KeyView

Software Version: 11.6

ML Export SDK C Programming Guide

XML Export SDK C Programming Guide

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice
© Copyright 2006-2018 EntIT Software LLC, a Micro Focus company
Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.
Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support

Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

Search for knowledge documents of interest

Submit and track support cases and enhancement requests
Access the Software Licenses and Downloads portal
Download software patches

Access product documentation

Manage support contracts

KeyView (11.6) Page 2 of 346

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

XML Export SDK C Programming Guide

« Look up Micro Focus support contacts

« Review information about available services

« Enterinto discussions with other software customers
« Research and register for software training

Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

KeyView (11.6) Page 3 of 346

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

XML Export SDK C Programming Guide

Contents

Part I: Overview of XML EXport . 13
Chapter 1: Introducing XML EXpPOrt .o 14
OV IV W . 14
Features il 15
Platforms, Compilers, and Dependencies 15
Supported Platforms ... 15
Supported Compilers .l 16
CH+ Filter SDK .. 17
Software DependenCies L 17
Windows Installation 17
UNIX Installation .. il 18
Package Contentso 19
License Information il 20
Enable Advanced Document Readers 20
Update License Information 20
Directory Structure 21
Definition of TerMS ... 23
Chapter 2: Getting Started 24
Architectural OVeIVIEW 24
Memory Abstraction 25
Enhance Performance 26
File Caching 26
Convert Files Out of Process ...l 26
Configure Out-of-Process Conversions 27
Run Export Out of Process—Overview 29
Recommendations 29

Run Export Out of Process inthe C APl ... 30
Example—KVXMLStartOOPSession 31
Example—KVXMLENdOOPSeSSION 32
ConVert FIles .o 32
Subfile EXtraction 33
Convert Outlook Email without Using the Extraction APl 33
Set Conversion Options ...l 34
Set Conversion Options by Usingthe AP 34
Set Conversion Options by Using the Template Files 34
Templates ... 35
Usethe Export Demo Program ... il 36
Change Input/Output Directories 37
Set Configuration Options ... 38
SuUppPress IMages ...l 38

Use PDF Position Information 38

KeyView (11.6) Page 4 of 346

XML Export SDK C Programming Guide

ConVert FileSs .o 39
Use the C-Language Implementation of the APl __ 39
Input/Output Operations 40
Convert Files .. 40
Multithreaded ConVersioNS 42
Use the Verity Document Type Definition (DTD) 42
Use XML Style Language Transformation (XSLT) 43
Add Elements and Attributes tothe DT D 43
Move the DT D .. L 43
Partll: Use the Export AP . . 44
Chapter 3: Use the File Extraction APl ... 45
INtrodUCHION L 45
EXtract SUDTIlES L 46
Extract Images .. 47
Recreate a File's HierarChy 47
Create a ROt NOAe 47
Recreate a File’s Hierarchy—Example 48
Extract Mail Metadata ... il 48
Default Metadata Set 49
Extract the Default Metadata Set 49
Microsoft Outlook (MSG)Metadata 50
Extract MSG-Specific Metadata 51
Microsoft Outlook Express (EML) and Mailbox (MBX)Metadata 52
Extract EML- or MBX-Specific Metadata 52

Lotus Notes Database (NSF)Metadata 52
Extract NSF-Specific Metadata 53
Microsoft Personal Folders File (PST)Metadata 53
MA P Properties ... L 53
Extract PST-Specific Metadata 54
Exclude Metadata from the Extracted Text File 55
Extract Subfiles from Outlook Files 55
Extract Subfiles from Outlook Express Files 55
Extract Subfiles from Mailbox Files 56
Extract Subfiles from Outlook Personal Folders Files 56
Usethe Native or MAPI-based Reader 56
Use the Native PST Reader (pStnsr) i 57
Usethe MAPI Reader (pStSr) ... 57
System Requirements ... 58

MAPI Attachment Methods . 58
Open Secured PST Files 59
Detect PST Files While the Outlook Clientis Running 59
Extract Subfiles from Lotus Domino XML Language Files 59
Extract .DXL Files to HTML L 60
Extract Subfiles from Lotus Notes Database Files 60

KeyView (11.6) Page 5 of 346

XML Export SDK C Programming Guide

System Requirements 61
Installation and Configuration 61
WiNAOWS il 61
SOlaNS . 62

ADX B X . 62

iU 63

Open Secured NSF Files ... 63
Format Note Subfiles 63
Extract Subfiles from PDF Files 63
Improve Performance for PDFs with Many Small Images 63
Extract Embedded OLE Objects 64
Extract Subfiles from ZIP Files ...l 64
Default File Names for Extracted Subfiles 64
Default File Name for Mail Formats 65
Default File Name for Embedded OLE Objects 66
Chapter 4: Use the XML Export APl .. 67
Extract Metadata 67
Extract Metadata by Usingthe APl 67
Usethe C APl L 68
Extract Metadata by Usinga Template File 68
EXaMPIES L 69
SSUMMARYNN 69
SSUMMARY 69
SUSERSUMMARY 70

Extract File Format Information 70
Usethe C AP . 70
Convert Character Sets 70
Determine the Character Set of the Output Text 70
Guidelines for Character Set Conversion 71
Examples of Character Set Conversion 72
Document Character Set Can be Determined 72
Document Character Set Cannot be Determined 73

Set the Character Set During Conversion, 73
Set the Character Set During File Extraction froma Container 74
Map S YIS . 74
Usethe C AP . 75
Usea Templatefile - 75
Use Style Sheets . il 77
Use Extensible Style Sheet Language (XSL) 77
Use Cascading Style Sheets (CSS) 78
Display Vector Graphics on UNIX and Linux 78
Convert Revision Tracking Information 79
Convert PDF Files . 80
Usethe pdf2sr Reader 80
Convert PDF Files toa Logical ReadingOrder ... 81
Logical Reading Order and Paragraph Direction 81

KeyView (11.6) Page 6 of 346

XML Export SDK C Programming Guide

Enable Logical Reading Ordero i 82
Usethe C AP il 82
Usetheformats_e.iniFile 83

Control Hyphenation 84
Extract Custom Metadata from PDF Files 84
Configure the Size of Exported Images 85
Convert Spreadsheet Files 86
Convert Hidden Text in Microsoft Excel Files 86
Convert Headers and Footers in Microsoft Excel 2003 Files 86
Specify Date and Time Format on UNIX Systems 86
Convert Very Large Numbers in Spreadsheet Cells to Precision Numbers__....._. 87
Extract Microsoft Excel Formulas 87
Set Minimum Image Size ... iiiiiiil. 89
Convert Presentation Files 89
Convert Presentation Files to RasterIimages 90
Convert Presentation Files to a Logical ReadingOrder 90
Convert XML Files . 90
Configure Element Extraction for XML Documents 90

Modify Element Extraction Settings 91
Usethe C AP il 91
Use an Initialization File 92

Modify Element Extraction Settings in the kvxconfig.iniFile 92

Specify an Element’s Namespace and Attribute 94

Add Configuration Settings for Custom XML Document Types 94

Show Hidden Data 95
Hidden Data in Microsoft Documents 95
Toggle Word Comment Settings in the formats_e.iniFile .____........__.._.........._. 96
Toggle PowerPoint Slide Note Settings in the formats_e.iniFile 97
Exclude Japanese Guide Text 97
Obtain Image INfo 97
EXAMDI .. 98
Chapter 5: Sample Programs .. 99
INtrOdUCHION L 99
C Sample Programs ... 99
Compile the Visual Basic Sample Program 100
EStXAraCt .. 100
CNV XMl il 101
CNV XMl OO . . .ol 102
Metadata il 103
XINIINAEX .. 103
XN il 103
Use Style Sheets with xmlini ... 104
XMICalIDACK . . 105
XMIonefile |l 105
XNIMUR T ol 105
EXPOrt DemoO . 106

KeyView (11.6) Page 7 of 346

XML Export SDK C Programming Guide

Partlll: C APIReference 107
Chapter 6: File Extraction APl Functions 108
KVGetExtractinterface() ... 108
fPCIOSEFIle() - il 109
fPEXtraCtSUDFII () ... 109
TS UCT() - .. 111
fPGetMaiNFIlelNfO() - ... 112
fpGetSubFilelnfo() 113
fpGetSubFileMetaDatal) 114
TPOPENFII () oo 116
Chapter 7: File Extraction APl Structures 118
KV Credential .. o 118
KVCredential Component 119
KVEXtractinterface 119
KVEXIraCctSUDFIICATG 120
KV Gt SUDFIIEMeEtaA TG e 122
KVMainFIleINfO . e 123
KVMetadataElem L 124
KVMetaNamMe ... 125
KVOPENFIIBATG 126
KV OUL UL S aM . . 127
KV SUbFileEXtractinfo 128
KV SUBFIIEINTO . . e 129
KVSUbFIleMetaData 131
Chapter 8: XML Export API FUNCLIONS L 133
KVXMLGetInterface() 133
KVXMLGetINterfaceEX() ... 134
TP ONV e S aAMI) . L 135
fpFileTolnputStreamCreate() 137
fpFileTolnputStreamFree() 138
fpFileToOutputStreamCreate() 139
fPFileToOUtpULStreamMFree() L 140
fPFreelmagelnfos () - ... 141
fPGEtANCNON) .. 142
fpGetConvertFilelist() 143
fPGEtKVEIOrC O L 144
fPGEtKVEIOrCodeEX 144
fpGetOutputimageCount() 145
fpGetOutputimagelnfo() L 145
fpGetOutputlmagelnfos() oo 146
fPGetStreamInfO() 147
fpGetSummaryInfo() 147
BRIt) <o 149
St Sty eMapPPING() - ... L 150
TS NUID OWN() <. 151

KeyView (11.6) Page 8 of 346

XML Export SDK C Programming Guide

fpValidateTemplate() ... il 151
KVXMLCONFIG() . oo e e 152
Configuration Flags 153
EXaMIPIES 157
KVXMLConvertFile() - .. 159
KVXMLENAOOPSESSION() ..o e e e e 161
KV XML S et StyleSheet() . ..o 163
KVXMLStartOOP SeSSION() - 165
DS CUS S ON 166
EXaMDI . 166
Chapter 9: XML Export API Callback Functions 169
INErOAUC I ON L 169
CONtINUE() - il 169
GetANCNON) .. 170
GetAUXOUIPUL() . .o 171
USEIC B - . 172
Chapter 10: XML Export AP1 Structures 174
AD DO CINF O 174
KV INpUE S reamM 175
KV M EmMOry S amM 176
KV QU UL S aM . 176
KV S T R 177
KV StreamInfo ...l 177
KV St ruCtHEad . . . 178
KV S Y1 L 179
KV SUMINOE M X L 180
KV SummaryInfoEX 180
KV X CONfigINf O 181
KV XML Callbacks ... oL 182
KVXMLHeadingINfo . 183
KV XMLIMagelnfo ... 185
KV XMLIN e aCe 186
KV XMLINte aCeE X 188
KVXMLOPLIONSo 190
Set the Resolution of Presentations and Vector Graphics 198

KV XML emplate ... 198
KVXMLTOCOPtONS ..o 202
Chapter 11: Enumerated Ty PeS ..o oo 204
INtrOdUCH ON 204
Programming Guidelines 205
ENSATableBOrder 205
KV CredK Y TY P ... L 206
KVEMOrC OO .o 206
KVEMOrCodeEX ... oL 208
KVXMLSYIEShEtTYPE ..o 211

KeyView (11.6) Page 9 of 346

XML Export SDK C Programming Guide

KV XMLANChOITY e .. 212

KV XMLGraphiC TYPe 213
KVHeadingCreateOptions 214
KV XMLEMpPtyParaType ... 215

D it ON .. 215
ENUM At OrS 215
KVXMLHardPageBreak Type oo 215

D NIt ON . 215
ENUMEIatOrS 216
KVMetadataType 216
KVMetaName Ty Pe . 218
KV SUMIN O T Y P . 218

KV SUM T Y P 219
LPDF DIRECTION i 222
Part IV ApPPeNndixXes 224
Appendix A: Supported Formats 225
Supported Formats ... 225
Archive FOrmMats . 227
Binary Format .. 229
Computer-Aided Design Formats 229
Database FOrmats .. 231
Desktop Publishing ... oo 232
Display Formats 232
Graphic FOrmMats 233

Mail FOrmats L 236
Multimedia Formats 238
Presentation Formats 240
Spreadsheet FOrmats 242

Text and Markup Formats 244

Word Processing FOrmats 245
Supported Formats (Detected) 250
Appendix B: Character Sets 257
Multibyte and Bidirectional Support 257
Coded Character Sets 265
Appendix C: File Formats and Extensions 270
File Format and Extension Table 270
Appendix D: Extract and Format Lotus Notes Subfiles 295
OV IV W L 295
Customize XML Templates 295
Use Demo Templates L 296

Use Old Templates ... 296
Disable XML Templates 296
Template Elements and Attributes 297

KeyView (11.6) Page 10 of 346

XML Export SDK C Programming Guide

Conditional Elements L 297
CoNtrol Elements .. L 298

Data Elements 299

Date and Time Formats 301
Lotus Notes Date and Time Formats 301
KeyView Dateand Time Formats 302
Appendix E: EXpPOrt TOKENS ... L 308
Appendix F: File Format Detection 311
INErOAUC I ON L 311
Extract Format Information -l 311
Determine Format SUPPOrt 311
Refine Detection of Text Files 312
Change the Amount of File DatatoRead 312

Change the Percentage of Allowed Non-ASCII Characters_................. 313

Use the File Extension for Detection 313

Allow Consecutive NULLBytesinaTextFile 313
Translate Format Information L 313
Distinguish Between Formats 314
Determine a Document Reader 315
Category Values informats_e.ini 315
Appendix G: Files Required for Redistribution 334
Core FIlES 334
SUPPOI FIlES . ..o 335
Document Readers and Witers 336
Document Type Definition Files .. . 342
Appendix H: Password Protected Files 343
Supported Password Protected File Types oo i, 343
Open Password Protected Container Files 344
Export Password Protected Files il 344
Send documentation feedback ... 346

KeyView (11.6) Page 11 of 346

XML Export SDK C Programming Guide

KeyView (11.6) Page 12 of 346

Part I: Overview of XML Export

This section provides an overview of the Micro Focus IDOL KeyView Export SDK and describes how to use
the C and COM implementations of the API.

o Introducing XML Export, on page 14
« Getting Started, on page 24

KeyView (11.6)

Chapter 1: Introducing XML Export

This guide is for developers who incorporate the Micro Focus KeyView XML conversion technology into
their custom web applications using a C or COM development environment. It is intended for readers
who are familiar with XML, C, and/or COM.

This section describes the KeyView Export SDK package.

O OV IV W .. 14
O FalUIES il 15
* Platforms, Compilers, and Dependencies 15
® Windows Installation . e 17
® UNIXINnstallation 18
® Package Contents .. 19
® License INfOrmMatioN ... L 20
& DireCtory SHTUCIUNE 21
® Definition of Terms 23

Overview

XML Export is part of the KeyView Export SDK. It enables you to convert virtually any document,
spreadsheet, presentation, or graphic into well-formed, valid XML which is validated against a
predefined Document Type Definition (DTD). With XML Export, you control the content, structure, and
format of the XML output using either easily customized templates, or the flexible and robust APIs.

The main purpose of XML Export is to apply an XML vocabulary to the data structures in a document so
that content and metadata can be indexed and subsequently searched in context.

Data structures in a source document can be:

« metadata (title, author, subject, and so on)

« document components (headers, footers, footnotes, endnotes, captions, bookmarks, and so on)
« tagged text (chapters, sections, bulleted lists, and so on)

« table components (sheet names, rows, columns, cell ranges, and so on)

« presentation components (notes, slide titles, slide descriptions, and so on)

Although viewing is not the main purpose of XML Export, Extensible Stylesheet Language (XSL) style
sheets or Cascading Style Sheets (CSS) can be used to display the XML data.

Export SDK supports a number of programming environments, such as Visual Basic, Java, and Delphi
and runs on all popular operating system platforms including Windows, Solaris, HP-UX, IBM AlX, and
Linux.

Export SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

KeyView (11.6) Page 14 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

Features

Dynamically convert word processing, spreadsheet, presentation, and graphics files into wwell-
formed, valid, and 1.0-compliant XML. The XML output is validated against a predefined DTD named
the “verity.dtd.”

Export supports over 300 formats in 70 languages.

Convert files either in-process or out of process. Out-of-process conversion ensures the stability and
robustness of the calling application if a corrupt document causes an exception or causes the
conversion process to fail.

You can extract files embedded within files by using the File Extraction API, and then convert them
by using the Export API.

Use redirected input/output. You can provide an input stream that is not restricted to file system
access.

Export automatically recognizes the file format being converted and uses the appropriate reader.
Your application does not need to rely on file name extensions to determine the file format.

Create heading levels in the output file either by using the structure in the source document or by
allowing Export to automatically generate a structure based on document properties, such as font or
font attributes.

Use callbacks to control aspects of the conversion process, such as file naming and the insertion of
scripts.

Manage memory allocation to optimize speed and performance of application.
Insert predefined XML markup at specific points in the output stream.
Apply XSL or Cascading Style Sheets (CSS) to improve the fidelity of the output.

Map paragraph and character styles in word processing documents to any markup that you specify
in the output.

Control the resolution of rasterized vector graphics to optimize storage requirements orimage
quality.

Select the target format for converted graphics, including GIF, JPEG, CGM, PNG, WMF, and Java
on Windows, and Java and JPEG on Unix and Linux.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

CentOS 7

FreeBSD 8.1 x86

IBM AIX L6.1 PowerPC 32-bit and 64-bit
IBM AIX L7.1 PowerPC 32-bit and 64-bit

KeyView (11.6) Page 15 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

« Mac OS X Mountain Lion 10.8 or higher on 32- and 64-bit Apple-Intel architecture

« Microsoft Windows Vista Business Edition x86 and x64. Other editions of Vista have not been
tested, but are likely supported.

« Microsoft Windows 2008 Server Enterprise Edition x86 and x64
« Microsoft Windows 2008 Server R2

« Microsoft Windows 7 x86 and x64

« Microsoft Windows 8 x86 and x64

« Oracle Solaris 10 SPARC

« Oracle Solaris 10 x86 and x64

« Red Hat Enterprise Linux 5.0 x86 and x64

« Red Hat Enterprise Linux 6.0 x86 and x64

o SuSE Linux Enterprise Server 10, 10.1, 11, x86 and x64

Supported Compilers

Platform Architecture Compiler Compiler Version
Name
Microsoft x86 cl Microsoft 32-bit C/C++ Optimizing Compiler
Windows Version 16.00.30319.01 for x86
x64 cl Microsoft C/C++ Optimizing Compiler Version
16.00.30319.01 for x64
Sun Solaris x86 64-bit Sun Studio Sun C 5.9 SunOS _i386 Patch 124868-01
12 2007/07/12
SPARC 64-bit Sun Studio Sun C 5.8 Patch 121015-06 2007/10/03
11
Linux x86 gcc/g++ 3.4.3(Redhat4), 4.1.0 (SuSE Linux 10)
x64 gcc/g++ 4.1.0 (Redhat 4), 4.1.0 (SUSE Linux 10)
IBM AIX Power xIC r/cc_ IBM XL C/C++ Enterprise Edition V8.0
r
Mac OSX Apple-Intel 32-bit LLVM Apple LLVM 5.1 (clang-503.0.40) (based on LLVM
and 64-bit 3.4svn)
FreeBSD BSD x86 gcc/g++ 4.2.1[FreeBSD] 20070719

Supported Compilers for Java and .NET Components

Component Compiler
Javacomponents Java1.5

.NET components Microsoft Visual J# 2005 Compiler 8.00.50727.42

KeyView (11.6) Page 16 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

C++ Filter SDK

The C++ Filter SDK is supported on:

o Linux using GCC 5 or later
« Windows using Visual Studio 2015 or later

Software Dependencies

Some KeyView components require specific third-party software:
« Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 1.5 is required for
Java API and graphics conversion in Export SDK.

« Outlook 2002 client or later versions is required when processing Microsoft Outlook Personal
Folders (PST) files using the MAPI-based reader (pstsr). The native PST reader (pstnsr) does not
require an Outlook client.

NOTE:
If you are using 32-bit KeyView, you must install 32-bit Outlook. If you are using 64-bit
KeyView, you must install 64-bit Outlook.

If the bit editions do not match, an error message from Microsoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as
the default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

« Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

o Microsoft .NET Framework SDK version 2.0, Microsoft .NET Framework version 2.0
Redistributable Package is required if you are programming in a .NET environment.

o Microsoft Visual C++ 2013 and Microsoft Visual C++ 2010 Redistributables (Windows only).

Windows Installation

To install the SDK on Windows, use the following procedure.

To install the SDK

1. Run the installation program, KeyViewProductNameSDK_VersionNumber_OS.exe, where
ProductName is the name of the product, VersionNumber is the product version number, and 0S is
the operating system.

For example:

KeyView (11.6) Page 17 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

KeyViewExportSDK_11.6_Windows_X86_64.exe

The installation wizard opens.
2. Read the instructions and click Next.
The License Agreement page opens.

3. Read the agreement. If you agree to the terms, click | accept the agreement, and then click
Next.

The Installation Directory page opens.
4. Select the directory in which to install the SDK. To specify a directory other than the default, click

]
r , and then specify another directory. After choosing where to install the SDK, click Next.
The License Key page opens.

5. Type the company name and license key that were provided when you purchased KeyView, and
then click Next.

« The company name is case sensitive.
« Thelicense key is a string that contains 31 characters.

NOTE:

The installation program validates the company name and license key and generates the
file instal L\OS\bin\kv.1lic (where install is your chosen installation folder and 0S is
the name of the operating system platform). The license information is validated when the
KeyView API is used. If you do not enter a license key at this step, or if you enter invalid
information, the KeyView SDK is installed, but the API does not function. When you obtain
avalid license key, you can either re-install the KeyView SDK, or manually update the
license key file (kv.1ic)with the new information. For more information, see License
Information, on page 20.

The Pre-Installation Summary dialog box opens.
6. Review the settings, and then click Next.

The SDK is installed.
7. Click Finish.

UNIX Installation

Toinstall the SDK, use one of the following procedures.

To install the SDK from the graphical interface

« Run the installation program and follow the on-screen instructions.

To install the SDK from the console

1. Run the installation program from the console as follows:
./KeyViewExportSDK_VersionNumber_Platform.exe --mode text

where:

KeyView (11.6) Page 18 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

VersionNumber is the product version.
Platform is the name of the platform.

2. Read the welcome message and instructions and press Enter.
The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish reading
the text, and if you accept the agreement, type Y and press Enter.

You are asked to choose an installation folder.
4. Type an absolute path or press Enter to accept the default location.
You are asked for license information.

5. Atthe Company Name prompt, type the company name that was provided when you purchased
KeyView, and then press Enter. The company name is case sensitive.

6. Atthe License Key prompt, type the license key that was provided when you purchased
KeyView, and then press Enter. The license key is a string that contains 31 characters.

NOTE:

The installation program generates the file instal L\0S\bin\kv.1lic (where install is
your chosen installation folder and 0S is the name of the operating system platform). The
license information is validated when the KeyView API is used. If you do not enter a
license key at this step, or if you enter invalid information, the KeyView SDK is installed
but the API does not function. When you obtain a valid license key, you can either re-install
the KeyView SDK, or manually update the license key file (kv. 1ic) with the new
information. For more information, see License Information, on the next page.

The Pre-Installation summary is displayed.
7. If you are satisfied with the information displayed in the summary, press Enter.
The SDK is installed.

Package Contents

The Export installation contains:

« Libraries and executable files necessary for converting source documents into high-quality, well-
formed XML (see Files Required for Redistribution, on page 334).

« Theinclude files that define the functions and structures used by the application to establish an
interface with Export:

adinfo.h
kvxml.h
kvtypes.h
kvxtract.h

« The Java APl implemented in the com.verity.api.export package contained in the KeyVview. jar
file.

« Several sample programs that demonstrate Export’s functionality.

KeyView (11.6) Page 19 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

« Sample images that can be used as navigation buttons and background textures in your output.

« Template files that enable you to set conversion options without modifying at the API level. They
can be used to generate a wide range of output, from highly-stylized user-defined XML to stripped-
down, text-only output suitable for use with an indexing engine.

« The predefined DTD, Verity.dtd, used to validate all XML output.

« Sample style sheets: wp. xs1 (for word processing documents), ss.xs1 (for spreadsheets), and
pg.xsl (for presentation graphics).

License Information

During installation, the installation program validates the organization name and license key that you
enter, and generates the install/0S/bin/kv.1lic file, where install is the directory in which you
installed KeyView, and 0s is the operating system. This file is opened and validated when the KeyView
APl is used.

The kv. 1lic file contains the organization name and the 31-digit license key you specified during
installation. The contents of a kv. 1ic file looks similar to the following:

Company Name
XXXXXXX = XXXXXXX = XXXXXXX - XXXXXXX

The license key controls whether the following are enabled:

« the full version of the KeyView SDK
« thetrial version of the KeyView SDK

« language detection and advanced document readers—The following components are considered
advanced features, and are licensed separately:

o Microsoft Outlook Personal Folders (PST) reader (pstsr and pstnsr)
o Lotus Notes database (NSF) reader (nsfsr)

o Mailbox (MBX) reader (mbxsr)

o Character set detection library (kvlangdetect)

If you change the license key at any time, you must update the licensing information in the kv. 1ic file.
See Update License Information.

Enable Advanced Document Readers

To enable advanced readers in one of the KeyView SDKs, you must obtain an appropriate license key
from Micro Focus and update the installed license key with the new information as described in Update
License Information.

If you are enabling the MBX reader in an existing installation of Export, in addition to updating the
license key, change the parameter 208=eml to 208=mbx in the formats_e. ini file.

Update License Information

If you currently have an evaluation version of KeyView and have purchased a full version of the SDK, or
you are adding a document reader (for example, the PST reader), you must update the license

KeyView (11.6) Page 20 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

information that was installed with the original version of the KeyView SDK.

If you installed a full version of KeyView, but did not enter licensing information at the time of
installation, you must also update the license information.

To update the information, do one of the following:

« Manually update the license information that is stored in the text file named kv. 1ic.

« Re-install the product and enter the new license information when prompted.

To update the KeyView license information

1. Openthelicense key file, kv.1lic, inatext editor. The file is in the instal (\0S\bin directory,
where install is the directory in which you installed KeyView, and 0S is the operating system.
The file contains the following text:

COMPANY NAME
XXXXXXX = XXXKXXXX = XXXXXXX - XXXXXXX

2. Replace the text COMPANY NAME with the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

3. Replace the characters XXXXXX-XXXXXXX-XXXXXXX-XXXXXXX with the appropriate license key from
the License Key Sheet provided by Micro Focus. The license key is listed in the Key column in the
Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appear in the
document, including the dashes, but do not include a leading or trailing space.

4. Thefinished kv.lic file looks similar to the following:

Autonomy
24QD22D-2M6FV66-2KPF23S-2G8M59B

5. Savethekv.1licfile.

Directory Structure

The following table describes the directories created during the XML Export installation. The variable
instal L is the path name of the Export installation directory (for example,
/usr/autonomy/KeyviewExportSDK on UNIX, or C:\Program Files\Autonomy\KeyviewExportSDK
on Windows). On UNIX, the XML Export directory is named /xmlexpt.

The variable 0s is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at C: \Program
Files\Autonomy\KeyviewExportSDK\WINDOWS\bin.

XML Export Installed Directory Structure

Directory Contents

instalN\OS\bin Contains the libraries, executables for the sample programs Export
Demo and cnv2xml, the Java program (kvraster.class), the Java
applet (kvvector. jar), the format detection file, formats_e.ini,
the license key file (kv.1ic), and a number of other supporting files.

KeyView (11.6) Page 21 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

XML Export Installed Directory Structure, continued

Directory
install\javaapi\ini
install\javaapi\javadoc
install\javaapi\sample

install\testdocs

instalNXML Export\guide

instalNXML Export\include

instalNXML
Export\programs\bin

instalNXML
Export\programs\cnv2xml

instalNXML
Export\programs\cnv2xmloop

instalNXML
Export\programs\ExportDemo

instalNXML
Export\programs\ini

instalNXML
Export\programs\metadata

instalNXML
Export\programs\pdfini

instalNXML
Export\programs\tempout

instalNXML
Export\programs\tstxtract

instalNXML
Export\programs\xmicallback

KeyView (11.6)

Contents

Contains the template files used with the Java API.

Contains the Javadoc for the Java API.

Contains the source files and sample programs for the Java API.

Contains sample word processing, spreadsheet, and presentation
graphics files that can be used to test XML Export’s options. You
might also find this directory useful when testing your own
applications.

Contains the XML Export C Programming Guide and XML Export
Java Programming Guide in HTML and PDF format.

Contains the header files (adinfo.h, kvxml.h, and kvtypes.h) for
the C API.

Contains the executable files for the sample Visual Basic program
called Export Demo.

Contains the C source code files for a sample program that creates
a single XML file. The executable for this sample program is in the
bin directory.

Contains the C source code for a sample program that creates a
single XML file out of process.

Contains the source code for a sample Visual Basic program. The
executable for this sample program is in the bin directory. Export
Demo is available through the Start menu.

Contains the template files used to set the conversion options in the
C API.

Contains the C source code and supporting files for a sample
program that creates a valid XML file containing only the
document’s metadata.

Contains the template file used to extract custom metadata from
PDF documents.

The default output directory for converted files. Contains the
KeyView DTD, sample style sheets, and character entity files.
These files are required for viewing the converted XML files.

Contains the C source code and supporting files for a sample
program that demonstrates the File Extraction interface.

Contains the C source code and supporting files for a sample
program that demonstrates how user callbacks can dynamically

Page 22 of 346

XML Export SDK C Programming Guide
Chapter 1: Introducing XML Export

XML Export Installed Directory Structure, continued

Directory Contents

shape the XML conversion.

instalNXML Contains the C source code and supporting files for a sample
Export\programs\xmlindex program that produces text-only XML.

instalNXML Contains the C source code and supporting files for a sample
Export\programs\xmlini program that uses template files to set the conversion options.
instalNXML Contains the C source code and supporting files for a sample
Export\programs\xmimulti program that creates multiple XML files from a source document.

The main file contains the table of contents. Each H1 heading is
contained within its own file.

instalNXML Contains the C source code and supporting files for a sample
Export\programs\xmlonefile program that converts a source document into a single, formatted
XML file.

instalNXML Export\rel notes Contains the XML Export Release Notes in HTML and PDF format.

Definition of Terms

The following are specialized terms used throughout the guide.

anchor XML markup that defines both anchors and hyperlinks. An anchor is a named place in a
document to which other documents can form a link. Anchors use the XML anchor tags
(<a xmlns:xlink= xlink href=>)to facilitate navigation within a document.

The major browsers do not currently support linking in XML documents.

block All source document content (including subheadings) associated with Heading Level 1.
Export identifies and/or generates blocks from the input stream for the implementation of
the your XML markup.

block All source document content associated with Heading Levels 2 through 6. Chunks are
chunk subdivisions of blocks. You can supply specific XML markup for the different levels of
or block chunks.

chunk

callback A function optionally supplied by your application and called from the Export API. For
example, callbacks allow your application to monitor the progress of the conversion
process dynamically.

stream Transmission of afile’'s content between memory and disk in a continuous flow.

token The vehicle for conveying specific types of information to and from the API during the
conversion process. Tokens are placeholders for markup that appears in the output. See
Export Tokens, on page 308.

KeyView (11.6) Page 23 of 346

Chapter 2: Getting Started

This section provides an overview of the XML Export SDK and describes how to use the C
implementations of the API.

® Architectural OvervieW il 24
® Memory AbStraction ... 25
® Enhance PerformanCe 26
® Convert Files Out of Process il 26
O Convert Files il 32
® Subfile EXtraCction 33
® Set Conversion OpPtioNS ... 34
® Usethe Export Demo Program .. il 36
® Usethe C-Language Implementation of the APl . .. 39
® Use the Verity Document Type Definition (DTD) 42

Architectural Overview

The general architecture of the KeyView XML conversion technology is the same across all supported
platforms and is illustrated in Architectural Overview, above:

XML Export Architecture

_.-._i

Developer’s
Application

File Extraction API
kvxml.*

i

XML Export API Format Detection
kvxml.* Kwad.*

i i
Structured Access Layer +
Word Processing Spreadsheets Presentations
kvxwpsa.* kvxsssa.* kvxpgsa.*
L
| I I

— L —

XMLWr!ter Docflment KMLWr‘ter Docflment XML\;‘Vriter Dc;cument
xmlcnv.* Reader kvxsssa.* Reader kvxpgsa.* Reader

Each component is described in Architectural Components, on the next page.

KeyView (11.6) Page 24 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

Architectural Components

Component Description

Developer's
Application

File
Extraction
API

XML Export
API

Format
Detection
Module

Structured
Access
Layer

Document
Reader

HTML
Writers

The developer's application interfaces directly with the XML Export API through either
a C-language, Java implementation.

The File Extraction API opens a file and extracts the file’s subfiles so that the subfiles
are available for conversion. See Use the File Extraction API, on page 45.

The XML Export API exposes the functionality of XML Export and controls all other
XML Export modules during the conversion process.

The format detection module determines the file type of the source file, which enables
the XML Export interface to load the appropriate structured access layer module and
document reader. See File Format Detection, on page 311.

The structured access layer contains three modules: one for word processing, one for
spreadsheets, and one for presentations and graphics. Information from the format
detection module determines which access layer module operates at this stage of the
conversion. The structured access layer performs the following:

Loads the appropriate document reader.

Processes the data stream from the document reader.
Determines table of contents entries.

Sends the stream to the appropriate XML writer.
Accepts the XML stream from the XML writer.

IR S

Generates the XML output file with a table of contents, metadata, and the
document’s contents, and sends it to the XML Export interface.

Each document reader reads a specific file format and sends a text stream of the
document to the structured access layer. Word processing readers return a token
stream to the structured access layer. A token stream contains the document
contents and messages (tokens) that precede the content and identify the type of
information that follows them. Each reader is loaded as required by the structured
access layer. See Document Readers and Writers, on page 336 for a complete list of
document readers.

Each XML writer accepts a text stream or token stream from the structured access
layer and generates an equivalent XML stream that is sent back to the structured
access layer. The structured access layer then generates the output file. See
Document Readers and Writers, on page 336 for a list of format writers.

Memory Abstraction

All dynamic memory allocations in Export modules are abstracted through a C interface. This memory
allocation interface is defined in the KVMemoryStream structure in kvtypes.h. KVMemoryStream, on
page 176. You can override all memory allocations by providing a C structure that contains pointers to

KeyView (11.6)

Page 25 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

functions identical in nature to their standard ANSI C counterpart. The xmlcallback sample program
demonstrates Export memory management features.

Enhance Performance

KeyView is designed for optimal performance out of the box. However, there are some parameters that
you can adjust to improve performance specifically for your system.

File Caching

To reduce the frequency of 1/0 operations, and consequently improve performance, the KeyView
readers load file data into memory. The readers then read the data from the cache rather than the
physical disk. You can configure the amount of memory used for file caching through the formats_
e.ini file. Generally, when you increase the memory, performance improves.

By default, KeyView uses a maximum of 1 MB of memory for each thread—assuming a thread
contains only one instance of pContext that is returned from the session initialization (fpInit(), on page
149). If the file data is larger than 1 MB, up to 1 MB of data is cached and the data beyond 1 MB is read
from disk. The minimum amount of memory that can be used for file caching is 64 KB.

To determine a reasonable value, divide the maximum amount of memory you want KeyView to use for
file caching by the total number of threads. For example, if you want KeyView to use a maximum of 50
MB of memory and have 10 threads, set the value to 5 MB.

To modify the memory allocated for file caching, change the value for the following parameter in the
[DiskCache] section of the formats_e.ini file:

DiskCacheSize=1024

The value is in kilobytes. If this parameter is not set or is set to @ (zero), the minimum value of 64 KB is
used.

The formats_e.ini fileis in the directory instal (\0S\bin, where install is the path name of the
Export installation directory and 0s is the name of the operating system.

Convert Files Out of Process

Export can run independently from the calling application. This is called out of process. Out-of-process
conversions protect the stability of the calling application in the rare case when a malformed document
causes Export to fail. You can also run Export in the same process as the calling application. This is
called in process. However, it is strongly recommended you convert documents out of process
whenever possible.

The Export out-of-process framework uses a client-server architecture. The calling application sends
an out-of-process conversion request to the Service Request Broker in the main Export process. The
Broker then creates, monitors, and manages a Servant process for the request—each request is
handled by one independent Servant process. Data is exchanged between the application thread and
the Servant through TCP/IP sockets. The source data is sent to the Servant process as a data stream
or file, converted in the Servant, and then returned to the application thread. At that point, the
application can either terminate the Servant process or send more data for conversion.

KeyView (11.6) Page 26 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

Multiple conversion requests can be sent from multiple threads in the calling application
simultaneously. All requests sent from one thread are processed by the Servant mapped to that thread,
in other words, each thread can only have one Servant to process its conversion requests.

Any standard conversion errors generated by the Servant are sent to the application.

I NOTE: Currently, the main Export process and Servant processes must run on the same host.

The following are requirements for running Export out of process:

« Internet Protocol (TCP/IP) must be installed
« Multithreaded processing must be supported on the operating system platform
« The user application must be built with a multithreaded runtime library

Other Export API functions and the File Extraction functions always run in-process.
Configure Out-of-Process Conversions

Although most components of the out-of-process conversion are transparent, the following parameters
are configurable:

« File-size threshold/temporary file location
« Conversion time-out

« Listener port numbers and time-out

« Connection time-out and retry

« Servant process name

These parameters are defined internally, but you can override the default by defining the parameter in
the formats_e.ini file. The formats_e.ini fileis in the directory instal L\0S\bin, where install is
the path name of the Export installation directory and 0S is the name of the operating system.

To set the parameters, add the following section to the formats_e.ini file:

[KVExportOOPOptions]
TempFileSizeMark=
TempFilePath=
WaitForConvert=
WaitForConnectionTime=
ListenerPortList=
ListenerTimeout=
ConnectRetryInterval=
ConnectRetry=
ServantName=
EnableDebugOutput=
EnableDebuglog=
LogFilePath=
ClientLogFile=
ServerlLogFile=

Each parameter is described in Parameters for Out-of-Process Conversion, on the next page. The
default values for these parameters are set to ensure reasonable performance on most systems. If you

KeyView (11.6) Page 27 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

are processing a large number of files, or running Export on a slow machine, you might need to increase
some of the time-out and retry values.

Parameters for Out-of-Process Conversion

Parameter

TempFileSizeMark
unit = megabytes
default=10

TempFilePath
type = file path

default = current working
directory

WaitForConvert

unit = seconds

default = 1800

range = 30~3600
WaitForConnectionTime
unit = seconds

default = 180

range = 15~600

ListenerPortList
type = integer

default = 9985, 9986,
9987, 9988, 9989

ListenerTimeout

unit = seconds

default = 10

range = 5~30
ConnectRetrylInterval
unit = microseconds
default = 0.1

range = 50000~500000

KeyView (11.6)

Description

The file-size threshold. If the input file received by the Servant is larger
than this value, temporary files are created to store the data. The
directory in which the temporary files are stored is defined by the
TempFilePath parameter. If the file received is smaller than this value,
the data is stored in memory in the Servant. This applies only when the
input is a stream.

The directory in which temporary files are stored. Temporary files are
created when you use the fpConvertStream() API, and the input file
surpasses the file-size threshold (TempFileSizeMark). If the Servant
cannot access the file path, an error is generated.

This applies only when converting in stream mode.

The length of time to wait for a Servant to convert afile. If the conversion
is not completed within the specified time, the error code "Wait for
child process failed"is generated.

The length of time to wait for the Servant to connect to the application
thread after the application has sent a conversion request to the Broker.
If the Servant does not connect within the specified time, the error code
"Wait for child process failed"is generated. If there are many
Servant processes running simultaneously, you might need to increase
this value.

The TCP/IP port number used for communication between the calling
application and the Servant. You can specify a single port number, or a
series of numbers separated by commas.

The length of time to wait for the Servant listener thread to get a process
ID from the Servant after the connection is established. If the ID is not
obtained within the specified time, the error code "Wait for child
process failed"is generated. During this time, no other Servant can
connect with the application.

The length of time to wait after a Servant has failed to connect to the
application before it retries the connection. A Servant might be unable to
connect because the application is waiting for another Servant to send a
process ID.

To calculate the total retry interval, the value set here is added to the
platform-specific TCP retry value (on Windows, this is 1 second).

Page 28 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

Parameters for Out-of-Process Conversion, continued

Parameter Description

ConnectRetry The number of attempts the Servant makes to connect to the calling

type = integer

application. This value and the total retry interval determine the total
delay time. The total delay is calculated as follows:

default = 120

ConnectRetryInterval + platform-specific_TCP_retry value*

range = 30~600 ConnectRetry

For example, if the ConnectRetryInterval is set to 2 seconds, and the
Export process is running on Windows (the default TCP retry value on
Windows is 1 second), the total delay would be:

2+1*120=360

The Servant would attempt to connect to the application every 3
seconds for 120 attempts for a total of 360 seconds.

ServantName The name of the Servant process. To move the Servant to another

type = string

location, enter a fully qualified path.

default = servant

Run Export Out of Process—Overview

To convert files out of process

1.

© ® N o g s~ D

—
e

If required, set parameters for the out-of-process conversion in the formats_e.ini file. See
Configure Out-of-Process Conversions, on page 27.

Initialize an Export session.

If you are using streams, create an input stream.

Define the conversion options.

Initialize an out-of-process session.

Convert the input and/or call other functions that can run out of process.
Shut down the out-of-process session.

Repeat Step 3 through Step 7 for additional files.

Terminate the out-of-process session and the Servant process.

Shutdown the Export session.

Recommendations

To ensure that multithreaded conversions are thread-safe, you must create a unique context pointer
for every thread by calling fpInit(). Inaddition, threads must not share context pointers, and the
same context pointer must be used for all API calls in the same thread. Creating a context pointer for
every thread does not affect performance because the context pointer uses minimal resources.

All functions that can run in out-of-process mode must be called within the out-of-process session

KeyView (11.6) Page 29 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

(that is, after the call to initialize the out-of-process session and before the call to end the out-of-
process session).

When terminating an out-of-process session, persist the Servant process by setting the Boolean flag
bKeepServantAlive in the KVXMLEndOOPSession () function or endOOPSession method. If the
Servant process remains active, subsequent conversion requests are processed more quickly
because the Servant process is already prepared to receive data. Only terminate the Servant when
there are no more out-of-process requests.

To recover from a failure in the Servant process, start a new out-of-process session. This creates a
new Servant process for the next conversion.

Run Export Out of Process in the C API

The cnv2xmloop sample program demonstrates how to run Export out of process.

To convert files out of process in the C API

1.

If required, set parameters for the out-of-process conversion in the formats_e.ini file. See
Configure Out-of-Process Conversions, on page 27.

Declare instances of the following types and assign values to the members as required:
KVXMLTemplateEx

KVXMLOptionsEx

KVXMLHeadingInfo

KVXMLTOCOptions

See XML Export API Structures, on page 174 for more information.

Load the KVXML library and obtain the KVXMLInterface entry point by calling KVXMLGetInterface
().

See KVXMLGetInterface(), on page 133.

Initialize an Export session by calling fpInit(). See fplnit(), on page 149.

If you are using streams for the input and output source, follow these steps; otherwise, proceed to
Step 6:

a. Create an input stream (KVInputStream)by calling fpFileToInputStreamCreate(). See
fpFileTolnputStreamCreate(), on page 137.

b. Create an output stream (KVOutputStream) by calling fpFileToOutputStreamCreate(). See
fpFileToOutputStreamCreate(), on page 139.

c. Proceed to Set up an out-of-process session by calling KVXMLStartOOPSession(). , below.
Set up an out-of-process session by calling KVXMLStart0OOPSession().
KVXMLStartOOPSession(), on page 165. This function performs the following:

« Initializes the out-of-process session.

« Specifies the input stream or file. If you are using an input file, set pFileName to the file name,
and set pInputStreamto NULL. If you are using an input stream, set pInputStream to point to
KVInputStream, and set pFileName to NULL.

« Sets conversion options in the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data
structures.

KeyView (11.6) Page 30 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

10.
1.

12.

« Creates a Servant process.
« Establishes a communication channel between the application thread and the Servant.
« Sends the data to the Servant.

[[TBD - See the sample code in Example—KVXMLStartOOPSession, below, and
KVXMLStartOOPSession(), on page 165.

Convert the input and generate the output files by calling KVXMLConvertFile() or
fpConvertStream(). The KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions structures are
defined in the call to KVXMLStart00PSession(), and should be NULL in the conversion call. A
conversion function can be called only once in a single out-of-process session. See
KVXMLConvertFile(), on page 159, and fpConvertStream(), on page 135.

Terminate the out-of-process session by calling KVXMLEndOOPSession(). The Servant ends the
current conversion session, and releases the source data and session resources. See sample
code in Example—KVXMLEndOOPSession, on the next page, and KVXMLEndOOPSession(), on
page 161.

If you used streams, free the memory allocated for the input stream and output stream by calling
the fpFileToInputSreamFree() and fpFileToOutputStreamFree() functions. See
fpFileTolnputStreamFree(), on page 138 and fpFileToOutputStreamFree(), on page 140.

Repeat Step 5 through Step 9 for additional files.

After all files are converted, terminate the out-of-process session and the Servant process by
calling KVXMLEndOOPSession() and setting the Boolean to FALSE.

After the out-of-process session and Servant are terminated, shut down the Export session by
calling fpShutDown (). See fpShutDown(), on page 151.

Example—KVXMLStartOOPSession

The following sample code is from the cnv2xmloop sample program:

/* declare OOP startsession function pointer */
KVXML_START_OOP_SESSION fpKVXMLStartOOPSession;

/*

assign OOP startsession function pointer */

fpKVXMLStartOOPSession = (KVXML_START_OOP_SESSION)mpGetProcAddress

(hKVXML, "KVXMLStartOOPSession");

if (! fpKVXMLStartOOPSession)

{
printf("Error assigning KVXMLStartOOPSession pointer\n");
(*KVXMLINnt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLINnt.fpFileToOutputStreamFree) (pKVXML, &Output);
mpFreeLibrary (hKVXML);
return 7;

}

JXREKERKKKSTART QOP SESSTON ks kkskokskokskoskokskokkokok /
if (! (*fpKVXMLStartOOPSession) (pKVXML,

&Input,

NULL,

&XMLTemplates, /* Markup and related variables */
&XMLOptions, /* Options */

NULL, /* TOC options */

KeyView (11.6) Page 31 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

&oopServantPID,
&error,

@,

NULL,

NULL))

printf("Error calling fpKVXMLStartOOPSession \n");
(*KVXMLInt.fpShutDown) (pKVXML);

mpFreeLibrary (hKVXML);

return 9;

}
Example—KVXMLEndOOPSession

The following sample code is from the cnv2xmloop sample program:

/* declare endsession function pointer */
KVXML_END_OOP_SESSION fpKVXMLENndOOPSession;
/* assign OOP endsession function pointer */
fpKVXMLENdOOPSession = (KVXML_END_OOP_SESSION)mpGetProcAddress
(hKVXML, "KVXMLEndOOPSession");
if (! fpKVXMLEndOOPSession)

{
printf("Error assigning KVXMLEndOOPSession pointer\n");
(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree) (pKVXML, &Output);
mpFreeLibrary (hKVXML);
return 8;

}

/*¥***k*4XEND OOP SESSION, DO NOT KEEP SERVANT ALIVE *¥kkkxk/
if (! (*fpKVXMLENndOOPSession) (pKVXML,

FALSE,

&error,

9,

NULL,

NULL))

printf("Error calling fpKVXMLEndOOPSession \n");
(*KVXMLInt.fpShutDown) (pKVXML) ;

mpFreeLibrary (hKVXML);

return 10;

Convert Files

KeyView Export SDK enables you to convert many different types of documents to XML. Converting is
the process of extracting the text from a document without the application-specific markup, and
applying XML markup. However, the conversion process can also include the following:

KeyView (11.6) Page 32 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

« Extracting subfiles—exposes all subfiles for conversion. See Subfile Extraction, below.

« Setting conversion options—determines the content, structure, and appearance of the XML output.
See Set Conversion Options, on the next page.

« Extracting the file’s format—detects a file’s format, and reports the information to the API, which in
turn reports the information to the developer’'s application. See Extract File Format Information, on
page 70.

« Extracting metadata—extracts selected metadata (document properties) from a file. See Extract
Metadata, on page 67.

« Converting character sets—controls the character set of both the input and the output text. See
Convert Character Sets, on page 70.

« Implementing callbacks—controls the conversion while it is in progress. See XML Export API
Callback Functions, on page 169.

You can use one of the following methods to convert documents:

« Use the Export Demo sample program. This Visual Basic program demonstrates most Export API
functionality and is the easiest way to get started. See Use the Export Demo Program, on page 36.

« Use the C-language implementation of the API from your C or C++ application. See Use the C-
Language Implementation of the API, on page 39.

« Use the C sample programs. See Sample Programs, on page 99.

NOTE: Micro Focus strongly recommends that you convert documents out of process.
During out-of-process conversion, Export runs independently from the calling application.
Out-of-process conversions protects the stability of the calling application in the rare case
when a malformed document causes Export to fail. Convert Files Out of Process, on page
26.

Subfile Extraction

To convert afile, you must first determine whether the source file contains any subfiles (attachments,
embedded objects, and so on). A file that contains subfiles is called a container file. Compressed files
(such as Zip), mail messages with attachments (such as Microsoft Outlook Express), mail stores
(such as Microsoft Outlook Personal Folders), and compound documents with embedded OLE objects
(such as a Microsoft Word document with an embedded Excel chart) are examples of container files.

If the file is a container file, the container must be opened and its subfiles extracted by using the File
Extraction API. The extraction process is done repeatedly until all subfiles are extracted and exposed
for conversion. After a subfile is extracted, you can use the XML Export API to convert the file.

If afile is not a container, you should pass it directly to the XML Export API for conversion without
extraction.

See Use the File Extraction API, on page 45 for more information.
Convert Outlook Email without Using the Extraction API

Micro Focus strongly recommends that you convert all container files, including Microsoft Outlook files,
by using the File Extraction API. However, you can convert Outlook email messages (MSG) directly by

KeyView (11.6) Page 33 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

using the Export API and the MSG reader (msgsr).

NOTE: The MSG reader only extracts the message body of an MSG file. Attachments are not
extracted.

To convert MSG files by using the MSG reader, add the following to the formats_e. ini file (TRUE is
case-sensitive):

[ContainerOptions]
bConvertMSG=TRUE

Set Conversion Options

Conversion options are parameters that determine the content, structure, and appearance of the XML
output. For example, you can specify the markup inserted at the beginning and end of specific XML
blocks, whether a heading is included in the table of contents, the output character set, or the resolution
at which graphics are converted. The conversion options can be set either in the API or in the template
files. Regardless of the method used to set the options, the values are ultimately passed to the APl and
used to populate the following data structures:

o« KVXMLTemplate, on page 198

« KVXMLOptions, on page 190

« KVXMLHeadinglnfo, on page 183

o KVXMLTOCOptions, on page 202

The conversion options are described in XML Export AP| Structures, on page 174.

Set Conversion Options by Using the API

Set conversion options by using any of the following functions:

« fpConvertStream(), on page 135
« KVXMLConvertFile(), on page 159
o KVXMLStartOOPSession(), on page 165

Set Conversion Options by Using the Template Files

XML Export includes templates in the form of initialization files (. ini). The templates provide a quick
and easy way to modify the conversion options without programming at the API level. However, the
template files do not give you complete control of the conversion process. To control some features,
you must use the API directly.

You can use a text editor to customize the template files. For example, to change the output character
set from the default KVCS_UNKNOWN to KVCS_SJIS inthe default.ini template, make the following
change shown in bold:

[KVXMLOptions]
eOutputCharSet=KVCS_SJIS
bForceOutputCharSet=TRUE

KeyView (11.6) Page 34 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

To create valid XML, a template file must contain two structures: KVXMLTemplateEx and
KVXMLOptionsEx.

NOTE: If you enter markup in the template files that is not compliant with XML standards, XML
Export inserts the markup into the output file unchanged. This might result in a malformed XML
file.

An application must then read the template file and write the data to the appropriate Export structures.
In the sample program xmlini, a template file is supplied as a command-line argument (see xmlini, on
page 103).

Templates

The template files for the C APl implementation are in the directory
install\xmlexport\programs\ini, where install is the path name of the Export installation
directory. The following templates are provided:

Template Description

Cascading style This template writes style sheet information to an external CSS file. This makes
sheet (xml_ the XML output significantly smaller because the information is not stored in the
css.ini) output file.

See Use Style Sheets, on page 77 and Use Style Sheets with xmlini, on page
104 for more information on using an external CSS file.

Index (xml_ Converts a source document into a single, largely unformatted XML file that is
index.ini) appropriate for use with an indexing engine.
Single file « Creates a single XML file.

(xmlifile.ini) | poes not define an XSL style sheet. A default XSL style sheet that is

appropriate to the source document type is used. The defaults supplied are
wp . xs1 (for word processing documents), ss.xs1 (for spreadsheets), pg.xsl
(for presentations).

« Forces the output character set to UTF-8.
« Maintains the source document’s fonts and styles.
« Does not create a table of contents.

Single file for This template is designed specifically for presentation formats.
presentations _ _

(xmlifile_ o Creates a single XML file.

pg.ini) « Defines an XSL style sheet for presentations (pg.xs1).

« Forces the output character set to UTF-8.

« Because XML Export only extracts textual components from presentations,
the bRasterizeFiles member of KVXMLOptions is set to FALSE.
KVXMLOptions, on page 190.

o Only the szMainTop, szMainBottom, and szUserSummary parameters of the
KVXMLTemplate structure are relevant to presentations and are set in the
presentations template.

KeyView (11.6) Page 35 of 346

XML Export SDK C Programming Guide

Chapter 2: Getting Started

Template Description

Single file with .
table of contents (
xmllfiletoc.ini

) L]

A template file for presentations must not include any other parameters in the
KVXMLTemplate structure. KVXMLTemplate, on page 198.

Creates a single XML file.

« Creates a table of contents at the top of the XML document.

Uses the verity.dtd.
Uses an XSL style sheet (wp.xs1).
Forces the output character set to UTF-8.

Lists all metadata (Title, Subject, Author, Comments, Created, Modified,
Last Saved By, and Revision Number).

Uses the name of the worksheets for spreadsheets.

Uses the slide titles for presentations. If no titles are available in the source
document, it uses "slide 1," "slide 2," "slide 3," and so on.

Use the Export Demo Program

The easiest way to get started with Export is to become familiar with its capabilities through the Visual
Basic sample program, Export Demo. The source code for the program is in the directory
install\xmlexport\programs\ExportDemo, where install is the path name of the Export
installation directory. Export Demo is for Windows only, and requires Internet Explorer 4.01 with
Service Pack 1 or higher.

The output options that control the look of the output files are predefined in Export Demo and cannot be
changed in the user interface. Export Demo uses a small sample of the options available in the Export

APL.

To launch the sample program, select Export Demo from Start | Programs | Autonomy | Export
SDK | XML Export. The following dialog appears:

Export Demo: Launching

KeyView (11.6)

Page 36 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

" Autonomy Key¥iew Export SDK Demo o [

Options

~ Source Files

S ¢ [Abasden] ¥

building2.png
———————— |ecpepdi
ET) fieezer2.ppt
AFtogiam Files FreshDinner. doc
A Autanamy fishfiozen s
Y KewiewExport [GATT doc

goodideas. eps

& testdocs
? greerpark bmp
HTMLword.doc
mission wp
rowing4.doc
salesfigures. 123
souplabel TIF
tennis2 xls

Convert file ta
Open | HTML | ML |

~ Dutput Files

]

Wiew Delete e

NOTE: HTML conversion using HTML Export is available in Export Demo if you have HTML
Export installed. If you do not have HTML Export installed, the HTML button is disabled.

Change Input/Output Directories

If XML Export is installed in the default directory, the output and input directories are automatically set.
The default location for source files is the directory install\testdocs.
The default location for output files is the directory instal L \xmlexport\programs\tempout.

If XML Export is installed in a directory other than the default, you are prompted to select an output and
input directory when you first start Export Demo.

To change the default directories for the source and output files

1. Select Options | Set Directories. The following dialog appears:
Export Demo: Setting Directories

KeyView (11.6) Page 37 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

[& Autonomyy Key¥iew Export SDK Demo 1'

—Select directori

I = ¢ [Bbasden] A - Current |

Source

C:Program

=T Files AutonomysKepviewE xportS DEKNWIND OWShbin
oo e — _
E3Kepvi “E 50K FileshautonamyKewviewE xportS DESWINDOWSYbin
epviewExpor
YwINDD'WS HML C:4Fragram

Files'Autonomy*KepviewE xport5 DKNWIND OWShbin

— Change |

« Sourca COHTML ML Change
DK

From the tree view, select the drive letter and directory for the source or output files.
In Change Location, select which files are stored in the directory, either Source or XML.
Click Change. The Current Locations fields are updated with the new selection.

o M Db

Follow the same procedure for the other file types.
Set Configuration Options

With XML Export, you can configure options prior to the document conversion by using the XMLConfig
() function. Export Demo demonstrates this function, and allows you to:

« Generate output with verbose markup and without images.
« Include position information in the markup generated fora PDF document.

Suppress Images

Export Demo provides an option to generate output with verbose markup and without images. For more
information, see KVXMLConfig(), on page 152.

To specify that images are suppressed in the XML output, select Options | XML Config | Suppress
Images.

Use PDF Position Information

Export Demo provides an option to include position information in the markup generated for a PDF
document. For more information, see KVXMLConfig(), on page 152.

To specify that PDF position information be included in the XML output, select Options | XML Config |
Enable Position Token.

KeyView (11.6) Page 38 of 346

XML Export SDK C Programming Guide

Chapter 2: Getting Started

Convert Files

To convert a single file

1. Select Options | Convert | Single file.

2. Select the document from the file list, and then click XML in the Convert file to pane.

To convert files in a directory

1. Select Options | Convert | Entire directory.

2. Click XML in the Convert directory to pane.

To view a converted file, double-click the output file in the Output Files pane, or select the output
file, and then click View. The converted file is displayed in the view pane:

Export Demo: Converting Files

ptions

i~ Source Files

| S ¢ 1abasden] ~ |

architectureZ lwp

bulldlngjf.png
————— |ecpep
=120 freezer. ppt
{23 Program Files FreshDinner.doc
Autonom frahfrozen xls
W

GATT.doc
goodideas.eps
greenpark.bmp
HTMLW ord doc
mission. wp
rowingd. doc
salesfigures 123
souplabel TIF
tenris2 s

3 KieyviewE spart

& testdocs

Convert file to

=]

Open | HTHML KL
— Output Files
6T dochim [

Delete

THE GENERAL AGREEMENT ON
TARIFFS AND TRADE (1947)
(as amended through 1966)

THE GENERAL AGREEMENT ON TARIFFS
AND TRADE

The Governments of the COMMONWEALTH OF AUSTRALIA,
the KINGDOM OF BELGIUM, the UNITED STATES of
BRAZIL, BURMA, CANADA, CEYLON, the REPUBLIC OF
CHILE, the REPUBLIC of CHINA, the REPUBLIC OF
CUBA, the CZECHOSLOVAK REPUBLIC, the FRENCH
REPUBLIC, INDIA, LEBANON, the GRAND-DUCHY OF
LUXEMBURG, the KINGDOM OF THE NETHERLANDS, NEW
EEALAND, the KINGDOM OFNORWAY, PAKTSTAN, SOUTHERN
RHODESTA, SYRTA, the UNION OF SOUTH AFRICA, the
UNITED KINGDOM of GREAT BRITAIN AND NORTHERN
IRELAND, and the UNITED STATES of AMERICA:

Recognizing that their relations in the field of
trade and economic endeavour should be conducted
with a view to raising standards of living,
ensuring full employment and a large and steadily
growing volume of real income and effective
demand, developing the full use of the resources
of the world and expanding the production and
exchange of goods,

Being desirous of contributing to these objectives

ki Anterine inta reminracal and mornallu i
1] | 3
Ezxit

To view the original document, select the document from the file list, and then click Open. If you have
an application on your system associated with the file, the file is displayed in that application.

To delete output files, select the file in the Output Files pane and click Delete.

Use the C-Language Implementation of the API

The C-language implementation of the APl is divided into the following function suites:

KeyView (11.6)

Page 39 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

« File Extraction API Functions, on page 108—Open and extract subfiles in a container file. These
functions also extract metadata and file format information, and control character set conversion on
extraction.

« XML Export AP| Functions, on page 133— Extract format information (metadata, character set, and
format), create an input/output stream from a file, and open, convert, and close the stream.

« XML Export API Callback Functions, on page 169—Controls the conversion while it is in progress.
Input/Output Operations

In the Export API, the source input and target output can be either a physical file accessed through a
file path, or a stream created from a data source. A stream is a C structure that contains pointers to 1/0
functions similar in nature to their standard ANSI C counterparts. This structure is passed to Export
functions in place of the standard input source. The input stream is defined by the structure
KVInputStreamin kvtypes.h. The output stream is defined by the structure KvoutputStream in
kvtypes.h. See KVInputStream, on page 175 and KVOutputStream, on page 176.

You can create an input stream either by using the fpFileToInputStreamCreate() function, or by
using code similar to the example code in the io_samp sample program. You can create an output
stream by using the fpFileToOutputStreamCreate() function. These functions assign C equivalent
I/O functions to fpOpen(), fpRead(), fpSeek(), fpTell(), and fpClose(). See
fpFileTolnputStreamCreate(), on page 137 and fpFileToOutputStreamCreate(), on page 139.

