
KeyView
Software Version: 11.6

XML Export SDK C Programming Guide

Document Release Date: February 2018

Software Release Date: February 2018

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice

© Copyright 2006-2018 EntIT Software LLC, a Micro Focus company

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support
Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Access the Software Licenses and Downloads portal
l Download software patches
l Access product documentation
l Manage support contracts

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 2 of 346

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

l Look up Micro Focus support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 3 of 346

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Part I: Overview of XML Export 13
Chapter 1: Introducing XMLExport 14

Overview 14
Features 15
Platforms, Compilers, and Dependencies 15

Supported Platforms 15
Supported Compilers 16

C++ Filter SDK 17
Software Dependencies 17

Windows Installation 17
UNIX Installation 18
Package Contents 19
License Information 20

Enable Advanced Document Readers 20
Update License Information 20

Directory Structure 21
Definition of Terms 23

Chapter 2: Getting Started 24
Architectural Overview 24
Memory Abstraction 25
Enhance Performance 26

File Caching 26
Convert Files Out of Process 26

Configure Out-of-Process Conversions 27
Run Export Out of Process—Overview 29

Recommendations 29
Run Export Out of Process in the C API 30

Example—KVXMLStartOOPSession 31
Example—KVXMLEndOOPSession 32

Convert Files 32
Subfile Extraction 33

Convert Outlook Email without Using the Extraction API 33
Set Conversion Options 34

Set Conversion Options by Using the API 34
Set Conversion Options by Using the Template Files 34

Templates 35
Use the Export Demo Program 36

Change Input/Output Directories 37
Set Configuration Options 38

Suppress Images 38
Use PDF Position Information 38

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 4 of 346

Convert Files 39
Use the C-Language Implementation of the API 39

Input/Output Operations 40
Convert Files 40
Multithreaded Conversions 42

Use the Verity Document Type Definition (DTD) 42
Use XMLStyle Language Transformation (XSLT) 43
Add Elements and Attributes to the DTD 43
Move the DTD 43

Part II: Use the Export API 44
Chapter 3: Use the File Extraction API 45

Introduction 45
Extract Subfiles 46
Extract Images 47
Recreate a File’s Hierarchy 47

Create a Root Node 47
Recreate a File’s Hierarchy—Example 48

Extract Mail Metadata 48
Default Metadata Set 49

Extract the Default Metadata Set 49
Microsoft Outlook (MSG)Metadata 50

Extract MSG-Specific Metadata 51
Microsoft Outlook Express (EML) andMailbox (MBX)Metadata 52

Extract EML- or MBX-Specific Metadata 52
Lotus Notes Database (NSF)Metadata 52

Extract NSF-Specific Metadata 53
Microsoft Personal Folders File (PST)Metadata 53

MAPI Properties 53
Extract PST-Specific Metadata 54

ExcludeMetadata from the Extracted Text File 55
Extract Subfiles from Outlook Files 55
Extract Subfiles from Outlook Express Files 55
Extract Subfiles fromMailbox Files 56
Extract Subfiles from Outlook Personal Folders Files 56

Use the Native or MAPI-based Reader 56
Use the Native PST Reader (pstnsr) 57
Use theMAPI Reader (pstsr) 57

System Requirements 58
MAPI Attachment Methods 58
Open Secured PST Files 59
Detect PST Files While the Outlook Client is Running 59

Extract Subfiles from Lotus Domino XML Language Files 59
Extract .DXL Files to HTML 60

Extract Subfiles from Lotus Notes Database Files 60

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 5 of 346

System Requirements 61
Installation and Configuration 61

Windows 61
Solaris 62
AIX 5.x 62
Linux 63

Open Secured NSF Files 63
Format Note Subfiles 63

Extract Subfiles from PDF Files 63
Improve Performance for PDFs with Many Small Images 63

Extract EmbeddedOLE Objects 64
Extract Subfiles from ZIP Files 64
Default File Names for Extracted Subfiles 64

Default File Name for Mail Formats 65
Default File Name for EmbeddedOLE Objects 66

Chapter 4: Use the XMLExport API 67
Extract Metadata 67

Extract Metadata by Using the API 67
Use the C API 68

Extract Metadata by Using a Template File 68
Examples 69

$SUMMARYNN 69
$SUMMARY 69
$USERSUMMARY 70

Extract File Format Information 70
Use the C API 70

Convert Character Sets 70
Determine the Character Set of the Output Text 70

Guidelines for Character Set Conversion 71
Examples of Character Set Conversion 72

Document Character Set Can be Determined 72
Document Character Set Cannot be Determined 73

Set the Character Set During Conversion 73
Set the Character Set During File Extraction from aContainer 74

Map Styles 74
Use the C API 75
Use a Template file 75

Use Style Sheets 77
Use Extensible Style Sheet Language (XSL) 77
Use Cascading Style Sheets (CSS) 78

Display Vector Graphics on UNIX and Linux 78
Convert Revision Tracking Information 79
Convert PDF Files 80

Use the pdf2sr Reader 80
Convert PDF Files to a Logical Reading Order 81

Logical Reading Order and Paragraph Direction 81

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 6 of 346

Enable Logical Reading Order 82
Use the C API 82
Use the formats_e.ini File 83

Control Hyphenation 84
Extract CustomMetadata from PDF Files 84
Configure the Size of Exported Images 85

Convert Spreadsheet Files 86
Convert Hidden Text in Microsoft Excel Files 86
Convert Headers and Footers in Microsoft Excel 2003 Files 86
Specify Date and Time Format on UNIX Systems 86
Convert Very Large Numbers in Spreadsheet Cells to Precision Numbers 87
Extract Microsoft Excel Formulas 87
Set Minimum Image Size 89

Convert Presentation Files 89
Convert Presentation Files to Raster Images 90
Convert Presentation Files to a Logical Reading Order 90

Convert XML Files 90
Configure Element Extraction for XMLDocuments 90

Modify Element Extraction Settings 91
Use the C API 91
Use an Initialization File 92

Modify Element Extraction Settings in the kvxconfig.ini File 92
Specify an Element’s Namespace and Attribute 94
Add Configuration Settings for Custom XMLDocument Types 94

Show Hidden Data 95
Hidden Data in Microsoft Documents 95

ToggleWord Comment Settings in the formats_e.ini File 96
Toggle PowerPoint Slide Note Settings in the formats_e.ini File 97

Exclude JapaneseGuide Text 97
Obtain Image Info 97

Example 98

Chapter 5: Sample Programs 99
Introduction 99

C Sample Programs 99
Compile the Visual Basic Sample Program 100

tstxtract 100
cnv2xml 101
cnv2xmloop 102
metadata 103
xmlindex 103
xmlini 103

Use Style Sheets with xmlini 104
xmlcallback 105
xmlonefile 105
xmlmulti 105
Export Demo 106

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 7 of 346

Part III: C API Reference 107
Chapter 6: File Extraction API Functions 108

KVGetExtractInterface() 108
fpCloseFile() 109
fpExtractSubFile() 109
fpFreeStruct() 111
fpGetMainFileInfo() 112
fpGetSubFileInfo() 113
fpGetSubFileMetaData() 114
fpOpenFile() 116

Chapter 7: File Extraction API Structures 118
KVCredential 118
KVCredentialComponent 119
KVExtractInterface 119
KVExtractSubFileArg 120
KVGetSubFileMetaArg 122
KVMainFileInfo 123
KVMetadataElem 124
KVMetaName 125
KVOpenFileArg 126
KVOutputStream 127
KVSubFileExtractInfo 128
KVSubFileInfo 129
KVSubFileMetaData 131

Chapter 8: XML Export API Functions 133
KVXMLGetInterface() 133
KVXMLGetInterfaceEx() 134
fpConvertStream() 135
fpFileToInputStreamCreate() 137
fpFileToInputStreamFree() 138
fpFileToOutputStreamCreate() 139
fpFileToOutputStreamFree() 140
fpFreeImageInfos() 141
fpGetAnchor() 142
fpGetConvertFileList() 143
fpGetKvErrorCode 144
fpGetKvErrorCodeEx 144
fpGetOutputImageCount() 145
fpGetOutputImageInfo() 145
fpGetOutputImageInfos() 146
fpGetStreamInfo() 147
fpGetSummaryInfo() 147
fpInit() 149
fpSetStyleMapping() 150
fpShutDown() 151

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 8 of 346

fpValidateTemplate() 151
KVXMLConfig() 152

Configuration Flags 153
Examples 157

KVXMLConvertFile() 159
KVXMLEndOOPSession() 161
KVXMLSetStyleSheet() 163
KVXMLStartOOPSession() 165

Discussion 166
Example 166

Chapter 9: XML Export API Callback Functions 169
Introduction 169
Continue() 169
GetAnchor() 170
GetAuxOutput() 171
UserCB() 172

Chapter 10: XML Export API Structures 174
ADDOCINFO 174
KVInputStream 175
KVMemoryStream 176
KVOutputStream 176
KVSTR 177
KVStreamInfo 177
KVStructHead 178
KVStyle 179
KVSumInfoElemEx 180
KVSummaryInfoEx 180
KVXConfigInfo 181
KVXMLCallbacks 182
KVXMLHeadingInfo 183
KVXMLImageInfo 185
KVXMLInterface 186
KVXMLInterfaceEx 188
KVXMLOptions 190

Set the Resolution of Presentations and Vector Graphics 198
KVXMLTemplate 198
KVXMLTOCOptions 202

Chapter 11: Enumerated Types 204
Introduction 204

ProgrammingGuidelines 205
ENSATableBorder 205
KVCredKeyType 206
KVErrorCode 206
KVErrorCodeEx 208
KVXMLStyleSheetType 211

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 9 of 346

KVXMLAnchorType 212
KVXMLGraphicType 213
KVHeadingCreateOptions 214
KVXMLEmptyParaType 215

Definition 215
Enumerators 215

KVXMLHardPageBreakType 215
Definition 215
Enumerators 216

KVMetadataType 216
KVMetaNameType 218
KVSumInfoType 218
KVSumType 219
LPDF_DIRECTION 222

Part IV: Appendixes 224
Appendix A: Supported Formats 225

Supported Formats 225
Archive Formats 227
Binary Format 229
Computer-Aided Design Formats 229
Database Formats 231
Desktop Publishing 232
Display Formats 232
Graphic Formats 233
Mail Formats 236
Multimedia Formats 238
Presentation Formats 240
Spreadsheet Formats 242
Text andMarkup Formats 244
Word Processing Formats 245

Supported Formats (Detected) 250

Appendix B: Character Sets 257
Multibyte and Bidirectional Support 257
Coded Character Sets 265

Appendix C: File Formats and Extensions 270
File Format and Extension Table 270

Appendix D: Extract and Format Lotus Notes Subfiles 295
Overview 295
Customize XML Templates 295

Use Demo Templates 296
UseOld Templates 296
Disable XML Templates 296

Template Elements and Attributes 297

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 10 of 346

Conditional Elements 297
Control Elements 298
Data Elements 299

Date and Time Formats 301
Lotus Notes Date and Time Formats 301
KeyView Date and Time Formats 302

Appendix E: Export Tokens 308

Appendix F: File Format Detection 311
Introduction 311
Extract Format Information 311
Determine Format Support 311

Refine Detection of Text Files 312
Change the Amount of File Data to Read 312
Change the Percentage of Allowed Non-ASCII Characters 313
Use the File Extension for Detection 313

Allow Consecutive NULL Bytes in a Text File 313
Translate Format Information 313

Distinguish Between Formats 314
Determine a Document Reader 315
Category Values in formats_e.ini 315

Appendix G: Files Required for Redistribution 334
Core Files 334
Support Files 335
Document Readers andWriters 336
Document Type Definition Files 342

Appendix H: Password Protected Files 343
Supported Password Protected File Types 343
Open Password Protected Container Files 344
Export Password Protected Files 344

Send documentation feedback 346

XMLExport SDK C ProgrammingGuide

KeyView (11.6) Page 11 of 346

Page 12 of 346KeyView (11.6)

XML Export SDK C ProgrammingGuide

KeyView (11.6)

Page 13 of 346

Part I: Overview of XML Export

This section provides an overview of theMicro Focus IDOL KeyView Export SDK and describes how to use
the C and COM implementations of the API.

l Introducing XMLExport, on page 14
l Getting Started, on page 24

Chapter 1: Introducing XML Export

This guide is for developers who incorporate theMicro Focus KeyView XML conversion technology into
their custom web applications using a C or COM development environment. It is intended for readers
who are familiar with XML, C, and/or COM.

This section describes the KeyView Export SDK package.

• Overview 14
• Features 15
• Platforms, Compilers, and Dependencies 15
• Windows Installation 17
• UNIX Installation 18
• Package Contents 19
• License Information 20
• Directory Structure 21
• Definition of Terms 23

Overview

XMLExport is part of the KeyView Export SDK. It enables you to convert virtually any document,
spreadsheet, presentation, or graphic into well-formed, valid XMLwhich is validated against a
predefined Document Type Definition (DTD). With XML Export, you control the content, structure, and
format of the XML output using either easily customized templates, or the flexible and robust APIs.

Themain purpose of XML Export is to apply an XML vocabulary to the data structures in a document so
that content andmetadata can be indexed and subsequently searched in context.

Data structures in a source document can be:

l metadata (title, author, subject, and so on)
l document components (headers, footers, footnotes, endnotes, captions, bookmarks, and so on)
l tagged text (chapters, sections, bulleted lists, and so on)
l table components (sheet names, rows, columns, cell ranges, and so on)
l presentation components (notes, slide titles, slide descriptions, and so on)
Although viewing is not themain purpose of XML Export, Extensible Stylesheet Language (XSL) style
sheets or Cascading Style Sheets (CSS) can be used to display the XML data.

Export SDK supports a number of programming environments, such as Visual Basic, Java, and Delphi
and runs on all popular operating system platforms includingWindows, Solaris, HP-UX, IBM AIX, and
Linux.

Export SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

KeyView (11.6) Page 14 of 346

Features

l Dynamically convert word processing, spreadsheet, presentation, and graphics files into wwell-
formed, valid, and 1.0-compliant XML. The XML output is validated against a predefined DTD named
the “Verity.dtd.”

l Export supports over 300 formats in 70 languages.
l Convert files either in-process or out of process. Out-of-process conversion ensures the stability and
robustness of the calling application if a corrupt document causes an exception or causes the
conversion process to fail.

l You can extract files embedded within files by using the File Extraction API, and then convert them
by using the Export API.

l Use redirected input/output. You can provide an input stream that is not restricted to file system
access.

l Export automatically recognizes the file format being converted and uses the appropriate reader.
Your application does not need to rely on file name extensions to determine the file format.

l Create heading levels in the output file either by using the structure in the source document or by
allowing Export to automatically generate a structure based on document properties, such as font or
font attributes.

l Use callbacks to control aspects of the conversion process, such as file naming and the insertion of
scripts.

l Managememory allocation to optimize speed and performance of application.
l Insert predefined XMLmarkup at specific points in the output stream.
l Apply XSL or Cascading Style Sheets (CSS) to improve the fidelity of the output.
l Map paragraph and character styles in word processing documents to any markup that you specify
in the output.

l Control the resolution of rasterized vector graphics to optimize storage requirements or image
quality.

l Select the target format for converted graphics, including GIF, JPEG, CGM, PNG, WMF, and Java
onWindows, and Java and JPEG onUnix and Linux.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

l CentOS 7
l FreeBSD 8.1 x86
l IBM AIX L6.1 PowerPC 32-bit and 64-bit
l IBM AIX L7.1 PowerPC 32-bit and 64-bit

XML Export SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 15 of 346

l Mac OS X Mountain Lion 10.8 or higher on 32- and 64-bit Apple-Intel architecture
l Microsoft Windows Vista Business Edition x86 and x64. Other editions of Vista have not been
tested, but are likely supported.

l Microsoft Windows 2008 Server Enterprise Edition x86 and x64
l Microsoft Windows 2008 Server R2
l Microsoft Windows 7 x86 and x64
l Microsoft Windows 8 x86 and x64
l Oracle Solaris 10 SPARC
l Oracle Solaris 10 x86 and x64
l RedHat Enterprise Linux 5.0 x86 and x64
l RedHat Enterprise Linux 6.0 x86 and x64
l SuSE Linux Enterprise Server 10, 10.1, 11, x86 and x64

Supported Compilers

Platform Architecture Compiler
Name

Compiler Version

Microsoft
Windows

x86 cl Microsoft 32-bit C/C++ Optimizing Compiler
Version 16.00.30319.01 for x86

x64 cl Microsoft C/C++ Optimizing Compiler Version
16.00.30319.01 for x64

Sun Solaris x86 64-bit Sun Studio
12

Sun C 5.9 SunOS_i386 Patch 124868-01
2007/07/12

SPARC 64-bit Sun Studio
11

Sun C 5.8 Patch 121015-06 2007/10/03

Linux x86 gcc / g++ 3.4.3 (Redhat 4), 4.1.0 (SuSE Linux 10)

x64 gcc / g++ 4.1.0 (Redhat 4), 4.1.0 (SuSE Linux 10)

IBM AIX Power xlC_r / cc_
r

IBM XLC/C++ Enterprise Edition V8.0

Mac OSX Apple-Intel 32-bit
and 64-bit

LLVM Apple LLVM 5.1 (clang-503.0.40) (based on LLVM
3.4svn)

FreeBSD BSD x86 gcc / g++ 4.2.1 [FreeBSD] 20070719

Component Compiler

Java components Java 1.5

.NET components Microsoft Visual J# 2005 Compiler 8.00.50727.42

Supported Compilers for Java and .NET Components

XMLExport SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 16 of 346

C++ Filter SDK

The C++ Filter SDK is supported on:

l Linux using GCC 5 or later
l Windows using Visual Studio 2015 or later

Software Dependencies

SomeKeyView components require specific third-party software:

l Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 1.5 is required for
Java API and graphics conversion in Export SDK.

l Outlook 2002 client or later versions is required when processingMicrosoft Outlook Personal
Folders (PST) files using theMAPI-based reader (pstsr). The native PST reader (pstnsr) does not
require anOutlook client.

NOTE:
If you are using 32-bit KeyView, youmust install 32-bit Outlook. If you are using 64-bit
KeyView, youmust install 64-bit Outlook.

If the bit editions do not match, an error message fromMicrosoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as
the default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

l Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

l Microsoft .NET Framework SDK version 2.0, Microsoft .NET Framework version 2.0
Redistributable Package is required if you are programming in a .NET environment.

l Microsoft Visual C++ 2013 andMicrosoft Visual C++ 2010 Redistributables (Windows only).

Windows Installation

To install the SDK onWindows, use the following procedure.

To install the SDK

1. Run the installation program, KeyViewProductNameSDK_VersionNumber_OS.exe, where
ProductName is the name of the product, VersionNumber is the product version number, and OS is
the operating system.
For example:

XML Export SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 17 of 346

KeyViewExportSDK_11.6_Windows_X86_64.exe

The installation wizard opens.
2. Read the instructions and click Next.

The License Agreement page opens.
3. Read the agreement. If you agree to the terms, click I accept the agreement, and then click

Next.
The Installation Directory page opens.

4. Select the directory in which to install the SDK. To specify a directory other than the default, click

, and then specify another directory. After choosing where to install the SDK, click Next.
The License Key page opens.

5. Type the company name and license key that were provided when you purchased KeyView, and
then click Next.
l The company name is case sensitive.
l The license key is a string that contains 31 characters.

NOTE:
The installation program validates the company name and license key and generates the
file install\OS\bin\kv.lic (where install is your chosen installation folder and OS is
the name of the operating system platform). The license information is validated when the
KeyView API is used. If you do not enter a license key at this step, or if you enter invalid
information, the KeyView SDK is installed, but the API does not function. When you obtain
a valid license key, you can either re-install the KeyView SDK, or manually update the
license key file (kv.lic) with the new information. For more information, see License
Information, on page 20.

The Pre-Installation Summary dialog box opens.
6. Review the settings, and then click Next.

The SDK is installed.
7. Click Finish.

UNIX Installation

To install the SDK, use one of the following procedures.

To install the SDK from the graphical interface

l Run the installation program and follow the on-screen instructions.

To install the SDK from the console

1. Run the installation program from the console as follows:

./KeyViewExportSDK_VersionNumber_Platform.exe --mode text

where:

XML Export SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 18 of 346

VersionNumber is the product version.

Platform is the name of the platform.

2. Read the welcomemessage and instructions and press Enter.
The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish reading
the text, and if you accept the agreement, type Y and press Enter.
You are asked to choose an installation folder.

4. Type an absolute path or press Enter to accept the default location.
You are asked for license information.

5. At theCompany Name prompt, type the company name that was provided when you purchased
KeyView, and then press Enter. The company name is case sensitive.

6. At the License Key prompt, type the license key that was provided when you purchased
KeyView, and then press Enter. The license key is a string that contains 31 characters.

NOTE:
The installation program generates the file install\OS\bin\kv.lic (where install is
your chosen installation folder and OS is the name of the operating system platform). The
license information is validated when the KeyView API is used. If you do not enter a
license key at this step, or if you enter invalid information, the KeyView SDK is installed
but the API does not function. When you obtain a valid license key, you can either re-install
the KeyView SDK, or manually update the license key file (kv.lic) with the new
information. For more information, see License Information, on the next page.

The Pre-Installation summary is displayed.
7. If you are satisfied with the information displayed in the summary, press Enter.

The SDK is installed.

Package Contents

The Export installation contains:

l Libraries and executable files necessary for converting source documents into high-quality, well-
formed XML (see Files Required for Redistribution, on page 334).

l The include files that define the functions and structures used by the application to establish an
interface with Export:
adinfo.h

kvxml.h

kvtypes.h

kvxtract.h

l The Java API implemented in the com.verity.api.export package contained in the KeyView.jar
file.

l Several sample programs that demonstrate Export’s functionality.

XML Export SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 19 of 346

l Sample images that can be used as navigation buttons and background textures in your output.
l Template files that enable you to set conversion options without modifying at the API level. They
can be used to generate a wide range of output, from highly-stylized user-defined XML to stripped-
down, text-only output suitable for use with an indexing engine.

l The predefined DTD, Verity.dtd, used to validate all XML output.
l Sample style sheets: wp.xsl (for word processing documents), ss.xsl (for spreadsheets), and

pg.xsl (for presentation graphics).

License Information

During installation, the installation program validates the organization name and license key that you
enter, and generates the install/OS/bin/kv.lic file, where install is the directory in which you
installed KeyView, and OS is the operating system. This file is opened and validated when the KeyView
API is used.

The kv.lic file contains the organization name and the 31-digit license key you specified during
installation. The contents of a kv.lic file looks similar to the following:

Company Name
XXXXXXX-XXXXXXX-XXXXXXX-XXXXXXX

The license key controls whether the following are enabled:

l the full version of the KeyView SDK
l the trial version of the KeyView SDK
l language detection and advanced document readers—The following components are considered
advanced features, and are licensed separately:
o Microsoft Outlook Personal Folders (PST) reader (pstsr and pstnsr)
o Lotus Notes database (NSF) reader (nsfsr)
o Mailbox (MBX) reader (mbxsr)
o Character set detection library (kvlangdetect)

If you change the license key at any time, youmust update the licensing information in the kv.lic file.
See Update License Information.

Enable Advanced Document Readers

To enable advanced readers in one of the KeyView SDKs, youmust obtain an appropriate license key
fromMicro Focus and update the installed license key with the new information as described in Update
License Information.

