off, false, no), the
runtime does not perform any special handling for SORT and MERGE verbs.

USE_LARGE_FILE_API

On UNIX systems, this variable allows you to turn on or off file system API
support for very large files (greater than 2 gigabytes). Support for large files
is enabled when USE_LARGE_FILE_API is set to “1” (on, true, yes). Some
UNIX systems do not support files greater than 2 gigabytes in size. In those
situations, setting this variable to the default of “0” (off, false, no) causes the
runtime to use the standard 32-bit file system API. This variable has no effect
on Windows platforms.

USE_LOCAL_SERVER

This variable is used by the runtime and Web Runtime to specify whether or
not you want to run client applications on the same machine as an AcuServer
file server. When USE_LOCAL_SERVER is set to the default of “0” (off,
false, no), AcuServer is bypassed when accessing local files that have remote
name notation. The remote name is stripped off and the file I/O operation is
handled by the runtime or Web Runtime. Set this variable to “1” (on true,
yes) to use AcuServer to access local files that have remote name notation.
This variable only works with AcuServer client runtimes and AcuServer
client Web Runtimes.

USE_MPE_REDIRECTION

This configuration variable applies only when running in HP COBOL
compatibility mode (with the “-Cp” compiler option) on machines that
support the MPE environment. With the use of the
USE_MPE_REDIRECTION configuration variable, input for an ACCEPT

3-172 Runtime Configuration File
statement is read from the file specified by STDIN=, and output from a
DISPLAY statement is written to the file specified by STDLIST= on the
RUN command line. To enable this behavior, set
USE_MPE_REDIRECTION to “1” (on, true, yes). The default value is “0”
(off, false, no). In addition, when this variable is set, no terminal manager
escape sequences are written to the redirected output file.

USE_MQSERIES

Use this variable to indicate to the runtime that the program makes calls to
WebSphere MQ (formerly MQSeries). When USE_MQSERIES is set to “1”
(on, true, yes), the runtime attempts to pass calls to functions that begin with
the string “MQ” to the WebSphere MQ interface. If the named routine does
not exit, the runtime uses the normal search sequence to find a matching
function. When USE_MQSERIES is set to the default value of “0” (off,
false, no), the runtime does not perform any special handling.

USE_SYSTEM_QSORT

This variable instructs the runtime SORT routine to use the system qsort()
function, rather than the built-in sort function. Set USE_SYSTEM_QSORT
to “1” if you want to use the system qsort() function. The default value is “0”
and results in the use of the built-in sort function.

Some systems have qsort() functions that perform better than the built-in
function. Consider experimenting with this variable’s settings to determine
if this option yields better performance on your system. Pay particular
attention to the number of comparisons done during the sort, which can be
seen in the runtime trace output.

USE_WINSYSFILES

This variable specifies whether the runtime should recognize calls to modules
with the extensions “.drv” and “.ocx” as well as those with the extension
“dll”. By default, it is set to “1” (on, true, yes).

Configuration File Variables 3-173
For backwards compatibility, you can turn this feature off by setting it to “0”
(off, false, no). Then, only calls to “.dll” files are supported.

V_BASENAME_TRANSLATION

This variable allows you to tell Vision whether to include full path
information in the filename. By default, only the base name is included (the
filename with no extension and no path information). Retaining the path
information can be helpful in instances where Vision files of the same name
are stored in different locations and you want to map one of the segments
from one directory to a new location.

When V_BASENAME_TRANSLATION is set to “0” (off, false, no), Vision
uses the entire path of the file. When it is set to “1” (on, true, yes), the default
setting, Vision uses only the base name.

The setting of V_BASENAME_TRANSLATION affects the behavior of
three configuration variables that handle Vision filename translation:
filename, filename_DATA_FMT, and filename_INDEX_FMT. The
following illustrates how the configuration variables interact.

For the file “/user/data/record1.vix”:

• If V_BASENAME_TRANSLATION is set to “on” (the default),
filename, filename_INDEX_FMT, and filename_DATA_FMT use
“RECORD1_VIX” as the base name.

• If V_BASENAME_TRANSLATION is set to “off”, filename,
filename_INDEX_FMT, and filename_DATA_FMT use
“_USER_DATA_RECORD1_VIX” as the base name (underscores
replace instances of “/” and “.”).

For a description of filename, filename_INDEX_FMT, and
filename_DATA_FMT, see their respective entries in this appendix.

3-174 Runtime Configuration File
 V_BUFFERS

This variable sets the number of indexed block buffers to allocate. These
buffers are used to improve the performance of indexed files. Each buffer is
512 bytes plus some overhead. Increasing the number of buffers can
improve file performance. Decreasing the number conserves memory. The
value of V_BUFFERS has no effect on versions of ACUCOBOL-GT that do
not use Vision files. The value of V_BUFFERS can range from zero (no
buffering) to 2097152. The default value is 64.

V_BUFFER_DATA

The setting of this variable determines whether or not Vision indexed file
data blocks (as opposed to key blocks) will be held in the memory-resident
disk buffers. When it is set to “1” (on, true, yes), both data blocks and key
blocks will use the buffers. When set to “0” (off, false, no), only key blocks
will use the buffers. Setting this value to “1” will usually improve
performance unless very few buffers are being used.

Note: Holding data blocks in the buffers slightly increases the chances of
losing data if a file opened for MASS_UPDATE is not closed properly
(power failure, etc.). The default setting of this variable is “1”.

V_BULK_MEMORY

Vision allocates a memory buffer for each file opened for bulk addition. The
size of this buffer is controlled by the V_BULK_MEMORY configuration
option. The default size of this buffer is 1 MB.

Note: The default size is fairly large because it is assumed that only a few
files will be open for bulk addition on a system at any one time. If this
buffer cannot be allocated, the OPEN fails with a status indicating
inadequate memory.

To change the size of the allocated memory buffer to, for example, 500 KB,
you would enter:

Configuration File Variables 3-175
V_BULK_MEMORY = 500 KB

V_FORCE_OPEN

This variable allows you to force the runtime to open broken files that would
normally cause an error 98. This means you can write COBOL programs to
recover these files in ways that are not available with vutil. Set
V_FORCE_OPEN to “1” (on, true, yes) to open the files. The default is “0”
(off, false, no).

Note: When this variable is set to “1”, make sure you do not also have the
V_OPEN_STRICT variable set to “1” because the settings conflict.

V_INDEX_BLOCK_PERCENT

This configuration variable allows you to specify index pre-allocate and
extension factors as a percentage of the factors applied to the data segment.
In Vision 4 and 5 files, the index data contained in the index segments is often
much smaller than the record data contained in the data segments. As a result,
a large pre-allocate or extension factor typically allocates many more index
blocks than are needed. This can be undesirable, especially if disk space is
tight.

Setting V_INDEX_BLOCK_PERCENT to a number less than 100 causes
fewer index blocks than data blocks to be created. Setting the variable to a
number greater than 100 causes more index blocks than data blocks to be
created. The valid range for V_INDEX_BLOCK_PERCENT is one through
1000. If the value specified is less than one, it will be promoted to one.
V_INDEX_BLOCK_PERCENT is set to 100 by default (the default
pre-allocate and extension factors for a file).

For example, if a file has an extension factor of 10, setting
V_INDEX_BLOCK_PERCENT to 50 causes 10 new data blocks and five
new index blocks to be created the next time the file is extended. Setting
V_INDEX_BLOCK_PERCENT to 200 causes 10 new data blocks and 20
new index blocks to be created the next time the file is extended.

3-176 Runtime Configuration File
Note: The number of blocks pre-allocated will never be larger than that
which can fit in the initial data and index segments. If the pre-allocation
value specified or calculated from V_INDEX_BLOCK_PERCENT is
larger than the segment size, the pre-allocation amount is automatically
reduced to the segment size.

V_INTERNAL_LOCKS

This configuration variable allows you to control whether the runtime
enforces internal record or file locking. When V_INTERNAL_LOCKS is set
to “0” (off, false, no), Vision tracks locks but does not enforce internal record
or file locking. As a result, the runtime does not return a record or file locked
condition for a record or file that was previously locked by the same run unit.
When V_INTERNAL_LOCKS is set to the default of “1” (on, true, yes),
internal record and file locking are enforced.

Note: The Windows operating system enforces a single lock per process
on a region of a file. This means that if your program opens the same
physical file as two different logical files and then tries to lock the same
record in both “files”, the second lock will fail (with an error “99”) even if
V_INTERNAL_LOCKS is set to “0”. So V_INTERNAL_LOCKS 0
practically affects programs running on UNIX operating systems only.

V_LOCK_METHOD

This variable selects which locking method Vision will use to control
simultaneous access to indexed files. It affects only the Vision file system,
and only files directly accessed by the runtime (it does not apply to files
accessed via AcuServer).

The default setting of “0” (zero) causes Vision to lock the first byte of the file
for every access to the file (both reads and updates). This ensures that the
process is not interfered with by another process. This locking method is
always used by Vision Version 2 files.

Configuration File Variables 3-177
Setting this variable to “1” causes Vision to lock the first byte of the file for
all operations except random READs or READ NEXTs. These two
operations proceed without the lock. Instead they perform some additional
reads of the file, to ensure that they get consistent results. If they get
inconsistent results, they are retried, this time locking the first byte as other
operations do. This locking method is available only for Vision Version 3, 4,
and 5 files.

Note: This variable must have the same setting for all the runtimes
accessing a file, whether they are reading or writing to it. For example, if a
runtime set with V_LOCK_METHOD=1 is reading from a file, any
runtimes that are writing to that same file must also have
V_LOCK_METHOD set to 1.

Lock method “1” can produce better performance on some machines. These
machines fall into two categories:

• Machines that take a long time to place a lock.

• Machines that do not queue lock requests, and are very busy. In this
case, some users typically get good performance, while others get poor
performance.

Setting V_LOCK_METHOD to “1” might help improve performance with
Vision Version 3, 4, or 5 files. For example, setting V_LOCK_METHOD to
“1” can be helpful on some Windows networks. A peer-to-peer network of
Windows 98 machines can exhibit problems reading Vision files when a
process performs a tight read loop. The problem usually surfaces as either an
error 30,33 or an unexpected error 99. This occurs because the runtime is
unable to place a lock on the header of the file after 400 attempts over a
20-second period. For other networks, setting V_LOCK_METHOD to “1”
can substantially reduce the number of lock requests made by the runtime and
can often resolve these problems.

To get statistics about header locks, select Trace Files level “3” in the
debugger (for example, “TF 3”). These statistics print on the runtime’s error
output each time a Vision file is closed. They cover the operations in that file
since it was last opened. You can also view these statistics (without the full
trace) by adding “256” to the lock method chosen (for example, setting
V_LOCK_METHOD to “257” selects method “1” and prints statistics).

3-178 Runtime Configuration File
Setting the V_LOCK_METHOD variable to “2” enables “asynchronous
reads” of Vision files. This option is intended to further reduce the number
of file locks required to perform random READs and READ NEXTs.

The advantage of the “2” setting is that it is less likely to require retrying a
READ with a lock when a file is undergoing heavy modification. With
V_LOCK_METHOD=1, the READ is retried with a lock whenever it detects
that the file has been updated in any way; with V_LOCK_METHOD=2, the
READ is retried only when Vision encounters inconsistent data while
traversing the index tree or reading the record data. This leads to less locks
and therefore greater performance for machines with slow locking functions.

V_LOCK_METHOD=2 works only for Vision 4 and 5 files. A fundamental
requirement for the V_LOCK_METHOD=2 feature to work properly is that
the operating system must provide atomic write operations. That is, if one
process is writing to a file, another process will always see the contents of the
file as it exists either before or after the write operation, never the
intermediate contents as the write operation runs. There is evidence that
Linux does not provide atomic writer operations and therefore it is not
recommended to use this setting in a Linux environment.

If any process reading a particular file is using V_LOCK_METHOD=2, all
other processes (runtimes) updating that file must be ACUCOBOL Version
5.0.0 or greater. This is because Version 5.0.0 contains changes that affect
the way Vision updates the tree structure of its files. These changes allow for
greater consistency of the tree from the viewpoint of an asynchronous reader.
This requirement is not enforced by Vision, however, so it is important for
the users to pay careful attention to the versions of programs accessing their
files to avoid receiving erroneous data. Therefore, before enabling this
option, make sure that all runtimes updating files on which asynchronous
reads are to be performed (V_LOCK_METHOD=2) are Version 5.0.0 or
later.

As with V_LOCK_METHOD=1, adding 256 to the value of the
V_LOCK_METHOD setting causes statistics about header locks to be
printed to the runtime’s error output each time a Vision file is closed. So,
setting V_LOCK_METHOD=258 selects method 2 and turns on the header
lock statistics.

Configuration File Variables 3-179
V_MARK_READ_CORRUPT

This variable allows you to configure Vision so that it does not mark a file as
broken if it encounters a corruption during a read or start operation. The
effect is that the user is allowed to retry the program. This may be useful
when the error is spurious (for example due to a network caching glitch). If
the user retries the program and once again receives a file-corrupt message,
then the file should be rebuilt or recovered normally. To enable this option,
set the configuration option “V_MARK_READ_CORRUPT” to “0” (off,
false, no). The default setting is “1” (on, true, yes).

V_NO_ASYNC_CACHE_DATA

This configuration variable turns on the caching of data blocks for file reads.
By default, Vision 4 and 5 do not cache data blocks in its internal cache (all
V_BUFFERS are allocated only to index blocks). This is required for the
asynchronous reads feature (V_LOCK_METHOD=2) to work properly
(each data record needs to be read/written in a single system call).

The default setting of this configuration variable is “0” (off).

If you are not using the asynchronous reads feature at all, you may turn on
the caching of data blocks by setting the V_NO_ASYNC_CACHE_DATA
configuration variable to “1”. This may improve READ performance.

Caution: Be certain that you do not use this configuration variable with
V_LOCK_METHOD=2 in any combination, as silent data corruption may
result.

3-180 Runtime Configuration File
V_OPEN_STRICT

By default, Vision allows OPEN INPUT on files that are marked as broken.
This behavior is intended to make it easier to recover records from broken
files. If you want to receive an error status when opening a file marked as
broken for INPUT, set V_OPEN_STRICT to “1” (on, true, yes). The default
setting of “0” (off, false, no) allows open input on broken files.

Note: When this variable is set to “1”, make sure you do not also have the
V_FORCE_OPEN variable set to “1” because the settings conflict.

V_READ_AHEAD

Setting this configuration variable to “0” (off, false, no) turns off Vision’s
read-ahead logic. This may improve performance in cases where highly
random file processing is being used. The default value is “1” (on, true, yes).

V_SEG_SIZE

This configuration variable sets the maximum size of a Vision 4 or 5 file
segment in bytes. The default value is 2,147,482,112 (i.e., 2GB – 1536),
except on older HP/UX machines where it is 1,073,740,288 (i.e., 1GB –
1536) due to an operating system limitation. You may not use larger values,
but you can set smaller ones. The default value is the maximum allowed.
The value specified will automatically be rounded down to a multiple of the
block size of the file being created. For example, if the default V_SEG_SIZE
value is used and a file with a block size of 1024 is created, the segment size
for that file will be 2,147,481,600 (i.e., 2GB – 2048).

Using a smaller value for the segment size can help if you do not have 2GB
free on any disk or for testing purposes. The minimum value allowed is
81,920 bytes. To minimize the number of files created, you should set this
value as high as possible.

Configuration File Variables 3-181
The segment size of a file is set at file creation time and cannot be modified
without recreating the file (i.e., using vutil –rebuild with a different
V_SEG_SIZE setting). vutil uses this variable, but since it does not use a
configuration file, this variable must be set in the environment.

V_STRIP_DOT_EXTENSION

The V_STRIP_DOT_EXTENSION variable determines whether or not
Vision strips a trailing “dot extension” (“.dat”) from the logical name of a
data file when generating file names for index and data segments (other than
the first data segment). Setting this variable to “0” prevents the extension
from being removed. For example, by default, the first index segment name
for the logical file “file.one” is “file.vix” (which would conflict with the
index segment of “file.two”). When V_STRIP_DOT_EXTENSION is set to
“0” (off, false, no), the index segment name is “file.one.vix”. The default
value for this variable is “1” (on, true, yes).

Note: The setting of this variable affects the behavior of four configuration
variables: filename, filename_DATA_FMT, filename_INDEX_FMT, and
filename_VERSION. See their respective entries in this appendix for details.

V_VERSION

This variable specifies the version number of new Vision files that are
created. The default value is “5”, which produces Vision files in the format
of the current version (Version 5). The value “4” produces Version 4 files.
Version 5 and 4 files are generated in a dual file format, with data records
filed in one segment and overhead key information filed in another. The
value “3” produces Version 3 files, in which data and keys are stored in a
single file. The value “2” produces Version 2 files. Any value other than
“2”, “3”, or “4” produces Version 5 files.

3-182 Runtime Configuration File
V23_GRAPHICS_CHARACTERS

Programs written for and executed with UNIX versions of the runtime up to
and including Version 2.4.0 use hex values 1-8 to display line drawing
characters on the screen. Runtimes after Version 2.4.0 use hex values offset
by one (1). When older programs are used with runtimes released after
Version 2.4.0, line drawing characters do not display as expected. To use the
old values for line drawing characters, set this variable to “1” (on, true, yes).

If the variable is set to “0” (off, false, no) or is not set at all, the runtime will
use the newer offset values. This variable works only for UNIX systems.

V30_MEASUREMENTS

This configuration variable affects whether the runtime sizes certain controls
according to the rules from Version 3.0 or from the current version. If the
current measurement code is causing your application to display incorrectly,
then setting this variable to “1” (on, true, yes) will use Version 3.0 sizing
rules instead. When V30_MEASUREMENTS is set to the default “0” (off,
false, no), then the current sizing rules are in effect.

The related configuration variables, V31_MEASUREMENTS and
V32_MEASUREMENTS have the same effect of setting the sizing rules to
that of their respective versions.

V31_FLOATING_POINT

This configuration variable allows you to disable a correction that was made
to the way floating-point numbers are displayed. Because some loss of
precision in the display of “USAGE DOUBLE” fields was possible in
Version 3.1, an improvement was introduced. Setting this variable to “1”
(on, true, yes) means that the Version 3.1 method of displaying floating-point
numbers is used. When V31_FLOATING_POINT is set to the default “0”
(off, false, no), then the correction is in effect.

Configuration File Variables 3-183
V42_FLOATING_POINT

This variable affects how floating-point arithmetic is performed. Starting
with Version 4.3, floating-point arithmetic was enhanced to more closely
reflect the way that floating-point values are determined on the host system.
This enhancement can affect the behavior of existing programs. To revert to
the computation method used prior to Version 4.3, set the value of
V42_FLOATING_POINT to “1” (on, true, yes). By default, this variable is
set to “0” (off, false, no).

V43_PRINTER_CELLS

This variable affects whether the runtime sets the width of a printer cell
according to the rules from Version 4.3 or from the current version. Version
4.3 (and prior versions) computed the width of a printer cell based on the
average width of a selected printer font. The width of a printer cell is
currently computed in the same way that cells are computed for the screen,
namely by the width of the “0” character. For fixed-width fonts, such as
Courier, these values are the same for all characters. For proportional fonts,
such as Times New Roman, some characters might be wider than the “0”
character.

If the current computation is causing your application to print incorrectly,
then setting this variable to “1” (on, true, yes) will use Version 4.3 rules
instead. When V43_PRINTER_CELLS is set to the default “0” (off, false,
no), then the current rules are in effect.

V52_BITMAP_BUTTONS

If some event in the system forces the focus away from a bitmap-based push
button after a click has been started but not finished, this variable determines
whether the click is voided. If you do not want the click to be voided, set this
variable to “1” (on, true, yes). The default setting is “0” (off, false, no).

3-184 Runtime Configuration File
V52_BITMAPS

This variable determines whether your application uses device-dependent or
device-independent bitmaps for image processing. The following settings are
recognized:

V52_GRID_GOTO

This configuration variable determines how the runtime behaves when a user
clicks in a grid control cell containing the cursor. Prior to Version 5.2, the
runtime would not pass a MSG-GOTO-CELL-MOUSE event to the program
when the user clicked in a grid cell containing the cursor. For programs
compiled with Version 5.2, or later, this event is passed to the program.
Setting V52_GRID_GOTO to “0” (off, false, no), maintains the pre-5.2
behavior. The default of “1” (on, true, yes) enables the new behavior, even
for programs compiled with Versions 5.1 or earlier and run with Versions 5.2
or later. See Appendix C: Changes Affecting Previous Versions, in the
ACUCOBOL-GT Appendices Manual for more details.

V60_LIST_VALUE

This variable allows you to select the algorithm used by the runtime to match
a list box or combo box VALUE with an item in the control’s list.

 1 Use Version 5.2 and earlier image-processing code
(device-independent) for bitmap controls.

 0 Use Version 6.0 and later image-processing code
(device-dependent) for bitmap controls.

-1 (default) Dynamically apply the image-processing
code based on the program’s object semantics. For
programs compiled for pre-Version 6.0 semantics, use
the older imaging code. For programs compiled for
Version 6.0 or later semantics, use the newer code.

Configuration File Variables 3-185
Prior to Version 6.0, setting the VALUE of a combo box or list box caused
the first item in the list that started with the value of VALUE to be selected,
regardless of case. Beginning with Version 6.0, when a box’s VALUE is set,
the list is searched for an exact, case sensitive match with the specified value.
If the value is found, it is selected. If an exact match is not found, the list is
searched for an exact match regardless of case. If a match is still not found,
the list is searched again, this time for the first string that contains the passed
VALUE as a leading substring, regardless of case. V60_LIST_VALUE
allows you to specify which algorithm to use. It accepts the following values:

V62_MAX_WINDOW

Starting with Version 7.0, when the runtime reduces the size of a window to
fit the screen, it includes any fractional lines and columns that fit, provided
the COBOL program attempts to create a window with fractional lines and
columns. For example, if you create a 70.0 line window, but only a 66.4 line
window fits on the display, the runtime detects that no fractional lines were
attempted, and truncates the number of lines to 66.0. However, if you
attempt to create a 70.1 line window, the runtime recognizes the fractional
measurement and displays a 66.4 line window. To preserve the pre-7.0
behavior, set the configuration variable V62_MAX_WINDOW to “1” (on,
true, yes) and fractional lines and columns are always removed. The default
value is “0” (off, false, no).

1 directs the runtime to use the Version 6.0 search algorithm

0 directs the runtime to use the pre-6.0 search algorithm (substring
search only)

-1 (default) directs the runtime to use the 6.0 search algorithm on
objects compiled for Version 6.0 or later, and to otherwise use the
old search algorithm. This means that objects compiled for
compatibility with versions prior to 6.0 that are run with a Version
6.0 runtime will not exhibit the new behavior.

3-186 Runtime Configuration File
V71_ALIGNED_ENTRY_FIELD

Starting with Version 7.2, the wheel mouse can be used for scrolling in a
center- or right-aligned entry field. To preserve the pre-7.2 behavior, set the
V71_ALIGNED_ENTRY_FIELD configuration variable to “1” (on, true,
yes). The default value of this variable is “0” (off, false, no).

V71_FONT_WIDTHS

Windows has a function called GetTextMetrics that returns information
about a font. This data is used by the runtime to compute the “maximum
character width” and “wide character width” of a font. The “maximum
width” amount is used to set a lower bound for how small an entry field can
be (to ensure that at least one character is always visible). The “wide width”
is used to scale small entry fields and uppercase entry fields. The “wide
width” is computed by averaging the maximum and average character
widths. Experimentation has shown that the “maximum character width”
data returned may be inaccurate, sometimes by very large margins.

With the use of the V71_FONT_WIDTHS configuration variable, the
runtime validates the data returned by the Windows function and corrects it
when it is too large. The change does not affect programs until they are
recompiled with Version 7.2 or later, or the change is specifically enabled
through the V71_FONT_WIDTHS configuration option. The variable can
have the following values:

Please note the following issues regarding the use of this variable:

• The runtime's standard fonts are not affected by this configuration
variable setting.

-1 (default) The change is enabled for programs using Version 7.2 or later
semantics. In other words, the program has been compiled with Version
7.2 or later and the command line does not contain a compiler option for
pre-7.2 semantics.

0 The change is enabled.

1 The change is disabled and the Version 7.1 and earlier font measuring
code is used.

Configuration File Variables 3-187
• Entry fields defined by physical units (CELLS or PIXELS) and all
screens created using the AcuBench Screen Designer will not change.

• Entry fields will not grow larger due to this configuration variable
setting. The majority will stay the same size, and a few might get
smaller.

• Fixed width fonts are not affected by this configuration variable setting.

WAIT_FOR_ALL_PIPES

This configuration variable determines if the runtime calls the wait system
call each time a “-P” file is closed. When WAIT_FOR_ALL_PIPES is set to
“0” (off, false, no), the runtime does not make this call until it is ready to
close the last pipe it knows about. Setting this configuration variable to the
default “1” (on, true, yes) means that the runtime calls the wait system call
when a “-P” file is closed.

WAIT_FOR_FILE_ACCESS

This configuration variable is designed for Windows 98 systems. It gives
you some control over situations where a user must wait for access to a
shared file. The runtime will try repeatedly to acquire the file lock, up to 400
times. If it has been unable to obtain a file lock after 400 tries, it will (by
default) display a message box, asking if the user would like to continue
waiting. If the user clicks the “Yes” button, then the runtime will try again
another 400 times (or the value of LOCKING_RETRIES). If the user clicks
the “No” button, then the runtime will return an error to the COBOL program
(such as file error 30,33 (system error) or file error 99 (record locked).

The WAIT_FOR_FILE_ACCESS variable lets you choose one of three
behaviors: either the user will always see the message box and make a choice,
or the program will always return an error code if it cannot acquire the lock,
or the runtime will always behave as if the user answered “yes” to the
message box.

3-188 Runtime Configuration File
You can modify the text shown to the user in the message box via the TEXT
configuration variable. The message is number 28. To include the filename
in your message, insert “%s” at the place where you want the name of the file
to appear. You can introduce line breaks by including “\n” in the message.

Possible values for the WAIT_FOR_FILE_ACCESS variable are:

For programs running in background (“-b” runtime option), or programs with
redirected input or output, the “Ask” option is treated the same as the “Yes”
option.

WAIT_FOR_LOCKS

This determines how the runtime handles file status error 99 conditions on
record reads. This variable is not checked on record write operations. It can
have one of the following values:

Any other value (including the default value of “-1”) causes the runtime to
wait for locked records only if you have compiled for RM/COBOL
compatibility and the file does not have a Declarative.

0 “No” Do not display message box if lock is not acquired. Send
error to COBOL program.

1 “Ask” Show the message box and ask the user. (Default)

2 “Yes” Do not show the message box. Assume that the user wants
to wait for the file. This ensures that the user eventually
can access the file, but introduces a small risk of an
infinite loop if the system’s lock table becomes corrupt.

0 Do not wait for locked records, return error 99.

1 Wait for the locked record if no Declarative is available for the file,
otherwise return error 99.

2 Always wait for the locked record, never return error 99.

Configuration File Variables 3-189
WARNINGS

This configuration variable controls whether a warning message is printed
and an error raised for the following conditions:

1. when non-numeric data is used in a context where numeric data is
required

2. when there is a reference modification range error

By default, the runtime silently corrects reference modification range errors
as follows:

• A start reference less than 1 is treated as 1. For example, var(0:3) is
treated as var(1:3).

• A length reference less than 0 is treated as 0. Moving a zero-byte item is
equivalent to moving spaces to the destination item. A zero-byte
destination is not affected by the move. In a STRING statement, a
length of zero for a string source is treated as 1, not 0.

• A start plus length reference that is past the end of the item is treated as
meaning to the end of the item. For example, if the var is a PIC X(5)
item, var(4:23) is treated as var(4:2).

WARNINGS can take the following values:

0 (off, false, no) No warning is printed.

1 (on, true, yes) A warning is printed. This is the default.

2 A warning is printed or sent to the error file. If you are in the debugger, an
automatic breakpoint occurs.

3 For a non-numeric error, a warning is printed, an intermediate error is
generated that calls the installed error procedures, if any, and the runtime is
halted. For more information on error procedures, see
CBL_ERROR_PROC in Appendix I of the ACUCOBOL-GT
Appendices Manual.

3-190 Runtime Configuration File
Note: The setting you select for WARNINGS applies to reference modifier
range errors when the start plus length reference is past the end of the item.
Reference modifiers that are equal to or less than zero are always silently
corrected as described above.

WARNING_ON_RECURSIVE_ACCEPTS

An event procedure may CALL another procedure which may contain
ACCEPT statements, which, in turn, may contain embedded procedures.
Although this is handled in the same fashion as nested PERFORMs and is
perfectly legal, doing this poses the danger of going from one ACCEPT to
another uncontrollably. When the limit of 10 nested accepts is reached, the
program starts overwriting memory. It is possible to warn the user when the
limit is reached by giving this configuration variable a zero (“0”) value. This
gives users the opportunity to continue at their own risk. Giving
WARNING_ON_RECURSIVE_ACCEPTS a non-zero value suppresses the
warning.

To avoid overwriting memory, you may choose to re-code affected programs
to terminate the ACCEPT and perform the CALL after you exit from the
ACCEPT. You may also use CHAIN or CALL PROGRAM instead of the
regular CALL, if applicable.

WHITE_FILL

This variable has meaning only on graphical systems such as Windows.
Some graphical systems (such as Windows) use a “background brush” when
they resize a window. By default, the background brush color for
ACUCOBOL-GT is black (“0”, off, false, no). If you have arranged your
default background to be white, you will see a black flash when you resize the
window. This does not affect the final appearance of the window, but is
briefly noticeable while the window is being redrawn.

Configuration File Variables 3-191
Set WHITE_FILL to “1” (on, true, yes) to cause ACUCOBOL-GT’s
background brush to be set to white instead of black. Doing this will also
cause the initial screen that ACUCOBOL-GT paints to be white instead of
black.

Note: This variable must be set in the configuration file to be effective.
Modifying this variable with the SET ENVIRONMENT verb has no effect.

WIN_ERROR_HANDLING

This variable has meaning only on graphical systems such as Windows. Use
WIN_ERROR_HANDLING to control how hardware errors are handled.

When this variable is set to the default of “1” (on, true, yes), certain errors are
handled directly by the host environment, and do not automatically return a
file error code. For these errors, a dialog box is displayed that describes the
error and offers “Cancel” and “Retry” buttons. The user may correct the
error and press “Retry”. If the user presses “Cancel”, then your program
receives the file error that it would have normally received.

If you set WIN_ERROR_HANDLING to “0” (off, false, no), then the dialog
box is not shown, and your program receives the error directly.

WIN_F4_DROPS_COMBOBOX

This configuration variable applies only to programs running under
Windows.

If WIN_F4_DROPS_COMBOBOX is set to its default value of “1” (on, true,
yes), then combo boxes use the standard Windows handling for the <F4>
key. Pressing <F4> while a combo box is active causes it to drop its
drop-down list, and the COBOL program is not notified of an exception.

When this variable is set to “0” (off, false, no), pressing <F4> with a combo
box active causes the COBOL program to get the exception, but the combo
box does not drop its drop-down list.

It is not possible to get both behaviors at the same time.

3-192 Runtime Configuration File
WIN_SPOOLER_PORT

This variable allows you to divert printer output to a file or port through the
Windows print spooler. Files created in this way are stored in binary
encoding. You may set the Windows print spooler with “-P SPOOLER” or
“-Q <printername>” with or without the DIRECT option. However, if you
omit the DIRECT option, the resulting file will include all the embedded
control codes formatting the print job for the original target printer.

By default, the value of WIN_SPOOLER_PORT is undefined. Set
WIN_SPOOLER_PORT to a valid filename or port. This can be done in a
configuration file, in the environment, or in the program. For example:
WIN_SPOOLER_PORT c:\mydir\myprint.prn

or
SET ENVIRONMENT "WIN_SPOOLER_PORT" TO "c:\mydir\myprint.prn".

This will affect all print jobs performed in the current instance of the runtime.
Any graphics operations performed in the COBOL application, such as
WINPRINT-BITMAP or WINPRINT-GRAPH-DRAW, are preserved in the
file, and will print. However, these options may result in a very large binary
file.

The resulting file can be copied directly to any printer that is compatible with
the original target printer. For example, the following command:
COPY /B c:\mydir\myprint.prn LPT1

will send the file to LPT1, while the “/B” option tells the COPY command
that the file contains binary encoding.

WIN3_CLIP_CONTROLS

This option is specific to the Windows versions of ACUCOBOL-GT. It
affects the way in which updates to a window interact with graphical controls
in a window. Normally, Windows allows updates to a parent window to
show through any controls in that window. The controls are then updated to
create the proper final appearance. This is very fast, but it can cause controls
to flash when the background is being updated. When this option is set to “1”

Configuration File Variables 3-193
(on, true, yes), the controls are clipped from the update region in the parent
window before the parent is repainted. This causes the controls to remain
relatively stable; however, screen repaints can be significantly slower,
particularly when the runtime is creating and destroying controls. The
default setting for this option is “0” (off, false, no). We recommend that you
experiment with both settings to see which you prefer. Note that this option
is examined when a floating window is created. Once a window is created,
changes to this option have no effect on that window.

Note: When turned on, this option causes the Windows
WS_CLIPCHILDREN style to be used whenever floating windows are
created.

WIN3_EF_PADDED

This configuration variable has meaning only on Windows systems. Under
Windows, unboxed entry fields include a small amount of extra space so the
cursor can be seen when it is placed after the last character position. This
space can be a problem if you want to convert a program and align screen
items. When WIN3_EF_PADDED is set to “0” (off, false, no), this extra
space does not appear in unboxed entry fields, and the entry field has only
enough space for its character positions. When this variable is set to the
default “1” (on, true, yes), the extra space appears in unboxed entry fields.

WIN3_GRID

This option is specific to Windows. When set to a non-zero value, it causes
a fine grid to be drawn in each floating window. The grid outlines the
character cells in the windows. This is intended as a debugging tool, to help
you see how various controls line up against the window’s character cells. It
can also help you adjust the layout of a screen.

The grid is drawn using the color number that WIN3_GRID is set to (see the
COLOR phrase for the exact values). For example, setting WIN3_GRID to
“4” will draw a cyan grid. The grid is drawn with dashed lines. Every fifth
horizontal line and every tenth vertical line is drawn with a solid line.

3-194 Runtime Configuration File
WIN32_3D

This configuration variable causes the runtime to use the native 3-D features
of Windows when drawing controls with the 3-D style. This has an effect
only with the 32-bit Windows runtime. Turn this feature on by setting
WIN32_3D to “1” (on, true, yes). When set to the default of “0” (off, false,
no), the runtime supplies its own 3-D effects. The advantage of using the
native Windows 3-D is that you get a slightly more modern appearance and a
closer match to the appearance of other Windows programs. The
disadvantages are:

1. Windows always draws the border using the colors selected in the
system’s control panel. As a result, the effect looks right only when
placed on a window whose background is the USER-GRAY color. You
can accomplish this easily by creating STANDARD windows that
specify BACKGROUND-LOW.

2. The Windows 3-D effect is slightly larger than the runtime’s 3-D
effect. Windows draws a 1-pixel wide border around the control that is
the same color as the USER-GRAY color. This border is essentially
invisible against a window with the USER-GRAY background.
However, this border can overwrite anything else that may be
positioned there. The net effect is that you can’t place controls as close
together as you can with the runtime’s 3-D.

3. This 3-D style can be used only with the 32-bit runtime.

The runtime adjusts for the physical differences between the two styles.
Under either style, the position and usable size of the control’s interior should
be same.

Note: This configuration setting can effect the behavior of an application
if it is using the latest Windows control styling, that is the
WIN32_NATIVECTLS configuration variable set to 1, true, or on. If
WIN32_3D has not been set by the user then the default value will be
overridden and set to false (0 or off). If the user has set WIN32_3D then
their settings will not be overridden and if it is set to true (1 or on) then 3D
drawing will occur over the top.

Configuration File Variables 3-195
WIN32_CTL_INPUT_STATUS

Setting this variable to the default of “1” (on, true, yes) causes
ACCEPT…FROM INPUT STATUS to return a non-zero status if data is
available in a control. If set to “0” (off, false, no), then the data in the control
does not affect the status returned by ACCEPT…FROM INPUT STATUS.

This variable is only available in the Windows runtime and is not available to
the thin client.

WIN32_NATIVECTLS

This variable enables your application to use the Windows control style that
is in use on the workstation, (the workstation's theme is set to Windows XP
or Vista). To enable these visual styles, your application must be running on
an operating system that contains ComCtl32.dll version 6, which is included
with Windows XP and Vista.

When set to "1" (on, true, yes), the application will display the current control
styling available on that operating system, the XP look and feel on the
Windows XP OS or the Vista look and feel on the Windows Vista OS.

Note: In addition to visual differences, some XP and Vista controls have
different behaviors than their Windows classic counterpart (by Microsoft
design). The behavior differences if any, that our internal testing has
identified are documented in Book 2, Chapter 5 under the applicable
control. Alternatively, you can find a consolidated list in the 8.1 ECN List
(ECN 3734) located at the support section of the Micro Focus website.

The default setting is "0" (off, false, no) which prevents the runtime from
using the Windows control styling, and forces the “gray chiseled” or classic
Windows look.

Note: The configuration variable WIN32_3D can also change the look of
controls in an ACUCOBOL-GT application. It is generally recommended
that you leave WIN32_3D set to its default behavior of off or false when
setting WIN32_NATIVECTLS to on or true.

3-196 Runtime Configuration File
Note: The Windows OS allows users to configure (accessibility options)
whether or not keyboard shortcut names appear with underlines. For
example “ctrl+c” vs. “ctrl+c”. The WIN32_NATIVECTLS respects this
setting and will display shortcut names accordingly.

WINDOW_INTENSITY

This configuration variable controls whether the color settings specified in
the COLOR phrase of the DISPLAY WINDOW statement are used or
ignored by the runtime. When the value of this variable is set to “0” (off,
false, no), the COLOR intensity settings in all DISPLAY WINDOW
statements are ignored. When the value of this variable is set to “1” (on, true,
yes), which is the default, the runtime sets the windows intensity as specified.

WINDOW_TITLE

This variable has meaning only on graphical systems such as Windows. The
ACUCOBOL-GT runtime system automatically sets the title of the
application window to the base name of the initial object file. For example,
if you run a program called “notepad.cbx”, then the title on the main window
will be set to “Notepad”. The title is shown in lower-case except for the first
letter, which is made upper case.

You may provide an alternate title by setting WINDOW_TITLE to the
desired text. No translation of the text is done, so you should enter it using
the desired case.

Note: Setting WINDOW_TITLE from within a program has no effect,
because the WINDOW_TITLE setting determines only the window’s
initial title.

To change the title from within your program, use a DISPLAY statement.
The syntax is:

DISPLAY text UPON GLOBAL WINDOW TITLE

Configuration File Variables 3-197
where text is an alphanumeric literal or variable. Enter the title with the
desired case. The title is always shown in the ANSI font, so if you are using
a different font, your text will be translated to ANSI.

To ensure that the WINDOW_TITLE variable operates as expected, make
sure that the first screen operation in your program is not DISPLAY
WINDOW with a title (the DISPLAY WINDOW title is stored in the same
place as the WINDOW_TITLE). Instead, do some other screen operation
first, such as “DISPLAY WINDOW, ERASE”.

WINPRINT_NAMES_ONLY

This variable allows you to generate a list of the names of printers installed
on a Windows PC. It does this by altering the behavior of some of the
operations of the WIN$PRINTER library routine. When
WINPRINT_NAMES_ONLY is set to a value of “1” (on, true, yes), the
WIN$PRINTER operations that retrieve printer information return only the
names of installed printers, rather than the real-time status of all available
printer capabilities.

This variable can be set in the configuration file or directly in your program
with the following code:

SET ENVIRONMENT "WINPRINT-NAMES-ONLY" TO "1".

Note on WIN$PRINTER library routine:

When this variable is turned on, the following operations of the
WIN$PRINTER library routine are affected:

WINPRINT-GET-PRINTER-INFO
WINPRINT-GET-PRINTER-INFO-EX
WINPRINT-GET-CURRENT-INFO
WINPRINT-GET-CURRENT-INFO-EX

Instead of returning detailed information about the capabilities of each printer
(duplex, copying, etc.), the routine returns only the name of the printer. This
can provide a significant performance improvement, particularly with
networked printers.

3-198 Runtime Configuration File
If you are using the default printer settings, set the
WINPRINT_NAMES_ONLY variable to “1”, generate a list of printer
names using WINPRINTER-GET-PRINTER-INFO-EX (see the
WIN$PRINTER documentation in the Appendices of the ACUCOBOL-GT
manual set, or refer to the sample program “prndemox.cbl”), and select the
desired printer.

If you want to modify the printer settings, such as the number of copies or the
paper orientation, you should perform the steps described above, and then set
WINPRINT_NAMES_ONLY back to the default of “0” (off, false, no).
You may then use WINPRINT-GET-PRINTER-INFO-EX to obtain detailed
information about the capabilities of the selected printer.

For more information about Windows printing, refer to WIN$PRINTER in
Appendix I.

WRAP

The setting of this variable determines whether a DISPLAY statement will
wrap around or be truncated when it extends past one line. When it is set to
“0” (off, false, no), DISPLAY statements will be truncated. Also, any
DISPLAY statement that references a column past the right edge of the
current window will be ignored. An ACCEPT statement that references a
column past the right edge will be placed in the home position of the window.
The default value for this setting is “1” (on, true, yes).

XFD_DIRECTORY

This variable tells the runtime system the name of the directory that contains
the data dictionaries built by the ACUCOBOL-GT compiler. The default
value is the current directory.

For example, to tell the runtime that the dictionaries are stored in the
directory “/usr/inventory/dictionaries” you would enter:

xfd_directory /usr/inventory/dictionaries

Configuration File Variables 3-199
See also the “-Fo” compile-time option, which tells the compiler where to put
the dictionaries. Unless you have moved the dictionaries, you should use the
same value for XFD_DIRECTORY that you used with the “-Fo” option.

If you have embedded an XFD file in an object library, the runtime will read
that file instead of an XFD file that has the same name but is stored in the
directory specified by XFD_DIRECTORY. The exception to this is when the
XFD_DIRECTORY configuration variable uses remote name notation.

Remote name notation is allowed for the XFD_DIRECTORY variable if
your runtime is client-enabled. See ACUCOBOL-GT User’s Guide sections
5.2.1 and 5.2.2 for more information about client-enabled runtimes and
remote name notation.

XFD_PREFIX

This variable defines a series of directories to search for XFD files, rather
than indicating only one (as in XFD_DIRECTORY). Each directory is
searched in order until an XFD matching the name of the file is found. Once
a file with the same name is found, the runtime stops searching, even if other
files of the same name are located in a subsequent directory in the search
parameter. Only named directories are searched, not subdirectories.

Note: If the XFD you are searching for does not match the file
specifications (max-keys, max-rec-size, min-rec-size, and key parameters,
for example) of the file you are trying to open, the runtime will not continue
searching the directories listed in XFD_PREFIX until a correct XFD file is
found.

The default for XFD_PREFIX is empty. If this variable is set to any other
value, the configuration variable XFD_DIRECTORY (in which you specify
only one directory) is ignored. You can specify a directory path that contains
embedded spaces if you surround the path with quotation marks. Separate
entries using a semi-colon (;). For example:

XFD_PREFIX C:\ “Sales Data”;C:\Customers

3-200 Runtime Configuration File
You may specify up to 4096 characters for this variable. Remote name
notation is allowed for the XFD_PREFIX variable if your runtime is
client-enabled. See ACUCOBOL-GT User’s Guide sections 5.2.1 and 5.2.2
for more information about client-enabled runtimes and remote name
notation.

XTERM_PROGRAM

Some users may want to debug with an xterm, but don't actually want to
debug with the xterm executable because it doesn't have some of the abilities
they need (such as displaying non-ASCII characters). You can specify the
executable used to show the debugger on UNIX by setting the
XTERM_PROGRAM runtime configuration variable.

Its default value is “xterm”, but it can be set to any compatible program such
as dtterm or kterm. The runtime executes this program when it tries to create
the program for background debugging. Note that the runtime passes some
arguments to this program, so this program must be able to execute with
those arguments. These arguments are:

-title “title of the window”

-Sccn

-display Xserver-name

The “-Sccn” option allows the program to be used as the input and output
channel for the runtime, and is absolutely required. Without this option, the
program won't know to display data from the runtime.

4
 Runtime Options
Key Topics

Using the Runtime .. 4-2
List of Runtime Options .. 4-3

4-2 Runtime Options
4.1 Using the Runtime

The ACUCOBOL-GT runtime system (referred to in this manual as runcbl),
runs the programs created by the compiler. Once compiled, programs are
ready to run; no linking step is required. Programs compiled with
ACUCOBOL-GT are machine transportable. runcbl accommodates for the
differences between machines.

To run an ACUCOBOL-GT program, enter the following command
(substitute the name of your runtime for runcbl):

runcbl [options] [program] [parameters]

Program is the name of a compiled program. If omitted, its name defaults to
“cbl.out” (or to the name you have set with the runtime configuration variable
DEFAULT_PROGRAM). Remote name notation is allowed for the name of
the compiled program, if your runtime is client-enabled. See the
ACUCOBOL-GT User’s Guide section 5.2.2, “Remote Name Notation,” for
more information.

Parameters are one or more arguments that can be passed to the program.
These arguments can be accessed through the CHAINING phrase of the
Procedure Division header in the compiled program. For details, see the
entry for the “CHAIN Statement” in Book 3, Reference Manual, section 6.6.
If parameters are specified, then program must also be specified. Under
VMS, the parameters that are not in double quotes are converted to lower
case. Parameters should be enclosed in double quotes to preserve case
sensitivity. The maximum number of parameters allowed on the command
line is 50.

Options is a series of one or more of the following flags. These options must
be preceded by a hyphen. You can specify more than one option by simply
combining them. Option characters may be either upper or lower case.

Separately, or in addition to placing options on the command line, options can
be specified in the ACUSW environment variable. ACUSW can contain any
runtime options, which are specified with the same syntax used on the
command line. ACUSW and command line options can be used together.
ACUSW is processed after the command line, however, the command line
takes precedence with options that specify a filename. For example, you can
specify a default error file in ACUSW (e.g. with the “-e” option) and then

List of Runtime Options 4-3
override it on the command line for a particular run. The “--no-acusw”
option inhibits the processing of ACUSW. This is valuable for programs that
directly invoke the runtime and require a fixed set of options that the user is
not allowed to modify with ACUSW.

4.2 List of Runtime Options

The allowed runtime options include:

-# This option must be followed (as the next
separate argument) by a series of letters that
determine which SPECIAL-NAMES switches
to turn on. There are 26 SPECIAL-NAMES
switches. The letter “a” corresponds to switch
1, “b” to switch 2, and so forth. For example,
to start the program with switches 1, 5 and 8
turned on, specify “-# aeh”.

For convenience, you can turn on any of the
first 8 switches by simply specifying the switch
number or numbers without the “#” argument.
For example, “-# aeh” can also be specified as
“-158”.

-a This flag is now obsolete and should not be
used.

-b Inhibits the terminal initialization done by
runcbl. This can be useful if the program is
run in background because terminal
initialization can prevent normal use of the
terminal by the operating system. This is
particularly true on UNIX systems. If you
specify this flag, the behavior of ACCEPT and
DISPLAY statements is undefined; therefore
use this flag with caution. A program can
examine the ACU-NO-TERMINAL field after
an ACCEPT FROM TERMINAL-INFO
statement to determine whether it was started
with “-b”.

4-4 Runtime Options
-c This option must be followed (as the next
separate argument) by the name of an alternate
runtime configuration file. It causes runcbl to
use this configuration file instead of the default
file.

Remote name notation is allowed for this
option if your runtime is client-enabled.