Convert Files

To use the C-language implementation of the API

1. Develop the XML markup and tokens to be assigned to the required members of a declared
instance of KVXMLTemplate.

If you use markup in the structure that is not compliant with XML standards, XML Export inserts
the markup into the output file unchanged. This might result in a malformed XML file.

2. Declare instances of the following types and assign values to the members as required:

KVXMLTemplateEx
KVXMLOptionsEx
KVXMLHeadingInfo
KVXMLTOCOptions

See XML Export API Structures, on page 174 for more information.

3. Load the KvxXML library and obtain the KVXMLInterface entry point by calling KVXMLGetInterface
(). See KVXMLGetInterface(), on page 133.

4. Initialize an Export session by calling fpInit(). The function’s return value, pContext, is passed
as the first argument to all other Export functions. See fplnit(), on page 149.

5. Pass the context pointer from fpInit() and the address of a structure containing pointers to the
File Extraction API functions in the call to KVGetExtractInterface(). See.
KVGetExtractInterface(), on page 108.

6. If you are using streams for the input and output source, follow these steps; otherwise, proceed to
Step 7:

KeyView (11.6) Page 40 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

10.

1.

12.
13.

14.

15.

16.

17.
18.

19.
20.

a. Create aninput stream (KVInputStream)either by calling fpFileToInputStreamCreate(), or
by using code similar to the example code in the io_samp sample program.
fpFileTolnputStreamCreate(), on page 137.

b. Create an output stream (KVOutputStream) either by calling fpFileToOutputStreamCreate
(), or by using code similar to the example code in the io_samp sample program.
fpFileToOutputStreamCreate(), on page 139.

c. Proceedto Step7.

Declare the input stream or file name in the KvOpenFileArg structure. See KVOpenFileArg, on
page 126.

Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call
defines the parameters necessary to open a file for extraction. See fpOpenFile(), on page 116.

Determine whether the source file is a container file (contains subfiles) by calling
fpGetMainFileInfo(). See fpGetMainFilelnfo(), on page 112.

If the call to fpGetMainFileInfo() determined the source file is a container file, proceed to Step
11; otherwise, proceed to Step 14.

Determine whether the subfile is itself a container (contains subfiles) by calling
fpGetSubFileInfo(). See fpGetSubFilelnfo(), on page 113.

Extract the subfile by calling fpExtractSubFile(). See fpExtractSubFile(), on page 109.

If the call to fpGetSubFileInfo() determined the subfile is a container file, repeat Step 6 through
Step 12 until all subfiles are extracted; otherwise, proceed to Step 14.

Setup an out-of-process session by calling KVXMLStart00OPSession(). See
KVXMLStartOOPSession(), on page 165.

Convert the input and generate the output files by calling KVXMLConvertFile() or
fpConvertStream(). The structures KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions are
defined in the call to KvXMLStart0O0OPSession(), and should be NULL in the conversion call. A
conversion function can be called only once in a single out-of-process session. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.

If you are using callbacks, they are called while the conversion process is underway. If required,
you can specify alternate paths and file names for output files, including using the table of content
entries for the file names. See XML Export AP| Callback Functions, on page 169.

If you are converting additional files, terminate the out-of-process session by calling
KVXMLEndOOPSession () and setting the Boolean to TRUE. The Servant ends the current
conversion session, and releases the source data and session resources.

If you are not converting additional files, terminate the out-of-process session and the Servant
process by calling KVYXMLEndOOPSession () and setting the Boolean to FALSE.
KVXMLENdOOPSession(), on page 161

Close the file by calling fpCloseFile(). See fpCloseFile(), on page 109.

If you used streams, free the memory allocated for the input stream and output stream by calling
the functions fpFileToInputSreamFree() and fpFileToOutputStreamFree(). See
fpFileTolnputStreamFree(), on page 138 and fpFileToOutputStreamFreg(), on page 140.

Repeat Step 6 through Step 18 for additional source files.
Shutdown the Export session by calling fpShutDown (). See fpShutDown(), on page 151.

KeyView (11.6) Page 41 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

Multithreaded Conversions

To ensure that multithreaded conversions are thread-safe, you must create a unique context pointer for
every thread by initializing the Export session with fpInit(). In addition, threads must not share
context pointers, and the same context pointer must be used for all API calls in the same thread.
Creating a context pointer for every thread does not affect performance because the context pointer
uses minimal resources.

For example, your code should have the following logic for one thread:

fpInit()
KVGetExtractInterface()
fpFileToInputStreamCreate()
fpFileToOutputStreamCreate()
fpOpenFile()
fpGetMainFileInfo() /* container file */
fpGetSubFileInfo()
fpExtractSubFile
fpGetSubFileMetadata()
KVXMLStartOOPSession()
fpConvertStream()
KVXMLEndOOPSession(bKeepServantAlive TRUE)
fpCloseFile()
fpFileToInputSreamFree()
fpFileToOutputStreamFree()
set input/output file
fpOpenFile()
fpGetMainFileInfo() /* not a container file */
KVXMLStartOOPSession()
KVXMLConvertFile()
KVXMLEndOOPSession(bKeepServantAlive TRUE)
fpCloseFile()

fpShutdown()

Use the Verity Document Type Definition (DTD)

XML Export produces well-formed, valid XML documents. Document validity is based on a Document
Type Definition (DTD) called the Verity.dtd. The Verity.dtd is in the default output directory
tempout. If the DTD is in a different directory, the full path must be specified in pszverityDTDPath.

The elements inthe Verity.dtd are based on those defined in the W3C XHTML 1.0 specification and
the attributes are based on those defined in the W3C CSS 2 specification.

The root element of each document is "verityXMLExport." Character entities are imported by using
the three XHTML DTDs defined at the beginning of the verity.dtd.

<!-- Character entities --»>
<IENTITY % HTMLlatlx SYSTEM "HTMLlatlx.ent">

KeyView (11.6) Page 42 of 346

XML Export SDK C Programming Guide
Chapter 2: Getting Started

%HTML1at1x;

<IENTITY % HTMLspecialx SYSTEM "HTMLspecialx.ent">
%HTMLspecialx;

<IENTITY % HTMLsymbolx SYSTEM "HTMLsymbolx.ent">
%HTMLsymbolx;

Use XML Style Language Transformation (XSLT)

XML Export is designed to generate XML documents based on the Verity DTD. You can convert the
XML produced by XML Export to other XML vocabularies, such as Wireless Markup Language (WML),
by using XSLT.

Add Elements and Attributes to the DTD

XML Export can only generate XML that conforms to the Verity DTD. You can create your own DTD
based on the Verity DTD. You cannot rename the Verity DTD, so make sure you back up the original
Verity DTD to another name before making changes.

If you create your own DTD and add elements or attributes that are not defined in the original Verity
DTD, you must ensure that the new markup is defined in the XML Export API classes. You can define
the markup either by entering the markup directly in the styles, or by populating the styles by using the
template files. See Map Styles, on page 74 for more information on mapping styles to user-defined
markup.

Move the DTD

The default output directory for the Verity DTD is programs\tempout. If you move the Verity DTD to
another output directory, you must set the string value of pszverityDTDPath to the new location. This
path is added to the document type declaration in the XML file. pszVerityDTDPath, on page 191.

KeyView (11.6) Page 43 of 346

Part II: Use the Export API

This explains how to perform some basic tasks by using the File Extraction and Export APls, and describes
the sample programs. It contains the following chapters:

« Use the File Extraction API, on page 45
o Usethe XML Export API, on page 67
o Sample Programs, on page 99

KeyView (11.6)

KeyView (11.6)

Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

O INtrOAUCT ON

O EXIrACt IMaAgES .
® Recreate aFile’'s Hierarchy
® Extract Mail Metadata

® Extract Subfiles from Outlook Express Files

® Extract Subfiles from Mailbox Files

® Extract Subfiles from Lotus Domino XML Language Files
® Extract Subfiles from Lotus Notes Database Files
® Extract Subfiles from PDF Files
* Extract Embedded OLE Objects

® Extract Subfiles from ZIP Files ...

Introduction

To convert afile, you must first determine whether the file contains any subfiles (attachments,
embedded OLE objects, and so on). A file that contains subfiles is called a containerfile. A container
file has a main file (parent) and subfiles (children) embedded in the main file.

The following are examples of container files:

« Archive files such as ZIP, TAR, and RAR.
« Mail messages such as Outlook (MSG) and Outlook Express (EML).

« Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

« PDF files that contain file attachments.

« Compound documents with embedded OLE objects such as a Microsoft Word document with an
embedded Excel chart.

NOTE: Supported Formats, on page 225 indicates which formats are treated as container files
and are supported by the File Extraction API.

Page 45 of 346

XML Export SDK C Programming Guide

Chapter 3: Use the File Extraction API

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

« aMicrosoft Word document that contains an embedded Microsoft Excel spreadsheet.
« an AutoCAD drawing file (DWG).

« an EML file with an attached Zip file, which in turn contains four archived files.

MSG file
Microsoft Word DWG EML MSG body text
Embedded OLE |
object (XLS)
Zip EML body text
Archived file 1 Archived file 2 Archived file 3 Archived file &

Extract Subfiles

NOTE: The parent MSG file contains four first-level children. The body text of a message file,
although not a standalone file in the container, is considered a child of the parent file.

To convert all files in a container file, you must open the container and extract its subfiles by using the
File Extraction API. The extraction process is done repeatedly until all subfiles are extracted and
exposed for conversion. After a subfile is extracted, you can call Export API functions to convert the

file.

If you want to convert a container file and its subfiles to a single file, you must extract all files from the
container, convert the files, and then append each converted output file to its parent.

To extract subfiles

1.

KeyView (11.6)

Declare the input stream or file name in the KVOpenFileArg structure.

Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KV GetExtractInterface().

Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call
defines the parameters necessary to open a file for extraction.

Determine whether the source file is a container file (that is, whether it contains subfiles) by calling
fpGetMainFilelnfo().

If the call to fpGetMainFileInfo() determined that the source file is a container file, proceed to

Page 46 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

step 6; otherwise, convert the file.

6. Determine whether the subfile is itself a container (that is, whether it contains subfiles) by calling
fpGetSubFilelnfo().

7. Extract the subfile by calling fpExtractSubFile().

If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 2
through step 7 until all subfiles are extracted and the lowest level of subfiles is reached; otherwise,
convert the file.

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file:

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the same way as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [Y] is the extension. The format of
the image is the same as the format in which it is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

Recreate a File’s Hierarchy

When you extract a container file, any relationships between the subfiles in the container are not
maintained. However, the File Extraction interface provides information that enables you to recreate
the hierarchy. You can use the hierarchy to create a directory structure in afile system, or to categorize
documents according to their relationship to each other. For example, if you use KeyView to generate
text for a search engine, the hierarchical information enables your users to search for a document
based on the document’s parent or sibling. In addition, when the document is returned to the user, the
parent and sibling documents can be returned as recommendations.

The information needed to recreate a file’s hierarchy is provided in the call to fpGetSubFilelnfo(). The
members KVSubFileInfo->parentIndex and KVSubFileInfo->childArray provide information
about a subfile’s parent and children. Because you can only retrieve the first-level children in the
subfile, you must call fpGetSubFileInfo() repeatedly until information for the leaf-node children is
extracted.

Create a Root Node

Because of their structure, some container files do not contain a subfile or folder which acts as a root
directory on which the hierarchy can be based. For example, subfiles in a Zip archive can be extracted,
but none of the subfiles represent the root of the hierarchy. In this case, you must create an artificial
root node at the top of the file hierarchy as a point of reference for each child, and ultimately to recreate
the relationships. This artificial root node is an internal object, and is extracted to disk as a directory
called root. Its index numberis 0.

KeyView (11.6) Page 47 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

To create the root node, set openFlag to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile().
When you create a root node, the value of numSubFiles in K\VMainFilelnfo includes the root node. For
example, when you call fpGetMainFileInfo() ona Microsoft Word document with three embedded
OLE objects and the root node is disabled, numSubFiles is 3. If you create a root node, numSubFiles is
4,

Recreate a File’s Hierarchy—Example

For example, you might extract a PST file that contains seven subfiles with a root node enabled. The
call to fpGetMainFileInfo()returns the number of subfiles as eight (seven subfiles and one root
node). The following diagram shows the structure and the available hierarchy information after the
subfiles are extracted:

PST

‘ Folder ‘ ‘ email ‘ ‘ email ‘ ‘ Zip ‘ ‘ Folder ‘ ‘ email ‘ ‘ email ‘ ‘ root ‘
Index 1 2 3 4 5] 7 Lv]
parentindex 4] 1 1 3 4] 5 5 -1
childArray 2,3 4 6,7 1,5

The parentIndex specifies the index number of a subfile’s parent. The childArray specifies an array
of a subfile’s children. With this information, you can recreate the hierarchy shown in the following
diagram.

Root

Folder Folder
1 5

email email email email

Zip

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, from MSG, EML, MBX, PST, and
NSF files, by calling the fpGetSubFileMetaData() function. You can extract a predefined set of
metadata fields, individual fields, or both, that are unique to a file format.

KeyView (11.6) Page 48 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Default Metadata Set

KeyView internally defines a set of common mail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table. When you retrieve all metadata
for a file—that is, pass NULL for the array of metadata—the complete set of default metadata, not all
available metadata in the file, is returned.

Default Mail Metadata List

Field Name (string to Description

specify)

From The display name and email address of the sender.

Sent The time that the message was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of the message.

Priority The priority applied to the message.

Because mail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the name Priority and is returned.

You can also extract the default field names individually by passing the field name (such as From, To,
and Subject); however, in this case, the string is not mapped to the format-specific name. For example,
if you pass Priority in the call, you retrieve the contents of the Priority field from an MBX file, but do not
retrieve the contents of the Importance field from an NSF file.

NOTE: You cannot pass the field names listed in the table individually for PST files. However,
you can pass either the MAPI tag number or the MAPI tag name as integers. See Microsoft
Personal Folders File (PST) Metadata, on page 53.

Extract the Default Metadata Set

To extract the default metadata set, call the fpGetSubFileMetaData() function, and pass @ for
metaNameCount and NULL for metaNameArray.

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);

metaArg.index = subFileIndex;
metaArg.metaNameCount = 0;

KeyView (11.6) Page 49 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

metaArg.metaNameArray = NULL;
error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Outlook (MSG) Metadata

In addition to the default metadata set, you can extract the metadata fields listed in the following table
for MSG files. You must pass the field name to metaNameArray in the call to the
fpGetSubFileMetadata() function.

MSG-specific Metadata List

Field Name (string to Description

specify)

AttachFileName An attachment's long file name and extension, excluding the path.

ConversationTopic The topic of the first message in a conversation thread. A conversation
thread is a series of messages and replies. This is the first message’s
subject with any prefix removed.

CreationTime The time that the message or attachment was created. This value is
displayed in the Sent field in the message’s Properties dialog in Outlook.

InternetMessageID The identifier for messages that come in over the Internet. This is the

MAPI property PR_INTERNET_MESSAGE_ID. This property is not in the
MAPI headers or MAP| documentation.

LastModificationTime The time that the message or attachment was last modified. This value is
displayed in the Modified field in the message’s Properties dialog in

Outlook.
Location The physical location of the event specified in the Outlook calendar entry.
MessagelD The message transfer system (MTS) identifier for the message transfer

agent (MTA). This value is displayed on the Message ID tab in the
message’s Properties dialog in Outlook.

Received The date and time a message was delivered. This value is displayed in
the Received field in the message’s Properties dialog in Outlook.

Sender The name and email address of the message sender. This value is a
concatenation of two MAPI properties in the following format:

"PR_SENDER_NAME" <PR_SENDER_EMAIL_ADDRESS>

The Sender value might be the same as or different than the default
metadata From value (see Default Metadata Set, on the previous page),
depending on which MAPI properties exist in the MSG file.

KeyView (11.6) Page 50 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

MSG-specific Metadata List, continued

Field Name (string to Description
specify)

Sensitivity The value indicating the message sender's opinion of the sensitivity of a
message. For example, Personal, Private, or Confidential. This value is
displayed in the Sensitivity field in the message’s Properties dialog in

Outlook.

TransportMsgHeaders Transport-specific message envelope information. This value
corresponds to the MAPI property PR_TRANSPORT_MESSAGE_HEADERS.

StartDate An appointment start date. This value corresponds to the PR_START_DATE

MAPI property.

EndDate An appointment end date. This value corresponds to the PR_END_DATE

MAPI property.

Extract MSG-Specific Metadata

To extract specific metadata fields from an MSG file, call the fpGetSubFileMetaData() function, and
pass the field name defined in Default Metadata Set, on page 49 to metaNameArray (the string is not

case sensitive).

For example, the following code extracts the contents of the ConversationTopic and MessageID

fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[0].type = KVMetaNameType_String;

names[@].name.sname = "conversationtopic";

names[1].type = KVMetaNameType_String;
names[1].name.sname = "MessagelD";

pname[@] = &names[0O];
pname[1] &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

KeyView (11.6)

Page 51 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata

In addition to the default metadata set, you can extract any metadata field that exists in the header of
an EML or MBX file by passing the field’'s name. If the name is a valid field in the file, the content of the
field is returned. For example, to retrieve the name of the last mail server that received the message
before it was delivered, you can pass the string "Received".

Extract EML- or MBX-Specific Metadata

To extract specific metadata fields from an EML or MBX file, call the fpGetSubFileMetaData() function,
and pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Received and Mime-version fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[@].type = KVMetaNameType_String;

names[@].name.sname = "Received";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Mime-version";
pname[@] = &names[0];

pname[1] &names[1];

metaArg.metaNameCount = 2;

metaArg.metaNameArray = pname;

metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Lotus Notes Database (NSF) Metadata

In addition to the default metadata set, you can extract any Lotus field name that exists in an NSF file
by passing the field’s name. (You can extract fields from mail NSF files and non-mail NSF files.) If the
name is a valid field in the file, the field is returned. For example, to retrieve the date when a document
in an NSF file was last accessed, you would pass the string "$LastAccessedDB".

NOTE: A complete list of NSF fields is provided in the Lotus Notes file stdnames. h. This
header file is available in the Lotus API Toolkit.

KeyView (11.6) Page 52 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Extract NSF-Specific Metadata

To extract specific metadata fields from an NSF file, call the fpGetSubFileMetaData() function, and
pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Description and Categories fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[@].type = KVMetaNameType_String;

names[@].name.sname = "description”;
names[1].type = KVMetaNameType_ String;
names[1].name.sname = "Categories";
pname[@] = &names[0];

pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Personal Folders File (PST) Metadata

In addition to the default metadata set, you can extract Messaging Application Programming Interface
(MAPI) properties from a PST file. These properties describe all elements of an Outlook item ina PST
file (such as subject, sender, recipient, and message text). Because the properties are stored in the
PST file itself, you can retrieve them before you extract the contents of the PST. This enables you to
determine whether an Outlook item should be extracted based on its attributes. Some MAPI properties
are also stored for Outlook attachments that are not mail messages (such as an attached Microsoft
Word document or Lotus 1-2-3 file).

NOTE: Because all elements of a message (except non-mail attachments) are represented by
MAPI properties, you can extract all components of a subfile, including the header and message
text, by calling the fpGetSubFileMetadata() function.

MAPI Properties

Each MAPI property is identified by a property tag, which is a constant that contains the property type
and a unique identifier. For example, the property that indicates whether a message has attachments

KeyView (11.6) Page 53 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

has the following components:

Property PR_HASATTACH
Identifier OXOE1B

Property type PT_BOOLEAN (000B)
Property tag OXxOE1B0O0OB

The Microsoft MAPI documentation on the Microsoft Developer Network website lists all available

MAPI properties, their tags, and types.

You can retrieve any MAPI property that is of one of the MAPI property types listed below:

PT_I2 PT_DOUBLE PT_STRINGS
PT_I4 PT_FLOAT PT_TSTRING
PT_BINARY PT_LONG PT_SYSTIME
PT_BOOLEAN PT_SHORT PT_UNICODE

NOTE: Properties with a PT_TSTRING type have the property type recompiled to either a
Unicode string (PT_UNICODE)orto an ANSI string (PT_STRING8) depending on the operating
system’s character set. To retrieve the Unicode property, pass in the Unicode version of the
tag. For example, the property tag for PR_SUBJECT is either 0x0037001E for an ANSI string, or

0x0037001F for a Unicode string.

Extract PST-Specific Metadata

In the call to extract subfile metadata, you can pass either the MAPI tag number (such as 6x0070001e)
or the MAPI tag name (such as PR_CONVERSATION_TOPIC). If you specify the MAPI tag name, you
must include the mapitags.h and mapidefs.h Windows header files, in which the MAPI tag name is

defined as a tag number.

To extract specific MAPI properties from a PST file, call the fpGetSubFileMetaData() function, and

pass the property tag to metaNameArray. The tag is passed as an integer.

For example, the following code extracts the MAPI properties PR_SUBJECT and PR_ALTERNATE_

RECIPIENT:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;

KVMetaNameRec
KVMetaName

names[0].type

names[0©].name.

names[1].type

names[1].name.

names[2];
pName[2];

= KVMetaNameType_Integer;
iname = PR_SUBJECT;

= KVMetaNameType_Integer;
iname = 0x3A010102;

pName[0]
pName[1]

&names[0];
&names[1];

KeyView (11.6)

Page 54 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

KVStructInit(&metaArg);

metaArg.metaNameCount 2;
metaArg.metaNameArray = pName;
metaArg.index = SubFileIndex;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&MetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

NOTE: You must include the mapitags.h and mapidefs.h Windows header files, in which PR_
SUBJECT is defined as 0x0037001E.

Exclude Metadata from the Extracted Text File

When you extract a mail message, the message text and header information (To, From, Sent, and so
on) is also extracted. You can prevent the header information from appearing in the text file.

To exclude the header information, set extractFlag to KVExtractionFlag_ExcludeMailHeader in
the call to fpExtractSubFile().

Extract Subfiles from Outlook Files

When you extract an Outlook file (MSG) to disk, the message text and header information (To, From,
Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in the
text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a non-
mail attachment, the attachment is extracted in its native format to a subdirectory. If the Outlook file
contains a mail attachment, the attachment’s message text is extracted to a subdirectory.

Extract Subfiles from Outlook Express Files

When you extract an Outlook Express (EML) file to disk, the message text and header information (To,
From, Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in
the text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a
non-mail attachment, the attachment is extracted in its native format to the same directory as the
message text file. If the Outlook file contains a mail attachment, the complete attachment (including
message text and attachments), the message text file, and any non-mail attachments are extracted to
the same directory as the main message.

NOTE: When the MBX reader (mbxsr) is enabled, it is used to filter MBX and EML files. If the
MBX reader is not enabled, the EML reader (emlsr)is used.

KeyView (11.6) Page 55 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There are many mail applications that export to an MBX
format, such as Eudora Email and Mozilla Thunderbird.

When an MBX file is extracted to disk, the message text and header information (To, From, Sent, and
so on) from each mail file is extracted to text files. (If you do not want the header information to appear
in the text file, see Exclude Metadata from the Extracted Text File, on the previous page.)

In Eudora MBX files, attachments are inserted as a link and are stored externally from the message.
These attachments are not extracted, but the path to the attachment is returned in the call to the
fpGetSubFilelnfo() function. You can write code to retrieve the attachment based on the returned path.

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

The Mailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, you must obtain the appropriate license key from Micro Focus. See Update
License Information, on page 20 for information on adding a new license key to an existing installation.

Extract Subfiles from Outlook Personal Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file. When a PST file is extracted to disk, the text and header information
(To, From, Sent, and so on) from each Outlook item is extracted to a text file. (If you do not want the
header information to appear in the text file, see Exclude Metadata from the Extracted Text File, on the
previous page.)

You can also extract messages from PST files as MSG files, including all their attachments, by setting
the KVExtractionFlag_SaveAsMSG flag in the KVExtractSubFileArg structure when you call
fpExtractSubFile().

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains an Outlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: The Microsoft Outlook Personal Folders (PST) reader is an advanced feature and is sold
and licensed separately. To enable this reader in a KeyView SDK, you must obtain the
appropriate license key from Micro Focus. See Update License Information, on page 20 for
information on adding a new license key to an existing installation.

Use the Native or MAPI-based Reader

KeyView accesses PST files in one of two ways:

« indirectly using the Microsoft Messaging Application Programming Interface (MAPI) reader named
pstsr.

« directly using the native PST reader named pstnsr.

KeyView (11.6) Page 56 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

On UNIX platforms, the native reader is always used to process PST files because the MAPI-based
reader only runs on Windows x86 and x64. On Windows, you can specify either reader; however, the
MAPI-based reader is used by default.

The differences between the two readers are summarized in the following table:

Feature/Requirement Native Reader (pstnsr) MAPI-based Reader
(pstsr)

All platforms supported Yes Windows x86 and x64 only

Outlook client required No Yes

MAPI properties supported Yes Yes
All properties defined in All properties defined in
mapitags.h. Object mapitags.h. Object
properties are not properties are not supported.
supported.

Password protection Yes Yes (using KVCredential

supported structure)

Compressible encryption Yes Yes

supported

High encryption supported No Yes

To use the MAPI-based reader for PST files, change the PST entry in the formats_e.ini file as
follows:

297=pst
To use the native reader for PST files, change the PST entry in the formats_e. ini file as follows:

297=pstn

NOTE: You must make sure that the PST that you are extracting is not open in the Outlook
client, and that the Outlook process is not running.

Use the Native PST Reader (pstnsr)

The native PST reader accesses PST files directly without relying on the Microsoft interface to the PST
format. It runs on both Windows and UNIX, and does not require an Outlook client on the system
processing the PST files. However, the native reader does not support password-protected PST files
that use high encryption.

Use the MAPI Reader (pstsr)

The pstsr reader accesses PST files indirectly by using Microsoft's Messaging Application
Programming Interface (MAPI). MAPI is a standard Windows message interface that enables different
mail programs and other mail-aware applications (such as word processors and spreadsheets) to
exchange messages and attachments with each other. MAPI allows KeyView to open a PST file,
traverse the folders and Outlook items, and extract the items inside the PST file.

KeyView (11.6) Page 57 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: When extracting subfiles from PST files, information on the distribution list used in an
email is extracted to afile called emailname.dist. This applies to the MAPI reader (pstsr)
only.

System Requirements

Because MAPI is supported on Windows platforms only, you can convert PST files on Windows only.
Because MAPI relies on functionality in Microsoft Outlook, a Microsoft Outlook client must be installed
on the same machine as the application converting PST files, and must be the default email
application. KeyView supports the following PST formats and Outlook clients:

« Outlook 97 or higher PST files

« Outlook 2002 or later clients
NOTE: The Outlook client must be the same version as, or newer than, the version of
Outlook that generated the PST file.

NOTE: The bit edition of Microsoft Outlook must match that of the KeyView software. For
example, if 32-bit KeyView is used, 32-bit Outlook must be installed. If 64-bit KeyView is used,
64-bit Outlook must be installed.

If the bit editions do not match, an error message from Microsoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as the
default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

MAPI Attachment Methods

The way in which you can access the contents of a PST message attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE
ATTACH_EMBEDDED_MSG
ATTACH_OLE
ATTACH_BY_REFERENCE
ATTACH_BY_REF_ONLY
ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method

KeyView (11.6) Page 58 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, you must retrieve the path to access the
attachment.

To extract "attach by reference" attachments

Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or ATTACH_
BY_REF_RESOLVE method by retrieving the MAPI property PR_ATTACH_METHOD.

If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving the MAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_PATHNAME.

You can then either copy the files from their original location to the path where the PST file is extracted,
or use the Export API functions to convert the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

NOTE: To open password-protected PST files that use high encryption, you must use the
MAPI-based PST reader (pstsr).

The native PST reader (pstnsr) returns the error message KVERR_PasswordProtected if a PST
is encrypted with high encryption.

Detect PST Files While the Outlook Client is Running

If you are running an Outlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format because Outlook has
the file locked. In this case, you can do one of the following:

o Close Outlook when using the Extraction API.

« Detect PST files by extension only and bypass the format detection module. To enable this option,
add the following lines to the formats_e. ini file:

[container_flags]
detectPSTbyExtension=1

NOTE: The detectPSTbyExtension option applies only when you are using the MAPI reader
(pstsr).

NOTE: If you use this option, you must make sure in your code that valid PST files are
passed to KeyView, because the format detection module is not available to verify the file
type and pass the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML Language Files

When you extract a Lotus Domino XML Language (.DXL) file, the message text and header information
(To, From, Sent, and so on) is extracted to a text file.

KeyView (11.6) Page 59 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: To prevent header information from being extracted, see Exclude Metadata from the
Extracted Text File, on page 55.

You can make sure that dates and times extracted from Lotus Domino .DXL files are displayed ina
uniform format.

To extract custom date/time formats

o Inthe formats_e.ini file, set the DateTimeFormat option in the [dx1sr] section. For example:

[dx1sr]
DateTimeFormat=%m/%d/%Y %I:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM

The format arguments are the same as those for the strftime() function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak %28V S.71%29.aspx for more information.

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML

« Set the following options in the formats_e.ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dx1sr]
LNDParser=2

Extract Subfiles from Lotus Notes Database Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, and OLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When a mail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in each message is extracted to a text
file. (If you do not want the header information to appear in the message text file, see Exclude Metadata
from the Extracted Text File, on page 55.)

KeyView (11.6) Page 60 of 346

http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and
licensed separately. To enable this reader in a KeyView SDK, you must obtain the appropriate
license key from Micro Focus. See Update License Information, on page 20 for information on
adding a new license key to an existing installation.

System Requirements

The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus
Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or
Lotus Domino server must be installed and configured on the same machine as the application
converting NSF files. On UNIX and Linux, the Lotus Domino server is required. On Windows, the Lotus
Notes client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:

« Lotus Notes 6.5.1
o Lotus Domino 6.5.1
KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino:

« Windows XP x86 (Service Pack 1 and 2)

« Windows 2000 x86 (Service Pack 2)

« Solaris 8.0 and 9.0 (built on Solaris 8.0)

« Red Hat Enterprise Linux AS 3.0 (x86)

o SuSE Linux Enterprise Server 8 and 9 (x86)
« IBMAIXS5.1, 5L version 5.2

Installation and Configuration

Before KeyView can convert NSF files, you must set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline the minimal setup for NSF conversion:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes. ini file is in the proper location.

« If Lotus Notes is installed, the file should appear in the instal \1lotus\notes directory, where
install is the installation directory.

« If only Lotus Domino is installed, the file should appear in the install\lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes. ini, and add the following text:
[Notes]

3. Addthe KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).

KeyView (11.6) Page 61 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installation might contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes. ini fileis inthe install/lotus/notes/latest/sunspa directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/sunspa directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Addthe install/lotus/notes/latest/sunspa andthe KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

AIX 5.x

1. Install the bos.iocp.rte file set if it is not already installed, and reboot the machine. See the
Lotus Domino server documentation for more information.

Install Lotus Domino server. You do not need to configure the server.

Make sure that the notes. ini fileis inthe install/lotus/notes/latest/ibmpow directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
4. Addthe install/lotus/notes/latest/ibmpow directory to the PATH environment variable:
setenv PATH 1install/lotus/notes/latest/ibmpow:$PATH

5. Addthe install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:

setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

KeyView (11.6) Page 62 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Linux

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/1linux directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/1linux directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/linux:$PATH

4. Addthe install/lotus/notes/latest/linux and the KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 295.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using the Attach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speaker icon
on the page where they are located.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.
Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed a minimum width and/or height. If animage is smaller than the

KeyView (11.6) Page 63 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats_e. ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

Extract Embedded OLE Objects

Embedded OLE objects can be converted in two ways:

« Using the File Extraction API, the OLE object is first extracted from the main file and saved to disk.
It can then be converted by making a separate conversion call.

« Using the XML Export API, the main file is converted to XML and the OLE object is converted to a
graphics file that is referenced in the XML file .

The File Extraction API can extract embedded OLE objects from the following types of documents:

« Lotus Notes (DXL)

« Microsoft Excel

« Microsoft Word

« Microsoft PowerPoint
« Microsoft Outlook

« Microsoft Visio

« Microsoft Project

« OASIS Open Document
« Rich Text Format (RTF)

When an embedded OLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 46). However, some ZIP files use password protection, in which case you must use
a different method to enter the required credentials.

Default File Names for Extracted Subfiles

When you do not specify a file name in the call to fpExtractSubFile(), in some cases a default file name
is applied to the extracted subfile.

KeyView (11.6) Page 64 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

Default File Name for Mail Formats

To avoid naming conflicts and problems with long file names, KeyView applies its own names to the
extracted mail items when you do not supply a name in the call to fpExtractSubFile(). A non-mail
attachment retains its original file name and extension.

When the contents of a mail store or the message body of a mail message are extracted, the extracted
file names can include the following:

« Thefirst valid eight characters of the original folder name or "Subject" line of the mail message. If the
"Subject" line is empty, the characters kvext are used, where ext is the format’s extension. For
example, the characters would be "kvmsg" for MSG and "kvnsf" for NSF.

For notes, the file name is derived from the first 24 characters of the note text. For contact entries,
the file name is derived from the full name of the contact.

The following special characters are considered invalid and are ignored:

any non-printing character with a value less than ox1F

angle brackets (< >) double quotation marks (")
asterisk (*) forward slash (/)

back slash (\) pipe (|)

colon (:) question mark (?)

« The characters _kvn, where n is an integer incremented from O for each extracted item.
« One of the following extensions:

Type File Extension
email message .mail

calendar appointment .cal

contact entry .cont

task entry .task

note .note

journal entry .jrnl
distribution list .dist

posting note .post

o If the type cannot be determined for an MSG or PST file, the file is given a .mail extension.
o If the type cannot be determined for a NSF file, the file is given a . tmp extension.

o The format of a MAIL file is plain text by default, but can be set to RTF with the
KVExtractionFlag GetFormattedBody flag.

For example, an MSG mail message with the subject line RE: Product roadmap that contains the
Microsoft Excel attachment release _schedule.xls is extracted as:

KeyView (11.6) Page 65 of 346

XML Export SDK C Programming Guide
Chapter 3: Use the File Extraction API

RE produ_kve.mail
release_schedule.xls

If an extracted message contains an embedded OLE object or any attachment that does not have a
name, the object or attachment is extracted as _kvi#. tmp.

Default File Name for Embedded OLE Objects

KeyView can apply a default name to an extracted embedded OLE object when you do not supply a
name in the call to fpExtractSubFile(). When an embedded OLE object is extracted, the extracted
file name can include the following:

« The characters subfile_kvn, where n is an integer incremented from 0 for each extracted object.

« If KeyView can determine the embedded OLE is a Microsoft Office document, the original extension
is used. If the file type cannot be determined, the file is given a . tmp extension.

For example, a Microsoft Word document (sales_quarterly.doc) might contain two embedded OLE
objects: a Microsoft Excel file called west_region.x1s, and a bitmap created in the Word document.
The embedded objects are extracted as subfile_kv@.x1ls and subfile_kv1.tmp.

KeyView (11.6) Page 66 of 346

Chapter 4: Use the XML Export API

This section describes how to perform some basic tasks by using the XML Export API.

® Extract Metadata 67
® Extract File Format Information L 70
® Convert Character Sets 70
O MAD S YIS 74
® Use Style Sheets . il 77
® Display Vector Graphics on UNIX and LinuxX ... 78
® Convert Revision Tracking Information 79
® Convert PDF Files il 80
® Convert Spreadsheet Files ...l 86
® Convert Presentation Files ... L 89
O Convert XML Files 90
® Show Hidden Data ... L 95
* Exclude Japanese Guide Text 97
® Obtain Image INfO .. 97

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file’s format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

The metadata in mail formats (MSG and EML) and mail stores (PST, NSF, and MBX) is extracted
differently than other formats. For information on extracting metadata from these formats, see Extract
Mail Metadata, on page 48.

NOTE: Note: KeyView can extract metadata from a document only if metadata is defined in the
document, and if the document reader can extract metadata for the file format. The section
Supported Formats, on page 225 lists the file formats for which metadata can be extracted.
KeyView does not generate metadata automatically from the document contents.

Extract Metadata by Using the API

You can extract the metadata at the APl level. The AP extracts all valid metadata fields that exist in
the file.

KeyView (11.6) Page 67 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Use the C API

To extract metadata by using the C API

1. Declare a pointer to the KvSummaryInfoEx structure. KVSummarylnfoEx, on page 180.
2. Callthe fpGetSummaryInfo() function. See fpGetSummaryInfo(), on page 147.

Extract Metadata by Using a Template File

When using a template file, KeyView recognizes two types of metadata: standard and non-standard.
Standard metadata includes fields, such as Title, Author, and Subject. The standard fields are
enumerated from 1 to 41 in KVSumType in the header file kvtypes . h. Non-standard metadata includes
any field not listed from 1 to 41 in KvSumType, such as user-defined fields (for example, custom property
fields in Microsoft Word documents), or fields that are unique to a particular file type (for example,
"Artist" or "Genre" fields in MP3 files). Enumerated types 42 and greater are reserved for non-standard
metadata.

To extract metadata by using a template file

1. Insert metadata tokens in a member of the KVXMLTemplate structure in the template file. This
defines the point at which the metadata appears in the XML output.

2. If you are using the $USERSUMMARY or $SUMMARY token, define the szUserSummary member of the
KVXMLTemplate structure in the template file. This determines the markup and tokens generated
when these metadata tokens are processed.

3. Inyour application, read the template file and write the data to the KvXMLTemplate structure.
See xmlini, on page 103.
The following metadata tokens can be used in the template files:

Token Description

$SUMMARYNN Inserts the data from a specified metadata field. NN is a number from 00 through 42
enumerated in KVSumType in kvtypes.h.

$SUMMARY Inserts the data from valid metadata fields in the range of 0 to 33 using the markup
provided in pszUserSummary.

$USERSUMMARY Inserts the data from every valid non-standard metadata field using the markup
provided in pszUserSummary.

$CONTENT Inserts the content of the metadata field specified by the $NAME token.

$NAME Inserts the name of a the metadata field, such as "Title," "Author," or "Subject.”

Depending on the markup in szUserSummary, the extracted metadata might not appear in the browser
when the HTML file is displayed, but might appear in the output file. Most of the KeyView-supplied
template files extract standard metadata from a document, and include it in the output HTML. However,
they do not display the metadata in a browser.

KeyView (11.6) Page 68 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Examples

SSUMMARYNN

The following markup displays the contents of the "Title" field at the top of the main XML file:
szMainTop=$SUMMARY@1

InKvSumType, 01 is the enumerated value for the "Title" metadata field.

SSUMMARY

The following markup extracts all standard fields, and includes them in the first H1 XML block:
szFirstH1Start=$SUMMARY
szUserSummary=<MetaData name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for standard metadata and
includes it at the beginning of the first heading level 1 XML block.

The generated XML might look like this:

<MetaData name="CodePage" content="1252" \>

<MetaData name="Title" content="My design document"” \>
<MetaData name="Subject" content="design specifications"” \>
<MetaData name="Author" content="John Doe" \>

<MetaData name="Keywords" content="" \>

<MetaData name="Comments" content="" \>

<MetaData name="Template" content="Normal.dot" \>

<MetaData name="LastAuthor" content="1lchapman" \>

<MetaData name="RevNumber" content="6" \>

<MetaData name="EditTime" content="01/01/1601, 0:08" \>
<MetaData name="LastPrinted" content="14/01/2002, 14:06" \>
<MetaData name="Create_DTM" content="27/08/2003, 10:31" \>
<MetaData name="LastSave_DTM" content="29/08/2003, 14:07" \>
<MetaData name="PageCount" content="1" \>

<MetaData name="WordCount" content="4062" \>

<MetaData name="CharCount" content="23159" \>

<MetaData name="AppName" content="Microsoft Word 9.0" \>
<MetaData name="Security" content="0" \>

<MetaData name="Category" content="software" \>

<MetaData name="LineCount" content="192" \>

<MetaData name="ParCount" content="46" \>

<MetaData name="ScaleCrop" content="FALSE" \>

<MetaData name="Manager" content="" \>

<MetaData name="Company" content="Autonomy" \>

<MetaData name="LinksDirty" content="FALSE" \>

KeyView (11.6) Page 69 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

SUSERSUMMARY

The following markup extracts non-standard fields, and includes them at the bottom of the main XML
file:

szMainBottom=$USERSUMMARY
szUserSummary=<MetaData name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for non-standard metadata
from a document, and includes it at the bottom of the main XML file.

The generated XML might look like this:

<MetaData name="Telephone number" content="444-111-2222"
<MetaData name="Recorded date" content="07/03/2003, 23:00"
<MetaData name="Source" content="TRUE"

<MetaData name="my property" content="reserved"

Extract File Format Information

Export can detect afile’s format, and report the information to the API, which in turn reports the
information to the developer’s application. This feature enables you to apply customized conversion
settings based on afile’s format. See File Format Detection, on page 311 for more information on
format detection.

Use the C API

To extract file format information by using the C API

1. Declare a pointer to the KvStreamInfo data structure. KV Streaminfo, on page 177.
2. Call the fpGetStreamInfo() function. fpGetStreamlinfo(), on page 147.

Convert Character Sets

Export allows you to control the character set of both the input and the output text. This is
accomplished by either

« setting the source and/or target character set in the API, or

« basing the input/output on the character set of the document (if the document character set is stored
in the document and can be determined by the document reader).

The character sets are enumerated in KvCharSet of kvtypes.h. Not all character sets can be used to
specify the target character set. See Code Character Sets, on page 265 for a list of character sets that
can be used as a target character set.

Determine the Character Set of the Output Text

To determine the output character set of a converted document, Export considers the following:

KeyView (11.6) Page 70 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

« Whether the reader can extract the character set from the document. This depends on whether the
file format can provide character set information and whether the document actually contains
character set information.

The section Supported Formats, on page 225 indicates the file formats for which character set
information can be extracted. If character set information cannot be determined for your document
type, you must set the source, the target character set, or both, in the API.

« Whether a source character set is set in the API.

NOTE: Note: To set the source character set, you must specify a character set and set the
bForceSrcCharSet member of the KVXMLOptions structure to TRUE.

« Whether a target character set is set in the API.

NOTE: To set the target character set, you must specify a character set and set the
bForceOutputCharSet member of the KVXMLOptions structure to TRUE.

Guidelines for Character Set Conversion

The following diagram shows how the output character set is determined when the document character
set can be determined:

Document Character Set Can Be Determined
~Can determi;é

<ducu ment character
~ set

Yes
<§'nurce charset is%m “Dutput charset %—No | Output charsetis
“ in API? - . set in API? L document charset
/ N
\\/ / N /
Y;s Yes
Converts o Converts
characters from *ND_<I'ar'get “;h:;;at Bt characters from
document charset : document charset
to source charset \ to target charset
Yes
Y
Converts
characters from
source charset to
target charset

The following diagram shows how the output character set is determined when the document character
set cannot be determined:

Document Character Set Cannot Be Determined

KeyView (11.6) Page 71 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

\\

“Can determlne
ducument character
set

/ / Converts
ource charset is set QutputCharset %_ characters from
<§ nAPR Yes-< set? oS cource charset ta
\ V4 \ V4 target charset
\\l// “ >y
N \I/

/

X r‘:‘
Converts /
= . Output character
characters from €No arget charset is set setis source
0S code page to in API?
charset
target charset \
No
v

Output character
set is 0S code
page

Examples of Character Set Conversion

The examples below demonstrate possible configurations for mapping character sets and the expected
output for each scenario.

Document Character Set Can be Determined

For the example in the following table, the document is an RTF file. The section \Word Processing
Formats, on page 245 indicates that the document character set can be obtained from this file type. The
document character set is Traditional Chinese (BIG5).

Document character set can be determined

Source Target Output charset
charset set charset
set

KVCS_GB KVCS_UTF8 KVCS_UTF8

Converts GB (Simplified Chinese) to UTF-8. The output character set is
the target character set specified in the API.

KVCS_GB - KVCS_GB

Converts BIG5 to GB (Simplified Chinese). The output character set is
the source character set specified in the API.

- KVCS_UTF8 KVCS_UTF8

Converts BIG5 to UTF-8. The output character set is the target character
set specified in the API.

KeyView (11.6) Page 72 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Document character set can be determined, continued

Source
charset set

Target
charset
set

Output charset

KVCS_BIG5

The output character set is the document character set. No conversion.

Document Character Set Cannot be Determined

For the example in the following table, the document is an ASCI| file. The section Word Processing
Formats, on page 245 indicates that the document character set cannot be obtained from this file type.
The document character set is KvCS_1251.

Document character set cannot be determined

Source
charset
set

KVCS_1252

KVCS_1252

KVCS_1252

Target
charset
set

KVCS_
UTF8

KVCS_
UNKNOWN

KVCS_
1252

Output charset

KVCS_UTF8

Converts KVCS_1252 to KVCS_UTF8. The output character set is the target
character set specified in the API.

KVCS_1252

The output character set is the source character set specified in the API
because KVCS_UNKNOWN cannot be used. No conversion.

KVCS_1252

The output character set is the source character set specified in the API.
No conversion.

KVCS_1252

Converts OS code page to KvCS_1252. The output character set is the
target character set specified in the API.

The output character set is OS code page. No conversion.

Set the Character Set During Conversion

You can convert the character set of afile at the time the file is converted.

To specify the source character set for documents from which the document character set
cannot be obtained by the reader

1. Setthe eSrcCharSet member of the KVXMLOptions structure to one of the character sets
enumerated in KVCharSet in kvtypes.h. SeeKVXMLOptions, on page 190.

KeyView (11.6)

Page 73 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

2. Setthe bForceSrcCharSet member of the KVXMLOptions structure to TRUE. See KVXMLOptions,
on page 190.

To specify the target character set

1. Set the eOutputCharSet member of the KVXMLOptions structure to one of the character sets
enumerated in KVCharSet in kvtypes.h. See KVXMLOptions, on page 190.

2. Setthe bForceOutputCharSet member of the KVXMLOptions structure to TRUE. See
KVXMLOptions, on page 190.

Set the Character Set During File Extraction from a Container

You can convert the character set of a container subfile at the time the subfile is extracted from the
container and before it is converted to XML. This is most often used to set the output character set of a
mail message’s body textSee Use the File Extraction API, on page 45.

To specify the source character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->srcCharset argument to any value in the enumerated list in KVCharSet of
kvtypes.h. See fpExtractSubFile(), on page 109.

To specify the target character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->trgCharSet argument to any value in the enumerated list in KvCharSet of
kvtypes.h.

Map Styles

Export can map paragraph and character styles in any word processing format that contains styles
(such as Microsoft Word, RTF, or Folio Flat File) to user-defined markup. With this feature, you can
redact (hide) text in the source document, delete content, or change the overall structure of the output.
You can also embed style sheet styles in the output defined in the XML.

To enable style mapping, you must indicate which paragraph and/or character styles are to be mapped,
and define the starting and ending markup to be included in the XML output.

For example, if the source Microsoft Word document contains the character style "Recipe," and the
content of the style in Microsoft Word is "Brownies," you can specify that the starting markup be
<recipe> and the ending markup </recipe>. This would result in the output XML containing:
<recipe>Brownies</recipe>.

You can also use style mapping to control the look of the XML output either by using a Cascading Style
Sheet (CSS) or by defining the style directly in the starting markup. For example, if a Word document
contains the paragraph style "Colorful", you can have markup of the form <p><div class="rainbow">
inserted at the front of the paragraph and markup of the form </div></p> inserted at the end of the
paragraph. "Rainbow" is a CSS style defined in an externally provided CSS file referenced at the top of
the XML output.

If you map styles to elements or attributes that are not defined in the DTD, you must add the new
elements or attributes to the DTD. You must also ensure the new markup is defined in the API, either
by entering the markup directly in the classes, or by populating the classes using the template files.

KeyView (11.6) Page 74 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Use the C API

To map styles by using the C API

1. Define the KVStyle structure. See KVStyle , on page 179. The information in this structure
includes:

« the markup to be added to the beginning and end of a paragraph or character style.

« the name of the word processing style (for example, "Heading 1") to which style mapping
applies. Style names are case sensitive.

« the flag which defines instructions on how to process the content associated with a paragraph
or character style. The flags are defined in kvtypes.h and described in Flags for Defining
Styles, on the next page.

2. Callthe fpSetStyleMapping() function. See fpSetStyleMapping(), on page 150.
Use a Template file

To map styles by using a template file

1. Use the KvStyle parameter to specify how many styles are being mapped. For example, if there
are nine mapped heading levels, add the following:

[KvStyle]
NumStyles=9

2. Foreach style, there must be a [StyleX] entry that contains the markup that appears at the start
and end of the defined style. For example, in the wordstyle.ini sample file, the first heading
level is defined as follows:

[Stylel]

StyleName=Colorful

MarkUpStart=<div class="colorful">
MarkUpEnd=<!-- end of colorful --></div>

These values are used in StyleName, MarkUpStart, and MarkUpEnd inthe KvStyle structure.
See KVStyle, on page 179.

3. Foreach style, define the flag that applies. Flags define instructions on how to process the content
associated with a paragraph or character style. They are defined in kvtypes.h and described in
Flags for Defining Styles, on the next page. This value is used in dwflags of the KvStyle
structure. See KV Style , on page 179. The value associated with each flag is a hexadecimal
number. You can set an option by either entering the converted decimal value or entering the flag’s
text.

Flags=0
A finished entry in a template file could look like this:

[KVStyle]
NumStyles=3

KeyView (11.6) Page 75 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

[Stylel]

StyleName=Colorful

MarkUpStart=<div class="Colorful">
MarkUpEnd=<!-- End of Colorful --></div>
Flags=0

[Style2]

StyleName=RedactPara

MarkUpStart=<div class="RedactPara">
MarkUpEnd=<!-- End of RedactPara --></div>
Flags=2048

[Style3]

StyleName=Code

MarkUpStart=<pre>

MarkUpEnd=<!-- End of Code --></pre>
Flags=KVSTYLE_PRE

Flags for Defining Styles

Flag Description

KVSTYLE_PRE The KVSTYLE_PRE flag specifies that white space should be
preserved (treated as characters, not word separators), and that
mode changes, such as changes in font size within a paragraph,
should be ignored. This allows the tags <pre> and </pre> to be
used.

KVSTYLE_HEADING[1-6] The flags KVSTYLE_HEADING[1-6] specify that a given style is to
be detected and processed as a heading. Heading flags are
exclusive. This means a style cannot be processed as both h1
and h2.

By default, Export maps the heading style "Heading 1" to
<h1></h1>, and so on, for heading levels 1 through 6. If you use
style mappings, the default mapping is overridden. Therefore,
you must supply markup for all heading levels. Export uses
heading levels to define the overall structure of the XML output.

KVSTYLE_ORDERLIST The KVSTYLE_ORDERLIST flag specifies that the style should be
tagged as an ordered list. Currently not implemented.

KVSTYLE_UNORDEREDLIST The KVSTYLE_UNORDERLIST flag specifies that the style should
be tagged as an unordered list. Currently not implemented.

KVSTYLE_DELETECONTENT The KVSTYLE_DELETECONTENT flag specifies that the content
associated with the style tag should be deleted from the output.

KVSTYLE_ The KVSTYLE_ONCONSECUTIVEPARAGRAPHS flag specifies that the

ONCONSECUTIVEPARAGRAPHS style should be applied to consecutive paragraphs of the
document. If this flag is used, and two or more paragraphs
require the same style, the opening and closing tags that

KeyView (11.6) Page 76 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Flags for Defining Styles, continued

Flag Description
normally appear between each paragraph are not generated.

KVSTYLE_REDACT The KVSTYLE_REDACT flag is used to hide sensitive or confidential
information in the source document. It specifies that the text
associated with the style tag should be replaced in the XML
output with a selected character. The default replacement
characteris "X," but you can specify a different replacement
character by setting cRedact.

Use Style Sheets

XML is a content-based metalanguage designed to structure data. XML does not include information
about how a document should be displayed in a browser. To view an XML document in a browser,
information about how its displayed must be provided by style sheets. These are coded by using either
Cascading Style Sheets (CSS) or Extensible Style Sheet Language (XSL).

The style sheet options are enumerated in KVXMLStyleSheetType.
Use Extensible Style Sheet Language (XSL)

You can use XSL style sheets to specify how XML data is displayed in a browser. Existing XSL style
sheets can be used, but unlike CSS, style sheet information cannot be written to an external XSL file
during the conversion.

Both CSS and XSL style sheets can be used to format XML documents. However, XSL can also
transform XML documents. For example, list items can be transformed to display in alphabetical order,
words can be replaced by other words, or empty elements can be replaced by text.

To use an existing XSL style sheet

1. SeteStyleSheetType to XML_XSL to enable XSL style sheet mapping.

2. SetbUseExistingStyleSheet to TRUE to apply a pre-existing style sheet to an XML document.
Pre-existing style sheets are not validated.

3. Specify the path and file name of the style sheet file in pszStyleSheet.

If you set bUseExistingStyleSheet to TRUE and do not specify pszStyleSheet, a default XSL
style sheet that is appropriate for the source document type is used.

The following are default XSL style sheets:
o wp.xsl (for word processing documents)
o ss.xs | (for spreadsheets)

« pg.xsl (for presentation graphics)

KeyView (11.6) Page 77 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Use Cascading Style Sheets (CSS)

In addition to XSL style sheets, Export can write style sheet information to an external CSS file. The C
sample program xmlini provides an example of how to use an existing style sheet, and output
formatting data to an external file. See xmlini, on page 103.

To enable CSS mapping and output the resulting formatting data in an external file

1. SeteStyleSheetType to XML_CSS.

2. Usethe KvxMLSetStyleSheet () function to set the path and file name of the external style sheet.
KVXMLSetStyleSheet(), on page 163.

To enable CSS mapping and use an existing CSS file

1. SeteStyleSheetType to XML_CSS.
Set bUseExistingStyleSheet to TRUE to specify a pre-existing style sheet for an XML document.
Specify the path and file name of the style sheet file in pszStyleSheet.
If you set bUseExistingStyleSheet to TRUE and do not specify pszStyleSheet or
SetExternalStyleFile, a CSS style sheet is created.

I NOTE: Note: Cascading style sheets can be used only with word processing documents.

Display Vector Graphics on UNIX and Linux

Export offers the option of rasterizing vector graphic content from source documents into a variety of
graphics formats including JPEG, PNG, WMF, and CGM. This solution is implemented with Windows
Graphical Device Interface (GDI) code, and therefore is not portable to other platforms.

The output format of vector graphics is defined by the eOutputVectorGraphicType member of the
KVXMLOptions structure, and the options are enumerated in KVXMLGraphicType in kvxml.h.
KVXMLOptions, on page 190 and KVXMLGraphicType, on page 213.

To display vector graphics in presentation, word processing, and spreadsheet files on UNIX and Linux,
Export converts the files directly to JPEG by using a Java program named kvraster.class. This
program uses the Java Abstract Windowing Toolkit (AWT). The AWT requires access to an X Server.

NOTE: If you are using KeyView 10.5.0.0 or Java 1.6, you do not have to set up an X Server;
however, if you are using a version of KeyView lower than 10.4 with a version of Java lower
than 1.6, you must set up an X Server.

To set up an X Server, do one of the following:

« Runavirtual X Server, such as the Xvfb utility. This utility is included in the X11R®6 distribution, or
you can download it from the following site:

http://www.x.org/Downloads.html
For example, to run the Xvfb utility on a 512 Mb, Solaris 2.8 platform, follow these steps:

KeyView (11.6) Page 78 of 346

http://www.x.org/Downloads.html

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

1. Start Xvfb at root:

/usr/X11R6/bin/Xvfb :1 -screen © 1152x900x8 &
2. Set the display environment variable:

setenv DISPLAY:1.0

« Make an X display available to the Java runtime by using the DISPLAY environment variable. No
windows appear on the display. For example, set the DISPLAY environment variable as follows:

setenv DISPLAY computername:0.0
or
setenv DISPLAY ipaddress:0.0
After the X Server is set up, convert the file by following these steps:

1. Add the location of the JRE to the PATH environment variable.

2. SetoOutputVectorGraphicType to KVGFX_JPEG in the defunix.ini template file or directly in the
API.

3. Convert the document to XML. The graphics in the document are converted to JPEG and stored in
the output directory.

NOTE:
kvvector.jar must reside in the output directory.

Convert Revision Tracking Information

The revision tracking feature in applications—such as Microsoft Word’s Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

If revision tracking was enabled when changes were made to a document, Export can be configured to
convert the deleted text and graphics and include revision tracking information in the XML output. (The
deleted content and revision tracking information is excluded from the XML output by default.)

Content that was added to the document is identified by <ins> tags. Content that was deleted from the
document is identified by tags. The <ins> and tags include cite and datetime attributes
which define the name of the reviewer who made the change and the date the change was made
respectively. (The date is in ISO-8601 format: YYYY-MM-DDThh:mm:ss.) The tags alsoinclude a title
attribute which allows you to display the author and date information in a browser. These elements are
included in the verity.dtd

The following markup is generated for inserted text:

<ins title="Inserted: JohnD, 2006-04-24T14:47:00" cite="mailto:JohnD"
datetime="2006-04-24T14:47:00">This text was added</ins> in a previous version.

The following markup is generated for deleted text:

<del title="Deleted: JohnD, 2006-04-24T14:56:00" cite="mailto:JohnD"
datetime="2006-04-24T14:56:00">This text was deleted in a previous version.

KeyView (11.6) Page 79 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

To convert deleted text and graphics and include revision tracking information

1. Callthe fpInit() function. See fpinit(), on page 149.
2. Callthe fpxMLConfig() function with the following arguments (See KVXMLConfig(), on page

152):
Argument Parameter
nType KVCFG_INCLREVISIONMARK
nValue TRUE (non-zero)
pData NULL
For example:

(*fpXMLConfig) (pKVXML, KVCFG_INCLREVISIONMARK, TRUE, NULL);

The xmlini sample program demonstrates this function. See xmlini, on page 103.

3. Callthe fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Convert PDF Files

Export has special configuration options that allow greater control over the conversion of PDF files.
These options can improve the fidelity and accuracy of the XML output.

Use the pdf2sr Reader

In KeyView Export SDK 10.24, the pdf2sr reader was added. It generates a high fidelity rasterimage
of each page in the PDF and will insert text that has a zero opacity value in the HTML to allow for text
searching in a web browser.

The pdf2sr reader has the following features:

« supports standard and custom metadata (non-XMP)
« supports basic text extraction

« supports password protected PDFs

The pdf2sr reader has the following limitations:

« does not support logical order

« does not support bidi PDFs

« does not extract subfiles

« does not extract bookmarks from PDFs

« does not give estimations on percent embedded fonts match with display glyphs
« Does not support XMP metadata

« Does not support headers or footers

« does not support annotations

KeyView (11.6) Page 80 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

« does not support content access stream
« does not support tagged content (PDFs)

To specify the pdf2sr reader

1. Openthe formats_e.ini file with a text editor.

2. Inthe [Formats] section, set the following parameter to the pdf2sr reader:
200=pdf2

When you use the pdf2sr reader, the output HTML uses HTML5 syntax that might be disabled when
using Internet Explorer to view the output. It might prompt the user for permission to run. To disable this
behavior, configure Intemnet Explorer as follows:

1. InIntemet Explorer, select Tools from the menu.
2. Select Internet Options.
3. Click the Advanced tab.

4. Inthe Security area, click Allow active content to run in files on My Computer.
Convert PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can convert a PDF file either by using the file’s internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to produce PDF files containing languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE: The algorithm used to reproduce the reading order of a PDF page is based on common
page layouts. The paragraph flow generated for PDFs with unique or complex page designs
might not emulate the original reading order exactly.

For example, page design elements such as drop caps, callouts that cross column boundaries,
and significant changes in font size might disrupt the logical flow of the output text.

Logical Reading Order and Paragraph Direction

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they
appear on the visual page. For example, a three-column article could be output with the headers and the
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available.

KeyView (11.6) Page 81 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Paragraph Description
Direction
Option

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
when most of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to- Paragraphs flow logically and read from right to left. You should specify this option
left when most of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF reader determines the paragraph direction for each
PDF page, and then sets the direction accordingly. When a paragraph direction is not
specified, this option is used.

NOTE: Conversions might be slower when logical reading order is enabled. For optimal speed,
use an unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, let us say that a PDF file contains English paragraphs in
three columns that read from left to right, but 80% of the second paragraph contains Hebrew
characters. If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the
output—title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column
to the bottom right of the third column. However, the text direction of the second paragraph is
determined independently of the page by the PDF reader, and is output from right to left.

NOTE: Note: Extraction of metadata is not affected by the paragraph direction setting. The
characters and words in metadata fields are extracted in the correct reading direction regardless
of whether logical reading order is enabled.

Enable Logical Reading Order

You can enable logical reading order by using either the API or the formats_e. ini file. Setting the
direction in the API overrides the setting in the formats_e. ini file.

Use the C API

To enable PDF logical reading order in the C API

1. Callthe fpInit() function. See fpinit(), on page 149.

2. Callthe fpxMLConfig() function with the following arguments (See KVXMLConfig(), on page
152):

Argument Parameter
nType KVCFG_LOGICALPDF

nvalue Set to one of the following flags which are defined in kvtypes.h. (see LPDF _

KeyView (11.6) Page 82 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Argument Parameter

DIRECTION, on page 222):
LPDF_LTR—Logical reading order and left-to-right paragraph direction.
LPDF_RTL—Logical reading order and right-to-left paragraph direction.

LPDF_AUTO—Logical reading order. The PDF reader determines the paragraph
direction for each PDF page, and then sets the direction accordingly. When a
paragraph direction is not specified, this option is used.

LPDF_RAW—Unstructured paragraph flow. This is the default behavior. If logical
reading order is enabled, and you want to return to an unstructured paragraph flow,
set this flag.

pData NULL

For example:
(*fpXMLConfig) (pKVXML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);

The cnv2xml sample program demonstrates this function. See cnv2xml, on page 101.