If you are enabling theMBX reader in an existing installation of Export, in addition to updating the
license key, change the parameter 208=eml to 208=mbx in the formats_e.ini file.

Update License Information

If you currently have an evaluation version of KeyView and have purchased a full version of the SDK, or
you are adding a document reader (for example, the PST reader), youmust update the license

XMLExport SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 20 of 346

information that was installed with the original version of the KeyView SDK.

If you installed a full version of KeyView, but did not enter licensing information at the time of
installation, youmust also update the license information.

To update the information, do one of the following:

l Manually update the license information that is stored in the text file named kv.lic.
l Re-install the product and enter the new license information when prompted.

To update the KeyView license information

1. Open the license key file, kv.lic, in a text editor. The file is in the install\OS\bin directory,
where install is the directory in which you installed KeyView, and OS is the operating system.
The file contains the following text:

COMPANY NAME
XXXXXXX-XXXXXXX-XXXXXXX-XXXXXXX

2. Replace the text COMPANY NAMEwith the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

3. Replace the characters XXXXXX-XXXXXXX-XXXXXXX-XXXXXXXwith the appropriate license key from
the License Key Sheet provided by Micro Focus. The license key is listed in theKey column in the
Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appear in the
document, including the dashes, but do not include a leading or trailing space.

4. The finished kv.lic file looks similar to the following:

Autonomy
24QD22D-2M6FV66-2KPF23S-2G8M59B

5. Save the kv.lic file.

Directory Structure

The following table describes the directories created during the XMLExport installation. The variable
install is the path name of the Export installation directory (for example,
/usr/autonomy/KeyviewExportSDK on UNIX, or C:\Program Files\Autonomy\KeyviewExportSDK
onWindows). On UNIX, the XMLExport directory is named /xmlexpt.

The variable OS is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at C:\Program
Files\Autonomy\KeyviewExportSDK\WINDOWS\bin.

Directory Contents

install\OS\bin Contains the libraries, executables for the sample programs Export
Demo and cnv2xml, the Java program (kvraster.class), the Java
applet (kvvector.jar), the format detection file, formats_e.ini,
the license key file (kv.lic), and a number of other supporting files.

XML Export Installed Directory Structure

XMLExport SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 21 of 346

Directory Contents

install\javaapi\ini Contains the template files used with the Java API.

install\javaapi\javadoc Contains the Javadoc for the Java API.

install\javaapi\sample Contains the source files and sample programs for the Java API.

install\testdocs Contains sample word processing, spreadsheet, and presentation
graphics files that can be used to test XML Export’s options. You
might also find this directory useful when testing your own
applications.

install\XML Export\guide Contains theXMLExport C ProgrammingGuide andXMLExport
Java ProgrammingGuide in HTML and PDF format.

install\XML Export\include Contains the header files (adinfo.h, kvxml.h, and kvtypes.h) for
the C API.

install\XML
Export\programs\bin

Contains the executable files for the sample Visual Basic program
called Export Demo.

install\XML
Export\programs\cnv2xml

Contains the C source code files for a sample program that creates
a single XML file. The executable for this sample program is in the
bin directory.

install\XML
Export\programs\cnv2xmloop

Contains the C source code for a sample program that creates a
single XML file out of process.

install\XML
Export\programs\ExportDemo

Contains the source code for a sample Visual Basic program. The
executable for this sample program is in the bin directory. Export
Demo is available through theStartmenu.

install\XML
Export\programs\ini

Contains the template files used to set the conversion options in the
C API.

install\XML
Export\programs\metadata

Contains the C source code and supporting files for a sample
program that creates a valid XML file containing only the
document’s metadata.

install\XML
Export\programs\pdfini

Contains the template file used to extract custommetadata from
PDF documents.

install\XML
Export\programs\tempout

The default output directory for converted files. Contains the
KeyView DTD, sample style sheets, and character entity files.
These files are required for viewing the converted XML files.

install\XML
Export\programs\tstxtract

Contains the C source code and supporting files for a sample
program that demonstrates the File Extraction interface.

install\XML
Export\programs\xmlcallback

Contains the C source code and supporting files for a sample
program that demonstrates how user callbacks can dynamically

XML Export Installed Directory Structure, continued

XMLExport SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 22 of 346

Directory Contents

shape the XML conversion.

install\XML
Export\programs\xmlindex

Contains the C source code and supporting files for a sample
program that produces text-only XML.

install\XML
Export\programs\xmlini

Contains the C source code and supporting files for a sample
program that uses template files to set the conversion options.

install\XML
Export\programs\xmlmulti

Contains the C source code and supporting files for a sample
program that creates multiple XML files from a source document.
Themain file contains the table of contents. Each H1 heading is
contained within its own file.

install\XML
Export\programs\xmlonefile

Contains the C source code and supporting files for a sample
program that converts a source document into a single, formatted
XML file.

install\XML Export\rel_notes Contains theXMLExport Release Notes in HTML and PDF format.

XML Export Installed Directory Structure, continued

Definition of Terms

The following are specialized terms used throughout the guide.

anchor XMLmarkup that defines both anchors and hyperlinks. An anchor is a named place in a
document to which other documents can form a link. Anchors use the XML anchor tags
(<a xmlns:xlink= xlink href=>) to facilitate navigation within a document.

Themajor browsers do not currently support linking in XML documents.

block All source document content (including subheadings) associated with Heading Level 1.
Export identifies and/or generates blocks from the input stream for the implementation of
the your XMLmarkup.

block
chunk
or
chunk

All source document content associated with Heading Levels 2 through 6. Chunks are
subdivisions of blocks. You can supply specific XMLmarkup for the different levels of
block chunks.

callback A function optionally supplied by your application and called from the Export API. For
example, callbacks allow your application tomonitor the progress of the conversion
process dynamically.

stream Transmission of a file’s content betweenmemory and disk in a continuous flow.

token The vehicle for conveying specific types of information to and from the API during the
conversion process. Tokens are placeholders for markup that appears in the output. See
Export Tokens, on page 308.

XML Export SDK C ProgrammingGuide
Chapter 1: Introducing XMLExport

KeyView (11.6) Page 23 of 346

Chapter 2: Getting Started

This section provides an overview of the XMLExport SDK and describes how to use the C
implementations of the API.

• Architectural Overview 24
• Memory Abstraction 25
• Enhance Performance 26
• Convert Files Out of Process 26
• Convert Files 32
• Subfile Extraction 33
• Set Conversion Options 34
• Use the Export Demo Program 36
• Use the C-Language Implementation of the API 39
• Use the Verity Document Type Definition (DTD) 42

Architectural Overview

The general architecture of the KeyView XML conversion technology is the same across all supported
platforms and is illustrated in Architectural Overview, above:

XML Export Architecture

Each component is described in Architectural Components, on the next page.

KeyView (11.6) Page 24 of 346

Component Description

Developer’s
Application

The developer’s application interfaces directly with the XMLExport API through either
a C-language, Java implementation.

File
Extraction
API

The File Extraction API opens a file and extracts the file’s subfiles so that the subfiles
are available for conversion. See Use the File Extraction API, on page 45.

XML Export
API

The XMLExport API exposes the functionality of XML Export and controls all other
XML Export modules during the conversion process.

Format
Detection
Module

The format detectionmodule determines the file type of the source file, which enables
the XMLExport interface to load the appropriate structured access layer module and
document reader. See File Format Detection, on page 311.

Structured
Access
Layer

The structured access layer contains threemodules: one for word processing, one for
spreadsheets, and one for presentations and graphics. Information from the format
detectionmodule determines which access layer module operates at this stage of the
conversion. The structured access layer performs the following:

1. Loads the appropriate document reader.
2. Processes the data stream from the document reader.
3. Determines table of contents entries.
4. Sends the stream to the appropriate XMLwriter.
5. Accepts the XML stream from the XMLwriter.
6. Generates the XML output file with a table of contents, metadata, and the

document’s contents, and sends it to the XMLExport interface.

Document
Reader

Each document reader reads a specific file format and sends a text stream of the
document to the structured access layer. Word processing readers return a token
stream to the structured access layer. A token stream contains the document
contents andmessages (tokens) that precede the content and identify the type of
information that follows them. Each reader is loaded as required by the structured
access layer. See Document Readers andWriters, on page 336 for a complete list of
document readers.

HTML
Writers

Each XMLwriter accepts a text stream or token stream from the structured access
layer and generates an equivalent XML stream that is sent back to the structured
access layer. The structured access layer then generates the output file. See
Document Readers andWriters, on page 336 for a list of format writers.

Architectural Components

Memory Abstraction

All dynamic memory allocations in Export modules are abstracted through a C interface. This memory
allocation interface is defined in the KVMemoryStream structure in kvtypes.h. KVMemoryStream, on
page 176. You can override all memory allocations by providing a C structure that contains pointers to

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 25 of 346

functions identical in nature to their standard ANSI C counterpart. The xmlcallback sample program
demonstrates Export memory management features.

Enhance Performance

KeyView is designed for optimal performance out of the box. However, there are some parameters that
you can adjust to improve performance specifically for your system.

File Caching

To reduce the frequency of I/O operations, and consequently improve performance, the KeyView
readers load file data into memory. The readers then read the data from the cache rather than the
physical disk. You can configure the amount of memory used for file caching through the formats_
e.ini file. Generally, when you increase thememory, performance improves.

By default, KeyView uses amaximum of 1MB of memory for each thread—assuming a thread
contains only one instance of pContext that is returned from the session initialization (fpInit(), on page
149). If the file data is larger than 1MB, up to 1MB of data is cached and the data beyond 1MB is read
from disk. Theminimum amount of memory that can be used for file caching is 64 KB.

To determine a reasonable value, divide themaximum amount of memory you want KeyView to use for
file caching by the total number of threads. For example, if you want KeyView to use amaximum of 50
MB of memory and have 10 threads, set the value to 5MB.

Tomodify thememory allocated for file caching, change the value for the following parameter in the
[DiskCache] section of the formats_e.ini file:

DiskCacheSize=1024

The value is in kilobytes. If this parameter is not set or is set to 0 (zero), theminimum value of 64 KB is
used.

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

Convert Files Out of Process

Export can run independently from the calling application. This is called out of process. Out-of-process
conversions protect the stability of the calling application in the rare case when amalformed document
causes Export to fail. You can also run Export in the same process as the calling application. This is
called in process. However, it is strongly recommended you convert documents out of process
whenever possible.

The Export out-of-process framework uses a client-server architecture. The calling application sends
an out-of-process conversion request to the Service Request Broker in themain Export process. The
Broker then creates, monitors, andmanages a Servant process for the request—each request is
handled by one independent Servant process. Data is exchanged between the application thread and
the Servant through TCP/IP sockets. The source data is sent to the Servant process as a data stream
or file, converted in the Servant, and then returned to the application thread. At that point, the
application can either terminate the Servant process or sendmore data for conversion.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 26 of 346

Multiple conversion requests can be sent frommultiple threads in the calling application
simultaneously. All requests sent from one thread are processed by the Servant mapped to that thread,
in other words, each thread can only have one Servant to process its conversion requests.

Any standard conversion errors generated by the Servant are sent to the application.

NOTE: Currently, themain Export process and Servant processes must run on the same host.

The following are requirements for running Export out of process:

l Internet Protocol (TCP/IP) must be installed
l Multithreaded processingmust be supported on the operating system platform
l The user applicationmust be built with amultithreaded runtime library
Other Export API functions and the File Extraction functions always run in-process.

Configure Out-of-Process Conversions

Althoughmost components of the out-of-process conversion are transparent, the following parameters
are configurable:

l File-size threshold/temporary file location
l Conversion time-out
l Listener port numbers and time-out
l Connection time-out and retry
l Servant process name
These parameters are defined internally, but you can override the default by defining the parameter in
the formats_e.ini file. The formats_e.ini file is in the directory install\OS\bin, where install is
the path name of the Export installation directory and OS is the name of the operating system.

To set the parameters, add the following section to the formats_e.ini file:

[KVExportOOPOptions]
TempFileSizeMark=
TempFilePath=
WaitForConvert=
WaitForConnectionTime=
ListenerPortList=
ListenerTimeout=
ConnectRetryInterval=
ConnectRetry=
ServantName=
EnableDebugOutput=
EnableDebugLog=
LogFilePath=
ClientLogFile=
ServerLogFile=

Each parameter is described in Parameters for Out-of-Process Conversion, on the next page. The
default values for these parameters are set to ensure reasonable performance onmost systems. If you

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 27 of 346

are processing a large number of files, or running Export on a slow machine, youmight need to increase
some of the time-out and retry values.

Parameter Description

TempFileSizeMark

unit = megabytes

default=10

The file-size threshold. If the input file received by the Servant is larger
than this value, temporary files are created to store the data. The
directory in which the temporary files are stored is defined by the
TempFilePath parameter. If the file received is smaller than this value,
the data is stored inmemory in the Servant. This applies only when the
input is a stream.

TempFilePath

type = file path

default = current working
directory

The directory in which temporary files are stored. Temporary files are
created when you use the fpConvertStream() API, and the input file
surpasses the file-size threshold (TempFileSizeMark). If the Servant
cannot access the file path, an error is generated.

This applies only when converting in streammode.

WaitForConvert

unit = seconds

default = 1800

range = 30~3600

The length of time to wait for a Servant to convert a file. If the conversion
is not completed within the specified time, the error code "Wait for
child process failed" is generated.

WaitForConnectionTime

unit = seconds

default = 180

range = 15~600

The length of time to wait for the Servant to connect to the application
thread after the application has sent a conversion request to the Broker.
If the Servant does not connect within the specified time, the error code
"Wait for child process failed" is generated. If there aremany
Servant processes running simultaneously, youmight need to increase
this value.

ListenerPortList

type = integer

default = 9985, 9986,
9987, 9988, 9989

The TCP/IP port number used for communication between the calling
application and the Servant. You can specify a single port number, or a
series of numbers separated by commas.

ListenerTimeout

unit = seconds

default = 10

range = 5~30

The length of time to wait for the Servant listener thread to get a process
ID from the Servant after the connection is established. If the ID is not
obtained within the specified time, the error code "Wait for child
process failed" is generated. During this time, no other Servant can
connect with the application.

ConnectRetryInterval

unit = microseconds

default = 0.1

range = 50000~500000

The length of time to wait after a Servant has failed to connect to the
application before it retries the connection. A Servant might be unable to
connect because the application is waiting for another Servant to send a
process ID.

To calculate the total retry interval, the value set here is added to the
platform-specific TCP retry value (onWindows, this is 1 second).

Parameters for Out-of-Process Conversion

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 28 of 346

Parameter Description

ConnectRetry

type = integer

default = 120

range = 30~600

The number of attempts the Servant makes to connect to the calling
application. This value and the total retry interval determine the total
delay time. The total delay is calculated as follows:

ConnectRetryInterval + platform-specific_TCP_retry_value *
ConnectRetry

For example, if the ConnectRetryInterval is set to 2 seconds, and the
Export process is running onWindows (the default TCP retry value on
Windows is 1 second), the total delay would be:

2 + 1 * 120 = 360

The Servant would attempt to connect to the application every 3
seconds for 120 attempts for a total of 360 seconds.

ServantName

type = string

default = servant

The name of the Servant process. Tomove the Servant to another
location, enter a fully qualified path.

Parameters for Out-of-Process Conversion, continued

Run Export Out of Process—Overview

To convert files out of process

1. If required, set parameters for the out-of-process conversion in the formats_e.ini file. See
Configure Out-of-Process Conversions, on page 27.

2. Initialize an Export session.
3. If you are using streams, create an input stream.
4. Define the conversion options.
5. Initialize an out-of-process session.
6. Convert the input and/or call other functions that can run out of process.
7. Shut down the out-of-process session.
8. Repeat Step 3 through Step 7 for additional files.
9. Terminate the out-of-process session and the Servant process.
10. Shutdown the Export session.

Recommendations

l To ensure that multithreaded conversions are thread-safe, youmust create a unique context pointer
for every thread by calling fpInit(). In addition, threads must not share context pointers, and the
same context pointer must be used for all API calls in the same thread. Creating a context pointer for
every thread does not affect performance because the context pointer uses minimal resources.

l All functions that can run in out-of-process modemust be called within the out-of-process session

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 29 of 346

(that is, after the call to initialize the out-of-process session and before the call to end the out-of-
process session).

l When terminating an out-of-process session, persist the Servant process by setting the Boolean flag
bKeepServantAlive in the KVXMLEndOOPSession() function or endOOPSessionmethod. If the
Servant process remains active, subsequent conversion requests are processedmore quickly
because the Servant process is already prepared to receive data. Only terminate the Servant when
there are nomore out-of-process requests.

l To recover from a failure in the Servant process, start a new out-of-process session. This creates a
new Servant process for the next conversion.

Run Export Out of Process in the C API

The cnv2xmloop sample program demonstrates how to run Export out of process.

To convert files out of process in the C API

1. If required, set parameters for the out-of-process conversion in the formats_e.ini file. See
Configure Out-of-Process Conversions, on page 27.

2. Declare instances of the following types and assign values to themembers as required:

KVXMLTemplateEx
KVXMLOptionsEx
KVXMLHeadingInfo
KVXMLTOCOptions

See XMLExport API Structures, on page 174 for more information.
3. Load the KVXML library and obtain the KVXMLInterface entry point by calling KVXMLGetInterface

().
See KVXMLGetInterface(), on page 133.

4. Initialize an Export session by calling fpInit(). See fpInit(), on page 149.
5. If you are using streams for the input and output source, follow these steps; otherwise, proceed to

Step 6:
a. Create an input stream (KVInputStream) by calling fpFileToInputStreamCreate(). See

fpFileToInputStreamCreate(), on page 137.
b. Create an output stream (KVOutputStream) by calling fpFileToOutputStreamCreate(). See

fpFileToOutputStreamCreate(), on page 139.
c. Proceed to Set up an out-of-process session by calling KVXMLStartOOPSession(). , below.

6. Set up an out-of-process session by calling KVXMLStartOOPSession().
KVXMLStartOOPSession(), on page 165. This function performs the following:
l Initializes the out-of-process session.
l Specifies the input stream or file. If you are using an input file, set pFileName to the file name,
and set pInputStream to NULL. If you are using an input stream, set pInputStream to point to
KVInputStream, and set pFileName to NULL.

l Sets conversion options in the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data
structures.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 30 of 346

l Creates a Servant process.
l Establishes a communication channel between the application thread and the Servant.
l Sends the data to the Servant.
[[TBD - See the sample code in Example—KVXMLStartOOPSession, below, and
KVXMLStartOOPSession(), on page 165.

7. Convert the input and generate the output files by calling KVXMLConvertFile() or
fpConvertStream(). The KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions structures are
defined in the call to KVXMLStartOOPSession(), and should be NULL in the conversion call. A
conversion function can be called only once in a single out-of-process session. See
KVXMLConvertFile(), on page 159, and fpConvertStream(), on page 135.

8. Terminate the out-of-process session by calling KVXMLEndOOPSession(). The Servant ends the
current conversion session, and releases the source data and session resources. See sample
code in Example—KVXMLEndOOPSession, on the next page, and KVXMLEndOOPSession(), on
page 161.

9. If you used streams, free thememory allocated for the input stream and output stream by calling
the fpFileToInputSreamFree() and fpFileToOutputStreamFree() functions. See
fpFileToInputStreamFree(), on page 138 and fpFileToOutputStreamFree(), on page 140.

10. Repeat Step 5 through Step 9 for additional files.
11. After all files are converted, terminate the out-of-process session and the Servant process by

calling KVXMLEndOOPSession() and setting the Boolean to FALSE.
12. After the out-of-process session and Servant are terminated, shut down the Export session by

calling fpShutDown(). See fpShutDown(), on page 151.

Example—KVXMLStartOOPSession

The following sample code is from the cnv2xmloop sample program:

/* declare OOP startsession function pointer */
KVXML_START_OOP_SESSION fpKVXMLStartOOPSession;
/* assign OOP startsession function pointer */
fpKVXMLStartOOPSession = (KVXML_START_OOP_SESSION)mpGetProcAddress

(hKVXML,"KVXMLStartOOPSession");
 if(!fpKVXMLStartOOPSession)

{
 printf("Error assigning KVXMLStartOOPSession pointer\n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);

 mpFreeLibrary(hKVXML);
 return 7;
 }
/********START OOP SESSION *****************/
if(!(*fpKVXMLStartOOPSession)(pKVXML,
 &Input,
 NULL,
 &XMLTemplates, /* Markup and related variables */
 &XMLOptions, /* Options */
 NULL, /* TOC options */

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 31 of 346

 &oopServantPID,
 &error,
 0,
 NULL,
 NULL))
{
 printf("Error calling fpKVXMLStartOOPSession \n");

(*KVXMLInt.fpShutDown)(pKVXML);
 mpFreeLibrary(hKVXML);
 return 9;
}

Example—KVXMLEndOOPSession

The following sample code is from the cnv2xmloop sample program:

/* declare endsession function pointer */
KVXML_END_OOP_SESSION fpKVXMLEndOOPSession;
/* assign OOP endsession function pointer */
fpKVXMLEndOOPSession = (KVXML_END_OOP_SESSION)mpGetProcAddress

(hKVXML, "KVXMLEndOOPSession");
 if(!fpKVXMLEndOOPSession)

{
 printf("Error assigning KVXMLEndOOPSession pointer\n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);

 mpFreeLibrary(hKVXML);
 return 8;
 }
/********END OOP SESSION, DO NOT KEEP SERVANT ALIVE *********/
if(!(*fpKVXMLEndOOPSession)(pKVXML,
 FALSE,
 &error,
 0,
 NULL,
 NULL))
{
 printf("Error calling fpKVXMLEndOOPSession \n");

(*KVXMLInt.fpShutDown)(pKVXML);
 mpFreeLibrary(hKVXML);
 return 10;
}

Convert Files

KeyView Export SDK enables you to convertmany different types of documents to XML. Converting is
the process of extracting the text from a document without the application-specific markup, and
applying XMLmarkup. However, the conversion process can also include the following:

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 32 of 346

l Extracting subfiles—exposes all subfiles for conversion. See Subfile Extraction, below.
l Setting conversion options—determines the content, structure, and appearance of the XML output.
See Set Conversion Options, on the next page.

l Extracting the file’s format—detects a file’s format, and reports the information to the API, which in
turn reports the information to the developer’s application. See Extract File Format Information, on
page 70.

l Extractingmetadata—extracts selectedmetadata (document properties) from a file. See Extract
Metadata, on page 67.

l Converting character sets—controls the character set of both the input and the output text. See
Convert Character Sets, on page 70.

l Implementing callbacks—controls the conversion while it is in progress. See XMLExport API
Callback Functions, on page 169.

You can use one of the followingmethods to convert documents:

l Use the Export Demo sample program. This Visual Basic program demonstrates most Export API
functionality and is the easiest way to get started. See Use the Export Demo Program, on page 36.

l Use the C-language implementation of the API from your C or C++ application. See Use the C-
Language Implementation of the API, on page 39.

l Use the C sample programs. See Sample Programs, on page 99.

NOTE: Micro Focus strongly recommends that you convert documents out of process.
During out-of-process conversion, Export runs independently from the calling application.
Out-of-process conversions protects the stability of the calling application in the rare case
when amalformed document causes Export to fail. Convert Files Out of Process, on page
26.