--char2gui This option is used to convert character-based
screens into their graphical equivalents for use
in the AcuBench Screen Designer. When you
run your program with this option,
ACUCOBOL-GT’s Character-to-GUI Wizard
launches in the background.

After your program starts, navigate to the
screen you want to convert and right-click on
the window’s background. A pop-up menu is
displayed. Select “Build Graphical Screen” to
continue with the conversion. The
Character-to-GUI Wizard then creates a
graphical version of the current screen and
displays it together with a Properties dialog
box. You can use the Properties dialog to make
some basic changes to the screen. Repeat this
process for each screen you want to convert.

When you are done, exit the application. When
the application exits, the runtime writes an
“import.out” file into your current working
directory that contains information describing
the converted screens. You can then start
AcuBench and, using the “Add Screen”
function, display the contents of the
“import.out” file in a Screen Designer window.
If you already have a file called “import.out”
in your current working directory, the wizard
overwrites it; therefore, if you intend to
convert screens in stages, you should rename
the file and save it in a separate directory.

List of Runtime Options 4-5
If you execute the program in AcuBench, then
after you exit the application, the workbench
creates a new program in the workspace
Structural View. The program’s Screen node
contains entries for each screen described in the
“import.out” file. Those screens open in the
workbench development area, where they can
be modified. Screen node entries can be moved
in the workspace as needed.

It is important to note that the purpose of the
Character-to-GUI Wizard is to simplify the
initial task of converting traditional text-based
applications into ones that use a graphical user
interface. Although the wizard greatly reduces
the task of converting character-based screens,
it is only a first step in the process. It is
expected that after you use the wizard, you will
spend time manipulating the screens to your
liking using AcuBench Screen Designer. You
will also need to integrate the newly generated
screen section code back into your program.
For more information on using the
Character-to-GUI Wizard, please refer to the
AcuBench User’s Guide.

-d This starts the program in debugging mode.
See Chapter 5, “Chapter 5: Runtime
Debugger.”

4-6 Runtime Options
-e This option must be followed by the name of a
file (as the next separate argument). This
option causes the error output from the runtime
system to be placed in this file. This can be
used to trap runtime system error messages and
trace output. “-e” creates a new file or
overwrites an existing file. Use “+e” to cause
error output to be appended to the file. The
format of the output can be tailored with the
TRACE_STYLE configuration variable. See
Book 4, Appendix H.

When specifying a runtime error file name you
can use the following format specifiers:

 “%p” If the name contains the string “%p”,
that string is replaced with the process ID (PID)
of the runtime.

“%d” If the name contains the string “%d”,
that string is replaced with the current date in
the form YYYYMMDD where YYYY is the
year, MM month, and DD day.

“%t” If the name contains the string “%t”,
that string is replaced with the current time in
the form HHMMSSTTT where HH is the hour,
MM minute, SS second, and TTT milliseconds.

“%u” If the name contains the string “%u”,
that string is replaced with the username.

“%h” If the name contains the string “%h”,
that string is replaced with the hostname.

Note that these specifiers may also be used in
the file names configured with the
ACU_MON_FILE and ACU_DUMP_FILE
configuration variables.

Under UNIX systems, redirecting error output
causes problems for “more” and “vi”. For this
reason, we offer two options for redirecting
error messages under UNIX:

List of Runtime Options 4-7
“-e” - causes all of the runtime’s tracing and
error messages and DISPLAY UPON SYSERR
output to go to “errorfile”. It does not redirect
stderr. This means that error output from
programs called by CALL “SYSTEM” is not
redirected. If you call “more” or “vi” from
within COBOL, you can safely use “-e” to
redirect error messages.

“-ee” - If you expect programs called by CALL
“SYSTEM” to send their errors to the error file,
use the option “-ee” instead of “-e”.

Remote name notation is allowed for this
option if your runtime is client-enabled.

--embedded-config-file This option causes the runtime to load and use
a configuration file embedded in a COBOL
object library. The name of the embedded
configuration file can be specified with the
runtime -c option. Otherwise, it must be
named “cblconfi” or “cblconfig”.

The configuration file may be embedded either
by using cblutil or the “COPY RESOURCE”
statement.

The object library must be preloaded using the
runtime -y command line option. This is so
that the configuration file settings will be
available before the primary module is loaded.

Certain configuration variables must be set
before the object library is loaded. Therefore,
these variables cannot be set in an embedded
configuration file.

4-8 Runtime Options
The following is a list of variables that cannot
be set in an embedded configuration file:
CGI
MESSAGE-QUEUE-SIZE
ICON
NO-CONSOLE
LOCKS-PER-FILE
TEST-CHAR
MAX-FILES
MAX-LOCKS
WINDOW-TITLE

The runtime uses the following higher default
values for the LOCKS-PER-FILE,
MAX-FILES, and MAX-LOCKS variables
when “--embedded-config-file” is specified:

256 LOCKS-PER-FILE
255 MAX-FILES
512 MAX-LOCKS

-f This option ensures that the runtime does not
perform user interface functions when the
COBOL program is functioning as a Common
Gateway Interface (CGI) program on the
Internet. This option causes the runtime to
suppress warning messages that are normally
displayed in a message box. If the runtime
shuts down due to an error that is not handled
by the COBOL program, it constructs an
HTML page containing the shutdown message
and sends it to the standard output stream
before terminating. This option performs the
same function as the environment variable
“A_CGI” but does not affect the entire
environment.

List of Runtime Options 4-9
-g This option causes the error file (specified after
the “-e” option) to be compressed with the gzip
compression method. A compressed file must
be decompressed with gzip before reading or
editing. For clarity, it is best to give the error
file a “.gz” extension. When appending to an
existing file (with the “+e” option), you must
use the same format—compressed or
uncompressed—in which the file was
originally created.

-h This option causes the runtime to explicitly
ignore hang-up signals. You can also ignore
hang-up signals by specifying both the “-s” and
“-b” options. However, the “-sb” combination
also inhibits terminal initialization and
prevents the user from killing a program with
an abort key such as “Control-C” or “Delete”.
Unlike “-sb”, the “-h” option ignores only the
hang-up signals.

-i This option must be followed (as the next
separate argument) by a file name. This causes
the keyboard input to be taken from this file. It
can be used as an alternate to input redirection
on UNIX systems. Remote name notation is
not allowed for this option.

Examine your input files carefully, paying
particular attention to the way the <enter> key
is represented. On many systems, it is
represented by a hex “0A” (line feed). Note
that the line feed does not, by default, terminate
an ACCEPT. So, when you use the “-i” option,
you will want to add the following to your
“cblconfig” file:

KEYSTROKE TERMINATE=10 ^J

This option has no effect on Windows
platforms.

4-10 Runtime Options
-import This option is available only on Windows and
Windows NT systems. It requires the file
“WEXPRT32.DLL”, which must be installed
in the same directory as the runtime executable.
This option is used to import graphical screens
created with ACUCOBOL-GT Version 3.x or
AcuScreens so that these screens can be used
with the AcuBench Screen Designer. If you are
running with this option, simply right-click on
any window to have the opportunity to add it to
the file “import.out”. See the AcuBench
documentation for details.

It is important to note that the original purpose
of the screen import utility was specifically to
upgrade users from AcuScreens to AcuBench,
and it was not intended as a permanent device
to keep importing all the new screens you
create either from scratch or from AcuBench.
For that reason, when new control types are
added, the screen import utility is not
necessarily updated at all, or it may be updated
with basic information about the new control
type but not all the different properties and
styles of the new control type. You should not
rely on this utility to be able to import all new
screens you create.

When the screen import utility tries to import
an unrecognized type or property of a control,
you will see the following message on your
screen:

This screen contains at least one control type
that the Screen Import Utility does not know
about. You should add these controls manually.

List of Runtime Options 4-11
-k This option causes the immediate playback of a
keystroke file. It must be followed (as the next
separate argument) by a file name. The
filename argument is the name of a file
containing recorded keystrokes. The runtime
internally calls W$KEYBUF using opcode “9”
and this file name prior to executing the first
COBOL program. The effect is that the
keystrokes recorded in the file are treated as the
runtime’s first user input. For more
information on W$KEYBUF, see Appendix I
in Book 4, Appendices. Remote name notation
is not allowed for this option. Use this as an
alternative to “-i” in Windows systems.

-l Causes a listing of the contents of the runtime
configuration file to be printed on the error
output. Prints the runtime’s version number on
the first line. Also prints the steps taken by
runcbl when it is trying to load a program,
along with any problems encountered. This is
useful for debugging problems with the
configuration file or program path resolution.
This is best used in conjunction with the “-e”
option to capture the debugging information in
a file.

-m value file Turns on memory handling descriptions.
These descriptions report detailed information
about memory allocation, reallocation, and
frees

--no-acusw Inhibits the processing of the ACUSW
environment variable.

--no-save-debug This option has two effects: (a) it prevents the
debugger from reading the “.adb” file, thus
causing the debugger to start in its default state,
and (b) it prevents the debugger from writing
out a new “.adb” file when it exits.

4-12 Runtime Options
The debugger saves state information in a
“.adb” file which is used when the debugger is
executed in another run. This information
includes window placement and breakpoint
settings. There are some cases when you may
find this inconvenient, and the
“--no-save-debug” option provides a way to
eliminate this behavior.

--no-signal-handlers This switch allows you to initialize the runtime
without installing its signal handlers. This
option is designed for use in environments like
CICS that call the ACUCOBOL-GT runtime
from a C main program and want to install their
own signal handlers. For more information,
see the entry for acu_abend() in section 4.4.3 of
A Guide to Interoperating with
ACUCOBOL-GT.

-o This option must be followed by the name of a
file that will take the display output from the
program. This is similar to output redirection
on UNIX systems. If “+o” is used instead, then
the output is appended to the named file.
Remote name notation is not allowed for this
option.

This option has no effect on Windows
platforms.

-p Activates a built-in execution profiling facility,
prompting the runtime to collect information
about I/O operations and CALLs, and to install
a timer to track the amount of time spent in
different parts of the code. Information
collected by the runtime is placed into an
output file called “acumon.xml”. For more
information, see the ACUCOBOL-GT User’s
Guide section 3.7, “The Profiler.”

-p0 Tells the profiler to include zero execution
count paragraphs in the “acumon.xml” file.

List of Runtime Options 4-13
-r Starts the program in debugging mode (like
“-d”). This option must be followed by the
name of a file containing debugging
commands. The debugger is run under control
of this file. Remote name notation is not
allowed for this option.

-s Runs the program in “safe” mode. On
non-UNIX systems, the “-s” option prevents
the user from killing the program with the
operating system’s abort key (Control-C,
Delete, etc.). However, any kill command will
interrupt the program run. On UNIX systems
only, the “-s” option must be issued twice
(runcbl -ss) to protect it from the system’s abort
key. This option allows only a kill -9 to stop
the program run.

“Safe” mode can help preserve the integrity of
files used by the program. If the program is not
in “safe” mode, then runcbl will automatically
close its files if the user kills the program. Note
that this keeps each file intact but does not keep
separate files synchronized with each other,
which may be required by the user’s
application.

-t This option can be used to capture the
runtime’s terminal output to a disk file. This
option must be directly followed by a filename
of the output file.

The -t option can be used instead of piping the
output to the “tee” command. Notice that
piping runtime output to “tee” can cause the
runtime to hang. This is because runtime
detects that the output is not a terminal and so it
will not set terminal attributes for the terminal.
In such state, the runtime has a hard time
accepting input, and the output may not be
flushed to the screen in a timely manner.

4-14 Runtime Options
When the “-t filename” flag is set, all the output
to the terminal goes to this file, including
cursor addressing This option can be used only
with a version of the runtime which has an
addressable terminal capability. It will not
work with any of the graphical runtimes, nor
will it work with the Windows console runtime.

--time Causes the runtime, at shutdown, to write the
total real time spent executing to its error
output file. This option can be used if you want
to measure the time it takes to execute a stand
alone batch program.

Note that such real time measurements are
inexact, because they do not account for time
spent on other tasks or waiting for external
output.

-u By default, the runtime tests each use of a
LINKAGE data item to check that the item
passed by the calling program is at least as
large as the item declared by the called
program. This ensures that unallocated
memory is not accidentally referenced. The
“-u” option disables that test, as well as the test
that verifies that all parameters of a
subprogram were passed by the caller. (The
same can be accomplished with the
CHECK_USING configuration variable. See
Appendix H.)

-v Prints the current version number of runcbl,
the serial number, and the maximum number of
users licensed to use the runtime
simultaneously. No program is run.

-vv (double “v”) Prints the current version number
of runcbl, along with extended information.
No program is run.

List of Runtime Options 4-15
-vvv (triple “v”) This option is valid on UNIX
systems and causes runcbl to display
additional configuration information about the
UNIX port. The information displayed varies
depending on the UNIX system and is subject
to change without notice. No program is run.

-w This has the same effect as specifying
“WARNINGS 0” and “MAKE-ZERO 0” in
the runtime configuration file. This option is
provided for compatibility with previous
versions of ACUCOBOL-GT. We recommend
that the corresponding configuration entries be
used instead.

-x When a file error “30” occurs, the root cause of
this error is often not apparent. Specifying “-x”
will cause the runtime system to display the
operating system’s corresponding error number
on the error output. This information may help
in determining the problem. You can use the
“-e” option to direct the error output to a file.

-y This option causes the runtime to pre-load the
specified ACUCOBOL-GT object library,
UNIX/Linux shared object library, or Windows
DLL. This option must be followed (as the
next separate argument) by the name of the
library to load. You can pre-load multiple
libraries by specifying multiple “-y” options. If
the library is a DLL, the C calling convention
can be specified after the name (see section
3.3.2, in A Guide to Interoperating with
ACUCOBOL-GT).

The directory of the object module and ENTRY
points contained in the library are loaded by the
runtime before it loads the main program. All
of the object modules in the library are thus
available to be called at any time. Note that the
main program may be contained in the library
because the library is loaded first.

When specifying a shared object library, you
can include the file suffix or use the
SHARED_LIBRARY_EXTENSION
configuration variable to specify the filename
extension.

Note that shared libraries can also be loaded
with the SHARED_LIBRARY_LIST
configuration variable. You can also use the
SHARED_LIBRARY_PREFIX configuration
variable to specify a set of directories that the
runtime will search when attempting to locate a
shared library. For more information on these
variables, see their entries in Appendix H of
Book 4.

Libraries loaded with the “-y” option remain in
memory until the process exits. The CANCEL
statement cannot be used to unload the library.

List of Runtime Options 4-17
ACUCOBOL-GT object libraries are described
in more detail in section 3.2 of the
ACUCOBOL-GT User’s Guide. Windows
DLLs and UNIX shared libraries are described
in Chapters 3 and 4 of A Guide to
Interoperating with ACUCOBOL-GT.

Remote name notation is allowed. See section
5.2.2 of the ACUCOBOL-GT User’s Guide

Note: “-y” does not load client-side DLLs for
thin client applications that make calls using
the CALL verb “@[DISPLAY]:” syntax.
These applications must explicitly load the
DLL by calling it with the CALL verb before
calling a function within the DLL.

 -z After an unexpected runtime termination
resulting from a memory access violation, this
option causes the program to output the current
contents of memory where the violation
occurred.

4-18 Runtime Options

5
 Runtime Debugger
Key Topics

About the Debugger .. 5-2
Entering the Debugger.. 5-5
Cursor and Mouse Handling in Source-Level Debugging................... 5-7
Debugger Commands.. 5-8
File Tracing .. 5-40
Screen Tracing ... 5-42
Macro Debugger .. 5-43
Specifying Addresses ... 5-44
Debugger Restrictions... 5-46
Using the Abend Diagnostic Report (ADR) 5-47

5-2 Runtime Debugger
5.1 About the Debugger

This chapter describes how to use the ACUCOBOL-GT runtime debugger
and other utility programs supplied with ACUCOBOL-GT.

runcbl contains a built-in source-level debugger. This debugger runs in a
window that overlays the screen so that the active program is not disturbed.

In all environments, the runtime debugger interface contains a menu bar and
command window. To navigate through source code in character
environments, use the “Up” and “Down” menu items. You can also use the
arrow keys and Page Up and Page Down keys to move through the code.

The Runtime Debugger (UNIX).

About the Debugger 5-3
In Microsoft Windows environments, the debugger also contains a toolbar.
When you perform full source debugging in Windows, a scroll bar appears to
the right of the source, offering an easy way to scroll through the code.

The Runtime Debugger (Windows).

You can run the debugger at any time, but in order to reference the program’s
symbols by name, or view the source code, you must have compiled the
program with some special options.

The runtime debugger supports three modes of operation: source debugging,
symbolic debugging, and low-level debugging.

Source Debugging

At the development stage, source debugging is the most useful, because it
allows you to view the source code while you are debugging. To use source
debugging, compile the program with the “-Gd” or “-Ga” option. Because
these compiler options cause all of the source code to be bundled with the
object code, you’ll notice that the size of your object code grows
considerably.

5-4 Runtime Debugger
Note: Although the compiler accepts lines longer than 80 characters in
TERMINAL format files, in source debugging mode the debugger does not
display characters past the 80th column. If possible, use the AcuBench
integrated debugger instead.

Symbolic Debugging

Symbolic debugging does not allow you to view the program source, but does
allow you to reference paragraphs and variables by their COBOL identifiers.
The advantage to using symbolic debugging rather than source debugging is
that the compiled object module is much smaller. This may be useful if disk
space is very tight. Some application developers compile their programs with
symbolic debugging for delivery to clients in order to facilitate the resolution
of client questions over the phone. You must compile the program with the
“-Gy” or “-Gs” option to use symbolic debugging.

Low-Level Debugging

Low-level debugging is available at any time even if the program was not
compiled with any debugging options, but you must use absolute addresses
to access variables, so you’ll need a listing of your program. Low-level
debugging is convenient when you’re debugging a data-dependent problem
on a client’s machine, if the client does not have a debug-version of your
program. The “Trace Files” command operates in this mode. “Trace Files”
is particularly useful for tracking data-specific problems in complex
applications.

Debugging in background mode

If your ACUCOBOL-GT programs are called from programs written in other
languages, or if you are running in an environment that includes an
application server or OLTP software, you likely have programs running in
background mode (executed with the “-b” flag). Complete instructions for
debugging programs running in background mode is available in Chapter 7 of
A Guide to Interoperating with ACUCOBOL-GT.

Entering the Debugger 5-5
The Abend Diagnostic Report

When a program experiences an abnormal shutdown, running in debug may
not reveal the source of the problem. In such cases, the ACUCOBOL-GT
runtime can produce a report to show the state of the program at the moment
of termination. This Abend Diagnostic Report, or ADR, can help you to
analyze the cause of an abnormal shutdown.

5.2 Entering the Debugger

When a program is executed in debug mode, the debugging window pops up
over the lower portion of the screen. Commands to the debugger and their
results are displayed in this window. You can control the size of the
command window from within the debugger by pulling down the Source
menu and selecting Window Size.

If you are running the debugger under Windows, you can change the size of
the entire debugger window. Point to a border or corner, and when the mouse
pointer changes into a double arrow, hold the mouse button down and drag
the border or corner to reach the size you want. Release the button when you
are ready.

You can enter the debugger in several ways; the most common is to specify
the “-d” option to runcbl. Here’s a list of all the ways the debugger can be
entered initially:

• When you specify the “-d” option to runcbl. This causes the program to
start in the debugger. For example:

runcbl -d payroll

• Whenever a STOP statement executes that is not a STOP RUN. In this
case, the argument to STOP is displayed in the debugging window. This
method functions even if runcbl is not run in debugging mode. Note,
however, that symbols and source will not be available in this case. To
do source level debugging, compile with the “-Gd” or “-Ga” option and
run with the “-d” option.

5-6 Runtime Debugger
• When the program has been started in debugging mode, and the abort
key (such as Ctrl + C) is pressed. On Windows systems, the same effect
is achieved by selecting the “Enter Debugger” menu option. In either
case, when the command is received, the program finishes execution of
the current instruction and enters debugging mode. Note that if the
current instruction is an ACCEPT statement, the program will not enter
debugging mode until the ACCEPT statement is satisfied by having
something entered. Using the abort command to enter the debugger does
not work on all machines.

If you have already entered the debugger, you may reenter it in one of the
following ways:

• When a breakpoint is reached. Breakpoints are set by the user through
the debugger.

• When the program is being “stepped” through by the debugger and the
step count has been reached.

• When a variable that is being monitored changes. In this case an
automatic breakpoint is generated at the beginning of the next statement.

• When you’ve compiled with “-Za” along with “-Gd”, and an array
violation occurs. In this case, you automatically break to the debugger
and see the line on which the array violation occurred.

Each of the situations described above causes the debugging window to pop
up over the lower portion of the screen. If source-level debugging is being
used, then the upper half of the screen displays the source at the location
currently being executed. When the debugger exits, these windows are
removed and the application screen is restored. The application screen is not
restored, however, until an ACCEPT or DISPLAY verb is executed. This
allows you to debug a section of code without the distraction of having the
screen being constantly repainted.

Cursor and Mouse Handling in Source-Level Debugging 5-7
5.3 Cursor and Mouse Handling in Source-Level
Debugging

In source-level debugging, the entire source code is available for viewing.
An “@” sign is displayed in column one of the current line (the line of code
that’s being executed). The line containing the cursor shows a “>” sign in
column one. (If the cursor is on the current line, then the cursor is hidden by
the “@” sign.) For terminals that support reverse video, the cursor line is
highlighted. Use the arrow keys to move the cursor. Press F10 to access the
menu bar and to toggle back to source code from the menu bar.

If your runtime offers mouse support, then you may use a mouse in the area
of the screen that displays the source code. The mouse allows you to perform
the following common actions:

Move the cursor line -- to move the cursor to a different line, simply click
anywhere on the line you want.

Scroll the source -- to scroll the source up or down, hold the mouse button
down and move the mouse off the top or bottom edge of the source window.
The source will scroll to track the mouse. The source scrolls slowly, to make
it easy to adjust the current display by a small amount.

Highlight a variable or procedure -- point the mouse at a variable or a
procedure name and click on it to highlight the name and enable the
“Selection” entry on the menu bar (discussed below). Several operations are
available under “Selection” that act on the highlighted item. The highlighted
item will also become the default value used by many menu options.

Using variables, you may specify data names that require arguments, such as
tables that require indexes. You cannot specify literals.

You can use the mouse, the F7 (display variable on current line), or the Tab
key (highlight variable on current line) to view qualified and indexed data
items in the source. As long as a variable and all of its qualifiers and indexes
are on one line, the entire expression is evaluated by these keys. If a variable
and all of its qualifiers and indexes span multiple source lines, the entire
expression is ignored, but component items are still found.

5-8 Runtime Debugger
Display a variable -- to view the value of a variable, double-click on that
variable.

View procedure -- to scroll quickly to a paragraph or section, double-click
on its name.

Run to desired line -- to set a temporary breakpoint, double-click on a verb.
This establishes a temporary breakpoint at the line containing the verb. The
program runs to that line (unless it encounters another breakpoint before it
reaches the line). When it reaches a breakpoint, the runtime returns to the
debugger prompt and awaits your next command.

5.4 Debugger Commands

Debugger commands are displayed in a menu bar with pull-down submenus,
and on the debugger’s toolbar. Commands can be selected either from the
menus or from the keyboard. A menu item that is followed by three dots
(such as Accept...) requires a value. You are prompted for the value unless
you highlight it within the source code before you choose the option. Some,
but not all, commands may be selected from the toolbar. You can determine
toolbar functions by placing the mouse over a button and holding it there for
a brief period.

The Debugger Menu Bar and Toolbar (Windows).

If you do not have a mouse, use the F10 to access the debugger menu bar.
Then use the arrow keys to move within the menu system. Press Return or
Spacebar to make your selection. Typing the key letter is another way to
make a selection, if key letters are available on your system. From the menu
bar, press F10 to toggle back to the debugger command line.

On systems such as Windows that include a System Menu in the Debugger
window, you can activate the System Menu by pressing the function key F9.
F9 also activates the System Menu of any window displayed over the
Debugger window.

Debugger Commands 5-9
The debugger displays the first ten characters of the name of the current
program, followed by the current address (in hexadecimal). This name is
derived from the PROGRAM-ID in the Identification Division of the source
code.

The commands described on the following pages may be used in all
debugging modes, unless marked with one or two asterisks.

• One asterisk (*) indicates that the option is available in source-level
debugging only (“-Gd” compiler option).

• Two asterisks (**) indicate that the option is available in either
source-level or symbolic-level debugging (“-Gd” or “-Gy” compiler
option), but not in low-level debugging.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, refer to each variable by its absolute address as shown in a
program listing.

The tables below list all debugger commands available through the keyboard,
with their menu equivalents given in parentheses. The same listing is
accessible through the H (Help) debugger command.

5.4.1 Source-level Commands

Command Menu Option Description

<F1> or
<Page Up>

Scrolls source up one page

<F2> or
<Page Down>

Scrolls source down one page.

<F3> Run/Go to Cursor
Line

Sets a temporary breakpoint at the
current cursor line and continues
execution of your program.

<F4> Breakpoints/
Toggle at Cursor
Line

Sets or removes a breakpoint at the
source line containing the cursor.

5-10 Runtime Debugger
<F5> or
<Up Arrow>

Moves the source cursor up one line.

<F6> or
<Down Arrow>

Moves the source cursor down one
line.

<F7> Causes the cursor line to be searched
for program variables. If one is found,
its name and current contents are
displayed.

Tab Search the current line for selectable
text. If selectable text is found, select
it.

@! Run/Skip to
Cursor Line

Moves the current program location to
the line containing the cursor.

F Source/Repeat
Find

Repeats the last Find command,
starting at the current cursor line.

FB text Source/Find
Backwards

Locates text in the program’s source
code. The debugger searches
backwards from the current cursor
line.

FF text Source/Find
Forward

Locates text in the program’s source
code. The debugger searches forward
from the current cursor line.

FT text Source/Find from
Top

Locates text in the program’s source
code. The debugger starts at the top of
the current program source.

VP View/Perform
Stack

Lists all of the nested paragraphs
leading up to the current statement,
starting from the beginning of the
program.

W procedure Source/Paragraph Positions the cursor at the procedure
you name. The procedure must be
located in the current program.

W@ Source/Current
Line

Positions the cursor at the current line
in your program.

WB Source/Last Line Positions the cursor at the last line
(bottom) in your program.

Command Menu Option Description

Debugger Commands 5-11
5.4.2 Other Commands

WT Source/Line 1 Positions the cursor at the first line
(top) of your program.

Command Menu Option Description

Command Menu Option Description

! File/Shell Invokes the operating system’s
command processor, allowing you to
enter commands.

<script-file File/Run Script Runs a script file. Causes all input
(debugger and program) to be read
from the script. Control returns to the
keyboard when the script is finished.

> File/Stop
Recorder

Ends your recording. If you do not end
your recording, the script is saved and
closed when the debugger closes.

>script-file File/Record Script Turns on a recorder that saves all of
your keyboard input and menu
selections to a file of your choice.

A variable Data/Accept Lets you modify the contents of a
variable.

B View/Breakpoints

Breakpoints/View

Displays a dialog box with all existing
breakpoints. You can add/modify
breakpoints from this dialog box.

B address,
[skip #]

Breakpoints/Set Sets a breakpoint with a skip count.
The breakpoint will not be activated
until it has been hit skip# times.

B address,
[skip #], [WHEN
cond]

Breakpoints/Set Sets a breakpoint with a skip count
and/or condition. The breakpoint will
not be activated unless cond is true #
times.

C address Breakpoints/Clear Removes a breakpoint. You can enter
either the breakpoint’s paragraph name
or hexadecimal address.

5-12 Runtime Debugger
CA Breakpoints/Clear
All

Removes all breakpoints.

CM number Data/Monitor/
Clear

Clears variable monitor number.

CMA Data/Monitor/
Clear All

Clears all variable monitors.

CWA Clears all variable watches.

D variable
[, X]

Data/Display Shows the contents of a variable. The
value is shown in the debugger
command window. If X is appended to
the display command, the variable is
displayed in hexadecimal.

If the variable is specified by its
absolute address from a program
listing, it must be preceded by “.” (a
period)

D variable(x:y) Display a reference modified variable.
The command “d my-var(2:5)”, for
example, displays five characters,
starting with the second character of
the variable string.

E File/Exit
Debugger

Turns off the debugger while
continuing the execution of your
program.

G Run/Continue Resumes execution of your program
from its current location.

G address Sets a temporary breakpoint at address,
and continues execution.

GE Run/Go until
Program Exits

Runs your program until the current
program exits to its calling program.

GP Run/Go until
Paragraph Returns

Runs your program until the current
paragraph returns to the point from
which it was performed.

H Displays the online help files.

Command Menu Option Description

Debugger Commands 5-13
L Displays the name of source paragraph
or section which is being executed.

M View/Monitors

Data/Monitor/List

Shows all monitored variables and
their values. This also displays a
sequence number for each monitor,
which is used to clear the monitor.

M variable Data/Monitor/Set Causes the program to stop whenever
the named variable changes its value.
The variable is shown in the Watch
Window.

P [#] Step Over Steps over the next statement. With a
count, the program will step count
times. Use this command if you want
to step through a program following
only the original thread.

Q! File/Quit Halts your application and exits the
debugger.

R script Run a debugging script. The debugger
reads commands from a script (but
user-input is gathered normally).

RA [#] Run/Run all
Threads

Toggles or sets the “Run All Threads”
setting.
If # is 0, only the current thread will
run.
If # is non-0, all threads will run.

S [#] Step Into Executes one statement of your
program and then returns control to the
debugger. You may follow the
command with the number of steps to
take. This command will follow a new
thread if one is created. If you want to
follow the original thread, use the
“step over” command (P) described
above.

Command Menu Option Description

5-14 Runtime Debugger
SA Run/Auto Step Causes your program to execute “step”
commands repeatedly until it reaches
the end of the program., or until you
stop auto-step by pressing the spacebar
while the debugger is active. Like the
“step into” command (S), this follows
a new thread if one is created.

ST [#] Run/Thread Switches to the thread identified by the
given number (or the next thread, if no
number is given). The “Run” menu
displays the number assigned to each
threads.

T flush Causes the error file to be flushed to
disk after each write, if you are writing
to an error file.

TF [#] File/Trace Files Turns on file tracing. The # indicates
the level of tracing, from 1 to 9, where
1 is the lowest and 9 is the highest.

TP File/Trace
Paragraphs

Toggles paragraph tracing, which is a
listing of all paragraphs and sections
entered at runtime.

U View/Memory
Usage

Displays the amount of dynamically
allocated memory currently used by
the runtime system.

V View/Screen Displays your application’s current
screen. Press any key or click the left
mouse button to return to the
debugger.

WA Data/Monitor/Set Places a variable in the Watch
Window. The difference between a
watched variable and a monitored
variable is that watched variables do
not cause program execution to halt
when they change.

WS number Source/Window
Size

Specifies the number of lines to show
in the command window.

Command Menu Option Description

Debugger Commands 5-15
5.4.3 Multi-threading Issues

When a program is running under the debugger, by default the “run all
threads” (“RA”) mode is turned on. In this mode, you step through only one
thread at a time, but the background threads run normally. If a background
thread reaches a breakpoint, it returns control to the debugger and becomes
the current thread. The last debugging mode you select is saved into your
“.ADB” file, so the default mode applies only when you do not have a
“.ADB” file.

You can choose to execute one thread at a time in the debugger. This allows
you to trace a thread without interference from other threads. When a new
thread starts, the debugger informs you, but continues tracing the parent
thread. Use the “ST” (Switch Threads) command to switch between threads.

You can find a list of the current threads under the “Run” menu item. This
list shows you the current program and address where each thread is
executing. You can select the appropriate menu item to switch to that thread
as an alternative to the “ST” command.

A list of all current threads appears at the bottom of the “Run” menu. The list
shows both the name of the program associated with the thread and the
address where each thread is executing. To switch between threads, you can
select a thread from the list as an alternative to the “ST” command.

The debugger can manage up to ten threads simultaneously.

WW number Source/Watch
Size

Specifies the number of lines to
display in the Watch Window. The
number cannot exceed the number of
watched/monitored items.

F8 Recalls the last command entered for
editing.

Ctrl + N Shows the next line in the Watch
Window.

Ctrl + P Shows the previous line in the Watch
Window.

Command Menu Option Description

5-16 Runtime Debugger
5.4.4 Getting Help

Under Windows, you can access the online debugger documentation from the
Help menu at the far right of the debugger menu bar.

In other environments, access help by typing the letter “H” at the debugger
prompt and then pressing Enter.

5.4.5 File Menu

The File menu contains commands relating to the overall operation of the
debugger.

The File Menu (Windows).

Trace Files toggles file tracing on or off.

A file trace is a listing of all file operations performed at runtime. Trace
output can be tailored with the TRACE_STYLE configuration variable. See
Book 4, Appendix H.

Trace output is sent to the same place that error output is sent. So, to prevent
the trace from overwriting your application’s screen, be sure to use the
runtime’s “-e” command-line option (followed by a file name) to direct error
output to a file. See the runtime configuration variable
MAX_ERROR_LINES in Appendix H to limit the size of the error file.

Debugger Commands 5-17
Some file systems can print extra information if a higher level of tracing is
enabled. This extra information is mostly useful to our Technical Support
department, and they may ask you to execute a “tf n” for some integer “n”.

File trace example:
runcbl -de trace.fil program1

Make sure that the error file you designate (trace.fil in the example above)
does not exist in the current directory. If it does, it will be emptied.

The keyboard form of this command is “TF [#]”.

**Trace Paragraphs toggles paragraph tracing on or off.

Paragraph tracing is a listing of all paragraphs and sections entered at
runtime.

A paragraph trace is sent to the same place that error output is sent. So, to
prevent the trace from overwriting your application’s screen, be sure to use
the runtime’s “-e” command-line option (followed by a file name) to direct
error output to a file.

The keyboard form of this command is “TP”.

Shell pulls up the operating system’s command processor, allowing you to
enter commands. Shell is not supported for programs running in thin client
mode. Attempts to use the Shell command with programs running in thin
client mode will result in the error message: “Unable to start shell in
thin-client mode”.

Note: Under the default Windows setup, the command processor will run
as a full screen application.

The keyboard form of this command is “!”.

Record Script turns on a recorder that saves all of your keyboard input and
menu selections to a file of your choice. Debugger commands and input to
the program being debugged are both saved.

Play back the recording with the Run Script command.

5-18 Runtime Debugger
See also the description of the W$KEYBUF routine in Appendix I.

When the recorder is running, the Record Script menu option is replaced by
a Stop Recorder option. Use this to end your recording. If you do not end
your recording manually, the script information is saved when the debugger
closes.

While the recorder is active, you will not be able to use the mouse for
anything except selecting menu items. Mouse actions are very
position-dependent and are often difficult to replay.

The recorder can save up to 4096 characters of information. Normal
keystrokes use one character. Special keys such as function keys and menu
selections typically use up to four characters.

The keyboard form of this command is “> script-file”. The runtime does not
process the filename. To turn off the recorder, use “>” by itself.

Run Script runs a debugger script file. Control returns to the keyboard when
the script is finished.

The keyboard form of this command is “< script-file”.

Exit Debugger turns off the debugger but continues execution of your
program.

The keyboard form of this command is “E”.

Quit halts your application and exits the debugger.

The keyboard form of this command is “Q!”.

Debugger Commands 5-19
5.4.6 View Menu

The View menu contains commands related to viewing and monitoring your
program.

The View Menu (Windows).

View Screen displays your application’s current screen. Press any key or
click the left mouse button to return to the debugger.

The keyboard form of this command is “V”.

*View Perform Stack lists all of the nested paragraphs leading up to the
current statement, starting from the beginning of the program (or the
beginning of the thread, if a new thread was started). Double-clicking on one
of the names in the list takes you to that paragraph and highlights the current
statement in that paragraph. The trace also accounts for embedded
procedures and declaratives.

In order to use this command, you must have compiled for source-level
debugging (-Gd), and your program must allow for recursive performs (-Zrl).
Recursive performs are the default.

The keyboard form of this command is “VP”.

View Breakpoints displays a dialog box that lists all of your breakpoints and
allows you to modify them, add new ones, view the next line of code
containing a breakpoint, disable a breakpoint, and clear a breakpoint. It
shows the location and skip count for each breakpoint. For breakpoints that
are located in the current program, the paragraph they are contained in is also
listed.

5-20 Runtime Debugger
The keyboard form of this command is “B”.

View Monitors shows all monitored variables and their values. It also
displays a sequence number for each monitor. You need the sequence
number to clear an individual monitor. See Data/Monitor/Clear, below.

The keyboard form of this command is “M”.

Memory Usage displays the amount of dynamically allocated memory
currently used by the runtime system. There are five types:

Program memory is the memory directly used by your programs’ Data and
Procedure Divisions. This includes all programs in memory--not just the
current program.

File memory is memory used by your open files, including the indexed file
cache.

Window memory is memory used by your pop-up windows. This includes
the debugger’s own pop-up window.

Overhead memory is memory used directly by the runtime system that is not
controlled by your program.

Dynamic memory is memory allocated by the program via the M$ALLOC
library routine.

The keyboard form of this command is “U”.

Debugger Commands 5-21
5.4.7 Run Menu

The Run menu contains commands related to executing your program.

The Run Menu (Windows).

Continue resumes execution of your program from its current location. The
program returns to the debugger when it reaches the next breakpoint.

The keyboard form of this command is “G”.

*Go to Cursor Line sets a temporary breakpoint at the current cursor line
and continues execution of your program. Press the F3 key to use this
command from the keyboard. The F3 key works on lines that do not contain
verbs. The closest previous line with a verb is the location used to set the
breakpoint.

Go until Paragraph Returns runs your program until the current paragraph
returns to the point from which it was performed.

The keyboard form of this command is “GP”.

Go until Program Exits runs your program until the current program exits
to its calling program. If used from inside your main program, this command
runs the program until it finishes.

The keyboard form of this command is “GE”.

5-22 Runtime Debugger
Auto Step causes your program to execute “step” commands repeatedly until
it reaches the end of the program. When you select this mode, the debugger
immediately begins stepping through your program. The debugger will
follow new threads as they are created. (If you want to continue to follow the
original thread, use the Step Over command) You can change the speed at
which it is stepping by typing a digit from “1” (slowest; approximately three
seconds per step) to “9” (fastest; several steps per second). Press the
spacebar to leave Auto Step mode and return to the debugger prompt.

The keyboard form of this command is “SA”.

Step and P-Step are not shown on the menu but are available from the
keyboard. Windows users can find equivalent commands, and others, on the
toolbar provided with the debugger.

Step executes one statement of your program and then returns control to the
debugger. New threads are followed as they are created. (If you want to
continue to follow the original thread, use the Step Over command)

The keyboard command is “S”. You may follow the keyboard command
with a number of steps to take.

P-Step executes a “perform step.” This is the same as a normal Step
command, except that it includes the entire range of a PERFORM statement
as a single statement. The effect is to step to the end of the performed
paragraph. Use this command if you want to step through a program
following only the original thread.

The keyboard command is “P.” You may follow the keyboard command
with the number of “perform steps” to take.

*Skip to Cursor Line moves the current program location to the line
containing the cursor. Further execution of your program will proceed from
this line. The cursor line must contain a verb; otherwise the current program
location does not change.

Use this command with care, because the skipped lines are not executed.
You may skip important sections of code and experience unexpected results.

The keyboard form of this command is “@!”.

Debugger Commands 5-23
Note: The “@!” command is not available for debugging a native-code
module.

Run all Threads toggles or sets the “Run All Threads” setting. Once it is set,
all threads run simultaneously under the debugger. Though all threads run
simultaneously, only the debugger’s current thread is traced when you are
stepping through a program. However, breakpoints in other threads are
active and can transfer control to the debugger, as can a trapped error (such
as a table boundary violation). When a thread other than the current thread
returns control to the debugger, that thread becomes the current thread.

The keyboard form of this command is “RA [#]”.

Thread shows the threads contained in the program, and places a check mark
next to the current thread.

5.4.8 Source Menu

The Source menu contains commands related to viewing your source code.
These commands are available with source-level debugging.

The Source Menu (Windows).

5-24 Runtime Debugger
*Line 1 positions the cursor at the first line of your program.

The keyboard form of this command is “WT”.

*Last Line positions the cursor at the last line in your program.

The keyboard form of this command is “WB”.

*Current Line positions the cursor at the current line in your program.

The keyboard form of this command is “W@”.

*Paragraph prompts you for a procedure name and positions the cursor
there. The procedure must be located in the current program.

The keyboard form of this command is “W procedure”.

Find Forwards prompts you for text to locate in the program’s source code.
The debugger searches forward, starting at the cursor line. Case is not
considered, so you do not have to match the capitalization of the text you
want to locate.

The default text for the search is shown in a dialog box. This is the current
selection (the currently highlighted variable or procedure name). If nothing
is selected, the default is the last search string. If you do not want the default,
simply type over it.

Before you choose Find Forwards, you can highlight a variable or procedure
name by clicking on it. If you do not have a mouse, use the arrow keys to
move to the desired line and then press the Tab key to highlight the desired
name.

The keyboard form of this command is “FF text”.

*Find Backwards prompts you for text to locate in the program’s source
code. The debugger searches backwards, starting at the cursor line. Case is
not considered, so you do not have to match the capitalization of the text you
want to locate.

The default text for the search is shown in a dialog box. This is the current
selection (the currently highlighted variable or procedure name). If nothing
is selected, the default is the last search string. If you do not want the default,
simply type over it.

Debugger Commands 5-25
Before you choose Find Backwards, you can highlight a variable or
procedure name by clicking on it. If you do not have a mouse, use the arrow
keys to move to the desired line and then press the Tab key to highlight the
desired name.

The keyboard form of this command is “FB text”.

*Find from Top prompts you for text to locate in the program’s source code.
The debugger searches for the text, starting at the top of the current program
source. Case is not considered, so you do not have to match the capitalization
of the text you want to locate. This is usually a convenient way to find the
definition of a COBOL data item.

The keyboard form of this command is “FT text”.

*Repeat Find repeats the last Find command, starting at the cursor line.

The keyboard form of this command is “F”.

Window Size sets the number of lines to show in the command window.
This may be any integer from 2 to 14, inclusive.

The keyboard form of this command is “WS number”.

*Watch Size displays a dialog box that allows you to specify the number of
lines to display in the Watch Window. The number cannot exceed the total
number of items being monitored and watched. Specifying a larger number
results in no change. The Watch Window size dialog box (actually titled
“Window Size”) looks like this:

The keyboard form of this command is “WW number”.

5-26 Runtime Debugger
5.4.9 Data Menu

The Data menu contains commands relating to your program’s variables.

The Data Menu (Windows).

You may use name qualification with the display, accept, and monitor
commands. For example, you can use the syntax “FIELD-1 IN GROUP-1”
to refer to a field called FIELD-1 that belongs to group item GROUP-1.
Name qualification is not supported for on-screen commands (such as F7) or
for situations in which you double-click on the data name.

Display shows the contents of a variable. With source-level debugging, you
can either click on the variable name in the code before you select Display, or
wait to be prompted.) Numeric variables are converted to show their value.
Other variables are shown as text. The value is shown in the debugger
command window. The keyboard form of this command is “D variable”.

Table elements cannot be highlighted with a mouse click. Instead, use this
keyboard command:
 d variable (index)

The variable’s name is followed by the desired index in parentheses. The
index must be a numeric literal.

To display a reference modified variable (that is, to view some portion or
substring of the data item), use the syntax:
 d variable(x:y)

Debugger Commands 5-27
This shows y characters of variable, starting from character x.

When you display a variable, and multiple fields with the same name are
defined in the program, the debugger lists all instances of the field. For
example, if the following two group items were defined in Working-Storage:
 01 start-date.
 05 ws-day PIC XX.
 05 ws-month PIC XX.
 05 ws-year PIC X(4).
 01 end-date.
 05 ws-day PIC XX.
 05 ws-month PIC XX.
 05 ws-year PIC X(4).

and you entered the command “d ws-day”, you would see the value for the
field in both the “start-date” and “end-date” group items.

Reference modification and indexing are valid with duplicate names. For
example, all of the following are valid:
 d field-1(1:1)
 d field-1(1)
 d field-1(1)(1:1)

If your display command contains multiple field names, only the first name
specified may be a duplicate. Using the group definitions shown in a
previous example, the command “d ws-day(1:ws-month)” would fail,
because there is more than one “ws-month” defined.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, you must refer to each variable by its absolute address from a
program listing, preceded by “.” (a period). For example:
 d .213.5

Display in Hex shows the contents of a variable in hexadecimal. (With
source-level debugging, either click on the variable name in the code before
you select Display in Hex, or wait to be prompted for the name.)

This option allows you to determine the data stored in each byte of the
variable. The value is shown in the command window below the source
code.

5-28 Runtime Debugger
The keyboard form of this command is “D variable, X”.

Accept allows you to modify the contents of a variable. (With source-level
debugging, either click on the variable name in the code before you select
Accept, or wait to be prompted for the name.) For numeric variables, the
value entered is converted to the internal storage format of the variable.

The keyboard form of this command is “A variable”.

When you accept a variable in the debugger, the current value of the variable
is shown as the default. To leave the current value in place, press Enter.

Table elements cannot be highlighted with a mouse click. To modify a table
element, follow the variable’s name with the desired index in parentheses, as
shown here:
 a variable (index)

The index must be a numeric literal.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, you must refer to each variable by its absolute address from a
program listing.

Accept in Hex allows you to modify the contents of a variable in
hexadecimal format. You can enter or display up to 2048 hex characters
(1024 bytes of data).

To accept a variable in hexadecimal format from the command line, use the
command:
 a variable x

The Monitor submenu contains commands that relate to monitored
variables.

Debugger Commands 5-29
Set displays a dialog box which prompts you for the name of a variable to be
included in the Watch Window. (For source-level debugging, either click on
the variable name in the code before you select Monitor, or wait to be
prompted for the name.) The Monitor dialog box looks like this:

The Monitor dialog box includes a check box labeled “Break when changed”.
When this box is checked, the selected variable becomes monitored, and if it
is unchecked, the variable is only watched. The default value of this check
box is On (checked).

If the “Break when changed” box is checked in the Monitor dialog box,
monitoring a variable suspends the program run. Any time a monitored
variable changes, the program stops executing and control returns to the
debugger, where the new value of the variable is displayed in the command
area of the debugger window and in the Watch Window.

If the “Break when changed” box is unchecked in the Monitor dialog box, the
item is watched. Though changes to a watched variable’s value are indicated
in the Watch Window like those of a monitored variable, these changes do
not cause the program to stop executing.

You can tell which variables in the Watch Window are monitored by the
phrase “(break)” following the variable name (i.e., those variables for which
the “Break when changed” check box was clicked on). The watched
variables do not have this phrase displayed after their names.

When any variables are set for monitor/watch, a new window is created as a
sub-window of the main debugger canvas, located at the top of the screen.
This window, called the “Watch Window”, shows all the monitored/watched
variables and their values, one name/value per line (values that exceed the
size of the window are truncated). By default, the Watch Window contains
as many lines as there are variables being monitored, up to a maximum of

5-30 Runtime Debugger
three. If you set more than 3 variables, you can scroll through the Watch
Window to view them all, or you can make the Watch Window larger with
the Window Size option on the Source menu. If your system does not use the
mouse, you can scroll the Watch Window using Ctrl + P (for previous item)
and Ctrl + N (for next item) keys on your keyboard. The maximum number
of variables you can set is limited only by system memory. The Watch
Window looks like this:

To monitor a table element, follow the variable’s name with the desired index
in parentheses, as shown here (table elements cannot be highlighted with a
mouse click):

m variable (index)

The index must be a numeric literal.

Keep in mind that you must compile with “-Gd” or “-Gy” in order to
reference variables by name. If the program was not compiled with one of
these options, you must refer to each variable by its absolute address from a
program listing.