3. Callthe fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Use the formats_e.ini File

The formats_e. ini fileis in the directory instal (\0S\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To enable logical reading order by using the formats e.ini file

1. Change the PDF reader entry in the [Formats] section of the formats_e. ini file as follows:
[Formats]
200=1pdf

2. Optionally, add the following section to the end of the formats_e. ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:
Flag Description

LPDF_ Left-to-right paragraph direction
LTR

LPDF_ Right-to-left paragraph direction
RTL

LPDF_ The PDF reader determines the paragraph direction for each PDF page, and then sets
AUTO the direction accordingly. When a paragraph direction is not specified, this option is
used.

KeyView (11.6) Page 83 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Flag Description

LPDF_ Unstructured paragraph flow. This is the default behavior. If logical reading order is
RAW enabled, and you want to return to an unstructured paragraph flow, set this flag.

Control Hyphenation

There are two types of hyphens in a PDF document:

« A soft hyphenis added to a word by a word processor to divide the word across two lines. This is a
discretionary hyphen and is used to ensure proper text flow in justified text.

« A hard hyphen is intentionally added to a word regardless of the word’s position in the text flow. It is
required by the rules of grammar or word usage. For example, compound words, such as "three-
week vacation" and "self-confident" contain hard hyphens.

By default, KeyView maintains the source document’s soft hyphens in the output XML to more
accurately represent the source document’s layout. However, if you are using Export to generate text
output for an indexing engine or are not concerned with maintaining the document’s layout, Micro Focus
recommends that you remove soft hyphens from the XML output. To remove soft hyphens, you must
enable the soft hyphen flag.

NOTE: If the soft hyphen flag is enabled, every hyphen at the end of a line is considered a soft
hyphen and removed from the XML output. If a hard hyphen appears at the end of a line, it is
also removed. This might result in an intentionally hyphenated word being extracted without a
hyphen.

To remove soft hyphens from the XML output

1. Callthe fpInit() function. See fplnit(), on page 149.
2. Callthe kvxMLConfig() function, with the following arguments (see KV XMLConfig(), on page

152):
Argument Parameter
nType KVCFG_DELSOFTHYPHEN
nValue TRUE (non-zero)
pData NULL
For example:

(*fpXMLConfig) (pKVXML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);

3. Callthe fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Extract Custom Metadata from PDF Files

To extract custom metadata from your PDF files, add the custom metadata names to the pdfsr.ini
file provided, and copy the modified file to the \bin directory. You can then extract metadata as you
normally would.

KeyView (11.6) Page 84 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

The pdfsr.ini is in the directory samples\pdfini, and has the following structure:

<META>
<TOTAL>total_item_number</TOTAL>,
/metadata_tag_name datatype,
</META>

Parameter Description

total item The total number of metadata tags that are listed.

number

metadata_ The metadata tag name used in the PDF files.

tag_name

datatype The data type of the metadata field. Data types are defined in KvSumInfoType. See
KVSumlinfoType, on page 218.

For example:

<META>

<TOTAL> 4 </TOTAL>

/part_number INT4

/volume INT4

/purchase_date DATETIME

/customer STRING

</META>

Configure the Size of Exported Images

When you use the pdf2sr reader to export images of the pages in a PDF file, you can configure the
size of the images produced by KeyView.

NOTE:

When a page in a PDF document consists of a single embedded image (such as when the PDF
is a scanned document), the page image is output at the original size of the embedded image
and the following settings have no effect.

To configure the size of images produced by pdf2sr

Open the configuration file formats_e.ini.
Find the section [pdf2sr], or create the section if it does not exist.

3. Set the configuration parameters XMLXRes and XMLYRes. XMLXRes specifies the width of the output
image and XMLYRes specifies the height.

« To specify an absolute size, in pixels, use positive values. The aspect ratio is always
maintained, so you can set one of the dimensions and set the other parameter to ©. For
example, to output images of PDF pages where the height of each image is 400 pixels, use the
following configuration:

[pdf2sr]
XMLXRes=0
XMLYRes=400

KeyView (11.6) Page 85 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

If you set both XMLXRes and XMLYRes to positive values, KeyView produces the largest image
that fits within the specified dimensions (the width or height will be as requested, and the other
dimension is smaller than requested if required to preserve the aspect ratio).

« To specify arelative size, set XMLXRes to a negative value and XMLYRes to @ (a negative value
for XMLYRes is ignored). The aspect ratio is always maintained. For example, to output images
of PDF pages where the size of each image is 150% of the original size, use the following
configuration.

[pdf2sr]
XMLXRes=-150
XMLYRes=0

NOTE:
The default values for XMLXRes and XMLYRes are shown below. These values produce an image
at 113% of the original page size:

[pdf2sr]
XMLXRes=-113
XMLYRes=0

Convert Spreadsheet Files

Export has special configuration options that allow greater control over the conversion of spreadsheet
files.

Convert Hidden Text in Microsoft Excel Files

Normally, Export does not convert hidden text from a Microsoft Excel spreadsheet because it is
assumed that the text should not be exposed. You can change this default behavior and convert text in
hidden rows, columns, and sheets by adding the following lines to the formats_e. ini file:

[Options]
gethiddeninfo=1

Convert Headers and Footers in Microsoft Excel 2003 Files

Normally, Export does not convert headers and footers from Microsoft Excel 2003 spreadsheets. You
can change this default behavior and convert headers and footers by adding the following lines to the
formats_e.ini file:

[Options]
ShowHeaderFooter=1

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be

KeyView (11.6) Page 86 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats. ini file.

To specify the system date and time format on UNIX systems

« Inthe formats. ini file, specify the following options:

o SysDateTime. The format to use when a cell is formatted using the system format including both
the date and the time.

o SyslLongDate. The format to use when a cell is formatted using the system long date format.
o SysShortDate. The format to use when a cell is formatted using the system short date format.
o SysTime. The format to use when a cell is formatted using the system time format.

NOTE:
These values cannot contain spaces.

For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the following
format:

28/02/2008
The format arguments are the same as those for the strftime () function.

See http://linux.die.net/man/3/strftime for more information.

Convert Very Large Numbers in Spreadsheet Cells to Precision
Numbers

Numbers in Microsoft Excel files can now be exported and written to the output without formatting. By

default, numbers are exported in the format specified by the Excel file (for example, General, Currency,
and Date). Spreadsheets might contain cells that have very large numbers in them. Excel displays the
numbers in a scientific notation that rounds or truncates the numbers.

To export numbers without formatting, add the following options in the following lines to the formats_
e.ini file:

[Options]
ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Export is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245, and the formula from which the value is derived is SUM
(B21:B26).

NOTE: Depending on the complexity of the formulas, enabling formula extraction might result in
slightly slower performance.

KeyView (11.6) Page 87 of 346

http://linux.die.net/man/3/strftime

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

To set the extraction option for formulas, add the following lines to the formats_e.ini file:

[Options]
getformulastring=option

where option is one of the following:

Option Description

If formula extraction is enabled, and you want to return to the default, set this

0 Extract the formula value only. This is the default.
option.

1 Extract the formula only.

2 Extract the formula and the formula value.

NOTE: If afunction in a formula is not supported or is invalid, and option 1 or 2 is specified, only
the calculated value is extracted. See Supported Microsoft Excel Functions, below for a list of

supported functions.

When formula extraction is enabled, Export can extract Microsoft Excel formulas containing the

functions listed in Supported Microsoft Excel Functions, below:

Supported Microsoft Excel Functions

=ABS () =ACOS () =AND()
=ASIN() =ATAN2() =ATAN2()
=CELL() =CHAR() =CHOOSE ()
=CODE() =COLUMN() =COLUMNS()
=C0S() =COUNT() =COUNTA()

=DATEVALUE() =DAVERAGE() =DAY()

=DDB() =DMAX () =DMIN()
=DSTDEV() =DSUM() =DVAR()
=EXP() =FACT() =FALSE()
=FIXED() =FV() =GROWTH()
=HOUR () =ISBLANK() =IF()
=INDIRECT() =INT() =IPMT()
=ISERR() =ISERROR() =ISNA()
=ISREF () =ISTEXT() =LEFT()
=LINEST() =LN() =L0G()
=LOGEST() =LOOKUP() =LOWER()

KeyView (11.6)

=AVERAGE ()

=CONCATENATE ()

=HLOOKUP ()

=ISNUMBER()

Page 88 of 346

XML Export SDK C Programming Guide

Chapter 4: Use the XML Export API

=MAX () =MDETERM() =MID()
=MINUTE () =MINVERSE() =MIRR()
=MOD() =MONTH() =N()
=NOT() =NOW() =NPER()
=OFFSET() =OR() =PI()
=PPMT() =PRODUCT() =PROPER()
=RATE() =REPLACE() =REPT()
=ROUND() =ROUND() =ROW()
=SEARCH() =SECOND() =SIGN()
=SLN() =SQRT() =STDEV()
=SUM() =SYD() =T()
=TEXT() =TIME() =TIMEVALUE ()
=TRANSPOSE () =TREND() =TRIM()
=TYPE() =UPPER() =VALUE ()
=VLOOKUP() =WEEKDAY() =YEAR()

Set Minimum Image Size

=MIN()
=MMULT ()
=NA()
=NPV()
=PMT()
=PV()
=RIGHT()
=ROWS ()
=SIN()
=SUBSTITUTE()
=TAN()
=TODAY ()
=TRUE()

=VAR()

You can set a minimum size limit for the images to export from spreadsheet files. This option can
improve performance for documents that have lots of very small images.

To set the minimum image size, add the following lines to the formats_e. ini file:

[ss_flags]
process_images_with_min_width=N
process_images_with_min_height=M

where N and M are the minimum image dimensions, in pixels. For example:

[ss_flags]
process_images_with_min_width=150
process_images_with_min_height=250

Convert Presentation Files

Export has special configuration options that allow greater control over the conversion of presentation

files.

KeyView (11.6)

Page 89 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Convert Presentation Files to Raster Images

Export allows you to convert each slide in a presentation document to a raster image, providing a high-
fidelity conversion of the document.

The output format depends on the value of bRasterizeFiles in KVXMLOptions. See KVXMLOptions,
on page 190.

Convert Presentation Files to a Logical Reading Order

Some presentation files do not store the logical structure of the original document—the correct reading
order, for example, and the presence and meaning of significant elements such as headers, footers,
columns, tables, and so on.

In general, when you convert a presentation slide to a raster image, the output file retains the logical
reading order because it uses the correct coordinates for each element in the output. However, if you do
not use the bRasterizeFiles option in KVXMLOptions to produce a rasterimage, you might find that
the export process generates output for some files that does not match the logical reading order.

When you do not want to rasterize your presentation files, you can use the formats_e. ini file to retain
the logical reading order in your files.

The formats_e. ini fileis in the directory instal\OS\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To enable logical reading order by using the formats_e.ini file

o Inthe formats_e.ini file, find the [Options] section, and set LogicalOrder to 1.

For example:

[Options]
LogicalOrder=1

Convert XML Files

Export enables you to extract all or selected content from source XML files (see Configure Element
Extraction for XML Documents, below). It detects the following XML formats:

« generic XML

« Microsoft Office 2003 XML (Word, Excel, and Visio)

« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
See File Format Detection, on page 311 for more information on format detection.

Configure Element Extraction for XML Documents

When you convert XML files, you can specify which elements and attributes are extracted according to
the file’s format ID or root element. This is useful when you want to extract only relevant text elements,
such as abstracts from reports, or a list of authors from an anthology.

KeyView (11.6) Page 90 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

A root element is an element in which all other elements are contained. In the XML sample below, book
is the root element:

<book>
<title>XML Introduction</title>
<product id="33-657" status="draft">XML Tutorial</product>
<chapter>Introduction to XML
<para>What is HTML</para>
<para>What is XML</para>
</chapter>
<chapter>XML Syntax
<para>Elements must have a closing tag</para>
<para>Elements must be properly nested</para>
</chapter>
</book>

For example, you could specify that when converting files with the root element book, the element
titleis extracted as metadata, and only product elements with a status attribute value of draft are
extracted.

When you extract an element, the child elements within the element are also extracted. For example, if
you extract the element chapter from the sample above, the child element para is also extracted.

Export defines default element extraction settings for the following XML formats:

« generic XML
« Microsoft Office 2003 XML (Word, Excel, and Visio)
« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)

These settings are defined internally and are used when converting these file formats; however, you
can modify their values.

In addition to the default extraction settings, you can also add custom settings for your own XML
document types. If you do not define custom settings for your own XML document types, the settings
for the generic XML are used.

Modify Element Extraction Settings

You can modify configuration settings for XML documents through either the API or the kvxconfig.ini
file.

NOTE: You can only use customized element extraction settings when converting files in
process. When converting out of process, the default extraction settings are used.

Use the C API

You can use the C API to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

KeyView (11.6) Page 91 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

To modify settings

1. Callthe fpInit() function. See fpinit(), on page 149.
Define the KvXConfigInfo structure. See KV XConfiginfo, on page 181.
Call the kvxMLConfig() function with the following arguments (see KVXMLConfig(), on page
152):

Argument Parameter

nType KVCFG_SETXMLCONFIGINFO

nValue 0

pData address of the KVXConfigInfo structure
For example:

KVXConfigInfo xinfo; /* populate xinfo */
(*fpXMLConfig) (pKVXML, KVCFG_SETXMLCONFIGINFO, @, &xinfo);

4. Repeat steps 2 and 3 until the settings for all the XML document types you want to customize are
defined.

5. Call the function fpConvertStream() or KVXMLConvertFile(). See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Use an Initialization File

You can use the initialization file to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

To modify settings

Modify the kvxconfig.ini file
2. Use the template file when processing the XML file.

The sample program (xm1ini) demonstrates how to use a template file during the conversion
process. See xmlini, on page 103.

Modify Element Extraction Settings in the kvxconfig.ini File

The kvxconfig.ini file contains default element extraction settings for supported XML formats. The
fileis in the directory instal (\0S\bin, where install is the path name of the Export installation
directory and 0s is the name of the operating system. For example, the following entry defines
extraction settings for the Microsoft Visio 2003 XML format:

[config3]

eKVFormat=MS_Visio_ XML_Fmt

szRoot=
szInMetaElement=DocumentProperties
szExMetaElement=PreviewPicture
szInContentElement=Text
szExContentElement=

szInAttribute=

KeyView (11.6) Page 92 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

The following options are available.

Configuration
Option

eKVFormat

szRoot

szInMetaElement

szExMetaElement

szInContentElement

szExContentElement

szInAttribute

KeyView (11.6)

Description

The format ID as detected by the KeyView detection module. This
determines the file type to which these extraction settings apply. See File
Format Detection, on page 311 for more information on format ID values.

If you are adding configuration settings for a custom XML document type,
this is not defined.

The file’s root element. When the format ID is not defined, the root element
is used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an
Element’s Namespace and Attribute, on the next page.

The elements extracted from the file as metadata. All other elements are
extracted as text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

The child elements in the included metadata elements that are not extracted
from the file as metadata. For example, the default extraction settings for
the Visio XML format extract the DocumentProperties element as
metadata. This element includes child elements such as Title, Subject,
Author, Description, and so on. However, the child element
PreviewPicture is defined in szExMetaElement because it is binary data
and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice
files. All metadata is extracted regardless of this setting.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

The elements extracted from the file as content text. Enter an asterisk (*) to
extract all elements including child elements.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

The child elements in the included content elements that are not extracted
from the file as content text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

The attribute values extracted from the file. If attributes are not defined here,

Page 93 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Configuration Description
Option

attribute values are not extracted.

Enter the namespace (if used), element name, and attribute name in the
following format:

namespace:elementname@attributename
For example:
keyview:division@name

Multiple entries must be separated by commas.

Specify an Element’s Namespace and Attribute

To further qualify an element, you can specify that the element must exist in a certain namespace,
must contain a specific attribute, or both. To define the namespace and attribute of an element, enter
the following:

ns_prefix:elemname@attribname=attribvalue

You must enclose attribute values that contain space in quotation marks.
For example, the following entry:

bg:language@id=xml

extracts a language element in the namespace bg that contains the attribute name id with the value of
"xml". This entry extracts the following element from an XML file:

<bg:language id="xml">XML is a simple, flexible text format derived from
SGML</bg:1language>

but does not extract:

<bg:language id="sgml">SGML is a system for defining markup
languages.</bg:language>

or

<adv:language id="xml">The namespace should be a Uniform Resource Identifier
(URI).</adv:language>

Add Configuration Settings for Custom XML Document Types

You can define element extraction settings for custom XML document types by adding the settings to
the kvxconfig.ini file. For example, for files containing the root element keyviewxml, you could add
the following section to the end of the initialization file:

[configlel]

eKVFormat=

szRoot=keyviewxml
szInMetaElement=dc:title,dc:meta@title,dc:meta@name=title

KeyView (11.6) Page 94 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

szExMetaElement=

szInContentElement=keyview:division@name=dev, keyview:division@name=export,p@style="
Heading 1"

szExContentElement=

szInAttribute=keyview:division@name

The custom extraction settings must be preceded by a section heading named [configN], where N is
an integer that starts at 100 and increases by 1 for each additional file type (for example, [configlee],
[configle1l], [configl@2], and so on). The default extraction settings for the supported XML formats
are numbered confige to config99. Currently only o to 6 are used.

Because a custom XML document type is not recognized by the KeyView detection module, the format
ID is not defined. The file type is identified by the file’s root element only.

If a custom XML document type is not defined in the kvxconfig. ini file or by the KVXMLConfig()
function, the default extraction settings for a generic XML document are used.

Show Hidden Data

Microsoft Word, Excel, and PowerPoint documents contain hidden information, some of which is
shown by default when exported, and some of which is hidden by default. There are several options
that allow you to determine which types of hidden data are shown.

Hidden Data in Microsoft Documents

You can show several types of hidden data from Microsoft Word, Excel, and PowerPoint documents,
each of which has a corresponding flag in the K\VVXMLConfig(), on page 152 function, which you can
toggle to determine whether the hidden data is shown or not. Hidden data settings, below lists each
data type, its default behavior, and its corresponding configuration API flag.

Hidden data settings

Hidden Data Type Default Behavior Configuration API Flag

Microsoft Word

Comments' Shown? KVCFG_WP_NOCOMMENTS

Hidden text Hidden KVCFG_WP_SHOWHIDDENTEXT
Date field codes Calculated date KVCFG_WP_SHOWDATEFIELDCODE

File name field codes Document file name KVCFG_WP_SHOWFILENAMEFIELDCODE

TWord comment settings can also be toggled with a configuration parameter in the formats_e.ini file.
See Toggle Word Comment Settings in the formats_e.ini File, on the next page.

2Shown by default in Microsoft Word 97 to 2003 documents.

KeyView (11.6) Page 95 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

Hidden data settings, continued

Hidden Data Type
Microsoft Excel
Hidden information
Comments

Formulas

Microsoft PowerPoint
Hidden slides
Comments
Comments slide

Slide notes®

Default Behavior

Hidden
Hidden

Calculated value

Shown
Shown'
Hidden

Hidden

Configuration API Flag

KVCFG_SS_SHOWHIDDENINFOR
KVCFG_SS_SHOWCOMMENTS

KVCFG_SS_SHOWFORMULA

KVCFG_PG_HIDEHIDDENSLIDE
KVCFG_PG_HIDECOMMENT
KVCFG_PG_SHOWCOMMENTSSLIDEZ

KVCFG_PG_SHOWSLIDENOTES

To toggle the display of any type of hidden data

« Use the configuration API and set the third parameter to TRUE or FALSE:

(*fpHTMLConfig) (pKVHTML, KVCFG_WP_NOCOMMENTS, TRUE, NULL)

In this example, comments will not be exported from Word documents.

NOTE: The third parameter affects the default behavior. To change the default behavior, set

it to TRUE.

For more information, see K\VVXMLConfig(), on page 152.

Toggle Word Comment Settings in the formats_e.ini File

Microsoft Word 97 to 2003 comment settings can also be controlled through a parameter in the

formats_e.ini file.

The formats_e.ini fileis in the directory instal (\0S\bin, where install is the path name of the
Export installation directory and 0sS is the name of the operating system.

To toggle comment output in formats_e.ini

1. Openthe formats_e.ini file in a text editor.

2. Under [Options], add the WP_NOCOMMENTS parameter and set it to @ to show comments, or 1 to
hide comments. For example:

1Shown by default in Microsoft PowerPoint 97 to 2000 documents.
2This setting affects PowerPoint 2003 and 2007 only.

3powerPoint slide note settings can also be toggled with a configuration parameter in the formats_
e.ini file. See Toggle PowerPoint Slide Note Settings in the formats_e.ini File, on the next page.

KeyView (11.6)

Page 96 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

[Options]
WP_NOCOMMENTS=1

NOTE: The KVCFG_WP_NOCOMMENTS configuration API flag overrides the setting in
formats_e.ini.

Toggle PowerPoint Slide Note Settings in the formats_e.ini File
Microsoft PowerPoint slide note settings can also be controlled through a parameter in the formats_
e.ini file.

The formats_e.ini fileis in the directory instal (\0OS\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To toggle slide note output in formats_e.ini

Open the formats_e. ini file in a text editor.

2. Under [Options], add the ShowS1lideNotes parameter and set it to 1 to show slide notes, or @ to
hide slide notes. For example:

[Options]
ShowSlideNotes=1

NOTE: The KVCFG_PG_SHOWSLIDENOTES configuration API flag overrides the setting in
formats_e.ini.

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text when Microsoft Excel (. x1sx) files are
processed.

To prevent output of Japanese phonetic guide text

o SetNoPhoneticGuides to TRUE inthe formats_e.ini file:

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

Obtain Image Info

When exporting from presentation graphics files, and when using the pdf2sr reader to export from PDF
files, KeyView can obtain information about the number of images that it would create during export,
without having to run a full export. This option uses function pointers that are part of the
KVXMLInterfaceEx, on page 188 structure.

KeyView (11.6) Page 97 of 346

XML Export SDK C Programming Guide
Chapter 4: Use the XML Export API

To extract image information

1. Initialize an image information session by calling the fpGetOutputImageInfos() function. You
must pass the return value for this function to the otherimage functions.

2. Call the fpGetoutputImageCount () function to get the number of images identified.
(Optional) For each image, call fpGetOutputImageInfo() to obtain the image dimensions.

Free the internal resources associated with the image information session by calling
fpFreeImageInfos().

Example

int numberOfImages = 0;
void* pImageInfoContext = (*KVXMLInt.fpGetOutputImageInfos)(pContext, &inputStream,
&options);
if (pImageInfoContext == NULL)
{
// Error handling code would go here.
// fpGetKvErrorCode() could be called here to investigate.
}
(*KVXMLInt.fpGetOutputImageCount)(pImageInfoContext, &numberOfImages);
for (int i = @; i < numberOfImages; i++)

{
KVXMLImageInfo imagelnfo;
KVStructInit(&imageInfo);
if ((*KVXMLInt.fpGetOutputImageInfo)(pImageInfoContext, i, &imageInfo))
{
// imageInfo.nWidth and imageInfo.nHeight
// contain the dimensions at this point.
}
}

(*KVXMLInt.fpFreeImageInfos)(pContext, pImageInfoContext);
pImageInfoContext = NULL;

KeyView (11.6) Page 98 of 346

Chapter 5: Sample Programs

This section describes the sample programs provided with XML Export.

& NtrOdUCTION ... 99
O A SUXEraCt L 100
O CNV XM 101
® CNV2XMIOOP ...ttt 102
O Metadata ... 103
O XMINAEX e 103
O XM 103
O XMICAlIDACK ... 105
O XMIONEfile . 105
O XMIMURE 105
O EXPOIt DemMO L. 106

Introduction

The sample programs demonstrate how to use the C and Visual Basic implementations of XML Export.

The sample code is intended to provide a starting point for your own applications or to be used for
reference purposes.

The source code and makefile for each program are in the directory:
install\xmlexport\programs\program_name

where install is the path name of the Export installation directory, and program_name is the name of
the sample program.

C Sample Programs

The C sample programs demonstrate how to use the C implementation of XML Export. The following
sample programs are provided:

« tstxtract, on the next page
o cnv2xml, on page 101

« cnv2xmloop, on page 102
« metadata, on page 103

« xmlindex, on page 103

« xmlini, on page 103

« xmlcallback, on page 105

KeyView (11.6) Page 99 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

« xmlonefile, on page 105

« xmlmulti, on page 105

You can use the tstxtract, cnv2xml, cnv2xmloop, and xmlini sample programs on Windows and
UNIX. All other sample programs are for Windows only.

NOTE: The sample programs do not parse white space in file names. If your file names contain
spaces, use quotation marks around the entire path name. Inserting quotation marks around the
file name only does not work.

To compile the sample programs, use the makefiles provided in the sample programs’ directory. Ensure
the XML Export include directory is specified in the include path of the project. After the executables
are compiled and built, you must place them in the same directory as the XML Export libraries.

Compile the Visual Basic Sample Program

To compile Export Demo, use the Visual Studio project file (demo_vb.vbp)in the directory
install\xmlexport\programs\ExportDemo, where install is the path name of the Export
installation directory.

tstxtract

The tstxtract sample program demonstrates the File Extraction API. It opens a file, extracts subfiles
from the file, and repeats the extraction process until all subfiles are extracted. It also demonstrates
how to extract the default set of metadata and pass integer or string names to extract specific
metadata. After the files are extracted, you can convert the files by using one of the conversion sample
programs.

The source code for the tstxtract sample program is the same for the Filter and Export SDKs. A flag
in the makefile specifies whether the program is compiled for Filter, HTML Export, or XML Export.

Torun tstxtract, type the following at the command line:
tstxtract [options] input_file output_directory bin_directory

where options is one or more of the following.

Option Description

-c charset Specify the target character set, for example KVCS_SJIS. See Coded Character
Sets, on page 265 for a full list of supported character sets.

-cf Specify one or more credential files (private keys) to use to decrypt encrypted
keyfilel, .EML, .MBX, .PST, or .MSGfiles.
keyfile2, ...

-1 logfile Specify the path and file name of the log file in which metadata is written.
-1m Retrieve metadata and write the data to the log file.

-1ms Retrieve metadata with string metanames and write the data to the log file for
metanamel, .MSG, .EML, .MBX, and .NSF files.

KeyView (11.6) Page 100 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

Option Description

metaname2

-1mi Retrieve metadata with integer (hexadecimal) metanames and write the data to the
metainti, log file for .PST files.

metaint2,...

-1ma Retrieve all metadata from an .NSF file and write the data to the log file.

-r Recursively extract second-level subfiles to the specified output directory. For

example, if a .ZIP file contains a Microsoft Word file and the Word file contains an
embedded Microsoft Excel file, set the -r option to extract both the Word and Excel
files.

If this option is not set, only first-level subfiles are extracted. For the example
above, only the Word file would be extracted.

-msg Extract mail messages in a .PST file as an .MSG file, including all of its
attachments. If this flag is not set, the mail message is extracted as text. This
option applies to PST files on Windows only.

-f Extract the formatted version of the message body (HTML or RTF) from mail files
when possible. If neither an HTML nor RTF version of the message body exists in
the mail file, then it is extracted as plain text. If this flag is not set, the message
body is extracted as plain text when possible.

-t Preserve the timestamp of embedded files when possible.
-h Extract hidden text.

input_file is the full path and file name of the source document.
output_directory is the directory to which the files will be extracted.

bin_directory is the path to the Export bin directory. This is required if you do not run the program
from the instal L\Export SDK\bin directory.

cnv2xml

The cnv2xml sample program creates a single, formatted XML output file. It is called by the Export
Demo sample program, but can also be used on its own. This program runs on both Windows and
UNIX platforms.

To run cnv2xml, type the following at the command line:
cnv2xml [options] inputfile outputfile

where:

options is one or more of the options listed in, on the next page.
inputfile is the full path and file name of the source document.

outputsfile is the full path and file name of the first XML output file.

KeyView (11.6) Page 101 of 346

XML Export SDK C Programming Guide

Chapter 5: Sample Programs

The following options are available.

Option

-c KVCFG_
SUPPRESSIMAGES

-c KVCFG_
ENABLEPOSITIONINFO

-c KVCFG_
DELSOFTHYPHEN

-pdfltr

-pdfrtl

-pdfauto

-pdfraw

cnv2xmloop

Description

This option specifies that XML output includes verbose markup, but no
images. If this option is not set, embedded images in a document are
regenerated as separate files and stored in the output directory.
KVXMLConfig(), on page 152.

This option specifies that a position element is included in the markup for
PDF documents. The position element defines the absolute position of the
text relative to the bottom left corner of the page, and includes additional
information such as font and color. K\VXMLConfig(), on page 152.

This option specifies that soft hyphens in PDF files are deleted from the
converted output. See Control Hyphenation, on page 84.

This option specifies that PDF files are output in a logical reading order, and
the paragraph direction is left to right. See Convert PDF Files to a Logical
Reading Order, on page 81.

This option specifies that PDF files are output in a logical reading order, and
the paragraph direction is right to left. See Convert PDF Files to a Logical
Reading Order, on page 81.

This option specifies that PDF files are output in a logical reading order. The
PDF reader determines the paragraph direction (left-to-right or right-to-left)
for each PDF page, and then sets the direction accordingly. See Convert
PDF Files to a Logical Reading Order, on page 81.

This option specifies that PDF files are output in an unstructured paragraph
flow. This is the default. Set this flag if logical reading order is enabled, and
you want to return to an unstructured paragraph flow. See Convert PDF
Files to a Logical Reading Order, on page 81.

The cnv2xmloop sample program creates a single, formatted XML output file, but unlike cnv2xml, it
converts the file out of process. See Convert Files Out of Process, on page 26 for more information on
out of process conversions. This program runs on both Windows and UNIX platforms.

To run cnv2xmloop, type the following at the command line:

cnv2xmloop [options]

where:

inputfile outputfile

options is one or more of the options listed in, on the next page.

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the XML output file.

The following options are

KeyView (11.6)

available.

Page 102 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

Option Description
-c KVCFG_ This option specifies that XML output includes verbose markup, but no
SUPPRESSIMAGES images. If you do not set this option, embedded images in a document are

regenerated as separate files and stored in the output directory. See
KVXMLConfig(), on page 152.

-c KVCFG_ This option specifies that a position element is included in the markup for

ENABLEPOSITIONINFO PDF documents. The position element defines the absolute position of the
text relative to the bottom left corner of the page, and includes additional
information such as font and color. See KVXMLConfig(), on page 152.

metadata

The metadata sample program converts a source document into a single XML file that contains only
the document metadata (Author, Subject, Title, and so on). This program runs on both Windows and
UNIX platforms.

Torunmetadata, type the following at the command line:
metadata inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlindex

The xmlindex sample program produces stripped-down XML output suitable for use with indexing
engines. It converts a source document into a single, largely unformatted XML file. This program runs
on both Windows and UNIX platforms.

Torun index, type the following at the command line:

xmlindex inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlini

The xmlini sample program is used in conjunction with template files to produce well-formed XML
documents. For more information, see Set Conversion Options by Using the Template Files, on page

34. Sample template files are in the programs\ini directory. This program runs on both Windows and
UNIX platforms.

Torun xmlini, type the following at the command line:

KeyView (11.6) Page 103 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

xmlini [options] inifile inputfile outputfile

where:

options is one or more of the options listed in, below.

inifile is the full path and file name of a template file.

inputfile is the full path and file name of the source document.
outputsfile is the full path and file name of the first XML output file.

The following options are available.

Option Description

-s Reads style sheet information from an existing style sheet file, or writes the
stylesheetfile information to an external CSS file. See Use Style Sheets with xmlini, below.

-x xmlconfig_ Converts an XML file by using customized element extraction settings defined in

filename the kvxconfig.ini file. If you do not enter the full path to the template file, the
program looks for the file in the current working directory (instal\0OS\bin,
where install is the path name of the Export installation directory and 0s is the
name of the operating system). See Convert XML Files, on page 90.

-rm If you set this flag, text and graphics that were deleted from a document with a
revision tracking feature enabled are converted, and revision tracking information
is included in the XML output. See Convert Revision Tracking Information, on

page 79.
-oop Runs the conversion out of process.
-f1 Prints a list of converted files in the console.

If the XML file is output to a directory other than the directory programs\tempout, you must update the
XML markup so that, the browser can find images used by the template (such as backgrounds or
corporate logos) and the style sheet. The markup contains relative references to the image files

(. .\images).

Use Style Sheets with xmlini

The xm1ini sample program provides an option that allows XML Export to read Cascading Style Sheet
(CSS) or Extensible Style Sheet Language (XSL) style sheet information from an existing style sheet
file, or to write CSS information to an external CSS file. If the CSS does not exist, it is created. The
style sheet name is referenced in the output XML, for example:

<?xml-stylesheet href="c:\mystyle.css" type="text/css"?>

This type of conversion makes the XML output document significantly smaller and enables you to use
the same style sheet for many conversions.

KeyView (11.6) Page 104 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

To apply an existing style sheet to a conversion by using the xmlini sample program

In the template file, set eStyleSheetType to either XML_CSS or XML_XSL. This specifies that the
formatting data is stored in either a CSS or XSL style sheet.

At the command prompt, type:
xmlini -s stylesheetname inifile inputfile outputfile

where stylesheetname is the path and file name of the CSS or XSL file.

xmlcallback

The xmlcallback sample program demonstrates how you can control the conversion to generate
specialized output while it is in progress. The program employs developer-defined callbacks and
memory management functions during conversion. This program runs on Windows platforms only.

Torun xmlcallback, type the following at the command line:
xmlcallback inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputsfile is the full path and file name of the first XML output file.

xmlonefile

The xmlonefile sample program converts a source document into a single, formatted XML file. This
program runs on Windows platforms only.

Torun xmlonefile, type the following at the command line:
xmlonefile 1inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmimulti

The xm1multi sample program creates multiple XML files from a source document. The main file
contains the table of contents. Each H1 heading is contained within its own file. The main file contains
hyperlinks to each H1 block; each H1 file contains navigation to the table of contents, as well as to the
previous and next blocks. This program runs on Windows platforms only.

Torunmulti, type the following at the command line:
xmlmulti inputfile outputfile

where:

KeyView (11.6) Page 105 of 346

XML Export SDK C Programming Guide
Chapter 5: Sample Programs

inputfile is the full path and file name of the source document.

outputsfile is the full path and file name of the first XML output file.

Export Demo

Export Demo is a Visual Basic program that provides an easy-to-use graphical user interface to the
Export technology. It allows you to select files, convert them to XML, and view the result in a browser
object. The output options that control the look of the output files are predefined in Export Demo and
cannot be changed in the user interface.

Export Demo accesses the Export functionality by returning to the operating system and runninga C
program named cnv2xml. To adapt the sample program to your needs, modify the GUI by using Visual
Basic, and modify the cnv2xml program by using C. See cnv2xml, on page 101.

To launch Export Demo, select Export Demo from Start | Programs | Autonomy | Export SDK | XML
Export.

The source code for the program is in the directory instal L \xmlexport\programs\ExportDemo,
where instal L is the path name of the Export installation directory. Export Demo is for Windows only.

See Use the Export Demo Program, on page 36 for more information.

KeyView (11.6) Page 106 of 346

Part lll: C API Reference

This section provides detailed reference information for the C-language implementation of the File Extraction
and Export APls.

« File Extraction API Functions

« File Extraction API Structures

« XML Export API Functions

o XML Export API Callback Functions
o XML Export API Structures

o Enumerated Types

KeyView (11.6)

Chapter 6: File Extraction API Functions

This section describes the functions in the File Extraction API. The File Extraction functions open a
container file, and extract the container’s subfiles so that the subfiles are exposed and available for
conversion. Subfiles can be files within a Zip archive, messages in a mail store, attachments in a mail
message, or OLE objects embedded in a compound document.

Each function appears as a function prototype followed by a description of its arguments, its return
value, and a discussion of its use.

® KVGetEXtractinterface() 108
O PCIOSEFIIE() ..o 109
O A PEXIrAaCt SUDFIIE) .. 109
O PFree S T UCT() « . . 111
® fpGetMaiNFilelNfO() - .. 112
® fpGetSUbFIlelNfO() il 113
® fpGetSubFileMetaDatal) 114
& POPENFI () il 116

KVGetExtractinterfaceQ

This function is the entry point to obtain the file extraction functions. It supplies pointers to the file
extraction functions, and in the case of out-of-process mode starts the kvoop . exe server and initializes
out-of-process extraction services. When KvGetExtractInterface() is called, it assigns the function
pointers in the structure KVExtractInterface to the functions described in this section.

Syntax
int pascal KVGetExtractInterface (
void *pContext,
KVExtractInterface pIextract);
Arguments

pContext A pointer returned from fpInit().

pIextract A pointerto the KVExtractinterface structure, which contains function pointers that
KVGetExtractInterface()assigns to all other file extraction functions.

Before you initialize the KVExtractInterface structure, use the macro KvStructInit
toinitialize the KVStructHead structure.

KeyView (11.6) Page 108 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Returns

« Ifthe call is successful, the return value is KVERR_Success.
« Ifthe call is not successful, the return value is an error code.

Example

fpKVGetExtractInterface =

(int (pascal *)(void *, KVExtractInterface))myGetProcAddress(hKVExport, (char*)
"KVGetExtractInterface");

/*Initialize file extraction interface structure using KVStructInit*/
KVStructInit(&extractInterface);

/* Retrieve file extraction interface */

error = (*fpkVGetExtractInterface)(pExport,&extractInterface))

fpCloseFile(

This function frees the memory allocated by fpOpenFile() and closes the file.
Syntax

int (pascal *fpCloseFile) (void *pFile);

Arguments
pFile The identifier of the file. This is a file handle returned from fpOpenFile().

Returns

« Ifthefile is closed, the return value is KVERR_Success.
« Ifthefileis not closed, the return value is an error code.

Example

extractInterface->fpCloseFile(pFile);
pFile = NULL;

fpExtractSubFileQ

This function extracts a subfile from a container file to a user-defined path or output stream. This call
returns file format information when file is extracted to a path.

KeyView (11.6) Page 109 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Syntax

int (pascal *fpExtractSubFile) (
void *pFile,
KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

extractArg A pointer to the structure KVExtractSubFileArg, which defines the subfile to be
extracted.

Before you initialize the KVExtractSubFileArg structure, use the macro
KVStructInit toinitialize the KvStructHead structure.

extractInfo A pointerto the structure KVSubFileExtractInfo, which defines information about
the extracted subfile.

Returns

« If the subfile is extracted from the container file, the return value is KVERR_Success.

« If the subfile is not extracted from the container file, the return value is an error code.

Discussion

« Afterthefile is extracted, call fpFreeStruct() to free the memory allocated by this function.

« If the subfile is embedded in the main file as alink and is stored externally, extractInfo->infoFlag
is set to KVSubFileExtractInfoFlag_External.

For example, the subfile might be an object that was embedded in a Word document by using "Link
to File," or an attachment that is referenced in an MBX message. This type of subfile cannot be
extracted. You must write code to access the subfile based on the path in the member
extractInfo->filePath orextractInfo->fileName. See KVSubFileExtractinfo, on page 128.

Example

KVSubFileExtractInfo extractInfo = NULL;

KVStructInit(&extractArg);

extractArg.index = index;

extractArg.extractionFlag = KVExtractionFlag_CreateDir | KVExtractionFlag_

Overwrite;
extractArg.filePath = subFileInfo->subFileName;

KeyView (11.6) Page 110 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

/*Extract this subfile*/
error=extractInterface->fpExtractSubFile(pFile,&extractArg,&extractInfo);
if (error)

{
extractInterface->fpFreeStruct(pFile,extractInfo);
subFileInfo = NULL;

fpFreeStructQ

This function frees the memory allocated by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetadata(), and fpExtractSubFile().

Syntax

int (pascal *fpFreeStruct) (
void *pFile,
void *obj);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

obj A pointer to the result object returned by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetaData, or fpExtractSubFile().

Returns

« If the allocated memory is freed, the return value is KVERR_Success.
« Otherwise, the return value is an error code.

Example

The example below frees the memory allocated by fpGetSubFileInfo():

if (subFileInfo)

{
extractInterface->fpFreeStruct(pFile,subFileInfo);

subFileInfo = NULL;

KeyView (11.6) Page 111 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

fpGetMainFilelnfo(Q)

This function determines whether a file is a container file—that is, whether it contains subfiles—and
should be extracted further.

Syntax

int (pascal *fpGetMainFileInfo) (
void *pFile,
KVMainFileInfo *fileInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

fileInfo A pointerto the structure KVMainFilelnfo. This structure contains information about the
file.

Returns

« If the file information is retrieved, the return value is KVERR_Success.
« If the file information is not retrieved, the return value is an error code.

Discussion

After the file information is retrieved, call fpFreeStruct() to free the memory allocated by this function.

If the file is a container (fileInfo->numSubFiles is non-zero), call fpGetSubFilelnfo() and
fpExtractSubFile() for each subfile.

If the file is not a container (fileInfo->numSubFiles is @) and contains text (fileInfo->infoFlagis
set to KVMainFileInfoFlag_HasContent), pass the file directly to the conversion functions.

Example

KVMainFileInfo filelnfo = NULL;
if((error=extractInterface->fpGetMainFileInfo(pFile,&fileInfo)))

{

/* Free result object allocated in filelInfo */
extractInterface->fpFreeStruct(pFile,fileInfo);
fileInfo = NULL;

KeyView (11.6) Page 112 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction AP| Functions

fpGetSubFileInfoQ

This function gets information about a subfile in a container file.

Syntax
int (pascal *fpGetSubFileInfo) (
void *pFile,
int index,
KVSubFileInfo *subFileInfo);
Arguments
pFile The identifier of the main file. This is a file handle returned from fpOpenFile().
index The index number of the subfile for which to retrieve information.

subFileInfo A pointertothe KVSubFilelnfo structure, which defines information about the subfile.

Returns

« If the file information is retrieved, the return value is KVERR_Success.

« If the file information is not retrieved, the return value is an error code.
Discussion

« After the subfile information is retrieved, call fpFreeStruct() to free the memory allocated by this
function.

« If the root node is not enabled, the first subfile is index @. If the root node is enabled, the first subfile
is index 1. The root node is required to recreate a file’s hierarchy. See Create a Root Node, on page
47.

o The members subFileInfo->parentIndex and subFileInfo->childArray enable you to recreate
afile’s hierarchy. Because childArray retrieves only the first-level children in the subfile, you must
call fpGetSubFileInfo() repeatedly until information for the leaf-node children is extracted. See
Recreate a File’s Hierarchy, on page 47.

« If the subfile is embedded in the main file as a link and is stored externally, subFileInfo->infoFlag
is set to KVSubFileInfoFlag_External. For example, the subfile might be an object that was
embedded in a Word document by using "Link to File," or an attachment that is referenced in an MBX
message. This type of subfile cannot be extracted. You must write code to access the subfile based
on the path in the member subFileInfo->subFileName. See KVSubFilelnfo, on page 129.

« TheKVSubFileInfoFlag External flagis not set for an OLE object that is embedded as alink in a
Microsoft PowerPoint file. KeyView can detect linked objects in a Microsoft PowerPoint file only
when the object is extracted. See fpExtractSubFile(), on page 109.

KeyView (11.6) Page 113 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Example

KVSubFileInfo subFileInfo = NULL;
for (index = ©; index < fileInfo->numSubFiles; index++)

{

error=extractInterface->fpGetSubFileInfo(pFile,index,&subFileInfo);
if (error)
{

extractInterface->fpFreeStruct(pFile,subFileInfo);

subFileInfo = NULL;

fpGetSubFileMetaData()

This function extracts metadata from mail stores, mail messages, and non-mail items in an NSF file.
See Extract Mail Metadata, on page 48.

Syntax
int (pascal *fpGetSubFileMetaData) (
void *pFile,
KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

metaArg A pointer to the KVGetSubFileMetaArg structure, which defines metadata tags whose
values are retrieved.

Before you initialize the KVGetSubFileMetaArg structure, use the KVStructInit macro
to initialize the KVStructHead structure.

metaData A pointerto the KVSubFileMetaData structure, which contains the retrieved metadata
values.

Returns

« If the metadata is retrieved, the return value is KVERR_Success.
« If the metadata is not retrieved, the return value is an error code.

KeyView (11.6) Page 114 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Discussion

« When you pass in @ for metaArg->metaNameCount, and NULL for metaArg->metaNameArray, a set of

default metadata is retrieved. See Extract Mail Metadata, on page 48.

« Afterthe metadata is retrieved, call fpFreeStruct() to free the memory allocated by this function.

« If afield is repeated in an EML or MBX mail header, the values in each instance of the field are
concatenated and returned as one field. The values are separated by five pound signs (##i###) as a

delimiter.
Example

KVSubFileMetaData metaData = NULL;

KVStructInit(&metaArg);

/* retrieve all the default metadata elements */

metaArg.metaNameCount = 0;
metaArg.metaNameArray = NULL;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData(pFile,&metaArg,&metaData);

extractInterface->fpFreeStruct(pFile,metaData);

metaData = NULL;

/* retrieve specific metadata fields */
KVMetaName pName[2];
KVMetaNameRec names[2];

names[0].type = KVMetaNameType_Integer;
names[@].name.iname = KVPR_SUBIJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = KVPR_DISPLAY_TO;

pName[@] = &names[0];

pName[1] = &names[1];
metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;

metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData

KeyView (11.6)

(pFile,&metaArg,&metaData);

Page 115 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

fpOpenFile(

This function opens a file to make the file accessible for subfile extraction or conversion.

Syntax

int (pascal *fpOpenFile) (
void *pContext,
KVOpenFileArg openArg,
void **pFile);

Arguments

pContext A pointer returned from fpInit().

openArg A pointer to the K\VOpenFileArg structure. This structure defines the input parameters
necessary to open a file for extraction, such as credentials, and the default extraction
directory.

Before you initialize the KvOpenFileArg structure, use the macro KVStructInit to
initialize the KVStructHead structure.

pFile A handle for the opened file. This handle is used in subsequent file extraction calls to
identify the source file.

Returns

« Ifthefileis opened, the return value is KVERR_Success.
« Ifthefile is not opened, the return value is an error code and pFile is NULL.

Discussion
Call fpCloseFile() to free the memory allocated by this function.

Example

KVOpenFileArgRec openArg;

/*Initialize the structure using KVStructInit*/
KVStructInit(&openArg);

openArg.extractDir = destDir;

openArg.filePath = srcFile;

KeyView (11.6) Page 116 of 346

XML Export SDK C Programming Guide
Chapter 6: File Extraction APl Functions

/*0Open the main file */
if ((error = extractInterface->fpOpenFile(pExport,&openArg,&pFile)))
{

extractInterface->fpCloseFile(pFile);

pFile = NULL;

KeyView (11.6) Page 117 of 346

Chapter 7: File Extraction API Structures

This section provides information on the structures used by the File Extraction API. These structures
define the input and output parameters required to extract subfiles from a container file, and are defined
in kvxtract.h.

¢ RKVCredential 118
* KVCredentialComponent 119
* KVEXtractinterface L 119
® KVEXtractSUBFIlCAIG . 120
¢ KVGetSUDFIlEMEtaArg e 122
¢ KVMaINFileINfo L. 123
® KVMetadataElem . il 124
® KVMetaName il 125
O RV OPENFI AIG ... 126
¢ KV OU PULSIrEaM . 127
® KVSubFileExtractinfo .. . 128
® KV SUbFIleIN O . 129
® KVSUubFileMetaDatao 131

KVCredential

This structure contains a count of the number of credential elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling fpOpenFile(), and is defined in
kvxtract.h.

typedef struct tag_KVCredential
{

int itemCount;
KVCredentialComponent *items;

}
KVCredentialRec, *KVCredential;

Member Descriptions
itemCount The number of credentials defined for this file.

items A pointer to the KV Credential Component structure. This structure contains the
individual credential elements used to open a protected file.

KeyView (11.6) Page 118 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVCredentialComponent

This structure contains the value of a credential item. The structure is defined in kvxtract.h.

typedef struct tag_KVCredentialComponent

{
KVCredKeyType keytype;
union
{
void *pkey;
char *skey;
unsigned int ikey;
b
keyobj;
¥

KVCredentialComponentRec, *KVCredentialComponent;

Member Descriptions

keytype The type of credential (such as a user name or password). The types are defined by the
KVCredKeyType enumerated type.

pkey A pointer to a structure defining credentials. Reserved for future use.
skey A pointer to a string credential key.
ikey An integer credential key.

KVExtractinterface

The members of this structure are pointers to the file extraction functions described in File Extraction
API Functions, on page 108. When you call the KV GetExtractinterface() function, this structure
assigns pointers to the functions. The structure is defined in kvxtract.h.

typedef struct tag KVExtractInterface
{
KVStructHeader;

int (pascal *fpOpenFile) (void *pContext,KVOpenFileArg openArg, void
**pFileHandle);

int (pascal *fpCloseFile) (void *pFileHandle);

int (pascal *fpGetMainFileInfo) (void *pFile, KVMainFileInfo *MainFileInfo);

int (pascal *fpGetSubFileInfo) (void *pFile, int index, KVSubFileInfo
*subFileInfo);

int (pascal *fpGetSubFileMetaData) (void *pFile, KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

int (pascal *fpExtractSubFile) (void *pFile, KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

KeyView (11.6) Page 119 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

int (pascal *fpFreeStruct) (void *pFile, void *obj);

}
KVExtractInterfaceRec, *KVExtractInterface;

Member Descriptions
The member functions are described in File Extraction API Functions, on page 108.
Discussion

Before you initialize a File Extraction structure, use the KVStructInit macro to initialize the
KVStructHead structure. This process sets the revision number of the File Extraction APl and supports
binary compatibility with future releases.

KVExtractSubFileArg

This structure defines the input parameters required to extract a subfile. See fpExtractSubFile(), on
page 109. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractSubFileArg

{
KVStructHeader;
int index;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;
DWORD extractionFlag
char *filePath;
char *extractDir;
KVOutputStream *stream;

}

KVExtractContainerSubFileArgRec, *KVExtractContainerSubFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.
index The index number of the subfile to be extracted.

srcCharset Specifies the source character set of the subfile when the file format’s reader
cannot determine the character set. The character sets are enumerated in
KvCharSet of kvtypes.h. See Discussion, on page 122.

trgCharset If the file type is KVFileType_Main, this is the target character set of the
extracted file. Otherwise, this is ignored. The character sets are enumerated in
KVCharSet in kvtypes.h. See Discussion, on page 122.

KeyView (11.6) Page 120 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

isMSBLSB

extractionFlag

filePath

extractDir

KeyView (11.6)

This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

A bitwise flag that defines additional parameters for file extraction. The following
flags are available:

e KVExtractionFlag CreateDir

This flag indicates whether the directory structure of a subfile should be
created. If you set this flag, the path defined in filePath is created if it does
not already exist. If you do not set this flag, the path is not created, and the
function returns FALSE.

e KVExtractionFlag Overwrite

If you set this flag, and the file being extracted has the same name as afile in
the target path, the file in the target path is overwritten without warning. If you
do not set this flag, and a subfile has the same name as afile in the target path,
the error KVError_OutputFileExists is generated.

e KVExtractionFlag ExcludeMailHeader

If you set this flag, header information (To, From, Sent, and so on) in a mail file
is not included in the extracted data. If you do not set this flag, the extracted
data contains header information and the message’s body text. See Exclude
Metadata from the Extracted Text File, on page 55.

e KVExtractionFlag_ GetFormattedBody

If you set this flag, the formatted version of the message body (HTML or RTF)
is extracted from mail files when possible. If neither an HTML nor RTF version
of the message body exists in the mail file, it is extracted as plain text. If you
do not set this flag, the message body is extracted as plain text when possible.

NOTE: When an HTML or RTF message body is extracted, the message’s
mail headers (such as "From," "To," and "Subject,") are extracted, saved in
the same format, and added to the beginning of the subfile. This applies to
PST (MAPI-based reader), MSG, and NSF files only.

e KVExtractionFlag SaveAsMSG

If you set this flag, the mail message is extracted as an MSG file, including all
of its attachments. If you do not set this flag, the mail message is extracted as
text. This applies to PST files on Windows only.

NOTE: In file mode, when the application sets this flag in fpExtractSubFile
(), it must also check the KV SubFileExtractinfo structure’s filePath
parameter to verify the file name used for extraction.

A pointer to the suggested path or file name to which the subfile is extracted. This
can be a file name, partial path, or full path. You can use this in conjunction with
extractDir to create the full output path. See Discussion, on the next page.

A pointer to the directory to which subfiles are extracted. This directory must
exist. If you set this flag, the path specified in KvOpenFileArg->extractDir is
ignored. You can use this in conjunction with filePath to create the full output
path.

Page 121 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

stream A pointer to an output stream defined by KV OutputStream. See Discussion,

below.

Discussion

« If the document character set is detected and is also specified in srcCharset, the detected
character set is overridden by the specified character set. If the source character set is not detected
and is not specified, character set conversion does not occur. The Supported Formats, on page 225
section lists the formats for which the source character set can be determined.

o TheKVSubFileExtractInfoFlag_ CharsetConverted flagin the KVSubFileExtractInfo structure
indicates whether the character set of the subfile was converted during extraction.

« The following applies when the output is to afile:

(o}

[¢]

[e]

If filePath is a valid full path, filePath is the output path, and the path in extractDir is
ignored.

If filePath is a file name or partial path, the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir is used to create the full
path. See KVOpenFileArg, on page 126.

If filePath is a full path or partial path, and createDir is TRUE, the directory is created if it does
not already exist.

If filePath is not specified, a default name and the target directory specified in either
KVExtractSubFileArg->extractDir orKVOpenFileArg->extractDir are used to create a full
path.

If both filePath and extractDir are not specified or are invalid, an error is returned.
If filePath is valid, but extractDir is not valid, an error is returned.

« The following applies when the output is to a stream:

(o}

[¢]

[¢]

Set filePath and extractDir to NULL.

The file format (docInfo)and extraction file path (filePath) are not returned in
KVSubFileExtractInfo.

The KVExtractionFlag_CreateDir and KVExtractionFlag Overwrite flags are ignored.

KVGetSubFileMetaArg

This structure defines the metadata tags whose values are retrieved by fpGetSubFileMetaData(). This
structure is defined in kvxtract.h.

typedef struct tag_KVGetSubFileMetaArg

{

KVStructHeader;

int index;

int metaNameCount;
KVMetaName *metaNameArray;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;

KeyView (11.6) Page 122 of 346

}

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVGetSubFileMetaArgRec, *KVGetSubFileMetaArg;

Member Descriptions

KVStructHeader
index
metaNameCount

metaNameArray

srcCharset

trgCharset

isMSBLSB

Discussion

The KeyView version of the structure. See KV StructHead, on page 178.
The index number of the subfile for which metadata is extracted.
The number of metadata fields to be extracted.

A pointer to the K\VVMetaName structure that contains an array of metadata tags
whose values are retrieved.

Specifies the source character set of the metadata when the format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharsSet of kvtypes.h. See Discussion, below.

The target character set of the extracted metadata.
The character sets are enumerated in KvCharSet in kvtypes.h.

This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

« If the character set is detected and is also specified in srcCharset, the detected character set is
overridden by the specified character set. If the source character set is not detected and is not
specified, character set conversion does not occur. The section Supported Formats, on page 225
lists the formats for which the source character set can be determined.

« Toretrieve a predefined list of metadata, pass 0 for metaNameCount and NULL for metaNameArray.
The metadata in Extract Mail Metadata, on page 48 is extracted.

KVMainFilelnfo

This structure contains information about a main file that is open for extraction. It is initialized by calling

fpGetMainFilelnfo(). This structure is defined in kvxtract.h.

typedef struct
{

tag_KVMainFileInfo

KVStructHeader;

int numSubFiles;
ADDOCINFO docInfo;
KVCharSet charset;

int 1sSMSBLSB;
unsigned long infoFlag;

}

KVMainFileInfoRec, *KVMainFileInfo;

KeyView (11.6)

Page 123 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.
numSubFiles The number of subfiles in the main file.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 174.

charset The character set of the main file.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

infoFlag A bitwise flag that provides additional information about the main file. The
following flag is available:

KVMainFileInfoFlag HasContent—The main file contains text that can be
converted. Below are some examples of how this flag is used:

For an MSG file without attachments, numSubFiles is 1 (message body text), and
this flag is FALSE because the MSG file itself does not contain text.

For a Zip file with three files, numSubFiles is 3, and this flag is FALSE because a
Zip file does not contain text.

For a Microsoft Word file with an embedded OLE object, numSubFilesis 1 (OLE
object), and this flag is TRUE (Word file contains text to be converted).

Discussion

« If numSubFiles is non-zero, get information on the subfile by calling fpGetSubFilelnfo(), and then
extract the subfiles by using fpExtractSubFile().

« IfnumSubFiles is 0, the file does not contain subfiles and does not need to be extracted further. If

the KVMainInfoFlag HasContent flagis set, the file contains body text and can be passed directly
to the conversion functions. See XML Export API Functions, on page 133.

o IfopenFlagis settoKVOpenFileFlag_CreateRootNode in the call to fpOpenFile(), numSubFiles
also includes the root object (index ©) which is created by KeyView for reconstructing the file’s
hierarchy. See KVOpenFileArg, on page 126.

KVMetadataElem

This structure contains metadata field values extracted from a mail file. This structure is defined in
kvtypes.h.

typedef struct tag_KVMetadataElem

{
int isDataValid;

int datalD;

KeyView (11.6) Page 124 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVMetadataType dataType;

char* strType;
void* data;
int dataSize;
}
KVMetadataElem;

Member Descriptions

isDatavalid Specifies whether the metadata returned from the API is valid data.
datalD The integer name of the extracted metadata field.

dataType The data type of the metadata field. The types are defined in KVMetadataType in

kvtypes.h.
strType A pointer to the string name of the metadata field.
data The contents of the metadata field.

If the type member is KvMetadata_Int4 or KVMetadata_Bool, this member contains
the actual value. Otherwise, this member is a pointer to the actual value.

KVMetadata_DateTime points to an 8-byte value.

KVMetadata_String and KVMetadata_Unicode point to the beginning of the string
that contains the text. The strings are NULL terminated.

KVMetadata_Binary points to the first element of a byte array.

dataSize The byte count of data when the type is KVMetadata_Binary, KVMetadata_Unicode,
or KVMetadata_String.

KVMetaName

This structure defines the names of the metadata fields to be extracted from a mail file. This structure is
defined in kvxtract.h.

typedef struct tag_KvMetaName

{
KVMetaNameType type;
union
{
void *pname;
int iname;
char *sname;
}name;
}

KVMetaNameRec, *KVMetaName;

KeyView (11.6) Page 125 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

type The type of metadata name (such as integer or string). The types are defined by the
KVMetaNameType enumerated type.

NOTE:
MAPI property names are of type integer.

pname A pointer to a structure defining the metadata fields to be retrieved.
iname The name of a metadata field of type integer.

sname A pointer to the name of a metadata field of type string.

Discussion

If you specify the MAPI tag name (for example, PR_CONVERSATION_TOPIC), you must include the
mapitags.h and mapidefs.h Windows header files, in which PR_CONVERSATION_TOPIC is defined as
0x0070001e.

KVOpenFileArg

This structure defines the input arguments necessary to open a file for extraction. It is initialized by
calling fpOpenFile(). This structure is defined in kvxtract.h.

typedef struct tag KVOpenFileArg

{
KVStructHeader;
KVCredential cred;
KVInputStream *stream;
char *filePath;
char *extractDir;
DWORD openFlag;
DWORD reserved;
void *pReserved;

}

KVOpenFileArgRec, *KVOpenFileArg;

Member Descriptions

KvStructHeader The KeyView version of the structure. See KV StructHead, on page 178.

cred The credentials required to open a protected PST or NSF file. This is a pointer to
the KV Credential structure. Your application can define multiple credentials to
this member for multiple formats.

stream A pointer to the developer-assigned instance of KVInputStream. The

KeyView (11.6) Page 126 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

filePath

extractDir

openFlag

reserved

pReserved

KVInputStream structure defines the input stream that contains the source. See
KVInputStream, on page 175.

If you are using a file as input, this is NULL.

A pointer to the full file path to the source file.

If you are using a stream as input, this is NULL.

A pointer to the default directory to which subfiles are extracted. This directory
must exist.

You can use this in conjunction with KVExtractSubFileArg->filePath to create
the full output path. See KVExtractSubFileArg, on page 120.

A bitwise flag that defines additional parameters for opening the file. The following
flag is available:

KVOpenFileFlag CreateRootNode—If you set this flag, KeyView creates a root
object when extracting this file’s subfiles. This root node does not have a parent
and is at the highest level of the file’s tree structure. It is used internally to provide
a reference point from which all other child nodes are determined, and the file’s
hierarchy is created.

If you want to maintain the file’s hierarchy when you extract subfiles from a
container, you must set this flag. See Recreate a File’s Hierarchy, on page 47 for
more information.

The root node has an index of zero. Although not all container formats require an
artificial root node, the root is created for all container formats regardless of
whether the file itself contains a root directory or file.

Reserved for future use. It must be NULL.

Reserved for future use. It must be NULL.

KVOutputStream

This structure defines an output stream for the extracted subfile.

typedef struct tag_OutputStream

{

void *pOutputStreamPrivateData;

BOOL (pascal *fpCreate)(struct tag OutputStream *,TCHAR *);

UINT (pascal *fpWrite) (struct tag_ OutputStream *, BYTE *, UINT);
BOOL (pascal *fpSeek) (struct tag OutputStream *, long, int);
long (pascal *fpTell) (struct tag_OutputStream *);

BOOL (pascal *fpClose) (struct tag OutputStream *);

}
KvOutputStream;

KeyView (11.6)

Page 127 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

KVSubFileExtractinfo

This structure contains information about an extracted subfile. It is initialized by calling
fpExtractSubFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileExtractInfo

{
KVStructHeader;
char *filePath;
char *fileName;
unsigned long infoFlag;
ADDOCINFO docInfo;
}

KVSubFileExtractInfoRec, *KVSubFileExtractInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KV StructHead, on page 178.

filePath

fileName

infoFlag

KeyView (11.6)

The full path to which the subfile was extracted.