Subfile Extraction

To convert a file, youmust first determine whether the source file contains any subfiles (attachments,
embedded objects, and so on). A file that contains subfiles is called a container file. Compressed files
(such as Zip), mail messages with attachments (such as Microsoft Outlook Express), mail stores
(such as Microsoft Outlook Personal Folders), and compound documents with embeddedOLE objects
(such as aMicrosoft Word document with an embedded Excel chart) are examples of container files.

If the file is a container file, the container must be opened and its subfiles extracted by using the File
Extraction API. The extraction process is done repeatedly until all subfiles are extracted and exposed
for conversion. After a subfile is extracted, you can use the XMLExport API to convert the file.

If a file is not a container, you should pass it directly to the XMLExport API for conversion without
extraction.

See Use the File Extraction API, on page 45 for more information.

Convert Outlook Email without Using the Extraction API

Micro Focus strongly recommends that you convert all container files, includingMicrosoft Outlook files,
by using the File Extraction API. However, you can convert Outlook email messages (MSG) directly by

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 33 of 346

using the Export API and theMSG reader (msgsr).

NOTE: TheMSG reader only extracts themessage body of anMSG file. Attachments are not
extracted.

To convert MSG files by using theMSG reader, add the following to the formats_e.ini file (TRUE is
case-sensitive):

[ContainerOptions]
bConvertMSG=TRUE

Set Conversion Options

Conversion options are parameters that determine the content, structure, and appearance of the XML
output. For example, you can specify themarkup inserted at the beginning and end of specific XML
blocks, whether a heading is included in the table of contents, the output character set, or the resolution
at which graphics are converted. The conversion options can be set either in the API or in the template
files. Regardless of themethod used to set the options, the values are ultimately passed to the API and
used to populate the following data structures:

l KVXMLTemplate, on page 198
l KVXMLOptions, on page 190
l KVXMLHeadingInfo, on page 183
l KVXMLTOCOptions, on page 202
The conversion options are described in XML Export API Structures, on page 174.

Set Conversion Options by Using the API

Set conversion options by using any of the following functions:

l fpConvertStream(), on page 135
l KVXMLConvertFile(), on page 159
l KVXMLStartOOPSession(), on page 165

Set Conversion Options by Using the Template Files

XMLExport includes templates in the form of initialization files (.ini). The templates provide a quick
and easy way tomodify the conversion options without programming at the API level. However, the
template files do not give you complete control of the conversion process. To control some features,
youmust use the API directly.

You can use a text editor to customize the template files. For example, to change the output character
set from the default KVCS_UNKNOWN to KVCS_SJIS in the default.ini template, make the following
change shown in bold:

[KVXMLOptions]
eOutputCharSet=KVCS_SJIS
bForceOutputCharSet=TRUE

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 34 of 346

To create valid XML, a template filemust contain two structures: KVXMLTemplateEx and
KVXMLOptionsEx.

NOTE: If you enter markup in the template files that is not compliant with XML standards, XML
Export inserts themarkup into the output file unchanged. This might result in amalformed XML
file.

An applicationmust then read the template file and write the data to the appropriate Export structures.
In the sample program xmlini, a template file is supplied as a command-line argument (see xmlini, on
page 103).

Templates

The template files for the C API implementation are in the directory
install\xmlexport\programs\ini, where install is the path name of the Export installation
directory. The following templates are provided:

Template Description

Cascading style
sheet (xml_
css.ini)

This template writes style sheet information to an external CSS file. This makes
the XML output significantly smaller because the information is not stored in the
output file.

See Use Style Sheets, on page 77 and Use Style Sheets with xmlini, on page
104 for more information on using an external CSS file.

Index (xml_
index.ini)

Converts a source document into a single, largely unformatted XML file that is
appropriate for use with an indexing engine.

Single file
(xml1file.ini)

l Creates a single XML file.
l Does not define an XSL style sheet. A default XSL style sheet that is
appropriate to the source document type is used. The defaults supplied are
wp.xsl (for word processing documents), ss.xsl (for spreadsheets), pg.xsl
(for presentations).

l Forces the output character set to UTF-8.
l Maintains the source document’s fonts and styles.
l Does not create a table of contents.

Single file for
presentations
(xml1file_
pg.ini)

This template is designed specifically for presentation formats.

l Creates a single XML file.
l Defines an XSL style sheet for presentations (pg.xsl).
l Forces the output character set to UTF-8.
l Because XMLExport only extracts textual components from presentations,
the bRasterizeFilesmember of KVXMLOptions is set to FALSE.
KVXMLOptions, on page 190.

l Only the szMainTop, szMainBottom, and szUserSummary parameters of the
KVXMLTemplate structure are relevant to presentations and are set in the
presentations template.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 35 of 346

Template Description

l A template file for presentations must not include any other parameters in the
KVXMLTemplate structure. KVXMLTemplate, on page 198.

Single file with
table of contents (
xml1filetoc.ini
)

l Creates a single XML file.
l Creates a table of contents at the top of the XML document.
l Uses the Verity.dtd.
l Uses an XSL style sheet (wp.xsl).
l Forces the output character set to UTF-8.
l Lists all metadata (Title, Subject, Author, Comments, Created, Modified,
Last Saved By, and Revision Number).

l Uses the name of the worksheets for spreadsheets.
l Uses the slide titles for presentations. If no titles are available in the source
document, it uses "slide 1," "slide 2," "slide 3," and so on.

Use the Export Demo Program

The easiest way to get started with Export is to become familiar with its capabilities through the Visual
Basic sample program, Export Demo. The source code for the program is in the directory
install\xmlexport\programs\ExportDemo, where install is the path name of the Export
installation directory. Export Demo is forWindows only, and requires Internet Explorer 4.01 with
Service Pack 1 or higher.

The output options that control the look of the output files are predefined in Export Demo and cannot be
changed in the user interface. Export Demo uses a small sample of the options available in the Export
API.

To launch the sample program, select Export Demo from Start |Programs |Autonomy |Export
SDK |XML Export. The following dialog appears:

Export Demo: Launching

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 36 of 346

NOTE: HTML conversion using HTMLExport is available in Export Demo if you have HTML
Export installed. If you do not have HTMLExport installed, theHTML button is disabled.

Change Input/Output Directories

If XML Export is installed in the default directory, the output and input directories are automatically set.

The default location for source files is the directory install\testdocs.

The default location for output files is the directory install\xmlexport\programs\tempout.

If XML Export is installed in a directory other than the default, you are prompted to select an output and
input directory when you first start Export Demo.

To change the default directories for the source and output files

1. Select Options |Set Directories. The following dialog appears:
Export Demo: Setting Directories

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 37 of 346

2. From the tree view, select the drive letter and directory for the source or output files.
3. InChange Location, select which files are stored in the directory, eitherSource orXML.
4. Click Change. TheCurrent Locations fields are updated with the new selection.
5. Follow the same procedure for the other file types.

Set Configuration Options

With XMLExport, you can configure options prior to the document conversion by using the XMLConfig
() function. Export Demo demonstrates this function, and allows you to:

l Generate output with verbosemarkup and without images.
l Include position information in themarkup generated for a PDF document.

Suppress Images

Export Demo provides an option to generate output with verbosemarkup and without images. For more
information, see KVXMLConfig(), on page 152.

To specify that images are suppressed in the XML output, select Options |XML Config | Suppress
Images.

Use PDF Position Information

Export Demo provides an option to include position information in themarkup generated for a PDF
document. For more information, see KVXMLConfig(), on page 152.

To specify that PDF position information be included in the XML output, select Options |XML Config |
Enable Position Token.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 38 of 346

Convert Files

To convert a single file

1. Select Options |Convert |Single file.
2. Select the document from the file list, and then click XML in theConvert file to pane.

To convert files in a directory

1. Select Options |Convert |Entire directory.
2. Click XML in theConvert directory to pane.

To view a converted file, double-click the output file in theOutput Files pane, or select the output
file, and then click View. The converted file is displayed in the view pane:
Export Demo: Converting Files

To view the original document, select the document from the file list, and then click Open. If you have
an application on your system associated with the file, the file is displayed in that application.

To delete output files, select the file in theOutput Files pane and click Delete.

Use the C-Language Implementation of the API

The C-language implementation of the API is divided into the following function suites:

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 39 of 346

l File Extraction API Functions, on page 108—Open and extract subfiles in a container file. These
functions also extract metadata and file format information, and control character set conversion on
extraction.

l XMLExport API Functions, on page 133—Extract format information (metadata, character set, and
format), create an input/output stream from a file, and open, convert, and close the stream.

l XMLExport API Callback Functions, on page 169—Controls the conversion while it is in progress.

Input/Output Operations

In the Export API, the source input and target output can be either a physical file accessed through a
file path, or a stream created from a data source. A stream is a C structure that contains pointers to I/O
functions similar in nature to their standard ANSI C counterparts. This structure is passed to Export
functions in place of the standard input source. The input stream is defined by the structure
KVInputStream in kvtypes.h. The output stream is defined by the structure KVOutputStream in
kvtypes.h. See KVInputStream, on page 175 and KVOutputStream, on page 176.

You can create an input stream either by using the fpFileToInputStreamCreate() function, or by
using code similar to the example code in the io_samp sample program. You can create an output
stream by using the fpFileToOutputStreamCreate() function. These functions assign C equivalent
I/O functions to fpOpen(), fpRead(), fpSeek(), fpTell(), and fpClose(). See
fpFileToInputStreamCreate(), on page 137 and fpFileToOutputStreamCreate(), on page 139.

Convert Files

To use the C-language implementation of the API

1. Develop the XMLmarkup and tokens to be assigned to the requiredmembers of a declared
instance of KVXMLTemplate.
If you usemarkup in the structure that is not compliant with XML standards, XML Export inserts
themarkup into the output file unchanged. This might result in amalformed XML file.

2. Declare instances of the following types and assign values to themembers as required:
KVXMLTemplateEx
KVXMLOptionsEx
KVXMLHeadingInfo
KVXMLTOCOptions

See XMLExport API Structures, on page 174 for more information.
3. Load the KVXML library and obtain the KVXMLInterface entry point by calling KVXMLGetInterface

(). See KVXMLGetInterface(), on page 133.
4. Initialize an Export session by calling fpInit(). The function’s return value, pContext, is passed

as the first argument to all other Export functions. See fpInit(), on page 149.
5. Pass the context pointer from fpInit() and the address of a structure containing pointers to the

File Extraction API functions in the call to KVGetExtractInterface(). See.
KVGetExtractInterface(), on page 108.

6. If you are using streams for the input and output source, follow these steps; otherwise, proceed to
Step 7:

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 40 of 346

a. Create an input stream (KVInputStream) either by calling fpFileToInputStreamCreate(), or
by using code similar to the example code in the io_samp sample program.
fpFileToInputStreamCreate(), on page 137.

b. Create an output stream (KVOutputStream) either by calling fpFileToOutputStreamCreate
(), or by using code similar to the example code in the io_samp sample program.
fpFileToOutputStreamCreate(), on page 139.

c. Proceed to Step 7.
7. Declare the input stream or file name in the KVOpenFileArg structure. See KVOpenFileArg, on

page 126.
8. Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call

defines the parameters necessary to open a file for extraction. See fpOpenFile(), on page 116.
9. Determine whether the source file is a container file (contains subfiles) by calling

fpGetMainFileInfo(). See fpGetMainFileInfo(), on page 112.
10. If the call to fpGetMainFileInfo() determined the source file is a container file, proceed to Step

11; otherwise, proceed to Step 14.
11. Determine whether the subfile is itself a container (contains subfiles) by calling

fpGetSubFileInfo(). See fpGetSubFileInfo(), on page 113.
12. Extract the subfile by calling fpExtractSubFile(). See fpExtractSubFile(), on page 109.
13. If the call to fpGetSubFileInfo() determined the subfile is a container file, repeat Step 6 through

Step 12 until all subfiles are extracted; otherwise, proceed to Step 14.
14. Setup an out-of-process session by calling KVXMLStartOOPSession(). See

KVXMLStartOOPSession(), on page 165.
15. Convert the input and generate the output files by calling KVXMLConvertFile() or

fpConvertStream(). The structures KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions are
defined in the call to KVXMLStartOOPSession(), and should be NULL in the conversion call. A
conversion function can be called only once in a single out-of-process session. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.
If you are using callbacks, they are called while the conversion process is underway. If required,
you can specify alternate paths and file names for output files, including using the table of content
entries for the file names. See XMLExport API Callback Functions, on page 169.

16. If you are converting additional files, terminate the out-of-process session by calling
KVXMLEndOOPSession() and setting the Boolean to TRUE. The Servant ends the current
conversion session, and releases the source data and session resources.
If you are not converting additional files, terminate the out-of-process session and the Servant
process by calling KVXMLEndOOPSession() and setting the Boolean to FALSE.
KVXMLEndOOPSession(), on page 161

17. Close the file by calling fpCloseFile(). See fpCloseFile(), on page 109.
18. If you used streams, free thememory allocated for the input stream and output stream by calling

the functions fpFileToInputSreamFree() and fpFileToOutputStreamFree(). See
fpFileToInputStreamFree(), on page 138 and fpFileToOutputStreamFree(), on page 140.

19. Repeat Step 6 through Step 18 for additional source files.
20. Shutdown the Export session by calling fpShutDown(). See fpShutDown(), on page 151.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 41 of 346

Multithreaded Conversions

To ensure that multithreaded conversions are thread-safe, youmust create a unique context pointer for
every thread by initializing the Export session with fpInit(). In addition, threads must not share
context pointers, and the same context pointer must be used for all API calls in the same thread.
Creating a context pointer for every thread does not affect performance because the context pointer
uses minimal resources.

For example, your code should have the following logic for one thread:

fpInit()
 KVGetExtractInterface()
 fpFileToInputStreamCreate()
 fpFileToOutputStreamCreate()
 fpOpenFile()
 fpGetMainFileInfo() /* container file */
 fpGetSubFileInfo()
 fpExtractSubFile
 fpGetSubFileMetadata()
 KVXMLStartOOPSession()
 fpConvertStream()
 KVXMLEndOOPSession(bKeepServantAlive TRUE)
 fpCloseFile()
 fpFileToInputSreamFree()
 fpFileToOutputStreamFree()
 set input/output file
 fpOpenFile()
 fpGetMainFileInfo() /* not a container file */
 KVXMLStartOOPSession()
 KVXMLConvertFile()
 KVXMLEndOOPSession(bKeepServantAlive TRUE)
 fpCloseFile()
 ...
fpShutdown()

Use the Verity Document Type Definition (DTD)

XMLExport produces well-formed, valid XML documents. Document validity is based on a Document
Type Definition (DTD) called the Verity.dtd. The Verity.dtd is in the default output directory
tempout. If the DTD is in a different directory, the full pathmust be specified in pszVerityDTDPath.

The elements in the Verity.dtd are based on those defined in theW3C XHTML 1.0 specification and
the attributes are based on those defined in theW3C CSS 2 specification.

The root element of each document is "VerityXMLExport." Character entities are imported by using
the three XHTMLDTDs defined at the beginning of the Verity.dtd.

<!-- Character entities -->
<!ENTITY % HTMLlat1x SYSTEM "HTMLlat1x.ent">

XMLExport SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 42 of 346

%HTMLlat1x;
<!ENTITY % HTMLspecialx SYSTEM "HTMLspecialx.ent">
%HTMLspecialx;
<!ENTITY % HTMLsymbolx SYSTEM "HTMLsymbolx.ent">
%HTMLsymbolx;

Use XML Style Language Transformation (XSLT)

XMLExport is designed to generate XML documents based on the Verity DTD. You can convert the
XML produced by XMLExport to other XML vocabularies, such as Wireless Markup Language (WML),
by using XSLT.

Add Elements and Attributes to the DTD

XMLExport can only generate XML that conforms to the Verity DTD. You can create your ownDTD
based on the Verity DTD. You cannot rename the Verity DTD, somake sure you back up the original
Verity DTD to another name beforemaking changes.

If you create your ownDTD and add elements or attributes that are not defined in the original Verity
DTD, youmust ensure that the new markup is defined in the XMLExport API classes. You can define
themarkup either by entering themarkup directly in the styles, or by populating the styles by using the
template files. SeeMap Styles, on page 74 for more information onmapping styles to user-defined
markup.

Move the DTD

The default output directory for the Verity DTD is programs\tempout. If youmove the Verity DTD to
another output directory, youmust set the string value of pszVerityDTDPath to the new location. This
path is added to the document type declaration in the XML file. pszVerityDTDPath, on page 191.

XML Export SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 43 of 346

KeyView (11.6)

Page 44 of 346

Part II: Use the Export API

This explains how to perform some basic tasks by using the File Extraction and Export APIs, and describes
the sample programs. It contains the following chapters:

l Use the File Extraction API, on page 45
l Use the XMLExport API, on page 67
l Sample Programs, on page 99

Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

• Introduction 45
• Extract Subfiles 46
• Extract Images 47
• Recreate a File’s Hierarchy 47
• Extract Mail Metadata 48
• Extract Subfiles from Outlook Files 55
• Extract Subfiles from Outlook Express Files 55
• Extract Subfiles fromMailbox Files 56
• Extract Subfiles from Outlook Personal Folders Files 56
• Extract Subfiles from Lotus Domino XML Language Files 59
• Extract Subfiles from Lotus Notes Database Files 60
• Extract Subfiles from PDF Files 63
• Extract EmbeddedOLE Objects 64
• Extract Subfiles from ZIP Files 64
• Default File Names for Extracted Subfiles 64

Introduction

To convert a file, youmust first determine whether the file contains any subfiles (attachments,
embeddedOLE objects, and so on). A file that contains subfiles is called a container file. A container
file has amain file (parent) and subfiles (children) embedded in themain file.

The following are examples of container files:

l Archive files such as ZIP, TAR, and RAR.
l Mail messages such as Outlook (MSG) andOutlook Express (EML).
l Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

l PDF files that contain file attachments.
l Compound documents with embeddedOLE objects such as aMicrosoft Word document with an
embedded Excel chart.

NOTE: Supported Formats, on page 225 indicates which formats are treated as container files
and are supported by the File Extraction API.

KeyView (11.6) Page 45 of 346

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

l aMicrosoft Word document that contains an embeddedMicrosoft Excel spreadsheet.
l an AutoCAD drawing file (DWG).
l an EML file with an attached Zip file, which in turn contains four archived files.

NOTE: The parent MSG file contains four first-level children. The body text of amessage file,
although not a standalone file in the container, is considered a child of the parent file.

Extract Subfiles

To convert all files in a container file, youmust open the container and extract its subfiles by using the
File Extraction API. The extraction process is done repeatedly until all subfiles are extracted and
exposed for conversion. After a subfile is extracted, you can call Export API functions to convert the
file.

If you want to convert a container file and its subfiles to a single file, youmust extract all files from the
container, convert the files, and then append each converted output file to its parent.

To extract subfiles

1. Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KVGetExtractInterface().

2. Declare the input stream or file name in the KVOpenFileArg structure.
3. Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call

defines the parameters necessary to open a file for extraction.
4. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling

fpGetMainFileInfo().
5. If the call to fpGetMainFileInfo() determined that the source file is a container file, proceed to

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 46 of 346

step 6; otherwise, convert the file.
6. Determine whether the subfile is itself a container (that is, whether it contains subfiles) by calling

fpGetSubFileInfo().
7. Extract the subfile by calling fpExtractSubFile().
8. If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 2

through step 7 until all subfiles are extracted and the lowest level of subfiles is reached; otherwise,
convert the file.

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file:

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the sameway as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [Y] is the extension. The format of
the image is the same as the format in which it is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

Recreate a File’s Hierarchy

When you extract a container file, any relationships between the subfiles in the container are not
maintained. However, the File Extraction interface provides information that enables you to recreate
the hierarchy. You can use the hierarchy to create a directory structure in a file system, or to categorize
documents according to their relationship to each other. For example, if you use KeyView to generate
text for a search engine, the hierarchical information enables your users to search for a document
based on the document’s parent or sibling. In addition, when the document is returned to the user, the
parent and sibling documents can be returned as recommendations.

The information needed to recreate a file’s hierarchy is provided in the call to fpGetSubFileInfo(). The
members KVSubFileInfo->parentIndex and KVSubFileInfo->childArray provide information
about a subfile’s parent and children. Because you can only retrieve the first-level children in the
subfile, youmust call fpGetSubFileInfo() repeatedly until information for the leaf-node children is
extracted.

Create a Root Node

Because of their structure, some container files do not contain a subfile or folder which acts as a root
directory on which the hierarchy can be based. For example, subfiles in a Zip archive can be extracted,
but none of the subfiles represent the root of the hierarchy. In this case, youmust create an artificial
root node at the top of the file hierarchy as a point of reference for each child, and ultimately to recreate
the relationships. This artificial root node is an internal object, and is extracted to disk as a directory
called root. Its index number is 0.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 47 of 346

To create the root node, set openFlag to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile().
When you create a root node, the value of numSubFiles in KVMainFileInfo includes the root node. For
example, when you call fpGetMainFileInfo() on aMicrosoft Word document with three embedded
OLE objects and the root node is disabled, numSubFiles is 3. If you create a root node, numSubFiles is
4.

Recreate a File’s Hierarchy—Example

For example, youmight extract a PST file that contains seven subfiles with a root node enabled. The
call to fpGetMainFileInfo()returns the number of subfiles as eight (seven subfiles and one root
node). The following diagram shows the structure and the available hierarchy information after the
subfiles are extracted:

The parentIndex specifies the index number of a subfile’s parent. The childArray specifies an array
of a subfile’s children. With this information, you can recreate the hierarchy shown in the following
diagram.

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, fromMSG, EML, MBX, PST, and
NSF files, by calling the fpGetSubFileMetaData() function. You can extract a predefined set of
metadata fields, individual fields, or both, that are unique to a file format.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 48 of 346

Default Metadata Set

KeyView internally defines a set of commonmail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table. When you retrieve allmetadata
for a file—that is, pass NULL for the array of metadata—the complete set of default metadata, not all
available metadata in the file, is returned.

Field Name (string to
specify)

Description

From The display name and email address of the sender.

Sent The time that themessage was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of themessage.

Priority The priority applied to themessage.

Default Mail Metadata List

Becausemail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the namePriority and is returned.

You can also extract the default field names individually by passing the field name (such as From, To,
andSubject); however, in this case, the string is not mapped to the format-specific name. For example,
if you pass Priority in the call, you retrieve the contents of thePriority field from anMBX file, but do not
retrieve the contents of the Importance field from anNSF file.

NOTE: You cannot pass the field names listed in the table individually for PST files. However,
you can pass either theMAPI tag number or theMAPI tag name as integers. SeeMicrosoft
Personal Folders File (PST)Metadata, on page 53.

Extract the Default Metadata Set

To extract the default metadata set, call the fpGetSubFileMetaData() function, and pass 0 for
metaNameCount and NULL for metaNameArray.

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);

metaArg.index = subFileIndex;
metaArg.metaNameCount = 0;

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 49 of 346

metaArg.metaNameArray = NULL;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Outlook (MSG) Metadata

In addition to the default metadata set, you can extract themetadata fields listed in the following table
for MSG files. Youmust pass the field name to metaNameArray in the call to the
fpGetSubFileMetadata() function.

Field Name (string to
specify)

Description

AttachFileName An attachment's long file name and extension, excluding the path.

ConversationTopic The topic of the first message in a conversation thread. A conversation
thread is a series of messages and replies. This is the first message’s
subject with any prefix removed.

CreationTime The time that themessage or attachment was created. This value is
displayed in theSent field in themessage’s Properties dialog in Outlook.

