
OpenText™ Static Application Security
Testing
User Guide
Version : 25.4
PDF Generated on : 10/10/2025

 © Copyright 2025 Open Text

Table of Contents

13

14

15

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

36

40

41

42

43

44

1. User Guide

1.1. Support and documentation

1.2. Change log

1.3. Introduction

1.3.1. Product name changes

1.3.2. OpenText SAST

1.3.2.1. About the analyzers

1.3.3. Licensing

1.3.4. Renewing an expired license

1.3.5. OpenText Application Security Content

1.3.6. Fortify ScanCentral SAST

1.3.7. OpenText Application Security Tools

1.3.8. Sample projects

1.3.9. Related documents

1.4. System requirements

1.4.1. Hardware requirements

1.4.1.1. Sample scans

1.4.2. Supported platforms and architectures

1.4.3. Software requirements

1.4.4. Language compatibility

1.4.4.1. Libraries, frameworks, and technologies

1.4.5. Supported build tools

1.4.6. Supported compilers

1.4.7. OpenText Application Security Content

1.4.8. Virtual Machine support

1.4.9. Acquiring software

Static Application Security Testing 25.4

Page 2This PDF was generated on 10/10/2025

46

47

48

49

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

1.4.10. Verifying software downloads

1.5. Installing OpenText SAST

1.5.1. About installing OpenText SAST

1.5.1.1. Installing OpenText SAST

1.5.1.2. Installing OpenText SAST silently

1.5.1.3. Installing OpenText SAST in text-based mode on non‑Windows
platforms

1.5.1.4. Manually installing OpenText Application Security Content

1.5.2. Using Docker to install and run OpenText SAST

1.5.2.1. Creating a Dockerfile to install OpenText SAST

1.5.2.2. Running the container

1.5.3. Upgrading OpenText SAST

1.5.4. About uninstalling OpenText SAST

1.5.4.1. Uninstalling OpenText SAST

1.5.4.2. Uninstalling OpenText SAST silently

1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows
platforms

1.5.5. Post-installation tasks

1.5.5.1. Running the post-install tool

1.5.5.2. Migrating properties files

1.5.5.3. Specifying a locale

1.5.5.4. Configuring Fortify Security Content updates

1.5.5.5. Configuring the connection to Application Security

1.5.5.6. Removing proxy server settings

1.5.5.7. Adding trusted certificates

1.6. Analysis process overview

1.6.1. Scanning Basics

1.6.2. Translation phase

Static Application Security Testing 25.4

Page 3This PDF was generated on 10/10/2025

74

75

76

77

78

79

80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

1.6.3. Analysis phase

1.6.4. Translation and analysis phase verification

1.7. Analyzing Java, Kotlin and JSP projects

1.7.1. Integrating with Gradle

1.7.1.1. Using Gradle integration

1.7.1.2. Troubleshooting Gradle integration

1.7.1.3. Using the Gradle plugin

1.7.2. Integrating with Maven

1.7.2.1. Installing and updating the Fortify Maven Plugin

1.7.2.2. Testing the Fortify Maven Plugin installation

1.7.2.3. Using the Fortify Maven Plugin

1.7.3. Integrating with Bazel

1.7.3.1. Java Bazel integration examples

1.7.4. Integrating with Ant

1.7.5. Manual Java and Kotlin translation syntax

1.7.5.1. Java, Kotlin and JSP command-line options

1.7.5.2. Java command-line examples

1.7.5.3. Kotlin command-line examples

1.7.6. Analyzing Kotlin scripts

1.7.7. Kotlin and Java translation interoperability

1.7.8. Handling Java warnings

1.7.9. Analyzing Jakarta EE (Java EE) applications

1.7.9.1. Translating Java files

1.7.9.2. Translating JSP projects, configuration files, and deployment
descriptors

1.7.9.3. Jakarta EE (Java EE) translation warnings

1.7.10. Analyzing Java bytecode

1.7.11. Troubleshooting JSP translation and analysis issues

Static Application Security Testing 25.4

Page 4This PDF was generated on 10/10/2025

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

1.8. Analyzing Android projects

1.8.1. Android project translation prerequisites

1.8.2. Android code analysis command-line syntax

1.8.3. Filtering issues detected in Android layout files

1.9. Analyzing Visual Studio projects

1.9.1. Visual Studio project translation prerequisites

1.9.2. Visual Studio Project command-line syntax

1.9.3. Handling special cases for translating Visual Studio projects

1.9.3.1. Running translation from a script

1.9.3.2. Translating plain .NET and ASP.NET projects

1.9.3.3. Translating C/C++ and Xamarin projects

1.9.3.4. Translating projects with settings containing spaces

1.9.3.5. Translating a single project from a Visual Studio solution

1.9.3.6. Analyzing projects that build multiple executable files

1.9.4. Alternative ways to translate Visual Studio projects

1.9.4.1. Alternative translation options for Visual Studio solutions

1.9.4.2. Translating without explicitly running OpenText SAST

1.10. Analyzing JavaScript and TypeScript code

1.10.1. Translating pure JavaScript projects

1.10.2. Excluding dependencies

1.10.3. Excluding NPM Dependencies

1.10.4. NPM dependencies

1.10.4.1. Examples of excluding NPM dependencies

1.10.5. Translating JavaScript projects with HTML files

1.10.6. Including external JavaScript or HTML in the translation

1.11. Analyzing Python and Jupyter Notebooks

Static Application Security Testing 25.4

Page 5This PDF was generated on 10/10/2025

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

1.11.1. Integrating with Bazel

1.11.1.1. Python Bazel integration examples

1.11.2. Python translation command-line syntax

1.11.2.1. Python command-line options

1.11.2.2. Python command-line examples

1.11.3. Translating Python in a virtual environment

1.11.4. Including imported modules and packages

1.11.5. Including namespace packages

1.11.6. Translating Django and Flask

1.12. Analyzing C and C++ code

1.12.1. C and C++ Code translation prerequisites

1.12.2. Integrating with Make

1.12.3. Integrating with CMake

1.12.4. Integrating with Gradle

1.12.5. Manual C and C++ translation syntax

1.12.6. Scanning pre-processed C and C++ code

1.12.7. C/C++ Precompiled Header Files

1.13. Analyzing iOS and Xcode projects

1.13.1. iOS project translation prerequisites

1.13.2. iOS code analysis command-line syntax

1.14. Analyzing PHP code

1.14.1. PHP command-line options

1.15. Analyzing Go code

1.15.1. Go command-line syntax

1.15.2. Go command-line options

1.15.3. Including custom Go build tags

1.15.4. Resolving dependencies

Static Application Security Testing 25.4

Page 6This PDF was generated on 10/10/2025

155

156

157

158

159

160

161

162

163

164

165

166

167

169

170

171

172

173

174

175

176

177

178

179

180

181

182

1.16. Analyzing Dart and Flutter code

1.16.1. Dart and Flutter translation prerequisites

1.16.2. Dart and Flutter command-line syntax

1.16.3. Dart and Flutter command-line examples

1.17. Analyzing Salesforce Apex and Visualforce code

1.17.1. Apex and Visualforce translation prerequisites

1.17.2. Apex and Visualforce command-line syntax

1.18. Analyzing ABAP code

1.18.1. About downloading source files

1.18.1.1. INCLUDE processing

1.18.2. Importing the transport request

1.18.3. Adding OpenText SAST to your Favorites list

1.18.4. Running the Fortify ABAP Extractor

1.18.5. Uninstalling the Fortify ABAP Extractor

1.19. Analyzing COBOL code

1.19.1. Preparing COBOL source and copybook files for translation

1.19.2. COBOL command-line syntax

1.19.2.1. Translating COBOL source files without file extensions

1.19.2.2. Translating COBOL source files with arbitrary file extensions

1.19.2.3. COBOL command-line options

1.19.3. Using Legacy COBOL translation

1.19.3.1. Legacy COBOL translation command-line options

1.20. Analyzing Ruby code

1.20.1. Ruby command-line syntax

1.20.1.1. Ruby command-line options

1.20.2. Adding libraries

1.20.3. Adding gem paths

Static Application Security Testing 25.4

Page 7This PDF was generated on 10/10/2025

183

184

185

186

187

188

189

190

191

192

193

194

195

196

198

199

200

201

203

204

205

206

207

208

209

210

212

1.21. Analyzing other languages and configurations

1.21.1. Analyzing Solidity code

1.21.2. Analyzing Flex and ActionScript

1.21.2.1. Flex and ActionScript command-line options

1.21.2.2. ActionScript command-line examples

1.21.2.3. Handling resolution warnings

1.21.3. Analyzing ColdFusion code

1.21.3.1. ColdFusion command-line syntax

1.21.3.2. ColdFusion (CFML) command-line options

1.21.4. Analyzing SQL

1.21.4.1. PL/SQL command-line example

1.21.4.2. T-SQL command-line example

1.21.5. Analyzing Scala code

1.21.6. Analyzing Infrastructure as Code (IaC)

1.21.7. Analyzing JSON

1.21.8. Analyzing YAML

1.21.9. Analyzing Dockerfiles

1.21.10. Analyzing ASP/VBScript virtual roots

1.21.11. Classic ASP command-line example

1.21.12. VBScript command-line example

1.22. Analyzing Library code

1.23. Scanning for Secrets

1.23.1. Regular expression analysis

1.24. Optimizing results

1.24.1. Applying a scan policy to the analysis

1.24.2. Excluding issues with filter files

1.24.2.1. Filter file example

Static Application Security Testing 25.4

Page 8This PDF was generated on 10/10/2025

214

215

217

218

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

1.24.3. Using filter sets to exclude issues

1.24.4. Filtering using FortifyRemove comments

1.24.5. Fortify Java annotations

1.24.5.1. Dataflow annotations

1.24.5.2. Field and variable annotations

1.24.5.3. Other annotations

1.25. Optimizing performance

1.25.1. Antivirus software

1.25.2. Hardware considerations

1.25.3. Tuning options

1.25.4. Quick scan

1.25.5. Configuring scan speed with speed dial

1.25.6. Breaking down codebases

1.25.7. Limiting analyzers and languages

1.25.7.1. Disabling analyzers

1.25.7.2. Disabling languages

1.25.8. Optimizing FPR files

1.25.8.1. Using filter files

1.25.8.2. Using filter sets

1.25.8.3. Excluding source code from the FPR

1.25.8.4. Reducing the FPR file size

1.25.8.5. Opening large FPR files

1.25.9. Monitoring long running scans

1.25.9.1. Using the SCAState tool

1.25.9.2. Using JMX tools

1.25.9.2.1. Using JConsole

1.25.9.2.2. Using Java VisualVM

Static Application Security Testing 25.4

Page 9This PDF was generated on 10/10/2025

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

267

269

270

271

1.26. Using mobile build sessions

1.26.1. Mobile build session version compatibility

1.26.2. Creating a mobile build session

1.26.3. Importing a mobile build session

1.27. Troubleshooting

1.27.1. Exit codes

1.27.2. Memory tuning

1.27.2.1. Java heap exhaustion

1.27.2.2. Native heap exhaustion

1.27.2.3. Stack overflow

1.27.3. Scanning complex functions

1.27.3.1. Dataflow Analyzer limiters

1.27.3.2. Control Flow and Null Pointer analyzer limiters

1.27.4. Issue non-determinism

1.27.5. Locating the log files

1.27.6. Configuring log files

1.27.7. Reporting issues and requesting enhancements

1.28. Command-line reference

1.28.1. Specifying files and directories

1.28.2. Directives

1.28.2.1. LIM license directives

1.28.3. Translation options

1.28.4. Analysis options

1.28.5. Output options

1.28.6. Other options

1.29. Configuration options

1.29.1. Properties files

Static Application Security Testing 25.4

Page 10This PDF was generated on 10/10/2025

272

273

274

275

279

280

281

282

284

285

286

287

288

289

290

291

292

293

294

295

297

298

299

300

301

303

307

1.29.1.1. Properties file format

1.29.1.2. Overriding settings

1.29.2. fortify-sca.properties

1.29.2.1. Translation and analysis phase properties

1.29.2.2. Regex analysis properties

1.29.2.3. LIM license properties

1.29.2.4. Rule properties

1.29.2.5. Java and Kotlin properties

1.29.2.6. Visual Studio and MSBuild project properties

1.29.2.7. JavaScript and TypeScript properties

1.29.2.8. Python properties

1.29.2.9. Go properties

1.29.2.10. Ruby properties

1.29.2.11. COBOL properties

1.29.2.12. PHP properties

1.29.2.13. ABAP properties

1.29.2.14. Flex and ActionScript properties

1.29.2.15. ColdFusion (CFML) properties

1.29.2.16. SQL properties

1.29.2.17. Output properties

1.29.2.18. Mobile build session (MBS) properties

1.29.2.19. Proxy properties

1.29.2.20. Logging properties

1.29.2.21. Debug properties

1.29.3. fortify-sca-quickscan.properties

1.29.4. fortify-rules.properties

1.30. Command-line tools

Static Application Security Testing 25.4

Page 11This PDF was generated on 10/10/2025

308

309

310

311

312

1.30.1. About updating OpenText Application Security Content

1.30.1.1. Updating OpenText Application Security Content

1.30.1.2. fortifyupdate command-line options

1.30.2. Checking the scan status with SCAState

1.30.2.1. SCAState command-line options

Static Application Security Testing 25.4

Page 12This PDF was generated on 10/10/2025

1. User Guide
This section provides instructions for using OpenText™ Static Application Security Testing (OpenText SAST) to scan code on most major programming
platforms. This section is intended for people responsible for security audits and secure coding.

Static Application Security Testing 25.4

Page 13This PDF was generated on 10/10/2025

1.1. Support and documentation
When contacting Customer Support, provide the following product information:
Software Version: 25.4.0
Software Release Date: 25.4.0

Contacting Customer Support
Visit the Customer Support website to:

For more information
For more information about OpenText Application Security Testing products, visit Application Security.

Product feature videos
You can find videos that highlight OpenText Application Security Software products and features on the Fortify Unplugged YouTube™ channel.

Manage licenses and entitlements

Create and manage technical assistance requests

Browse documentation and knowledge articles

Download software

Explore the Community

Static Application Security Testing 25.4

Page 14This PDF was generated on 10/10/2025

https://portal.microfocus.com/
https://www.opentext.com/products/application-security
https://www.youtube.com/c/FortifyUnplugged

1.2. Change log
The following table lists changes made to this help/document. Revisions to this help/document are published between software releases only if the
changes made affect product functionality.

Software
release /
Document version

Changes

25.4.0 Added:

Updated:

Removed:

25.3.0 Added:

Updated:

Removed:

25.2.0 Added:

Updated:

Removed:

Added new Xcode build and MSBuild versions (see Supported build tools)
Added new .NET (Core), C#, Java, Go, Kotlin, Scala, and Swift versions (see Language compatibility)
Added new compiler versions OpenJDK javac and Swiftc (see Supported compilers)
Added new com.fortify.sca.rules.Islibrary and com.fortify.sca.rules.enablePQCRules properties (fortify-
rules.properties)
Added page on analyzing library code (Analyzing Library Code)
Added new com.fortify.sca.EnableSubtraceFiltering property (Translation and analysis phase properties)
Added section on Composite Filters to Excluding issues with filter files

Changed all mentions of Translating <languages> to Analyzing <languages>
Made all the language sections top level for easy identification
Simplified Analysis process overview
Build integration sections have now been moved to the respective language sections
Merged Java, Kotlin and Android sections. (see Analyzing Java, Kotlin and JSP projects)
Reorganized iOS section. (see Analyzing iOS and Xcode projects)
Moved the scan policy section out of the analysis overview, combined with filters and other ways to improve results into a
new section. (see Optimizing Results)
Moved section about regex analysis under a top-level section for secret scanning

Removed ScanCentral SAST client from the OpenText SAST installer.
Removed Gradle version 6.5 and earlier versions (see Supported build tools)

Updated Xcode build versions (see System requirements)
Added new rule property to control FortifyRemove comments functionality (fortify-rules.properties)
Added Filtering comments using FortifyRemove
MacOS ARM installers (see Acquiring software)

Changed all mentions of Fortify Sofware Security content to OpenText Application Security Content

Removed xcodebuild versions 15, 15.0.1, 15.1, 15.2 (see Supported build tools)

System requirements
Instructions on how to create a custom scan policy (Applying a scan policy to the analysis)

Incorporated product name changes (see Product name changes)
Installer file names changed for product name change (see various topics in Installing OpenText SAST)
Test projects are excluded by default in translation of Visual Studio projects (see Visual Studio Project command-line
syntax)
Added support for Jupyter notebooks (see Translating Python code)
Setting limiter properties is no longer required to translate code created using the Django or Flask framework

Properties com.fortify.sca.SuppressLowSeverity and com.fortify.sca.LowSeverityCutoff were removed because
they reference metadata that is deprecated in the Rulepacks.
The com.fortify.sca.hoa.Enable property was removed from this helpdocument and will be removed from the product
in a future release.

Static Application Security Testing 25.4

Page 15This PDF was generated on 10/10/2025

24.4.0 Updated:

Removed:

Added installer for Linux on ARM (see Installing OpenText SAST)
Scan policies can exclude dataflow issues based on taint flags (see Applying a Scan Policy to the Analysis)
By default, NPM dependencies are excluded from the analysis phase (see Managing translation of NPM dependencies)
Support added for Flask and Jinja2 (see Translating Python code)
Added the -gotags option to include custom build tags in OpenText SAST translation of Go project (see Including Custom
Go Build Tags and Go Properties)
Changes to the command-line options to analyze PL/SQL (see AnalyzingTranslating SQL)
Added an option to disable build tool name resolution and translate build script files as source files (see Translation
Options and Translation and Analysis Phase Properties)
The -exclude option is supported in Ant, Bazel, Gradle, and Maven build integrations (see Integrating with Ant, Integrating
with Bazel, Using Gradle Integration, Using the Fortify Maven Plugin, and Translation Options)

Modular analysis was removed from this help/document. This feature is deprecated and will be removed from the product
in the next release.

Static Application Security Testing 25.4

Page 16This PDF was generated on 10/10/2025

1.3. Introduction
This section contains the following topics:

Product name changes
OpenText SAST
Licensing
Renewing an expired license
OpenText Application Security Content
Fortify ScanCentral SAST
OpenText Application Security Tools
Sample projects
Related documents

Static Application Security Testing 25.4

Page 17This PDF was generated on 10/10/2025

1.3.1. Product name changes
OpenText is in the process of changing the following product names:

Previous name New name

Fortify Static Code Analyzer OpenText™ Static Application Security Testing (OpenText SAST)

Fortify Software Security Center OpenText™ Application Security

Fortify WebInspect OpenText™ Dynamic Application Security Testing (OpenText DAST)

Fortify on Demand OpenText™ Core Application Security

Debricked OpenText™ Core Software Composition Analysis (OpenText Core SCA)

Fortify Applications and Tools OpenText™ Application Security Tools

The product names have changed on product splash pages, mastheads, login pages, and other places where the product is identified. The name
changes are intended to clarify product functionality and to better align the Fortify Software products with OpenText. In some cases, such as on the
documentation title page, the old name might temporarily be included in parenthesis. You can expect to see more changes in future product releases.

Static Application Security Testing 25.4

Page 18This PDF was generated on 10/10/2025

1.3.2. OpenText SAST
OpenText SAST (Fortify Static Code Analyzer) is a set of software security analyzers that search for violations of security-specific coding rules and
guidelines in a variety of languages. OpenText SAST produces analysis information to help you deliver more secure software, and make security code
reviews more efficient, consistent, and complete. Its design enables you to incorporate customer-specific security rules.

For a list of supported languages, libraries, compilers, and build tools, see System requirements.

To analyze your application with OpenText SAST, you can:

Perform the analysis directly from an IDE using one of the Secure Code Plugins: Fortify Extension for Visual Studio, Fortify Plugin for Eclipse, and
Fortify Analysis Plugin for IntelliJ IDEA and Android Studio). You can also run the analysis from Fortify Audit Workbench.

You can also view the security vulnerability analysis results in the IDE and Fortify Audit Workbench or upload the results to Application Security.
For a description of the tools, see OpenText Application Security Tools.

Integrate the analysis into your build system or run the analysis from the command line.

This guide focuses primarily on this method of performing the analysis.

Static Application Security Testing 25.4

Page 19This PDF was generated on 10/10/2025

1.3.2.1. About the analyzers
OpenText SAST comprises eight vulnerability analyzers: Buffer, Configuration, Content, Control Flow, Dataflow, Null Pointer, Semantic, and Structural.
Each analyzer accepts a different type of rule specifically tailored to provide the information necessary for the corresponding type of analysis
performed. Rules are definitions that identify elements in the source code that might result in security vulnerabilities or are otherwise unsafe. The
following table describes each analyzer.

Analyzer Description

Dataflow The Dataflow Analyzer detects potential vulnerabilities that involve tainted data (user-controlled input or private data) put to
potentially dangerous use. The Dataflow Analyzer uses interprocedural taint propagation analysis to detect the flow of data between
a site of user input (or private data) through the application to a dangerous function call or operation. For example, the Dataflow
Analyzer detects whether a user-controlled input string dynamically generates HTML (Cross-Site Scripting) and detects whether a
user-controlled string constructs SQL queries (SQL injection).

Control Flow The Control Flow Analyzer detects potentially dangerous sequences of operations. By analyzing control flow paths in a program, the
Control Flow Analyzer determines whether a set of operations are executed in a certain order. For example, the Control Flow Analyzer
detects time of check/time of use issues and race conditions, and checks whether utilities, such as XML readers, are configured
properly before being used.

Buffer The Buffer Analyzer detects buffer overflow vulnerabilities that involve writing or reading more data than a buffer can hold. The
buffer can be either stack-allocated or heap-allocated. The Buffer Analyzer uses limited interprocedural analysis to determine
whether there is a condition that causes the buffer to overflow. If any execution path to a buffer leads to a buffer overflow, OpenText
SAST reports it as a buffer overflow vulnerability and points out the variables that might cause the overflow. If the value of the
variable causing the buffer overflow is tainted (user-controlled), then OpenText SAST reports it as well and displays the dataflow
trace to show how the variable is tainted. The Buffer Analyzer also detects buffer under-read and buffer underflow conditions.

Structural The Structural Analyzer detects potentially dangerous flaws in the structure or definition of the program. By understanding the way
programs are structured, the Structural Analyzer identifies violations of secure programming practices and techniques that are often
difficult to detect through inspection because they encompass a wide scope involving both the declaration and use of variables and
functions. For example, the Structural Analyzer detects hard-coded secrets, cookie misconfiguration in code, and encryption
weaknesses.

Configuration The Configuration Analyzer searches for mistakes, weaknesses, and policy violations in application deployment configuration files.
For example, the Configuration Analyzer checks for reasonable timeouts in user sessions in a web application. The Configuration
Analyzer also performs regular expression analysis (see Regular Expression Analysis).

Semantic The Semantic Analyzer detects potentially dangerous uses of functions and APIs at the intra-procedural level.

Content The Content Analyzer searches for security issues and policy violations in HTML content. In addition to static HTML pages, the
Content Analyzer performs these checks on files that contain dynamic HTML, such as PHP, JSP, and classic ASP files.

Null Pointer The Null Pointer Analyzer detects dereferences of pointer variables that are assigned the null value. The Null Pointer Analyzer
detection is performed at the intra-procedural level. Issues are detected only when the null assignment, the dereference, and all the
paths between them occur within a single function.

Static Application Security Testing 25.4

Page 20This PDF was generated on 10/10/2025

1.3.3. Licensing
OpenText SAST requires a license to perform both the translation and analysis (scan) phases of security analysis (for more information about these
phases, see Analysis Process).

You must download the Fortify license file for your product from the Software Licenses and Downloads (SLD) portal. Use the credentials that Customer
Support has provided for access.

To install OpenText SAST, you must have a Fortify license file (fortify.license) and optionally you can use the Fortify License and Infrastructure
Manager to manage concurrent licenses for OpenText SAST. With a LIM managed concurrent license, multiple installations of OpenText SAST can share
a single license. For information about how to set up the LIM with licenses for OpenText SAST, see OpenText™ Fortify License and Infrastructure
Manager Installation and Usage Guide. For more information about managing your LIM license from OpenText SAST, see LIM license directives.

Note

Using OpenText™ Fortify License and Infrastructure Manager (LIM) to manage concurrent licenses for OpenText
SAST requires LIM version 21.2.0 or later.

Static Application Security Testing 25.4

Page 21This PDF was generated on 10/10/2025

https://sld.microfocus.com/

1.3.4. Renewing an expired license
The license for OpenText SAST expires annually.

To update an expired license:

Put the updated Fortify license file in the root directory where OpenText SAST is installed.

To update an expired LIM managed concurrent license, see the OpenText™ Fortify License and Infrastructure Manager Installation and Usage Guide.

Static Application Security Testing 25.4

Page 22This PDF was generated on 10/10/2025

1.3.5. OpenText Application Security Content
OpenText SAST uses a knowledge base of rules to enforce secure coding standards applicable to the codebase for static analysis. OpenText Application
Security Content is required for both translation and analysis. You can download and install security content when you install OpenText SAST (see
Installing OpenText SAST). Alternatively, you can download or import previously downloaded OpenText Application Security Content with the
fortifyupdate command-line tool as a post-installation task (see Manually Installing OpenText Application Security Content).

OpenText Application Security Content consists of Fortify Secure Coding Rulepacks and external metadata:

Fortify Secure Coding Rulepacks describe general secure coding idioms for popular languages and public APIs
External metadata includes mappings from the Fortify categories to alternative categories (such as CWE, OWASP Top 10, and PCI)

OpenText provides the ability to write custom rules that add to the functionality of OpenText SAST and the Fortify Secure Coding Rulepacks. For
example, you might need to enforce proprietary security guidelines or analyze a project that uses third-party libraries or other pre-compiled binaries
that are not already covered by the Fortify Secure Coding Rulepacks. You can also customize the external metadata to map Fortify issues to different
taxonomies, such as internal application security standards or additional compliance obligations. For instructions on how to create your own custom
rules or custom external metadata, see the OpenText™ Static Application Security Testing Custom Rules Guide.

OpenText recommends that you periodically update the security content. You can use fortifyupdate to obtain the latest security content. For more
information, see Updating Security Content.

Static Application Security Testing 25.4

Page 23This PDF was generated on 10/10/2025

1.3.6. Fortify ScanCentral SAST
You can use OpenText™ ScanCentral SAST to manage your resources by offloading the OpenText SAST analysis phase from build machines to a
collection of machines provisioned for this purpose. For most languages, ScanCentral SAST can perform both the translation and the analysis (scan)
phases. Users of Application Security can direct ScanCentral SAST to output the FPR file directly to the server. You have the option to install a
ScanCentral SAST client when you install OpenText SAST.

You can analyze your code in one of two ways:

If your application is written in a language supported for ScanCentral SAST translation, you can offload the translation and analysis (scan) phase
of the analysis to ScanCentral SAST.
Perform the translation phase on a local build machine and generate a mobile build session (MBS). Start the scan with ScanCentral SAST using the
MBS file. In addition to freeing up the build machines, this process gives you the ability to expand the system by adding more resources as
needed, without having to interrupt the build process. For more information about MBS, see Mobile build sessions.

For information about the specific supported languages for translation and how to configure and use ScanCentral SAST, see the OpenText™
ScanCentral SAST Installation, Configuration, and Usage Guide.

Static Application Security Testing 25.4

Page 24This PDF was generated on 10/10/2025

1.3.7. OpenText Application Security Tools
OpenText provides applications and tools (including Secure Code Plugins) that integrate with OpenText SAST, ScanCentral SAST, and Application
Security. The following table describes the applications that are available for installation with the OpenText Application Security Tools installer. For
instructions about installing the OpenText Application Security Tools, see the OpenText™ Application Security Tools Guide.

Application Description

OpenText™ Fortify
Audit Workbench

An application that provides a graphical user interface to help you organize, investigate, and prioritize analysis results so that
developers can fix security flaws quickly.

OpenText™ Fortify
Plugin for Eclipse

Adds the ability to scan and analyze the entire codebase of a project and apply software security rules that identify the
vulnerabilities in your Java code from the Eclipse IDE. The results are displayed, along with descriptions of each of the
security issues and suggestions for their elimination.

OpenText™ Fortify
Analysis Plugin for
IntelliJ IDEA and
Android Studio

Adds the ability to run scans on the entire codebase of a project and apply software security rules that identify the
vulnerabilities in your code from IntelliJ IDEA and Android Studio.

OpenText™ Fortify
Extension for Visual
Studio

Adds the ability to scan and locate security vulnerabilities in your solutions and projects and displays the scan results in
Visual Studio. The results include a list of issues uncovered, descriptions of the type of vulnerability each issue represents,
and suggestions on how to fix them. This extension also includes remediation functionality that works with audit results
stored on a Application Security server.

OpenText™ Fortify
Custom Rules Editor

An application to create and edit custom rules.

Fortify Scan Wizard Provides a graphical user interface that enables you to prepare a script to scan your code (either locally or remotely using
ScanCentral SAST) and then optionally upload the results to Application Security.

BIRTReportGenerator
ReportGenerator

Command-line tools to generate issue reports (BIRT) and legacy reports from FPR files.

Static Application Security Testing 25.4

Page 25This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.3.8. Sample projects
OpenText provides sample projects available as a separate download in the OpenText_SAST_Fortify_Samples_<version>.zip package.

The ZIP file contains two directories: basic and advanced. Each code sample includes a README.txt file that provides instructions on how to scan the
code with OpenText SAST and view the results in Fortify Audit Workbench.

The basic directory includes an assortment of simple language-specific code samples. The advanced directory includes more advanced samples.

Static Application Security Testing 25.4

Page 26This PDF was generated on 10/10/2025

1.3.9. Related documents
This topic describes documents that provide information about OpenText Application Security Software products.

All products
The following documents provide general information for all products. Unless otherwise noted, these documents are available on the Product
Documentation website for each product.

Document / file name Description

About OpenText Application
Security Software Documentation
appsec-docs-n-<version>.pdf

This paper provides information about how to access OpenText Application Security Software product
documentation.

Note

This document is included only with the product download.

OpenText Application Security
Software Release Notes
appsec-rn-<version>.pdf

This document provides an overview of the changes made to OpenText Application Security Software for this
release and important information not included elsewhere in the product documentation.

OpenText SAST
The following documents provide information about OpenText SAST (Fortify Static Code Analyzer). Unless otherwise noted, these documents are
available on the Product Documentation website at www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/.

Document / file name Description

OpenText™ Static Application Security
Testing User Guide
sast-ugd-<version>.pdf

This document describes how to install and use OpenText SAST to scan code on many of the major
programming platforms. It is intended for people responsible for security audits and secure coding.

OpenText™ Static Application Security
Testing Custom Rules Guide
sast-cr-ugd-<version>.zip

This document provides the information that you need to create custom rules for OpenText SAST. This
guide includes examples that apply rule-writing concepts to real-world security issues.

Note

This document is included only with the product download.

OpenText™ Fortify License and
Infrastructure Manager Installation and
Usage Guide
lim-ugd-<version>.pdf

This document describes how to install, configure, and use the Fortify License and Infrastructure Manager
(LIM), which is available for installation on a local Windows server and as a container image on the Docker
platform.

OpenText Application Security Tools
The following documents provide information about OpenText Application Security Tools. These documents are available on the Product Documentation
website at https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools.

Document / file name Description

OpenText™ Application Security
Tools Guide
sast-tgd-<version>.pdf

This document describes how to install application security tools. It provides an overview of the applications and
command-line tools that enable you to scan your code with OpenText SAST, review analysis results, work with
analysis results files, and more.

OpenText™ Fortify Audit
Workbench User Guide
awb-ugd-<version>.pdf

This document describes how to use Fortify Audit Workbench to scan software projects and audit analysis
results. This guide also includes how to integrate with bug trackers, produce reports, and perform collaborative
auditing.

OpenText™ Fortify Plugin for
Eclipse User Guide
ep-udg-<version>.pdf

This document provides information about how to install and use the Fortify Plugin for Eclipse to analyze and
audit your code.

Static Application Security Testing 25.4

Page 27This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools

OpenText™ Fortify Analysis Plugin
for IntelliJ IDEA and Android Studio
User Guide
iap-udg-<version>.pdf

This document describes how to install and use the Fortify Analysis Plugin for IntelliJ IDEA and Android Studio to
analyze your code and optionally upload the results to Application Security.

OpenText™ Fortify Extension for
Visual Studio User Guide
vse-ugd-<version>.pdf

This document provides information about how to install and use the Fortify Extension for Visual Studio to
analyze, audit, and remediate your code to resolve security-related issues in solutions and projects.

Static Application Security Testing 25.4

Page 28This PDF was generated on 10/10/2025

1.4. System requirements
This contentchapter describes the system requirements, supported languages, build tools, and compilers, and how to acquire the OpenText SAST
software package.

This section contains the following topics:

Hardware requirements
Supported platforms and architectures
Software requirements
Language compatibility
Supported build tools
Supported compilers
OpenText Application Security Content
Virtual Machine support
Acquiring software
Verifying software downloads

Static Application Security Testing 25.4

Page 29This PDF was generated on 10/10/2025

1.4.1. Hardware requirements
System resources such as CPU, memory, and storage can drastically impact the overall analysis time for a project. It depends on many factors related
to the target project codebase such as overall code size, composition, language, and code complexity. The following guidance provides some general
starting points based on our experience scanning many different real-world applications.

Application size and
complexity

CPU cores RAM (GB) Description

Small and simple 4 16 A small standalone system that runs on a server or desktop such as a batch job or a
command-line tool and includes:

Less than 10,000 functions

Small and simple
(dynamic language)

8 32 A standalone system that works with complex computer models such as a tax calculation
system or a scheduling system and includes:

Less than 10,000 functions
Primarily a dynamic language such as JavaScript, TypeScript, Python, PHP, and Ruby

Medium 16 64–128 A three-tiered business system with transactional data processing such as a financial system
or a commercial website and includes:

Less than 100,000 functions
Over one million lines of code

Large and complex 32 256 A system that delivers content such as an application server, database server, or content
management system and includes:

Over 1 million functions
Several million lines of code

OpenText SAST takes advantage of all CPU cores available on your system to reduce the scan time of large projects. When you run OpenText SAST,
avoid running other CPU intensive processes during the OpenText SAST execution because it expects to have the full resources of your hardware
available for the scan.

Additional system resource tuning considerations:

Virtual systems—Virtualization enables hardware resources to be scaled by identifying unused resources in a workload and reallocating them to
other workloads. Because OpenText SAST analysis is generally a long running resource intensive process (especially in large and complex
projects), OpenText recommends dedicated resources at the virtualization layer to reduce resource swapping.

CPU—Overall processing power can have significant impact on the total time required for analysis. OpenText recommends a high end processor
with a fast clock speed (GHz per core). It is important to note that there is a correlation between the number of cores available to the system and
the amount of memory that might be needed.

Memory—For more information on how to determine the amount of memory required for optimal performance, see Memory tuning. Note that
analysis of dynamic languages such as JavaScript, TypeScript, Python, PHP, and Ruby require more memory during the scan phase that other
languages.

Disk I/O—Project translation and scan are I/O intensive activities that serialize large amounts of data and benefit from faster storage. OpenText
recommends that you run analysis on faster SSD storage when possible.

Number of functions—You can verify the number of functions modeled during the analysis by running a scan with the -debug option and
looking for the last occurrence of the NameTable.funs: ### value in the Support log file.

See Also

Sample scans

Static Application Security Testing 25.4

Page 30This PDF was generated on 10/10/2025

1.4.1.1. Sample scans
These sample scans were performed using OpenText SAST version 25.4.0 on dedicated virtual machines. These scans were run with OpenText
Application Security Content 25.4 Update. The following table shows the scan times you can expect for several common open-source projects.

Language Project name Translation time
(mm:ss)

Analysis (scan) time
(mm:ss)

Total
issues

LOC System configuration

.NET (C#) SharpZipLib 01:27 14:05 606 31,863 Windows Server 2022 with 4 CPUs and
32 GB of RAM

ABAP abap2UI5 00:13 00:52 11 59,111 Linux (AlmaLinux 9) with 4 CPUs and 32
GB of RAM

C/C++ nasm 0.98.38 00:36 04:49 738 35,997 Linux (Centos 7) with 8 CPUs and 32 GB
of RAM

Java WebGoat 8 00:17 00:59 252 23,662 Linux (AlmaLinux 9) with 4 CPUs and 32
GB of RAM

Java WordPress for
Android

00:10 01:48 534 35,276 Linux (AlmaLinux 9) with 4 CPUs and 32
GB of RAM

JavaScript three.js 06:14 14:43 277 639,230 Linux (AlmaLinux 9) with 8 CPUs and
32 GB RAM,Java 17

PHP CakePHP 00:22 00:03 4,182 136,594 Linux (AlmaLinux 9) with 4 CPUs and 32
GB of RAM

PHP phpBB 3 00:34 02:05 1,305 206,873 Linux (AlmaLinux 9) with 4 CPUs and 32
GB of RAM

Python 3 numpy-1.13.3 02:24 09:28 217 563,457 Linux (AlmaLinux 9) with 4 CPUs and 32
GB RAM

Swift MediaBrowser 00:16 01:26 9 17,699 macOS® with 4 CPUs and 16 GB of RAM

TypeScript rxjs-7.8.1 02:19 07:24 59 204,006 Linux (AlmaLinux 9) with 8 CPUs and 32
GB RAM, Java 17

Static Application Security Testing 25.4

Page 31This PDF was generated on 10/10/2025

1.4.2. Supported platforms and architectures
OpenText SAST supports the platforms and architectures listed in the following table.

Operating system Platforms Distributions and versions Notes

Microsoft
Windows®

x64 Windows 10, 11
Windows Server 2019, 2022

Linux® x64
ARM

CentOS Linux 7.x (7.6 or later)
Red Hat® Enterprise Linux® 7.x (7.2 or
later), 8.x (8.2 or later), 9.x
SUSE® Linux® Enterprise Server 15
Ubuntu® 20.04.1 LTS, 22.04.1 LTS

macOS® x64
M series
ARM

14, 15

IBM® AIX® Power ISA 7.1, 7.2, 7.3

Important

You must have the IBM XL C/C++ for AIX 16.1
Runtime environment package installed.

Static Application Security Testing 25.4

Page 32This PDF was generated on 10/10/2025

1.4.3. Software requirements
The OpenText SAST installation includes an embedded OpenJDK/JRE version 17.0.14, which the software requires. You do not need to install Java 17.

Note

OpenText does not recommend upgrading the embedded OpenJDK/JRE to a later
version.

To use OpenText SAST, you must have Read and Write permissions for the OpenText SAST installation directory.

The following table lists software requirements for analysis of specific project types.

Language Software Operating
systems

Visual Studio, MSBuild, or .NET
projects

.NET Framework 4.8 or later (MSBuild only) Windows

.NET SDK 8.0 Windows, Linux

ABAP®/BSP Fortify ABAP Extractor is supported on a system running ABAP Platform 2023 / ABAP
Version 7.58.

All

Bicep .NET SDK 8.0 Windows, Linux

COBOL Microsoft Visual C++ 2017 Redistributable (x86)

Note

This is not a requirement for legacy COBOL analysis.

Windows

Scala The Akka compiler plugin is available in the Maven Central Repository. All

Static Application Security Testing 25.4

Page 33This PDF was generated on 10/10/2025

1.4.4. Language compatibility
OpenText SAST verifies compatibility with the language versions listed below. While these versions have been tested, OpenText SAST is designed with
flexibility in mind and may successfully scan other versions not explicitly verified.

We encourage users to upgrade to the latest version of OpenText SAST and attempt scans to determine compatibility. If you encounter issues scanning
a newer, unverified version or wish to scan a language not currently supported, please reach out to OpenText Support for assistance.

Language / framework Verified Compatibility

.NET (Core) 2.0-10.x

.NET Framework 2.0–4.8

ABAP/BSP 6.x, 7.x

ActionScript 3.0

Apex 55–61

Bicep 0.12.x–0.15.31

C# 5–14

C C11, C17, C23 (see Compilers)

C++ C++11, C++14, C++17, C++20 (see Compilers)

Classic ASP (with VBScript) 2.0, 3.0

COBOL IBM Enterprise COBOL for z/OS 6.1–6.3 (CICS, IMS, DB2, and IBM MQ)
Visual COBOL 6.0–8.0

ColdFusion 8–10

Dart™ 2.12-3.8

Docker® (Dockerfiles) any

Go™ programming
language

1.12–1.25

HCL 2.0

Note

HCL language support is specific to Terraform and supported cloud provider Infrastructure
as Code (IaC) configurations.

HTML 5 or earlier

Java (including Android) 7–25

JavaScript ECMAScript® 2015–2024

JSON ECMA-404

JSP 1.2–2.1

Kotlin 1.3–2.1

MXML (Flex®) 4

Objective-C/C++ 2.0 (see Compilers)

PHP 7.3–8.4

PL/SQL 8–23

Python® 2.6–3.13

Ruby 1.x

Scala 2.11–2.13, 3.3–3.6

Solidity 0.4.12–0.8.21

Swift® 5.10, 6.0 - 6.2. (see Compilers for supported swiftc versions)

Static Application Security Testing 25.4

Page 34This PDF was generated on 10/10/2025

T-SQL SQL Server 2005, 2008, 2012

TypeScript 3.6–5.4

VBScript 2.0, 5.0

Visual Basic (VB.NET) 15.0–16.9

Visual Basic 6.0

XML 1.0, 1.1

YAML 1.2

Static Application Security Testing 25.4

Page 35This PDF was generated on 10/10/2025

1.4.4.1. Libraries, frameworks, and technologies
OpenText SAST supports the libraries, frameworks, and technologies listed in this section with dedicated Fortify Secure Coding Rulepacks and
vulnerability coverage beyond core supported languages.

Java

Adobe Flex Blaze DS
Ajanta
Amazon Web Services (AWS)
SDK
Android
Android Jetpack
Apache Axiom
Apache Axis
Apache Beam
Apache Beehive NetUI
Apache Catalina
Apache Cocoon
Apache Commons
Apache ECS
Apache Hadoop
Apache HttpComponents
Apache Jasper
Apache Log4j
Apache Lucene
Apache MyFaces
Apache OGNL
Apache ORO
Apache POI
Apache SLF4J

Apache Slide
Apache Spring Security
(Acegi)
Apache Struts
Apache Tapestry
Apache Tomcat
Apache Torque
Apache Util
Apache Velocity
Apache Wicket
Apache Xalan
Apache Xerces
ATG Dynamo
Azure SDK
Castor
Display Tag
Dom4j
GDS AntiXSS
Google Cloud
Google Dataflow
Google Guava
Google Web Toolkit
gRPC
Gson
Hibernate

iBatis
IBM MQ
IBM WebSphere
Jackson
Jakarta
Activation
Jakarta EE (Java
EE)
Jasypt
Java Annotations
Java Excel API
JavaMail
JAX-RS
JAXB
Jaxen
JBoss
JDesktop
JDOM
Jetty
JGroups
json-simple
JTidy Servlet
JXTA
JYaml
Liferay Portal
MongoDB

Mozilla Rhino
MyBatis
MyBatis-Plus
Netscape LDAP API
OkHttp
OpenCSV
Oracle Application Development
Framework (ADF)
Oracle BC4J
Oracle JDBC
Oracle OA Framework
Oracle tcDataSet
Oracle XML Developer Kit (XDK)
OWASP Enterprise Security API (ESAPI)
OWASP HTML Sanitizer
OWASP Java Encoder
Plexus Archiver
Realm
Restlet
SAP Web Dynpro
Saxon
SnakeYAML
Spring

Spring AI
Spring MVC
Spring Boot
Spring Data Commons
Spring Data JPA
Spring Data MongoDB
Spring Data Redis
Spring for GraphQL
Spring HATEOAS
Spring JMS
Spring JMX
Spring Messaging
Spring Security
Spring Webflow
Spring WebSockets
Spring WS
Stripes
Sun JavaServer Faces
(JSF)
Tungsten
Weblogic
WebSocket
XStream
YamlBeans
ZeroTurnaround ZIP
Zip4J

Kotlin

Kotlin support includes all libraries covered for Java and the following Kotlin libraries.

Kotlin standard library Android KTX OkHttp

Scala

Scala support includes all libraries covered for Java and the following Scala libraries.