If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

If you output the data to a stream, the extraction path is not returned.
The original path, file name, or path and file name of the subfile.

If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

A bitwise flag that provides additional information about the extracted subfile. The
following flags are available:

o KVSubFileExtractInfoFlag NeedsExtraction—The file might contain
subfiles and should be extracted further.

e KVSubFileExtractInfoFlag FileCreated—The file was created on disk.

o KVSubFileExtractInfoFlag CharsetConverted—The subfile’s character set
was converted.

e KVSubFileExtractInfoFlag External—The subfile is embedded in the main
file as a link and is stored externally. For example, the subfile might be an
object that was embedded in a Word document using "Link to File," or an
attachment that is referenced in an MBX message. This type of file cannot be
extracted. You must write code to access the subfile based on the path in the
member filePath or fileName.

Page 128 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

e KVSubFileExtractInfoFlag FolderCreated—A folder was created.

e KVSubFileExtractInfoFlag NonFormattedBodyExtracted—Indicates that a
plain text version of the message was extracted due to an error extracting the
formatted version of the message.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 174.
If you output the data to a stream, the file format is not returned.
KVSubFilelnfo

This structure contains information about a subfile in a container file. It is initialized by calling
fpGetSubFilelnfo(). This structure is defined in kvxtract.h.

typedef struct tag KVSubFileInfo

{
KVStructHeader;
char *subFileName;
int subFileType;
long subFileSize;
unsigned long infoFlag;
KVCharSet charset;
int isMSBLSB;
BYTE fileTime[8];
int parentIndex;
int childCount;
int *childArray;
}

KVContainerSubFileInfoRec, *KVSubFileInfo;

Member Descriptions

KvStructHeader The KeyView version of the structure. See KV StructHead, on page 178.

subFileName

subFileType

KeyView (11.6)

The path, file name, or path and file name of the subfile.

If the subfile is the body text of a mail file or is an embedded OLE object, KeyView
provides a default file name. See Default File Names for Extracted Subfiles, on
page 64.

The subfile’s position in the container file’s hierarchy. The following options are
available:

KVSubFileType_Main—The subfile is at the top level of the main file. This is the
default subfile type. See Discussion, on page 131.

KVSubFileType_ Attachment—The subfile is an attachment in afile.

KVSubFileType OLE—The subfile is an embedded OLE object in a compound
document.

Page 129 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVSubFileType_Folder—The subfile is a folder or the artificial root node (see
Create a Root Node, on page 47).

subFileSize The size of the subfile in bytes. This information might be useful if you do not
want to extract very large files.

This value is approximate and is the maximum size of the subfile. The subfile is
usually smaller than this value when it is extracted.

infoFlag A bitwise flag that provides additional information about the subfile. The following
flags are available:

KVSubFileInfoFlag_ NeedsExtraction—The subfile might contain subfiles. It
must be extracted further to conclusively determine whether it contains subfiles.

KVSubFileInfoFlag Secure—The subfile is secured and credentials (such as
user name and password) are required to extract it. This flag applies to ZIP, RAR,
and PDF files only.

KVSubFileInfoFlag SMIME—The subfile is S/IMIME-encrypted and credentials
are required to extract it. This applies to .eml and .pst files only.

KVSubFileInfoFlag External—The subfile is embedded in the mainfile as a
link and is stored externally. For example, the subfile might be an object that was
embedded in a Word document by using "Link to File," or an attachment that is
referenced in an MBX message. This type of file cannot be extracted. You must
write code to access the subfile based on the path in the member subFileName.

KVSubFileInfoFlag MailItem—When the subfile typeis KVSubFileType_
Attachment, this indicates that the attachment is a mail item. This flag applies to
PST, MSG, and NSF files only.

charset If the subfile is not an attachment, this is the character set of the subfile. If the
subfile is an attachment, the character set is KVCS_UNKNOWN.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

fileTime When the subfile is a mail message, this is the file’s Sent time. Otherwise, it is
the last modified time. The file time is not available for the following file types:

« EML attachments
o OLE objects in a Microsoft Office document
« Embedded images

parentIndex The index number of this file’s parent. For example, the index of a folder in which
the subfile is stored, or the file to which the subfile is attached. If a file does not
have a parent, the parentIndexis -1.

childCount The number of first-level children in the subfile.

childArray A pointer to an array of first-level children in the subfile.

KeyView (11.6) Page 130 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

Discussion

The KvSubFileType_Main type applies to the following for each file format:

File format KVSubFileType_Main applies to...
MSG and EML The message body.

Zip files A file inside the archive.

PST files Anitem that is not an attachment, an OLE object, or a root node.
MBX files A message in the MBX file.

NSF files Anitem that is not an attachment, an OLE object, or a root node.
PDF files An item that is not an attachment or a root node.

« Ifyou set the KvSubFileInfoFlag_NeedsExtraction flag, open the subfile and extract its children.
See fpOpenFile(), on page 116 and fpExtractSubFile(), on page 109.

« TheparentIndex and childArray members provide information about the subfile’s parent and
children. You can use this information to recreate the file hierarchy on extraction. Because
childArray retrieves only the first-level children in the subfile, you must call fpGetSubFileInfo()
repeatedly until information for the leaf-node children is extracted. See Recreate a File’s Hierarchy,
on page 47.

KVSubFileMetaData

This structure contains a count of the number of metadata elements extracted from a mail file, and a
pointer to the first element of the array of elements. It is initialized by calling fpGetSubFileMetaData().
This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileMetaData

{
KVStructHeader;
int nElem;
KVMetadataElem** ppElem;
unsigned long infoFlag;
}

KVSubFileMetaDataRec, *KVSubFileMetaData;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.
nElem The number of metadata fields contained in the array.

ppElem A pointer to an array of pointers that are the memory addresses of metadata field
values in the KVVMetadataElem structure.

KeyView (11.6) Page 131 of 346

XML Export SDK C Programming Guide
Chapter 7: File Extraction API Structures

infoFlag A bitwise flag that defines additional properties of the extracted metadata. The
following flag is available:

KVSubFileMetaInfoFlag_ CharsetConverted—Indicates that the metadata’s
character set was converted.

KeyView (11.6) Page 132 of 346

Chapter 8: XML Export API Functions

This section describes the functions in the XML Export API. These functions manage the input and
output streams, and perform the document conversion. Each function appears as a function prototype
followed by a description of its arguments, its return value, and discussion of its use.

¢ KVXMLGEINEIrfaCe() ..o 133
® KVXMLGetINterfaCeEX() - ... 134
O P ONVE S rEaAM() - 135
® fpFileTolnputStreamCreate() 137
® fpFileTolnputStreamFree) .. il 138
* fpFileToOutputStreamCreate() 139
* fpFileToOutputStreamFree() 140
® fpFreelmagelnfos () 141
® PG tANCNON() ... 142
® PGt oNVErtFilelist() ..o oL 143
® fPGetKVEMOrCOde . il 144
® PGetKVEMOrCOdEEX . .. L 144
* fpGetOutputimageCount() 145
® fpGetOutputimagelnfol) 145
* fpGetOutputimagelnfos () 146
® Gt StreamMIN O) . L 147
® fpGetSummaryInfo() 147
O DIt) Ll 149
® PSS etStyleMapPiNg() - ... 150
O DS U D OWN() L 151
® fpValidateTemplate() 151
O KV XML C ONfIG() -l 152
® KVXMLCONVertFIle() . 159
® KVXMLENAOOPSESSION() ..o e, 161
¢ KVXMLSEtStyleSheet()ooo e 163
® KVXMLStartOOP SeSSION() - ...l 165
KVXMLGetInterface(
NOTE:

This function has been superseded by KVXMLGetInterfaceEx(); KVXMLGetInterfaceEx()
should be used instead of KVXMLGetInterface().

KeyView (11.6) Page 133 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

This function is exported by the Export definition file. It supplies function pointers to other Export
functions. When KvXMLGetInterface() is called, it assigns the function pointers in the structure
KVXMLInterface to other functions described in this chapter. For example, KVXMLInterface.fpInit
is assigned to point to KVXMLInit().

Syntax
void pascal KVXMLGetInterface (KVXMLInterface *pInterface);

Arguments
pInterface A pointerto the structure KvXMLInterface. See KVXMLInterfaceEx, on page 188.

Returns

None.

Discussion

« One of the initial steps in using the XML Export APl is to create an instance of a KVXMLInterface

structure and use this function to gain access to other functions.

« The functions can be called directly. For example, you can call KVXMLGetSummaryInfo() instead of
using fpGetSummaryInfo() in KVXMLInterface. However, Micro Focus recommends that you
assign the function pointers in KVXMLInterface to the functions for efficiency.

KVXMLGetInterfaceEx(Q

This function is exported by the Export definition file. It supplies function pointers to other Export
functions. When KvXMLGetInterfaceEx() is called, it assigns the function pointers in the structure
KVXMLInterfaceEx to other functions described in this chapter. For example,
KVXMLInterfaceEx.fpInit is assigned to pointto KVXMLInit().

Syntax
BOOL pascal KVXMLGetInterfaceEx (KVXMLInterfaceEx *pInterface);

Arguments

pInterface A pointerto the structure KVXMLInterfaceEx. See KVXMLInterfaceEx, on page 188.

KeyView (11.6) Page 134 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Returns

« If the call is successful, the return value is TRUE.
« Ifthe call is unsuccessful, the return value is FALSE.
If the function fails, all function pointers in pInterface are set to NULL.

You must initialize pInterface by calling KVStructInit priorto passing it to KVXMLGetInterfaceEx.
If you do not do this, the function fails.

Discussion

« One of the initial steps in using the XML Export APl is to create an instance of a KVXMLInterfaceEx
structure and use this function to gain access to other functions.

« The functions can be called directly. For example, you can call KVXMLGetSummaryInfo() instead of
using fpGetSummaryInfo() in KVXMLInterfaceEx. However, Micro Focus recommends that you
assign the function pointers in KVXMLInterfaceEx to the functions for efficiency.

« KVXMLInterfaceEx must be initialised by calling KVStructInit priorto passingit to
KVXMLGetInterfaceEx, otherwise KVXMLGetInterfaceEx fails

Example

KVXMLInterfaceEx KVXMLInt;
BOOL (pascal *fpGetInterfaceEx)(KVXMLInterfaceEx *);

KVStructInit(&KVXMLINt);
(*fpGetInterfaceEx) (&KVXMLINt);

fpConvertStream(Q)

This function converts either a source stream or file to an output stream.

Syntax
BOOL pascal fpConvertStream(

void *pContext,
void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions,
KVXMLCallbacks *pCallbacks,
BOOL bIndex,
KVErrorCode *pError);

KeyView (11.6) Page 135 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Arguments

pContext
pCallingContext

pInput

pOutput

pTemplates

pOptions

pCallbacks

pTOCCreateOptions

bIndex

pError

KeyView (11.6)

A pointer returned from fpInit().
A pointer passed back to the callback functions.

A pointer to the developer-assigned instance of KvInputStream. The
KVInputStream structure defines the input stream that contains the source for
the conversion. See KVInputStream, on page 175.

A pointer to the developer-assigned instance of KVOutputStream. The
KVOutputStream structure defines the output stream to which Export writes
the generated HTML. See KVOutputStream, on page 176.

A pointer to the KVXMLTemplate data structure. It defines the overall structure
of the output. Individual elements within the structure define the markup
written at specific points in the output stream. See KVXMLTemplate, on page
198.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KVXMLOptions data structure. It defines the options that
control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See KV XMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KvXMLCallbacks data structure. It is a structure of functions
that Export calls for specific, user-defined purposes. See KVXMLCallbacks,
on page 182.

If callbacks are not used, this can be NULL.

A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.

Set bIndex to TRUE to generate output with minimal markup and without
images. Because the generated output is minimized to textual content, it is
suitable for an indexing engine. If you set bIndex to FALSE, embedded images
in a document are regenerated as separate files and stored in the output
directory.

You can set this option through the bIndexOnly member of the KVXMLOptions
structure. See KVXMLOptions, on page 190.

To generate output with verbose markup and without images, set the nType
argument of the KvXMLConfig() function to KVCFG_SUPPRESSIMAGES. See
KVXMLSetStyleSheet(), on page 163.

A pointer to an error code if the call to fpConvertStream() fails.

Page 136 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

Returns

If the call is successful, the return value is TRUE.
If the call is unsuccessful, the return value is FALSE.

Discussion

Only pContext, pInput, pOutput, and bIndex are required. All other pointers should be NULL when
they are not set.

If pCallbacksEx is NULL, pOptionsEx->pszDefaultOutputDirectory must be valid, except when
bIndex is setto TRUE.

This function runs in-process or out of process. See Convert Files Out of Process, on page 26.

When converting out of process, this function must be called after the call to
KVXMLStart0oOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

When converting out of process, the values for the KVXMLTemplate, KVXMLOptions, and
KVXMLTOCOptions structures should be set to NULL. These structures are already passed in the call
to KVXMLStartOoPSession(). See KVXMLStartOOPSession(), on page 165.

Example

The following sample code is from the cnv2xml sample program:

if (! (*KVXMLInt.fpConvertStream) (

pKVXML, /* A pointer returned by fpInit() */
NULL, /* A pointer for callback functions */
&Input, /* Input stream */
&0utput, /* Output stream */
NULL, /* Markup and related variables */
&XMLOptions, /* Options */
NULL, /* TOC options */
NULL, /* A pointer to callback functions */
FALSE, /* Index mode */
&error)) /* Error return value */
{
printf("Error converting %s to XML %d\n", argv[i - 1], error);
}
else
{
printf("Conversion of %s to XML completed.\n\n", argv[i - 1]);
}

fpFileTolnputStreamCreate()

This function creates an input stream from an input file.

KeyView (11.6) Page 137 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Syntax

BOOL pascal _export fpFileToInputStreamCreate(
void *pContext,
char *pszFileName,

KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().
pszFileName A pointer to the name of the input file to be converted.

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

Returns

o If the call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToInputStreamFree() to free the memory allocated by
this function.

Example

The following sample code is from the cnv2xml sample program:

if (! (*KVXMLInt.fpFileToInputStreamCreate) (pKVXML, argv[i++], &Input))
{

printf("Error creating input stream\n");
(*KVXMLINnt.fpShutDown) (pKVXML);
mpFreeLibrary (hKVXML);

return (5);

fpFileTolnputStreamFree(Q

This function frees the memory used to create an input stream.

KeyView (11.6) Page 138 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Syntax

BOOL pascal _export fpFileToInputStreamFree(
void *pContext,
KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().

pInput A pointerto the developer-assigned instance of KvInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

Returns

« Ifthe call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free the memory allocated by
fpFileToInputStreamCreate().

fpFileToOutputStreamCreate(Q

This function creates an output stream from an output file.

Syntax

BOOL pascal _export fpFileToOutputStreamCreate(
void *pContext,
char *pszFileName,
KVOutputStream *pOutput);

Arguments

pContext A pointer returned from fpInit().

pszFileName A pointerto the name of the output file to create.

pOutput A pointer to the developer-assigned instance of KVOutputStream. The
KVOoutputStream structure defines the output stream to which Export writes the
generated XML. See KVOutputStream, on page 176.

KeyView (11.6) Page 139 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Returns

« Ifthe call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToOutputStreamFree() to free the memory allocated by
this function.

Example

The following sample code is from the cnv2xml sample program:

if (! (*KVXMLInt.fpFileToOutputStreamCreate)(pKVXML, argv[i], &Output))

{
printf("Error creating output stream\n");
(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpShutDown) (pKVXML);
mpFreeLibrary (hKVXML);
return 6;

}

fpFileToOutputStreamFreeQ

This function frees the memory used to create the output stream.

Syntax

BOOL pascal _export fpFileToOutputStreamFree(
void *pContext,
KVOutputStream *pOutput);

Arguments

pContext A pointer returned from fpInit().

poutput A pointer to the developer-assigned instance of KvOutputStream. The KVOutputStream
structure defines the output stream to which Export writes the generated XML. See
KVOutputStream, on page 176.

KeyView (11.6) Page 140 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Returns

« Ifthe call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free the memory allocated by
fpFileToOutputStreamCreate().

fpFreelmagelnfos()

This function frees the memory associated with an image info context. Call this function when you
have finished using the image info context for calls to fpGetOutputImageCount() and
fpGetOutputImageInfo() (see fpGetOutputimageCount(), on page 145 and fpGetOutputimagelnfo(),
on page 145).

Syntax

BOOL pascal fpFreeImageInfos (
void* const pContext,
void* const pImageInfos)

Arguments

pContext A pointer returned from fpInit () and the pointer originally passed to
fpGetOutputImageInfo() to create the image info context that you want to free. See
fplnit(), on page 149 and fpGetOutputimagelnfo(), on page 145.

pImageInfos A pointerreturned from fpGetOutputImageInfos(). See fpGetOutputlmagelnfos(),
on page 146.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

o ltis safe tocall fpFreeImageInfos() with pImageInfos() settoNULL. The function returns TRUE in
this case.

KeyView (11.6) Page 141 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

o Youmust call fpFreeImageInfos() before you call fpShutdown() (see fpShutDown(), on page
151).

« You must not call fpGetOutputImageCount(), fpGetOutputImageInfo(), and fpFreeImageInfos
() using an image info context pointer for which the associated system resources have already been
successfully freed by using fpFreeImageInfos().

fpGetAnchor()

This function gets the file name automatically generated by Export and used for external graphics
referenced with <a xmlns:xlink= x1link href=>tags and for heading-level table of contents entries.

Syntax
BOOL pascal fpGetAnchor(
void *pCallingContext,
KVHTMLAnchorTypeEx eAnchorTypeEx,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT cbHTML);
Arguments

pCallingContext A pointer passed back to the callback functions.

eAnchorTypeEx The graphic or block anchor type for the output stream. It must be one of the
enumerated types defined in KVXMLAnchorType. See KVXMLANchorType, on

page 212.
pszAnchor A pointer to the location in which the new anchor is stored.
cbAnchorMax The maximum number of bytes to place in pszAnchor.
pcHTML A pointer to either the markup defining the contents of the table of contents

entry, a pointer to the external graphic name, or NULL.

CcbHTML The number of valid bytes in pcHTML.

Returns

« Ifthe call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE. Processing is halted.

KeyView (11.6) Page 142 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Discussion

« pszAnchor must be assigned. It might be derived from the cbAnchorMax, pcHTML, and cbHTML
values that are also provided.

e pCHTML can be NULL if the graphic is an internal part of the document.

« This function is exposed so that it can be called from the GetAnchor () callback function to obtain
default behavior for anchor types the callback is not set to handle.

fpGetConvertFileListQ

This function gets the list of files automatically converted to XML during a call to fpConvertStream()
or KVXMLConvertFile().

Syntax
char ** pascal _export fpGetConvertFilelList(
void *pContext,
int *pnSize);
Arguments
pContext A pointer returned from fpInit().
pnSize A pointer to the number of files generated by the conversion.
Returns

If no files are converted, the return value is a NULL pointer. Otherwise, the return value is a pointer to an
array of strings that provides the available path information for each converted file.

Discussion

« The array of file path information includes all externally generated files, including graphic files. Note
that the main output file is not included in the array, nor in the count of the number of files converted.

« The memory used by the array of file path information is freed by the API.
« The array is not valid after a call to fpShutDown ().
« This function runs in-process or out of process. See Convert Files Out of Process, on page 26.

« When converting out of process, this function must be called after the call to
KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

KeyView (11.6) Page 143 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

fpGetKvErrorCode

This function gets an extended error code defined in KVErrorcCode. If a KeyView HTML Export function
fails, you can call fpGetKvErrorCode () to find extra information on the failure.

Syntax

KVErrorCode pascal fpGetKvErrorCode (
void *pContext);

Arguments

pContext A pointer returned from fpInit(). See fplnit(), on page 149.

Returns
The current error code.
Discussion

If there has not been a failure, this function returns KVERR_Success.

fpGetKvErrorCodeEx

This function gets an extended error code defined in KVErrorCodeEx. It is called to provide additional
information when fpGetKvErrorCode () returns the error KVERR_General.

Syntax

KVErrorCodeEx pascal fpGetKvErrorCodeEx (
void *pContext);

Arguments

pContext A pointer retumed from fpInit(). See fplnit(), on page 149.

Returns

The current extended error code.

KeyView (11.6) Page 144 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

fpGetOutputimageCountQ

This function returns the number of images that would be obtained by the XML Export, and for which
you can obtain image information by using fpGetOutputImageInfo().

Syntax

BOOL pascal fpGetOutputImageCount (
const void* const pImagelInfos,
int* const pnImages)

Arguments

pImageInfos A pointer returned from fpGetOutputImageInfos().

pnImages A pointer to an integer to use to store the number of images found.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

If the function call is unsuccessful, it does not modify the value of the integer that pnImages points to.

fpGetOutputimagelnfoQ

This function returns the dimensions of the images that would be obtained during the XML Export
process.

Syntax

BOOL pascal fpGetOutputImageInfo (
const void* const pImageInfos,
const int nImage,
KVXMLImageInfo* const ptImageInfo)

Arguments

pImageInfos A pointerreturned from fpGetOutputImageInfos().

KeyView (11.6) Page 145 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

nImage The zero-based index of the image to retrieve dimensions for.

ptImageInfo The pointertoa KVXMLImagelnfo, on page 185 structure, initialized with the
KVStructInit macro, which the function fills with the dimensions of the image with
index nImage.

Returns

« If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

fpGetOutputimagelnfosQ

This function returns the image information context that must be supplied to the
fpGetOutputImageCount () or fpGetOutputImageInfo() functions. See fpGetOutputimageCount(),
on the previous page and fpGetOutputimagelnfo(), on the previous page.

You must free the system resources associated with this context after you use it, by using the
fpFreelmagelnfos() function.

Syntax

void* pascal fpGetOutputImageInfos (
void* const pContext,
KVInputStream* const pInput)

Arguments

pContext A pointer returned from fpInit(). See fplnit(), on page 149.

pInput The pointer to a KVInputStream instance. This instance defines the input stream that the
function processes to extract the images.

Returns

« Ifthe call is successful, the return value is the pointer to an image info context object.
o If the call is unsuccessful, the return value is NULL.

Discussion

« To obtain image information out of process, call KVXMLStart00PSession() before you call
fpGetOutputImageInfos(). You must open anew, second OOP session for any subsequent
XML export from the input stream.

KeyView (11.6) Page 146 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

« If this function fails, you can call fpGetKvErrorCode() and fpGetKvErrorCodeEx() to help identify
the cause of the failure.

« You can use multiple image info contexts at any one time.

fpGetStreaminfoQ

This function extracts file format and character set information from the source document.
Syntax

BOOL pascal _export fpGetStreamInfo (
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo);

Arguments
pContext A pointer returned from fpInit().
pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream

structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

pStreamInfo A pointer to the developer-assigned instance of KVStreamInfo. The KVStreamInfo
structure defines the input stream document type and character set. See
KVStreamlnfo, on page 177.

You can examine the fields in the structure to determine the appropriate template to
use based on the document type.

Returns

o If the call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE.

fpGetSummaryinfo(Q

This function extracts all metadata from the input stream. See Extract Metadata, on page 67 for more

information.

Syntax

BOOL pascal _export fpGetSummaryInfo(
void *pContext,
KVInputStream *pInput,

KeyView (11.6) Page 147 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

KVSummaryInfoEx *pSummary,
BOOL bFree);
Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure points to the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

pSummary A pointer to the developer-assigned instance of KVSummaryInfoEx.

In this structure, nElem provides a count of the number of metadata elements, and pElem
points to the first element of the array of individual elements as defined by the structure
KVSumInfoElemEx. See KVSummarylnfoEx, on page 180.

bFree A flag to free or fill the memory allocated to the document metadata.

Returns

« Ifthe call is successful, the return value is TRUE. When the document does not contain metadata,
but the document reader can extract metadata from the specified format, this function returns TRUE
with nElem set to 0.

« Ifthis call is unsuccessful, the return value is FALSE. This function returns FALSE when the
document reader does not support metadata extraction for the specified format, or there is an error in
extraction. The section Supported Formats, on page 225 lists the file formats for which metadata
can be determined.

Discussion

« For metadata to be extracted by Export, metadata must be defined in the source document, and the
document reader must be able to extract metadata for the file format. Supported Formats, on page
225 lists the file formats for which metadata can be determined. Export does not generate metadata
automatically from the document contents.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
« You can call this function at any time after the call to KVXMLInit ().

« When converting out of process, this function must be called after the call to
KVXMLStart00oPSession() and before the call to KVXMLEndOOPSession().
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

« Call this function with bFree set to FALSE to return an array of KVSummaryInfoEx structures, each
containing an element of available document metadata.

« After processing the information in the structure, call this function with bFree set to TRUE to free the
memory allocated to the document metadata.

KeyView (11.6) Page 148 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

fpInitQ

This function initializes an Export session. Its return value, pContext, is passed as the first parameter
to the File Extraction interface and all other Export functions.

Syntax

void* pascal _export fpInit(
KVMemoryStream *pMemAllocator,

char
char

KVErrorCode

DWORD

Arguments
pMemAllocator

pszKeyViewDir

pszDataFile

pError
dwWord

Returns

*pszKeyViewDir,
*pszDataFile,
*pError,
dwWord) ;

A pointer to a developer-defined memory allocator. If NULL is passed, the default C
run-time memory allocation is used.

A pointer to the directory where the Export components are located. This is
normally the directory instal\0S\bin, where install is the path name of the
Export installation directory and 05 is the name of the operating system.

A pointer to the directory and file name of the Export data file, formats_e.ini.
This file determines whether a format is supported. If a format does not exist in this
file, the conversion fails.

The formats_e.ini file is normally stored in the directory instal (\0S\bin, where
install is the path name of the Export installation directory and 0sS is the name of
the operating system. See File Format Detection, on page 311 for more
information.

A pointer to an error code defined in KVErrorCode or KVErrorCodeEx in kvtypes. h.
See KVErrorCode, on page 206 and KVErrorCodeEx, on page 208.

Reserved. Must be 0.

« Ifthe call is successful, the return value is a pointer passed to all other functions.

« Ifthe call is unsuccessful, the return value is a NULL pointer.

Discussion

o If pszKeyViewDir is NULL, the required components cannot be found. Ensure that it is valid.

« If this function returns NULL, check stderr for the KeyView installation error messages, "KeyView

KeyView (11.6)

Page 149 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Export SDK License Key has Expired" and"KeyView Export SDK License Key is
Invalid", and pass them to your application. See the Export SDK Installation Instructions for more
information on the KeyView license feature.

« Toensure multithreaded conversions are thread-safe, you must create a unique context pointer for
every thread by calling fpInit(). In addition, threads must not share context pointers, and the same
context pointer must be used for all API calls in the same thread. Creating a context pointer for every
thread does not affect performance because the context pointer uses minimal resources.

« When the conversion context is no longer required, it should be terminated by calling fpShutdown ().
See fpShutDown(), on the next page.

Example

The following sample code is from the cnv2xml sample program:

pKVXML = (*KVXMLInt.fpInit)(NULL, ".", NULL, &error, 0);
i (! pKVXML)

{
printf("Error initializing KVXML: %d\n", error);
mpFreeLibrary (hKVXML);
return 4;

}

fpSetStyleMapping()

This function is used to set the mapping for user-defined styles. Export does not make a distinction
between paragraph styles or character styles, but operates under the assumption that each style has a

unique name.
Syntax
BOOL pascal _export fpSetStyleMapping(
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);
Arguments

pContext A pointer returned from fpInit().

pStyles A pointer to the developer-assigned instance of KvStyle. See KVStyle , on page 179.
The KVStyle structure defines the elements of a custom style.

iStyles The number of elements in the pStyles array.

bCopy If Export is to allocate memory to copy the pStyles array, set this to TRUE. If pStyles
remains valid throughout the conversion process, set this to FALSE.

KeyView (11.6) Page 150 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Returns

« Ifthe call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE.

Discussion
« Paragraph styles are presently implemented only for documents in Microsoft Word, RTF, Folio Flat
files, WordPro, and WordPerfect 6.x.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 26.

« When converting out of process, this function must be called after the call to
KVXMLStart00OPSession () and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

« Afterthis API function is called, the styles are valid until fpShutDown () is called, or until this
function is called again with a new style or NULL.

fpShutDown(Q)

This function terminates an Export session that was initialized by fpInit(), and frees allocated
system resources. It is called when the conversion context is no longer required.

Syntax
void pascal _export fpShutDown(KVHTMLContext *pContext);

Arguments
pContext A pointer returned from fpInit().

Returns

None.

Discussion

After this function is called, the pContext pointer must not be passed to any XML Export API.

fpValidateTemplateQ

This function is used to ensure that the markup is well-formed and valid according to the DTD. It is
currently not implemented.

KeyView (11.6) Page 151 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

KVXMLConfig0

This function is called directly and provides a way to configure options prior to the document
conversion. Currently, the function is used for the following configurations:

Generate output without images

Generate output with verbose markup and without images. To generate output with minimal markup
(ID and style paragraph attributes) and without images, set the bIndexOnly member of the
KVXMLOptions structure. See KVXMLOptions, on page 190.

Enable PDF position information

Include position information in the markup generated for a PDF document.

Configure PDF bookmarks

Specify whether bookmarks in a PDF file are converted to simple XLinks in the XML output.

Configure Word bookmarks

Disable the conversion of Microsoft Word bookmarks to zone elements.

Designate temporary directory

Specify a directory in which temporary files created during XML conversion processes are stored.
NOTE: Note: On Windows systems, there is a 64 K size limit to the temporary directory.

When the limit is reached, you must either create a new directory or delete the contents of
the existing directory; otherwise, you might receive an error message.

Configure XML conversion

Specify the elements and attributes extracted from an XML document based on the files document
type.
Enable PDF logical reading order

Convert paragraphs in PDF files in the order in which they appear on the page and with left-to-right or
right-to-left paragraph direction. See Convert PDF Files to a Logical Reading Order, on page 81.

Configure PDF soft hyphens

Specify whether soft hyphens are removed from the XML output. See Control Hyphenation, on page
84.

Enable Revision Marks

Convert text and graphics that were deleted from a document with revision tracking enabled and
include revision tracking information in the XML output. Convert Revision Tracking Information, on
page 79.

Protected file password

Specify the password to use to open a password-protected file for export.

Specify output character set for summary information

Specify the output character set for the document's metadata, when using fpGetSummaryInfo().
Include position and invisible text tokens (with bounding boxes) in the output

Add top, left, height, width, and rotation attributes to <p> elements.

KeyView (11.6) Page 152 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Syntax
KVErrorCode pascal KVXMLConfig(
void *pContext,
int nType,
int nValue,
void *p),
Arguments
pContext A pointer returned from fpInit().
nType The configuration flag. This is a symbolic constant defined in kvtypes.h. The available
options are described in Configuration Flags, below.
nvalue The integer value defined for the flags above.

This is TRUE or FALSE for all flags except KVCFG_LOGICALPDF, KVCFG_
SETMETADATACHARSET, KVCFG_SETTEMPDIRECTORY, and KVCFG_SETXMLCONFIGINFO.

For KVCFG_LOGICALPDF, this is one of the paragraph direction options defined in the
LPDF_DIRECTION enumerated typein kvtypes.h. See LPDF_DIRECTION, on page 222.

For KVCFG_SETTEMPDIRECTORY and KVCFG_SETXMLCONFIGINFO, this is not set.

For KVCFG_SETMETADATACHARSET, nValue is a character set enumerated in KvVCharSet of
kvtypes.h. See Convert Character Sets, on page 70.

The data for the configuration flag.

This is NULL for all flags except KVCFG_SETTEMPDIRECTORY and KVCFG_
SETXMLCONFIGINFO.

For KVCFG_SETTEMPDIRECTORY, this is path to the directory where temporary files are
stored.

For KVCFG_SETXMLCONFIGINFO, this is a pointer to the KvXConfigInfo structure. See
KVXConfiglnfo, on page 181.

For KVCFG_SETPASSWORD, this is the source file password.

Configuration Flags

The following flags are available for the nType argument in KVXMLConfig(). These flags are defined in

kvtypes.h.

Flag

KVCFG_

Description

If you set KVCFG_SUPPRESSIMAGES, the XML output includes verbose markup,

SUPPRESSIMAGES but noimages. If you do not set this option, embedded images in a document

KeyView (11.6)

are regenerated as separate files and stored in the output directory. To

Page 153 of 346

Flag

KVCFG_
ENABLEPOSITIONI
NFO

KVCFG_
SETMETADATACHAR
SET

KVCFG_
SUPPRESSTOCPRIN
TIMAGE

KVCFG_
DISABLEZONE

KVCFG_
SETTEMPDIRECTOR
Y

KVCFG_
SETXMLCONFIGINF
0

KeyView (11.6)

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Description
KVXMLOptions structure to TRUE. K\VXMLOptions, on page 190.

If you set KVCFG_ENABLEPOSITIONINFO, a position element is included in the
markup for PDF documents. The position element defines the absolute
position of the text relative to the bottom left corner of the page, and includes
additional information such as font and color.

This option enables you to specify the output character set for metadata when
using fpGetSummaryInfo(). nValue is a character set enumerated in
KVCharSet of kvtypes.h. See Convert Character Sets, on page 70. This
function should be called before fpGetSummaryInfo().

If you set KVCFG_SUPPRESSTOCPRINTIMAGE, bookmarks in a PDF file are not
converted to simple XLinks in the XML output. By default, PDF bookmarks are
converted to source and destination anchors. For example,

<a xmlns:xlink="http://www.w3.0org/TR/x1ink"
xlink:href="#bmk1">Highlight File Format

<a xmlns:xlink="http://www.w3.0org/TR/x1ink" name="bmk1l">

If you set KVCFG_DISABLEZONE, the conversion of Microsoft Word bookmarks
to zone elements (<zone name ="xxx">)inthe output XML is disabled.

A bookmark in Microsoft Word documents is a name given to a selected area
of the document. The bookmark might enclose words, paragraphs, tables,
table cells, lists, list items, or the entire document. In XML Export, bookmarks
are converted to zone elements (<Zone name="xxx">) by using the KeyView
KVT_ZONE token.

Depending on how bookmarks are defined in the original document, the
creation of zone elements might result in malformed XML. In this case, you can
disable zone creation to avoid these validity errors. Zone element creation is
enabled by default.

The KVCFG_SETTEMPDIRECTORY flag enables you to specify the directory in
which temporary files created during conversion processes are stored. By
default, the system temporary directory is used.

To define a directory for temporary files generated during an out-of-process
conversion, set the tempfilepath parameterin the formats_e.ini file. See
Convert Files Out of Process, on page 26.

NOTE: On Windows systems, there is a 64 K size limit to the temporary
directory. When the limit is reached, you must either create a new directory or
delete the contents of the existing directory; otherwise, you might receive an
error message.

The KVCFG_SETXMLCONFIGINFO flag enables you to define which elements and
attributes are extracted from XML documents with a specified format ID or root
element. You can use this to override the default settings for the supported

Page 154 of 346

Flag

KVCFG_
LOGICALPDF

KVCFG_
DELSOFTHYPHEN

KVCFG_
INCLREVISIONMAR
K

KVCFG_WP_
NOCOMMENTS

KVCFG_WP_
SHOWHIDDENTEXT

KVCFG_WP_
SHOWDATEFIELDCO
DE

KVCFG_WP_
SHOWFILENAMEFIE
LDCODE

KVCFG_SS_
SHOWHIDDENINFOR

KeyView (11.6)

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Description

XML formats (see Convert XML Files, on page 90), or to define settings for
custom XML document types.

The settings are defined in the KvXConfigInfo structure (see KV XConfiglnfo,
on page 181). To set custom settings for more than one document type, call the
KVXMLConfig() function once for each type.

You can also modify element extraction settings by using the kvxconfig.ini
file. See Configure Element Extraction for XML Documents, on page 90.

The KVCFG_LOGICALPDF flag converts paragraphs in a PDF file in the order in
which they appear on the page (logical reading order). The nvalue argument
specifies the paragraph direction. See Convert PDF Files to a Logical Reading
Order, on page 81.

If you set KVCFG_DELSOFTHYPHEN, soft hyphens in the source document are
removed, and the hyphenated words are joined in the XML output. By default,
soft hyphens are maintained. See Control Hyphenation, on page 84.

Micro Focus recommends that you remove soft hyphens if you use Export to
generate text output for an indexing engine or are not concerned with
maintaining the document’s layout. See fpConvertStream(), on page 135 or
KVXMLConvertFile(), on page 159 for more information on running Export in
index mode.

If you set this flag to TRUE, text and graphics that were deleted from a
document with a revision tracking feature enabled are converted, and revision
tracking information is included in the XML output.

Toreset the flag and exclude deleted content and revision tracking information
from the XML output, set the flag to FALSE. See Convert Revision Tracking
Information, on page 79. The default is FALSE.

Set KVCFG_WP_NOCOMMENTS to TRUE not to export text from comments in
Microsoft Word documents. Comment text is exported by default from
Microsoft Word 97 to 2003 files.

You can also toggle comment output by modifying the formats_e.ini file. See
Show Hidden Data, on page 95.

Set KVCFG_WP_SHOWHIDDENTEXT to TRUE to export hidden text from Microsoft
Word documents.

Set KVCFG_WP_SHOWDATEFIELDCODE to TRUE to export date field codes from
Microsoft Word documents.

Set KVCFG_WP_SHOWFILENAMEFIELDCODE to TRUE to export the file name field
code from Microsoft Word documents.

Set KVCFG_SS_SHOWHIDDENINFOR to TRUE to export hidden information from

Page 155 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Flag Description
Microsoft Excel files.
KVCFG_SS _ Set KVCFG_SS_SHOWCOMMENTS to TRUE to export comments from Microsoft
SHOWCOMMENTS Excel files.
KVCFG_SS_ Set KVCFG_SS_SHOWFORMULA to TRUE to export formulas from Microsoft Excel
SHOWFORMULA files.
KVCFG_PG_ Set KVCFG_PG_HIDEHIDDENSLIDE to TRUE not to export hidden slides from
HIDEHIDDENSLIDE Microsoft PowerPoint files.
KVCFG_PG_ Set KVCFG_PG_HIDECOMMENT to TRUE not to export comments from Microsoft
HIDECOMMENT PowerPoint files. Comments are exported by default from PowerPoint 97 to
2000 files.
KVCFG_PG_ Set KVCFG_PG_SHOWCOMMENTSSLIDE to TRUE to export comments slides from
SHOWCOMMENTSSLI Microsoft PowerPoint 2003 and 2007 files.
DE
KVCFG_PG_ Set KVCFG_PG_SHOWSLIDNOTES to TRUE to export slide notes from Microsoft
SHOWSLIDNOTES PowerPoint files.
You can also toggle slide note output by modifying the formats_e. ini file.
See Show Hidden Data, on page 95.
KVCFG_ This flag enables you to define a password used to open a password-protected
SETPASSWORD file for export. See Export Password Protected Files, on page 344.
nValue is TRUE.
p is the source file password, which can have a maximum length of 255
characters (the final byte is null).
KVCFG_ This flag enables you to extend the existing <p> tags to include bounding box
POSITIONINFOOUT information.
PUTTYPE
Returns

The return value is one of the error codes defined in KVErrorCode in kvtypes.h.

Discussion

« You must call this function after the call to fpInit() and before the call to fpConvertStream() or
KVXMLConvertFile().

« This function runs in-process or out of process. See Convert Files Out of Process, on page 26.

« When converting out of process, you must call this function after the call to KVXMLStart0OOPSession
() and before the call to KVXMLEndOOPSession(). See KVXMLStartOOPSession(), on page 165 and
KVXMLENndOOPSession(), on page 161.

KeyView (11.6) Page 156 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Examples

« Togenerate verbose markup, but no images:
(*fpXMLConfig) (pKVXML, KVCFG_SUPPRESSIMAGES, TRUE, NULL);
o To produce summary information in UTF8:
(*fpXMLConfig) (pKVXML, KVCFG_SETMETADATACHARSET, KVCS_UTF8, NULL);
« To specify bookmarks in a PDF file are not converted to XLinks in the XML output:
(*fpXMLConfig) (pKVXML, KVCFG_SUPPRESSTOCPRINTIMAGE, TRUE, NULL);
« Todisable the conversion of zone elements:
(*fpXMLConfig) (pKVXML, KVCFG_DISABLEZONE, TRUE, NULL);
« Toset adirectory for temporary files:

char tmpDir[250];
strcpy (tmpDir, "c:\\temp\\xmlexport");
(*fpXMLConfig) (pKVXML, KVCFG_SETTEMPDIRECTORY, ©, tmpDir);

« To specify custom extraction settings for conversion of an XML file:

KVXConfigInfo xinfo; /* populate xinfo */
(*FpXMLConfig) (pKVXML, KVCFG_SETXMLCONFIGINFO, ©, &xinfo);

« Tospecify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is left to right:

(*fpXMLConfig) (pKVXML, KVCFG_LOGICALPDF, LPDF_LTR, NULL);

« Tospecify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is right to left:

(*fpXMLConfig) (pKVXML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);

« To specify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is determined on the fly for each page:

(*fpXMLConfig) (pKVXML, KVCFG_LOGICALPDF, LPDF_AUTO, NULL);
« To specify soft hyphens are removed from the XML output:
(*fpXMLConfig) (pKVXML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);
« Toconvert text and graphics that are identified by revison marks:
(*fpXMLConfig) (pKVXML, KVCFG_INCLREVISIOMARK, TRUE, NULL);
« Totoggle hidden data output from Microsoft Word documents, use one of the KVCFG_WP flags:
(*fpXMLConfig) (pKVXML, KVCFG_WP_NOCOMMENTS, TRUE, NULL);
« Totoggle hidden data output from Microsoft Excel documents, use one of the KVCFG_SS flags:

(*fpXMLConfig) (pKVXML, KVCFG_SS_SHOWHIDDENINFOR, TRUE, NULL);

KeyView (11.6) Page 157 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

« Totoggle hidden data output from Microsoft PowerPoint documents, use one of the KVCFG_PG flags:
(*fpXMLConfig) (pKVXML, KVCFG_PG_HIDEHIDDENSLIDE, TRUE, NULL);

« To specify a password to open a password-protected file for export:
(*fpXMLConfig) (pKVXML, KVCFG_SETPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.

« Toinclude a position element in the markup for PDF documents:
(*FpXMLConfig) (pKVXML, KVCFG_ENABLEPOSITIONINFO, TRUE, NULL);

Using the PDF position element significantly changes the generated markup. For example, without
the option, the XML output from a section of a PDF document looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE VerityXMLExport (View Source for full doctype...)>
- <VerityXMLExport>
- <WP>
- <p id="p1" font-size="33pt">

Economic Fiscal Update
Theand
0ctober 30, 2002
0Overview
</p>

With the option enabled, the same section of the PDF document looks like this:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE VerityXMLExport (View Source for full doctype...)>
- <VerityXMLExport>
- <WP>

<Position style="position:absolute;top:534px;left:254px;font-family: 'Times New
Roman';font-size:33pt;white-space:nowrap;" />

<Position style="position:absolute;top:393px;left:254px;white-space:nowrap;" />

<Position style="position:absolute;top:308px;left:256px;font-family: 'Times New
Roman';font-size:33pt;white-space:nowrap;" />

Economic

<Position style="position:absolute;top:346px;left:256px;font-family: 'Times New
Roman';font-size:33pt;white-space:nowrap;" />

Fiscal Update

<Position style="position:absolute;top:298px;left:281px;font-family: 'Times New
Roman';font-size:18pt;color:#777777;background-color:#ffffff;white-space:nowrap;"
/>

The

<Position style="position:absolute;top:336px;left:299px;font-family: 'Times New
Roman';font-size:18pt;color:#777777;background-color:#ffffff;white-space:nowrap;"
/>

and

KeyView (11.6) Page 158 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

<Position style="position:absolute;top:543px;left:397px;font-family: 'Times New
Roman';font-size:14pt;color:#ffffff;background-color:#000000;white-space:nowrap;"
/>

October 30, 2004

<Position style="position:absolute;top:627px;left:382px;font-family: 'Times New
Roman';font-size:29pt;color:#a4adad;background-color:#ffffff;white-space:nowrap;"
/>

Overview

« Toinclude position information in attributes of <p> tags:

(*fpXMLConfig) (pKVXML, KVCFG_ENABLEPOSITIONINFO, TRUE, NULL);
(*fpXMLConfig) (pKVXML, KVCFG_POSITIONINFOOUTPUTTYPE, KVPIOT ATTRIBUTES, NULL);

In this mode, each piece of content output by the reader with a position is put in its own <p> element.
Line break (
)tags are not included in the output.

The <p> tags have position information, when this information is available from the reader. These are
included in new attributes of the <p> tag: top, left, height, width, and rotation.

The top, left, width, and height attributes are all expressed in pixels. The top and left attributes
give the coordinates of the top left corner of the content (an image, text box, and so on) relative to the
top left corner of the page. The width and height attributes are the width and height of the content.

Rotation is expressed in degrees, and gives the clockwise rotation of the content about the top left
comner. If the rotation attribute is not present, the rotation is assumed to be zero.

NOTE:

Not all readers output all these attributes for all pieces of content. Only pdf2sr outputs width,
height and rotation information for text. pdf2sr does not put height and width attributes on
<p> tags that enclose images; rather, the tags themselves have the height and width.
For example:

<p id="p1l" font-size="12pt" top="0px" left="Opx"></p>

<p id="p2" font-family="MyriadPro-It" font-size="16pt" top="59px"
left="129px" height="21px" width="447px"><i>Aufforderung zur Einreichung
von Vorschlagen 2005:

</i></p>

KVXMLConvertFileQ

This function is called directly and converts a source file to an outpuit file.

Syntax

BOOL pascal KVXMLConvertFile (
void *pContext,
void *pCallingContext,
char *pInFileName,
char *pOutFileName,

KeyView (11.6) Page 159 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

KVXMLTemplate
KVXMLOptions
KVXMLTOCOptions
KVXMLCallbacks
BOOL
KVErrorCode

Arguments

pContext
pCallingContext
pInFileName
pOutFileName

pTemplates

pOptions

pTOCCreateOptions

pCallbacks

bIndex

pError

KeyView (11.6)

*pTemplates,

*pOptions,

*pTOCCreateOptions,

*pCallbacks,
bIndex,

*pError)

A pointer returned from fpInit().

A pointer passed back to the callback functions.
A pointer to the input file.

A pointer to the output file.

A pointer to the data structure KVXMLTemplate data structure. It defines the
overall structure of the output. Individual elements within the structure define
the markup written at specific points in the output stream. See
KVXMLTemplate, on page 198.

If this pointer is NULL, the default values for the structure are used.

A pointer to the data structure KVXMLOptions. It defines the options that
control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See K\VXMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KvXMLCallbacks data structure. It is a structure of functions
that Export calls for specific, user-defined purposes. See KVXMLCallbacks,
on page 182.

If callbacks are not used, this can be NULL.

Set bIndex to TRUE to generate output with minimal markup and without
images. Because the generated output is minimized to textual content, it is
suitable for an indexing engine. If bIndex is set to FALSE, embedded images in
a document are regenerated as separate files and stored in the output
directory.

This can also be set through the bNoPictures member in the template files.

A pointer to an error code if the call to KVXMLConvertFile() fails.

Page 160 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

Returns

If the call is successful, the return value is TRUE.
If the call is unsuccessful, the return value is FALSE.

Discussion

Only pContext, pInFileName, pOutFileName, and bIndex are required. All other pointers should be
NULL when they are not set.

If pCallbacks is NULL, pOptions->pszDefaultOutputDirectory must be valid, except when you
set bIndex to TRUE.

This function runs in-process or out of process. See Convert Files Out of Process, on page 26.

When converting out of process, this function must be called after the call to
KVXMLStart0oOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), below.

When converting out of process, the values for the KVXMLTemplate, KVXMLOptions, and
KVXMLTOCOptions structures should be set to NULL. These structures are already passed in the call
to KVXMLStartOoPSession(). See KVXMLStartOOPSession(), on page 165.

Example

if (! (*KVXMLInt.KVXMLConvertFile)(
pKVXML, /* Pointer returned by fpInit() */
NULL, /* Pointer for callback functions */
&InputFile, /* Input file */
&OutputFile, /* Output file */
&XMLTemplates, /* Markup and related variables */
&XMLOptions, /* Options */
NULL, /* TOC options */
NULL, /* A pointer to callback functions */
FALSE, /* Index mode */
&error)) /* Error return value */

{

printf("Error converting %s to XML %d\n", argv[i - 1], error);

}

else

{

}

printf("Conversion of %s to XML completed.\n\n", argv[i - 1]);

KVXMLENndOOPSession()

This function terminates the current out-of-process conversion session, and releases the source data
and resources related to the session.

KeyView (11.6) Page 161 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Syntax
BOOL pascal KVXMLEndOOPSession(
void *pContext,
BOOL bKeepServantAlive,
KVErrorCodeEx *pError
DWORD dwOptions,
void *pReservedl,
void *pReserved2);
Arguments
pContext A pointer returned from fpInit().
bKeepServantAlive Set bKeepServantAlive to TRUE to keep a Servant process

active after the Export out-of-process session is terminated. If
the Servant remains active, subsequent conversion requests
are processed more quickly because the Servant is already
prepared to receive data.

Set bKeepServantAlive to FALSE to terminate the Export out-
of-process session and the associated Servant process.

pError A pointer to an error code defined in KVErrorCodeEx in
kvtypes.h.
dwOptions Reserved for future use.
pReservedl Reserved for future use.
pReserved2 Reserved for future use.
Returns

« If the call is successful, the return value is TRUE.
« Ifthe call is unsuccessful, the return value is FALSE.

Example

The following sample code is from the cnv2xmloop sample program:

/* declare endsession function pointer */
BOOL (pascal *fpKVXMLEndOOPSession)(void *,

BOOL R
KVErrorCode *
DWORD s
void *
void *);

KeyView (11.6) Page 162 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

/* assign OOP endsession function pointer */
fpKVXMLENdOOPSession = (BOOL (pascal *)(void *,

BOOL s
KVErrorCode *,
DWORD B
void *
void *))mpGetProcAddress (hKVXML,

"KVXMLEndOOPSession");
if (! fpKVXMLENndOOPSession)
{
printf("Error assigning KVXMLEndOOPSession() pointer\n");
(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree) (pKVXML, &Output);
mpFreeLibrary (hKVXML);
return 8;
}
JX¥ARXXAXEND OOP SESSION, DO NOT KEEP SERVANT ALIVE ****dkxxk/
if (! (*fpKVXMLEndOOPSession) (pKVXML,
FALSE,
&error,
e:
NULL,
NULL))

printf("Error calling fpKVXMLEndOOPSession \n");
(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree) (pKVXML, & utput);
(*KVXMLInt.fpShutDown) (pKVXML) ;

mpFreeLibrary (hKVXML);

return 10;

KVXMLSetStyleSheetQ

This function is called directly and is used to specify the full path and file name of an external Style

Sheet (XSL or CSS).
Syntax

BOOL pascal KVXMLSetStyleSheet/(
void *pContext,
char *pszStyleSheetName,
char *pszRef);

KeyView (11.6)

Page 163 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

Arguments

pContext A pointer returned from fpInit().
pszStyleSheetName A pointer to the full path and file name of the style sheet.

pszUrlRef A pointer to the URL or file name of style sheet.

Returns

« If the call is successful, the return value is TRUE.
« If this call is unsuccessful, the return value is FALSE.

Discussion

« When the value for eStyleSheetType in KVXMLOptions is set to XML_XSL or XML_CSS, an external
style sheet is referenced by a processing instruction of the form:

<?xml-stylesheet href="pszRef" type="text/xsl"?>
or
<?xml-stylesheet href="pszRef" type="text/css"?>
« If the value for pszStyleSheetName includes the output directory, the href only consists of the file
name since the XML output resides in the same directory as the style sheet file.

« If the value for pszStyleSheetName points to a directory other than the output directory, the href
consists of the full path and file name.

« Style sheet information cannot be written to an external XsL file. XML Export can only reference an
existing XSL style sheet.

« When XML_CSS is specified, a CSS file can be created based on pszStyleSheetName.

« If the name of the CSS is not specified by using this function, a CSS style file is created with an
automatically-generated file name.

« If this function is used to specify the name of the style file, that file is referenced in the processing
instruction.

o Ifthe CSS file does not exist in the specified location, it is created.
o Ifit exists, but is empty, CSS styles are written to it.

o If the CSSfile exists and is not empty, the file is not altered. There is no attempt made to validate
the file.

« If there are multiple calls made to fpConvertStream() or KVXMLConvertFile(), and the name of
the style sheet has been set with KvXMLSetStyleSheet, the file name can be disabled by calling
KVXMLSetStyleSheet again with the pszStyleSheetName and pszRef set to NULL. The file name
can then be set to a different value by calling KVXMLSetStyleSheet with the new file name prior to
the next call to fpConvertStream() or KVXMLConvertFile().

« This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
« When converting out of process, this function must be called after the call to

KeyView (11.6) Page 164 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), below and KVXMLEndOOPSession(), on page 161.

KVXMLStartOOPSession()

This function performs the following:

« Initializes the out-of-process session.
« Specifies the input stream or file.

« Sets conversion options in the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data
structures.

« Creates a Servant process.
« Establishes a communication channel between the application thread and the Servant.
« Sends the data to the Servant.

Syntax
BOOL pascal KVXMLStartOOPSession(
void *pContext,
KVInputStream *pInputStream,
char *pFileName,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions
DWORD *pPID,
KVErrorCode *pError
DWORD dwOptions,
void *pReservedl,
void *pReserved2);
Arguments
pContext A pointer returned from fpInit().
pInputStream A pointer to the developer-assigned instance of KVInputStream. The

KVInputStream structure defines the input stream containing the source for
the conversion.

If pInput is defined, pFileName must be NULL. The input data can be defined
as a data stream or file, but not both.

pFileName A pointer to the file to be converted. The file must exist on the same file
system as the Servant.

If pFileName is defined, pInput must be NULL. The input data can be defined
as a data stream or file, but not both.

KeyView (11.6) Page 165 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export AP| Functions

pTemplatesEx

pOptionsEx

pTOCCreateOptions

pPID
pError
dwOptions
pReservedl

pReserved2

Returns

A pointer to the KvxMLTemplate data structure. It defines the overall structure
of the output. Individual elements within the structure define the markup
written at specific points in the output stream. See KVXMLTemplate, on page
198.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KVXMLOptions data structure. It defines the options that
control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See K\VVXMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.
The address of a DWORD into which the Servant process ID is returned.
A pointer to an error code defined in KVErrorCode in kvtypes.h.
Reserved for future use.

Reserved for future use.

Reserved for future use.

« If the call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE.

Discussion

« After the out-of-process session is started successfully, all conversion functions can be called. The
data is then processed on the Servant until the session is terminated by a call to
KVXMLENdOOPSession(), on page 161.

« All functions that can run out of process must be called within the out-of-process session, that is,
after the call to KVXMLStartOOPSession(), and before the call to KVXMLEndOOPSession().

o TheKVXMLConvertFile(), and fpGetSummary () functions can be called only once in a single out-

of-process session.

o Because the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data structures are passed by
this function, the same pointers in the call to KVXMLConvertFile() are ignored.

Example

The following sample code is from the cnv2xmloop sample program:

KeyView (11.6)

Page 166 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

/* declare OOP startsession function pointer */

BOOL (pascal *fpKVXMLStartOOPSession)(void *)
KVInputStream *,
char *
KVXMLTemplate *,
KVXMLOptions *,
KVXMLTOCOptions *,
DWORD *
KVErrorCode *
DWORD s
void *,
void *)
/* assign OOP startsession function pointer */
fpKVXMLStartOOPSession = (BOOL (pascal *)(void *,
KVInputStream *,
char *)
KVXMLTemplate *,
KVXMLOptions *,
KVXMLTOCOptions *,
DWORD *
KVErrorCode *,
DWORD B
void *)
void *))mpGetProcAddress (hKVXML,

"KVXMLStartOOPSession");
if (! fpKVXMLStartOOPSession)

{
printf("Error assigning KVXMLStartOOPSession() pointer\n");
(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree) (pKVXML, &Output);
mpFreeLibrary (hKVXML);
return 7;

}

if (! (*fpKVXMLStartOOPSession) (pKVXML,
&Input,
NULL,
&XMLTemplates, /* Markup and related variables */
&XMLOptions, /* Options */
NULL, /* TOC options */
&oopServantPID,
&error,
0:
NULL,
NULL))

printf("Error calling fpKVXMLStartOOPSession \n");

(*KVXMLInt.fpFileToInputStreamFree) (pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree) (pKVXML, &Output);

KeyView (11.6) Page 167 of 346

XML Export SDK C Programming Guide
Chapter 8: XML Export API Functions

(*KVXMLInt.fpShutDown) (pKVXML) ;
mpFreeLibrary (hKVXML);
return 9;

KeyView (11.6)

Page 168 of 346

Chapter 9: XML Export API Callback Functions

This section describes the XML Export API callback functions.

& NtrOdUCHION ... 169
& CONtINUE() ... 169
O GetANCNON) .. 170
& GERtAUXOULPUL() - ..ot 171
O USEICB) - 172
Introduction

The fpConvertStream() and KvXMLConvertFile() functions enable you to specify a callback
function. A callback function controls the conversion while it is in progress. For example, you can
specify a callback function to report progress during the conversion.

To use the API callback functions, declare one or more instances of the KvXMLCallbacks structure.
Each member of this instance can then be initialized by assigning a function pointer to the application-
defined callback functions, cast to the appropriate function prototype. Each instance of
KVXMLCallbacks can define unique callback functions. Alternatively, the functions can be common to
all instances of KVXMLCallbacks; these functions take appropriate action, depending on the value of
the pointer pCallingContext.

The second parameter (pCallingContext) of the call to fpConvertStream() and KVXMLConvertFile
() provides a void pointer used to identify the context of this call. If more than one call to
fpConvertStream() or KVXMLConvertFile() is made within a single application, any resulting
callbacks are identified by the first parameter of the callback function. This enables the callback
function to take any appropriate action, depending on which calling context is returned.

The seventh parameter (pCallbacks) of the call to fpConvertStream() and KVXMLConvertFile()
must be set to the address of the KVXMLCallbacks structure to be used for this call.

For sample code, see the sample program xmlcallback.c. It creates an XML stream and
demonstrates the use of the callback functions.

ContinueQ

When fpConvertStream() or KVXMLConvertFile() is called, control is not returned to the application
until the entire document is processed. This callback function provides a means of monitoring progress
and terminating the conversion process before the conversion is completed.

Syntax

BOOL (pascal *Continue) (
void *pCallingContext,

KeyView (11.6) Page 169 of 346

XML Export SDK C Programming Guide
Chapter 9: XML Export API Callback Functions

KeyView (11.6)

int nPercentComplete);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to
fpConvertStream() and KVXMLConvertFile().

nPercentComplete The approximate percentage of the current conversion that is completed.

You can monitor the progress of the conversion by checking the value of
nPercentDone, which indicates how many blocks out of the total number of
blocks have been processed.

Returns

« Ifthe call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE. Processing is halted.
Discussion

« Thereis a callback to this function for every entry that appears in the generated table of contents.

« The application is free to execute any required code in the callback function, with the exception of
fpShutDown().

GetAnchor(Q

This function gets the file name automatically generated by Export and used for external graphics
referenced with <a xmlns:xlink= x1link href=>tags, heading-level table of contents entries, and
external files (such as CSS files and revision summary files).

Syntax
BOOL (pascal *GetAnchor) (
void *pCallingContext,
KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT CcbHTML);
Arguments

pCallingContext A pointerthat gets passed back to the caller-provided callback functions. This

Page 170 of 346

XML Export SDK C Programming Guide
Chapter 9: XML Export API Callback Functions

pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

eAnchorType The anchor type for the output stream. It must be one of the enumerated types
defined in KVXMLAnchorType.

pszAnchor A pointer to the location where the new anchor is stored.
cbAnchorMax The maximum number of bytes to place in pszAnchor.
pcHTML This is either NULL or a pointer to one of the following:

« markup defining the contents of a table of contents entry
« the external graphic file name

« the external file name

cbHTML The number of valid bytes in pcHTML.

Returns

« Ifthe call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE. Processing is halted.
Discussion

« If this callback is NULL, default anchor names are generated. The generated names are unique
across the document.

« This function is called once per block, block chunk, graphic anchor, or extra file. Any required code
can be executed here as long as a unique value for pszAnchor is assigned. If this string is not
unique, an existing file might be overwritten, producing undesirable results. The callback function
should contain the functionality to verify whether files already exist.

« If you want to specify graphic anchor names, but use default anchor names for all other anchors,
provide the graphic names when eAnchorType is VectorPictureAnchor or RasterPictureAnchor.
For all other anchor types, call with the same parameters you were passed.

o pszAnchor must be assigned. It can be derived from the cbAnchorMax, pcHTML, and cbHTML values,
which are also provided.

e pcHTML can be null if the graphic is an internal part of the document.

GetAuxOutputQ

This callback function enables the calling application to specify an auxiliary output stream for a block or
graphic.

KeyView (11.6) Page 171 of 346

XML Export SDK C Programming Guide
Chapter 9: XML Export API Callback Functions

Syntax

BOOL (pascal *GetAuxOutput) (
void *pCallingContext,
KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
KVOutputStream *pNewOutput);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to

fpConvertStream().

eAnchorType A graphic or block anchor as defined by the enumerated types in
KVXMLAnchorType.

pszAnchor A pointer to location where a new anchor is stored. pszAnchor is based on the

call to GetAnchor().

pNewOutput A pointer to a KvOutputStream structure that can be used to write data to the
current block.