The keyboard form of this command is “M variable”.

List shows all monitored variables and their values. Also displays a
sequence number for each monitor. You need the sequence number to clear
an individual monitor. See Clear, below.

The keyboard form of this command is “M”.

Clear clears a monitor from one variable. You will be prompted to identify
the variable by number. Use the List option to display all monitors and their
numbers.

The keyboard form of this command is “CM number”.

Debugger Commands 5-31
Clear All clears all monitors.

The keyboard form of this command is “CMA”.

5.4.10 Breakpoints Menu

The Breakpoints menu contains commands for managing a program’s
breakpoints.

The Breakpoints Menu.

A breakpoint is a location in your program’s code that you designate. It
causes control to return to the debugger. Control is returned before the code
at the breakpoint location is executed.

Breakpoints are displayed in the source. An enabled breakpoint shows as
“B” in column 1, a disabled breakpoint as “b” (lowercase) instead. The “@”
sign (showing the program’s current location) displays over the “B” if the
current line is also a breakpoint.

Breakpoints are saved between sessions. The breakpoints are stored in a file
that is named “username.adb”, where username is your login name, as
known by the runtime. This file is placed in the directory named by the
“ACUCOBOL” environment variable, or the current directory, if that
variable is not set. In addition to your breakpoints, the run-all-threads state is
recorded, as well as the last size of the debugger’s window. Keep in mind
that although breakpoints are saved between sessions, they are not saved
between compiles.

5-32 Runtime Debugger
Set allows you to set a breakpoint at a paragraph. Selecting Set displays the
Set Breakpoint dialog box.

Set Breakpoint Dialog Box.

The Set Breakpoint dialog box prompts you for a breakpoint Location,
Condition, and Skip count.

The Location field prompts you for a hexadecimal address and a program
name, although the current cursor location is supplied as the default
breakpoint address location. Hexadecimal addresses are specified with a “.”
(period) as the first character. A breakpoint is set at that address in the
program. If you omit the program name, the current program is used. To
obtain the hexadecimal address of a line of code, use the compiler’s program
listing.

Suppose you want to set a breakpoint in a called program in the run unit, but
you do not know the exact address. First, make sure you’ve compiled the
called program with source-level debugging. Then, from the current
program, set the breakpoint at address “0”, called-program-name. The
debugger breaks as soon as the called program is entered. You see the called
program’s source code on the screen, and the called program’s name on the
command line. The called program is now the current program, and you can
use Set or Toggle at Cursor to set the desired breakpoint.

If you have compiled for full source debugging, you can use an alternate
notation to set a breakpoint within a called program. Instead of specifying an
exact address, provide the full path and file name for the ACUCOBOL-GT
source file, followed by a colon (“:”) and the line number.

Debugger Commands 5-33
The syntax is:
 /fullpath/filename.cbl:line

For example, in the command window, you could type:
 b /usr/source/invoice.cbl:559

Breakpoints can have a condition, known as the “When Condition,” specified
for them. The condition is entered into the Condition field. The breakpoint
is activated only when the condition is true. For breakpoints with a skip
count (see below), the skip count is decreased only when the condition is true.
Conditions are simple comparisons between two numeric or alphanumeric
data items or literals, including figurative constants (exception: the ALL
literal is not supported). The allowed comparisons are “=”, “<“, “>”, “<=”
and “>=”. You may place the word “NOT” before any of these operators.
The comparisons are done according to the rules for COBOL. Any data
items referenced must exist in the program containing the breakpoint. If the
condition is not meaningful or is illegal (including table boundary
violations), then the breakpoint is immediately activated when it is reached
and an error message follows.

In the Skip count field, enter the number of times to skip the breakpoint. The
breakpoint does not activate until the skip count reaches zero. The keyboard
form of this command is

b address, counter

This command can also be set from the command line with:
b address [,program] [,SKIP count] [,WHEN condition]

A second command that is also supported but does not allow conditions to be
set is:

b address [,program] [,count]

*Toggle at Cursor Line sets or removes a breakpoint at the source line
containing the cursor.

To use this command from the keyboard, press F4. The F4 key works on
lines that do not contain verbs. The closest previous line with a verb is the
location used.

5-34 Runtime Debugger
*Disable/enable at Cursor Line allows you to keep a breakpoint location
while turning off the breakpoint. You can disable/enable breakpoints from
the menu or from the Breakpoint dialog box.

View is the same as the “list breakpoints” command (“B”). It displays a
dialog box that lists all of your breakpoints and allows you to modify them,
add new ones, view the next line of code containing a breakpoint, disable a
breakpoint, and clear a breakpoint. It shows the location and skip count for
each breakpoint. For breakpoints that are located in the current program, the
paragraph they are contained in is also listed.

Clear removes a breakpoint. At the prompt, you can enter either the
breakpoint’s paragraph name or hexadecimal address. Hexadecimal
addresses are specified with a “.” (period) as the first character. Exact
addresses are given in the View command described above.

To use this command from the keyboard, type “C address”.

Clear All removes all breakpoints.

To use this command from the keyboard, type “CA”.

5.4.11 Selection Menu

The Selection menu lists actions you can take on the current selection.

The Selection Menu (Windows).

Debugger Commands 5-35
A selection is a variable or procedure name that you have highlighted in the
source window. If you do not have a mouse, use the arrow keys to move to
the desired line and then press the Tab key to highlight the desired name.

*Display shows the contents of the selected variable. Numeric variables are
converted from their internal formats to show their values. Other variables
are shown as text.

You can also perform this by double-clicking the left mouse button on the
desired variable.

*Display in Hex shows the contents of the selected variable in hexadecimal
notation. Allows you to view the internal storage of every byte in the
variable.

*Monitor sets a monitor on the selected variable. Changes to a monitored
variable cause control to return to the debugger. This feature gives you the
option to have the COBOL program stop executing, and the debugger to
activate, when the value of a monitored variable changes. When this
happens, the debugger window becomes the active window, and the variable
and its value are displayed in the command area of the debugger.

When any variables are monitored (or watched), a new window is created as
a sub-window of the main debugger canvas, located at the top of the screen.
This window, called the “Watch Window”, shows all the monitored and
watched variables and their values, one name/value per line (values which
exceed the size of the window are truncated). By default, the Watch Window
contains as many lines as there are variables being monitored, up to a
maximum of three. If you select more than three variables for monitoring,
you can scroll through the Watch Window to view them, or you can make the
Watch Window larger with the Window Size option on the Source menu.
The size of the Watch Window cannot exceed the total number of monitored
and watched items. Attempting to make the window larger than that results in
no change.

5-36 Runtime Debugger
This is what a Watch Window looks like:

*Watch sets a watch on the selected variable. Changes to a watched variable
do not cause control to return to the debugger. See also Monitor, above.

*Accept “accepts” a new value for the selected variable. For numeric
variables, the value you enter is converted to the variable’s internal storage
format.

*Accept in Hex “accepts” a new value for the selected variable in
hexadecimal format. Up to 1024 bytes of data (2048 hex characters) can be
entered or displayed.

*View Procedure scrolls the source window to the start of the selected
procedure.

You can also perform this by double-clicking the left mouse button on the
desired procedure name.

*Run to Procedure sets a temporary breakpoint at the selected procedure
and continues program execution. The program runs until it reaches the
selected procedure (or another breakpoint).

*Set Procedure Breakpoint sets a permanent breakpoint at the selected
procedure.

Up and Down are available only for non-Windows environments. Windows
users can perform the same tasks by using the scroll bar to the right of the
debugger screen.

*Up scrolls up towards the top of the source code by one-half screen.

Debugger Commands 5-37
*Down scrolls down towards the bottom of the source code by one-half
screen.

Help for Windows users is discussed in the next section. In other
environments, you can get help by typing the letter “H” and pressing Enter at
the debugger prompt.

The following debugger commands are available but are not shown on the
debugger menus:

*F1, Page Up scrolls source up one page.

*F2, Page Down scrolls source down one page.

*F5 (or the Up arrow) moves the source cursor up one line.

*F6 (or the Down arrow) moves the source cursor down one line.

*F7 causes the cursor line to be searched for program variables. If one is
found, its name and current contents are displayed. Press F7 multiple times
to cycle through all of the variables on the line.

F7 (display variable on current line) and the Tab key (highlight variable on
current line), as well as the mouse, also pay attention to qualified and indexed
data items in the source. As long as a variable and all of its qualifiers and
indexes are on one line, the entire expression is evaluated by these keys. If a
variable and all of its qualifiers and indexes span multiple source lines, the
entire expression is ignored, but component items are still found.

*F8, Edit Command causes the last command entered to be recalled for
editing. Useful for correcting typographical errors.

*H, Help Key displays a screen of summary help information.

5-38 Runtime Debugger
5.4.12 Help Menu

The Help menu is available only for Windows users. It provides access to a
Windows-style Help facility for the debugger.

The Help Menu (Windows).

Contents shows you the Debugger Help table of contents.

Search allows you to search for specific words, as you would in a book
index.

Help on Help opens the native Windows help file that explains how help
files can be used.

About the Runtime gives you information regarding the runtime, such as the
runtime version number, serial number, copyright information, and license
number.

5.4.13 The Toolbar

Windows users can use the debugger’s toolbar for a variety of operations. To
display a description of any button on the toolbar, place the mouse pointer
over the button and hold it there for a few seconds. Depending on the state of
the debugger, some of the icons may be dim (unavailable).

The Debugger Toolbar (Windows).

Debugger Commands 5-39
Step Into executes one statement of the program and then returns control to
the debugger. It is the equivalent of the keyboard command “S.” The
debugger will follow new threads as they are created. If you want to continue
to follow the original thread, use the Step Over command.

Step Over allows you to “step over” a performed paragraph. It is the same
as Step Into except that it includes the entire range of a PERFORM statement
as a single statement. It is the equivalent of the P-step command. Use this
command if you want to step through a program following only the original
thread.

Step Out lets you run to a performed paragraph’s exit.

Run to Cursor (F3) sets a temporary breakpoint at the current cursor line
and continues execution of your program.

Auto Step causes your program to execute “step” commands repeatedly until
it reaches the end of the program. As with the Step Into command, the
debugger will follow new threads as they are created. If you want to continue
to follow the original thread, use the Step Over command.

Find brings up dialog box for entering a word or phrase you want to locate.

Find from Top locates the next occurrence of the last found word or phrase.

Find Next locates the next occurrence of the last found word or phrase.

Find Previous locates a previous occurrence of the last found word or
phrase.

Find Current Line sets the source view to the current program location.

Go runs the program to the next breakpoint.

Toggle Breakpoint (F4) sets or removes a breakpoint at the source line
containing the cursor.

Disable Breakpoint allows you to keep a breakpoint location while turning
off the breakpoint.

Remove All Breakpoints clears all breakpoints from the program.

5-40 Runtime Debugger
Perform Stack displays the current Perform stack, listing all of the nested
paragraphs leading up to the current statement.

5.5 File Tracing

File tracing is always available. Programs do not need to be compiled with
the debug options to use file tracing. File tracing can be especially helpful in
assessing the cause of a problem. File tracing provides valuable information
about file OPENs, READs, and WRITEs. File status codes for unsuccessful
I/O operations are also shown, and configuration variable settings can be
examined. For relative files, file trace includes record numbers.

To enable file tracing, type:
runcbl -dlxe errfile myprog

where:

-d turns on the debugger

-l (optional) causes the contents of the runtime
configuration file to be included in the error output

-x causes the runtime system to display the operating
system’s corresponding error number for file error “30”
on the error output. This information may help in
determining the problem.

-e causes the error output to be placed in the file named
immediately after the option

errfile is the user-specified name of the error file. This file is
opened as an empty file when the runtime is initiated.
Do not forget to specify the error file name--if you run
with “-e”, immediately followed by your program name
instead of an error file name, your object code file will
be deleted and opened as an empty file.

myprog is the name of your object code file

File Tracing 5-41
After you press Enter you are at the debugger screen. To turn on file tracing,
type:

tf [#]

“File trace” is echoed on the screen.

Some file systems can print extra information if a higher level of tracing is
enabled. This extra information is useful primarily our Technical Support
department, and they may ask you to execute a “tf #” for some integer.

File tracing can also be enabled with the FILE_TRACE runtime
configuration variable. Some attributes of trace output can be tailored with
the TRACE_STYLE configuration variable. For more information about
both of these variables, see Appendix H of Book 4.

If you are writing to an error file, you can execute this debugger command:
t flush

to cause the error file to be flushed to disk after each write. This can be useful
if your program terminates unexpectedly. It allows the error file to contain
everything that the runtime sent to it. Without this command, the error file
could be empty following an unexpected program termination, even though a
great deal of information had been written to it. Note that this option slows
down the processing but ensures that the error file is complete.

To start the program, enter:
g

Proceed until you encounter the error condition, and then exit. Your error file
contains the error information, all COBOL configuration file variables that
you have set, and a record of every file operation.

File Trace Timestamps

If you are directing file trace output to an error file, you can elect to include
timestamp information. When this option is enabled, a timestamp is placed
at the beginning of every line in the trace file. (When you are debugging a
problem, it is sometime helpful to know the exact time of each file operation.)

5-42 Runtime Debugger
The format of the timestamp is: HH:MM:SS.mmmmmm, where
“mmmmmm” is the finest resolution that the runtime can obtain from the
system.

There are three ways to enable timestamps in the trace file.

1. In the debugger, before you start the program with the “g” command,
enter:

t timestamp

2. Before you start the program, in the runtime configuration file set the
FILE_TRACE_TIMESTAMP variable to “1” (on, true, yes). This
variable is set to “0” (off, false, no), by default.

When set in the appropriate server configuration file,
FILE_TRACE_TIMESTAMP can also be used with AcuServer and
AcuConnect (see the associated product documentation for more
information).

3. Before you start the program, in the runtime configuration file set the
TRACE_STYLE variable to TIMESTAMP.

Timestamp information is included only when file trace information is
directed to a file.

Timestamp output can add significant file I/O overhead and may have a
noticeable impact on performance.

5.6 Screen Tracing

The screen trace feature enables you to save information about DISPLAYs of
screen section items and CREATEs, DISPLAYs, MODIFYs, and INQUIREs
of ActiveX objects. You can use screen trace even if the program was
compiled without the debugging option.

To perform a screen trace, type:
runcbl -dle errfile myprog

Macro Debugger 5-43
Because you specified “-d” (for debugger) on your command line, you will
be at the debugger screen after you press Enter.

To turn on screen tracing, type:
ts

“Screen trace ON” is echoed on the screen.

The information output is useful primarily to our Technical Support
department.

If you are writing to an error file, you can execute this debugger command:
t flush

to cause the error file to be flushed to disk after each write. This can be useful
if your program terminates unexpectedly. Note that this option slows down
the processing but ensures that the error file is complete.

Type:
g

You will now be running your program normally. Proceed until you
encounter the error condition, and then exit. Your error file will contain the
error information, all COBOL configuration file variables that you have set,
and a record of every file operation.

This can be especially helpful as you assess the cause of the problem.

5.7 Macro Debugger

The debugger supports a simple macro processor. Twenty-six variables,
named “A” through “Z”, are available to be assigned to arbitrary strings. You
do this with the command:

variable = string

5-44 Runtime Debugger
where the “=” must appear in column two. After a variable is assigned, you
may use it in any command by specifying the variable name with a “$” in
front of it. This provides a convenient way to assign a long symbol name to
a shorter string.

For example, if the symbol “EMPLOYEE-NAME” is often referenced in a
debugging session, the following commands will assign this to the variable
“X” and display the contents of the name:

x=employee-name
d $x

Macros may not be nested.

5.8 Specifying Addresses

Program addresses and variables can be specified directly or with program
symbols. In order for a symbol to be used, the program containing the
symbol must be currently executing and must have been compiled with either
the “-Gy” or “-Gd” options.

5.8.1 Variables

Variables can be specified by their symbolic name or by their address. If they
are specified by address, both the starting address (in hexadecimal, preceded
by a “.” (period)) and the variable’s size (in decimal) must be specified, in
that order. These values can be found in the symbol table listing produced
when you compile with the “-Ls” compiler option. Any variable specified
directly by address is treated as if it were an alphanumeric variable.
Variables specified by name are treated as their correct type, except for
edited fields, which are treated as alphanumeric.

Either form of addressing may have an index specified for it. This index is a
number in parentheses following the address. Only constant values may be
used as table subscripts.

Specifying Addresses 5-45
You may use name qualification with the Display, Accept, and Monitor
commands. For example, you may type “FIELD-1 IN GROUP-1” to refer to
FIELD-1 of GROUP-1. Name qualification is not supported for on-screen
commands (such as F7) and for situations in which you double-click on the
data name.

Data items may be qualified by a group name. Table indexes may be
specified with variables.

Note: For data items of variable size, the debugger always treats the data
item as if it were currently defined to be its maximum size.

Examples:

Configuration variables

You can display and accept configuration variables within the debugger. To
display a particular variable use the following command:

d %var-name

where var-name is the name of the variable you want to display. Up to 300
characters of the value are displayed. (This is equivalent to executing the
ACCEPT FROM ENVIRONMENT command, and can show the same types
of configuration variables.)

To accept a configuration variable, execute the command:
a %var-name

where var-name is the name of the variable you want to modify. In this case,
the debugger responds with a prompt. Enter the new value of the variable,
ACCEPT that variable within the COBOL program, and the runtime will use
the new value.

VAR-1 - Variable name

3A4, 5 - Address 3A4 for 5 bytes

ARRAY-1 (2,4) - Indexed variable

5-46 Runtime Debugger
5.8.2 Program Addresses

Program addresses may be specified by paragraph name. They can also be
specified by a hexadecimal address, specified by a “.” (period) as the first
character. This allows the debugger to distinguish between the hex address
ABC and the paragraph name “ABC”. You can omit the period when there
is no ambiguity. Optionally, “.” (period) can be followed by the six-character
program name. The numeric form is the only way to specify an address that
is not at a paragraph, and the only way to specify an address in a program
other than the one that is currently running. The listing produced by the
compiler has the address of the start of each sentence along the left-hand side.
Usually it is more convenient to use the F3 and F4 commands of the source
debugger.

Note: Every program always starts at address zero. If you want to debug a
subprogram, you can always set a breakpoint at address zero of the
subprogram and run it until this point is reached. Then the subprogram will
be active and its symbols will be available (if it was compiled with “-Gd”
or “-Gy”). When specifying an address in a different program, use the
name contained in its PROGRAM-ID paragraph.

Examples:

5.9 Debugger Restrictions

Please note the following restrictions on the debugger:

1. If you have a paragraph (or section) and a data item with the same name,
that name will refer to the paragraph (section). If more than one
paragraph (or section) has that name, the last one will be the one used.
Other data items and paragraphs (sections) with that name can be
referenced only by their addresses.

MAIN-LOGIC - Paragraph name

3A7F - Numeric address

0, PROG2 - Start of program PROG2

Using the Abend Diagnostic Report (ADR) 5-47
2. Although the compiler allows for up to 15 dimensions in a table, the
debugger will let you access only the first three dimensions.

3. Although ACUCOBOL-GT object files are portable across all
machines, an object file that contains debugging symbols or source
may not be. These files can be run on other machines, but may cause
errors if run with the debugger on the foreign machine.

4. You can use the debugger on a native-code module in the same fashion
as you do for a portable-code module. The only restriction is that you
may not begin execution at an arbitrary point in a native-code module
(the “@!” command).

5. The debugger identifies a program name by a match on the first 30
bytes. This limitation derives from the compiler behavior, which
reserves 30 bytes for the program name in the program object.

5.10 Using the Abend Diagnostic Report (ADR)

When you create an Abend Diagnostic Report to analyze the cause of an
abnormal program shutdown, the report is divided into three sections:

1. The first contains general information about the program, such as
command-line parameters, the reason for the shutdown, and the line
number of the operation that caused the shutdown.

This section of the report appears as follows:

Dump created: Tue Dec 28 15:00:32 2006

Reason for dump:
Index out of bounds, upper bound = 10, index = 11
COBOL error at 000014 in TwoTables.acu
("TwoTables.cbl", line 42)

Runtime version: 8.0.0 (2006-12-23)
Command line arguments: -c Cfg.txt TwoTables.acu

2. The second section contains a call stack summary for each thread being
run, including information about inactive programs. Inactive programs
are those programs which have been loaded into memory but which are
not currently executing.

5-48 Runtime Debugger
Process ID: 1128

1 thread(s) active

** Thread 487 **
Call stack:
000014 TwoTables.acu

Inactive programs:
(none)

3. The third and largest section contains detailed information about each
program, including the value of all data items. Programs are listed in
CALL order, starting with the program executing at the time of
shutdown and working backward to the start of the thread (usually the
main program).

• All data items and their values are listed in the order they are
declared in the program.

• Group items are named, but have the phrase “(group)” listed as their
value to avoid duplicate information in the report.

• Individual elements in a group are listed with their values.

• Table items are expanded to show each element of the table.

• Data is shown in both the appropriate numeric/non-numeric format
and as raw hexadecimal data.

*** DETAIL FOR THREAD 487 ***

*** PROGRAMS IN THE CALL STACK ***

*** PROGRAM "TwoTables.acu" ***

Current address: 000014

01 ONE-TOO-MANY = 11 h30303031 31

01 MY-TABLE = (group)
05 FILLER = " 1" h20202020 31
05 FILLER = " 2" h20202020 32
.
.

Using the Abend Diagnostic Report (ADR) 5-49
.
00 SPECIAL REGISTERS = "" h

*** END OF PROGRAM "TwoTables.acu" ***

*** END OF THREAD 487 ***

*** END OF DUMP ***

5.10.1 Generating a Report

To generate an Abend Diagnostic Report, you must set the ACU_DUMP
configuration variable to “1” (on, true, yes). The default value for the
configuration variable is “0” (off, false, no). This variable also takes name
format specifiers that you can use to add additional identifier information to
the report name. See Appendix H-2 for details on using these name format
specifiers.

In order to add detailed information to the report, programs must be compiled
with line number (“-Gl”) and symbol table (“-Gs”) information. The “-Ga”
compiler option may also be used, but since this includes full source
information in the compiled object, it results in a much larger object file on
disk.

Configuration variables

In addition to ACU_DUMP, there are three other configuration variables that
affect creation of an ADR.

ACU_DUMP_FILE

This configuration variable determines the name of the report file. It
allows two special parameters:

• If the file name starts with a plus sign (“+”), the report is appended to the
specified file. By default, a new report overwrites the specified file.
Note that the “+” character does not actually appear in the file name.

• If the name contains the string “%p”, when the report is generated, that
string is replaced with the process ID (PID) of the runtime from which
the report originates.

5-50 Runtime Debugger
The default value for ACU_DUMP_FILE is “acudump.#”, where “#”
is an integer, starting at one and incrementing by one each time a new
ADR is created in the current directory (acudump.1, acudump.2, and so
on). Note that the first available filename is used, so if a directory
contains files called “acudump.1” and “acudump.5”, the next ADR file
created in that directory is automatically called “acudump.2”.

Because the runtime performs a linear search to determine the next
available filename to use, if a directory contains a large number of
ADR files, the search can take some time. For this reason, it is a good
idea to remove unneeded ADR files regularly.

ACU_DUMP_WIDTH

This configuration variable controls the width of the report and has a
default value of 80 characters. The minimum allowed value is 79 and
the maximum is 2048. Note that because the report uses dynamically
computed columns for its hexadecimal data, making the report very
wide can reduce readability by introducing excessive white space.

ACU_DUMP_TABLE_LIMIT

This configuration variable limits how many elements of each table
item to list. The default value is 1000. Note that if you increase this
value substantially, and if you have tables that allow for large numbers
of elements, you may get very large reports.

In the following example, ACU_DUMP_TABLE_LIMIT is set to 5:

01 MY-TABLE-R = (group)
05 TABLE-ENTRY(1) = 1 h20202020 31
05 TABLE-ENTRY(2) = 2 h20202020 32
05 TABLE-ENTRY(3) = 3 h20202020 33
05 TABLE-ENTRY(4) = 4 h20202020 34
05 TABLE-ENTRY(5) = 5 h20202020 35
Remaining table items suppressed due to ACU-DUMP-TABLE-LIMIT setting

5.10.2 ADR Restrictions

1. Tables are only expanded up to four dimensions. If you have a table with
more dimensions, then only the first element of the higher dimensions is
seen. This limitation comes from a limit in the object’s internal symbol
table.

Using the Abend Diagnostic Report (ADR) 5-51
2. Level 77 data items are listed as level 01 items. This is caused by the
way the compiler internally stores the symbol table.

3. Level 88 data items are listed, but show the actual data instead of the
true/false evaluation of the data.

4. The report does not show line numbers for programs in the call stack,
only for the aborting program. Addresses for calling programs are
shown, and these can be found in a listing of the program.

5. Programs must be compiled with line number information (“-Gl”) in
order to show line numbers, and symbol information (“-Gs”) to see
data items in detail.

5-52 Runtime Debugger

6
 File Status Codes
Key Topics

Standards for File Status Codes ... 6-2
Table of Codes.. 6-2
Vision Secondary Error Codes for Error 98s 6-13
Transaction Error Codes .. 6-14
IBM DOS/VS Error Codes .. 6-17

6-2 File Status Codes
6.1 Standards for File Status Codes

ACUCOBOL-GT conforms to five different standards regarding the values
of file status codes. These codes are those used by RM/COBOL-85 (ANSI
85), RM/COBOL version 2 (ANSI 74), Data General ICOBOL, VAX
COBOL, and IBM DOS/VS COBOL. By default, ACUCOBOL-GT uses the
RM/COBOL-85 set. You can change the current set by changing the
configuration variable FILE_STATUS_CODES (see also the User’s Guide,
section 2.7.3, “File Status Codes”) .

The table in the next section describes the various file status codes returned
by each condition. Some of the status values in the table have a second
two-character code listed. This code distinguishes between different causes
for the same FILE STATUS code. You can obtain this second code value by
calling the ACUCOBOL-GT library routine C$RERR, which is described in
Appendix I. Where a second code is not listed, its value is “00”.

For file systems that support READ PREVIOUS, wherever READ NEXT is
mentioned, you may assume that READ PREVIOUS is also implied. An end
of file for READ NEXT is analogous to a beginning of file for READ
PREVIOUS.

6.2 Table of Codes

Regardless of which set of status codes is being used:

• Any code that starts with a “0” is considered successful.

• Any code that starts with a “1” is considered to be an “at end” condition.

• Any code that starts with a “2” is considered to be an “invalid key”
condition.

Table of Codes 6-3
Refer to the following table for a description of each status code:

85 74 Vax DG IBM Condition

00 00 00 00 00 Operation successful.

02 02 00 00 00 The current key of reference in the record just read
is duplicated in the next record. (read next)

02 02 02 00 00 The operation added a duplicate key to the file
where duplicates were allowed. (write, rewrite)

05 00 05 00 10 Optional file missing. If the open mode is I-O or
EXTEND, then the file has been created. This is
also returned by DELETE FILE if the file is not
found. (open, delete file)

07 00 07 00 00 A CLOSE UNIT/REEL statement was executed
for a file on a non-reel medium. The operation
was successful.

0M 0M 0M 0M 00 The operation was successful, but some optional
feature was not used. For example, if you opened
a file that specified an alternate collating sequence,
but the host file system did not support that
feature, then the open would succeed, but it would
return this status.

10 10 10 10 10 End of file. (read next)

14 00 14 00 00 A sequential READ statement was attempted for a
relative file, and the number of digits in the
relative record number is larger than the size of the
relative key data item. (read next)

21 21 21 21 21 Primary key was written out of sequence, or the
primary key on a rewrite does not match the last
record read. This error occurs only for an indexed
file open with the sequential access mode. (write,
rewrite)

22 22 22 22 22 Duplicate key found but not allowed. (write,
rewrite)

23 23 23 23 23 Record not found.

24 24 24 24 24 Disk full for relative or indexed file. (write)

6-4 File Status Codes
24, 01 00 24, 01 00 24 A sequential WRITE statement was executed for a
relative file, and the number of digits in the
relative record number was larger than the size of
the relative key data item. (write)

30, xx 30, xx 30, xx 30, xx 30 Permanent error. This is any error not otherwise
described.

The secondary code value is set to the host
system’s status value that caused the error. See
your operating system user manual for an
explanation, and C$RERR in Appendix I.

34 34 34 34 34 Disk full for sequential file or sort file. (write,
sort)

35 94, 20 35 91 93 File not found. (open, sort)

37, 01 95, 01 37, 01 91, 01 93 The file being opened is not on a mass-storage
device which is required for the file type or the
requested open mode. (open)

37, 02 95, 02 37, 02 91, 02 93, 02 Attempt to open a sequential file with fixed-length
records as a Windows spool file.

37, 07 90, 07 39, 07 91, 07 93 User does not have appropriate access permissions
to the file. (open)

37, 08 95, 08 37, 08 91, 08 93 Attempt to open a print file for INPUT. (open)

37, 09 95, 09 37, 09 91, 09 93 Attempt to open a sequential file for I/O and that
file has automatic trailing space removal specified.
(open)

37, 99 95, 99 37, 99 91, 99 93, 99 A Windows or Windows NT runtime that is not
network-enabled tried to access a file on a remote
machine.

38 93, 03 38 92 93 File previously closed with LOCK by this run unit.
(open)

85 74 Vax DG IBM Condition

Table of Codes 6-5
39, xx 94, xx 39, xx 9A, xx 95 Existing file conflicts with the COBOL
description of the file. (open)

The secondary error code may have any of these
values:

01 - mismatch found but exact cause unknown
(this status is returned by the host file system)

02 - mismatch found in file’s maximum record size

03 - mismatch found in file’s minimum record size

04 - mismatch found in the number of keys in the
file

05 - mismatch found in primary key description

06 - mismatch found in first alternate key
description

07 - mismatch found in second alternate key
description

The list continues in this manner for each alternate
key.

41 92 41 91 93 File is already open. (open)

42 91 42 92 92 File not open. (close)

42 91 94 91 92 File not open. (unlock)

43 90, 02 43 92 23 No current record defined for a sequential access
mode file. (rewrite, delete)

44 97 44 92 21 Record size changed. The record being rewritten
is a different size from the one existing in the file,
and the file’s organization does not allow this.
(rewrite)

This status code can also occur if the record is too
large or too small according to the RECORD
CONTAINS clause for the file. (write, rewrite)

46 96 46 92 21 No current record. This usually occurs when the
previous operation on the file was a START that
failed, leaving the record pointer undefined. (read
next)

85 74 Vax DG IBM Condition

6-6 File Status Codes
47, 01 90, 01 47, 01 92, 01 13 File not open for input or I-O. (read, start)

47, 02 91, 02 47, 02 92, 02 13 File not open. (read, start)

48, 01 90, 01 48, 01 92, 01 13 A file that is defined to be access mode sequential
is open for I-O, or the file is open for INPUT only.
(write)

48, 02 91, 02 48, 02 92, 02 13 File not open. (write)

49, 01 90, 01 49, 01 92, 01 13 File not open for I-O. (rewrite, delete)

49, 02 91, 02 49, 02 92, 02 13 File not open. (rewrite, delete)

93 93 91 94 93 File locked by another user. (open)

94, 10 94, 10 97 97, 10 93 Too many files open by the current process.
(open)

94, 62 94, 62 39, 62 92, 62 93 One of the LINAGE values for this file is illegal or
out of range. (open, write)

94, 63 94, 62 39, 62 92, 62 93 Key not specified (specifying a table whose size is
zero) in a SORT or MERGE statement

98, xx 98, xx 30, xx 9B, xx 93 Indexed file corrupt. An internal error has been
detected in the indexed file. The secondary status
code contains the internal error number. The file
should be reconstructed with the appropriate
utility.

99 99 92 94 23 Record locked by another user.

9A 9A 9A 9A 23 Inadequate memory for operation. This most
commonly occurs for the SORT verb, which
requires at least 64K bytes of free space. (any)

9B 9B 9B 9B 23 The requested operation is not supported by the
host operating system. For example, a deferred
file system initialization failed, or a READ
PREVIOUS verb was executed and the host file
system does not have the ability to process files in
reverse order. (any)

If you are using AcuXML, this error results when
the program tries to open a file EXTEND or I-O.
With AcuXML, programs are able to open files
INPUT or OUTPUT only.

85 74 Vax DG IBM Condition

Table of Codes 6-7
9C 9C 9C 9C 23 There are no entries left in one of the lock tables.
The secondary error code indicates which table is
full:

01 - operating system lock table

02 - internal global lock table (see the
MAX_LOCKS configuration variable)

03 - internal per-file lock table (see the
LOCKS_PER_FILE configuration variable)

9D, xx 9D, xx 9D, xx 9D, xx 92 This indicates an internal error defined by the host
file system. The “xx” is the host system’s error
value. This is similar to error “30”, except that
“xx” is specific to the host file system instead of
the host operating system. For example:

02 - In Acu4GL or AcuXML, 9D,02 indicates that
an XFD file is corrupt. This could be the result of
a parsing error.

03 - In Acu4GL or AcuXML, 9D,03 indicates that
an XFD file is missing. This could be the result of
a parsing error.

05 - In AcuXML, 9D,05 indicates that there was
an XFD parsing error, so AcuXML was unable to
read a record.

Refer to the specific product documentation for
more details on the host file system’s error codes.

9E, xx 9E, xx 9E, xx 9E, xx 92 This indicates an error occurred in the transaction
system. The exact nature of the error is shown by
the contents of TRANSACTION-STATUS. For
more information, see section 6.5,
“Transaction Error Codes.”

9Z 9Z 9Z 9Z 92 This indicates that you are executing the program
with a runtime that has a restriction on the number
of records it can process. You have exceeded the
record limit.

85 74 Vax DG IBM Condition

6-8 File Status Codes
6.3 Input/Output Error Codes for Error 23s

These codes are specific to RM/COBOL START statement when the WHILE
KEY LIKE phrase is specifed.

23 An attempt was made to randomly access a record that does not exist in
the file, or a START or random READ statement was attempted on an
optional input file that is not present. For a relative file, this means the
relative key data item contains a value that is less than one, refers to a
deleted record, or is greater than the highest relative record number
existing in the file. For an indexed file, this means the specified value
of the record or alternate record key does not refer to a record existing
in the file.

23,01 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern class character range cannot
include a multi-character escape. This value corresponds to compiler
message 682, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

23,02 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern class character range cannot be a
hyphen '-' except at the beginning or end of a positive character group.
This value corresponds to compiler message 683, which is described in
Appendix B: Compiler Messages of the RM/COBOL Language
Reference Manual.

23,03 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern class character range cannot be an
opening bracket '['. This value corresponds to compiler message 684,
which is described in Appendix B: Compiler Messages of the RM/
COBOL Language Reference Manual.

23,04 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern class character range cannot
specify a decreasing range. This value corresponds to compiler
message 685, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

Input/Output Error Codes for Error 23s 6-9
23,05 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern character class subtraction cannot
be followed by an additional class specification. This value
corresponds to compiler message 686, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,06 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern escape sequence (initiated by '\') is
not valid. This value corresponds to compiler message 687, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,07 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value that requires more memory than is available for pattern
compilation. This value corresponds to compiler message 688, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,08 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier opened with an opening
brace '{' is missing the closing brace '}'. This value corresponds to
compiler message 689, which is described in Appendix B: Compiler
Messages of the RM/COBOL Language Reference Manual.

23,09 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern character class expression is
missing the closing bracket ']'. This value corresponds to compiler
message 690, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

23,10 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern parenthesized subexpression is
missing the closing parenthesis ')'. This value corresponds to compiler
message 691, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

6-10 File Status Codes
23,11 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern category escape '\p{' or '\P{' is
missing the closing brace '}'. This value corresponds to compiler
message 692, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

23,12 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern category escape '\p{' or '\P{' is
missing the opening brace '{'. This value corresponds to compiler
message 693, which is described in Appendix B: Compiler Messages of
the RM/COBOL Language Reference Manual.

23,13 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern category escape '\p{' or '\P{'
contains an unknown category specification. This value corresponds to
compiler message 694, which is described in Appendix B: Compiler
Messages of the RM/COBOL Language Reference Manual.

23,14 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier maximum count is less
than the minimum count. This value corresponds to compiler message
695, which is described in Appendix B: Compiler Messages of the RM/
COBOL Language Reference Manual.

23,15 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier maximum count is
missing; at least one decimal digit was expected. This value
corresponds to compiler message 696, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,16 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier maximum count is too
large (> 65535). This value corresponds to compiler message 697,
which is described in Appendix B: Compiler Messages of the RM/
COBOL Language Reference Manual.

Input/Output Error Codes for Error 23s 6-11
23,17 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier minimum count is
missing; at least one decimal digit was expected. This value
corresponds to compiler message 698, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,18 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: A pattern quantifier minimum count is too
large (> 65535). This value corresponds to compiler message 699,
which is described in Appendix B: Compiler Messages of the RM/
COBOL Language Reference Manual.

23,19 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected closing
brace '}'. This value corresponds to compiler message 700, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,20 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected closing
bracket ']'. This value corresponds to compiler message 701, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,21 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected closing
parenthesis ')'. This value corresponds to compiler message 702, which
is described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,22 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected
quantifier '*' that is not preceded by a valid atom. This value
corresponds to compiler message 703, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

6-12 File Status Codes
23,23 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected
quantifier '+' that is not preceded by a valid atom. This value
corresponds to compiler message 704, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,24 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected
quantifier '?' that is not preceded by a valid atom. This value
corresponds to compiler message 705, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,25 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern contains an unexpected
quantifier '{' that is not preceded by a valid atom. This value
corresponds to compiler message 706, which is described in Appendix
B: Compiler Messages of the RM/COBOL Language Reference
Manual.

23,26 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern data item that has a
value with a syntax error: The pattern is too large or complex to
compile. This value corresponds to compiler message 707, which is
described in Appendix B: Compiler Messages of the RM/COBOL
Language Reference Manual.

23,27 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a pattern pointer data item that
does not point to a valid compiled pattern.

23,28 An attempt was made to execute a START statement with a WHILE
phrase and the LIKE condition specifies a compiled pattern that
contains an unrecognized pattern matching instruction code; the
compiled pattern is not valid . This can mean that the compiled pattern
data item was not properly initialized or was corrupted by an
unintended store into the pattern data item after initialization.

Vision Secondary Error Codes for Error 98s 6-13
6.4 Vision Secondary Error Codes for Error 98s

Following is a brief description of the secondary error codes for error 98s for
the Vision file system.

01 The file size listed in the file’s header does not match the actual file size.

02 The header’s next record pointer points to an area that is invalid.

03 Unique ID used to distinguish duplicate keys has already been used and
cannot be used with a new key.

04 Missing tree terminator key.

05 An error was detected while performing a bulk read of a record.

06 The key being deleted from the tree was not found in the tree.

07 A child node was not found in its parent.

08 An I/O error occurred when the runtime was trying to read key
information out of the file’s header.

09 A pointer in a node points past the end of the file.

12 A node in the free node list was not marked as a free node.

13 A record in the deleted record list was not marked as a deleted record.

20 Non-zero key prefix on first key in node.

21 Key prefix larger than key size.

22 Key prefix or key size larger than maximum key size.

31 A record pointer in a Vision Version 3 file points to a record-chain value.
In a Version 3 file, record pointers should always point to the start of a
record, never to a record-chain value.

42 The unique record counter has been exhausted. Rebuild the file to
correct the error.

68 A Vision 4 or 5 data segment is not found during an open.

69 A Vision 4 or 5 index segment is not found during an open.

81 Invalid data found in record header when a compressed record was read.

82 Invalid data found in record header when a non-compressed record was
read.

6-14 File Status Codes
6.5 Transaction Error Codes

A transaction management error is one that follows a START
TRANSACTION, COMMIT, ROLLBACK or call to C$RECOVER, or one
that occurs during some other file operation within a transaction (resulting in
an error 9E). Error codes associated with these are stored in the
TRANSACTION-STATUS register. This section lists and describes the
primary and secondary transaction error codes.

83 When a record was read, an I/O error occurred or the record was too
short.

84 When a record link was read, an I/O error occurred or the link was too
small.

85 Record contains invalid record compression codes--the record would
uncompress into a record that was larger than the maximum record size.

86 During a record write, a read of a record-chain value failed, probably
due to an end-of-file condition.

87 Vision Version 4 or 5 detects that it is about to write a record to an area
of a file that does not contain an appropriate record header. An
appropriate record header indicates that a record currently does not exist
at this address.

89 In Vision Version 4 or 5, on open, a data segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

90 In Vision Version 4 or 5, on open, an index segment’s internal revision
number does not match the internal revision number stored in the header
of the first data segment.

99 Vision Version 4 or 5 has tried to open the 65,537th data or index
segment for this file. Vision can only support 65,536 data segments and
65,536 index segments per logical file.

Transaction Error Codes 6-15
6.5.1 Primary Error Codes

Following is a list of the primary error codes for the transaction management
system.

01 This is returned from a ROLLBACK statement or call to C$RECOVER
when an error occurs in an external routine. For more information, see
section 6.5.2, “Secondary Error Codes for Error 01.”

02 An attempt to open the log file failed because the maximum number of
files per process would be exceeded. This is returned from a START
TRANSACTION or call to C$RECOVER.

03 An attempt to open the log file failed because some element of the
specified directory path is non-existent. This is returned from a START
TRANSACTION statement or call to C$RECOVER.

04 An attempt to open the log file failed because the user has insufficient
access privileges for the file. This is returned from a START
TRANSACTION statement or call to C$RECOVER.

05 This indicates an operating system error that is not otherwise covered by
one of the standard error conditions. You can determine the exact nature
of this error by examining the value of the secondary error code.

06 This indicates that the log file is corrupted. The error is returned when
the program encounters an unexpected end of file, or when an invalid
transaction type code is found during recovery.

07 An attempt to open the log file failed because the file is locked
(MS-DOS only). This is returned from a START TRANSACTION
statement or a call to C$RECOVER.

08 This indicates that the system ran out of dynamic memory.

09 This indicates that a write failed because the disk is full.

10 This is returned from a START TRANSACTION statement or call to
C$RECOVER when no log file was specified in the LOG-DIR
configuration variable.

11 This is returned from a ROLLBACK or COMMIT statement when an
unexpected end of file is reached while the rollback log file is being read.

12 A START TRANSACTION, ROLLBACK or COMMIT failed because
the last transaction in the log file is incomplete.

6-16 File Status Codes
6.5.2 Secondary Error Codes for Error 01

The following is a list of the secondary error codes for transaction error 01.

13 This error is returned in the TRANSACTION-STATUS register from a
WRITE, REWRITE, CLOSE, or DELETE if the file was not opened
within a transaction. Note that, if the FILE-CONTROL paragraph for
the file contains the WITH ROLLBACK phrase, all OPENs are
automatically performed within a transaction.

14 This is a file-system specific error that is not one of the standard errors,
and not an error returned by the operating system. The secondary and
tertiary error codes indicate the exact meaning, which is file-system
dependent.

16 This error is returned when the runtime is executing a START
TRANSACTION while another transaction is already active.

99 This warning indicates that the requested transaction operation is not
supported by a host file system. The transaction operation is still
attempted for other file systems.

 Secondary Error Corresponding
file-status error

01 operating system error (see tertiary code for
system-specific error code)

30

02 illegal parameter 39,01

03 attempt to open more files than system allows 94,10

04 open mode does not allow operation 48,01 or 49,01

05 requested record is locked 99

06 index file is corrupt 98,xx

07 duplicate key where duplicates not allowed 22

08 requested record not found 23

10 disk became full while adding a new record 24

11 file locked against requested open mode 93

12 record size mismatch during rewrite 44

IBM DOS/VS Error Codes 6-17
6.6 IBM DOS/VS Error Codes

IBM DOS/VS COBOL has a form of the USE statement in the
DECLARATIVES section that is not normally recognized by
ACUCOBOL-GT:

USE AFTER STANDARD ERROR PROCEDURE ON file-name GIVING
 data-name-1 [data-name-2]

This form is accepted by ACUCOBOL-GT when the “-Cv” option is in
effect.

When an error handler introduced by this statement is invoked, the runtime
puts special error codes into the eight-byte data item data-name-1. For more
information and the list of codes, see Chapter 5, “IBM DOS/VS COBOL
Conversions,” in the Transitioning Your COBOL Applications to
ACUCOBOL-GT book.

14 out of dynamic memory 9A

15 requested file does not exist 35

16 inadequate access permissions to file 37,07

17 requested operation not supported 9B

18 out of lock-table entries 9C

19 file-system specific error 9D

 Secondary Error Corresponding
file-status error

6-18 File Status Codes

7
 Utilities
Key Topics

Object File Utility — cblutil ... 7-2
Vision File Utility — vutil ... 7-9
File Transfer Utility — vio.. 7-41
Indexed File Record Editor (alfred) .. 7-50
logutil .. 7-50
The Profiler .. 7-54
External Sort Utility — AcuSort.. 7-64
Remote Preprocessing Utility — Boomerang 7-77

7-2 Utilities
7.1 Object File Utility — cblutil

ACUCOBOL-GT’s COBOL library utility, cblutil, works with
ACUCOBOL-GT object files to provide several valuable capabilities.
cblutil allows you to:

• place object files together to create object libraries

• output information about an object file or object library

• create native-code object files from machine-independent
ACUCOBOL-GT portable object files

7.1.1 Object Libraries

An object library is a file that contains one or more compiled
ACUCOBOL-GT programs. Object libraries can simplify the distribution of
an application by reducing the number of files involved. They can also help
improve performance by reducing the number of directory operations
performed by runcbl when it is loading object modules. The advantages are
particularly noticeable if the number of object files in a directory is large.

Each object library contains a primary module. The primary module is the
first (or only) module in the library. When the library is loaded by a CALL
statement (or is the first program of a run unit), the primary module is the
program that is loaded and run. Other modules in an object library can be
loaded by subsequent CALL statements.

In order for the runtime system to access other object modules in a library, the
primary module must be loaded. It may either be active or inactive, but it
must be physically present in memory. A program is loaded whenever it is
called; it is unloaded whenever it is canceled (or when it exits, if it has the
INITIAL attribute). See section 6.3, “Memory Management,” of the
ACUCOBOL-GT User’s Guide for a more complete description of runtime
memory management.

Assuming that the primary module is loaded, then the other modules in the
object library can be called if their name matches the name specified in a
CALL verb. Modules in an object library are identified by PROGRAM-ID.
If a matching name is found in an object library, that object module is then
loaded and executed. See section 2.9, “Calling Subprograms,” of the
ACUCOBOL-GT User’s Guide for more information.

Object File Utility — cblutil 7-3
As suggested by these rules, you should place related object files together.
Usually this is done by specifying the main program of a run unit as the
primary module and then adding in some or all of the subprograms it calls.

Object libraries may also be pre-loaded. This is done with the “-y” option of
runcbl. When a library is pre-loaded, all of its modules are always available.
Note that pre-loading does not mean that the component object modules and
contained ENTRY points are physically loaded into memory. It just means
that the directory of the contained modules is loaded. More than one library
may be pre-loaded, and pre-loaded libraries may be used with dynamically
loaded libraries with no restrictions.

7.1.2 Creating Object Libraries

You can create object libraries with the cblutil program provided with the
ACUCOBOL-GT runtime system. This command line has the following
format:

cblutil -lib [options] modules

When you create a new object library, the first module specified becomes the
primary module. All other modules are simply added to the library. If no
options are specified, then the first module specified is converted from an
object file or resource into an object library, and the remaining modules are
added to it.

The first module may also be an object library. In this case, the remaining
modules are added to the library. Any module that has the same name as one
already contained in the library automatically replaces the one in the library.

The modules may be any type of file. If an input file is a COBOL object, then
cblutil includes it in the resulting library as a COBOL object. Any other type
of file is included as a resource. If an input file is another library, then each
component of that library is individually added to the resulting library. The
resulting library may consist entirely of COBOL objects, entirely of
resources, or a mixture of the two.