Akka HTTP
Scala Play

Scala Slick

.NET

.NET Framework, .NET Core, and .NET
Standard
.NET WebSockets
ADO.NET Entity Framework
ADODB
Amazon Web Services (AWS) SDK
ASP.NET MVC
ASP.NET SignalR
ASP.NET Web API

Azure SDK
Castle
ActiveRecord
CsvHelper
Dapper
DB2 .NET Provider
DotNetZip
Entity Framework
Entity Framework
Core
fastJSON
gRPC

Hot Chocolate
IBM Informix .NET Provider
Json.NET Log4Net
Microsoft ApplicationBlocks
Microsoft My Framework
Microsoft Practices Enterprise
Library
Microsoft Web Protection
Library

MongoDB
MySQL Connector/NET
NHibernate
NLog
Npgsql
Open XML SDK
Oracle Data Provider
for .NET
OWASP AntiSamy
Saxon

SharePoint Services
SharpCompress
SharpZipLib
SQLite .NET Provider
SubSonic
Sybase ASE ADO.NET Data
Provider
Xamarin
Xamarin Forms
YamlDotNet

C

ActiveDirectory LDAP
Apple System Logging (ASL)

CURL Library
GLib
JNI

MySQL
Netscape LDAP
ODBC

OpenSSL
POSIX Threads
SQLite

Sun RPC
WinAPI

C++

Boost Smart Pointers
MFC

STL
WMI

SQL

Oracle ModPLSQL

Static Application Security Testing 25.4

Page 36This PDF was generated on 10/10/2025

PHP

ADOdb
Advanced PHP Debugging
CakePHP
PHP Debug

PHP DOM
PHP Extension
PHP Hash
PHP JSON
PHP Mcrypt

PHP Mhash
PHP Mysql
PHP OCI8
PHP OpenSSL
PHP PostgreSQL

PHP Reflection
PHP Simdjson
PHP SimpleXML
PHP Smarty
PHP Sodium

PHP WordPress
PHP XML
PHP XMLReader
PHP Zend
PHP Zip

JavaScript/TypeScript/HTML5

Angular
Anthropic Claude
Apollo Server
Bluebird
child-process-promise
Express

Gemini API
GraphQL.js
Handlebars
Helmet
iOS JavaScript Bridge
jQuery

JS-YAML
LangChain
Mustache
Node.js Azure Storage
Node.js Core
OpenAI

React
React Native
React Native Async Storage
React Router
SAPUI5/OpenUI5

Sequelize
Underscore.js
Vertex AI
Vue

Python

aiopg
Amazon Web Services (AWS) Lambda
Amazon SageMaker
Anthropic Claude
Azure Functions
boto3
Django
Flask

Google Cloud
Graphene
gRPC
httplib2
Jinja2
LangChain
libxml2
lxml

memcache-client
_mysql
MySQL Connector/Python
MySQLdb
OpenAI
oslo.config
pandas
Paramiko

psycopg2
pycrypto
PyCryptodome
pycurl
pylibmc
PyMongo
PySpark
PyYAML

requests
simplejson
six
TensorFlow
Twisted Mail
urllib3
Vertex AI
WebKit

Ruby

MySQL
pg

Rack
SQLite

Thor

Objective-C

AFNetworking
Apple AddressBook
Apple AppKit
Apple CFNetwork
Apple ClockKit
Apple CommonCrypto
Apple CoreData

Apple CoreFoundation
Apple CoreLocation
Apple CoreServices
Apple CoreTelephony
Apple Foundation
Apple HealthKit

Apple LocalAuthentication
Apple MessageUI
Apple Security
Apple Social
Apple UIKit

Apple WatchConnectivity
Apple WatchKit
Apple WebKit
Hpple
Objective-Zip
Realm

SBJson
SFHFKeychainUtils
SSZipArchive
ZipArchive
ZipUtilities
ZipZap

Swift

Alamofire
Apple AddressBook
Apple CFNetwork
Apple ClockKit
Apple CommonCrypto
Apple CoreData

Apple CoreFoundation
Apple CoreLocation
Apple Foundation
Apple HealthKit
Apple LocalAuthentication

Apple MessageUI
Apple Security
Apple Social
Apple SwiftUI
Apple UIKit
Apple WatchConnectivity

Apple WatchKit
Apple WebKit
Hpple
Realm
SQLite
SSZipArchive

Zip
ZipArchive
ZIPFoundation
ZipUtilities
ZipZap

COBOL

Auditor
CICS
DLI

Micro Focus COBOL Run-time System
MQ

POSIX
SQL

Go

GORM
logrus
gRPC

Dart

Flutter

Configuration

Static Application Security Testing 25.4

Page 37This PDF was generated on 10/10/2025

.NET Configuration
Adobe Flex (ActionScript)
Configuration
Ajax Frameworks
Amazon Web Service (AWS)
Ansible
AWS CloudFormation
Azure Resource Manager
(ARM)
Build Management

Docker Configuration
(Dockerfiles)
GitHub Actions
Google Android
Configuration
iOS Property List
J2EE Configuration
Java Apache Axis
Java Apache Log4j
Configuration
Java Apache Spring
Security (Acegi)

Java Apache Struts
Java Apache Tomcat
Configuration
Java Blaze DS
Java Hibernate
Configuration
Java iBatis Configuration
Java IBM WebSphere
Java MyBatis
Configuration

Java OWASP
AntiSamy
Java Spring and
Spring MVC
Java Spring Boot
Java Spring Mail
Java Spring Security
Java Spring
WebSockets
Java Weblogic
Kubernetes
Mule

OpenAPI Specification
Oracle Application Development
Framework (ADF)
PHP Configuration
PHP WordPress
Silverlight Configuration
Terraform (AWS, Azure, GCP)
WS-SecurityPolicy
XML Schema

Infrastructure as Code: Amazon Web Services

API Gateway
App Mesh
AppSync
Athena
Aurora
Backup
Batch
Certificate
Manager
CloudFormation
CloudFront
CloudTrail
CloudWatch
CodeBuild
CodeCommit
CodeStar
Cognito

Config
ConfigurationRecorder
Database Migration Service
(DMS)
DataSync
DocumentDB
DynamoDB
EC2
Elastic Block Store (EBS)
Elastic Container Registry
(ECR)
Elastic Container Service
(ECS)
Elastic File System (EFS)
Elastic Kubernetes Service
(EKS)

Elastic Load Balancing (ELB)
ElastiCache
EMR
FinSpace
FSx
Global Accelerator
Glue
GuardDuty
HealthLake
Identity and Access
Management (IAM)
Image Builder
Key Management Service (KMS)
Kinesis
Kinesis Video Streams

Lightsail
Location Service
Lookout for Equipment
Mainframe Modernization
Managed Streaming for Apache
Kafka (MSK)
MemoryDB for Redis
MQ
Neptune
OpenSearch Service
Quantum Ledger Database (QLDB)
RDS
Redshift
Rekognition
Route 53

SageMaker
Secrets Manager
Simple Notification Service
(SNS)
Simple Queue Service
(SQS)
Simple Storage Service
(S3)
Step Functions
Systems Manager
Timestream
Transfer Family
VPC
VPC Lattice
WorkSpaces Family

Infrastructure as Code: Microsoft Azure

App Service
Application Gateway
Automation
Microsoft Entra Domain Services
Azure Health Data Services
Azure Kubernetes Service (AKS)
Batch
Blob Storage

Cache for Redis
Cognitive Search
Container Registry
Cosmos DB
Database for MariaDB
Database for MySQL
Database for PostgreSQL
Databricks
Data Box

Data Factory
Defender for Cloud
Event Hubs
Front Door
Grafana
Hostname Binding
IoT Central
IoT Hub
Key Vault
Logic Apps

Machine Learning
MariaDB
Media Services
Monitor
NetApp Files
Private Cloud
Policy
Portal
SignalR Service

Site Recovery
Spring Apps
SQL
Storage Accounts
Virtual Machine Scale Sets
Virtual Machines
Web PubSub

Infrastructure as Code: Google Cloud

Access Context Manager
AlloyDB
Apigee API Management
App Engine
Artifact Registry

Backup for GKE
BigQuery
Cloud Bigtable
Cloud DNS
Cloud Functions
Cloud Key Management

Cloud Load Balancing
Cloud Logging
Cloud Spanner
Cloud SQL
Cloud Storage
Compute Engine

Filestore
Google Cloud Platform
Google Kubernetes Engine (GKE)
Identity and Access Management (IAM)

Media CDN
Memorystore
Pub/Sub
Secret Manager
Workflows

Secrets

Static Application Security Testing 25.4

Page 38This PDF was generated on 10/10/2025

.netrc
1Password
Actually Good
Encryption (AGE)
Adafruit
Adobe
Airtable
Algolia
Alibaba (Aliyun)
Amazon (AWS,
MWS)
Apple (macOS)
Apache HTTP
Asana
Atlassian
Authress
Basic access
authentication
bcrypt
Beamer
Bearer token
Bitbucket
Bittrex
Brevo (Sendinblue)
Clojars
Code Climate
Codecov
Coinbase
Confluent
Contentful
Databricks
Datadog

Defined
DES
DigitalOcean
Docker
Doppler
Droneci
Dropbox
Duffel
Dynatrace
EasyPost
Encryption key
Etsy
Facebook
Fastly
Finicity
Finnhub
Flickr
Flutterwave
Frame.io
Freshbooks
Git
GitHub
GitLab
Gitter
GNOME
GNU (Bash)
GoCardless
Google (API, Google
Cloud, OAuth)
Grafana

HashiCorp (Terraform, Vault)
Heroku
HexChat
HubSpot
Intercom
Java
JFrog (Artifactory)
JSON Web Token
KDE Wallet (Kwallet)
KeePass
Kraken
Kucoin
LaunchDarkly
Linear
LinkedIn
Lob
Mailchimp
Mailgun
Mapbox
Mattermost
MD5
MessageBird
Microsoft (Azure App Storage, Cosmos DB, Functions and
Bitlocker, PowerShell, RDP, VBScript)
Microsoft (Outlook)
Mutt
MySQL
Netlify

New Relic
npm
NuGet
Okta
OpenVPN
Password in
comment
Password in
connection string
Password in
PowerShell script
Password in URI
Password Safe
PayPal (Braintree)
Pidgin
Plaid
Planetscale
PostgreSQL
Postman
Prefect
Pulumi
PuTTY
PyPI
RapidAPI
Readme
RSA Security
Ruby (Ruby on Rails,
RubyGems)
Sauce Labs
Secret key
Secure Shell Protocol
(SSH)

Sendbird
SendGrid
Sentry
SHA1
SHA256
SHA512
Shippo
Shopify
Sidekiq
Slack
SonarQube
Square
Squarespace
StackHawk
Stripe
Sumologic
Telegram
Travis
Trello
Twilio
Twitch
Twitter
Typeform
Yandex
Zendesk

Static Application Security Testing 25.4

Page 39This PDF was generated on 10/10/2025

1.4.5. Supported build tools
OpenText SAST supports the build tools listed in the following table.

Build tool Versions Notes

Apache Ant™ 1.10.x

Bazel 6.x–7.x Bazel integration supports Java and Python.

dotnet 6.0–10.x

Gradle
(build integration)

6.6–8.10 OpenText SAST Gradle integration supports Java, Kotlin, and C/C++.

Gradle
(Gradle plugin)

6.6–8.5 OpenText SAST Gradle Plugin supports Java and Kotlin.

Apache Maven™
Software

3.6.x, 3.8.x, 3.9.x

MSBuild 14.x–17.14 OpenText SAST MSBuild 17.4 integration is compatible with .NET 7.0 or later and .NET Framework
4.7.2 or later

xcodebuild 15.3-15.4, 16-16.4,
26

Static Application Security Testing 25.4

Page 40This PDF was generated on 10/10/2025

1.4.6. Supported compilers
OpenText SAST supports the compilers listed in the following table.

Compiler Versions Operating systems

gcc GNU gcc 6.x– 13 Windows, Linux, macOS

GNU gcc 4.9–5.x Windows, Linux, macOS, AIX

g++ GNU g++ 6.x– 13 Windows, Linux, macOS

GNU g++ 4.9–5.x Windows, Linux, macOS, AIX

OpenJDK javac 9, 10, 11, 12, 13, 14, 17, 21, 24, 25 Windows, Linux, macOS, AIX

Oracle javac 7, 8, 9 Windows, Linux, macOS

cl (MSVC) 2015, 2017, 2019, 2022 Windows

Clang 15.0.0, 16.0.0, 17.0.0 macOS

Swiftc 5.10, 6.0, 6.0.2, 6.0.31, 6.1.0, 6.1.2, 6.2 macOS

1OpenText SAST supports applications built in the following Xcode versions: 15.3-15.4, 16-16.4, 26.

Static Application Security Testing 25.4

Page 41This PDF was generated on 10/10/2025

1.4.7. OpenText Application Security Content
Fortify Secure Coding Rulepacks are backward compatible with all supported OpenText SAST versions. This ensures that Rulepack updates do not break
any working OpenText SAST installation.

Static Application Security Testing 25.4

Page 42This PDF was generated on 10/10/2025

1.4.8. Virtual Machine support
You can run OpenText Application Security Software products on an approved operating system in virtual machine environments. You must provide
dedicated CPU and memory resources that meet the minimum hardware requirements. If you find issues that cannot be reproduced on the native
environments with the recommended processing, memory, and disk resources, you must work with the provider of the virtual environment to resolve
them.

Note

If you run OpenText Application Security Software products in a VM environment, OpenText strongly recommends
that you have CPU and memory resources fully committed to the VM to avoid performance degradation.

Static Application Security Testing 25.4

Page 43This PDF was generated on 10/10/2025

1.4.9. Acquiring software
OpenText SAST (Fortify Static Code Analyzer) is available as an electronic download. For instructions on how to download the software from the
Software Licenses and Downloads (SLD) portal, click Contact Us / Self Help to review the videos and the Quick Start Guide.

The following table lists the available packages and describes their contents.

File name Description

OpenText_SAST_Fortify_Windows_<version>.zip OpenText SAST package for Windows
This package includes:

Note

OpenText Application Security Content (Rulepacks and external
metadata) can be downloaded during the installation.

OpenText_SAST_Fortify_Windows_<version>.zip.sig Signature file for the OpenText SAST Windows package

OpenText_SAST_Fortify_Linux-
ARM_<version>.tar.gz

OpenText SAST package for Linux on ARM
This package includes:

Note

OpenText Application Security Content (Rulepacks and external
metadata) can be downloaded during the installation.

OpenText_SAST_Fortify_Linux-
ARM_<version>.tar.gz.sig

Signature file for the OpenText SAST Linux on ARM package

OpenText_SAST_Fortify_Linux_<version>.tar.gz OpenText SAST package for Linux
This package includes:

Note

OpenText Application Security Content (Rulepacks and external
metadata) can be downloaded during the installation.

OpenText_SAST_Fortify_Linux_<version>.tar.gz.sig Signature file for the OpenText SAST Linux package

OpenText_SAST_Fortify_Mac_<version>.tar.gz OpenText SAST package for macOS
This package includes:

Note

OpenText Application Security Content (Rulepacks and external
metadata) can be downloaded during the installation.

OpenText_SAST_Fortify_Mac_<version>.tar.gz.sig Signature file for the OpenText SAST macOS package

OpenText SAST installer, which includes the following components
Fortify License and Infrastructure Manager installer
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

OpenText SAST installer, which includes the following components
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

OpenText SAST installer, which includes the following components
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

OpenText SAST installer, which includes the following components
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

Static Application Security Testing 25.4

Page 44This PDF was generated on 10/10/2025

https://sld.microfocus.com/

OpenText_SAST_Fortify_Mac-ARM_<version>.tar.gz OpenText SAST package for macOS-ARM
This package includes:

Note

OpenText Application Security Content (Rulepacks and external
metadata) can be downloaded during the installation.

OpenText_SAST_Fortify_Mac-
ARM_<version>.tar.gz.sig

Signature file for the OpenText SAST macOS-ARM package

OpenText_SAST_Fortify_AIX_<version>.tar.gz OpenText SAST package for AIX
This package includes:

OpenText_SAST_Fortify_AIX_<version>.tar.gz.sig Signature file for the OpenText SAST AIX package

OpenText_SAST_Fortify_Samples_<version>.zip Code samples to help you learn to use OpenText SAST

OpenText_SAST_Fortify_Samples_<version>.zip.sig Signature file for OpenText SAST code samples

OpenText SAST installer, which includes the following components
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

OpenText SAST installer
OpenText SAST Custom Rules Guide bundle
About OpenText Application Security Software Documentation

Static Application Security Testing 25.4

Page 45This PDF was generated on 10/10/2025

1.4.10. Verifying software downloads
This topic describes how to verify the digital signature of the signed file that you downloaded from the Customer Support website. Verification ensures
that the downloaded package has not been altered since it was signed and posted to the site. Before proceeding with verification, download the
OpenText Application Security Software product files and their associated signature (*.sig) files. You are not required to verify the package to use the
software, but your organization might require it for security reasons.

Preparing your system for digital signature verification
Note

These instructions describe a third-party product and might not match the specific, supported version you are using. See your product
documentation for the instructions for your version.

To prepare your system for electronic media verification:

1. Go to the GnuPG website.
2. Download and install GnuPG Privacy Guard.
3. Generate a private key, as follows:

1. Run the following command (on a Windows system, run the command without the $ prompt):

$ gpg ‑‑gen‑key

2. When prompted for key type, select DSA and Elgamal.
3. When prompted for a key size, select 2048.
4. When prompted for the length of time the key should be valid, select key does not expire.
5. Answer the user identification questions and provide a passphrase to protect your private key.

4. Download the OpenText GPG public keys (compressed tar file) from https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz.

5. Extract the public keys.
6. Import each downloaded key with GnuPG with the following command:

gpg --import <path_to_key>/<key_file>

Static Application Security Testing 25.4

Page 46This PDF was generated on 10/10/2025

http://www.gnupg.org/
https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz

1.5. Installing OpenText SAST
This section describes how to install and uninstall OpenText SAST (Fortify Static Code Analyzer). This section also describes basic post-installation tasks.
See System requirements to be sure that your system meets the minimum hardware and software requirements.

This section contains the following topics:

About installing OpenText SAST
Using Docker to install and run OpenText SAST
Upgrading OpenText SAST
About uninstalling OpenText SAST
Post-installation tasks

Static Application Security Testing 25.4

Page 47This PDF was generated on 10/10/2025

1.5.1. About installing OpenText SAST
This section describes how to install OpenText SAST. Several command-line tools are installed automatically with OpenText SAST (see Command-Line
Tools). You can optionally include a ScanCentral SAST client and the Application Security fortifyclient utility with the OpenText SAST installation. For
information about ScanCentral SAST, see the OpenText™ ScanCentral SAST Installation, Configuration, and Usage Guide.

You must provide a Fortify license file and optionally LIM license pool credentials during the installation. The following table lists the different ways to
install OpenText SAST.

Installation method Instructions

Perform the installation using a standard install wizard Installing OpenText SAST and Applications

Perform the installation silently (unattended) Installing OpenText SAST silently

Perform a text-based installation on non-Windows
systems

Installing OpenText SAST and Applications in Text-Based Mode on Non‑Windows
Platforms

Perform the installation using Docker Using Docker to Install and Run OpenText SAST

For best performance, install OpenText SAST on the same local file system where the code that you want to scan resides.

Note

On non-Windows systems, you must install OpenText SAST as a user that has a home directory with write
permission. Do not install OpenText SAST as a non-root user that has no home directory.

After you complete the installation, see About the Post-Installation Tasks for additional steps you can perform to complete your system setup. You can
also configure settings for runtime analysis, output, and performance of OpenText SAST by updating the installed configuration files. For information
about the configuration options for OpenText SAST, see Configuration Options.

Static Application Security Testing 25.4

Page 48This PDF was generated on 10/10/2025

1.5.1.1. Installing OpenText SAST
To install OpenText SAST:

1. Run the installer file for your operating system to start the OpenText SAST Setup wizard:

Windows: OpenText_SAST_Fortify_windows-x64_<version>.exe
Linux: OpenText_SAST_Fortify_linux-x64_<version>.run or OpenText_SAST_Fortify_linux-arm64_<version>.run
macOS: OpenText_SAST_Fortify_osx-x64_<version>.app.zip or OpenText_SAST_Fortify_osx-arm64.app.zip

Uncompress the ZIP file before you run the APP installer file.

AIX: OpenText_SAST_Fortify_aix-ppc64_<version>.run

where <version> is the software release version, and then click Next.

2. Review and accept the license agreement, and then click Next.
3. (Optional) Select components to install, and then click Next.

4. If the installer detects that the system does not include the minimum software required to analyze some types of projects, a System
Requirements page displays any missing requirements and which projects require them. Click Next.

See Software requirements for all software requirements.

5. Choose where to install OpenText SAST, and then click Next.

If you selected to include ScanCentral SAST client with the installation in step 3, then you must specify a location that does not include spaces in
the path.

Important

Do not install OpenText SAST in the same directory where OpenText™ Application Security Tools is installed.

6. Specify the path to the fortify.license file, and then click Next.

7. (Optional) On the LIM License page, select Yes to manage your concurrent licenses with Fortify License and Infrastructure Manager (LIM), and
then click Next.

Note

When OpenText SAST performs a task that requires a license, the application will attempt to acquire a LIM lease
from the license pool. If OpenText SAST fails to acquire a license due to a communication issue with the LIM
server, it will use the Fortify license file. To change this behavior, use the
com.fortify.sca.lim.WaitForInitialLicense in the fortify-sca.properties file (see LIM license
properties).

1. Type the LIM API URL, the license pool name, and the license pool password.

2. Click Next.

The LIM Proxy Settings page opens.

3. If connection to the LIM server requires a proxy server, type the proxy host (hostname or IP address of your proxy server) and optionally a
port number.

4. Click Next.

8. To update the security content for your installation:

Note

For deployment environments that do not have access to the internet during installation, you can update the
security content using the fortifyupdate command-line tool. See Manually installing OpenText Application
Security Content.

1. Type the web address of the update server.

To use the Fortify Rulepack update server for security content updates, keep the web address https://update.fortify.com. You can also
use Application Security as the update server.

2. (Optional) If connection to the update server requires a proxy server, type the proxy host and port number.

3. If you want to update the security content manually, clear the Update security content after installation check box.

4. Click Next.
9. Specify if you want to migrate from a previous installation on your system.

Migrating from a previous installation preserves OpenText SAST artifact files. For more information, see About upgrading OpenText SAST.

Static Application Security Testing 25.4

Page 49This PDF was generated on 10/10/2025

Note

You can also migrate artifacts using the scapostinstall command-line tool. For information on how to use the
post-install tool to migrate from a previous installation, see Migrating properties files.

To migrate artifacts from a previous installation:

1. On the OpenText SAST (Fortify) Migration page, select Yes, and then click Next.
2. Specify the location of the existing installation on your system, and then click Next.

To skip migration of artifacts from a previous release, leave the migration selection set to No, and then click Next.

10. Click Next on the Ready to Install page to install OpenText SAST, any selected components, and OpenText Application Security Content.

If you selected to update security content, the Security Content Update Result window displays the security content update results.

11. Click Finish to close the Setup wizard.

Static Application Security Testing 25.4

Page 50This PDF was generated on 10/10/2025

1.5.1.2. Installing OpenText SAST silently
A silent installation enables you to complete the installation without any user prompts. To install silently, you need to create an option file to provide
the necessary information to the installer. Using the silent installation, you can replicate the installation parameters on multiple machines.

Important

Do not install OpenText SAST in the same directory where OpenText™ Application Security Tools is installed.

When you install OpenText SAST silently, the installer does not download the Application Security by default. You can enable download of the OpenText
Application Security Content in the options file or you can install the OpenText Application Security Content manually (see Manually Installing OpenText
Application Security Content).

To install OpenText SAST silently:

1. Create an options file.
1. Create a text file that contains the following line:

fortify_license_path=<license_file_location>

where <license_file_location> is the full path to your fortify.license file.

2. To use a LIM license server, add the following lines with your LIM license pool credentials to the options file:

lim_url=<lim_url>lim_pool_name=<license_pool_name>lim_pool_password=<license_pool_pwd>

3. To use a location for OpenText Application Security Content updates that is different than the default of https://update.fortify.com, add
the following line:

update_server=<update_server_url>

4. If you require a proxy server for the OpenText Application Security Content download, add the following lines:

update_proxy_server=<proxy_server>update_proxy_port=<port_number>

5. To enable download of OpenText Application Security Content, add the following line:

update_security_content=1

6. Add more installation instructions, as needed, to the options file.

To obtain a list of installation options that you can add to your options file, open a command prompt, and then type the installer file name
and the --help option. This command displays each available command-line option preceded with a double dash and the available
parameters enclosed in angle brackets. For example, if you want to see the progress of the install displayed at the command line, add
unattendedmodeui=minimal to your options file.

Notes:

The command-line options are case-sensitive.

The installation options are not the same on all supported operating systems. Run the installer with --help to see the options
available for your operating system.

The following example Windows options file specifies the location of the license file, the location of a Application Security server and proxy
information to obtain OpenText Application Security Content, a request to migrate from a previous release, and the location of the OpenText
SAST installation directory:

fortify_license_path=C:\Users\admin\Desktop\fortify.license
update_server=https://my_ssc_host:8080/ssc
update_proxy_server=webproxy.abc.company.com
update_proxy_port=8080
migrate_sca=1
install_dir=C:\Fortify

The following options file example is for Linux and macOS®:

fortify_license_path=/opt/Fortify/fortify.license
update_server=https://my_ssc_host:8080/ssc
update_proxy_server=webproxy.abc.company.com
update_proxy_port=8080
migrate_sca=1
install_dir=/opt/Fortify

2. Save the options file.

Static Application Security Testing 25.4

Page 51This PDF was generated on 10/10/2025

3. Run the silent install command for your operating system.

Note

You might need to run the command prompt as an administrator before you run the installer.

Windows OpenText_SAST_Fortify_windows-x64_<version>.exe --mode unattended --optionfile <full_path_to_options_file>

Linux ./OpenText_SAST_Fortify_linux-x64_<version>.run --mode unattended --optionfile <full_path_to_options_file>
or
./OpenText_SAST_Fortify_linux-arm64_<version>.run --mode unattended --optionfile <full_path_to_options_file>

macOS® You must uncompress the ZIP file before you run the command.
OpenText_SAST_Fortify_osx-x64_<version>.app/Contents/MacOS/installbuilder.sh --mode unattended --optionfile
<full_path_to_options_file>
or
OpenText_SAST_Fortify_osx-arm64_<version>.app/Contents/MacOS/installbuilder.sh --mode unattended --optionfile
<full_path_to_options_file>

AIX ./OpenText_SAST_Fortify_aix-ppc64_<version>.run --mode unattended --optionfile <full_path_to_options_file>

The installer creates an installer log file when the installation is complete. This log file is in the following location, which depends on your operating
system.

Windows C:\Users\<username>\AppData\Local\Temp\OpenTextSASTFortify-<version>-install.log

Non‑Windows
/tmp/OpenTextSASTFortify-<version>-install.log

Static Application Security Testing 25.4

Page 52This PDF was generated on 10/10/2025

Linux ./OpenText_SAST_Fortify_linux-x64_<version>.run --mode text
or
./OpenText_SAST_Fortify_linux-arm64_<version>.run --mode text

MacOS You must uncompress the provided ZIP file before you run the command.
OpenText_SAST_Fortify_osx-x64_<version>.app/Contents/MacOS/installbuilder.sh --mode text
or
OpenText_SAST_Fortify_osx-arm64_<version>.app/Contents/MacOS/installbuilder.sh --mode text

AIX OpenText_SAST_Fortify_aix-ppc64_<version>.run --mode text

1.5.1.3. Installing OpenText SAST in text-based mode on
non‑Windows platforms
You perform a text-based installation on the command line. During the installation, you are prompted for information required to complete the
installation. Text-based installations are not supported on Windows systems.

Important

Do not install OpenText SAST in the same directory where OpenText™ Application Security Tools is installed.

To perform a text-based installation of OpenText SAST, run the text-based install command for your operating system as listed in the following table.

Static Application Security Testing 25.4

Page 53This PDF was generated on 10/10/2025

1.5.1.4. Manually installing OpenText Application Security
Content
You can install OpenText Application Security Content (Fortify Secure Coding Rulepacks and metadata) automatically during the installation. However,
you can also download OpenText Application Security Content from the Fortify Rulepack update server, and then use the fortifyupdate command-line
tool to install it. This option is provided for deployment environments that do not have access to the Internet during installation.

Use fortifyupdate to install OpenText Application Security Content from either a remote server or a locally downloaded file.

To install security content:

1. Open a command window and go to <sast_install_dir>/bin/.
2. At the command prompt, type fortifyupdate.

If you have previously downloaded the OpenText Application Security Content from the Fortify Rulepack update server, run fortifyupdate with
the -import option and the path to the directory where you downloaded the ZIP file.

You can also use this same tool to update your OpenText Application Security Content. For more information about the fortifyupdate command-line
tool, see Updating Security Content.

Static Application Security Testing 25.4

Page 54This PDF was generated on 10/10/2025

1.5.2. Using Docker to install and run OpenText SAST
You can install OpenText SAST in a Docker image and then run OpenText SAST as a Docker container.

Note

You can only run OpenText SAST in Docker on supported Linux platforms.

This section contains the following topics:

Creating a Dockerfile to install OpenText SAST
Running the container

Static Application Security Testing 25.4

Page 55This PDF was generated on 10/10/2025

1.5.2.1. Creating a Dockerfile to install OpenText SAST
This topic describes how to create a Dockerfile to install OpenText SAST in a Docker image.

The Dockerfile must include the following instructions:

The following is an example of a Dockerfile to install OpenText SAST:

FROM ubuntu:18.04
WORKDIR /app
ENV APP_HOME="/app"
ENV RULEPACK="MyRulepack.zip"

COPY fortify.license ${APP_HOME}
COPY OpenText_SAST_Fortify_linux-x64_25.4.0.run ${APP_HOME}
COPY optionFile ${APP_HOME}
COPY ${RULEPACK} ${APP_HOME}

RUN ./OpenText_SAST_Fortify_linux-x64_25.4.0.run --mode unattended \
 --optionfile "${APP_HOME}/optionFile" && \
 /opt/Fortify/OpenText_SAST_Fortify_25.4.0/bin/fortifyupdate -import ${RULEPACK} && \
 rm OpenText_SAST_Fortify_linux-x64_25.4.0.run optionFile

ENTRYPOINT ["/opt/Fortify/OpenText_SAST_Fortify_25.4.0/bin/sourceanalyzer"]

To create the docker image using the Dockerfile from the current directory, you must use the docker build command. For example:

docker buildx build -f <docker_file> -t <image_name> "."

1. Set a Linux system to use for the base image.

For more information on supported platforms and architecture, see Supported platforms and architectures

Note

If you intend to use build tools when you run OpenText SAST, make sure that the required build tools are
installed in the image. For information about using the supported build tools, see Supported build tools.

2. Copy the OpenText SAST installer, the Fortify license file, and installation options file to the Docker image using the COPY instruction.

For instructions on how to create an installation options file, see Installing OpenText SAST silently.

3. Run the OpenText SAST installer using the RUN instruction.

You must run the installer in unattended mode. For more information, see Installing OpenText SAST silently.

4. Run fortifyupdate to install the OpenText Application Security Content using the RUN instruction.

Important

OpenText SAST requires installation of the OpenText Application Security Content to perform analysis of
projects. The following example installs OpenText Application Security Content from a previously downloaded
local file during the build of the image. For more information about downloading and installing OpenText
Application Security Content using the fortifyupdate tool, see Manually installing OpenText Application Security
Content.

5. To configure the image so you can run OpenText SAST, set the entry point to the location of the installed sourceanalyzer executable using the
ENTRYPOINT instruction.

The default sourceanalyzer installation path is: /opt/Fortify/OpenText_SAST_Fortify_<version>/bin/sourceanalyzer.

Static Application Security Testing 25.4

Page 56This PDF was generated on 10/10/2025

1.5.2.2. Running the container
This topic describes how to run the OpenText SAST image as a container and provides example Docker run commands for translation and scan.

Note

When you run OpenText SAST in a container and especially if you also leverage runtime container protections, make
sure that OpenText SAST has the appropriate permission to run build commands (for example, javac).

To run the OpenText SAST image as a container, you must mount two directories from the host file system to the container:

The directory that contains the source files you want to analyze.

A temporary directory to store the OpenText SAST build session between the translate and scan phases and to share the output files (logs and
FPR file) with the host.

Specify this directory using the –project-root command-line option in both the OpenText SAST translate and scan commands.

The following example commands mount the input directory /sources in /src and the temporary directory in /scratch_docker. The image name in
the example is fortify-sast.

Example Docker run commands for translation and scan
The following example mounts the temporary directory and the sources directory, and then runs OpenText SAST from the container for the translation
phase:

docker run -v /scratch_local/:/scratch_docker -v /sources/:/src
-it fortify-sast –b MyProject -project-root /scratch_docker [<sca_options>] /src

The following example mounts the temporary directory, and then runs OpenText SAST from the container for the analysis phase:

docker run -v /scratch_local/:/scratch_docker
-it fortify-sast –b MyProject -project-root /scratch_docker –scan [<sca_options>] –f /scratch_docker/MyResults.fpr

The MyResults.fpr output file is created in the host's /scratch_local directory.

Static Application Security Testing 25.4

Page 57This PDF was generated on 10/10/2025

1.5.3. Upgrading OpenText SAST
To upgrade OpenText SAST, install the new version in a different location than where your current version is installed and choose to migrate settings
from the previous installation. This migration preserves and updates the artifact files located in the <sast_install_dir>/Core/config directory.

If you choose not to migrate any settings from a previous release, OpenText recommends that you save a backup of the following data if it has been
modified:

<sast_install_dir>/Core/config/rules folder
<sast_install_dir>/Core/config/customrules folder
<sast_install_dir>/Core/config/ExternalMetadata folder
<sast_install_dir>/Core/config/CustomExternalMetadata folder
<sast_install_dir>/Core/config/server.properties file
<sast_install_dir>/Core/config/scales folder

After you install the new version, you can uninstall the previous version. For more information, see About Uninstalling OpenText SAST.

Note

You can leave the previous version installed. If you have multiple versions installed on the same system, the most
recently installed version is used when you run the command from the command line.

Static Application Security Testing 25.4

Page 58This PDF was generated on 10/10/2025

1.5.4. About uninstalling OpenText SAST
This section describes how to uninstall OpenText SAST. You can use the standard install wizard, or you can silently install OpenText SAST. You can also
perform a text-based uninstallation on non-Windows systems.

This section contains the following topics:

Uninstalling OpenText SAST
Uninstalling OpenText SAST silently
Uninstalling OpenText SAST in text-based mode on non-Windows platforms

Static Application Security Testing 25.4

Page 59This PDF was generated on 10/10/2025

1.5.4.1. Uninstalling OpenText SAST
To uninstall OpenText SAST:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the following table.

OS Uninstall command

Windows Uninstall_OpenTextSASTFortify.exe
Alternatively, you can uninstall the application from the Windows interface. See the Microsoft Windows documentation for
instructions.

Linux
AIX

./Uninstall_OpenTextSASTFortify

macOS® Uninstall_OpenTextSASTFortify.app

3. You are prompted to indicate whether to remove the entire application or individual components. Make your selection, and then click Next.

If you are uninstalling specific components, select the components to remove on the Select Components to Uninstall page, and then click
Next.

4. You are prompted to indicate whether to remove all application settings. Do one of the following:

Click Yes to remove the application settings for the components installed with the version of OpenText SAST that you are uninstalling.

The OpenText SAST (sca<version>) application settings folder is not removed.

Click No to retain the application settings on your system.

Static Application Security Testing 25.4

Page 60This PDF was generated on 10/10/2025

1.5.4.2. Uninstalling OpenText SAST silently
To uninstall OpenText SAST silently:

1. Go to the installation directory.
2. Run the uninstall command for your operating system as described in the following table.

OS Uninstall command

Windows Uninstall_OpenTextSASTFortify.exe --mode unattended

Linux
AIX

./Uninstall_OpenTextSASTFortify --mode unattended

macOS® Uninstall_OpenTextSASTFortify.app/Contents/MacOS/installbuilder.sh
--mode unattended

Note

For Windows, Linux, and macOS®, the uninstaller removes the application settings for the components installed with
the version of OpenText SAST that you are uninstalling.

Static Application Security Testing 25.4

Page 61This PDF was generated on 10/10/2025

1.5.4.3. Uninstalling OpenText SAST in text-based mode on
non-Windows platforms
To uninstall OpenText SAST in text-based mode:

1. Go to the installation directory.
2. Run the uninstall command for your operating system as described in the following table.

OS Uninstall command

Linux
AIX

./Uninstall_OpenTextSASTFortify --mode text

macOS® Uninstall_OpenTextSASTFortify.app/Contents/MacOS/installbuilder.sh --mode text

Static Application Security Testing 25.4

Page 62This PDF was generated on 10/10/2025

1.5.5. Post-installation tasks
Post-installation tasks prepare you to start using OpenText SAST.

This section contains the following topics:

Running the post-install tool
Migrating properties files
Specifying a locale
Configuring Fortify Security Content updates
Configuring the connection to Application Security
Removing proxy server settings
Adding trusted certificates

Static Application Security Testing 25.4

Page 63This PDF was generated on 10/10/2025

1.5.5.1. Running the post-install tool
You can use the post-install command-line tool to migrate properties files from a previous version of OpenText SAST, configure OpenText Application
Security Content updates, and configure settings to connect to Application Security.

To run the post-install tool:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.
3. Type one of the following:

To display settings, type s.
To return to the previous prompt, type r.
To exit the tool, type q.

Static Application Security Testing 25.4

Page 64This PDF was generated on 10/10/2025

1.5.5.2. Migrating properties files
To migrate properties files from a previous version of OpenText SAST to the current version installed on your system:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.
3. Type 1 to select Migration.
4. Type 1 to select Static Code Analyzer Migration.
5. Type 1 to select Migrate from an existing Fortify installation.
6. Type 1 to select Set previous Fortify installation directory.
7. Type the previous install directory.
8. Type s to confirm the settings.
9. Type 2 to perform the migration.

10. Type y to confirm.

Static Application Security Testing 25.4

Page 65This PDF was generated on 10/10/2025

1.5.5.3. Specifying a locale
English is the default locale for an OpenText SAST installation.

To change the locale for your OpenText SAST installation:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.

3. Type 2 to select Settings.
4. Type 1 to select General.
5. Type 1 to select Locale.
6. Type one of the following locale codes:

en (English)
es (Spanish)
ja (Japanese)
ko (Korean)
pt_BR (Brazilian Portuguese)
zh_CN (Simplified Chinese)
zh_TW (Traditional Chinese)

Static Application Security Testing 25.4

Page 66This PDF was generated on 10/10/2025

1.5.5.4. Configuring Fortify Security Content updates
Specify how you want to obtain OpenText Application Security Content. You must also specify proxy information if it is required to reach the server.

To specify settings for OpenText Application Security Content updates:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.
3. Type 2 to select Settings.
4. Type 2 to select Fortify Update.
5. To change the Fortify Rulepack update server URL, type 1, and then type the URL.

The default Fortify Rulepack update server URL is https://update.fortify.com.

6. To specify a proxy for OpenText Application Security Content updates, do the following:

1. Type 2 to select Proxy Server, and then type the name of the proxy server.

Exclude the protocol and port number (for example, some.secureproxy.com).

2. Type 3 to select Proxy Server Port, and then type the proxy server port number.
3. (Optional) You can also specify a proxy server user name (option 4) and password (option 5).

Static Application Security Testing 25.4

Page 67This PDF was generated on 10/10/2025

1.5.5.5. Configuring the connection to Application Security
Specify how to connect to Application Security. If your network uses a proxy server to reach the Application Security server, you must specify the proxy
information.

To specify settings for connecting to Application Security:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.
3. Type 2 to select Settings.
4. Type 3 to select Software Security Center Settings.
5. Type 1 to select Server URL, and then type the Application Security server URL.

6. To specify proxy settings for the connection, do the following:

1. Type 2 to select Proxy Server, and then type the name of the proxy server.

Exclude the protocol and port number (for example, some.secureproxy.com).

2. Type 3 to select Proxy Server Port, and then type the proxy server port number.
3. To specify a proxy server user name and password, use option 4 for the username and option 5 for the password.

7. (Optional) You can also specify the following:

Whether to update OpenText Application Security Content from your Application Security server (option 6)
The Application Security user name (option 7)

Static Application Security Testing 25.4

Page 68This PDF was generated on 10/10/2025

1.5.5.6. Removing proxy server settings
If you previously specified proxy server settings for the Fortify Rulepack update server or Application Security and it is no longer required, you can
remove these settings.

To remove the proxy settings for obtaining OpenText Application Security Content updates or connecting to Application Security:

1. Go to <sast_install_dir>/bin/.
2. At the command prompt, type scapostinstall.
3. Type 2 to select Settings.
4. Type 2 to select Fortify Update or type 3 to select Software Security Center Settings.
5. Type the number that corresponds to the proxy setting you want to remove, and then type a minus sign (-) to remove the setting.
6. Repeat step 5 for each proxy setting you want to remove.

Static Application Security Testing 25.4

Page 69This PDF was generated on 10/10/2025

1.5.5.7. Adding trusted certificates
Connection from OpenText SAST to other OpenText Application Security Software products and external systems might require communication over
HTTPS. Some examples include:

OpenText SAST by default requires an HTTPS connection to communicate with the LIM server for license management.

The property com.fortify.sca.lim.RequireTrustedSSLCert determines whether the connection with the LIM server requires a trusted
SSL certificate. For more information about this property, see LIM Properties.

The fortifyupdate command-line tool uses an HTTPS connection either automatically during a Windows system installation or manually (see
Manually installing OpenText Application Security Content) to update OpenText Application Security Content.

OpenText SAST configured as a ScanCentral SAST sensor uses an HTTPS connection to communicate with the Controller.

When using HTTPS, OpenText SAST and its applications will by default apply standard checks to the presented SSL server certificate, including a check
to determine if the certificate is trusted. If your organization runs its own certificate authority (CA) and OpenText SAST needs to trust connections
where the server presents a certificate issued by this CA, you must configure OpenText SAST to trust the CA. Otherwise, the use of HTTPS connections
might fail.

You must add the trusted certificate of the CA to the OpenText SAST keystore. The OpenText SAST keystore is in the
<sast_install_dir>/jre/lib/security/cacerts file. You can use the keytool command to add the trusted certificate to the keystore.

To add a trusted certificate to the OpenText SAST keystore:

1. Open a command prompt, and then run the following command:

<sast_install_dir>/jre/bin/keytool -importcert -alias <alias_name> -cacerts -file <cert_file>

where:

<alias_name> is a unique name for the certificate you are adding.

<cert_file> is the name of the file that contains the trusted root certificate in PEM or DER format.

2. Enter the keystore password.

Note

The default password is changeit.

3. When prompted to trust this certificate, select yes.

Static Application Security Testing 25.4

Page 70This PDF was generated on 10/10/2025

1.6. Analysis process overview
This section contains the following topics:

Scanning Basics
Translation phase
Analysis phase
Translation and analysis phase verification

Static Application Security Testing 25.4

Page 71This PDF was generated on 10/10/2025

1.6.1. Scanning Basics
The following is the fundamental sequence of commands to translate and analyze code:

1. Remove all existing OpenText SAST temporary files for the specified build ID.

sourceanalyzer -b MyProject -clean

Always begin an analysis with this step to analyze a project with a previously used build ID.

2. Translate the project code. Where available, we recommend using build integration to automate picking up your source files and configuring the
translation settings correctly.
Build integration typically takes the form:

sourceanalyzer -b MyProject ... <build_command>

Or manually:

sourceanalyzer -b MyProject <files_to_analyze> <options_specific_to_language>

For more details about translation, check under the section of the programming language you are trying to analyze.

3. Analyze the project code and save the results in a Fortify Project Results(FPR) file.

sourceanalyzer -b MyProject -scan -f MyResults.fpr

For more information, see Analysis Phase.

This can also be simplified or even performed remotely via OpenText™ ScanCentral SAST. For more information, see the OpenText™ ScanCentral
SAST Installation, Configuration, and Usage Guide.

Static Application Security Testing 25.4

Page 72This PDF was generated on 10/10/2025

1.6.2. Translation phase
To successfully translate a project that is normally compiled, make sure that you have any dependencies required to build the project available. For
languages that have any specific requirements, see the sections for the specific source code type.

The basic command-line syntax to perform the first step of the analysis process, file translation, is:

sourceanalyzer -b <build_id> ... <files>

or

sourceanalyzer -b <build_id> ... <compiler_command>

The translation phase consists of one or more invocations of OpenText SAST using the sourceanalyzer command. OpenText SAST uses a build ID (-b
option) to tie the invocations together. Subsequent invocations of sourceanalyzer add any newly specified source or configuration files to the file list
associated with the build ID.

After translation, you can use the -show-build-warnings directive to list any warnings and errors that occurred in the translation phase:

sourceanalyzer -b <build_id> -show-build-warnings

To view the files associated with a build ID, use the -show-files directive:

sourceanalyzer -b <build_id> -show-files

Special considerations for the translation phase
Consider the following special considerations before you perform the translation phase on your project:

When you translate dynamic languages (JavaScript/TypeScript, PHP, Python, and Ruby), you must specify all source files together in one
invocation. OpenText SAST does not support adding new files to the file list associated with the build ID on subsequent invocations.

Generated code is automatically generated by a script or a tool such as a parsing tool. This code can be optimized, minimized, or large and
complex. Therefore, OpenText recommends that you exclude it from translation because it would be challenging to fix any vulnerabilities
OpenText SAST might report in this code. Use the -exclude command-line option to exclude this type of code from translation.

To translate the project on a build machine, and then run the scan on a better performance system, see Using mobile build sessions.

Static Application Security Testing 25.4

Page 73This PDF was generated on 10/10/2025

1.6.3. Analysis phase
The analysis phase scans the intermediate files created during translation and creates the vulnerability results file (FPR).

This phase consists of one invocation of sourceanalyzer. You specify the build ID and include the -scan directive with any other required analysis or
output options (see Analysis Options and Output Options).