Returns

o If the call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE. Processing is halted.
Discussion

o If GetAuxOutput() is NULL, the pszDefaultOutputDirectory member of the instance of
KVXMLOptions is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory.

« Foreach pszAnchor provided, create (malloc)an appropriate I/O structure. Assign pNewOutput-
>pOutputStreamPrivateData to point to that structure. Each remaining member of the
KVoutputStream should then be initialized by assigning a function pointer to the additional
application-defined functions, cast to the appropriate function prototype for Create(), Write(),
Seek(), Tell(), and Close(). Memory allocated to the 1/O structure must be tracked and can be
freed up within the call to Close (). See the callback.c sample program.

UserCBQ

This callback function is triggered by including the $USERCB token in a member of KVXMLTemplate. For
example, placing “$USERCB=my_callback “inpszFirstH1Start results in a callback at the point

KeyView (11.6) Page 172 of 346

XML Export SDK C Programming Guide
Chapter 9: XML Export API Callback Functions

when pszFirstH1Start is processed. The user callback function is identified by the text assigned to
$USERCB, which in this example is my_callback. This identifier is passed to the argument
pszUserCBid.

Syntax
BOOL (pascal *UserCB) (
void *pCallingContext,
char *pszUserCBid,
KVOutputStream *pNewOutput
void *pReserved);
Arguments

pCallingContext A pointerthat gets passed back to the caller-provided callback function. This
pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

pszUserCBid A pointer to a string that identifies the source of the callback. The identifier must
be delimited by a trailing white space. For example, "my_callback ".

pNewOutput A pointer to a KVOutputStream structure that can be used to write data to the
current block.

pReserved Reserved for future use.

Returns

« Ifthe call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE. Processing is halted.

KeyView (11.6) Page 173 of 346

Chapter 10: XML Export API Structures

This section provides information on the structures used by the XML Export API. These structures are
defined in kvxml.h, kvtypes.h, and adinfo.h.

® ADDOCINF O .. 174
® RVINPUEStreamM L 175
® KVMemoOry Stream .. 176
KV OULPUL S reaM L 176
& KV ST R 177
® KV StreamInfo ... 177
¢ KV StructHead ... 178
O RV Syl 179
® KVSumInfoElemMEX 180
® KVSummary INfOEX ... 180
® KV XCONfIgIN O .. 181
¢ KVXMLCAIDACKSo 182
* KVXMLHeadingINfo 183
* KVXMLIMagelnfo ... 185
® KVXMLINterface 186
® KVXMLINterfaceEX ... 188
¢ KVXMLOPUONS 190
¢ KVXMLTemMplate 198
¢ KVXMLTOCOPIONS ... 202
ADDOCINFO

This structure provides the format, file class, and version number of the source document. It is defined
in adinfo.h, and is initialized by calling the fpGetStreamInfo() function. See fpGetStreamInfo(), on
page 147.

typedef struct

{
ENdocClass eClass;
ENdocFmt eFormat;
long 1Version;
unsigned long ulAttributes;
}

ADDOCINFO, *ADDOCINFOPTR;

KeyView (11.6) Page 174 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

Member Descriptions

eClass The file class of the source document (for example, spreadsheet, word processor, or
encapsulation format) as defined by the ENdocClass enumerated type in adinfo.h.

eFormat The major format of the source document (such as Microsoft Word or Corel
Presentation) as defined by the ENdocFmt enumerated type in adinfo.h.

1Version The version number of the file format. The number is multiplied by 1000. For
example, 1.02 is represented by 1020.

ulAttributes Other attributes of the document as defined by the ENdocAttributes enumerated
typein adinfo.h.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format 1D, your
code should check that the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVinputStream

This structure defines an input stream for the XML conversion.

typedef struct tag_InputStream
{
void *pInputStreamPrivateData;
long lcbFilesize;
BOOL (pascal *fpOpen) (struct tag_InputStream *);
UINT (pascal *fpRead) (struct tag_InputStream *, BYTE *, UINT);
BOOL (pascal *fpSeek) (struct tag_InputStream *, long, int);
long (pascal *fpTell) (struct tag_InputStream *);
BOOL (pascal *fpClose)(struct tag InputStream *);

}
KVInputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library, except fpOpen
(), which returns FALSE on failure. On fpOpen(), if the size of the stream is known, assign that value to
lcbFilesize. Otherwise, set 1cbFilesize to@.

KeyView (11.6) Page 175 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

KVMemoryStream

This structure defines an optional memory allocator to be used by XML Export. It is initialized by calling
fpInit(). See fplnit(), on page 149.

typedef struct tag_MemoryStream

{

void *pMemoryStreamPrivateData;

void * (pascal
void (pascal
void * (pascal
void * (pascal

}

KVMemoryStream;

Member Descriptions

fpMalloc) (struct tag_MemoryStream,size_t);
fpFree) (struct tag_MemoryStream, void *);
fpRealloc) (struct tag MemoryStream,void *, size_t);
fpCalloc) (struct tag MemoryStream, size t, size_t);

All member functions are equivalent to their counterparts in the ANSI standard library.

Discussion

« fpRealloc() must handle a NULL pointer.

« Forsystems that do not support fpRealloc(), refer to the callback sample program, which
demonstrates how to use the memory management features.

o If KVvMemoryStreamis not provided, the default C run-time memory allocation is used.

KVOutputStream

This structure defines an output stream for the XML conversion.

typedef struct tag_OutputStream

{

void *pOutputStreamPrivateData;

BOOL (pascal
UINT (pascal
BOOL (pascal
long (pascal
BOOL (pascal

}

*fpCreate) (struct
*fpWrite) (struct
*fpSeek) (struct
*fpTell) (struct
*fpClose) (struct

KVOutputStream;

Member Descriptions

tag_OutputStream
tag_OutputStream
tag_OutputStream
tag_OutputStream
tag_OutputStream

*,TCHAR *);

*, BYTE *, UINT);
*, long, int);
*)s

*)s

All member functions are equivalent to their counterparts in the ANSI standard library.

KeyView (11.6)

Page 176 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

KVSTR

This structure is used to identify string types (string text and byte count) for the first three members of
KvStyle. See KVStyle, on page 179.

typedef struct tag KVSTR

{
char *pcString;
int cbString;
}
KVSTR;

Member Descriptions

pcString A text string.

cbString Thelength of pcString, excluding the terminating NULL(s). This allows UNICODE or
double bytes to be employed.

KVStreaminfo

This structure defines a document’s character set and format. It is initialized by calling
fpGetStreamInfo(). See fpGetStreaminfo(), on page 147.

typedef struct tag_KVStreamInfo

{
KVCharSet charset;
ADDOCINFO adInfo;
¥
KVStreamInfo;

Member Descriptions

charset The character set of the source document, if that information is ascertainable. The
available character sets are enumerated in KVCharSet in kvtypes.h. See Convert
Character Sets, on page 70.

adInfo Thefile class, major format, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h. See
ADDOCINFO, on page 174.

o adInfo.eClass represents the class of the source document, as defined by the
ENdocClass enumerated type.

» adInfo.eFormat represents the format of the source document, as defined by the
ENdocFmt enumerated type.

KeyView (11.6) Page 177 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

« adInfo.lVersion represents the version number of the file format. The number is
multiplied by 1000. For example, 1.02 is represented by 1020.

o adInfo.ulAttributes represents other attributes of the document as defined by the
ENdocAttributes enumerated type.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format 1D, your
code should check the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVStructHead

This structure contains the current KeyView version number and is the first member of other structures.
It enables Micro Focus to modify the structures in future releases, but to maintain backward
compatibility. Before initializing a structure that contains the KvStructHead structure, use the macro
KVStructInit toinitialize KVStructHead. The structure and macro are defined in kvtypes.h.

typedef struct _KVStructHead

{
WORD version;
WORD size;
DWORD reserved;
void *internal;

} KVStructHeadRec, *KVStructHead;

Member Descriptions

version The current KeyView version number. This is a symbolic constant (Keyviewversion)
defined in kvxtract.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec.
reserved Reserved forinternal use.

internal Reserved forinternal use.

Example

KVStructInit(&openArg);

KeyView (11.6) Page 178 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

KVStyle

This structure defines the style mapping support for KvSTR-defined styles. The first three members of
KVStyle are KVSTR structures (see KVSTR, on page 177). Each KVSTR structure contains the text
string and byte count for StyleName, MarkUpStart, and MarkUpEnd. The structure is initialized by
calling the function fpSetStyleMapping().

See fpSetStyleMapping(), on page 150 and Map Styles, on page 74.

XML Export supports both paragraph styles and character styles. It works on the assumption that each
style has a unique name. Only one paragraph style can be active at one time; therefore, the opening of
a new paragraph style automatically closes the previous paragraph style. By contrast, several
character styles can be active at once. When XML Export receives an EndCharStyle token from the
format parser, the most recent character style is terminated.

typedef struct tag_KVStyles

{
KVSTR StyleName;
KVSTR MarkUpStart;
KVSTR MarkUpEnd;
DWORD dwFlags;

}

KVStyle;

Member Descriptions

StyleName The name of the word processing style (for example, "Heading 1") to which style
mapping applies. A pointer to the KVSTR structure. See KVSTR, on page 177.

Style names are case sensitive.

MarkUpStart The markup added to the beginning of a paragraph or character style. A pointer to the
KVSTR structure. See KVSTR, on page 177.

MarkUpEnd The markup added to the end of a paragraph or character style. A pointer to the KVSTR
structure. See KVSTR, on page 177.

dwFlags Instructions on how to process the content associated with a paragraph or character
style. The flag can be one of the types defined in kvtypes.h. They are described in
Flags for Defining Styles, on page 76.

The value associated with each flag is a hexadecimal number. You can set an option
by either entering the converted decimal value, or by entering the flag’s text (for
example, KVSTYLE_PRE).

The value of Flags in the template files is passed to this member of KvStyle.

KeyView (11.6) Page 179 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

Discussion

« This structure applies to word processing documents only.

« By default, XML Export maps the heading style "Heading 1" to <h1></h1>, and so on, for heading
levels 1 through 6. If you use style mappings, the default mapping is overridden. Therefore, you must
supply markup for all heading levels.

« When the user-defined markup in KvStyle conflicts with other markup generated by XML Export, the
user-defined markup takes precedence.

KVSuminfoElemEx

This structure defines the individual metadata elements.

typedef struct tag_KVSumInfoElemEx

{
int isvalid;
KVSumInfoType type;
void *data;
char *pcType;

}

KVSumInfoElemEx;

Member Descriptions

isvalid Specifies whether the data value is present in the document. The setting 1 specifies that
the value is valid and exists.

type The data type of the metadata element. The types are defined in the KVSumInfoType
structure in kvtypes.h. See KVSumlInfoType, on page 218.

data The content of the metadata field.

If the type memberis KV_Int4 orKkV_Bool, this member contains the actual value.
Otherwise, this member is a pointer to the actual value.

KV_DateTime and KV_IEEES point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text.

pcType A pointer to the name of the metadata field.

KVSummaryinfoEx

This structure provides a count of the number of metadata elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling the fpGetSummaryInfo()
function. See fpGetSummaryInfo(), on page 147.

KeyView (11.6) Page 180 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

typedef struct tag_KVSummaryInfoEx

nElem;

KVSumInfoElemEx *pElem;

{

int
}
KVSummaryInfoEx;

Member Descriptions

nElem The number of metadata elements contained in the array. nElem can be zero. This indicates
that the document did not contain metadata, such as an ASCII text document.

pElem Points to the first element of the array of document metadata elements defined by the
KvSumInfoElemExstructure. See KVSuminfoElemEXx, on the previous page.

KVXConfiginfo

This structure defines an XML document type and the element extraction settings for that type. The
settings can be applied based on the file format ID, or the file’s root element. This structure is in
kvtypes.h and is initialized by calling the KVYHTMLConfig() function. See Convert XML Files, on page

90.

typedef struct TAG_KVXConfigInfo

{
ENdocFmt

char*
char*
char*
char*
char*
char*

}KVXConfigInfo;

eKVFormat;
pszRoot;
pszInMeta;
pszExMeta;
pszInContent;
pszExContent;
pszInAttribute;

Member Descriptions

eKVFormat

pszRoot

KeyView (11.6)

The format ID as detected by the KeyView detection module. This determines the
file type to which these extraction settings apply. The format ID is defined by the
ENdocFmt enumerated type in adinfo.h. See File Format Detection, on page 311
for more information on format ID values.

If you are adding configuration settings for a custom XML document type, this is
not defined.

The file’s root element. When the format ID is not defined, the root element is
used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an Element’s
Namespace and Attribute, on page 94.

Page 181 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

pszInMeta

pszExMeta

pszInContent

pszExContent

pszInAttribute

The elements extracted from the file as metadata. All other elements are
extracted as text. Multiple entries must be separated by commas.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

The child elements in the included metadata elements that are not extracted from
the file as metadata. For example, the default extraction settings for the Visio
XML format extract the DocumentProperties element as metadata. This element
includes child elements such as Title, Subject, Author, Description, and so
on. However, the child element PreviewPicture is defined in pszExMeta
because it is binary data and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice files.
All metadata is extracted regardless of this setting.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

The elements extracted from the file as content text. An asterisk (*) extracts all
elements including child elements.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

The child elements in the included content elements that are not extracted from
the file as content text.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

The attribute values extracted from the file. If attributes are not defined, attribute
values are not extracted. The namespace (if used), element name, and attribute
name must be defined in the following format:

namespace:elementname@attributename
For example:

microfocus:division@name

KVXMLCallbacks

This structure provides all callbacks that can result from a call to fpConvertStream() or
KVXMLConvertFile(). See fpConvertStream(), on page 135 and KVXMLConvertFile(), on page 159.
Any and all of the function pointers can be NULL.

typedef BOOL (pascal *KVXMLCB_CONTINUE) (

void *pcallingContext,

int nPercentDone);
typedef BOOL (pascal *KVXMLCB_GETANCHOR) (

void *pCallingContext,

KVXMLAnchorType eAnchorType,

char *pszAnchor,

KeyView (11.6)

Page 182 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

Int cbAnchorMax,
BYTE *pcHTML,
UINT CbHTML);
typedef BOOL (pascal *KVXMLCB_GETAUXOUTPUT)(
void *pCallingContext,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
KVOutputStream *pNewOutput);
typedef BOOL (pascal *KVXMLCB_USERCB) (
void *pCallingContext,
char *psUserCBid,
KVOutputStream *pOutput,
void *pReserved);
typedef struct tag KVXMLCallbacks
{
KVXMLCB_CONTINUE fpContinue;
KVXMLCB_GETANCHOR fpGetAnchor;
KVXMLCB_GETAUXOUTPUT fpGetAuxOutput;
KVXMLCB_USERCB fpUserCB;
}
KVXMLCallbacks;

Member Descriptions

« The members of this structure are function pointers to the functions described in XML Export API
Callback Functions, on page 169.

o If fpGetAuxOutput() is NULL, the pszDefaultOutputDirectory member of the instance of
KVXMLOptions is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory. See KVXMLOptions, on page 190.

KVXMLHeadinginfo

This structure defines how XML Export creates heading information based on the source document’s
content and attributes. Source text is converted to a heading and included in the table of contents if

« it meets all the criteria defined by this structure, and

« Yyou set the headingCreateType member of KVXMLTOCOptions to allow automatic heading
generation.

XML Export evaluates the text against each member in the order in which the members appear below.
See KVXMLTOCOptions, on page 202 for more information on automatic generation of headings.

typedef struct tag_KVXMLHeadingInfo

{
int minParalLen;
int maxParalen;
int fontSizeMin;

KeyView (11.6) Page 183 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

int fontSizeMax;

BOOL bMustBeBold;

BOOL bMustBeItalic;
BOOL bMustBeUnderlined;
BOOL bNonZeroIndent;
BOOL bNoTabs;

BOOL bNoMultiSpaces;
int nSpaceBefore;

int nSpaceAfter;

}
KVXMLHeadingInfo;

Member Descriptions

minParalLen The minimum number of characters that a paragraph in the source document
can contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.
The default is 3 for heading levels 1 to 3.

maxParalLen The maximum number of characters that a paragraph in the source document
can contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.
The default is 80 for heading levels 1 to 3.

fontSizeMin The minimum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 14 for heading level 1, and 12 for heading levels 2 and 3.

fontSizeMax The maximum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 20 for heading level 1, and 14 for heading levels 2 and 3.

bMustBeBold If you set bMustBeBold to TRUE, the text in the source document must be bold
to meet the criteria for heading conversion.

The default is TRUE for heading levels 1 and 2, and FALSE for heading level 3.

bMustBeItalic If you set bMustBeItalic to TRUE, the text in the source document must be
italic to meet the criteria for heading conversion.

The default is FALSE.

bMustBeUnderlined If you set bMustBeUnderlined to TRUE, the text in the source document must
be underlined to meet the criteria for heading conversion.

The default is FALSE.

bNonZeroIndent If you set bNonzZeroIndent to TRUE, the text in the source document must be
indented to meet the criteria for heading conversion.|f you set
bNonZeroIndent to FALSE, the text must be aligned left.

KeyView (11.6) Page 184 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

The default is FALSE.

bNoTabs If you set bNoTabs to TRUE, the text in the source document must not contain
tabs to meet the criteria for heading conversion.
The default is FALSE.
bNoMultiSpaces If you set bNoMultiSpaces to TRUE, the text in the source document must not
contain two or more contiguous white spaces to meet the criteria for heading
conversion.
The default is FALSE.
nSpaceBefore The amount of space in TWIPS (20th of a point) that must come before a
paragraph in the source document for the text to meet the criteria for heading
conversion. If -1 is used, the amount of space before the paragraph is not
considered in the heading generation.
The default is 0.
nSpaceAfter The amount of space in TWIPS (20th of a point) that must follow a paragraph in
the source document for the text to meet the criteria for heading conversion. If
-1 is used, the amount of space after the paragraph is not considered in the
heading generation.
The default is e.
KVXMLImageinfo

This structure contains the dimensions of an image in pixels. It is defined in kvxml.h. You must
initialize it by calling KvStructInit() before you obtain image dimensions by using the
fpGetOutputImageInfo() function.

typedef struct tag_KVXMLImageInfo{
KVStructHeader;

int nWidth;
int nHeight;

}
KVXMLImageInfo;

Member Descriptions

KVStructHeader
nWidth

nHeight

KeyView (11.6)

The KeyView version of the structure. See KV StructHead, on page 178.
The image width in pixels.

The image height in pixels.

Page 185 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

KVXMLInterface

The members of this structure are pointers to the API functions described in XML Export API

Functions, on page 133.

NOTE:

This structure has been superseded by KV XMLInterfaceEx; KVXMLInterfaceEx should be used
instead of KVXMLInterface.

typedef void* (pascal *KVXML_INIT) (

KVMemoryStream
char
char
KVErrorCode
DWORD
typedef void (pascal
typedef BOOL (pascal
void *pContext,

*pMemAllocator,

*pszKeyViewDir,

*pszDataFile,

*pError,

dword) ;
KVXML_SHUTDOWN) (void);
*KVXML_CONVERT_STREAM) (

void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions,
KVXMLCallbacks *pCallbacks,
BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVXML_GET_FILE_LIST)(
void *pContext,
int *pnSize);

typedef BOOL (pascal *KVXML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo);

typedef BOOL (pascal *KVXML_GET_ANCHOR) (
void *pCallingContext,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT CcbHTML) ;

typedef BOOL (pascal *KVXML_INPUTSTREAM_CREATE)
void *pContext,
char *pszFileName,
KVInputStream *pInput);

typedef BOOL (pascal *KVXML_INPUTSTREAM_FREE) (
void *pContext,
KVInputStream *pInput);

KeyView (11.6)

Page 186 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_CREATE) (

void *pContext,
char *pszFileName,
KVOutputStream *pOutput);

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_ FREE)(
void *pContext,
KVOutputStream *pOutput);

typedef KVLanguageID (pas

cal *KVXML_LANGUAGE_ID)(void *pContext);

typedef BOOL (pascal *KVXML_GET_SUMMARY_INFO)(

void *pContext,
KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree);
typedef BOOL (pascal *KVXML_SET_STYLE_MAPPING) (
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy) ;

typedef BOOL (pascal *KVXML_VALIDATE_TEMPLATE)(

void *pContext,
KVOutputStream
KVXMLTemplate
KVXMLOptions
KVXMLTOCOptions
KVXMLCallbacks
KVMemoryStream
typedef struct tag_KVXMLI

{

*pOutput,
*pTemplate,
*pOptions,
*pTOCOptions,
*pCallBalls,
*pMemStream)
nterface

KVXML_INIT fpInit;

KVXML_SHUTDOWN fpShutDown;
KVXML_CONVERT_STREAM fpConvertStream;
KVXML_GET_FILE_LIST fpGetConvertFilelist;
KVXML_GET_STREAM_INFO fpGetStreamInfo;
KVXML_GET_ANCHOR fpGetAnchor;
KVXML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVXML_INPUTSTREAM_FREE fpFileToInputStreamFree;
KVXML_OUTPUTSTREAM_CREATE fpFileToOutputStreamCreate;
KVXML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVXML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVXML_SET_STYLE_MAPPING fpSetStyleMapping;
KVXML_VALIDATE_TEMPLATE fpValidateTemplate;

KVXMLInterface;

KeyView (11.6)

Page 187 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

Member Descriptions

The members of this structure are function pointers to the functions described in XML Export API
Functions, on page 133.

KVXML_VALIDATE_TEMPLATE is currently not implemented.

KVXMLInterfaceEx

The members of this structure are pointers to the API functions described in XML Export API
Functions, on page 133.

This structure supersedes KVXMLInterface. KVXMLInterfaceEx should be used instead of
KVXMLInterface.

Compared to KVXMLInterface, KVXMLInterfaceEx adds two functions for checking error codes, and
allows for binary compatible extensibility in future releases.

typedef void* (pascal *KVXML_INIT) (

KVMemoryStream *pMemAllocator,

char *pszKeyViewDir,

char *pszDataFile,

KVErrorCode *;,

DWORD dWord);

typedef void (pascal *KVXML_SHUTDOWN) (void*);

typedef BOOL (pascal *KVXML_CONVERT_STREAM) (
void *pContext,
void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions,
KVXMLCallbacks *pCallbacks,
BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVXML_GET_FILE_LIST)(
void *pContext,
int *pnSize);

typedef BOOL (pascal *KVXML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo);

typedef BOOL (pascal *KVXML_GET_ANCHOR) (
void *pCallingContext,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,

KeyView (11.6) Page 188 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

UINT cbHTML);
typedef BOOL (pascal *KVXML_INPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVInputStream *pInput);
typedef BOOL (pascal *KVXML_INPUTSTREAM FREE) (
void *pContext,
KVInputStream *pInput);
typedef BOOL (pascal *KVXML_OUTPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVOutputStream *pOutput);
typedef BOOL (pascal *KVXML_OUTPUTSTREAM_ FREE)(
void *pContext,
KVOutputStream *pOutput);
typedef KVLanguageID (pascal *KVXML_LANGUAGE_ID)(void *pContext);
typedef BOOL (pascal *KVXML_GET_SUMMARY_INFO)(
void *pContext,
KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree);
typedef BOOL (pascal *KVXML_SET_STYLE_MAPPING) (
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);
typedef BOOL (pascal *KVXML_VALIDATE_TEMPLATE)(
void *pContext,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplate,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCOptions,
KVXMLCallbacks *pCallBalls,
KVMemoryStream *pMemStream);
typedef KVErrorCode(pascal *KVXML_GET_KV_ERROR_CODE) (void *);
typedef KVErrorCodeEx(pascal *KVXML_GET_KV_ERROR_CODE_EX) (void *);

typedef struct tag KVXMLInterfaceEx

{
KVStructHeader;
KVXML_INITEX fpInit;
KVXML_SHUTDOWN fpShutDown;
KVXML_CONVERT_STREAMEX fpConvertStream;
KVXML_GET_FILE_LIST fpGetConvertFilelist;
KVXML_GET_STREAM_INFO fpGetStreamInfo;
KVXML_GET_ANCHOREX fpGetAnchor;
KVXML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVXML_INPUTSTREAM_FREE fpFileToInputStreamFree;

KeyView (11.6) Page 189 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

}

KVXML_OUTPUTSTREAM_CREATE fpFileToOutputStreamCreate;
KVXML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVXML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVXML_SET_STYLE_MAPPING fpSetStyleMapping;
KVXML_VALIDATE_TEMPLATE fpValidateTemplate;
KVXML_GET_KV_ERROR_CODE fpGetKvErrorCode;

KVXML_GET_KV_ERROR_CODE_EX fpGetKvErrorCodeEx;

KVXMLInterfaceEx;

KVXMLOptions

This structure defines the options that control the XML markup written in response to the general style
and attributes (font, color, and so on) of the document. The structure is initialized by calling the
fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page 135 or
KVXMLConvertFile(), on page 159.

typedef struct tag_KVXMLOptions

{

BOOL bUseVerityDTD;

char *pszVerityDTDPath;
KVXMLStyleSheetType eStyleSheetType

BOOL bUseExistingStyleSheet;
char *pszStyleSheet;

BOOL bIndexOnly;

KVCharSet eOutputCharSet;

BOOL bForceOutputCharSet;
KVCharSet eSrcCharSet;

BOOL bForceSrcCharSet;
KVLanguageID eOutputlLanguagelD;

BOOL bUseDocumentColors;

BOOL bUseDocumentFontInfo;
BOOL bNbspEmptyCells;
ENSATableBorder eSATableBorder;

int nTableBorderWidth;

char *pszBaseURL;

char *pszMainURL;

char *pszDefaultOutputDirectory;
char *pszPicPath;

char *pszPicURL;

char *pszJavaURL;

BOOL bRemoveFileNameSpaces;
BOOL bRasterizeFiles
KVXMLGraphicType eOutputRasterGraphicType;
KVXMLGraphicType eOutputVectorGraphicType;
int cxVectorToRasterXRes;

int cyVectorToRasterYRes;

int nCompressionQuality;

KeyView (11.6)

Page 190 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

}

BOOL

long

BYTE

BYTE
KVXMLEmptyParaType
KVXMLHardPageBreakType
BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

int

KVXMLOptions;

Member Descriptions

bUseVerityDTD

pszVerityDTDPath

eStyleSheetType

KeyView (11.6)

bGenerateURLs;
lcbMaxMemUsage;
cReplaceChar;
cRedact;
eEmptyParaType;
eHardPageBreakType;
bSupportColumnHeadings;
bSupportRowHeadings;
bSupportCellSpan;
bSupportRowSpan;
bSupportColumnWidth;
bRemoveEmptyColumns;
bRemoveEmptyRows;
bEnableEmptyRows;
nRowsBeforeSplit;

Set buseverityDTD to TRUE to generate XML based on the Verity
DTD. For more information, see Use the Verity Document Type
Definition (DTD), on page 42. This generates a valid XML document
suitable as a general interchange format. If you set buseVerityDTD
to FALSE, the XML is based on the source document’s paragraph
structure.

The default is TRUE.

If you move the Verity DTD from the default tempout directory to
another output directory, set the string value of pszverityDTDPath
to the new location. This path is added to the document type
declaration in the XML file.

The default is no path, that is, the DTD is assumed to be in the same
directory as the generated XML files.

One of the enumerated options for processing style sheet
information. The options are defined in KVXMLStyleSheetType in
kvxml.h. See KVXMLStyleSheetType, on page 211.

e STYLESHEET_DISABLED—Disables style sheet formatting. This is
the default option.

e XML_CSS—Enables Cascading Style Sheet (CSS) formatting, and
outputs the generated formatting data in an external CSS file
referenced in the XML output as a tag.

o XML_XSL—Enables Extensible Style Sheet Language (XSL)
formatting, and uses an external XSL file referenced ina <?xm1-
stylesheet...?> processing instruction.

Page 191 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

bUseExistingStyleSheet

pszStyleSheet

bIndexOnly

eOutputCharSet

bForceOutputCharSet

KeyView (11.6)

Set bUseExistingStyleSheet to TRUE to apply an existing XSL
style sheet or a CSS file to an XML document. The style sheet file
name is inserted into the type declaration at the beginning of the XML
file. The location of the external style sheet file is set by
pszStyleSheet. If pszStyleSheet is not specified and the style
sheet type is XSL, a default XSL style sheet appropriate for the
source document type is used. The default XSL style sheets are:

« wp.x1s (for word processing documents)
o ss.xls (for spreadsheets)
« pg.xls (for presentations)

If pszStyleSheet is not specified and the style sheet type is CSS, a
CSSfileis created.

Existing style sheets are not validated.

The default is FALSE.

The path and file name of an external style sheet.
The default is no path.

Set bIndexOnly to TRUE to generate output with minimal markup (1D
and style paragraph attributes) and without images. Because the
generated output is minimized to textual content, it is suitable for an
indexing engine. If you set bIndexOnly to FALSE, embedded images
in a document are regenerated as separate files and stored in the
output directory.

The template file named xm1_index.ini and the xmlindex sample
program demonstrate the effect of setting bIndexonly.

To generate output with verbose markup and without images, set the
nType argument of the KvXMLConfig() function to KVCFG_
SUPPRESSIMAGES. See KVXMLConfig(), on page 152.

The default is FALSE.

The character set to use for textual output. To ensure that the
character set defined here is used, you must set
bForceOutputCharsSet to TRUE. The available character sets are
enumerated in KVCharSet in kvtypes.h. See Convert Character
Sets, on page 70.

Supported Formats, on page 225 lists the file formats for which
character set information can be determined.

The default is KVCS_UNKNOWN.

Set bForceOutputCharSet to TRUE to use the output character set
specified in eOutputCharSet, regardless of the internal document
information or the source character set specified by eSrcCharsSet.
See Convert Character Sets, on page 70.

Forcing a character set to KVCS_UNKNOWN is always ignored.

Page 192 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

eSrcCharSet

bForceSrcCharSet

eOutputLanguagelD

bUseDocumentColors

bUseDocumentFontInfo

bNbspEmptyCells

eSATableBorder

KeyView (11.6)

The default is FALSE.

This option specifies the character set of the document. To ensure
that the character set defined here is used, you must set
bForceSrcCharSet to TRUE. The available character sets are
enumerated in KVCharSet in kvtypes.h. See Convert Character
Sets, on page 70. Supported Formats, on page 225 lists the file
formats for which character set information can be determined.

The default is KVCS_UNKNOWN .

Set bForceSrcCharSet to TRUE to use the source character set
specified in eSrcCharSet, regardless of the internal document
information. See Convert Character Sets, on page 70.

Forcing a character set to KVCS_UNKNOWN is always ignored.

The default is FALSE.

The language for the textual output of language-specific data such as
time and date. eOutputLanguageID must be in the system locale. If
eOutputLanguagelID is invalid or not supplied, the system default is
used. Language IDs are defined in KVLanguageID in kvtypes.h.

The default is Language UNKNOWN.

Set bUseDocumentColors to TRUE to retain the color attributes
information contained in the source document. If you set
bUseDocumentColors to FALSE, no color attributes appear in the
 tags of the output.

The default is FALSE.

Set bUseDocumentFontInfo to TRUE to retain the font information
contained in the source document. If you set
bUseDocumentFontInfo to FALSE, no font information appears in the
 tags in the output.

The default is FALSE.

Set bNbspEmptyCells to TRUE to include a non-breaking space
(<td> </td>)in the markup for empty table cells in the source
document. If you set bNbspEmptyCells to FALSE, <td></td> is
generated for empty table cells.

This option applies to word processing documents and spreadsheets
only.

The default is TRUE.

This option specifies whether table borders are based on the setting
in the source document, are always on, or are always off. The
options are enumerated in ENSATableBorder in kvtypes.h. See
ENSATableBorder, on page 205.

This option applies to word processing documents only.

The default is SA_BaseOnDocument.

Page 193 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

nTableBorderWidth

pszBaseURL

pszMainURL

pszDefaultOutputDirectory

pszPicPath

pszPicURL

pszJavaURL

bRemoveFileNameSpaces

bRasterizeFiles

KeyView (11.6)

This option sets the width of the table border in pixels.

This option applies to word processing documents only.

The default is 1.

The base URL that replaces the $BASE token in the XML output.
The default is NULL.

The main URL that replaces the $MAIN token in the XML output.
The default is NULL.

The default output directory for auxiliary files created during the
conversion.

The default is NULL, and the files are placed in the directory in which
your application is running.

The output directory for graphic files created during the conversion. If
specified, this member can also be used by the callback functions
KVXMLGetAnchor and KVXMLGetAuxOutput.

This option applies to word processing documents only.

The default is NULL, and the files are placed in the directory in which
your application is running.

The URL of the graphic files created from embedded graphics in the
source document. To specify a complete image source, this element
must be combined with pszAnchor of the fpGetAnchor callback
function. See GetAnchor(), on page 170.

For example, setting pszPicURLto ../cgi-bin/ and setting
pszAnchor to pic.jpg results in the following markup:

<a xmlns:xlink= xlink href="../cgi-bin/pic.jpg">
This option applies to word processing documents only.

The default is NULL.

The URL where the Java rasterizer (kvvector. jar)is located.
The Java rasterizer is not currently enabled.

The default is NULL.

Set bRemoveFileNameSpaces to TRUE to remove spaces from
generated output file names.

The default is FALSE.

Set bRasterizeFiles to TRUE to rasterize slides from presentations
into single images. Set bRasterizeFiles to FALSE to only extract
text from presentation files. When you set this member to FALSE,
graphics do not appear in the output.

The default is FALSE.

Page 194 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

NOTE:

When bRasterizeFiles is FALSE, the export process uses the
ordering in the file to produce the output, which does not
necessarily match the logical reading order for the
presentation. To use a logical reading order instead, you can
set the LogicalOrder parameterin the [Options] section of
formats_e.ini. See Convert Presentation Files, on page 89.

eOutputRasterGraphicType The output format of rasterized embedded graphics. There are six
options enumerated in KVXMLGraphicType in kvxml.h. See
KVXMLGraphicType, on page 213.

The default is KVGFX_JPEG.

eOutputVectorGraphicType The output format of vector graphics. The options are enumerated in
KVXMLGraphicType in kvxml.h. The default is JPEG. See
KVXMLGraphicType, on page 213. For more information on
converting vector graphics on UNIX or Linux, see Display Vector
Graphics on UNIX and Linux, on page 78.

The default is KVGFX_JPEG.

cxVectorToRasterXRes Specifies the horizontal resolution when converting presentation files
and vector graphics. This is set in conjunction with
cyVectorToRasterYRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 198.

The default value is 0, which means the original resolution is
retained.

cyVectorToRasterYRes Specifies the vertical resolution when converting presentation files
and vector graphics. This is set in conjunction with
cxVectorToRasterXRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 198.

The default value is @, which means the original resolution is
retained.

nCompressionQuality This option controls the output quality of graphics that support
compression quality (for example, JPEG). A value of @ means
default quality (85 compression); 1 is the lowest quality (highest
compression and therefore the smallest file size); 100 is the highest
quality (no compression and therefore the largest file size).

This option applies to word processing documents only.
The default is 0.

bGenerateURLs Set bGenerateURLs to TRUE to add anchor tags (<a xmlns:x1link=
xlink href=>)totext starting with "www", "http:" or"file:".

This option applies to word processing documents only.
The default is FALSE.

lcbMaxMemUsage The maximum memory allocated dynamically for token buffers

KeyView (11.6) Page 195 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

cReplaceChar

cRedact

eEmptyParaType

eHardPageBreakType

bSupportColumnHeadings

bSupportRowHeadings

bSupportCellSpan

KeyView (11.6)

during file processing. If this maximum is reached, Export performs a
swap-to-disk operation internally, and then reuses the memory
blocks. Export maintains an intemal minimum memory size.

This option applies to word processing or text documents only.
The default is LONG_MAX. The unit is in bytes.

The character used when a character in the source document’s
character set cannot be mapped to the output character set.

The default replacement character is a question mark (?).

The character that replaces tagged text that has been designated,
through style mapping, to be omitted from the output. This
functionality is useful when you need to hide confidential or sensitive
information.

The specified character is used for all text that has been mapped to a
style processed with the KVSTYLE_REDACT flag (defined in
kvtypes.h). See Map Styles, on page 74.

This option applies to word processing documents only.
The default replacement character is "X".

This option determines if paragraphs without content generate
markup or ID attributes in the output file. There are three options
enumerated in KVXMLEmptyParaType in kvxml.h. See
KVXMLEmptyParaType, on page 215.

This option applies to word processing documents only.
The default is KVEPT_SUPPRESS.

This option determines if hard page breaks generate markup or ID
attributes in the output file. There are four options enumerated in
KVXMLEmptyParaType in kvxml.h. See
KVXMLHardPageBreakType, on page 215.

This option applies to word processing documents only.
The default is KVYHPBT_SUPPRESS.

Set bSupportColumnHeadings to TRUE to include column headings
from the source spreadsheet in the output.

This option applies to spreadsheets only.
The default is FALSE.

Set bSupportRowHeadings to TRUE to include row headings from the
source spreadsheet in the output.

This option applies to spreadsheets only.
The default is FALSE.

Set bSupportCellSpan to TRUE to include colspan="n" markup in
the output.

Page 196 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

bSupportRowSpan

bSupportColumnWidth

bRemoveEmptyColumns

bRemoveEmptyRows

bEnableEmptyRows

nRowsBeforeSplit

Discussion

This option applies to spreadsheets only.
The default value is FALSE.

Set bSupportRowSpan to TRUE to include row span data from the
source spreadsheet in the output.

This option applies to spreadsheets only.
The default value is FALSE. Currently not supported.

Set bSupportColumnWidth to TRUE to include column width data
from the source spreadsheet in the output.

This option applies to spreadsheets only.
The default value is FALSE.

Set bRemoveEmptyColumns to TRUE to remove spreadsheet columns
that do not contain data and to disable cell merging.

This option applies to spreadsheets only.
The default is FALSE.

Set bRemoveEmptyRows to TRUE to remove spreadsheet rows that do
not contain data or color, and to disable cell merging.

This option applies to spreadsheets only.
The default is FALSE.

Set bEnableEmptyRows to TRUE to display empty rows ina
spreadsheet format. If you set bEnableEmptyRows to FALSE, empty
rows are not displayed. This applies only to 20 or more consecutive
empty rows.

This option applies to spreadsheets only.
The default is FALSE.

The approximate number of spreadsheet rows to be processed
before splitting a table. This helps to prevent large spreadsheet
tables from occurring in a single document, which can cause speed
and processing problems for the browser.

This option applies to spreadsheets only.
The default is 0.

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of the members specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

KeyView (11.6)

Page 197 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

Set the Resolution of Presentations and Vector Graphics

The members cxVectorToRasterXRes and cyVectorToRasterYRes are set in conjunction to specify
the resolution (width and height) at which presentation files and vector graphics are converted.

You can specify the resolution as an absolute size in pixels, or as a proportion of the original size.

KeyView always maintains the aspect ratio of the original graphic and does not increase the resolution.
If you set values that would enlarge a graphic, KeyView only changes the size of the XML element.

To set the resolution in pixels

To specify the resolution in pixels, specify the width (cxVectorToRasterXRes) and/or height
(cyvectorToRasterYRes).

To export the largest image that fits within a bounding box, without changing the original aspect ratio,
set both the width and height. For example, to export the largest image that fits in an 800x500 bounding
box:

cxVectorToRasterXRes=800
cyVextorToRasterYRes=500

Alternatively you can fix one of the dimensions. Set one value and set the other to zero. For example, to
export images with a height of 1500 pixels and whatever width is necessary to maintain the original
aspect ratio:

cxVectorToRasterXRes=0
cyVextorToRasterYRes=1500

The maximum size permitted for either dimension is 4000 pixels.

To set the resolution proportionally

To set the resolution proportionally, set cxvectorToRasterXRes to a negative value. A negative value
represents a percentage of the original resolution. Set cyvectorToRasterYRes to @ (zero). Negative
(percentage) values for cyVectorToRasterYRes are ignored.

The following example exports a graphic at 50 percent of its original resolution:

cxVectorToRasterXRes=-50
cyVectorToRasterYRes=0

KVXMLTemplate

This structure defines the overall framework of the XML output. Members in this structure define the
XML markup written at specific points in the output stream. The pointers contain XML markup that
might include embedded KeyView-defined tokens. The XML markup contained in these strings should
be well-formed. For the generated document to be valid, the markup must conform to the Verity DTD.
The structure is initialized by calling the fpConvertStream() or KVXMLConvertFile() function. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.

typedef struct tag KVXMLTemplate
{

KeyView (11.6) Page 198 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

char *pszMainTop;

char *pszMainBottom;

char *pszFirstH1Start;

char *pszFirstH1End;

char *pszMiddleH1Start;

char *pszMiddleH1End;

char *pszLastH1Start;

char *pszLastH1lEnd;

char *pszH[2..6]XML;

char *pszTOCH[1..6]Start;

char *pszTOC_H[1..6];

char *pszTOCH[1..6]End;

char *pszXFile;

char *pszXStartBlock;

char *pszXEndBlock;

char *pszStartBlock;

char *pszEndBlock;

BOOL bPutBlocksInSeparateFiles;

BOOL bHardPageMakesNewBlock

long l1cbBlockSize;

char *pszChunkTemplate;

char *pszUserSummary;

char *pszTOCH[1..6]LeafNode;
}
KVXMLTemplate;

Member Descriptions

pszMainTop

pszMainBottom

pszFirstH1Start

pszFirstH1lEnd

pszMiddleH1Start

KeyView (11.6)

The markup and tokens inserted at the beginning of the main XML
file. Most of the sample template files feature <MetaData> tags with
tokens that store the metadata of the input document. This member
does not include the processing instructions or document type
declarations that appears at the beginning of an XML document. The
document type declaration <?xml version= ...> is automatically
generated by XML Export. If you are using style sheets or the Verity
DTD, the <?xml stylesheet= ...>and<!DOCTYPE ...>
processing instructions are also automatically generated by XML
Export.

The markup and tokens inserted at the end of the main XML file.

The markup and tokens inserted at the beginning of the first created
H1 XML block (that is, the block associated with the first H1 table of
contents entry).

The markup and tokens inserted at the end of the first created H1
XML block (that is, the block associated with the first H1 table of
contents entry).

The markup and tokens inserted at the beginning of those H1 XML

Page 199 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

pszMiddleH1End

pszLastH1Start

pszLastH1End

pszH[2..6]XML

pszTOCH[1..6]Start

pszTOC_H[1..6]

pszTOCH[1..6]End

pszXFile

pszXStartBlock

pszXEndBlock

KeyView (11.6)

blocks that are neither the first nor the last H1 blocks created (that is,
blocks associated with all but the first and last H1 table of contents
entries).

The markup and tokens inserted at the end of those H1 XML blocks
that are neither the first nor the last H1 blocks created (that is, blocks
associated with all but the first and last H1 table of contents entries).

The markup and tokens inserted at the beginning of the last created
H1 XML block (that is, the block associated with the last H1 table of
contents entry).

The markup and tokens inserted at the end of the last created H1
XML block (that is, the block associated with the last H1 table of
contents entry).

The markup and tokens inserted in an XML block for heading levels 2
through 6.

The markup and tokens inserted at the beginning of a table of
contents block for heading levels 1 through 6 entries. For example:

<ol list-style-type="upper-roman">

The markup and tokens required to process the table of contents
entries for heading levels 1 through 6. For example:

<a xmlns:xlink="http://www.w3.0rg/TR/x1ink" xlink href=
"#$ANCHOR"> $TOCTE

If the table of contents heading contains special characters, such as
an ampersand (&) or parentheses, you must use the $TOCPE token in
the pszTOC_H[1..6] markup. This token retains character entities
and prevents validity errors. See Export Tokens, on page 308 for
more information on table of contents tokens.

The markup and tokens inserted at the end of a table of contents
block for heading levels 1 through 6 entries. For example:

The markup and tokens generated and placed in an extra XML file.
This file holds content from the source document. To process this
file, you would use the $XANCHOR token. See Export Tokens, on page
308 for more information on Export tokens.

The markup and tokens inserted at the beginning of each XML block
generated by the $XANCHOR token. If either this member or
pszXEndBlock is defined, both pszStartBlock and pszEndBlock
are ignored. See Export Tokens, on page 308 for more information on
Export tokens.

The markup and tokens to include in the outoput output at the end of
each XML block generated by the $XANCHOR token. If either this
member or pszXStartBlock is defined, both pszStartBlock and
pszEndBlock are ignored. See Export Tokens, on page 308 for more

Page 200 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

pszStartBlock
pszEndBlock

bPutBlocksInSeparateFiles

bHardPageMakesNewBlock

1cbBlockSize

pszChunkTemplate

pszUserSummary

pszTOCH[1..6]LeafNode

Discussion

information on Export tokens.

The markup and tokens inserted at the beginning of each block
created as a result of 1cbBlockSize or bHardPageMakesNewBlock.

The markup and tokens inserted at the end of each block created as
aresult of 1cbBlockSize or bHardPageMakesNewBlock.

Set bPutBlocksInSeparateFiles to TRUE to create a separate XML
file for each heading level 1 block. Each new block uses the markup
defined in pszStartBlock and pszEndBlock. If you set
bPutBlocksInSeparateFiles to FALSE, each heading level 1 block
is placed sequentially in the same file, after the initial markup is
written.

Set bHardPageMakesNewBlock to TRUE to have hard page breaks in
the source document generate new XML files during the conversion
process. The member pszchunktemplate provides the appropriate
table of contents entry for the new block.

This option applies to word processing documents and spreadsheets
only.

The maximum size (in bytes) of heading level 1 XML output files.
This number is used as a guideline and can be exceeded to break
content at a logical location. This setting is not used when exporting
spreadsheets.

Setting 1cbBlockSize to @ indicates that there is no maximum size.

If an H1 XML block is subdivided into separate files as aresult of the
size limitations specified in 1cbBlockSize, this member provides a
template for creating a table of contents entry for the new file. The
block number can be made a part of this template by inserting the
$SPLITBLOCKNUMBER token. For example:

Page $SPLITBLOCKNUMBER

The markup and tokens generated when the $USERSUMMARY or
$SUMMARY tokens are used. For example:

<MetaData name="$NAME" content="$CONTENT"/>

The markup that replaces pszTOC_H[1..6] entries for leaf nodes in
the table of contents. A leaf node is a node that has no children.

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of the members specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

KeyView (11.6)

Page 201 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

KVXMLTOCOptions

This structure defines whether a heading is included in the table of contents. Source text is converted
to a heading in the XML output if

« it meets all the criteria defined by the members of KVXMLHeadingInfo, and
o the headingCreateType member of KVXMLTOCOptions is set to allow automatic heading generation.

The structure is initialized by calling the fpConvertStream() or KVXMLConvertFile() function. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.

See KVXMLOptions, on page 190 for more information on the criteria used to determine whether a
heading is included in the table of contents.

Typedef struct tag_KVXMLTOCOptions

{
BOOL bAllowHeadingsInTables;
KVHeadingCreateOptions headingCreateType;
KVXMLHeadingInfo *pH1;
KVXMLHeadingInfo *pH2;
KVXMLHeadingInfo *pH3;
KVXMLHeadingInfo *pH4 ;
KVXMLHeadingInfo *pH5;
KVXMLHeadingInfo *pH6 ;

}

KVXMLTOCOptions;

Member Descriptions

bAllowHeadingsInTables This option determines whether the text in tables is considered for
automatic heading generation. If you set bAllowHeadingsInTables to
TRUE, the text in tables is included in the determination of headings and
table of contents entries.

This option applies to word processing documents and spreadsheets
only.

The default is FALSE.

headingCreateType This option determines how XML Export subdivides the source
document into table of contents entries. You can set this option to one of
the two options enumerated in KVHeadingCreateOptions in kvxml.h.
See KVHeadingCreateOptions, on page 214.

The determination of table of contents entries is based on whether the
source document contains heading styles or whether text attributes
conform to the criteria defined in the KVXMLHeadingInfo structure. See
KVXMLHeadinglInfo, on page 183.

Heading styles are predefined style tags, such as "Heading 1" and
"Heading 2" tags in a Microsoft Word document. Text attributes are bold,

KeyView (11.6) Page 202 of 346

XML Export SDK C Programming Guide
Chapter 10: XML Export API Structures

underlined, italic, and so on.
This option applies to word processing documents only.
The default is KVCS_DocHeadingsOnly.

KVXMLHeadingInfo A pointer to the KVXMLHeadingInfo structure. See KVXMLHeadinglInfo,
on page 183.

When the table of contents entries are not based on the heading styles
of the source document, the table of contents entries are determined by
whether text attributes (such as bold, underlined, and italic text) in the
source document meet all the criteria defined in KVXMLHeadingInfo.

Discussion

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of the members specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

KeyView (11.6) Page 203 of 346

Chapter 11: Enumerated Types

This section provides information on some of the enumerated types used by the XML Export API.

& NtrOdUCHION ... 204
® ENSATableBorder 205
O RV CredKeY Ty e . 206
® KVEMOrCOUE e 206
® KVEMOrCOUBEX 208
* KVXMLStyleSheet Ty pe ..o .. 211
® KV XMLANCHOITY P . 212
¢ KVXMLGIaphiCTYPe ..o e e 213
* KVHeadingCreateOptions o 214
® KV XMLEMPtYParaType .. 215
¢ KVXMLHardPageBreak Type L 215
¢ KVMetadata T yPe ..ot 216
® KVMetaNamMeE T Y Pe e 218
RV SUMIN O Y P .. 218
RV SUM T Y P 219
® LPDF _DIRECTION .. 222
Introduction

The enumerated types are in adinfo.h, kvtypes.h,kvxml.h, and kvxtract.h. These header files are
in the include directory. The first entry in an enumerated type structure should be set to zero (0). Each
subsequent entry is increased by 1. For example, the first five entries of KVCharSet in kvtypes.h are:

KVCS_UNKNOWN
KVCS_SIIS
KVCS_GB
KVCS_BIG5
KVCS_KSC

They would be set in the following way:

Enumerated Type Setting
KVCS_UNKNOWN 0
KVCS_SJIS 1

KeyView (11.6) Page 204 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

Enumerated Type Setting
KVCS_GB 2
KVCS_BIGS5 3
KVCS_KSC 4

You can also set many enumerated types by entering the appropriate symbolic constant, or TRUE or
FALSE.

Programming Guidelines

When KeyView is enhanced in future releases, some enumerated types might be expanded. For
example, new format IDs might be added to the ENdocFmt enumerated type, or new error codes might
be added to the KVErrorCodeEx enumerated type. When you use these expandable types, your code
should ensure binary compatibility with future releases.

For example, if you use an array to access error messages based on an error code, your code should
check that the error code is less than KVError_Last before accessing the data. This ensures that new
error codes are detected when you add KeyView binary files from new releases to your existing
installation.

The following enumerated types are expandable:
KVErrorCodeEx

KVMetadataType

KVCharSet

KVLanguageID

KVSubfileType

ENdocFmt

ENSATableBorder

This enumerated type defines the type of border to display around tables. This enumerated type is
defined in kvtypes.h.

Definition

typedef enum tag_ENSATableBorder

{
SA_BaseOnDocument,
SA_NoBorder,
SA Border

}

ENSATableBorder;

KeyView (11.6) Page 205 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

Enumerators

SA_BaseOnDocument Bordertype is based on the document.
SA_NoBorder Table borders are always off.

SA_Border Table borders are always on.

KVCredKeyType

This enumerated type defines the type of credential used to open a protected file. See
KVCredential Component, on page 119. This enumerated type is defined in kvxtract.h.

Definition

typedef enum tag_KVCredKeyType

{
KVCredKeyType_UserName,
KVCredKeyType_UserIdFile,
KVCredKeyType_Password,
}
KVCredKeyType;
Enumerators
KVCredKeyType_ The credential in KVCredentialComponent is a user name.
UserName
KVCredKeyType_ The credential in KvCredentialComponent is a path to a file that
UserIdFile contains user IDs.
KVCredKeyType_ The credential in KVCredentialComponent is a password.
Password
KVErrorCode

This enumerated type defines the type of error generated if Export fails. This enumerated type is
defined in kvtypes.h.

Definition

typedef enum tag_KVErrorCode

{
KVERR_Success, /* @ Success*/

KeyView (11.6) Page 206 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVERR_DLLNotFound, /*¥ 1 DLL or shared library not found*/
KVERR_OutOfCore, /* 2 memory allocation failure*/
KVERR_processCancelled, /* 3 fpContinue() returns FALSE*/
KVERR_badInputStream, /* 4 Invalid/corrupt input stream*/
KVERR_badOutputType, /* 5 1Invalid output type requested*/
KVERR_General, /* 6 General error.... */
KVERR_FormatNotSupported, /* 7 Format not supported*/
KVERR_PasswordProtected, /*¥ 8 File is Password Protected*/
KVERR_ADSNotFound, /* 9 Adobe Document Server not found*/
KVERR_AutoDetFail, /* 10 Autodetect error*/
KVERR_AutoDetNoFormat, /* 11 Unable to detect file format*/
KVERR_ReaderInitError, /* 12 Error initializing the reader*/
KVERR_NoReader, /* 13 No reader available for this format*/
KVERR_CreateOutputFileFailed, /* 14 Unable to create output file*/
KVERR_CreateTempFileFailed, /* 15 Unable to create temp file*/

KVERR_ErrorWritingToOutputFile, /* 16 Error writing to output file*/
KVERR_CreateProcessFailed, /* 17 Error creating a child process*/
KVERR_WaitForChildFailed, /* 18 Wait for child process failed*/

KVERR_ChildTimeOut, /* 19 Child process hung / timed out*/
KVERR_ArchiveFileNotFound, /* 20 Attempt to extract nonexistent file*/
KVERR_ArchiveFatalError /* 21 Fatal error processing archive - should abort*/
}
KVErrorCode;
Enumerators

KVERR_SUCCESS The function completed successfully.

KVERR_DLLNotFound A DLL or shared library was not found.

KVERR_OutOfCore Memory allocation failure.

KVERR_processCancelled The callback function fpContinue() returns FALSE.

KVERR_badInputStream Invalid or corrupt input stream.
KVERR_badOutputType Invalid output is requested.
KVERR_General General error.

KVERR_FormatNotSupported The file format is not supported.

KVERR_PasswordProtected Thefile is encrypted or password-protected. KeyView supports only
secure PST files.

KVERR_ADSNotFound Adobe Document Server not found. This error is obsolete.
KVERR_AutoDetFail Autodetect error.
KVERR_AutoDetNoFormat Unable to detect file format.

KeyView (11.6) Page 207 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

KVERR_ReaderInitError Error initializing the reader.
KVERR_NoReader No reader is available for this format.
KVERR_ Unable to create outpuit file.

CreateOutputFileFailed

This error is generated if the overwrite flag in KVExtractSubFileArg is

FALSE, and a subfile has the same name as a file in the target path.

KVERR_ Unable to create temporary file.
CreateTempFileFailed
KVERR_ There was an error writing to the output file.

ErrorWritingToOutputFile

KVERR_ There was an errror creating a child process.

CreateProcessFailed

KVERR_WaitForChildFailed The wait for child process failed.

KVERR_ChildTimeOut The child process hung or timed out.
KVERR_ Attempt to extract nonexistent file.
ArchiveFileNotFound

KVERR_ArchiveFatalError A fatal error occurred processing an archive file.

KVErrorCodeEx

This enumerated type defines extended error codes. The type is defined in kvtypes.h.

Definition

typedef enum tag_KVErrorCodeEx

{

KVError_OpenStreamFailure = KVERR_ArchiveFatalError + 1, /* 22 KVOpen stream

failure */

KVError_InterfaceFunctionNotFound, /* 23 Interface function not found */

KVError_InputFileNotFound,
KVError_OpenOutputFileFailed,
KVError_MemoryLeak,
KVError_MemoryOverwrite,
KVError_GPF,
KVError_OopCore,
KVError_KVooplLogFailed,
KVError_OverNestedFilelLimit,
KVError_PSTAccessFailed,
KVError_PasswordRequired,
KVError_InvalidArgs /*
KVError_ReaderUsageDenied,
KVError_OopBadConfig,

KeyView (11.6)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

24
25
26
27
28
29
30
31
32
33

Cannot find input file*/

Cannot open output file*/

Memory leak*/

Memory overwrite*/

Exception during oop filtering*/
Core dump in child process*/
Creation of oop error log failed*/
File exceeds nested file limit*/
Access failed on PST files*/
Password required to access file*/

34 Input argument/structure is invalid*/
/* 35 Reader requires a valid license*/
/* 36 Config buffer data was incomplete*/

Page 208 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVError_OopBrokenPipe, /* 37 Read/write to/from pipe failed*/
KVError_OopPipeOEF, /* 38 Pipe was closed prior to read/write*/
KVError_IPCTimeOut, /* 39 Pipe/socket timed out on poll/select*/

KVError_InvalidOopDriverSignature, /* 40 Client sent request to OOP server but
context driver does not exist on the server*/

KVError_InvalidOopServiceSignature, /* 41 Client sent request to OOP service that
does not exist*/

KVError_ZeroFile, /* 42 Input file is empty or zero bytes */
KVError_CompressionNotSupported /* 43 File or subfile is compressed with
unsupported method */KVError_NoTemplates /* 44 No templates found (nsfsr) */
KVError_NoMainTemplate /* 45 No main template found (nsfsr) */
KVError_InvalidTemplate /* 46 Invalid template (nsfsr) */
KVError_TemplateError /* 47 Template error (nsfsr) */
KVError_IsADirectory /* 48 A directory exists at the given pathname */
KVError_Last /* 49 */

}

KVErrorCodeEx;

Enumerators

KVError_OpenStreamFailure Failed to open a stream during out-of-process filtering. This is an
= KVERR_ArchiveFatalError extended error for the KVERR_General code. This enumerator is
+1 used by KeyView Filter.

KVError_ An interface function was not found during out-of-process filtering.
InterfaceFunctionNotFound This is an extended error for the KVERR_General code. This
enumerator is used by KeyView Filter.

KVError_InputFileNotFound Could not find the input file during out-of-process filtering. This is
an extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_ Could not open the output file during out-of-process filtering. This
OpenOutputFileFailed is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

KVError_MemorylLeak A memory leak occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_MemoryOverwrite A memory overwrite occurred during out-of-process filtering. This
is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

KVError_GPF An exception occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_OopCore A memory dump was generated in a child process during out-of-
process filtering. This is an extended error for the KVERR_General

KeyView (11.6) Page 209 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

KVError_KVoopLogFailed

KVError_
OverNestedFilelLimit

KVError_PSTAccessFailed

KVError_PasswordRequired

KVError_InvalidArgs

KVError_ReaderUsageDenied

KVError_OopBadConfig

KVError_OopBrokenPipe

KeyView (11.6)

code. This enumerator is used by KeyView Filter.

The creation of the out-of-process error log failed. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

The container file has more than the allowable number of child
documents. One or more child documents were not converted.
Currently, this enumerator is not used.

The PST file could not be converted. This error might be returned
when a call to fpOpenFile() returns NULL for one of the following
reasons:

« A Microsoft Outlook client is not installed.

« A Microsoft Outlook client is installed, but is not the default
email client.

« A Microsoft Outlook client is installed, but is not configured
correctly.

« The PST file is corrupt.

« The PST file is read-only (PST files must allow read and write
access).

« The MAPI call fails.

« The bit editions of Microsoft Outlook do not match the bit
editions of the KeyView software.

For example, if 32-bit KeyView is used, 32-bit Outlook must be
installed. If 64-bit KeyView is used, 64-bit Outlook must be
installed.

To open the file, you must provide credentials. This error might be
returned when a call to fpOpenFile() returns NULL.

The input argument or structure is invalid. This error is generated
by the File Extraction APls.

The current license key does not enable the document reader
required to convert the file. This error might be returned when a call
to fpOpenFile() returns NULL.

Some document readers are considered advanced features and
are licensed separately from the KeyView SDK (for example, the
PST and MBX readers). Contact your Micro Focus sales
representative to get an updated license key.

Information in the kvxconfig. ini file is incomplete and cannot be
used to the XML file. This is used by KeyView Filter.

Data was not transferred between the parent and child processes
during out-of-process filtering because either the parent or child
failed. This is used by KeyView Filter.

Page 210 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

KVError_OopPipeOEF

KVError_IPCTimeOut

KVError_

InvalidOopDriverSignature

KVError_

InvalidOopServiceSignature

KVError_ZeroFile

KVError_
CompressionNotSupported

KVError_NoTemplates
KVError_NoMainTemplate
KVError_InvalidTemplate
KVError_TemplateError
KVError_IsADirectory

KVError_Last

Discussion

Data was not transferred between the parent and child processes
during out-of-process filtering because the parent process was
shut down. This is used by KeyView Filter.

Either the parent or child process is waiting for a reply or request
during out-of-process filtering. This is used by KeyView Filter.

A client sent a request to an out-of-process server, but the context
driver does not exist on the server. This is used by KeyView Filter.

A client sent a request to a File Extraction service that does not
exist.

If this error is generated on the call to fpClose(), you can ignore
it. This is used by KeyView Filter.

The input file is empty or zero bytes.

The file or subfile is compressed with an unsupported
compression method.

« When error reporting is enhanced in future releases, new error messages might be added to this
enumerator type. When you use this type, your code must ensure binary compatibility with future
releases. See Programming Guidelines, on page 205.

« If an extended error code is called for a format to which the error does not apply, the KVError_Last

code is returned.

KVXMLStyleSheetType

This enumerated type defines the options for processing style sheet information. This enumerated type

is defined in kvxml.h.

Definition

typedef enum tag_KVXMLStyleSheetType{

XML_CSS,

KeyView (11.6)

STYLESHEET_DISABLED = 0,

Page 211 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

XML_XSL,
}
KVXMLStyleSheetType;
Enumerators

STYLESHEET_DISABLED Disables Cascading Style Sheet (CSS) formatting.

