
Knowledge Graph
Software Version: 11.5

Administration Guide

Document Release Date: October 2017

Software Release Date: October 2017



Legal notices

Warranty

The only warranties for Hewlett Packard Enterprise Development LP products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright notice

© Copyright 2017 Hewlett Packard Enterprise Development LP

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To check for recent software updates, go to https://downloads.autonomy.com/productDownloads.jsp.

To verify that you are using the most recent edition of a document, go to
https://softwaresupport.hpe.com/group/softwaresupport/search-result?doctype=online help.

This site requires that you register for an HPE Passport and sign in. To register for an HPE Passport ID, go to
https://hpp12.passport.hpe.com/hppcf/login.do.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HPE sales representative for details.

Support
Visit the HPE Software Support Online web site at https://softwaresupport.hpe.com.

This web site provides contact information and details about the products, services, and support that HPE
Software offers.

Administration Guide

KnowledgeGraph (11.5) Page 2 of 19

https://downloads.autonomy.com/productDownloads.jsp
https://softwaresupport.hpe.com/group/softwaresupport/search-result?doctype=online help
https://hpp12.passport.hpe.com/hppcf/login.do
https://softwaresupport.hpe.com/


HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Access product documentation
l Manage support contracts
l Look up HPE support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require that you register as an HPE Passport user and sign in. Many also require a
support contract.

To register for an HPE Passport ID, go to https://hpp12.passport.hpe.com/hppcf/login.do.

To find more information about access levels, go to
https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

To check for recent software updates, go to https://downloads.autonomy.com/productDownloads.jsp.

Administration Guide

KnowledgeGraph (11.5) Page 3 of 19

https://hpp12.passport.hpe.com/hppcf/login.do
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
https://downloads.autonomy.com/productDownloads.jsp


Contents

Introduction to Knowledge Graph 5
Graph Concepts 5

Create andQuery a Graph 6

Install and Run Knowledge Graph 8
Start KnowledgeGraph 8

Send Actions to KnowledgeGraph 8

Display Online Help 9

GetStatus 9

Stop KnowledgeGraph 9

Configure Knowledge Graph 11
Configure Edge Types 11

Configure EdgeWeights 12

Configure the KnowledgeGraph Index 13

Index Documents into Knowledge Graph 14
Index a JSON Document 14

Index an IDX Document 14

Use Connector Framework Server to Index Documents 15

Query Knowledge Graph 17
FindGraph Details 18

Send documentation feedback 19

Administration Guide

KnowledgeGraph (11.5) Page 4 of 19



Introduction to Knowledge Graph

IDOL KnowledgeGraph is an IDOL component that allows you to explore connections in a data set.
You can define relationships between concepts or entities in IDOL documents, based on the field types
in the document. KnowledgeGraph then transforms the IDOL database into the set of relationships it
contains. This set of relationships is called a graph.

You can use KnowledgeGraph to enrich a database with meaningful, human-defined connections. The
graph then allows you to create interesting queries to find out more about your data. For example, you
can find out how many times something is connected to something else, and with what importance.
Theremight bemultiple types of connection in the graph, and each connection typemight occur
multiple times (represented by a count). You can also suggest new connections between entities based
on their existing neighbors in the graph.

KnowledgeGraph connects your data and reveals missing or hidden information. For example, you can
use it to:

l find weak or fraudulent links in an e-mail chain.
l suggest a key competitive advantage
l find the fastest route to a particular market
l find an influential distributor
IDOL KnowledgeGraph explicitly models relationships between parts of your data, offering an
alternative view of your data to existing IDOL installations. This method of conceptualizing the data can
make it easier to analyze patterns of dependency, causality, or endorsement, and to explain
connections between items.

Graph Concepts

A graph is a representation of the relationships between concepts or entities.

Each concept is a node in the graph. The nodes have unique names, and KnowledgeGraph assigns
each node a unique ID. Relationships between nodes are represented by edges.