The following example shows the command-line syntax to perform the analysis phase and save the results in an FPR file:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

Note

By default, OpenText SAST includes the source code in the FPR file.

To combine multiple builds into a single scan command, add the additional builds to the command line:

sourceanalyzer -b MyProject1 -b MyProject2 -b MyProject3 -scan -f MyResults.fpr

Static Application Security Testing 25.4

Page 74This PDF was generated on 10/10/2025

1.6.4. Translation and analysis phase verification
Fortify Audit Workbench certification indicates whether the code analysis from a scan is complete and valid. The project summary in Fortify Audit
Workbench shows the following specific information about OpenText SAST scanned code:

List of files scanned, with file sizes and timestamps
Java class path used for the translation (if applicable)
Rulepacks used for the analysis
OpenText SAST runtime settings and command-line options
Any errors or warnings encountered during translation or analysis
Machine and platform information

Note

To obtain result certification, you must specify FPR for the analysis phase output format.

To view result certification information, open the FPR file in Fortify Audit Workbench and select Tools > Project Summary > Certification. For more
information, see the OpenText™ Fortify Audit Workbench User Guide.

Static Application Security Testing 25.4

Page 75This PDF was generated on 10/10/2025

1.7. Analyzing Java, Kotlin and JSP projects
This section describes how to translate Java, Kotlin as well as JSP projects, as well as projects that use a combination of these languages.

OpenText SAST supports analysis of Jakarta EE (Java EE) applications (including JSP files, configuration files, and deployment descriptors), Java
Bytecode, and Java code with Lombok annotations.

This section contains the following topics:

Integrating with Gradle
Integrating with Maven
Integrating with Bazel
Integrating with Ant
Manual Java and Kotlin translation syntax
Analyzing Kotlin scripts
Kotlin and Java translation interoperability
Handling Java warnings
Analyzing Jakarta EE (Java EE) applications
Analyzing Java bytecode
Troubleshooting JSP translation and analysis issues

Static Application Security Testing 25.4

Page 76This PDF was generated on 10/10/2025

1.7.1. Integrating with Gradle
OpenText SAST provides translation integration with projects that are built with Gradle. You can either integrate without modifying your build script or
use the OpenText SAST Gradle plugin, which invokes OpenText SAST using tasks.

This section contains the following topics:

Using Gradle integration
Troubleshooting Gradle integration
Using the Gradle plugin

Static Application Security Testing 25.4

Page 77This PDF was generated on 10/10/2025

1.7.1.1. Using Gradle integration
You can translate projects that are built with Gradle without any modification of the build.gradle file. When the build runs, OpenText SAST translates
the source files as they are compiled. Alternatively, you can use the OpenText SAST Gradle Plugin to perform the analysis from within your Gradle build
script (see Using the OpenText SAST Gradle Plugin).

See Build tools for platforms and languages supported specifically for Gradle integration. Any files in the project in unsupported languages for Gradle
integration are not translated (with no error reporting). These files are therefore not analyzed, and any existing potential vulnerabilities can go
undetected.

To integrate OpenText SAST into your Gradle build, make sure that the sourceanalyzer executable is included in the PATH environment variable.
Always use the sourceanalyzer executable from the system PATH for all Gradle commands to build the project.

Note

If you have multiple OpenText SAST installations, make sure that the version you want to use for your Gradle
projects is defined before all other OpenText SAST versions included in the PATH environment variable.

Prepend the Gradle command line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> <sca_options> gradle [<gradle_options>] <gradle_tasks>

Gradle integration examples
sourceanalyzer -b MyProject gradle clean build
sourceanalyzer -b MyProject gradle --info assemble

If your build file name is different than build.gradle, then include the build file name with the --build-file option as shown in the following
example:

sourceanalyzer -b MyProject gradle --build-file sample.gradle clean assemble

You can also use the Gradle Wrapper (gradlew) as shown in the following example:

sourceanalyzer -b MyProject gradlew [<gradle_options>]

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProject -exclude "src\test***" gradlew build

If your application uses XML or property configuration files, translate these files with a separate sourceanalyzer command. Use the same build ID that
you used for the project files. The following are examples:

sourceanalyzer -b MyProject <path_to_xml_files>
sourceanalyzer -b MyProject <path_to_properties_files>

After OpenText SAST translates the project with gradle or gradlew, you can then perform the analysis phase and save the results in an FPR file as
shown in the following example:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

See Also

Using the OpenText SAST Gradle Plugin

Static Application Security Testing 25.4

Page 78This PDF was generated on 10/10/2025

1.7.1.2. Troubleshooting Gradle integration
If you use configuration caching (--configuration-cache option) in your Gradle build with OpenText SAST Gradle integration, the build reports the
following messages:

Configuration cache problems found in this build.

You also might see a message similar to the following:

FAILURE: Build failed with an exception...

You can safely ignore this message with respect to the OpenText SAST translation because the project is translated. You can verify that the project is
translated using the -show-files option. For example:

sourceanalyzer -b mybuild -show-files

Static Application Security Testing 25.4

Page 79This PDF was generated on 10/10/2025

1.7.1.3. Using the Gradle plugin
The OpenText SAST installation includes a Gradle plugin located in <sast_install_dir>/plugins/gradle. To use the OpenText SAST Gradle Plugin,
you need to first configure the plugin for your Java or Kotlin project and then use the plugin to analyze your project. The Gradle plugin provides three
OpenText SAST tasks for the analysis: sca.clean, sca.translate, and sca.scan. See Build tools for platforms and languages supported specifically for
OpenText SAST Gradle plugin.

Note

If you have multiple OpenText SAST installations, make sure that the version you want to use for your Gradle
projects is defined before all other OpenText SAST versions included in the PATH environment variable.

To configure the OpenText SAST Gradle Plugin:

1. Edit the Gradle settings file to specify the path to the plugin:

Groovy DSL (settings.gradle):

Kotlin DSL (settings.gradle.kts):

pluginManagement {
 repositories {
 maven(url = uri("file://<sast_plugin_path>"))
 gradlePluginPortal()
 }
}

pluginManagement {
 repositories {
 gradlePluginPortal()
 maven {
 url = uri("file://<sast_plugin_path>")
 }
 }
}

2. Add entries to the build script as shown in the following examples:

Groovy DSL (build.gradle):

id 'com.fortify.sca.plugins.gradlebuild' version '25.4'

and

SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose"]
}

or the following example entry excludes files from the translation:

SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose", "-exclude", "src/test/**/*"]
}

Kotlin DSL (build.gradle.kts):

plugins { id ("com.fortify.sca.plugins.gradlebuild") version "25.4" ...
}

and

SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose")
}

or the following example entry excludes files from the translation:

Static Application Security Testing 25.4

Page 80This PDF was generated on 10/10/2025

Analyze a Java or Kotlin project with following command sequence:

Working with Java or Kotlin projects that have subprojects
If you have a Java or Kotlin multi-project build (with subprojects), then you must configure the OpenText SAST Gradle plugin using an allprojects
block. This is shown in the following examples.

Groovy DSL (build.gradle)

allprojects {
 apply plugin: "com.fortify.sca.plugins.gradlebuild"
 SCAPluginExtension {
 buildId = "MyProject"
 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose"]
 ...
 }
}

Kotlin DSL (build.gradle.kts):

allprojects {
 apply(plugin = "com.fortify.sca.plugins.gradlebuild")
 SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose")
 ...
 }
}

See Also

Using Gradle Integration

SCAPluginExtension {
 buildId = "MyProject"
 options = listOf("-encoding", "utf-8", "-logfile", "MyProject.log",
 "-debug-verbose", "-exclude", "src/test/**/*")
}

3. Save and close the Gradle settings and Gradle build files.

To remove all existing OpenText SAST temporary files for an existing Java or Kotlin project build, run the following:

gradlew sca.clean

To run the translation phase for the configured Java or Kotlin project, run the following:

gradlew sca.translate

To analyze the configured Java or Kotlin project, run the following:

gradlew sca.scan

This task runs successfully if OpenText SAST has already translated the project using the OpenText SAST Gradle Plugin.

Static Application Security Testing 25.4

Page 81This PDF was generated on 10/10/2025

1.7.2. Integrating with Maven
OpenText SAST includes a Maven plugin that provides a way to add the following capabilities to your Maven project builds:

OpenText SAST clean, translate, scan
OpenText SAST export mobile build session (MBS) for a translated project
Send translated code to ScanCentral SAST
Upload results to Application Security

You can use the plugin directly or integrate its functionality into your build process.

This section contains the following topics:

Installing and updating the Fortify Maven Plugin
Testing the Fortify Maven Plugin installation
Using the Fortify Maven Plugin

Static Application Security Testing 25.4

Page 82This PDF was generated on 10/10/2025

1.7.2.1. Installing and updating the Fortify Maven Plugin
The Fortify Maven Plugin is located in <sast_install_dir>/plugins/maven. This directory contains a binary and a source version of the plugin in both
zip and tarball archives. To install the plugin, extract the version (binary or source) that you want to use, and then follow the instructions in the
included README.TXT file. Perform the installation in the directory where you extracted the archive.

For information about supported versions of Maven, see Build tools.

If you have a previous version of the Fortify Maven Plugin installed, then install the latest version.

Uninstalling the Fortify Maven Plugin
To uninstall the Fortify Maven Plugin, manually delete all files from the <maven_local_repo>/repository/com/fortify/ps/maven/plugin directory.

Static Application Security Testing 25.4

Page 83This PDF was generated on 10/10/2025

1.7.2.2. Testing the Fortify Maven Plugin installation
After you install the Fortify Maven Plugin, use one of the included sample files to be sure your installation works properly.

To test the Fortify Maven Plugin using the Eightball sample file:

1. Add the directory that contains the sourceanalyzer executable to the path environment variable.

For example:

export set PATH=$PATH:/<sast_install_dir>/bin

or

set PATH=%PATH%;<sast_install_dir>/bin

2. Type sourceanalyzer -version to test the path setting.

OpenText SAST displays the version information if the path setting is correct.

3. Go to the sample Eightball directory: <root_dir>/samples/EightBall.

4. Type the following command:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:<ver>:clean

where <ver> is the version of the Fortify Maven Plugin you are using. If the version is not specified, Maven uses the latest version of the Fortify
Maven Plugin installed in the local repository.

Note

To see the version of the Fortify Maven Plugin, open the pom.xml file that you extracted in <root_dir> in a text
editor. The Fortify Maven Plugin version is specified in the <version> element.

5. If the command in step 4 completed successfully, then the Fortify Maven Plugin is installed correctly. The Fortify Maven Plugin is not installed
correctly if you get the following message:

[ERROR] Error resolving version for plugin 'com.fortify.sca.plugins.maven:sca-maven-plugin' from the repositories

Check the Maven local repository and try to install the Fortify Maven Plugin again.

Static Application Security Testing 25.4

Page 84This PDF was generated on 10/10/2025

1.7.2.3. Using the Fortify Maven Plugin
There are two ways to perform an analysis on a maven project:

In an OpenText SAST build integration

In this method, prepend the maven command used to build your project with the sourceanalyzer command and any OpenText SAST options. To
analyze your files as part of an OpenText SAST build integration:

1. Clean out the previous build:

sourceanalyzer -b MyProject -clean

2. Translate the code:

sourceanalyzer -b MyProject [<sca_options>] [<mvn_command_with_options>]

Examples:

sourceanalyzer -b MyProject mvn package

sourceanalyzer -b MyProject -exclude "**/Test/*.java" mvn clean install

See Command-Line Interface for descriptions of available OpenText SAST options.

3. Run the scan and save the results in an FPR file as shown in the following example:

sourceanalyzer -b MyProject [<sca_scan_options>] -scan -f MyResults.fpr

As a Maven Plugin

In this method, you perform the analysis tasks as goals with the mvn command. For example, use the following command to translate source
code:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:25.4.0:translate

For example, use the following command to translate source code and exclude test files:

mvn -Dfortify.sca.exclude=“**/Test/*.java” com.fortify.sca.plugins.maven:sca-maven-plugin:25.4.0:translate

To analyze your code this way, see the documentation included with the Fortify Maven Plugin. The following table describes where to find the
documentation after you install the Fortify Maven Plugin.

Package type Documentation location

Binary <root_dir>/docs/index.html

Source <root_dir>/sca-maven-plugin/target/site/index.html

Static Application Security Testing 25.4

Page 85This PDF was generated on 10/10/2025

1.7.3. Integrating with Bazel
To integrate with Bazel builds, OpenText SAST translates the source files as they are compiled. Therefore, a prerequisite for Bazel builds is that the
Bazel build runs successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run sourceanalyzer with the Bazel target you want to build. You can
specify other sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build_id> <sca_options> bazel build <target>

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-APP\src\proj\content.py bazel build //projc:my-python-prj

Static Application Security Testing 25.4

Page 86This PDF was generated on 10/10/2025

1.7.3.1. Java Bazel integration examples
Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj

Translate target abc in package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc

or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc

Translate all targets in the package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc:all

Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...

Specify a specific JDK version for the translation:

sourceanalyzer -b MyProjectC -jdk 17 bazel build //projc:my-java-prj

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-APP\src\main\java\com\example\HelpContent.java bazel build //projc:my-java-prj

OpenText SAST Bazel integration does not support multiple targets and related actions such as excluding targets.

Static Application Security Testing 25.4

Page 87This PDF was generated on 10/10/2025

1.7.4. Integrating with Ant
You can translate Java source files for projects that use an Ant build file. You can apply this integration on the command line without modifying the Ant
build.xml file. When the build runs, OpenText SAST intercepts all javac task invocations and translates the Java source files as they are compiled.
Make sure that you pass any properties to Ant by adding them to the ANT_OPTS environment variable. Do not include them in the sourceanalyzer
command.

Note

You must translate any JSP files, configuration files, or any other non-Java source files that are part of the application
in a separate step.

To use the Ant integration, make sure that the sourceanalyzer executable is in the PATH environment variable.

Prepend your Ant command-line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> [<sca_options>] ant [<ant_options>]

For example, to translate a Java project and exclude a file from the translation:

sourceanalyzer -b MyProjectA -logfile MyProjectA.log -exclude src/module-info.java ant

Static Application Security Testing 25.4

Page 88This PDF was generated on 10/10/2025

1.7.5. Manual Java and Kotlin translation syntax
To translate Java or Kotlin code manually, include all source file on the command line and provide all of the dependencies via .jar files, .class files, or
source files. Failing to provide dependencies may lead to suboptimal scan results.

Kotlin to Java interoperability does not support Kotlin files provided by the –sourcepath option. For more information about the –sourcepath option,
see Java Command-Line Options.

The basic command-line syntax to translate Java or Kotlin code is shown in the following example:

sourceanalyzer -b <build_id> -cp <classpath> [<translation_options>] <files> | <file_specifiers>

where:

<translation_options> are options passed to the compiler.
-cp <classpath> specifies the class path to use for resolving Java and Kotlin symbols.

Include all JAR dependencies normally used to build the project. Separate multiple paths with semicolons (Windows) or colons (non-Windows).

Similar to javac, OpenText SAST loads classes in the order they appear in the class path. If there are multiple classes with the same name in the
list, OpenText SAST uses the first loaded class. In the following example, if both A.jar and B.jar include a class called MyData.class, OpenText
SAST uses the MyData.class from A.jar.

sourceanalyzer -cp A.jar:B.jar myfile.java

OpenText strongly recommends that you avoid using duplicate classes with the -cp option.

OpenText SAST loads JAR files in the following order:

1. From the -cp option
2. From jre/lib
3. From <sast_install_dir>/Core/default_jars

This enables you to override a library class by including the similarly-named class in a JAR specified with the -cp option.

For descriptions of all the available Java-specific command-line options, see "Java/J2EE Command-Line Options".

With Java code, OpenText SAST can additionally emulate the compiler to help integrate more easily into custom build scripts.

To have OpenText SAST emulate the compiler, type:

sourceanalyzer -b <build_id> javac [<translation_options>]

Static Application Security Testing 25.4

Page 89This PDF was generated on 10/10/2025

1.7.5.1. Java, Kotlin and JSP command-line options
The following table describes the Java command-line options (for Java SE and Jakarta EE).

Java, Kotlin or
Jakarta EE option

Description

-appserver
weblogic | websphere

Specifies the application server to process JSP files.
Equivalent property name:
com.fortify.sca.AppServer

-appserver-home
<dir>

Specifies the application server’s home.

For Oracle® WebLogic®, this is the path to the directory that contains the server/lib directory.
For IBM® WebSphere®, this is the path to the directory that contains the JspBatchCompiler script.

Equivalent property name:
com.fortify.sca.AppServerHome

-appserver-version
<version>

Specifies the version of the application server.
Equivalent property name:
com.fortify.sca.AppServerVersion

-cp <paths> |
-classpath <paths>

Specifies the class path used to resolve Java and Kotlin dependencies. The format is the same as javac: a semicolon- or
colon-separated list of directories. You can use OpenText SAST file specifiers as shown in the following example:

-cp "build/classes:lib/*.jar"

For information about file specifiers, see Specifying files and directories.
Equivalent property name:
com.fortify.sca.JavaClasspath

-extdirs <dirs> Similar to the javac extdirs option, accepts a semicolon- or colon-separated list of directories. Any JAR files found in these
directories are included implicitly on the class path.
Equivalent property name:
com.fortify.sca.JavaExtdirs

-java-build-dir
<dirs>

Specifies one or more directories that contain compiled Java sources.

-source <version> |
-jdk <version>

Indicates the Java™ Development Kit (JDK) version for which the Java or Kotlin code is written. For supported versions, see
Supported languages. The default is version 11.
Equivalent property name:
com.fortify.sca.JdkVersion

-custom-jdk-dir Specifies a directory that contains a JDK. Use this option to specify a version that is not included in the OpenText SAST
installation (<sast_install_dir>/Core/bootcp/). For supported versions, see Supported languages.
Equivalent property name:
com.fortify.sca.CustomJdkDir

-show-unresolved-
symbols

Displays any unresolved types, fields, and functions referenced in translated Java source files at the end of the translation. It
lists only field and function references for which the receiver type is a resolved Java type. Displays each class, field, and
function with the source information of the first translated occurrence in the code. This information is also written in the log
file.
Equivalent property name:
com.fortify.sca.ShowUnresolvedSymbols

-sourcepath <dirs> Specifies a semicolon- or colon-separated list of directories that contain source code that is not included in the scan but is
used for name resolution. The source path is similar to class path, except it uses source files instead of class files for
resolution. Only source files that are referenced by the target file list are translated.
Equivalent property name:
com.fortify.sca.JavaSourcePath

-jvm-
default <mode>

Specifies the generation of the DefaultImpls class for methods with bodies in Kotlin interfaces. The valid values
for <mode> are:

disable—Specifies to generate the DefaultImpls class for each interface that contains methods with bodies.
all—Specifies to generate the DefaultImpls class if an interface is annotated with @JvmDefaultWithCompatibility.
all-compatibility—Specifies to generate the DefaultImpls class unless an interface is annotated
with @JvmDefaultWithoutCompatibility.

Equivalent property name:
com.fortify.sca.KotlinJvmDefault

Java and Kotlin Properties

Static Application Security Testing 25.4

Page 90This PDF was generated on 10/10/2025

1.7.5.2. Java command-line examples
To translate a single file named MyServlet.java with javaee.jar as the class path, type:

sourceanalyzer -b MyServlet -cp lib/javaee.jar MyServlet.java

To translate all .java files in the src directory using all JAR files in the lib directory as a class path, type:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.java"

To translate and compile the MyCode.java file with the javac compiler, type:

sourceanalyzer -b MyProject javac -classpath libs.jar MyCode.java

Static Application Security Testing 25.4

Page 91This PDF was generated on 10/10/2025

1.7.5.3. Kotlin command-line examples
To translate a single file named MyKotlin.kt with A.jar as the class path, type:

sourceanalyzer -b MyProject -cp lib/A.jar MyKotlin.kt

To translate all .kt files in the src directory using all JAR files in the lib directory as a class path, type:

sourceanalyzer -b MyProject -cp "lib/**/*.jar" "src/**/*.kt"

To translate a gradle project using gradlew, type:

sourceanalyzer -b MyProject gradlew clean assemble

To translate all files in the src directory using Java dependencies from src/java and all JAR files in the lib directory and subdirectories as a class path,
type:

sourceanalyzer –b MyProject –cp "lib/**/*.jar" -sourcepath "src/java" "src"

Static Application Security Testing 25.4

Page 92This PDF was generated on 10/10/2025

1.7.6. Analyzing Kotlin scripts
OpenText SAST supports translation of Kotlin scripts excluding experimental script customization. Script customization includes adding external
properties, providing static or dynamic dependencies, and so on. Script definitions (templates) are used to create custom scripts and the template is
applied to the script based on the *.kts extension. OpenText SAST translates *.kts files but does not apply these templates.

Static Application Security Testing 25.4

Page 93This PDF was generated on 10/10/2025

1.7.7. Kotlin and Java translation interoperability
If your project contains Kotlin code that refers to Java code, you can provide Java files to the translator the same way as Kotlin files that refers to
another Kotlin file. You can provide them as part of the translated project source or as –sourcepath parameters.

If your project contains Java code that refers to Kotlin code, make sure that the Java and Kotlin code are translated in the same OpenText SAST instance
so that the Java references to Kotlin elements are resolved correctly. Kotlin to Java interoperability does not support Kotlin files provided by the –
sourcepath option. For more information about the –sourcepath option, see Java, Kotlin and JSP command-line options.

Static Application Security Testing 25.4

Page 94This PDF was generated on 10/10/2025

1.7.8. Handling Java warnings
To see all warnings that were generated during translation, type the following command before you start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

Java translation warnings
You might see the following warnings in the Java code translation.

Warning Resolution

Unable to resolve type...
Unable to resolve function...
Unable to resolve field...
Unable to locate import...
Unable to resolve symbol...

These warnings are typically caused by missing resources. For example, some of the .jar and .class
files required to build the application might not have been specified.
To resolve these warnings, make sure that you include all the required files that your application uses.

Multiple definitions found for class...

This warning is typically caused by duplicate classes in the Java files.
To resolve these warnings, make sure that the source files displayed in the warning are not duplicates of
the same file included several times in the sources to translate (for example if it contains two versions of
the same project). If a duplicate exists, remove one of them from the files to translate. Then OpenText
SAST can determine which version of the class to use.
This warning can also indicate that classes are missing. To resolve this, make sure to add all required JAR
files to the classpath.

Static Application Security Testing 25.4

Page 95This PDF was generated on 10/10/2025

1.7.9. Analyzing Jakarta EE (Java EE) applications
To translate Jakarta EE applications, OpenText SAST processes Java source files and Jakarta EE components such as JSP files, deployment descriptors,
and configuration files. While you can process all the pertinent files in a Jakarta EE application in one step, your project might require that you break the
procedure into its components for integration in a build process or to meet the needs of various stakeholders in your organization.

This section contains the following topics:

Translating Java files
Translating JSP projects, configuration files, and deployment descriptors
Jakarta EE (Java EE) translation warnings

Static Application Security Testing 25.4

Page 96This PDF was generated on 10/10/2025

1.7.9.1. Translating Java files
To translate Jakarta EE applications, use the same procedure used to translate Java files. For examples, see "Java Command-Line Examples".

Static Application Security Testing 25.4

Page 97This PDF was generated on 10/10/2025

1.7.9.2. Translating JSP projects, configuration files, and
deployment descriptors
In addition to translating the Java files in your Jakarta EE (Java EE) application, you might also need to translate JSP files, configuration files, and
deployment descriptors. Your JSP files must be part of a Web Application Archive (WAR). If your source directory is already organized in a WAR file
format, you can translate the JSP files directly from the source directory. If not, you might need to deploy your application and translate the JSP files
from the deployment directory.

For example:

sourceanalyzer -b MyJavaApp "/**/*.jsp" "/**/*.xml"

where /**/*.jsp refers to the location of your JSP project files and /**/*.xml refers to the location of your configuration and deployment descriptor
files.

Static Application Security Testing 25.4

Page 98This PDF was generated on 10/10/2025

1.7.9.3. Jakarta EE (Java EE) translation warnings
You might see the following warning in the translation of Jakarta EE applications:

Could not locate the root (WEB-INF) of the web application. Please build your web application and try again. Failed to parse the following jsp files:
<list_of_jsp_files>

This warning indicates that your web application is not deployed in the standard WAR directory format or does not contain the full set of required
libraries. To resolve the warning, make sure that your web application is in an exploded WAR directory format with the correct WEB-INF/lib and WEB-
INF/classes directories that contain all the .jar and .class files required for your application. Also verify that you have all the TLD files for all your
tags and the corresponding JAR files with their tag implementations.

Static Application Security Testing 25.4

Page 99This PDF was generated on 10/10/2025

1.7.10. Analyzing Java bytecode
OpenText recommends that you do not translate Java bytecode and JSP/Java code in the same call to sourceanalyzer. Use multiple invocations of
sourceanalyzer with the same build ID to translate a project that contains both bytecode and JSP/Java code.

To translate bytecode:

1. Add the following properties to the fortify-sca.properties file (or include these properties on the command line using the -D option):

com.fortify.sca.fileextensions.class=BYTECODE

 com.fortify.sca.fileextensions.jar=ARCHIVE

This specifies how OpenText SAST processes .class and .jar files.

2. Do one of the following:

Request that OpenText SAST decompile the bytecode classes to regular Java files for inclusion in the translation.

Add the following property to the fortify-sca.properties file:

com.fortify.sca.DecompileBytecode=true

or include this property on the command line for the translation phase with the -D option:

sourceanalyzer -b MyProject -Dcom.fortify.sca.DecompileBytecode=true -cp "lib/*.jar" "src/**/*.class"

Request that OpenText SAST translate bytecode without decompilation.

For best results, OpenText recommends that the bytecode be compiled with full debug information (javac -g).

Include bytecode in the translation phase by specifying the Java bytecode files that you want to translate. For best performance, specify
only the .jar or .class files that require scanning. In the following example, the .class files are translated:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.class"

Static Application Security Testing 25.4

Page 100This PDF was generated on 10/10/2025

1.7.11. Troubleshooting JSP translation and analysis issues
The following sections provide troubleshooting information for JSP analysis.

Unable to translate some JSPs
OpenText SAST uses either the built-in compiler or your specific application server JSP compiler to translate JSP files into Java files for analysis. If the JSP
parser encounters problems when OpenText SAST converts JSP files to Java files, you will see a message similar to the following:

Failed to translate the following jsps into analysis model. Please see the log file for any errors from the jsp parser and the user manual for hints on f
ixing those
<list_of_jsp_files>

This typically happens for one or more of the following reasons:

The web application is not laid out in a proper deployable WAR directory format
Some JAR files or classes required for the application are missing
Some tag libraries or their definitions (TLD) for the application are missing

To obtain more information about the problem, perform the following steps:

1. Open the OpenText SAST log file in an editor.
2. Search for the following strings:

Jsp parser stdout:
Jsp parser stderr:

The JSP parser generates these errors. Resolve the errors and rerun OpenText SAST.

For more information about how to analyze Jakarta EE applications, see Translating Jakarta EE (Java EE) applications.

Increased issues count in JSP-related categories
If the analysis results contain a considerable increase in the number of vulnerabilities in JSP-related categories such as cross-site scripting compared
with earlier OpenText SAST versions, you can specify the -legacy-jsp-dataflow option in the analysis phase (with the -scan option). This option
enables additional filtering on JSP-related dataflow to reduce the number of spurious false positives detected.

The equivalent property for this option that you can specify in the fortify-sca.properties file is com.fortify.sca.jsp.LegacyDataflow.

Static Application Security Testing 25.4

Page 101This PDF was generated on 10/10/2025

1.8. Analyzing Android projects
This section describes how to translate Java source code for Android applications. You can use OpenText SAST to scan the code with Gradle from either:

Your operating system's command line
A terminal window running in Android Studio

The way you use Gradle is the same for either method.

Note

You can also scan Android code directly from Android Studio with the Fortify Analysis Plugin for IntelliJ IDEA and
Android Studio. For more information, see the OpenText™ Fortify Analysis Plugin for IntelliJ IDEA and Android Studio
User Guide.

This section contains the following topics:

Android project translation prerequisites
Android code analysis command-line syntax
Filtering issues detected in Android layout files

Static Application Security Testing 25.4

Page 102This PDF was generated on 10/10/2025

1.8.1. Android project translation prerequisites
The following are the prerequisites for translating Android projects:

Android Studio and the relevant Android SDKs are installed on the system where you will run the scans

Your Android project uses Gradle for builds.

If you have an older project that does not use Gradle, you must add Gradle support to the associated Android Studio project

Use the same version of Gradle that is provided with the version of Android Studio that you use to create your Android project

Make sure you have available all dependencies that are required to build the Android code in the application's project
To translate your Android code from a command window that is not displayed within Android Studio, make sure that Gradle Wrapper (gradlew) is
defined on the system path

Static Application Security Testing 25.4

Page 103This PDF was generated on 10/10/2025

1.8.2. Android code analysis command-line syntax
Use gradlew to scan Android projects, which is similar to using Gradle except that you use the Gradle Wrapper. For information about how to translate
your Android project using the Gradle Wrapper, see Gradle Integration.

Static Application Security Testing 25.4

Page 104This PDF was generated on 10/10/2025

1.8.3. Filtering issues detected in Android layout files
If your Android project contains layout files (used to design the user interface), your project files might include R.java source files that are
automatically generated by Android Studio. When you scan the project, OpenText SAST can detect issues associated with these layout files.

OpenText recommends that Issues reported in any layout file be included in your standard audit so you can carefully determine if any of them are false
positives. After you identify issues in layout files that you are not interested in, you can filter them out as described in Optimizing results. You can filter
out the issues based on the Instance ID.

Static Application Security Testing 25.4

Page 105This PDF was generated on 10/10/2025

1.9. Analyzing Visual Studio projects
OpenText SAST provides a build integration to support translation of the following Visual Studio project types:

C/C++ projects

C# projects that target .NET Framework and .NET Core

ASP.NET applications that target ASP.NET framework and ASP.NET Core

Xamarin applications that target Android™ and iOS platforms

For a list of supported versions of relevant programming languages and frameworks, as well as Visual Studio and MSBuild versions, see Supported
languages and Supported build tools.

This section contains the following topics:

Visual Studio project translation prerequisites
Visual Studio Project command-line syntax
Handling special cases for translating Visual Studio projects
Alternative ways to translate Visual Studio projects

Static Application Security Testing 25.4

Page 106This PDF was generated on 10/10/2025

1.9.1. Visual Studio project translation prerequisites
OpenText recommends that each project you translate is complete and that you perform the translation in an environment where you can build it
without errors. For a list of software environment requirements, see Software requirements. A complete project contains the following:

All necessary source code files (C/C++, C#, or VB.NET).

All required reference libraries.

This includes those from relevant frameworks, NuGet packages, and third-party libraries.

For C/C++ projects, include all necessary header files that do not belong to the Visual Studio or MSBuild installation.

For ASP.NET and ASP.NET Core projects, include all the necessary ASP.NET page files.

The supported ASP.NET page types are ASAX, ASCX, ASHX, ASMX, ASPX, AXML, BAML, CSHTML, Master, RAZOR, VBHTML, and XAML.

Static Application Security Testing 25.4

Page 107This PDF was generated on 10/10/2025

1.9.2. Visual Studio Project command-line syntax
The basic syntax to translate a Visual Studio solution or project is to specify the corresponding build option for your project as part of the OpenText
SAST translation command. This starts a build integration that analyzes your solution and project files and automatically executes the appropriate
translation steps.

Important

To ensure that the build integration correctly pulls in all of the appropriate project dependencies and resources, you
must run the OpenText SAST command from a command prompt with access to your build environment
configuration. OpenText strongly recommends you run this command from the Developer Command Prompt for
Visual Studio to ensure an optimal environment for the translation.

In the following examples, OpenText SAST translates all the projects contained in the Visual Studio solution Sample.sln. You can also translate one or
more specific projects by providing a semicolon-separated list of projects.

By default, test projects are excluded from the translation. Projects in your solution that reference NUnit, xunit, or MSTest are considered a test
project. To include test projects in the translation, add the MSBuild option /p:ScaForceTranslateTestProjects=True to your sourceanalyzer
command.

For a .NET 6.0 or later solution on Windows or Linux, use the following commands to translate the solution:

1. Optionally, run the following command to remove any intermediate files from previous project builds:

dotnet clean Sample.sln

2. Optionally, run the following command to ensure that all required reference libraries are downloaded and installed in the project. Run this
command from the top-level folder of the project:

dotnet restore Sample.sln

3. Run one of the following OpenText SAST commands depending on how your project build is implemented. You can include any additional
build parameters in this command:

sourceanalyzer –b MyProject dotnet msbuild Sample.sln

or

sourceanalyzer –b MyProject dotnet build Sample.sln

For a C, C++, and .NET Framework solution (4.8.x or earlier) on Windows, use the following command to translate the solution:

sourceanalyzer –b MyProject msbuild /t:rebuild [<msbuild_options>] Sample.sln

Note

If you run OpenText SAST from a Windows Command Prompt instead of the Visual Studio Developer Command
Prompt, you must set up the environment and make sure the path to the MSBuild executable required to build
your project is included in the PATH environment variable.

After the translation is complete, perform the analysis phase and save the results in an FPR file as shown in the following example:

sourceanalyzer –b MyProject -scan -f MyResults.fpr

Static Application Security Testing 25.4

Page 108This PDF was generated on 10/10/2025

1.9.3. Handling special cases for translating Visual Studio
projects
This section contains the following topics:

Running translation from a script
Translating plain .NET and ASP.NET projects
Translating C/C++ and Xamarin projects
Translating projects with settings containing spaces
Translating a single project from a Visual Studio solution
Analyzing projects that build multiple executable files

Static Application Security Testing 25.4

Page 109This PDF was generated on 10/10/2025

1.9.3.1. Running translation from a script
To perform the translation in a non-interactive mode such as with a script, establish an optimal environment for translation by executing the following
command before you run the OpenText SAST translation:

cmd.exe /k <vs_install_dir>/Common7/Tools/VSDevCmd.bat

where <vs_install_dir> is the directory where you installed Visual Studio.

Static Application Security Testing 25.4

Page 110This PDF was generated on 10/10/2025

1.9.3.2. Translating plain .NET and ASP.NET projects
You can translate plain .NET and ASP.NET projects from the Windows Command Prompt as well as from a Visual Studio environment. When you
translate from the Windows Command Prompt, make sure the path to the MSBuild executable required to build your project is included in the PATH
environment variable.

Static Application Security Testing 25.4

Page 111This PDF was generated on 10/10/2025

1.9.3.3. Translating C/C++ and Xamarin projects
You must translate C/C++ and Xamarin projects either from a Developer Command Prompt for Visual Studio or from the Fortify Extension for Visual
Studio.

Note

For Xamarin projects, there is no need to use a custom rule for the Xamarin.Android API if a rule for the
corresponding native Android API exists in the Fortify Secure Coding Rulepacks. Doing so can cause duplicate issues
to be reported.

Static Application Security Testing 25.4

Page 112This PDF was generated on 10/10/2025

1.9.3.4. Translating projects with settings containing spaces
If your project is built with a configuration or other settings file that contains spaces, make sure to enclose the setting values in quotes. For example, to
translate a Visual Studio solution Sample.sln that is built with configuration My Configuration, use the following command:

sourceanalyzer –b MySampleProj msbuild /t:rebuild
/p:Configuration="My Configuration" Sample.sln

Static Application Security Testing 25.4

Page 113This PDF was generated on 10/10/2025

1.9.3.5. Translating a single project from a Visual Studio
solution
If your Visual Studio solution contains multiple projects, you have the option to translate a single project instead of the entire solution. Project files have
a file name extension that ends with proj such as .vcxproj and .csproj. To translate a single project, specify the project file instead of the solution as
the parameter for the MSBuild command.

The following example translates the Sample.vcxproj project file:

sourceanalyzer –b MySampleProj msbuild /t:rebuild Sample.vcxproj

Static Application Security Testing 25.4

Page 114This PDF was generated on 10/10/2025

1.9.3.6. Analyzing projects that build multiple executable files
If your Visual Studio or MSBuild project builds multiple executable files (such as files with the file name extension *.exe), OpenText strongly
recommends that you run the analysis phase separately for each executable file to avoid false positive issues in the analysis results. To do this, use the
–binary-name option when you run the analysis phase and specify the executable file name or .NET assembly name as the parameter.

The following example shows how to translate and analyze a Visual Studio solution Sample.sln that consists of two projects, Sample1 (a C++ project
with no associated .NET assembly name) and Sample2 (a .NET project with .NET assembly name Sample2). Each project builds a separate executable
file, Sample1.exe and Sample2.exe, respectively. The analysis results are saved in Sample1.fpr and Sample2.fpr files.

sourceanalyzer -b MySampleProj msbuild /t:rebuild Sample.sln
sourceanalyzer -b MySampleProj -scan -binary-name Sample1.exe -f Sample1.fpr
sourceanalyzer -b MySampleProj -scan -binary-name Sample2.exe -f Sample2.fpr

For more information about the -binary-name option, see Analysis Options.

Static Application Security Testing 25.4

Page 115This PDF was generated on 10/10/2025

1.9.4. Alternative ways to translate Visual Studio projects
This section describes alternative methods of translating Visual Studio projects.

This section contains the following topics:

Alternative translation options for Visual Studio solutions
Translating without explicitly running OpenText SAST

Static Application Security Testing 25.4

Page 116This PDF was generated on 10/10/2025

1.9.4.1. Alternative translation options for Visual Studio
solutions
The following are two alternative ways of translation available only for Visual Studio solutions:

Use the Fortify Extension for Visual Studio

The Fortify Extension for Visual Studio runs the translation and analysis (scan) phases together in one step.

Append a devenv command to the OpenText SAST command

The following command translates the Visual Studio solution Sample.sln:

sourceanalyzer –b MySampleProj devenv Sample.sln /rebuild

Note that OpenText SAST converts a devenv invocation to the equivalent MSBuild invocation, therefore in this case, the solution with this
command is built by MSBuild instead of the devenv tool.

Static Application Security Testing 25.4

Page 117This PDF was generated on 10/10/2025

1.9.4.2. Translating without explicitly running OpenText SAST
You have the option to translate your Visual Studio project without invoking OpenText SAST directly. This requires the Fortify.targets file, which is
located in <sast_install_dir>\Core\private-bin\sca\MSBuildPlugin in the DotNet and Framework directory. You can specify the file using an
absolute or relative path in the build command line that builds your project. Use the path with the Dotnet or Framework directory depending on the
build command you are using: dotnet.exe or MSBuild.exe respectively. For example:

dotnet.exe msbuild /t:rebuild /p:CustomAfterMicrosoftCommonTargets=<sast_install_dir>\Core\private-bin\sca\MSBuildPlugin\Dotnet\Fortify.targets
 Sample.sln

or

msbuild.exe /t:rebuild
/p:CustomAfterMicrosoftCommonTargets=<sast_install_dir>\Core\private-bin\sca\MSBuildPlugin\Framework\Fortify.targets Sample.sln

There are several environment variables that you can set to configure the translation of your project. Most of them have default values, which
OpenText SAST uses if the variable is not set. These variables are listed in the following table.

Environment variable Description Default value

FORTIFY_MSBUILD_BUILDID Specifies the OpenText SAST build ID for translation. Make sure that you set
this value.
This is equivalent to the OpenText SAST-b option.

None

FORTIFY_MSBUILD_DEBUG Enables debug mode. This is equivalent to the OpenText SAST–debug option. False

FORTIFY_MSBUILD_DEBUG_VERBOSE Enables verbose debug mode. This is equivalent to the OpenText SAST–
debug-verbose option. Takes precedence over FORTIFY_MSBUILD_DEBUG
variable if both are set to true.

False

FORTIFY_MSBUILD_MEM Specifies the memory requirements for translation in the form of the JVM -
Xmx option. For example, -Xmx2G.

Automatic allocation based on
physical memory available on
the system

FORTIFY_MSBUILD_SCALOG Specifies the location (absolute path) of the OpenText SAST log file.
This is equivalent to the OpenText SAST-logfile option.

%LOCALAPPDATA%/Fortify/
sca/log/sca.log

Static Application Security Testing 25.4

Page 118This PDF was generated on 10/10/2025

1.10. Analyzing JavaScript and TypeScript code
You can analyze JavaScript projects that contain JavaScript, TypeScript, JSX, and TSX source files, as well as JavaScript embedded in HTML files.

Some JavaScript frameworks are transpiled (source-to-source compilation) to plain JavaScript, which is generated code. Use the -exclude command-
line option to exclude this type of code.

When you translate JavaScript and TypeScript code, make sure that you specify all source files together in one invocation. OpenText SAST does not
support adding new files to the file list associated with the build ID on subsequent invocations.

OpenText SAST does not translate minified JavaScript (*.min.js).

Note

There are some types of minified JavaScript files that OpenText SAST cannot automatically detect for exclusion from
the translation. Use the -exclude command-line option to exclude these files directly.

This section contains the following topics:

Translating pure JavaScript projects
Excluding dependencies
Excluding NPM Dependencies
NPM dependencies
Translating JavaScript projects with HTML files
Including external JavaScript or HTML in the translation

Static Application Security Testing 25.4

Page 119This PDF was generated on 10/10/2025

1.10.1. Translating pure JavaScript projects
The basic command-line syntax to translate JavaScript is:

sourceanalyzer –b <build_id> <js_file_or_dir>

where <js_file_or_dir> is either the name of the JavaScript file to be translated or a directory that contains multiple JavaScript files. You can also
translate multiple files by specifying *.js for the <js_file_or_dir>.

Static Application Security Testing 25.4

Page 120This PDF was generated on 10/10/2025

1.10.2. Excluding dependencies
You can avoid translating specific dependencies by adding them to the appropriate property setting in the fortify-sca.properties file. Files specified
in the following properties are not translated:

com.fortify.sca.skip.libraries.ES6

com.fortify.sca.skip.libraries.jQuery

com.fortify.sca.skip.libraries.javascript

com.fortify.sca.skip.libraries.typescript

Each property specifies a list of comma- or colon-separated file names (without path information).

The files specified in these properties apply to both local files and files on the internet. Suppose, for example, that the JavaScript code includes the
following local file reference:

<script src="js/jquery-ui.js" type="text/javascript" charset="utf-8"></script>

By default, the com.fortify.sca.skip.libraries.jQuery property in the fortify-sca.properties file includes jquery-us.js, and therefore
OpenText SAST does not translate the file shown in the previous example.

You can use regular expressions for the file names. Note that OpenText SAST automatically inserts the regular expression '(-?\d+\.\d+\.\d+)?'
before .min.js or .js for each file name included in the com.fortify.sca.skip.libraries.jQuery property value.

Note

You can also exclude local files or entire directories with the -exclude command-line option. For more information
about this option, see Translation Options.

To provide a thorough analysis, dependent files are included in the translation even if the dependency is in a language that is disabled with the -
disable-language option. For more information about the option to disable languages, see Translation Options).

Static Application Security Testing 25.4

Page 121This PDF was generated on 10/10/2025

1.10.3. Excluding NPM Dependencies
By default, OpenText SAST translates only the NPM dependencies that are imported in the code. You can change this behavior with the following two
properties:

The com.fortify.sca.follow.imports property directs OpenText SAST to resolve all imported files and include them in the translation.

This property is enabled by default. Setting this property to false prevents NPM dependencies that are not explicitly included on the command-line
from being included in the translation.

The com.fortify.sca.exclude.unimported.node.modules property directs OpenText SAST to exclude all files in any node_modules directory
from the translation except files that are specifically imported by the com.fortify.sca.follow.imports property.

This property is enabled by default to avoid translating dependencies that are not needed for the final project such as those only required for the
build system.

Static Application Security Testing 25.4

Page 122This PDF was generated on 10/10/2025

1.10.4. NPM dependencies
By default, OpenText SAST does not report issues in NPM dependencies (files in the node_modules directory). This is configured with the
com.fortify.sca.exclude.node.modules property, which is set to true by default.

Note

OpenText does not recommend using the -exclude option to exclude node modules if
com.fortify.sca.exclude.node.modules is set to true, because it can change the quality of the results.