XML_CSS Enables Cascading Style Sheet (CSS) formatting and
generates an external file or uses an existing external file
which is referenced ina <?xml-stylesheet. .. ?> processing
instruction.

XML_XSL Enables Extensible Style Sheet Language (XSL) formatting

and uses an external XSL file which is referenced in a <?xm1 -
stylesheet. .. ?> processing instruction.

KVXMLAnNchorType

This enumerated type defines the anchor types for the output stream. This enumerated type is defined
in kvxml.h.

Definition

typedef enum tag_KVXMLAnchorType
{
VectorPictureAnchor = 0,
RasterPictureAnchor,
H1Anchor,
H2Anchor,
H3Anchor,
H4Anchor,
H5Anchor,
H6Anchor,
XAnchor,
AnimatedGIFAnchor,
CSSAnchor,
XSLAnchor,

GeneralAnchor,

KeyView (11.6) Page 212 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

DBAnchor,

JPEGANnchor

}
KVXMLAnchorType;

Enumerators

VectorPictureAnchor
RasterPictureAnchor
H1Anchor

H2Anchor

H3Anchor

H4Anchor

H5Anchor

H6Anchor

XAnchor
AnimatedGIFAnchor
CSSAnchor

XSLAnchor
GeneralAnchor
DBAnchor

JPEGAnchor

An anchor for embedded vector graphics.
An anchor for embedded raster graphics.

An anchor for level 1 heading blocks (H1).
An anchor for level 2 heading blocks (H2).
An anchor for level 3 heading blocks (H3).
An anchor for level 4 heading blocks (H4).
An anchor for level 5 heading blocks (H5).
An anchor for level 6 heading blocks (H6).

An anchor for an external file.

An anchor for embedded animated GIF graphics.

An anchor for an external CSS file.
An anchor for an external XSL file.
Reserved for future use.

Used internally.

An anchor for an embedded JPEG graphic.

KVXMLGraphicType

This enumerated type defines graphic formats to which embedded graphics and presentations are
converted. This enumerated type is defined in kvxml. h.

Definition

typedef enum tag_ KVXMLGraphicType

{
KVGFX_GIF,

KVGFX_JPEG,

KeyView (11.6)

Page 213 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVGFX_PNG,
KVGFX_CGM,
KVGFX_WMF ,
KVGFX_JAVA
}
KVXMLGraphicType;
Enumerators
KVGFX_GIF Specifies GIF (Graphics Interchange Format) as the graphic type.
KVGFX_JPEG Specifies JPEG (Joint Photographic Experts Group) as the graphic
type.
KVGFX_PNG Specifies PNG (Portable Network Graphics) as the graphic type.
KVGFX_CGM Deprecated.
KVGFX_WMF Specifies WMF (Windows Metafile) as the graphic type.
KVGFX_JAVA Deprecated.

KVHeadingCreateOptions

This enumerated type defines whether Export generates blocks and block chunks based only on the
heading styles defined in a source document (if they are available), or based on both the source
document’s heading styles and headings that are created automatically by Export. Headings that are
created automatically by Export are based on the text attributes of the source document as defined by
KVXMLHeadingInfo). This enumerated type is defined in kvxml. h.

Definition

typedef enum tag_KVHeadingCreateOptions

{
KVHC_DocHeadingsOnly,

KVHC_CreateHeadingsAlways

}
KVHeadingCreateOptions;

Enumerators

KVHC_DocHeadingsOnly This instructs Export to rely exclusively on heading styles defined in the
source document. However, if the source document does not contain
heading styles, Export generates blocks on its own using the criteria
defined by the structure KVHeadingInfo.

KeyView (11.6) Page 214 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVHC_ This instructs Export to use the heading styles in the source document
CreateHeadingsAlways when available, and to also automatically create table of contents entries
based on the criteria defined by the structure KvHeadingInfo.

KVXMLEmptyParaType

This enumerated type defines the options for paragraphs that do not contain content. This enumerated
type is defined in kvxml.h.

Definition

typedef enum tag KVXMLEmptyParaType

{
KVEPT_SUPPRESS, /* No markup generated */
KVEPT_EMPTY, /* Use <p/> */
KVEPT_VERBOSE /* Use <p id="...> </p> */
}
KVXMLEmptyParaType;
Enumerators
KVEPT_SUPPRESS paragraphs without content are ignored. They do not
contribute white space and do not affect the ID number of
subsequent paragraphs. This is the default value.
KVEPT_EMPTY paragraphs without content are represented by an "empty"
paragraph element <p/>. These contribute minimal white
space, but do not affect the ID number of subsequent
paragraphs.
KVEPT_VERBOSE paragraphs without content contain a fully-defined start
tag<p id="..."> with all non-default attributes, a &bsp;

character entity, and end tag </p>. These contribute
additional white space and affect the ID number of
subsequent paragraphs.

KVXMLHardPageBreakType

This enumerated type defines the options for hard page breaks. This enumerated type is defined in
kvxml.h.

Definition

typedef enum tag_KVXMLHardPageBreakType
{

KeyView (11.6) Page 215 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVHPBT_SUPPRESS, /* No markup generated */
KVHPBT_EMPTY, /* Use <Page/> */
KVHPBT_EMPTYID, /* Use <Page id="n"/> */
KVHPBT_ID /* Use <Page id="n"> ... </Page> */

}
KVXMLHardPageBreakType;

Enumerators

KVHPBT_ No markup is generated for hard page breaks. This is the default value.
SUPPRESS

KVHPBT_ Anempty page element, <Page/>, without ID attributes is generated for hard page
EMPTY breaks.

KVHPBT_ Anempty page element, <Page id="n"/>, with ID attributes is generated for hard page
EMPTYID breaks. The ID is incremented for each subsequent hard page break.

KVHPBT_ A "non-empty" "Page" element is generated for hard page breaks. The page tags enclose

ID the contents immediately after the <wWP> tag. When subsequent hard page breaks are
encountered, the previous "Page" element is closed with a </Page> tag, and a <Page
id="..."> opening tagis added. The final "Page" element is closed immediately before
the closing </WP> tag.

KVMetadataType

This enumerated type defines the data type of metadata that can be extracted from a subfile in a mail
message or mail store. If a metadata field has a corresponding KeyView type in KVMetadataType, the
metadata is converted to the KVVMetadataElem structure, and the structure member isDatavalidis 1.
This enumerated type is defined in kvtypes.h.

Definition

typedef enum

{
KVMetadata_Unknown =
KVMetadata_Bool =
KVMetadata_Binary =
KVMetadata_Int4 =
KVMetadata UInt4 =
KVMetadata_Int8 =
KVMetadata_UInt8 =
KVMetadata_String =
KVMetadata_Unicode =
KVMetadata_DateTime =
KVMetadata_Float =
KVMetadata_Double =

. v .

>

P P OO NOUVTEA, WDNEREO
P ® %« ¢« v v v .
.- .

KeyView (11.6) Page 216 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVMetadata_Last

}

KVMetadataType;

Enumerators
KVMetadata_ The value in the property is of an unknown type.
Unknown
KVMetadata_ The value in the property is a Boolean value. The corresponding MAPI type is PT_
Bool BOOLEAN.
KvMetadata_ The value in the property is a byte array. The corresponding MAPI type is PT_
Binary BINARY.
KVMetadata_ The value in the property is a signed 4-byte integer. The corresponding MAPI types
Int4 are PT_I2, PT_SHORT, PT_I4, and PT_LONG.
KVMetadata_ The value in the property is an unsigned 4-byte integer. This type is not currently
UInt4 supported.
KVMetadata_ The value in the property is a signed 8-byte integer. This type is not currently
Int8 supported.
KVMetadata_ The value in the property is an unsigned 8-byte integer. This type is not currently
UInt8 supported.
KvMetadata_ The value in the property is a string. The corresponding MAPI type is PT_STRINGS.
String
KVMetadata_ The value in the property is a Unicode string. The corresponding MAPI type is PT_
Unicode UNICODE.
KvMetadata_ The value in the property is a date and time. The corresponding MAPI type is PT_
DateTime SYSTIME.
KVMetadata_ The value in the property is a 4-byte float. The corresponding MAPI type is PT_
Float FLOAT.
KVMetadata_ The value in the property is an 8-byte double. The corresponding MAPI type is PT_
Double DOUBLE.

Discussion

New types might be added to this enumerated type. When you use this type, your code should ensure
binary compatibility with future releases. See Programming Guidelines, on page 205.

KeyView (11.6) Page 217 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

KVMetaNameType

This enumerated type defines the type of metadata fields extracted from a subfile in a mail message or
mail store. See KVMetaName, on page 125. This enumerated type is defined in kvxtract.h.

Definition

typedef enum

{
KVMetaNameType_Integer = O,
KVMetaNameType_String =1
}
KVMetaNameType;
Enumerators

KVMetaNameType_Integer The metadata fieldis an integer.
KVMetaNameType_String The metadata field is a string.
KVSuminfoType

This enumerated type defines the data type of the metadata field extracted from a document. This
enumerated type is defined in kvtypes.h.

Definition

typedef enum tag_ KVSumInfoType

{
KV_String = ox1,
KV_Int4 = 0x2,
KV_DateTime = 0x3,
KV_ClipBoard = x4,
KV_Bool = 0x5,
KV_Unicode = 0x6,
KV_TIEEES = Ox7,
KV_Other = Ox8

}

KVSumInfoType;

Enumerators

KV_String The value in the metadata field is a string.

KeyView (11.6) Page 218 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

KV_Int4 The value in the metadata field is an integer.

KV

DaEeTime

KV

The value in the metadata field is a date and time. This type is a 64-bit value

representing the number of 100-nanosecond intervals since January 1, 1601 (Windows

FILETIME EPOCH). You might need to convert this value into another format.

Currently not supported.

CleBoard

KV_Bool The value in the metadata field is a Boolean value.

KV_

Unicode

KV_IEEE8 The valuein the metadata field is an IEEE 8-byte integer.

KV_Other The value in the metadata field is user-defined.

KVSumType

The value in the metadata field is a Unicode string.

This enumerated type defines the metadata fields that can be extracted from a document. This

enumerated type is defined in kvtypes. h.

« Types 0to 34 and type 42 are Office summary fields.
« Types 35 to 40 are computer-aided design (CAD) metadata fields.
o Type41, KV_OrigAppVersion, is shared by Office software and CAD.

Types 43 or greater are reserved for any non-standard metadata field defined in a document.

Definition

typedef enum tag_KVSumType

KV_CodePage
KV_Title
KV_Subject
KV_Author
KV_Keywords
KV_Comments
KV_Template
KV_LastAuthor
KV_RevNumber
KV_EditTime
KV_LastPrinted
KV_Create_DTM
KV_LastSave_DTM
KV_PageCount
KV_WordCount
KV_CharCount
KV_ThumbNail

KeyView (11.6)

- [P

-

PR PR RPRPREROUONOODUVUDNWNERO®
m U" b w N '_\ ®\c - - - - -
- - - - - - -

Page 219 of 346

XML Export SDK C Programming Guide

Chapter 11: Enumerated Types

}

KV_AppName 17,
KV_Security 18,
KV_Category 19,
KV_PresentationTarget = 20,
KV_Bytes 21,
KV_Lines 22,
KV_Paragraphs 23,
KV_Slides 24,
KV_Notes 25,
KV_HiddenSlides 26,
KV_MMClips 27,
KV_ScaleCrop 28,
KV_HeadingPairs 29,
KV_TitlesofParts 30,
KV_Manager 31,
KV_Company 32,
KV_LinksUpToDate 33,
KV_HyperlinkBase 34,
KV_Layouts 35,
KV_Objects 36,
KV_FileVersion 37,
KV_LastFileVersion 38,
KV_OrigFileVersion 39,
KV_OrigFileType 40,
KV_OrigAppVersion 41,
KV_ContentStatus 42,
KV_UserDefined 43

KVSumType;

Enumerators

KV_CodePage
KV_Title
KV_Subject
KV_Author

KV_Keywords

KV_Comments

KV_Template

KV_LastSavedby

KeyView (11.6)

The code page of the document.

The contents of the "Title" property field taken from the source document.
The contents of the "Subject" property field taken from the source document.
The contents of the "Author" property field taken from the source document.

The contents of the "Keywords" property field taken from the source
document.

The contents of the "Comments" property field taken from the source
document.

The contents of the "Template" property field taken from the source
document.

The contents of the "Last saved by" property field taken from the source

Page 220 of 346

KV_RevNumber

KV_EditTime

KV_LastPrinted

KV_Create_DTM

KV_LastSave_DTM

KV_PageCount

KV_WordCount

KV_CharCount

KV_ThumbNail

KV_AppName

KV_Security

KV_Category

KV

PrgsentationTarget

KV_Bytes

KV_Lines

KV_Paragraphs

KV_Slides

KV_Notes

KV_HiddenSlides

KeyView (11.6)

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

document.

The contents of the "Revision number" property field taken from the source
document.

The contents of the "Total editing time" property field taken from the source
document.

The contents of the "Printed" property field taken from the source document.

The contents of the "Created" property field taken from the source
document.

The contents of the "Modified" property field taken from the source
document.

The contents of the "Pages" property field taken from the source document.
The field provides the number of pages in the document.

The contents of the "Words" property field taken from the source document.
The field provides the number of words in the document.

The contents of the "Characters" property field taken from the source
document. The field provides the number of characters in the document.

A thumbnail image of a document.

The contents of the "Type" property field taken from the source document.
This field identifies the application used to read the document.

The contents of the "Attributes" property field taken from the source
document.

The contents of the "Category" property field taken from the source
document.

The target format for presentations (35mm, printer, video, and so on).

The contents of the "Size" property field taken from the source document.
The field provides the size of the file in bytes.

The contents of the "Lines" property field taken from the source document.
The field provides the number of lines in the document.

The contents of the "Paragraphs” property field taken from the source
document. The field provides the number of paragraphs in the document.

The contents of the "Slides" property field taken from a presentation
document. The field provides the number of slides in the document.

The contents of the "Notes" property field taken from a presentation
document. The field provides the number of notes in the document.

The contents of the "Hidden slides" property field taken from a presentation
document. The field provides the number of hidden slides in the document.

Page 221 of 346

KV_MMClips

KV_ScaleCrop

KV_HeadingPairs

KV_TitlesofParts

KV_Manager

KV_Company

KV_LinksUpToDate

KV_HyperlinkBase
KV_Layouts
KV_Objects

KV_FileVersion

KV_LastFileVersion

KV_OrigFileVersion

KV_OrigFileType

KV_OrigAppVersion

KV_ContentStatus

KV_UserDefined

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

The contents of the "Multimedia clips" property field taken from a
presentation document. The field provides the number of multimedia clips in
the document.

A Boolean value that specifies whether thumbnails are cropped or scaled.

An internally-used property indicating the grouping of different document
parts and the number of items in each group.

The contents of the "Document Contents" property field taken from the
source document. The field contains a list of the parts of the file, such as the
names of macro sheets in Microsoft Excel or the headings in Word.

The contents of the "Manager" property field taken from the source
document.

The contents of the "Company" property field taken from the source
document.

A Boolean value that specifies whether links in the document are resolved
and current.

The base address used for all relative links in the file.

The number of layouts in the AutoCAD drawing.

The approximate number of objects in the AutoCAD drawing.
The AutoCAD version (for example, R13, R14) of the drawing.

The AutoCAD version (for example, R13, R14) that the AutoCAD drawing
was last saved as.

The AutoCAD version (for example, R13, R14) of the original source file.

The AutoCAD file type (for example, DWG, DXF, or DWB) of the original
source file.

The AutoCAD version (for example, R13, R14) of the application that
created the original source file.

The status of the content, for example Draft, Reviewed, or Final.

The contents of the first entry in the array of non-standard metadata. This
could be user-defined metadata, or metadata unique to afile type.

LPDF_DIRECTION

This enumerated type defines the paragraph direction of extracted paragraphs from a PDF file when
logical order is enabled. This enumerated type is defined in kvtypes.h.

KeyView (11.6) Page 222 of 346

XML Export SDK C Programming Guide
Chapter 11: Enumerated Types

Definition

typedef enum{
LPDF_RAW = O,
LPDF_LTR,
LPDF_RTL,
LPDF_AUTO

} LPDF_DIRECTION ;

Enumerators

LPDF_ Unstructured paragraph flow. This is the default behavior.
RAW

LPDF_ Logical reading order and left-to-right paragraph direction.
LTR

LPDF_ Logical reading order and right-to-left paragraph direction.
RTL

LPDF_ Logical reading order. The PDF reader determines the paragraph direction for each PDF
AUTO page, and then sets the direction accordingly. This is the default when logical order is
enabled.

KeyView (11.6) Page 223 of 346

Part IV: Appendixes

This section lists supported formats, supported character sets and redistributed files, and provides
information on format detection.

« Supported Formats

o Character Sets

« File Formats and Extensions

« Extract and Format Lotus Notes Subfiles
« Export Tokens

« File Format Detection

« Files Required for Redistribution

« Password Protected Files

KeyView (11.6) Page 224 of 346

Appendix A: Supported Formats

This section lists information about the file formats that can be detected and processed (either filtered,
converted, or displayed) by the KeyView suite of products. The KeyView suite includes KeyView Filter
SDK, KeyView Export SDK, and KeyView Viewing SDK.

¢ Supported FOrMatso e 225
® Supported Formats (Detected) 250

Supported Formats

The tables in this section provide the following information:

« Thefile formats supported by the Filter API, Export API, Viewing API, and File Extraction API. The
supported versions and the format’s extension are also listed.

The formats listed in this section can also be detected by the KeyView format detection module
(kwad). The Supported Formats (Detected) section lists formats that can be detected, but cannot be
filtered, converted, or displayed.

« Thefile formats for which KeyView can detect and extract the character set and metadata
information (properties such as title, author, and subject).

Even though a file format might be able to provide character set information, some documents might
not contain character set information. Therefore, the document reader would not be able to determine
the character set of the document. In this case, either the operating system code page or the
character set specified in the API is used.

« The document reader used to filter each format.

Key to Support Tables

Symbol Description

Y The format is supported.
You can extract metadata for this format.

You can determine the character set for this format.

N The format is not supported.
You cannot extract metadata for this format.

You cannot determine the character set for this format.

P Partial metadata is extracted from this format. Some non-standard fields are not
extracted.

Only text is extracted from this format. Formatting information is not extracted.

M Only metadata (title, subject, author, and so on) is extracted from this format. Text and

KeyView (11.6) Page 225 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

Key to Support Tables, continued

Symbol Description

formatting information are not extracted.

KeyView (11.6) Page 226 of 346

Archive Formats

Supported Archive Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
7-Zip 4.57 z7zsr, 72 N N Y Y N n/a N
multiarcsr’
AD1 n/a adisr AD1 N N Y Y N n/a N
ARJ n/a multiarcsr ARJ N N N Y N n/a N
B1 n/a b1sr B1 N N Y Y N n/a N
BinHex n/a kvhagxsr HQX N N Y Y N n/a N
Bzip2 n/a bzip2sr BZ2 N N Y Y N n/a N
Expert Witness 6 encasesr EO1, LO1 N N Y Y N n/a N
Compression Format
(EnCase) 7 encase2sr Lx01 N N Y Y N n/a N
GzIP 2 kvgzsr Gz N N N Y N n/a N
kvgz GZ N N Y N N n/a N
ISO n/a isosr ISO N N Y Y N n/a N
Java Archive n/a unzip JAR N N Y Y N n/a N
Legato EMailXtender n/a emxsr EMX N N Y Y N n/a N

17zip is supported with the multiarcsr reader on some platforms for Extract.

KeyView (11.6) Page 227 of 346

XML Export SDK C Programming Guide

Supported Archive Formats, continued

Format

Archive

MacBinary

Mac Disk Copy Disk Image
Microsoft Backup File
Microsoft Cabinet format

Microsoft Compiled HTML
Help

Microsoft Compressed
Folder

PKZIP

RAR archive

RARS5 archive

Tape Archive

UNIX Compress

UUEncoding

XZ

KeyView (11.6)

Version

n/a
n/a
n/a
1.3
3

n/a

through
9.0

2.0
through
3.5

5
n/a

n/a

all
versions

n/a

Reader

macbinsr
dmgsr
bkfsr
cabsr

chmsr

Izhsr

unzip

rarsr

multiarcsr

tarsr

kvzeesr

kvzee

uudsr

multiarcsr

Extension Filter Export View Extract Metadata Charset Header/Footer

BIN
DMG
BKF
CAB
CHM

LZH

LHA

ZIP

RAR

RARS
TAR

UUE

XZ

Z Z2 Z2 Z Z

zZz Z2 Z2 Z Z

Z Z Z Z Z

Z Z Z Z Z

< < < =< <

< < z < z

< < < =< <

< z < =< <

Z Z Z Z Z

Z Z Z Z Z

n/a
n/a
n/a
n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Z Z Z Z Z

ZzZ Z Z Z Z

Page 228 of 346

XML Export SDK C Programming Guide

Supported Archive Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Windows Scrap File n/a olesr SHS N N N Y N n/a N
WinZip through unzip ZIP N N Y Y N n/a N

10

Binary Format

Supported Binary Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Executable n/a exesr EXE N N Y N N n/a N
Link Library n/a exesr DLL N N Y N N n/a N

Computer-Aided Design Formats

Supported CAD Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
AutoCAD R13, R14, kpODArdr DWG Y Y2 Y3 N Y Y N
Drawing R15/2000, 2004, kpDWGrdr'

2007, 2010, 2013

10n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is

supported through the kpDWGrdr or kpDXFrdr reader.
20n non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other

versions, only text extraction is supported.
30n non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other

versions, only text extraction is supported.

KeyView (11.6) Page 229 of 346

XML Export SDK C Programming Guide

Supported CAD Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
AutoCAD R13, R14, kpODArdr DXF Y Y2 Y3 N Y Y N

Drawing R15/2000, 2004, kaXFrdr1

Exchange 2007, 2010, 2013

CATIAformats 5 kpCATrdr CAT4 Y N N N Y N N

Microsoft Visio 4, 5, 2000, 2002, vsdsr VSD Y Y Y Y6 Y Y N

2003, 2007, 2010°

=<
=<
=<
Z
<
<
Z

kpVSD2rdr VSD, VSS
VST

2013 ActiveX VSDM N N Y’ N Y N N
components VSSM
VSTM
VSDX
VSSX
VSTX

kpVSDXrdr VSDM Y Y v4 Y Y Y N

10n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.

20n non-Windows platforms, graphic rendering is supported through the kpDXFrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.

30n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.

4All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

5Viewing and Export use the graphic reader, kpVSD2rdr for Microsoft Visio 2003, 2007, and 2010, and vsdsr for all earlier versions. Image fidelity
in Viewing and Export is therefore only supported for versions 2003 and above. Filter uses the graphic reader kpVSD2rdr for Microsoft Visio 2003,
2007, and 2010, and vsdsr for all earlier versions.

6Extraction of embedded OLE objects is supported for Filter on Windows platforms only.

"Visio 2013 is supported in Viewing only, with the support of ActiveX components from the Microsoft Visio 2013 Viewer. Image fidelity is
supported but other features, such as highlighting, are not.

KeyView (11.6) Page 230 of 346

XML Export SDK C Programming Guide

Supported CAD Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VSSM
VSTM
VSDX
VSSX
VSTX

Unigraphics kpUGrdr PRT Y N N N N N N
(UG)NX

Database Formats

Supported Database Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
dBase "+, 1Iv dbfsr DBF Y Y Y N N N N

Database

Microsoft 95, 97, 2000, 2002, 2003, mdbsr MDB, Y T T N N y? N

Access 2007, 2010, 2013, 2016 ACCDB

Microsoft 2000, 2002, 2003, 2007, mppsr MPP Y Y Y Y Y Y N

Project 2010, 2013

1Charset is not supported for Microsoft Access 95 or 97.

KeyView (11.6) Page 231 of 346

XML Export SDK C Programming Guide

Desktop Publishing

Supported Desktop Publishing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Publisher 98t02016 mspubsr PUB Y T T Y Y Y N

Display Formats

Supported Display Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Adobe PDF 1.1t01.7 pdfsr PDF Y Y N 4 Y Y N

pdf2sr PDF N Y N N N N N

kppdfrdr PDF N Y Y N N N N

kppdf2rdr? PDF N N Y N N N N

Tincludes support for extraction of subfiles from PDF Portfolio documents.
2kppdf2rdr is an alternate graphic-based reader that produces high-fidelity output but does not support other features such as highlighting or text
searching.

KeyView (11.6) Page 232 of 346

XML Export SDK C Programming Guide

Graphic Formats

Supported Graphic Formats

Format Version
Computer Graphics n/a
Metafile
CorelDRAW?2 through
9.0
10, 11,
12, X3
DCX Fax System n/a
Digital Imaging & n/a

Communications in
Medicine (DICOM)

Encapsulated PostScript TIFF

(raster) header
Enhanced Metafile n/a
GIF 87, 89
JBIG2 n/a

Reader

kpcgmrdr1

kpcdrrdr

kpdcxrdr

dcmsr

kpepsrdr

kpemfrdr
kpgifrdr
gifsr
kpJBIG2rdr

TFiles with non-partitioned data are supported.

2CDR/CDR with TIFF header.

KeyView (11.6)

Extension

CGM

CDR

DCX
DCM

EPS

EMF
GIF

JBIG2

Filter Export View Extract Metadata Charset Header/Footer

Y

z =2 zZz <

Y

< z < <

Y

< z < <

N

Zz Z Z Z

N

z < zZz <

N

z Z2 Z2 Z

N

z Z Z Z

Page 233 of 346

XML Export SDK C Programming Guide

Supported Graphic Formats, continued

Format Version
JPEG n/a
JPEG 2000 n/a
Lotus AMIDraw n/a
Graphics

Lotus Pic n/a
Macintosh Raster 2
MacPaint n/a

Microsoft Office Drawing n/a

Omni Graffle n/a
PC PaintBrush 3
Portable Network n/a
Graphics

SGI RGB Image n/a
Sun Raster Image n/a

KeyView (11.6)

Reader
kpjpgrdr
ipgsr
kpjp2000rdr
jp2000sr

kpsdwrdr

kppicrdr

kppctrdr

kpmacrdr
kpmsordr
kpGFLrdr
kppcxrdr
kppngrdr
pngsr
kpsgirdr

kpsunrdr

Extension

JPEG

JP2, JPF,
J2K, JPWL,
JPX, PGX

SDwW

PIC

PIC
PCT

PNTG
MSO
GRAFFLE
PCX

PNG
PNG
RGB

RS

Filter Export View Extract Metadata Charset Header/Footer

N

M
N

z <

z Zz2 Z Z2 Z < Z2 Z

Y

< 2 < £

< <

< < z < < z < <

Y

N

<

< < zZz < < zZ =< <

N

N

z

Z Z Z Z Z Z Z Z

N

Y

z

z z <X Zz zZz <X zZz Zz

N

N

pd

zZ Zz2 Z2 Z2Z Z < Z2 Z

N

N

z

zZz Z2 Z Z Z Z Z2 Z

Page 234 of 346

XML Export SDK C Programming Guide

Supported Graphic Formats, continued

Format

Tagged Image File

Truevision Targa

Windows Animated
Cursor

Windows Bitmap

Windows lcon Cursor
Windows Metafile
WordPerfect Graphics 1

WordPerfect Graphics 2

Version

through
6.01

n/a

n/a

n/a

2,7

Reader
tifsr
kptifrdr
kpTGArdr

kpanirdr

kpbmprdr
bmpsr
kpicordr
kpwmfrdr
kpwpgrdr

kpwg2rdr

Extension
TIFF

TIFF

TGA

ANI

BMP
BMP
ICO

WMF
WPG
WPG

Filter Export View Extract Metadata Charset Header/Footer

M

Zz Z Z

z Zz2 < Z Z Z

M

< < <

< < < < z <

N

< < <

< < < < zZ <

N

Zz Z Z

Z Z Z Z Z Z

Y

Zz Z Z

z =z Zz Z <X Z

N

Zz2 Z2 Z2

zZ2 Z2 Z2 Z2 Z2 Z

N

Zz Z Z

Zz Z2 Z Z Z Z

The following compression types are supported: no compression, CCITT Group 3 1-Dimensional Modified Huffman, CCITT Group 3 T4 1-

Dimensional, CCITT Group 4 T6, LZW, JPEG (only Gray, RGB and CMYK color space are supported), and PackBits.

KeyView (11.6)

Page 235 of 346

XML Export SDK C Programming Guide

Mail Formats

Supported Mail Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Documentum n/a msgsr EMCMF N N Y Y Y Y N

EMCMF

Domino XML n/a dxlsr DXL N N Y Y Y N N

Language1

GroupWise FileSurf n/a gwfssr GWFS N N Y Y Y N N

Legato Extender n/a onmsr ONM N N Y Y Y N N

Lotus Notes 4,5,6.0,6.5,7.0,8.0 nsfsr NSF N N Y Y Y N N

database

Mailbox? Thunderbird 1.0, mbxsr® MBX N N T Y Y Y N
Eudora 6.2

Microsoft Entourage 2004 entsr various N N Y Y Y Y N

Database

1Supports non-encrypted embedded files only.

2KeyView supports MBX files created by Eudora Email and Mozilla Thunderbird. MBX files created by other common mail applications are
typically filtered, converted, and displayed.

3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

KeyView (11.6) Page 236 of 346

XML Export SDK C Programming Guide

Supported Mail Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Microsoft Outlook 97, 2000, 2002, msgsr! MSG, Y T T Y Y Y2 N

2003, 2007, 2010, OFT

2013, 2016
Microsoft Outlook 5.0,6.0 dbxsr DBX N N Y Y Y Y N
DBX
Microsoft Outlook Windows 6 emlsr3 EML Y T T Y Y Y N
Express Maclntosh 5

mbxs* EML N N T Y Y Y N

Microsoft Outlook 1.0,2.0 icssr ICS,VCS N N Y Y Y Y N
iCalendar
Microsoft Outlook 2011 olmsr OLM N N Y Y N Y N
for Macintosh
Microsoft Outlook 97, 2000, 2002, pffsr5 OST N N Y Y Y Y N

2003, 2007, 2010,
2013

Offline Storage File

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
2Returns "Unicode" character set for version 2003 and up, and "Unknown" character set for previous versions.

3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

SThe reader pffsr is available only on Windows and Linux.

KeyView (11.6) Page 237 of 346

XML Export SDK C Programming Guide

Supported Mail Formats, continued

Format Version

Microsoft Outlook
Personal Folder

97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

97, 2000, 2002,
2003, 2007, 2010,
2013

Microsoft Outlook
vCard Contact

2.1,3.0,4.0

Text Mail (MIME) n/a

Transport Neutral n/a
Encapsulation
Format

Multimedia Formats

Reader

pstsr1 2

pstnsr

vcfsr

emlsr3
mbxsr#

tnefsr

Extension Filter Export View Extract Metadata Charset Header/Footer

PST

PST

VCF

various
various

various

N

N

Y

Y

Y

N

N

Viewing SDK plays some multimedia files using the Windows Media Control Interface (MCI). MCl is a set of Windows APIs that communicate

with multimedia devices.

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

2Uses Microsoft Messaging Application Programming Interface (MAPI). Note that the native PST reader (pstsr) works only on Windows, and
requires that you have Microsoft Outlook installed. As an alternative, the MAPI reader (pstnsr) runs on all platforms, and does not require
Microsoft Outlook. For more information on using the native PST reader or the MAPI reader, see the sections 'Use the Native PST Reader

(pstnsr) ' and 'Use the MAPI Reader (pstsr)' in Chapter 3.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

KeyView (11.6)

Page 238 of 346

XML Export SDK C Programming Guide

Supported Multimedia Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Advanced Systems Format 1.2 asfsr ASF N N N N Y N N
WMA
WMV
Audio Interchange File n/a MCI AIFF N N Y N N N N
Format
aiffsr AIFF M N N N Y N N
Microsoft Wave Sound n/a MCI WAV N N Y N N N N
riffsr WAV M N N N Y N N
MIDI n/a MCI MID N N Y N N N N
MPEG-1 Audio layer 3 ID3v1and MCI MP3 N N Y N N N N
v2
mp3sr MP3 M M Y N Y N N
MPEG-1 Video 2,3 MCI MPG N N Y N N N N
MPEG-2 Audio n/a MCI MPEGA N N Y N N N N
MPEG-4 Audio n/a mpegdsr MP4 M N N N Y N N
3GP
NeXT/Sun Audio n/a MCI AU N N Y N N N N
QuickTime Movie 2,34 MCI QT N N Y N N N N
MOV
Windows Video 2.1 MCI AVI N N Y N N N N
NOTE:

Depending on the default multimedia player installed on your computer, the View API might not be able to play some supported multimedia
formats. To play multimedia files, the View API uses the Windows Media Control Interface (MCI) to communicate with the multimedia

KeyView (11.6) Page 239 of 346

XML Export SDK C Programming Guide

player installed on your computer. If the player does not play a multimedia file that is supported by the Viewing SDK, the View API cannot
play the file.

If you cannot play a supported multimedia file by using the View API, install a different multimedia player or compressor/decompressor
(codec) component.

Presentation Formats

Supported Presentation Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Keynote 2, 3,08, ‘09 kplWPGrdr Gz Y Y Y N Y Y N
'13,'16 kplIWPG13rdr KEY Y N N N N N N

Applix Presents 4.0,4.2,4.3, kpagrdr AG Y Y Y N N N N
4.4

Corel Presentations 6,7,8,9, 10, kpshwrdr SHW Y Y Y N N N N
11,12, X3

Extensible Forms n/a kpXFDLrdr XFD Y Y Y N Y Y N

Description Language XFDL

Lotus Freelance 96, 97, 98, kpprzrdr PRZ Y Y Y N N N N

Graphics R9, 9.8

Lotus Freelance 2 Kpprerdr PRE Y Y Y N N N N

Graphics 2

Macromedia Flash through 8.0 swfsr SWF Y Y Y N N Y1 N

1The character set cannot be determined for versions 5.x and lower.

KeyView (11.6) Page 240 of 346

XML Export SDK C Programming Guide

Supported Presentation Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Microsoft OneNote 2007, 2010, kpONErdr ONE Y Y Y Y N Y N
2013, 2016 ONETOC2
Microsoft PowerPoint 98 kpp40rdr PPT Y Y Y N N N N
Macintosh
2001, v.X, kpp97rdr PPT Y Y Y N P Y N
2004 PPS
POT
Microsoft PowerPoint 4 kpp40rdr PPT Y Y Y N P N N
PC
Microsoft PowerPoint 95 kpp95rdr PPT Y Y Y N P Y N
Windows
Microsoft PowerPoint 97, 2000, kpp97rdr PPT Y Y Y Y P Y y1
Windows 2002, 2003 PPS
POT
Microsoft PowerPoint 2007, 2010, kpppxrdr PPTX Y Y Y Y Y Y Y
Windows XML 2013, 2016 PPTM
POTX
POTM
PPSX
PPSM
PPAM
OASIS Open 1,22 kpodfrdr SXD Y Y Y \& Y Y N

1Slide footers are supported for Microsoft PowerPoint 97 and 2003.
2Generated by OpenOffice Impress 2.0, StarOffice 8 Impress, and IBM Lotus Symphony Presentation 3.0.

3Supported using the olesr embedded objects reader.

KeyView (11.6) Page 241 of 346

XML Export SDK C Programming Guide

Supported Presentation Formats, continued

Format Version

Document Format

OpenOffice Impress, 1to5
LibreOffice Impress

StarOffice Impress 6,7,8,9

Spreadsheet Formats

Supported Spreadsheet Formats

Format Version

Apple iWork Numbers ‘08, ‘09

'13,'16
Applix Spreadsheets 42,43,44
Comma Separated n/a
Values
Corel Quattro Pro 5,6,7,8
X4
Data Interchange n/a

KeyView (11.6)

Reader

SOsr

Sosr

Reader
iwsssr
iwss13sr
assr

csvsr

gpssr

gpwsr

difsr

Extension

SXI
ODG
ODP

SXI
SXP
ODP

SXI
SXP
ODP

Extension
Gz
NUMBERS
AS

CsVv

WB2
WB3

QPW

Filter Export View Extract Metadata Charset Header/Footer

Filter

Y

Y
Y
Y

Export

< < -+

View

< < -

Extract

N

N
N
N

Metadata Charset
Y

N
N
N

Y

Y
Y
N

Header/Footer

N

N
N
N

Page 242 of 346

XML Export SDK C Programming Guide

Supported Spreadsheet Formats, continued

Format

Format

Lotus 1-2-3

Lotus 1-2-3

Lotus 1-2-3 Charts
Microsoft Excel Charts

Microsoft Excel
Macintosh

Microsoft Excel
Windows

Microsoft Excel
Windows XML

Microsoft Excel Binary
Format

Microsoft Works
Spreadsheet

1 Supported using the embedded objects reader olesr.

Version

96, 97, R9, 9.8
2,3,4,5
2,3,4,5
2,3,4,5,6,7

98, 2001, v.X,
2004

2.2 through
2003

2007, 2010,
2013, 2016

2007, 2010,
2013, 2016

2,3,4

Reader

[123sr
wkssr
kpchtrdr
kpchtrdr

xlssr

xlssr

xlsxsr

xlsbsr

mwssr

Extension

123
WK4
123
XLS
XLS

XLS
XLW
XLT
XLA

XLSX
XLTX
XLSM
XLTM
XLAM

XLSB

S30
S40

Filter Export View Extract Metadata Charset Header/Footer

< z z < <

< < < =< <

2Supported for versions 97 and higher using the embedded objects reader olesr.

KeyView (11.6)

< < < =< <

Z Z Z Z

< Z2 Z Z T

< z z < <

Z Z Z Z Z

Page 243 of 346

XML Export SDK C Programming Guide

Supported Spreadsheet Formats, continued

Format

OASIS Open
Document Format

OpenOffice Calc,
LibreOffice Calc

StarOffice Calc

Text and Markup Formats

Version

1,21

1t05

6,7,89

Supported Text and Markup Formats

Format
ANSI
ASCII
HTML

Microsoft Excel Windows
XML

Microsoft Word Windows
XML

Microsoft Visio XML

Version
n/a

n/a

3,4
2003

2003

2003

Reader

odfsssr

Sosr

SOsr

Reader
afsr
afsr
htmsr

xmisr

xmisr

xmisr

Extension

ODS
SXC
STC

SXC
ODS
OTS

SXC
ODS

Extension
TXT

TXT

HTM

XML

XML

VDX

Filter Export View Extract Metadata Charset Header/Footer

Y

Filter Export View

Y

Y
Y
Y

Y

Y

Y
Y
T

Y

Y

Y
Y
T

Y2 Y Y N
N Y Y N
N Y Y N

Extract Metadata Charset Header/Footer

N N N N
N N N N
N P Y N
N Y Y N
N Y Y N
N Y Y N

1Generated by OpenOffice Calc 2.0, StarOffice 8 Calc, and IBM Lotus Symphony Spreadsheet 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6)

Page 244 of 346

XML Export SDK C Programming Guide

Supported Text and Markup Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
VTX
MIME HTML n/a mhtsr MHT Y Y Y N Y Y N
Rich Text Format 1 through rtfsr RTF Y Y Y N P Y Y
1.7
Unicode HTML n/a unihtmsr HTM Y Y Y N Y Y N
Unicode Text 3,4 unisr TXT Y Y Y N N Y N
XHTML 1.0 htmsr HTM Y Y Y N Y Y N
XML (generic) 1.0 xmisr XML Y T T N Y Y N

Word Processing Formats

Supported Word Processing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Adobe FrameMaker 5,565,6,7 mifsr MIF Y Y Y N N Y N
Interchange Format
Apple iChat Log 1, AV 2 ichatsr ICHAT Y Y Y N N N N
AV 2.1,AV 3
Apple iWork Pages ‘08, ‘09 iwwpsr GZ Y Y Y N Y Y N
'13,'16 iwwp13sr PAGES Y T T N N N N
Applix Words 3.11,4, 4.1, awsr AW Y Y Y N N Y Y
4.2,43,4.4

KeyView (11.6) Page 245 of 346

XML Export SDK C Programming Guide

Supported Word Processing Formats, continued

Format

Corel WordPerfect
Linux

Corel WordPerfect
Macintosh

Corel WordPerfect
Windows

Corel WordPerfect
Windows

DisplayWrite
Folio Flat File

Founder Chinese E-
paper Basic

Fujitsu Oasys

Haansoft Hangul

Health level7

IBM DCA/RFT

(Revisable Form Text)

Version

6.0, 8.1

1.02, 2, 2.1,
2.2,3,3.1

5,56.1

6,7,8,910,
11,12, X3

4
3.1
3.2.1

7
97

2002, 2005,
2007, 2010

2.0

SC23-0758-1

Reader

wpBsr

wpmsr

wosr

wpBsr

dwd4sr
foliosr

cebsr!

oazsr
hwpsr

hwposr

hi7sr

dcasr

Extension

WPS

WPM

WO

WPD

FFF
CEB

OA2
HWP
HWP

HL7
DC

1This reader is only supported on Windows 32-bit platforms.

KeyView (11.6)

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

Y

N

P

Y

N

Page 246 of 346

XML Export SDK C Programming Guide

Supported Word Processing Formats, continued

Format
JustSystems Ichitaro
Lotus AMI Pro

Lotus AMI Professional
Write Plus

Lotus Word Pro
Lotus SmartMaster

Microsoft Word
Macintosh

Microsoft Word PC

Microsoft Word
Windows

Microsoft Word
Windows

Microsoft Word
Windows

Microsoft Word
Windows XML

1 Supported using the embedded objects reader olesr.

2Supported using the embedded objects reader olesr.

KeyView (11.6)

Version

8 through 2013
2,3

2.1

96, 97, R9
96, 97
4,5, 6,98

2001, v.X,
2004

4,5,55,6
1.0and 2.0

6,7,8,95

97, 2000,
2002, 2003

2007, 2010,
2013, 2016

Reader
jtdsr
lasr

lasr

Iwpsr
Iwpsr
mbsr

mw38sr

mwsr

misr

mwosr

mw38sr

mwxsr

Extension
JTD

SAM

AMI

LWP
MWP
DOC

DOC
DOT

DOC
DOC

DOC

DOC
DOT

DOCM
DOCX

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

< < =< <

<

Y

Y

< < =< <

=<

Y

Y

< < =< <

<

N

N

P

P

< < z T

z

N

Y

< Zz2 Z2 Z

pd

Y

Y

z < zZz <

<

Page 247 of 346

XML Export SDK C Programming Guide

Supported Word Processing Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
DOTX
DOTM
Microsoft Word 2007, 2010, mwxsr XML Y Y Y Y Y Y Y
Windows Flat XML 2013, 2016
Microsoft Works 1,2,3,4 mswsr WPS Y Y Y N N N Y
Microsoft Works 6, 2000 msw6sr WPS Y Y Y N N N Y
Microsoft Windows 1,2,3 mwsr WRI Y Y Y N N Y N
Write
OASIS Open 1,21 odfwpsr ODT Y Y Y Y2 Y Y Y
Document Format SXW
STW
Omni Outliner v3, OPML, 003sr 003 Y Y Y N N Y N
OOQuitline OPML
OOUTLINE
OpenOffice Writer, 1to5 sosr SXW Y T T N Y Y N
LibreOffice Writer OoDT
Open Publication 2.0,3.0 epubsr EPUB Y Y Y N Y Y N
Structure eBook
StarOffice Writer 6,7,8,9 sosr SXW Y T T N Y Y N
oDT

1Generated by OpenOffice Writer 2.0, StarOffice 8 Writer, and IBM Lotus Symphony Documents 3.0.

2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 248 of 346

XML Export SDK C Programming Guide

Supported Word Processing Formats, continued

Format
Skype Log
WordPad

XML Paper
Specification

XyWrite

Yahoo! Instant
Messenger

Version
3
through 2003

n/a

4.12

n/a

Reader
skypesr
rtfsr

Xpssr

XyWsr

yimsr1

Extension
DBB
RTF
XPS

XY4
DAT

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

Y

Y

Y

Y

N

N

N

P

N

Y

N

N

To successfully use this reader, you must set the KV_YAHOO_ID environment variable to the Yahoo user ID. You can optionally set the Kv_
OTHER_YAHO0O_ID environment variable to the other Yahoo user ID. If you do not set it, "Other" is used by default. If you enter incorrect values for

the environment variables, erroneous data is generated.

KeyView (11.6)

Page 249 of 346

Supported Formats (Detected)

The file formats listed in this section can be detected by the KeyView format detection module (kwad),
but cannot be filtered, converted, or displayed. The detection module determines a file’s format and

reports the information to the developer’s application.

The formats listed in Supported Formats, on page 225 can be detected as well as filtered, exported, and
viewed.

3D Systems STL format

Ability Office (SS, DB, GR, WP, COM)
AC3 audio

ACT

Adobe FrameMaker

Adobe FrameMaker Markup Language
AES Multiplus Comm

Aldus Freehand (Macintosh)

Aldus PageMaker (DOS)

Aldus PageMaker (Macintosh)
Amiga IFF-8SVX sound

Amiga MOD sound

Apple Binary Property List

Apple Double

Apple iWork

Apple Photoshop Document

Apple Single

Apple XML Property List
Appleworks

Applix Alis

Applix Asterix

Applix Graphics

ARC/PAK Archive

ASCll-armored PGP encoded
ASCllI-armored PGP Public Keyring
ASCll-armored PGP signed
AutoDesk Animator FLIC Animation
AutoDesk Animator Pro FLIC Animation
AutoDesk WHIP

AutoShade Rendering

B1 Archive

KeyView (11.6)

Page 250 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« BlackBerry Activation File

« CADAM Drawing

« CADAM Drawing Overlay

o CCITT Group 3 1-Dimensional (G31D)
« COMET TOP Word

« Confifer Software WavPack

« Convergent Tech DEF Comm.

« Corel Draw CMX

« cpio Archive (UNIX/VAX/SUN)

« CPT Communication

« Creative Voice (VOC) sound

« Curses Screen Image (UNIX/VAX/SUN)
« DataPoint VISTAWORD

« DCXFax

« DEC WPS PLUS

« DECdx

« Desktop Color Separation (DCS)

« Device Independent file (DVI)

« DG CEOwrite

« DG Common Data Stream (CDS)

« DIF Spreadsheet

« Digital Document Interchange Format (DDIF)
« Digital Imaging and Communications in Medicine (DICOM)
« Disk Doubler Compression

« EBCDIC Text

o eFax

« ENABLE

« ENABLE Spreadsheet (SSF)

« Envoy (EVY)

« Executable UNIX/VAX/SUN

« FileMaker (Macintosh)

o FPXformat

« Framework

o Framework Il

o Freehand 11

o FTP Session Data

« GEM Bit Image

« Ghost Disk Image

KeyView (11.6) Page 251 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« Google SketchUp

« Graphics Environment Manager (GEM VDI)
« Harvard Graphics

« Hewlett Packard

« Honey Bull DSA101

« HP Graphics Language (HP-GL)

« HP Graphics Language (Plotter)

« HP PCL and PJL Languages

« HP Word PC

« |IBM 1403 Line Printer

« IBMDCA-FFT

« IBM DCF Script

o Informix SmartWare ||

o Informix SmartWare || Communication File
« Informix SmartWare Il Database

o Informix SmartWare Spreadsheet

o Interleaf

« 1SO 10303-21 STEP format

« JavaClass file

« JPEG File Interchange Format (JFIF)
« Keyhole Markup Language

« KW ODA G4 (G4)

« KW ODA G31D (G31)

« KW ODA Intemal G32D (G32)

« KW ODA Internal Raw Bitmap (RBM)
« Lasergraphics Language

« Link Library UNIX/VAX/SUN

« Lotus Notes Bitmap

« Lotus Notes CDF

« Lotus Screen Cam

o Lyrix

« Macromedia Director

o MacWrite

o MacWrite Il

« MASS-11

« MATLAB MAT Format

« Micrografx Designer

« Microsoft Access 2007

KeyView (11.6) Page 252 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« Microsoft Access 2007 Template

« Microsoft Common Object File Format (COFF)
« Microsoft Compiled HTML Help

« Microsoft Device Independent Bitmap

« Microsoft Document Imaging (MDI)

« Microsoft Excel 2007 Macro-Enabled Spreadsheet Template
« Microsoft Excel 2007 Spreadsheet Template
« Microsoft Exchange Server Database File

« Microsoft Object File Library

« Microsoft Office Drawing

« Microsoft Office Groove

« Microsoft Outlook Restricted Permission Message File
« Microsoft Windows Cursor (CUR) Graphics

« Microsoft Windows Group File

« Microsoft Windows Help File

o Microsoft Windows Icon (ICO)

« Microsoft Windows NT Event Log

« Microsoft Windows OLE 2 Encapsulation

« Microsoft Windows Vista Event Log

« Microsoft Word (UNIX)

« Microsoft Works (Macintosh)

« Microsoft Works Communication (Macintosh)
« Microsoft Works Communication (Windows)
« Microsoft Works Database (Macintosh)

« Microsoft Works Database (PC)

« Microsoft Works Database (Windows)

« Microsoft Works Spreadsheet (Macintosh)

« Microstation

« Milestone Document

« MORE Database Outliner (Macintosh)

« MPEG4 (ISO IEC MPEG4)

« MPEG-PS container with CDXA stream

« MS DOS Batch File format

« MS DOS Device Driver

« MultiMate 4.0

« Multiplan Spreadsheet

« NavyDIF

« NBI Async Archive Format

KeyView (11.6) Page 253 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« NBI Net Archive Format

« Nero Encrypted File

« Netscape Bookmark file

« NeWS font file (SUN)

« NIOS TOP

« NotaBene

« NURSTOR Drawing

« Object Module UNIX/VAX/SUN
. ODA/ODIF

. ODA/ODIF (FOD 26)

« Office Writer

« OLE DIB object

« OLIDIF

« Open PGP (new format packets)
o 0OS/2 PM Metafile Graphics

« PaperPort image file

« Paradox (PC) Database

« PC COM executable (detected in file mode only)
« PC Library Module

« PC Object Module

o PC True Type Font

« PCD Image

« PeachCalc Spreadsheet

« Persuasion Presentation

« PEXBinary Archive (SUN)

« PGP Compressed Data

o PGP Encrypted Data

« PGP Public Keyring

« PGP Secret Keyring

« PGP Signature Certificate

« PGP Signed and Encrypted Data
« PGP Signed Data

« Philips Script

o PKCS#12 (p12) Format

« Plan Perfect

« Portable Bitmap Utilities (PBM)
« Portable Greymap Utilities (PGM)
« Portable Pixmap Utilities (PPM)

KeyView (11.6) Page 254 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« PostScript File

o PostScript Type 1 Font File

« PRIMEWORD

« Program Information File

« PTC Creo

« Q&AforDOS

« Q& A for Windows

« Quadratron Q-One (V1.93J)

« Quadratron Q-One (V2.0)

« Quark Xpress (Macintosh)

o QuickDraw 3D Metafile (3DMF)

« Real Audio

« ReallLegal E-Transcript

« Reflex Database (R2D)

« RIFF Device Independent Bitmap

« RIFF MIDI

« RIFF Multimedia Movie

« SAMNA Word IV

« Samsung Electronics JungUm Global format
o SEG-Y Seismic Data format

« Serialized Object Format (SOF) Encapsulation
« SGML

« Simple Vector Format (SVF)

o SMTP document

« SolidWorks

« Sony WAVEG64 format

« Star Office Calc Spreadsheet (versions 3-5)
« Star Office Impress Presentation (versions 3-5)
« Star Office Math (versions 3-5)

« Star Office Writer Text (versions 3-5)

« Stufflt Archive (Macintosh)

« SUN vfont definition

o SYLK Spreadsheet

« Symphony Spreadsheet

« Targon Word (V 2.0)

« Unigraphics NX

« Uniplex (V6.01)

« UNIX SHAR Encapsulation

KeyView (11.6) Page 255 of 346

XML Export SDK C Programming Guide
Appendix A: Supported Formats

« Usenet format

o Volkswriter

« Vorbis OGG format

« VRML

« VRML2.0

« WANGPC

« Wang WITA

« WANG WPS Comm.

« Web ARChive (WARC)

« Windows C++ Object Storage
« Windows Journal

« Windows Micrografx Draw (DRW)
« Windows Palette

« Windows scrap file (SHS)

o Wireless Markup Language

« Word Connection

« WordMARC word processor

« WordPerfect General File

« WordStar

« WordStar6.0

« WordStar 2000

o WriteNow

« Writing Assistant word processor
« X Bitmap (XBM)

« XlImage

« X Pixmap (XPM)

« Xerox 860 Comm.

« Xerox DocuWorks

« Xerox Writer word processor
« Yahoo! Messenger chat log

« Zipped Keyhole Markup Language

KeyView (11.6) Page 256 of 346

Appendix B: Character Sets

This section provides information on the handling of character sets in the KeyView suite of products,
which includes KeyView Filter SDK, KeyView Export SDK, and KeyView Viewing SDK.

® Multibyte and Bidirectional SUPPOrt 257
® Coded Character Sets .. il 265

Multibyte and Bidirectional Support

The KeyView SDKs can process files that contain multibyte characters. A multibyte character
encoding represents a single character with consecutive bytes. KeyView can also process text from
files that contain bidirectional text. Bidirectional text contains both Latin-based text which is read from
left to right, and text that is read from right to left (Hebrew and Arabic).

The following table indicates which character encodings are supported by KeyView for each format.

Multibyte and bidirectional support

Format Single-byte Multibyte Bidirectional
Archive

7-Zip (72) n/a n/a n/a
AD1 Evidence file n/a n/a n/a
ADJ n/a n/a n/a
B1 n/a n/a n/a
BinHex (HQX) n/a n/a n/a
Bzip2 (BZ2) n/a n/a n/a
EnCase — Expert Witness n/a n/a n/a
Compression Format (E01)

GZIP (GZ) n/a n/a n/a
ISO (ISO) n/a n/a n/a
Java Archive (JAR) n/a n/a n/a
Legato EMailXtender Archive n/a n/a n/a
(EMX)

MacBinary (BIN) n/a n/a n/a
Mac Disk Copy Disk Image (DMG) n/a n/a n/a
Microsoft Backup File (BKF) n/a n/a n/a

KeyView (11.6) Page 257 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Microsoft Cabinet format (CAB) n/a n/a n/a
Microsoft Compiled HTML Help n/a n/a n/a
(CHM)

Microsoft Compressed Folder n/a n/a n/a
(LZH)

PKZip (ZIP) n/a n/a n/a
Microsoft Outlook DBX (DBX) Y Y Y
Microsoft Outlook Offline Storage Y Y Y
File (OST)

RAR Archive (RAR) n/a n/a n/a
Tape Archive (TAR) n/a n/a n/a
UNIX Compress (Z) n/a n/a n/a
UUEncoding (UUE) n/a n/a n/a
Windows Scrap File (SHS) n/a n/a n/a
WinZip (ZIP) n/a n/a n/a
Binary

Executable (EXE) n/a n/a n/a
Link Library (DLL) n/a n/a n/a

Computer-aided Design

AutoCAD Drawing (DWG)

AutoCAD Drawing Exchange Y

(DXF)

CATIA formats (CAT)

Microsoft Visio (VSD) Y Y Y
Database

dBase Database Y N N
Microsoft Access (MDB) Y Y N
Microsoft Project (MPP) Y Y N

Desktop Publishing
Microsoft Publisher N Y N

KeyView (11.6) Page 258 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Display

Adobe Portable Document Format Y 4 Y
(PDF)

Graphics

Computer Graphics Metafile Y N N
(CGM)

Corel DRAW (CDR) n/a n/a n/a
DCX Fax System (DCX) Y N N
DICOM - Digital Imaging and n/a n/a n/a
Communications in Medicine

(DCM)

Encapsulated PostScript (EPS) Y N N
Enhanced Metafile (EMF) Y Y N
Graphic Interchange Format (GIF) n/a n/a n/a
JBIG2 n/a n/a n/a
JPEG n/a n/a n/a
JPEG 2000 n/a n/a n/a
Lotus AMIDraw Graphics (SDW) n/a n/a n/a
Lotus Pic (PIC) n/a n/a n/a
Macintosh Raster (PICT/PCT) n/a n/a n/a
MacPaint (PNTG) n/a n/a n/a
Microsoft Office Drawing (MSO) n/a n/a n/a
Omni Graffle (GRAFFLE) Y N N
PC PaintBrush (PCX) n/a n/a n/a
Portable Network Graphics (PNG) n/a n/a n/a
SGI RGB Image (RGB) n/a n/a n/a
Sun Raster Image (RS) n/a n/a n/a
Tagged Image File (TIFF) Y N N
Truevision Targa (TGA) n/a n/a n/a
Windows Animated Cursor (ANI) n/a n/a n/a
Windows Bitmap (BMP) n/a n/a n/a

KeyView (11.6) Page 259 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Windows Icon Cursor (ICO) n/a n/a n/a
Windows Metafile (WMF) Y Y N
WordPerfect Graphics 1 (WPG) Y N N
WordPerfect Graphics 2 (WPG) N N
Mail

Documentum EMCMF Format Y Y Y
Domino XML Language (DXL) Y Y N
GroupWise FileSurf Y N N
Legato Extender (ONM) Y Y N
Lotus Notes database (NSF) Y Y Y
Mailbox (MBX) Y Y Y
Microsoft Entourage Database Y Y Y
Microsoft Outlook (MSG) Y Y Y
Microsoft Outlook Express (EML) Y Y Y
Microsoft Outlook iCalendar Y Y Y
Microsoft Outlook for Macintosh Y Y Y
Microsoft Outlook Offline Storage Y Y Y
File

Microsoft Outlook Personal File Y Y Y
Folders (PST)

Microsoft Outlook vCard Contact ~ ? ? ?
Text Mail (MIME)

Transport Neutral Encapsulation

Format

Multimedia

Advanced Systems Format (ASF) n/a n/a n/a
Audio Interchange File Format n/a n/a n/a
(AIFF)

Microsoft Wave Sound (WAV) n/a n/a n/a
MIDI (MID) n/a n/a n/a

KeyView (11.6) Page 260 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
MPEG 1 Audio Layer 3 (MP3) n/a n/a n/a
MPEG 1 Video (MPG) n/a n/a n/a
MPEG 2 Audio (MPEGA) n/a n/a n/a
MPEG 4 Audio (MP4) n/a n/a n/a
NeXT/Sun Audio (AU) n/a n/a n/a
QuickTime Movie (QT/MOV) n/a n/a n/a
Windows Video (AVI) n/a n/a n/a

Presentations

Apple iWork Keynote (GZ) Y Y N
Applix Presents (AG) characterset N N
1252 only
Corel Presentations (SHW) characterset N N
1252 only
Extensible Forms Description Y Y N
Language (XFD)
Lotus Freelance Graphics 2 (PRE) characterset N N
850 only
Lotus Freelance Graphics (PRZ) Y Japanese, Simple Chinese, N
Traditional Chinese, Thai only
Macromedia Flash (SWF) Y Y N
Microsoft OneNote Y Y N
Microsoft PowerPoint PC (PPT) characterset Traditional Chinese only N
1252 only
Microsoft PowerPoint Windows Y Japanese, Simple Chinese, Hebrew only
(PPT) Traditional Chinese,
Korean only
Microsoft PowerPoint Macintosh Y N N
(PPT)
Microsoft PowerPoint Windows Y Y Y
XML 2007 and 2010 (PPTX)
OASIS Open Document (ODP) Y Y N
OpenOffice Impress (ODP) Y Y N

KeyView (11.6) Page 261 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
StarOffice Impress (ODP) Y Y N
Spreadsheets
Apple iWork Numbers (GZ) Y Y N
Applix Spreadsheets (AS) characterset N N
1252 only
Comma Separated Values (CSV) characterset N N
1252 only
Corel Quattro Pro (QPW/WB3) Y N N
Data Interchange Format (DIF) Y Y Y2
Lotus 1-2-3 (123) Y Y Y
Lotus 1-2-3 (WK4) Y Y N
Lotus 123 Charts (123) Y Y N
Microsoft Excel Charts (XLS) Y Y N
Microsoft Excel Macintosh (XLS) Y N N
Microsoft Excel Windows (XLS) Y Y Y2
Microsoft Excel Windows XML Y Y N
2007 (XLSX)
Microsoft Office Excel Binary Y Y N
Format (XLSB)
Microsoft Works Spreadsheet Y N N
(S30/540)
OASIS Open Document (ODS) Y Y N
OpenOffice Calc (ODS) Y Y N
StarOffice Calc (ODS) Y Y N
Text and Markup
ANSI (TXT) Y Y v2
ASCII (TXT) Y Y Y2
HTML (HTM) Y Y Y23
Microsoft Excel Windows XML Y Y Y
2003
Microsoft Word for Windows XML Y Y Y
2003

KeyView (11.6) Page 262 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Microsoft Visio XML 2003 Y Y Y

Rich Text Format (RTF) Y Y y3

Unicode HTML Y Y y23
Unicode Text (TXT) Y Y v2

XHTML Y Y y3

XML Y Y Y

Word Processing

Adobe Maker Interchange Format characterset N N

(MIF) 1252 only

Apple iChat Log (ICHAT) Y Y N

Apple iWork Pages (GZ) Y Y N

Applix Words (AW) characterset N N
1252 only

DisplayWrite (IP) characterset N N
500, 1026 only

Folio Flat File (FFF) characterset N N
1252 only

Founder Chinese E-paper Basic Y Y N

(CEB)

Fujitsu Oasys (OA2) Y Y N

Hangul (HWP) Y Y N

Health level7 (HL7) Y Y Y

IBM DCA/RTF (DC) charactersets N N
500, 1026 only

JustSystems Ichitaro (JTD) Y Y N

Lotus AMI Pro (SAM) Y Simple Chinese, Traditional Y

Chinese, Japanese, Thai only

Lotus AMI Professional Write Plus Y Simple Chinese, Traditional N

(AMI) Chinese, Japanese, Thai only

Lotus Word Pro (LWP) Y Y y3

Lotus SmartMaster (MWP) Y Y N

Microsoft Word PC (DOC) characterset N N

KeyView (11.6) Page 263 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
1252 only
Microsoft Word Windows V1-2 Y N N
(DOC)
Microsoft Word Windows V6, 7,8, 'Y Y Hebrew onIy3
95 (DOC)
Microsoft Word Windows V97 Y Y y3
through 2003 (DOC)
Microsoft Word Windows XML Y Y y3
2007 and 2010 (DOCX)
Microsoft Word Macintosh (DOC) Y N y3
Microsoft Works (WPS) Y Japanese only N
Microsoft Write (WRI) Y Japanese only N
OASIS Open Document (ODT) Y N
Omni Outliner (O03) Y Y N
OpenOffice Writer (ODT) Y Y N
Open Publication Structure eBook Y Y Y
(EPUB)
StarOffice Writer (ODT) Y Y N
Skype Log (DBB) Y Y (null-terminated charsets) N
WordPad (RTF) Y Y Y
WordPerfect Linux (WPS) Y N N
WordPerfect Macintosh (WPS) Y N N
WordPerfect Windows (WO) Y N N
XML Paper Specification (XPS) Y Y N
XYWrite Windows (XY4) characterset N N
1252 only
Yahoo! Instant Messenger (DAT) Y Y (nullterminated charsets) N

1

Multibyte PDFs are supported, provided the PDF document is created by using either Character ID-
keyed (CID) fonts, predefined CJK CMap files, or Tounicode font encodings, and does not contain
embedded fonts. See the Adobe website and the Adobe Acrobat documentation for more information.
Any multibyte characters that are not supported are displayed using the replacement character. By
default, the replacement character is a question mark (?).