Edges are a directed connection between a source node to a target node. In addition, every edge has a
type, and KnowledgeGraph creates only one edge of each type between each unique pair of nodes
(that is, a specified source and specified target). Each edge also has the following attributes:

l Count. The number of times a given edge occurs in the data. The first time a connection occurs in
the data, KnowledgeGraph creates the edge. Each subsequent time the same connection occurs, it
increments the count attribute for the edge.

l Weight. A user-defined or automatically generated weight value. KnowledgeGraph can use the
weight of an edge as the distance along an edge when calculating the shortest path.

The following diagram shows an example graph.

Administration Guide
Introduction to KnowledgeGraph

KnowledgeGraph (11.5) Page 5 of 19



Each node in this graph represents a person, identified by an e-mail address. All the edges have the
type emailed.

The count represents the number of times a person has e-mailed a particular other person; for example,
in this graph. Duncan has e-mailed Eleanor 100 times. The weight is a user-defined value; for example,
in this graph it might correspond to the e-mail priority.

The graph also has the following features:

l Path lengths. A path is a sequence of edges connecting two nodes that are not necessarily
adjacent to each other in the graph. The length or weight of a path is the sum of the weights of its
edges. For an unweighted path, this length is the number of edges on the path between two nodes.
In this graph, the length of path from Felix to Alice is three, while from Felix to Eleanor is two. For all
paths, edges are directional.
Multiple paths can exist between two nodes, and the shortest path is determined by comparing path
lengths. In this graph, there are two paths between Bob and Duncan. The shortest path (unweighted)
is the direct edge. However, if the direct edge had a high weight, the path from Bob to Carole to
Duncanmight be a shorter route.

l In Degree. The in degree of a node is the number of edges that point to that node (the number of
edges where the node is the target node). In this graph, Felix and Eleanor have an in degree of one,
while Duncan has an in degree of three.

l Out Degree. The out degree of a node is the number of edges that lead from a node (the number of
edges where the node is the source node). In this graph, Carole, Eleanor, and Felix have an out
degree of one, while Duncan and Bob have an out degree of two.

Create and Query a Graph

IDOL KnowledgeGraph is an in-memory graph database, which also automatically persists its state to
disk. You can configure the graph by defining edges in the server configuration file. For more
information about configuration, see Configure KnowledgeGraph, on page 11.

You can index documents into KnowledgeGraph in JSON format, for example by using the Connector
Framework Server (CFS) to extract content from a repository. You can also index existing
IDX documents into the server, by using the Python script provided in the KnowledgeGraph
installation.

Administration Guide
Introduction to KnowledgeGraph

KnowledgeGraph (11.5) Page 6 of 19



The IDOL KnowledgeGraph interface uses the ACI API. The interface includes actions to allow you to
add data to your graph and to query the graph. The KnowledgeGraph actions allow you to retrieve
neighbors for specified nodes, paths between specified nodes, or subgraphs containing a specified set
of nodes. It returns the information as IDOL XML responses.

Administration Guide
Introduction to KnowledgeGraph

KnowledgeGraph (11.5) Page 7 of 19



Install and Run Knowledge Graph

You can install KnowledgeGraph by using the IDOL Server installer. For more information about using
this installer, refer to the IDOLGetting Started Guide.

You can also download the KnowledgeGraph component installation package, which is a .zip file that
you can extract to a location on your server.

After you install, you can configure and run KnowledgeGraph.

Start Knowledge Graph

NOTE:
Your License Server must be running before you start KnowledgeGraph.

To start Knowledge Graph

l Start KnowledgeGraph from the command line using the following command:

graphserver.exe -configfile configname.cfg

where the optional -configfile argument specifies the path of the configuration file that you want
to use.

l Double-click the graphserver.exe file in the KnowledgeGraph installation directory (Windows
only).

l Start the KnowledgeGraph service from theWindows Services dialog box (Windows only).