See Also

Examples of Excluding node_modules Dependencies

Static Application Security Testing 25.4

Page 123This PDF was generated on 10/10/2025

1.10.4.1. Examples of excluding NPM dependencies
The following examples illustrate three different scenarios for excluding NPM dependencies. All these examples use the following directory structure:

./
 RootProjectDir
 innerSrcDir
 node_modules
 innerProjectReferencedModule
 index.ts
 moduleNotReferencedByProject
 index.ts
 innerProject.ts (contains import from innerProjectReferencedModule)
 node_modules
 projectReferencedModule
 index.ts
 moduleNotReferencedByProject
 index.ts
 projectMain.ts (contains import from projectReferencedModule)

Example 1

This example shows the files are translated with com.fortify.sca.exclude.unimported.node.modules set to false. In this case,
com.fortify.sca.follow.imports and com.fortify.sca.exclude.unimported.node.modules are both set to true.

sourceanalyzer RootProjectDir/ -Dcom.fortify.sca.exclude.node.modules=false

The following files are included in the translation for Example 1:

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/innerSrcDir/node_modules/innerProjectReferencedModule/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node_modules/projectReferencedModule/index.ts

Example 2

This example shows that in addition to modules referenced by the project, modules found during resolution but not referenced by the project are also
included in the translation.

sourceanalyzer RootProjectDir/ -Dcom.fortify.sca.exclude.unimported.node.modules=false

The following files are included in the translation for Example 2:

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/innerSrcDir/node_modules/innerProjectReferencedModule/index.ts

./RootProjectDir/innerSrcDir/node_modules/moduleNotReferencedByProject/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node_modules/projectReferencedModule/index.ts

./RootProjectDir/node_modules/moduleNotReferencedByProject/index.ts

Example 3

This example shows use of the -exclude option to exclude all files under any node_modules directory. The -exclude option overrides resolution of
modules based on the configuration of the com.fortify.sca.follow.imports and com.fortify.sca.exclude.unimported.node.modules properties.

sourceanalyzer RootProjectDir/ -exclude "**/node_modules/*.*"

The following files are included in the translation for Example 3:

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/projectMain.ts

Static Application Security Testing 25.4

Page 124This PDF was generated on 10/10/2025

1.10.5. Translating JavaScript projects with HTML files
If the project contains HTML files in addition to JavaScript files, set the com.fortify.sca.EnableDOMModeling property to true in the fortify-
sca.properties file or on the command line as shown in the following example:

sourceanalyzer –b MyProject <js_file_or_dir>
-Dcom.fortify.sca.EnableDOMModeling=true

When you set the com.fortify.sca.EnableDOMModeling property to true, this can decrease false negative reports of DOM-related attacks, such as
DOM-related cross-site scripting issues.

Note

If you enable this option, OpenText SAST generates JavaScript code to model the DOM tree structure in the HTML
files. The duration of the analysis phase might increase (because there is more translated code to analyze).

If you set the com.fortify.sca.EnableDOMModeling property to true, you can also specify additional HTML tags for OpenText SAST to include in the
DOM modeling with the com.fortify.sca.DOMModeling.tags property. By default, OpenText SAST includes the following HTML tags: body, button,
div, form, iframe, input, head, html, and p.

For example, to additionaly include the HTML tags ul and li in the DOM model, use the following command:

sourceanalyzer –b MyProject <js_file_or_dir>
-Dcom.fortify.sca.DOMModeling.tags=ul,li

Static Application Security Testing 25.4

Page 125This PDF was generated on 10/10/2025

1.10.6. Including external JavaScript or HTML in the translation
To include external JavaScript or HTML files that are specified with the src attribute, you can specify which domains OpenText SAST can download and
include in the translation phase. To do this, specify one or more domains with the com.fortify.sca.JavaScript.src.domain.whitelist property.

Note

You can also set this property globally in the fortify-sca.properties file.

For example, you might have the following statement in your HTML file:

<script src='http://xyzdomain.com/foo/bar.js' language='text/javascript'/>
</script>

If you are confident that the xyzdomain.com domain is a safe location from which to download files, then you can include it in the translation phase by
adding the following property specification on the command line:

-Dcom.fortify.sca.JavaScript.src.domain.whitelist="xyzdomain.com/foo"

Note

You can omit the www. prefix from the domain in the property value. For example, if the src tag in the original HTML
file specifies to download files from www.google.com, you can specify just the google.com domain.

To trust more than one domain, include each domain separated by the vertical bar character (|) as shown in the following example:

-Dcom.fortify.sca.JavaScript.src.domain.whitelist=
"xyzdomain.com/foo|abcdomain.com|123.456domain.com”

If you are using a proxy server, then you need to include the proxy server information on the command line as shown in the following example:

-Dhttp.proxyHost=example.proxy.com -Dhttp.proxyPort=8080

For a complete list of proxy server options, see the Networking Properties Java documentation.

Static Application Security Testing 25.4

Page 126This PDF was generated on 10/10/2025

1.11. Analyzing Python and Jupyter Notebooks
OpenText SAST translates Python applications, and processes files with the .py extension as Python source code. Files with the extension .ipynb are
recognized as Jupyter Notebooks. OpenText SAST supports translation of Jupyter notebooks and the Django and Flask frameworks.

This section contains the following topics:

Integrating with Bazel
Python translation command-line syntax
Translating Python in a virtual environment
Including imported modules and packages
Including namespace packages
Translating Django and Flask

Static Application Security Testing 25.4

Page 127This PDF was generated on 10/10/2025

1.11.1. Integrating with Bazel
To integrate with Bazel builds, OpenText SAST translates the source files as they are compiled. Therefore, a prerequisite for Bazel builds is that the
Bazel build runs successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run sourceanalyzer with the Bazel target you want to build. You can
specify other sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build_id> <sca_options> bazel build <target>

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-APP\src\proj\content.py bazel build //projc:my-python-prj

Static Application Security Testing 25.4

Page 128This PDF was generated on 10/10/2025

1.11.1.1. Python Bazel integration examples
Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj

Translate target abc in package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc

or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc

Translate all targets in the package proja/abc:

sourceanalyzer -b MyProjectA bazel build //proja/abc:all

Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...

Specify Python project dependencies for the translation:

sourceanalyzer -b MyProjectD -python-path /usr/local/lib/python3.6/ bazel build //projd:my-python-app

OpenText SAST Bazel integration does not support multiple targets and related actions such as excluding targets.

Static Application Security Testing 25.4

Page 129This PDF was generated on 10/10/2025

1.11.2. Python translation command-line syntax
The basic command-line syntax to translate Python code is:

sourceanalyzer -b <build_id> -python-version <python_version>
-python-path <dirs> <files>

Note

When you translate Python code, make sure that you specify all source files together in one invocation. OpenText
SAST does not support adding new files to the file list associated with the build ID on subsequent invocations.

Static Application Security Testing 25.4

Page 130This PDF was generated on 10/10/2025

1.11.2.1. Python command-line options
The following table describes the Python options.

Python
option

Description

-python-
version
<version>

Specifies the Python source code version to scan. The valid values for <version> are 2 and 3. The default value is 3.
Equivalent property name:
com.fortify.sca.PythonVersion

-python-no-
auto-root-
calculation

Disables the automatic calculation of a common root directory of all project source files to use for importing modules and packages.
Equivalent property name:
com.fortify.sca.PythonNoAutoRootCalculation

-python-path
<dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) list of additional import directories. You can use the -
python-path option to specify all paths used to import packages or modules. Include all paths to namespace package directories
with this option. OpenText SAST sequentially searches the specified paths for each imported file and uses the first file encountered.
Equivalent property name:
com.fortify.sca.PythonPath

-django-
template-
dirs
 <dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) list of directories that contain Django templates.
OpenText SAST sequentially searches the specified paths for each Django template file and uses the first template file encountered.
Equivalent property name:
com.fortify.sca.DjangoTemplateDirs

-django-
disable-
autodiscover

Specifies that OpenText SAST does not automatically discover Django templates.
Equivalent property name:
com.fortify.sca.DjangoDisableAutodiscover

-jinja-
template-
dirs
 <dirs>

Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) list of directories that contain Jinja2 templates.
OpenText SAST sequentially searches the specified paths for each Jinja2 template file and uses the first template file encountered.
Equivalent property name:
com.fortify.sca.JinjaTemplateDirs

-disable-
template-
autodiscover

Specifies that OpenText SAST does not automatically discover Django or Jinja2 templates.
Equivalent property name:
com.fortify.sca.DisableTemplateAutodiscover

Python Properties

Static Application Security Testing 25.4

Page 131This PDF was generated on 10/10/2025

1.11.2.2. Python command-line examples
Translate Python 3 code on Windows:

sourceanalyzer -b Python3Proj -python-path "C:\Python312\Lib;C:\Python312\Lib\site-packages" src/*.py

Translate Python 2 code on Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path "C:\Python27\Lib;C:\Python27\Lib\site-packages" src/*.py

Translate Python 3 code on non-Windows:

sourceanalyzer -b Python3Proj -python-path /usr/lib/python3.12:/usr/local/lib/python3.12/site-packages src/*.py

Translate Python 2 code on non-Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path /usr/lib/python2.7:/usr/local/lib/python2.7/site-packages src/*.py

Static Application Security Testing 25.4

Page 132This PDF was generated on 10/10/2025

1.11.3. Translating Python in a virtual environment
This section describes how to translate Python projects in virtual environments. Make sure that all project dependencies are installed in your virtual
environment. To translate a Python project in a virtual environment, include the -python-path option to specify the project dependencies.

Python virtual environment example
To translate a Python project where the virtual environment name is myenv and the dependencies for the project are installed in the
myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer –b mybuild -python-path "myenv/lib/python<version>/site-packages/" myproject/

Conda environment example
To translate a Python project where the conda environment name is myenv and the project dependencies are installed in the
<conda_install_dir>/envs/myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer –b mybuild -python-path "<conda_install_dir>/envs/myenv/lib/python<version>/site-packages/" myproject/

Static Application Security Testing 25.4

Page 133This PDF was generated on 10/10/2025

1.11.4. Including imported modules and packages
To translate Python applications and prepare for a scan, OpenText SAST searches for any imported modules and packages used by the application.
OpenText SAST does not respect the PYTHONPATH environment variable, which the Python runtime system uses to find imported modules and packages.

OpenText SAST searches for imported modules and packages using the list of directories in the following order:

1. The common root directory for all project source files. which OpenText SAST calculates automatically. For example, if there are two project
directories PrimaryDir/project1/* and PrimaryDir/project2/*, the common root directory is PrimaryDir.

To remove the common root directory as a search target for imported modules and packages, include the -python-no-auto-root-calculation
option in the translation command.

2. The directories specified with the -python-path option.

OpenText SAST includes a subset of modules from the standard Python library (module "builtins", all modules originally written in C, and others)
in the translation. OpenText SAST first searches for a standard Python library module in the set included with OpenText SAST and then in the
paths specified with the -python-path option. If your Python code imports any module that OpenText SAST cannot find, it produces a warning. To
make sure that all modules of the standard Python library are found, add the path to your standard Python library in the -python-path list.

3. The current directory that contains the file being translated. For example, when OpenText SAST translates a PrimaryDir/project1/a.py, the
directory PrimaryDir/project1 is added as the last directory to search for imported modules and packages.

Static Application Security Testing 25.4

Page 134This PDF was generated on 10/10/2025

1.11.5. Including namespace packages
To translate namespace packages, include all the paths to the namespace package directories with the -python-path option. For example, if you have
two subpackages for a namespace package package_name in multiple folders:

/path_1/package_name/subpackageA
/path_2/package_name/subpackageB

Include /path_1;/path_2 with the -python-path option in the sourceanalyzer command line.

Static Application Security Testing 25.4

Page 135This PDF was generated on 10/10/2025

1.11.6. Translating Django and Flask
By default, OpenText SAST attempts to discover Django and Jinja2 templates in the project root directory. All detected Django and Jinja2 templates are
automatically added to the translation. You can specify additional locations of Django or Jinja2 template files by adding the -django-template-dirs or
the -jinja-template-dirs option to the sourceanalyzer command.

If you do not want OpenText SAST to automatically discover Django and Jinja2 templates, use the -disable-template-autodiscover option. If your
project requires Django or Jinja2 templates, but the project is configured such that the templates are in an unexpected location, use the -django-
template-dirs or -jinja-template-dirs option to specify the directories that contain the templates in addition to the -disable-template-
autodiscover option as shown in the following non-Windows examples:

sourceanalyzer -b djangoProj -python-path /usr/lib/python3.12:/usr/local/lib/python3.12/site-packages djangoProj -django-template-dirs djangoProj/t
emplatedir1:/djangoProj/dir2 -disable-template-autodiscover

sourceanalyzer -b flaskProj -python-path /usr/lib/python3.12:/usr/local/lib/python3.12/site-packages flaskProj -jinja-template-dirs flaskProj/templated
ir1:/flaskProj/dir2 -disable-template-autodiscover

The following example translates a Python project that has a combination of Django and Jinja2 templates on Windows:

sourceanalyzer -b pythonProj -python-path "C:\Python312\Lib;C:\Python312\Lib\site-packages" flaskProj -django-template-dirs "C:\djangoProj\templ
atedir1;C:\djangoProj\dir2" -jinja-template-dirs "C:\flaskProj\templatedir1;C:\flaskProj\dir2" -disable-template-autodiscover

Static Application Security Testing 25.4

Page 136This PDF was generated on 10/10/2025

1.12. Analyzing C and C++ code
This section describes how to translate C and C++ code. OpenText SAST supports standard ANSI C and C++ and might not support all non-standard
C++ constructs.

Important

This section describes how to translate C and C++ code that is not a part of a Visual Studio or MSBuild project. For
instructions on how to translate Visual Studio or MSBuild projects, see Translating Visual Studio and MSBuild
Projects.

This section contains the following topics:

C and C++ Code translation prerequisites
Integrating with Make
Integrating with CMake
Integrating with Gradle
Manual C and C++ translation syntax
Scanning pre-processed C and C++ code
C/C++ Precompiled Header Files

Static Application Security Testing 25.4

Page 137This PDF was generated on 10/10/2025

1.12.1. C and C++ Code translation prerequisites
Make sure that you have any dependencies required to build the project available, including headers for third-party libraries. OpenText SAST translation
does not require object files and static/dynamic library files.

Static Application Security Testing 25.4

Page 138This PDF was generated on 10/10/2025

1.12.2. Integrating with Make
To integrate OpenText SAST with make, run sourceanalyzer with Make for the build process. For example, if you build your project with the following
build commands:

make clean
make
make install

You can simultaneously translate and compile the entire project with the following example commands:

make clean
sourceanalyzer -b MyProject make
make install

As an alternative to build integration, you can modify your build script to prefix each compiler, linker, and archiver operation with the sourceanalyzer
command. For example, a makefile often defines variables for the names of these tools:

CC=gcc
CXX=g++
LD=ld
AR=ar

You can prepend the tool references in the makefile with the sourceanalyzer command and the appropriate options.

CC=sourceanalyzer -b MyProject gcc
CXX=sourceanalyzer -b MyProject g++
LD=sourceanalyzer -b MyProject ld
AR=sourceanalyzer -b MyProject ar

When you use the same build ID for each operation, OpenText SAST automatically combines each of the separately-translated files into a single
translated project.

Static Application Security Testing 25.4

Page 139This PDF was generated on 10/10/2025

1.12.3. Integrating with CMake
On non-Windows systems, you can translate projects that are built with CMake by incorporating a JSON compilation database in the OpenText
SAST command. This is only supported for Makefile and Ninja generators (see the CMake Reference Documentation for more information).

To integrate OpenText SAST with a CMake build:

1. Generate a compile_commands.json file for your CMake project.

Add -DCMAKE_EXPORT_COMPILE_COMMANDS=yes to the cmake configure command. For example:

 cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=yes

2. Include the JSON compilation database in your sourceanalyzer command as follows:

sourceanalyzer -b <build_id> compile_commands.json

Static Application Security Testing 25.4

Page 140This PDF was generated on 10/10/2025

1.12.4. Integrating with Gradle
Gradle integration has a prerequisite on the C++ Application Plugin. Please make sure it is added to your Gradle file in one of the following formats:

apply plugin: 'cpp'

plugins {
 id 'cpp-application'
}

Gradle integration is as simple as prepending the Gradle or gradlew command line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> <sca_options> gradle [<gradle_options>] <gradle_tasks>

For more detailed guides, see the Java and Kotlin integration: Using Gradle integration

Static Application Security Testing 25.4

Page 141This PDF was generated on 10/10/2025

1.12.5. Manual C and C++ translation syntax
Command-line options passed to the compiler affect preprocessor execution and can enable or disable language features and extensions. For OpenText
SAST to interpret your source code in the same way as the compiler, the translation phase for C/C++ source code requires the complete compiler
command line. Prefix your original compiler command with the sourceanalyzer command and options.

The basic command-line syntax for translating a single file is:

sourceanalyzer -b <build_id> [<sca_options>] <compiler> [<compiler_options>] <file>.c

where:

<sca_options> are options passed to OpenText SAST.
<compiler> is the name of the C/C++ compiler you use, such as gcc, g++, or cl. See Supported languages for a list of supported C/C++
compilers.
<compiler_options> are options passed to the C/C++ compiler.
<file>.c must be in ASCII or UTF-8 encoding.

Note

All OpenText SAST options must precede the compiler options.

The compiler command must successfully complete when executed on its own. If the compiler command fails, then the OpenText SAST command
prefixed to the compiler command also fails.

For example, if you compile a file with the following command:

gcc -I. -o hello.o -c helloworld.c

then you can translate this file with the following command:

sourceanalyzer -b MyProject gcc -I. -o hello.o -c helloworld.c

OpenText SAST executes the original compiler command as part of the translation phase. In the previous example, the command produces both the
translated source suitable for scanning, and the object file hello.o from the gcc execution. You can use the OpenText SAST-nc option to disable the
compiler execution.

Static Application Security Testing 25.4

Page 142This PDF was generated on 10/10/2025

1.12.6. Scanning pre-processed C and C++ code
If, before compilation, your C/C++ build executes a third-party C preprocessor that OpenText SAST does not support, you must start the OpenText
SAST translation on the intermediate file. OpenText SAST touchless build integration automatically translates the intermediate file provided that your
build executes the unsupported preprocessor and supported compiler as two commands connected by a temporary file rather than a pipe chain.

Static Application Security Testing 25.4

Page 143This PDF was generated on 10/10/2025

1.12.7. C/C++ Precompiled Header Files
Some C/C++ compilers support Precompiled Header Files, which can improve compilation performance. Some compilers' implementations of this
feature have subtle side-effects. When the feature is enabled, the compiler might accept erroneous source code without warnings or errors. This can
result in a discrepancy where OpenText SAST reports translation errors even when your compiler does not.

If you use your compiler's Precompiled Header feature, disable Precompiled Headers, and then perform a full build to make sure that your source code
compiles cleanly.

Static Application Security Testing 25.4

Page 144This PDF was generated on 10/10/2025

1.13. Analyzing iOS and Xcode projects
This section describes how to translate Swift, Objective-C, and Objective-C++ source code for iOS applications. OpenText SAST automatically integrates
with the Xcode Command Line Tool, Xcodebuild, to identify the project source files.

This section contains the following topics:

iOS project translation prerequisites
iOS code analysis command-line syntax

Static Application Security Testing 25.4

Page 145This PDF was generated on 10/10/2025

1.13.1. iOS project translation prerequisites
The following are the prerequisites for translating iOS projects:

Objective-C++ projects must use the non-fragile Objective-C runtime (ABI version 2 or 3).
Use Apple’s xcode-select command-line tool to set your Xcode path. OpenText SAST uses the system global Xcode configuration to find the
Xcode toolchain and headers.
Make sure that all source files required for a successful Xcode build are provided.

You can exclude files from the analysis using the -exclude option (see iOS Code Analysis Command-Line Syntax).

Make sure that you have any dependencies required to build the project available.
To translate Swift code, make sure that you have available all third-party modules, including CocoaPods. Bridging headers must also be available.
However, Xcode usually generates them automatically during the build.
If your project includes property list files in binary format, you must first convert them to XML format. You can do this with the Xcode putil
command.

To translate Objective-C projects, ensure that the headers for third-party libraries are available.
To translate Watchkit® applications, make sure that you translate both the iPhone application target and the WatchKit extension target.

Static Application Security Testing 25.4

Page 146This PDF was generated on 10/10/2025

1.13.2. iOS code analysis command-line syntax
The command-line syntax to translate iOS code using Xcodebuild is:

sourceanalyzer -b <build_id> xcodebuild [<compiler_options>]

where <compiler_options> are the supported options that are passed to the Xcode compiler. You must include the build option with any
<compiler_options>. The OpenText SAST Xcodebuild integration does not support the output format of alternate build commands such as xcodebuild
archive.

Note

Xcodebuild compiles the source code when you run this command.

To exclude files from the analysis, use the -exclude option (see Translation Options). All source files that match the exclude specification are not
translated, even if they are included in the Xcode build. The following is an example:

sourceanalyzer -b MyProject -exclude "**/TestFile.swift" xcodebuild clean build

If your application uses any property list files (for example, <file>.plist), translate these files with a separate sourceanalyzer command. Use the
same build ID that you used to translate the project files. The following is an example:

sourceanalyzer -b MyProject <path_to_plist_files>

If your project uses CocoaPods, include -workspace to build the project. For example:

sourceanalyzer -b DemoAppSwift xcodebuild clean build -workspace DemoAppSwift.xcworkspace -scheme DemoAppSwift -sdk iphonesimulator

After the translation is complete, you can perform the analysis phase and save the results in an FPR file, as shown in the following example:

sourceanalyzer -b DemoAppSwift -scan -f MyResults.fpr

Static Application Security Testing 25.4

Page 147This PDF was generated on 10/10/2025

1.14. Analyzing PHP code
The syntax to translate a single PHP file named MyPHP.php is shown in the following example:

sourceanalyzer -b <build_id> MyPHP.php

To translate a file where the source or the php.ini file entry includes a relative path name (starts with ./ or ../), consider setting the PHP source root
as shown in the following example:

sourceanalyzer -php-source-root <path> -b <build_id> MyPHP.php

For more information about the -php-source-root option, see the description in PHP Command-Line Options.

When you translate PHP code, make sure that you specify all source files together in one invocation. OpenText SAST does not support adding new files
to the file list associated with the build ID on subsequent invocations.

This section contains the following topics:

PHP command-line options

Static Application Security Testing 25.4

Page 148This PDF was generated on 10/10/2025

1.14.1. PHP command-line options
The following table describes the PHP-specific command-line options.

PHP option Description

-php-source-
root <path>

Specifies an absolute path to the project root directory. The relative path name first expands from the current directory. If the file
is not found, then the path expands from the specified PHP source root directory.
Equivalent property name:
com.fortify.sca.PHPSourceRoot

-php-version
<version>

Specifies the PHP version. The default version is 8.2. For a list of valid versions, see Supported languages.
Equivalent property name:
com.fortify.sca.PHPVersion

PHP Properties

Static Application Security Testing 25.4

Page 149This PDF was generated on 10/10/2025

1.15. Analyzing Go code
This section describes how to translate Go code. OpenText SAST supports analysis of Go code on Windows, Linux, and macOS®.

This section contains the following topics:

Go command-line syntax
Go command-line options
Including custom Go build tags
Resolving dependencies

Static Application Security Testing 25.4

Page 150This PDF was generated on 10/10/2025

1.15.1. Go command-line syntax
For the best results, your project must be compilable and you must have all required dependencies available.

The following entities are excluded from the translation (and the scan):

Vendor folder

All projects defined by any go.mod files in subfolders, except the project defined by the go.mod file under the %PROJECT_ROOT%

All files with the _test.go suffix (unit tests)

The basic command-line syntax to translate Go code is:

sourceanalyzer -b <build_id> [-gopath <dir>] [-goroot <dir>] <files>

For best results, OpenText recommends that you use Go modules for all Go projects and translate the Go code one module at a time. Ensure that the
values for the <files> parameter for the sourceanalyzer command are in the directory that contains the go.mod file. This is the same directory where
you run the go build command to build the project. If the project consists of more than one module, you can run the sourceanalyzer command
multiple times with the same <build_id> value to tie the translation results for all modules together.

Use of the GOPATH development mode for builds is still supported but be aware that this can cause problems if you are trying to compare two scans in
tools such as Fortify Audit Workbench or Application Security. Without a go.mod file to define a fixed identifier path for the module, the Go language
system identifies each module by its absolute path on the local file system. Therefore, two scans of the same module from different subdirectories or on
different machines produce different module identifiers, which prevents matching issues from correlating properly across the two scans. The GOPATH
development mode is deprecated for the Go compiler and SDK and will be removed in a future Go 1.xx release.

Static Application Security Testing 25.4

Page 151This PDF was generated on 10/10/2025

1.15.2. Go command-line options
The following table describes the command-line options that are specifically for translating Go code.

Go option Description

-
gotags <go_build_tags>

Specifies a comma-separated list of custom build tags for a Go project. This is equivalent to the -tags option for the go
command. For more information, see Including Custom Go Build Tags.
Equivalent property name:
com.fortify.sca.gotags

-gopath <dir> Specifies the value of the GOPATH environment variable to use for translating a Go project. If this option is not specified,
then OpenText SAST uses the existing value of the GOPATH system environment variable.
You must specify the gopath directory as an absolute path. The following examples show valid values for <dir>:

/home/projects/go_workspace/my_proj
C:\projects\go_workspace\my_proj

The following example is an invalid value for <dir>:

go_workspace/my_proj

If this option and the GOPATH system environment variable is not set, then the gopath defaults to a subdirectory named
go in the user's home directory ($HOME/go on Linux and %USERPROFILE%\go on Windows), unless that directory contains
a Go distribution.
When using modules, the GOPATH environment variable is not required to resolve package imports. However, GOPATH
still determines the output directory to use when downloading missing module dependencies.

Note

OpenText SAST does not fully support older Go projects that rely solely on the
GOPATH environment variable to resolve package imports.

Equivalent property name:
com.fortify.sca.GOPATH

-goroot <dir> Specifies the location of the Go installation. If this option is not specified, the GOROOT system environment variable is
used.
If this option is not specified and the GOROOT system environment variable is not set, then OpenText SAST uses the Go
compiler included in the OpenText SAST installation.
Equivalent property name:
com.fortify.sca.GOROOT

-goproxy <url> Specifies one or more comma-separated proxy URLs. You can also specify direct or off (to disable network usage).
If this option is not specified and the GOPROXY system environment variable is not set, then OpenText SAST uses
https://proxy.golang.org,direct.
Equivalent property name:
com.fortify.sca.GOPROXY

Go properties

Static Application Security Testing 25.4

Page 152This PDF was generated on 10/10/2025

1.15.3. Including custom Go build tags
If your Go project includes files that require custom build tags, then you can include these build tags in the OpenText SAST translation using the -
gotags option. For example:

sourceanalyzer -b MyProject -gotags release "src/**/*.go"

The OpenText SAST -gotags option does not allow you to override automatic build tags for the operating system, architecture, or Go version (for
example, //go:build linux, //go:build arm, //go:build go1.21). To translate your Go project for a different operating system or architecture, set
the appropriate cross-compile targets in the GOOS and GOARCH environment variables. To set a specific Go version, specify the path for the Go SDK
version in the GOROOT environment variable or the -goroot option.

Static Application Security Testing 25.4

Page 153This PDF was generated on 10/10/2025

1.15.4. Resolving dependencies
OpenText SAST supports two dependency management systems built into Go:

Modules

To translate a Go project that uses modules, the project must include a go.mod file that specifies the required dependencies, and a corresponding
go.sum file for verifying downloaded dependencies. Specify the directory that contains the go.mod file as the project root in the sourceanalyzer
command.

OpenText SAST downloads all required dependencies using the native Go toolchain. If access to the internet is restricted on the machine where
you run OpenText SAST, then do one of the following:

If you are using an artifact management system such as Artifactory, set the GOPROXY environment variable or use the -goproxy option
described in Go Command-Line Options.

Download all required dependencies using modules and vendoring.

If you use manual vendoring, set the GOFLAGS environment variable to -mod=vendor before you start the translation.

GOPATH dependency resolution

If you are using a third-party dependency management system such as dep, you must download all dependencies before you start the translation.

The GOPATH development mode identifies dependencies using the absolute path on the local file system, which can cause problems when
correlating scans from different subdirectories or on different machines.

See Also

Go command-line syntax

Static Application Security Testing 25.4

Page 154This PDF was generated on 10/10/2025

1.16. Analyzing Dart and Flutter code
This section describes how to translate Dart and Flutter code. OpenText SAST supports analysis of Dart and Flutter code on Windows and Linux.

This section contains the following topics:

Dart and Flutter translation prerequisites
Dart and Flutter command-line syntax
Dart and Flutter command-line examples

Static Application Security Testing 25.4

Page 155This PDF was generated on 10/10/2025

1.16.1. Dart and Flutter translation prerequisites
The following are the prerequisites for translating Dart and Flutter projects:

Make sure that you have a supported Dart SDK (for Dart-only projects) and the Flutter SDK (for Flutter projects) installed on your system. See
Supported languages for the supported Dart and Flutter SDK versions.

Download the project dependencies by running one of the following commands:

For Flutter projects, use flutter pub get.

For Dart-only projects, use dart pub get .

For example, to download the dependencies for a Flutter project that has the project root myproject, run the following commands:

cd myproject
flutter pub get

Important

If the project includes nested packages with different pubspec.yaml files, you must run dart pub get or
flutter pub get for each package root.

Important

Make sure that the following are included in the project directory:

The pubspec.yaml file, which specifies the dependencies

The .dart_tool directory, which includes the package_config.json file automatically generated by the pub
tool

Static Application Security Testing 25.4

Page 156This PDF was generated on 10/10/2025

1.16.2. Dart and Flutter command-line syntax
The basic command-line syntax to translate Dart and Flutter code is:

sourceanalyzer –b <build_id> <translation_options> <dirs>
sourceanalyzer –b <build_id> <translation_options> <files>

Static Application Security Testing 25.4

Page 157This PDF was generated on 10/10/2025

1.16.3. Dart and Flutter command-line examples
To translate a Dart or Flutter project with the my_app project root directory:

sourceanalyzer -b MyProject my_app/

To translate the a_widget.dart file in the my_app project root directory:

sourceanalyzer -b MyProject my_app/a_widget.dart

To translate all dart source files in the my_dart_proj directory:

sourceanalyzer -b MyProject "my_dart_proj/**/*.dart"

Static Application Security Testing 25.4

Page 158This PDF was generated on 10/10/2025

1.17. Analyzing Salesforce Apex and Visualforce code
This section contains the following topics:

Apex and Visualforce translation prerequisites
Apex and Visualforce command-line syntax

Static Application Security Testing 25.4

Page 159This PDF was generated on 10/10/2025

1.17.1. Apex and Visualforce translation prerequisites
To translate Apex and Visualforce projects, make sure that all the source code to scan is available on the same machine where you have installed
OpenText SAST.

To scan your custom Salesforce® app, download it to your local computer from your Salesforce organization (org) where you develop and deploy it. The
downloaded version of your app consists of:

Apex classes in files with the .cls extension
Visualforce web pages in files with the .page extension
Apex code files called database “trigger” functions in files with the .trigger extension
Visualforce component files in files with the .component extension
Objects in files with the .object extension

Use the Ant Migration Tool available on the Salesforce website to download your app from your org in the Salesforce cloud to your local computer. Make
sure that the project manifest files are set up correctly for the specified target in your build.xml file. For example, the following package.xml manifest
file provides OpenText SAST with all classes, custom objects, pages, and components.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns=http://soap.sforce.com/2006/04/metadata>
 <types>
 <members>*</members>
 <name>ApexClass</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexTrigger</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexPage</name>
 </types>
 <types>
 <members>*</members>
 <name>ApexComponent</name>
 </types>
 <types>
 <members>*</members>
 <name>CustomObject</name>
 </types>
 <version>55.0</version>
</Package>

Configure the retrieve targets using the Ant Migration Tool documentation. If your organization uses any apps from the app exchange, make sure that
these are downloaded as packaged targets.

Static Application Security Testing 25.4

Page 160This PDF was generated on 10/10/2025

1.17.2. Apex and Visualforce command-line syntax
The basic command-line syntax to translate Apex and Visualforce code is:

sourceanalyzer -b <build_id> <files>

where <files> is an Apex or Visualforce file or a path to the source files.

Important

Supported file extensions for the source files are: .cls, .component, .trigger, .object, and .page.

Static Application Security Testing 25.4

Page 161This PDF was generated on 10/10/2025

1.18. Analyzing ABAP code
ABAP code translation requires additional preparation steps to extract the code from the SAP® database and prepare it for scanning. See Importing the
Transport Request for more information. This section assumes you have a basic understanding of SAP and ABAP.

This section contains the following topics:

About downloading source files
Importing the transport request
Adding OpenText SAST to your Favorites list
Running the Fortify ABAP Extractor
Uninstalling the Fortify ABAP Extractor

Static Application Security Testing 25.4

Page 162This PDF was generated on 10/10/2025

1.18.1. About downloading source files
To translate ABAP code, the Fortify ABAP Extractor program downloads source files to the presentation server, and optionally, starts OpenText SAST.
 You need to use an account with permission to download files to the local system and execute operating system commands.

Because the extractor program is executed online, you might receive a max dialog work process time reached message if the volume of source
files selected for extraction exceeds the allowable process run time. To work around this, download large projects as a series of smaller Extractor
tasks. For example, if your project consists of four different packages, download each package separately into the same project directory. If the
exception occurs frequently, work with your SAP Basis administrator to increase the maximum time limit (rdisp/max_wprun_time).

When a PACKAGE is extracted from ABAP, the Fortify ABAP Extractor extracts everything from TDEVC with a parentcl field that matches the package
name. It then recursively extracts everything else from TDEVC with a parentcl field equal to those already extracted from TDEVC. The field extracted
from TDEVC is devclass.

The devclass values are treated as a set of program names and handled the same way as a program name, which you can provide.

Programs are extracted from TRDIR by comparing the name field with either:

The program name specified in the selection screen
The list of values extracted from TDEVC if a package was provided

The rows from TRDIR are those for which the name field has the given program name and the expression LIKEprogramname is used to extract rows.

This final list of names is used with READ REPORT to get code out of the SAP system. This method reads classes and methods out as well as merely
REPORTS, for the record.

Each READ REPORT call produces a file in the temporary folder on the local system. OpenText SAST translates and scans this set of files to produce an
FPR file that you can open with Fortify Audit Workbench.

ABAP Properties

Static Application Security Testing 25.4

Page 163This PDF was generated on 10/10/2025

1.18.1.1. INCLUDE processing
As source code is downloaded, the Fortify ABAP Extractor detects INCLUDE statements in the source. When found, it downloads the include targets to
the local machine for analysis.

Static Application Security Testing 25.4

Page 164This PDF was generated on 10/10/2025

1.18.2. Importing the transport request
To scan ABAP code, you need to import the Fortify ABAP Extractor transport request on your SAP Server. You can find the transport request in
<sast_install_dir>/Tools/SAP_Extractor.zip.

The Fortify ABAP Extractor package, SAP_Extractor.zip, contains the following files:

K900<release_number>.<system_id>
R900<release_number>.<system_id>

These files make up the SAP transport request that you must import into your SAP system from outside your local Transport Domain. Have your SAP
administrator or an individual authorized to install transport requests on the system import the transport request. These files contain a program, a
transaction (YSCA), and the program user interface. After you import them into your system, you can extract your code from the SAP database and
prepare it for OpenText SAST scanning.

Installation note

If you get the transport request import error: Install release does not match the current version, then the transport request installation has
failed. See Software requirements for supported ABAP versions.

To try to resolve this issue, perform the following steps:

1. Re-run the transport request import.

The Import Transport Request dialog box opens.

2. Select the Options tab.
3. Select the Ignore Invalid Component Version check box.
4. Complete the import procedure.

If this does not resolve the issue or if your system runs on an SAP version with a different table structure, OpenText recommends that you export your
ABAP file structure using your own technology so that OpenText SAST can scan the ABAP code.

Static Application Security Testing 25.4

Page 165This PDF was generated on 10/10/2025

1.18.3. Adding OpenText SAST to your Favorites list
Adding OpenText SAST to your Favorites list is optional, but doing so can make it quicker to access and start OpenText SAST scans. The following steps
assume that you use the user menu in your day-to-day work. If your work is done from a different menu, add the Favorites link to the menu that you
use. Before you create the OpenText SAST entry, make sure that the SAP server is running and you are in the SAP Easy Access area of your web-based
client.

To add OpenText SAST to your Favorites list:

1. From the SAP Easy Access menu, type S000 in the transaction box.

The SAP Menu opens.

2. Right-click the Favorites folder and select Insert transaction.

The Manual entry of a transaction dialog box opens.

3. Type YSCA in the Transaction Code box.
4. Click the green check mark icon.

The Extract ABAP code and launch SCA item appears in the Favorites list.

5. Click the Extract ABAP code and launch SCA link to start the Fortify ABAP Extractor.

Static Application Security Testing 25.4

Page 166This PDF was generated on 10/10/2025

1.18.4. Running the Fortify ABAP Extractor
To run the Fortify ABAP Extractor:

1. Start the Fortify ABAP Extractor from the Favorites link, the transaction code, or manually start the Extractor object.

This opens the Fortify ABAP Extractor.

2. Select the code to download.

Provide the start and end name for the range of software components, packages, programs, or BSP applications that you want to scan.

Note

You can specify multiple objects or ranges.

Static Application Security Testing 25.4

Page 167This PDF was generated on 10/10/2025

3. Provide the OpenText SAST-specific parameters described in the following table.

Field Description

FPR File
Path

(Optional) Type or select the directory where you want to store the scan results file (FPR). Include the name for the FPR file in the
path name. You must provide the FPR file path to automatically scan the downloaded code on the same machine where you are
running the extraction process.

Working
Directory

Type or select the directory where you want to store the extracted source code.

Build-ID (Optional) Type the build ID for the scan. OpenText SAST uses the build ID to identify the translated source code, which is
necessary to scan the code. You must specify the build ID to automatically translate the downloaded code on the same machine
where you are running the extraction process.

Translation
Parameters

(Optional) Type any additional OpenText SAST command-line translation options. You must specify translation options to
automatically translate the downloaded code on the same machine where you are running the extraction process or to customize
the translation options.

Scan
Parameters

(Optional) Type any OpenText SAST command-line scan options. You must specify scan options to scan the downloaded code
automatically on the same machine where you are running the extraction process or to customize the scan options.

ZIP File
Name

(Optional) Type a ZIP file name if you want your output in a compressed package.

Maximum
Call-chain
Depth

A global SAP-function F is not downloaded unless F was explicitly selected or unless F can be reached through a chain of function
calls that start in explicitly-selected code and whose length is this number or less. OpenText recommends that you do not specify
a value greater than 2 unless directed to do so by Customer Support.

4. Provide action information described in the following table.

Field Description

Download Select the Download check box to have OpenText SAST download the source code extracted from your SAP database.

Build Select the Build check box to have OpenText SAST translate all downloaded ABAP code and store it using the specified build ID.
This action requires that you have an installed version of OpenText SAST on the machine where you are running the Fortify
ABAP Extractor. It is often easier to move the downloaded source code to a system where OpenText SAST is installed.

Scan Select the Scan check box to have OpenText SAST run a scan of the specified build ID. This action requires that the translate
(build) action was previously performed. This action requires that you have an installed version of OpenText SAST on the
machine where you are running the Fortify ABAP Extractor. It is often easier to move the downloaded source code to a
predefined OpenText SAST machine.

Launch AWB Select the Launch AWB check box to start Fortify Audit Workbench and open the specified FPR file.

Create ZIP
File

Select the Create ZIP File check box to compress the output. You can also manually compress the output after the source
code is extracted from your SAP database.

Export
SAP standard
code

Select the Export SAP standard code check box to export SAP standard code as well as custom code.

5. Click Execute.

Static Application Security Testing 25.4

Page 168This PDF was generated on 10/10/2025

1.18.5. Uninstalling the Fortify ABAP Extractor
To uninstall the ABAP extractor:

1. In ABAP Workbench, open the Object Navigator.
2. Select package Y_FORTIFY_ABAP.
3. Expand the Programs tab.
4. Right-click the following element, and then select Delete.

Program: Y_FORTIFY_SCA

Static Application Security Testing 25.4

Page 169This PDF was generated on 10/10/2025

1.19. Analyzing COBOL code
The COBOL translation runs on Windows systems only and supports modern COBOL dialects. Alternatively, you can use the legacy COBOL translation
(see Using the Legacy COBOL Translation).

For a list of supported technologies for translating COBOL code, see Supported languages. OpenText SAST does not currently support custom rules for
COBOL applications.

Note

To scan COBOL with OpenText SAST, you must have an OpenText SAST license file that specifically includes COBOL
scanning capabilities. Contact Customer Support for more information about how to obtain the required license file.

This section contains the following topics:

Preparing COBOL source and copybook files for translation
COBOL command-line syntax
Using Legacy COBOL translation

Static Application Security Testing 25.4

Page 170This PDF was generated on 10/10/2025

1.19.1. Preparing COBOL source and copybook files for
translation
Before you can analyze a COBOL program, you must copy the following program components to the Windows system where you run OpenText SAST:

COBOL source code

OpenText strongly recommends that your COBOL source code files have extensions .CBL, .cbl, .COB, or .cob. If your source code files do not
have extensions or have non-standard extensions, you must follow the instructions in Translating COBOL Source Files Without File Extensions and
Translating COBOL Source Files with Arbitrary File Extensions.

All copybook files that the COBOL source code uses

This includes All SQL INCLUDE files that the COBOL source code references (a SQL INCLUDE file is technically a copybook file)

Important

The copybook files must have the extension .CPY or .cpy.

If your COBOL source code contains:

COPY FOO

or

EXEC SQL INCLUDE FOO END-EXEC

then FOO is the name of a COBOL copybook and the corresponding copybook file has the name FOO.CPY or FOO.cpy.

OpenText recommends that you place your COBOL source code files in a directory called sources and your copybook files in a directory called
copybooks. Create these directories at the same level.

Static Application Security Testing 25.4

Page 171This PDF was generated on 10/10/2025

1.19.2. COBOL command-line syntax
The basic syntax used to translate a single COBOL source code file is:

sourceanalyzer -b <build_id><path>

The basic syntax used to scan a translated COBOL program and save the analysis results in an FPR file is:

sourceanalyzer -b <build_id> -scan -f <results>.fpr

See Also

Specifying Files and Directories

Static Application Security Testing 25.4

Page 172This PDF was generated on 10/10/2025

1.19.2.1. Translating COBOL source files without file
extensions
If you have COBOL source files (not copybook files) retrieved from a mainframe without .COB or .CBL file extensions (which is typical for COBOL file
names), then you must include the following in the translation command line:

-noextension-type COBOL

The following example command translates COBOL source code without file extensions:

sourceanalyzer ‐b MyProject ‐noextension‐type COBOL ‐copydirs copybooks sources

Static Application Security Testing 25.4

Page 173This PDF was generated on 10/10/2025

1.19.2.2. Translating COBOL source files with arbitrary file
extensions
If you have COBOL source files with an arbitrary extension .xyz, then you must include the following in the translation command line:

-Dcom.fortify.sca.fileextensions.xyz=COBOL

You must also include the expression *.xyz in the file or directory specifier, if any (see Specifying Files and Directories).

Static Application Security Testing 25.4

Page 174This PDF was generated on 10/10/2025

1.19.2.3. COBOL command-line options
The following table describes the COBOL command-line options. To use legacy COBOL translation, see Legacy COBOL Translation Command-Line
Options.

COBOL option Description

-copydirs <dirs> Specifies one or more semicolon-separated directories where OpenText SAST looks for copybook files.

Note

This option does not accept
wildcards.

Equivalent property name:
com.fortify.sca.CobolCopyDirs

-dialect <dialect> Specifies the COBOL dialect. The valid values for <dialect> are COBOL390 and MICROFOCUS. The dialect value is case
insensitive. The default value is COBOL390.
Equivalent property name:
com.fortify.sca.CobolDialect

-checker-directives
<directives>

Specifies one or more semicolon-separated COBOL checker directives.

Note

This option is intended for advanced users of OpenText™ Server Express.

Equivalent property name:
com.fortify.sca.CobolCheckerDirectives

Static Application Security Testing 25.4

Page 175This PDF was generated on 10/10/2025

1.19.3. Using Legacy COBOL translation
Use the legacy COBOL translation if either of the following is true:

You run OpenText SAST on a non-Windows operating system.

For supported non-Windows platforms and architectures, see Platforms and architectures.

Your COBOL dialect is different than what is supported by the default COBOL translation (see the -dialect option in COBOL Command-Line
Options).

Prepare the COBOL source code and copybook files as described in Preparing COBOL Source and Copybook Files for Translation and use the command-
line syntax described in COBOL Command-Line Syntax. Note that the legacy COBOL translation accepts copybook files with or without file extensions. If
the copybook files have file extensions, use the -copy-extensions command-line option (see Legacy COBOL Translation Command-Line Options).

Static Application Security Testing 25.4

Page 176This PDF was generated on 10/10/2025

1.19.3.1. Legacy COBOL translation command-line options
The following table describes the command-line options for the legacy COBOL translation.

Legacy COBOL option Description

-cobol-legacy Specifies translation of COBOL code using legacy COBOL translation. This option is required to enable legacy COBOL
translation.
Equivalent Property Name:
com.fortify.sca.CobolLegacy

-copydirs <dirs> Specifies one or more semicolon- or colon-separated directories where OpenText SAST looks for copybook files.
Equivalent Property Name:
com.fortify.sca.CobolCopyDirs

-copy-extensions
<ext>

Specifies one or more semicolon- or colon-separated copybook file extensions.
Equivalent Property Name:
com.fortify.sca.CobolCopyExtensions

-fixed-format Specifies fixed-format COBOL to direct OpenText SAST to only look for source code between columns 8–72 in all lines of
code. The default is free-format.
IBM® Enterprise COBOL code is typically fixed-format. The following are indications that you might need the -fixed-
format option:

The COBOL translation appears to hang indefinitely
OpenText SAST reports numerous parsing errors in the COBOL translation

Equivalent Property Name:
com.fortify.sca.CobolFixedFormat

Static Application Security Testing 25.4

Page 177This PDF was generated on 10/10/2025

1.20. Analyzing Ruby code
This section contains the following topics:

Ruby command-line syntax
Adding libraries
Adding gem paths

Static Application Security Testing 25.4

Page 178This PDF was generated on 10/10/2025

1.20.1. Ruby command-line syntax
The basic command-line syntax to translate Ruby code is:

sourceanalyzer –b <build_id> <file>

where <file> is the name of the Ruby file you want to scan. To include multiple Ruby files, separate them with a space, as shown in the following
example:

sourceanalyzer –b <build_id> file1.rb file2.rb file3.rb

In addition to listing individual Ruby files, you can use the asterisk (*) wildcard to select all Ruby files in a specified directory. For example, to find all
the Ruby files in a directory called src, use the following sourceanalyzer command:

sourceanalyzer –b <build_id> src/*.rb

Note

When you translate Ruby code, make sure that you specify all source files together in one invocation. OpenText
SAST does not support adding new files to the file list associated with the build ID on subsequent invocations.