A total of 1024 modules can be placed in a single library.

7-4 Utilities
Options can be one or more of the following:

Examples

The following sample command line creates a library called “mylib” that
consists of two ACUCOBOL-GT objects named “prog1.acu” and
“prog2.acu”:
cblutil -lib -v -o mylib prog1.acu prog2.acu

You can add a comment to the object library. The comment is visible when
you use the “-info” command to retrieve information about the object library:
cblutil -lib -o mylib -c "My comment" prog1.acu prog2.acu

Alternatively, you can add a comment using an escape character instead of
quotation marks as follows:
cblutil -lib -o mylib -c My\ new\ comment prog1.acu prog2.acu

Wild cards are permitted:
cblutil -lib -v -o mylib prog1.acu otherdir/*.*

To add modules to an existing library, do not use the “-o” argument. For
example, to add “prog3.acu” and “prog4.acu” to “mylib”, do this:
cblutil -lib -v mylib prog3.acu prog4.acu

-c Used to embed a comment in the object library. This flag
must be followed by the comment. Comments with
embedded spaces must either be between quotation marks, or
include the shell’s escape character before each space.

-o This option must be followed (as the next separate argument)
by a file name. This file becomes the new object library. If a
file exists by that name, it will be deleted first.

-v Causes cblutil to be verbose about its progress.

-r Causes the separate modules to be deleted after they have
been added to the object library. If “-o” has not been
specified, then the first module (which becomes the new
library) is not deleted.

Object File Utility — cblutil 7-5
Note: There is no way to remove an object module from a library. For this
reason, we recommend that you create object libraries after all of the
programs involved have been fully debugged.

7.1.2.1 Creating remote object libraries

If AcuServer or AcuConnect is running on a remote machine, cblutil can
read remote objects and write a remote library. The syntax rules that apply to
specifying remote object libraries with cblutil are the same as those for
compiling to remote object libraries with the compiler. See section 2.1.17.1,
“Remote file name handling,” of the ACUCOBOL-GT User’s Guide for
details.

This capability allows you to create a remote library from local object files or
to create a local or remote library from remote object files.

With cblutil, you can also use the regular AcuServer syntax for referring to
the remote files. This syntax is not allowed with the compiler because the
“@” symbol is reserved for another purpose. See also, AcuServer User’s
Guide, section 7.2, “Accessing Remote Files,” for additional information.

Note: You cannot use wildcard characters to create a library from a
collection of remote object files.

In the process of creating a remote library, cblutil overwrites the named
library at the beginning of the operation. Then if something fails during the
process, the library is removed. For that reason, you may consider creating a
backup copy of the named library before executing the build library
command. (Incidentally, when creating a local library, cblutil creates a
temporary library first. Only after the new library has been successfully
compiled is the (existing) named library removed and replaced by the new
library.)

Examples

The following command creates a library in /myapp/obj on the UNIX server
myserver called “myapp.lib” from all the .acu files in the current directory.

7-6 Utilities
cblutil -lib -o acurfap://myserver::/myapp/obj/myapp.lib *.acu

acurfap stands for “Acucorp Remote File Access Protocol.”

The following command creates a library in /myapp/obj on the Windows
server myserver where AcuServer is listening on port 6543. The library is
named “myapp.lib”. The files used to create the library are all in /myapp/obj
on myserver. Because you cannot use wildcard characters, you need to list
each file.
cblutil -lib -o
 acurfap://myserver:6543:c:/myapp/obj/myapp.lib \
 acurfap://myserver:6543:/myapp/obj/test1.acu \
 acurfap://myserver:6543:/myapp/obj/test2.acu \
 acurfap://myserver:6543:/myapp/obj/test3.acu \
 acurfap://myserver:6543:/myapp/obj/test4.acu

Note: The use of the backslash character (“\”) as line continuation
delimiter works only on UNIX systems. If you are entering a command for
Windows, you must type the entire command as a continuous string.

7.1.3 Getting Object Information

The cblutil program can output useful information stored in the header of an
object file or object library. The format of the command is:

cblutil -info [-x] files

The options used to compile a COBOL program are automatically embedded
in the program’s object file. The “-x” option to the “-info” command causes
cblutil to output all the options used to compile the object file.

Each file named on the command line is examined to determine if it is an
object module or object library. If it is an object module, its size and other
information is output. If the file is an object library, information is output for
each module the library holds.

In each report, cblutil includes information that indicates whether the module
is in debug-mode. Because programs compiled for source-level debugging
can be quite large, it can be helpful to run reports on a regular basis to see if
you have accidentally left any programs in debug-mode.

Object File Utility — cblutil 7-7
For example, the following could be run on a UNIX system every night:
cblutil -info /objects/* | grep "debug" > /tmp/debug

This command creates a file called “/tmp/debug” that lists every program in
the “/objects” directory that is in debug-mode.

The cblutil program also reports whether or not table-boundary checking is
enabled in an object file, and, if the object contains an embedded comment,
lists the comment.

7.1.4 Generating Native Code

The “-native” option of cblutil allows you to translate ACUCOBOL-GT
portable object modules into native-code object modules. The “-native”
option has the following format:

cblutil -native [options] object-files ...

options can be any of the following:

--intel
or
--ia-32

produces 32-bit native code for Intel-class
processors (386, 486, Pentium, Pentium II,
Pentium III or compatible processors).

--pa_risc
or
--pa

produces 32-bit native code for PA-RISC
version 1.0 running the HP-UX or MPE/iX
operating systems

--pa_risc_2.0
or
--pa2

produces 64-bit native code for PA-RISC
version 2.0 running the HP-UX operating system

--power produces code that is compatible with POWER
and POWER2 processors, as well as PowerPC and
later POWER series processors. This option
allows you to use a wide range of machines, but it
may affect performance.

7-8 Utilities
If you specify multiple object files, then each one is translated in turn. If
‘object file’ refers to an object library, then each module contained in the
library is translated. If an object file contains debugging information, that
information is retained.

If you do not specify a target processor, then cblutil translates for the
processor of the host machine, if native code for that processor is supported.
Once an object file has been translated to native code, it cannot be translated
again for a different instruction set.

--powerpc
or
--ppc

produces 32-bit native code for IBM pSeries
processors running AIX operating system

Note that you can compile native code only for
machines with a POWER3 or later chip, not with
POWER2 or earlier.

--powerpc_64
or
--ppc64

produces 64-bit native code for IBM pSeries
processors running AIX

--sparc produces 32-bit native code for SPARC (v7 - v9)
processors.

--sparc_v9 produces 64-bit native code for SPARC version 9
processors.

-o names the output file. This option must be
followed (as a separate argument) by the name of
the file to produce. You may use “@” in this name
to stand for the base name of the input object file.
If you specify “-o” and multiple object files, then
you must use “@” in the name. If you omit “-o”,
then the output file replaces the input file.

-v causes cblutil to print the name of each object file
as it is being processed.

-Zc produces code that is more compact and somewhat
slower.

-Zn turns off the more involved optimizations.

Vision File Utility — vutil 7-9
If the object module does not contain ACUCOBOL-GT’s portable instruction
set, the “cblutil -info” command includes in its outputs the name of the native
instruction set used.

7.2 Vision File Utility — vutil

On Windows, UNIX, and Linux systems, ACUCOBOL-GT uses the Vision
indexed file system to manage its indexed data files. For these systems,
ACUCOBOL-GT comes with an indexed file utility program called vutil that
contains several useful functions. (The full name of this 32-bit utility is
“vutil32”, but throughout this discussion, we refer to it simply as “vutil”.)
This section describes this program.

Note: Other file system interfaces have their own file utility packages. On
VMS systems, for example, ACUCOBOL-GT uses the RMS file system
that is native to VMS, and the vutil utility is not supplied. VMS-specific
programs such as ANALYZE/RMS and CONVERT can be used to
accomplish the same functions that vutil provides. See the manual for your
specific file utility package for details on its use.

vutil provides several functions in one package. It can be used to:

• display file information (-info, -size, -tree)

• test file integrity (-check)

• rebuild and repair files (-rebuild)

• reset the user count (-zero)

• reset the internal revision number (-fixvers)

• extract data records (-extract)

• create empty files (-gen)

• unload data to binary or line sequential files (-unload)

• load data from binary or line sequential files (-load)

• convert other index files to Vision (-convert)

• change the maximum record size (-augment)

7-10 Utilities
• recover deleted records (-deleted)

• place text in the “comment” field of the header (-note)

Each of these functions is indicated by an initial keyword on the command
line (preceded by a hyphen). This keyword may be abbreviated to its first
letter. The functions are designed to allow you to specify all possible task
parameters up front, so that the utility can run unattended or with a minimum
of user interaction. Each function is discussed below.

7.2.1 Examining File Information

The “info” function of vutil returns some basic information about Vision
indexed files. The command syntax is:

vutil -info [-kpxq] [files]

If no files are specified on the command line, then vutil reads file names from
the standard input. Several options can be specified with “-info”:

The basic information provided by the “info” function consists of:

• text in the “comment” field (frequently empty)

• Vision file format (Version 2, 3, 4, or 5)

• total number of records

• total number of deleted records

-p This option causes vutil to pause between files and prompt the
user for a “return” key. Otherwise, all the reports are run
together.

-k This option prints full details about each key, including the
exact layout of a multi-segment, or split, key. Each segment is
expressed as a pair of numbers--segment size (sz) and the offset
from the beginning of the record (of).

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-x This option causes vutil to report additional (extended)
information.

Vision File Utility — vutil 7-11
• file size of each segment (Version 4 and 5 only)

• total size of all segments combined (Version 4 and 5 only)

• segment size (maximum possible; Version 4 and 5 only)

• record size (min/max)

• number of keys

• user count

If you request extended information with the “-x” option, the following
additional information is output:

• for each key: key size (total size and number of segments, if split); key
offsets; whether duplicates are allowed

• block size

• blocks per granule

• tree height (max/min/avg)

• number of nodes

• number of deleted nodes

• total node space

• node space used

The “tree height” is the number of levels in the B-tree and is directly related
to how efficient the file is. If the maximum number exceeds four or five, then
the file may benefit from rebuilding with a larger block factor (see section
7.2.3, “Rebuilding Files,” below).

An important piece of information is the user count. The user count is
initially set to zero, and is incremented each time the file is opened for I/O.
The number is decremented when the file is subsequently closed. Under
normal circumstances, the user count indicates the number of users who are
currently updating the file. Should runcbl terminate abnormally, the user
count may not be decremented. Therefore, if the user count is a non-zero
value when there are no active users, it indicates that there may have been a
sudden runtime failure and that corrective action may be required. At the
very least, the file should be checked for integrity (see section 7.2.2,
“Testing File Integrity”), but depending on the program that died, more

7-12 Utilities
significant action may need to be taken. A non-zero user count indicates that
someone knowledgeable about the system should intervene and ensure that
everything is okay. By monitoring the user count, the user count can be used
as an early warning system to head off some types of file problems before
they surface in a more serious form. Note that because runcbl usually closes
all files when it detects an error, it is very unusual that a COBOL coding error
will cause a non-zero user count condition.

Note: Unlike RM/COBOL, a non-zero user count is not automatically an
indication of a corrupt file. It merely means that a program has died while
it had files open.

7.2.2 Testing File Integrity

The “check” option of vutil tests a file for internal consistency. The
command is:

vutil -check [-afkqx] [files]

With no options, vutil reads a list of files from the standard input and tests
each one for a non-zero user count and other quickly tested errors. Files with
errors or a non-zero user count are listed. You may place the list of files to
check on the command line instead of using the standard input.

-a (for “automatic”) This option causes vutil to do a thorough
test of each file that has a non-zero user count. It will read
every record in an attempt to see if the file is broken. Any
problems that are detected are printed. You can use this option
to test a large number of files for errors without exhaustively
reading every record from every file. Only those files that
appear to have potential problems (because of the non-zero
user count) are tested.

-f (full) This option forces a file to be checked (including files
with a user count of zero). When both “-a” and “-f” are
specified, “-f” takes precedence.

Vision File Utility — vutil 7-13
Note: Although the “check” option tests the file thoroughly, it is possible
for a file to be corrupt and still pass the test. If you’re processing an
indexed file outside of vutil and you receive a file error “98,” that file is
corrupt even if it passed the “vutil -check” test.

For convenience in building scripts, the “check” option will not complain if
given a non-Vision file. This allows “check” to be run on an entire directory
without generating spurious errors from relative and sequential files.

When you perform “vutil -check”, one of the following status values is
returned to the host operating system when vutil quits:

-k (key number) This option is used to specify the key to be used
to read the file. All the keys in the file are read sequentially by
the specified key during the check of the file. This option must
be used in combination with the “-a” or “-f” option. This
option has no effect when used with the “-x” option. “-k” must
be followed (as the next separate argument) by the number of
the key you want to use. Zero (“0”) indicates the primary key,
“1” indicates the first alternate, and so forth.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-x (extended tests) This option causes vutil to run extended tests
in place of those that are normally run by the “-a” or “-f”
options. The extended tests include: reading every record with
every key, reading the records in their physical order in the file,
and checking the deleted records list. The filename is
displayed along with a message that indicates which test vutil
is currently working on. This option causes a write lock to be
placed on the file to ensure exclusive access during the tests.
You must specify the “-x” option with either “-a” or “-f” on the
same command line; used by itself, it does nothing. The “-x”
option disables the “-k” option when the two are specified on
the same command line.

 0 file passed all checks

 1 checks not fully performed because the file was in use

7-14 Utilities
If more than one file is checked, the highest status value that applies is
returned.

7.2.3 Rebuilding Files

The “rebuild” option is used to rebuild or recreate an indexed file. You
should rebuild a file that has become corrupt, or one that contains a large
number of deleted records that you want to remove from the file. The
command is:
vutil -rebuild [--slow] [-l] [-t tmpfile] [-b #]
 [-2345] [-ac] [+ce] [-k keynum] [-d dir]
 [-f factor] [-s spoolfile [-r] [-m size]]
 [-p pre_factor] [-g ext_factor] [-q] [files]

Each file listed on the command line will be rebuilt. If no files are listed, then
the standard input is read for the list. If, under UNIX, the named file is a
symbolic link, the link is removed and the restored file is put in its place.

This option by default applies a read lock to the file that is rebuilt. The “-l”
option applies a write lock instead.

When a file is rebuilt, a temporary file is created and each record from the
original file is written to it. The “-t” option allows you to specify the name of
the temporary file used during the rebuild. (You may not specify a directory,
just a file name.) When “-t” is not specified, the temporary file’s name begins
with “VTMP”, followed by a six-character system-generated sequence. On
Windows systems, the file’s name begins with “V”. The rebuilding process
reports the number of records found and the number of deleted records that
were skipped. After the rebuild is complete, you are given the option of
replacing the original file with the new one. If you do not replace it, you can
examine the temporary file for correctness and replace it manually later. This
is recommended if you suspect any difficulties.

 2 non-zero user count found

 3 file is corrupt

 99 user interaction was required, and the “-q” switch was set

255 vutil fatal error or incorrect command line

Vision File Utility — vutil 7-15
When doing a rebuild, vutil places records that are rejected due to illegal
duplicate keys into a file. Should this happen, vutil will report the name of
the file that contains the rejected records. The format of this file is the same
as a COBOL binary sequential file with variable-size records.

-a This option may be used to specify automatic
replacement of the original file by the newly
created one. This is useful when you are calling
vutil from a program or a script.

 When used once, this option causes automatic
replacement only if no records are skipped. If any
records are skipped, you are prompted before file
replacement takes place. When used more than
once, this option causes automatic replacement of
the file even if records were lost in the process.

 The multiple specification of option “-a” may be
given in the following syntax formats:

 -aa

-a -a

-a (other options) -a

7-16 Utilities
-b # This option sets a new blocking factor for the file.
The blocking factor specifies the size of the blocks
to be used by the file. Blocks are sized in 512 byte
increments. Vision 5 files support blocking factors
from 1 to 16 (16 = 8192 bytes). Vision 2, 3, and 4
files support blocking factors from 1 to 2.

When you rebuild a file, if the file is very large, or
has a tree height of more than five, or key lengths
in excess of 40 bytes, you may want to experiment
with larger blocking factors. You will need to
perform some benchmarking to determine if a
larger block size improves performance. For more
about how block size can affect performance, see
section 6.1.3.7 of the ACUCOBOL-GT User’s
Guide.

If you specify a blocking factor greater than 2 for a
Vision 2, 3, or 4 file, the factor is automatically and
silently reduced to the maximum of 2.

-c This option removes record compression from the
file.

+c This option adds record compression to the file.

-d dir This option specifies an alternate directory for
placing the rebuilt file. Dir should be the name of
a directory on the host machine other than the
directory containing the files to be rebuilt. When
this option is used, the original files are not
modified or destroyed. The rebuilt files are placed
in dir with the same base name as the original files.
This option can be useful if you do not have
enough disk space on the device holding the files to
rebuild them, but you do have space on another
disk. This option implies the “-a” option because
you are not prompted before the rebuild completes.

+e This option adds record encryption. It is not
possible to remove record encryption (this would
make encryption pointless).

Vision File Utility — vutil 7-17
 Record compression and encryption may be added
to a file, and compression may be removed from a
file, regardless of the presence or absence of the
WITH COMPRESSION and WITH
ENCRYPTION phrases in the file’s SELECT.

-f factor This option allows you to specify a compression
factor. The factor must be an integer that specifies
how much of the space saved by compression is
actually to be removed from the record. Zero
means no compression. A value of 1 means use the
default factor (70).

 For factors from 2 through 100, the factor is
considered to be a percentage. It specifies how
much of the space saved by compression is actually
to be removed from each record. For example,
suppose an 80-byte record is compressed to 30
bytes. Then the compression factor is used to
determine how much of the 50 bytes of saved space
is actually to be removed from the record. A
compression factor of 70 would mean that 70% of
the 50 bytes (35 bytes total) will be removed. This
leaves 15 bytes for future expansion, and results in
a compressed record size of 45 bytes (30
compressed size plus 15 extra for growth). The
larger the compression factor, the more of the
saved space is removed. A compression factor of
100 removes all saved space and allows no room
for expansion.

-g ext_factor This option sets a new extension factor for the file.
This is the number of blocks that are added to a
file’s size when the file needs to be expanded. The
default is one block. Specifying more than one
enables you to take advantage of contiguous disk
space, and thus may help to prevent fragmentation
of the file as it grows.

7-18 Utilities
-k keynum This option specifies that you want to rebuild the
file in key order. The “-k” must be followed (as the
next separate argument) by the number of the key
that you want to use, with zero indicating the
primary key, one indicating the first alternate key,
and so forth. For example, to rebuild “file1” in
primary key order, you would specify:

 vutil -rebuild -k 0 file1

 There are two situations in which the “-k” option is
particularly valuable. If you are repeatedly
processing a file along a particular key, then you
can improve performance by rebuilding the file in
key order. This is particularly true if you do a great
deal of sequential processing (common in reports).
When you rebuild in key order, records that are
logically adjacent (according to their key values)
are placed next to each other on the disk. This
maximizes the runtime’s ability to improve
performance with its read caching capabilities. It
also minimizes the distance that the disk must seek
when you are reading records sequentially by that
key. Write performance also improves in
applications that write large numbers of records in
keyed sequence.

 A second situation in which the “-k” option is
valuable is when the default rebuild method fails to
recover a file fully. This can occur if the chain of
data records has been corrupted. When “-k” is
specified, vutil will use the index you provide to
try to locate the records, and will often find more
records this way.

Vision File Utility — vutil 7-19
-p pre_factor This option allows you to specify the number of
blocks that vutil is to pre-allocate to the file.
pre_factor must be a numeric value between one
and 2,097,152. The maximum pre-allocation
factor varies with Vision version. Vision 5 files
accept the upper limit of 2,097,152 blocks. Vision
2, 3, and 4 files are restricted to a maximum of
65,535 blocks. If a larger pre-allocation factor is
specified than the Vision version allows, the factor
is automatically and silently reduced to the
allowable limit.

-q This option causes vutil to exit (with status 99) if
user interaction is required.

-s spoolfile This option indicates that you want to use the
spooling form of rebuild. This is especially helpful
if you do not have adequate disk space to hold the
new file. This option spools the records to
removable media and then rebuilds the file over the
existing file. This keeps only one copy of the file
on disk and thus allows you to rebuild even when
free disk space is limited. Note that the spooled
file is not compressed.

 The “-s” option must be followed by the name of
the file to which you want to spool records. This
can be any file but is usually the name of a tape or
diskette device. For example, you might specify

 vutil -rebuild -s /dev/rmt0 badfile

 to rebuild the file “badfile” by spooling records to
the tape device “/dev/rmt0”.

 When “-s” is specified, vutil writes all the records
it can recover from the corrupt file to the spool file,
and then rebuilds the file using these records. You
will be prompted to change media if the spool file
gets full.

 There are two additional options that can be used
with the “-s” option:

7-20 Utilities
When you perform “vutil -rebuild”, one of the following status values is
returned to the host operating system when vutil quits:

 -r allows you to recover an interrupted rebuild.
When “-r” is specified, vutil skips the step of
writing records to the spool device. Instead, it
prompts you to mount the first volume of the spool
file before it begins the rebuilding process.

 -m size allows you to specify the size of the spool
media. It is followed by the number of 1024-byte
records that can fit on the media. This is useful
when the spool device driver does not handle the
end-of-media condition correctly. For example, if
you were spooling to a 1.2 MB floppy disk, you
could specify:

 -m 1200

--slow This option causes vutil to open the file for “mass
update” instead of for “bulk addition.” This
usually causes vutil to run slower. The only reason
for using this option is as a possible work-around
to some difficulty with using bulk addition.

-# This option causes vutil to rebuild the file in the
Vision file format specified by the integer. Valid
values include 2, 3, 4, and 5. If the “-#” option is
not included, the file is rebuilt in the same format
as the original file.

 0 file successfully rebuilt

 1 rebuild not performed because the file is locked

 2 rebuild not fully performed because some records were not
recovered

 99 user interaction was required, and the “-q” switch was set

255 other errors

Vision File Utility — vutil 7-21
7.2.4 Resetting User Counts

This option resets the user count of each named file to zero. It is much faster
than rebuilding when you are certain there are no other problems with the
file. The command is:

vutil -zero [-q] [files]

The files may be listed on the command line, or may be read from the
standard input. For convenience in building scripts, non-Vision files are
ignored.

7.2.5 Resetting Internal Revision Number

This option resets the internal revision number of all segments in the
specified Vision file to the revision number of the first data segment. It does
this without rebuilding the entire file. To use this option, you must have
exclusive access to the file. The command is:

vutil -fixvers [-q] [file]

The files can be listed on the command line, or can be read from the standard
input. For convenience in building scripts, non-Vision files are ignored.

This option can be used to repair “98, 89” and “98, 90” conditions that can
result from improper shutdowns of a runtime or improper closure of a file.
Before using this option, you should be certain that the file is otherwise
internally correct (meaning that the data is not corrupted. See section 7.2.2,
“Testing File Integrity”). Improper use may lead to loss of data. After
using the “-fixvers” option, you should run “vutil -check -f file” to verify
internal consistency of the file.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

7-22 Utilities
7.2.6 Extracting Records From a File

The “extract” option prints selected records on the standard output. The
command syntax is:

vutil -extract [-x] [-k#] [-n#]
 [-v value] [-q] file

When using the “extract” option, you may use command line options to
specify the primary key, starting value, and the number of records. If you do
that, vutil does not interrupt the “extract” later (after printing a synopsis of
the file) to prompt for those parameters. vutil does a START NOT LESS
THAN on the desired key and proceeds to print records on the standard
output. Each record is printed on its own line.

Note: If the file contains binary or COMP-3 data, that data may contain
carriage returns (binary “0D”s). Each binary “0D” is interpreted as a
carriage return, and that is reflected in the display of the extracted record.

These options can be used with “-extract”:

vutil will not let you extract records from an encrypted file.

-k# This option specifies the key number to extract from.

-n# This option specifies the number of records to extract.

-v value This option specifies the key value from which to start
the extract.

-q When you use this option, the key number defaults to
“0” (zero), the number of records defaults to “all”, and
the keyval defaults to low-values, unless you specify
these values with the “-k”, “-n”, and “-v” options.

-x This option allows record extraction to continue if an
error occurs. Records that generate errors are not
included in the output file.

Vision File Utility — vutil 7-23
7.2.7 Recovering Deleted Records

The “deleted” function recovers records that have been marked as deleted,
but which have not yet been overwritten by a new record. This function can
be used only with Vision 5 files.

The “-deleted” option looks for records marked as deleted and writes their
contents to a sequential file. For example:
vutil -deleted -vb infile.vis outfile.seq

reads through the list of deleted record areas in “infile.vis” and writes the data
to “outfile.seq” in the form of a sequential file with variable length records
and a portable record header that indicates the size of the record.

The file containing the deleted records may be loaded back into the Vision
file with “vutil -load”, or opened by the runtime like any other sequential file.

Note: The “deleted” function works only with Vision 5 files.

The command syntax is:
vutil -deleted [-v] [-b] [-t] [-q] source destination

-v creates a file that contains variable-length records.

-b creates a binary sequential file that is compatible with
the ACUCOBOL-GT runtime.

If the “-v” option is also specified, variable length
records are written. Otherwise, fixed-length records
are written.

-t creates a line sequential file. This option always writes
variable length records.

-q tells vutil to perform all actions without prompting the
user for input. This is useful when running “vutil
-deleted” as a batch job.

source is the name of an existing Vision 5 file.

destination is the name of the file to be filled with the recovered
data.

7-24 Utilities
By default, recovered records are written in a machine dependent binary
sequential file format that is not compatible with the runtime. To create a file
that is compatibility with the ACUCOBOL-GT runtime, include either the
“-b” or -t” option.

7.2.8 Creating Empty Files

The “gen” function creates empty Vision files. This is equivalent to doing an
OPEN OUTPUT on the files from COBOL and is supplied as an alternative
to writing a program explicitly to create empty data files. The command
syntax is:

vutil -gen [-2345]

or
vutil -gen [-2345] [-q] list directory

The first command format invokes a prompting program that asks you for the
name of the new file and each file attribute. The second command format
allows you to specify all of the file attributes in advance, and store them in a
file.

Whether you store the attributes in a file or respond to prompts at the
keyboard, the file attributes you provide are the same.

When you perform “vutil -gen”, one of the following status values is returned
to the host operating system when vutil quits:

-5 creates a file in Vision Version 5 format. This is the default.

-4 creates a file in Vision Version 4 format.

-3 creates a file in Vision Version 3 format.

-2 creates a file in Vision Version 2 format.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

 0 file successfully rebuilt

255 unsuccessful

Vision File Utility — vutil 7-25
7.2.8.1 Responding to vutil generated prompts

If you use the interactive version of the “gen” option, you are immediately
given the opportunity to store the session in a file, so that your responses can
be used again. (In fact, you can use the session file as the list file with the
non-interactive version of “gen”.) If you indicate that you do want to save the
session, you are prompted for a session file name.

Next you are prompted for the name of the new file, and for its attributes.
The exact prompts are shown here, and are described in section 7.2.8.2,
“Specifying file attributes in advance.” Default values are enclosed in
brackets.

Save this session [Y]?
Enter session filename:

Enter filename:
Enter the blocking factor [1]:
Enter the number of blocks to pre-allocate [1]:
Enter the # of blocks for extension [0]:
Enter the compression factor (0-100) [0]:
Enable record encryption [N]?
Enter the maximum record size:
Enter the minimum record size (1-maximum) [maximum]:

Enter the # of keys [1]:
-- Primary key --
Enter number of segments (1-6): (For generating Version 2 or 3 files)
Enter number of segments (1-16): (For generating Version 4 or 5 files)
Enter segment size:
Enter segment offset:(Segment size and offset repeat as a pair for each segment)
"Duplicates allowed [N]?"

-- Alternate key n -- (repeats for each alternate key)
Enter number of segments:
Duplicates allowed [N]?
Enter segment size:
Enter segment offset:(Segment size and offset repeat
 as a pair for each segment)

Enter translation table filename:
Enter file comment (30 char max):

Generate another file?

7-26 Utilities
Collating Sequence

One of the attributes you may specify is the name of a file containing a
translation table. This enables you to create a custom collating sequence for
the new file, instead of using the standard ASCII collating sequence. The
exact format for the translation table is given here.

All white-space characters (space, tab, new line, etc.) are ignored, so the table
can have as many lines and spaces as you desire.

The sequence of the characters in the table determines the collating sequence
for keys. For example, a file which looks like this:

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

would sort keys reverse alphabetically, for the values in the range A to Z.

You may enter special characters by typing a backslash (\) and then the
decimal value of the character desired. Thus, “\032” would be used to
specify the SPACE character.

Ranges can be specified with a dash (-). The sequence of the starting and
ending characters in the range is significant. The reverse-alphabetical table
shown above could be specified more concisely as:

Z - A

Finally, you can give two or more characters the same sort value by using an
ampersand (&) between them. For example, the file will not distinguish case
if you use a translation table with the following format:

a & A b & B c & C d & D e & E f & F g & G h & H i & I j & J
 k & K l & L m & M n & N o & O p & P q & Q r & R s & S
 t & T u & U v & V w & W x & X y & Y z & Z

Any characters in the native collating sequence that are not explicitly named
in the table assume a position greater than any of the explicitly named
characters. The relative order of these unnamed characters remains the same
as in the native collating sequence. In the last example, all digits,
punctuation, and control characters would be in their usual order, but after all
alphabetic characters.

Vision File Utility — vutil 7-27
7.2.8.2 Specifying file attributes in advance

vutil -gen [-2345] [-q] list directory

The non-interactive version of “gen” allows you to specify a file (list) that
contains the attributes for one or more new files. The format of list is
described below.

The directory parameter names the directory in which the new files are to be
created. Each file is tested to see if it exists before it is created. If it does
exist, and it is a Vision file, then it is left untouched. Thus, you can use the
“gen” function to generate missing files from a directory without having to
first save the ones that are there.

The file list consists of one or more file entries, one per line. Each entry
pertains to exactly one file and consists of a series of fields.

The list file can have one of three formats. There is a format for creating
relative and sequential files. A format for creating Vision Version 2 files
(support is provided for compatibility with older applications; the format is
not described here). And a format for creating Vision Version 3, 4, and 5 files
(documented below).

For indexed files, the fields are divided into five groups, separated with
semicolons. Fields within each group are separated with commas.

For relative and sequential files, the fields are all separated with commas.

Indexed format

The fields for the indexed format are listed here and then described below.
filename,
blocking factor,
number of blocks to pre-allocate,
number of blocks for extension,
compression factor,
Enable record encryption?;

maximum record size,
minimum record size,
number of keys;

7-28 Utilities
For primary key:
 number of segments,
 Duplicates allowed?, (always zero)
 segment size,
 segment offset, (repeat the segment size and offset
 pair for each segment)

For each alternate key:
 number of segments,
 Duplicates allowed?,
 segment size,
 segment offset, (repeat the segment size and offset
 pair for each segment);

translation table filename;
file comment

In the indexed format, the first field is the (physical) file name. The second
field is the blocking factor. For Vision 5 files, the value can range from one
to 16. For Vision 3 and 4 files, the value must be one or two (if a larger value
is specified, it is automatically reduced to two). All I/O to the disk is done in
blocks of one or two sectors. Depending on the file and the underlying disk
architecture, performance can be affected by this. Although performance is
difficult to predict, files that have very large keys may benefit from a larger
blocking factor. See section 6.1.3.7 of the ACUCOBOL-GT User’s Guide
for a more complete discussion.

The third field is the number of blocks to allocate to the file initially. This is
usually set to one. If you want to pre-allocate some disk to the file, then this
can be set to a higher number. Pre-allocation in no way limits the file, but
may help performance by reducing disk fragmentation.

The fourth field is the number of blocks for extension. This determines how
many blocks are allocated each time space needs to be added to the file. This
helps keep fragmentation to a minimum.

The fifth field is the compression factor. A compression factor of zero (0)
means no compression. A compression factor of one (1) is equivalent to the
default compression (70). For factors from 2 through 100, the factor is
considered to be a percentage. It specifies how much of the space saved by
compression is actually removed from the record. For example, suppose an

Vision File Utility — vutil 7-29
80-byte record is compressed to 30 bytes. Then the compression factor is
used to determine how much of the 50 bytes of saved space is actually
removed from the record. A compression factor of 70 means that 70% of the
50 bytes (35 bytes total) is removed. This leaves 15 bytes for future
expansion, and results in a compressed record size of 45 bytes (30
compressed size plus 15 extra for growth). The larger the compression factor,
the more of the saved space is removed. A compression factor of 100
removes all saved space and is advisable only if the file is rarely updated.

The sixth field is a flag that determines whether record encryption is enabled.
A value of one (1) enables encryption. A value of zero (0) disables
encryption. A semicolon should follow the encryption flag.

The next two fields specify maximum and minimum record size. If the two
numbers are identical, the records are fixed-length. If the two numbers are
not identical, records are variable-length. The maximum record size allowed
in Vision 5 files is 67,108,864 bytes. The maximum record size allowed in
Vision 2, 3, and 4 files is 32,767 bytes.

The ninth field is the number of keys in the file, to a maximum of 120. A
semicolon should follow the number of keys.

Next, you describe the primary key by at least four entries. The first entry is
the number of segments in the key. The second entry is always zero (0). For
each segment, you must then specify the segment size in bytes, and the
segment offset from the start of the record, in bytes. If there are no alternate
keys, a semicolon should follow the final segment offset. Otherwise, a
comma should be used.

If there are any alternate keys, describe each one by a series of at least four
entries. The first entry is the number of segments in the key. The second
entry should be one (1) if duplicate values are allowed, or zero (0) if they are
not. For each segment, you must then specify the segment size in bytes, and
the segment offset from the start of the record, in bytes. A semicolon should
follow the final segment entry of the last alternate key.

After the keys have been specified, enter the name of a file containing the
translation table (collating sequence), if you want anything other than
standard ASCII sorting. If the name is empty, ASCII sorting is assumed. The
format of the translation file is given in the preceding section. A semicolon
should follow the name of the translation file.

7-30 Utilities
Finally, you may provide up to 30 bytes of comment. This comment is
printed by vutil when the “info” option is used.

Here’s a sample file entry. Suppose a file containing G/L account
descriptions has a record size of 80 and two keys. The primary key is at the
start of the record and is 15 bytes long. The alternate key has two segments;
the first is at record offset 40 and is 30 bytes long. The second segment of the
alternate key is at record offset 20 and is 5 bytes long (duplicates allowed). A
compression factor of 30 and ASCII sorting are desired. The corresponding
entry is:

glactfil,1,1,0,30,0;80,80,2;1,0,15,0,2,1,30,40,5,20; ;G/L account master

Sequential and Relative Files

For convenience, the non-interactive “gen” option can also create empty
sequential and relative files if they are missing. The entry contains only three
fields. The first field is the file name. The second field is the record size, and
the final field is an “S” for a sequential file or an “R” for a relative file. The
record size field is only comment, so it can be set to any numeric value.

Whether to use “gen” or a COBOL program to create the data files for an
application depends on which is more convenient. Creating the file list can
be painstaking, but the symbol table listing of the compiler can help to
compute the size information. Once the files are created, however, it is easier
to replace missing files this way than with a program that must explicitly test
for a file’s existence before creating it.

7.2.9 Unloading to Binary and Line Sequential Format

The “unload” option will create a binary sequential file or a line sequential
file from a Vision file. The command is:
vutil -unload [-v] [-b | -t] [-l] [-q] source destination

The source file is the Vision file to unload; the destination is the name of the
file to create. If a file with the name destination already exists, it is deleted
first. The records in the destination file are ordered by the primary key of the
source file. This can be used to export data to other applications. vutil will
not let you unload records from an encrypted file.

Vision File Utility — vutil 7-31
The source file is buffered according to the value in the
A_SEQ_DEFAULT_BLOCK_SIZE variable. The variable must be set in the
environment for vutil to use it. If the variable is not set, the default buffer
block size is 4096 bytes. If the variable is set to “0”, vutil -unload into a
sequential file will perform record-based I/O. If the variable is set to a
positive value, that value will be rounded up to the power of two equal to, or
greater than the value. This will be the buffer size in bytes. The maximum
buffer size is 1GB.

By default, the destination file is assumed to be a binary sequential file with
an alternate format that is not compatible with the ACUCOBOL-GT runtime.

These are the destination file format options:

-v This option produces a file that has variable-length records.
Variable-length records occupy only as much disk space as
necessary. Two or four bytes indicating record size are
placed in front of each variable-length record when it is
written to disk. (Different machines generate different
prefixes. Thus, files produced with “vutil -unload -v” can be
loaded with “vutil -load -v” on the source machine but are
not necessarily portable to other machines.) The two- or
four-byte field that is added to the record is not specified in
your COBOL program, but some programs that access the
records need to be aware of the extra bytes.

If “-v” is not present, fixed-length records are written.

-b This tells “vutil -unload” to produce a binary sequential file
that is compatible with the ACUCOBOL-GT runtime.

If “-v” is not present, fixed-length records are produced.

The “-v” option causes vutil to produce variable-length
records. The record length is stored in a two-byte record
header.

-l This option places a read lock on the input Vision file. This
improves performance, because the records can be read
without needing to place and release locks on the individual
records.

7-32 Utilities
7.2.10 Loading a File

The “load” option will create an indexed file from a binary sequential file, a
relative file, or a line sequential file. The command is:
vutil -load [-b|d|t] [-lnv(r|s)x] [-q] source destination

The source file is the name of the binary, relative, or line sequential file to
read. The destination file is the name of the Vision file to add to. This file
must already exist; it is used to determine the record size and key
information.

By default, records from the source file are added to the destination file. If
the “-n” flag (new file) is used, then any data in the destination file is
eliminated before the records are loaded from the source file.

When doing a load, vutil places records that are rejected due to illegal
duplicate keys into a file. Should this happen, vutil will report the name of
the file that contains the rejected records. The format of this file is the same
as a COBOL binary sequential file with variable-size records.

The input file is buffered according to the value in the
A_SEQ_DEFAULT_BLOCK_SIZE variable. The variable must be set in the
environment for vutil to use it. If the variable is not set, the default buffer
block size is 4096 bytes. If the variable is set to “0”, vutil -load into a
sequential file will perform record-based I/O. If the variable is set to a
positive value, that value will be rounded up to the power of two equal to, or
greater than the value. This will be the buffer size in bytes. The maximum
buffer size is 1GB.

-t This tells “vutil -unload” to produce a file that has line
sequential format. This means that the destination file is a
simple text file, with records separated by line feeds.

This option implies “-v” (variable-length records), so the
“-v” option is not necessary, although it is allowed.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

Vision File Utility — vutil 7-33
By default, the source file is assumed to be a binary sequential file with an
alternate format.

These are the source file format options:

-b This loads a binary sequential file that is compatible with the
ACUCOBOL-GT runtime into a Vision file.

If “-v” is not present, fixed-length records are read.

The “-v” option causes vutil to read variable-length records.
The record length is stored in a two-byte record header.

-d Records marked as deleted in the relative file are discarded.

The “-v” option is not allowed for relative files.

-l You can use the “-l” flag to prevent vutil from locking the
file if you need to allow simultaneous access to the
destination file while vutil is operating. Normally, vutil
locks the destination file to improve the performance of the
load operation. When “-l” is not used, vutil adds records to
the file using “bulk addition” mode, which generally runs
faster.

-n If the “-n” flag (new file) is used, then any data in the
destination file is eliminated before the records are loaded
from the source file.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

-r This option causes any “duplicate key” write errors to be
retried as rewrites to the file. This option should be used with
caution, because duplicate key write errors often indicate that
an error exists in the target file description. Warnings about
this problem are not seen when you use the “-r” option.

This option is incompatible with the “-load -s” option.

-s This option indicates that duplicate records should be
skipped rather than written to a file. When this option is
used, any duplicate records found while loading the indexed
file will be discarded.

This option is incompatible with the “-load -r” option.

7-34 Utilities
If you are creating this file for the first time, you can either use the “gen”
option of vutil or write a COBOL program to create the empty Vision file.
The “load” function can be used to import data from another application.

If an error occurs, an exit status of 255 is returned.

-t This loads a file that has line sequential format into a Vision
file. This means that the source file is a simple text file, with
records separated by line feeds. The source file may not
contain any line feeds within the data fields, because a line
feed denotes the end of a record.

 This option implies “-v” (variable-length records), so the
“-v” option is not necessary, although it is allowed. Line
sequential files are assumed to contain variable length
records. As such, they can only be loaded into Vision files
that have been generated to accommodate the needed range
of record sizes. If, however, the file contains records that are
uniformly fixed length, the Vision file can be generated to
accommodate only that fixed length. Should vutil attempt to
load variable length records into a fixed record-size Vision
file, an invalid record size error will occur. The error is
reported as a generic “parameter error.”

-v This option causes vutil to treat the source file as a file with
variable-length records. The record length is stored in the
record’s header. The length of the header is either two or
four bytes, depending on your machine type.

If “-v” is not present, fixed-length records are read.

-x The “-x” option is required when you are working with
binary sequential and relative files that contain
variable-length records larger than 65,535 bytes. (These
files store the record length in two additional bytes in the
record header. For “vutil -load” to read these files, it is
necessary to indicate that these extra header bytes exist.)

Vision File Utility — vutil 7-35
7.2.11 File Size Summary Report

The “size” option of vutil gives summary disk usage information for a set of
Vision files. This option is useful for quickly determining which files are
occupying the most disk space and for spotting files that contain a large
amount of unused space. The command is:
vutil -size [-n] [-q] [files]

If no files are requested, then the standard input is read for the list of files.
The printed information includes the total size of the file, the number of
records, and the number of deleted records the file contains. Also given is
the percentage of records in the file that are not deleted records. This
information is useful when you are trying to find candidates to rebuild when
disk space gets tight. Non-Vision files are ignored by this command.

7.2.12 Converting RM/COBOL-85 Indexed Files

vutil can convert an indexed file created by RM/COBOL-85 into a Vision
file. For a complete description, see section 2.4.4 in Transitioning to
ACUCOBOL-GT.

7.2.13 Converting C-ISAM Files

vutil can convert a C-ISAM® file into a Vision file. This is useful when you
are moving C-ISAM data to an ACUCOBOL-GT application. The command
is:

-n This option shows all files, including non-Vision files.
Although vutil “-size” option normally ignores non-Vision
files, sometimes it may be useful to see which files are being
ignored. This option provides that capability.

Non-Vision files display as:

junkfile: not a vision file

-q This option causes vutil to exit (with status 99) if user
interaction is required.

7-36 Utilities
vutil -convert [-a] [+c] [-2345] [-d dir]
 [-f #] [-q] [files]

You need not specify that the file is C-ISAM; vutil makes that determination.

The “convert” option starts with the same letter as the “check” option. You
must use at least two letters of the word “convert” in order to specify this
option. If you just use “-c”, vutil will assume that you are specifying the
“check” option.

The “convert” function will take each named file and convert it from a
C-ISAM file to a corresponding Vision file. If no files are specified, then the
standard input is read for a list of files to convert.

Each C-ISAM file actually occupies two files: an index file with the
extension “.idx” and a data file with the extension “.dat”. Specify only the
base name in the list of files (do not include any extension).

Specifying “+c” causes the resulting records to be compressed.

Normally vutil warns the user about the impending conversion and asks if the
user wants to continue. The “-a” (for “automatic”) option suppresses this
warning. This can be useful when you are calling vutil from another
program.

The “-5” option specifies that you want the resulting file to be in Vision
Version5. The “-4” option specifies a Vision Version 4 file. A “-3” means a
Version 3 file, and “-2” specifies a Version 2 file.

The “-d” option specifies that you want the converted files to be placed in a
new directory. Dir should be the name of a directory on the machine other
than the directory containing the files to be converted. The “-d” option
implies the “-a” option.

The “-f #” option sets the compression factor to be used when the file is
converted. This option does not force the use of compression, it merely sets
the compression factor if compression is used. The compression factor, a
numeric literal, specifies how much of the space saved by compression is
actually to be removed from the record.

Vision File Utility — vutil 7-37
The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

There are a few types of files that cannot be converted due to restrictions in
Vision. Any of the following properties will cause vutil to print a message
and leave the file alone:

1. A record size or block size greater than 32 KB.

2. More than 120 keys.

3. An individual key with more than 250 bytes in it.

4. A single key with more than sixteen segments (Vision Version 4) or
more than six segments (Vision Version 2 or 3).

5. A primary key that allows duplicates.

vutil makes a copy of the file while it is converting it. You must have
adequate disk space for vutil to complete its conversion. Also, C-ISAM files
and Vision files differ in the amount of disk space that they use. This
difference is fairly unpredictable and can vary quite widely. Sometimes the
Vision files are smaller, and sometimes the C-ISAM files are smaller. You
should have some spare disk space when you start converting files to
accommodate the potential difference.

7.2.14 Converting Micro Focus Files

vutil can convert a Micro Focus file into a Vision file. This is useful when
you are moving Micro Focus data to an ACUCOBOL-GT application. The
command is:
vutil -convert [-ac] [+c] [-f #] [-2345]
 [-d dir] [-q] [mf-files]

You need not specify that the file is a Micro Focus file; vutil makes that
determination on its own.

The “convert” option starts with the same letter as the “check” option
described earlier. You must use at least two letters of the word “convert” in
order to specify this option. If you just use “-c”, vutil will assume that you
are specifying the “check” option.

7-38 Utilities
The “convert” function takes each named mf-file and converts it from a
Micro Focus indexed file to a corresponding Vision file. If no mf-files are
specified, then the standard input is read for a list of files to convert.

Each Micro Focus file actually occupies two files: an index file with the
extension “.idx” and a data file. The resulting Vision file has the same name
as the data file, with the extension “.vis”. Specify only the base name in the
list of files (do not include any extension).

Normally vutil warns you about the impending conversion and asks if you
want to continue. The “-a” (for “automatic”) option suppresses this warning.
This can be useful when you are calling vutil from another program.

Specifying the “-c” option causes the resulting file to have uncompressed
records regardless of the original file; using “+c” causes the resulting records
to be compressed.

The “-f” option sets the compression factor used when the file is converted.
This option does not force the use of compression, it merely sets the
compression factor if compression is used. The compression factor, a
numeric literal, specifies how much of the space saved by compression is
actually to be removed from the record.

The “-5” option specifies that you want the resulting file to be in Vision
Version 5. The “-4” option specifies a Vision Version 4 file. A “-3” means
you want a Version 3 file, and “-2” means you want a Version 2 file.

The “-d” option specifies that you want the converted files to be placed in a
new directory. Dir should be the name of a directory on the machine other
than the directory containing the files to be converted. The “-d” option
implies the “-a” option.

The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

vutil makes a copy of the file while it is converting it. You must have
adequate disk space for vutil to complete the conversion. Also, Micro Focus
files and Vision files differ in the amount of disk space that they use. This
difference is fairly unpredictable and can vary quite widely. Sometimes the

Vision File Utility — vutil 7-39
Vision files are smaller, and sometimes the Micro Focus files are smaller.
You should have some spare disk space when you start converting files to
accommodate the potential difference.

7.2.15 Changing Record Size

The “augment” option makes it possible to increase the maximum record size
of a Vision file. This is useful for adding fields to a record without having to
rebuild the entire data file. The new maximum record size and the file name
is specified as shown in the examples below. This command format is:
vutil -augment [-q] new_max_rec_size filename

For example:
vutil -augment -q 50 myfile.dat

or
cat vision_filelist | vutil -augment -q 100

If the Vision file originally had a fixed-length record size, and if the new
maximum record size is larger than the old maximum record size, the file
effectively has a variable-length record size after running this command.