InternetMessageID The identifier for messages that come in over the Internet. This is the
MAPI property PR_INTERNET_MESSAGE_ID. This property is not in the
MAPI headers or MAPI documentation.

LastModificationTime The time that themessage or attachment was last modified. This value is
displayed in theModified field in themessage’s Properties dialog in
Outlook.

Location The physical location of the event specified in the Outlook calendar entry.

MessageID Themessage transfer system (MTS) identifier for themessage transfer
agent (MTA). This value is displayed on theMessage ID tab in the
message’s Properties dialog in Outlook.

Received The date and time amessage was delivered. This value is displayed in
theReceived field in themessage’s Properties dialog in Outlook.

Sender The name and email address of themessage sender. This value is a
concatenation of twoMAPI properties in the following format:

"PR_SENDER_NAME" <PR_SENDER_EMAIL_ADDRESS>

The Sender valuemight be the same as or different than the default
metadata From value (see Default Metadata Set, on the previous page),
depending on whichMAPI properties exist in theMSG file.

MSG-specific Metadata List

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 50 of 346

Field Name (string to
specify)

Description

Sensitivity The value indicating themessage sender's opinion of the sensitivity of a
message. For example, Personal, Private, or Confidential. This value is
displayed in theSensitivity field in themessage’s Properties dialog in
Outlook.

TransportMsgHeaders Transport-specific message envelope information. This value
corresponds to theMAPI property PR_TRANSPORT_MESSAGE_HEADERS.

StartDate An appointment start date. This value corresponds to the PR_START_DATE
MAPI property.

EndDate An appointment end date. This value corresponds to the PR_END_DATE
MAPI property.

MSG-specific Metadata List, continued

Extract MSG-Specific Metadata

To extract specific metadata fields from anMSG file, call the fpGetSubFileMetaData() function, and
pass the field name defined in Default Metadata Set, on page 49 to metaNameArray (the string is not
case sensitive).

For example, the following code extracts the contents of the ConversationTopic and MessageID
fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "conversationtopic";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "MessageID";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 51 of 346

Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata

In addition to the default metadata set, you can extract any metadata field that exists in the header of
an EML orMBX file by passing the field’s name. If the name is a valid field in the file, the content of the
field is returned. For example, to retrieve the name of the last mail server that received themessage
before it was delivered, you can pass the string "Received".

Extract EML- or MBX-Specific Metadata

To extract specific metadata fields from an EML orMBX file, call the fpGetSubFileMetaData() function,
and pass themetadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Received and Mime-version fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "Received";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Mime-version";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;
error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Lotus Notes Database (NSF) Metadata

In addition to the default metadata set, you can extract any Lotus field name that exists in an NSF file
by passing the field’s name. (You can extract fields frommail NSF files and non-mail NSF files.) If the
name is a valid field in the file, the field is returned. For example, to retrieve the date when a document
in an NSF file was last accessed, you would pass the string "$LastAccessedDB".

NOTE: A complete list of NSF fields is provided in the Lotus Notes file stdnames.h. This
header file is available in the Lotus API Toolkit.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 52 of 346

Extract NSF-Specific Metadata

To extract specific metadata fields from anNSF file , call the fpGetSubFileMetaData() function, and
pass themetadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Description and Categories fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "description";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Categories";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Personal Folders File (PST) Metadata

In addition to the default metadata set, you can extract Messaging Application Programming Interface
(MAPI) properties from a PST file. These properties describe all elements of an Outlook item in a PST
file (such as subject, sender, recipient, andmessage text). Because the properties are stored in the
PST file itself, you can retrieve them before you extract the contents of the PST. This enables you to
determine whether anOutlook item should be extracted based on its attributes. SomeMAPI properties
are also stored for Outlook attachments that are notmail messages (such as an attachedMicrosoft
Word document or Lotus 1-2-3 file).

NOTE: Because all elements of amessage (except non-mail attachments) are represented by
MAPI properties, you can extract all components of a subfile, including the header andmessage
text, by calling the fpGetSubFileMetadata() function.

MAPI Properties

EachMAPI property is identified by a property tag, which is a constant that contains the property type
and a unique identifier. For example, the property that indicates whether amessage has attachments

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 53 of 346

has the following components:

Property PR_HASATTACH

Identifier 0x0E1B

Property type PT_BOOLEAN (000B)

Property tag 0x0E1B000B

TheMicrosoft MAPI documentation on theMicrosoft Developer Network website lists all available
MAPI properties, their tags, and types.

You can retrieve any MAPI property that is of one of theMAPI property types listed below:

PT_I2 PT_DOUBLE PT_STRING8

PT_I4 PT_FLOAT PT_TSTRING

PT_BINARY PT_LONG PT_SYSTIME

PT_BOOLEAN PT_SHORT PT_UNICODE

NOTE: Properties with a PT_TSTRING type have the property type recompiled to either a
Unicode string (PT_UNICODE) or to an ANSI string (PT_STRING8) depending on the operating
system’s character set. To retrieve the Unicode property, pass in the Unicode version of the
tag. For example, the property tag for PR_SUBJECT is either 0x0037001E for an ANSI string, or
0x0037001F for a Unicode string.

Extract PST-Specific Metadata

In the call to extract subfile metadata, you can pass either theMAPI tag number (such as 0x0070001e)
or theMAPI tag name (such as PR_CONVERSATION_TOPIC). If you specify theMAPI tag name, you
must include the mapitags.h and mapidefs.hWindows header files, in which theMAPI tag name is
defined as a tag number.

To extract specific MAPI properties from a PST file, call the fpGetSubFileMetaData() function, and
pass the property tag to metaNameArray. The tag is passed as an integer.

For example, the following code extracts theMAPI properties PR_SUBJECT and PR_ALTERNATE_
RECIPIENT:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVMetaNameRec names[2];
KVMetaName pName[2];

names[0].type = KVMetaNameType_Integer;
names[0].name.iname = PR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = 0x3A010102;

pName[0] = &names[0];
pName[1] = &names[1];

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 54 of 346

KVStructInit(&metaArg);

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = SubFileIndex;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

NOTE: Youmust include the mapitags.h and mapidefs.hWindows header files, in which PR_
SUBJECT is defined as 0x0037001E.

Exclude Metadata from the Extracted Text File

When you extract amail message, themessage text and header information (To, From, Sent, and so
on) is also extracted. You can prevent the header information from appearing in the text file.

To exclude the header information, set extractFlag to KVExtractionFlag_ExcludeMailHeader in
the call to fpExtractSubFile().

Extract Subfiles from Outlook Files

When you extract an Outlook file (MSG) to disk, themessage text and header information (To, From,
Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in the
text file, see ExcludeMetadata from the Extracted Text File, above.) If the Outlook file contains a non-
mail attachment, the attachment is extracted in its native format to a subdirectory. If the Outlook file
contains amail attachment, the attachment’s message text is extracted to a subdirectory.

Extract Subfiles from Outlook Express Files

When you extract an Outlook Express (EML) file to disk, themessage text and header information (To,
From, Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in
the text file, see ExcludeMetadata from the Extracted Text File, above.) If the Outlook file contains a
non-mail attachment, the attachment is extracted in its native format to the same directory as the
message text file. If the Outlook file contains amail attachment, the complete attachment (including
message text and attachments), themessage text file, and any non-mail attachments are extracted to
the same directory as themainmessage.

NOTE:When theMBX reader (mbxsr) is enabled, it is used to filter MBX andEML files. If the
MBX reader is not enabled, the EML reader (emlsr) is used.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 55 of 346

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There aremany mail applications that export to anMBX
format, such as Eudora Email andMozilla Thunderbird.

When anMBX file is extracted to disk, themessage text and header information (To, From, Sent, and
so on) from eachmail file is extracted to text files. (If you do not want the header information to appear
in the text file, see ExcludeMetadata from the Extracted Text File, on the previous page.)

In EudoraMBX files, attachments are inserted as a link and are stored externally from themessage.
These attachments are not extracted, but the path to the attachment is returned in the call to the
fpGetSubFileInfo() function. You can write code to retrieve the attachment based on the returned path.

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

TheMailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, youmust obtain the appropriate license key fromMicro Focus. See Update
License Information, on page 20 for information on adding a new license key to an existing installation.

Extract Subfiles from Outlook Personal Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file. When a PST file is extracted to disk, the text and header information
(To, From, Sent, and so on) from eachOutlook item is extracted to a text file. (If you do not want the
header information to appear in the text file, see ExcludeMetadata from the Extracted Text File, on the
previous page.)

You can also extract messages from PST files as MSG files, including all their attachments, by setting
the KVExtractionFlag_SaveAsMSG flag in the KVExtractSubFileArg structure when you call
fpExtractSubFile().

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains anOutlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: TheMicrosoft Outlook Personal Folders (PST) reader is an advanced feature and is sold
and licensed separately. To enable this reader in a KeyView SDK, youmust obtain the
appropriate license key fromMicro Focus. See Update License Information, on page 20 for
information on adding a new license key to an existing installation.

Use the Native or MAPI-based Reader

KeyView accesses PST files in one of two ways:

l indirectly using theMicrosoft Messaging Application Programming Interface (MAPI) reader named
pstsr.

l directly using the native PST reader named pstnsr.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 56 of 346

OnUNIX platforms, the native reader is always used to process PST files because theMAPI-based
reader only runs onWindows x86 and x64. OnWindows, you can specify either reader; however, the
MAPI-based reader is used by default.

The differences between the two readers are summarized in the following table:

Feature/Requirement Native Reader (pstnsr) MAPI-based Reader
(pstsr)

All platforms supported Yes Windows x86 and x64 only

Outlook client required No Yes

MAPI properties supported Yes

All properties defined in
mapitags.h. Object
properties are not
supported.

Yes

All properties defined in
mapitags.h. Object
properties are not supported.

Password protection
supported

Yes Yes (using KVCredential
structure)

Compressible encryption
supported

Yes Yes

High encryption supported No Yes

To use theMAPI-based reader for PST files, change the PST entry in the formats_e.ini file as
follows:

297=pst

To use the native reader for PST files, change the PST entry in the formats_e.ini file as follows:

297=pstn

NOTE: Youmust make sure that the PST that you are extracting is not open in the Outlook
client, and that the Outlook process is not running.

Use the Native PST Reader (pstnsr)

The native PST reader accesses PST files directly without relying on theMicrosoft interface to the PST
format. It runs on bothWindows and UNIX, and does not require anOutlook client on the system
processing the PST files. However, the native reader does not support password-protected PST files
that use high encryption.

Use the MAPI Reader (pstsr)

The pstsr reader accesses PST files indirectly by usingMicrosoft’s Messaging Application
Programming Interface (MAPI). MAPI is a standardWindows message interface that enables different
mail programs and other mail-aware applications (such as word processors and spreadsheets) to
exchangemessages and attachments with each other. MAPI allows KeyView to open a PST file,
traverse the folders andOutlook items, and extract the items inside the PST file.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 57 of 346

NOTE:When extracting subfiles from PST files, information on the distribution list used in an
email is extracted to a file called emailname.dist. This applies to theMAPI reader (pstsr)
only.

System Requirements

BecauseMAPI is supported onWindows platforms only, you can convert PST files onWindows only.
BecauseMAPI relies on functionality in Microsoft Outlook, aMicrosoft Outlook client must be installed
on the samemachine as the application converting PST files, andmust be the default email
application. KeyView supports the following PST formats andOutlook clients:

l Outlook 97 or higher PST files
l Outlook 2002 or later clients

NOTE: TheOutlook client must be the same version as, or newer than, the version of
Outlook that generated the PST file.

NOTE: The bit edition of Microsoft Outlook must match that of the KeyView software. For
example, if 32-bit KeyView is used, 32-bit Outlook must be installed. If 64-bit KeyView is used,
64-bit Outlook must be installed.

If the bit editions do not match, an error message fromMicrosoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as the
default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

MAPI Attachment Methods

The way in which you can access the contents of a PSTmessage attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE

ATTACH_EMBEDDED_MSG

ATTACH_OLE

ATTACH_BY_REFERENCE

ATTACH_BY_REF_ONLY

ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 58 of 346

means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, youmust retrieve the path to access the
attachment.

To extract "attach by reference" attachments

Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or ATTACH_
BY_REF_RESOLVEmethod by retrieving theMAPI property PR_ATTACH_METHOD.

If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving theMAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_PATHNAME.

You can then either copy the files from their original location to the path where the PST file is extracted,
or use the Export API functions to convert the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

NOTE: To open password-protected PST files that use high encryption, youmust use the
MAPI-based PST reader (pstsr).
The native PST reader (pstnsr) returns the error message KVERR_PasswordProtected if a PST
is encrypted with high encryption.

Detect PST Files While the Outlook Client is Running

If you are running anOutlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format becauseOutlook has
the file locked. In this case, you can do one of the following:

l CloseOutlook when using the Extraction API.
l Detect PST files by extension only and bypass the format detectionmodule. To enable this option,
add the following lines to the formats_e.ini file:

[container_flags]
detectPSTbyExtension=1

NOTE: The detectPSTbyExtension option applies only when you are using theMAPI reader
(pstsr).

NOTE: If you use this option, youmust make sure in your code that valid PST files are
passed to KeyView, because the format detectionmodule is not available to verify the file
type and pass the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML Language Files

When you extract a Lotus Domino XML Language (.DXL) file, themessage text and header information
(To, From, Sent, and so on) is extracted to a text file.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 59 of 346

NOTE: To prevent header information from being extracted, see ExcludeMetadata from the
Extracted Text File, on page 55.

You canmake sure that dates and times extracted from Lotus Domino .DXL files are displayed in a
uniform format.

To extract custom date/time formats

l In the formats_e.ini file, set the DateTimeFormat option in the [dxlsr] section. For example:

[dxlsr]
DateTimeFormat=%m/%d/%Y %I:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM
The format arguments are the same as those for the strftime() function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak%28VS.71%29.aspx for more information.

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML

l Set the following options in the formats_e.ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dxlsr]
LNDParser=2

Extract Subfiles from Lotus Notes Database Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, andOLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When amail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in eachmessage is extracted to a text
file. (If you do not want the header information to appear in themessage text file, see ExcludeMetadata
from the Extracted Text File, on page 55.)

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 60 of 346

http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and
licensed separately. To enable this reader in a KeyView SDK, youmust obtain the appropriate
license key fromMicro Focus. See Update License Information, on page 20 for information on
adding a new license key to an existing installation.

System Requirements

The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus
Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or
Lotus Domino server must be installed and configured on the samemachine as the application
converting NSF files. On UNIX and Linux, the Lotus Domino server is required. OnWindows, the Lotus
Notes client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:

l Lotus Notes 6.5.1
l Lotus Domino 6.5.1
KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino:

l Windows XP x86 (Service Pack 1 and 2)
l Windows 2000 x86 (Service Pack 2)
l Solaris 8.0 and 9.0 (built on Solaris 8.0)
l RedHat Enterprise Linux AS 3.0 (x86)
l SuSE Linux Enterprise Server 8 and 9 (x86)
l IBM AIX 5.1, 5L version 5.2

Installation and Configuration

Before KeyView can convert NSF files, youmust set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline theminimal setup for NSF conversion:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes.ini file is in the proper location.
l If Lotus Notes is installed, the file should appear in the install\lotus\notes directory, where

install is the installation directory.
l If only Lotus Domino is installed, the file should appear in the install\lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 61 of 346

Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installationmight contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.
2. Make sure that the notes.ini file is in the install/lotus/notes/latest/sunspa directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the install/lotus/notes/latest/sunspa directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Add the install/lotus/notes/latest/sunspa and the KeyView bin directory to the LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

AIX 5.x

1. Install the bos.iocp.rte file set if it is not already installed, and reboot themachine. See the
Lotus Domino server documentation for more information.

2. Install Lotus Domino server. You do not need to configure the server.
3. Make sure that the notes.ini file is in the install/lotus/notes/latest/ibmpow directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

4. Add the install/lotus/notes/latest/ibmpow directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/ibmpow:$PATH

5. Add the install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:

setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 62 of 346

Linux

1. Install Lotus Domino server. You do not need to configure the server.
2. Make sure that the notes.ini file is in the install/lotus/notes/latest/linux directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the install/lotus/notes/latest/linux directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/linux:$PATH

4. Add the install/lotus/notes/latest/linux and the KeyView bin directory to the LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 295.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using theAttach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speaker icon
on the page where they are located.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.

Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed aminimum width and/or height. If an image is smaller than the

XMLExport SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 63 of 346

minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats_e.ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

Extract Embedded OLE Objects

EmbeddedOLE objects can be converted in two ways:

l Using the File Extraction API, the OLE object is first extracted from themain file and saved to disk.
It can then be converted by making a separate conversion call.

l Using the XMLExport API, themain file is converted to XML and theOLE object is converted to a
graphics file that is referenced in the XML file .

The File Extraction API can extract embeddedOLE objects from the following types of documents:

l Lotus Notes (DXL)
l Microsoft Excel
l Microsoft Word
l Microsoft PowerPoint
l Microsoft Outlook
l Microsoft Visio
l Microsoft Project
l OASIS Open Document
l Rich Text Format (RTF)
When an embeddedOLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 46). However, some ZIP files use password protection, in which case youmust use
a different method to enter the required credentials.

Default File Names for Extracted Subfiles

When you do not specify a file name in the call to fpExtractSubFile(), in some cases a default file name
is applied to the extracted subfile.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 64 of 346

Default File Name for Mail Formats

To avoid naming conflicts and problems with long file names, KeyView applies its own names to the
extractedmail items when you do not supply a name in the call to fpExtractSubFile(). A non-mail
attachment retains its original file name and extension.

When the contents of amail store or themessage body of amail message are extracted, the extracted
file names can include the following:

l The first valid eight characters of the original folder name or "Subject" line of themail message. If the
"Subject" line is empty, the characters kvext are used, where ext is the format’s extension. For
example, the characters would be "kvmsg" for MSG and "kvnsf" for NSF.
For notes, the file name is derived from the first 24 characters of the note text. For contact entries,
the file name is derived from the full name of the contact.
The following special characters are considered invalid and are ignored:

any non-printing character with a value less than 0x1F

angle brackets (< >) double quotationmarks (")

asterisk (*) forward slash (/)

back slash (\) pipe (|)

colon (:) questionmark (?)

l The characters _kvn, where n is an integer incremented from 0 for each extracted item.
l One of the following extensions:

Type File Extension

email message .mail

calendar appointment .cal

contact entry .cont

task entry .task

note .note

journal entry .jrnl

distribution list .dist

posting note .post

o If the type cannot be determined for anMSG or PST file, the file is given a .mail extension.
o If the type cannot be determined for a NSF file, the file is given a .tmp extension.
o The format of aMAIL file is plain text by default, but can be set to RTF with the

KVExtractionFlag_GetFormattedBody flag.
For example, anMSGmail message with the subject lineRE: Product roadmap that contains the
Microsoft Excel attachment release_schedule.xls is extracted as:

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 65 of 346

RE produ_kv0.mail
release_schedule.xls

If an extractedmessage contains an embeddedOLE object or any attachment that does not have a
name, the object or attachment is extracted as _kv#.tmp.

Default File Name for Embedded OLE Objects

KeyView can apply a default name to an extracted embeddedOLE object when you do not supply a
name in the call to fpExtractSubFile(). When an embeddedOLE object is extracted, the extracted
file name can include the following:

l The characters subfile_kvn, where n is an integer incremented from 0 for each extracted object.
l If KeyView can determine the embeddedOLE is aMicrosoft Office document, the original extension
is used. If the file type cannot be determined, the file is given a .tmp extension.

For example, aMicrosoft Word document (sales_quarterly.doc) might contain two embeddedOLE
objects: a Microsoft Excel file called west_region.xls, and a bitmap created in theWord document.
The embedded objects are extracted as subfile_kv0.xls and subfile_kv1.tmp.

XML Export SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 66 of 346

Chapter 4: Use the XML Export API

This section describes how to perform some basic tasks by using the XMLExport API.

• Extract Metadata 67
• Extract File Format Information 70
• Convert Character Sets 70
• Map Styles 74
• Use Style Sheets 77
• Display Vector Graphics on UNIX and Linux 78
• Convert Revision Tracking Information 79
• Convert PDF Files 80
• Convert Spreadsheet Files 86
• Convert Presentation Files 89
• Convert XML Files 90
• Show Hidden Data 95
• Exclude JapaneseGuide Text 97
• Obtain Image Info 97

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file’s format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

Themetadata in mail formats (MSG and EML) andmail stores (PST, NSF, andMBX) is extracted
differently than other formats. For information on extractingmetadata from these formats, see Extract
Mail Metadata, on page 48.

NOTE: Note: KeyView can extract metadata from a document only if metadata is defined in the
document, and if the document reader can extract metadata for the file format. The section
Supported Formats, on page 225 lists the file formats for whichmetadata can be extracted.
KeyView does not generatemetadata automatically from the document contents.

Extract Metadata by Using the API

You can extract themetadata at the API level. The API extracts all valid metadata fields that exist in
the file.

KeyView (11.6) Page 67 of 346

Use the C API

To extract metadata by using the C API

1. Declare a pointer to the KVSummaryInfoEx structure. KVSummaryInfoEx, on page 180.
2. Call the fpGetSummaryInfo() function. See fpGetSummaryInfo(), on page 147.

Extract Metadata by Using a Template File

When using a template file, KeyView recognizes two types of metadata: standard and non-standard.
Standardmetadata includes fields, such as Title, Author, and Subject. The standard fields are
enumerated from 1 to 41 in KVSumType in the header file kvtypes.h. Non-standardmetadata includes
any field not listed from 1 to 41 in KVSumType, such as user-defined fields (for example, custom property
fields in Microsoft Word documents), or fields that are unique to a particular file type (for example,
"Artist" or "Genre" fields in MP3 files). Enumerated types 42 and greater are reserved for non-standard
metadata.

To extract metadata by using a template file

1. Insert metadata tokens in amember of the KVXMLTemplate structure in the template file. This
defines the point at which themetadata appears in the XML output.

2. If you are using the $USERSUMMARY or $SUMMARY token, define the szUserSummarymember of the
KVXMLTemplate structure in the template file. This determines themarkup and tokens generated
when thesemetadata tokens are processed.

3. In your application, read the template file and write the data to the KVXMLTemplate structure.
See xmlini, on page 103.

The followingmetadata tokens can be used in the template files:

Token Description

$SUMMARYNN Inserts the data from a specifiedmetadata field. NN is a number from 00 through 42
enumerated in KVSumType in kvtypes.h.

$SUMMARY Inserts the data from valid metadata fields in the range of 0 to 33 using themarkup
provided in pszUserSummary.

$USERSUMMARY Inserts the data from every valid non-standardmetadata field using themarkup
provided in pszUserSummary.

$CONTENT Inserts the content of themetadata field specified by the $NAME token.

$NAME Inserts the name of a themetadata field, such as "Title," "Author," or "Subject."

Depending on themarkup in szUserSummary, the extractedmetadatamight not appear in the browser
when the HTML file is displayed, but might appear in the output file. Most of the KeyView-supplied
template files extract standardmetadata from a document, and include it in the output HTML. However,
they do not display themetadata in a browser.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 68 of 346

Examples

$SUMMARYNN

The followingmarkup displays the contents of the "Title" field at the top of themain XML file:

szMainTop=$SUMMARY01

In KVSumType, 01 is the enumerated value for the "Title" metadata field.