Static Application Security Testing 25.4

Page 179This PDF was generated on 10/10/2025

1.20.1.1. Ruby command-line options
The following table describes the Ruby translation options.

Ruby option Description

-ruby-path <dirs> Specifies one or more paths to directories that contain Ruby libraries (see Adding Libraries)
Equivalent property name:
com.fortify.sca.RubyLibraryPaths

-rubygem-path <dirs> Specifies the path(s) to a RubyGems location (see Adding Gem Paths)
Equivalent property name:
com.fortify.sca.RubyGemPaths

Ruby Properties

Static Application Security Testing 25.4

Page 180This PDF was generated on 10/10/2025

1.20.2. Adding libraries
If your Ruby source code requires a specific library, add the Ruby library to the sourceanalyzer command. Include all ruby libraries that are installed
with ruby gems. For example, if you have a utils.rb file that resides in the /usr/share/ruby/myPersonalLibrary directory, then add the following to
the sourceanalyzer command:

-ruby-path /usr/share/ruby/myPersonalLibrary

Separate multiple libraries with semicolons (Windows) or colons (non-Windows). The following is an example of the option on non-Windows system:

-ruby-path /path/one:/path/two:/path/three

Static Application Security Testing 25.4

Page 181This PDF was generated on 10/10/2025

1.20.3. Adding gem paths
To add all RubyGems and their dependency paths, import all RubyGems. To obtain the Ruby gem paths, run the gem env command. Under GEM
PATHS, look for a directory similar to:

/home/myUser/gems/ruby-version

This directory contains another directory called gems, which contains directories for all the gem files installed on the system. For this example, use the
following in your command line:

-rubygem-path /home/myUser/gems/ruby-version/gems

If you have multiple gems directories, separate them with semicolons (Windows) or colons (non-Windows) such as:

-rubygem-path /path/to/gems:/another/path/to/more/gems

Note

On Windows systems, separate the gems directories with a semicolon.

Static Application Security Testing 25.4

Page 182This PDF was generated on 10/10/2025

1.21. Analyzing other languages and configurations
This section contains the following topics:

Analyzing Solidity code
Analyzing Flex and ActionScript
Analyzing ColdFusion code
Analyzing SQL
Analyzing Scala code
Analyzing Infrastructure as Code (IaC)
Analyzing JSON
Analyzing YAML
Analyzing Dockerfiles
Analyzing ASP/VBScript virtual roots
Classic ASP command-line example
VBScript command-line example

Static Application Security Testing 25.4

Page 183This PDF was generated on 10/10/2025

1.21.1. Analyzing Solidity code
The basic command-line syntax to translate and scan Solidity code is:

sourceanalyzer -b <build_id> <files>
sourceanalyzer -b <build_id> -scan -f <results>.fpr

Importing dependencies
OpenText SAST translation only supports import statements for files with relative and absolute paths. Import statements for libraries is not supported.

Managing compiler versions
OpenText SAST downloads compilers that are referenced in the code with the pragma statement from the Solidity compiler repository. By default,
OpenText SAST downloads Solidity compilers to ${flight.workdir}/solidity.

If a file does not contain a pragma statement, then the default of ^0.8.0 is used. You can specify different default compiler version to use in the
analysis by including the flight.solidity.defaultCompilerVersion property on the command line. The version you specify must exist in the Solidity
compiler repository. For example:

sourceanalyzer -b MyProject ./
sourceanalyzer -b MyProject -scan -Dflight.solidity.defaultCompilerVersion=0.8.16 -f MyResults.fpr

If a proxy is required for the connection to download Solidity compilers, include the proxy information with -Dhttps.proxyHost and -
Dhttps.proxyPort. For example:

sourceanalyzer -b MyProject ./
sourceanalyzer -b MyProject -scan -Dhttps.proxyHost=MyProxyHost -Dhttps.proxyPort=1234 -f MyResults.fpr

You can add flight.solidity.defaultCompilerVersion to the fortify-sca.properties file.

See Also

OpenText SAST Properties Files

Static Application Security Testing 25.4

Page 184This PDF was generated on 10/10/2025

1.21.2. Analyzing Flex and ActionScript
The basic command-line syntax to translate ActionScript is:

sourceanalyzer -b <build_id> -flex-libraries <libs> <files>

where:

<libs> is a semicolon-separated (Windows) or a colon-separated (non-Windows) list of library names to which you want to "link" and <files> are the
files to translate.

Static Application Security Testing 25.4

Page 185This PDF was generated on 10/10/2025

1.21.2.1. Flex and ActionScript command-line options
Use the following command-line options to translate Flex files. You can also specify this information in the properties configuration file (fortify-
sca.properties) as noted in each description.

Flex and
ActionScript
option

Description

-flex-sdk-
root <dir>

Specifies the location of the root of a valid Flex SDK. This directory must contain a frameworks folder that contains a flex-
config.xml file. It must also contain a bin folder that contains an MXMLC executable.
Equivalent property name:
com.fortify.sca.FlexSdkRoot

-flex-
libraries
<libs>

Specifies a semicolon-separated (Windows) or a colon-separated (non-Windows) list of library names to which you want to link. In
most cases, this list includes flex.swc, framework.swc, and playerglobal.swc (usually found in frameworks/libs/ in your Flex
SDK root).

Note

You can specify SWC or SWF files as Flex libraries (SWZ is not currently supported).

Equivalent property name:
com.fortify.sca.FlexLibraries

-flex-
source-roots
<dirs>

Specifies a semicolon-separated (Windows) or a colon-separated (non-Windows) list of root directories where MXML sources are
located. Normally, these contain a subfolder named com.
For example, if the Flex source root specified is foo/bar/src, then foo/bar/src/com/fortify/manager/util/Foo.mxml is
transformed into an object named com.fortify.manager.util.Foo (an object named Foo in the package
com.fortify.manager.util).
Equivalent property name:
com.fortify.sca.FlexSourceRoots

Note

The -flex-sdk-root and –flex-source-roots options are primarily for MXML translation, and are optional if you
are scanning pure ActionScript. Use –flex-libraries for to resolve all ActionScript linked libraries.

OpenText SAST translates MXML files into ActionScript, and then runs them through an ActionScript parser. The generated ActionScript is simple to
analyze; not rigorously correct like the Flex runtime model. Consequently, you might get parse errors with MXML files. For instance, the XML parsing
might fail, translation to ActionScript might fail, and the parsing of the resulting ActionScript might also fail. If you see any errors that do not have a
clear connection to the original source code, notify Customer Support.

Flex and ActionScript Properties

Static Application Security Testing 25.4

Page 186This PDF was generated on 10/10/2025

1.21.2.2. ActionScript command-line examples
The following examples provide command-line syntax to translation ActionScript.

Example 1

The following example is for a simple application that contains only one MXML file and a single SWF library (MyLib.swf):

sourceanalyzer -b MyFlexApp -flex-libraries lib/MyLib.swf -flex-sdk-root /home/myself/flex-sdk/ -flex-source-roots . my/app/FlexApp.mxml

This identifies the location of the libraries to include and the Flex SDK and the Flex source root locations. The single MXML file, located in
/my/app/FlexApp.mxml, results in the translation of the MXML application as a single ActionScript class called FlexApp and located in the my.app
package.

Example 2

The following example is for an application in which the source files are relative to the src directory. It uses a single SWF library, MyLib.swf, and the
Flex and framework libraries from the Flex SDK:

sourceanalyzer -b MyFlexProject -flex-sdk-root /home/myself/flex-sdk/
-flex-source-roots src/ -flex-libraries lib/MyLib.swf "src/**/*.mxml" "src/**/*.as"

This example locates the Flex SDK and uses file specifiers to include the .as and .mxml files in the src folder. It is not necessary to explicitly specify
the .SWC files located in the –flex-sdk-root, although this example does so for the purposes of illustration. OpenText SAST automatically locates all
.SWC files in the specified Flex SDK root, and it assumes that these are libraries intended for use in translating ActionScript or MXML files.

Example 3

In this example, the Flex SDK root and Flex libraries are specified in the properties file because typing the information for each sourceanalyzer run is
time consuming and the data does not change often. Divide the application into two sections and store them in folders: a main section folder and a
modules folder. Each folder contains a src folder where the paths start. File specifiers contain wild cards to pick up all the .mxml and .as files in both
src folders. An MXML file in main/src/com/foo/util/Foo.mxml is translated as an ActionScript class named Foo in the package com.foo.util, for
example, with the source roots specified here:

sourceanalyzer -b MyFlexProject -flex-source-roots main/src:modules/src "./main/src/**/*.mxml" "./main/src/**/*.as" "./modules/src/**/*.mxml" "./mo
dules/src/**/*.as"

Static Application Security Testing 25.4

Page 187This PDF was generated on 10/10/2025

1.21.2.3. Handling resolution warnings
To see all warnings that were generated during translation, type the following command before you start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

ActionScript warnings
You might receive a message similar to the following:

The ActionScript front end was unable to resolve the following imports:
a.b at y.as:2. foo.bar at somewhere.as:5. a.b at foo.mxml:8.

This error occurs when OpenText SAST cannot find all the required libraries. You might need to specify additional SWC or SWF Flex libraries (using the -
flex-libraries option or the com.fortify.sca.FlexLibraries property) so that OpenText SAST can complete the analysis.

Static Application Security Testing 25.4

Page 188This PDF was generated on 10/10/2025

1.21.3. Analyzing ColdFusion code
To treat undefined variables in a CFML page as tainted, uncomment the following line in <sast_install_dir>/Core/config/fortify-
sca.properties:

#com.fortify.sca.CfmlUndefinedVariablesAreTainted=true

This instructs the Dataflow Analyzer to watch out for register-globals-style vulnerabilities. However, enabling this property interferes with Dataflow
Analyzer findings in which a variable in an included page is initialized to a tainted value in an earlier-occurring included page.

Static Application Security Testing 25.4

Page 189This PDF was generated on 10/10/2025

1.21.3.1. ColdFusion command-line syntax
The basic command-line syntax to translate ColdFusion source code is:

sourceanalyzer -b <build_id> -source-base-dir <dir> <files> | <file_specifiers>

where:

<build_id> specifies a build ID for the project
<dir> specifies the root directory of the web application
<files> | <file_specifiers> specifies the CFML source code files

For a description of how to use <file_specifiers>, see Specifying Files.

Note

OpenText SAST calculates the relative path to each CFML source file with the
-source-base-dir directory as the starting point. OpenText SAST uses these relative paths when it generates
instance IDs. If you move the entire application source tree to a different directory, the OpenText SAST- generated
instance IDs remain the same if you specify an appropriate parameter for the -source-base-dir option.

Static Application Security Testing 25.4

Page 190This PDF was generated on 10/10/2025

1.21.3.2. ColdFusion (CFML) command-line options
The following table describes the CFML options.

ColdFusion option Description

-source-base-dir
<web_app_root_dir> <files> | <file_specifiers>

The web application root directory.
Equivalent property name:
com.fortify.sca.SourceBaseDir

ColdFusion (CFML) Properties

Static Application Security Testing 25.4

Page 191This PDF was generated on 10/10/2025

1.21.4. Analyzing SQL
On Windows (and Linux for .NET projects only), OpenText SAST assumes that files with the .sql extension are T-SQL rather than PL/SQL. If you have
PL/SQL files with the .sql extension on Windows, you must configure OpenText SAST to treat them as PL/SQL.

The basic syntax to translate and scan PL/SQL is:

sourceanalyzer -b <build_id> -sql-language PL/SQL <files>
sourceanalyzer -b <build_id> -sql-language PL/SQL -scan -f <results>.fpr

Alternatively, you can change the default behavior for files with the .sql extension. In the fortify-sca.properties file, set the
com.fortify.sca.fileextensions.sql property to PLSQL.

The basic syntax to translate and scan T-SQL is:

sourceanalyzer -b <build_id> -sql-language TSQL <files>
sourceanalyzer -b <build_id> -scan -f <results>.fpr

SQL Properties

Static Application Security Testing 25.4

Page 192This PDF was generated on 10/10/2025

1.21.4.1. PL/SQL command-line example
The following example commands translate and scan two PL/SQL files:

sourceanalyzer -b MyProject -sql-language PL/SQL x.pks y.pks
sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f MyResults.fpr

The following example commands translate and scan all PL/SQL files in the sources directory:

sourceanalyzer -b MyProject -sql-language PL/SQL "sources/**/*.pks"
sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f MyResults.fpr

Static Application Security Testing 25.4

Page 193This PDF was generated on 10/10/2025

1.21.4.2. T-SQL command-line example
The following example translates two T-SQL files:

sourceanalyzer -b MyProject x.sql y.sql

The following example translates all T-SQL files in the sources directory:

sourceanalyzer -b MyProject "sources***.sql"

Note

This example assumes the com.fortify.sca.fileextensions.sql property in fortify-sca.properties is set to
TSQL, which is the property's default value.

Static Application Security Testing 25.4

Page 194This PDF was generated on 10/10/2025

1.21.5. Analyzing Scala code
Translating Scala code requires the following:

The Akka compiler plugin

You can download this plugin from the Maven Central Repository.

An Akka (formerly Lightbend) license file

This license file is included with the OpenText SAST installation in the <sast_install_dir>/plugins/lightbend directory

For instructions on how set up the license and translate Scala code, see the Akka documentation Fortify SCA for Scala.

Important

If your project contains source code other than Scala, you must translate the Scala code using the Scala Fortify
compiler plugin, and then translate other source code with sourceanalyzer using the same build ID before you run
the analysis phase.

Static Application Security Testing 25.4

Page 195This PDF was generated on 10/10/2025

https://developer.lightbend.com/docs/fortify/current

1.21.6. Analyzing Infrastructure as Code (IaC)
OpenText SAST understands Azure Resource Manager (ARM), Bicep, AWS CloudFormation, and HCL templates.

Note

HCL analysis support is specific to Terraform and supported cloud provider Infrastructure as Code (IaC)
configurations.

For best results, make sure that the template files are deployment valid. The templates must not contain:

Validation errors that are static and locally detectable (for example, type errors or references to undefined variables or functions).

Predeployment errors that occur during template interpretation, but before any resources are deployed or modified (for example, invalid array
indexing operations).

Deployment errors that occur in the cloud (for example, dynamically referencing a non-existent resource).

OpenText recommends that AWS CloudFormation file name extensions are .json, .yaml, .template, or .txt. OpenText SAST supports other
extensions only if they are not commonly used by other languages or file types (such as .java or .html).

By default, OpenText SAST translates files with the HCL extensions .hcl and .tf.

ARM translation command-line examples
Translate an ARM template:

sourceanalyzer -b MyProject ArmTemplate.json

Translate all ARM templates in a directory:

sourceanalyzer -b MyProject "src/**/*.json"

Bicep translation command-line examples
Translate a single Bicep template:

sourceanalyzer -b MyProject BicepTemplate.bicep

Translate all Bicep templates in a directory:

sourceanalyzer -b MyProject "src/**/*.bicep"

AWS CloudFormation translation command-line examples
Translate AWS CloudFormation templates that have different extensions:

sourceanalyzer -b MyProject CFTemplateA.template CFTemplateB.yaml CFTemplateC.json CFTemplateD.customext

Translate all AWS CloudFormation templates in a directory that have the .template extension:

sourceanalyzer -b MyProject "src/**/*.template"

Translate all AWS CloudFormation templates in a directory that have either the .json or .yaml extension:

sourceanalyzer -b MyProject "src/**/*.json" "src/**/*.yaml"

HCL translation command-line examples
Translate two HCL templates with different extensions:

sourceanalyzer -b MyProject HCLTemplateA.hcl HCLTemplateB.tf

Translate all HCL templates in a directory:

Static Application Security Testing 25.4

Page 196This PDF was generated on 10/10/2025

sourceanalyzer -b MyProject "src/**/*.tf" "src/**/*.hcl"

Translating JSON

Translating YAML

Static Application Security Testing 25.4

Page 197This PDF was generated on 10/10/2025

1.21.7. Analyzing JSON
By default, OpenText SAST translates files with the JSON extension .json as JSON. The following example translates a JSON file:

sourceanalyzer -b MyProject x.json

The following example translates all JSON files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.json"

Static Application Security Testing 25.4

Page 198This PDF was generated on 10/10/2025

1.21.8. Analyzing YAML
By default, OpenText SAST translates files with the YAML extensions .yaml and .yml. The following example translates two YAML files with different file
extensions:

sourceanalyzer -b MyProject x.yaml y.yml

The following example translates all YAML files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.yaml" "sources/**/*.yml"

Static Application Security Testing 25.4

Page 199This PDF was generated on 10/10/2025

1.21.9. Analyzing Dockerfiles
By default, OpenText SAST recognizes the files as Dockerfiles if they are named in one of the following formats: Dockerfile*, dockerfile*,
*.Dockerfile, and *.dockerfile.

Note

You can modify the file name extension used to detect Dockerfiles using the com.fortify.sca.fileextensions
property. See Translation and Analysis Phase Properties.

OpenText SAST accepts the following escape characters in Dockerfiles: backslash (\) and backquote (`). If the escape character is not set in the
Dockerfile, then OpenText SAST assumes that the backslash is the escape character.

The syntax to translate a directory that contains Dockerfiles is shown in the following example:

sourceanalyzer -b <build_id> <dir>

If the Dockerfile is malformed, OpenText SAST writes an error to the log file to indicate that the file cannot be parsed and skips the analysis of the
Dockerfile. The following is an example of the error written to the log:

Unable to parse dockerfile ProjA.Dockerfile, error on Line 1:20: mismatched input '\n' expecting {LINE_EXTEND, WHITESPACE}

Unable to parse config file C:/Users/jsmith/MyProj/docker/dockerfile/ProjA.Dockerfile

Static Application Security Testing 25.4

Page 200This PDF was generated on 10/10/2025

1.21.10. Analyzing ASP/VBScript virtual roots
OpenText SAST allows you to handle ASP virtual roots. For web servers that use virtual directories as aliases that map to physical directories, OpenText
SAST enables you to use an alias.

For example, you can have virtual directories named Include and Library that refer to the physical directories C:\WebServer\CustomerOne\inc and
C:\WebServer\CustomerTwo\Stuff, respectively.

The following example shows the ASP/VBScript code for an application that uses virtual includes:

<!--#include virtual="Include/Task1/foo.inc"-->

For this example, the previous ASP code refers to the file in the following physical location:

C:\Webserver\CustomerOne\inc\Task1\foo.inc

The real directory replaces the virtual directory name Include in this example.

Accommodating virtual roots
To provide the mapping of each virtual directory to OpenText SAST, you must set the
com.fortify.sca.ASPVirtualRoots.name_of_virtual_directory property in your OpenText SAST command-line invocation as shown in the
following example:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.<virtual_directory>=<full_path_to_corresponding_physical_directory>

Note

On Windows, if the physical path includes spaces, you must enclose the property setting in quotes:
sourceanalyzer "-
Dcom.fortify.sca.ASPVirtualRoots.<virtual_directory>=<full_path_to_corresponding_physical_directo
ry>"

To expand on the example in the previous section, pass the following property value to OpenText SAST:

-Dcom.fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc"
-Dcom.fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerTwo\Stuff"

This maps Include to C:\WebServer\CustomerOne\inc and Library to C:\WebServer\CustomerTwo\Stuff.

When OpenText SAST encounters the #include directive:

<!-- #include virtual="Include/Task1/foo.inc" -->

OpenText SAST determines if the project contains a physical directory named Include. If there is no such physical directory, OpenText SAST looks
through its runtime properties and finds the -Dcom.fortify.sca.ASPVirtualRoots.Include=

"C:\WebServer\CustomerOne\inc" setting. OpenText SAST then looks for this file: C:\WebServer\CustomerOne\inc\Task1\foo.inc.

Alternatively, you can set this property in the fortify-sca.properties file located in <sast_install_dir>\Core\config. You must escape the
backslash character (\) in the path of the physical directory as shown in the following example:

com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerTwo\\Stuff
com.fortify.sca.ASPVirtualRoots.Include=C:\\WebServer\\CustomerOne\\inc

Note

The previous version of the ASPVirtualRoot property is still valid. You can use it on the OpenText SAST command line
as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\WebServer\CustomerTwo\Stuff;

C:\WebServer\CustomerOne\inc

This prompts OpenText SAST to search through the listed directories in the order specified when it resolves a virtual include directive.

Using virtual roots example
You have a file as follows:

Static Application Security Testing 25.4

Page 201This PDF was generated on 10/10/2025

C:\files\foo\bar.asp

To specify this file, use the following include:

<!-- #include virtual="/foo/bar.asp">

Then set the virtual root in the sourceanalyzer command as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\files\foo

This strips the /foo from the front of the virtual root. If you do not specify foo in the com.fortify.sca.ASPVirtualRoots property, then OpenText
SAST looks for C:\files\bar.asp and fails.

The sequence to specify virtual roots is as follows:

1. Remove the first part of the path in the source.
2. Replace the first part of the path with the virtual root as specified on the command line.

Static Application Security Testing 25.4

Page 202This PDF was generated on 10/10/2025

1.21.11. Classic ASP command-line example
To translate a single file classic ASP written in VBScript named MyASP.asp, type:

sourceanalyzer -b mybuild "MyASP.asp"

Static Application Security Testing 25.4

Page 203This PDF was generated on 10/10/2025

1.21.12. VBScript command-line example
To translate a VBScript file named myApp.vb, type:

sourceanalyzer -b mybuild "myApp.vb"

Static Application Security Testing 25.4

Page 204This PDF was generated on 10/10/2025

1.22. Analyzing Library code
Library code refers to reusable software components or modules that are designed to be integrated into other applications. Unlike application code,
which contains the business logic and entry points of a specific program, library code is typically:

As library code is intended to be called from other application code, it typically will not provide interfaces for user-controllable data itself, minimizing
the results that SAST technologies can typically find.

Library code and application code comparision
Feature Application code Library code

Entry point Typically, yes No

Purpose Implement business logic Provides reusable functionality

Usage Standalone or deployed Embedded in other apps

Analysis focus Full program behavior API exposure and usage patterns

Analyzing library code effectively
To scan library code effectively, you should configure the OpenText SAST to treat the code as a library.

Translate the code as normal as per the language. Go to the appropriate section of this user guide for finding more information about analyzing the
appropriate language.

Once ready to scan, set the following property during the scan step:

com.fortify.sca.rules.IsLibrary=true

When this property is enabled, the analysis engine understands to mimic calls from an outside application calling the library code in order to provide a
more thorough analysis.

Other use cases
In addition to libraries, there are many declarative endpoint frameworks that make application code appear similar to library code.

If your web API is using a framework that we do not currently have coverage for (see [Supported technologies]), then enabling this property may also
mimic coverage of the framework, though it may also lead to some additional incorrect flows.

Note

This feature is currently supported only for Java
code.

Caution

Enabling the property mimics outside code calling into the application, vastly increasing the attack surface, which can lead to significantly
more issues and use more resources. This should generally not be enabled on application code except for the stated use cases or unless
advised to. In addition, this property does not need to be enabled to support the many declarative endpoint frameworks that we already
have coverage for, such as Spring Boot and JAX-RS.

Generic and reusable across multiple projects
Lacks a main entry point (e.g., main() method)
Provides functionality that other applications consume (e.g., utility classes, frameworks, SDKs)

Static Application Security Testing 25.4

Page 205This PDF was generated on 10/10/2025

1.23. Scanning for Secrets
OpenText SAST scans are made up a series of analyzers, one of which is able to find information generally across any file type. This enables OpenText
SAST to find information hidden in plain view such as secrets, and weaknesses that may be vulnerable agnostic of programming language, such as
using attacks involving invisible control characters.

For more information on how to configure this, see Regular expression analysis.

Static Application Security Testing 25.4

Page 206This PDF was generated on 10/10/2025

1.23.1. Regular expression analysis
Regular expression (regex) analysis provides the ability for using regular expression rules to detect vulnerabilities in both file content and file names.
This analysis can detect vulnerable secrets such as passwords, keys, and credentials in project files.

Important

Regex analysis is language agnostic and therefore it might detect vulnerabilities in file types that OpenText SAST
does not officially support.

Regex analysis recursively examines all file paths and path patterns included in the translation phase. Every file found is analyzed unless it is
specifically excluded. To manage the files that are included in regex analysis, the following options are available:

Exclude any file or directory with the -exclude option in the translation phase.

For more information about this option, see Translation Options.

By default, regex analysis excludes all detectible binary files. To include binary files in the analysis, add the following property to the fortify-
sca.properties file (or include this property on the command line using the -D option):

com.fortify.sca.regex.ExcludeBinaries = false

By default, regex analysis excludes files larger than 10 MB to ensure that the scan time is acceptable. You can change the maximum file size (in
megabytes) with the following property:

com.fortify.sca.regex.MaxSize = <max_file_size_mb>

Regex analysis is enabled by default. To disable regex analysis, add the following property to the fortify-sca.properties file or include it on the
command line:

com.fortify.sca.regex.Enable = false

Regex Analysis Properties

Static Application Security Testing 25.4

Page 207This PDF was generated on 10/10/2025

1.24. Optimizing results
This section provides guidelines and tips to optimize results when analyzing different codebases with OpenText SAST.

Static Application Security Testing 25.4

Page 208This PDF was generated on 10/10/2025

1.24.1. Applying a scan policy to the analysis
For the analysis (scan) phase, you can specify a scan policy to help you identify the most serious vulnerabilities so you can remediate the code quickly.
The following table describes the three provided scan policies.

Policy name Description

security This is the default scan policy, which excludes issues related to code quality, dataflow from sources that are typically trusted, and
issues that are typically noisy from the analysis results. Use this policy to focus code remediation on the security issues.

devops This scan policy expands on the security policy, by excluding additional issues that might be considered noise, and reducing more
low priority issues. Use this scan policy when scan speed is a priority, and developers review results directly (without any
intermediate auditing). Issues that remain after you apply this scan policy are probably serious security issues that require
remediation.

Note

This devops scan policy does not automatically include any customization made to the local security
scan policy.

classic This scan policy does not exclude any issues. Use this scan policy to see all issues, or if you prefer to filter issues with project
templates so it is easier to see hidden issues.

To specify a scan policy for your analysis, include the -scan-policy (or -sc) option in the analysis phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-policy devops -f MyResults.fpr

Alternatively, you can specify the scan policy with the com.fortify.sca.ScanPolicy property in the fortify-sca.properties file. For example:

com.fortify.sca.ScanPolicy=devops

Note

You can apply a filter file (see Excluding Issues with Filter Files) in addition to a scan policy setting for an analysis. In
this case, OpenText SAST applies both the scan policy and the filter file to the analysis.

Creating custom scan policies
The scan policy files reside in the <sast_install_dir>/Core/config/scales directory. There is one file for each scan policy. You can change the
settings in these policy files to customize your scan policies or you can create your own scan policy files. For information about the syntax used for the
scan policy files, see Excluding Issues with Filter Files.

To create a custom scan policy file:

1. Go to <sast_install_dir>/Core/config/scales/.

2. Open a text editor and create a file named scan-policy-<name>.txt, where <name> is the name for your custom scan policy.

3. Add filters to the scan-policy-<name>.txt file and save it.

4. To use the custom scan policy for your analysis, type the command as shown in the following example. In this example, the scan policy file name
is scan-policy-myscanpolicy.txt.

sourceanalyzer -b MyProject -scan -scan-policy myscanpolicy -f MyResults.fpr

Alternatively, you can specify the custom scan policy in the fortify-sca.properties file.

See Also

Translation and Analysis Phase Properties

Static Application Security Testing 25.4

Page 209This PDF was generated on 10/10/2025

1.24.2. Excluding issues with filter files
You can create a file to filter out particular vulnerability instances, rules, and vulnerability categories when you run the sourceanalyzer command. You
specify the file with the -filter analysis option.

A filter file is a text file that you can create with any text editor. You specify only the filter items that you do not want in this file.

Note

The filter types described in this section apply to both filter files and scan policy files (see Applying a Scan Policy to
the Analysis).

The following table lists the available filter types and provides examples for each.

Filter type Notes Examples

Category Specifying only a category will filter out all subcategories

Note

OpenText SAST applies category filters in the initialization phase
before any analysis has taken place.

Poor Error Handling
J2EE Bad Practices: Leftover
Debug Code

Instance ID An instance ID of a specific issue

Note

OpenText SAST applies instance ID filters after the analysis phase.

6291C6A33303ED270C269917AA8A1005

Rule ID A rule ID that leads to the reporting of a specific issue

Note

OpenText SAST applies rule ID filters in the initialization phase before
any analysis has taken place.

823FE039-A7FE-4AAD-B976-
9EC53FFE4A59

Priority1 The priority values in ascending order are low, medium, high, and critical. priority <= low
priority < medium

Taint flags Enclose taint flag expressions in parentheses. Use the logical &&, ||, and ! operators to
specify an expression. For a list of taint flags, see OpenText™ Static Application Security
Testing Custom Rules Guide.

(SYSTEMINFO || EXCEPTIONINFO)
(WEB || (DATABASE && PRIVATE))
(NETWORK && !XSS)

Impact1 impact < 0.5

Likelihood1 likelihood <= 1.5

Confidence1 confidence < 1.8

Probability1 probability <= 1.2

Accuracy1 accuracy <= 1.0

1For the priority and metadata filters, use less than (<) or less than or equal to (<=).

Composite Filters
When you specify a filter on different lines, OpenText SAST will apply each filter line by line, one at a time. Additionally, you can combine them on one
line and use boolean logical operators (&&, ||, !) and braces {} to group expressions to create more advanced filters.

For example, if you want to filter out Cross-Site Scripting issues, given that the issue had a confidence less than 4.0, and the taint flags contained
either DATABASE or LDAP.

You can use the following filter:

{ Cross-Site Scripting && confidence < 4.0 } && (DATABASE || LDAP)

If any part of the composite filter is a filter type that can only run post-scan, it will run post-scan regardless of it having items that typically filter pre-
scan.

Static Application Security Testing 25.4

Page 210This PDF was generated on 10/10/2025

Note

Taint flag filters must be surrounded by parentheses regardless of curly
braces.

See Also

Filter File Example

Static Application Security Testing 25.4

Page 211This PDF was generated on 10/10/2025

1.24.2.1. Filter file example
As an example, the following output is from a scan of the EightBall.java sample. This sample project is included in the
OpenText_SAST_Fortify_Samples_<version>.zip archive in the basic/eightball directory.

The following commands are executed to produce the analysis results:

sourceanalyzer -b eightball EightBall.java
sourceanalyzer -b eightball -scan

The following results show five detected issues:

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic]
EightBall.java(12) : Reader.read()

[6291C6A33303ED270C269917AA8A1005 : high : Path Manipulation : dataflow]
EightBall.java(12) : ->new FileReader(0)
 EightBall.java(8) : <=> (filename)
 EightBall.java(8) : <->Integer.parseInt(0->return)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

[176CC0B182267DD538992E87EF41815F : critical : Path Manipulation : dataflow]
EightBall.java(12) : ->new FileReader(0)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

[E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource : Streams : controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(14) : loaded -> end_of_scope : end scope : Resource leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(12) : java.io.IOException thrown
 EightBall.java(12) : loaded -> loaded : throw
 EightBall.java(12) : loaded -> end_of_scope : end scope : Resource leaked : java.io.IOException thrown

[BB9F74FFA0FF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover Debug Code : structural]
 EightBall.java(4)

The following is an example filter file that performs the following:

Remove all results related to the J2EE Bad Practice category
Remove the Path Manipulation based on its instance ID
Remove any dataflow issues that were generated from a specific rule ID

#This is a category to filter from scan output
J2EE Bad Practices
#This is an instance ID of a specific issue to be filtered
#from scan output
6291C6A33303ED270C269917AA8A1005
#This is a specific Rule ID that leads to the reporting of a
#specific issue in the scan output: in this case the
#dataflow sink for a Path Manipulation issue.
823FE039-A7FE-4AAD-B976-9EC53FFE4A59

To test the filtered output, copy the above text and paste it into a file with the name test_filter.txt.

To apply the filtering in the test_filter.txt file, execute the following command:

sourceanalyzer -b eightball -scan -filter test_filter.txt

The filtered analysis produces the following results:

Static Application Security Testing 25.4

Page 212This PDF was generated on 10/10/2025

[176CC0B182267DD538992E87EF41815F : critical : Path Manipulation : dataflow]
EightBall.java(12) : ->new FileReader(0)
 EightBall.java(6) : <=> (filename)
 EightBall.java(4) : ->EightBall.main(0)

[E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource : Streams : controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(14) : loaded -> end_of_scope : end scope : Resource leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)
 EightBall.java(12) : java.io.IOException thrown
 EightBall.java(12) : loaded -> loaded : throw
 EightBall.java(12) : loaded -> end_of_scope : end scope : Resource leaked : java.io.IOException thrown

Static Application Security Testing 25.4

Page 213This PDF was generated on 10/10/2025

1.24.3. Using filter sets to exclude issues
You can use filter sets in an issue template created in Fortify Audit Workbench to filter issues from the analysis results. When you apply a filter set that
hides issues from view during the analysis phase, OpenText SAST does not write the hidden issues to the FPR. To do this, use Fortify Audit Workbench
to create a filter set, and then run the OpenText SAST scan with the filter set and the issue template, which contains the filter set. For more detailed
instructions about how to create filters and filter sets in Fortify Audit Workbench, see the OpenText™ Fortify Audit Workbench User Guide.

The following example describes the basic steps for how to create and use a filter in an issue template to remove issues from an FPR:

1. Suppose you use OWASP Top 10 2021, and you only want to see issues categorized within this standard. In Fortify Audit Workbench, create a new
filter set called OWASP_Filter

2. In Fortify Audit Workbench, create a visibility filter in the OWASP_Filter filter set:

If [OWASP Top 10 2021] does not contain A Then hide issue

This filter looks through the issues and if an issue does not map to an OWASP Top 10 2021 category with ‘A’ in the name, then it hides it. Because
all OWASP Top 10 2021 categories start with ‘A’ (A01, A02, …, A10), then any category without the letter ‘A’ is not in the OWASP Top 10 2021.
The filter hides the issues from view in Fortify Audit Workbench, but they are still in the FPR.

3. In Fortify Audit Workbench, export the issue template to a file called IssueTemplate.xml.
4. Using OpenText SAST, specify the filter set in the analysis phase with the following command:

sourceanalyzer -b MyProject -scan -project-template IssueTemplate.xml
-Dcom.fortify.sca.FilterSet=OWASP_Filter -f MyFilteredResults.fpr

Although filtering issues with a filter set can reduce the size of the FPR, it does not usually reduce the scan time. OpenText SAST examines the filter set
after it calculates the issues to determine whether to write them to the FPR file. The filters in a filter set determine the rule types that OpenText SAST
loads.

Static Application Security Testing 25.4

Page 214This PDF was generated on 10/10/2025

1.24.4. Filtering using FortifyRemove comments
Similar to linters, compilers, and static analysis tools built directly into IDEs, developers are accustomed to controlling the results of these tools directly
from the code. Similarly if required, developers can use inline comments to manage issues triggered by OpenText SAST. Developers can prevent issues
from being reported by specifying either the rule ID that triggers the issue or the category of the finding in the FortifyRemove().

When issues are removed with comments, OpenText SAST logs the issues that are removed, including their location and category.

Note

This functionality is available and enabled by default for Java and C# code. The functionality can disabled in fortify-rules.properties
by setting com.fortify.sca.rules.EnableRuleComments=false. For more information, see fortify-rules.properties

Basic Comments
For example, consider the following Java Hello World application.

public class MyClass {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Consider there is a rule with an ID 625EEE1F-464F-42DC-85D6-269A637EF747 that triggers on the main function as J2EE Bad Practices: Leftover Debug
Code.

If the developer disagrees and they do not want this issue to display any longer, either of the following configurations will prevent the issue from
appearing.

public class MyClass {

 // FortifyRemove(ID="625EEE1F-464F-42DC-85D6-269A637EF747")

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Or

public class MyClass {

 // FortifyRemove(Category="J2EE Bad Practices: Leftover Debug Code")

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Note: the string argument can use either " or '

Wildcards
The * wildcard can be used to expand a category to cover multiple subcategories or multiple matching categories.
For example:

// FortifyRemove(Category="Cross-Site Scripting: *")

Would remove all variants of Cross-Site Scripting issues.

Static Application Security Testing 25.4

Page 215This PDF was generated on 10/10/2025

Whereas:

// FortifyRemove(Category="Cross-Site *")

Would remove all variants of Cross-Site Scripting issues, along with any categories that start with "Cross-Site", such as "Cross-Site Request Forgery".

Multiple conditions
Other than using wildcards you can specify multiple categories or rule IDs using the Categories or IDs properties respectively, which take arrays of
strings.
For example

// FortifyRemove(Categories=["Cross-Site Scripting: Reflected", "Cross-Site Scripting: Persistent"])

would prevent either Cross-Site Scripting: Reflected or Cross-Site Scripting: Persistent issues appearing on the following line.

// FortifyRemove(IDs=["A", "B", "C", "D"]

Would prevent rules with the IDs A, B, C, or D from triggering on the following line.
Additionally you can specify multiple criteria together, separated by a semi-colon (;).
For example:

// FortifyRemove(Category="SQL Injection"; ID="ABCD-1234")

Would prevent SQL Injection issues appearing on the following line, as well as prevent issues from rule ID ABCD-1234 triggering.

Adding Justifications
Issues are logged as removed by FortifyRemove comments. A justification property can be specified that accepts a string that will be logged
alongside the removal information that can help expand on why the issue is being removed.
For example:

// FortifyRemove(Category="Cross-Site Scripting: *"; Justification="We remove XSS here because we're using custom framework XYZ that automati
cally protects against the attack")

Static Application Security Testing 25.4

Page 216This PDF was generated on 10/10/2025

1.24.5. Fortify Java annotations
OpenText provides two versions of the Fortify Java annotations library.

Annotations with the retention policy set to CLASS (FortifyAnnotations-CLASS.jar).

With this version of the library, Fortify Java annotations are propagated to the bytecode during compilation.

Annotations with the retention policy set to SOURCE (FortifyAnnotations-SOURCE.jar).

With this version of the library, Fortify Java annotations are not propagated to the bytecode after the code that uses them is compiled.

If you use OpenText Application Security Software products to analyze bytecode of your applications (for example, with OpenText™ Core Application
Security assessments), then use the version with the annotation retention policy set to CLASS. If you use OpenText Application Security Software
products to analyze the source code of your applications, you can use either version of the library. However, OpenText strongly recommends that you
use the library with a retention policy set to SOURCE.

Important

It is a security risk to leave Fortify Java annotations in production code because they can leak information about
potential security problems in the code. OpenText recommends that you use annotations with the retention policy
set to CLASS only for internalanalysis, and never use them in your application production builds.

This section outlines the annotations available. A sample application is included in the OpenText_SAST_Fortify_Samples_<version>.zip archive in
the advanced/javaAnnotations directory. A README.txt file included in the directory describes the sample application, problems that might arise from
it, and how to fix these problems using Fortify Java annotations.

There are two limitations with Fortify Java annotations:

Each annotation can specify only one input and/or one output.
You can apply only one annotation of each type to the same target.

OpenText provides three main types of annotations:

Dataflow Annotations
Field and Variable Annotations
Other Annotations

You also can write rules to support your own custom annotations. Contact Customer Support for more information.

Static Application Security Testing 25.4

Page 217This PDF was generated on 10/10/2025

1.24.5.1. Dataflow annotations
There are four types of Dataflow annotations, similar to Dataflow rules: Source, Sink, Passthrough, and Validate. All are applied to methods and specify
the inputs and/or outputs by parameter name or the strings this and return. Additionally, you can apply the Dataflow Source and Sink annotations to
the function arguments.

Source annotations
The acceptable values for the annotation parameter are this, return, or a function parameter name. For example, you can assign taint to an output of
the target method.

@FortifyDatabaseSource("return")
String [] loadUserProfile(String userID) {
 ...
}

For example, you can assign taint to an argument of the target method.

void retrieveAuthCode(@FortifyPrivateSource String authCode) {
 ...
}

In addition to specific source annotations, OpenText provides a generic untrusted taint source called FortifySource.

The following is a complete list of source annotations:

FortifySource
FortifyDatabaseSource
FortifyFileSystemSource
FortifyNetworkSource
FortifyPCISource
FortifyPrivateSource
FortifyWebSource

Passthrough annotations
Passthrough annotations transfer any taint from an input to an output of the target method. It can also assign or remove taint from the output, in the
case of FortifyNumberPassthrough and FortifyNotNumberPassthrough. The acceptable values for the in annotation parameter are this or a
function parameter name. The acceptable values for the out annotation parameter are this, return, or a function parameter name.

@FortifyPassthrough(in="a",out="return")
String toLowerCase(String a) {
 ...
}

Use FortifyNumberPassthrough to indicate that the data is purely numeric. Numeric data cannot cause certain types of issues, such as cross-site
scripting, regardless of the source. Using FortifyNumberPassthrough can reduce false positives of this type. If a program decomposes character data
into a numeric type (int, int[], and so on), you can use FortifyNumberPassthrough. If a program concatenates numeric data into character or string
data, then use FortifyNotNumberPassthrough.

The following is a complete list of passthrough annotations:

FortifyPassthrough
FortifyNumberPassthrough
FortifyNotNumberPassthrough

Sink annotations
Sink annotations report an issue when taint of the appropriate type reaches an input of the target method. Acceptable values for the annotation
parameter are this or a function parameter name.

Static Application Security Testing 25.4

Page 218This PDF was generated on 10/10/2025

@FortifyXSSSink("a")
void printToWebpage(int a) {
 ...
}

You can also apply the annotation to the function argument or the return parameter. In the following example, an issue is reported when taint reaches
the argument a.

void printToWebpage(int b, @FortifyXSSSink String a) {
 ...
}

The following is a complete list of the sink annotations:

FortifySink
FortifyCommandInjectionSink
FortifyPCISink
FortifyPrivacySink
FortifySQLSink
FortifySystemInfoSink
FortifyXSSSink

Validate annotations
Validate annotations remove taint from an output of the target method. Acceptable values for the annotation parameter are this, return, or a function
parameter name.

@FortifyXSSValidate("return")
String xssCleanse(String a) {
 ...
}

The following is a complete list of validate sink annotations:

FortifyValidate
FortifyCommandInjectionValidate
FortifyPCIValidate
FortifyPrivacyValidate
FortifySQLValidate
FortifySystemInfoValidate
FortifyXSSValidate

Static Application Security Testing 25.4

Page 219This PDF was generated on 10/10/2025

1.24.5.2. Field and variable annotations
You can apply these annotations to fields and (in most cases) variables.

Password and private annotations
Use password and private annotations to indicate whether the target field or variable is a password or private data.

@FortifyPassword String x;
@FortifyNotPassword String pass;
@FortifyPrivate String y;
@FortifyNotPrivate String cc;

In the previous example, string x will be identified as a password and checked for privacy violations and hardcoded passwords. The string pass will not
be identified as a password. Without the annotation, it might cause false positives. The FortifyPrivate and FortifyNotPrivate annotations work
similarly, only they do not cause privacy violation issues.

Non-negative and non-zero annotations
Use these annotations to indicate disallowed values for the target field or variable.

@FortifyNonNegative int index;
@FortifyNonZero double divisor;

In the previous example, an issue is reported if a negative value is assigned to index or zero is assigned to divisor.

Static Application Security Testing 25.4

Page 220This PDF was generated on 10/10/2025

1.24.5.3. Other annotations

Check return value annotation
Use the FortifyCheckReturnValue annotation to add a target method to the list of functions that require a check of the return values.

@FortifyCheckReturnValue
int openFile(String filename) {
 ...
}

Dangerous annotations
With the FortifyDangerous annotation, any use of the target function, field, variable, or class is reported. Acceptable values for the annotation
parameter are CRITICAL, HIGH, MEDIUM, or LOW. These values indicat how to categorize the issue based on the Fortify Priority Order values).

@FortifyDangerous{"CRITICAL"}
public class DangerousClass {
 @FortifyDangerous{"HIGH"}
 String dangerousField;
 @FortifyDangerous{"LOW"}
 int dangerousMethod() {
 ...
 }
}

Static Application Security Testing 25.4

Page 221This PDF was generated on 10/10/2025

1.25. Optimizing performance
This section provides guidelines and tips to optimize memory usage and performance when analyzing different types of codebases with OpenText
SAST.