You may specify a new maximum record size that is smaller than the current
maximum record size, but not smaller than the current minimum record size.
This enables you to correct for the case that the maximum was too large. Be
careful, however, because if any records were added while the maximum was
at the higher level, the file is marked as broken when those records are next
read. Vision detects that a record exists that is larger than the current
(reduced) maximum record size and raises an error. When you use
“vutil -augment” to reduce the maximum record size, vutil issues a warning.

Anytime you change the file record size with the “augment” option, you
should consider the need to modify existing FDs to reflect the new maximum
record size. Changing the characteristics of a file without making changes to
existing FDs will cause a mismatch to be detected at runtime when the file is
opened, resulting in a file-status error 39 (“Existing file conflicts with the
COBOL description of the file”).

7-40 Utilities
Because this operation changes the logical structure of the file, exclusive file
access is required. vutil reports “File locked” if any other process has the file
open.

The “-q” option causes vutil to exit (with status 99) if user interaction is
required.

7.2.16 Setting the Comment Field

The “note” function allows you to set the comment field in the Vision file
header.

The usage is:
vutil -note [-q] "comment" [file ...]

“vutil -note” sets the comment field in the specified Vision file to “comment”.
If no file is listed on the command line, the filenames are read from standard
input (one per line).

A Vision file’s comment field can be viewed with the “vutil -info” command.
If the field is not empty, the comment is displayed, enclosed in parenthesis,
on the line immediately following the filename.

7.2.17 Miscellaneous Commands

The “tree” function produces a listing of the internal B-tree in a file called
“v_tree”. The command is:
vutil -tree [-q] file

This is primarily used by our staff to help debug suspected problems with
Vision. Five columns of information are displayed, with these headings:

Left/Rec Uniq Size Pre Key

-q causes vutil to exit (with status 99) if user interaction
is required

“comment” is limited to 30 characters and is truncated if longer

File Transfer Utility — vio 7-41
The Left/Rec column displays the pointer from the entry to the next tree level
or to the actual record itself. The Uniq value is used to distinguish duplicated
keys. The Size field is the number of bytes in the key (as stored after key
compression). The Pre field is the number of bytes this key shares with the
preceding key. The Key field is the actual key value.

The “version” option of vutil tells you which version of the utility you are
running. The command is:
vutil [-q] -version

7.2.18 Default Settings of vutil

vutil uses the following default settings:

You can modify these settings if desired by placing the new settings in the
operating system’s environment.

Note: vutil does not use the runtime’s configuration file. Settings made
there have no effect on vutil.

7.3 File Transfer Utility — vio

vio is a file transfer utility similar to the UNIX program cpio. vio allows you
to collect a group of files together into archives, and allows you to extract
some or all of these files from these archives. Typically, an archive is some
external media such as a tape or a diskette, but the archive may also be
another disk file. vio is typically used to back up a set of files or to move files
from one machine to another.

-q This option causes vutil to exit (with status 99) if user
interaction is required.

V_BUFFERS 128 blocks (1 block = 512 bytes)

V_BULK_MEMORY 1 megabyte

7-42 Utilities
vio is particularly well suited for moving files to a different machine,
because:

1. vio is available on a wide-range of operating systems, including
Windows, UNIX, Linux, and VMS.

2. vio automatically adjusts for certain machine-dependent aspects such
as byte-swapping.

3. vio handles multiple volumes gracefully.

4. On any system where Vision is supported, vio can automatically
convert ACUCOBOL-GT indexed data files to the appropriate format
for the target machine.

vio runs in two modes, the input mode (-i) and the output mode (-o). The
syntax for each mode, with all possible options, is shown here:

vio -o [-b] [-f file] [-u] [-g] [-h headerfile]
 [-k][-l listfile] [-pr] [-s blocks] [-v]

vio -i [-cd] [-f file] [-g] [-h bytes]
 [-kmnstv2345] [files]

The input mode reads vio archives to extract files. The output mode creates
new vio archives.

In the output mode, vio reads its standard input for a list of files to place in
the archive. The archive is written to its standard output.

In the input mode, vio reads the archive from its standard input and extracts
all the files. The extracted files have the same names, permissions, and
owners that they had when the archive was created.

If files are specified, then only the named files are extracted. Note that each
file must exactly match the name of a file in the archive; no wild card
characters are allowed.

When vio encounters an ACUCOBOL-GT indexed data file, it treats that file
specially. When it’s running in output mode, it extracts each data record from
the file and writes that record to the archive along with some formatting
information. When that file is later read in the input mode, a new indexed

File Transfer Utility — vio 7-43
data file is created with the proper format, and each data record is loaded into
the file using the host’s indexed file system. Using this technique, vio is able
to transfer an indexed file so that it is ready for use on the target machine.

When it’s archiving files other than indexed files or ACUCOBOL-GT object
files, vio assumes that the files are text files. It performs any conversions
necessary to match the text file conventions on the host machine. For
example, if a file is transferred from a UNIX system to a Windows system,
new-line characters are translated into carriage-return, line-feed sequences.
The “-p” option described below can cause these files to be treated as binary
files instead, in which case no translation occurs. (If you are transferring
multiple files at one time, some ASCII and some binary, do not use the “-p”
option. Instead, add a space followed by a “b” or a “B” after the name of each
binary file in the filename list. The “<space> b” prevents translation from
occurring on an individual file.)

Note: ACUCOBOL-GT object files are automatically detected and written
out to an archive as binary files, even if you fail to specify “-p”.

7.3.1 vio Options

The following options can be used with the vio utility:

-b Causes the archive to be blocked with 10 input records per
output record. Each input record is normally 512 bytes.
Blocking is specified only during output; vio automatically
determines whether or not an archive is blocked when it is
doing input.

-c Forces all files read from the archive to be placed in the
current directory. Any directory information in each file is
removed and the file is placed in the current directory using
just its base name. This is useful if someone sends you a file
with a full directory specification that does not match your
machine.

-d Allows vio to create directories as needed to read a file.

7-44 Utilities
-f Allows you to specify the archive file directly. The next
separate command-line argument is the name of the archive
file. This is particularly useful when you are writing a
multi-volume archive, because vio will not need to prompt
you for the name of the archive when it has to change
volumes.

-g Rings the bell when a new volume is needed.

-h In the input mode, you may specify a number of bytes to skip
from the beginning of each archive volume. This value is
specified as the next separate argument. This is used to skip
headers on media that some machines produce.

 In the output mode, the next separate argument should
specify the name of a file. This file is exactly copied to the
beginning of each archive volume. This is used to simulate a
media header required by a target machine.

 For example, an AT&T 7300 diskette contains a header in the
first 8 sectors. If you write a diskette on another type of
machine, the 7300 will not recognize it. To get around this
problem, take a diskette written on a 7300 and extract the
header using this UNIX command: “dd if=disk-device
of=73header count=4096”. You can then specify “-h
73header” as part of a vio command to have this header
placed on each diskette of the archive. The 7300 will then be
able to read these diskettes. If you are coming from a 7300,
you can use “-h 4096” to cause vio to skip the first 8 sectors
of each diskette.

-k Changes vio’s notion of a record size from 512 bytes to 1024
bytes. All I/O is done using the record size, or a multiple of
the record size. This option is occasionally useful on some
machines that require 1K transfers to devices. If you use this
option on output, you must then also use it when reading the
created archive. This option should be used only if required.
You can improve performance better by using the “-b” option
instead.

File Transfer Utility — vio 7-45
-l Allows you to specify a list of files to output as the next
command line argument. vio will then read this list instead
of using its standard input. Note that this list must reside in
a file, one line per entry.

 An optional flag (“<space> b” or “<space> B”) may be
placed after the filename. This specifies that the file should
be written to the archive without translation (same as the “-p”
option, except “-p” applies to all non-indexed files in the
list).

 For example, if the file “list” contains two lines “file1” and
“file2 b”, then specifying “-l list” will cause “file1” and
“file2” to be written to the archive, with “file2” written as a
binary file. This option is useful on machines that do not
allow standard input to be redirected.

-m Causes vio to restore the file’s modification time from the
archive along with the other file attributes.

-n Causes vio to assign a new owner (the current user) to
extracted files. This is particularly useful when you are
transferring files to another machine, because the original
user ID is probably not meaningful in this case.

-p Causes non-indexed files to be treated in a pure (binary)
form. This prevents any text file conversion from occurring.
vio stores its archives in a standardized format (similar to a
UNIX text file). When it’s creating archives, it converts any
non-indexed file to this format unless this option is specified.
(This option applies to all non-indexed files in the list and
thus behaves as if you had specified “<space> b” for every
non-indexed file in the list, even if you did not.)

-r Causes indexed files to be treated as raw data files. No
conversion is done when the file is written to the archive.
This should be done only if the archive is going to be read by
a binary-compatible indexed file system. Note that all Vision
Version 5, 4, and 3 files are binary-compatible, so you can
use this option to move Vision 5, 4, and 3 files. Specifying
this option will speed up vio, so it is a reasonable option to
use if you are doing backups.

7-46 Utilities
-s In the output mode, this allows you to specify the size of the
media. This is useful on a few machines that do not detect
end-of-media correctly. The size is specified as the next
command line argument. This should be the number of
blocks to place on the media. Normally, a block is 512 bytes,
but the “-k” option causes blocks to be 1024 bytes in size.
vio will not place more than this many blocks on the output
media before changing volumes. For example:
-s 2400

could be used to store 2400 blocks per diskette.

 In the input mode, this option allows you to skip volumes.
This is useful if vio dies due to a media error and you want to
recover files on successive volumes. This option causes vio
to start with whichever volume it finds physically mounted.

-t Causes vio to print the titles of the files in the archive rather
than extracting the files. If this is specified with the “-v”
option, long information is printed about each file.

-u Causes vio not to do a translation of filename directory
separators.

 vio by default changes all filenames to use forward slashes as
directory separators. This is done to avoid problems in cases
when an archive is made on a Windows machine with
filenames that use backslashes (\), and then extracted on a
Unix machine. The files extracted would not be stored in
directories, but would instead be created with the
backslashes in the names, causing problems for the user who
had to work with these files.

 For example,
vio -ovbulf listfile archive.vio

causes vio to not translate any backslashes in filenames listed
in listfile to forward slashes. Similarly,
vio -ivnduf archive.vio

causes vio to not translate any backslashes in filenames in the
archive to forward slashes.

File Transfer Utility — vio 7-47
vio recognizes UNIX-style names on non-UNIX environments. For
example, if you specify the name “../demo/compfile” on a VAX system, vio
will treat this name as “[-.DEMO]COMPFILE.”. For this reason, you should
use UNIX-style names if you want to move directory structures between
machines with different operating systems.

7.3.2 Windows Considerations

When you are using vio on an Windows machine, you can specify a diskette
drive with the “-f” option. If you do this, you must specify the type of
diskette you want to write. Specify one of the following letters immediately
after the drive-name’s colon:

 Windows versions of vio handle forward slashes just fine;
you do not need to use the “-u” switch on those systems to
have your filenames interpreted correctly. The main purpose
of providing this switch is backwards compatibility.

-v Causes vio to be verbose about its progress. Note that when
it’s extracting files from an archive, vio prints each name as
it starts to work each file. If vio dies for some reason, the last
name printed will not have been completely extracted.

-2 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 2 format,
rather than a Version 5 file (the default).

-3 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 3 format,
rather than Version 5 file (the default).

-4 Specify this option when you are reading an archive and
want to produce a Vision Version 4 file.

-5 Specify this option when you are reading an archive and
want to produce an indexed file in Vision Version 5 format
(the default).

H 1.2 MB High-density 5.25”

3 1.44 MB High-density 3.5”

7-48 Utilities
If you leave this letter off, vio will assume a low-density, 360 KB diskette
(which can be either 3.5” or 5.25”).

You may not specify a diskette drive with redirection. If you write directly to
a drive, all pre-existing files on that drive are lost. In addition, all directory
information is lost. In addition, the diskette will not be usable by Windows
until it is reformatted.

7.3.3 vio Examples

Suppose that you have a list of files that you want to move to another machine
using some compatible media. You could use the following vio command to
create the media:

vio -ovblf listfile device

For each line inside the “listfile” there cannot be any spaces before or after
the file name. The correct form for this file is:
filename(newline)
filename(newline)
filename(newline)

Do not include lines with spaces (initial or in the middle), such as:
filename (newline)

or with leading spaces, such as:
 filename(newline)

On the target machine, you can read the archive you just created with:
vio -ivndf device

Assuming that this archive was on a 1.2 MB floppy, you could read this on a
Windows machine with:

vio -ivndf a:h

9 720 KB, 9-sector, low density 3.5”

8 320 KB, 8-sector, low density 5.25”

File Transfer Utility — vio 7-49
Now let’s assume that you want to move a set of Vision indexed files to
another machine, but you do not have any common media. You plan to use a
network or modem-transfer to get the files to the target machine, but you have
a problem because the indexed file format on the two machines is different.
You can use vio to help you in this case by writing the archive to a disk file
with this command:

vio -ovblf listfile diskfile

The “listfile” must not have spaces before or after the file names.

Then you move “diskfile” to the target machine and use vio to create new
indexed files in the correct format with this command:

vio -ivndf diskfile

7.3.4 Known Limitations

If you attempt to write to a write-protected diskette on a Windows system, vio
incorrectly believes that 10 records are written to the diskette, and then it
prompts for a new diskette. When this happens, the archive is incorrect and
you must start over. Reading from write-protected diskettes works correctly.

vio will transfer indexed data files to/from VMS, but it will not convert them.
If you must do this, you will have to unload and reload the records yourself.

On VMS, the “-n” option is always implied.

Be careful when using full path names. Some operating systems do not
translate them in the way you might expect. You should always use relative
path names when transferring files to a different operating system. Always
make sure you have permissions to create files, and subdirectories if
necessary, when you are transferring archives.

When using the “-s” option, you can suggest up to a maximum of 99999
blocks. This number corresponds to 50 MB if the block size is 512 bytes, and
100 MB if the block size is 1024 bytes.

7-50 Utilities
7.4 Indexed File Record Editor (alfred)

As of Version 8.0, the Indexed File Record Editor (alfred) is provided as a
sample program and is located in the “sample” folder under “AcuGT”. You
can download detailed information on using alfred in PDF format from the
Support > Examples & Utilities > Acucorp Technical Articles and Tips
section of the Micro Focus website (www.microfocus.com).

7.5 logutil

You can use the utility program logutil to examine and edit an
ACUCOBOL-GT transaction log file. This utility is used only with log files
built for the Vision file system. You can run logutil from the operating
system command line with the following usage:

7.5.1 Syntax and Options

Syntax
logutil[-filv] [-d begin_date [end_date]]
 [-t begin_time [end_time]] [-u user]
 [-r begin_location [end_location]] [-h num]
 [-e new_log_file_name] log_file_name

Options

-f full listing, lists selection on standard output (implies -i).

-i prints summary information at end of listing.

-l report location information.

-v verbose option, includes record images (implies -f).

-d limits selection by date.

-t limits selection by time. Uses 24-hour clock.

-u selects transactions for a particular user only.

-r selects transactions within the two locations you provide

logutil 7-51
If you do not specify any options on the command line, logutil acts as if “-i”
were specified and prints only summary information.

-v option

If the “-v” option is used, record images are displayed in a format similar to
the following:

Record Image:
0015 0001 2ce2 dffc 0000 55dd0000 646f ...,.....U...do
7669 6400 6163 7563 6f62 6f6c 00 vid.acucobol.

-i option

logutil may be used to monitor transaction log activity. If you run it with
only the “-i” option, or with no options, it sends a summary report to standard
output. This report contains statistics, version information, and warning
messages. One or both of the two warning messages below may appear, as
shown in the following report:
logutil corruptlog
Log File : corruptlog
WARNING: COMMIT BEGIN WITHOUT MATCHING COMMIT END IN LOG FILE
WARNING: START TRANSACTIONS WITHOUT MATCHING ROLLBACKS
 OR COMMITS
Total Size : 2366 bytes
Number of Records : 79
Mean Record Size : 29 bytes
Number of Transactions : 17
Mean Transaction Size : 139 bytes
Record Version(s) : 1

The warning “COMMIT BEGIN WITHOUT MATCHING COMMIT END
IN LOG FILE” means that the last record in the log file is not a type CE
(Commit End) record. This means that, during a commit:

• the log file was being updated at the time logutil was run

• or a process was killed with an uncatchable signal

• or a system failure occurred

-h num is the frequency with which header lines will be printed.

-e extracts selected section into a new log file.

7-52 Utilities
In the case of a killed process with an uncatchable signal, or a system failure,
the next START TRANSACTION using the corrupted log file will return
TRANSACTION-STATUS 12.

The warning “2 START TRANSACTIONS WITHOUT MATCHING
ROLLBACKS OR COMMITS” means that there are two transactions that
have yet to be committed or rolled back. This could indicate a problem if
there are no runtime processes currently using the log file.

-d option

The logutil utility date filter, “-d” command line option, requires you to
specify years in the 4-digit format. If you enter a year value less than “1900”,
logutil reports “logutil: use 4 digit year specification”.

logutil example #1

To list all records for a user named “randy” that were written on
November 11th between 4:50 P.M. and 5:00 P.M. to a log file called “mylog”,
you would use the following command:

logutil -fu randy -d 11/11 -t 16:50 17:00 mylog

You will see something similar to the following report:

TY PID Term Client User Date/Time File ID Filename
ST 21981 tty0 acucobol randy 11/11 16:50:12
CB 21981 tty0 acucobol randy 11/11 16:50:12
MA 21981 tty0 acucobol randy 11/11 16:50:12 test.dat
OP 21981 tty0 acucobol randy 11/11 16:50:12 07700001 test.dat
CE 21981 tty0 acucobol randy 11/11 16:50:12
ST 21981 tty0 acucobol randy 11/11 16:56:40
CB 21981 tty0 acucobol randy 11/11 16:56:40
WR 21981 tty0 acucobol randy 11/11 16:56:40 07700001
DE 21981 tty0 acucobol randy 11/11 16:56:40 07700001
CE 21981 tty0 acucobol randy 11/11 16:56:41
ST 21981 tty0 acucobol randy 11/11 16:59:20
CB 21981 tty0 acucobol randy 11/11 16:59:20
WR 21981 tty0 acucobol randy 11/11 16:59:20 07700001
RE 21981 tty0 acucobol randy 11/11 16:59:21 07700001
CE 21981 tty0 acucobol randy 11/11 16:59:21
-
End of log.
Total Size : 580 bytes
Number of Records : 15
Mean Record Size : 38 bytes

logutil 7-53
Number of Transactions : 3
Mean Transaction Size : 193 bytes
Record Version(s) : 1

In a transaction log report, path and file names are limited to 17 characters
without the “-l” option, or 21 characters with the “-l” option. Should the path
and file name exceed that limit, the report will attempt to display all of the file
name. If room permits, this will be followed by the file’s parent directory,
root directory, and subdirectories. Path name components that must be
omitted are represented by an ellipsis (…).

logutil example #2

To create a new log file called “newlog” that will contain the records reported
above, use the “-e” option as follows:

logutil -u randy -d 11/11 -t 16:50 17:00 -e newlog mylog

7.5.2 logutil Report Headings

The first column of the standard report has the heading “TY”. Its value is the
record type, taken from the following list:

ST Start Transaction

CB Commit Begin

CE Commit End

RO Rollback Transaction

DE Delete (record)

RW Rewrite

WR Write

OP Open (Opens an existing file)

MA Make (Creates or Recreates a file during an OPEN operation)

CL Close

CP Copy

RN Rename

RM Remove (file)

7-54 Utilities
The other columns are as follows:

The PID is usually less than six characters on UNIX machines. On Windows,
however, the PID can be a long negative number. In order for the output file
to fit within 80 columns, all PID numbers are truncated to show only the
right-most six characters.

If the “-l” option is used:

7.6 The Profiler

To help you tune application performance, the runtime includes an execution
profiling facility. This built-in facility is activated when a properly prepared
program is executed with the “-p” flag, prompting the runtime to collect
information about I/O operations and CALLs, and to install a timer to track
the amount of time spent in different parts of the code. All of this information
is placed into an output file called “acumon#.xml”. (The “#” is an
automatically incremented number, starting at 1, appended to the filename to
ensure that the profile data is not accidentally overwritten by another
execution of the profiler.)

PID ID of process which wrote the record

Term Name of terminal used by the runtime

User User name of owner of the runtime

Client Host name of machine running the runtime, the client machine
when using AcuServer

Date/Time Date and Time the event occurred

File ID Unique identifier of the file

File Name Name of file being opened, created, recreated, deleted, renamed, or
copied

Location Byte offset of the record in the log file

Length Length of the log record

The Profiler 7-55
Note: Because the runtime performs a linear search to determine the next
available filename to use, if a directory contains a large number of profiler
output files, the search can take some time. For this reason, it is a good idea
to remove unneeded XML profiles regularly.

The raw data in “acumon#.xml” can be processed by the acuprof utility to
create a text-based performance report, “acumon.rpt”. In all environments,
the report summarizes the amount of processor time used by each program in
an application and each paragraph in a program, as well as detailing the file
I/O operations performed by each program. When the “acumon#.xml” file is
created by a UNIX/Linux runtime, the final report also contains information
about the amount of user time spent in each program and paragraph.

7.6.1 Using the Profiler

The profiler is optimized for batch programs, and is especially useful with
batch programs that run large numbers of transactions. It is more difficult to
get good information from interactive programs. If user wait times are the
issue you’re trying to solve, trace files are more likely to return useful
information than the profiler.

When you prepare to use the profiler, you should make an effort to run your
application as cleanly as possible. This means making sure that your system
isn’t overloaded with large numbers of users, heavy system traffic, and so on.
The cleaner the run, the more useful the information returned by the profiler.

The following steps describe how to perform profiling using default profiler
and acuprof behavior. Options for configuring both the profiler and acuprof
appear in the next section.

1. Compile your COBOL programs for debugging.

You must compile with at least the “-Gy” option (to include at least
minimal symbol information in the object file) for the profile to contain
paragraph information. It is preferable to compile for full symbol
information (“-Gs”) or for full source debugging (“-Gd”).

2. Execute the program with the “-p” runtime option to create the
“acumon1.xml” file.

7-56 Utilities
If a file called “acumon1.xml” already exists in the program directory,
the profiler automatically changes the file name to create a file called
“acumon2.xml”, “acumon3.xml”, and so on. This is intended to make it
easier to compare multiple profiles of the same program.

Note that the automatic naming scheme uses the first unused number
when naming the file. This means that if a directory contains files called
“acumon1.xml”, “acumon2.xml”, and “acumon6.xml”, the next profile
created in that directory is called “acumon3.xml”.

3. Use the command runcbl acuprof -a pathname (where pathname is
the full path and file name of the XML file created by the profiler) to
launch acuprof and process the profiler data.

By default, acuprof creates a report file called “acumon.rpt” in the
execution directory, then displays a message to indicate that the report
was created successfully.

4. Click OK to end acuprof execution, then open the newly created
report file in the text editor of your choice.

7.6.2 Configuring the Profiling Tools

Using a combination of runtime flags, acuprof flags, and configuration
variables, you can customize the behavior of both the profiler and the
acuprof utility. This section describes the various configuration options.

PROFILE_TYPE runtime configuration variable

This configuration variable provides an optional method of profiling
ACUCOBOL-GT on Windows called “COUNTER”. The counter method
uses the debugger to perform counting and appears to provide the most
accurate results in Windows environments.

Set the PROFILE_TYPE configuration variable to either “ASYNCH” or
“COUNTER”. When set to the default value of “ASYNCH”, the runtime
performs profiling the way it historically has. When set to the value
“COUNTER”, the runtime uses this method of profiling. Note that your
COBOL programs must be compiled with “-Gd” as well as “-Gs” options to
use the counter method.

The Profiler 7-57
The counter method is also available on UNIX and can be used if profiling
your COBOL results in a message similar to “profile timer expired”. This
method doesn’t completely solve that problem, but does substantially
mitigate it.

Configuring profiler behavior

In order to reduce file size and processing time for the “acumon#.xml” file,
the profiler does not create records for paragraphs that have a zero execution
count and zero execution time. If you would like to have these zero count
paragraphs recorded, use the “-p0” runtime flag in place of “-p”.

To specify a name other than “acumon#.xml” for the XML output file, use the
configuration variable ACU_MON_FILE. This variable also takes the
following specifiers for adding additional information to the name:

%p If the name contains the string “%p”, that string is
replaced with the process ID (PID) of the runtime.

%d If the name contains the string “%d”, that string is
replaced with the current date in the form
YYYYMMDD where YYYY is the year, MM month
and DD day.

%t If the name contains the string “%t”, that string is
replaced with the current time in the form
HHMMSSTTT where HH is the hour, MM minute, SS
second and TTT milliseconds.

%u If the name contains the string “%u”, that string is
replaced with the username.

%h If the name contains the string “%h”, that string is
replaced with the hostname.

For example:
ACU_MON_FILE profile%p.xml

would produce a file called something like “profile314.xml”, where “314” is
the runtime process ID.

7-58 Utilities
Configuring acuprof

The acuprof utility takes the following flags:

For example:
runcbl acuprof -a profile.114 -o report.114 -n

Here, acuprof parses a profiler output file called “profile.114” and produces
a report called “report.114,” sorted by program and paragraph name.

7.6.3 Understanding the Report

The report is divided into three sections:

1. The first section contains general information about when the program
was run, which version of the runtime was used, and general system
capabilities.

Profile run on Fri Feb 06 10:05:15 2006, sorted by name
ACUCOBOL-GT version 7.3.0 (2006-05-10)
Timer interval = 10.029 milliseconds

Flag Description

-a or
--call-name

If you have specified a name other than “acumon#.xml”
for the profiler output file, use this flag to pass the correct
name to the acuprof utility.

-o or
--output

To give the report file a name other than the default,
“acumon.rpt,” use this flag.

-c or
--sort-count

Sort data in the report file by the entry count for each
program and paragraph. (By default, the report is sorted
by time.)

-n or
--sort-name

Sort data in the report file alphabetically by program and
paragraph name. (By default, the report is sorted by
time.)

-q or
--quiet

This flag is used to suppress the “report complete”
message used to indicate that acuprof has run
successfully.

The Profiler 7-59
Note that the runtime uses the best timer that it can get from the system,
which generally means an interval around ten milliseconds (100 “ticks”
per second). As a result, it’s best to run the application for at least ten
seconds (not counting time waiting in an ACCEPT loop for user
interaction) to get a useful number of data points.

2. The second section contains information about the programs executed.

 Pct Secs Count I/O Program
==
 36.7% 8.35 57927 0 PDM0425
 32.8% 7.47 1 38950 TRP140
 15.2% 3.46 41947 0 TRA050A
 14.2% 3.24 57927 0 TRS130B
 0.7% 0.15 2 8 PCM1800
 0.3% 0.07 14 15 TRZCG01B
 0.0% 0.00 1 0 PCM1520

This condensed information gives you an easy way to see which
programs to focus your attention on. In general, you will want to start by
tuning the programs in which the most time is being spent.

Because this example was generated on a Windows system, it doesn’t
show a comparison of system time (time spent performing I/O
operations and doing memory management) and user time (time spent in
the application, running PERFORMs, etc.). On UNIX systems, this
additional information is included and can be used to help you figure out
where to focus.

3. The third section (which contains the bulk of the information in the
report) has information about the paragraphs executed by each
program.

In this section, the paragraph totals are per program, not per application,
so the total for all paragraphs in each program should add up to 100%.

TRP140

 Opens: 1
 Reads: 38949

 Pct Secs Count Total Paragraph
==
52.1% 3.89 41947 17.1% Z70-CALL-TRA050A
40.5% 3.03 38949 13.3% Z10-READ-FTR013A
 5.6% 0.42 38948 1.9% B20-PROCESS-ECR

7-60 Utilities
 0.5% 0.04 2996 0.2% B20-PROCESS-EO
 0.4% 0.03 14 0.1% Z40-CALL-TRZCG01B
 0.3% 0.02 1 0.1% A00-MAINLINE
 0.3% 0.02 1 0.1% A10-DEBUT-PROG
 0.3% 0.02 0 0.1% Z99-END

In most COBOL programs, one or two paragraphs use the lion’s share of
the time. There may be another paragraph or two that takes up a
moderate amount of time, but most paragraphs use a very small
percentage of the total program time.

Note that you may find very small paragraphs (like the EXIT paragraph)
getting a very large number of counts (CALLs). Because the time spent
counting each CALL is added to the paragraph time, it may appear that
such paragraphs are taking a large amount of time, when in fact the
behavior of the timer is artificially inflating the paragraph time.

7.6.4 Understanding the XML Data File

The acuprof utility takes the raw data in “acumon#.xml” and combines the
individual data points to create useful aggregates in the report file. acuprof
is an ACUCOBOL-GT program that is located in the “tools” subdirectory.

Because “acumon#.xml” is a straightforward XML file, any tool that can
parse XML can parse the raw report. This means that you can bring the
report into recent versions of Microsoft Excel, for example, or create your
own parsing tool using the C$XML routine to return the information most
useful to you.

This section contains the basic information that you need to understand the
data collected in “acumon#.xml”.

The “ticks” timer

In the final report, program time is reported in seconds, or fractions of a
second. The raw XML file, however, counts user and processor time in
“ticks”. The length of a tick is system-dependent, but usually equals about
(10-milliseconds). The precise amount of time in each “tick” is reported at
the beginning of the XML file (as described below). Each time the timer
starts, the runtime examines the current program location and records a tick

The Profiler 7-61
for the current program and current paragraph. By looking at how many ticks
a program or paragraph accumulates, you get a real-time sampling of where
the run spent its time.

If a program is running multiple threads and there is only one timer, when the
timer expires, a tick is given to the current program and current paragraph,
regardless of which thread is running.

The timer runs in “process time” on machines that support the concept
(UNIX). Process time is CPU time spent for the particular process and bears
little relationship to real time. On other machines (Windows NT), a real-time
timer is used instead. For these machines, it is important to run as few other
tasks as possible while collecting profile data.

Structure of the raw report file

The structure of the XML file is similar to that of the final report. It contains
general information about a specific execution of the application, followed
by information about each program and each paragraph in the program.
Because, however, the XML file contains raw data instead of aggregate
information, it is more useful to think of the file as divided into “levels”,
rather than sections. The top level (outermost set of XML tags) contains
general execution information. The next level (middle set of XML tags)
contains program information. The last level (innermost set of XML tags)
contains information about paragraphs in each program.

The runtime level

The <Runtime-Version> HTML tag shows the version number of the runtime
used by this particular profiling run. The value is the full version number
(including any information seen in “runcbl -v” such as build dates or patch
numbers).

The <Run-Date> tag marks the date and time of the run that produced the
profile data.

The <Has-Timer> tag is set to “1” if the runtime has support for profiling
timers, “0” if not. If support is not available, the various ticks fields below
will all be zero. Currently, timer support is available under Windows NT and
UNIX machines that have “setitimer” and “siginterrupt” routines.

7-62 Utilities
<Usecs-Per-Tick> contains the number of microseconds represented by each
tick of the timer. The runtime normally asks for a 10-millisecond timer (a
value of 10000 for this field).

When available, <User-Time-Msecs> shows the number of milliseconds of
CPU time spent processing user code for this run.

When available, <System-Time-Msecs> shows the number of milliseconds
of CPU time spent processing system code on behalf of the profiled process.

The program level

The <Program> tag marks the root of a subtree of information for each
program used by the profiled run. Each time a program leaves memory, it
produces one of these subtrees. Because of this architecture, a particular
program can appear in the “acumon#.xml” file more than once.

If a particular program appears many times in a run, it may be getting
canceled too often. This can present performance issues, because each cancel
causes the program to be reloaded from disk the next time it is called.

Each program sub-tree contains the following:

• The <Program-Name> tag contains the program’s ID.

• <Call-Name> shows the name the program was called by. This is useful
if more than one program has been given the same program ID.

• <Object-Code> gives the name that describes the object code instruction
set. The name “AcuCode” is used for machine-independent object files.
If the object was compiled for native code, the name of the relevant CPU
type is given.

• <Call-Count> indicates the number of times this program was entered.

• <Program-Ticks> shows the number of times the timer went off in this
program. Time spent waiting for the user to respond is counted only on
Windows NT systems.

• <Has-Symbols> is set to “1” if the program was compiled for debugging
and had section/paragraph symbols available. When this is “0”, no
paragraph data is included for this program.

The Profiler 7-63
• <File-Opens> lists the number of times this program opened any file
using the OPEN statement or I$IO. Note that this counts opens, not files
(so if you open the same file ten times in the course of a run, that counts
as “10” and not “1”). Some machines open files much more slowly than
others, so a large number here usually suggests a potential performance
issue.

• <File-Reads> lists the number of record read attempts. READ, READ
NEXT, and READ PREVIOUS all count here and are not distinguished.

• <File-Writes> indicates the number of records written.

• <File-Rewrites> gives the number of records rewritten by the program.

• <File-Deletes> shows the number of records deleted by the program.

• <File-Starts> lists the number of file positions made using the START
statement or the I$IO subroutine.

Note: Attempted reads, writes, rewrites, deletes, and starts that failed
are counted along with the successful file operations.

• <File-Commits> and <File-Rollbacks> show the number of COMMIT
and ROLLBACK statements performed by the program, regardless of
outcome.

• <Records-Sorted> gives the number of records sorted by this program
via the SORT statement.

The paragraph level

<Paragraph> indicates the root of a subtree of information about a paragraph
contained in the program. If the program has been compiled with debugging,
there will be one of these for each Procedure Division section or paragraph in
the program.

Each paragraph sub-tree contains the following tags:

• <Name> gives the name of the paragraph or section. This appears in
uppercase, regardless of the case seen in the actual source code.

7-64 Utilities
• <Count> shows the number of times this paragraph was entered, by any
means.

• <Ticks> indicates the number of times the timer went off while in this
paragraph. Time spent waiting for the user to respond is counted only on
Windows NT systems. Time spent in between paragraphs or programs
may count for either the caller or the called routine, depending on the
timing.

7.7 External Sort Utility — AcuSort

The AcuSort utility enables you to sort or merge Vision indexed, relative,
binary sequential, and line sequential files. An alternative to using the SORT
verb, this external sort function is invoked from the command line. AcuSort
instructions may appear directly on the command line, or they may be
included in a separate text file. This section outlines AcuSort utility
functions. Details on the SORT verb may be found in section 6.6, “Procedure
Division Statements,” in Book 3, ACUCOBOL-GT Reference Manual.

7.7.1 AcuSort Command Format

You can specify AcuSort instructions in one of two ways. You can include
them on the AcuSort command line, as follows:

acusort parameters

where parameters are the various AcuSort utility options that control such
operations as SORT and MERGE. This format is appropriate if you want to
execute a simple sort with few parameters. Note that if you choose this
method, you must ensure that the command line size and contents do not
violate any operating system or shell limits.

If you need to execute a sort that is often repeated or one with a large number
of options, you may find it easier to store and use sort instructions in a text,
or take, file. In this case, the AcuSort command line format is

acusort take filename

where filename is the file that contains the options to use when AcuSort is
executed.

External Sort Utility — AcuSort 7-65
The take file would contain all the instructions for your sort or merge process.
The text file may also contain comments (indicated by an asterisk at the
beginning of a line). An example of a take file appears in section 7.7.3,
“Code Sample.”

Specifying the “-v” option on the AcuSort command line as shown below
causes the utility to display version and copyright information.

acusort -v

7.7.2 AcuSort Instructions

Several options are available for use with the AcuSort utility, including
various instructions to sort or merge files, specify the name of an input or
output file, or define conditions under which certain records are included or
excluded from a sort or merge process. The following sections provide
details on these functions. Refer to section 7.7.3, “Code Sample,” for
AcuSort sample code.

7.7.2.1 CHAR-ASCII and SIGN-ASCII

The CHAR-ASCII instruction tells AcuSort that the data should be
interpreted as ASCII characters. SIGN-ASCII instructs AcuSort to use the
ASCII sign convention. These keywords mirror the operation of the
CHAR-EBCDIC and SIGN-EBCDIC keywords (described in the next
section) and enable you to switch back and forth between the different
modes. This means you can put multiple SORT/MERGE operations in a
single “take” file, which use different character sets or sign modes. AcuSort’s
defaults are CHAR-ASCII and SIGN-ASCII mode.

7.7.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions

The CHAR-EBCDIC instruction tells AcuSort to expect data that is encoded
in the EBCDIC character set rather than ASCII. SIGN-EBCDIC tells
AcuSort that numeric DISPLAY types that include signs should be
interpreted according to the EBCDIC convention. The use of
CHAR-EBCDIC implies SIGN-EBCDIC.

7-66 Utilities
For example, if your data is EBCDIC, you should use CHAR-EBCDIC. If
you have ASCII data with EBCDIC sign encoding, you should use
SIGN-EBCDIC. If you have ASCII data with ASCII sign encoding, you
would not use either instruction.

CHAR-EBCDIC and SIGN-ASCII are incompatible options. If
CHAR-EBCDIC is specified and AcuSort is in SIGN-ASCII mode, the sign
mode will be forced to SIGN-EBCDIC. If SIGN-ASCII is specified and
AcuSort is in CHAR-EBCDIC mode, the char mode will be forced to
CHAR-ASCII.

7.7.2.3 SORT/MERGE instructions

The SORT and MERGE instructions specify whether to perform a sort or
merge operation. These two functions are mutually exclusive. A SORT or
MERGE instruction must be followed by a FIELDS phrase that indicates the
fields on which a file is to be sorted or merged. You specify the start position,
the length, the type, and the order for each sort field. Use a comma to
separate field attributes and a comma before starting to describe a new field.
A merge operation combines records from files that are already sorted on the
specified fields. The syntax for these functions follows:

acusort sort fields(start, length, type, order)

acusort merge fields(start, length, type, order)

where

start is the offset of the field in the record (in bytes, starting at position 1).

length is the size of the field in bytes.

type is a two-letter code indicating the type of data in the field (see the data
field type descriptions below).

order is the order of output, either ascending (A) or descending (D).

The following data field types are supported in AcuSort:

BI Unsigned numeric, USAGE COMP

C5 Unsigned numeric, USAGE COMP-5

External Sort Utility — AcuSort 7-67
In the following example:
acusort sort fields (1, 10, ch, a)

the sort operation begins at position 1 in a 10-byte sort field, and the
alphanumeric data are sorted in ascending order. Refer to section 7.7.3,
“Code Sample,” for more sample code.

Note: When using LI or TI data types, you should be aware of the sign
storage for your data. The AcuSort utility supports both IBM and Micro
Focus sign storage. In ACUCOBOL-GT, use the “-Dci” compile option to
specify IBM sign storage, or the “-Dcm” option to specify Micro Focus
sign storage. If you use IBM sign storage and your data is ASCII, use the
SIGN-EBCDIC instruction in your take file of AcuSort options. See
section 2.1.9 in Book 1, ACUCOBOL-GT User's Guide for more
information about data storage compile options. See section 5.7.1.8 in
Book 3, ACUCOBOL-GT Reference Manual, for details on how signs are
stored when the various compile options are used.

C6 Unsigned numeric, USAGE COMP-6

CH Alphanumeric

CX Usage COMP-X

FL Usage floating point

LI Signed numeric, SIGN IS LEADING

LS Signed numeric, SIGN IS LEADING SEPARATE

NU Unsigned numeric

PD Signed numeric, USAGE COMP-3

SB Signed numeric, USAGE COMP

S5 Signed numeric, USAGE COMP-5

TS Signed numeric, SIGN IS TRAILING SEPARATE

TI Signed numeric, SIGN IS TRAILING

7-68 Utilities
7.7.2.4 USE/GIVE instructions

The USE and GIVE instructions specify the name and characteristics of the
input file and output file, respectively, of a sort or merge process. Note that
you must specify all USE instructions before any GIVE instructions. The
input and output file descriptions include ORG, RECORD, and KEY phrases,
which define the file’s characteristics. The syntax for these instructions is as
follows:

use input-file
 org file-type
 record format, record-length [, max-length]
 key(key-structure)

give output-file
 org file-type
 record format, record-length [, max-length]
 key(key-structure)

where

input-file is the pathname of the input file. For file names containing
spaces, surround the filename with double quotes (“ “). If the
filename contains double-quote characters, specify these by
doubling the double-quote characters (““ ““.

Examples:

filename: Work File

notation: "Work File"

filename: Embedded"Quote

notation: "Embedded""Quote"

output-file is the pathname of the output file. the same rules regarding
input-file names with spaces applies to output-file names.

file-type specifies the type of input or output file: indexed (IX), relative
(RL), line sequential (LS), or binary sequential (SQ).

format indicates that the file contains fixed length records (F) or
variable length records (V).

External Sort Utility — AcuSort 7-69
Note: If the input and output files have the same organization and/or
record information, you need not specify these options for each file. The
AcuSort utility applies the most recent RECORD and ORG options to
subsequent files when these options are not specified for the files.

KEY structure

For each key or key segment, you must specify the start position, the length,
and the key type, as defined below. Use a comma to separate field attributes
and a comma before starting the description of a new key or key segment.

The following command specifies the key structure for an indexed file:
key (start, length, key-type, ...)

where

start is the offset of the record key (in bytes, starting at position 1).

length is the size of the key in bytes.

key-type is a code indicating the key type (see the list of key types below).

You can specify one of the following key types in the KEY statement:

record-length specifies the record length for a fixed length record or the
minimum record length for a variable length record.

max-length specifies the maximum record length for a variable length
record.

key-structure specifies the key structure for an indexed file. Refer to the
following section for information about key structure.

P Primary key

PD Primary key with duplicates allowed

A Alternate key

AD Alternate key with duplicates allowed

C Key segment belonging to the primary or alternate key previously
described

7-70 Utilities
The following sample describes the key structure for an indexed file with
three keys:

key (502, 98, PD, 1, 18, A, 95, 18, AD, 337, 18, C)

In this example, the primary key allows duplicates. Its offset is 502 and its
length is 98. The first alternate key has an offset of 1 and a length of 18. The
second alternate key allows duplicates, and consists of two segments. The
first segment starts at offset 95 and has a length of 18. The second segment
starts at offset 337 and has a length of 18.

The AcuSort utility always sorts duplicate records in the order in which they
are encountered in the input file, a process known as a “stable sort.”

USE/GIVE example

In the following sample code:
use c:\acuprod\data\ordrdetl org ix
 record f 143
 key (1, 36, p)
 give c:\acuprod\data\ordrdet_sorted

the input file is “ordrdetl” and the output file is “ordrdet_sorted”. They are
both indexed files with a fixed record length of 143. The primary key is 36
bytes long, starting at position 1. Complete sample code can be found in
section 7.7.3, “Code Sample.”

7.7.2.5 INCLUDE/OMIT instructions

The INCLUDE and OMIT instructions specify conditions under which
individual records may be included in or excluded from, respectively, a sort
or merge process. As with SORT and MERGE, these instructions are
mutually exclusive. Each SORT or MERGE instruction may have a single
optional INCLUDE or OMIT conditional (COND) phrase. Syntax for these
instructions is as follows:

omit cond (start, length, type, comparison expression)

include cond (start, length, type, comparison
expression)

External Sort Utility — AcuSort 7-71
where start, length, and type are as defined for the SORT/MERGE
instructions, and comparison expression sets the conditions for a specified
comparison.

Conditional constants ALL and NONE match all or none of the records,
respectively. As an example, each of the following statements would result
in the inclusion of all records:
include cond = all

or
omit cond = none

To omit all records, you would use one of the following statements:
omit cond = all

or
include cond = none

A default record field type may be specified for an INCLUDE/OMIT
instruction by setting FORMAT to the desired type. (Refer to the table of
data field types in section 7.7.2.3, “SORT/MERGE instructions.”) This
assignment can appear either before or after the COND phrase. Record field
specifications without the type inherit the default type specified by
FORMAT. A warning is issued if the default format is specified but never
used.

The INCLUDE or OMIT instruction comparison expression may compare a
record field against another record field or against a constant. The size of an
expression is not limited. Comparison operators are:

EQ Equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

NE Not equal to

7-72 Utilities
INCLUDE/OMIT samples

If you want to include records in which the first four bytes are greater than
1000 when interpreted as USAGE DISPLAY data, you could use one of the
following code statements:
include cond = 1 4 nu gt 1000

or
omit cond (1 4 nu le 1000)

To include records in which the first four bytes are the same as the second
four bytes when interpreted as characters, you could use one of the following
statements:
include cond = 1 4 ch eq 5 4 ch

or
omit cond 1 4 ch ne 5 4 ch

As another example, if you want to omit any record in which the first four
bytes (COMP-6) are greater than the second four bytes (COMP-4), you could
use one of the following statements (note the use of the FORMAT phrase in
this example):
omit format=c6 cond = (1 4 gt 5 4 bi)

or
include cond 1 4 c6 le 5 4 format bi

In addition to the data types already available with SORT/MERGE, the
INCLUDE/OMIT instructions may have a substring search (SS) type, which
indicates that a search should be performed for the specified character
constant. Only the equal to (EQ) or not equal to (NE) operators may be used
in conjunction with the SS type. The designated string is either found or not
found with this comparison. As an example, each of the following code
statements would result in the omission of records in which the first 10
characters contain the substring “data”:
omit cond 1 10 ss eq c'data'

or
include cond = (1 10 ss ne c'data')

External Sort Utility — AcuSort 7-73
Constant types can be decimal, hexadecimal, or character. Decimal constants
match the pattern

[+-]?[0-9]+

that is, an optional sign character followed by a number of digits. Decimal
constants may be up to 76 digits long.

Hexadecimal constants match the pattern
x'([0-9A-F]{2})+'

that is, a leading “x” indicating a hex constant and then groups of two
hexadecimal digits in single quotation marks. Hexadecimal constants are
unsigned and may be up to 64 hexadecimal digits long (32 bytes). For
example, either of the following statements results in the inclusion of records
in which the first 10 characters (USAGE DISPLAY) equal 0xFFFF:
include cond = (1 10 nu eq x'FFFF')

or
omit cond 1 10 nu ne x'FFFF'

Character constants match the pattern
c'.+'

that is, a leading “c” indicating a character constant and then a number of
characters in single quotation marks. Single quotation marks may be
represented within the character constant by specifying two single quotation
marks in a row.

In general, numeric types may be compared against each other or against a
constant. Floating point data may only be compared against other floating
point data. Strings may be compared against each other, a string, or a
hexadecimal constant. Strings may also be used in substring searches.

Specifically, data types BI, C5, C6, CX, LI, LS, NU, PD, S5, SB, TI, and TS
may be compared against each other, or against a hexadecimal or decimal
constant. BI and CH may be compared against each other or a string
constant. CH may be compared against a hexadecimal constant.

7-74 Utilities
The AND and OR operators may be used to join comparison expressions.
The AND operator takes precedence over OR. Note that the characters “&”
and “|” may be used to represent AND and OR, respectively. As an example,
either of the following statements results in the omission of any record in
which the first character does not equal the second or the third character:
omit cond = (1 1 ne 2 1) & (1 1 ne 3 1) format ch

or
include format=ch cond ((1 1 eq 2 1) or (1 1 eq 3 1))

Parentheses may be used to determine the evaluation order of an expression.
An expression is evaluated only as far as necessary to determine the inclusion
or exclusion of the record. For example, if a conditional is a list of
expressions joined by AND operators, and the first expression evaluates as
false, the remainder of the expressions is not evaluated for this record.

7.7.3 Code Sample

The following sample code describes the SELECT and FD for an
“orders-detail” indexed file:
SELECT OPTIONAL Orders-Detail
 ASSIGN TO DISK "ORDRDETL"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 LOCK MODE IS AUTOMATIC
 FILE STATUS IS ORDERS-DETAIL-STATUS
 RECORD KEY IS Prime = ORDERS-DETAIL-PRIMARY-KEY

 FD ORDERS-DETAIL.
 01 ORDERS-DETAIL-RECORD.
 05 ORDERS-DETAIL-PRIMARY-KEY.
 10 ORDETL-CUSTOMER PIC X(10).
 10 ORDETL-DATE.
 15 ORDETL-DT-YYYY PIC 9(4).
 15 ORDETL-DT-MM PIC 99.
 15 ORDETL-DT-DD PIC 99.
 10 ORDETL-TIME.
 15 ORDETL-HR PIC 99.
 15 ORDETL-MIN PIC 99.