To determine the type of font encodings that are used in a PDF, open the PDF in Adobe Acrobat, and

KeyView (11.6) Page 264 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

select File > Document Info > Fonts. If the Encoding column lists Custom or Embedded encodings,
you might encounter problems converting the PDF.

2

The text direction in the output file might not be correct.

3

In Export SDK, a bidirectional right-to-left (RTL) tag is extracted from this format and included in the
direction element (<dir=RTL>) of the output.

Coded Character Sets

This section lists which character set you can use to specify the target character set. The coded
character sets are enumerated in kvtypes. h and defined in the Export class.

Code Character Sets

Coded Character

Set

KVCS_
UNKNOWN

KVCS_SJIS
KVCS_GB

KVCS_BIG5

KVCS_KSC
KVCS_1250
KVCS_1251
KVCS_1252
KVCS_1253
KVCS_1254
KVCS_1255
KVCS_1256
KVCS_1257
KVCS_1258

KVCS_8859_1

KeyView (11.6)

Description

Unknown character set

Japanese (uses multibyte encoding), cp932

Simplified Chinese (China, Singapore, Malaysia)

cp936

Traditional Chinese (Taiwan, Hong Kong, Macaw)

cp950

Korean, cp949

Windows Latin 2 (Central Europe)
Windows Cyrillic (Slavic)
Windows Latin 1 (ANSI)
Windows Greek
Windows Latin 5 (Turkish)
Windows Hebrew
Windows Arabic
Windows Baltic Rim
Windows Vietnamese

ISO 8859-1 Latin 1 (Western Europe, Latin
America)

Can be set as target

charset?

N

< < < < < < < < =< =< <

Page 265 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Code Character Sets, continued

Coded Character

Set
KVCS_8859_2
KVCS_8859 3
KVCS_8859_4
KVCS_8859 5
KVCS_8859_6
KVCS_8859_7
KVCS_8859 8
KVCS_8859_9
KVCS_8859_14
KVCS_8859 15
KVCS_437
KVCS_737
KVCS_775
KVCS_850
KVCS_851
KVCS_852
KVCS_855
KVCS_857
KVCS_860
KVCS_861
KVCS_862
KVCS_863
KVCS_864
KVCS_865
KVCS_866
KVCS_869

KeyView (11.6)

Description

ISO 8859-2 Latin 2 (Central Eastern Europe)
ISO 8859-3 Latin 3 (S.E. Europe)
ISO 8859-4 Latin 4 (Scandinavia/Baltic)

ISO 8859-5 Latin/Cyrillic
ISO 8859-6 Latin/Arabic
ISO 8859-7 Latin/Greek

1ISO 8859-8 Latin/Hebrew

ISO 8859-9 Latin/Turkish

ISO 8859-14

ISO 8859-15

DOS LatinUS

DOS Greek

DOS Baltic Rim
DOS Latin 1

DOS Greek

DOS Latin 2

DOS Cyrillic

DOS Turkish

DOS Portuguese
DOS Icelandic

DOS Hebrew

DOS Canadian French
DOS Arabic

DOS Nordic

DOS Cyrillic Russian
DOS Greek 2

Can be set as target

charset?

< < < < <X <X < < < < < < < < < < < < < < < < < < < <

Page 266 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Code Character Sets, continued

Coded Character Description Can be set as target
Set charset?
KVCS_874 Thai Y
KVCS_ PDF MAC DOC N
PDFMACDOC
KVCS_ PDF WIN DOC N
PDFWINDOC
KVCS_STDENC Adobe Standard Encoding N
KVCS PDFDOC Adobe standard PDF character set N
KVCS_037 EBCDIC code page 037 Y
KVCS_1026 EBCDIC code page 1026 Y
KVCS_500 EBCDIC code page 500 Y
KVCS_875 EBCDIC code page 875 Y
KVCS_ LMBCS Lotus multibyte character set Group 1 and Group2 N
KVCS_UNICODE Unicode, UCS-2 N
KVCS _UTF16 16-bit Unicode transformation format N
KVCS _UTF8 8-bit Unicode transformation format Y
KVCS _UTF7 7-bit Unicode transformation format Y
KVCS 2022 JP 1ISO 2022-JP, Japanese mail and news safe N
encoding (JI1S-7)
KVCS 2022 CN IS0 2022-CN, Chinese mail and news safe N
encoding
KVCS 2022 KR IS0 2022-KR, Korean mail and news safe N
encoding
KVCS_WP6X Word Perfect 6.x and higher character mapping N
KVCS_10000 Western European (Macintosh) Y
KVCS_KSC5601 Unified Hangul Y
KVCS_GB2312 Simplified Chinese (China, Singapore, Hong Kong) Y
KVCS_GB12345 Traditional Chinese (China) - analogue of GB2312 Y
KVCS_CNS11643 Traditional Chinese - Taiwan. SupplementtoBigs Y

KeyView (11.6)

Page 267 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Code Character Sets, continued

Coded Character
Set

KVCS_JI1S0201

KVCS_JIS0212
KVCS_EUC_JP
KVCS_EUC_GB

KVCS_EUC_
BIG5

KVCS_EUC_KSC
KVCS_424
KVCS_856
KVCS_1006
KVCS_KOI8R

KVCS_PDF_
JAPAN1

KVCS_PDF_
KOREA1

KVCS_PDF_GB1

KVCS_PDF_
CNS1

KVCS_2022_JP_
8

KVCS_720
KVCS_VISCII
KVCS_8859 10
KVCS_8859 13
KVCS_57002
KVCS_57003
KVCS_57004
KVCS_57005

KeyView (11.6)

Description

Japanese - contains ASCII character set (JIS-

Roman)

Japanese. Supplement to JIS0208.
Japanese Extended UNIX Code
Simplified Chinese Extended UNIX Code

Traditional Chinese Extended UNIX Code

Korean Extended UNIX Code
EBCDIC Hebrew

PC Hebrew (old)

IBM AIX Pakistan (Urdu)
Cyrillic (Russian)

Adobe-Japan1-2 character collection

Adobe-Korea1-0 character collection

Adobe-GB1-3 character collection

Adobe-CNS1-2 character collection

ISO 2022-JP, Japanese mail and news safe
encoding (JIS8)

Arabic DOS-720
Vietnamese VISCII

ISO 8859-10 (Latin 6 Nordic)
ISO 8859-13 (Latin 7 Baltic)
ISCII Devanagari (x-iscii-de)
ISCII Bengali (x-iscii-be)
ISCII Tamil (x-iscii-ta)

ISCII Telugu (x-iscii-te)

Can be set as target

charset?

N

zZ < < <

z < Zz2 Zz2 Z Z

Page 268 of 346

XML Export SDK C Programming Guide
Appendix B: Character Sets

Code Character Sets, continued

Coded Character Description Can be set as target
Set charset?
KVCS_57006 ISCII Assamese (x-iscii-as) v
KVCS_ 57007 ISCII Oriya (x-iscii-or) vy
KVCS_57008 ISCII Kannada (x-iscii-ka) y1
KVCS_57009 ISCII Malayalam (x-iscii-ma) y1
KVCS_ 57010 ISCII Gujarathi (x-iscii-gu) vy
KVCS_57011 ISCII Panjabi (x-iscii-pa) y1
KVCS Reserved for internal use n/a
GB18030b2

KVCS _GB18030 GB18030 (Chinese 4-byte character set) Y
KVCS_8859 11 ISO 8859-11 (Thai) Y

KVCS 8859 16 ISO 8859-16 (Latin-10 South-Eastern Europe) Y

KVCS _ Arabic Mac (x-mac-arabic) Y
ARABICMAC

KVCS_KOI8U Cyrillic (KOI8U Ukrainian) Y

KVCS The 7-bit representation of GB 2312/ RFC 1842 n/a
HzZGB2312

1

The character set cannot be forced as output in Export SDK and Viewing SDK because the character
set is not supported by the major browsers.

KeyView (11.6) Page 269 of 346

Appendix C: File Formats and Extensions

This section lists the KeyView file format numbers and their associated file extensions.

®* File Format and Extension Table

File Format and Extension Table

This section lists the KeyView file format codes and the file extensions that they are most commonly

associated with.

NOTE: This is not a complete list of file extensions. KeyView returns format codes based on
file content, which cannot always be predicted from the file extension. Some file extensions
might also be associated with multiple format numbers.

KeyView file formats and extensions

Format Name

AES_Multiplus_
Comm_Fmt

ASCII_Text_Fmt

MSDOS_Batch_
File_Fmt

Applix_Alis_Fmt
BMP_Fmt

CT_DEF_Fmt

Corel Draw_Fmt

CGM_ClearText_
Fmt

CGM_Binary_Fmt

CGM_Character _
Fmt

Word_Connection_
Fmt

COMET_TOP_
Word_Fmt

KeyView (11.6)

Format
Number

1

12

Format Description

Multiplus (AES)

Text
MS-DOS Batch File

APPLIX ASTERIX
Windows Bitmap

Convergent Technologies DEF
Comm. Format

Corel Draw

Computer Graphics Metafile (CGM)

Computer Graphics Metafile (CGM)

Computer Graphics Metafile (CGM)

Word Connection

COMET TOP

Associated File
Extension

PTF

BAT

AX
BMP

CDR
cGMm’

cem !
cem!

CN

Page 270 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

CEOwrite_Fmt 13 CEOwrite Ccw

DSA101_Fmt 14 DSA101 (Honeywell Bull)

DCA_RFT_Fmt 15 DCA-RFT (IBM Revisable Form) RFT

CDA_DDIF_Fmt 16 CDA/DDIF

DG CDS _Fmt 17 DG Common Data Stream (CDS) CDS

Micrografx_Draw_ 18 Windows Draw (Micrografx) DRW

Fmt

Data_Point_ 19 Vistaword

VistaWord_Fmt

DECdx_Fmt 20 DECdx DX

Enable WP_Fmt 21 Enable Word Processing WPF

EPSF_Fmt 22 Encapsulated PostScript EpPS

Preview EPSF_Fmt 23 Encapsulated PostScript Eps

MS_Executable Fmt 24 MSDOS/Windows Program EXE

G31D_Fmt 25 CCITTG31D

GIF_87a_Fmt 26 Graphics Interchange Format GIF1
(GIF87a)

GIF_89a Fmt 27 Graphics Interchange Format GIF 1
(GIF89a)

HP_Word PC_Fmt 28 HP Word PC HW

IBM_1403_ 29 IBM 1403 Line Printer 14

LinePrinter_Fmt

IBM_DCF_Script_ 30 DCF Script IC

Fmt

IBM_DCA_FFT_Fmt 31 DCA-FFT (IBM Final Form) IF

Interleaf Fmt 32 Interleaf

GEM_Image_Fmt 33 GEM Bit Image IMG

IBM_Display_Write . 34 Display Write IP

Fmt

KeyView (11.6) Page 271 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Sun_Raster_Fmt 35 Sun Raster RAS

Ami_Pro_Fmt 36 Lotus Ami Pro SAM

Ami_Pro_ 37 Lotus Ami Pro Style Sheet

StyleSheet Fmt

MORE_Fmt 38 MORE Database MAC

Lyrix_Fmt 39 Lyrix Word Processing

MASS 11 _Fmt 40 MASS-11 M1

MacPaint_Fmt 41 MacPaint PNTG

MS_Word Mac_ Fmt 42 Microsoft Word for Macintosh poc

SmartWare Il 43 SmartWare Il

Comm_Fmt

MS_Word Win Fmt 44 Microsoft Word for Windows poc

Multimate_Fmt 45 MultiMate MM 1

Multimate_Fnote 46 MultiMate Footnote File FNX 1

Fmt

Multimate_Adv_Fmt 47 MultiMate Advantage

Multimate_Adv_ 48 MultiMate Advantage Footnote File

Fnote_Fmt

Multimate_Adv_Il_ 49 MultiMate Advantage Il Mm?!

Fmt

Multimate_Adv_Il_ 50 MultiMate Advantage Il Footnote File FNX 1

Fnote Fmt

Multiplan_PC_Fmt 51 Multiplan (PC)

Multiplan_Mac_Fmt 52 Multiplan (Mac)

MS_RTF_Fmt 53 Rich Text Format (RTF) RTF

MS Word PC Fmt 54 Microsoft Word for PC poc '

MS_Word_PC_ 55 Microsoft Word for PC Style Sheet poc '

StyleSheet Fmt

MS_Word PC_ 56 Microsoft Word for PC Glossary DOC 1

Glossary_Fmt

KeyView (11.6) Page 272 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

MS_Word PC_ 57 Microsoft Word for PC Driver DOC 1

Driver_Fmt

MS_Word PC_ 58 Microsoft Word for PC Miscellaneous DOC

Misc_Fmt File

NBI_Async_ 59 NBI Async Archive Format

Archive_Fmt

Navy DIF_Fmt 60 Navy DIF ND

NBI_Net_Archive 61 NBI Net Archive Format NN

Fmt

NIOS_TOP_Fmt 62 NIOS TOP

FileMaker Mac_Fmt 63 Filemaker MAC FP5, FP7

ODA_Q1_11_Fmt 64 ODA/ODIF oD’

ODA Q1 12 Fmt 65 ODA/ODIF op !

OLIDIF_Fmt 66 OLIDIF (Olivetti)

Office_Writer_Fmt 67 Office Writer ow

PC_Paintbrush_Fmt 68 PC Paintbrush Graphics (PCX) PCX

CPT_Comm_Fmt 69 CPT

Lotus PIC_Fmt 70 Lotus PIC PIC

Mac_PICT_Fmt 71 QuickDraw Picture PCT

Philips_Script_ 72 Philips Script

Word_Fmt

PostScript Fmt 73 PostScript PS

PRIMEWORD_Fmt 74 PRIMEWORD

Quadratron_Q_One_ 75 Q-One V1.93J Q1 1, ax !

vl Fmt

Quadratron_Q_One_ 76 Q-One V2.0 Q1 1, ax !

v2_Fmt

SAMNA Word IV_ 77 SAMNA Word SAM

Fmt

KeyView (11.6) Page 273 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Ami_Pro Draw_Fmt 78 Lotus Ami Pro Draw SDW

SYLK Spreadsheet 79 SYLK

Fmt

SmartWare || WP_ 80 SmartWare Il

Fmt

Symphony_Fmt 81 Symphony WRA1

Targa_Fmt 82 Targa TGA

TIFF_Fmt 83 TIFF TIF, TIFF

Targon_Word_Fmt 84 Targon Word TW

Uniplex_Ucalc Fmt 85 Uniplex Ucalc SS

Uniplex_ WP_Fmt 86 Uniplex UpP

MS_Word UNIX 87 Microsoft Word UNIX poc’

Fmt

WANG_PC_Fmt 88 WANG PC

WordERA Fmt 89 WordERA

WANG_WPS_ 90 WANG WPS WF

Comm_Fmt

WordPerfect Mac_ 91 WordPerfect MAC WPM, wpD'

Fmt

WordPerfect Fmt 92 WordPerfect wo, wpp'!

WordPerfect VAX_ 93 WordPerfect VAX wpD'

Fmt

WordPerfect Macro_ 94 WordPerfect Macro

Fmt

WordPerfect_ 95 WordPerfect Spelling Dictionary

Dictionary_Fmt

WordPerfect_ 96 WordPerfect Thesaurus
Thesaurus_Fmt

WordPerfect_ 97 WordPerfect Resource File
Resource_Fmt

WordPerfect_Driver 98 WordPerfect Driver

KeyView (11.6) Page 274 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Fmt

WordPerfect_Cfg_ 99 WordPerfect Configuration File

Fmt

WordPerfect_ 100 WordPerfect Hyphenation Dictionary

Hyphenation_Fmt

WordPerfect Misc_ 101 WordPerfect Miscellaneous File wpD'

Fmt

WordMARC_Fmt 102 WordMARC WM, PW

Windows_Metafile_ 103 Windows Metafile wMmF!

Fmt

Windows_Metafile_ 104 Windows Metafile (no header) WMF?

NoHdr_Fmt

SmartWare Il DB 105 SmartWare Il

Fmt

WordPerfect 106 WordPerfect Graphics WPG, QPG

Graphics_Fmt

WordStar_Fmt 107 WordStar WS

WANG_WITA Fmt 108 WANG WITA WT

Xerox_860_ Comm_ 109 Xerox 860

Fmt

Xerox_Writer Fmt 110 Xerox Writer

DIF_SpreadSheet_ 111 Data Interchange Format (DIF) DIF

Fmt

Enable 112 Enable Spreadsheet SSF

Spreadsheet_Fmt

SuperCalc_Fmt 113 Supercalc CAL

UltraCalc_Fmt 114 UltraCalc

SmartWare Il SS_ 115 SmartWare Il

Fmt

SOF_Encapsulation_ 116 Serialized Object Format (SOF) SOF

Fmt

KeyView (11.6) Page 275 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

PowerPoint_Win_
Fmt

PowerPoint_Mac_
Fmt

PowerPoint_ 95 Fmt
PowerPoint_97 Fmt

PageMaker_Mac_
Fmt

PageMaker_Win_
Fmt

MS_Works Mac
WP_Fmt

MS_Works_Mac _
DB_Fmt

MS_Works Mac
SS Fmt

MS_Works Mac
Comm_Fmt

MS_Works DOS
WP_Fmt

MS_Works_DOS
DB _Fmt

MS_Works DOS
SS Fmt

MS_Works Win_
WP_Fmt

MS_Works_Win_
DB_Fmt

MS_Works_Win_
SS Fmt

PC_Library_Fmt

MacWrite_ Fmt

KeyView (11.6)

Format

Number

117

118

119
120
121

122

123

124

125

126

127

128

129

130

131

132

133
134

Format Description

PowerPoint PC

PowerPoint MAC

PowerPoint 95
PowerPoint 97

PageMaker for Macintosh

PageMaker for Windows

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for DOS

Microsoft Works for DOS

Microsoft Works for DOS

Microsoft Works for Windows

Microsoft Works for Windows

Microsoft Works for Windows

DOS/Windows Object Library

MacWrite

Associated File
Extension

PP’
PP’

PP
PP’

wps

wpB!

wps'
wDB!

530, S40

Page 276 of 346

XML Export SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

MacWrite |I_Fmt
Freehand_Fmt
Disk_Doubler_Fmt
HP_GL_Fmt
FrameMaker_Fmt

FrameMaker_Book
Fmt

Maker_Markup_
Language Fmt

Maker _Interchange
Fmt

JPEG File
Interchange_Fmt

Reflex Fmt
Framework_Fmt
Framework_Il_Fmt
Paradox_Fmt

MS_Windows__
Write_Fmt

Quattro Pro DOS
Fmt

Quattro_Pro_Win_
Fmt

Persuasion_Fmt
Windows_lcon_Fmt

Windows_Cursor_
Fmt

MS_Project_
Activity_Fmt

MS_Project_
Resource_Fmt

KeyView (11.6)

Format
Number

135
136
137
138
139
140

141

142

143

144
145
146
147
148

149

150

151
152
153

154

155

Format Description

MacWrite I

Freehand MAC

Disk Doubler

HP Graphics Language
FrameMaker

FrameMaker

Maker Markup Language

Maker Interchange Format (MIF)

Interchange Format

Reflex
Framework
Framework I
Paradox

Windows Write

Quattro Pro for DOS

Quattro Pro for Windows

Persuasion
Windows lIcon Format

Windows Cursor

Microsoft Project

Microsoft Project

Associated File
Extension

HPGL
FM, FRM
BOOK

MIF

JPG, JPEG

FW3
DB
WRI

WB2, WB3

ICO
CUR

mpp?

mpp?

Page 277 of 346

XML Export SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

MS_Project_Calc__
Fmt

PKZIP_Fmt
Quark_Xpress_Fmt

ARC_PAK_Archive_
Fmt

MS_Publisher_Fmt
PlanPerfect Fmt

WordPerfect
Auxiliary_Fmt

MS_WAVE_Audio
Fmt

MIDI_Audio_Fmt

AutoCAD_DXF_
Binary_Fmt

AutoCAD_DXF_
Text Fmt

dBase_Fmt

0OS_2 PM_Metafile_
Fmt

Lasergraphics__
Language Fmt

AutoShade
Rendering_Fmt

GEM_VDI_Fmt
Windows_Help Fmt
Volkswriter_ Fmt
Ability WP_Fmt
Ability_DB_Fmt

Ability SS_Fmt

KeyView (11.6)

Format
Number

156

157
158
159

160
161
162

163

164
165

166

167
168

169

170

171
172
173
174
175
176

Format Description

Microsoft Project

ZIP Archive
Quark Xpress MAC

PAK/ARC Archive

Microsoft Publisher
PlanPerfect

WordPerfect auxiliary file

Microsoft Wave

MIDI

AutoCAD DXF

AutoCAD DXF

dBase

0S/2 PM Metafile

Lasergraphics Language

AutoShade Rendering

GEM VDI
Windows Help File
Volkswriter

Ability

Ability

Ability

Associated File
Extension
mpp?

ZIP

ARC, PAK

puB!

WPW

WAV

MID, MIDI
DXF]

DXF]

DBF
MET

VDI
HLP
VW4

Page 278 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Ability_ Comm_Fmt
Ability_Image_Fmt
XyWrite_Fmt
CSV_Fmt

IBM_Writing_
Assistant_Fmt

WordStar_2000_Fmt
HP_PCL_Fmt

UNIX_Exe_
PreSysV_VAX Fmt

UNIX_Exe Basic_
16_Fmt

UNIX_Exe x86_Fmt

UNIX_Exe_iAPX_
286_Fmt

UNIX_Exe MC68k
Fmt

UNIX Exe 3B20
Fmt

UNIX_Exe
WE32000_Fmt

UNIX_Exe VAX_
Fmt

UNIX_Exe Bell 5
Fmt

UNIX_Obj_VAX_
Demand_Fmt

UNIX_Obj_MS8086_
Fmt

UNIX_Obj_Z8000
Fmt

KeyView (11.6)

Format
Number

177
178
179
180
181

182
183
184

185

186
187

188

189

190

191

192

193

194

195

Format Description

Ability

Ability

XYWrite / Nota Bene

CSV (Comma Separated Values)

IBM Writing Assistant

WordStar 2000
HP Printer Control Language

Unix Executable (PDP-11/pre-
System V VAX)

Unix Executable (Basic-16)

Unix Executable (x86)

Unix Executable (IAPX 286)

Unix Executable (MC680x0)

Unix Executable (3B20)

Unix Executable (WE32000)

Unix Executable (VAX)

Unix Executable (Bell 5.0)

Unix Object Module (VAX Demand)

Unix Object Module (old MS 8086)

Unix Object Module (Z8000)

Associated File
Extension

XY4
Csv
IWA

WS2
PCL

Page 279 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

AU_Audio_Fmt
NeWS_Font Fmt

cpio_Archive_
CRChdr_Fmt

cpio_Archive
CHRhdr_Fmt

PEX_Binary_
Archive_Fmt

Sun_vfont_Fmt
Curses_Screen_Fmt
UUEncoded_Fmt
WriteNow_Fmt
PC_Obj_Fmt

Windows_Group_
Fmt

TrueType Font Fmt
Windows_PIF_Fmt

MS_COM_
Executable_Fmt

Stufflt_Fmt
PeachCalc_Fmt
Wang_GDL_Fmt
Q_A_DOS_Fmt
Q_A_Win_Fmt
WPS_PLUS_Fmt
DCX_Fmt
OLE_Fmt
EBCDIC_Fmt
DCS_Fmt

KeyView (11.6)

Format
Number

196
197
198

199

200

201
202
203
204
205
206

207
208
209

210
211
212
213
214
215
216
217
218
219

Format Description

NeXT/Sun Audio Data
NeWS bitmap font

cpio archive (CRC Header)

cpio archive (CHR Header)

SUN PEX Binary Archive

SUN vfont Definition

Curses Screen Image

UU encoded

WriteNow MAC
DOS/Windows Object Module

Windows Group

TrueType Font
Program Information File (PIF)

PC (.COM)

Stufflt (MAC)

PeachCalc

WANG Office GDL Header
Q&AforDOS

Q & A for Windows
WPS-PLUS

DCX FAX Format(PCX images
OLE Compound Document
EBCDIC Text

DCS

Associated File
Extension

AU

UUE

TTF
PIF
COM

HQX

JW
WPL
DCX
OLE

Page 280 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

UNIX_SHAR_Fmt 220 SHAR SHAR

Lotus_Notes__ 221 Lotus Notes Bitmap

BitMap_Fmt

Lotus Notes CDF_ 222 Lotus Notes CDF CDF

Fmt

Compress_Fmt 223 Unix Compress Z

GZ Compress_ Fmt 224 GZ Compress cz!

TAR_Fmt 225 TAR TAR

ODIF_FOD26_Fmt 226 ODA/ ODIF F26

ODIF_FOD36_Fmt 227 ODA/ODIF F36

ALIS_Fmt 228 ALIS

Envoy Fmt 229 Envoy EVY

PDF_Fmt 230 Portable Document Format PDF

BinHex_Fmt 231 BinHex HQX

SMTP_Fmt 232 SMTP SMTP

MIME_Fmt 233 MIME2 EML, MBX

USENET_Fmt 234 USENET

SGML_Fmt 235 SGML SGML

HTML_Fmt 236 HTML HTM!, HTML T

ACT_Fmt 237 ACT ACT

PNG_Fmt 238 Portable Network Graphics (PNG) PNG

MS_Video_Fmt 239 Video for Windows (AVI) AVI

Windows_Animated_ 240 Windows Animated Cursor ANI

Cursor_Fmt

Windows CPP_Obj 241 Windows C++ Object Storage

Storage Fmt

Windows_Palette 242 Windows Palette PAL

Fmt

RIFF_DIB_Fmt 243 RIFF Device Independent Bitmap

KeyView (11.6) Page 281 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension
RIFF_MIDI_Fmt 244 RIFF MIDI RMI
RIFF_Multimedia_ 245 RIFF Multimedia Movie
Movie_Fmt
MPEG_Fmt 246 MPEG Movie MPG, MPEG!
QuickTime_Fmt 247 QuickTime Movie, MPEG-4 Audio MOV, QT, MP4
AIFF_Fmt 248 Audio Interchange File Format (AIFF) AlF, AIFF
Amiga_MOD_Fmt 249 Amiga MOD MOD
Amiga_IFF_8SVX_ 250 Amiga IFF (8SVX) Sound IFF
Fmt
Creative_Voice 251 Creative Voice (VOC) VOC
Audio_Fmt
AutoDesk_Animator 252 AutoDesk Animator FLIC FLI
FLI_Fmt
AutoDesk _ 253 AutoDesk Animator Pro FLIC FLC
AnimatorPro_FLC _
Fmt
Compactor_Archive 254 Compactor/ Compact Pro
Fmt
VRML_Fmt 255 VRML WRL
QuickDraw_3D_ 256 QuickDraw 3D Metafile
Metafile Fmt
PGP_Secret_ 257 PGP Secret Keyring
Keyring_Fmt
PGP_Public_ 258 PGP Public Keyring
Keyring_Fmt
PGP_Encrypted 259 PGP Encrypted Data
Data_Fmt
PGP_Signed Data_ 260 PGP Signed Data
Fmt
PGP_ 261 PGP Signed and Encrypted Data
SignedEncrypted
Data_Fmt
KeyView (11.6) Page 282 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

PGP_Sign_ 262 PGP Signature Certificate

Certificate_Fmt

PGP_Compressed 263 PGP Compressed Data

Data_Fmt

PGP_ASCII_Public_ 264 ASCll-armored PGP Public Keyring

Keyring_Fmt

PGP_ASCII_ 265 ASCll-armored PGP encoded PGP

Encoded Fmt

PGP_ASCII_ 266 ASClIl-armored PGP encoded PGP1

Signed_Fmt

OLE_DIB_Fmt 267 OLE DIB object

SGI_Image Fmt 268 SGl Image RGB

Lotus_ScreenCam_ 269 Lotus ScreenCam

Fmt

MPEG_Audio_Fmt 270 MPEG Audio MPEGA

FTP_Software 271 FTP Session Data STE

Session_Fmt

Netscape 272 Netscape Bookmark File HTM]

Bookmark_File_Fmt

Corel Draw_ CMX_ 273 Corel CMX CMX

Fmt

AutoDesk DWG _ 274 AutoDesk Drawing (DWG) DWG

Fmt

AutoDesk_WHIP_ 275 AutoDesk WHIP WHP

Fmt

Macromedia_ 276 Macromedia Director DCR

Director_ Fmt

Real_Audio Fmt 277 Real Audio RM
MSDOS_Device 278 MSDOS Device Driver SYS
Driver_Fmt

Micrografx_ 279 Micrografx Designer DSF

Designer_Fmt

KeyView (11.6) Page 283 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

SVF_Fmt 280 Simple Vector Format (SVF) SVF

Applix_Words_Fmt 281 Applix Words AW

Applix_Graphics_ 282 Applix Graphics AG

Fmt

MS_Access_Fmt 283 Microsoft Access mDB"

MS_Access 95 Fmt 284 Microsoft Access 95 MDB

MS_Access 97 Fmt 285 Microsoft Access 97 MDB

MacBinary_Fmt 286 MacBinary BIN

Apple_Single Fmt 287 Apple Single

Apple_Double_Fmt 288 Apple Double

Enhanced Metafile 289 Enhanced Metafile EMF

Fmt

MS_Office_Drawing_ 290 Microsoft Office Drawing

Fmt

XML_Fmt 291 XML xmLT

DeVice 292 DeVice Independent file (DVI) DVI

Independent_Fmt

Unicode_Fmt 293 Unicode UNI

Lotus_123_ 294 Lotus 1-2-3 WK1

Worksheet Fmt

Lotus_123 Format_ 295 Lotus 1-2-3 Formatting FM3

Fmt

Lotus_123_97 Fmt 296 Lotus 1-2-3 97 wk11

Lotus Word Pro_ 297 Lotus Word Pro 96 Lwp?

96 Fmt

Lotus_Word_Pro_ 298 Lotus Word Pro 97 Lwp'!

97_Fmt

Freelance DOS_Fmt 299 Lotus Freelance for DOS

Freelance Win_Fmt 300 Lotus Freelance for Windows PRE

KeyView (11.6) Page 284 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File

Number Extension
Freelance_ OS2 _Fmt 301 Lotus Freelance for OS/2 PRS
Freelance 96 Fmt 302 Lotus Freelance 96 prz!
Freelance 97 Fmt 303 Lotus Freelance 97 prz!
MS_Word 95 Fmt 304 Microsoft Word 95 poc’
MS_Word 97 Fmt 305 Microsoft Word 97 poc
Excel_Fmt 306 Microsoft Excel XLS1
Excel Chart_ Fmt 307 Microsoft Excel xLs'
Excel_Macro_Fmt 308 Microsoft Excel xLs?
Excel_95 Fmt 309 Microsoft Excel 95 XLS1
Excel 97 Fmt 310 Microsoft Excel 97 xLs'
Corel _ 311 Corel Presentations XFD, XFDL
Presentations_ Fmt
Harvard_Graphics_ 312 Harvard Graphics
Fmt
Harvard Graphics_ 313 Harvard Graphics Chart CH3, CHT
Chart_Fmt
Harvard Graphics_ 314 Harvard Graphics Symbol File SY3
Symbol_Fmt
Harvard Graphics_ 315 Harvard Graphics Configuration File
Cfg_Fmt
Harvard_Graphics_ 316 Harvard Graphics Palette
Palette_ Fmt
Lotus_123 R9 Fmt 317 Lotus 1-2-3 Release 9
Applix_ 318 Applix Spreadsheets AS
Spreadsheets Fmt
MS_Pocket Word 319 Microsoft Pocket Word PWD, poc’
Fmt
MS_DIB_Fmt 320 MS Windows Device Independent

Bitmap

MS_Word 2000 Fmt 321 Microsoft Word 2000 poc

KeyView (11.6) Page 285 of 346

XML Export SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Excel_2000_Fmt

PowerPoint_2000_
Fmt

MS_Access_ 2000
Fmt

MS_Project 4 Fmt
MS_Project_41_Fmt
MS_Project 98 Fmt
Folio_Flat Fmt
HWP_Fmt
ICHITARO_Fmt
IS_XML_Fmt
Oasys_Fmt
PBM_ASC_Fmt

PBM_BIN_Fmt

PGM_ASC_Fmt

PGM_BIN_Fmt

PPM_ASC_Fmt

PPM_BIN_Fmt

XBM_Fmt
XPM_Fmt
FPX_Fmt

PCD_Fmt

KeyView (11.6)

Format
Number

322
323

324

325
326
327
328
329
330
331
332
333

334

335

336

337

338

339
340
341
342

Format Description

Microsoft Excel 2000

Microsoft PowerPoint 2000

Microsoft Access 2000

Microsoft Project 4
Microsoft Project 4.1
Microsoft Project 98

Folio Flat File
HWP(Arae-Ah Hangul)
ICHITARO V4-10
Extended or Custom XML
Oasys format

Portable Bitmap Utilities ASCII
Format

Portable Bitmap Utilities Binary
Format

Portable Greymap Utilities ASCII
Format

Portable Greymap Utilities Binary
Format

Portable Pixmap Utilities ASCII
Format

Portable Pixmap Utilities Binary
Format

X Bitmap Format
X Pixmap Format
FPX Format

PCD Format

Associated File
Extension

xLs?
PPT

mpB’1 mpp

mpp?
mpp?
mpp
FFF

HWP

XML?

OA2, OA3

PGM

XBM
XPM
FPX
PCD

Page 286 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

MS_Visio_Fmt 343 Microsoft Visio VSD

MS_Project 2000 _ 344 Microsoft Project 2000 mpP?!

Fmt

MS_Outlook_Fmt 345 Microsoft Outlook MSG, OFT

ELF_Relocatable_ 346 ELF Relocatable 0]

Fmt

ELF_Executable 347 ELF Executable

Fmt

ELF _Dynamic Lib 348 ELF Dynamic Library SO

Fmt

MS_Word XML_Fmt 349 Microsoft Word 2003 XML xmLT

MS_Excel XML _Fmt 350 Microsoft Excel 2003 XML xmL"

MS_Visio XML_Fmt 351 Microsoft Visio 2003 XML VDX

SO_Text XML_Fmt 352 StarOffice Text XML sxw' opT’

SO_Spreadsheet_ 353 StarOffice Spreadsheet XML SXC1, ops'

XML_Fmt

SO_Presentation_ 354 StarOffice Presentation XML SXI 1, SXP1, opp!

XML_Fmt

XHTML_Fmt 355 XHTML xmLT

MS_OutlookPST _ 356 Microsoft Outlook PST PST

Fmt

RAR_Fmt 357 RAR RAR

Lotus Notes NSF_ 358 IBM Lotus Notes Database NSF/NTF NSF

Fmt

Macromedia_Flash_ 359 SWF SWF

Fmt

MS_Word_2007_Fmt 360 Microsoft Word 2007 XML DOCX, DOTX

MS_Excel 2007_ 361 Microsoft Excel 2007 XML XLSX, XLTX

Fmt

MS_PPT _2007_Fmt 362 Microsoft PPT 2007 XML PPTX, POTX, PPSX

OpenPGP_Fmt 363 OpenPGP Message Format (withnew PGP

KeyView (11.6) Page 287 of 346

XML Export SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Intergraph_V7_
DGN_Fmt

MicroStation_V8
DGN_Fmt

MS_Word Macro
2007_Fmt

MS_Excel Macro
2007_Fmt

MS_PPT_Macro_
2007_Fmt

LZH_Fmt
Office_2007_Fmt
MS_XPS_Fmt

Lotus_Domino_DXL_

Fmt

ODF_Text_Fmt

ODF_Spreadsheet_

Fmt

ODF_Presentation_

Fmt

Legato Extender
ONM_Fmt

bin_Unknown_Fmt

TNEF_Fmt

CADAM_Drawing_

Fmt

CADAM_Drawing_

Overlay_Fmt
NURSTOR _

KeyView (11.6)

Format
Number

364

365

366

367

368

369
370
371

372

373
374

375

376

377
378

379

380

381

Format Description

packet format)

Intergraph Standard File Format
(ISFF) V7 DGN (non-OLE)

MicroStation V8 DGN (OLE)

Microsoft Word Macro 2007 XML

Microsoft Excel Macro 2007 XML

Microsoft PPT Macro 2007 XML

LHA Archive
Office 2007 document

Microsoft XML Paper Specification
(XPS)

IBM Lotus representation of Domino
design elements in XML format

ODF Text

ODF Spreadsheet

ODF Presentation

Legato Extender Native Message
ONM

n/a

Transport Neutral Encapsulation
Format (TNEF)

CADAM Drawing

CADAM Drawing Overlay

NURSTOR Drawing

Associated File
Extension

DGN'

DGN

DOCM, DOTM
XLSM, XLTM, XLAM
PPTM, POTM, PPSM,
PPAM

LZH, LHA

XLSB
XPS

DXL

opT! sxw! sTw
obs’! sxcl sTC

sxp? sxi1, opa! |
oppr'!
ONM

various
CDD
CDO

NUR

Page 288 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Drawing_Fmt
HP_GLP_Fmt
ASF_Fmt
WMA_Fmt
WMV_Fmt

EMX_Fmt

Z7Z_Fmt

MS_Excel Binary
2007_Fmt

CAB_Fmt
CATIA_Fmt
YIM_Fmt
ODF_Drawing_Fmt
Founder CEB_Fmt
QPW_Fmt
MHT_Fmt
MDI_Fmt
GRV_Fmt
IWWP_Fmt
IWSS_Fmt
IWPG_Fmt
BKF_Fmt

MS_Access_ 2007 _
Fmt

ENT_Fmt

DMG_Fmt

KeyView (11.6)

Format
Number

382
383
384
385
386

387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

403

404

Format Description

HP Graphics Language (Plotter)
Advanced Systems Format (ASF)
Window Media Audio Format (WMA)
Window Media Video Format (WMV)

Legato EMailXtender Archives
Format (EMX)

7 Zip Format(7z)

Microsoft Excel Binary 2007

Microsoft Cabinet File (CAB)

CATIA Formats (CAT*)

Yahoo Instant Messenger History
ODF Drawing

Founder Chinese E-paper Basic (ceb)
Quattro Pro 9+ for Windows

MHT format?

Microsoft Document Imaging Format
Microsoft Office Groove Format
Apple iWork Pages format

Apple iWork Numbers format

Apple iWork Keynote format
Windows Backup File

Microsoft Access 2007

Microsoft Entourage Database
Format

Mac Disk Copy Disk Image File

Associated File
Extension

HPG
ASF
WMA
WMV
EMX

7Z
XLSB

CAB
CAT3

DAT!

sxp!, sx!, opa!
CEB

QPW

MHT

MDI

GRV

PAGES, GZ!
NUMBERS, GZ'
KEY, GZ'

BKF

ACCDB

Page 289 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension
CWK_Fmt 405 AppleWorks File
003 _Fmt 406 Omni Outliner File 003
OPML_Fmt 407 Omni Outliner File OPML
Omni_Graffle XML_ 408 Omni Graffle XML File GRAFFLE
Fmt
PSD_Fmt 409 Photoshop Document PSD
Apple_Binary_PList_ 410 Apple Binary Property List format
Fmt
Apple_iChat_Fmt 411 Apple iChat format
OOUTLINE_Fmt 412 OOutliner File OOUTLINE
BZIP2_Fmt 413 Bzip 2 Compressed File BZ2
ISO_Fmt 414 ISO-9660 CD Disc Image Format ISO
DocuWorks_Fmt 415 DocuWorks Format XDW
RealMedia_Fmt 416 RealMedia Streaming Media RM, RA
AC3Audio Fmt 417 AC3 Audio File Format AC3
NEF_Fmt 418 Nero Encrypted File NEF
SolidWorks Fmt 419 SolidWorks Format Files SLDASM, SLDPRT,
SLDDRW
XFDL_Fmt 420 Extensible Forms Description XFDL, XFD
Language
Apple_ XML _PList_ 421 Apple XML Property List format
Fmt
OneNote Fmt 422 OneNote Note Format ONE
Dicom_Fmt 424 Digital Imaging and Communications DCM
in Medicine
EnCase Fmt 425 Expert Witness Compression Format = E01, LO1, Lx01
(EnCase)
Scrap_Fmt 426 Shell Scrap Object File SHS
MS_Project 2007 _ 427 Microsoft Project 2007 MPP1

Fmt

KeyView (11.6)

Page 290 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension
MS_Publisher_98 428 Microsoft Publisher PUB1
Fmt 98/2000/2002/2003/2007/
Skype Fmt 429 Skype Log File DBB
HI7_Fmt 430 Health level7 message HL7
MS_OutlookOST _ 431 Microsoft Outlook OST OST
Fmt
Epub_Fmt 432 Electronic Publication EPUB
MS_OEDBX_Fmt 433 Microsoft Outlook Express DBX DBX
BB_Activ_Fmt 434 BlackBerry Activation File DAT]
Disklmage Fmt 435 Disk Image
Milestone_Fmt 436 Milestone Document MLS, ML3, ML4, ML5,
ML6, ML7, ML8, ML9
E_Transcript_Fmt 437 ReallLegal E-Transcript File PTX
PostScript_ Font Fmt 438 PostScript Type 1 Font PFB
Ghost_Disklmage 439 Ghost Disk Image File GHO, GHS
Fmt
JPEG_2000_JP2_ 440 JPEG-2000 JP2 File Format Syntax JP2, JPF, J2K, JPWL,
File_Fmt (ISO/IEC 15444-1) JPX, PGX
Unicode HTML_Fmt 441 Unicode HTML HTM', HTML?
CHM_Fmt 442 Microsoft Compiled HTML Help CHM
EMCMF_Fmt 443 Documentum EMCMF format EMCMF
MS_Access 2007 444 Microsoft Access 2007 Template ACCDT
Tmpl_Fmt
Jungum_Fmt 445 Samsung Electronics Jungum Global =~ GUL
document
JBIG2_Fmt 446 JBIG2 File Format JB2, JBIG2
EFax_Fmt 447 eFax file EFX
AD1_Fmt 448 AD1 Evidence file AD1
SketchUp _Fmt 449 Google SketchUp SKP

KeyView (11.6)

Page 291 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

GWFS_Email_Fmt
JNT_Fmt
Yahoo_yChat_Fmt

PaperPort MAX
File_Fmt

ARJ_Fmt

RPMSG_Fmt

MAT_Fmt
SGY_Fmt

CDXA_MPEG _PS_
Fmt

EVT Fmt
EVTX_Fmt

MS_OutlookOLM_
Fmt

WARC_Fmt
JAVACLASS Fmt
VCF_Fmt

EDB_Fmt

ICS_Fmt

MS_Visio _2013_Fmt

MS_Visio 2013
Macro_Fmt

ICHITARO_Compr_
Fmt

IWWP13_Fmt

KeyView (11.6)

Format
Number

450
451
452
453

454

455

456
457
458

459
460
461

462
463
464
465

466

467
468

469

470

Format Description

Group Wise File Surf email
Windows Journal format
Yahoo! Messenger chat log

PaperPort image file

ARJ (Archive by Robert Jung) file
format

Microsoft Outlook Restricted
Permission Message

MATLAB file format
SEG-Y Seismic Data format

MPEG-PS container with CDXA
stream

Microsoft Windows NT Event Log

Microsoft Windows Vista Event Log

Microsoft Outlook for Macintosh
format

Web ARChive

Java Class format

Microsoft Outlook vCard file format

Microsoft Exchange Server Database

file format

Microsoft Outlook iCalendar file
format

Microsoft Visio 2013

Microsoft Visio 2013 macro

ICHITARO Compressed format

Apple iWork 2013 Pages format

Associated File
Extension

GWFS
JNT
YCHAT
MAX

ARJ

RPMSG

MAT, FIG
SGY, SEGY
MPG]

EVT
EVTX
OLM

WARC
CLASS
VCF
EDB

ICS, VCS

VSDX, VSTX, VSSX
VSDM, VSTM, VSSM

JTDC

IWA

Page 292 of 346

XML Export SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

IWSS13_Fmt 471 Apple iWork 2013 Numbers format IWA

IWPG13_Fmt 472 Apple iWork 2013 Keynote format IWA

XZ_Fmt 473 XZ archive format XZ

Sony_ WAVEG4 Fmt 474 Sony Wave64 format we4

Conifer WAVPACK 475 Conifer Wavpack format AY

Fmt

Xiph_OGG_ 476 Xiph Ogg Vorbis format OGG

VORBIS_Fmt

MS_Visio_2013_ 477 MS Visio 2013 stencil format VSSX

Stencil_Fmt

MS_Visio 2013 _ 478 MS Visio 2013 stencil Macro format VSSM

Stencil_Macro_Fmt

MS_Visio 2013 _ 479 MS Visio 2013 template format VSTX

Template_Fmt

MS_Visio_2013_ 480 MS Visio 2013 template Macro format VSTM

Template_Macro_

Fmt

Borland_Reflex 2 481 Borland Reflex 2 format R2D

Fmt

PKCS_12_Fmt 482 PKCS #12 (p12) format P12, PFX

B1_Fmt 483 B1 format B1

ISO_IEC_MPEG 4 484 ISO/IEC MPEG+4 format MP4

Fmt

RAR5_Fmt 485 RAR5 Format RAR5

Unigraphics NX_ 486 Unigraphics (UG) NX CAD Format PRT

Fmt

PTC_Creo Fmt 487 PTC Creo CAD Format ASM, PRT

KML_Fmt 488 Keyhole Markup Language KML

KMZ_Fmt 489 Zipped Keyhole Markup Language KMZ

WML_Fmt 490 Wireless Markup Language WML

KeyView (11.6) Page 293 of 346

XML Export SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

1

Format Name

SO_Text_Fmt

SO_Spreadsheet_
Fmt

SO_Presentation_
Fmt

SO_Math_Fmt
STEP_Fmt
STL Fmt

MS_Word 2007 _
Flat XML_Fmt

Format
Number

492
493

494

495
496
497
546

Format Description

Star Office Writer Text

Star Office Calc Spreadsheet

Star Office Impress Presentation

Star Office Math
ISO 10303-21 STEP format
3D Systems STL format

Microsoft Word 2007 Flat XML

This file extension can return more than one format number.

2

MHT, EML, and MBX files might return either format 2, 233, or 395, depending on the text in the file. In

Associated File
Extension

SDW, SGL, VOR
SDC

SDD, SDA

SMF
STEP
STL
XML

general, files that contain fields such as To, From, Date, or Subject are considered to be email

messages; files that contain fields such as content-type and mime-version are considered to be MHT

files; and files that do not contain any of those fields are considered to be text files.

3

All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

KeyView (11.6)

Page 294 of 346

Appendix D: Extract and Format Lotus Notes
Subfiles

This section describes how to create XML templates to alter the appearance of extracted Lotus mail
note subfiles so that they maintain the look and feel of the original notes.

O OV IVIBW . 295
® Customize XML Templates 295
® Template Elements and Attributes e, 297
® Dateand Time Formats 301
Overview

KeyView uses the NSF reader, nsfsr, to extract Lotus database files, and places Lotus mail notes in
subfiles. The NSF reader uses a set of default XML templates to extract the notes and apply
formatting, thereby approximating the look and feel of the original notes.

In some cases, you might need to customize the XML templates, for instance if your notes contain
custom data. In such cases, you can modify the existing XML templates or create your own.

During extraction, the NSF reader loads all XML files in the NSFtemplates directory and its
subdirectories (except for the NSFtemplates\images directory, which is reserved forimages). During
initialization, the KeyView XML parser verifies the XML templates. If the templates contain any invalid
XML, elements, or attributes, initialization fails and errors are recorded in the nsfsr. 1og file.

Customize XML Templates

XML templates are enabled by default. In most cases, the default templates should be sufficient;
however, you can customize them or create your own as required.

To customize XML templates for Lotus note extraction

1. Modify the template files in the following directory.
instal\OS\bin\NSFtemplates

The main.xml file must exist in the NSFtemplates directory. It is the top-level template file that
extracts all subfiles, usually by calling other templates.

2. Make sure that any modifications or additional XML files conform to the supported elements and
attributes described in Template Elements and Attributes, on page 297.

3. Extract the Lotus database file.

KeyView (11.6) Page 295 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Use Demo Templates

For testing purposes, you can extract notes by using a set of demo templates, which are provided to
demonstrate the proper usage of all the XML elements and attributes, because the default templates do
not use all the XML elements.

The demo templates are available at:
instal\OS\bin\NSFtemplates

To use the demo XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
UseDemoTemplate=1

2. Inthemain.xml file, uyncomment the following section.

<ifini name="UseDemoTemplate" text="1">
<call file="demo.xml"/>
quit/>

</ifini>

Use Old Templates

For testing purposes, you can extract notes by using legacy templates, which produce MHTML output.
You can generate similar output by disabling the XML templates, but using the old templates enables
you to see the XML code and compare it to the standard and demo templates.

To use the old XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
UseOldTemplate=1

2. Inthemain.xml file, uncomment the following section.

<ifini name="UseOldTemplate" text="1">
<call file="default_old.xml">
<quit>

</ifini>

Disable XML Templates

For testing purposes, you can disable XML templates; KeyView extracts the notes in MHTML format.
You can compare the MHTML output directly by the NSF reader with the MHTML output indirectly by
the NSF reader through the XML templates.

KeyView (11.6) Page 296 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

To disable XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
ExtractByTemplate=0

Template Elements and Attributes

This section lists the valid XML elements and attributes that you can use when creating or modifying
templates. See the demo templates for examples.

Conditional Elements

The following table lists the valid conditional elements.

Conditional elements

Element Description

<keyview> The KeyView XML template container ("root") element

<if*> If the condition from the comparison is true, process the XML.
Conditions can be nested up to 25 levels deep.
Attributes

« name. (Required) The name of the main item to compare to item or
text.

« item. (Required if no text) The name of the item to compare to the
item specified by name.

« text. (Required if no item) The text to compare to the item specified
by name.

<ifex>, <ifnx> If name item exists and has a text value or not.

The Notes item might have a value that cannot be converted to text,
such as an image.

<ifeq>, <ifne>, Respectively, if text ==, =, <, >, <=, >, >=.
<iflt>, <ifle>,

<ifgt>, <ifge> Text comparison uses a case-insensitive strlng compare.

<iftdeq>, <iftdne>, Respectively, if time/date ==, !=, <, >, <=, >, >=.
<iftdlt>, <iftdle>,

<iftdgt>, <iftdge> Time/date comparison converts dates to text in local time using the

Notes default, TZFMT_NEVER, because Notes also sometimes converts
fields to text internally. For example:

text="06/30/2005 02:52:04 PM"

<iftzeq>, <iftzne> Respectively, if the time zone equals or does not equal the comparison
text, for example CDT, EST, and so on.

KeyView (11.6) Page 297 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Conditional elements, continued

Element
<ifini>
<else>

<switch>

<case>

<default>

<for>

<index>

Description
If the value of the INI option specified in name equals the text value.
If the condition from the last <if> or <switch> was false, process XML.

If a name value exists, process XML.
Attributes

« name. (Required) The name of the main item to compare in <case>
subelements.

If the comparison condition is true, process XML, then stop processing
the rest of <switch>.

Attributes

o text. (Required) The text to compare to the name item of <switch>.

If all <case> conditions were false, process XML. This element must be
the last element in <switch>, after all the <case> elements. Any <case>
elements after the <default> element are ignored.

If a name value exists, process XML. Process for each part of the name
item.

Attributes

« name. (Required) The name of the main item.

« max. (Optional) The maximum index to process. By default, all are
processed.

Output <for> loop index (1-based). <index> is only valid within a <for>
element.

Control Elements

The following table lists the valid control elements.

Control Elements

Element

<call>

<log>

KeyView (11.6)

Description

Call another XML template. You can nest templates up to 10 levels deep.
Attributes

« file. (Required) The template file name. This name must be unique.
Log message to the NSF log file.

Attributes

« text. (Required) The text to log.

Page 298 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Control Elements, continued
Element Description

« type. (Optional) The type of log message. The following values are valid:
o ERROR
o WARN
o INFO
o DIAG (the default option)
o DEBUG
o DUMP
<quit> Stop processing the template. Exits without error.
Attributes
« text. (Optional) The text to log.
« type. (Optional) The type of log message. See <log>, on the previous page.
<stop> Stop processing the template. Exits with an ERROR log message.
Attributes
« text. (Required) The text to log.

Data Elements

The following table lists the valid data elements.
Data elements
Element Description

<text> Output text.
Attributes

« name. (Required if there is no parent) The name of the item to output.

<rich> Output rich text (MHTML). Images are output in the next part or parts of the MHTML,
after the first <HTML > part.

Attributes

« name. (Required if there is no parent) The name of the item to output.

<body> Output the message body in rich text (MHTML). As with <rich>, above, images are
output in the next part or parts of the MHTML.

<form> Output the message form (usually $Body field) in rich text (MHTML).
Attributes

« name. (Required if there is no parent) The name of the item to output.

KeyView (11.6) Page 299 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Data elements, continued

Element

<addr>

<name>

<format>

<date>

<date_
kv>

KeyView (11.6)

Description

Output an address.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« type. (Optional) The type of address to output. Set this attribute to cCN (Common
Name), which is the only supported type.

Output the name of the last name item, or in other words the current main item. The item
must exist.

Set the default format for <date> and <date_kv>. This element does not set the <text>
format. See Date and Time Formats, on the next page for a list of all Notes and KeyView
date and time formats and integer values.

Attributes

o format. (Optional. Omit to reset to defaults) The Notes and KeyView date and time
format. You can set the following formats:

o TD=int. The Time Date format (TDFMT_*)
o TS=int. The Time Show format (TSFMT_*)
o TT=int. The Time Time format (TTFMT_*)
o TZ=int. The Time Zone format (TZFMT_*)
o Kv=int. The KeyView date and time format
where int is an integer value that corresponds to the desired format.

Separate multiple formats with commas. For example:

format="TD=0,TS=2,TT=1,TZ=1,KV=55"

Output a Notes date.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« format. (Optional) See <format>, above. You can set the following values:
o TD
o TS
o TT
o TZ

Output a KeyView date.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« format. (Optional) See <format>, above. You can set the following values:
o TZ

Page 300 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Data elements, continued

Element Description
o KV

<time> Output a time range, for example 1 hour, 30 minutes.
Attributes
« name. (Required if there is no parent) The item name of the start date or time.
« item. (Required) The item name of the end date or time.
<zone> Output a Notes time zone mnemonic, for example MST.
Attributes

« name. (Required if there is no parent) The name of date item to output.

<zone_ Output atime zone as UTC, for example (UTC-06:00).
utc>

<logo> Output the mail header logo.

The image link is included in the output; the actual image is output to a different part of
the MHTML subfile.

<image> Output animage.

The image link is included in the output; the actual image is output to the MHTML next
part, as with <rich>, on page 299 and <body>, on page 299.
<image_ Output animage URI, in quotation marks. The actual image is output to a different part of
uri> the MHTML subfile.
Attributes

« link. (Required if there is no file) The image link, such as a form or title name. For
example:

e link="StdNotesLtro"

o file. (Required if there is no 1ink) The name of the image file. The file must exist in
the ../../templates/images directory. For example:

e file="boxcheck.gif"

Date and Time Formats

This section lists the supported Notes and KeyView date and time formats for use with <format>,
<date>, and <date_kv>.

Lotus Notes Date and Time Formats

This section lists supported Lotus Notes date and time formats, and the integer values that specify
each one.

KeyView (11.6) Page 301 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Lotus Notes date and time formats

Format Integer Description
Value
TDFMT_FULL 0 (The Notes default) Year, month, and day
TDFMT_CPARTIAL 1 Month and day, year if not this year
TDFMT_PARTIAL 2 Month and day
TDFMT_DPARTIAL 3 Year and month
TDFMT_FULL4 4 Four-digit year, month, and day
TDFMT_ 5 Month and day, four-digit year if not this year
CPARTIAL4
TDFMT_ 6 Four-digit year and month
DPARTIAL4
TTFMT_FULL 0 (Notes default) Hour, minute, and second
TTFMT_PARTIAL 1 Hour and minute
TTFMT_HOUR 2 Hour
TZFMT_NEVER 0 (Notes default) All time zones are converted to the current time
zone
TZFMT_ 1 Show only when outside the current time zone
SOMETIMES
TZFMT_ALWAYS 2 Show for all time zones
TSFMT_DATE 0 Date
TSFMT_TIME 1 Time
TSFMT_DATETIME 2 (The Notes default) Date and time
TSFMT_ 4 Date and time, or time today or time yesterday
CDATETIME

KeyView Date and Time Formats

This section lists KeyView date and time formats. The KeyView formats use the following syntax:

Month

KeyView (11.6)

Month = full month name

Mon = abbreviated month name

m = month (number)

mm = two-digit month (leading 0)

Page 302 of 346

Weekday

Year

Day

Time

Separators

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Weekday = full weekday name

Wday = abbreviated weekday name

yy = two-digit year

yyyy = four-digit year

d = day (number)

dd = two-digit day (leading 0)

h = 12-hour
H = 24-hour
m = minutes
s = seconds
P = AM/PM

p = am/pm

_ =space

c =comma
s = slash
a =dash

o =dot

KeyView date and time formats

Format

Output

12-Hour and 24-Hour Time Formats

KVDTF_P
KVDTF_P_hmm
KVDTF_hmm_P
KVDTF_P_hhmm
KVDTF_hhmm_P
KVDTF_P_hmmss
KVDTF_hmmss_P
KVDTF_P_hhmmss
KVDTF_hhmmss_P
KVDTF_Hmm

KVDTF_HHmm

KeyView (11.6)

p

P h:mm

h:mm P

P hh:mm

hh:mm P

P h:mm:ss

h:mm:ss P

P hh:mm:ss

hh:mm:ss P

H:mm

HH : mm

Integer Value

© o0 N o o A W N -

-
- O

Page 303 of 346

XML Export SDK C Programming Guide

Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format
KVDTF_mmss
KVDTF_Hmmss

KVDTF_HHmmss

Output
mm:ss
H:mm:ss

HH:mm:ss

Numerical Date Formats with Slashes

KVDTF_mmsdd
KVDTF_msdsyy
KVDTF_mmsddsyy
KVDTF_mmsddsyyyy
KVDTF_ddsmm
KVDTF_ddsmmsyy
KVDTF_ddsmmsyy_Hmm
KVDTF_ddsmm_P_hmm
KVDTF_ddsmm_hmm_P
KVDTF_ddsmm_P_hhmm
KVDTF_ddsmm_hhmm_P
KVDTF_ddsmmsyy_P_hmm
KVDTF_ddsmmsyy_hmm_P
KVDTF_ddsmmsyy P_hmmss
KVDTF_ddsmmsyy_hmmss_P
KVDTF_ddsmmsyy_ P_hhmmss
KVDTF_ddsmmsyy_hhmmss_P
KVDTF_yysmmsdd_P_hhmmss
KVDTF_yysmmsdd_hhmmss_P
KVDTF_msdsyy_Hmm
KVDTF_mmsddsyy_Hmm
KVDTF_msdsyy P_hmm

KVDTF_msdsyy_hmm_P

KeyView (11.6)

mm/dd

m/d/yy

mm/dd/yy

mm/dd/yyyy

dd/mm

dd/mm/yy

dd/mm/yy H:mm

dd/mm P h:mm

dd/mm h:mm P

dd/mm P hh:mm

dd/mm hh:mm P
dd/mm/yy P h:mm
dd/mm/yy h:mm P
dd/mm/yy P h:mm:ss
dd/mm/yy h:mm:ss P
dd/mm/yy P hh:mm:ss
dd/mm/yy hh:mm:ss P
yy/mm/dd P hh:mm:ss
yy/mm/dd hh:mm:ss P
m/d/yy H:mm
mm/dd/yy H:mm
m/d/yy P h:mm

m/d/yy h:mm P

Integer Value
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Page 304 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value
KVDTF_mmsddsyy_hmm_P mm/dd/yy h:mm P 38
KVDTF_mmsdd_P_hhmm mm/dd P hh:mm 39
KVDTF_mmsdd_hhmm_P mm/dd hh:mm P 40
KVDTF_mmsddsyy_P_hhmmss mm/dd/yy P hh:mm:ss 41
KVDTF_mmsddsyy_hhmmss_P mm/dd/yy hh:mm:ss P 42
KVDTF_msd m/d 43
KVDTF_yysm yy/m 44
KVDTF_yysmm yy/mm 45
KVDTF_yysmsd yy/m/d 46
KVDTF_yysmmsdd yy/mm/dd a7
KVDTF_yyyysmmsdd yyyy/mm/dd 48
Numerical Date Formats with Dashes

KVDTF_ddammayy dd-mm-yy 49
KVDTF_mmadd mm-dd 50
KVDTF_mmayy mm-yy 51
KVDTF_yyammadd yy-mm-dd 52
KVDTF_yyyyammadd yyyy-mm-dd 53
KVDTF_yyyyammaddaHHmmss yyyy-mm-dd-HH:mm:ss 54
Numerical Date Formats with Dots

KVDTF_yyomod yy.m.d 55
KVDTF_yyommodd yy.mm.dd 56
KVDTF_mod m.d 57
KVDTF_mmodd mm. dd 58

Numerical and String Date Formats with Dashes, Commas, and Spaces

KVDTF_ddaMon dd-Mon 59
KVDTF_daMonayy d-Mon-yy 60
KVDTF_ddaMonayy dd-Mon-yy 61

KeyView (11.6)

Page 305 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value
KVDTF_ddaMonayyyy dd-Mon-yyyy 62
KVDTF_Mon Mon 63
KVDTF_Monayy Mon-yy 64
KVDTF_Monayyyy Mon-yyyy 65
KVDTF_Monaddayy Mon-dd-yy 66
KVDTF_yyammadd_P_hhmmss yy-mm-dd P hh:mm:ss 67
KVDTF_mmadd_P_hhmm mm-dd P hh:mm 68
KVDTF_Mon_yy Mon yy 69
KVDTF_Monc_yy Mon, yy 70
KVDTF_Month Month 71
KVDTF_Monthayy Month-yy 72
KVDTF_Month_yy Month yy 73
KVDTF_Monthc_yy Month, yy 74
KVDTF_Monthayyyy Month-yyyy 75
KVDTF_Month_yyyy Month yyyy 76
KVDTF_Monthc_yyyy Month, yyyy 77
KVDTF_Mon_dc_yyyy Mon d, yyyy 78
KVDTF_d_Monc_yyyy d Mon, yyyy 79
KVDTF_yyyy Mon_d yyyy Mon d 80
KVDTF_Month_dc_yyyy Month d, yyyy 81
KVDTF_d_Monthc_yyyy d Month, yyyy 82
KVDTF_yyyy_Month_d yyyy Month d 83
Weekday Date Formats

KVDTF_Wday Wday 84
KVDTF_Weekday Weekday 85
KVDTF_Wdayc_Mon_dc_yyyy Wday, Mon d, yyyy 86

KVDTF_Weekdayc_Month_dc_yyyy Weekday, Month d, yyyy 87

KeyView (11.6) Page 306 of 346

XML Export SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value

KVDTF_Weekdayc_d_Monthc_yyyy Weekday, d Month, yyyy 88

KeyView (11.6) Page 307 of 346

Appendix E: Export Tokens

This section contains an alphabetized list of the Export tokens.