This section contains the following topics:

Antivirus software
Hardware considerations
Tuning options
Quick scan
Configuring scan speed with speed dial
Breaking down codebases
Limiting analyzers and languages
Optimizing FPR files
Monitoring long running scans

Static Application Security Testing 25.4

Page 222This PDF was generated on 10/10/2025

1.25.1. Antivirus software
The use of antivirus software can negatively impact OpenText SAST performance. If you notice long scan times, OpenText recommends that you
temporarily exclude the internal OpenText SAST files from your antivirus software scan. You can also do the same for the directories where the source
code resides, however the performance impact on the analysis is less than with the internal directories.

By default, OpenText SAST creates internal files in the following location:

Windows: c:\Users\<username>\AppData\Local\Fortify\sca<version>
Non-Windows: <userhome>/.fortify/sca<version>

where <version> is the version of OpenText SAST you are using.

Static Application Security Testing 25.4

Page 223This PDF was generated on 10/10/2025

1.25.2. Hardware considerations
The variety of source code makes accurate predictions of memory usage and scan times impossible. The factors that affect memory usage and
performance consists of many different factors including:

Code type
Codebase size and complexity
Ancillary languages used (such as JSP, JavaScript, and HTML)
Number of vulnerabilities
Type of vulnerabilities (analyzer used)

OpenText developed the following set of "best guess" hardware recommendations based on real-world application scan results. The following table lists
these recommendations based on the complexity of the application. In general, increasing the number of available cores might improve scan times.

Application
complexity

CPU cores RAM (GB) Average
scan time

Description

Simple 4 16 1 hour A standalone system that runs on a server or desktop such as a batch job or a
command-line tool.

Medium 8 32 5 hours A standalone system that works with complex computer models such as a tax
calculation system or a scheduling system.

Complex 16 128 4 days A three-tiered business system with transactional data processing such as a financial
system or a commercial website.

Very Complex 32 256 7+ days A system that delivers content such as an application server, database server, or
content management system.

Note

TypeScript and JavaScript scans increase the analysis time significantly. If the total lines of code in an application
consist of more than 20% TypeScript or JavaScript, use the next highest recommendation.

Hardware requirements describes the system requirements. However, for large and complex applications, OpenText SAST requires more capable
hardware. This includes:

Disk I/O—OpenText SAST is I/O intensive and therefore the faster the hard drive, the more savings on the I/O transactions. OpenText
recommends a 7,200 RPM drive, although a 10,000 RPM drive (such as the WD Raptor) or an SSD drive is better.
Memory—See Memory Tuning for more information about how to determine the amount of memory required for optimal performance.
CPU—OpenText recommends a 2.1 GHz or faster processor.

Static Application Security Testing 25.4

Page 224This PDF was generated on 10/10/2025

1.25.3. Tuning options
OpenText SAST can take a long time to process complex projects. The time is spent in different phases:

Translation
Analysis

OpenText SAST can produce large analysis result files (FPRs), which can take a long time to audit and upload to Application Security. This is referred to
as the following phase:

Audit/Upload

The following table lists tips on how to improve performance in the different time-consuming phases.

Phase Option Description More information

Translation -export-build-session
-import-build-session

Translate and scan on different machines Mobile Build Sessions

Analysis -quick Run a quick scan Quick Scan

Analysis -scan-precision Set the scan precision Configuring Scan Speed with Speed Dial

Analysis -bin Scan the files related to a binary Breaking Down Codebases

Analysis -Xmx<size>M | G Set maximum heap size Memory Tuning

Analysis -Xss<size>M | G Set stack size for each thread Memory Tuning

Analysis
Audit/Upload

-filter <file> Apply a filter using a filter file Using Filter Files

Analysis
Audit/Upload

-disable-source-bundling Exclude source files from the FPR file Excluding Source Code from the FPR

Static Application Security Testing 25.4

Page 225This PDF was generated on 10/10/2025

1.25.4. Quick scan
Quick scan mode provides a way to quickly scan your projects for critical- and high-priority issues. OpenText SAST performs the scan faster by reducing
the depth of the analysis. It also applies the Quick View filter set. Quick scan settings are configurable. For more details about the configuration of quick
scan mode, see fortify-sca-quickscan.properties.

Quick scans are a great way to get many applications through an assessment so that you can quickly find issues and begin remediation. The
performance improvement you get depends on the complexity and size of the application. Although the scan is faster than a full scan, it does not
provide as robust a result set. OpenText recommends that you run full scans whenever possible.

Limiters
The depth of the OpenText SAST analysis sometimes depends on the available resources. OpenText SAST uses a complexity metric to trade off these
resources with the number of vulnerabilities that it can find. Sometimes, this means giving up on a particular function when it does not look like
OpenText SAST has enough resources available.

OpenText SAST enables the user to control the “cutoff” point by using OpenText SAST limiter properties. The different analyzers have different limiters.
You can run a predefined set of these limiters using a quick scan. See the fortify-sca-quickscan.properties for descriptions of the limiters.

To enable quick scan mode, use the -quick option with -scan option. With quick scan mode enabled, OpenText SAST applies the properties from the
<sast_install_dir>/Core/config/fortify-sca-quickscan.properties file, in addition to the standard
<sast_install_dir>/Core/config/fortify-sca.properties file. You can adjust the limiters that OpenText SAST uses by editing the fortify-sca-
quickscan.properties file. If you modify fortify-sca.properties, it also affects quick scan behavior. OpenText recommends that you do
performance tuning in quick scan mode, and leave the full scan in the default settings to produce a highly accurate scan. For description of the quick
scan mode properties, see OpenText SAST Properties Files.

Using quick scan and full scan
Run full scans periodically—A periodic full scan is important as it might find issues that quick scan mode does not detect. Run a full scan at
least once per software iteration. If possible, run a full scan periodically when it will not interrupt the development workflow, such as on a
weekend.
Compare quick scan with a full scan—To evaluate the accuracy impact of a quick scan, perform a quick scan and a full scan on the same
codebase. Open the quick scan results in Fortify Audit Workbench and merge it into the full scan. Group the issues by New Issue to produce a list
of issues detected in the full scan but not in the quick scan.
Quick scans and Application Security—To avoid overwriting the results of a full scan, by default Application Security ignores uploaded FPR
files scanned in quick scan mode. However, you can configure a Application Security application version so that FPR files scanned in quick scan
are processed. For more information, see analysis results processing rules in the OpenText™ Application Security User Guide.

Static Application Security Testing 25.4

Page 226This PDF was generated on 10/10/2025

1.25.5. Configuring scan speed with speed dial
You can configure the speed and depth of the scan by specifying a precision level for the analysis phase. You can use these precision levels to adjust
the scan time to fit for example, into a pipeline and quickly find a set of vulnerabilities while the developer is still working on the code. Although scans
with the speed dial settings are faster than a full scan, it does not provide as robust a result set. OpenText recommends that you run full scans
whenever possible.

The precision level controls the depth and precision of the scan by associating configuration properties with each level. The configuration properties
files for each level are in the <sast_install_dir>/Core/config/scales directory. There is one file for each level:
(level-<precision_level>.properties). You can modify the settings in these files to create your own specific precision levels.

Notes:

By default, Application Security blocks uploaded analysis results that were created with a precision level less than four. However, you can
configure your Application Security application version so that uploaded audit projects scanned with these precision levels are processed.

If you merge a speed dial scan with a full scan, this might remove issues from previous scans that still exist in your application (and would be
detected again with a full scan).

To specify the speed dial setting for a scan, include the -scan-precision (or -p) option in the scan phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-precision <level> -f MyResults.fpr

Note

You cannot use the speed dial setting and the -quick option in the same scan command.

The following table describes the four precision levels.

Precision
level

Description

1 This is the quickest scan and is recommended to scan a few files. By default, a scan with this precision level disables the Buffer
Analyzer, Control Flow Analyzer, Dataflow Analyzer, and Null Pointer Analyzer.

2 By default, a scan with this precision level enables all analyzers. The scan runs quicker by performing with reduced limiters. This results
in fewer issues detected.

3 This precision level improves intermediate development scan speeds by up to 50% (with a reduction in reported issues). Specifically,
this level improves the scan time for typed languages such as Java and C/C++.

4 This is equivalent to a full scan.

You can also specify the scan precision level with the com.fortify.sca.PrecisionLevel property in the fortify-sca.properties file. For example:

com.fortify.sca.PrecisionLevel=1

Static Application Security Testing 25.4

Page 227This PDF was generated on 10/10/2025

1.25.6. Breaking down codebases
It is more efficient to break down large projects into independent modules. For example, if you have a portal application that consists of several
modules that are independent of each other or have few interactions, you can translate and scan the modules separately. The caveat to this is that you
might lose dataflow issue detection if some interactions exist.

For C/C++, you might reduce the scan time by using the –bin option with the –scan option. You need to pass the binary file as the parameter (such as
-bin <filename>.exe -scan or -bin <filename>.dll -scan). OpenText SAST finds the related files associated with the binary and scans them. This
is useful if you have several binaries in a makefile.

The following table lists some useful OpenText SAST command-line options to break down codebases.

Option Description

-bin
<binary>

Specifies a subset of source files to scan. Only the source files that were linked in the named binary at build time are included in the
scan. You can use this option multiple times to specify the inclusion of multiple binaries in the scan.

-show-
binaries

Displays all objects that were created but not used in the production of any other binaries. If fully integrated into the build, it lists all the
binaries produced.

-show-
build-
tree

When used with the -bin option, displays all files used to create the binary and all files used to create those files in a tree layout. If the
-bin option is not present, OpenText SAST displays the tree for each binary.

Static Application Security Testing 25.4

Page 228This PDF was generated on 10/10/2025

1.25.7. Limiting analyzers and languages
Occasionally, you might find that a significant amount of the scan time is spent either running one analyzer or analyzing a particular language. It is
possible that this analyzer or language is not important to your security requirements. You can limit the specific analyzers that run and the specific
languages that OpenText SAST translates, however, this may lead to suboptimal results.

This section contains the following topics:

Disabling analyzers
Disabling languages

Static Application Security Testing 25.4

Page 229This PDF was generated on 10/10/2025

1.25.7.1. Disabling analyzers
To disable specific analyzers, include the -analyzers option to OpenText SAST at scan time with a comma- or colon-separated list of analyzers to
enable. The valid parameter values for the -analyzers option are buffer, content, configuration, controlflow, dataflow, nullptr, semantic, and
structural.

For example, to run a scan that only includes the Dataflow, Control Flow, and Buffer analyzers, use the following scan command:

sourceanalyzer -b MyProject -analyzers dataflow:controlflow:buffer -scan -f MyResults.fpr

You can also do the same thing by setting com.fortify.sca.DefaultAnalyzers in the OpenText SAST property file
<sast_install_dir>/Core/config/fortify-sca.properties. For example, to achieve the equivalent of the previous scan command, set the
following in the properties file:

com.fortify.sca.DefaultAnalyzers=dataflow:controlflow:buffer

Static Application Security Testing 25.4

Page 230This PDF was generated on 10/10/2025

1.25.7.2. Disabling languages
To disable specific languages, include the -disable-language option in the translation phase, which specifies a list of languages that you want to
exclude. The valid language values are

abap, actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet, golang, objc, php, python, ruby, swift, and vb.

For example, to perform a translation that excludes configuration and PHP files, use the following command:

sourceanalyzer -b MyProject <src_files> -disable-language configuration:php

You can also disable languages by setting the com.fortify.sca.DISabledLanguages property in the OpenText SAST properties file
<sast_install_dir>/Core/config/fortify-sca.properties. For example, to achieve the equivalent of the previous translation command, set the
following in the properties file:

com.fortify.sca.DISabledLanguages=configuration:php

For languages that are not available with the -disable-language, use the -exclude option. For more information, see Translation options.

Static Application Security Testing 25.4

Page 231This PDF was generated on 10/10/2025

1.25.8. Optimizing FPR files
This section describes how to handle performance issues related to the audit results (FPR) file. These topics describe how to reduce the scan time,
reduce FPR file size, and tips for opening large FPR files.

This section contains the following topics:

Using filter files
Using filter sets
Excluding source code from the FPR
Reducing the FPR file size
Opening large FPR files

Static Application Security Testing 25.4

Page 232This PDF was generated on 10/10/2025

1.25.8.1. Using filter files
You can use a file to filter out specific vulnerability instances, rules, and vulnerability categories from the analysis results. If you determine that a
certain issue category or rule is not relevant for a particular scan, you can stop OpenText SAST from adding them to the FPR. Using a filter file can
reduce both the scan time and analysis results file size.

For example, if you scan a simple program that just reads a specified file, you might not want to see path manipulation issues, because these are not
likely planned as part of the functionality. To filter out path manipulation issues, create a file that contains a single line:

Path Manipulation

Save this file as filter.txt. Use the -filter option in the analysis phase as shown in the following example:

sourceanalyzer -b MyProject -scan -filter filter.txt -f MyResults.fpr

The analysis output in MyResults.fpr does not include any issues with the category Path Manipulation. For more information and an example of a filter
file, see Excluding Issues with Filter Files.

Static Application Security Testing 25.4

Page 233This PDF was generated on 10/10/2025

1.25.8.2. Using filter sets
Filters in an issue template determine how the results from OpenText SAST are shown. In addition to filters, filter sets enable you to have a selection of
filters used at any one time. Each FPR has an issue template associated with it. You can use filter sets to reduce the number of issues based on
conditions you specify with filters in an issue template. This can dramatically reduce the size of an FPR.

To do this, use Fortify Audit Workbench to create a filter in a filter set, and then run the OpenText SAST scan with the filter set and the containing issue
template. For more information and a basic example of how to create a filter set, see Excluding Issues with Filters Sets.

Note

Although filtering issues with a filter set can reduce the size of the FPR, they do not usually reduce the scan time.
OpenText SAST examines the filter set after it calculates the issues to determine whether to write them to the FPR
file. The filters in a filter set determine the rule types that OpenText SAST loads.

Static Application Security Testing 25.4

Page 234This PDF was generated on 10/10/2025

1.25.8.3. Excluding source code from the FPR
You can reduce the size of the FPR file by excluding the source code information from the FPR. This is especially valuable for large source files or
codebases. Typically, you do not get a scan time reduction for small source files using this method.

There are properties you can use to prevent OpenText SAST from including source code in the FPR. You can set either property in the
<sast_install_dir>/Core/config/fortify-sca.properties file or specify an option on the command line. The following table describes these
settings.

Property name Description

com.fortify.sca.
FPRDisableSourceBundling=true
Command-Line Option:
-disable-source-bundling

Excludes source code from the FPR.

com.fortify.sca.
FVDLDisableSnippets=true
Command-Line Option:
–fvdl-no-snippets

Excludes code snippets from the FPR.

The following command-line example uses both options to exclude both the source code and code snippets from the FPR:

sourceanalyzer -b MyProject -disable-source-bundling
-fvdl-no-snippets -scan -f MySourcelessResults.fpr

Static Application Security Testing 25.4

Page 235This PDF was generated on 10/10/2025

1.25.8.4. Reducing the FPR file size
There are a few ways to reduce the size of FPR files. The quickest way to do this without affecting results is to exclude the source code from the FPR as
described in Excluding Source Code from the FPR. You can also reduce the size of a merged FPR with the FPRUtility (see the OpenText™ Application
Security Tools Guide).

There are a few other properties that you can use to select what is excluded from the FPR. You can set these properties in the
<sast_install_dir>/Core/config/fortify-sca.properties file or specify an option on the command line for the analysis (scan) phase.

Property name Description

com.fortify.sca.
FPRDisableMetatable
=true
Command-Line Option:
-disable-metatable

Excludes the metatable from the FPR. Fortify Audit Workbench uses the metatable to map information in Functions
view.

com.fortify.sca.
FVDLDisableDescriptions
=true
Command-Line Option:
-fvdl-no-descriptions

Excludes rule descriptions from the FPR. If you do not use custom descriptions, the descriptions in the Fortify
Taxonomy (https://vulncat.fortify.com) are used.

com.fortify.sca.
FVDLDisableEngineData
=true
Command-Line Option:
-fvdl-no-enginedata

Excludes engine data from the FPR. This is useful if your FPR contains many warnings when you open the file in Fortify
Audit Workbench.

Note

If you exclude engine data from the FPR, you must merge the FPR with the current audit
project locally before you upload it to Application Security. Application Security cannot
merge it on the server because the FPR does not contain the OpenText SAST version.

com.fortify.sca.
FVDLDisableProgramData
=true
Command-Line Option:
-fvdl-no-progdata

Excludes the program data from the FPR. This removes the Taint Sources information from the Functions view in Fortify
Audit Workbench. This property typically only has a minimal effect on the overall size of the FPR file.

Static Application Security Testing 25.4

Page 236This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D
https://vulncat.fortify.com/

1.25.8.5. Opening large FPR files
To reduce the time required to open a large FPR file in Fortify Audit Workbench, you can set some properties in the
<sast_install_dir>/Core/config/fortify.properties file. For more information about these properties, see the OpenText™ Application Security
Tools Guide. The following table describes the properties you can use to reduce the time to open large FPR files.

Property name Description

com.fortify.
model.DisableProgramInfo=true

Disables use of the code navigation features in Fortify Audit Workbench.

com.fortify.
model.IssueCutoffStartIndex
=<num> (inclusive)
com.fortify.
model.IssueCutoffEndIndex
=<num> (exclusive)

Sets the start and end index for issue cutoff. The IssueCutoffStartIndex property is inclusive and
IssueCutoffEndIndex is exclusive so that you can specify a subset of issues you want to see. For
example, to see the first 100 issues, specify the following:

com.fortify.model.
IssueCutoffStartIndex=0com.fortify.model.
IssueCutoffEndIndex=101

Because the IssueCutoffStartIndex is 0 by default, you do not need to specify this property.

com.fortify.
model.IssueCutoffByCategoryStartIndex=
<num> (inclusive)
com.fortify.
model.IssueCutoffByCategoryEndIndex=
<num> (exclusive)

Sets the start index for issue cutoff by category. These two properties are similar to the previous
cutoff properties except these are specified for each category. For example, to see the first five
issues for every category, specify the following:

com.fortify.model.
IssueCutoffByCategoryEndIndex=6

com.fortify.
model.MinimalLoad=true

Minimizes the data loaded from the FPR. This also restricts usage of the Functions view and might
prevent Fortify Audit Workbench from loading the source from the FPR.

com.fortify.
model.MaxEngineErrorCount=
<num>

Specifies the number of OpenText SAST reported warnings to load from the FPR. For projects with
many scan warnings, reducing this number from a default of 3000 can speed up the load time of
large FPR files.

com.fortify.
model.ExecMemorySetting

Specifies the JVM heap memory size for Fortify Audit Workbench to start external command-line tools
such as iidmigrator and fortifyupdate.

Static Application Security Testing 25.4

Page 237This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.25.9. Monitoring long running scans
When you run OpenText SAST, large and complex scans can often take a long time to complete. During the scan it is not always clear what is
happening. While OpenText recommends that you provide your debug logs to the Customer Support team, there are a couple of ways to see what
OpenText SAST is doing and how it is performing in real-time.

This section contains the following topics:

Using the SCAState tool
Using JMX tools

Static Application Security Testing 25.4

Page 238This PDF was generated on 10/10/2025

1.25.9.1. Using the SCAState tool
The SCAState command-line tool enables you to see up-to-date state analysis information during the analysis phase. The SCAState tool is located in the
<sast_install_dir>/bin directory. In addition to a live view of the analysis, it also provides a set of timers and counters that show where OpenText
SAST spends its time during the analysis phase. For more information about how to use SCAState, see the Checking the OpenText SAST Scan Status.

Static Application Security Testing 25.4

Page 239This PDF was generated on 10/10/2025

1.25.9.2. Using JMX tools
You can use tools to monitor OpenText SAST with JMX technology. These tools can provide a way to track OpenText SAST performance over time. For
more information about these tools, see the Oracle® documentation.

Note

These are third-party tools and OpenText does not provide or support them.

This section contains the following topics:

Using JConsole
Using Java VisualVM

Static Application Security Testing 25.4

Page 240This PDF was generated on 10/10/2025

1.25.9.2.1. Using JConsole
JConsole is an interactive monitoring tool that complies with the JMX specification. The disadvantage of JConsole is that you cannot save the output.

To use JConsole, you must first set some additional JVM parameters. Set the following environment variable:

export SCA_VM_OPTS="-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=9090
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false"

After the JMX parameters are set, start a scan. During the scan, start JConsole to monitor OpenText SAST locally or remotely with the following
command:

jconsole <host_name>:9090

Static Application Security Testing 25.4

Page 241This PDF was generated on 10/10/2025

1.25.9.2.2. Using Java VisualVM
Java VisualVM offers the same capabilities as JConsole. It also provides more detailed information on the JVM and enables you to save the monitor
information to an application snapshot file. You can store these files and open them later with Java VisualVM.

Similar to JConsole, before you can use Java VisualVM, you must set the same JVM parameters described in Using JConsole.

After the JVM parameters are set, start the scan. You can then start Java VisualVM to monitor the scan either locally or remotely with the following
command:

jvisualvm <host_name>:9090

Static Application Security Testing 25.4

Page 242This PDF was generated on 10/10/2025

1.26. Using mobile build sessions
With an OpenText SAST mobile build session (MBS), you can translate a project on one machine and scan it on another. A mobile build session (MBS
file) includes all the files needed for the analysis phase including the source code. To improve scan time, you can perform the translation on the build
computer, and then use a better equipped computer for the scan by doing either of the following:

Use ScanCentral SAST client to move the MBS to sensors for analysis (see ScanCentral SAST)

Move the build session (MBS file) to another computer that has an OpenText SAST installation, import the MBS (see Importing a mobile build
session), and then run the analysis.

Note

OpenText Core Application Security (Fortify on Demand) users can generate an MBS file to package translated code
for uploading some languages.

You must have the same version of OpenText Application Security Content (Rulepacks) installed on both the system where you perform the translation
and the system where you perform the analysis.

This section contains the following topics:

Mobile build session version compatibility
Creating a mobile build session
Importing a mobile build session

Static Application Security Testing 25.4

Page 243This PDF was generated on 10/10/2025

1.26.1. Mobile build session version compatibility
The OpenText SAST version on the translate machine must be compatible with the OpenText SAST version on the analysis machine. The version
number format is <major>.<minor>.<patch>.<build_number> (for example, 25.4.0.0140). The <major> and <minor> portions of the OpenText SAST
version numbers on both the translation and the analysis machines must match. For example, 25.4.0 and 25.4.x are compatible. To determine the
OpenText SAST version number, type sourceanalyzer -v on the command line.

You can obtain the build ID and the OpenText SAST version from an MBS file with the following command:

sourceanalyzer -import-build-session <file>.mbs
-Dcom.fortify.sca.ExtractMobileInfo=true

Static Application Security Testing 25.4

Page 244This PDF was generated on 10/10/2025

1.26.2. Creating a mobile build session
On the machine where you performed the translation, issue the following command to generate a mobile build session:

sourceanalyzer -b <build_id> -export-build-session <file>.mbs

where <file>.mbs is the file name you provide for the OpenText SAST mobile build session.

Static Application Security Testing 25.4

Page 245This PDF was generated on 10/10/2025

1.26.3. Importing a mobile build session
After you move the <file>.mbs file to the machine where you want to perform the scan, you can import the mobile build session into the OpenText
SAST project root directory.

To import the mobile build session, type the following command:

sourceanalyzer -import-build-session <file>.mbs

After you import your OpenText SAST mobile build session, you can proceed to the analysis phase. Perform a scan with the same build ID that was used
in the translation.

You cannot merge multiple mobile build sessions into a single MBS file. Each exported build session must have a unique build ID. However, after all the
build IDs are imported on the same OpenText SAST installation, you can scan multiple build IDs in one scan with the -b option (see Analysis Phase).

Static Application Security Testing 25.4

Page 246This PDF was generated on 10/10/2025

1.27. Troubleshooting
This section contains the following topics:

Exit codes
Memory tuning
Scanning complex functions
Issue non-determinism
Locating the log files
Configuring log files
Reporting issues and requesting enhancements

Static Application Security Testing 25.4

Page 247This PDF was generated on 10/10/2025

1.27.1. Exit codes
The following table describes the possible OpenText SAST exit codes.

Exit code Description

0 Success

1 Generic failure

2 Invalid input files
(this might indicate that an attempt was made to translate a file that has an extension that OpenText SAST does not support)

3 Process timed out

4 Analysis completed with numbered warning messages written to the console and/or to the log file

5 Analysis completed with numbered error messages written to the console and/or to the log file

6 Scan phase was unable to generate issue results

7 Unable to detect a valid license or the LIM license expired at run time

By default, OpenText SAST only returns exit codes 0, 1, 2, 3, or 7.

You can extend the default exit code options by setting the com.fortify.sca.ExitCodeLevel property in the
<sast_install_dir>/Core/Config/fortify-sca.properties file.

The valid values are:

nothing—Returns any of the default exit codes (0, 1, 2, 3, or 7).
warnings—Returns exit codes 4 and 5 in addition to the default exit codes.
errors—Returns exit code 5 in addition to the default exit codes.
no_output_file—Returns exit code 6 in addition to the default exit codes.

Static Application Security Testing 25.4

Page 248This PDF was generated on 10/10/2025

1.27.2. Memory tuning
The amount of physical RAM required for a scan depends on the complexity of the code. By default, OpenText SAST automatically allocates the memory
it uses based on the physical memory available on the system. This is generally sufficient. As described in Output Options, you can adjust the Java heap
size with the -Xmx command-line option.

This section describes suggestions for what you can do if you encounter OutOfMemory errors during the analysis.

Note

You can set the memory allocation options discussed in this section to run for all scans by setting the SCA_VM_OPTS
environment variable.

This section contains the following topics:

Java heap exhaustion
Native heap exhaustion
Stack overflow

Static Application Security Testing 25.4

Page 249This PDF was generated on 10/10/2025

1.27.2.1. Java heap exhaustion
Java heap exhaustion is the most common memory problem that might occur during OpenText SAST scans. It is caused by allocating too little heap
space to the Java virtual machine that OpenText SAST uses to scan the code. You can identify Java heap exhaustion from the following symptom.

Symptom

One or more of these messages appears in the OpenText SAST log file and in the command-line output:

There is not enough memory available to complete analysis. For details on making more memory available, please consult the user manual.
java.lang.OutOfMemoryError: Java heap space
java.lang.OutOfMemoryError: GC overhead limit exceeded

Resolution

To resolve a Java heap exhaustion problem, allocate more heap space to the OpenText SAST Java virtual machine when you start the scan. To increase
the heap size, use the -Xmx command-line option when you run the OpenText SAST scan. For example, -Xmx1G makes 1 GB available. Before you use
this parameter, determine the maximum allowable value for Java heap space. The maximum value depends on the available physical memory.

Heap sizes between 32 GB and 48 GB are not advised due to internal JVM implementations. Heap sizes in this range perform worse than at 32 GB. Heap
sizes smaller than 32 GB are optimized by the JVM. If your scan requires more than 32 GB, then you need 64 GB or more. As a guideline, assuming no
other memory intensive processes are running, do not allocate more than 2/3 of the available memory.

If the system is dedicated to running OpenText SAST, you do not need to change it. However, if the system resources are shared with other
memory‑intensive processes, subtract an allowance for those other processes.

Note

You do not need to account for other resident but not active processes (while OpenText SAST is running) that the
operating system might swap to disk. Allocating more physical memory to OpenText SAST than is available in the
environment might cause “thrashing,” which typically slows down the scan along with everything else on the
system.

Static Application Security Testing 25.4

Page 250This PDF was generated on 10/10/2025

1.27.2.2. Native heap exhaustion
Native heap exhaustion is a rare scenario where the Java virtual machine can allocate the Java memory regions on startup, but is left with so few
resources for its native operations (such as garbage collection) that it eventually encounters a fatal memory allocation failure that immediately
terminates the process.

Symptom

You can identify native heap exhaustion by abnormal termination of the OpenText SAST process and the following output on the command line:

A fatal error has been detected by the Java Runtime Environment:
#
java.lang.OutOfMemoryError: requested ... bytes for GrET ...

Because this is a fatal Java virtual machine error, it is usually accompanied by an error log created in the working directory with the file
name hs_err_pidNNN.log.

Resolution

Because the problem is a result of overcrowding within the process, the resolution is to reduce the amount of memory used for the Java memory
regions (Java heap). Reducing this value should reduce the crowding problem and allow the scan to complete successfully.

Static Application Security Testing 25.4

Page 251This PDF was generated on 10/10/2025

1.27.2.3. Stack overflow
Each thread in a Java application has its own stack. The stack holds return addresses, function/method call arguments, and so on. If a thread tends to
process large structures with recursive algorithms, it might need a large stack for all those return addresses. With the JVM, you can set that size with
the -Xss option.

Symptoms

This message typically appears in the OpenText SAST log file, but might also appear in the command-line output:

java.lang.StackOverflowError

Resolution

The default stack size is 16 MB. To increase the stack size, pass the -Xss option to the sourceanalyzer command. For example, -Xss32M increases the
stack to 32 MB.

Static Application Security Testing 25.4

Page 252This PDF was generated on 10/10/2025

1.27.3. Scanning complex functions
During a scan, the Dataflow Analyzer might encounter a function for which it cannot complete the analysis and reports the following message:

Function <name> is too complex for <analyzer> analysis and will be skipped (<identifier>)

where:

<name> is the name of the source code function
<analyzer> is the name of the analyzer
<identifier> is the type of complexity, which is one of the following:

l: Too many distinct locations
m: Out of memory
s: Stack size too small
t: Analysis taking too much time
v: Function visits exceed the limit

The depth of analysis OpenText SAST performs sometimes depends on the available resources. OpenText SAST uses a complexity metric to trade off
these resources against the number of vulnerabilities that it can find. Sometimes, this means giving up on a particular function when OpenText SAST
does not have enough resources available. This is normally when you see the "Function too complex" messages.

When you see this message, it does not necessarily mean that OpenText SAST completely ignored the function in the program. For example, the
Dataflow Analyzer typically visits a function many times before completing the analysis, and might not have run into this complexity limit in the
previous visits. In this case, the results include everything learned from the previous visits.

You can control the "give up" point using OpenText SAST properties called limiters. Different analyzers have different limiters.

The following sections provide a discussion of a resolution for this issue.

This section contains the following topics:

Dataflow Analyzer limiters
Control Flow and Null Pointer analyzer limiters

Static Application Security Testing 25.4

Page 253This PDF was generated on 10/10/2025

1.27.3.1. Dataflow Analyzer limiters
There are three types of complexity identifiers for the Dataflow Analyzer:

l: Too many distinct locations
m: Out of memory
s: Stack size too small
v: Function visits exceed the limit

To resolve the issue identified by s, increase the stack size for by setting -Xss to a value greater than 16 MB.

To resolve the complexity identifier of m, increase the physical memory for OpenText SAST.

To resolve the complexity identifier of l, you can adjust the following limiters in the OpenText SAST property file
<sast_install_dir>/Core/config/fortify-sca.properties or on the command line.

Property name Default value

com.fortify.sca.
limiters.MaxTaintDefForVar

1000

com.fortify.sca.
limiters.MaxTaintDefForVarAbort

4000

com.fortify.sca.
limiters.MaxFieldDepth

4

The MaxTaintDefForVar limiter is a dimensionless value expressing the complexity of a function, while MaxTaintDefForVarAbort is the upper bound
for it. Use the MaxFieldDepth limiter to measure the precision when the Dataflow Analyzer analyzes any given object. OpenText SAST always tries to
analyze objects at the highest precision possible.

If a given function exceeds the MaxTaintDefForVar limit at a given precision, the Dataflow Analyzer analyzes that function with lower precision (by
reducing the MaxFieldDepth limiter). When you reduce the precision, it reduces the complexity of the analysis. When the precision cannot be reduced
any further, OpenText SAST then proceeds with analysis at the lowest precision until either it finishes, or the complexity exceeds
the MaxTaintDefForVarAbort limiter. In other words, OpenText SAST tries harder at the lowest precision to get at least some results from the function.
If OpenText SAST reaches the MaxTaintDefForVarAbort limiter, it gives up on the function entirely and you get the "Function too complex" warning.

To resolve the complexity identifier of v, you can adjust the property com.fortify.sca.limiters.MaxFunctionVisits. This property sets the
maximum number of times the taint propagation analyzer visits functions. The default is 50.

Static Application Security Testing 25.4

Page 254This PDF was generated on 10/10/2025

1.27.3.2. Control Flow and Null Pointer analyzer limiters
There are two types of complexity identifiers for both Control Flow and Null Pointer analyzers:

m: Out of memory
t: Analysis taking too much time

Due to the way that the Dataflow Analyzer handles function complexity, it does not take an indefinite amount of time. Control Flow and Null Pointer
analyzers, however, can take an exceptionally long time when analyzing complex functions. Therefore, OpenText SAST provides a way to abort the
analysis when this happens, and then you get the "Function too complex" message with a complexity identifier of t.

To change the maximum amount of time these analyzers spend to analyze functions, you can adjust the following property values in the OpenText
SAST property file <sast_install_dir>/Core/config/fortify-sca.properties or on the command line.

Property name Description Default value

com.fortify.sca.
CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for Control Flow analysis on a single function. 600000 (10 minutes)

com.fortify.sca.
NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for Null Pointer analysis on a single function. 300000 (5 minutes)

To resolve the complexity identifier of m, increase the physical memory for OpenText SAST.

Note

If you increase these limiters or time settings, it makes the analysis of complex functions take longer. It is difficult to
characterize the exact performance implications of a particular value for the limiters/time, because it depends on the
specific function in question. If you never want to see the "Function too complex" warning, you can set the
limiters/time to an extremely high value, however it can cause unacceptable scan time.

Static Application Security Testing 25.4

Page 255This PDF was generated on 10/10/2025

1.27.4. Issue non-determinism
Running in parallel analysis mode might introduce issue non-determinism. If you experience any problems, contact Customer Support, and disable
parallel analysis mode. Disabling parallel analysis mode results in sequential analysis, which can be substantially slower but provides deterministic
results across multiple scans.

To disable parallel analysis mode:

1. Open the fortify-sca.properties file located in the <sast_install_dir>/Core/config directory in a text editor.
2. Change the value for the com.fortify.sca.MultithreadedAnalysis property to false.

com.fortify.sca.MultithreadedAnalysis=false

Static Application Security Testing 25.4

Page 256This PDF was generated on 10/10/2025

1.27.5. Locating the log files
We will announce deprecation of the -debug, -verbose, and -debug-verbose options in the System Requirements doc and release notes in the future.
The GUI Tools team uses these options in the tools so we need to let them know too.>>

By default, OpenText SAST creates log files in the following location:

Windows: C:\Users\<username>\AppData\Local\Fortify\sca<version>\log
Non-Windows: <userhome>/.fortify/sca<version>/log

where <version> is the version of OpenText SAST that you are using.

The following table describes the OpenText SAST default log files.

File names Description

sca.log
scaX.log

The standard log provides a log of informational messages, warnings, and errors that occurred in the run of
sourceanalyzer.

sca_FortifySupport.log
scaX_FortifySupport.log

The OpenText SAST Support log provides:

The same log messages as the standard log file, but with additional details
Additional detailed messages that are not included in the standard log file

This log file is helpful to Customer Support or the development team to troubleshoot any issues.

To specify a log file on the command line, see Other options.

If you encounter warnings or errors that you cannot resolve, provide the OpenText SAST Support log file to Customer Support.

Static Application Security Testing 25.4

Page 257This PDF was generated on 10/10/2025

1.27.6. Configuring log files
You can configure the information that OpenText SAST writes to the log files by setting logging properties (see Logging Properties) and by updating the
<sast_install_dir>/Core/config/log4j2.xml file. You can configure the following log file settings:

The location and name of the log file

Property: com.fortify.sca.LogFile

Log level (see Understanding Log Levels)

Property: com.fortify.sca.LogLevel

Whether to overwrite the log files for each run of sourceanalyzer

Property: com.fortify.sca.ClobberLogFile

Command-line option: -clobber-log

For information about how to make changes to the log4j2.xml file, see https://logging.apache.org/log4j/2.x/manual/index.html.

Understanding log levels
The log level you select gives you all log messages equal to and greater than it. The following table lists the log levels in order from least to greatest.
For example, the default log level of INFO includes log messages with the following levels: INFO, WARN, ERROR, and FATAL. You can set the log level
with the com.fortify.sca.LogLevel property in the <sast_install_dir>/Core/config/fortify-sca.properties file or on the command-line using
the -D option.

Log level Description

DEBUG Includes information that Customer Support or the development team can use to troubleshoot an issue

INFO Basic information about the translation or scan process

WARN Information about issues where the translation or scan did not stop, but might require your attention for accurate results

ERROR Information about an issue that might require attention

FATAL Information about an error that caused the translation or scan to abort

Static Application Security Testing 25.4

Page 258This PDF was generated on 10/10/2025

https://logging.apache.org/log4j/2.x/manual/index.html

1.27.7. Reporting issues and requesting enhancements
Feedback is critical to the success of this product. To request enhancements or patches, or to report issues, visit Customer Support at
https://www.microfocus.com/support.

Include the following information when you contact customer support:

Product: OpenText SAST
Version number of OpenText SAST and any independent OpenText SAST modules: To determine the version numbers, run the following:

sourceanalyzer -version

Platform: (for example, Red Hat Enterprise Linux <version>)
Operating system: (such as Linux)

To request an enhancement, include a description of the feature enhancement.

To report an issue, provide enough detail so that support can duplicate the issue. The more descriptive you are, the faster support can analyze and
resolve the issue. Also include the log files, or the relevant portions of them, from when the issue occurred.

Static Application Security Testing 25.4

Page 259This PDF was generated on 10/10/2025

https://www.microfocus.com/support

1.28. Command-line reference
This section describes general OpenText SAST command-line options and how to specify source files for analysis. Command-line options that are
specific to a language are described in the section for that language.

This section contains the following topics:

Specifying files and directories
Directives
Translation options
Analysis options
Output options
Other options

Static Application Security Testing 25.4

Page 260This PDF was generated on 10/10/2025

1.28.1. Specifying files and directories
File specifiers are expressions that allow you to pass a long list of files or a directory to OpenText SAST using wildcard characters. OpenText SAST
recognizes two types of wildcard characters: a single asterisk character (*) matches part of a file name, and double asterisk characters (**) recursively
matches directories. You can specify one or more files, one or more file specifiers, or a combination of files and file specifiers. Separate multiple file
specifiers with semicolons (Windows) or colons (non-Windows).

<files> | <file_dir_specifiers>

Windows and many Linux shells automatically expand parameters that contain the asterisk character (*), so you must enclose file-specifier expressions
in quotes. Also, on Windows, you can use the backslash character (\) as the directory separator instead of the forward slash (/).

Note

File specifiers do not apply to languages that require compiler or build integration.

The following table describes examples of file and directory specifiers.

File or directory specifier Description

<dir>
"<dir>/**/*"

Matches all files in the named directory and any subdirectories or the named directory when used for a directory
parameter.

"<dir>/**/Example.java" Matches any file named Example.java found in the named directory or any subdirectories.

"<dir>/*.java"
"<dir>/*.jar"

Matches any file with the specified extension found in the named directory.

"<dir>/**/*.kt"
"<dir>/**/*.jar"

Matches any file with the specified extension found in the named directory or any subdirectories.

"<dir>/**/beta/**" Matches all directories and files found in the named directory that have beta in the path, including beta as a file
name.

"<dir>/**/classes/" Matches all directories and files with the name classes found in the named directory and any subdirectories.

"**/test/**" Matches all files in the current directory tree that have a test element in the path, including test as a file name.

"**/test/**/*;**/build/**/*"
or
"**/test/**/*:**/build/**/*"

Matches all files in the current directory tree that have a test or a build element in the path, including test or
build as a file name.

"**/webgoat/*" Matches all files in any webgoat directory in the current directory tree.
Matches:

/src/main/java/org/owasp/webgoat
/test/java/org/owasp/webgoat

Does not match (assignments directory does not match)

/test/java/org/owasp/webgoat/assignments

Static Application Security Testing 25.4

Page 261This PDF was generated on 10/10/2025

1.28.2. Directives
Use only one directive at a time and do not use any directive in conjunction with translation or analysis commands. Use the directives described in the
following table to list information about previous translation commands.

Directive Description

-clean Deletes all OpenText SAST intermediate files and build records. If you specify a build ID, only files and build records that relate to
that build ID are deleted.

-show-
binaries

Displays all objects created but not used in the production of any other binaries. If fully integrated into the build, it lists all the
binaries produced.

-show-build-
ids

Displays a list of all known build IDs.

-show-build-
tree

When you scan with the -bin option, displays all files used to create the binary and all files used to create those files in a tree
layout. If the -bin option is not present, the tree is displayed for each binary.

Note

This option can generate an extensive amount of information.

-show-build-
warnings

Use with the -b option to display any errors and warnings that occurred in the translation phase on the console.

Note

Fortify Audit Workbench also displays these errors and warnings in the results Certification tab.

-show-files Displays the files included in the specified build ID. When the -bin option is present, displays only the source files that went into the
binary.

-show-loc Use with the -b option to display the number of lines in the translated code.

Static Application Security Testing 25.4

Page 262This PDF was generated on 10/10/2025

1.28.2.1. LIM license directives
OpenText SAST provides directives to manage the usage of your LIM license. You can store or clear the LIM license pool credentials. You can also
request (and release) a detached lease for offline analysis if the specified license pool permits detached leases.

Note

By default, OpenText SAST requires an HTTPS connection to the LIM server and you must have a trusted certificate.
For more information, see Adding Trusted Certificates.

Use the directives described in the following table for a license managed by the LIM.

LIM directive Description

-store-license-pool-credentials
"<lim_url>|<lim_pool_name>|<lim_pool_pwd>|<proxy_url>|<proxy_user>|<proxy_pwd>"

Stores your LIM license pool credentials so that
OpenText SAST uses the LIM for licensing. The proxy
information is optional. OpenText SAST stores the pool
password and the proxy credentials provided with this
directive in the fortify-sca.properties file as
encrypted data. If your license pool credentials change
after you have installed OpenText SAST, you can run
this directive again to save the new credentials.
Example:

sourceanalyzer -store-license-pool-credentials
 "https://<ip_address>:<port>|TeamA|mypassword"

Associated property names:
com.fortify.sca.lim.Url
com.fortify.sca.lim.PoolName
com.fortify.sca.lim.PoolPassword
com.fortify.sca.lim.ProxyUrl
com.fortify.sca.lim.ProxyUsername
com.fortify.sca.lim.ProxyPassword

-clear-license-pool-credentials Removes the LIM license pool credentials from the
fortify-sca.properties file. If your license pool
credentials change, you can remove them with this
directive, and then use the -store-license-pool-
credentials directive to save the new credentials.

-request-detached-lease <duration> Requests a detached lease from the LIM license pool for
exclusive use on this system for the specified duration
(in minutes). This enables you to run OpenText SAST
even when disconnected from your corporate intranet.

Note

To use this directive, the license pool
must be configured to allow detached
leases.

-release-detached-lease Releases a detached lease back to the license pool.

Static Application Security Testing 25.4

Page 263This PDF was generated on 10/10/2025

1.28.3. Translation options
The following table describes the general translation options that can be used with most translation commands.

Translation
option

Description

-b <build_id> Specifies a build ID. OpenText SAST uses a build ID to track the files that are compiled and combined as part of a build, and
then later, to scan those files.
Equivalent property name:
com.fortify.sca.BuildID

-disable-language
<languages>

Specifies a colon-separated list of languages to exclude from the translation phase. The valid language values are
abap, actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet, golang, objc, php, python, ruby, swift, and vb.
Equivalent property name:
com.fortify.sca.DISabledLanguages

-enable-language
<languages>

Specifies a colon-separated list of languages to translate. The valid language values are
abap, actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet, golang, objc, php, python, ruby, swift, and vb.
Equivalent property name:
com.fortify.sca.EnabledLanguages

-exclude
<file_specifiers>

Specifies the files to exclude from the translation. Files excluded from translation are also not scanned. Separate multiple file
paths with semicolons (Windows) or colons (non-Windows). The following example excludes all Java files in any Test
subdirectory.

sourceanalyzer -b MyProject –cp "**/*.jar" "**/*"
-exclude "**/Test/*.java"

See Specifying files and directories for more information on how to use file specifiers.
Equivalent property name:
com.fortify.sca.exclude

-encoding
<encoding_name>

Specifies the source file encoding type. OpenText SAST enables you to scan a project that contains differently encoded source
files. To work with a multi-encoded project, you must specify the -encoding option in the translation phase, when OpenText
SAST first reads the source code file. OpenText SAST remembers this encoding in the build session and propagates it into the
FVDL file.
Valid encoding names are from the java.nio.charset.Charset.
Typically, if you do not specify the encoding type, OpenText SAST uses file.encoding from the java.io.InputStreamReader
constructor with no encoding parameter. In a few cases (for example with the ActionScript parser), OpenText SAST defaults to
UTF-8 encoding.
Equivalent property name:
com.fortify.sca.InputFileEncoding

-nc When specified before a compiler command line, OpenText SAST translates the source file but does not run the compiler.