External Sort Utility — AcuSort 7-75
 15 ORDETL-SEC PIC 99.
 15 ORDETL-TH-SEC PIC 99.
 10 ORDETL-PROD-NO PIC X(10).
 05 ORDETL-DESCRIPTION PIC X(80).
 05 ORDETL-QTY PIC 9(5).
 05 ORDETL-PRICE PIC 9(9)v99.
 05 ORDETL-TOTAL-PRICE PIC 9(9)v99.

In this sample, we illustrate the sort of the “orders-detail” file based on three
fields: orderl-customer, ordetl-price, and ordetl-description. Each field is to
be sorted in ascending order, and the resulting output file includes only
records in which ordetl-date is equal to or greater than May 3, 2006.

The AcuSort take file “paramfile1” contains the following options:
sort fields (1, 10, ch, a, 122, 11, nu, a, 37, 80, ch, a)
use c:\acuprod\data\ordrdetl org ix
 record f 143
 key (1, 36, P)
give c:\acuprod\data\ordrdet_sorted
 include cond = 11 8 nu ge 20060503

If we include our AcuSort instructions in a take file named “paramfile1”, our
command line would be
acusort take paramfile1

7.7.4 AcuSort Environment Variables

The following environment variables affect AcuSort behavior:

A_TMPDIR, TMPDIR

These variables control the location of any temporary AcuSort files.
A_TMPDIR is checked first, and then TMPDIR. Temporary files
created by AcuSort are placed in this directory. The default value is
the current working directory.

ACUSORT_FILE_MEMORY

This variable allows you to set the maximum amount of memory in
megabytes to be used for buffering I/O data with the temporary file.
The default value is “1”.

7-76 Utilities
The default value should be adequate for most situations. However, if
very large records are in use, you may want to increase this value in
order to hold several records. The higher setting allows the buffer
layer to avoid doing I/O for record comparisons during a
SORT/MERGE process.

Tip: The number of file buffer blocks is controlled by the
ACUSORT_FILE_MEMORY environment variable. It is set in units
of megabytes. The buffer block size is 4096 bytes; therefore, for each
MB, you get 256 buffer blocks. One buffer block will be reserved for
each sorted region in the temporary file. The number of sorted regions
in the temporary file will depend on the size of the records being
operated on and the amount of memory allocated for sorting with the
ACUSORT_MEMORY environment variable. Buffers remaining after
this reservation may be used for read-ahead. Up to eight buffers per
region will be used for read ahead.

ACUSORT_MEMORY

This variable sets the number of megabytes of memory allowed for
sorting records. Sort performance may improve as more memory is
allocated for this purpose. The default value is “2”.

ACUSORT_TRACE

This variable controls the type of information written to the AcuSort
log file. The following values determine which sets of log messages
appear:

1 general program

2 record import/export

4 numeric values comparison

8 numeric values conversion

16 temporary file buffer

32 command structure

64 modes

128 parser

256 lexer

Remote Preprocessing Utility — Boomerang 7-77
Set ACUSORT_TRACE to the sum of the numbers corresponding to
the sets of information you want written to the log file.

Please note that much of this information is intended only for
diagnostic use. You should not rely on the content of the information
written to the log file, as it is subject to change without notice.

Tip: For time-critical SORTs, examine the AcuSort trace output
(specifically the “buffer” and “import/export” categories) to see
various statistics about sorted region counts and buffer usage. Adjust
the memory configuration variables as appropriate.

dd_SYSOUT

This configuration variable specifies the name of the AcuSort log file.
Various information about AcuSort functions is written to this file.
The default value is “SYSOUT”.

USE_LARGE_FILE_API

On UNIX systems, setting this variable to “1” causes AcuSort to use
the large file API. The default value of “0” uses the normal file API,
which cannot access files larger than 2GB. This variable applies to
both the USE and GIVE files, and the temporary AcuSort file. If the
total size of input records is less than 2GB, leave this variable set to the
default of “0”. Otherwise, set it to “1”. (Note that the system must
support the large file API in order for this variable to have any effect.)
Windows versions of AcuSort can always access large files, so it is not
necessary to set this variable on Windows platforms.

7.8 Remote Preprocessing Utility — Boomerang

The Boomerang utility program includes client and server technologies that
enable you to automatically transfer files to a remote server, invoke and
perform preprocessing on that server, then return the preprocessed files to
your client machine where additional compiling can occur. Many proprietary
or third party preprocessors have machine-specific functions that require
preprocessing to occur in their native environments. Boomerang makes
accessing these types of preprocessors easier and more efficient.

7-78 Utilities
With Boomerang you can:

• Send source files, COPY files, and user INCLUDE files from a
Windows or UNIX/Linux client to a UNIX/Linux server.

• Invoke and run popular third-party preprocessors such as those used with
Oracle, DB2, UniKix, and IBM TXSeries CICS, or invoke custom-built
preprocessors.

• Have preprocessed output files, error files, and status returned to your
client machine.

• Use Boomerang with the ACUCOBOL-GT compiler's “-Pg” option to
perform single or multiple preprocessing steps.

7.8.1 License Requirements and Installation

To use Boomerang, the client machine must have an ACUCOBOL-GT
development system and corresponding compiler license. On the server, a
standard runtime license and server access file is required. You can use
Boomerang to create an access file or you can use an existing access file. For
instructions on setting up a server access file, refer to either the AcuConnect
or AcuServer User's Guide, section 3.3.2 and 5.4.1 respectively.

The Boomerang client and server program (boomerang.exe) requires no
special installation steps, and is automatically installed in the same directory
as the runtime.

7.8.2 Server Setup and Configuration

Boomerang server setup and configuration involves four main steps:

Step 1: Creating an Alias File that contains aliases for each preprocessor
you wish to invoke from your client machine.

Step 2: Creating a Configuration File and setting configuration variables
accordingly.

Step 3: Creating an Access File to establish system security and access.

Step 4: Starting the Server.

Remote Preprocessing Utility — Boomerang 7-79
7.8.2.1 Step 1: Creating an Alias File

To accomplish its preprocessing tasks, Boomerang references an alias file
that contains preprocessor-specific commands and instructions.

To create an alias file for a preprocessor, perform the following steps on the
server:

1. From a command line, navigate to where boomerang.exe is installed, type
“boomerang” and press return.

The following usage information appears:

2. Access the alias menu by typing the following command:
 boomerang -alias

Server usage:
 boomerang -alias
 boomerang -access
 boomerang -kill [-n portnum]
 boomerang -start [-c config] [-e error] [-t #]
[-f] [-n portnum]

Client usage:
 boomerang -server server[:port]
 -alias alias
 -COPY
 -include pattern [pattern ...]
 [-Po preprocessor-output-file]
 [-Pe preprocessor-error-file]
 -Sf source-file

7-80 Utilities
The following alias menu options appear:

3. Select option “1” create an alias file. The following menu appears:

The alias creation fields are defined as follows:

Enter the name of the alias file:
[/etc/boomerang_alias.ini] boomerang_alias.ini

Boomerang Alias file options
1 - Add an alias entry
2 - Remove an alias entry
3 - Modify an alias entry
4 - Display alias entries
5 - Exit

Enter choice [4]: 1

Add an alias
Enter the alias name:
Enter the name of the precompiler:
Enter precompiler options:
Enter precompiler directives:
Enter required precompiler extension if any:
Press <Return> to continue...

Field Description

Alias name The name you wish to give your alias.

Name of precompiler The precompiler that should be used by this alias. You
can also specify the name of a shell script to run instead
of the precompiler name. This is necessary for some
precompilers like DB2 where certain setup instructions
are required before precompiling can commence. See the
DB2 Alias Example provided later in this section for
more details.

Remote Preprocessing Utility — Boomerang 7-81
Precompiler options Instructions you wish to give to the preprocessor.
Boomerang includes several keywords you can use to
specify several basic files:

• B_INPUT: Input to the preprocessor. This is
replaced with the name specified by the “-Sf”
option from the Boomerang client command. If
you are executing Boomerang from the
ACUCOBOL-GT compiler, the compiler
automatically calls the Boomerang Client with the
“-Sf” option and the name of the program to be
preprocessed.

• B_OUTPUT: Output from the preprocessor. This
is replaced with the name specified by the “-Po”
Boomerang client command. By default, the
ACUCOBOL-GT compiler expects the output from
the preprocessor to be named “acu__pp1.out” with
two underscores. If you do not specify the “-Po”
option, Boomerang will replace this keyword with
the default name “acu__pp1.out”.

• B_ERROR: Error output from the preprocessor.
This is replaced with the name specified by the
“-Pe” Boomerang client command. If you do not
specify the “-Pe” option, Boomerang will replace
this keyword with the default name
“acu__pp1.std” with two underscores. The
ACUCOBOL-GT compiler automatically displays
the contents of this file to the screen.

Precompiler
directives

Used to specify any keywords that the preprocessor
recognizes as directives. Boomerang will automatically
insert ACUCOBOL-GT line directives before and after
these keywords. In cases involving compilation errors,
this makes it easier for you to identify the offending line
of code in the source file.

Field Description

7-82 Utilities
Pro*COBOL Alias Example

Since Pro*COBOL has the following options to specify the input and output
files:

iname=
oname=

Required precompiler
extension

Your COBOL program can have any extension you want,
but some precompilers require a specific extension. If
your precompiler requires a specific extension on the
source file, specify it here rather than changing the
extension name of your source files. Boomerang creates
a temporary file on the server with the extension you
specify so that preprocessing can be performed.
Boomerang will then remove this temporary file. If you
do not specify an extension here, it will use the extension
of the source file. There is a case where the extension of
the source file is not used - when you are calling two or
more preprocessors. Refer to the ACUCOBOL-GT
User’s Guide, section 2.13.1.2, for more information on
calling two or more preprocessors. In this case, the
output of the first preprocessor is called “acu__pp1.out”
and is used as input to the second preprocessor. If the
second preprocessor requires a specific extension, you
can specify the expected extension here. For example, if
the precompiler requires a source file extension of “.ccp”,
you would need to specify “.ccp” as the required
precompiler extension. Otherwise, the precompile will
fail.

Field Description

Add an alias
Enter the alias name: alias-procob
Enter the name of the precompiler: procob
Enter precompiler options: iname=B_INPUT
oname=B_OUTPUT >B_ERROR 2>&1
Enter precompiler directives: EXEC SQL
Enter required precompiler extension if any:
Press <Return> to continue...

Remote Preprocessing Utility — Boomerang 7-83
the name of the Pro*COBOL input file can be specified by the B_INPUT
keyword and the name of the output file can be specified by the B_OUTPUT
keyword. Since Pro*COBOL does not have an option to specify an error
output file, the “>B_ERROR 2>&1” redirects the output that normally would
be displayed on the screen to the file associated with the B_ERROR
keyword.

“EXEC SQL” is specified as the precompiler directive since Pro*COBOL
uses this phrase to begin its Pro*COBOL statements.

 CICS Alias Example

The “-l ACUCOB” option is required with CICS. This parameter tells
cicstran to precompile the source file in a manner that is compatible with
ACUCOBOL-GT.

Since CICS uses the “-o” option to specify the output file, it can be specified
by the B_OUTPUT keyword. The name of the input file is specified by the
B_INPUT keyword. CICS does not have an option to specify an error output
file, the “>B_ERROR 2>&1” redirects the error output from the screen to the
file associated with the B_ERROR keyword.

“EXEC SQL” is specified as the precompiler directive since CICS uses this
phrase to begin its CICS statements.

CICS requires that the source file have an extension of “.ccp” so it is
specified as the required precompiler extension.

Add an alias
Enter the alias name: alias-cicstran
Enter the name of the precompiler: cicstran
Enter precompiler options: -l ACUCOB -O B_OUTPUT
B_INPUT >B_ERROR 2>&1
Enter precompiler directives: EXEC CICS
Enter required precompiler extension if any: .ccp
Press <Return> to continue...

7-84 Utilities
UniKix Alias Example

Since UniKix uses the “-o” option to specify the output file, it can be
specified by the B_OUTPUT keyword. The name of the input file is
specified by the B_INPUT keyword. UniKix does not have an option to
specify an error output file, the “>B_ERROR 2>&1” redirects the error
output from the screen to the file associated with the B_ERROR keyword.

“EXEC SQL” is specified as the precompiler directive since UniKix uses this
phrase to begin its CICS statements.

UniKix requires that the source file have an extension of “.cl2” so it is
specified as the required precompiler extension.

If there are COBOL COPY statements in the source file UniKix requires
these files to exist on the server where kixclt is run. You can use the
Boomerang “-COPY” command on the client side to instruct Boomerang to
copy the COPY files to the server and to use them in the preprocessing phase.

UniKix requires that you have the following three environment variables set:

UNIKIX

PATH

COPYPATH

See your UniKix documentation for information on setting these variables.
Boomerang requires setting these variables before starting the Boomerang
server. If you use the “-Sf” or “-COPY” client commands to send COPY
files from the client to the server, be sure you add the directory where the
Boomerang server resides to the server COPYPATH environment variable so

Add an alias
Enter the alias name: alias-unikix
Enter the name of the precompiler: kixclt
Enter precompiler options: -O B_OUTPUT B_INPUT
>B_ERROR 2>&1
Enter precompiler directives: EXEC CICS
Enter required precompiler extension if any: .cl2
Press <Return> to continue...

Remote Preprocessing Utility — Boomerang 7-85
that these COPY files can be found by the preprocessor. The files specified
by the “-Sf” or “-COPY” commands get copied into the directory where the
Boomerang server resides.

DB2 Alias Example
:

DB2 requires some setup before running its precompiler. You can perform
the necessary setup by specifying a shell script file (db2prep.sh in this
example) to run instead of specifying the name of the precompiler. The shell
script performs the necessary setup and then starts the precompiler. The
Boomerang keywords beginning with “B_” are passed to the shell script by
specifying them at the precompiler options line. “EXEC SQL” is specified as
the precompiler directive since DB2 users “EXEC SQL” to begin its DB2
statements. The DB2 precompiler requires that the input file have an
extension of “.sqb” so this is specified at the required precompiler extension
line.

Using the example above, when the Boomerang server runs the shell script it
looks something like this:
db2prep.sh database ACCT01.sqb acu__pp1.out acu__pp1.std

Note that the precompiler options must be specified in the order that the shell
script expects. The following is an example of a DB2 shell script used by the
Boomerang server:

#!/bin/ksh

db2prep.sh - This script is designed to be called from the
Boomerang server. For this script the Boomerang server alias
file would need to have the following precompiler options
using the Boomerang file keywords:
#

Add an alias
Enter the alias name: alias-db2
Enter the name of the precompiler: db2prep.sh
Enter precompiler options: database B_INPUT B_OUTPUT
B_ERROR
Enter precompiler directives: EXEC SQL
Enter required precompiler extension if any: .sqb
Press <Return> to continue...

7-86 Utilities
Precompiler-Options: database B_INPUT B_OUTPUT B_ERROR
#
In this script the Boomerang keywords get mapped to the
following script variables:
#
database = $1 the name of the database to connect to
B_INPUT = $2 the precompiler input file
B_OUTPUT = $3 the precompiled output file
B_ERROR = $4 the precompiler error file

Execute the DB2 configuration file
. /home/db2inst1/sqllib/db2profile

DB2 precompile -- takes .sqb as input, outputs .cbl
echo ==
echo Begin output from \"db2 prep\" SQL precompiler:
echo ==

Connect to the database
db2 connect to $1 >$4 2>&1

Execute the precompiler on $2 sending any error output to $4
capture the return code in $returnCode
db2 prep $2 target ansi_cobol >>$4 2>&1
returnCode=$?

Boomerang expects the precompiled output file to be the name
specified by $3. The precompiled output file created by DB2
is the name as the source file but with an extension of .cbl.
We need to remove the extension from the input file, $2, and
add a .cbl extension so that we can copy it to $3.
The following command removes the "." and everything past it
to create the prefix.
prefix=`echo $2 | sed -e "s/\..*$//"`

Copy the precompiled output file to the name that Boomerang
is expecting, $3.
cp $prefix.cbl $3

the db2 CLP returns 2 for warnings; treat as if a 0 was
returned
if [$returnCode -eq 2]; then
 returnCode=0
fi
if [$returnCode -eq 0]; then

Remote Preprocessing Utility — Boomerang 7-87
 db2 connect reset >>$4 2>&1
 db2 terminate >>$4 2>&1
else
 echo \"db2 prep\" failed: return code: $returnCode >>$4
2>&1
fi
exit $returnCode

7.8.2.2 Step 2: Creating a Configuration File

Using a text editor, create a configuration file named “boomerang.cfg” and
include the configuration variables that can be specified for the Boomerang
server. (Note: you can specify your own filename if desired). A sample file
showing these variables and their default settings appears below:

7.8.2.3 Step 3: Creating an Access File

The server access file for Boomerang is named and structured the same as
the server access file for AcuServer and AcuConnect. If you are using either
of these servers for UNIX, you can use your existing Access file in
conjunction with Boomerang, or you can set up a separate file for
Boomerang. For instructions on setting up a server access file refer to either
the AcuConnect or AcuServer User’s Guide, section 3.3.2 and 5.4.1
respectively.

boomerang.cfg
This file should be owned by root and only
writeable by root:
chown root boomerang.cfg
chmod 644 boomerang.cfg

Default port is 7770
BOOMERANG_PORT 7770

Default alias file is /etc/boomerang_alias.ini
BOOMERANG_ALIAS_FILE boomerang_alias.ini

#Default AcuAccess file is /etc/AcuAccess
ACCESS_FILE AcuAccess

7.8.2.4 Step 4: Starting the Server

To start the server, issue the following command:
boomerang -start -c boomerang.cfg -e boomerang.err

7.8.3 Server commands

The following table describes the Boomerang server commands.

-access Used to create an access file. Refer to either the
AcuConnect or AcuServer User’s Guide, section 3.3.2
and 5.4.1 respectively.

-alias Used to create an alias. See Section 3.9.1, step 3 for
details on this command.

-c <configuration-
filename>

Specifies the configuration file that should be used by
Boomerang. If the “-c” option is not specified,
Boomerang will use the file specified by the
environment variable, A_BOOMERANGCFG. If neither
the -c or A_BOOMERANGCFG are specified, the
default “boomerang.cfg” file is used.

-e <error-filename> Specifies the error file for the Boomerang server.

-f Runs the Boomerang server in the foreground.

-kill [-n <port>] Stops the Boomerang server. You can optionally specify
the port.

-start [-n <port>] Starts the Boomerang server. You can optionally specify
the port.

Remote Preprocessing Utility — Boomerang 7-89
7.8.4 Client-side Operation – Remote Precompiling

The Boomerang client does not require any special setup or configuration.
Once you have set up and configured your Boomerang server, use the
Boomerang client to enter and carry out your remote preprocessing
commands. Boomerang sends the specified source file to the server and
invokes the preprocessor using the alias file that you created on the server.
The preprocessed output file and status are then returned to the
ACUCOBOL-GT compiler. If the precompile was successful, normal
compiling occurs. If the precompile was not successful, the compiler will
display the status.

-t # Turns on the tracing function. When combined with the
“-e” option, trace information is placed in the named error
file. The “#” represents the type of tracing or logging to
be performed.

“1” provides information about access file match
attempts. The trace information buffer is flushed to the
error file when the buffer is filled or Boomerang
terminates.

“2” provides information about client requests. The
buffer is flushed to the error file when the buffer is filled
or Boomerang terminates.

“3” provides the information described for “1” and “2”.

“5” is equivalent to “1”, but the tracing buffer is flushed
to the error file each time an access file match is
requested. (File trace flushing can also be controlled with
the FILE_TRACE_FLUSH server configuration
variable.)

“6” is equivalent to “2”, but the tracing buffer is flushed
to the error file each time a client connection is requested.

“7” provides the information described for “5” and “6”.

7-90 Utilities
Remote precompiling

Boomerang operates as either a standalone program, or as a preprocessor to
the ACUCOBOL-GT compiler. To perform remote preprocessing, invoke
Boomerang from the ACUCOBOL-GT compiler using the “-Pg” option. For
example:
ccbl32 -Pg boomerang -server <myserver>[:<port>] -alias
<alias-name> source-filename

A list of all available commands appears below.

Note: Boomerang is also integrated with AcuBench (our IDE product).
Refer to Section 9.5.3 of the AcuBench User’s Guide for information on
precompiling with Boomerang from AcuBench. Refer to the table below
for a description of all available client-side commands.

7.8.5 Client Commands

The following table describes the Boomerang client commands and
arguments.

-alias <alias-name> Tells Boomerang to pass this alias name to the
server, which the server will then use to look up
preprocessor-specific instructions.

-include <pattern> Instructs Boomerang to copy INCLUDE files to the
server and to use them in the preprocessing phase.
Refer to section 7.8.6 for details on using this
command.

-Pe <preprocessor-
error-filename>

Writes preprocessor error messages to the specified
filename.

-Po <output-
filename>

Writes the preprocessed output to the specified
filename.

-server < myserver>
[:<port>]

Tells Boomerang which server to connect to, and if
specified, which port.

Remote Preprocessing Utility — Boomerang 7-91
-Sf <source-filename> Instructs Boomerang to copy the specified file to the
server if needed by the preprocessor on the server. If
no pathname is specified the file is expected to be in
the current directory. If you are using AcuBench, the
current directory is the directory above the Copylib
and Source directories. This is a way to move files
to the server that would not normally get moved by
the “-include” or “-COPY” options. For example, if
the preprocessor expands an EXEC statement into a
COBOL COPY statement and the COPY file is on
the client but not on the server, you can use this
option to move the file to the server so it can be
found by the preprocessor. These files are copied
into the directory where the Boomerang server
resides and are removed after preprocessing. Some
preprocessors require that you add the Boomerang
server directory to a server environment variable like
COPYPATH so that it can locate these COPY files.

-COPY Some preprocessors require COBOL COPY files to
reside on the server. This option instructs
Boomerang to copy the COPY files specified by
COBOL COPY statements to the server and to use
them in the preprocessing phase. If you execute
Boomerang from the ACUCOBOL-GT compiler,
use the compiler “-Sp” option to tell Boomerang
where to find the COPY files on the client. If the
“-Sp” option is not specified, Boomerang will look
for the COPY files in the current directory. If you
are using AcuBench, the current directory is the
directory above the Copylib and Source directories.
These files are copied into the directory where the
Boomerang server resides and are removed after
preprocessing. Some preprocessors require that you
add the Boomerang server directory to a server
environment variable like COPYPATH so that it can
locate the COPY file.

7-92 Utilities
7.8.6 Working with INCLUDE files

With Boomerang, you can specify the “-include” option to tell Boomerang
to send any preprocessor INCLUDE files that exist on the client to the server
in case they are needed during the precompile. Do this by specifying the
following command:
-include <pattern> <pattern…>

Since each preprocessor may have different syntax for specifying a
preprocessor INCLUDE file, “pattern” is a sequence of case-insensitive
strings that precede the name of the preprocessor INCLUDE file. The name
of the INCLUDE file in the source file does not have to be enclosed in quotes,
but if it is, it may be enclosed in single or double quotes.

For example, Pro*COBOL has the following syntax for a preprocessor
INCLUDE file:
EXEC SQL
 INCLUDE SQLCA
END-EXEC.

You specify the following Boomerang option:
-include EXEC SQL INCLUDE

8
 Shared Memory
Key Topics

Shared Memory Management with acushare 8-2
Using Shared Memory ... 8-2
Using acushare .. 8-5
Runtime Error Handling ... 8-8

8-2 Shared Memory
8.1 Shared Memory Management with acushare

The acushare utility program is included on most UNIX and Linux systems.
On those systems it provides three key services for deployments that use the
ACUCOBOL-GT runtime system and/or AcuServer. These services include:

• ACUCOBOL-GT runtime license management

• ACUCOBOL-GT runtime shared memory management

• AcuServer license management

Acushare’s role in the extend license management scheme is described in
section 8.2.1 of the Getting Started book. For information on acushare’s
role in shared memory management in UNIX/Linux environments, see
section 8.2, “Using Shared Memory.” Also see Section 8.3, “Using
acushare,” for comprehensive instructions on the use of acushare.

Note that versions of acushare are compatible as follows:

• Versions of acushare shipped with extend7 products are compatible
with all Version 7.x products but cannot be used with previous versions.

• Versions of acushare shipped with pre-extend7 products can be used
with all pre-extend7 products but not with any extend7 products.

• On the same system, you can run both extend7 and pre-extend7 versions
of acushare concurrently.

8.2 Using Shared Memory

In most UNIX and Linux environments, ACUCOBOL-GT supports the
ability to have multiple users share the same copy of a COBOL program’s
object code in memory. This conserves memory and can lead to improved
system performance by reducing the amount of memory paging that the
system must do.

Using Shared Memory 8-3
Note: Use of shared memory is recommended only in cases where there
is a problem with excessive swapping due to too many users for the amount
of memory in the machine. If you are not experiencing this problem,
enabling shared memory will probably not improve performance. If you
are having a problem with limited memory and excessive swapping, then
the advantage of reduced swapping usually more than offsets the overhead
added by using shared memory. Note that the overhead for using shared
memory varies from machine to machine.

The UNIX code sharing facility is built on top of the UNIX System V shared
memory facility. In order to use this code sharing, your machine must
support shared memory in accordance with the UNIX System V Interface
Definition (SVID) and must also have shared memory support enabled in its
system kernel. Many UNIX and Linux vendors supply machines with shared
memory already enabled, but others require that you reconfigure your kernel
to use shared memory. Contact your UNIX vendor if you need additional
information on this subject.

One easy way to tell if ACUCOBOL-GT supports code sharing on your
machine is to check the files that are installed with the runtime system. If you
receive a file called acushare, then that system has the ability to share code.
If you do not receive this file, code sharing is not available on that machine
(most likely because that machine does not adequately support shared
memory).

To share program code under ACUCOBOL-GT, you must perform the
following steps:

1. Install acushare.

2. Edit your COBOL configuration file to specify the programs you want
to share. For more information, see section 8.2.1, “Indicating
Programs to Share.”

3. Start the acushare program. After it’s started, you can use the program
to perform other tasks.

8-4 Shared Memory
8.2.1 Indicating Programs to Share

Use your COBOL configuration file to indicate which programs you want to
share code. By default, no programs share code. To use shared code for all
of your programs, add the following line to the configuration file:

SHARED_CODE 1

This causes all programs to attempt to share code. Every code segment
loaded into memory is placed into shared memory until the shared memory
area becomes full. Further code segments are then placed in conventional
memory. The UNIX default for SHARED_CODE is “0” (no programs share
code).

Because shared memory is a limited resource under UNIX and Linux, you
will probably want to restrict the use of shared code to those programs that
render the most benefit. This ensures that other programs do not
unnecessarily use up the available shared memory. To do this, specify in
your runtime configuration file each program that you want to share as
follows:

SHARED_CODE Program1
SHARED_CODE Program2
SHARED_CODE Program3

(The program name may also be enclosed in single or double quotes, for
example, “Program1” or ‘Program2’.) When you are using this method,
“Program1”, “Program2”, and so forth, specify the PROGRAM-IDs from
the programs’ Identification Division (note that a program’s object file name
is not used). If you use this method, setting SHARED_CODE to “1” has no
effect.

To maximize the benefits of code sharing, begin by restricting the use of
shared code to large programs that have many users. Later, if you find that
you have enough shared memory in your system, you can extend its use to
small programs that have many users. Use acushare’s reporting facility to
help you optimize the use of shared memory.

Using acushare 8-5
8.3 Using acushare

On most UNIX and Linux systems, the acushare utility program is provided
to handle ACUCOBOL-GT runtime and AcuServer license management, as
well as shared code segments used by the ACUCOBOL-GT runtime. On
these systems, acushare runs as a background server process that responds to
requests from various client runtimes (a “daemon” in UNIX terminology).
See section 8.2.1 of the Getting Started book for a description of acushare’s
role in extend license management. See section 8.2, “Using Shared
Memory,” for a description of acushare’s role shared memory management.

Acushare has several command line formats. They include:
acushare -start [-p portnumber] [-e errorfile [-g]]
acushare –kill
acushare –clean
acushare –version
acushare

These formats are described in the following sections.

acushare -start

The command for starting acushare is:
acushare -start [-p portnumber] [-e errorfile [-g]]

A successful start creates a background process that handles license
management and shared code.

By default, acushare obtains a port number (for the listening port) from the
operating system. If you want to direct acushare to listen on a specific port,
you can include the “-p” option followed by the desired port number. For
example:

acushare -start -p 12345

If the “-e” option is included, acushare error output is appended to the file
named after “-e”. If “-e” is not used, error output is sent to /dev/console by
default. If output is not allowed on /dev/console, acushare attempts to

8-6 Shared Memory
append to a file named “acushare.err” in the current directory. If that fails,
acushare prints the message “acushare: cannot open error output file” to
standard output and the process exits.

If “-e” is specified, you can optionally use “-g” to cause the error file to be
compressed with the gzip compression method. Such files must be manually
decompressed with gzip before reading or editing. For clarity and to reduce
the risk of confusion or error, it is recommended that you specify a “.gz”
extension in the filename. For example:

acushare -start -eg acushare_trc.gz

Automatic startup at system boot

If you want acushare to start automatically when the system boots, you can
add a small amount of code to the system boot file. The name of the boot file
varies from system to system. Typical names are “/etc/rc.local”, “/etc/brc” or
“/etc/rc”. Identify the proper startup file and add lines similar to the
following:

if [-f /usr/etc/acushare]; then
 echo Starting ACUCOBOL-GT shared-code and license daemon > \
 /dev/console
 /usr/etc/acushare -start > /dev/console
fi

The preceding example assumes that you’ve placed acushare in “/usr/etc”.
You will need to adjust the code to match the conventions used in your
environment.

acushare -kill

To halt acushare, simply enter “acushare -kill” on the command line.

Should acushare terminate unexpectedly (for example, due to a SIGKILL
signal), you should remove the stranded shared memory segment with the
“-clean” option before restarting. For more information, see section ,
“acushare -clean.”

Using acushare 8-7
acushare -clean

Should acushare terminate unexpectedly, its master shared memory segment
may be left behind. Before restarting acushare, you should use the “acushare
-clean” command to remove the stranded memory segment.

acushare -version

This option causes acushare to display its version number.

acushare (with no options)

If acushare is not running and you enter the acushare command without any
options, the following message is displayed:

acushare: not running

If acushare is running and you enter the acushare command without any
options, you will get a detailed report of acushare status and usage.

The following is the output of the acushare server running with two shared
programs:
ACUCOBOL-GT shared memory and license manager version 8.1.0
(2005-04-18)
Copyright (c) 1993-2008, Micro Focus (IP) Ltd.

Server Statistics:
==================

server PID: 19134
IPC key: 0x01010101
shmid: 40370176
listening port: 44659
start date: Tue Apr 19 03:04:34 2005
clients: 2
client deaths: 0

8-8 Shared Memory
message type sent received
-------------- ---------- ----------
HANDSHAKE 8 8
ACK 2 0
INFO 0 2
KILL 0 0
DATA 1 0
LOAD 0 2
ATTACH_FAILED 0 0
LOADED 0 2
UNLOAD 0 0
STATUS_PROGRAM 2 0
USER_ADD 0 2
USER_SUBTRACT 0 0
STATUS_USER 2 0

Shared Program List:
====================

program-id compilation date code size users shmid
---------- ------------------------ --------- ----- --------
PGM1 Thu Nov 18 10:51:22 2004 32 1 40435719
PGM2 Thu Nov 11 09:45:28 2004 32 1 40402950

shared programs in use: 2
total bytes shared: 64
total bytes saved: 0

Product/License List:
=====================

product: ACUCOBOL, SN: real, users: 2/50, processes: 2/4096
 terminal: pts/0, user: mark, processes: 1
 PID: 21188 (0x42650df9), refs: 2, added: Tue Apr 19 06:56:09 2005
 terminal: pts/1, user: mark, processes: 1
 PID: 21190 (0x42650e0e), refs: 2, added: Tue Apr 19 06:56:30 2005

8.4 Runtime Error Handling

The runtime system gracefully handles errors relating to shared code and
license management. If the runtime cannot use shared code for some reason
(such as running out of shared memory), the runtime simply loads the
program into conventional memory and execution continues.

Runtime Error Handling 8-9
If acushare stops running or is stopped while networked runtime processes
are active, the runtime issues a warning message, alerting the user to restart
acushare. If the runtime later detects that acushare has not been restarted,
the runtime exits.

If runtime warning messages are enabled (see the WARNINGS configuration
variable and the “-w” command line option), certain errors cause a warning
message to be printed. These messages include:

“Error sending message to acushare”

The system has returned an error of an unknown nature when it tried to
send a message to acushare. For shared memory, execution usually
continues. If you kill acushare after some processes have attached to
shared memory, those processes continue to use shared memory but
new processes use conventional memory.

“License manager (acushare) is not running”

This is a one-time message warning that the product will exit soon if
acushare is not restarted immediately. It indicates that a multiple-user
license file is in effect, and the product has detected that acushare has
been stopped and not restarted.

“Shared memory and license manager (acushare) is not running”

This indicates either: (1) code sharing has been requested (with the
SHARED_CODE configuration entry), but cannot be implemented
because acushare is not running, or (2) a multiple-user license file is in
effect, and a runtime process cannot register itself with acushare
because acushare is not running. After outputting the message, the
runtime exits.

“The license manager (acushare) has been killed and restarted. You have ex-
ceeded the licensed number of users for ACUCOBOL-GT. If you would like to
add users, please contact your Customer Service representative.”

This message indicates that a process detected that acushare has been
stopped and restarted, so the product attempted to re-register itself.
However, it could not register itself, either because the maximum
number of users has already been reached, or the maximum number of
processes has already been reached.

8-10 Shared Memory
“You have exceeded the licensed number of users for ACUCOBOL-GT. If you
would like to add users, please contact your customer service representative.”

A new process cannot be registered with acushare, either because the
maximum number of users has already been reached, or because the
maximum number of processes has been reached.

Note: If there are no shared memory identifiers, acushare aborts and prints
the following error message:

“acushare: cannot create shared memory”

This message indicates that you do not have enough shared memory
configured in your system. Either your UNIX kernel does not have the
resource configured, or all of the resources are in use by other programs. In
either case, you should regenerate your UNIX kernel for more shared
memory. See your UNIX system documentation.

Index

Numerics
32-bit Windows servers 2-4
32-bit Windows, user-defined keys 2-35
3-D lines and boxes, displaying in Windows 3-6
3D_LINES configuration variable 3-6
4GL_COLUMN_CASE configuration variable 3-7
7_BIT configuration variable 3-7
7-bit communication support 3-7

A
A_DEBUG configuration variable 3-8
A_DISPLAY configuration variable 3-9
A_EXTFH_FUNC configuration variable 3-9
A_EXTFH_IDX_FUNC configuration variable 3-9
A_EXTFH_IDX_LIB configuration variable 3-10
A_EXTFH_LIB configuration variable 3-10
A_EXTFH_REL_FUNC configuration variable 3-9
A_EXTFH_REL_LIB configuration variable 3-10
A_EXTFH_SEQ_FUNC configuration variable 3-9
A_EXTFH_SEQ_LIB configuration variable 3-10
A_LICENSE_RETRIES configuration variable 3-14
A_OPERATING_SYSTEM configuration variable 3-14
A_REMOVE_EMPTY_ERROR_FILE configuration variable 3-15
A_RETRY_DELAY configuration variable 3-15
A_SEQ_DEFAULT_BLOCK_SIZE configuration variable 3-15

and vutil 7-31, 7-32
A_SYSLOG_HOSTNAME configuration variable 3-16
A_SYSLOG_ON_RUNTIME_ERROR configuration variable 3-16
A_TERM and TERM variables, on different systems 2-6
A_TERMCAP variable 2-6

Index-2
A_TMPDIR environment variable 7-75
Abend Diagnostic Report 5-5

ACU_DUMP configuration variable 3-17
ACU_DUMP_FILE configuration variable 3-18
ACU_DUMP_TABLE_LIMIT configuration variable 3-18
ACU_DUMP_WIDTH configuration variable 3-18
configuration variables 5-49
description 5-47
restrictions 5-50

about the runtime debugger menu option 5-38
ACCEPT

color 2-43
debugger command 5-28, 5-36
menu selection command 5-36
methods of accepting a field (Format 1) 2-14
PROMPT SPACES clause with AUTO_PROMPT configuration variable 3-25
Screen Section 2-51
Screen Section item and 2-14
time out, specifying 3-17
undefined location of 2-59

ACCEPT IN HEX
debugger command 5-28, 5-36
menu selection command 5-36

ACCEPT_AUTO configuration variable 3-16
ACCEPT_TIMEOUT configuration variable 3-17
ACTIVE_BORDER_COLOR configuration variable 3-17
ActiveX controls, ignoring events 3-160
ActiveX events, freezing 3-91, 3-92
ACU_DUMP configuration variable 3-17, 5-49
ACU_DUMP_FILE configuration variable 3-18, 5-49
ACU_DUMP_TABLE_LIMIT configuration variable 3-18, 5-50
ACU_DUMP_WIDTH configuration variable 3-18, 5-50
ACU_MON_FILE configuration variable 7-57
ACU_USER_DIR configuration variable 3-19
ACUCOBOL configuration variable 3-19

 Index-3
ACUCOBOL-GT
installation directory path 3-19

acuprof 7-55
flags 7-58
sorting report data 7-58

acuserve, setting time out 3-56
AcuServer

ACUCOBOL configuration variable 3-19
DEFAULT_TIMEOUT configuration variable 3-56
USE_LOCAL_SERVER configuration variable 3-171

acushare 1-4, 8-2
indicating programs to share 8-4
kill 8-6
runtime errors 8-8
starting 8-5

AcuSort environment variables 7-75
AcuSort utility 7-64

command-line format 7-64
comparison expressions 7-71
conditional constants 7-71
data field types 7-66
designating input file and output files 7-68
FIELDS phrase 7-66
instructions 7-65

CHAR-EBCDIC 7-65
GIVE 7-68
INCLUDE 7-70
MERGE 7-66
OMIT 7-70
SIGN-EBCDIC 7-65
SORT 7-66
USE 7-68

KEY phrase 7-69
key types 7-69
log file 7-76

Index-4
substring search 7-72
take file format 7-64
version information 7-65

ACUSORT_FILE_MEMORY environment variable 7-75
ACUSORT_MEMORY environment variable 7-76
ACUSORT_TRACE environment variable 7-76
AcuXML configuration variables

AXML_CREATE_SCHEMA 3-25
AXML_CREATE_STYLE 3-25
AXML_ENCODING 3-26
AXML_EXACT_TABLE_MATCH 3-27
AXML_IGNORE_EMPTY_DATA 3-27
AXML_SCHEMA_DOC 3-27
AXML_SCHEMA_NAME 3-28
AXML_SCHEMA_NAMESPACE_DATA 3-29
AXML_STYLESHEET_HREF 3-29
AXML_STYLESHEET_TYPE 3-29

addresses, specifying in the debugger 5-44
AGS_MAX_SEND_SIZE configuration variable 3-20
AGS_RECEIVE_BUFFER_SIZE configuration variable 3-20
AGS_SEND_BUFFER_SIZE configuration variable 3-20
AGS_SOCKET_COMPRESS configuration variable 3-21
AGS_SOCKET_ENCRYPT configuration variable 3-21
AGS_TCP_NODELAY configuration variable 3-22
alfred (indexed file record editor) 7-50
alias file

CICS and Boomerang 7-83
creating with Boomerang 7-79
DB2 and Boomerang 7-85
Pro*COBOL and Boomerang 7-82
UniKix and Boomerang 7-84

allocating dynamic memory 5-20
ALLOW_FS_OVERRIDE configuration variable 3-22
ALPHA-UPDATES keyword, SCREEN variable 2-46
Alt value, EDIT keyword, KEYSTROKE variable 2-21

 Index-5
Alternate Terminal Manager (ATM) runtime 1-3, 2-4
ANSI

character set 3-88
ANSI_OUTPUT_IN_DEBUG configuration variable 3-23
APPLY_CODE_PATH configuration variable 3-23
APPLY_FILE_PATH configuration variable 3-24
arrow keys, configuring 2-37
ASCII key values, key codes and 2-19
Asian character sets 2-59, 3-44
Asian phonetic characters, displaying ideograms correclty 2-53
asynchronous read for Vision files 3-176
AT-END keyword, KEYSTROKE variable 2-20
ATM runtime 2-4
ATM runtime and TERM and A_TERM 2-7
auto mode, Termination Manager 2-14
auto step command 5-22, 5-39
auto step, debugger 5-14
AUTO_DECIMAL configuration variable 3-24
AUTO_PROMPT configuration variable 2-57, 3-25
Auto-Insert value, EDIT keyword, KEYSTROKE variable 2-21
automatic trailing space removal 3-146
automatic update

download progress dialog 3-154, 3-155
failure 3-147, 3-148, 3-153, 3-160
log file 3-160
query message box 3-148, 3-149
Windows installer interface 3-158

Auto-Prompt
ALPHA-UPDATES keyword and 2-46
EDITED-UPDATES keyword and 2-48

Auto-Prompt phrase
NUMERIC-UPDATES keyword and 2-52

AXML_CREATE_SCHEMA configuration variable 3-25
AXML_CREATE_STYLE configuration variable 3-25
AXML_ENCODING configuration variable 3-26

Index-6
AXML_EXACT_TABLE_MATCH configuration variable 3-27
AXML_SCHEMA_DOC configuration variable 3-27
AXML_SCHEMA_NAME configuration variable 3-28
AXML_SCHEMA_NAMESPACE_DATA configuration variable 3-29
AXML_STYLESHEET_HREF configuration variable 3-29
AXML_STYLESHEET_TYPE configuration variable 3-29
AXML-IGNORE-EMPTY-DATA configuration variable 3-27

B
baackground color, assigning 2-43
background brush 3-190
background debugging

XTERM_PROGRAM config variable 3-200
BACKGROUND_INTENSITY configuration variable 3-30
backspace key 2-12, 2-34

left arrow key and 2-38
Backspace value, EDIT keyword, KEYSTROKE variable 2-22
backup, vio archive utility 7-41
BELL configuration variable 2-57
BELL runtime configuration variable 3-31
binary sequential files

creating an indexed file from 7-32
uploading from Vision files 7-30

BITMAP control, V52_BITMAP configuration variable 3-184
blocking factor, setting with vutil 7-16
Boomerang 7-77

alias file 7-79
CICS alias creation 7-83
client-side commands 7-90
client-side operation 7-89
configuration 7-87
DB2alias creation 7-85
INCLUDE files 7-92

 Index-7
Pro*COBOL alias 7-82
server commands 7-88
server setup 7-78
UniKix alias 7-84

border attributes, specifying on character-based hosts 3-17
BOXED_FLOATING_WINDOWS configuration variable 3-31
breakpoints 5-6

clearing 5-34
conditional 5-33
menu 5-31
saving 5-31
threads 5-23
viewing 5-11, 5-19

Btrieve file, using in exclusive mode 3-31
BTRV_MASS_UPDATE configuration variable 3-31
BTRV_NOWRITE_WAIT configuration variable 3-32
BTRV_USE_REPEAT_DUPS configuration variable 3-32
BUFFERED_SCREEN configuration variable 3-32
buffers, V_BUFFERS configuration variable 3-174
bulk addition, logging rejected records 3-61

C
C subroutines

DLL_SUB_INTERFACE configuration variable 3-58
C$JAVA library routine 3-104
C$JAVA routine 3-128
cache setting for HTML output from CGI programs 3-37
CALL performance

OPTIMIZE_INDIVIDUAL_LINKAGE 3-126
CALL, CHAIN, and CANCEL names, modifying at runtime 3-41
CALL, loading object libraries 7-2
CALL_HASH_SIZE configuration variable 3-33
calling conventions, specifying for DLLs 3-42, 3-58

Index-8
CANCEL ALL statement, changing the default behavior of 3-33
CANCEL_ALL_DLLS configuration variable 3-33
carriage control characters, treatment in LINE SEQUENTIAL data files 3-33
CARRIAGE_CONTROL_FILTER configuration variable 3-33
case

leaving case in XFDs unchanged 3-7
UPPER_LOWER_MAP configuration variable 3-169

CASE keyword, KEYBOARD variable 2-16
CBLHELP configuration variable 3-34
cblutil program 7-3

object file information command 7-6
object information 7-6
object library options 7-4
options, -native 7-7

cell grid, displaying in a window (debugging aid) 3-193
CGI (Common Gateway Interface)

runtime 1-3
setting the HTML output cache option 3-37

CGI programs
caching HTML output to requesting client 3-37
removing carriage return characters in HTML TEXTAREAS 3-37
suppressing HTML header 3-35

CGI_AUTO_HEADER configuration variable 3-35
CGI_CLEAR_MISSING_VALUES configuration variable 3-35
CGI_CONTENT_TYPE configuration variable 3-35
CGI_NO_CACHE configuration variable 3-37
CGI_STRIP_CR configuration variable 3-37
CHAIN_MENUS configuration variable 3-38
changes affecting previous versions of the runtime and compiler

changes affecting Version 7.1
font widths 3-186

--char2gui runtime option 4-4
character encoding, CGI content 3-36
character mapping

map file 3-56, 3-158

 Index-9
server_MAP_FILE configuration variable 3-137
character sets

Asian 2-59
character-based applications, when moving to graphical environments

color transformations 3-49
performing uniform color scheme changes 3-45
transforming color combinations 3-47

character-based emulation of windows and controls 2-78
character-based hosts

border attributes 3-17
displaying floating windows 3-31
distinguishing enabled screen controls 3-57
emulating graphical controls 3-93
specifying attributes of inactive floating window border 3-100

characters, double-byte 2-59
Character-to-GUI Wizard 4-4
CHAR-EBCDIC instruction 7-65
charset, CGI content 3-36
CHECK_USING configuration variable 3-38
CHECK-NUMBERS keyword, KEYBOARD variable 2-17
CICS, Boomerang alias creation 7-83
CICS, USE_CICS configuration variable 3-170
C-ISAM files, converting with vutil 7-35
CISAM_COMPRESS_KEYS configuration variable 3-39
clear all breakpoints debugger command 5-12, 5-34
clear all monitors debugger command 5-31
clear all variable monitors debugger command 5-12
clear all watches debugger command 5-12
clear breakpoint debugger command 5-11, 5-34
clear monitor debugger command 5-30
clear variable monitor debugger command 5-12
CLOSE_ON_EXIT configuration variable 3-39
COBLPFORM routine 3-40
COBOL statement to screen display, described 2-41
code file search 3-70