Send Actions to Knowledge Graph

KnowledgeGraph actions are HTTP requests, which you can send, for example, from your web
browser. The general syntax of these actions is:

http://host:port/action=action&parameters

where:

host is the IP address or name of themachine where KnowledgeGraph is installed.

port is the KnowledgeGraph ACI port. The ACI port is specified by the Port parameter in
the [Server] section of the KnowledgeGraph configuration file. For more information
about the Port parameter, see theKnowledgeGraph Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

Administration Guide
Install and Run KnowledgeGraph

KnowledgeGraph (11.5) Page 8 of 19



NOTE:
Separate individual parameters with an ampersand (&). Separate parameter names from values
with an equals sign (=). Youmust percent-encode all parameter values.

For more information about actions, see theKnowledgeGraph Reference.

Display Online Help

You can display the KnowledgeGraph Reference by sending an action from your web browser. The
KnowledgeGraph Reference describes the actions and configuration parameters that you can use with
KnowledgeGraph.

For KnowledgeGraph to display help, the help data file (help.dat) must be available in the installation
folder.

To display help for Knowledge Graph

1. Start KnowledgeGraph.
2. Send the following action from your web browser:

http://host:port/action=Help

where:

host is the IP address or name of themachine on which KnowledgeGraph is installed.

port is the ACI port by which you send actions to KnowledgeGraph (set by the Port
parameter in the [Server] section of the configuration file).

For example:

http://12.3.4.56:9000/action=help

GetStatus

You can use the GetStatus service action to verify the KnowledgeGraph is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE:
You can send the GetStatus action to the ACI port instead of the service port. The GetStatus
ACI action returns information about the KnowledgeGraph setup.

Stop Knowledge Graph

You can stop KnowledgeGraph by using one of the following procedures.

Administration Guide
Install and Run KnowledgeGraph

KnowledgeGraph (11.5) Page 9 of 19



To stop Knowledge Graph

l Send the following action to the KnowledgeGraph’s service port.

http://host:ServicePort/action=stop

where,

host is the host name or IP address of themachine where KnowledgeGraph is
installed.

ServicePort is the KnowledgeGraph service port (specified in the [Service] section of the
configuration file).

l If KnowledgeGraph is running as a service, stop KnowledgeGraph from theWindows Services
dialog box. (Windows only)

Administration Guide
Install and Run KnowledgeGraph

KnowledgeGraph (11.5) Page 10 of 19



Configure Knowledge Graph

After you install KnowledgeGraph, youmust configure the edges that you want to store in your graph.

You configure KnowledgeGraph in the configuration file. By default, this has the name
graphserver.cfg.

For details of all the configuration parameters that you can set in the KnowledgeGraph configuration
file, refer to theKnowledgeGraph Component Reference.

Configure Edge Types

KnowledgeGraph creates nodes and edges from your content according to your configuration. You
must configure the edges in the KnowledgeGraph configuration file before you index your data.

The [Edges] section contains a list of your edge types. You can also use this section to configure
global settings for edge weighting. For more information, see Configure EdgeWeights, on the next
page.

To configure an edge type

1. Open an example of the type of document that you want to index into KnowledgeGraph to create
your graph.

2. Find the fields that represent the kind of connections that you want to chart. For example:
l In an e-mail document, youmight want to create links between the TO and FROM fields to create
a graph that describes e-mail connections in your organization.

l In a wikipedia article, youmight want to create a link between the title of the document and a
list of other pages that the article links to. In this case, youmight use CFS to add a field to your
documents, containing the list of links.

3. Open the KnowledgeGraph configuration file in a text editor.
4. Find the [Edges] configuration section, or create it if it does not exist.
5. In the list of types, add a new parameter to the list for each type that you want to create. The

parameter name is the next value in the zero-based list of types. The value is the edge type. For
example:

[Edges]
...
0=emailed
1=corecipient

6. Create a new configuration section with the same name as your edge type. For example:

[emailed]

[corecipient]

7. For your new edge type, define the fields that you want to use to create nodes. You can use one of

Administration Guide
Configure KnowledgeGraph

KnowledgeGraph (11.5) Page 11 of 19



the following configuration parameter combinations to create nodes:
l Set Source to a comma-separated list of fields whose values you want to use as source nodes.
Set Target to a comma-separated list of fields whose values you want to use as target nodes.
When a Source field and a Target field exist in a document, KnowledgeGraph creates an edge
between values in the source field and values in the target field, and the values become nodes.
For example:

[emailed]
Source=FROM
Target=TO,CC

l Set Nodes to a comma-separated list of fields whose values you want to use as nodes. When
these fields exist in a document, KnowledgeGraph creates two edges (one in each direction)
between each pair of nodes. For example:

[corecipient]
Nodes=CC,TO

8. Save the configuration file and restart KnowledgeGraph for your changes to take effect.

Configure Edge Weights

KnowledgeGraph stores aweight attribute for each edge. You can use this value to adjust how
KnowledgeGraph calculates the shortest path. You can use the following weightingmethods for your
graph:

l None. Do not assign weights to edges.
l Field. Use the value of a specified document field as the weight. You can configure the field to use,
and define your ownweight values in documents, which KnowledgeGraph uses to set the weight
edge attribute when it creates an edge.

l Shortstep. Use the shortstepmethod to automatically assign weights for all edges. This method
determines the similarity of a pair of nodes by comparing the sets of out-neighbors for each node. If
the nodes are identical, it assigns a weight of zero to the edge. Edges that connect nodes that are
less similar have higher weights, up to infinity for distinct nodes.

For more information about these weightingmethods, refer to theKnowledgeGraph Component
Reference.

To configure weighting for your edges

1. Open the KnowledgeGraph configuration file in a text editor.
2. In the [Edges] section, set the Weighting parameter to the weightingmethod that you want to

use. For example:

[Edges]
Weighting=Field

3. If you have set Weighting to Field, youmust define the field that you want to use for weighting,
by setting the WeightFields parameter to the name of the field.

Administration Guide
Configure KnowledgeGraph

KnowledgeGraph (11.5) Page 12 of 19



NOTE:
If you are not using field weighting, do not set the WeightFields parameter. If you set the
WeightFields parameter when Weighting is not set to Field, KnowledgeGraph logs an
error and exits.

l To set a field to use for weighting for all your edge types, set the WeightFields parameter in
the [Edges] section. You can use this setting as a global value for all your edge types, or as a
default value, which you can override for individual edge types. For example:

[Edges]
Weighting=Field
WeightFields=PRIORITY

l To set a field to use for weighting for a particular edge type, set the WeightFields parameter in
the edge type configuration section. This setting overrides the WeightFields parameter in the
[Edges] section, if it is set there. For example:

[emailed]
WeightFields=CONTACTWEIGHT

4. Save the configuration file and restart KnowledgeGraph for your changes to take effect.
5. (Optional) If you have changed the weighting configuration and you already have documents

indexed, you can use the RegenerateWeights action to update the weighting in your graph. For
more information, refer to theKnowledgeGraph Component Reference.

Configure the Knowledge Graph Index

KnowledgeGraph stores index data in a file on disk. You can configure the name and format of this file
by modifying parameters in the [Persistence] configuration section. For example:

[Persistence]
Filename=email_graph.bin

Formore information, refer to theKnowledgeGraph Component Reference.

Administration Guide
Configure KnowledgeGraph

KnowledgeGraph (11.5) Page 13 of 19



Index Documents into Knowledge Graph

KnowledgeGraph accepts indexed documents in JSON format. You can also use the python script
IDXtoJSON.py, included in the KnowledgeGraph installation directory to convert and index an existing
IDX document. For example, you can use this script on an IDX document that you have exported from
IDOL Server.

When you index a document, KnowledgeGraph extracts the values of fields that you have configured
as nodes in your edge configuration, and creates the graph of nodes and edges. After indexing, it
creates a persistent store of the graph on disk.

Index a JSON Document

To index a JSON document, send the IndexDocs action to KnowledgeGraph, using a POST request
method, and set the Data parameter to the contents of the JSON document. For example:

http://12.3.4.56:9000/action=IndexDocs&Data=[{'title': 'document 1', 'myfield':
'value1'}, {'title': 'document 2', 'myfield': 'value 2'}]

Index an IDX Document

You can use the IDXtoJSON.py script to convert an existing IDX document to JSON and index it into
KnowledgeGraph.