-noextension-
type <file_type>

Specifies the file type for source files that have no extension. The valid file type values are ABAP, ACTIONSCRIPT, APEX,
APEX_OBJECT, APEX_TRIGGER, ARCHIVE, ASPNET, ASP, ASPX, BITCODE, BSP, BYTECODE, CFML, COBOL, CSHARP, DART, DOCKERFILE,
FLIGHT, GENERIC, GO, HCL, HOCON, HTML, INI, JAVA, JAVA_PROPERTIES, JAVASCRIPT, JINJA, JSON, JSP, JSPX, JUPYTER, KOTLIN,
MSIL, MXML, OBJECT, PHP, PLSQL, PYTHON, RUBY, RUBY_ERB, SCALA, SWIFT, SWC, SWF, TLD, SQL, TSQL, TYPESCRIPT, VB, VB6,
VBSCRIPT, VISUAL_FORCE, VUE, and XML, and YAML .

-disable-
compiler-
resolution

Specifies to include build script files that have the same name as a build tool (such as gradlew) during translation as source
files.
Equivalent property name:
com.fortify.sca.DisableCompilerName

-project-root Specifies the directory to store intermediate files generated in the translation and analysis phases. OpenText SAST makes
extensive use of intermediate files located in this project root directory. In some cases, you can achieve better performance
for analysis by making sure this directory is on local storage rather than on a network drive.
Equivalent property name:
com.fortify.sca.ProjectRoot

Static Application Security Testing 25.4

Page 264This PDF was generated on 10/10/2025

1.28.4. Analysis options
The following table describes the general analysis options (typically with -scan).

Analysis option Description

-b <build_id> Specifies the build ID used in a prior translation command.
Equivalent property name:
com.fortify.sca.BuildID

-scan Causes OpenText SAST to perform a security analysis for the specified build ID.

-scan-policy
<policy_name> |
-sc
<policy_name>

Specifies a scan policy for the analysis. The valid policy names are classic, security, and devops. For more information, see
Applying a Scan Policy to the Analysis.
Equivalent property name:
com.fortify.sca.ScanPolicy

-analyzers
<analyzer_list>

Specifies the analyzers you want to enable with a colon- or comma-separated list of analyzers. The valid analyzer names are
buffer, content, configuration, controlflow, dataflow, nullptr, semantic, and structural. You can use this option to
disable analyzers that are not required for your security requirements.
Equivalent property name:
com.fortify.sca.DefaultAnalyzers

-p <level> |
-scan-precision
<level>

Uses speed dial to scan the project with a scan precision level. The lower the scan precision level, the faster the scan
performance. The valid values are 1, 2, 3, and 4. For more information, see Configuring Scan Speed.
Equivalent property name:
com.fortify.sca.PrecisionLevel

-project-root Specifies the directory to store intermediate files generated in the translation and analysis phases. OpenText SAST makes
extensive use of intermediate files located in this project root directory. In some cases, you can achieve better performance for
analysis by making sure this directory is on local storage rather than on a network drive.
Equivalent property name:
com.fortify.sca.ProjectRoot

-project-
template <file>

Specifies the issue template file to use for the scan. This only affects scans on the local machine. If you upload the FPR to
Application Security, it uses the issue template assigned to the application version.
Equivalent property name:
com.fortify.sca.ProjectTemplate

-quick Quickly scan the project for critical- and high-priority issues using the fortify-sca-quickscan.properties file, which provides
a less in-depth analysis. By default, quick scan disables the Buffer Analyzer and the Control Flow Analyzer. In addition, it applies
the Quick View filter set. For more information, see Quick Scan.
Equivalent property name:
com.fortify.sca.QuickScanMode

-filter <file> Specifies a results filter file. For more information, see Optimizing results.
Equivalent property name:
com.fortify.sca.FilterFile

-bin <binary> |
-binary-name
<binary>

Specifies a subset of source files to scan. Only the source files that were linked in the named binary at build time are included in
the scan. You can use this option multiple times to specify the inclusion of multiple binaries in the scan.
Equivalent property name:
com.fortify.sca.BinaryName

-disable-
default-rule-
type

<type>

Used to test custom rules. Disables all rules of the specified type in the default Rulepacks. You can use this option multiple times
to specify multiple rule types.
The <type> parameter is the XML tag minus the suffix Rule. For example, use DataflowSource for DataflowSourceRule
elements. You can also specify specific sections of characterization rules, such as Characterization:Control flow,
Characterization:Issue, and Characterization:Generic.
The <type> parameter is case-insensitive.

-no-default-
issue-rules

Used to test custom rules. Disables rules in default Rulepacks that lead directly to issues. OpenText SAST still loads rules that
characterize the behavior of functions.

Note

This is equivalent to disabling the following rule types: DataflowSink, Semantic, Controlflow,
Structural, Configuration, Content, Statistical, Internal, and Characterization:Issue.

Equivalent property name:
com.fortify.sca.NoDefaultIssueRules

-no-default-
rules

Used to test custom rules. Disables loading of rules from the default Rulepacks. OpenText SAST processes the Rulepacks for
description elements and language libraries, but processes no rules.
Equivalent property name:
com.fortify.sca.NoDefaultRules

Static Application Security Testing 25.4

Page 265This PDF was generated on 10/10/2025

-no-default-
source-rules

Used to test custom rules. Disables source rules in the default Rulepacks.

Note

Characterization source rules are not disabled.

Equivalent property name:
com.fortify.sca.NoDefaultSourceRules

-no-default-
sink-rules

Used to test custom rules. Disables sink rules in the default Rulepacks.

Note

Characterization sink rules are not disabled.

Equivalent property name:
com.fortify.sca.NoDefaultSinkRules

-rules <file> |
<dir>

Specifies a custom Rulepack or directory. You can use this option multiple times to specify multiple Rulepack files. If you specify
a directory, OpenText SAST includes all the files in the directory with the .bin and .xml extensions.
Equivalent property name:
com.fortify.sca.RulesFile

Static Application Security Testing 25.4

Page 266This PDF was generated on 10/10/2025

1.28.5. Output options
The following table describes the output options. Apply all these options during the analysis phase (with the -scan option). You can specify the build-
label, build-project, and build-version options during the translation phase and they are overridden if specified again for the analysis phase.

Output option Description

-f <file> |
-output-file
<file>

Specifies the file to which analysis results are written. If you do not specify an output file, OpenText SAST writes the output to the
terminal.
Equivalent property name:
com.fortify.sca.ResultsFile

-format
<format>

Controls the output format. Valid options are fpr, fvdl, fvdl.zip, text, and auto. The default is auto, which selects the output
format based on the file name extension of the file provided with the -f option.
The FVDL is an XML file that contains the detailed OpenText SAST analysis results. This includes vulnerability details, rule
descriptions, code snippets, command-line options used in the scan, and any scan errors or warnings.
The FPR is a package of the analysis results that includes the FVDL file as well as extra information such as a copy of the source
code used in the scan, the external metadata, and custom rules (if applicable). Fortify Audit Workbench is automatically
associated with the .fpr extension.

Note

If you use result certification, you must specify the fpr format. See the OpenText™ Fortify Audit
Workbench User Guide for information about result certification.

You can prevent some information from being included in the FPR or FVDL file to improve scan time or output file size. See other
options in this table and see Optimizing FPR Files.
Equivalent property name:
com.fortify.sca.Renderer

-append Appends results to the file specified with the -f option. The resulting FPR file contains the issues from the earlier scan as well as
issues from the current scan. The build information and program data (lists of sources and sinks) sections are also merged. To use
this option, the output file format must be fpr or fvdl. For information on the -format output option, see the description in this
table.
The engine data, which includes OpenText Application Security Content information, command-line options, system properties,
warnings, errors, and other information about the execution of OpenText SAST (as opposed to information about the program
being analyzed), is not merged. Because engine data is not merged with the -append option, OpenText does not certify results
generated with -append.
If this option is not specified, OpenText SAST adds any new findings to the FPR file, and labels the older result as previous
findings.
In general, only use the -append option when it is impossible to analyze an entire application at once.
Equivalent property name:
com.fortify.sca.OutputAppend

-build-label
<label>

Specifies a label for the project to include in the analysis results. You can include this option during the translation or the analysis
phase. OpenText SAST does not use this label for code analysis. If this option is specified for both translation and analysis, then
only the last specified label is passed to the analysis results.
Equivalent property name:
com.fortify.sca.BuildLabel

-build-project
<project_name>

Specifies a name for the project to include in the analysis results. You can include this option during the translation or the analysis
phase. OpenText SAST does not use this name for code analysis.
Equivalent property name:
com.fortify.sca.BuildProject

-build-version
<version>

Specifies a version for the project to include in the analysis results. You can include this option during the translation or the
analysis phase. OpenText SAST does not use this version for code analysis.
Equivalent property name:
com.fortify.sca.BuildVersion

-disable-
source-
bundling

Excludes source files from the analysis results file. The analysis results will still include snippets.
Equivalent property name:
com.fortify.sca.FPRDisableSourceBundling

-fvdl-no-
descriptions

Excludes the OpenText Application Security Content descriptions from the analysis results file.
Equivalent property name:
com.fortify.sca.FVDLDisableDescriptions

-fvdl-no-
enginedata

Excludes engine data from the analysis results file. The engine data includes OpenText Application Security Content information,
command-line options, system properties, warnings, errors, and other information about the OpenText SAST execution.
Equivalent property name:
com.fortify.sca.FVDLDisableEngineData

-fvdl-no-
progdata

Excludes program data from the analysis results file. This removes the taint source information from the Functions view in Fortify
Audit Workbench.
Equivalent property name:
com.fortify.sca.FVDLDisableProgramData

Static Application Security Testing 25.4

Page 267This PDF was generated on 10/10/2025

-fvdl-no-
snippets

Excludes the code snippets from the analysis results file.
Equivalent property name:
com.fortify.sca.FVDLDisableSnippets

Static Application Security Testing 25.4

Page 268This PDF was generated on 10/10/2025

1.28.6. Other options
The following table describes other options.

Other option Description

@<file> Reads command-line options from the specified file. The plain text <file> contains options and parameters, each on a separate
line.
For example, instead of running the command sourceanalyzer -b my_build_id -source 17 -cp lib.jar Test.java, you can
run the following command: sourceanalyzer @optfile.txt where the optfile.txt file contains:

"-b"
"my_build_id"
"-source"
"17"
"-cp"
"lib.jar"
"Test.java"

-h |
-? |
-help

Prints a summary of the command-line options.

-debug Includes debug information in the OpenText SAST Support log file, which is only useful for Customer Support to help troubleshoot.
Equivalent property name:
com.fortify.sca.Debug

-debug-verbose This is the same as the -debug option, but it includes more details, specifically for parse errors.
Equivalent property name:
com.fortify.sca.DebugVerbose

-debug-mem Includes performance information in the OpenText SAST Support log.
Equivalent property name:
com.fortify.sca.DebugTrackMem

-verbose Sends verbose status messages to the console and to the OpenText SAST Support log file.
Equivalent property name:
com.fortify.sca.Verbose

-
logfile <file>

Specifies the log file that OpenText SAST creates. For default log file locations, see Locating the log files.
Equivalent property name:
com.fortify.sca.LogFile

-clobber-log Directs OpenText SAST to overwrite the log file for each run of sourceanalyzer. Without this option, OpenText SAST appends
information to the log file.
Equivalent property name:
com.fortify.sca.ClobberLogFile

-quiet Disables the command-line progress information.
Equivalent property name:
com.fortify.sca.Quiet

-version |
-v

Displays the OpenText SAST version and versions of various independent modules included with OpenText SAST (all other
functionality is contained in OpenText SAST).

-autoheap Enables automatic allocation of memory based on the physical memory available on the system. This is the default memory
allocation setting.

-Xmx<size>M | G Manually specifies the maximum amount of memory OpenText SAST uses.

Note

OpenText recommends that you use the default memory allocation setting defined by -autoheap
instead of manually specifying the maximum memory with this option.

Heap sizes between 32 GB and 48 GB are not advised due to internal JVM implementations. Heap sizes in this range perform
worse than at 32 GB. The JVM optimizes heap sizes smaller than 32 GB. If your scan requires more than 32 GB, then you need
64 GB or more. As a guideline, assuming no other memory intensive processes are running, do not allocate more than 2/3 of the
available memory.
When you specify this option, make sure that you do not allocate more memory than is physically available, because this
degrades performance. As a guideline, and the assumption that no other memory intensive processes are running, do not allocate
more than 2/3 of the available memory.

Static Application Security Testing 25.4

Page 269This PDF was generated on 10/10/2025

1.29. Configuration options
The OpenText SAST installer places a set of properties files on your system. Properties files contain configurable settings for OpenText SAST runtime
analysis, output, and performance.

This section contains the following topics:

Properties files
fortify-sca.properties
fortify-sca-quickscan.properties
fortify-rules.properties

Static Application Security Testing 25.4

Page 270This PDF was generated on 10/10/2025

1.29.1. Properties files
The properties files are located in the <sast_install_dir>/Core/config directory. The installed properties files contain default values. OpenText
recommends that you consult with your project leads before you make changes to the properties in the properties files. You can modify any of the
properties in the configuration file with any text editor. You can also specify the property on the command line with the -D option.

The following table lists the OpenText SAST properties files. Property files for the OpenText SAST applications and tools are described in the OpenText™
Application Security Tools Guide.

Properties file name Description More information

fortify-sca.properties Defines the OpenText SAST configuration properties. fortify-sca.properties

fortify-sca-
quickscan.properties

Defines the configuration properties applicable for an OpenText SAST quick
scan.

fortify-sca-
quickscan.properties

fortify-rules.properties Defines the configuration properties that determine rule behavior. fortify-rules.properties

Static Application Security Testing 25.4

Page 271This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.29.1.1. Properties file format
In the properties file, each property consists of a pair of strings: the first string is the property name and the second string is the property value.

com.fortify.sca.fileextensions.htm=HTML

As shown above, the property sets the translation to use for .htm files. The property name is com.fortify.sca.fileextensions.htm and the value is
set to HTML.

Note

When you specify a path for Windows systems as the property value, you must escape any backslash character (\)
with a backslash (for example: com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerA\\inc).

Disabled properties are commented out of the properties file. To enable these properties, remove the comment symbol (#) and save the properties file.
In the following example, the com.fortify.sca.LogFile property is disabled in the properties file and is not part of the configuration:

default location for the log file
#com.fortify.sca.LogFile=${com.fortify.sca.ProjectRoot}/sca/log/sca.log

Static Application Security Testing 25.4

Page 272This PDF was generated on 10/10/2025

1.29.1.2. Overriding settings
OpenText SAST uses properties settings in a specific order. You can override any previously set properties with the values that you specify. Keep this
order in mind when making changes to the properties files.

The following table lists the order of precedence for OpenText SAST properties.

Order Property specification Description

1 Command line with the
-D option

Properties specified on the command line have the highest priority and you can specify them in any scan.

2 OpenText SAST quick
scan configuration file

Note

You can specify either quick scan or a scan precision level. Therefore, these property
settings both have second priority.

Properties specified in the quick scan configuration file (fortify-sca-quickscan.properties) have the second
priority, but only if you include the -quick option to enable quick scan mode.

OpenText SAST scan
precision property files

Properties specified in the scan precision property files have the second priority, but only if you include the -
scan-precision option to enable scan precision.

3 OpenText SAST
configuration file

Properties specified in the OpenText SAST configuration file (fortify-sca.properties) have the lowest priority.
Edit this file to change the property values on a more permanent basis for all scans.

OpenText SAST also relies on some properties that have internally defined default values.

Static Application Security Testing 25.4

Page 273This PDF was generated on 10/10/2025

1.29.2. fortify-sca.properties
The following sections describe the properties available for use in the fortify-sca.properties file. See fortify-sca-quickscan.properties for additional
properties that you can use in this properties file. Each property description includes the value type, the default value, the equivalent command-line
option (if applicable), and an example.

This section contains the following topics:

Translation and analysis phase properties
Regex analysis properties
LIM license properties
Rule properties
Java and Kotlin properties
Visual Studio and MSBuild project properties
JavaScript and TypeScript properties
Python properties
Go properties
Ruby properties
COBOL properties
PHP properties
ABAP properties
Flex and ActionScript properties
ColdFusion (CFML) properties
SQL properties
Output properties
Mobile build session (MBS) properties
Proxy properties
Logging properties
Debug properties

Static Application Security Testing 25.4

Page 274This PDF was generated on 10/10/2025

1.29.2.1. Translation and analysis phase properties
The properties for the fortify-sca.properties file in the following table are general properties that apply to the translation and/or analysis
(scan) phase.

Property name Description

Translation and scan

com.fortify.sca.BuildID Specifies the build ID of the build.
Value type: String
Default: (none)
Command-line option:-b

com.fortify.sca.CmdlineOptionsFileEncoding Specifies the encoding of the command-line options file provided with
this property, for example, to specify Unicode file paths in the options file. Valid encoding names are from the
java.nio.charset.Charset

Note

This property is only valid in the fortify-sca.properties
fortify-sca-quickscan.properites file or with the

Value type: String
Default: JVM system default encoding
Example: com.fortify.sca.CmdlineOptionsFileEncoding=UTF-8

com.fortify.sca.DISabledLanguages Specifies a colon-separated list of languages to exclude from the translation phase. The valid language values are.
abap, actionscript, apex, cfml, cobol, configuration
and vb.
Value type: String
Default: (none)
Command-line option: -disable-language

com.fortify.sca.EnabledLanguages Specifies a colon-separated list of languages to translate. The valid language values are.
abap, actionscript, apex, cfml, cobol, configuration
and vb.
Value type: String
Default: All languages in the specified source are translated unless explicitly excluded with the
com.fortify.sca.DISabledLanguages property.
Command-line option: -enable-language

com.fortify.sca.DisableCompilerName If set to true, OpenText SAST includes build script files that have the same name as a build tool (such as gradlew) during
translation as source files.
Value type: Boolean
Default:false
Command-line option: -disable-compiler-resolution

com.fortify.sca.ProjectRoot Specifies the directory to store intermediate files generated in the translation and analysis phases. OpenText SAST
makes extensive use of intermediate files located in this project root directory. In some cases, you achieve better
performance for analysis by making sure this directory is on local storage rather than on a network drive.
Value type: String (path)
Default (Windows): ${win32.LocalAppdata}/Fortify

Note

${win32.LocalAppdata} is a variable that points to the Windows Local Application Data
shell folder.

Default (non-Windows):$home/.fortify
Command-line option:-project-root
Example:com.fortify.sca.ProjectRoot=C:\Users\

Translation

Static Application Security Testing 25.4

Page 275This PDF was generated on 10/10/2025

com.fortify.sca.fileextensions.java
com.fortify.sca.fileextensions.cs
com.fortify.sca.fileextensions.js
com.fortify.sca.fileextensions.py
com.fortify.sca.fileextensions.rb
com.fortify.sca.fileextensions.aspx
com.fortify.sca.fileextensions.php

Note

This is a partial list. For the complete list, see the properties file.

Specifies how to translate specific file name extensions of languages that do not require build integration. The valid
extension types are ABAP, ACTIONSCRIPT, APEX, APEX_OBJECT
BSP, BYTECODE, CFML, COBOL, CSHARP, DART, DOCKERFILE
JAVA_PROPERTIES, JAVASCRIPT, JINJA, JSON, JSP, JSPX
RUBY, RUBY_ERB, SCALA, SWIFT, SWC, SWF, TLD, SQL, TSQL
and YAML.
Value type: String (valid language type)
Default: See the fortify-sca.properties file for the complete list.
Examples:
com.fortify.sca.fileextensions.java=JAVA
com.fortify.sca.fileextensions.cs=CSHARP
com.fortify.sca.fileextensions.js=TYPESCRIPT
com.fortify.sca.fileextensions.py=PYTHON
com.fortify.sca.fileextensions.swift=SWIFT
com.fortify.sca.fileextensions.razor=ASPNET
com.fortify.sca.fileextensions.php=PHP
com.fortify.sca.fileextensions.tf=HCL
You can also specify a value of oracle:<path_to_script>
that accepts one command-line parameter of a file name that matches the specified extension. The script must write the
valid OpenText SAST file type (see previous list) to stdout and exit with a return value of zero. If the script returns a non-
zero return code or the script does not exist, the file is not translated and OpenText SAST writes a warning to the log
file.
Example:
com.fortify.sca.fileextensions.jsp=oracle:<path_to_script>

com.fortify.sca.compilers.javac=com.fortify.sca.util.compilers.JavacCompiler
com.fortify.sca.compilers.c++=com.fortify.sca.util.compilers.GppCompiler
com.fortify.sca.compilers.make=com.fortify.sca.util.compilers.TouchlessCompiler
com.fortify.sca.compilers.mvn=com.fortify.sca.util.compilers.MavenAdapter

Note

This is a partial list. For the complete list,
see the properties file.

Specifies custom-named compilers.
Value type: String (compiler)
Default: See the Compilers section in the fortify-sca.properties
Example:
To tell OpenText SAST that “my-gcc” is a gcc compiler:
com.fortify.sca.compilers.my-gcc=com.fortify.sca.util.compilers.GccCompiler
Notes:

com.fortify.sca.UseAntListener If set to true, OpenText SAST includes com.fortify.dev.ant.SCAListener
Value type: Boolean
Default:false

com.fortify.sca.exclude Specifies one or more files to exclude from translation. Separate multiple files with semicolons (Windows) or colons
(non-Windows). See Specifying Files and Directories for more information on how to use file specifiers.
Value type: String
Default: Not enabled
Command-line option:-exclude
Example:com.fortify.sca.exclude=file1.x;file2.x

com.fortify.sca.InputFileEncoding Specifies the source file encoding type. OpenText SAST allows you to scan a project that contains differently encoded
source files. To work with a multi-encoded project, you must specify the
when OpenText SAST first reads the source code file. OpenText SAST remembers this encoding in the build session and
propagates it into the FVDL file.
Typically, if you do not specify the encoding type, OpenText SAST uses
java.io.InputStreamReader constructor with no encoding parameter. In a few cases (for example with the ActionScript
parser), OpenText SAST defaults to UTF-8.
Value type: String
Default: (none)
Command-line option:-encoding
Example:
com.fortify.sca.InputFileEncoding=UTF-16

com.fortify.sca.RegExecutable On Windows platforms, specifies the path to the reg.exe
Cygwin syntax, even when you run OpenText SAST from within Cygwin. Escape backslashes with an additional
backslash.
Value type: String (path)
Default:reg
Example:
com.fortify.sca.RegExecutable=C:\\Windows\\System32\\reg.exe

Compiler names can begin or end with an asterisk (*), which matches zero or more characters.
Execution of clang/clang++ is not supported with the gcc/g++ command names. You can specify the following:
com.fortify.sca.compilers.g++=

 com.fortify.sca.util.compilers.GppCompiler

Static Application Security Testing 25.4

Page 276This PDF was generated on 10/10/2025

com.fortify.sca.xcode.TranslateAfterError Specifies whether the xcodebuild touchless adapter continues translation if the xcodebuild subprocess exited with a
non-zero exit code. If set to false, translation stops after encountering a non-zero xcodebuild exit code and the
OpenText SAST touchless build halts with the same exit code. If set to true, the OpenText SAST touchless build executes
translation of the build file identified prior to the xcodebuild exit, and OpenText SAST exits with an exit code of zero
(unless some other error also occurs).
Regardless of this setting, if xcodebuild exits with a non-zero code, then the xcodebuild exit code, stdout, and stderr are
written to the log file.
Value type: Boolean
Default:false

Scan

com.fortify.sca.AddImpliedMethods If set to true, OpenText SAST generates implied methods when it encounters implementation by inheritance.
Value type: Boolean
Default: true

com.fortify.sca.alias.Enable If set to true, enables alias analysis.
Value type: Boolean
Default: true

com.fortify.sca.analyzer.controlflow.EnableTimeOut Specifies whether to enable Control Flow Analyzer timeouts.
Value type: Boolean
Default: true

com.fortify.sca.BinaryName Specifies a subset of source files to scan. Only the source files that were linked in the named binary at build time are
included in the scan.
Value type: String (path)
Default: (none)
Command-line option:-bin or -binary-name

com.fortify.sca.DefaultAnalyzers Specifies a comma- or colon-separated list of the types of analysis to perform. The valid values for this property are
buffer, content, configuration, controlflow, dataflow
Value type: String
Default: This property is commented out and all analysis types are used in scans.
Command-line option: -analyzers

com.fortify.sca.DisableFunctionPointers If set to true, disables function pointers during the scan.
Value type: Boolean
Default:false

com.fortify.sca.EnableAnalyzer Specifies a comma- or colon-separated list of analyzers to use for a scan in addition to the default analyzers. The valid
values for this property are buffer, content, configuration
structural.
Value type: String
Default: (none)

com.fortify.sca.EnableSubtraceFiltering If set to true, filters out partial duplicates where issues are a subtrace of a given issue.
For example, if the engine finds 2 similar issues with the traces:
A -> B -> C -> D
B -> C -> D
The second issue is removed as a subtrace duplicate of the first, leaving only the longer issue, as it is the overall more
accurate one.
Value type: Boolean
Default: true

com.fortify.sca.ExitCodeLevel Extends the default exit code options. See Exit Codes for a description of the exit codes and the valid values for this
property.

com.fortify.sca.FilterFile Specifies the path to a filter file for the scan. See About Filter Files
Value type: String (path)
Default: (none)
Command-line option: -filter

com.fortify.sca.FilteredInstanceIDs Specifies a comma-separated list of IIDs to be filtered out using a filter file.
Value type: String
Default: (none)
Example:
com.fortify.sca.FilteredInstanceIDs=CA4E1623A2424919B98EC19FCA279FFA,4418B3DC072647158B3758E6183C14CD

com.fortify.sca.FilteredRuleLanguages Specifies a comma- or colon-separated list of languages for which to remove rules. The valid language values are
abap, actionscript, apex, cfml, cobol, configuration
and vb.
Value type: String
Default: (none)
Example:com.fortify.sca.FileredRuleLanguages=apex:php

com.fortify.sca.MaxPassthroughChainDepth Specifies the length of a taint path between input and output parameters in a function call.
Value type: Integer
Default:4

Static Application Security Testing 25.4

Page 277This PDF was generated on 10/10/2025

com.fortify.sca.MultithreadedAnalysis Specifies whether OpenText SAST runs in parallel analysis mode.
Value type: Boolean
Default:true

com.fortify.sca.Phase0HigherOrder.Languages Specifies a comma-separated list of languages for which to run higher-order analysis. Higher-order analysis improves
the ability to track dataflow through higher-order code, which is commonly used in modern dynamic languages. Valid
values are python, swift, ruby, javascript, and typescript
Value type: String
Default: python,ruby,swift,javascript,typescript

com.fortify.sca.Phase0HigherOrder.Timeout.Hard Specifies the total time (in seconds) for higher-order analysis. When the analyzer reaches the hard timeout limit, it exits
immediately.
OpenText recommends this timeout limit in case some issue causes the analysis to run too long. OpenText recommends
that you set the hard timeout to about 50% longer than the soft timeout, so that either the fixpoint pass limiter or the
soft timeout occurs first.
Value type: Number
Default: 2700

com.fortify.sca.PrecisionLevel Specifies the scan precision. Scans with a lower precision level are performed faster. The valid values are
Value type: Number
Default: (none)
Command-line option: -scan-precision | -p

com.fortify.sca.ProjectTemplate Specifies the issue template file to use for the scan. This only affects scans on the local machine. If you upload the
FPR to Application Security, it uses the issue template assigned to the application version.
Value type: String
Default: (none)
Command-line option: -project-template
Example:
com.fortify.sca.ProjectTemplate=test_issuetemplate.xml

com.fortify.sca.QuickScanMode If set to true, OpenText SAST performs a quick scan. OpenText SAST uses the settings from
quickscan.properties, instead of the fortify-sca.properties
Value type: Boolean
Default: (not enabled)
Command-line option:-quick

com.fortify.sca.ScanPolicy Specifies the scan policy for prioritizing reported vulnerabilities (see
scan policy values are classic, security, and devops
Value type: String
Default:security
Command-line option:-sc or -scan-policy

com.fortify.sca.ThreadCount Specifies the number of threads for parallel analysis mode. Add this property only if you need to reduce the number of
threads used because of a resource constraint. If you experience an increase in scan time or problems with your scan, a
reduction in the number of threads used might solve the problem.
Value type: Integer
Default: (number of available processor cores)

com.fortify.sca.TypeInferenceFunctionTimeout The amount of time (in seconds) that type inference can spend to analyze a single function. Unlimited if set to zero or is
not specified.
Value type: Long
Default:60

com.fortify.sca.TypeInferenceLanguages Comma- or colon-separated list of languages that use type inference. This setting improves the precision of the analysis
for dynamically-typed languages.
Value type: String
Default:javascript,python,ruby,typescript

com.fortify.sca.TypeInferencePhase0Timeout Specifies the total amount of time (in seconds) that type inference can spend in phase 0 (the interprocedural analysis).
Unlimited if set to zero or is not specified.
Value type: Long
Default: 300

com.fortify.sca.UniversalBlacklist Specifies a colon-separated list of functions to hide from all analyzers.
Value type: String
Default:.*yyparse.*

Static Application Security Testing 25.4

Page 278This PDF was generated on 10/10/2025

1.29.2.2. Regex analysis properties
The properties for the fortify-sca.properties file in the following table apply to regular expression analysis.

Property name Description

com.fortify.sca.regex.Enable If set to true, regular expression analysis is enabled.
Value type: Boolean
Default:true

com.fortify.sca.regex.ExcludeBinaries If set to true, binary files are excluded from a regular expression analysis.
Value type: Boolean
Default:true

com.fortify.sca.regex.MaxSize Specifies the maximum size (in megabytes) for files that are scanned in a regular expression analysis.
Files that exceed this file size maximum are excluded from a regular expression analysis.
Value type: Number
Default:10

See Also

Regular Expression Analysis

Static Application Security Testing 25.4

Page 279This PDF was generated on 10/10/2025

1.29.2.3. LIM license properties
The properties for the fortify-sca.properties file in the following table apply to licensing with the LIM.

Property name Description

com.fortify.sca.lim.Url Specifies the LIM server API URL. Do not edit this value directly with a text editor. Use the
command-line option to change this value.
Value type: String
Default: (none)
Command-line option:-store-license-pool-credentials
Examples:
https://<ip_address>:<port>

com.fortify.sca.lim.PoolName Specifies the LIM license pool name. Do not edit this value directly with a text editor. Use the
command-line option to change this value.
Value type: String
Default: (none)
Command-line option:-store-license-pool-credentials

com.fortify.sca.lim.PoolPassword Specifies the LIM license pool password (encrypted). Do not edit this value directly with a text
editor. Use the command-line option to change this value.
Value type: String
Default: (none)
Command-line option:-store-license-pool-credentials

com.fortify.sca.lim.ProxyUrl Specifies the proxy server used to connect to the LIM server.
Value type: String
Default: (none)
Examples:http://proxy.example.com:8080
https://proxy.example.com
Command-line option:-store-license-pool-credentials

com.fortify.sca.lim.ProxyUsername Specifies an encrypted user name for proxy authentication to connect to the LIM server. Do not
edit this value directly with a text editor. Use the command-line option to change this value.
Value type: String
Default: (none)
Command-line option:-store-license-pool-credentials

com.fortify.sca.lim.ProxyPassword Specifies an encrypted password for proxy authentication to connect to the LIM server. Do not
edit this value directly with a text editor. Use the command-line option to change this value.
Value type: String
Default: (none)
Command-line option:-store-license-pool-credentials

com.fortify.sca.lim.RequireTrustedSSLCert If set to true, any attempt to connect to the LIM server without a trusted certificate fails. If this
property is set to false, a message displays when any attempt to connect to the LIM server
without a trusted certificate occurs.
Value type: Boolean
Default:true

com.fortify.sca.lim.WaitForInitialLicense If set to true and LIM license pool credentials are stored, OpenText SAST waits for a LIM license
to become available before starting a translation or scan. If this property is set to false, OpenText
SAST aborts if it cannot obtain a LIM license.
Value type: Boolean
Default:true

LIM License Directives

Static Application Security Testing 25.4

Page 280This PDF was generated on 10/10/2025

1.29.2.4. Rule properties
The properties for the fortify-sca.properties file in the following table apply to rules (and custom rules) and Rulepacks.

Property name Description

com.fortify.sca.DefaultRulesDir Sets the directory used to search for the OpenText provided encrypted rules files.
Value Type: String (path)
Default:
${com.fortify.Core}/config/rules

com.fortify.sca.RulesFile Specifies a custom Rulepack or directory. If you specify a directory, all of the files in the directory with
the .bin and .xml extensions are included.
Value Type: String (path)
Default: (none)
Command-line option:-rules

com.fortify.sca.CustomRulesDir Sets the directory used to search for custom rules.
Value Type: String (path)
Default:
${com.fortify.Core}/config/customrules

com.fortify.sca.RulesFileExtensions Specifies a list of file extensions for rules files. Any files in <sast_install_dir>/Core/config/rules
(or a directory specified with the -rules option) whose extension is in this list is included. The .bin
extension is always included, regardless of the value of this property. The delimiter for this property is
the system path separator.
Value Type: String
Default:.xml

com.fortify.sca.NoDefaultRules If set to true, rules from the default Rulepacks are not loaded. OpenText SAST processes the Rulepacks
for description elements and language libraries, but no rules are processed.
Value Type: Boolean
Default: (none)
Command-line option:-no-default-rules

com.fortify.sca.NoDefaultIssueRules If set to true, disables rules in default Rulepacks that lead directly to issues. OpenText SAST still loads
rules that characterize the behavior of functions. This can be helpful when creating custom issue rules.
Value Type: Boolean
Default: (none)
Command-line option: -no-default-issue-rules

com.fortify.sca.NoDefaultSourceRules If set to true, disables source rules in the default Rulepacks. This can be helpful when creating custom
source rules.

Note

Characterization source rules are not disabled.

Value Type: Boolean
Default: (none)
Command-line option:-no-default-source-rules

com.fortity.sca.NoDefaultSinkRules If set to true, disables sink rules in the default Rulepacks. This can be helpful when creating custom
sink rules.

Note

Characterization sink rules are not disabled.

Value Type: Boolean
Default: (none)
Command-line option:-no-default-sink-rules

Static Application Security Testing 25.4

Page 281This PDF was generated on 10/10/2025

1.29.2.5. Java and Kotlin properties
The properties for the fortify-sca.properties file in the following table apply to the translation of Java and Kotlin code.

Property name Description

com.fortify.sca.JavaClasspath Specifies the class path used to analyze Java or Kotlin source code. Separate multiple paths with
semicolons (Windows) or colons (non-Windows).
Value type: String (paths)
Default: (none)
Command-line option:-cp or -classpath

com.fortify.sca.JdkVersion Specifies the Java source code version for Java or Kotlin translation.
Value type: String
Default:11
Command-line option:-jdk or -source

com.fortify.sca.CustomJdkDir Specifies a directory that contains a JDK version that is not included in the OpenText SAST installation
(<sast_install_dir>/Core/bootcp/).
Value type: String (path)
Default: (none)
Command-line option:-custom-jdk-dir

com.fortify.sca.JavaSourcepath Specifies a semicolon- (Windows) or colon-separated (non-Windows) list of Java or Kotlin source file
directories that are not included in the scan but are used for name resolution. The source path is
similar to class path, except it uses source files rather than class files for resolution.
Value type: String (paths)
Default: (none)
Command-line option:-sourcepath

com.fortify.sca.Appserver Specifies the application server to process JSP files. The valid values are weblogic or websphere.
Value type: String
Default: (none)
Command-line option: -appserver

com.fortify.sca.AppserverHome Specifies the application server's home directory. For WebLogic, this is the path to the directory that
contains server/lib. For WebSphere, this is the path to the directory that contains the
JspBatchCompiler script.
Value type: String (path)
Default: (none)
Command-line option: -appserver-home

com.fortify.sca.AppserverVersion Specifies the version of the WebLogic or WebSphere application server.
Value type: String
Default: (none)
Command-line option: -appserver-version

com.fortify.sca.JavaExtdirs Specifies directories to include implicitly on the class path for WebLogic and WebSphere application
servers.
Value type: String
Default: (none)
Command-line option: -extdirs

com.fortify.sca.JavaSourcepathSearch If set to true, OpenText SAST only translates Java source files that are referenced by the target file
list. Otherwise, OpenText SAST translates all files included in the source path.
Value type: Boolean
Default: true

com.fortify.sca.DefaultJarsDirs Specifies semicolon- or colon-separated list of directories of commonly used JAR files. JAR files
located in these directories are appended to the end of the class path option (-cp).
Value type: String
Default: default_jars

com.fortify.sca.DecompileBytecode If set to true, Java bytecode is decompiled for the translation.
Value type: Boolean
Default: false

com.fortify.sca.jsp.UseSecurityManager If set to true, the JSP parser uses JSP security manager.
Value type: Boolean
Default: true

com.fortify.sca.jsp.DefaultEncoding Specifies the encoding for JSPs.
Value type: String (encoding)
Default: ISO-8859-1

Static Application Security Testing 25.4

Page 282This PDF was generated on 10/10/2025

com.fortify.sca.jsp.LegacyDataflow If set to true, enables additional filtering on JSP-related dataflow to reduce the amount of spurious
false positives detected.
Value type: Boolean
Default: false
Command-line option: -legacy-jsp-dataflow

com.fortify.sca.KotlinJvmDefault Specifies the generation of the DefaultImpls class for methods with bodies in Kotlin interfaces. The
valid values are:

Value type: String
Default: disable

com.fortify.sca.ShowUnresolvedSymbols If set to true, displays any unresolved types, fields, and functions referenced in translated Java source
files at the end of the translation.
Value type: Boolean
Default: false
Command-line option: -show-unresolved-symbols

Analyzing Java, Kotlin and JSP projects

disable—Specifies to generate the DefaultImpls class for each interface that contains methods
with bodies.
all—Specifies to generate the DefaultImpls class if an interface is annotated with
@JvmDefaultWithCompatibility.
all-compatibility—Specifies to generate the DefaultImpls class unless an interface is
annotated with @JvmDefaultWithoutCompatibility.

Static Application Security Testing 25.4

Page 283This PDF was generated on 10/10/2025

1.29.2.6. Visual Studio and MSBuild project properties
The properties for the fortify-sca.properties file in the following table apply to the translation of .NET projects and solutions.

Property name Description

WinForms.TransformDataBindings
WinForms.TransformMessageLoops
WinForms.TransformChangeNotificationPattern
WinForms.CollectionMutationMonitor.Label
WinForms.ExtractEventHandlers

Sets various .NET options.
Value type: Boolean and String
Defaults and examples:
WinForms.TransformDataBindings=true
WinForms.TransformMessageLoops=true
WinForms.TransformChangeNotificationPattern=true
WinForms.CollectionMutationMonitor.Label=WinFormsDataSource
WinForms.ExtractEventHandlers=true

com.fortify.sca.ASPVirtualRoots.<virtual_path>

Specifies a semicolon-separated list of full paths to virtual roots used.
Value type: String
Default: (none)
Example:
com.fortify.sca.ASPVirtualRoots.Library=c:\\WebServer\\CustomerTwo\\Stuff

 com.fortify.sca.ASPVirtualRoots.Include=c:\\WebServer\\CustomerOne\\inc

com.fortify.sca.DisableASPExternalEntries

If set to true, disables ASP external entries in the scan.
Value type: Boolean
Default: false

Translating Visual Studio and MSBuild Projects

Static Application Security Testing 25.4

Page 284This PDF was generated on 10/10/2025

1.29.2.7. JavaScript and TypeScript properties
The properties for the fortify-sca.properties file in the following table apply to the translation of JavaScript and TypeScript code.

Property name Description

com.fortify.sca.EnableDOMModeling If set to true, OpenText SAST generates JavaScript code to model the DOM tree that an HTML file generated
during the translation phase and identifies DOM-related issues (such as cross-site scripting issues). Enable this
property if the code you are translating includes HTML files that have embedded or referenced JavaScript code.

Note

Enabling this property can increase the translation time.

Value type: Boolean
Default: false

com.fortify.sca.DOMModeling.tags If you set the com.fortify.sca.EnableDOMModeling property to true, you can specify additional coma-
separated HTML tags names for OpenText SAST to include in the DOM modeling.
Value type: String
Default: body, button, div, form, iframe, input, head, html, and p.
Example: com.fortify.sca.DOMModeling.tags=ul,li

com.fortify.sca.JavaScript.src.domain.whitelist Specifies trusted domain names where OpenText SAST can download referenced JavaScript files for the scan.
Delimit the URLs with vertical bars.
Value type: String
Default: (none)
Example: com.fortify.sca.JavaScript.src.domain.whitelist=http://www.xyz.com|http://www.123.org

com.fortify.sca.DisableJavascriptExtraction If set to true, JavaScript code embedded in JSP, JSPX, PHP, and HTML files is not extracted and not scanned.
Value type: Boolean
Default: false

com.fortify.sca.EnableTranslationMinifiedJS If set to true, enables translation for minified JavaScript files.
Value type: Boolean
Default: false

com.fortify.sca.skip.libraries.ES6
com.fortify.sca.skip.libraries.jQuery
com.fortify.sca.skip.libraries.javascript
com.fortify.sca.skip.libraries.typescript

Specifies a list of comma- or colon-separated JavaScript or TypeScript technology library files that are not
translated. You can use regular expressions in the file names. Note that the regular expression
\d\.\d\.\d)?' is automatically inserted before .min.js or .js for each file name included in the
com.fortify.sca.skip.libraries.jQuery property value.
Value type: String
Defaults:

ES6: es6-shim.min.js,system-polyfills.js,shims_for_IE.js
jQuery: jquery.js,jquery.min.js, jquery-migrate.js,jquery-migrate.min.js, jquery-
ui.js,jquery-ui.min.js, jquery.mobile.js,jquery.mobile.min.js,
jquery.color.js,jquery.color.min.js, jquery.color.svg-names.js, jquery.color.svg-
names.min.js, jquery.color.plus-names.js, jquery.color.plus-names.min.js,
jquery.tools.min.js

javascript: bootstrap.js,bootstrap.min.js,typescript.js,typescriptServices.js
typescript: typescript.d.ts,typescriptServices.d.ts

com.fortify.sca.follow.imports If set to true, files included with an import statement are included in the translation.
Value type: Boolean
Default: true

com.fortify.sca.exclude.node.modules If set to true, files in a node_modules directory are excluded from the analysis phase.
Value type: Boolean
Default: true

com.fortify.sca.exclude.unimported.node.modules Specifies whether to exclude source code in a node_modules directory. If set to true, only imported
node_modules are included in the translation.

Note

This property is only applied if com.fortify.sca.exclude.node.modules is set to
false.

Value type: Boolean
Default: true

Translating JavaScript and TypeScript Code

Static Application Security Testing 25.4

Page 285This PDF was generated on 10/10/2025

1.29.2.8. Python properties
The properties for the fortify-sca.properties file in the following table apply to the translation of Python code.

Property name Description

com.fortify.sca.PythonPath Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) list of additional
import directories. OpenText SAST does not respect PYTHONPATH environment variable that
the Python runtime system uses to find import files. Use this property to specify the additional
import directories.
Value type: String (path)
Default: (none)
Command-line option: -python-path

com.fortify.sca.PythonVersion Specifies the Python source code version to scan. The valid values are 2 and 3.
Value type: Number
Default: 3
Command-line option: -python-version

com.fortify.sca.PythonNoAutoRootCalculation If set to true, disables the automatic calculation of a common root directory of all project files
to use for importing modules and packages For more details, see Including Imported Modules
and Packages.
Value type: Boolean
Default: false
Command-line option: -python-no-auto-root-calculation

com.fortify.sca.DjangoTemplateDirs Specifies semicolon-separated (Windows) or colon-separated (non-Windows) list of directories
for Django templates. OpenText SAST does not use the TEMPLATE_DIRS setting from the
Django settings.py file.
Value type: String (paths)
Default: (none)
Command-line option: -django-template-dirs

com.fortify.sca.DjangoDisableAutodiscover Specifies that OpenText SAST does not automatically discover Django templates.
Value type: Boolean
Default: (none)
Command-line option: -django-disable-autodiscover

com.fortify.sca.JinjaTemplateDirs Specifies semicolon-separated (Windows) or colon-separated (non-Windows) list of directories
for Jinja2 templates.
Value type: String (paths)
Default: (none)
Command-line option: -jinja-template-dirs

com.fortify.sca.DisableTemplateAutodiscover Specifies that OpenText SAST does not automatically discover Django or Jinja2 templates.
Value type: Boolean
Default: (none)
Command-line option: -disable-template-autodiscover

Translating Python Code

Static Application Security Testing 25.4

Page 286This PDF was generated on 10/10/2025

1.29.2.9. Go properties
The properties for the fortify-sca.properties file in the following table apply to the translation of Go code.

Property name Description

com.fortify.sca.gotags Specifies custom build tags for a Go project. This is equivalent to the -tags option for the go command.
Value type: String
Default: (none)
Command-line option: -gotags

com.fortify.sca.GOPATH Specifies the root directory of your project/workspace.
Value type: String
Default: (GOPATH system environment variable)

com.fortify.sca.GOROOT Specifies the location of the Go installation.
Value type: String
Default: (GOROOT system environment variable)

com.fortify.sca.GOPROXY Specifies one or more comma-separated proxy URLs. You can also specify direct or off.
Value type: String
Default: (GOPROXY system environment variable)

See Also

Translating Go Code

Static Application Security Testing 25.4

Page 287This PDF was generated on 10/10/2025

1.29.2.10. Ruby properties
The properties for the fortify-sca.properties file in the following table apply to the translation of Ruby code.