$SUMMARY

The followingmarkup extracts all standard fields, and includes them in the first H1 XML block:

szFirstH1Start=$SUMMARY

szUserSummary=<MetaData name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for standardmetadata and
includes it at the beginning of the first heading level 1 XML block.

The generated XMLmight look like this:

<MetaData name="CodePage" content="1252" \>
<MetaData name="Title" content="My design document" \>
<MetaData name="Subject" content="design specifications" \>
<MetaData name="Author" content="John Doe" \>
<MetaData name="Keywords" content="" \>
<MetaData name="Comments" content="" \>
<MetaData name="Template" content="Normal.dot" \>
<MetaData name="LastAuthor" content="lchapman" \>
<MetaData name="RevNumber" content="6" \>
<MetaData name="EditTime" content="01/01/1601, 0:08" \>
<MetaData name="LastPrinted" content="14/01/2002, 14:06" \>
<MetaData name="Create_DTM" content="27/08/2003, 10:31" \>
<MetaData name="LastSave_DTM" content="29/08/2003, 14:07" \>
<MetaData name="PageCount" content="1" \>
<MetaData name="WordCount" content="4062" \>
<MetaData name="CharCount" content="23159" \>
<MetaData name="AppName" content="Microsoft Word 9.0" \>
<MetaData name="Security" content="0" \>
<MetaData name="Category" content="software" \>
<MetaData name="LineCount" content="192" \>
<MetaData name="ParCount" content="46" \>
<MetaData name="ScaleCrop" content="FALSE" \>
<MetaData name="Manager" content="" \>
<MetaData name="Company" content="Autonomy" \>
<MetaData name="LinksDirty" content="FALSE" \>

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 69 of 346

$USERSUMMARY

The followingmarkup extracts non-standard fields, and includes them at the bottom of themain XML
file:

szMainBottom=$USERSUMMARY

szUserSummary=<MetaData name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for non-standardmetadata
from a document, and includes it at the bottom of themain XML file.

The generated XMLmight look like this:

<MetaData name="Telephone number" content="444-111-2222"
<MetaData name="Recorded date" content="07/03/2003, 23:00"
<MetaData name="Source" content="TRUE"
<MetaData name="my property" content="reserved"

Extract File Format Information

Export can detect a file’s format, and report the information to the API, which in turn reports the
information to the developer’s application. This feature enables you to apply customized conversion
settings based on a file’s format. See File Format Detection, on page 311 for more information on
format detection.

Use the C API

To extract file format information by using the C API

1. Declare a pointer to the KVStreamInfo data structure. KVStreamInfo, on page 177.
2. Call the fpGetStreamInfo() function. fpGetStreamInfo(), on page 147.

Convert Character Sets

Export allows you to control the character set of both the input and the output text. This is
accomplished by either

l setting the source and/or target character set in the API, or
l basing the input/output on the character set of the document (if the document character set is stored
in the document and can be determined by the document reader).

The character sets are enumerated in KVCharSet of kvtypes.h. Not all character sets can be used to
specify the target character set. See Code Character Sets, on page 265 for a list of character sets that
can be used as a target character set.

Determine the Character Set of the Output Text

To determine the output character set of a converted document, Export considers the following:

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 70 of 346

l Whether the reader can extract the character set from the document. This depends on whether the
file format can provide character set information and whether the document actually contains
character set information.
The section Supported Formats, on page 225 indicates the file formats for which character set
information can be extracted. If character set information cannot be determined for your document
type, youmust set the source, the target character set, or both, in the API.

l Whether a source character set is set in the API.

NOTE: Note: To set the source character set, youmust specify a character set and set the
bForceSrcCharSetmember of the KVXMLOptions structure to TRUE.

l Whether a target character set is set in the API.

NOTE: To set the target character set, youmust specify a character set and set the
bForceOutputCharSetmember of the KVXMLOptions structure to TRUE.

Guidelines for Character Set Conversion

The following diagram shows how the output character set is determined when the document character
set can be determined:

Document Character Set Can Be Determined

The following diagram shows how the output character set is determined when the document character
set cannot be determined:

Document Character Set Cannot Be Determined

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 71 of 346

Examples of Character Set Conversion

The examples below demonstrate possible configurations for mapping character sets and the expected
output for each scenario.

Document Character Set Can be Determined

For the example in the following table, the document is an RTF file. The sectionWord Processing
Formats, on page 245 indicates that the document character set can be obtained from this file type. The
document character set is Traditional Chinese (BIG5).

Source
charset set

Target
charset
set

Output charset

KVCS_GB KVCS_UTF8 KVCS_UTF8

Converts GB (Simplified Chinese) to UTF-8. The output character set is
the target character set specified in the API.

KVCS_GB -- KVCS_GB

Converts BIG5 to GB (Simplified Chinese). The output character set is
the source character set specified in the API.

-- KVCS_UTF8 KVCS_UTF8

Converts BIG5 to UTF-8. The output character set is the target character
set specified in the API.

Document character set can be determined

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 72 of 346

Source
charset set

Target
charset
set

Output charset

-- -- KVCS_BIG5

The output character set is the document character set. No conversion.

Document character set can be determined, continued

Document Character Set Cannot be Determined

For the example in the following table, the document is an ASCII file. The sectionWord Processing
Formats, on page 245 indicates that the document character set cannot be obtained from this file type.
The document character set is KVCS_1251.

Source
charset
set

Target
charset
set

Output charset

KVCS_1252 KVCS_
UTF8

KVCS_UTF8

Converts KVCS_1252 to KVCS_UTF8. The output character set is the target
character set specified in the API.

KVCS_1252 KVCS_
UNKNOWN

KVCS_1252

The output character set is the source character set specified in the API
because KVCS_UNKNOWN cannot be used. No conversion.

KVCS_1252 -- KVCS_1252

The output character set is the source character set specified in the API.
No conversion.

-- KVCS_
1252

KVCS_1252

Converts OS code page to KVCS_1252. The output character set is the
target character set specified in the API.

-- -- The output character set is OS code page. No conversion.

Document character set cannot be determined

Set the Character Set During Conversion

You can convert the character set of a file at the time the file is converted.

To specify the source character set for documents from which the document character set
cannot be obtained by the reader

1. Set the eSrcCharSetmember of the KVXMLOptions structure to one of the character sets
enumerated in KVCharSet in kvtypes.h. SeeKVXMLOptions, on page 190.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 73 of 346

2. Set the bForceSrcCharSetmember of the KVXMLOptions structure to TRUE. See KVXMLOptions,
on page 190.

To specify the target character set

1. Set the eOutputCharSetmember of the KVXMLOptions structure to one of the character sets
enumerated in KVCharSet in kvtypes.h. See KVXMLOptions, on page 190.

2. Set the bForceOutputCharSetmember of the KVXMLOptions structure to TRUE. See
KVXMLOptions, on page 190.

Set the Character Set During File Extraction from a Container

You can convert the character set of a container subfile at the time the subfile is extracted from the
container and before it is converted to XML. This is most often used to set the output character set of a
mail message’s body textSee Use the File Extraction API, on page 45.

To specify the source character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->srcCharset argument to any value in the enumerated list in KVCharSet of
kvtypes.h. See fpExtractSubFile(), on page 109.

To specify the target character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->trgCharSet argument to any value in the enumerated list in KVCharSet of
kvtypes.h.

Map Styles

Export canmap paragraph and character styles in any word processing format that contains styles
(such as Microsoft Word, RTF, or Folio Flat File) to user-definedmarkup. With this feature, you can
redact (hide) text in the source document, delete content, or change the overall structure of the output.
You can also embed style sheet styles in the output defined in the XML.

To enable style mapping, youmust indicate which paragraph and/or character styles are to bemapped,
and define the starting and endingmarkup to be included in the XML output.

For example, if the sourceMicrosoft Word document contains the character style "Recipe," and the
content of the style in Microsoft Word is "Brownies," you can specify that the startingmarkup be
<recipe> and the endingmarkup </recipe>. This would result in the output XML containing:
<recipe>Brownies</recipe>.

You can also use style mapping to control the look of the XML output either by using a Cascading Style
Sheet (CSS) or by defining the style directly in the startingmarkup. For example, if aWord document
contains the paragraph style "Colorful", you can havemarkup of the form <p><div class="rainbow">
inserted at the front of the paragraph andmarkup of the form </div></p> inserted at the end of the
paragraph. "Rainbow" is a CSS style defined in an externally provided CSS file referenced at the top of
the XML output.

If youmap styles to elements or attributes that are not defined in the DTD, youmust add the new
elements or attributes to the DTD. Youmust also ensure the new markup is defined in the API, either
by entering themarkup directly in the classes, or by populating the classes using the template files.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 74 of 346

Use the C API

To map styles by using the C API

1. Define the KVStyle structure. See KVStyle , on page 179. The information in this structure
includes:
l themarkup to be added to the beginning and end of a paragraph or character style.
l the name of the word processing style (for example, "Heading 1") to which style mapping
applies. Style names are case sensitive.

l the flag which defines instructions on how to process the content associated with a paragraph
or character style. The flags are defined in kvtypes.h and described in Flags for Defining
Styles, on the next page.

2. Call the fpSetStyleMapping() function. See fpSetStyleMapping(), on page 150.

Use a Template file

To map styles by using a template file

1. Use the KVStyle parameter to specify how many styles are beingmapped. For example, if there
are ninemapped heading levels, add the following:

[KVStyle]
NumStyles=9

2. For each style, theremust be a [StyleX] entry that contains themarkup that appears at the start
and end of the defined style. For example, in the wordstyle.ini sample file, the first heading
level is defined as follows:

[Style1]
StyleName=Colorful
MarkUpStart=<div class="colorful">
MarkUpEnd=<!-- end of colorful --></div>

These values are used in StyleName, MarkUpStart, and MarkUpEnd in the KVStyle structure.
See KVStyle , on page 179.

3. For each style, define the flag that applies. Flags define instructions on how to process the content
associated with a paragraph or character style. They are defined in kvtypes.h and described in
Flags for Defining Styles, on the next page. This value is used in dwflags of the KVStyle
structure. See KVStyle , on page 179. The value associated with each flag is a hexadecimal
number. You can set an option by either entering the converted decimal value or entering the flag’s
text.

Flags=0

A finished entry in a template file could look like this:

[KVStyle]
NumStyles=3

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 75 of 346

[Style1]
StyleName=Colorful
MarkUpStart=<div class="Colorful">
MarkUpEnd=<!-- End of Colorful --></div>
Flags=0

[Style2]
StyleName=RedactPara
MarkUpStart=<div class="RedactPara">
MarkUpEnd=<!-- End of RedactPara --></div>
Flags=2048

[Style3]
StyleName=Code
MarkUpStart=<pre>
MarkUpEnd=<!-- End of Code --></pre>
Flags=KVSTYLE_PRE

1.

Flag Description

KVSTYLE_PRE The KVSTYLE_PRE flag specifies that white space should be
preserved (treated as characters, not word separators), and that
mode changes, such as changes in font size within a paragraph,
should be ignored. This allows the tags <pre> and </pre> to be
used.

KVSTYLE_HEADING[1-6] The flags KVSTYLE_HEADING[1-6] specify that a given style is to
be detected and processed as a heading. Heading flags are
exclusive. This means a style cannot be processed as both h1
and h2.
By default, Export maps the heading style "Heading 1" to
<h1></h1>, and so on, for heading levels 1 through 6. If you use
style mappings, the default mapping is overridden. Therefore,
youmust supply markup for all heading levels. Export uses
heading levels to define the overall structure of the XML output.

KVSTYLE_ORDERLIST The KVSTYLE_ORDERLIST flag specifies that the style should be
tagged as an ordered list. Currently not implemented.

KVSTYLE_UNORDEREDLIST The KVSTYLE_UNORDERLIST flag specifies that the style should
be tagged as an unordered list. Currently not implemented.

KVSTYLE_DELETECONTENT The KVSTYLE_DELETECONTENT flag specifies that the content
associated with the style tag should be deleted from the output.

KVSTYLE_
ONCONSECUTIVEPARAGRAPHS

The KVSTYLE_ONCONSECUTIVEPARAGRAPHS flag specifies that the
style should be applied to consecutive paragraphs of the
document. If this flag is used, and two or more paragraphs
require the same style, the opening and closing tags that

Flags for Defining Styles

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 76 of 346

Flag Description

normally appear between each paragraph are not generated.

KVSTYLE_REDACT The KVSTYLE_REDACT flag is used to hide sensitive or confidential
information in the source document. It specifies that the text
associated with the style tag should be replaced in the XML
output with a selected character. The default replacement
character is "X," but you can specify a different replacement
character by setting cRedact.

Flags for Defining Styles, continued

Use Style Sheets

XML is a content-basedmetalanguage designed to structure data. XML does not include information
about how a document should be displayed in a browser. To view an XML document in a browser,
information about how its displayedmust be provided by style sheets. These are coded by using either
Cascading Style Sheets (CSS) or Extensible Style Sheet Language (XSL).

The style sheet options are enumerated in KVXMLStyleSheetType.

Use Extensible Style Sheet Language (XSL)

You can use XSL style sheets to specify how XML data is displayed in a browser. Existing XSL style
sheets can be used, but unlike CSS, style sheet information cannot be written to an external XSL file
during the conversion.

Both CSS and XSL style sheets can be used to format XML documents. However, XSL can also
transform XML documents. For example, list items can be transformed to display in alphabetical order,
words can be replaced by other words, or empty elements can be replaced by text.

To use an existing XSL style sheet

1. Set eStyleSheetType to XML_XSL to enable XSL style sheet mapping.
2. Set bUseExistingStyleSheet to TRUE to apply a pre-existing style sheet to an XML document.

Pre-existing style sheets are not validated.
3. Specify the path and file name of the style sheet file in pszStyleSheet.

If you set bUseExistingStyleSheet to TRUE and do not specify pszStyleSheet, a default XSL
style sheet that is appropriate for the source document type is used.
The following are default XSL style sheets:
l wp.xsl (for word processing documents)
l ss.xs l (for spreadsheets)
l pg.xsl (for presentation graphics)

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 77 of 346

Use Cascading Style Sheets (CSS)

In addition to XSL style sheets, Export can write style sheet information to an external CSS file. The C
sample program xmlini provides an example of how to use an existing style sheet, and output
formatting data to an external file. See xmlini, on page 103.

To enable CSS mapping and output the resulting formatting data in an external file

1. Set eStyleSheetType to XML_CSS.
2. Use the KVXMLSetStyleSheet() function to set the path and file name of the external style sheet.

KVXMLSetStyleSheet(), on page 163.

To enable CSS mapping and use an existing CSS file

1. Set eStyleSheetType to XML_CSS.
2. Set bUseExistingStyleSheet to TRUE to specify a pre-existing style sheet for an XML document.
3. Specify the path and file name of the style sheet file in pszStyleSheet.

If you set bUseExistingStyleSheet to TRUE and do not specify pszStyleSheet or
SetExternalStyleFile, a CSS style sheet is created.

NOTE: Note: Cascading style sheets can be used only with word processing documents.

Display Vector Graphics on UNIX and Linux

Export offers the option of rasterizing vector graphic content from source documents into a variety of
graphics formats including JPEG, PNG, WMF, and CGM. This solution is implemented withWindows
Graphical Device Interface (GDI) code, and therefore is not portable to other platforms.

The output format of vector graphics is defined by the eOutputVectorGraphicTypemember of the
KVXMLOptions structure, and the options are enumerated in KVXMLGraphicType in kvxml.h.
KVXMLOptions, on page 190 and KVXMLGraphicType, on page 213.

To display vector graphics in presentation, word processing, and spreadsheet files on UNIX and Linux,
Export converts the files directly to JPEG by using a Java program named kvraster.class. This
program uses the Java Abstract Windowing Toolkit (AWT). The AWT requires access to an X Server.

NOTE: If you are using KeyView 10.5.0.0 or Java 1.6, you do not have to set up an X Server;
however, if you are using a version of KeyView lower than 10.4 with a version of Java lower
than 1.6, youmust set up an X Server.

To set up an X Server, do one of the following:

l Run a virtual X Server, such as the Xvfb utility. This utility is included in the X11R6 distribution, or
you can download it from the following site:
http://www.x.org/Downloads.html
For example, to run the Xvfb utility on a 512Mb, Solaris 2.8 platform, follow these steps:

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 78 of 346

http://www.x.org/Downloads.html

1. Start Xvfb at root:

/usr/X11R6/bin/Xvfb :1 -screen 0 1152x900x8 &

2. Set the display environment variable:

setenv DISPLAY:1.0

l Make an X display available to the Java runtime by using the DISPLAY environment variable. No
windows appear on the display. For example, set the DISPLAY environment variable as follows:

setenv DISPLAY computername:0.0

or

setenv DISPLAY ipaddress:0.0

After the X Server is set up, convert the file by following these steps:

1. Add the location of the JRE to the PATH environment variable.
2. Set OutputVectorGraphicType to KVGFX_JPEG in the defunix.ini template file or directly in the

API.
3. Convert the document to XML. The graphics in the document are converted to JPEG and stored in

the output directory.

NOTE:
kvvector.jarmust reside in the output directory.

Convert Revision Tracking Information

The revision tracking feature in applications—such as Microsoft Word’s Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

If revision tracking was enabled when changes weremade to a document, Export can be configured to
convert the deleted text and graphics and include revision tracking information in the XML output. (The
deleted content and revision tracking information is excluded from the XML output by default.)

Content that was added to the document is identified by <ins> tags. Content that was deleted from the
document is identified by tags. The <ins> and tags include cite and datetime attributes
which define the name of the reviewer whomade the change and the date the change was made
respectively. (The date is in ISO-8601 format: YYYY-MM-DDThh:mm:ss.) The tags also include a title
attribute which allows you to display the author and date information in a browser. These elements are
included in the verity.dtd.

The followingmarkup is generated for inserted text:

<ins title="Inserted: JohnD, 2006-04-24Tl4:47:00" cite="mailto:JohnD"
datetime="2006-04-24T14:47:00">This text was added</ins> in a previous version.

The followingmarkup is generated for deleted text:

<del title="Deleted: JohnD, 2006-04-24Tl4:56:00" cite="mailto:JohnD"
datetime="2006-04-24T14:56:00">This text was deleted in a previous version.

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 79 of 346

To convert deleted text and graphics and include revision tracking information

1. Call the fpInit() function. See fpInit(), on page 149.
2. Call the fpXMLConfig() function with the following arguments (See KVXMLConfig(), on page

152):

Argument Parameter

nType KVCFG_INCLREVISIONMARK

nValue TRUE (non-zero)

pData NULL

For example:

(*fpXMLConfig)(pKVXML, KVCFG_INCLREVISIONMARK, TRUE, NULL);

The xmlini sample program demonstrates this function. See xmlini, on page 103.
3. Call the fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page

135 or KVXMLConvertFile(), on page 159.

Convert PDF Files

Export has special configuration options that allow greater control over the conversion of PDF files.
These options can improve the fidelity and accuracy of the XML output.

Use the pdf2sr Reader

In KeyView Export SDK 10.24, the pdf2sr reader was added. It generates a high fidelity raster image
of each page in the PDF and will insert text that has a zero opacity value in the HTML to allow for text
searching in a web browser.

The pdf2sr reader has the following features:

l supports standard and custommetadata (non-XMP)
l supports basic text extraction
l supports password protected PDFs
The pdf2sr reader has the following limitations:

l does not support logical order
l does not support bidi PDFs
l does not extract subfiles
l does not extract bookmarks from PDFs
l does not give estimations on percent embedded fonts match with display glyphs
l Does not support XMP metadata
l Does not support headers or footers
l does not support annotations

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 80 of 346

l does not support content access stream
l does not support tagged content (PDFs)

To specify the pdf2sr reader

1. Open the formats_e.ini file with a text editor.
2. In the [Formats] section, set the following parameter to the pdf2sr reader:

200=pdf2

When you use the pdf2sr reader, the output HTML uses HTML5 syntax that might be disabled when
using Internet Explorer to view the output. It might prompt the user for permission to run. To disable this
behavior, configure Internet Explorer as follows:

1. In Internet Explorer, select Tools from themenu.
2. Select Internet Options.
3. Click theAdvanced tab.
4. In theSecurity area, click Allow active content to run in files on My Computer.

Convert PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can convert a PDF file either by using the file’s internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to produce PDF files containing languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE: The algorithm used to reproduce the reading order of a PDF page is based on common
page layouts. The paragraph flow generated for PDFs with unique or complex page designs
might not emulate the original reading order exactly.

For example, page design elements such as drop caps, callouts that cross column boundaries,
and significant changes in font sizemight disrupt the logical flow of the output text.

Logical Reading Order and Paragraph Direction

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they
appear on the visual page. For example, a three-column article could be output with the headers and the
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 81 of 346

Paragraph
Direction
Option

Description

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
whenmost of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to-
left

Paragraphs flow logically and read from right to left. You should specify this option
whenmost of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF reader determines the paragraph direction for each
PDF page, and then sets the direction accordingly. When a paragraph direction is not
specified, this option is used.

NOTE: Conversions might be slower when logical reading order is enabled. For optimal speed,
use an unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, let us say that a PDF file contains English paragraphs in
three columns that read from left to right, but 80% of the second paragraph contains Hebrew
characters. If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the
output—title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column
to the bottom right of the third column. However, the text direction of the second paragraph is
determined independently of the page by the PDF reader, and is output from right to left.

NOTE: Note: Extraction of metadata is not affected by the paragraph direction setting. The
characters and words in metadata fields are extracted in the correct reading direction regardless
of whether logical reading order is enabled.

Enable Logical Reading Order

You can enable logical reading order by using either the API or the formats_e.ini file. Setting the
direction in the API overrides the setting in the formats_e.ini file.

Use the C API

To enable PDF logical reading order in the C API

1. Call the fpInit() function. See fpInit(), on page 149.
2. Call the fpXMLConfig() function with the following arguments (See KVXMLConfig(), on page

152):

Argument Parameter

nType KVCFG_LOGICALPDF

nValue Set to one of the following flags which are defined in kvtypes.h. (see LPDF_

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 82 of 346

Argument Parameter

DIRECTION, on page 222):
LPDF_LTR—Logical reading order and left-to-right paragraph direction.
LPDF_RTL—Logical reading order and right-to-left paragraph direction.
LPDF_AUTO—Logical reading order. The PDF reader determines the paragraph
direction for each PDF page, and then sets the direction accordingly. When a
paragraph direction is not specified, this option is used.
LPDF_RAW—Unstructured paragraph flow. This is the default behavior. If logical
reading order is enabled, and you want to return to an unstructured paragraph flow,
set this flag.

pData NULL

For example:

(*fpXMLConfig)(pKVXML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);

The cnv2xml sample program demonstrates this function. See cnv2xml, on page 101.
3. Call the fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page

135 or KVXMLConvertFile(), on page 159.

Use the formats_e.ini File

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

To enable logical reading order by using the formats_e.ini file

1. Change the PDF reader entry in the [Formats] section of the formats_e.ini file as follows:

[Formats]

200=lpdf

2. Optionally, add the following section to the end of the formats_e.ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:

Flag Description

LPDF_
LTR

Left-to-right paragraph direction

LPDF_
RTL

Right-to-left paragraph direction

LPDF_
AUTO

The PDF reader determines the paragraph direction for each PDF page, and then sets
the direction accordingly. When a paragraph direction is not specified, this option is
used.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 83 of 346

Flag Description

LPDF_
RAW

Unstructured paragraph flow. This is the default behavior. If logical reading order is
enabled, and you want to return to an unstructured paragraph flow, set this flag.