Index-10
code sharing 8-3
CODE_CASE configuration variable 3-40
CODE_MAPPING configuration variable 3-41
CODE_PREFIX configuration variable 3-23, 3-43
CODE_SUFFIX configuration variable 3-43
CODE_SYSTEM configuration variable 3-44
CODE_SYSTEM runtime configuration variable 2-53
color

adding to monochrome displays 2-42
assigning with COLOR-MAP 3-45
disabling on MS-DOS 2-58
setting foreground and background 2-73
terminal can display only one color at a time 2-74
values, list of 3-47

color map, and SET ENVIRONMENT 2-45
color values for ERROR-COLOR keyword 2-49
COLOR_MAP configuration variable 2-42, 3-2, 3-45
COLOR_MODEL configuration variable 3-45
COLOR_TABLE configuration variable 3-2, 3-47
COLOR_TRANS configuration variable 3-49
COLUMN clause in Screen Section, ICOBOL compatibility 3-136
COLUMN_SEPARATION configuration variable 3-50
columns, and horizontal scroll 2-55
combo box drop-down list 2-27
comment field in a Vision file 7-40
comparison expressions 7-71
compiler options, warning message suppression 4-8
COMPRESS_FACTOR configuration variable 3-50
COMPRESS_FILES configuration variable 3-50
compression factor, option to set 7-36, 7-38
computing character width in Windows 3-186
COND phrase 7-70
configuration file

embedded in object 4-7
runtime option for listing of 4-11

 Index-11
specifying an alternate 4-4
configuration file, overriding 2-11
configuration files

names 3-5
nested 3-5
rules 3-4

configuration varaibles
USE_EXECUTABLE_MEMORY 3-170

configuration variables
3D_LINES 3-6
4GL_COLUMN_CASE 3-7
7_BIT 3-7
A_DEBUG 3-8
A_DISPLAY 3-9
A_EXTFH_FUNC 3-9
A_EXTFH_IDX_FUNC 3-9
A_EXTFH_IDX_LIB 3-10
A_EXTFH_LIB 3-10
A_EXTFH_REL_FUNC 3-9
A_EXTFH_REL_LIB 3-10
A_EXTFH_SEQ_FUNC 3-9
A_EXTFH_SEQ_LIB 3-10
A_LICENSE_RETRIES 3-14
A_OPERATING_SYSTEM 3-14
A_RETRY_DELAY 3-15
ACCEPT_AUTO 3-16
ACCEPT_TIMEOUT 3-17
ACTIVE_BORDER_COLOR 3-17
ACU_DUMP 3-17
ACU_DUMP_FILE 3-18
ACU_DUMP_TABLE_LIMIT 3-18
ACU_DUMP_WIDTH 3-18
ACU_USER_DIR 3-19
ACUCOBOL 3-19
AGS_MAX_SEND_SIZE 3-20

Index-12
AGS_RECEIVE_BUFFER_SIZE 3-20
AGS_SEND_BUFFER_SIZE 3-20
AGS_SOCKET_COMPRESS 3-21
AGS_SOCKET_ENCRYPT 3-21
AGS_TCP_NODELAY 3-22
APPLY_CODE_PATH 3-23
APPLY_FILE_PATH 3-24
AUTO_DECIMAL 3-24
AUTO_PROMPT 3-25
AXML_CREATE_SCHEMA 3-25
AXML_CREATE_STYLE 3-25
AXML_ENCODING 3-26
AXML_EXACT_TABLE_MATCH 3-27
AXML_SCHEMA_DOC 3-27
AXML_SCHEMA_NAME 3-28
AXML_SCHEMA_NAMESPACE_DATA 3-29
AXML_STYLESHEET_HREF 3-29
AXML_STYLESHEET_TYPE 3-29
AXML-IGNORE-EMPTY-DATA 3-27
BACKGROUND_INTENSITY 3-30
BELL 3-31
BOXED_FLOATING_WINDOWS 3-31
BTRV_MASS_UPDATE 3-31
BTRV_NOWRITE_WAIT 3-32
BTRV_USE_REPEAT_DUPS 3-32
BUFFERED_SCREEN 3-32
C_ISAM_COMPRESS_KEYS 3-39
CALL_HASH_SIZE 3-33
CANCEL_ALL_DLLS 3-33
CARRIAGE_CONTROL_FILTER 3-33
CBLHELP 3-34
CGI_AUTO_HEADER 3-35
CGI_CONTENT_TYPE 3-35
CGI_NO_CACHE 3-37
CGI_STRIP_CR 3-37

 Index-13
CHAIN_MENUS 3-38
CHECK_USING 3-38
CISAM_COMPRESS_KEYS 3-39
CODE_CASE 3-40
CODE_MAPPING 3-41
CODE_PREFIX 3-43
CODE_SUFFIX 3-43
CODE_SYSTEM 3-44
COLOR_MAP 3-45
COLOR_MODEL 3-45
COLOR_TABLE 3-47
COLOR_TRANS 3-49
COLUMN_SEPARATION 3-50
COMPRESS_FACTOR 3-50
COMPRESS_FILES 3-50
CONTROL_CREATION_EVENTS 3-51
controling behavior of the terminal with 2-8
CURRENCY 3-51
CURSOR_MODE 3-51
CURSOR_TYPE 3-52
DEBUG_NEWCOPY 3-52
DECIMAL_POINT 3-53
DEFAULT_FILESYSTEM 3-53, 3-79
DEFAULT_FONT 3-54
DEFAULT_HOST 3-55, 3-79
DEFAULT_IDX_FILESYSTEM 3-53
DEFAULT_MAP_FILE 3-56
DEFAULT_PROGRAM 3-56
DEFAULT_REL_FILESYSTEM 3-53
DEFAULT_SEQ_FILESYSTEM 3-53
DEFAULT_TIMEOUT 3-56
defining and displaying in the debugger 5-45
described 3-6
DISABLED_CONTROL_COLOR 3-57
display related 2-57

Index-14
DISPLAY_SWITCH_PERIOD 3-57
DLL_CONVENTION 3-58
DLL_SUB_INTERFACE 3-58
DLL_USE_SYSTEM_DIR 3-59
DOS_BOX_CHARS 3-59
DOS_SYS_EMULATE 3-60
DOUBLE_CLICK_TIME 3-60
DUPLICATES_LOG 3-61
DYNAMIC_MEMORY_LIMIT 3-63
EDIT_MODE 3-64
EF_UPPER_WIDE 3-64
EF_WIDE_SIZE 3-64
EOF_ABORTS 3-64
EOL_CHAR 3-65
ERRORS_OK 3-65
EXIT_CURSOR 3-66
EXPAND_ENV_VARS 3-66, 3-71
EXTEND_CREATES 3-67
EXTERNAL_SIZE 3-67
EXTFH_KEEP_TRAILING_SPACES 3-67
EXTRA_KEYS_OK 3-68
F10_IS_MENU 3-68
FAST_ESCAPE 3-69
FIELDS_UNBOXED 3-69
FILE_ALIAS_PREFIX 3-70
FILE_CASE 3-72
FILE_CONDITION 3-72
FILE_IO_PEEKS_MESSAGES 3-73
FILE_IO_PROCESSES_MESSAGES 3-73
FILE_PREFIX 3-74
FILE_STATUS_CODES 3-75
FILE_SUFFIX 3-75
FILE_TRACE 3-75
FILE_TRACE_FLUSH 3-76
FILE_TRACE_TIMESTAMP 3-76

 Index-15
filename 3-76
filename_DATA_FMT 3-77
filename_INDEX_FMT 3-80
filename_LOG 3-82
FILENAME_SPACES 3-82
filename_VERSION 3-83
filesystem_DETACH 3-84
FLUSH_ALL 3-85
FLUSH_COUNT 3-86
FLUSH_ON_ACCEPT 3-87
FLUSH_ON_CLOSE 3-87
FLUSH_ON_COMMIT 3-87
FLUSH_ON_OPEN 3-87
FONT 3-88
FONT_AUTO_ADJUST 3-89
FONT_SIZE_ADJUST 3-89
FONT_WIDE_SIZE_ADJUST 3-90
FOREGROUND_INTENSITY 3-91
FREEZE_AX_EVENTS 3-91
FULL_BOXES 3-92
GRID_BUTTONS_CAUSE_GOTO 3-93
GUI_CHARS 3-93
HELP_PROGRAM 3-94
HINTS_OFF 3-95
HINTS_ON 3-95
HOT_KEY 3-95
HTML_TEMPLATE_PREFIX 3-98
ICOBOL_FILE_SEMANTICS 3-98
ICON 3-99
IMPORT_USES_CELL_SIZE 3-99
INACTIVE_BORDER_COLOR 3-100
INPUT_STATUS_DEFAULT 3-100
INSERT_MODE 3-101
INTENSITY_FLAGS 3-101
IO_CREATES 3-102

Index-16
IO_READ_LOCK_TEST 3-103
ISOLATE_FILE_CREATES 3-103
JAVA_LIBRARY_NAME 3-104
JAVA_OPTIONS 3-104
JUSTIFY_NUM_FIELDS 3-104
KEY_MAP 3-105
KEYBOARD 3-105
KEYSTROKE 3-105
LISTS_UNBOXED 3-110
LITERAL_ENTRY 3-110
LOCK_DIR 3-110
LOCK_OUTPUT 3-111
LOCK_SORT 3-111
LOCKING_RETRIES 3-111
LOCKS_PER_FILE 3-111
LOG_BUFFER_SIZE 3-112
LOG_DEVICE 3-112
LOG_DIR 3-112
LOG_ENCRYPTION 3-112
LOG_FILE 3-113
LOGGING 3-113
LOGICAL_CANCELS 3-113
MAKE_ZERO 3-114
MASS_UPDATE 3-114
MAX_ERROR_AND_EXIT_PROCS 3-115
MAX_ERROR_LINES 3-115
MAX_FILES 3-116
MAX_LOCKS 3-116
MENU_ITEM 3-116
MESSAGE_BOX_COLOR 3-117
MESSAGE_QUEUE_SIZE 3-117
MIN_REC_SIZE 3-117
MONOCHROME 3-118
MOUSE 3-118
MOUSE_FLAGS 3-121

 Index-17
NO_BARE_KEY_LETTERS
alt key

NO_BARE_KEY_LETTERS 3-124
NO_CONSOLE 3-122
NO_LOG_FILE_OK 3-122
NO_TRANSACTIONS 3-122
NT_OPP_LOCK_STATUS 3-123
NUMERIC_VALIDATION 3-125
OLD_ARIAL_DIMENSIONS 3-125
OPEN_FILES_ONCE 3-125
OPTIMIZE_CONTROL_RESIZE 3-126
OPTIMIZE_INDIVIDUAL_LINKAGE 3-126
PAGE_EJECT_ON_CLOSE 3-126
PERFORM_STACK 3-127
PRELOAD_JAVA_LIBRARY 3-128
PROMPTING 3-128
QUEUE_READERS 3-129
QUIT_MODE 3-129
QUIT_ON_FATAL_ERROR 3-131
RECURSION 3-131
RECURSION_DATA_GLOBAL 3-133
REL_DELETED_VALUE 3-133
RENEW_TIMEOUT 3-134
RESIZE_FRAMES 3-134
RESIZE_FREELY 3-134
RESTRICTED_VIDEO_MODE 3-135
RMS_NATIVE_KEYS 3-135
SCREEN 3-135
SCREEN_COL_PLUS_BASE 3-136
SCRIPT_STATUS 3-136
SCROLL 3-137
server_MAP_FILE 3-137
SHARED_CODE 3-139
SHARED_LIBRARY_EXTENSION 3-141
SHARED_LIBRARY_LIST 3-58, 3-141

Index-18
SHUTDOWN_MESSAGE_BOX 3-143
SORT_DIR 3-143
SORT_FILES 3-143
SORT_MEMORY 3-144
SPACES_ZERO 3-144
SPOOL_FILE 3-144
STD_FIXED_FONT 3-145
STOP_RUN_ROLLBACK 3-146
STRIP_TRAILING_SPACES 3-146
SWITCH_PERIOD 3-146
SYSINTR_NAME 3-147
TC_AUTO_UPDATE_FAILED_MESSAGE 3-147
TC_AUTO_UPDATE_FAILED_TITLE 3-147
TC_AUTO_UPDATE_NOTIFY_FAIL 3-148
TC_AUTO_UPDATE_QUERY 3-148
TC_AUTO_UPDATE_QUERY_MESSAGE 3-148
TC_AUTO_UPDATE_QUERY_TITLE 3-149
TC_AX_EVENT_LIST 3-149
TC_CHECK_ALIVE_INTERVAL 3-150
TC_CHECK_INSTALLER_TIMESTAMP 3-150
TC_CONTINUITY_WINDOW 3-150
TC_CONTROL_SYNC_LEVEL 3-151
TC_DELAY_ACTIVATE 3-152
TC_DELAY_PRE_EVENT_OPS 3-153
TC_DISABLE_AUTO_UPDATE 3-153
TC_DISABLE_SERVER_LOG 3-153
TC_DOWNLOAD_CANCEL_MESSAGE 3-154
TC_DOWNLOAD_DESCRIPTION 3-154
TC_DOWNLOAD_DIALOG 3-155
TC_DOWNLOAD_DIALOG_TITLE 3-155
TC_EVENT_LIST 3-155
TC_EXCLUDE_EVENT_LIST 3-156
TC_INSTALLER_ARGS 3-156
TC_INSTALLER_CLIENT_FILE 3-156
TC_INSTALLER_RUN_ASYNC 3-157

 Index-19
TC_INSTALLER_SERVER_FILE 3-157
TC_INSTALLER_TARGET_DIR 3-157
TC_INSTALLER_UI_LEVEL 3-158
TC_MAP_FILE 3-158
TC_NESTED_AX_EVENTS 3-158
TC_QUIT_MODE 3-159
TC_REQUIRES_BUILD_NUMBER 3-159
TC_RESTRICT_AX_EVENTS 3-160
TC_SERVER_LOG_FILE 3-160
TC_SERVER_TIMEOUT 3-161
TC_TV_SELCHANGING 3-161
TEMP_DIR 3-162
TEMPORARY_CONTROLS 3-162
TEXT 3-163
TRACE_STYLE 3-166
TRANSLATE_TO_ANSI 3-166
TREE_ROOT_SPACE 3-167
TREE_TAB_SIZE 3-168
TRX_HOLDS_LOCKS 3-168
UPPER_LOWER_MAP 3-169
USE_CICS 3-170
USE_EXTSM 3-171
USE_LARGE_FILE_API 3-171
USE_LOCAL_SERVER 3-171
USE_MPE_REDIRECTION 3-171
USE_MQSERIES 3-172
USE_SYSTEM_QSORT 3-172
V_BASENAME_TRANSLATION 3-173
V_BUFFER_DATA 3-174
V_BUFFERS 3-174
V_BULK_MEMORY 3-174
V_FORCE_OPEN 3-175
V_INDEX_BLOCK_PERCENT 3-175
V_INTERNAL_LOCKS 3-176
V_LOCK_METHOD 3-176

Index-20
V_MARK_READ_CORRUPT 3-179
V_NO_ASYNC_CACHE_DATA 3-179
V_OPEN_STRICT 3-180
V_READ_AHEAD 3-180
V_SEG_SIZE 3-180
V_STRIP_DOT_EXTENSION 3-181
V_VERSION 3-181
V23_GRAPHICS_CHARACTERS 3-182
V30_MEASUREMENTS 3-182
V31_FLOATING_POINT 3-182
V42_FLOATING_POINT 3-183
V43_PRINTER_CELLS 3-183
V52_BITMAPS 3-184
V52_GRID_GOTO 3-184
V60_LIST_VALUE 3-184
V62_MAX_WINDOW 3-185
V70_ALIGNED_ENTRY_FIELD 3-186
V71_FONT_WIDTHS 3-186
WAIT_FOR_ALL_PIPES 3-187
WAIT_FOR_FILE_ACCESS 3-187
WAIT_FOR_LOCKS 3-188
WARNING_ON_RECURSIVE_ACCEPTS 3-190
WARNINGS 3-189
WHITE_FILL 3-190
WIN_ERROR_HANDLING 3-191
WIN_F4_DROPS_COMBOBOX 3-191
WIN_SPOOLER_PORT 3-192
WIN3_CLIP_CONTROLS 3-192
WIN3_EF_PADDED 3-193
WIN3_GRID 3-193
WIN32_3D 3-194
WIN32_CTL_INPUT_STATUS 3-195
WIN32_NATIVECTLS 3-195
WINDOW_INTENSITY 3-196
WINDOW_TITLE 3-196

 Index-21
WINPRINT_NAMES_ONLY 3-197
WRAP 3-198
XFD_DIRECTORY 3-198
XFD_PREFIX 3-199
XTERM_PROGRAM 3-200

configuration variables, list of
ACU_DUMP 5-49
ACU_DUMP_FILE 5-49
ACU_DUMP_TABLE_LIMIT 5-50
ACU_DUMP_WIDTH 5-50
ACU_MON_FILE 7-57
AUTO_PROMPT 2-57
BELL 2-57
CODE_SYSTEM 2-53
COLOR_MAP 2-42, 3-2
COLOR_TABLE 3-2
DEFAULT_PROGRAM 4-2
F10_IS_MENU 2-37
FILE_CONDITION 3-2
HOT_KEY 3-2
KBD_AUTO_RETURN 2-16
KBD_CASE 2-17
KBD_CHECK_NUMBERS 2-17
KBD_CURSOR_PAST_END 2-17
KBD_DATA_RANGE_HIGH 2-18
KBD_DATA_RANGE_LOW 2-18
KBD_EXCEPTION_RANGE_HIGH 2-18
KBD_EXCEPTION_RANGE_LOW 2-18
KBD_IMPLIED_DECIMAL 2-18
KBD_RM_2_DEFAULT_HANDLING 2-19
KBD_SCREEN_DEFAULT 2-19
KEYBOARD 2-16, 3-2
KEYSTROKE 2-16, 2-18, 2-19, 3-2
LOCKS_PER_FILE 6-7
LOG_DIR 6-15

Index-22
MAKE_ZERO 4-15
MAX_LOCKS 6-7
MENU_ITEM 3-2
MONOCHROME 2-57, 2-58
MOUSE 3-2
RESTRICTED_VIDEO_MODE 2-58, 2-61
SCREEN 2-45, 3-2
SCREEN ERROR-LINE 2-49
SCRN_ALPHA_AUTO_PROMPT 2-46
SCRN_ALPHA_UPDATES 2-46
SCRN_CONVERT_OUTPUT 2-46
SCRN_EDITED_AUTO_PROMPT 2-48
SCRN_EDITED_UPDATES 2-48
SCRN_ERROR_BELL 2-48
SCRN_ERROR_BOX 2-49
SCRN_ERROR_COLOR 2-50
SCRN_ERROR_LINE 2-50
SCRN_FORM_FEED 2-50
SCRN_INPUT_DISPLAY 2-51
SCRN_INPUT_MODE 2-51
SCRN_JUSTIFY 2-51
SCRN_NUMERIC_AUTO_PROMPT 2-52
SCRN_NUMERIC_UPDATES 2-52
SCRN_PROMPT 2-52
SCRN_PROMPT_ALL 2-52
SCRN_PROMPT_ATTR 2-53
SCRN_PROMPT_DEFAULT 2-52
SCRN_REFRESH_LINES 2-53
SCRN_REFRESH_MODE 2-54
SCRN_SHADOW_STYLE 2-55
SCRN_SIZE_COLS 2-55
SCRN_SIZE_ROWS 2-55
SCRN_WARN 2-48
SCRN_WINDOW_X 2-56
SCRN_WINDOW_Y 2-56

 Index-23
SCROLL 2-57, 2-58
WARNINGS 4-15
WRAP 2-57, 2-59

confiuration variables
LICENSE_ERROR_MESSAGE_BOX 3-110

console runtime 1-3
content type, MIME 3-36
contents command 5-38
continue command 5-21
CONTROL KEY clause 2-14, 2-16, 2-18, 2-28, 2-31
CONTROL KEY clause, AT-END condition and 2-20
control keys, how to define 2-34
CONTROL_CREATION_EVENTS configuration variable 3-51
Control-L, using for a form feed 2-50
controls

character-based emulation, default characters 2-78
emulation on character-based systems 2-78
key letter, treatment in text mode 2-79
optimizing resize requests 3-126
redisplaying a moved control 2-80
screen repainting with WIN3_CLIP_CONTROLS 3-192
TEMPORARY_CONTROLS configuration variable 3-162
text-mode configuration variables

ACTIVE_BORDER_COLOR 3-17
BOXED_FLOATING_WINDOWS 3-31
FULL-BOXES 3-92
GUI_CHARS 3-93
INACTIVE_BORDER_COLOR 3-100
MESSAGE_BOX_COLOR 3-117
PROMPTING 3-128
RESIZE_FRAMES 3-134
SHUTDOWN_MESSAGE_BOX 3-143

CONVERT phrase
numeric data and 2-17

CONVERT phrase, and JUSTIFY keyword 2-51

Index-24
Converted value, EDITED-UPDATES keyword 2-47
converting

C-ISAM files 7-35
Micro Focus Files 7-37

CONVERT-OUTPUT keyword, SCREEN variable 2-46
creating

empty files 7-24
object libraries 7-3
remote object libraries 7-5

CRT STATUS phrase 2-15
CURRENCY configuration variable 3-51
current line command 5-24
cursor

defining appearance of 3-52
mouse handling in source-level debugging 5-7
position after STOP RUN 3-66
position within field 3-119
setting visibility of 3-51
undefined state 2-59

CURSOR_MODE configuration variable 3-51
CURSOR_TYPE configuration variable 3-52
CURSOR-PAST-END 2-17
CURSOR-PAST-END keyword, KEYBOARD variable 2-17

D
-d runtime option, to start debugger 5-5
data compression, AGS_SOCKET_COMPRESS variable 3-21
data encryption, AGS_SOCKET_ENCRYPT variable 3-21
data execution protection

USE_EXECUTABLE_MEMORY 3-170
data field types 7-66
data file names, adjusting the case of 3-72
data file search 3-70

 Index-25
data files, searching directories for 3-74
DATA keyword, KEYSTROKE variable 2-20
Data menu in debugger 5-26
data sharing in recursively called programs 3-133
data validation, NUMERIC_VALIDATION configuration variable 3-125
data, large data handling on UNIX 3-171
DATA-RANGE keyword, KEYBOARD variable 2-17
DB2, Boomerang alias creation 7-85
DBCS 2-59, 3-44
dd_SYSOUT environment variable 7-77
DEBUG_NEWCOPY configuration variable 3-52
debugger 5-2

activating the System menu 5-8
command function keys 5-37
configuration variables, setting and displaying 5-45
cursor position in source code 5-24
entering 5-5
exiting 5-18
file tracing option 5-40, 5-42
FILE_TRACE configuration variable 3-75
FILE_TRACE_FLUSH configuration variable 3-76
FILE_TRACE_TIMESTAMP configuration variable 3-76
low-level debugging 5-4
macros 5-43
multithreading issues 5-15
name qualification 5-45
running the under windows 5-5
screen tracing option 5-42
scrolling down 5-37
scrolling up 5-36
searches 5-24
source debugging 5-3
specifying addresses 5-44
specifying program addresses 5-46
specifying variables 5-44

Index-26
symbolic debugging 5-4
three modes 5-3
toolbar 5-38
using in background mode 5-4
using mouse with 5-7
using with application servers 5-4

debugger commands 5-8
debugger menus

breakpoints 5-31
data 5-26
file 5-16
help 5-38
monitor submenu 5-28
run 5-21
selection 5-34
source 5-23
view 5-19

debugger restrictions 5-46
debugger scroll bar 5-3
debugger window 5-5
debugging mode 4-5
debugging, displaying a character cell grid 3-193
decimal ASCII 2-28
DECIMAL_POINT configuration variable 3-53
default exception handling, range of 2-18
default font, determining 3-54
default host, designating 3-55
default program, designating 3-56
default prompt character, specifying 2-52
DEFAULT_FILESYSTEM configuration variable 3-53, 3-79
DEFAULT_FONT configuration variable 3-54
DEFAULT_HOST configuration variable 3-55, 3-79
DEFAULT_IDX_FILESYSTEM configuration variable 3-53
DEFAULT_MAP_FILE configuration variable 3-56
DEFAULT_PROGRAM configuration variable 3-56, 4-2

 Index-27
DEFAULT_REL_FILESYSTEM configuration variable 3-53
DEFAULT_SEQ_FILESYSTEM configuration variable 3-53
DEFAULT_TIMEOUT configuration variable 3-56
Default-Entry value, EDIT keyword, KEYSTROKE variable 2-21, 2-22
Default-Next value, EDIT keyword, KEYSTROKE variable 2-21, 2-22
defining your terminal 2-7
DEL key 2-34
DEL key, assigning a value to 2-19
Delete value, EDIT keyword, KEYSTROKE variable 2-22
deleted records, recovering 7-23
device locking, under UNIX 3-110
disable at cursor line debugger command 5-34
DISABLED_CONTROL_COLOR configuration variable 3-57
DISPLAY

color 2-43
Screen Section and CONVERT-OUTPUT 2-46
undefined location 2-59

display
attributes, order of precedence 2-44
configuring 2-41

display command
data menu 5-12, 5-26
selection menu 5-35

display debugger command 5-26, 5-35
display in hex debugger command

data menu 5-27
selection menu 5-35

display interface 2-41
display themes 3-195
DISPLAY, and form feeds 2-50
DISPLAY_SWITCH_PERIOD configuration variable 3-57
DLL calling conventions 3-42
DLL_CONVENTION configuration variable 3-58
DLL_SUB_INTERFACE configuration variable 3-58
DLL_USE_SYSTEM_DIR configuration variable 3-59

Index-28
DLLs
setting the sub interface routine under Windows 3-58
specifying calling conventions for 3-58

DOS_BOX_CHARS configuration variable 3-59
DOS_SYS_EMULATE configuration variable 3-60

Windows Console runtime 3-60
DOS-box, redefining line drawing characters 3-59
DOUBLE_CLICK_TIME configuration variable 3-60
double-byte characters

code system 3-44
handling 2-59

Down key default 2-25
Down value, EDIT keyword, KEYSTROKE variable 2-21, 2-22
Down, in debugger 5-37
download progress dialog, automatic update 3-154, 3-155
duplicate records

with vutil 7-33
DUPLICATES_LOG configuration variable 3-61
dynamic link library (DLL), Windows runtime 1-2
dynamic memory, allocating with M$ALLOC 5-20
DYNAMIC_FUNCTION_CALLS configuration variable 3-61
DYNAMIC_MEMORY_LIMIT configuration variable 3-63

E
EDIT keyword values, table of 2-21
EDIT keyword, KEYSTROKE variable 2-20
EDIT values, listed 2-20
EDIT_MODE configuration variable 3-64
EDITED-UPDATES keyword, SCREEN variable 2-47
EF_UPPER_WIDE configuration variable 3-64
EF_WIDE_SIZE configuration variable 3-64
--embedded-config-file compiler option 4-7
emulation of graphical controls on character-based systems 2-78

 Index-29
enable at cursor line debugger command 5-34
encoding, character, CGI content 3-36
End value, EDIT keyword, KEYSTROKE variable 2-22
entries

converting all to upper or lower case 2-16
entry errors, causing an error box to appear when occur 2-49
entry field control, wheel mouse behavior 3-186
ENTRY point, name matching logic 3-110
ENTRY-FIELD control

computing UPPER style 3-64
EF_UPPER_WIDE configuration variable 3-64
EF_WIDE_SIZE configuration variable 3-64
FIELDS_UNBOXED configuration variable 3-69
globally removing boxes on 3-69
justifying numeric fields 3-104
setting boundary size 3-64

EOF_ABORTS configuration variable 3-64
EOL_CHAR configuration variable 3-65
Erase-All value, EDIT keyword, KEYSTROKE variable 2-23
Erase-EOS value, EDIT keyword, KEYSTROKE variable 2-23
Erase-Field value, EDIT keyword, KEYSTROKE variable 2-23
Erase-Next value, EDIT keyword, KEYSTROKE variable 2-23
Erase-to-End value, EDIT keyword, KEYSTROKE variable 2-23
error 98

codes 6-13
opening broken files 3-175

error bell, configuring 2-48
error codes

IBM DOS/VS COBOL 6-17
primary errors for transactions 6-15
secondary error codes for error 98s 6-13
secondary errors for transactions 6-16
transactions 6-14

error files
file trace feature of debugger 3-75

Index-30
flush file trace data 3-76
timestamp data 3-76

error handling
hardware 3-191

error output 4-6
ERROR-BELL keyword, SCREEN variable 2-48
ERROR-BOX keyword, SCREEN variable 2-49
ERROR-COLOR keyword, SCREEN variable 2-49
ERROR-LINE keyword, SCREEN variable 2-50
errors and acushare 8-8
ERRORS_OK configuration variable 3-65
escape key, setting the "wait time" in runtime 3-69
examining file information 7-10
exception characters, default range of 2-12
EXCEPTION clause 2-18, 2-28
exception handling, default range of 2-18
exception keys 2-14
exception keys, creating 2-28
EXCEPTION keyword 2-20
EXCEPTION keyword, KEYSTROKE variable 2-28
EXCEPTION-RANGE keyword, KEYBOARD variable 2-18
exit debugger debugger command 5-18
EXIT_CURSOR configuration variable 3-66
EXPAND_ENV_VARS configuration variable 3-66, 3-71
EXTEND_CREATES configuration variable 3-67
external data, setting minimum size of pools 3-67
external sort function 7-64
external sort, USE_EXTSM 3-171
EXTERNAL_SIZE configuration variable 3-67
EXTFH

A_EXTFH_FUNC configuration variable 3-9
A_EXTFH_IDX_FUNC configuration variable 3-9
A_EXTFH_IDX_LIB configuration variable 3-10
A_EXTFH_LIB configuration variable 3-10
A_EXTFH_REL_FUNC configuration variable 3-9

 Index-31
A_EXTFH_REL_LIB configuration variable 3-10
A_EXTFH_SEQ_FUNC configuration variable 3-9
A_EXTFH_SEQ_LIB configuration variable 3-10

EXTFH_KEEP_TRAILING_SPACES configuration variable 3-67
EXTRA_KEYS_OK configuration variable 3-68
extracting records from a file 7-22

F
F10_IS_MENU configuration variable 2-37, 3-68
FAST_ESCAPE configuration variable 3-69
FIELDS phrase 7-66
fields, excluding from mouse selection 3-119
FIELDS_UNBOXED configuration variable 3-69
file error 30, runtime option 4-15
file errors 6-2

allowing the runtime to continue 3-65
file format, setting file-by-file 3-83
file handling

automatically closing files 3-39
file integrity 7-12
file memory debugger command 5-20
file menu in debugger 5-16
file segment, setting with V_SEG_SIZE 3-180
file size, summary report 7-35
file status codes 6-2

determining 3-75
different standards (table) 6-2

file status condition, altering file status value 3-72
file system

designating 3-79
detaching from runtime 3-84

file tracing 5-40, 5-42
FILE_TRACE configuration variable 3-75

Index-32
FILE_TRACE_FLUSH configuration variable 3-76
FILE_TRACE_TIMESTAMP configuration variable 3-76
flushing output 5-41
timestamps 5-41

file utilities
vio 7-41
vutil 7-9

FILE_ALIAS_PREFIX configuration variable 3-70
FILE_CASE configuration variable 3-72
FILE_CONDITION configuration variable 3-2, 3-72
FILE_IO_PEEKS_MESSAGES configuration variable 3-73
FILE_IO_PROCESSES_MESSAGES configuration variable 3-73
FILE_PREFIX configuration variable 3-74

applying to files with full path names 3-24
FILE_STATUS_CODES configuration variable 3-75
FILE_SUFFIX configuration variable 3-75
FILE_TRACE configuration variable 3-75, 5-41
FILE_TRACE_FLUSH configuration variable 3-76
FILE_TRACE_TIMESTAMP configuration variable 3-76, 5-42
filename configuration variable 3-76
filename_DATA_FMT configuration variable 3-77
filename_INDEX_FMT configuration variable 3-80
filename_LOG configuration variable 3-82
FILENAME_SPACES configuration variable 3-82
filename_VERSION configuration variable 3-83
filenames

adjusting case of data file names 3-72
adjusting case of object file names 3-40
appending suffixes to 3-43
embedded spaces in 3-82

files
appending suffixes to names 3-75
binary sequential

creating an indexed file from 7-32
uploading from Vision files 7-30

 Index-33
C-ISAM, converting with vutil 7-35
creating 3-102, 3-103
creating using OPEN EXTEND statements 3-67
creating when program attempts to open nonexistent file for I/O 3-102
examining file information 7-10
flushing local and operating system cache 3-85
full path names

applying CODE_PREFIX 3-23
applying FILE_PREFIX 3-24

locking input while allowing readers 3-111
locking output 3-111
Micro Focus, converting with vutil 7-37
preventing fragmentation with vutil 7-17
rebuilding 7-14
reducing number of 7-2
resource, adding to an object library with cblutil 7-3
runtime option for input from 4-9
vutil integrity check 7-12

filesystem_DETACH configuration variable 3-84
find backwards debugger command 5-24
find debugger command 5-39
find forwards debugger command 5-24
find from top debugger command 5-25
find next debugger command 5-39
find previous debugger command 5-39
First value, EDIT keyword, KEYSTROKE variable 2-23
floating windows, displaying on character-based host 3-31
floating-point calculations, configuration variables 3-182, 3-183
FLUSH_ALL configuration variable 3-85
FLUSH_COUNT configuration variable 3-86
FLUSH_ON_ACCEPT configuration variable 3-87
FLUSH_ON_CLOSE configuration variable 3-87
FLUSH_ON_COMMIT configuration variable 3-87
FLUSH_ON_OPEN configuration variable 3-87
flushing

Index-34
after first I/O operation in indexed file 3-87
local and operating system cache 3-85
on file close under Windows 3-87
pending screen output 3-103
regulating using COMMIT verb 3-87
setting number of updates before 3-86
using ACCEPT statement 3-87

FONT configuration variable 3-88
FONT_AUTO_ADJUST configuration variable 3-89
FONT_SIZE_ADJUST configuration variable 3-89
FONT_WIDE_SIZE_ADJUST configuration variable 3-90
fonts

DEFAULT_FONT configuration variable 3-54
determining default 3-54
determining on graphical systems 3-88
disabling automatic adjustment on Windows 3-89
STD_FIXED_FONT configuration variable 3-145
window title 3-196

foreground color, assigning 2-42
FOREGROUND_INTENSITY configuration variable 3-91
Formatted value, EDITED-UPDATES keyword 2-47
FORM-FEED keyword, SCREEN variable 2-50
fragmentation of files, preventing with vutil 7-17
FREEZE_AX_EVENTS configuration variable 3-91
freezing ActiveX events 3-91
FULL_BOXES configuration variable 3-92
function codes for terminals, list of 2-65
function key combinations 2-35
function keys

debugger 5-37
defining 2-75

functions
mapping keys to 2-10

 Index-35
G
GF-GUI-MAP function 2-78
GIVE instruction 7-68
go debugger command 5-39
go to cursor line debugger command 5-12, 5-21
go until paragraph returns debugger command 5-21
go until program exits debugger command 5-21
GO-GUI-MAP function 2-78
graphical controls, emulating on character-based hosts 3-93
graphical runtimes and TERM 2-7
graphical support and ATM runtime 2-4
graphical systems, determining font for 3-88
graphical window and control emulation 2-78
graphics on terminals requiring multiple-character escape sequences 2-77
GRID_BUTTONS_CAUSE_GOTO configuration variable 3-93
GRID_NO_CELL_DRAG configuration variable 3-93
GUI_CHARS configuration variable 3-93

H
hang up signal, blocking on UNIX 4-4
help on help command 5-38
help with debugger 5-16
HELP_PROGRAM configuration variable 3-94
HINTS_OFF configuration variable 3-95
HINTS_ON configuration variable 3-95
Home value, EDIT keyword, KEYSTROKE variable 2-23
hot keys 3-95

assigning 2-28
HOT_KEY configuration variable 2-58, 3-2, 3-95
HOT-KEY keyword, KEYSTROKE variable 2-28
hot-key parameters 2-29
HP attribute handling 3-97
HP_TERMINAL_ATTRIBUTE_HANDLING configuration variable 3-97

Index-36
HTML
locating template files 3-98
output cache, setting this option 3-37

HTML_TEMPLATE_PREFIX configuration variable 3-98
hyphens, leaving in XFDs unchanged 3-7

I
IBM DOS/VS COBOL error codes 6-17
ICO, icon files 3-99
ICOBOL

file status codes 6-2
Screen Section, COLUMN clause 3-136

ICOBOL_FILE_SEMANTICS configuration variable 3-98
ICON configuration variable 3-99
icon, designating minimized icon on graphical systems 3-99
identifying your terminal 2-5
IMPLIED-DECIMAL keyword, KEYBOARD variable 2-18
IMPORT_USES_CELL_SIZE configuration variable 3-99
importing screens and controls 4-10
inactive floating window, specify attributes of border on character-based hosts 3-100
INACTIVE_BORDER_COLOR configuration variable 3-100
INCLUDE instruction 7-70
indexed file record editor, alfred 7-50
indexed file utility, vutil 7-9
indexed files

creating 3-102
flushing after first I/O operation 3-87
logging rejected Vision files 3-61
opening without specifying all alternate keys 3-68
specifying compression for 3-50

initialization strings for terminals 2-82
input files, locking but allowing readers 3-111
input from a file, runtime option for 4-9

 Index-37
INPUT_STATUS_DEFAULT configuration variable 3-100
INPUT-DISPLAY keyword, SCREEN variable 2-50
INPUT-MODE keyword, SCREEN variable 2-51
insert mode 2-22, 2-24
INSERT_MODE configuration variable 3-101
insertion mode

toggling on and off 2-28
Insert-Off value, EDIT keyword, KEYSTROKE variable 2-23
Insert-On value, EDIT keyword, KEYSTROKE variable 2-24
Insert-Space value, EDIT keyword, KEYSTROKE variable 2-24
installation directory path, ACUCOBOL-GT 3-19
integer keys on VMS systems 3-135
INTENSITY_FLAGS configuration variable 3-101
international character mapping, CGI content 3-36
international character sets, server_MAP_FILE 3-137
Internet

locating HTML template files 3-98
interrupt key 2-38
INVALID keyword, KEYSTROKE variable 2-31
IO_CREATES configuration variable 3-102
IO_FLUSH_COUNT configuration variable 3-102
IO_READ_LOCK_TEST configuration variable 3-103
IO_SWITCH_PERIOD configuration variable 3-103
ISOLATE_FILE_CREATES configuration variable 3-103

J
Java related variables

A_JAVA_CHARSET 3-12
A_JAVA_GC_COUNT 3-12
A_JAVA_TRACE_FILENAME 3-12
A_JAVA_TRACE_VALUE 3-13

JAVA_LIBRARY_NAME configuration variable 3-104
JAVA_OPTIONS configuration variable 3-104

Index-38
JUSTIFIED, with formatted and centering option 2-48
JUSTIFY keyword, SCREEN variable 2-51
JUSTIFY keyword, WITH CONVERSION phrase and 2-46
JUSTIFY_NUM_FIELDS configuration variable 3-104

K
KBD (keyboard variables) 3-105
KBD_AUTO_RETURN configuration variable 2-16
KBD_CASE configuration variable 2-17
KBD_CHECK_NUMBERS configuration variable 2-17
KBD_CURSOR_PAST_END configuration variable 2-17
KBD_DATA_RANGE_HIGH configuration variable 2-18
KBD_DATA_RANGE_LOW configuration variable 2-18
KBD_EXCEPTION_RANGE_HIGH configuration variable 2-18
KBD_EXCEPTION_RANGE_LOW configuration variable 2-18
KBD_IMPLIED_DECIMAL configuration variable 2-18
KBD_RM_2_DEFAULT_HANDLING configuration variable 2-19
KBD_SCREEN_DEFAULT configuration variable 2-19
key codes 2-3, 2-11, 2-31

and KEYSTROKE variable 2-19
key compression, turning off in C-ISAM files 3-39
key interpretation 2-10
key letter

designating on character-based systems 2-21
treatment in text mode 2-79

key mapping 2-10
KEY phrase 7-68, 7-69
key translation 2-11
KEY_MAP configuration variable 3-105
keyboard 3-105

additions under 32-bit Windows 2-34
configuration, default 2-11
default, ACUCOBOL-GT 2-39

 Index-39
KBD variables 3-105
redefining 2-16

KEYBOARD configuration variable 2-16, 3-2, 3-105
keywords

AUTO-RETURN 2-16
CASE 2-16
CHECK-NUMBERS 2-17
CURSOR-PAST-END 2-17
DATA-RANGE 2-17
EXCEPTION-RANGE 2-18
IMPLIED-DECIMAL 2-18
RM-2-DEFAULT-HANDLING 2-19
SCREEN-DEFAULT 2-19

keyboard interface 2-9
keyboard modification examples 2-41
keys

and KEYSTROKE variable 2-19
Extra-Keys-OK option 3-68
list of function codes to represent 2-64
table of actions 2-12
table of redefinable keys 2-31
VMS systems, with numeric types 3-135
with more than one name 2-34

keys that cannot be redefined, Windows 2-37
keystroke

inserting in front of existing text 3-101
playback of keystroke file 4-11

KEYSTROKE configuration variable 2-16, 2-18, 2-19, 3-2, 3-105
EDIT keyword 2-20

Alt value 2-21
Auto-Insert value 2-22
Backspace value 2-22
Default-Entry value 2-22
Default-Next value 2-22
Delete value 2-22

Index-40
Down value 2-22
End value 2-22
Erase-All value 2-23
Erase-EOS value 2-23
Erase-Field value 2-23
Erase-Next value 2-23
Erase-to-End value 2-23
First value 2-23
Home value 2-23
Insert-Off value 2-23
Insert-On value 2-24
Insert-Space value 2-24
Last value 2-24
Left value 2-24
Menu value 2-24
Next value 2-24
Next-All value 2-25
Next-Line value 2-25
Numeric-Default value 2-25
Numeric-Next value 2-25
Page-Down value 2-26
Page-Left value 2-26
Page-Right value 2-26
Page-Up value 2-26
Previous value 2-26
Previous-All value 2-26
Previous-Line value 2-26
Right value 2-27
Scroll-Left value 2-27
Scroll-Right value 2-27
Switch-Window value 2-27
System-Menu value 2-27
Toggle-Edit-Mode value 2-27
Toggle-Insert value 2-28
Up value 2-28

 Index-41
keywords
AT-END 2-20
DATA 2-20
EDIT. See EDIT keyword
EXCEPTION 2-28
HOT-KEY 2-28
INVALID keyword 2-31
TERMINATE keyword 2-31

table of redefinable keys 2-31

L
large data handling, on UNIX 3-171
last line debugger command 5-24
Last value, EDIT keyword, KEYSTROKE variable 2-24
Left value, EDIT keyword, KEYSTROKE variable 2-24
Left-Adjust value, EDITED-UPDATES keyword 2-47
legal ASCII input values, range of defined 2-17
legal input characters, default range of 2-12
library routines, M$ALLOC 5-20
license errors

LICENSE_ERROR_MESSAGE_BOX 3-110
limit to number of hot keys 2-28
line 1 debugger command 5-24
line drawing 2-75
line drawing, defining characters for Windows console (DOS-box) programs 3-59
line segments requiring multiple-character escape sequences 2-77
line sequential files

creating indexed files from 7-32
uploading from Vision files to 7-30

line wrapping 2-58, 2-59
line-kill key 2-12, 2-34
LINES phrase, optimizing resize requests with 3-126
linkage

Index-42
OPTIMIZE_INDIVIDUAL_LINKAGE 3-126
LIST-BOX control

COLUMN SEPARATION configuration variable 3-50
columns, setting default separation distance 3-50
unboxed on character-based systems 3-110

LISTS_UNBOXED configuration variable 3-110
LITERAL_ENTRY configuration variable 3-110
loading a file 7-32
location debugger command 5-32
LOCK_DIR configuration variable 3-110
LOCK_OUTPUT configuration variable 3-111
LOCK_PER_FILE configuration variable 6-7
LOCK_SORT configuration variable 3-111
locking files

method for Vision files 3-176
REL_LOCK_READ_THROUGH configuration variable 3-133

LOCKING_RETRIES configuration variable 3-111
LOCKS_PER_FILE configuration variable 3-111
log files, specifying for transaction logging system 3-82
LOG_BUFFER_SIZE configuration variable 3-112
LOG_DEVICE configuration variable 3-112
LOG_DIR configuration variable 3-112, 6-15
LOG_ENCRYPTION configuration variable 3-112
LOG_FILE configuration variable 3-113
LOGGING configuration variable 3-113
LOGICAL_CANCELS configuration variable 3-113
logutil 7-50

log file editor 7-50
options 7-50
report headings 7-53
syntax 7-50

lost records 7-14
LOWER keyword, using to override CASE 2-17
lowercase, convert all entries to 2-16
low-level debugging 5-4

 Index-43
M
M (monitor) debugger variable 5-13
M$ALLOC routine 5-20
macro debugger 5-43
magic cookie terminals 3-135

and attribute settings 2-58, 2-72
MAKE_ZERO configuration variable 3-114, 4-15
mapping keys to functions 2-10
MASS_UPDATE configuration variable 3-114
MAX_ERROR_AND_EXIT_PROCS configuration variable 3-115
MAX_ERROR_LINES configuration variable 3-115
MAX_FILES configuration variable 3-116
MAX_LOCKS configuration variable 3-116, 6-7
memory

shared 1-4, 3-139, 8-2
types 5-20

memory management 3-144
memory usage debugger command 5-20
Menu value, EDIT keyword, KEYSTROKE variable 2-24
MENU_ITEM configuration variable 3-2, 3-116
MERGE instruction 7-66
merging records 7-66
message queue, controlling the size of 3-117
MESSAGE_BOX_COLOR configuration variable 3-117
MESSAGE_QUEUE_SIZE configuration variable 3-117
Micro Focus files, converting with vutil 7-37
MIME content type 3-35
MIN_REC_SIZE configuration variable 3-117
minimizing the application window 2-56
modifying the keyboard interface 2-16
monitor variables, in debugger 5-28

monitor option 5-35
name qualification 5-26
stop when value changes 5-13

Index-44
vs. watch 5-29
monitored variables, in debugger

clearing 5-30
listing all 5-30

MONOCHROME configuration variable 2-57, 2-58, 3-118
mouse

excluding fields from selection 3-119
pointer shape 3-119
setting the double-click rate 3-60
support for X terminals 2-81
using with debugger 5-7

MOUSE configuration variable 3-2, 3-118
MOUSE_FLAGS configuration variable 3-121
mouse-action keys 2-33
MQSeries, USE_MQSERIES configuration variable 3-172
MSG-TV-SELCHANGING event 3-161
multiple configuration files 3-5

N
Nagel algorithm, AGS_TCP_NODELAY variable 3-22
native code option in cblutil 7-7
nested ActiveX events 3-92
nested configuration files 3-5
NESTED_AX_EVENTS 3-123
Next value, EDIT keyword, KEYSTROKE variable 2-24
Next-All value, EDIT keyword, KEYSTROKE variable 2-25
Next-Line value, EDIT keyword, KEYSTROKE variable 2-25
NO_CONSOLE configuration variable 3-122
NO_LOG_FILE_OK configuration variable 3-122
NO_TRANSACTIONS configuration variable 3-122
None value, INPUT-DISPLAY keyword 2-50
nonnumeric data in numeric field 3-114, 3-189
Normal value, INPUT-MODE keyword 2-51

 Index-45
NT_OPP_LOCK_STATUS configuration variable 3-123
numeric entry fields

checking data item descriptions of 3-24
justifying 3-104

NUMERIC_VALIDATION configuration variable 3-125
Numeric-Default value, EDIT keyword, KEYSTROKE variable 2-25
Numeric-Next value, EDIT keyword, KEYSTROKE variable 2-25
NUMERIC-UPDATES keyword, SCREEN variable 2-52

O
object file

cblutil 7-2
command to get information 7-6
library, runtime option for 4-16
native code 7-7
utilities 7-2

object files
changing file name case 3-40
searching for 3-43

object library 7-2
creating 7-3
options when creating 7-4
remote 7-5

OEM character set 3-88
OLD_ARIAL_DIMENSIONS configuration variable 3-125
OMIT instruction 7-70
ON EXCEPTION clause 2-14
OPEN statement, OPEN EXTEND, creating new files with 3-67
OPEN_FILES_ONCE configuration variable 3-125
opportunistic locking in Windows 3-123
OPTIMIZE_CONTROL_RESIZE configuration variable 3-126
options, runtime 4-2
ORG phrase 7-68

Index-46
output files, locking for exclusive use 3-111
overhead memory debugger command 5-20
overriding the runtime configuration file 2-11