Property name Description

com.fortify.sca.RubyLibraryPaths Specifies one or more paths to directories that contain Ruby libraries.
Value type: String (path)
Default: (none)
Command-line option: -ruby-path

com.fortify.sca.RubyGemPaths Specifies one or more paths to RubyGems locations. Set this value if the project has associated gems to
scan.
Value type: String (path)
Default: (none)
Command-line option: -rubygem-path

Translating Ruby Code

Static Application Security Testing 25.4

Page 288This PDF was generated on 10/10/2025

1.29.2.11. COBOL properties
The properties for the fortify-sca.properties file in the following table apply to the translation of COBOL code.

Property name Description

com.fortify.sca.CobolCopyDirs Specifies one or more semicolon- or colon-separated directories where OpenText SAST looks for
copybook files.
Value type: String (path)
Default: (none)
Command-line option: -copydirs

com.fortify.sca.CobolDialect Specifies the COBOL dialect. The valid values for dialect are COBOL390 or MICROFOCUS. The dialect
value is case-insensitive.
Value type: String
Default: COBOL390
Command-line option: -dialect

com.fortify.sca.CobolCheckerDirectives Specifies one or more semicolon-separated COBOL checker directives.
Value type: String
Default: (none)
Command-line option: -checker-directives

com.fortify.sca.CobolLegacy If set to true, enables legacy COBOL translation.
Value type: Boolean
Default: false
Command-line option: -cobol-legacy

com.fortify.sca.CobolFixedFormat If set to true, specifies fixed-format COBOL to direct OpenText SAST to only look for source code
between columns 8-72 in all lines of code (legacy COBOL translation only).
Value type: Boolean
Default: false
Command-line option: -fixed-format

com.fortify.sca.CobolCopyExtensions Specifies one or more semicolon- or colon-separated copybook file extensions (legacy COBOL
translation only).
Value type: String
Default: (none)
Command-line option: -copy-extensions

Translating COBOL Code

Static Application Security Testing 25.4

Page 289This PDF was generated on 10/10/2025

1.29.2.12. PHP properties
The properties for the fortify-sca.properties file in the following table apply to the translation of PHP code.

Property name Description

com.fortify.sca.PHPVersion Specifies the PHP version. For a list of valid versions, see Supported languages.
Value type: String
Default: 8.2
Command-line option: -php-version

com.fortify.sca.PHPSourceRoot Specifies the PHP source root.
Value type: Boolean
Default: (none)
Command-line option: -php-source-root

Translating PHP Code

Static Application Security Testing 25.4

Page 290This PDF was generated on 10/10/2025

1.29.2.13. ABAP properties
The properties described in the following table apply to the translation of ABAP code.

Property name Description

com.fortify.sca.AbapDebug If set to true, OpenText SAST adds ABAP statements to debug messages.
Value type: Boolean
Default: (none)

com.fortify.sca.AbapIncludes When OpenText SAST encounters an ABAP 'INCLUDE' directive, it looks in the named directory.
Value type: String (path)
Default: (none)

Static Application Security Testing 25.4

Page 291This PDF was generated on 10/10/2025

1.29.2.14. Flex and ActionScript properties
The properties for the fortify-sca.properties file in the following table apply to the translation of Flex and ActionScript code.

Property name Description

com.fortify.sca.FlexLibraries Specifies a semicolon-separated (Windows) or colon-separated (non-Windows) of libraries to "link" to. This list
must include flex.swc, framework.swc, and playerglobal.swc (which are usually located in the
frameworks/libs directory in your Flex SDK root). Use this property primarily to resolve ActionScript.
Value type: String (path)
Default: (none)
Command-line option: -flex-libraries

com.fortify.sca.FlexSdkRoot Specifies the root location of a valid Flex SDK. The folder must contain a frameworks folder that contains a
flex-config.xml file. It must also contain a bin folder that contains an mxmlc executable.
Value type: String (path)
Default: (none)
Command-line option: -flex-sdk-root

com.fortify.sca.FlexSourceRoots Specifies any additional source directories for a Flex project. Separate multiple directories with semicolons
(Windows) or colons (non-Windows).
Value type: String (path)
Default: (none)
Command-line option: -flex-source-root

Static Application Security Testing 25.4

Page 292This PDF was generated on 10/10/2025

1.29.2.15. ColdFusion (CFML) properties
The properties for the fortify-sca.properties file in the following table apply to the translation of CFML code.

Property name Description

com.fortify.sca.CfmlUndefinedVariablesAreTainted If set to true, OpenText SAST treats undefined variables in CFML pages as tainted. This
serves as a hint to the Dataflow Analyzer to watch out for register-globals-style
vulnerabilities. However, enabling this property interferes with dataflow findings where a
variable in an included page is initialized to a tainted value in an earlier-occurring
included page.
Value type: Boolean
Default: false

com.fortify.sca.CaseInsensitiveFiles If set to true, make CFML files case-insensitive for applications developed using a case-
insensitive file system and scanned on case-sensitive file systems.
Value type: Boolean
Default: (not enabled)

com.fortify.sca.SourceBaseDir Specifies the base directory for ColdFusion projects.
Value type: String (path)
Default: (none)
Command-line option: -source-base-dir

Translating ColdFusion Code

Static Application Security Testing 25.4

Page 293This PDF was generated on 10/10/2025

1.29.2.16. SQL properties
The properties for the fortify-sca.properties file in the following table apply to the translation of SQL code.

Property name Description

com.fortify.sca.SqlLanguage Specifies the SQL language variant. The valid SQL language type values are PLSQL (for Oracle PL/SQL) and TSQL
(for Microsoft T-SQL).
Value type: String
Default: TSQL
Command-line option: -sql-language

Translating SQL

Static Application Security Testing 25.4

Page 294This PDF was generated on 10/10/2025

1.29.2.17. Output properties
The properties for the fortify-sca.properties file in the following table apply to the analysis output.

Property name Description

com.fortify.sca.ResultsFile The file to which results are written.
Value type: String
Default: (none)
Command-line option: -f
Example: com.fortify.sca.ResultsFile=MyResults.fpr

com.fortify.sca.Renderer Controls the output format. The valid values are fpr, fvdl, text, and auto. The default of auto
selects the output format based on the extension of the file provided with the -f option.
Value type: String
Default: auto
Command-line option: -format

com.fortify.sca.OutputAppend If set to true, OpenText SAST appends results to an existing results file.
Value type: Boolean
Default: false
Command-line option: -append

com.fortify.sca.ResultsAsAvailable If set to true, OpenText SAST prints results as they become available. This is helpful if you do not
specify the -f option (to specify an output file) and print to stdout.
Value type: Boolean
Default: false

com.fortify.sca.BuildLabel Specifies a label for the scanned project. OpenText SAST does not use this label but includes it in
the results.
Value type: String
Default: (none)
Command-line option: -build-label

com.fortify.sca.BuildProject Specifies a name for the scanned project. OpenText SAST does not use this name but includes it in
the results.
Value type: String
Default: (none)
Command-line option: -build-project

com.fortify.sca.BuildVersion Specifies a version number for the scanned project. OpenText SAST does not use this version
number but it is included in the results.
Value type: String
Default: (none)
Command-line option: -build-version

com.fortify.sca.MachineOutputMode Output information in a format that scripts or OpenText SAST tools can use rather than printing
output interactively. Instead of a single line to display scan progress, a new line is printed below
the previous one on the console to display updated progress.
Value type: Boolean
Default: (not enabled)
Command-line option: -machine-output

com.fortify.sca.SnippetContextLines Sets the number of lines of code to display surrounding an issue. Snippets always include the two
lines of code on each side of the line where the error occurs. By default, five lines of code are
displayed.
Value type: Number
Default: 2

com.fortify.sca.FVDLDisableDescriptions If set to true, excludes OpenText Application Security Content descriptions from the analysis
results file (FVDL).
Value type: Boolean
Default: false
Command-line option: -fvdl-no-descriptions

com.fortify.sca.FVDLDisableEngineData If set to true, excludes engine data from the analysis results file (FVDL).
Value type: Boolean
Default: false
Command-line option:-fvdl-no-enginedata

com.fortify.sca.FVDLDisableLabelEvidence If set to true, excludes label evidence from the analysis results file (FVDL).
Value type: Boolean
Default: false

Static Application Security Testing 25.4

Page 295This PDF was generated on 10/10/2025

com.fortify.sca.FVDLDisableProgramData If set to true, excludes the ProgramData section from the analysis results file (FVDL).
Value type: Boolean
Default: false
Command-line option: -fvdl-no-progdata

com.fortify.sca.FVDLDisableSnippets If set to true, excludes code snippets from the analysis results file (FVDL).
Value type: Boolean
Default: false
Command-line option: -fvdl-no-snippets

com.fortify.sca.FVDLStylesheet Specifies location of the style sheet for the analysis results.
Value type: String (path)
Default:
${com.fortify.Core}/resources/sca/fvdl2html.xsl

Static Application Security Testing 25.4

Page 296This PDF was generated on 10/10/2025

1.29.2.18. Mobile build session (MBS) properties
The properties for the fortify-sca.properties file in the following table apply to MBS files.

Property name Description

com.fortify.sca.MobileBuildSessions If set to false, OpenText SAST does not copy source files into the build session directory.
Value type: Boolean
Default: true

com.fortify.sca.ExtractMobileInfo If set to true, OpenText SAST extracts the build ID and the OpenText SAST version number from the
mobile build session.

Note

OpenText SAST does not extract the mobile build with this property.

Value type: Boolean
Default: false

Mobile Build Sessions

Static Application Security Testing 25.4

Page 297This PDF was generated on 10/10/2025

1.29.2.19. Proxy properties
The properties for the fortify-sca.properties file in the following table apply to proxy settings.

Property name Description

com.fortify.sca.
https.proxyHost

Specifies a proxy host name.
Value type: String
Default: (none)

com.fortify.sca.
https.proxyPort

Specifies a proxy port number.
Value type: Number
Default: (none)

Static Application Security Testing 25.4

Page 298This PDF was generated on 10/10/2025

1.29.2.20. Logging properties
The properties for the fortify-sca.properties file in the following table apply to log files.

Property name Description

com.fortify.sca.LogFile Specifies the default log file name and location.
Value type: String (path)
Default:${com.fortify.sca.ProjectRoot}/log/sca.logand ${com.fortify.sca.ProjectRoot}/log/sca_FortifySupport.log
Command-line option: -logfile

com.fortify.sca.LogLevel Specifies the minimum log level for both log files. The valid values are DEBUG, INFO, WARN, ERROR
see Accessing Log Files and Configuring Log Files.
Value type: String
Default: INFO

com.fortify.sca.ClobberLogFile If set to true, OpenText SAST overwrites the log file for each run of sourceanalyzer.
Value type: Boolean
Default: false
Command-line option: -clobber-log

com.fortify.sca.PrintPerformanceDataAfterScan If set to true, OpenText SAST writes performance-related data to the OpenText SAST Support log file after the scan is complete.
This value is automatically set to true when in debug mode.
Value type: Boolean
Default: false

Configuring Log Files

Static Application Security Testing 25.4

Page 299This PDF was generated on 10/10/2025

1.29.2.21. Debug properties
The properties for the fortify-sca.properties file in the following table apply to debug settings.

Property name Description

com.fortify.sca.Debug Includes debug information in the OpenText SAST Support log file, which is only useful for Customer
Support to help troubleshoot.
Value type: Boolean
Default: false
Command-line option: -debug

com.fortify.sca.DebugVerbose This is the same as the com.fortify.sca.Debug property, but it includes more details, specifically
for parse errors.
Value type: Boolean
Default: (not enabled)
Command-line option: -debug-verbose

com.fortify.sca.Verbose If set to true, includes verbose messages in the OpenText SAST Support log file.
Value type: Boolean
Default: false
Command-line option: -verbose

com.fortify.sca.DebugTrackMem If set to true, additional performance information is written to the OpenText SAST Support log.
Value type: Boolean
Default: (not enabled)
Command-line option: -debug-mem

com.fortify.sca.CollectPerformanceData If set to true, enables additional timers to track performance.
Value type: Boolean
Default: (not enabled)

com.fortify.sca.Quiet If set to true, disables the command-line progress information.
Value type: Boolean
Default: false
Command-line option: -quiet

com.fortify.sca.MonitorSca If set to true, OpenText SAST monitors its memory use and warns when JVM garbage collection
becomes excessive.
Value type: Boolean
Default: true

Static Application Security Testing 25.4

Page 300This PDF was generated on 10/10/2025

1.29.3. fortify-sca-quickscan.properties
OpenText SAST offers a less in-depth scan known as a quick scan. This option scans the project in quick scan mode, using the property values in the
fortify-sca-quickscan.properties file. By default, a quick scan reduces the depth of the analysis and applies the Quick View filter set. The Quick
View filter set provides only critical and high priority issues.

Note

Properties in this file are only used if you specify the -quick option on the command line for your scan.

The following table provides two sets of default values: the default value for quick scans and the default value for normal scans. If only one default
value is shown, the value is the same for both normal scans and quick scans.

Property name Description

com.fortify.sca.
CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for Control Flow analysis on a single function.
Value type: Integer
Quick scan default: 30000
Default: 600000

com.fortify.sca.
DisableAnalyzers

Specifies a comma- or colon-separated list of analyzers to disable during a scan. The valid analyzer names
are buffer, content, configuration, controlflow, dataflow, nullptr, semantic, and structural.
Value type: String
Quick scan default: controlflow:buffer
Default: (none)

com.fortify.sca.
FilterSet

Specifies the filter set to use. You can use this property with an issue template to filter at scan-time instead
of post-scan. See com.fortify.sca.ProjectTemplate described in Translation and Analysis Phase
Properties to specify an issue template that contains the filter set to use.
When set to Quick View, this property runs rules that have a potentially high impact and a high likelihood of
occurring and rules that have a potentially high impact and a low likelihood of occurring. Filtered issues are
not written to the FPR and therefore this can reduce the size of an FPR. For more information about filter
sets, see the OpenText™ Fortify Audit Workbench User Guide.
Value type: String
Quick scan default: Quick View
Default: (none)

com.fortify.sca.
FPRDisableMetatable

Disables the creation of the metatable, which includes information for the Function view in Fortify Audit
Workbench. This metatable enables right-click on a variable in the source window to show the declaration. If
C/C++ scans take an extremely long time, setting this property to true can potentially reduce the scan time
by hours.
Value type: Boolean
Quick scan default: true
Default: false
Command-line option: -disable-metatable

com.fortify.sca.
FPRDisableSourceBundling

Disables source code inclusion in the FPR file. Prevents OpenText SAST from generating marked-up source
code files during a scan. If you plan to upload FPR files that are generated as a result of a quick scan to
Application Security, you must set this property to false.
Value type: Boolean
Quick scan default: true
Default: false
Command-line option: -disable-source-bundling

com.fortify.sca.
NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for Null Pointer analysis for a single function. The standard default is five
minutes. If this value is set to a shorter limit, the overall scan time decreases.
Value type: Integer
Quick scan default: 10000
Default: 300000

com.fortify.sca.
TrackPaths

Disables path tracking for Control Flow analysis. Path tracking provides more detailed reporting for issues,
but requires more scan time. To disable this for JSP only, set it to NoJSP. Specify None to disable all
functions.
Value type: String
Quick scan default: (none)
Default: NoJSP

com.fortify.sca.
limiters.ConstraintPredicateSize

Specifies the size limit for complex calculations in the Buffer Analyzer. Skips calculations that are larger than
the specified size value in the Buffer Analyzer to improve scan time.
Value type: Integer
Quick scan default: 10000
Default: 500000

Static Application Security Testing 25.4

Page 301This PDF was generated on 10/10/2025

com.fortify.sca.
limiters.MaxChainDepth

Controls the maximum call depth through which the Dataflow Analyzer tracks tainted data. Increase this
value to increase the coverage of dataflow analysis, which results in longer scan times.

Note

Call depth refers to the maximum call depth on a dataflow path between a taint
source and sink, rather than call depth from the program entry point, such as
main().

Value type: Integer
Quick scan default: 3
Default: 5

com.fortify.sca.
limiters.MaxFunctionVisits

Sets the number of times taint propagation analyzer visits functions.
Value type: Integer
Quick scan default: 5
Default: 50

com.fortify.sca.
limiters.MaxPaths

Controls the maximum number of paths to report for a single dataflow vulnerability. Changing this value
does not change the results that are found, only the number of dataflow paths displayed for an individual
result.

Note

OpenText does not recommend setting this property to a value larger than 5
because it might increase the scan time.

Value type: Integer
Quick scan default: 1
Default: 5

com.fortify.sca.
limiters.MaxTaintDefForVar

Sets a complexity limit for the Dataflow Analyzer. Dataflow incrementally decreases precision of analysis on
functions that exceed this complexity metric for a given precision level. This value controls how much taint
is tracked for a variable chain.
Value type: Integer
Quick scan default: 250
Default: 1000

com.fortify.sca.
limiters.MaxTaintDefForVarAbort

Sets a hard limit for function complexity. If complexity of a function exceeds this limit at the lowest precision
level, the analyzer skips analysis of the function.
Value type: Integer
Quick scan default: 500
Default: 4000

Static Application Security Testing 25.4

Page 302This PDF was generated on 10/10/2025

1.29.4. fortify-rules.properties
This topic describes the properties available for use in the fortify-rules.properties file.

Improving Results
Use these properties to modify behavior of scan results, either enabling new sets of rules, filtering rules, or enabling correlation of results with
OpenText DAST.

Property name Description

com.fortify.sca.rules.EnableRuleComments If set to true, enables the ability to prevent issues appearing in results using the //
FortifyRemove() comments. For more information, see Filtering using FortifyRemove comments
Value Type: Boolean
Default: true

com.fortify.sca.rules.IsLibrary If set to true, enables new entrypoint rules in code that adds WEB ,XSS, and PRIVATE taint to every
public function variable (certain exclusions apply). (Currently only Java and JVM languages apply)
Value type: Boolean
Default: false

com.fortify.sca.rules.enablePQCRules If set to true, enables rules to identify issues related to Post-Quantum Cryptographic threats. See
security content updates and documentation for more details, including which languages and
libraries are supported.
Value type: Boolean
Default: false

DAST Correlation & Verification
Property name Description

com.fortify.sca.rules.enable_wi_correlation If set to true and OpenText SAST scans an application with a supported framework, produces a
results file to be imported into OpenText™ Dynamic Application Security Testing to improve
results.
Value type: Boolean
Default: false

Google Cloud Function Integration
Scanning Google Cloud Functions either provide a JSON or YAML cloud build config file or set the properties in the below table to optimize results.

Property name Description

com.fortify.sca.rules.GCPFunctionName Name of the serverless function called when no JSON/YAML cloud build config file exists.
Value type: String
Default: (none)

com.fortify.sca.rules.GCPHttpTrigger If set to true, the scanned cloud function is an HTTP trigger.
Value type: Boolean
Default: false

Properties to Customize Regular Expressions
Although many techniques are used to identify vulnerabilities in code, some rules have to rely upon regular expressions to try to find identifiers in code,
and these can often be configured by properties. The following table describes a list of properties that can be used to modify the regular expressions
used by the rules.

It is advised to set these within the fortify-rules.properties file instead of directly on the command line to prevent clashes between regular
expression and shell syntax.

Property name Description

Static Application Security Testing 25.4

Page 303This PDF was generated on 10/10/2025

com.fortify.sca.rules.password_regex.global The regular expression to match password identifiers across all languages unless a
language-specific rules property is set.
Value type: String
Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|

 new|current|old|client|server|proxy|sqlserver|

 my|mysql|mongo|mongodb|db|database|ldap|smtp|

 email|email(_)?smtp)?(_|\.)?(pass(wd|word|phrase)|secret)

com.fortify.sca.rules.password_regex.abap Regular expression to match password identifiers in ABAP code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.actionscript Regular expression to match password identifiers in ActionScript code. Setting this
property overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.apex Regular expression to match password identifiers in Salesforce Apex code. Setting this
property overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.cfml Regular expression to match password identifiers in ColdFusion (CFML) code. Setting
this property overrides the global regex password rules property.
Value type: String
Default: (none)

com.fortify.sca.rules.password_regex.cobol Regular expression to match password identifiers in COBOL code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.config Regular expression to match password identifiers in XML. Setting this property overrides
the global regex password rules property. Do not use regular expression modifiers. The
value is case-insensitive.
Value type: String
Default: (s|_)?(user|usr|member|admin|guest|login|default|

 new|current|old|client|server|proxy|sqlserver|

 my|mysql|mongo|mongodb|db|database|ldap|smtp|

 email|email(_)?smtp)?(_|\.)?pass(wd|word|phrase)

com.fortify.sca.rules.password_regex.cpp Regular expression to match password identifiers in C and C++ code. Setting this
property overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.dart Regular expression to match password identifiers in Dart code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.dotnet Regular expression to match password identifiers in .NET code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.docker Regular expression to match password identifiers in Dockerfiles. Setting this property
overrides the global regex password rules property.
Value type: String
Default: .*pass(wd|word|phrase).*

com.fortify.sca.rules.password_regex.golang Regular expression to match password identifiers in Go code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.java Regular expression to match password identifiers in Java code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

Static Application Security Testing 25.4

Page 304This PDF was generated on 10/10/2025

com.fortify.sca.rules.password_regex.javascript Regular expression to match password identifiers in JavaScript and TypeScript code.
Setting this property overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.json Regular expression to match password identifiers in JSON. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (?i).*pass(wd|word|phrase).*

com.fortify.sca.rules.password_regex.jsp Regular expression used to match password identifiers in JSP code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.objc Regular expression to match password identifiers in Objective-C and Objective-C++
code. Setting this property overrides the global regex password rules property.
Value type: String
Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|

 new|current|old|client|server|proxy|sqlserver|

 my|mysql|mongo|mongodb|db|database|ldap|smtp|

 email|email(_)?smtp)?(_|\.)?(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.password_regex.php Regular expression to match password identifiers in PHP code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.powershell Regular expression to match password identifiers in PowerShell files. Setting this
property overrides the global regex password rules property.
Value type: String
Default: (?i)([a-z_]*|\{.*)(pass(wd|word|phrase)|pwd)(.*\}|[a-z_]*)

com.fortify.sca.rules.password_regex.properties Regular expression to match password identifiers in Properties files. Setting this
property overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.python Regular expression to match password identifiers in Python code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.ruby Regular expression to match password identifiers in Ruby code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.sql Regular expression to match password identifiers in SQL code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.swift Regular expression to match password identifiers in Swift code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (?i)(s|_)?(user|usr|member|admin|guest|login|default|

 new|current|old|client|server|proxy|sqlserver|

 my|mysql|mongo|mongodb|db|database|ldap|smtp|

 email|email(_)?smtp)?(_|\.)?(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.password_regex.vb Regular expression to match password identifiers in VB6 code. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (value for com.fortify.sca.rules.password_regex.global)

com.fortify.sca.rules.password_regex.yaml Regular expression to match password identifiers in YAML. Setting this property
overrides the global regex password rules property.
Value type: String
Default: (?i).*pass(wd|word|phrase).*

Static Application Security Testing 25.4

Page 305This PDF was generated on 10/10/2025

com.fortify.sca.rules.key_regex.global The regular expression to match key identifiers across all languages unless a language-
specific regex key rules property is set.
Value type: String
Default: (?i)((enc|dec)(ryption|rypt)?|crypto|secret|private)(_)?key

com.fortify.sca.rules.key_regex.abap Regular expression to match key identifiers in ABAP code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.actionscript Regular expression to match key identifiers in ActionScript code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.cfml Regular expression to match key identifiers in CFML code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.cpp Regular expression to match key identifiers in C and C++ code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.golang Regular expression to match key identifiers in Go code. Setting this property overrides
the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.java Regular expression to match key identifiers in Java code. Setting this property overrides
the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.javascript Regular expression to match key identifiers in JavaScript and TypeScript code. Setting
this property overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.jsp Regular expression to match key identifiers in JSP code. Setting this property overrides
the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.objc Regular expression used to match key identifiers in Objective-C and Objective-C++
code. Setting this property overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.php Regular expression to match key identifiers in PHP code. Setting this property overrides
the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.python Regular expression to match key identifiers in Python code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.ruby Regular expression used to match key identifiers in Ruby code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.sql Regular expression to match key identifiers in SQL code. Setting this property overrides
the global regex key rules property.
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.swift Regular expression used to match key identifiers in Swift code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

com.fortify.sca.rules.key_regex.vb Regular expression to match key identifiers in Visual Basic 6 code. Setting this property
overrides the global regex key rules property.
Value type: String
Default: (value for com.fortify.sca.rules.key_regex.global)

Static Application Security Testing 25.4

Page 306This PDF was generated on 10/10/2025

1.30. Command-line tools
OpenText SAST command-line tools enable you to manage OpenText Application Security Content, perform post-installation configurations, and monitor
scans. These tools are located in <sast_install_dir>/bin. The tools for Windows are provided as .bat or .cmd files. The following table describes the
command-line tools installed with OpenText SAST.

Note

By default, log files for OpenText SAST tools are written to the following directory:

Windows: C:\Users\<username>\AppData\Local\Fortify\<tool_name>-<version>\log
Non-Windows: <userhome>/.fortify/<tool_name>-<version>/log

Tool Description More information

fortifyupdate Compares installed security content to the current version and makes any required updates About updating OpenText
Application Security Content

FPRUtility With this tool you can:

Merge audited projects
Verify FPR signatures
Display information from an FPR file
Combine or split source code files and audit projects into FPR files
Alter an FPR

OpenText™ Application
Security Tools Guide

scapostinstall This tool enables you to migrate properties files from a previous version of OpenText SAST, specify a
locale, and specify a proxy server for security content updates and for Application Security.

Running the post-install tool

SCAState Provides state analysis information on the JVM during the analysis phase Checking the scan status
with SCAState

This section contains the following topics:

About updating OpenText Application Security Content
Checking the scan status with SCAState

Static Application Security Testing 25.4

Page 307This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.30.1. About updating OpenText Application Security Content
You can use the fortifyupdate command-line tool to download the latest Fortify Secure Coding Rulepacks and metadata from OpenText.

The fortifyupdate tool gathers information about the existing security content in your OpenText SAST installation and contacts the Fortify Rulepack
update server with this information. The server returns new or updated security content, and removes any obsolete security content from your
OpenText SAST installation. If your installation is current, a message is displayed to that effect.

This section contains the following topics:

Updating OpenText Application Security Content
fortifyupdate command-line options

Static Application Security Testing 25.4

Page 308This PDF was generated on 10/10/2025

1.30.1.1. Updating OpenText Application Security Content
Use the fortifyupdate command-line tool to either download security content or import a local copy of the security content. This tool is located in the
<sast_install_dir>/bin directory.

The default read timeout for this tool is 180 seconds. To change the timeout setting, add the rulepackupdate.SocketReadTimeoutSeconds property in
the server.properties configuration file. For more information, see the OpenText™ Application Security Tools Guide.

The basic command-line syntax for fortifyupdate is shown in the following example:

fortifyupdate [<options>]

To update your OpenText SAST installation with the latest Fortify Secure Coding Rulepacks and external metadata from the Fortify Rulepack update
server, type the following command:

fortifyupdate

To update security content from the local system:

fortifyupdate -import <my_local_rules>.zip

To update security content from a Application Security server using credentials:

fortifyupdate -url <ssc_url> -sscUser <username> -sscPassword <password>

Static Application Security Testing 25.4

Page 309This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.30.1.2. fortifyupdate command-line options
The following table describes the fortifyupdate options.

fortifyupdate option Description

-acceptKey Specifies to accept the public key. When this is specified, you are not prompted to provide a public key. Use this
option to accept the public key if you update OpenText Application Security Content from a non-standard
location with the -url option.

-acceptSSLCertificate Specifies to use the SSL certificate provided by the server.

-import <file>.zip Imports the ZIP file that contains security content. By default, Rulepacks are imported into the
<sast_install_dir>/Core/config/rules directory.

-coreDir <dir> Specifies a core directory where fortifyupdate stores the update. If this is not specified, the fortifyupdate
performs the update in the <sast_install_dir>.

Important

Make sure that you copy the contents of the <sast_install_dir>/config/keys
folder and paste it to a config/keys folder in this directory before you run
fortifyupdate.

-includeMetadata Specifies to only update external metadata.

-includeRules Specifies to only update Rulepacks.

-locale <locale> Specifies a locale. English is the default if no security content exists for the specified locale. The valid values
are:

en (English)
es (Spanish)
ja (Japanese)
ko (Korean)
pt_BR (Brazilian Portuguese)
zh_CN (Simplified Chinese)
zh_TW (Traditional Chinese)

Note

The values are not case-sensitive.

Alternatively, you can specify a default locale for security content updates in the fortify.properties
configuration file. For more information, see the OpenText™ Application Security Tools Guide.

-proxyhost <host> Specifies a proxy server network name or IP address.

-proxyport <port> Specifies a proxy server port number.

-proxyUsername
<username>

Specifies a user name if the proxy server requires authentication.

-proxyPassword
<password>

Specifies the password if the proxy server requires authentication.

-showInstalledRules Displays the currently installed Rulepacks including any custom rules and custom metadata.

-
showInstalledExternalMetadata

Displays the currently installed external metadata.

-url <url> Specifies a URL from which to download the security content. The default URL is https://update.fortify.com
or the value set for the rulepackupdate.server property in the server.properties configuration file.
For more information about the server.properties configuration file, see the OpenText™ Application Security
Tools Guide.
You can download the security content from a Application Security server by providing a Application Security
URL.

Specify one of the following types of credentials if you update security content from Application Security with the -url option:

 -sscUsername
 -sscPassword

Specifies a Application Security user account by user name and password.

 -sscAuthToken Specifies a Application Security authentication token of type UnifiedLoginToken, CIToken, or ToolsConnectToken.

Static Application Security Testing 25.4

Page 310This PDF was generated on 10/10/2025

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%255B%25=_HPc_Basic_Variables._HP_Web_Version%25%255D

1.30.2. Checking the scan status with SCAState
Use the SCAState tool to see up-to-date state analysis information during the analysis phase.

To check the state:

1. Start a scan.
2. Open another command window.
3. Type the following at the command prompt:

SCAState [<options>]

See Also

SCAState command-line options

Static Application Security Testing 25.4

Page 311This PDF was generated on 10/10/2025

1.30.2.1. SCAState command-line options
The following table describes the SCAState options.

SCAState
option

Description

-a |
--all

Displays all available information.

-debug Displays information that is useful to debug SCAState behavior.

-ftd |
--full-
thread-dump

Prints a thread dump for every thread.

-h |
--help

Displays the help information for the SCAState tool.

-hd
<filename> |
--heap-dump
<filename>

Specifies the file to which the heap dump is written. The file is interpreted relative to the remote scan’s working directory; this is not
necessarily the same directory where you are running SCAState.

-
liveprogress

Displays the ongoing status of a running scan. This is the default. If possible, this information is displayed in a separate terminal
window.

-nogui Causes the OpenText SAST state information to display in the current terminal window instead of in a separate window.

-pi |
--program-
info

Displays information about the source code being scanned, including how many source files and functions it contains.

-pid
<process_id>

Specifies the currently running OpenText SAST process ID. Use this option if there are multiple OpenText SAST processes running
simultaneously.
To obtain the process ID on Windows systems:

1. Open a command window.
2. At the command prompt, type tasklist.

A list of processes is displayed.
3. Find the java.exe process in the list and note its PID.

To find the process ID on Linux systems:

At the command prompt, type ps aux | grep sourceanalyzer.

-progress Displays scan information up to the point at which the command is issued. This includes the elapsed time, the current phase of the
analysis, and the number of results already obtained.

-properties Displays configuration settings (this does not include sensitive information such as passwords).

-scaversion Displays the OpenText SAST version number for the sourceanalyzer that is currently running.

-td |
--thread-
dump

Prints a thread dump for the main scanning thread.

-timers Displays information from the timers and counters that are instrumented in OpenText SAST.

-version Displays the SCAState version.

-vminfo Displays the following statistics that JVM standard MXBeans provides: ClassLoadingMXBean, CompilationMXBean,
GarbageCollectorMXBeans, MemoryMXBean, OperatingSystemMXBean, RuntimeMXBean, and ThreadMXBean.

<none> Displays scan progress information (this is the same as -progress).

Note

OpenText SAST writes Java process information to the location of the TMP system environment variable. On Windows
systems, the TMP system environment variable location is C:\Users\<username>\AppData\Local\Temp. If you
change this TMP system environment variable to point to a different location, SCAState cannot locate the
sourceanalyzer Java process and does not return the expected results. To resolve this issue, change the TMP
system environment variable to match the new TMP location. OpenText recommends that you run SCAState as an
administrator on Windows.

Static Application Security Testing 25.4

Page 312This PDF was generated on 10/10/2025

 © Copyright 2025 Open Text
 For more info, visit https://docs.microfocus.com

Static Application Security Testing 25.4

Page 313This PDF was generated on 10/10/2025

https://docs.microfocus.com

	Title
	Table of Contents
	1. User Guide
	1.1. Support and documentation
	1.2. Change log
	1.3. Introduction
	1.3.1. Product name changes
	1.3.2. OpenText SAST
	1.3.2.1. About the analyzers
	1.3.3. Licensing
	1.3.4. Renewing an expired license
	1.3.5. OpenText Application Security Content
	1.3.6. Fortify ScanCentral SAST
	1.3.7. OpenText Application Security Tools
	1.3.8. Sample projects
	1.3.9. Related documents
	1.4. System requirements
	1.4.1. Hardware requirements
	1.4.1.1. Sample scans
	1.4.2. Supported platforms and architectures
	1.4.3. Software requirements
	1.4.4. Language compatibility
	1.4.4.1. Libraries, frameworks, and technologies
	1.4.5. Supported build tools
	1.4.6. Supported compilers
	1.4.7. OpenText Application Security Content
	1.4.8. Virtual Machine support
	1.4.9. Acquiring software
	1.4.10. Verifying software downloads
	1.5. Installing OpenText SAST
	1.5.1. About installing OpenText SAST
	1.5.1.1. Installing OpenText SAST
	1.5.1.2. Installing OpenText SAST silently
	1.5.1.3. Installing OpenText SAST in text-based mode on non‑Windows platforms
	1.5.1.4. Manually installing OpenText Application Security Content
	1.5.2. Using Docker to install and run OpenText SAST
	1.5.2.1. Creating a Dockerfile to install OpenText SAST
	1.5.2.2. Running the container
	1.5.3. Upgrading OpenText SAST
	1.5.4. About uninstalling OpenText SAST
	1.5.4.1. Uninstalling OpenText SAST
	1.5.4.2. Uninstalling OpenText SAST silently
	1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows platforms
	1.5.5. Post-installation tasks
	1.5.5.1. Running the post-install tool
	1.5.5.2. Migrating properties files
	1.5.5.3. Specifying a locale
	1.5.5.4. Configuring Fortify Security Content updates
	1.5.5.5. Configuring the connection to Application Security
	1.5.5.6. Removing proxy server settings
	1.5.5.7. Adding trusted certificates
	1.6. Analysis process overview
	1.6.1. Scanning Basics
	1.6.2. Translation phase
	1.6.3. Analysis phase
	1.6.4. Translation and analysis phase verification
	1.7. Analyzing Java, Kotlin and JSP projects
	1.7.1. Integrating with Gradle
	1.7.1.1. Using Gradle integration
	1.7.1.2. Troubleshooting Gradle integration
	1.7.1.3. Using the Gradle plugin
	1.7.2. Integrating with Maven
	1.7.2.1. Installing and updating the Fortify Maven Plugin
	1.7.2.2. Testing the Fortify Maven Plugin installation
	1.7.2.3. Using the Fortify Maven Plugin
	1.7.3. Integrating with Bazel
	1.7.3.1. Java Bazel integration examples
	1.7.4. Integrating with Ant
	1.7.5. Manual Java and Kotlin translation syntax
	1.7.5.1. Java, Kotlin and JSP command-line options
	1.7.5.2. Java command-line examples
	1.7.5.3. Kotlin command-line examples
	1.7.6. Analyzing Kotlin scripts
	1.7.7. Kotlin and Java translation interoperability
	1.7.8. Handling Java warnings
	1.7.9. Analyzing Jakarta EE (Java EE) applications
	1.7.9.1. Translating Java files
	1.7.9.2. Translating JSP projects, configuration files, and deployment descriptors
	1.7.9.3. Jakarta EE (Java EE) translation warnings
	1.7.10. Analyzing Java bytecode
	1.7.11. Troubleshooting JSP translation and analysis issues
	1.8. Analyzing Android projects
	1.8.1. Android project translation prerequisites
	1.8.2. Android code analysis command-line syntax
	1.8.3. Filtering issues detected in Android layout files
	1.9. Analyzing Visual Studio projects
	1.9.1. Visual Studio project translation prerequisites
	1.9.2. Visual Studio Project command-line syntax
	1.9.3. Handling special cases for translating Visual Studio projects
	1.9.3.1. Running translation from a script
	1.9.3.2. Translating plain .NET and ASP.NET projects
	1.9.3.3. Translating C/C++ and Xamarin projects
	1.9.3.4. Translating projects with settings containing spaces
	1.9.3.5. Translating a single project from a Visual Studio solution
	1.9.3.6. Analyzing projects that build multiple executable files
	1.9.4. Alternative ways to translate Visual Studio projects
	1.9.4.1. Alternative translation options for Visual Studio solutions
	1.9.4.2. Translating without explicitly running OpenText SAST
	1.10. Analyzing JavaScript and TypeScript code
	1.10.1. Translating pure JavaScript projects
	1.10.2. Excluding dependencies
	1.10.3. Excluding NPM Dependencies
	1.10.4. NPM dependencies
	1.10.4.1. Examples of excluding NPM dependencies
	1.10.5. Translating JavaScript projects with HTML files
	1.10.6. Including external JavaScript or HTML in the translation
	1.11. Analyzing Python and Jupyter Notebooks
	1.11.1. Integrating with Bazel
	1.11.1.1. Python Bazel integration examples
	1.11.2. Python translation command-line syntax
	1.11.2.1. Python command-line options
	1.11.2.2. Python command-line examples
	1.11.3. Translating Python in a virtual environment
	1.11.4. Including imported modules and packages
	1.11.5. Including namespace packages
	1.11.6. Translating Django and Flask
	1.12. Analyzing C and C++ code
	1.12.1. C and C++ Code translation prerequisites
	1.12.2. Integrating with Make
	1.12.3. Integrating with CMake
	1.12.4. Integrating with Gradle
	1.12.5. Manual C and C++ translation syntax
	1.12.6. Scanning pre-processed C and C++ code
	1.12.7. C/C++ Precompiled Header Files
	1.13. Analyzing iOS and Xcode projects
	1.13.1. iOS project translation prerequisites
	1.13.2. iOS code analysis command-line syntax
	1.14. Analyzing PHP code
	1.14.1. PHP command-line options
	1.15. Analyzing Go code
	1.15.1. Go command-line syntax
	1.15.2. Go command-line options
	1.15.3. Including custom Go build tags
	1.15.4. Resolving dependencies
	1.16. Analyzing Dart and Flutter code
	1.16.1. Dart and Flutter translation prerequisites
	1.16.2. Dart and Flutter command-line syntax
	1.16.3. Dart and Flutter command-line examples
	1.17. Analyzing Salesforce Apex and Visualforce code
	1.17.1. Apex and Visualforce translation prerequisites
	1.17.2. Apex and Visualforce command-line syntax
	1.18. Analyzing ABAP code
	1.18.1. About downloading source files
	1.18.1.1. INCLUDE processing
	1.18.2. Importing the transport request
	1.18.3. Adding OpenText SAST to your Favorites list
	1.18.4. Running the Fortify ABAP Extractor
	1.18.5. Uninstalling the Fortify ABAP Extractor
	1.19. Analyzing COBOL code
	1.19.1. Preparing COBOL source and copybook files for translation
	1.19.2. COBOL command-line syntax
	1.19.2.1. Translating COBOL source files without file extensions
	1.19.2.2. Translating COBOL source files with arbitrary file extensions
	1.19.2.3. COBOL command-line options
	1.19.3. Using Legacy COBOL translation
	1.19.3.1. Legacy COBOL translation command-line options
	1.20. Analyzing Ruby code
	1.20.1. Ruby command-line syntax
	1.20.1.1. Ruby command-line options
	1.20.2. Adding libraries
	1.20.3. Adding gem paths
	1.21. Analyzing other languages and configurations
	1.21.1. Analyzing Solidity code
	1.21.2. Analyzing Flex and ActionScript
	1.21.2.1. Flex and ActionScript command-line options
	1.21.2.2. ActionScript command-line examples
	1.21.2.3. Handling resolution warnings
	1.21.3. Analyzing ColdFusion code
	1.21.3.1. ColdFusion command-line syntax
	1.21.3.2. ColdFusion (CFML) command-line options
	1.21.4. Analyzing SQL
	1.21.4.1. PL/SQL command-line example
	1.21.4.2. T-SQL command-line example
	1.21.5. Analyzing Scala code
	1.21.6. Analyzing Infrastructure as Code (IaC)
	1.21.7. Analyzing JSON
	1.21.8. Analyzing YAML
	1.21.9. Analyzing Dockerfiles
	1.21.10. Analyzing ASP/VBScript virtual roots
	1.21.11. Classic ASP command-line example
	1.21.12. VBScript command-line example
	1.22. Analyzing Library code
	1.23. Scanning for Secrets
	1.23.1. Regular expression analysis
	1.24. Optimizing results
	1.24.1. Applying a scan policy to the analysis
	1.24.2. Excluding issues with filter files
	1.24.2.1. Filter file example
	1.24.3. Using filter sets to exclude issues
	1.24.4. Filtering using FortifyRemove comments
	1.24.5. Fortify Java annotations
	1.24.5.1. Dataflow annotations
	1.24.5.2. Field and variable annotations
	1.24.5.3. Other annotations
	1.25. Optimizing performance
	1.25.1. Antivirus software
	1.25.2. Hardware considerations
	1.25.3. Tuning options
	1.25.4. Quick scan
	1.25.5. Configuring scan speed with speed dial
	1.25.6. Breaking down codebases
	1.25.7. Limiting analyzers and languages
	1.25.7.1. Disabling analyzers
	1.25.7.2. Disabling languages
	1.25.8. Optimizing FPR files
	1.25.8.1. Using filter files
	1.25.8.2. Using filter sets
	1.25.8.3. Excluding source code from the FPR
	1.25.8.4. Reducing the FPR file size
	1.25.8.5. Opening large FPR files
	1.25.9. Monitoring long running scans
	1.25.9.1. Using the SCAState tool
	1.25.9.2. Using JMX tools
	1.25.9.2.1. Using JConsole
	1.25.9.2.2. Using Java VisualVM
	1.26. Using mobile build sessions
	1.26.1. Mobile build session version compatibility
	1.26.2. Creating a mobile build session
	1.26.3. Importing a mobile build session
	1.27. Troubleshooting
	1.27.1. Exit codes
	1.27.2. Memory tuning
	1.27.2.1. Java heap exhaustion
	1.27.2.2. Native heap exhaustion
	1.27.2.3. Stack overflow
	1.27.3. Scanning complex functions
	1.27.3.1. Dataflow Analyzer limiters
	1.27.3.2. Control Flow and Null Pointer analyzer limiters
	1.27.4. Issue non-determinism
	1.27.5. Locating the log files
	1.27.6. Configuring log files
	1.27.7. Reporting issues and requesting enhancements
	1.28. Command-line reference
	1.28.1. Specifying files and directories
	1.28.2. Directives
	1.28.2.1. LIM license directives
	1.28.3. Translation options
	1.28.4. Analysis options
	1.28.5. Output options
	1.28.6. Other options
	1.29. Configuration options
	1.29.1. Properties files
	1.29.1.1. Properties file format
	1.29.1.2. Overriding settings
	1.29.2. fortify-sca.properties
	1.29.2.1. Translation and analysis phase properties
	1.29.2.2. Regex analysis properties
	1.29.2.3. LIM license properties
	1.29.2.4. Rule properties
	1.29.2.5. Java and Kotlin properties
	1.29.2.6. Visual Studio and MSBuild project properties
	1.29.2.7. JavaScript and TypeScript properties
	1.29.2.8. Python properties
	1.29.2.9. Go properties
	1.29.2.10. Ruby properties
	1.29.2.11. COBOL properties
	1.29.2.12. PHP properties
	1.29.2.13. ABAP properties
	1.29.2.14. Flex and ActionScript properties
	1.29.2.15. ColdFusion (CFML) properties
	1.29.2.16. SQL properties
	1.29.2.17. Output properties
	1.29.2.18. Mobile build session (MBS) properties
	1.29.2.19. Proxy properties
	1.29.2.20. Logging properties
	1.29.2.21. Debug properties
	1.29.3. fortify-sca-quickscan.properties
	1.29.4. fortify-rules.properties
	1.30. Command-line tools
	1.30.1. About updating OpenText Application Security Content
	1.30.1.1. Updating OpenText Application Security Content
	1.30.1.2. fortifyupdate command-line options
	1.30.2. Checking the scan status with SCAState
	1.30.2.1. SCAState command-line options