NOTE:
The script indexes all your documents in batches, without saving the graph index to disk. After
indexing is complete, it runs a Persist action to save the graph index to disk, and the
RegenerateWeights action to generate weights, if you have set the Weighting configuration
parameter to Shortstep.

To run this script, youmust have:

l Python version 2 or 3.
l The Requestsmodule.
To index an IDX document using the script

l Open a command prompt in your KnowledgeGraph installation directory, and run the following
command:

python IDXtoJSON.py --input InputPath --server ServerDetails --batchsize
BatchSize

where:

InputPath is the file name and path to the input IDX file that you want to index into

Administration Guide
Index Documents into KnowledgeGraph

KnowledgeGraph (11.5) Page 14 of 19



KnowledgeGraph.

ServerDetails is the host name and ACI port of the KnowledgeGraph that you want to index
into. Use the format host:port.

BatchSize is the number of documents from the IDX file to include in each POST request
to KnowledgeGraph. The default value is 10000.

NOTE:
Large batch sizes can fail if the request becomes too big. If you do not
want to reduce the batch size, you can increase the value of the
MaxFileUploadSize configuration parameter in the [Server] section of
the KnowledgeGraph configuration file. For more information, refer to the
KnowledgeGraph Component Reference.

For example:

python IDXtoJSON.py --input /c/graphdata/graphinput.idx --server localhost:13000
--batchsize 1000

Use Connector Framework Server to Index
Documents

The IDOL Connector Framework Server (CFS) processes files of different types and extracts the text
into an IDOL document format. You can configure CFS to index into KnowledgeGraph by using the
IDOLACIIndexer library, which converts the normal CFS output to JSON format, which Knowledge
Graph can index.

For more information about how to configure CFS and use it to retrieve documents, refer to the
Connector Framework Server Administration Guide.

To configure CFS to index into KnowledgeGraph, add the following configuration to your
CFS configuration file:

[Indexing]
IndexerSections=Graph

[Graph]
IndexerType=Library
LibraryDirectory=IndexerDLLPath
LibraryName=IDOLACIIndexer
ACIIndexHost=GraphServerHost
ACIIndexPort=GraphServerPort

where,

IndexerDLLPath is the path to your version of the IDOLACIIndexer library.

GraphServerHost is the host name or IP address of themachine that your KnowledgeGraph is
installed on.

Administration Guide
Index Documents into KnowledgeGraph

KnowledgeGraph (11.5) Page 15 of 19



GraphServerPort is the ACI Port of your KnowledgeGraph.

By default, CFS creates XML documents. The library converts these documents to JSON. In this
process, any XML attributes become JSON fields, and the JSON field name is the XML attribute name
with the@ symbol as a prefix. For example, the following XML:

<Field1>Value1</Field1>
<Field2 attribute1="AttValue1">Value2</Field2>

Becomes the following in JSON format:

{
"Field1" : "Value1",
"Field2" : [

"Value2",
{

"@Attribute1" : "AttValue1"
}

]
}

Administration Guide
Index Documents into KnowledgeGraph

KnowledgeGraph (11.5) Page 16 of 19



Query Knowledge Graph

When you index content into KnowledgeGraph it stores the nodes and edges for your graph. You can
then query KnowledgeGraph to find information about your data.

KnowledgeGraph has the following querying actions. For full details of the actions and action
parameters, refer to theKnowledgeGraph Component Reference.

l GetNeighbors. Returns the neighbors of the nodes that you specify.
For example, if your graph contains wikipedia articles, you can find a list of related concepts for a
specified article. The following action finds a list of up to 10 articles that the Hewlett-Packard article
links to.

action=GetNeighbors&SourceNames=Hewlett&20Packard&20Enterprise&MaxResults=10

l GetNeighborhood. Returns the nodes within a specified distance of the nodes that you specify. This
action also returns the edges between all the nodes in the set (input and result nodes), to create a
subgraph from a starting set of nodes and closely related nodes. GetNeighborhood allows you to
find out what a particular part of the graph looks like, without knowing the names or IDs of all the
nodes.
For example, if your graph contains wikipedia articles, you can create a neighborhood subgraph of
articles that are closely related to a specified article. The following action finds up to 15 articles that
are closely related to the articles on Chemistry and Physics, and any connections between them.