Control Hyphenation

There are two types of hyphens in a PDF document:

l A soft hyphen is added to a word by a word processor to divide the word across two lines. This is a
discretionary hyphen and is used to ensure proper text flow in justified text.

l A hard hyphen is intentionally added to a word regardless of the word’s position in the text flow. It is
required by the rules of grammar or word usage. For example, compound words, such as "three-
week vacation" and "self-confident" contain hard hyphens.

By default, KeyView maintains the source document’s soft hyphens in the output XML tomore
accurately represent the source document’s layout. However, if you are using Export to generate text
output for an indexing engine or are not concerned with maintaining the document’s layout, Micro Focus
recommends that you remove soft hyphens from the XML output. To remove soft hyphens, youmust
enable the soft hyphen flag.

NOTE: If the soft hyphen flag is enabled, every hyphen at the end of a line is considered a soft
hyphen and removed from the XML output. If a hard hyphen appears at the end of a line, it is
also removed. This might result in an intentionally hyphenated word being extracted without a
hyphen.

To remove soft hyphens from the XML output

1. Call the fpInit() function. See fpInit(), on page 149.
2. Call the KVXMLConfig() function, with the following arguments (see KVXMLConfig(), on page

152):

Argument Parameter

nType KVCFG_DELSOFTHYPHEN

nValue TRUE (non-zero)

pData NULL

For example:

(*fpXMLConfig)(pKVXML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);

3. Call the fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Extract Custom Metadata from PDF Files

To extract custommetadata from your PDF files, add the custommetadata names to the pdfsr.ini
file provided, and copy themodified file to the \bin directory. You can then extract metadata as you
normally would.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 84 of 346

The pdfsr.ini is in the directory samples\pdfini, and has the following structure:

<META>
<TOTAL>total_item_number</TOTAL>,
/metadata_tag_name datatype,
</META>

Parameter Description

total item
number

The total number of metadata tags that are listed.

metadata_
tag_name

Themetadata tag name used in the PDF files.

datatype The data type of themetadata field. Data types are defined in KVSumInfoType. See
KVSumInfoType, on page 218.

For example:

<META>
<TOTAL> 4 </TOTAL>
/part_number INT4
/volume INT4
/purchase_date DATETIME
/customer STRING
</META>

Configure the Size of Exported Images

When you use the pdf2sr reader to export images of the pages in a PDF file, you can configure the
size of the images produced by KeyView.

NOTE:
When a page in a PDF document consists of a single embedded image (such as when the PDF
is a scanned document), the page image is output at the original size of the embedded image
and the following settings have no effect.

To configure the size of images produced by pdf2sr

1. Open the configuration file formats_e.ini.
2. Find the section [pdf2sr], or create the section if it does not exist.
3. Set the configuration parameters XMLXRes and XMLYRes. XMLXRes specifies the width of the output

image and XMLYRes specifies the height.
l To specify an absolute size, in pixels, use positive values. The aspect ratio is always
maintained, so you can set one of the dimensions and set the other parameter to 0. For
example, to output images of PDF pages where the height of each image is 400 pixels, use the
following configuration:

[pdf2sr]
XMLXRes=0
XMLYRes=400

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 85 of 346

If you set both XMLXRes and XMLYRes to positive values, KeyView produces the largest image
that fits within the specified dimensions (the width or height will be as requested, and the other
dimension is smaller than requested if required to preserve the aspect ratio).

l To specify a relative size, set XMLXRes to a negative value and XMLYRes to 0 (a negative value
for XMLYRes is ignored). The aspect ratio is always maintained. For example, to output images
of PDF pages where the size of each image is 150% of the original size, use the following
configuration.

[pdf2sr]
XMLXRes=-150
XMLYRes=0

NOTE:
The default values for XMLXRes and XMLYRes are shown below. These values produce an image
at 113% of the original page size:

[pdf2sr]
XMLXRes=-113
XMLYRes=0

Convert Spreadsheet Files

Export has special configuration options that allow greater control over the conversion of spreadsheet
files.

Convert Hidden Text in Microsoft Excel Files

Normally, Export does not convert hidden text from aMicrosoft Excel spreadsheet because it is
assumed that the text should not be exposed. You can change this default behavior and convert text in
hidden rows, columns, and sheets by adding the following lines to the formats_e.ini file:

[Options]
gethiddeninfo=1

Convert Headers and Footers in Microsoft Excel 2003 Files

Normally, Export does not convert headers and footers fromMicrosoft Excel 2003 spreadsheets. You
can change this default behavior and convert headers and footers by adding the following lines to the
formats_e.ini file:

[Options]
ShowHeaderFooter=1

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 86 of 346

formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats.ini file.

To specify the system date and time format on UNIX systems

l In the formats.ini file, specify the following options:
o SysDateTime. The format to use when a cell is formatted using the system format including both

the date and the time.
o SysLongDate. The format to use when a cell is formatted using the system long date format.
o SysShortDate. The format to use when a cell is formatted using the system short date format.
o SysTime. The format to use when a cell is formatted using the system time format.

NOTE:
These values cannot contain spaces.

For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the following
format:
28/02/2008
The format arguments are the same as those for the strftime() function.
See http://linux.die.net/man/3/strftime for more information.

Convert Very Large Numbers in Spreadsheet Cells to Precision
Numbers

Numbers in Microsoft Excel files can now be exported and written to the output without formatting. By
default, numbers are exported in the format specified by the Excel file (for example, General, Currency,
andDate). Spreadsheets might contain cells that have very large numbers in them. Excel displays the
numbers in a scientific notation that rounds or truncates the numbers.

To export numbers without formatting, add the following options in the following lines to the formats_
e.ini file:

[Options]
ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Export is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245, and the formula from which the value is derived is SUM
(B21:B26).

NOTE: Depending on the complexity of the formulas, enabling formula extractionmight result in
slightly slower performance.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 87 of 346

http://linux.die.net/man/3/strftime

To set the extraction option for formulas, add the following lines to the formats_e.ini file:

[Options]
getformulastring=option

where option is one of the following:

Option Description

0 Extract the formula value only. This is the default.

If formula extraction is enabled, and you want to return to the default, set this
option.

1 Extract the formula only.

2 Extract the formula and the formula value.

NOTE: If a function in a formula is not supported or is invalid, and option 1 or 2 is specified, only
the calculated value is extracted. See SupportedMicrosoft Excel Functions, below for a list of
supported functions.

When formula extraction is enabled, Export can extract Microsoft Excel formulas containing the
functions listed in SupportedMicrosoft Excel Functions, below:

Supported Microsoft Excel Functions

=ABS() =ACOS() =AND() =AREAS()

=ASIN() =ATAN2() =ATAN2() =AVERAGE()

=CELL() =CHAR() =CHOOSE() =CLEAN()

=CODE() =COLUMN() =COLUMNS() =CONCATENATE()

=COS() =COUNT() =COUNTA() =DATE()

=DATEVALUE() =DAVERAGE() =DAY() =DCOUNT()

=DDB() =DMAX() =DMIN() =DOLLAR()

=DSTDEV() =DSUM() =DVAR() =EXACT()

=EXP() =FACT() =FALSE() =FIND()

=FIXED() =FV() =GROWTH() =HLOOKUP()

=HOUR() =ISBLANK() =IF() =INDEX()

=INDIRECT() =INT() =IPMT() =IRR()

=ISERR() =ISERROR() =ISNA() =ISNUMBER()

=ISREF() =ISTEXT() =LEFT() =LEN()

=LINEST() =LN() =LOG() =LOG10()

=LOGEST() =LOOKUP() =LOWER() =MATCH()

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 88 of 346

=MAX() =MDETERM() =MID() =MIN()

=MINUTE() =MINVERSE() =MIRR() =MMULT()

=MOD() =MONTH() =N() =NA()

=NOT() =NOW() =NPER() =NPV()

=OFFSET() =OR() =PI() =PMT()

=PPMT() =PRODUCT() =PROPER() =PV()

=RATE() =REPLACE() =REPT() =RIGHT()

=ROUND() =ROUND() =ROW() =ROWS()

=SEARCH() =SECOND() =SIGN() =SIN()

=SLN() =SQRT() =STDEV() =SUBSTITUTE()

=SUM() =SYD() =T() =TAN()

=TEXT() =TIME() =TIMEVALUE() =TODAY()

=TRANSPOSE() =TREND() =TRIM() =TRUE()

=TYPE() =UPPER() =VALUE() =VAR()

=VLOOKUP() =WEEKDAY() =YEAR()

Set Minimum Image Size

You can set aminimum size limit for the images to export from spreadsheet files. This option can
improve performance for documents that have lots of very small images.

To set theminimum image size, add the following lines to the formats_e.ini file:

[ss_flags]
process_images_with_min_width=N
process_images_with_min_height=M

where N and M are theminimum image dimensions, in pixels. For example:

[ss_flags]
process_images_with_min_width=150
process_images_with_min_height=250

Convert Presentation Files

Export has special configuration options that allow greater control over the conversion of presentation
files.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 89 of 346

Convert Presentation Files to Raster Images

Export allows you to convert each slide in a presentation document to a raster image, providing a high-
fidelity conversion of the document.

The output format depends on the value of bRasterizeFiles in KVXMLOptions. See KVXMLOptions,
on page 190.

Convert Presentation Files to a Logical Reading Order

Some presentation files do not store the logical structure of the original document—the correct reading
order, for example, and the presence andmeaning of significant elements such as headers, footers,
columns, tables, and so on.

In general, when you convert a presentation slide to a raster image, the output file retains the logical
reading order because it uses the correct coordinates for each element in the output. However, if you do
not use the bRasterizeFiles option in KVXMLOptions to produce a raster image, youmight find that
the export process generates output for some files that does not match the logical reading order.

When you do not want to rasterize your presentation files, you can use the formats_e.ini file to retain
the logical reading order in your files.

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

To enable logical reading order by using the formats_e.ini file

l In the formats_e.ini file, find the [Options] section, and set LogicalOrder to 1.
For example:

[Options]
LogicalOrder=1

Convert XML Files

Export enables you to extract all or selected content from source XML files (see Configure Element
Extraction for XMLDocuments, below). It detects the following XML formats:

l generic XML
l Microsoft Office 2003 XML (Word, Excel, and Visio)
l StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
See File Format Detection, on page 311 for more information on format detection.

Configure Element Extraction for XML Documents

When you convert XML files, you can specify which elements and attributes are extracted according to
the file’s format ID or root element. This is useful when you want to extract only relevant text elements,
such as abstracts from reports, or a list of authors from an anthology.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 90 of 346

A root element is an element in which all other elements are contained. In the XML sample below, book
is the root element:

<book>
 <title>XML Introduction</title>
 <product id="33-657" status="draft">XML Tutorial</product>
 <chapter>Introduction to XML
 <para>What is HTML</para>
 <para>What is XML</para>
 </chapter>
 <chapter>XML Syntax
 <para>Elements must have a closing tag</para>
 <para>Elements must be properly nested</para>
 </chapter>
</book>

For example, you could specify that when converting files with the root element book, the element
title is extracted as metadata, and only product elements with a status attribute value of draft are
extracted.

When you extract an element, the child elements within the element are also extracted. For example, if
you extract the element chapter from the sample above, the child element para is also extracted.

Export defines default element extraction settings for the following XML formats:

l generic XML
l Microsoft Office 2003 XML (Word, Excel, and Visio)
l StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
These settings are defined internally and are used when converting these file formats; however, you
canmodify their values.

In addition to the default extraction settings, you can also add custom settings for your own XML
document types. If you do not define custom settings for your own XML document types, the settings
for the generic XML are used.

Modify Element Extraction Settings

You canmodify configuration settings for XML documents through either the API or the kvxconfig.ini
file.

NOTE: You can only use customized element extraction settings when converting files in
process. When converting out of process, the default extraction settings are used.

Use the C API

You can use the C API tomodify the settings for the standard XML document types or add
configuration settings for your own XML document types.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 91 of 346

To modify settings

1. Call the fpInit() function. See fpInit(), on page 149.
2. Define the KVXConfigInfo structure. See KVXConfigInfo, on page 181.
3. Call the KVXMLConfig() function with the following arguments (see KVXMLConfig(), on page

152):

Argument Parameter

nType KVCFG_SETXMLCONFIGINFO

nValue 0

pData address of the KVXConfigInfo structure

For example:

KVXConfigInfo xinfo; /* populate xinfo */
(*fpXMLConfig)(pKVXML, KVCFG_SETXMLCONFIGINFO, 0, &xinfo);

4. Repeat steps 2 and 3 until the settings for all the XML document types you want to customize are
defined.

5. Call the function fpConvertStream() or KVXMLConvertFile(). See fpConvertStream(), on page
135 or KVXMLConvertFile(), on page 159.

Use an Initialization File

You can use the initialization file to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

To modify settings

1. Modify the kvxconfig.ini file.
2. Use the template file when processing the XML file.

The sample program (xmlini) demonstrates how to use a template file during the conversion
process. See xmlini, on page 103.

Modify Element Extraction Settings in the kvxconfig.ini File

The kvxconfig.ini file contains default element extraction settings for supported XML formats. The
file is in the directory install\OS\bin, where install is the path name of the Export installation
directory and OS is the name of the operating system. For example, the following entry defines
extraction settings for theMicrosoft Visio 2003 XML format:

[config3]
eKVFormat=MS_Visio_XML_Fmt
szRoot=
szInMetaElement=DocumentProperties
szExMetaElement=PreviewPicture
szInContentElement=Text
szExContentElement=
szInAttribute=

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 92 of 346

The following options are available.

Configuration
Option

Description

eKVFormat The format ID as detected by the KeyView detectionmodule. This
determines the file type to which these extraction settings apply. See File
Format Detection, on page 311 for more information on format ID values.

If you are adding configuration settings for a custom XML document type,
this is not defined.

szRoot The file’s root element. When the format ID is not defined, the root element
is used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an
Element’s Namespace and Attribute, on the next page.

szInMetaElement The elements extracted from the file as metadata. All other elements are
extracted as text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

szExMetaElement The child elements in the includedmetadata elements that are not extracted
from the file as metadata. For example, the default extraction settings for
the Visio XML format extract the DocumentProperties element as
metadata. This element includes child elements such as Title, Subject,
Author, Description, and so on. However, the child element
PreviewPicture is defined in szExMetaElement because it is binary data
and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice
files. All metadata is extracted regardless of this setting.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

szInContentElement The elements extracted from the file as content text. Enter an asterisk (*) to
extract all elements including child elements.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

szExContentElement The child elements in the included content elements that are not extracted
from the file as content text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element’s Namespace and Attribute, on the next page.

szInAttribute The attribute values extracted from the file. If attributes are not defined here,

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 93 of 346

Configuration
Option

Description

attribute values are not extracted.

Enter the namespace (if used), element name, and attribute name in the
following format:

namespace:elementname@attributename

For example:

keyview:division@name

Multiple entries must be separated by commas.

Specify an Element’s Namespace and Attribute

To further qualify an element, you can specify that the element must exist in a certain namespace,
must contain a specific attribute, or both. To define the namespace and attribute of an element, enter
the following:

ns_prefix:elemname@attribname=attribvalue

Youmust enclose attribute values that contain space in quotationmarks.

For example, the following entry:

bg:language@id=xml

extracts a language element in the namespace bg that contains the attribute name id with the value of
"xml". This entry extracts the following element from an XML file:

<bg:language id="xml">XML is a simple, flexible text format derived from
SGML</bg:language>

but does not extract:

<bg:language id="sgml">SGML is a system for defining markup
languages.</bg:language>

or

<adv:language id="xml">The namespace should be a Uniform Resource Identifier
(URI).</adv:language>

Add Configuration Settings for Custom XML Document Types

You can define element extraction settings for custom XML document types by adding the settings to
the kvxconfig.ini file. For example, for files containing the root element keyviewxml, you could add
the following section to the end of the initialization file:

[config101]
eKVFormat=
szRoot=keyviewxml
szInMetaElement=dc:title,dc:meta@title,dc:meta@name=title

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 94 of 346

szExMetaElement=

szInContentElement=keyview:division@name=dev,keyview:division@name=export,p@style="
Heading 1"
szExContentElement=
szInAttribute=keyview:division@name

The custom extraction settings must be preceded by a section heading named [configN], where N is
an integer that starts at 100 and increases by 1 for each additional file type (for example, [config100],
[config101], [config102], and so on). The default extraction settings for the supported XML formats
are numbered config0 to config99. Currently only 0 to 6 are used.

Because a custom XML document type is not recognized by the KeyView detectionmodule, the format
ID is not defined. The file type is identified by the file’s root element only.

If a custom XML document type is not defined in the kvxconfig.ini file or by the KVXMLConfig()
function, the default extraction settings for a generic XML document are used.

Show Hidden Data

Microsoft Word, Excel, and PowerPoint documents contain hidden information, some of which is
shown by default when exported, and some of which is hidden by default. There are several options
that allow you to determine which types of hidden data are shown.

Hidden Data in Microsoft Documents

You can show several types of hidden data fromMicrosoft Word, Excel, and PowerPoint documents,
each of which has a corresponding flag in the KVXMLConfig(), on page 152 function, which you can
toggle to determine whether the hidden data is shown or not. Hidden data settings, below lists each
data type, its default behavior, and its corresponding configuration API flag.

Hidden Data Type Default Behavior Configuration API Flag

Microsoft Word

Comments1 Shown2 KVCFG_WP_NOCOMMENTS

Hidden text Hidden KVCFG_WP_SHOWHIDDENTEXT

Date field codes Calculated date KVCFG_WP_SHOWDATEFIELDCODE

File name field codes Document file name KVCFG_WP_SHOWFILENAMEFIELDCODE

Hidden data settings

1Word comment settings can also be toggled with a configuration parameter in the formats_e.ini file.
See ToggleWord Comment Settings in the formats_e.ini File, on the next page.
2Shown by default in Microsoft Word 97 to 2003 documents.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 95 of 346

Hidden Data Type Default Behavior Configuration API Flag

Microsoft Excel

Hidden information Hidden KVCFG_SS_SHOWHIDDENINFOR

Comments Hidden KVCFG_SS_SHOWCOMMENTS

Formulas Calculated value KVCFG_SS_SHOWFORMULA

Microsoft PowerPoint

Hidden slides Shown KVCFG_PG_HIDEHIDDENSLIDE

Comments Shown1 KVCFG_PG_HIDECOMMENT

Comments slide Hidden KVCFG_PG_SHOWCOMMENTSSLIDE2

Slide notes3 Hidden KVCFG_PG_SHOWSLIDENOTES

Hidden data settings, continued

To toggle the display of any type of hidden data

l Use the configuration API and set the third parameter to TRUE or FALSE:

(*fpHTMLConfig)(pKVHTML, KVCFG_WP_NOCOMMENTS, TRUE, NULL)

In this example, comments will not be exported fromWord documents.

NOTE: The third parameter affects the default behavior. To change the default behavior, set
it to TRUE.

For more information, see KVXMLConfig(), on page 152.

Toggle Word Comment Settings in the formats_e.ini File

Microsoft Word 97 to 2003 comment settings can also be controlled through a parameter in the
formats_e.ini file.

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

To toggle comment output in formats_e.ini

1. Open the formats_e.ini file in a text editor.
2. Under [Options], add the WP_NOCOMMENTS parameter and set it to 0 to show comments, or 1 to

hide comments. For example:

1Shown by default in Microsoft PowerPoint 97 to 2000 documents.
2This setting affects PowerPoint 2003 and 2007 only.
3PowerPoint slide note settings can also be toggled with a configuration parameter in the formats_
e.ini file. See Toggle PowerPoint Slide Note Settings in the formats_e.ini File, on the next page.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 96 of 346

[Options]
WP_NOCOMMENTS=1

NOTE: The KVCFG_WP_NOCOMMENTS configuration API flag overrides the setting in
formats_e.ini.

Toggle PowerPoint Slide Note Settings in the formats_e.ini File

Microsoft PowerPoint slide note settings can also be controlled through a parameter in the formats_
e.ini file.

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

To toggle slide note output in formats_e.ini

1. Open the formats_e.ini file in a text editor.
2. Under [Options], add the ShowSlideNotes parameter and set it to 1 to show slide notes, or 0 to

hide slide notes. For example:

[Options]
ShowSlideNotes=1

NOTE: The KVCFG_PG_SHOWSLIDENOTES configuration API flag overrides the setting in
formats_e.ini.

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text whenMicrosoft Excel (.xlsx) files are
processed.

To prevent output of Japanese phonetic guide text

l Set NoPhoneticGuides to TRUE in the formats_e.ini file:

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

Obtain Image Info

When exporting from presentation graphics files, and when using the pdf2sr reader to export from PDF
files, KeyView can obtain information about the number of images that it would create during export,
without having to run a full export. This option uses function pointers that are part of the
KVXMLInterfaceEx, on page 188 structure.

XML Export SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 97 of 346

To extract image information

1. Initialize an image information session by calling the fpGetOutputImageInfos() function. You
must pass the return value for this function to the other image functions.

2. Call the fpGetOutputImageCount() function to get the number of images identified.
3. (Optional) For each image, call fpGetOutputImageInfo() to obtain the image dimensions.
4. Free the internal resources associated with the image information session by calling

fpFreeImageInfos().

Example

int numberOfImages = 0;
void* pImageInfoContext = (*KVXMLInt.fpGetOutputImageInfos)(pContext, &inputStream,
&options);
if (pImageInfoContext == NULL)
{

// Error handling code would go here.
// fpGetKvErrorCode() could be called here to investigate.

}
(*KVXMLInt.fpGetOutputImageCount)(pImageInfoContext, &numberOfImages);
for (int i = 0; i < numberOfImages; i++)
{

KVXMLImageInfo imageInfo;
KVStructInit(&imageInfo);
if ((*KVXMLInt.fpGetOutputImageInfo)(pImageInfoContext, i, &imageInfo))
{

// imageInfo.nWidth and imageInfo.nHeight
// contain the dimensions at this point.

}
}
(*KVXMLInt.fpFreeImageInfos)(pContext, pImageInfoContext);
pImageInfoContext = NULL;

XMLExport SDK C ProgrammingGuide
Chapter 4: Use the XMLExport API

KeyView (11.6) Page 98 of 346

Chapter 5: Sample Programs

This section describes the sample programs provided with XML Export.

• Introduction 99
• tstxtract 100
• cnv2xml 101
• cnv2xmloop 102
• metadata 103
• xmlindex 103
• xmlini 103
• xmlcallback 105
• xmlonefile 105
• xmlmulti 105
• Export Demo 106

Introduction

The sample programs demonstrate how to use the C and Visual Basic implementations of XML Export.

The sample code is intended to provide a starting point for your own applications or to be used for
reference purposes.

The source code andmakefile for each program are in the directory:

install\xmlexport\programs\program_name

where install is the path name of the Export installation directory, and program_name is the name of
the sample program.

C Sample Programs

The C sample programs demonstrate how to use the C implementation of XML Export. The following
sample programs are provided:

l tstxtract, on the next page
l cnv2xml, on page 101
l cnv2xmloop, on page 102
l metadata, on page 103
l xmlindex, on page 103
l xmlini, on page 103
l xmlcallback, on page 105

KeyView (11.6) Page 99 of 346

l xmlonefile, on page 105
l xmlmulti, on page 105
You can use the tstxtract, cnv2xml, cnv2xmloop, and xmlini sample programs onWindows and
UNIX. All other sample programs are forWindows only.