P
packed decimal keys on VMS systems 3-135
PAGE_EJECT_ON_CLOSE configuration variable 3-126
paged list box’s search box 2-27
PAGED_LIST_SCROLL_BAR configuration variable 3-127
Page-Down value, EDIT keyword, KEYSTROKE variable 2-26
Page-Left value, EDIT keyword, KEYSTROKE variable 2-26
Page-Right value, EDIT keyword, KEYSTROKE variable 2-26
Page-Up value, EDIT keyword, KEYSTROKE variable 2-26
paragraph command 5-24
paragraph, tracing 5-17
perform stack debugger command 5-10, 5-19
perform step, in debugger 5-22
PERFORM_STACK configuration variable 3-127
performance

impacts on 2-7
improving 7-2, 7-11
improving with shared memory 1-4, 8-2

performance, improving
with configuration variables 3-103
with shared memory 3-139

PICTURE clause, validating number entries 2-17
pointer shape 3-119
pop-up hints, configuration variables

HINTS_OFF configuration variable 3-95
HINTS_ON configuration variable 3-95

pre-compiler
remote processing with Boomerang 7-77

Predisplay value, INPUT-MODE keyword 2-51

 Index-47
PRELOAD_JAVA_LIBRARY configuration variable 3-128
preprocessor, remote processing with Boomerang 7-77
Previous value, EDIT keyword, KEYSTROKE variable 2-26
Previous-All value, EDIT keyword, KEYSTROKE variable 2-26
Previous-Line value, EDIT keyword, KEYSTROKE variable 2-26
print functions, and Terminal Manager 2-83
printer channels, configuration variable for 3-40
printers, attaching to terminal 2-83
printing

directly to a file 3-192
Pro*COBOL Boomerang alias 7-82
PROFILE_TYPE configuration variable 3-128
profiler, configuring 7-57
profiling tool 7-54
program failure, and non-zero user count 7-11
program memory debugger command 5-20
program menus, activating under Windows 3-68
prompt attributes, specifying 2-53
PROMPT keyword, SCREEN variable 2-52
Prompt value, INPUT-DISPLAY 2-50
Prompt value, INPUT-DISPLAY keyword 2-50
PROMPT-ALL keyword, SCREEN variable 2-52
PROMPT-ATTR keyword, SCREEN variable 2-53
PROMPTING configuration variable 3-128
Protected value, PROMPT-ALL 2-53
Protected value, PROMPT-ALL keyword 2-53
protecting fields from mouse selection 3-119
P-step debugger command 5-22, 5-39

Q
-Q option, Windows print spooler 3-192
QUEUE_READERS configuration variable 3-129
quit debugger command 5-18

Index-48
QUIT_MODE configuration variable 3-129
QUIT_ON_FATAL_ERROR configuration variable 3-131
QUIT_TO_EXIT configuration variable 3-131

R
RA, run all threads debugger command 5-15
READ statement, REL_LOCK_READ_THROUGH configuration variable 3-133
rebuilding files 7-14
record editor, alfred 7-50
record locking, REL_LOCK_READ_THROUGH configuration variable 3-133
RECORD phrase 7-68
record script command 5-11, 5-17
record size, changing 7-39
records, adding, modifying, deleting from an indexed file 7-50
RECURSION configuration variable 3-131
RECURSION_DATA_GLOBAL configuration variable 3-133
recursively calling programs, sharing data 3-133
redefining the keyboard 2-16
reference modification, range errors 3-189
REFRESH-LINES keyword, SCREEN variable 2-53
REL_DELETED_VALUE configuration variable 3-133
relative files

creating an indexed file from 7-32
relative files, REL_LOCK_READ_THROUGH configuration variable 3-133
relinking the ATM runtime 2-4
remote name notation

alternate configuration file 4-4
CODE_PREFIX 3-43
DEFAULT-PROGRAM 3-56
error output file 4-6
FILE_PREFIX 3-74
hot keys 3-96
LOG_FILE 3-113

 Index-49
naming the object code file 4-4
object file library 4-16
with SORT_DIR 3-143
with XFD_DIRECTORY 3-198
with XFD_PREFIX 3-199

remote object library 7-5
remote preprocessing 7-77
remove all breakpoints debugger command 5-39
RENEW_TIMEOUT configuration variable 3-134
repeat find debugger command 5-25
required functions, terminal manager 2-69
resetting

internal revision numbers 7-21
user counts 7-21

RESIZE_FRAMES configuration variable 3-134
RESIZE_FREELY configuration variable 3-134
resource files, adding to an object library with cblutil 7-3
restricted attribute handling 2-60
restricted video modes 2-61
RESTRICTED_VIDEO_MODE configuration variable 2-58, 2-61, 3-135
RETURN-CODE special register, and hot keys 2-30
revision numbers, resetting 7-21
Right value, EDIT keyword, KEYSTROKE variable 2-27
RM/COBOL 2-19

configuration option and ACCEPT fields 2-19
PAGE_EJECT_ON_CLOSE configuration variable 3-126
RM/COBOL-85 (ANSI 85)

Auto-Insert 2-22
file status codes 6-2
keyboard layout 2-15

version 2 (ANSI 74)
file status codes 6-2

RM-2-DEFAULT-HANDLING keyword, KEYBOARD variable 2-19
RMS file system 1-4
RMS_NATIVE_KEYS configuration variable 3-135

Index-50
run all threads debugger command 5-13, 5-15, 5-23
run menu, debugger 5-21
run script debugger command 5-11, 5-18
run to procedure debugger command 5-36
runcbl

-d option 5-5
introduction 4-2
running the debugger 5-2

running programs with a hot key 2-28
runtime

configuration file 3-2
debugger 5-3
designating default host 3-55
destroying menus 3-38
introduction 4-2
messages, controlling text of 3-163
modifying CALL, CHAIN, and CANCEL names 3-41
multiple-user licenses on UNIX networks 3-15
opening broken files 3-175
parameters 4-2
serial number 4-14
setting

escape key 3-69
time out 3-56

standard font 3-145
terminal-related configuration variables 2-8
timer 4-14
types available on Windows 1-2
UNIX shared object library 1-2

runtime configuration file 1-3, 2-4
runtime configuration file, overriding 2-11
runtime environment, modifying without recompiling 1-3
runtime messages, controlling text of 3-163
runtime options 4-2

alternate runtime configuration file 4-4

 Index-51
basic version information 4-14
collecting zero count paragraph information with the profiler 4-12
converting character screens to graphical 4-4
debugging 4-5
debugging mode 4-13
debugging with commands from a file 4-13
display output file 4-12
--embedded-config-file 4-7
error output file 4-6, 4-11
file error 30 4-15
generating memory location output 4-17
ignore hang-up signals 4-9
information 4-14
inhibiting terminal initialization 4-3
input from file 4-9
keystroke file playback 4-11
measuring an application’s real-time execution 4-14
memory access violation 4-17
object file library 4-16
profiler 4-12, 7-54
redirecting display output to a file 4-12
safe mode 4-13
SPECIAL NAMES switches 4-3
terminal output file 4-13
warning messages 4-15

suppression of 4-8

S
screen

scrolling 2-58
SCREEN configuration variable 3-2, 3-135

configuration examples 2-56
keywords

Index-52
ALPHA-UPDATES 2-46
CONVERT-OUTPUT 2-46
EDITED-UPDATES 2-47
ERROR-BELL 2-48
ERROR-BOX 2-49
ERROR-COLOR 2-49
ERROR-LINE 2-50
FORM-FEED 2-50
INPUT-DISPLAY 2-50
INPUT-MODE 2-51
JUSTIFY 2-51
NUMERIC-UPDATES 2-52
PROMPT 2-52
PROMPT-ALL 2-52
PROMPT-ATTR 2-53
REFRESH-LINES 2-53
SHADOW-STYLE 2-54
SIZE 2-55
WINDOW 2-55

SCREEN configuration variable, SCREEN Option 2-45
SCREEN ERROR-LINE configuration variable 2-49
SCREEN FORM-FEED 2-50
screen functions 2-71
screen import utility 4-10
screen import utility, configuration variable 3-99
Screen Section

and CONVERT-OUTPUT 2-46
Screen Section, ICOBOL compatibility, COLUMN clause 3-136
screen tracing 5-42
SCREEN_COL_PLUS_BASE configuration variable 3-136
SCREEN-DEFAULT keyword, KEYBOARD variable 2-19
SCRIPT_STATUS configuration variable 3-136
scripts

recording in the debugger 5-17
running in the debugger 5-18

 Index-53
SCRN_ALPHA_AUTO_PROMPT configuration variable 2-46
SCRN_ALPHA_UPDATES configuration variable 2-46
SCRN_CONVERT_OUTPUT configuration variable 2-46
SCRN_EDITED_AUTO_PROMPT configuration variable 2-48
SCRN_EDITED_UPDATES configuration variable 2-48
SCRN_ERROR_BELL configuration variable 2-48
SCRN_ERROR_BOX configuration variable 2-49
SCRN_ERROR_COLOR configuration variable 2-50
SCRN_ERROR_LINE configuration variable 2-50
SCRN_FORM_FEED configuration variable 2-50
SCRN_INPUT_DISPLAY configuration variable 2-51
SCRN_INPUT_MODE configuration variable 2-51
SCRN_JUSTIFY configuration variable 2-51
SCRN_NUMERIC_AUTO_PROMPT configuration variable 2-52
SCRN_NUMERIC_UPDATES configuration variable 2-52
SCRN_PROMPT configuration variable 2-52
SCRN_PROMPT_ALL configuration variable 2-52
SCRN_PROMPT_ATTR configuration variable 2-53
SCRN_PROMPT_DEFAULT configuration variable 2-52
SCRN_REFRESH_LINES configuration variable 2-53
SCRN_REFRESH_MODE configuration variable 2-54
SCRN_SHADOW_STYLE configuration variable 2-55
SCRN_SIZE_COLS configuration variable 2-55
SCRN_SIZE_ROWS configuration variable 2-55
SCRN_WARN configuration variable 2-48
SCRN_WINDOW_X configuration variable 2-56
SCRN_WINDOW_Y configuration variable 2-56
scroll bar, debugger 5-2
SCROLL configuration variable 2-57, 2-58, 3-137
scrolling 3-137
Scroll-Left value, EDIT keyword, KEYSTROKE variable 2-27
Scroll-Right value, EDIT keyword, KEYSTROKE variable 2-27
search debugger command 5-38
search, debugger 5-24

Windows Help menu 5-38

Index-54
secondary error codes for error 98s 6-13
SECURE fields, and prompts 2-52
selection

item in debugger menu 5-7
menu in debugger 5-34

server_MAP_FILE configuration variable 3-137
server_PASSWORD environment variable 3-138
server_port_PASSWORD environment variable 3-139
set breakpoint debugger command 5-32
SET ENVIRONMENT, and color map 2-45
set procedure breakpoint debugger command 5-36
setting variables in the debugger 5-29
shape of mouse pointer 3-119
shared memory 1-4, 8-2
shared object library, runtime 1-2
SHARED_CODE configuration variable 3-139
SHARED_LIBRARY_EXTENSION configuration variable 3-141
SHARED_LIBRARY_LIST configuration variable 3-141
sharing data in recursively called programs 3-133
sharing, indicating programs to share 8-4
shell command 5-11, 5-17
SHUTDOWN_MESSAGE_BOX configuration variable 3-143
SIGN-EBCDIC instruction 7-65
SIZE phrase, optimizing resize requests 3-126
Skip count, debugger Set command 5-33
skip to cursor line command 5-10, 5-22
sockets

AGS_MAX_SEND_SIZE configuration variable 3-20
AGS_RECEIVE_BUFFER_SIZE configuration variable 3-20
AGS_SEND_BUFFER_SIZE configuration variable 3-20
AGS_SOCKET_COMPRESS configuration variable 3-21
AGS_SOCKET_ENCRYPT configuration variable 3-21
AGS_TCP_NODELAY configuration variable 3-22

SORT instruction 7-66
SORT_DIR configuration variable 3-143

 Index-55
SORT_FILES configuration variable 3-143
SORT_MEMORY configuration variable 3-144
sorting records 7-66
source-code, debugging 5-3
spaces

embedded in file names 3-82
STRIP_TRAILING_SPACES configuration variable 3-146

spaces in color assignments 2-43
spaces in keywords 2-20
Spaces value, INPUT-DISPLAY keyword 2-51
SPACES_ZERO configuration variable 3-144
special characters, assigning to keys 2-20
SPECIAL-NAMES runtime switches 4-3
SPOOL_FILE configuration variable 3-144
standard font measures, adjusting with FONT-SIZE-ADJUST 3-89
standard mode, Terminal Manager 2-14
starting and using acushare 8-5
STD_FIXED_FONT configuration variable 3-145
step debugger commands 5-15, 5-22, 5-39

step into 5-39
step out 5-39
step over 5-39

step recorder debugger command 5-18
STOP_RUN_ROLLBACK configuration variable 3-146
STRIP_TRAILING_SPACES configuration variable 3-146
subprograms 7-2
substring search 7-72
SWITCH_PERIOD configuration variable 3-146
switches, SPECIAL-NAMES 4-3
Switch-Window value, EDIT keyword, KEYSTROKE variable 2-27
symbolic debugging 5-4
syntax, logutil 7-50
SYSINTR_NAME configuration variable 3-147
system information

UNIX operating system 3-14

Index-56
System Menu, activating in the debugger 5-8
system messages, controlling whether processed during file I/O 3-73
System-Menu value, EDIT keyword, KEYSTROKE variable 2-27
System-Menu, activation key on character-based systems 2-27

T
tab key, return key acting as 2-41
table of status codes 6-2
tabs in keywords 2-20
TC_AUTO_UPDATE_FAILED_MESSAGE configuration variable 3-147
TC_AUTO_UPDATE_FAILED_TITLE configuration variable 3-147
TC_AUTO_UPDATE_NOTIFY_FAIL configuration variable 3-148
TC_AUTO_UPDATE_QUERY configuration variable 3-148
TC_AUTO_UPDATE_QUERY_MESSAGE configuration variable 3-148
TC_AUTO_UPDATE_QUERY_TITLE configuration variable 3-149
TC_AX_EVENT_LIST configuration variable 3-149
TC_CHECK_ALIVE_INTERVAL configuration variable 3-150
TC_CHECK_INSTALLER_TIMESTAMP configuration variable 3-150
TC_CONTINUITY_WINDOW configuration variable 3-150
TC_CONTROL_SYNC_LEVEL configuration variable 3-151
TC_DELAY_ACTIVATE configuration variable 3-152
TC_DELAY_PRE_EVENT_OPS configuration variable 3-153
TC_DISABLE_AUTO_UPDATE configuration variable 3-153
TC_DISABLE_SERVER_LOG configuration variable 3-153
TC_DOWNLOAD_CANCEL_MESSAGE configuration variable 3-154
TC_DOWNLOAD_DESCRIPTION configuration variable 3-154
TC_DOWNLOAD_DIALOG configuration variable 3-155
TC_DOWNLOAD_DIALOG_TITLE configuration variable 3-155
TC_EVENT_LIST configuration variable 3-155
TC_EXCLUDE_EVENT_LIST configuration variable 3-156
TC_INSTALLER_ARGS configuration variable 3-156
TC_INSTALLER_CLIENT_FILE configuration variable 3-156
TC_INSTALLER_RUN_ASYNC configuration variable 3-157

 Index-57
TC_INSTALLER_SERVER_FILE configuration variable 3-157
TC_INSTALLER_TARGET_DIR configuration variable 3-157
TC_INSTALLER_UI_LEVEL configuration variable 3-158
TC_MAP_FILE configuration variable 3-158
TC_NESTED_AX_EVENTS configuration variable 3-158
TC_QUIT_MODE configuration variable 3-159
TC_REQUIRES_BUILD_NUMBER configuration variable 3-159
TC_RESTRICT_AX_EVENTS configuration variable 3-160
TC_SERVER_LOG_FILE configuration variable 3-160
TC_SERVER_TIMEOUT configuration variable 3-161
TC_TV_SELCHANGING configuration variable 3-161
Televideo 925 2-61
TEMP_DIR configuration variable 3-162
TEMPORARY_CONTROLS configuration variable 3-162
termcap file 2-64, 2-68
terminal characteristics, by reference 2-83
terminal configuration variables 2-8
terminal database file 2-3

by reference entry 2-83
editing 2-64

terminal definition 2-7
terminal function codes 2-3, 2-41
terminal identification 2-5
terminal input status, handling when undetermined 3-100
Terminal Manager

and mouse support 2-81
buffering output on UNIX systems 3-32
introduction 2-2
required functions 2-69

Terminal Manager modes 2-14
terminals

initialization strings for 2-82
list of function codes for 2-65
non-ANSI conforming 2-60
preparing for use with ACUCOBOL-GT programs 2-5

Index-58
restrictions imposed by special 2-61
TERMINATE keyword 2-20
TERMINATE keyword, KEYSTROKE variable 2-31
termination key 2-14

standard and auto modes 2-14
termination key, assigning 2-20
termination keys, and EDIT keyword 2-21
termination keys, creating 2-31
testing file integrity 7-12
TEXT configuration variable 3-163
thin client automatic update

failure 3-147, 3-148, 3-153, 3-160
log file 3-160
query message box 3-148, 3-149
Windows installer interface 3-158

thin client configuration variables
TC_AX_EVENT_LIST 3-149
TC_CHECK_ALIVE_INTERVAL 3-150
TC_CONTINUITY_WINDOW 3-150
TC_CONTROL_SYNC_LEVEL 3-151
TC_DELAY_ACTIVATE 3-152
TC_EVENT_LIST 3-155
TC_EXCLUDE_EVENT_LIST 3-156
TC_NESTED_AX_EVENTS 3-158
TC_QUIT_MODE 3-159
TC_SERVER_TIMEOUT 3-161
TC_TV_SELCHANGING 3-161

thin client runtime 1-2
thread debugger command 5-23
threads

controlling the switching period of 3-146
determining switch control of 3-57

threads and threading, issues, debugger 5-15
threads controlling the switching period of 3-57
timeout, setting 3-56

 Index-59
timestamp, file trace option 5-41
timing program execution 4-14
TMPDIR environment variable 7-75
toggle at cursor line command 5-33
toggle breakpoint debugger command 5-39
Toggle-Edit-Mode value, EDIT keyword, KEYSTROKE variable 2-27
Toggle-Insert value, EDIT keyword, KEYSTROKE variable 2-28
toolbar, debugger 5-38
trace

flush file information from error file 3-76
save file information to error file 3-75
timestamp information 3-76

trace files debugger command 5-16
trace messages, formatting 3-166
trace paragraphs debugger command 5-17
TRACE_STYLE configuration variable 3-166, 5-41
tracing

paragraph configuration variable 3-127
screen tracing configuration variable 3-136

trailing space removal 3-146
transaction error codes 6-14
transaction log file

how to edit 7-50
logutil 7-50

transaction management
disabling 3-122
filename_LOG configuration variable 3-82
NO_TRANSACTIONS configuration variable 3-122

transactions
primary error codes 6-15
secondary error codes for error 01 6-16

TRANSACTION-STATUS codes 6-14
TRANSLATE_TO_ANSI configuration variable 3-166
TREE_ROOT_SPACE configuration variable 3-167
TREE_TAB_SIZE configuration variable 3-168

Index-60
TRX_HOLDS_LOCKS configuration variable 3-168

U
unallocated memory, preventing accidental reference to 3-38
Unchanged value, EDITED-UPDATES keyword 2-47
UniKix Boomerang alias 7-84
UNIX

command to check modules for debug mode 7-7
large data handling 3-171
shared library file extension 3-141
shared library list 3-141

UNIX and TERM and A_TERM 2-7
UNIX configuration variables

BUFFERED_SCREEN 3-32
FLUSH_COUNT 3-86
LOCK_DIR 3-110
QUEUE_READERS 3-129
V32_GRAPHICS_CHARACTERS 3-182

unloading to binary and line sequential format 7-30
Up value, EDIT keyword, KEYSTROKE variable 2-28
Up, in debugger 5-36
Update value, INPUT-MODE keyword 2-51
updating the screen 2-19
UPPER keyword, using to override CASE 2-17
UPPER_LOWER_MAP configuration variable 3-169
uppercase, convert all entries to 2-16
USE instruction 7-68
USE_CICS configuration variable 3-170
USE_EXTSM configuration variable 3-171
USE_LARGE_FILE_API configuration variable 3-171
USE_LARGE_FILE_API environment variable 7-77
USE_LOCAL_SERVER configuration variable 3-171
USE_MPE_REDIRECTION configuration variable 3-171

 Index-61
USE_MQSERIES configuration variable 3-172
USE_SYSTEM_QSORT configuration variable 3-172
user count 7-12, 7-14

action if non-zero 7-11
resetting 7-21

user-defined keys 2-35
user-defined keys, F10 key 3-68
using nested configuration files 3-5
using shared memory 8-2
utilities

acuprof 7-55
alfred 7-50
cblutil 7-2
logutil 7-50
vio 7-41
vutil 7-9

V
V_BASENAME_TRANSLATION configuration variable 3-173
V_BUFFER_DATA configuration variable 3-174
V_BUFFERS configuration variable 3-174
V_BULK_MEMORY configuration variable 3-174
V_FORCE_OPEN configuration variable 3-175
V_INDEX_BLOCK_PERCENT configuration variable 3-175
V_INTERNAL _LOCKS configuration variable 3-176
V_LOCK_METHOD configuration variable 3-176
V_MARK_READ_CORRUPT configuration variable 3-179
V_NO_ASYNC_CACHE_DATA configuration variable 3-179
V_OPEN_STRICT configuration variable 3-180
V_READ_AHEAD configuration variable 3-180
V_SEG_SIZE configuration variable 3-180
V_STRIP_DOT_EXTENSION configuration variable 3-181
V_VERSION configuration variable 3-181

Index-62
V30_MEASUREMENTS configuration variable 3-182
V31_FLOATING_POINT configuration variable 3-182
V32_GRAPHICS_CHARACTERS configuration variable 3-182
V42_FLOATING_POINT configuration variable 3-183
V43_PRINTER_CELLS configuration variable 3-183
V52_BITMAPS configuration variable 3-184
V52_GRID_GOTO configuration variable 3-184
V60_LIST_VALUE configuration variable 3-184
V62_MAX_WINDOW configuration variable 3-185
V70_ALIGNED_ENTRY_FIELD configuration variable 3-186
V71_FONT_WIDTHS configuration variable 3-186
Value value, INPUT-DISPLAY keyword 2-51
variables

and the debugger 5-44
clearing watches 5-12
debugger

displaying in 5-26
modifying in 5-28

VAX COBOL file status codes 6-2
-Vh option, and color 2-44
video attribute values for ERROR-COLOR 2-49
video attributes 2-72

terminals with non-hidden 2-61
video, control with SCREEN variable 2-45
view breakpoints debugger command 5-19, 5-34
view monitors debugger command 5-20
view perform stack debugger command 5-19
view procedure debugger command 5-36
view screen debugger command 5-19
vio

examples 7-48
file transfer utility 7-41
known limitations 7-49
options 7-43
Windows considerations 7-47

 Index-63
Vision file system 1-4
Vision file utility (vutil) 7-9
Vision files

accessing for read when record is locked 3-103
comment field, setting 7-40
logging records rejected in bulk addition 3-61
mapping to a different directory 3-76
naming data segments of 3-77
naming index segments of 3-80
preventing errors caused by simultaneous file name use during file creation 3-103
recovering deleted records (Vision 5) 7-23

Vision, secondary error codes for error 98s 6-13
Vista styles

WIN32NATIVECTLS 3-195
visual styles

WIN32_NATIVECTLS 3-195
-Vl option, and color 2-44
VMS

FLUSH-COUNT configuration variable 3-86
improved performance 3-111

VMS and TERM and A_TERM 2-7
VMS file utilities 7-9
vutil

changing record size 7-39
checking for file integrity 7-12
collating sequence 7-26
converting a C-ISAM file 7-35
converting a Micro Focus file 7-37
creating empty files 7-24

indexed format 7-27
interactive version 7-25
non-interactive version 7-27
sequential and relative 7-30

examining file information 7-10
extracting records 7-22

Index-64
loading a file 7-32
with large records 7-34

options
-augment 7-39
-note 7-40
-tree 7-40
-version 7-41

rebuilding files 7-14
automatic placement 7-15
blocking factor 7-16
default method fails 7-18
directory specification 7-16
extension factor, setting a new one 7-17
from an interrupted rebuild 7-20
in key order 7-18
latest Vision format 7-20
limited disk space 7-17, 7-19
locking options 7-14
naming temporary files 7-14
record compression 7-16
slow rebuild 7-20
specifying size of spool media 7-20
spooling 7-19

resetting
revision numbers 7-21
user counts 7-21

setting the comment field 7-40
specifying compression factor 7-17
uploading

to binary sequential format 7-30
to line sequential format 7-30

utilities 7-9
vutil, opening broken files 3-175
Vx compile-time option 2-14
-Vx option 2-28

 Index-65
W
WA variable 5-14
WAIT_FOR_ALL_PIPES configuration variable 3-187
WAIT_FOR_FILE_ACCESS configuration variable 3-187
WAIT_FOR_LOCKS configuration variable 3-188
warning messages, runtime option 4-8
WARNING_ON_RECURSIVE_ACCEPTS configuration variable 3-190
WARNINGS configuration variable 3-189, 4-15
watch 5-14

clearing all 5-12
watching a variable 5-14

watch size debugger command 5-15, 5-25
watch variable vs. monitor variable 5-29
watch variables in debugger, watch option 5-36
Watch Window 5-29
Web runtime 1-3
WebSphere MQ

USE_MQSERIES configuration variable 3-172
WHITE_FILL configuration variable 3-190
wide font measure

adjusting with FONT-WIDE-SIZE-ADJUST 3-90
WIN$PRINTER routine

WINPRINT_NAMES_ONLY configuration variable 3-197
WIN_ERROR_HANDLING configuration variable 3-191
WIN_F4_DROPS_COMBOBOX, configuration variable 3-191
WIN_SPOOLER_PORT configuration variable 3-192
WIN3_CLIP_CONTROLS configuration variable 3-192
WIN3_EF_PADDED configuration variable 3-193
WIN3_GRID configuration variable 3-193
WIN32_3D configuration variable 3-194
WIN32_CTL_INPUT_STATUS configuration variable 3-195
WIN32-NATIVECTLS 3-195
window memory debugger command 5-20
window size debugger command 5-5, 5-14, 5-25

Index-66
window title font 3-196
window, text-mode, reconstructing 2-80
WINDOW_INTENSITY

configuration variable 3-196
WINDOW_TITLE configuration variable 3-196
Windows

extra keys 2-34
font width 3-186
keys that cannot be redefined 2-37
opportunistic locking 3-123
printing

to a file 3-192
resizing 3-134
running the debugger under 5-5

Windows console and TERM 2-7
Windows Console runtime 1-3
Windows console runtime, redefining line-drawing characters 3-59
Windows runtimes 1-2
Windows special considerations 2-7
WINPRINT_NAMES_ONLY configuration variable 3-197
WITH CONVERSION phrase, output fields and 2-46
WRAP configuration variable 2-57, 2-59, 3-198
WS_CLIPCHILDREN 3-193
Wyse 50 terminal 2-61

X
XENIX and setcolor, unexpected results from ACUCOBOL-GT 2-45
XFD

4GL_COLUMN_CASE configuration variable 3-7
XFD_DIRECTORY configuration variable 3-198
XFD_PREFIX configuration variable 3-199
XP styles

WIN32_NATIVECTLS 3-195

 Index-67
xterm
XTERM_PROGRAM config variable 3-200

Index-68

	Introduction
	1.1 Overview
	1.1.1 Available Runtime Systems
	1.1.1.1 Windows runtime systems

	1.1.2 Runtime Configuration File

	Setting Up Your Terminals
	2.1 How the Terminal Manager Works
	2.1.1 Terminal Manager Functions
	2.1.2 Alternate Terminal Manager (ATM)

	2.2 Getting Your Terminals Ready
	2.2.1 Step One-Terminal Identification
	2.2.2 Step Two-Terminal Definition
	2.2.2.1 Windows special considerations

	2.2.3 Step Three-Configuration Variables

	2.3 The Keyboard Interface
	2.3.1 Key Mapping
	2.3.1.1 Key interpretation
	2.3.1.2 Key translation
	2.3.1.3 Keyboard configuration

	2.3.2 Redefining the Keyboard
	2.3.2.1 The KEYBOARD variable
	2.3.2.2 The KEYSTROKE variable
	2.3.2.3 Table of keys
	2.3.2.4 Additional Windows keys
	2.3.2.5 Special keys
	2.3.2.6 Default keyboard
	2.3.2.7 Modification examples

	2.4 The Display Interface
	2.4.1 Adding Color
	2.4.2 The SCREEN Option
	2.4.2.1 SCREEN examples

	2.4.3 Additional Configuration Variables
	2.4.4 Double-Byte Character Handling

	2.5 Restricted Attribute Handling
	2.5.1 Restricted Video Modes
	2.5.1.1 Restrictions

	2.6 The Terminal Database File
	2.6.1 Required Functions
	2.6.2 Additional Screen Functions
	2.6.3 Video Attributes
	2.6.4 Color
	2.6.4.1 One-color terminals

	2.6.5 Function Keys and Other Keys
	2.6.5.1 User-defined keys

	2.6.6 Line Drawing
	2.6.6.1 Multi-character sequences for graphics

	2.6.7 Graphical Window and Control Emulation
	2.6.8 Mouse Support for X Terminals
	2.6.9 Initialization
	2.6.10 Print Functions
	2.6.11 Continued Entries

	Runtime Configuration File
	3.1 Introduction
	3.1.1 Variable Syntax
	3.1.2 Variable Usage
	3.1.3 Configuration filename Resolution
	3.1.4 Nested configuration files

	3.2 Configuration File Variables
	3D_LINES
	4GL_COLUMN_CASE
	7_BIT
	A_CHECKDIV
	A_DEBUG
	A_DISPLAY
	A_EXTFH_FUNC
	A_EXTFH_LIB
	A_EXTFH_SIMPLE_OPEN_OUTPUT
	A_EXTFH_VARIABLE_IDX, A_EXTFH_VARIABLE_REL, A_EXTFH_VARIABLE_SEQ
	A_JAVA_CHARSET
	A_JAVA_GC_COUNT
	A_JAVA_TRACE_FILENAME
	A_JAVA_TRACE_VALUE
	A_LICENSE_RETRIES
	A_OPERATING_SYSTEM
	A_REMOVE_EMPTY_ERROR_FILE
	A_RETRY_DELAY
	A_SEQ_DEFAULT_BLOCK_SIZE
	A_SYSLOG_HOSTNAME
	A_SYSLOG_ON_RUNTIME_ERROR
	ACCEPT_AUTO
	ACCEPT_TIMEOUT
	ACTIVE_BORDER_COLOR
	ACU_DUMP, ACU_DUMP_FILE, ACU_DUMP_WIDTH, ACU_DUMP_TABLE_LIMIT
	ACU_USER_DIR
	ACUCOBOL
	AGS_BLOCK_SLEEP_TIME
	AGS_MAX_SEND_SIZE
	AGS_RECEIVE_BUFFER_SIZE
	AGS_SEND_BUFFER_SIZE
	AGS_SOCKET_COMPRESS
	AGS_SOCKET_ENCRYPT
	AGS_TCP_NODELAY
	alfred Configuration variables
	ALLOW_FS_OVERRIDE
	ANSI_OUTPUT_IN_DEBUG
	APPLY_CODE_PATH
	APPLY_FILE_PATH
	AUTO_DECIMAL
	AUTO_PROMPT
	AXML_CREATE_SCHEMA
	AXML_CREATE_STYLE
	AXML_ENCODING
	AXML_EXACT_TABLE_MATCH
	AXML_IGNORE_EMPTY_DATA
	AXML_SCHEMA_DOC
	AXML_SCHEMA_NAME
	AXML_SCHEMA_NAMESPACE_DATA
	AXML_STYLESHEET_HREF and AXML_STYLESHEET_TYPE
	BACKGROUND_INTENSITY
	BELL
	BOXED_FLOATING_WINDOWS
	BTRV_MASS_UPDATE
	BTRV_NOWRITE_WAIT
	BTRV_USE_REPEAT_DUPS
	BUFFERED_SCREEN
	CALL_HASH_SIZE
	CANCEL_ALL_DLLS
	CARRIAGE_CONTROL_FILTER
	CBLHELP
	CGI_AUTO_HEADER
	CGI_CLEAR_MISSING_VALUES
	CGI_CONTENT_TYPE
	CGI_NO_CACHE
	CGI_STRIP_CR
	CHAIN_MENUS
	CHECK_USING
	CISAM_COMPRESS_KEYS
	CLOSE_ON_EXIT
	COBLPFORM
	CODE_CASE
	CODE_MAPPING
	CODE_PREFIX
	CODE_SUFFIX
	CODE_SYSTEM
	COLOR_MAP
	COLOR_MODEL
	COLOR_TABLE
	COLOR_TRANS
	COLUMN_SEPARATION
	COMPRESS_FACTOR
	COMPRESS_FILES
	CONTROL_CREATION_EVENTS
	CURRENCY
	CURSOR_MODE
	CURSOR_TYPE
	DEBUG_NEWCOPY
	DECIMAL_POINT
	DEFAULT_FILESYSTEM
	DEFAULT_FONT
	DEFAULT_HOST
	DEFAULT_MAP_FILE
	DEFAULT_PROGRAM
	DEFAULT_TIMEOUT
	DISABLED_CONTROL_COLOR
	DISPLAY_SWITCH_PERIOD
	DLL_CONVENTION
	DLL_SUB_INTERFACE
	DLL_USE_SYSTEM_DIR
	DOS_BOX_CHARS
	DOS_SYS_EMULATE
	DOUBLE_CLICK_TIME
	DUPLICATES_LOG
	DYNAMIC_FUNCTION_CALLS
	DYNAMIC_MEMORY_LIMIT
	ECN-3699
	EDIT_MODE
	EF_UPPER_WIDE
	EF_WIDE_SIZE
	EOF_ABORTS
	EOL_CHAR
	ERRORS_OK
	EXIT_CURSOR
	EXPAND_ENV_VARS
	EXTEND_CREATES
	EXTFH_KEEP_TRAILING_SPACES
	EXTERNAL_SIZE
	EXTRA_KEYS_OK
	F10_IS_MENU
	FAST_ESCAPE
	FAST_SIGN_DECODE
	FIELDS_UNBOXED
	FILE_ALIAS_PREFIX
	FILE_CASE
	FILE_CONDITION
	FILE_IO_PEEKS_MESSAGES
	FILE_IO_PROCESSES_MESSAGES
	FILE_PREFIX
	FILE_STATUS_CODES
	FILE_SUFFIX
	FILE_TRACE
	FILE_TRACE_FLUSH
	FILE_TRACE_TIMESTAMP
	filename
	filename_DATA_FMT
	filename_FILESYSTEM
	filename_HOST
	filename_INDEX_FMT
	filename_LOG
	FILENAME_SPACES
	filename_VERSION
	filesystem_DETACH
	FLUSH_ALL
	FLUSH_COUNT
	FLUSH_ON_ACCEPT
	FLUSH_ON_CLOSE
	FLUSH_ON_COMMIT
	FLUSH_ON_OPEN
	FONT
	FONT_AUTO_ADJUST
	FONT_SIZE_ADJUST
	FONT_WIDE_SIZE_ADJUST
	FOREGROUND_INTENSITY
	FREEZE_AX_EVENTS
	FULL_BOXES
	GRID_BUTTONS_CAUSE_GOTO
	GRID_NO_CELL_DRAG
	GUI_CHARS
	HELP_PROGRAM
	HINTS_OFF
	HINTS_ON
	HOT_KEY
	HP_TERMINAL_ATTRIBUTE_HANDLING
	HTML_TEMPLATE_PREFIX
	ICOBOL_FILE_SEMANTICS
	ICON
	IMPORT_USES_CELL_SIZE
	INACTIVE_BORDER_COLOR
	INCLUDE_PGM_INFO
	INPUT_STATUS_DEFAULT
	INSERT_MODE
	INTENSITY_FLAGS
	IO_CREATES
	IO_FLUSH_COUNT
	IO_READ_LOCK_TEST
	IO_SWITCH_PERIOD
	ISOLATE_FILE_CREATES
	JAVA_LIBRARY_NAME
	JAVA_OPTIONS
	JUSTIFY_NUM_FIELDS
	KBD
	KEY_MAP
	KEYBOARD
	KEYSTROKE
	LC_ALL
	LICENSE_ERROR_MESSAGE_BOX
	LISTS_UNBOXED
	LITERAL_ENTRY
	LOCK_DIR
	LOCK_OUTPUT
	LOCK_SORT
	LOCKING_RETRIES
	LOCKS_PER_FILE
	LOG_BUFFER_SIZE
	LOG_DEVICE
	LOG_DIR
	LOG_ENCRYPTION
	LOG_FILE
	LOGGING
	LOGICAL_CANCELS
	MAKE_ZERO
	MASS_UPDATE
	MAX_ERROR_AND_EXIT_PROCS
	MAX_ERROR_LINES
	MAX_FILES
	MAX_LOCKS
	MENU_ITEM
	MESSAGE_BOX_COLOR
	MESSAGE_QUEUE_SIZE
	MIN_REC_SIZE
	MONOCHROME
	MOUSE
	MOUSE_FLAGS
	NO_CONSOLE
	NO_LOG_FILE_OK
	NO_TRANSACTIONS
	NT_OPP_LOCK_STATUS
	NESTED_AX_EVENTS
	NO_BARE_KEY_LETTERS
	NUMERIC_VALIDATION
	OLD_ARIAL_DIMENSIONS
	OPEN_FILES_ONCE
	OPTIMIZE_CONTROL_RESIZE
	OPTIMIZE_INDIVIDUAL_LINKAGE
	PAGE_EJECT_ON_CLOSE
	PAGED_LIST_SCROLL_BAR
	PARAGRAPH_TRACE
	PERFORM_STACK
	PRELOAD_JAVA_LIBRARY
	PROFILE_TYPE
	PROMPTING
	QUEUE_READERS
	QUIT_MODE
	QUIT_ON_FATAL_ERROR
	QUIT_TO_EXIT
	RECURSION
	RECURSION_DATA_GLOBAL
	REL_DELETED_VALUE
	REL_LOCK_READ_THROUGH
	RENEW_TIMEOUT
	RESIZE_FRAMES
	RESIZE_FREELY
	RESTRICTED_VIDEO_MODE
	RMS_NATIVE_KEYS
	SCREEN
	SCREEN_COL_PLUS_BASE
	SCREEN_TRACE
	SCRIPT_STATUS
	SCRN
	SCROLL
	server_MAP_FILE
	server_PASSWORD
	server_port_PASSWORD
	SHARED_CODE
	SHARED_LIBRARY_EXTENSION
	SHARED_LIBRARY_LIST
	SHARED_LIBRARY_PREFIX
	SHUTDOWN_MESSAGE_BOX
	SORT_DIR
	SORT_FILES
	SORT_MEMORY
	SPACES_ZERO
	SPOOL_FILE
	STD_FIXED_FONT
	STOP_RUN_ROLLBACK
	STRIP_TRAILING_SPACES
	SWITCH_PERIOD
	SYSINTR_NAME
	TC_AUTO_UPDATE_FAILED_MESSAGE
	TC_AUTO_UPDATE_FAILED_TITLE
	TC_AUTO_UPDATE_NOTIFY_FAIL
	TC_AUTO_UPDATE_QUERY
	TC_AUTO_UPDATE_QUERY_MESSAGE
	TC_AUTO_UPDATE_QUERY_TITLE
	TC_AX_EVENT_LIST
	TC_CHECK_ALIVE_INTERVAL
	TC_CHECK_INSTALLER_TIMESTAMP
	TC_CONTINUITY_WINDOW
	TC_CONTROL_SYNC_LEVEL
	TC_DELAY_ACTIVATE
	TC_DELAY_PRE_EVENT_OPS
	TC_DISABLE_AUTO_UPDATE
	TC_DISABLE_SERVER_LOG
	TC_DOWNLOAD_CANCEL_MESSAGE
	TC_DOWNLOAD_DESCRIPTION
	TC_DOWNLOAD_DIALOG
	TC_DOWNLOAD_DIALOG_TITLE
	TC_EVENT_LIST
	TC_EXCLUDE_EVENT_LIST
	TC_INSTALLER_ARGS
	TC_INSTALLER_CLIENT_FILE
	TC_INSTALLER_RUN_ASYNC
	TC_INSTALLER_SERVER_FILE
	TC_INSTALLER_TARGET_DIR
	TC_INSTALLER_UI_LEVEL
	TC_MAP_FILE
	TC_NESTED_AX_EVENTS
	TC_QUIT_MODE
	TC_REQUIRES_BUILD_NUMBER
	TC_RESTRICT_AX_EVENTS
	TC_SERVER_LOG_FILE
	TC_SERVER_TIMEOUT
	TC_TV_SELCHANGING
	TEMP_DIR
	TEMPORARY_CONTROLS
	TEXT
	TRACE_STYLE
	TRANSLATE_TO_ANSI
	TREE_ROOT_SPACE
	TREE_TAB_SIZE
	TRX_HOLDS_LOCKS
	UPPER_LOWER_MAP
	USE_CICS
	USE_EXECUTABLE_MEMORY
	USE_EXTSM
	USE_LARGE_FILE_API
	USE_LOCAL_SERVER
	USE_MPE_REDIRECTION
	USE_MQSERIES
	USE_SYSTEM_QSORT
	USE_WINSYSFILES
	V_BASENAME_TRANSLATION
	V_BUFFERS
	V_BUFFER_DATA
	V_BULK_MEMORY
	V_FORCE_OPEN
	V_INDEX_BLOCK_PERCENT
	V_INTERNAL_LOCKS
	V_LOCK_METHOD
	V_MARK_READ_CORRUPT
	V_NO_ASYNC_CACHE_DATA
	V_OPEN_STRICT
	V_READ_AHEAD
	V_SEG_SIZE
	V_STRIP_DOT_EXTENSION
	V_VERSION
	V23_GRAPHICS_CHARACTERS
	V30_MEASUREMENTS
	V31_FLOATING_POINT
	V42_FLOATING_POINT
	V43_PRINTER_CELLS
	V52_BITMAP_BUTTONS
	V52_BITMAPS
	V52_GRID_GOTO
	V60_LIST_VALUE
	V62_MAX_WINDOW
	V71_ALIGNED_ENTRY_FIELD
	V71_FONT_WIDTHS
	WAIT_FOR_ALL_PIPES
	WAIT_FOR_FILE_ACCESS
	WAIT_FOR_LOCKS
	WARNINGS
	WARNING_ON_RECURSIVE_ACCEPTS
	WHITE_FILL
	WIN_ERROR_HANDLING
	WIN_F4_DROPS_COMBOBOX
	WIN_SPOOLER_PORT
	WIN3_CLIP_CONTROLS
	WIN3_EF_PADDED
	WIN3_GRID
	WIN32_3D
	WIN32_CTL_INPUT_STATUS
	WIN32_NATIVECTLS
	WINDOW_INTENSITY
	WINDOW_TITLE
	WINPRINT_NAMES_ONLY
	WRAP
	XFD_DIRECTORY
	XFD_PREFIX
	XTERM_PROGRAM

	Runtime Options
	4.1 Using the Runtime
	4.2 List of Runtime Options

	Runtime Debugger
	5.1 About the Debugger
	5.2 Entering the Debugger
	5.3 Cursor and Mouse Handling in Source-Level Debugging
	5.4 Debugger Commands
	5.4.1 Source-level Commands
	5.4.2 Other Commands
	5.4.3 Multi-threading Issues
	5.4.4 Getting Help
	5.4.5 File Menu
	5.4.6 View Menu
	5.4.7 Run Menu
	5.4.8 Source Menu
	5.4.9 Data Menu
	5.4.10 Breakpoints Menu
	5.4.11 Selection Menu
	5.4.12 Help Menu
	5.4.13 The Toolbar

	5.5 File Tracing
	5.6 Screen Tracing
	5.7 Macro Debugger
	5.8 Specifying Addresses
	5.8.1 Variables
	5.8.2 Program Addresses

	5.9 Debugger Restrictions
	5.10 Using the Abend Diagnostic Report (ADR)
	5.10.1 Generating a Report
	5.10.2 ADR Restrictions

	File Status Codes
	6.1 Standards for File Status Codes
	6.2 Table of Codes
	6.3 Input/Output Error Codes for Error 23s
	6.4 Vision Secondary Error Codes for Error 98s
	6.5 Transaction Error Codes
	6.5.1 Primary Error Codes
	6.5.2 Secondary Error Codes for Error 01

	6.6 IBM DOS/VS Error Codes

	Utilities
	7.1 Object File Utility - cblutil
	7.1.1 Object Libraries
	7.1.2 Creating Object Libraries
	7.1.2.1 Creating remote object libraries

	7.1.3 Getting Object Information
	7.1.4 Generating Native Code

	7.2 Vision File Utility - vutil
	7.2.1 Examining File Information
	7.2.2 Testing File Integrity
	7.2.3 Rebuilding Files
	7.2.4 Resetting User Counts
	7.2.5 Resetting Internal Revision Number
	7.2.6 Extracting Records From a File
	7.2.7 Recovering Deleted Records
	7.2.8 Creating Empty Files
	7.2.8.1 Responding to vutil generated prompts
	7.2.8.2 Specifying file attributes in advance

	7.2.9 Unloading to Binary and Line Sequential Format
	7.2.10 Loading a File
	7.2.11 File Size Summary Report
	7.2.12 Converting RM/COBOL-85 Indexed Files
	7.2.13 Converting C-ISAM Files
	7.2.14 Converting Micro Focus Files
	7.2.15 Changing Record Size
	7.2.16 Setting the Comment Field
	7.2.17 Miscellaneous Commands
	7.2.18 Default Settings of vutil

	7.3 File Transfer Utility - vio
	7.3.1 vio Options
	7.3.2 Windows Considerations
	7.3.3 vio Examples
	7.3.4 Known Limitations

	7.4 Indexed File Record Editor (alfred)
	7.5 logutil
	7.5.1 Syntax and Options
	7.5.2 logutil Report Headings

	7.6 The Profiler
	7.6.1 Using the Profiler
	7.6.2 Configuring the Profiling Tools
	7.6.3 Understanding the Report
	7.6.4 Understanding the XML Data File

	7.7 External Sort Utility - AcuSort
	7.7.1 AcuSort Command Format
	7.7.2 AcuSort Instructions
	7.7.2.1 CHAR-ASCII and SIGN-ASCII
	7.7.2.2 CHAR-EBCDIC and SIGN-EBCDIC instructions
	7.7.2.3 SORT/MERGE instructions
	7.7.2.4 USE/GIVE instructions
	7.7.2.5 INCLUDE/OMIT instructions

	7.7.3 Code Sample
	7.7.4 AcuSort Environment Variables

	7.8 Remote Preprocessing Utility - Boomerang
	7.8.1 License Requirements and Installation
	7.8.2 Server Setup and Configuration
	7.8.2.1 Step 1: Creating an Alias File
	Pro*COBOL Alias Example
	CICS Alias Example
	UniKix Alias Example
	DB2 Alias Example
	7.8.2.2 Step 2: Creating a Configuration File
	7.8.2.3 Step 3: Creating an Access File
	7.8.2.4 Step 4: Starting the Server

	7.8.3 Server commands
	7.8.4 Client-side Operation - Remote Precompiling
	7.8.5 Client Commands
	7.8.6 Working with INCLUDE files

	Shared Memory
	8.1 Shared Memory Management with acushare
	8.2 Using Shared Memory
	8.2.1 Indicating Programs to Share

	8.3 Using acushare
	acushare -start
	acushare -kill
	acushare -clean
	acushare -version
	acushare (with no options)

	8.4 Runtime Error Handling

	Index