action=GetNeighborhood&SourceNames=Chemistry,Physics&MaxResults=15

l GetCommonNeighbors. Returns neighbors of a list of nodes that you specify, together with a
commonality value that indicates how many of your list of nodes the neighbor shares.
For example, if your graph contains wikipedia articles, you can find a list of concepts that are related
to two or more articles. The following action finds a list of up to 10 articles that the articles on Barack
Obama and David Cameron both link to.

action=GetCommonNeighbors&SourceNames=Barack%20Obama,David%20Cameron&MaxResults=1
0

l GetShortestPath. Finds the shortest route between two specified nodes, using existing edges in
the graph.
For example, if your graph is made up of connections between places, you can find a route between
them. The following action uses the graph to find the shortest route between London and
Manchester. It uses the Weightedmethod, which returns the route with the lowest value for the sum
of the weights of the edges. For this example, the weights might represent the physical distance or
travel time between two nodes in the route.

action=GetShortestPath&SourceName=London&TargetName=Manchester&Method=Weighted

l GetShortestPaths. Finds all nodes within a specified distance of a specified node, using existing
edges in the graph.
For example, if your graph is made up of connections between places, you can find all places within
a specified distance of your starting point. The following action uses the graph to find all places

Administration Guide
Query KnowledgeGraph

KnowledgeGraph (11.5) Page 17 of 19



within a distance of 10 from Cambridge. It uses the Weightedmethod to calculate the distance. For
this example, the weights might represent the physical distance or travel time between two nodes.

action=GetShortestPaths&SourceName=Cambridge&Method=Weighted&MaxDistance=10

l GetSubgraph. Returns a subgraph based on the set of nodes that you specify, showing all the edges
that occur between these nodes.
For example, if your graph contains a list of employees in your company and their contacts, you can
create a subgraph that shows the connections in a particular department. The following action
creates a subgraph for five users, where the users are specified by KnowledgeGraph node ID.

action=GetSubgraph&NodeIDs=10230,20345,20346,20347,21968

l SuggestLinks. Returns a list of nodes that are connected to neighbors of a node that you specify
and that are not also neighbors of the specified node.
For example, if your graph contains a list of users and their contacts, you can find friends of friends
that a particular user might want to connect to. The following action finds contacts who are friends of
friends of a user with the e-mail address Alice@example.com.

action=SuggestLinks&NodeName=Alice%40example.com

Find Graph Details

The following actions allow you to get more information about your graph. For full details of the actions
and action parameters, refer to theKnowledgeGraph Component Reference.

l GetNodes. Lists the nodes in your graph. You can use this action to find the node IDs of your nodes.

action=GetNodes&Sort=None

l SummarizeGraph. Returns a summary of the number of nodes and edges in your graphs, and details
of the attributes stored for your edges.

action=SummarizeGraph

Administration Guide
Query KnowledgeGraph

KnowledgeGraph (11.5) Page 18 of 19



Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Administration Guide (Knowledge Graph 11.5)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to AutonomyTPFeedback@hpe.com.

We appreciate your feedback!

KnowledgeGraph (11.5) Page 19 of 19

mailto:AutonomyTPFeedback@hpe.com?subject=Feedback on Administration Guide (Knowledge Graph 11.5)

	Introduction to Knowledge Graph
	Graph Concepts
	Create and Query a Graph

	Install and Run Knowledge Graph
	Start Knowledge Graph
	Send Actions to Knowledge Graph
	Display Online Help
	GetStatus
	Stop Knowledge Graph

	Configure Knowledge Graph
	Configure Edge Types
	Configure Edge Weights
	Configure the Knowledge Graph Index

	Index Documents into Knowledge Graph
	Index a JSON Document
	Index an IDX Document
	Use Connector Framework Server to Index Documents

	Query Knowledge Graph
	Find Graph Details

	Send documentation feedback