NOTE: The sample programs do not parse white space in file names. If your file names contain
spaces, use quotationmarks around the entire path name. Inserting quotationmarks around the
file name only does not work.

To compile the sample programs, use themakefiles provided in the sample programs’ directory. Ensure
the XMLExport include directory is specified in the include path of the project. After the executables
are compiled and built, youmust place them in the same directory as the XMLExport libraries.

Compile the Visual Basic Sample Program

To compile Export Demo, use the Visual Studio project file (demo_vb.vbp) in the directory
install\xmlexport\programs\ExportDemo, where install is the path name of the Export
installation directory.

tstxtract

The tstxtract sample program demonstrates the File Extraction API. It opens a file, extracts subfiles
from the file, and repeats the extraction process until all subfiles are extracted. It also demonstrates
how to extract the default set of metadata and pass integer or string names to extract specific
metadata. After the files are extracted, you can convert the files by using one of the conversion sample
programs.

The source code for the tstxtract sample program is the same for the Filter and Export SDKs. A flag
in themakefile specifies whether the program is compiled for Filter, HTML Export, or XML Export.

To run tstxtract, type the following at the command line:

tstxtract [options] input_file output_directory bin_directory

where options is one or more of the following.

Option Description

-c charset Specify the target character set, for example KVCS_SJIS. See Coded Character
Sets, on page 265 for a full list of supported character sets.

-cf
keyfile1,
keyfile2,...

Specify one or more credential files (private keys) to use to decrypt encrypted
.EML, .MBX, .PST, or .MSG files.

-l logfile Specify the path and file name of the log file in whichmetadata is written.

-lm Retrievemetadata and write the data to the log file.

-lms
metaname1,

Retrievemetadata with stringmetanames and write the data to the log file for
.MSG, .EML, .MBX, and .NSF files.

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 100 of 346

Option Description

metaname2
,...

-lmi
metaint1,
metaint2,...

Retrievemetadata with integer (hexadecimal) metanames and write the data to the
log file for .PST files.

-lma Retrieve all metadata from an .NSF file and write the data to the log file.

-r Recursively extract second-level subfiles to the specified output directory. For
example, if a .ZIP file contains aMicrosoft Word file and theWord file contains an
embeddedMicrosoft Excel file, set the -r option to extract both theWord and Excel
files.

If this option is not set, only first-level subfiles are extracted. For the example
above, only theWord file would be extracted.

-msg Extract mail messages in a .PST file as an .MSG file, including all of its
attachments. If this flag is not set, themail message is extracted as text. This
option applies to PST files onWindows only.

-f Extract the formatted version of themessage body (HTML or RTF) frommail files
when possible. If neither an HTML nor RTF version of themessage body exists in
themail file, then it is extracted as plain text. If this flag is not set, themessage
body is extracted as plain text when possible.

-t Preserve the timestamp of embedded files when possible.

-h Extract hidden text.

input_file is the full path and file name of the source document.

output_directory is the directory to which the files will be extracted.

bin_directory is the path to the Export bin directory. This is required if you do not run the program
from the install\Export SDK\bin directory.

cnv2xml

The cnv2xml sample program creates a single, formatted XML output file. It is called by the Export
Demo sample program, but can also be used on its own. This program runs on bothWindows and
UNIX platforms.

To run cnv2xml, type the following at the command line:

cnv2xml [options] inputfile outputfile

where:

options is one or more of the options listed in , on the next page.

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 101 of 346

The following options are available.

Option Description

-c KVCFG_
SUPPRESSIMAGES

This option specifies that XML output includes verbosemarkup, but no
images. If this option is not set, embedded images in a document are
regenerated as separate files and stored in the output directory.
KVXMLConfig(), on page 152.

-c KVCFG_
ENABLEPOSITIONINFO

This option specifies that a position element is included in themarkup for
PDF documents. The position element defines the absolute position of the
text relative to the bottom left corner of the page, and includes additional
information such as font and color. KVXMLConfig(), on page 152.

-c KVCFG_
DELSOFTHYPHEN

This option specifies that soft hyphens in PDF files are deleted from the
converted output. See Control Hyphenation, on page 84.

-pdfltr This option specifies that PDF files are output in a logical reading order, and
the paragraph direction is left to right. See Convert PDF Files to a Logical
Reading Order, on page 81.

-pdfrtl This option specifies that PDF files are output in a logical reading order, and
the paragraph direction is right to left. See Convert PDF Files to a Logical
Reading Order, on page 81.

-pdfauto This option specifies that PDF files are output in a logical reading order. The
PDF reader determines the paragraph direction (left-to-right or right-to-left)
for each PDF page, and then sets the direction accordingly. See Convert
PDF Files to a Logical Reading Order, on page 81.

-pdfraw This option specifies that PDF files are output in an unstructured paragraph
flow. This is the default. Set this flag if logical reading order is enabled, and
you want to return to an unstructured paragraph flow. See Convert PDF
Files to a Logical Reading Order, on page 81.

cnv2xmloop

The cnv2xmloop sample program creates a single, formatted XML output file, but unlike cnv2xml, it
converts the file out of process. See Convert Files Out of Process, on page 26 for more information on
out of process conversions. This program runs on bothWindows and UNIX platforms.

To run cnv2xmloop, type the following at the command line:

cnv2xmloop [options] inputfile outputfile

where:

options is one or more of the options listed in , on the next page.

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the XML output file.

The following options are available.

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 102 of 346

Option Description

-c KVCFG_
SUPPRESSIMAGES

This option specifies that XML output includes verbosemarkup, but no
images. If you do not set this option, embedded images in a document are
regenerated as separate files and stored in the output directory. See
KVXMLConfig(), on page 152.

-c KVCFG_
ENABLEPOSITIONINFO

This option specifies that a position element is included in themarkup for
PDF documents. The position element defines the absolute position of the
text relative to the bottom left corner of the page, and includes additional
information such as font and color. See KVXMLConfig(), on page 152.

metadata

The metadata sample program converts a source document into a single XML file that contains only
the document metadata (Author, Subject, Title, and so on). This program runs on bothWindows and
UNIX platforms.

To run metadata, type the following at the command line:

metadata inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlindex

The xmlindex sample program produces stripped-down XML output suitable for use with indexing
engines. It converts a source document into a single, largely unformatted XML file. This program runs
on bothWindows and UNIX platforms.

To run index, type the following at the command line:

xmlindex inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlini

The xmlini sample program is used in conjunction with template files to produce well-formed XML
documents. For more information, see Set Conversion Options by Using the Template Files, on page
34. Sample template files are in the programs\ini directory. This program runs on bothWindows and
UNIX platforms.

To run xmlini, type the following at the command line:

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 103 of 346

xmlini [options] inifile inputfile outputfile

where:

options is one or more of the options listed in , below.

inifile is the full path and file name of a template file.

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

The following options are available.

Option Description

-s
stylesheetfile

Reads style sheet information from an existing style sheet file, or writes the
information to an external CSS file. See Use Style Sheets with xmlini, below.

-x xmlconfig_
filename

Converts an XML file by using customized element extraction settings defined in
the kvxconfig.ini file. If you do not enter the full path to the template file, the
program looks for the file in the current working directory (install\OS\bin,
where install is the path name of the Export installation directory and OS is the
name of the operating system). See Convert XML Files, on page 90.

-rm If you set this flag, text and graphics that were deleted from a document with a
revision tracking feature enabled are converted, and revision tracking information
is included in the XML output. See Convert Revision Tracking Information, on
page 79.

-oop Runs the conversion out of process.

-fl Prints a list of converted files in the console.

If the XML file is output to a directory other than the directory programs\tempout, youmust update the
XMLmarkup so that, the browser can find images used by the template (such as backgrounds or
corporate logos) and the style sheet. Themarkup contains relative references to the image files
(..\images).

Use Style Sheets with xmlini

The xmlini sample program provides an option that allows XMLExport to read Cascading Style Sheet
(CSS) or Extensible Style Sheet Language (XSL) style sheet information from an existing style sheet
file, or to write CSS information to an external CSS file. If the CSS does not exist, it is created. The
style sheet name is referenced in the output XML, for example:

<?xml-stylesheet href="c:\mystyle.css" type="text/css"?>

This type of conversionmakes the XML output document significantly smaller and enables you to use
the same style sheet for many conversions.

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 104 of 346

To apply an existing style sheet to a conversion by using the xmlini sample program

In the template file, set eStyleSheetType to either XML_CSS or XML_XSL. This specifies that the
formatting data is stored in either a CSS or XSL style sheet.

At the command prompt, type:

xmlini -s stylesheetname inifile inputfile outputfile

where stylesheetname is the path and file name of the CSS or XSL file.

xmlcallback

The xmlcallback sample program demonstrates how you can control the conversion to generate
specialized output while it is in progress. The program employs developer-defined callbacks and
memory management functions during conversion. This program runs onWindows platforms only.

To run xmlcallback, type the following at the command line:

xmlcallback inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlonefile

The xmlonefile sample program converts a source document into a single, formatted XML file. This
program runs onWindows platforms only.

To run xmlonefile, type the following at the command line:

xmlonefile inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

xmlmulti

The xmlmulti sample program creates multiple XML files from a source document. Themain file
contains the table of contents. Each H1 heading is contained within its own file. Themain file contains
hyperlinks to each H1 block; each H1 file contains navigation to the table of contents, as well as to the
previous and next blocks. This program runs onWindows platforms only.

To run multi, type the following at the command line:

xmlmulti inputfile outputfile

where:

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 105 of 346

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first XML output file.

Export Demo

Export Demo is a Visual Basic program that provides an easy-to-use graphical user interface to the
Export technology. It allows you to select files, convert them to XML, and view the result in a browser
object. The output options that control the look of the output files are predefined in Export Demo and
cannot be changed in the user interface.

Export Demo accesses the Export functionality by returning to the operating system and running a C
program named cnv2xml. To adapt the sample program to your needs, modify the GUI by using Visual
Basic, andmodify the cnv2xml program by using C. See cnv2xml, on page 101.

To launch Export Demo, select Export Demo from Start |Programs |Autonomy |Export SDK |XML
Export.

The source code for the program is in the directory install\xmlexport\programs\ExportDemo,
where install is the path name of the Export installation directory. Export Demo is forWindows only.

See Use the Export Demo Program, on page 36 for more information.

XML Export SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 106 of 346

KeyView (11.6)

Page 107 of 346

Part III: C API Reference

This section provides detailed reference information for the C-language implementation of the File Extraction
and Export APIs.

l File Extraction API Functions
l File Extraction API Structures
l XMLExport API Functions
l XMLExport API Callback Functions
l XMLExport API Structures
l Enumerated Types

Chapter 6: File Extraction API Functions

This section describes the functions in the File Extraction API. The File Extraction functions open a
container file, and extract the container’s subfiles so that the subfiles are exposed and available for
conversion. Subfiles can be files within a Zip archive, messages in amail store, attachments in amail
message, or OLE objects embedded in a compound document.

Each function appears as a function prototype followed by a description of its arguments, its return
value, and a discussion of its use.

• KVGetExtractInterface() 108
• fpCloseFile() 109
• fpExtractSubFile() 109
• fpFreeStruct() 111
• fpGetMainFileInfo() 112
• fpGetSubFileInfo() 113
• fpGetSubFileMetaData() 114
• fpOpenFile() 116

KVGetExtractInterface()

This function is the entry point to obtain the file extraction functions. It supplies pointers to the file
extraction functions, and in the case of out-of-process mode starts the kvoop.exe server and initializes
out-of-process extraction services. When KVGetExtractInterface() is called, it assigns the function
pointers in the structure KVExtractInterface to the functions described in this section.

Syntax

int pascal KVGetExtractInterface (
 void *pContext,
 KVExtractInterface pIextract);

Arguments

pContext A pointer returned from fpInit().

pIextract A pointer to the KVExtractInterface structure, which contains function pointers that
KVGetExtractInterface() assigns to all other file extraction functions.

Before you initialize the KVExtractInterface structure, use themacro KVStructInit
to initialize the KVStructHead structure.

KeyView (11.6) Page 108 of 346

Returns

l If the call is successful, the return value is KVERR_Success.
l If the call is not successful, the return value is an error code.

Example

fpKVGetExtractInterface =
(int (pascal *)(void *, KVExtractInterface))myGetProcAddress(hKVExport, (char*)
"KVGetExtractInterface");
/*Initialize file extraction interface structure using KVStructInit*/
KVStructInit(&extractInterface);
/* Retrieve file extraction interface */
error = (*fpKVGetExtractInterface)(pExport,&extractInterface))

fpCloseFile()

This function frees thememory allocated by fpOpenFile() and closes the file.

Syntax

int (pascal *fpCloseFile) (void *pFile);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

Returns

l If the file is closed, the return value is KVERR_Success.
l If the file is not closed, the return value is an error code.

Example

extractInterface->fpCloseFile(pFile);
pFile = NULL;

fpExtractSubFile()

This function extracts a subfile from a container file to a user-defined path or output stream. This call
returns file format information when file is extracted to a path.

XML Export SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 109 of 346

Syntax

int (pascal *fpExtractSubFile) (
void *pFile,
KVExtractSubFileArg extractArg,

 KVSubFileExtractInfo *extractInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

extractArg A pointer to the structure KVExtractSubFileArg, which defines the subfile to be
extracted.

Before you initialize the KVExtractSubFileArg structure, use themacro
KVStructInit to initialize the KVStructHead structure.

extractInfo A pointer to the structure KVSubFileExtractInfo, which defines information about
the extracted subfile.

Returns

l If the subfile is extracted from the container file, the return value is KVERR_Success.
l If the subfile is not extracted from the container file, the return value is an error code.

Discussion

l After the file is extracted, call fpFreeStruct() to free thememory allocated by this function.
l If the subfile is embedded in themain file as a link and is stored externally, extractInfo->infoFlag
is set to KVSubFileExtractInfoFlag_External.
For example, the subfile might be an object that was embedded in aWord document by using "Link
to File," or an attachment that is referenced in anMBX message. This type of subfile cannot be
extracted. Youmust write code to access the subfile based on the path in themember
extractInfo->filePath or extractInfo->fileName. See KVSubFileExtractInfo, on page 128.

Example

KVSubFileExtractInfo extractInfo = NULL;

KVStructInit(&extractArg);

extractArg.index = index;
extractArg.extractionFlag = KVExtractionFlag_CreateDir | KVExtractionFlag_
Overwrite;
extractArg.filePath = subFileInfo->subFileName;

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 110 of 346

/*Extract this subfile*/
error=extractInterface->fpExtractSubFile(pFile,&extractArg,&extractInfo);
if (error)
{

extractInterface->fpFreeStruct(pFile,extractInfo);
subFileInfo = NULL;

}

fpFreeStruct()

This function frees thememory allocated by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetadata(), and fpExtractSubFile().

Syntax

int (pascal *fpFreeStruct) (
 void *pFile,
 void *obj);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

obj A pointer to the result object returned by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetaData, or fpExtractSubFile().

Returns

l If the allocatedmemory is freed, the return value is KVERR_Success.
l Otherwise, the return value is an error code.

Example

The example below frees thememory allocated by fpGetSubFileInfo():

if (subFileInfo)
{

 extractInterface->fpFreeStruct(pFile,subFileInfo);
 subFileInfo = NULL;
 }

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 111 of 346

fpGetMainFileInfo()

This function determines whether a file is a container file—that is, whether it contains subfiles—and
should be extracted further.

Syntax

int (pascal *fpGetMainFileInfo) (
 void *pFile,
 KVMainFileInfo *fileInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

fileInfo A pointer to the structure KVMainFileInfo. This structure contains information about the
file.

Returns

l If the file information is retrieved, the return value is KVERR_Success.
l If the file information is not retrieved, the return value is an error code.

Discussion

After the file information is retrieved, call fpFreeStruct() to free thememory allocated by this function.

If the file is a container (fileInfo->numSubFiles is non-zero), call fpGetSubFileInfo() and
fpExtractSubFile() for each subfile.

If the file is not a container (fileInfo->numSubFiles is 0) and contains text (fileInfo->infoFlag is
set to KVMainFileInfoFlag_HasContent), pass the file directly to the conversion functions.

Example

KVMainFileInfo fileInfo = NULL;
if((error=extractInterface->fpGetMainFileInfo(pFile,&fileInfo)))
{
 /* Free result object allocated in fileInfo */
 extractInterface->fpFreeStruct(pFile,fileInfo);
 fileInfo = NULL;
}

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 112 of 346

fpGetSubFileInfo()

This function gets information about a subfile in a container file.

Syntax

int (pascal *fpGetSubFileInfo) (
 void *pFile,
 int index,
 KVSubFileInfo *subFileInfo);

Arguments

pFile The identifier of themain file. This is a file handle returned from fpOpenFile().

index The index number of the subfile for which to retrieve information.

subFileInfo A pointer to the KVSubFileInfo structure, which defines information about the subfile.

Returns

l If the file information is retrieved, the return value is KVERR_Success.
l If the file information is not retrieved, the return value is an error code.

Discussion

l After the subfile information is retrieved, call fpFreeStruct() to free thememory allocated by this
function.

l If the root node is not enabled, the first subfile is index 0. If the root node is enabled, the first subfile
is index 1. The root node is required to recreate a file’s hierarchy. See Create a Root Node, on page
47.

l Themembers subFileInfo->parentIndex and subFileInfo->childArray enable you to recreate
a file’s hierarchy. Because childArray retrieves only the first-level children in the subfile, youmust
call fpGetSubFileInfo() repeatedly until information for the leaf-node children is extracted. See
Recreate a File’s Hierarchy, on page 47.

l If the subfile is embedded in themain file as a link and is stored externally, subFileInfo->infoFlag
is set to KVSubFileInfoFlag_External. For example, the subfile might be an object that was
embedded in aWord document by using "Link to File," or an attachment that is referenced in anMBX
message. This type of subfile cannot be extracted. Youmust write code to access the subfile based
on the path in themember subFileInfo->subFileName. See KVSubFileInfo, on page 129.

l The KVSubFileInfoFlag_External flag is not set for an OLE object that is embedded as a link in a
Microsoft PowerPoint file. KeyView can detect linked objects in aMicrosoft PowerPoint file only
when the object is extracted. See fpExtractSubFile(), on page 109.

XML Export SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 113 of 346

Example

KVSubFileInfo subFileInfo = NULL;
for (index = 0; index < fileInfo->numSubFiles; index++)
{
 error=extractInterface->fpGetSubFileInfo(pFile,index,&subFileInfo);
 if (error)

{
 extractInterface->fpFreeStruct(pFile,subFileInfo);
 subFileInfo = NULL;
 }

fpGetSubFileMetaData()

This function extracts metadata frommail stores, mail messages, and non-mail items in an NSF file.
See Extract Mail Metadata, on page 48.

Syntax

int (pascal *fpGetSubFileMetaData) (
 void *pFile,
 KVGetSubFileMetaArg metaArg,

 KVSubFileMetaData *metaData);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

metaArg A pointer to the KVGetSubFileMetaArg structure, which defines metadata tags whose
values are retrieved.

Before you initialize the KVGetSubFileMetaArg structure, use the KVStructInitmacro
to initialize the KVStructHead structure.

metaData A pointer to the KVSubFileMetaData structure, which contains the retrievedmetadata
values.

Returns

l If themetadata is retrieved, the return value is KVERR_Success.
l If themetadata is not retrieved, the return value is an error code.

XML Export SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 114 of 346

Discussion

l When you pass in 0 for metaArg->metaNameCount, and NULL for metaArg->metaNameArray, a set of
default metadata is retrieved. See Extract Mail Metadata, on page 48.

l After themetadata is retrieved, call fpFreeStruct() to free thememory allocated by this function.
l If a field is repeated in an EML orMBX mail header, the values in each instance of the field are
concatenated and returned as one field. The values are separated by five pound signs (#####) as a
delimiter.

Example

KVSubFileMetaData metaData = NULL;

KVStructInit(&metaArg);

/* retrieve all the default metadata elements */
metaArg.metaNameCount = 0;
metaArg.metaNameArray = NULL;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData(pFile,&metaArg,&metaData);
...

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

/* retrieve specific metadata fields */
KVMetaName pName[2];
KVMetaNameRec names[2];

names[0].type = KVMetaNameType_Integer;
names[0].name.iname = KVPR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = KVPR_DISPLAY_TO;

pName[0] = &names[0];
pName[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&metaData);
...

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 115 of 346

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

fpOpenFile()

This function opens a file to make the file accessible for subfile extraction or conversion.

Syntax

int (pascal *fpOpenFile) (
 void *pContext,
 KVOpenFileArg openArg,
 void **pFile);

Arguments

pContext A pointer returned from fpInit().

openArg A pointer to the KVOpenFileArg structure. This structure defines the input parameters
necessary to open a file for extraction, such as credentials, and the default extraction
directory.

Before you initialize the KVOpenFileArg structure, use themacro KVStructInit to
initialize the KVStructHead structure.

pFile A handle for the opened file. This handle is used in subsequent file extraction calls to
identify the source file.

Returns

l If the file is opened, the return value is KVERR_Success.
l If the file is not opened, the return value is an error code and pFile is NULL.

Discussion

Call fpCloseFile() to free thememory allocated by this function.

Example

KVOpenFileArgRec openArg;

/*Initialize the structure using KVStructInit*/
KVStructInit(&openArg);
openArg.extractDir = destDir;
openArg.filePath = srcFile;

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 116 of 346

/*Open the main file */
if ((error = extractInterface->fpOpenFile(pExport,&openArg,&pFile)))
{
 extractInterface->fpCloseFile(pFile);
 pFile = NULL;
}

XMLExport SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 117 of 346

Chapter 7: File Extraction API Structures

This section provides information on the structures used by the File Extraction API. These structures
define the input and output parameters required to extract subfiles from a container file, and are defined
in kvxtract.h.

• KVCredential 118
• KVCredentialComponent 119
• KVExtractInterface 119
• KVExtractSubFileArg 120
• KVGetSubFileMetaArg 122
• KVMainFileInfo 123
• KVMetadataElem 124
• KVMetaName 125
• KVOpenFileArg 126
• KVOutputStream 127
• KVSubFileExtractInfo 128
• KVSubFileInfo 129
• KVSubFileMetaData 131

KVCredential

This structure contains a count of the number of credential elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling fpOpenFile(), and is defined in
kvxtract.h.

typedef struct tag_KVCredential
{
 int itemCount;
 KVCredentialComponent *items;
}
KVCredentialRec, *KVCredential;

Member Descriptions

itemCount The number of credentials defined for this file.

items A pointer to the KVCredentialComponent structure. This structure contains the
individual credential elements used to open a protected file.

KeyView (11.6) Page 118 of 346

KVCredentialComponent

This structure contains the value of a credential item. The structure is defined in kvxtract.h.

typedef struct tag_KVCredentialComponent
{
 KVCredKeyType keytype;
 union

{
 void *pkey;
 char *skey;
 unsigned int ikey;
 }
 keyobj;
}
KVCredentialComponentRec, *KVCredentialComponent;

Member Descriptions

keytype The type of credential (such as a user name or password). The types are defined by the
KVCredKeyType enumerated type.

pkey A pointer to a structure defining credentials. Reserved for future use.

skey A pointer to a string credential key.

ikey An integer credential key.