Tokens are special strings inserted into the KVXMLTemplate structure, XmlTemplateInfo class, and
template files. They are placeholders for markup that appears in the XML output. For example, the
$CHARSET token marks the place in the XML output where the name of the source document’s character
set is inserted. It would be used in the tag <charset=$CHARSET>.

Word documents are split into blocks by heading level. By default, each section of text between
Heading Level 1 headings will be a single block.

See the template files for examples of how to use tokens.

Export Tokens

Token
$ANCHOR

$BASE

$CHARSET

$CONTENT

$ENDNOTE

$ENDNOTEALL

$FOOTER

$FOOTNOTE

$FOOTNOTEALL

$HEADER

$MAINURL

KeyView (11.6)

Description
Inserts an anchor for a heading level (h2-h6) for the current block.

Inserts the base URL for the XML file. Use in the
<base href=xx> tag.

Inserts the character set of the source document, if that information is
ascertainable. Supported Formats, on page 225 lists the file formats for which
character set information can be determined.

Inserts the content of the metadata field specified by the $NAME token. This
token is used in conjunction with the $SUMMARY, $USERSUMMARY, and $NAME
tokens to insert source document metadata into the XML output. An example
of this token’s use is:

pszUserSummary=<MetaData name="$NAME" content="$CONTENT">

Supported Formats, on page 225 lists file formats that support metadata.

Inserts endnotes from the current block at this point in the output stream.
Currently implemented for Microsoft Word documents only.

Inserts all endnotes at this point in the output stream. Currently implemented
for Microsoft Word documents only.

Inserts the footer from the current block at this point in the output stream.

Inserts footnotes from the current block at this point in the output stream.
Currently implemented for Microsoft Word documents only.

Inserts all footnotes at this point in the output stream. Currently implemented
for Microsoft Word documents only.

Inserts the header from the current block at this point in the output stream.

Inserts the URL to the file containing the start of the generated XML, that is,

Page 308 of 346

XML Export SDK C Programming Guide
Appendix E: Export Tokens

Export Tokens, continued

Token Description
output stream.

$NAME Inserts the name of a metadata field. This token is used in conjunction with
the $SSUMMARY, below, SUSERSUMMARY, on the next page, and
$CONTENT, on the previous page tokens to insert source document
metadata into the XML output. An example of this token’s use is:

pszUserSummary=<MetaData name="$NAME" content="$CONTENT">

The section Supported Formats, on page 225 lists file formats that support
metadata.

$NEXT Inserts the anchor to the next block. If this is the last block, a link to the first
block is inserted.

$PREV Inserts the anchor to the previous block. If the current block is the first block,
a link to the last block is inserted.

$STYLESHEET Inserts the path to the style sheet.

$SUMMARY Inserts the data from standard metadata fields using the markup provided in
the pszUserSummary member of the structure KvXMLTemplate. Standard
fields are enumerated from 0 to 33 in KVSumType in kvtypes.h. See the
tokens SUSERSUMMARY, on the next page, SNAME, above, and
$CONTENT, on the previous page.

The section Supported Formats, on page 225 lists file formats that support
metadata.

$SUMMARYNN Inserts the data from a specified metadata field. NV is a number from 0
through 33 enumerated in the KvSumType structure in kvtypes.h. An example
of this token’s useis:

pszMainTop=<title> $SUMMARY®O1 </head> <body>

The section Supported Formats, on page 225 lists file formats that support
metadata.

$SPLITBLOCKNUMBER Inserts the page number for each block generated as a result of
bHardPageMakesNewBlock or 1cbBlockSize.

$70C Inserts the table of contents at this point in the current output stream. This
token is typically embedded in pszMainTop.

$TOCB Inserts the table of contents at this point for the current block.

$TOCBE Inserts the beginning entry for the table of contents at this point in the current
output stream.

$TOCE Inserts a table of contents entry at this point in the current output stream.

$TOCTE Inserts a text entry without XML markup at this point in the current output

KeyView (11.6) Page 309 of 346

XML Export SDK C Programming Guide

Appendix E: Export Tokens

Export Tokens, continued

Token

$TOCPE

$TOPANCHOR

$USERCB

$USERSUMMARY

$XANCHOR

KeyView (11.6)

Description
stream.

Inserts a partial table of contents entry at this point in the current output
stream. XML tags are removed; however, character entities are retained. This
enables angle brackets to appear in the table of contents entries (for example,
<text>). Without this token, <text> would be interpreted as a non-valid XML
tag and would be ignored by the browser.

Inserts the anchor for the top heading level (h1) for the current block.

Triggers the callback function UserCB () and identifies the callback used in
the function.

Inserts the data from every valid non-standard metadata field using the
markup provided in the pszUserSummary member of the KVXMLTemplate
structure. Non-standard metadata are any fields not listed from 0 to 33 in
KvSumType, such as user-defined fields (for example, custom property fields
in Word documents), or fields that are unique to a particular file type (for
example, “Artist” or “Genre” fields in MP3 files). See the tokens $SUMMARY,
on the previous page, $NAME, on the previous page, and SCONTENT, on
page 308.

The section Supported Formats, on page 225 lists file formats that support
metadata.

Inserts the anchor to an extra file into the XML output.

The contents of the extrafile is defined by pszXFile, and the block generated
by this token is defined by pszxStartBlock and pszXEndBlock.

Page 310 of 346

Appendix F: File Format Detection

This section describes how file formats are detected in the KeyView Export SDK.

& NtrOdUCHION ... 311
¢ Extract Format Information 311
® Determine Format Support .. 311
® Translate Format Information 313
® DetermineaDocument Reader 315
® Category Values informats_e.ini 315

Introduction

The KeyView format detection module (kwad) detects a file’s format, and reports the information to the
API, which in turn reports the information to the developer’s application. If the detected format is
supported by the KeyView SDK, the detection module also loads the appropriate structured access
layer and document reader for further processing.

For a list of supported formats, see Supported Formats, on page 225.

Extract Format Information

You can extract format information from a document by using the fpGetStreamInfo() function. If
required, this format information can then be reported to the developer’'s application. The
fpGetStreamInfo() function extracts format information, such as file class, format, and version, and
populates the ADDOCINFO structure. This structure is defined in the adinfo. h header file.

For information on how to translate the extracted format information, see Translate Format Information,
on page 313.

Determine Format Support

After the file format is extracted, the detection module uses the formats_e. ini file to determine
whether the format is supported by KeyView, and the appropriate structured access layer and reader to
load.

The formats_e.ini fileis in the directory instal (\0S\bin, where install is the path name of the
Export installation directory and 0s is the name of the operating system. It contains the following
information:

« Coded format information. To translate this information, see Translate Format Information, on page
313.

« Thereader associated with each format. See Determine a Document Reader, on page 315.

KeyView (11.6) Page 311 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

« Configuration parameters for out-of-process conversions.
« Locale settings for internal use.

Below are some entries from the formats_e.ini file:

123=mw
152=xyw
178=wp6
189=mw6
2=af
200=pdf
205=mb
210=htm
251=htm

NOTE: The formats_e. ini file applies to all formats except graphics. Detection of graphics
formats is handled by an internal module named KeyView Picture Interchange Format (KPIF).

Refine Detection of Text Files

During text detection, KeyView analyzes the first 1 kB and last 1 kB of data in a document; if less than
10% of that data consists of non-ASCII characters, KeyView detects the document as a text file.

However, depending on the type of documents you are working with, the default settings might not
provide the desired level of accuracy. Configuration flags allow you to change the amount of data to
read at the end of afile, the percentage of non-ASCII characters permitted in a text file, and whether to
use or ignore the file extension to determine the document format.

Change the Amount of File Data to Read

During file detection, KeyView reads characters from the beginning and end of a file—by default, it
reads the first and last 1,024 bytes of data. Large text files might contain many irrelevant characters at
the end of a file, so KeyView might not accurately detect the file format. You can set a configuration
flag to increase the amount of data to read from the end of a file during detection.

To change the amount of data to read during detection

o Inthe formats_e.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_end_block_size=kB

where kB is the number of kilobytes to read from the end of the file, from @ to 1@. The default value is
1

NOTE: The file size must be greater than the value specified in the flag. If the flag value is
greater than the file size, KeyView does not use the flag.

KeyView (11.6) Page 312 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Change the Percentage of Allowed Non-ASCIl Characters

By default, if less than 10% of the analyzed data in a document consists of non-ASCII characters, it is
detected as a text file. Depending on the type of files you are working with, changing the default
percentage might increase detection accuracy.

To change the percentage of non-ASCIl characters allowed in text files

o Inthe formats_e.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_in_text=N

where N is the percentage of non-ASCII characters to allow in text files. Files that contain a lower
percentage of non-ASCII characters than N are detected as text files. The default value is 10.

Use the File Extension for Detection

Sometimes KeyView detects certain file formats (such as CSV) as ASCII because of the content of
the documents. In such cases, you can configure KeyView to use the file extension to determine the
document format. Using the file extension can improve detection of formats such as CSV, but might
not detect text files successfully if they have incorrect file extensions.

To use the file extension for ASCII files during detection

« Inthe formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
use_extension_for_ascii=1

The default is @ (do not use the file extension).
Allow Consecutive NULL Bytes in a Text File

By default, if a document contains consecutive NULL bytes, it is not detected as text. Depending on the
type of files you are working with, changing the default might increase detection accuracy.

To allow consecutive NULL bytes of ASCII characters in text files

Inthe formats. ini file, set the following flag in the detection_flags section:

[detection_flags]
ascii_allow_null bytes=1

The default value is @ (do not allow consecutive NULL bytes).

Translate Format Information

Format information can include file attributes in the following categories:

KeyView (11.6) Page 313 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

« Major format
« Fileclass

o Minor format
« Major version
« Minor version

Not all categories are required. Many formats only include major format and file class, or major format
only.

The format information has the following structure:
MajorFormat.FileClass.MinorFormat.MajorVersion.MinorVersion
For example:

81.2.0.9.0

Each number in the format information represents a file attribute. The entry 81.2.0.9.0 represents a
Lotus 1-2-3 Spreadsheet file version 9.0, where:

81 = Lotus 1-2-3 Spreadsheet (major format)
2 = Spreadsheet (file class)
0 = not defined (minor format)
9 = 9 (major version)
0 = 0 (minor version)

The example above applies to formats_e. ini file. When extracting format information by using the
fpGetStreamInfo() function method, the same format information is represented as 294.2.0.9.

NOTE: The format values returned by fpGetStreamInfo() differ from thosein formats_e.ini
because the former defines a unique ID for each major format, whereas the latter uses a major
version, minor version, and minor format to distinguish between formats.

Distinguish Between Formats

The ADDOCINFO structure method provides a unique ID for each major format. For example, a call to
fpGetStreamInfo() returns 351.1.0 for a Microsoft Word 2003 XML format. The major format 351 is
unique to this format.

Unlike ADDOCINFO, the formats_e. ini file distinguishes between formats by using the major version
number. For example, in formats_e.ini, a Microsoft Word 2003 XML format is defined as
285.1.0.100.0. The major format 285 and file class 1 are the same values for generic XML. The major
version 100 distinguishes the format as Microsoft Word 2003 XML.

The major version is used in formats_e. ini to specify the following formats:

« The Microsoft Office 2003 XML format has the same major format and file class as generic XML
(285.1). ltis distinguished from generic XML by using the following major versions:

o Word: 100
o Excel: 101
o Visio: 110

KeyView (11.6) Page 314 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

« The XHTML format has the same major format and file class as HTML (210.1). Itis distinguished
from HTML by using the major version 100.

Determine a Document Reader

The format detection module uses the formats_e. ini file to determine whether a format is supported
and which reader should be used to parse a format. The entries in the formats_e. ini file lists each
format’s coded value, and an abbreviation for the format’s reader. For example:

81.2.0.9.0=1123

The reader abbreviation is a truncated version of the reader’s library name. Adding “sr” to the end of an
abbreviation creates the name of the reader. The example entry above specifies that a Lotus 1-2-3
Spreadsheet file version 9.0 is parsed by the Lotus 1-2-3 reader, 1123sr.

Files Required for Redistribution, on page 334 lists the document readers provided with KeyView.

Category Values in formats_e.ini

This section lists the possible category values for format information in the formats_e. ini file. The
corresponding values for the format information extracted from a call to fpGetStreamInfo() are listed
inthe adinfo.h headerfile.

« Major Formats
« File Classes

o Minor Formats
Major Formats

Number Format File Class

1 AES Multiplus Comm Format Word processor
2 ASCII File word processor/MS DOS Batch File format Word processor
3 Applix Asterix Word processor
4 Microsoft Windows Bitmap image (BMP) Rasterimage

5 Convergent Tech DEF Comm. format Word processor
6 Corel Draw (CDR) Vector graphic
7 Keyword COM.FILE (KSIF)

8 Computer Graphics Metafile (CGM) Vector graphic
9 Word Connection Word processor
10 COMET TOP Word Word processor
11 DG CEOwrite Word processor

KeyView (11.6) Page 315 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

KeyView (11.6)

Honey Bull DSA101

IBM DCA-RFT

DDIF

Dummy File (Internal)

DG Common Data Stream (CDS)
Dummy Print File (Internal)
Windows Micrografx Draw (DRW)
Data Point VISTAWORD

DECdx

Enable

Encapsulated PostScript (EPS)
DOS/Windows Executable (EXE, DLL)
CCITT Group 3 1-Dimensional (G31D)
Graphics Interchange format (GIF)
Hewlett Packard

IBM 1403 Line Printer

IBM DCF Script

IBM DCA-FFT

Interleaf

GEM Bit Image

IBM Display Write 4

Raster Graphics

Keywords PICL

Lotus AMI Pro

MORE Database Outliner (Mac)
Lyrix

MASS-11

File Class
Word processor
Word processor

Word processor

Word processor

Vector graphic
Word processor
Word processor
Word processor
Raster image
Executable
Raster image
Rasterimage
Word processor
Word processor
Word processor
Word processor
Word processor
Raster image
Word processor

Rasterimage

Word processor
Outline/planning
Word processor

Word processor

Page 316 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

KeyView (11.6)

Format

MacPaint

Microsoft Word Mac

Informix SmartWare II Communication File
Microsoft Word for Windows
MultiMate 4.0

Multiplan Spreadsheet

Microsoft Rich Text Format (RTF)
Microsoft Word 5.0 (PC)

NBI Async Archive Format

Navy DIF

NBI Net Archive Format

NIOS TOP

FileMaker (Mac)

ODA/ODIF

OLIDIF

Keyword OSM

Office Writer

PC Paint Brush Graphics (PCX)
CPT Communication Format
Lotus PIC

Macintosh Quick Draw Picture Format (PICT)
Philips Script

PostScript File

PRIMEWORD

Quadratron Q-One (V1.93J)
Quadratron Q-One (V2.0)
SAMNA Word IV

File Class
Raster image
Word processor
Communications
Word processor
Word processor
Spreadsheet
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Database

Word processor

Word processor

Word processor
Rasterimage
Word processor
Vector graphic
Raster image
Word processor
Vector graphic
Word processor
Word processor
Word processor

Word processor

Page 317 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

KeyView (11.6)

Format

Lotus AMI Pro Draw (SDW)
SYLK Spreadsheet

Informix SmartWare Il
Symphony Spreadsheet
Truevision Targa

Tagged Image File (TIFF)
Targon Word (V 2.0)
Uniplex Ucalc Spreadsheet
Uniplex (V6.01)

Microsoft Word (UNIX)
WANG PC

WordERA (V 1.0)

WANG WPS Comm. format
WordPerfect Mac
WordPerfect 5.2

Lotus 1-2-3 Spreadsheet

WordMARC word processor

Microsoft Windows Metafile (WMF) Graphics
Informix SmartWare Il Database

WordPerfect Graphics V1.0 (WPG)

WordPerfect

WordStar

Wang WITA

Xerox 860 Comm. format
Microsoft Excel Spreadsheet
Xerox Writer word processor

DIF Spreadsheet

File Class
Raster image
Spreadsheet
Word processor
Spreadsheet
Raster image
Rasterimage
Word processor
Spreadsheet
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Spreadsheet
Word processor
Rasterimage
Database
Raster image
Word processor
Word processor
Word processor
Word processor
Spreadsheet
Word processor

Spreadsheet

Page 318 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

93 ENABLE Spreadsheet

94 Supercalc Spreadsheet

95 Ultracalc Spreadsheet

96 Informix SmartWare Spreadsheet

97 Serialized Object Format (SOF) Encapsulation format
98 Microsoft PowerPoint (PC)

99 Microsoft PowerPoint (Mac)

100 Aldus PageMaker (Mac)

101 Aldus PageMaker (DOS)

103 Microsoft Works (Mac)

104 Microsoft Works Database (Mac)

105 Microsoft Works Spreadsheet (Mac)
106 Microsoft Works Communication (Mac)
107 Microsoft Works (PC)

108 Microsoft Works Database (PC)

109 Microsoft Works Spreadsheet (PC)

111 PC Library Module

112 MacWrite

113 MacWrite I

114 Aldus Freehand Mac

115 Disk Doubler Compression format

116 HP Graphics Language (HP-GL)

117 Adobe Maker Interchange Format (MIF)
118 JPEG File Interchange Format (JFIF)
119 Reflex Database

120 Framework Il

121 Paradox (PC) Database

KeyView (11.6)

File Class
Spreadsheet
Spreadsheet
Spreadsheet
Spreadsheet
Encapsulation
Presentation
Presentation
Desktop Publishing
Desktop Publishing
Word processor
Database
Spreadsheet
Communications
Word processor
Database
Spreadsheet
Library module
Word processor
Word processor
Vector graphic
Encapsulation
Vector graphic
Desktop Publishing
Raster image
Database

Mixed format

Database

Page 319 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number
123
124
126
127
128
129
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

KeyView (11.6)

Format

Microsoft Windows Write

Quattro Pro Spreadsheet (DOS)
Persuasion Presentation

Corel Presentation

Microsoft Windows Icon Format (ICO) Graphics
Microsoft Project

Harvard Graphics

Zip Archive Format

Microsoft Windows Cursor (CUR) Graphics
Quark Express (Mac)

ARC/PAK Archive format

Adobe FrameMaker

Microsoft Publisher

Plan Perfect

WordPerfect General File Format

Lotus Freelance

Microsoft Wave Sound File

MIDI Sound File

AutoCAD DXF Graphics

dBase Database

0OS/2 PM Metafile Graphics

Lasergraphics Language

AutoShade Rendering File Format
Graphics Environment Manager (GEM VDI)
Microsoft Windows Help File

Volkswriter

Ability Office (SS, DB, GR, WP, COM)

File Class

Word processor
Spreadsheet
Presentation
Presentation
Raster image

Time scheduling
Desktop publishing
Encapsulation
Raster image
Desktop publishing
Encapsulation
Desktop publishing
Desktop publishing
Time scheduling
Miscellaneous
Presentation
Sound

Sound

Vector graphic
Database

Vector graphic
Vector graphic
Vector graphic
Vector graphic
Miscellaneous

Word processor

Page 320 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

1562
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

KeyView (11.6)

XyWrite/Nota Bene

Comma Separated Values (CSV)
Writing Assistant word processor
WordStar 2000

WordStar 6.0

HP Printer Control Language (PCL)
(UNIX/VAX/SUN) Executable
(UNIX/VAX/SUN) Object Module
(UNIX/VAX/SUN) Link Library

NeXT SUN Audio Data

NeWsS font file (SUN)

cpio Archive Format (UNIX/VAX/SUN)
PEX Binary Archive (SUN)

SUN vfont definition

Curses Screen Image (UNIX/VAX/SUN)
UU Encoded Encryption File
WriteNow

PC Object Module

Microsoft Windows Group File

PC True Type Font

Program Information File

PC COM executable file

Adobe FrameMaker Markup Language
Stuff It Archive (Mac)

PeachCalc Spreadsheet

Wang Office GDL Header Encapsulation

WordPerfect 6.0

File Class
Word processor
Spreadsheet
Word processor
Word processor
Word processor
Vector graphic
Executable
Object module
Library module
Sound

Font
Encapsulation
Encapsulation
Font
Rasterimage
Encapsulation
Word processor
Object module
Miscellaneous
Font
Miscellaneous
Executable
Desktop publishing
Encapsulation
Spreadsheet
Encapsulation

Word processor

Page 321 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204

KeyView (11.6)

Q& A forDOS

Q & A for Windows

DEC WPS PLUS

DCX Fax format

Microsoft Windows OLE 2 Encapsulation
Quattro Pro for Windows

Keyword Viewer Markup Format
EBCDIC Text

DCS

Microsoft Excel Spreadsheet 95, 2000
Microsoft Word for Windows 95

UNIX SHAR Encapsulation

Lotus Notes Bitmap

UNIX Compress Encapsulation

Lotus Notes CDF

UNIX TAR Encapsulation

WordPerfect Graphics V2.0 (WPG2)

ODA/ODIF (FOD 26)

ALIS

GZ Compress Encapsulation

Envoy (EVY)

Adobe Portable Document Format (PDF)
KW ODA Internal Raw Bitmap (RBM)
KW ODA G4 (G4)

KW ODA G31D (G31)

KW ODA Internal G32D (G32)

File Class
Word processor
Word processor
Word processor
Fax
Encapsulation

Spreadsheet

Word processor
Word processor
Spreadsheet
Word processor
Encapsulation
Raster image
Encapsulation
Word processor
Encapsulation

Raster image

Vector graphic
Word processor
Word processor
Encapsulation
Word processor
Word processor
Raster image
Raster image
Rasterimage

Rasterimage

Page 322 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

KeyView (11.6)

Format
Microsoft Word for Mac V 4.x/5.x
BinHex 4.0 encoded file

SMTP document

MIME format - Microsoft Outlook Express (EML)/Mailbox (MBX)

SGML document

HTML document
XHTML !

ACT Format

Microsoft PowerPoint 95

Portable Network Graphics (PNG)
Video for Windows

Windows Animated Cursor
Windows C++ Object Storage
Windows Palette

RIFF Device Independent Bitmap
RIFF MIDI

RIFF Multimedia Movie

MPEG Movie

QuickTime Movie

Audio Interchange File Format (AIFF) Sound

Amiga MOD Sound
Amiga IFF (8SVX) Sound
Creative Voice (VOC) Sound

Microsoft Works (Windows)

Microsoft Works Spreadsheet (Windows)
AutoDesk Animator FLIC Animation

AutoDesk Animator Pro FLIC Animation

File Class
Word processor
Encapsulation
Encapsulation
Encapsulation
Word processor

Word processor

Word processor
Presentation
Rasterimage
Movie

Raster image
Mixed format
Rasterimage
Raster image
Sound

Movie

Movie

Movie

Sound

Sound

Sound

Sound

Word processor
Spreadsheet
Animation

Animation

Page 323 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257

KeyView (11.6)

Microsoft Works Database (Windows)
Microsoft Works Communication (Windows)
Compactor/ Compact Pro Archive
VRML

QuickDraw 3D Metafile (3DMF)
PGP Secret Keyring

PGP Public Keyring

PGP Encrypted Data

PGP Signed Data

PGP Signed and Encrypted Data
PGP Signature Certificate
ASCllI-armored PGP Public Keyring
ASCll-armored PGP encoded
ASClI-armored PGP signed

OLE DIB object

PGP Compressed Data

SGl Image

Lotus Screen Cam

MPEG Audio

FTP Session Data

Netscape Bookmark file

Corel Draw CMX

AutoCAD Drawing (DWG)
AutoDesk WHIP

Macromedia Director

Real Audio

MS DOS Device Driver

File Class

Database

Communications

Encapsulation
Vector graphic
Vector graphic
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Rasterimage
Encapsulation
Raster image
Animation

Sound

Communications

Word processor
Vector image
Vector graphic
Vector graphic
Animation
Sound

Executable

Page 324 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

258
259
260
261
262
263
264
265
266
267
268
269
270
27
272
273
274
275
276
277
278
279
280
281
282
283
284

KeyView (11.6)

Micrografx Designer

Simple Vector format (SVF)
WordPerfect Office document (WPD)
Applix Words

Applix Graphics

Microsoft Access

Usenet format

MacBinary

Apple Single

Apple Double

Lotus Word Pro

Microsoft Word 97, 2000
Enhanced Window Metafile
Microsoft Office Drawing
Microsoft PowerPoint 97, 2000
Extended or Custom XML
Device Independent file (DVI)
Unicode

Framework

KPIF Chart Stream

Applix Spreadsheet

Microsoft Device Independent Bitmap
KeyView GPF Filter

Microsoft Project 98, 2000, 2002
Folio Flat file

HWP (Arae-Ah Hangul)

JustSystems Ichitaro

File Class
Vector graphic

Vector graphic

Word processor
Presentation
Database

Word processor
Encapsulation
Encapsulation
Encapsulation
Word processor
Word processor
Vector graphic
Vector graphic
Presentation
Word processor
Vector graphic
Word processor

Mixed

Spreadsheet

Rasterimage

Time scheduling
Word processor
Word processor

Word processor

Page 325 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

285

286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309

KeyView (11.6)

Generic XML format

Microsoft Office 2003 XML format 2

Fujitsu Oasys

Portable Bitmap Utilities (PBM)

Portable Greymap Utilities (PGM)

Portable Pixmap Utilities (PPM)

X Bitmap (XBM)

X Pixmap (XPM)

X Image

PCD Image

Microsoft Visio

Microsoft Outlook (MSG)

XHTML document

Microsoft Outlook Personal Folders file (PST)
WiInRAR Compressed Archive format (RAR)

Lotus Notes Database (NSF)
Legato Extender ONM

Macromedia Flash

Microsoft Word 2007 (XML format)
Microsoft Excel 2007 (XML format)
Microsoft PowerPoint 2007 (XML format)
Open PGP (new format packets only)
Intergraph version 7 DGN

Microstation version 8 DGN

Microsoft Word 2007 Macro

Microsoft Excel 2007 Macro

Microsoft PowerPoint Macro

File Class

Word processor

Word processor
Raster image
Raster image
Rasterimage
Raster image
Raster image
Raster image
Rasterimage
Presentation
Encapsulation
Word processor
Encapsulation
Encapsulation

Encapsulation

Word processor
Word processor
Spreadsheet
Presentation
Encapsulation
Vector graphic
Vector graphic
Word processor
Spreadsheet

Presentation

Page 326 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

310
311
312
313
314
315
316
317
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

KeyView (11.6)

Microsoft Compression folder (LZH)
Office 2007 Document

XML Paper Specification

Lotus Domino Extensible Language
OASIS Open Document (ODT)
OASIS Open Document (ODS)
OASIS Open Document (ODP)
Legato EMailXtender Native Message
Transfer Neutral Encapsulation Format (TNEF)
CADAM Drawing

CADAM Drawing Overlay
NURSTOR Drawing

HP Graphics Language (Plotter)
Advanced Systems Format

Windows Media Audio Format
Windows Media Video Format

Legato EMailXtender Archive

7-Zip

Microsoft Office 2007 Excel Binary Format
Microsoft Cabinet File

CATIA formats

Yahoo! Instant Messenger

Founder Chinese E-paper Basic

Corel Quattro Pro X4

MIME HTML

Microsoft Document Imaging Format

Microsoft Office Groove File Format

File Class
Encapsulation
Miscellaneous
Word processor
Encapsulation
Word processor
Spreadsheet
Presentation
Word Processor
Encapsulation
Vector graphic
Vector graphic
Vector graphic
Vector graphic
Miscellaneous
Sound

Movie
Encapsulation
Encapsulation
Spreadsheet
Encapsulation
Vector graphic
Word processor
Word processor
Spreadsheet
Word processor
Rasterimage

Word processor

Page 327 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
362
364
366
367
368

KeyView (11.6)

Apple iWorks Pages

Apple iWorks Numbers

Apple iWorks Keynote
Microsoft Backup File
Microsoft Access 2007
Microsoft Entourage Database
Mac Disk Copy Disk Image File
Appleworks File

Omni Outliner (OO3) File

Omni Outliner (OPML) File
Omni Graffle XML File

Apple Photoshop Document
Apple Binary Property List
Apple iChat Format

Omni Outliner (OOUTLINE) File
Bzip 2 Compressed File
ISO-9660 CD Disc Image Format
Xerox DocuWorks

RealMedia Streaming Media
AC3 Audio File Format

Nero Encrypted File
SolidWorks

UniGraphics NX

3D Systems STL format
Extensible Forms Description Language
Apple XML Property List

OneNote Note Format

File Class
Word processor
Spreadsheet
Presentation
Encapsulation
Database
Encapsulation
Encapsulation
Word processor
Word processor
Word processor
Vector graphic
Raster image
Miscellaneous
Word processor
Word processor
Encapsulation
Encapsulation
Word processor
Movie

Sound
Encapsulation
Vector graphic
Vector graphic
Vector graphic
Presentation
Miscellaneous

Presentation

Page 328 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number Format

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
393
395
397
402
409
412

KeyView (11.6)

Digital Imaging and Communications in Medicine (DICOM)

Expert Witness Compression Format
Shell Scrap Object File

Microsoft Project 2007

Microsoft Publisher 98—

Skype Log File

Lotus Notes Bitmap Format (DXL embedded images)
Health level7 message

Microsoft Outlook Offline Storage File
Open Publication Structure eBook
Microsoft Outlook Express DBX
BlackBerry Activation File

Disk Image

Milestone

ReallLegal E-Transcript File
PostScript Type 1 Font

Ghost Disk Image File

JPEG-2000 JP2 File Format Syntax (ISO/IEC 15444-1)

Unicode HTML

Microsoft Compiled HTML Help
Documentum EMCMF

JBIG2 File

AD1 Evidence file

Group Wise File Surf email

ARJ

Microsoft Outlook for Macintosh

Microsoft Outlook vCard Contact

File Class

Raster image
Encapsulation
Encapsulation

Time scheduling

Desktop publishing

Word processor
Rasterimage
Word processor
Encapsulation
Word processor
Encapsulation
Word processor
Encapsulation
Raster Image
Word processor
Font
Encapsulation
Raster Image
Word processor
Encapsulation
Encapsulation
Rasterimage
Encapsulation
Encapsulation
Encapsulation
Encapsulation

Word processor

Page 329 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Major Formats, continued

Number
414
418
419
420
421
427
428
429
430
431
432
433
435
436
437
438
439

1 If the major version is 100, the file format is XHTML.

Format

Microsoft Outlook iCalendar
Apple iWork 2013 Pages
Apple iWork 2013 Numbers
Apple iWork 2013 Keynote
Xz

B1

MP4

Rarb

PTC Creo

Keyhole Markup Language

Zipped Keyhole Markup Language

Wireless Markup Language

Star Office Writer Text

Star Office Calc Spreadsheet

Star Office Impress Presentation

Star Office Math

ISO 10303-21 STEP format

File Class
Encapsulation
Word processor
Spreadsheet
Presentation
Encapsulation
Encapsulation
Movie
Encapsulation

Vector graphic

Vector graphic

2 The major version determines whether the Microsoft Office XML file is a Word, Excel or Visio

document. The major version for each format is as follows:

Word: 100
Excel: 101
Visio: 110

File Classes

Attribute Number File Class

0

01
02
03

KeyView (11.6)

No file class
Word processor
Spreadsheet

Database

Page 330 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

File Classes, continued

Attribute Number
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

Minor Formats

Attribute Number
00
01
02
03
04
05

KeyView (11.6)

File Class
Raster image
Vector graphic
Presentation
Executable
Encapsulation
Sound

Desktop publishing
Outline/planning
Miscellaneous
Mixed format
Font

Time scheduling
Communications
Object module
Library module
Fax

Movie

Animation

Minor Format

Minor format not defined
Standard

Book

Chart

Macro

Text

Page 331 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Minor Formats, continued

Attribute Number Minor Format

06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

KeyView (11.6)

Binary

PC
Windows
DOS
Macintosh
RGB

TIFF

IFF

Experimental

Format Information

RLE

Symbol

Old

Footnote
Style

Palette
Configuration
Activity
Resource
Calculation
Glossary
Spelling
Thesaurus
Hyphenation
Miscellaneous
UNIX

VAX

Page 332 of 346

XML Export SDK C Programming Guide
Appendix F: File Format Detection

Minor Formats, continued

Attribute Number Minor Format
33 Driver

34 Archive

KeyView (11.6)

Page 333 of 346

Appendix G: Files Required for Redistribution

This section lists the Export files that can be redistributed in your applications under the licensing
agreement. These files are in the directory instal \0OS\bin, where install is the path name of the

Export installation directory and 0s is the name of the operating system.

® CoreFiles

® Support Files ...

®* Document Readers and Writers

® Document Type Definition Files

NOTE: On Windows systems, the libraries are . d11 files. On UNIX systems, the libraries are

.s0, .a,or.sl files.

Core Files

The following core files can be redistributed with your application.

File Description

formats_ Initialization file. For more information on this file, see Determine Format Support,

e.ini on page 311.

htmlexport.* Required by the Java API.

xmlcnv.* XML converter for the document token stream.
kpifcnvt.* Graphic conversion routines.

kpifutil.* Graphic utility routines.

kvxtract.* File Extraction interface.

kvxml.* XML Export C API.

kvexport.* Export C API. Interface to the HTML and XML Export C APIs.

kvolefio.* Embedded OLE object writer.

kvutil.* Internal KeyView utility functions.

kvxpgsa.* Interface between presentations or graphic readers and the Export API.
kvxsssa.* Interface between spreadsheet readers and the Export API.

kvxwpsa. * Interface between word processing readers and the Export API.

kwad . * File auto-recognition module.

KeyView (11.6)

Page 334 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File
regsvr32.exe
txtcnv. *
xmlexport.*

\vcredist

Description

Converter for document token stream.

Required by the Java API.

Support Files

The following support files can be redistributed with your application.

File
bentofio.*

cbmap.map

chartbls.ux
chmdll.*
kp3dwrld.*
kpchtrdr.*
kpjavwrt.*
kpjpeg.*
kppng.*
kvxconfig.ini
kvgraph.*
kvpie.*
kvradar.*

kv.lic

kvraster.class

KeyView (11.6)

Description
Required by 1123sr.* and kpprzrdr. *,

Character mappings for Adobe Portable Document Format
(PDF).

Character mapping tables.

Required by chmsr.

Required for 3D charts.

Required for all spreadsheets (chart support).

Java utility routines.

JPEG file interchange format shared routines.

Portable Network Graphics (PNG) utilities.

Contains element extraction settings for source XML files.
Required for all spreadsheets (chart support).

Required for all spreadsheets (chart support).

Required for all spreadsheets (chart support).

Contains license information for KeyView products. This file

is opened and validated when a KeyView APl is used.

Java program used to convert vector graphics on UNIX and
Linux.

A Microsoft Windows program used to register in-process COM objects.

Microsoft Visual C++ 2010 and Microsoft Visual Studio C++ 2005 Redistributables.

NOTE: On Windows platforms, the Microsoft Visual C++ 2010 and Microsoft
Visual Studio C++ 2005 Redistributables need to be deployed and installed
for KeyView to run.

Page 335 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File

kvVector.class

kvvector.jar

mscomctl.ocx

msvbvm6o . *

Description

Java applet used to convert vector graphics on UNIX and
Linux.

Java applet used to convert vector graphics on UNIX and
Linux. This must reside in the output directory.

Microsoft Common Control (for example, labels, dialog
boxes). Required for Visual Basic programs and COM
objects.

Microsoft Visual Basic Runtime library V6.0.

MSVCP60. * Microsoft Visual C++ Runtime Library V6.0.
msvcrt. * Microsoft Visual C Runtime library.
oleaut32.* Microsoft OLE Automation Controls.
olepro32.* Microsoft OLE property support library.

servant.exe

wpmap. * Extended character mapping for WordPerfect and Corel
Presentation.
xmlsh.* Contains a library of content handlers for each XML file type.

Executable required for out-of-process conversions.

Required by the Expat XML parser.

Document Readers and Writers

The following readers and writers can be redistributed with your application.

File Description

adlsr.* AD1 Evidence file reader

afsr.* ASCII reader

assr.* Applix spreadsheet reader

awsr.* Applix Words reader

bkfsr.* Microsoft Backup File reader
bzip2sr.* Bzip2 reader

cabsr.* Microsoft Cabinet format reader
cebsr.* Founder Chinese E-paper Basic reader
chmsp. * Microsoft Compiled HTML Help reader

KeyView (11.6)

Page 336 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File

csvsr.*
dbfsr.*
dbxsr.*
dcasr.*
difsr.*
dmgsr.*
dwdsr.*
dxlsr.*

emlsr.*

emxsr.*
encasesr.*
encase2sr.*
entsr.*
epubsr.*
foliosr.*
gwfssr.*
hl7sr.*
htmsr. *
hwposr. *
ichatsr.*
icssr.*
isosr.*
iwsssr.*
iwwpsr.*
jp2000sr. *
jtdsr.*

kpagrdr.*

KeyView (11.6)

Description
Comma-Separated Values reader
dBase Database reader

Microsoft Outlook Express DBX reader

Document Content Architecture/Revisable Form Text (DCA/RFT) reader

Data Interchange Format reader
Mac Disk Copy Disk Image File reader
DisplayWrite 4 reader

Domino XML Language reader

Microsoft Outlook Express (EML) reader. This is used to convert EML files when

the MBX reader is not licensed.

Legato EMailXtender archive (EMX) reader

Expert Witness Compression Format (EnCase) v6 reader
Expert Witness Compression Format (EnCase) v7 reader
Microsoft Entourage Database Format reader

Open Publication Structure eBook reader

Folio Flat File reader

GroupWise FileSurf reader

Health level7 reader (metadata only)

HTML and XHTML reader

Hangul 2002, 2005, 2007 reader

Apple iChat Log reader

Microsoft Outlook iCalendar reader

ISO-9660 CD Disc Image Format reader

Apple iWork Numbers reader

Apple iWork Pages reader

JPEG 2000 metadata reader

JustSystems Ichitaro reader

Applix Presents reader

Page 337 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File

kpanirdr.
kpbmprdr.
kpbmpwrt.
kpcdrrdr.
kpcgmrdr.
kpcgmwrt.
kpdcxrdr.
kpDWGrdr.
kpDXFrdr.
kpemfrdr.
kpepsrdr.
kpgifrdr.

kpicordr.

kpiwpgrdr.*
kpjbig2rdr.*

kpjp2eeerdr.*

kpjpgrdr.

kpjpgwrt.

kpnbmprdr. *

kpmacrdr.
kpmsordr.
kpodfrdr.
kpODArdr.
kpONErdr.

kppdfrdr.

kppdf2rdr.*

kpp4ordr.

kpp95rdr.

KeyView (11.6)

*

*

*

*

*

*

*

*

*

Description

Animated cursor reader

Windows Bitmap reader

Windows Bitmap writer

Corel Draw

Computer Graphics Metafile reader

Computer Graphics Metafile writer

DCX (fax) reader

AutoCAD Drawing format reader

AutoCAD Drawing Exchange format reader

Enhanced Metafile reader

Encapsulated PostScript (EPS) reader

Graphic Interchange Format (GIF) reader

Windows Icon reader

Apple iWork Keynote reader

JBIG2 reader

JPEG 2000 reader

JPEG file interchange format reader

JPEG file interchange format writer

IBM Notes Bitmap reader (for embedded images in DXL files)
MacPaint reader

Microsoft Office Drawing Objects (office 97, 2000, and XP) reader
Oasis Open Document Format presentation (ODP) reader
AutoCAD reader (Windows only)

Microsoft OneNote reader

Adobe Portable Document File (PDF) graphic-based reader
High-fidelity Adobe Portable Document File (PDF) graphic-based reader
Microsoft PowerPoint PC 4.0 and PowerPoint Mac reader

Microsoft PowerPoint 95 reader

Page 338 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File

kpp97rdr.
kppctrdr.
kppcxrdr.
kppicrdr.
kppngrdr.
kppngwrt.
kpppxrdr.
kpprerdr.
kpprzrdr.
kpsdwrdr.
kpsgirdr.
kpshwrdr.
kpsunrdr.
kptgardr.
kptifrdr.

kpvsdrdr.

kpVSDXrdr.d11

kpwg2rdr.
kpwmfrdr.
kpwmfwrt.
kpwpgrdr.
kpxfdlrdr
kvgzsr.*

kvhgxsr.*
kvzeesr.*
1123spr.*

lasr.*

KeyView (11.6)

dll

*

Uk

Description

Microsoft PowerPoint 97 and higher reader
Macintosh Quick Draw Picture (PICT) reader
PC Paintbrush (PCX) reader

Pictor PC Paint format (PIC) reader

Portable Network Graphics (PNG) reader
Portable Network Graphics (PNG) writer

Microsoft PowerPoint XML reader 2007

Lotus Freelance Graphics for Windows V2.0 reader

Lotus Freelance Graphics 96/97/98 reader
Lotus Ami Pro Graphics reader

SGI RGB reader

Corel Presentations reader

Sun Raster reader

Truevision Targa reader

Tagged Image File Format (TIFF) reader
Microsoft Visio reader

Microsoft Visio 2013 reader

WordPerfect Graphics 2 reader

Windows Metafile reader

Windows Metafile writer

WordPerfect Graphics 1 reader
Extensible Forms Description Language reader
GZIP reader

BinHex reader

UNIX Compress reader

Lotus 123 v96/97/98 reader

Lotus AMI Pro reader

Page 339 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File Description
ltbenn30.d11l Lotus Word Pro support (supported on Windows x86 platform only)

ltscsn10.d1l Lotus Word Pro support (supported on Windows x86 platform only)

lwpapin.dll
lwppann.dll
lwpsr.dll

macbinsr.*

Lotus Word Pro support (supported on Windows x86 platform only)
Lotus Word Pro support (supported on Windows x86 platform only)
Lotus Word Pro reader (supported on Windows x86 platform only)

MacBinary reader

mbsr. * Microsoft Word Macintosh reader

mbxsr. * Mailbox (MBX)1 and Microsoft Outlook Express (EML) reader
mdbsr. * Microsoft Access reader.

mifsr.* Adobe Maker Interchange Format reader

mispr.* Microsoft Word 2 reader

mp3sr.* MP3 reader for metadata extraction

mppsr. * Microsoft Project reader

msgsr.* Microsoft Outlook (MSG) reader

mspubsr. * Microsoft Publisher reader

msweésr. * Microsoft Works 6 and 2000 reader

mswsr. * Microsoft Works V1 and 2 reader

multiarcsr ARJ reader

mwesr. * Microsoft Word 95 reader

mw8sr. * Microsoft Word 97, 2000, and XP reader

mwsr . * Microsoft Word for DOS and Microsoft Write reader
mwssr . * Microsoft Works Spreadsheet reader

mMwXsr. * Microsoft Word 2007 XML reader

nsfsr.* IBM Notes Database reader?

oa2sr.* Fujitsu Oasys reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

2This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

KeyView (11.6) Page 340 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File

odfsss
odfwps
olesr.
olmsr.
oo3sr.
pdfsr.
pffsr.

pstsr.

pstnsr
gpssr.
rarsr.
rtfsr.
skypes
sosr.*
swfsr.
tarsr.

tnefsr

unihtmsr.*

unisr.
unzip.
uudsr.
vsdsr.
vcfsr.
wkssr.

wosr.*

r.*

r.*

*

*

*

dll

Uk

*

*

*

r.*

*

*

Uk

*

*

Description

Oasis Open Document Format spreadsheets (ODS) reader

Oasis Open Document Format word processing (ODT) reader

Embedded OLE object reader.

Microsoft Outlook for Macintosh reader
Omni Outliner reader

Adobe Portable Document File (PDF) reader

Microsoft Outlook Offline Storage File reader

Microsoft Outlook Personal Folders file MAPI-based reader (supported on

Windows platform only)1

Microsoft Outlook Personal Folders file native reader?

Quattro Pro spreadsheet reader

RAR Archive reader

Microsoft Rich Text Format reader
Skype log file reader
StarOffice/OpenOffice reader
Macromedia Flash reader

Tape archive reader

Transfer Neutral Encapsulation Format reader
Unicode HTML reader

Unicode reader

Zip file reader

UUEncoding reader

Microsoft Visio reader

Microsoft Outlook vCard Contact reader
Lotus 1-2-3 v2.0 through 5.0 reader

WordPerfect 5.x reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

2This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

KeyView (11.6)

Page 341 of 346

XML Export SDK C Programming Guide
Appendix G: Files Required for Redistribution

File Description

wpbsr. * WordPerfect 6.0 through 10.0 reader
wpmsr . * WordPerfect for Macintosh reader
x1lsbsr.* Microsoft Office 2007 Excel Binary Format reader
x1lssp.* Microsoft Excel reader

x1sxsr.* Microsoft Excel 2007 XML reader
xmlsp. * Generic XML reader

Xpssr.* XML Paper Specification reader
Xywsr . * XYWrite reader

yimspr.* Yahoo! Instant Messenger reader
z7zsr . * 7-Zip reader

Document Type Definition Files

The following files related to the verity.dtd can be redistributed with your application.

File

Verity.dtd

HTMLlatlx.ent

HTMLspecialx.ent

HTMLsymbolx.ent

wp.xsl

pg.xsl

ss.xsl

KeyView (11.6)

Description

The document type definition file that defines the structure of an XML
document. XML document validity is based on the verity.dtd. The
Verity.dtd is required and must be in the same directory as the output XML
file.

The file defining Latin characters. This file is referenced in the verity.dtd.
This file is required and must be in the same directory as the verity.dtd.

The file defining special characters. This file is referenced in the verity.dtd.
This file is required and must be in the same directory as the Verity.dtd.

The file defining symbols. This file is referenced in the verity.dtd. This file is
required and must be in the same directory as the verity.dtd.

The default style sheet for word processing documents. This file is optional
and must be in the same directory as the output XML file.

The default style sheet for presentation graphics. This file is optional and must
be in the same directory as the output XML file.

The default style sheet for spreadsheets. This file is optional and must be in
the same directory as the output XML file.

Page 342 of 346

Appendix H: Password Protected Files

This section lists supported password-protected container and non-container files and describes how to
open them.

® Supported Password Protected File Types ... il 343
* Open Password Protected Container Files 344
® Export Password Protected Files 344

Supported Password Protected File Types

The following table lists the password-protected file types that KeyView supports.

Key to support table

Symbol Description

Format is supported.
Format is not supported.
Support for viewing subfiles.
Support for viewing content.

Password required.

O 1T < 0 zZz <<

Password and certificate or User ID file required.

Supported password-protected file types

File Type Version Filter Export Extract View Credentials
PST (Windows) n/a N N Y S P
PST (non—Windows)1 n/a N N Y S N
ZIP n/a N N Y S P
7-Zip n/a N N Y S P
RAR n/a N N Y S P
SMIME in MSG, EML, MBX n/a N N Y N C
Lotus Notes NSF n/a N N Y N C

1The native PST reader, pstnsr, does not require credentials to open password-protected PST files
that use compressible encryption.

KeyView (11.6) Page 343 of 346

XML Export SDK C Programming Guide
Appendix H: Password Protected Files

Supported password-protected file types, continued

File Type Version Filter Export Extract View Credentials
Adobe PDF n/a Y Y Y \ P
Microsoft Office 972003 'Y Y Y V P

2007

2010

Open Password Protected Container Files

This section describes how to extract password-protected container files using the C API. The
following guidelines apply to specific file types.

« IBM Notes NSF files. If you are running a Notes client with an active user connected to a Domino
server, you must specify the user's password as a credential regardless of whether the NSF files
you are opening are protected. This enables KeyView to access the Notes client and the IBM Notes
API. If the Notes client is not running with an active user, KeyView does not require credentials to
access the client.

« PST files.To open password-protected PST files that use High Encryption (Microsoft Outlook 2003
only), you must use the MAPI-based PST reader (pstsr). The native PST reader (pstnsr) returns the
error message KVERR_PasswordProtected if a PST is encrypted with High Encryption.

To open container files

1. Define the credential information in the KvOpenFileArg data structure.
2. Pass KVOpenFileArg to the fpOpenFile() function.
3. Call fpCloseFile().

Export Password Protected Files

This section describes how to export password-protected non-container files with the C API.

To export password-protected files

1. Callthe fpInit() function.
2. Call the KvxXMLConfig() function with the following arguments :

Argument Parameter

nType KVCFG_SETPASSWORD
nValue TRUE
pData The source file password. The password is a null-terminated string with a

maximum length of 255 characters (the final byte is null).

For example:

KeyView (11.6) Page 344 of 346

XML Export SDK C Programming Guide
Appendix H: Password Protected Files

(*fpXMLConfig) (pKVXML, KVCFG_SETPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.
3. Callthe fpConvertStream() orKVXMLConvertFile() function.

KeyView (11.6) Page 345 of 346

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on XML Export SDK C Programming Guide (Micro Focus KeyView 11.6)
Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

KeyView (11.6) Page 346 of 346

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on XML Export SDK C Programming Guide (Micro Focus KeyView 11.6)

	Part I: Overview of XML Export
	Chapter 1: Introducing XML Export
	Overview
	Features
	Platforms, Compilers, and Dependencies
	Supported Platforms
	Supported Compilers
	C++ Filter SDK

	Software Dependencies

	Windows Installation
	UNIX Installation
	Package Contents
	License Information
	Enable Advanced Document Readers
	Update License Information

	Directory Structure
	Definition of Terms

	Chapter 2: Getting Started
	Architectural Overview
	Memory Abstraction
	Enhance Performance
	File Caching

	Convert Files Out of Process
	Configure Out-of-Process Conversions
	Run Export Out of Process—Overview
	Recommendations

	Run Export Out of Process in the C API
	Example—KVXMLStartOOPSession
	Example—KVXMLEndOOPSession

	Convert Files
	Subfile Extraction
	Convert Outlook Email without Using the Extraction API

	Set Conversion Options
	Set Conversion Options by Using the API
	Set Conversion Options by Using the Template Files
	Templates

	Use the Export Demo Program
	Change Input/Output Directories
	Set Configuration Options
	Suppress Images
	Use PDF Position Information

	Convert Files

	Use the C-Language Implementation of the API
	Input/Output Operations
	Convert Files
	Multithreaded Conversions

	Use the Verity Document Type Definition (DTD)
	Use XML Style Language Transformation (XSLT)
	Add Elements and Attributes to the DTD
	Move the DTD

	Part II: Use the Export API
	Chapter 3: Use the File Extraction API
	Introduction
	Extract Subfiles
	Extract Images
	Recreate a File’s Hierarchy
	Create a Root Node
	Recreate a File’s Hierarchy—Example

	Extract Mail Metadata
	Default Metadata Set
	Extract the Default Metadata Set

	Microsoft Outlook (MSG) Metadata
	Extract MSG-Specific Metadata

	Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata
	Extract EML- or MBX-Specific Metadata

	Lotus Notes Database (NSF) Metadata
	Extract NSF-Specific Metadata

	Microsoft Personal Folders File (PST) Metadata
	MAPI Properties
	Extract PST-Specific Metadata

	Exclude Metadata from the Extracted Text File

	Extract Subfiles from Outlook Files
	Extract Subfiles from Outlook Express Files
	Extract Subfiles from Mailbox Files
	Extract Subfiles from Outlook Personal Folders Files
	Use the Native or MAPI-based Reader
	Use the Native PST Reader (pstnsr)
	Use the MAPI Reader (pstsr)
	System Requirements

	MAPI Attachment Methods
	Open Secured PST Files
	Detect PST Files While the Outlook Client is Running

	Extract Subfiles from Lotus Domino XML Language Files
	Extract .DXL Files to HTML

	Extract Subfiles from Lotus Notes Database Files
	System Requirements
	Installation and Configuration
	Windows
	Solaris
	AIX 5.x
	Linux

	Open Secured NSF Files
	Format Note Subfiles

	Extract Subfiles from PDF Files
	Improve Performance for PDFs with Many Small Images

	Extract Embedded OLE Objects
	Extract Subfiles from ZIP Files
	Default File Names for Extracted Subfiles
	Default File Name for Mail Formats
	Default File Name for Embedded OLE Objects

	Chapter 4: Use the XML Export API
	Extract Metadata
	Extract Metadata by Using the API
	Use the C API

	Extract Metadata by Using a Template File
	Examples
	$SUMMARYNN
	$SUMMARY
	$USERSUMMARY

	Extract File Format Information
	Use the C API

	Convert Character Sets
	Determine the Character Set of the Output Text
	Guidelines for Character Set Conversion

	Examples of Character Set Conversion
	Document Character Set Can be Determined
	Document Character Set Cannot be Determined

	Set the Character Set During Conversion
	Set the Character Set During File Extraction from a Container

	Map Styles
	Use the C API
	Use a Template file

	Use Style Sheets
	Use Extensible Style Sheet Language (XSL)
	Use Cascading Style Sheets (CSS)

	Display Vector Graphics on UNIX and Linux
	Convert Revision Tracking Information
	Convert PDF Files
	Use the pdf2sr Reader
	Convert PDF Files to a Logical Reading Order
	Logical Reading Order and Paragraph Direction
	Enable Logical Reading Order
	Use the C API
	Use the formats_e.ini File

	Control Hyphenation
	Extract Custom Metadata from PDF Files
	Configure the Size of Exported Images

	Convert Spreadsheet Files
	Convert Hidden Text in Microsoft Excel Files
	Convert Headers and Footers in Microsoft Excel 2003 Files
	Specify Date and Time Format on UNIX Systems
	Convert Very Large Numbers in Spreadsheet Cells to Precision Numbers
	Extract Microsoft Excel Formulas
	Set Minimum Image Size

	Convert Presentation Files
	Convert Presentation Files to Raster Images
	Convert Presentation Files to a Logical Reading Order

	Convert XML Files
	Configure Element Extraction for XML Documents
	Modify Element Extraction Settings
	Use the C API
	Use an Initialization File

	Modify Element Extraction Settings in the kvxconfig.ini File
	Specify an Element’s Namespace and Attribute
	Add Configuration Settings for Custom XML Document Types

	Show Hidden Data
	Hidden Data in Microsoft Documents
	Toggle Word Comment Settings in the formats_e.ini File
	Toggle PowerPoint Slide Note Settings in the formats_e.ini File

	Exclude Japanese Guide Text
	Obtain Image Info
	Example

	Chapter 5: Sample Programs
	Introduction
	C Sample Programs
	Compile the Visual Basic Sample Program

	tstxtract
	cnv2xml
	cnv2xmloop
	metadata
	xmlindex
	xmlini
	Use Style Sheets with xmlini

	xmlcallback
	xmlonefile
	xmlmulti
	Export Demo

	Part III: C API Reference
	Chapter 6: File Extraction API Functions
	KVGetExtractInterface()
	fpCloseFile()
	fpExtractSubFile()
	fpFreeStruct()
	fpGetMainFileInfo()
	fpGetSubFileInfo()
	fpGetSubFileMetaData()
	fpOpenFile()

	Chapter 7: File Extraction API Structures
	KVCredential
	KVCredentialComponent
	KVExtractInterface
	KVExtractSubFileArg
	KVGetSubFileMetaArg
	KVMainFileInfo
	KVMetadataElem
	KVMetaName
	KVOpenFileArg
	KVOutputStream
	KVSubFileExtractInfo
	KVSubFileInfo
	KVSubFileMetaData

	Chapter 8: XML Export API Functions
	KVXMLGetInterface()
	KVXMLGetInterfaceEx()
	fpConvertStream()
	fpFileToInputStreamCreate()
	fpFileToInputStreamFree()
	fpFileToOutputStreamCreate()
	fpFileToOutputStreamFree()
	fpFreeImageInfos()
	fpGetAnchor()
	fpGetConvertFileList()
	fpGetKvErrorCode
	fpGetKvErrorCodeEx
	fpGetOutputImageCount()
	fpGetOutputImageInfo()
	fpGetOutputImageInfos()
	fpGetStreamInfo()
	fpGetSummaryInfo()
	fpInit()
	fpSetStyleMapping()
	fpShutDown()
	fpValidateTemplate()
	KVXMLConfig()
	Configuration Flags
	Examples

	KVXMLConvertFile()
	KVXMLEndOOPSession()
	KVXMLSetStyleSheet()
	KVXMLStartOOPSession()
	Discussion
	Example

	Chapter 9: XML Export API Callback Functions
	Introduction
	Continue()
	GetAnchor()
	GetAuxOutput()
	UserCB()

	Chapter 10: XML Export API Structures
	ADDOCINFO
	KVInputStream
	KVMemoryStream
	KVOutputStream
	KVSTR
	KVStreamInfo
	KVStructHead
	KVStyle
	KVSumInfoElemEx
	KVSummaryInfoEx
	KVXConfigInfo
	KVXMLCallbacks
	KVXMLHeadingInfo
	KVXMLImageInfo
	KVXMLInterface
	KVXMLInterfaceEx
	KVXMLOptions
	Set the Resolution of Presentations and Vector Graphics

	KVXMLTemplate
	KVXMLTOCOptions

	Chapter 11: Enumerated Types
	Introduction
	Programming Guidelines

	ENSATableBorder
	KVCredKeyType
	KVErrorCode
	KVErrorCodeEx
	KVXMLStyleSheetType
	KVXMLAnchorType
	KVXMLGraphicType
	KVHeadingCreateOptions
	KVXMLEmptyParaType
	Definition
	Enumerators

	KVXMLHardPageBreakType
	Definition
	Enumerators

	KVMetadataType
	KVMetaNameType
	KVSumInfoType
	KVSumType
	LPDF_DIRECTION

	Part IV: Appendixes
	Appendix A: Supported Formats
	Supported Formats
	Archive Formats
	Binary Format
	Computer-Aided Design Formats
	Database Formats
	Desktop Publishing
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text and Markup Formats
	Word Processing Formats

	Supported Formats (Detected)

	Appendix B: Character Sets
	Multibyte and Bidirectional Support
	Coded Character Sets

	Appendix C: File Formats and Extensions
	File Format and Extension Table

	Appendix D: Extract and Format Lotus Notes Subfiles
	Overview
	Customize XML Templates
	Use Demo Templates
	Use Old Templates
	Disable XML Templates

	Template Elements and Attributes
	Conditional Elements
	Control Elements
	Data Elements

	Date and Time Formats
	Lotus Notes Date and Time Formats
	KeyView Date and Time Formats

	Appendix E: Export Tokens
	Appendix F: File Format Detection
	Introduction
	Extract Format Information
	Determine Format Support
	Refine Detection of Text Files
	Change the Amount of File Data to Read
	Change the Percentage of Allowed Non-ASCII Characters
	Use the File Extension for Detection

	Allow Consecutive NULL Bytes in a Text File

	Translate Format Information
	Distinguish Between Formats

	Determine a Document Reader
	Category Values in formats_e.ini

	Appendix G: Files Required for Redistribution
	Core Files
	Support Files
	Document Readers and Writers
	Document Type Definition Files

	Appendix H: Password Protected Files
	Supported Password Protected File Types
	Open Password Protected Container Files
	Export Password Protected Files

	Send documentation feedback