KVExtractInterface

Themembers of this structure are pointers to the file extraction functions described in File Extraction
API Functions, on page 108. When you call the KVGetExtractInterface() function, this structure
assigns pointers to the functions. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractInterface
{
KVStructHeader;
 int (pascal *fpOpenFile) (void *pContext,KVOpenFileArg openArg, void
**pFileHandle);
 int (pascal *fpCloseFile) (void *pFileHandle);
 int (pascal *fpGetMainFileInfo) (void *pFile, KVMainFileInfo *MainFileInfo);
 int (pascal *fpGetSubFileInfo) (void *pFile, int index, KVSubFileInfo
*subFileInfo);
 int (pascal *fpGetSubFileMetaData) (void *pFile, KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);
 int (pascal *fpExtractSubFile) (void *pFile, KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 119 of 346

 int (pascal *fpFreeStruct) (void *pFile, void *obj);
}
KVExtractInterfaceRec, *KVExtractInterface;

Member Descriptions

Themember functions are described in File Extraction API Functions, on page 108.

Discussion

Before you initialize a File Extraction structure, use the KVStructInitmacro to initialize the
KVStructHead structure. This process sets the revision number of the File Extraction API and supports
binary compatibility with future releases.

KVExtractSubFileArg

This structure defines the input parameters required to extract a subfile. See fpExtractSubFile(), on
page 109. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractSubFileArg
{
 KVStructHeader;
 int index;
 KVCharSet srcCharset;
 KVCharSet trgCharset;
 int isMSBLSB;
 DWORD extractionFlag
 char *filePath;
 char *extractDir;
 KVOutputStream *stream;
}
KVExtractContainerSubFileArgRec, *KVExtractContainerSubFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

index The index number of the subfile to be extracted.

srcCharset Specifies the source character set of the subfile when the file format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet of kvtypes.h. See Discussion, on page 122.

trgCharset If the file type is KVFileType_Main, this is the target character set of the
extracted file. Otherwise, this is ignored. The character sets are enumerated in
KVCharSet in kvtypes.h. See Discussion, on page 122.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 120 of 346

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

extractionFlag A bitwise flag that defines additional parameters for file extraction. The following
flags are available:

l KVExtractionFlag_CreateDir

This flag indicates whether the directory structure of a subfile should be
created. If you set this flag, the path defined in filePath is created if it does
not already exist. If you do not set this flag, the path is not created, and the
function returns FALSE.

l KVExtractionFlag_Overwrite

If you set this flag, and the file being extracted has the same name as a file in
the target path, the file in the target path is overwritten without warning. If you
do not set this flag, and a subfile has the same name as a file in the target path,
the error KVError_OutputFileExists is generated.

l KVExtractionFlag_ExcludeMailHeader

If you set this flag, header information (To, From, Sent, and so on) in amail file
is not included in the extracted data. If you do not set this flag, the extracted
data contains header information and themessage’s body text. See Exclude
Metadata from the Extracted Text File, on page 55.

l KVExtractionFlag_GetFormattedBody

If you set this flag, the formatted version of themessage body (HTML or RTF)
is extracted frommail files when possible. If neither an HTML nor RTF version
of themessage body exists in themail file, it is extracted as plain text. If you
do not set this flag, themessage body is extracted as plain text when possible.

NOTE:When an HTML or RTFmessage body is extracted, themessage’s
mail headers (such as "From," "To," and "Subject,") are extracted, saved in
the same format, and added to the beginning of the subfile. This applies to
PST (MAPI-based reader), MSG, and NSF files only.

l KVExtractionFlag_SaveAsMSG

If you set this flag, themail message is extracted as anMSG file, including all
of its attachments. If you do not set this flag, themail message is extracted as
text. This applies to PST files onWindows only.

NOTE: In file mode, when the application sets this flag in fpExtractSubFile
(), it must also check the KVSubFileExtractInfo structure’s filePath
parameter to verify the file name used for extraction.

filePath A pointer to the suggested path or file name to which the subfile is extracted. This
can be a file name, partial path, or full path. You can use this in conjunction with
extractDir to create the full output path. See Discussion, on the next page.

extractDir A pointer to the directory to which subfiles are extracted. This directory must
exist. If you set this flag, the path specified in KVOpenFileArg->extractDir is
ignored. You can use this in conjunction with filePath to create the full output
path.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 121 of 346

stream A pointer to an output stream defined by KVOutputStream. See Discussion,
below.

Discussion

l If the document character set is detected and is also specified in srcCharset, the detected
character set is overridden by the specified character set. If the source character set is not detected
and is not specified, character set conversion does not occur. The Supported Formats, on page 225
section lists the formats for which the source character set can be determined.

l The KVSubFileExtractInfoFlag_CharsetConverted flag in the KVSubFileExtractInfo structure
indicates whether the character set of the subfile was converted during extraction.

l The following applies when the output is to a file:
o If filePath is a valid full path, filePath is the output path, and the path in extractDir is

ignored.
o If filePath is a file name or partial path, the target directory specified in either

KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir is used to create the full
path. See KVOpenFileArg, on page 126.

o If filePath is a full path or partial path, and createDir is TRUE, the directory is created if it does
not already exist.

o If filePath is not specified, a default name and the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir are used to create a full
path.

o If both filePath and extractDir are not specified or are invalid, an error is returned.
o If filePath is valid, but extractDir is not valid, an error is returned.

l The following applies when the output is to a stream:
o Set filePath and extractDir to NULL.
o The file format (docInfo) and extraction file path (filePath) are not returned in

KVSubFileExtractInfo.
o The KVExtractionFlag_CreateDir and KVExtractionFlag_Overwrite flags are ignored.

KVGetSubFileMetaArg

This structure defines themetadata tags whose values are retrieved by fpGetSubFileMetaData(). This
structure is defined in kvxtract.h.

typedef struct tag_KVGetSubFileMetaArg
{
 KVStructHeader;
 int index;
 int metaNameCount;
 KVMetaName *metaNameArray;
 KVCharSet srcCharset;
 KVCharSet trgCharset;
 int isMSBLSB;

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 122 of 346

}
KVGetSubFileMetaArgRec, *KVGetSubFileMetaArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

index The index number of the subfile for whichmetadata is extracted.

metaNameCount The number of metadata fields to be extracted.

metaNameArray A pointer to the KVMetaName structure that contains an array of metadata tags
whose values are retrieved.

srcCharset Specifies the source character set of themetadata when the format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet of kvtypes.h. See Discussion, below.

trgCharset The target character set of the extractedmetadata.

The character sets are enumerated in KVCharSet in kvtypes.h.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

Discussion

l If the character set is detected and is also specified in srcCharset, the detected character set is
overridden by the specified character set. If the source character set is not detected and is not
specified, character set conversion does not occur. The section Supported Formats, on page 225
lists the formats for which the source character set can be determined.

l To retrieve a predefined list of metadata, pass 0 for metaNameCount and NULL for metaNameArray.
Themetadata in Extract Mail Metadata, on page 48 is extracted.

KVMainFileInfo

This structure contains information about amain file that is open for extraction. It is initialized by calling
fpGetMainFileInfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVMainFileInfo
{
 KVStructHeader;
 int numSubFiles;
 ADDOCINFO docInfo;
 KVCharSet charset;
 int isMSBLSB;
 unsigned long infoFlag;
}
KVMainFileInfoRec, *KVMainFileInfo;

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 123 of 346

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

numSubFiles The number of subfiles in themain file.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 174.

charset The character set of themain file.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

infoFlag A bitwise flag that provides additional information about themain file. The
following flag is available:

KVMainFileInfoFlag_HasContent—Themain file contains text that can be
converted. Below are some examples of how this flag is used:

For anMSG file without attachments, numSubFiles is 1 (message body text), and
this flag is FALSE because theMSG file itself does not contain text.

For a Zip file with three files, numSubFiles is 3, and this flag is FALSE because a
Zip file does not contain text.

For aMicrosoft Word file with an embeddedOLE object, numSubFiles is 1 (OLE
object), and this flag is TRUE (Word file contains text to be converted).

Discussion

l If numSubFiles is non-zero, get information on the subfile by calling fpGetSubFileInfo(), and then
extract the subfiles by using fpExtractSubFile().

l If numSubFiles is 0, the file does not contain subfiles and does not need to be extracted further. If
the KVMainInfoFlag_HasContent flag is set, the file contains body text and can be passed directly
to the conversion functions. See XMLExport API Functions, on page 133.

l If openFlag is set to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile(), numSubFiles
also includes the root object (index 0) which is created by KeyView for reconstructing the file’s
hierarchy. See KVOpenFileArg, on page 126.

KVMetadataElem

This structure contains metadata field values extracted from amail file. This structure is defined in
kvtypes.h.

typedef struct tag_KVMetadataElem
{
 int isDataValid;
 int dataID;

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 124 of 346

 KVMetadataType dataType;
 char* strType;
 void* data;
 int dataSize;
}
KVMetadataElem;

Member Descriptions

isDataValid Specifies whether themetadata returned from the API is valid data.

dataID The integer name of the extractedmetadata field.

dataType The data type of themetadata field. The types are defined in KVMetadataType in
kvtypes.h.

strType A pointer to the string name of themetadata field.

data The contents of themetadata field.

If the typemember is KVMetadata_Int4 or KVMetadata_Bool, this member contains
the actual value. Otherwise, this member is a pointer to the actual value.

KVMetadata_DateTime points to an 8-byte value.

KVMetadata_String and KVMetadata_Unicode point to the beginning of the string
that contains the text. The strings are NULL terminated.

KVMetadata_Binary points to the first element of a byte array.

dataSize The byte count of data when the type is KVMetadata_Binary, KVMetadata_Unicode,
or KVMetadata_String.

KVMetaName

This structure defines the names of themetadata fields to be extracted from amail file. This structure is
defined in kvxtract.h.

typedef struct tag_KVMetaName
{
 KVMetaNameType type;
 union

{
 void *pname;
 int iname;
 char *sname;
 }name;
}
KVMetaNameRec, *KVMetaName;

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 125 of 346

Member Descriptions

type The type of metadata name (such as integer or string). The types are defined by the
KVMetaNameType enumerated type.

NOTE:
MAPI property names are of type integer.

pname A pointer to a structure defining themetadata fields to be retrieved.

iname The name of ametadata field of type integer.

sname A pointer to the name of ametadata field of type string.

Discussion

If you specify theMAPI tag name (for example, PR_CONVERSATION_TOPIC), youmust include the
mapitags.h and mapidefs.hWindows header files, in which PR_CONVERSATION_TOPIC is defined as
0x0070001e.

KVOpenFileArg

This structure defines the input arguments necessary to open a file for extraction. It is initialized by
calling fpOpenFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVOpenFileArg
{
 KVStructHeader;
 KVCredential cred;
 KVInputStream *stream;
 char *filePath;
 char *extractDir;
 DWORD openFlag;
 DWORD reserved;
 void *pReserved;
}
KVOpenFileArgRec, *KVOpenFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

cred The credentials required to open a protected PST or NSF file. This is a pointer to
the KVCredential structure. Your application can definemultiple credentials to
this member for multiple formats.

stream A pointer to the developer-assigned instance of KVInputStream. The

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 126 of 346

KVInputStream structure defines the input stream that contains the source. See
KVInputStream, on page 175.

If you are using a file as input, this is NULL.

filePath A pointer to the full file path to the source file.

If you are using a stream as input, this is NULL.

extractDir A pointer to the default directory to which subfiles are extracted. This directory
must exist.

You can use this in conjunction with KVExtractSubFileArg->filePath to create
the full output path. See KVExtractSubFileArg, on page 120.

openFlag A bitwise flag that defines additional parameters for opening the file. The following
flag is available:

KVOpenFileFlag_CreateRootNode—If you set this flag, KeyView creates a root
object when extracting this file’s subfiles. This root node does not have a parent
and is at the highest level of the file’s tree structure. It is used internally to provide
a reference point from which all other child nodes are determined, and the file’s
hierarchy is created.

If you want to maintain the file’s hierarchy when you extract subfiles from a
container, youmust set this flag. See Recreate a File’s Hierarchy, on page 47 for
more information.

The root node has an index of zero. Although not all container formats require an
artificial root node, the root is created for all container formats regardless of
whether the file itself contains a root directory or file.

reserved Reserved for future use. It must be NULL.

pReserved Reserved for future use. It must be NULL.

KVOutputStream

This structure defines an output stream for the extracted subfile.

typedef struct tag_OutputStream
{
 void *pOutputStreamPrivateData;
 BOOL (pascal *fpCreate)(struct tag_OutputStream *,TCHAR *);
 UINT (pascal *fpWrite) (struct tag_OutputStream *, BYTE *, UINT);
 BOOL (pascal *fpSeek) (struct tag_OutputStream *, long, int);
 long (pascal *fpTell) (struct tag_OutputStream *);
 BOOL (pascal *fpClose) (struct tag_OutputStream *);
}
KVOutputStream;

XMLExport SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 127 of 346

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

KVSubFileExtractInfo

This structure contains information about an extracted subfile. It is initialized by calling
fpExtractSubFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileExtractInfo
{
 KVStructHeader;
 char *filePath;
 char *fileName;
 unsigned long infoFlag;
 ADDOCINFO docInfo;
}
KVSubFileExtractInfoRec, *KVSubFileExtractInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

filePath The full path to which the subfile was extracted.

If the subfile is embedded in themain file as a link, this is the external path to the
subfile.

If you output the data to a stream, the extraction path is not returned.

fileName The original path, file name, or path and file name of the subfile.

If the subfile is embedded in themain file as a link, this is the external path to the
subfile.

infoFlag A bitwise flag that provides additional information about the extracted subfile. The
following flags are available:

l KVSubFileExtractInfoFlag_NeedsExtraction—The file might contain
subfiles and should be extracted further.

l KVSubFileExtractInfoFlag_FileCreated—The file was created on disk.
l KVSubFileExtractInfoFlag_CharsetConverted—The subfile’s character set
was converted.

l KVSubFileExtractInfoFlag_External—The subfile is embedded in themain
file as a link and is stored externally. For example, the subfile might be an
object that was embedded in aWord document using "Link to File," or an
attachment that is referenced in anMBX message. This type of file cannot be
extracted. Youmust write code to access the subfile based on the path in the
member filePath or fileName.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 128 of 346

l KVSubFileExtractInfoFlag_FolderCreated—A folder was created.
l KVSubFileExtractInfoFlag_NonFormattedBodyExtracted—Indicates that a
plain text version of themessage was extracted due to an error extracting the
formatted version of themessage.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 174.

If you output the data to a stream, the file format is not returned.

KVSubFileInfo

This structure contains information about a subfile in a container file. It is initialized by calling
fpGetSubFileInfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileInfo
{
 KVStructHeader;
 char *subFileName;
 int subFileType;
 long subFileSize;
 unsigned long infoFlag;
 KVCharSet charset;
 int isMSBLSB;
 BYTE fileTime[8];
 int parentIndex;
 int childCount;
 int *childArray;
}
KVContainerSubFileInfoRec, *KVSubFileInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

subFileName The path, file name, or path and file name of the subfile.

If the subfile is the body text of amail file or is an embeddedOLE object, KeyView
provides a default file name. See Default File Names for Extracted Subfiles, on
page 64.

subFileType The subfile’s position in the container file’s hierarchy. The following options are
available:

KVSubFileType_Main—The subfile is at the top level of themain file. This is the
default subfile type. See Discussion, on page 131.

KVSubFileType_Attachment—The subfile is an attachment in a file.

KVSubFileType_OLE—The subfile is an embeddedOLE object in a compound
document.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 129 of 346

KVSubFileType_Folder—The subfile is a folder or the artificial root node (see
Create a Root Node, on page 47).

subFileSize The size of the subfile in bytes. This informationmight be useful if you do not
want to extract very large files.

This value is approximate and is themaximum size of the subfile. The subfile is
usually smaller than this value when it is extracted.

infoFlag A bitwise flag that provides additional information about the subfile. The following
flags are available:

KVSubFileInfoFlag_NeedsExtraction—The subfile might contain subfiles. It
must be extracted further to conclusively determine whether it contains subfiles.

KVSubFileInfoFlag_Secure—The subfile is secured and credentials (such as
user name and password) are required to extract it. This flag applies to ZIP, RAR,
and PDF files only.

KVSubFileInfoFlag_SMIME—The subfile is S/MIME-encrypted and credentials
are required to extract it. This applies to .eml and .pst files only.

KVSubFileInfoFlag_External—The subfile is embedded in themain file as a
link and is stored externally. For example, the subfile might be an object that was
embedded in aWord document by using "Link to File," or an attachment that is
referenced in anMBX message. This type of file cannot be extracted. Youmust
write code to access the subfile based on the path in themember subFileName.

KVSubFileInfoFlag_MailItem—When the subfile type is KVSubFileType_
Attachment, this indicates that the attachment is amail item. This flag applies to
PST, MSG, and NSF files only.

charset If the subfile is not an attachment, this is the character set of the subfile. If the
subfile is an attachment, the character set is KVCS_UNKNOWN.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

fileTime When the subfile is amail message, this is the file’s Sent time. Otherwise, it is
the last modified time. The file time is not available for the following file types:

l EML attachments
l OLE objects in aMicrosoft Office document
l Embedded images

parentIndex The index number of this file’s parent. For example, the index of a folder in which
the subfile is stored, or the file to which the subfile is attached. If a file does not
have a parent, the parentIndex is -1.

childCount The number of first-level children in the subfile.

childArray A pointer to an array of first-level children in the subfile.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 130 of 346

Discussion

The KVSubFileType_Main type applies to the following for each file format:

File format KVSubFileType_Main applies to...

MSG and EML Themessage body.

Zip files A file inside the archive.

PST files An item that is not an attachment, an OLE object, or a root node.

MBX files A message in theMBX file.

NSF files An item that is not an attachment, an OLE object, or a root node.

PDF files An item that is not an attachment or a root node.

l If you set the KVSubFileInfoFlag_NeedsExtraction flag, open the subfile and extract its children.
See fpOpenFile(), on page 116 and fpExtractSubFile(), on page 109.

l The parentIndex and childArraymembers provide information about the subfile’s parent and
children. You can use this information to recreate the file hierarchy on extraction. Because
childArray retrieves only the first-level children in the subfile, youmust call fpGetSubFileInfo()
repeatedly until information for the leaf-node children is extracted. See Recreate a File’s Hierarchy,
on page 47.

KVSubFileMetaData

This structure contains a count of the number of metadata elements extracted from amail file, and a
pointer to the first element of the array of elements. It is initialized by calling fpGetSubFileMetaData().
This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileMetaData
{
 KVStructHeader;
 int nElem;
 KVMetadataElem** ppElem;
 unsigned long infoFlag;
}
KVSubFileMetaDataRec, *KVSubFileMetaData;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

nElem The number of metadata fields contained in the array.

ppElem A pointer to an array of pointers that are thememory addresses of metadata field
values in the KVMetadataElem structure.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 131 of 346

infoFlag A bitwise flag that defines additional properties of the extractedmetadata. The
following flag is available:

KVSubFileMetaInfoFlag_CharsetConverted—Indicates that themetadata’s
character set was converted.

XML Export SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 132 of 346

Chapter 8: XML Export API Functions

This section describes the functions in the XMLExport API. These functions manage the input and
output streams, and perform the document conversion. Each function appears as a function prototype
followed by a description of its arguments, its return value, and discussion of its use.

• KVXMLGetInterface() 133
• KVXMLGetInterfaceEx() 134
• fpConvertStream() 135
• fpFileToInputStreamCreate() 137
• fpFileToInputStreamFree() 138
• fpFileToOutputStreamCreate() 139
• fpFileToOutputStreamFree() 140
• fpFreeImageInfos() 141
• fpGetAnchor() 142
• fpGetConvertFileList() 143
• fpGetKvErrorCode 144
• fpGetKvErrorCodeEx 144
• fpGetOutputImageCount() 145
• fpGetOutputImageInfo() 145
• fpGetOutputImageInfos() 146
• fpGetStreamInfo() 147
• fpGetSummaryInfo() 147
• fpInit() 149
• fpSetStyleMapping() 150
• fpShutDown() 151
• fpValidateTemplate() 151
• KVXMLConfig() 152
• KVXMLConvertFile() 159
• KVXMLEndOOPSession() 161
• KVXMLSetStyleSheet() 163
• KVXMLStartOOPSession() 165

KVXMLGetInterface()

NOTE:
This function has been superseded by KVXMLGetInterfaceEx(); KVXMLGetInterfaceEx()
should be used instead of KVXMLGetInterface().

KeyView (11.6) Page 133 of 346

This function is exported by the Export definition file. It supplies function pointers to other Export
functions. When KVXMLGetInterface() is called, it assigns the function pointers in the structure
KVXMLInterface to other functions described in this chapter. For example, KVXMLInterface.fpInit
is assigned to point to KVXMLInit().

Syntax

void pascal KVXMLGetInterface (KVXMLInterface *pInterface);

Arguments

pInterface A pointer to the structure KVXMLInterface. See KVXMLInterfaceEx, on page 188.

Returns

None.

Discussion

l One of the initial steps in using the XMLExport API is to create an instance of a KVXMLInterface
structure and use this function to gain access to other functions.

l The functions can be called directly. For example, you can call KVXMLGetSummaryInfo() instead of
using fpGetSummaryInfo() in KVXMLInterface. However, Micro Focus recommends that you
assign the function pointers in KVXMLInterface to the functions for efficiency.

KVXMLGetInterfaceEx()

This function is exported by the Export definition file. It supplies function pointers to other Export
functions. When KVXMLGetInterfaceEx() is called, it assigns the function pointers in the structure
KVXMLInterfaceEx to other functions described in this chapter. For example,
KVXMLInterfaceEx.fpInit is assigned to point to KVXMLInit().

Syntax

BOOL pascal KVXMLGetInterfaceEx (KVXMLInterfaceEx *pInterface);

Arguments

pInterface A pointer to the structure KVXMLInterfaceEx. See KVXMLInterfaceEx, on page 188.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 134 of 346

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.
If the function fails, all function pointers in pInterface are set to NULL.

Youmust initialize pInterface by calling KVStructInit prior to passing it to KVXMLGetInterfaceEx.
If you do not do this, the function fails.

Discussion

l One of the initial steps in using the XMLExport API is to create an instance of a KVXMLInterfaceEx
structure and use this function to gain access to other functions.

l The functions can be called directly. For example, you can call KVXMLGetSummaryInfo() instead of
using fpGetSummaryInfo() in KVXMLInterfaceEx. However, Micro Focus recommends that you
assign the function pointers in KVXMLInterfaceEx to the functions for efficiency.

l KVXMLInterfaceExmust be initialised by calling KVStructInit prior to passing it to
KVXMLGetInterfaceEx, otherwise KVXMLGetInterfaceEx fails.

Example

KVXMLInterfaceEx KVXMLInt;
BOOL (pascal *fpGetInterfaceEx)(KVXMLInterfaceEx *);
...
KVStructInit(&KVXMLInt);
(*fpGetInterfaceEx)(&KVXMLInt);

fpConvertStream()

This function converts either a source stream or file to an output stream.

Syntax

 BOOL pascal fpConvertStream(
 void *pContext,
 void *pCallingContext,
 KVInputStream *pInput,
 KVOutputStream *pOutput,
 KVXMLTemplate *pTemplates,
 KVXMLOptions *pOptions,
 KVXMLTOCOptions *pTOCCreateOptions,
 KVXMLCallbacks *pCallbacks,
 BOOL bIndex,
 KVErrorCode *pError);

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 135 of 346

Arguments

pContext A pointer returned from fpInit().

pCallingContext A pointer passed back to the callback functions.

pInput A pointer to the developer-assigned instance of KVInputStream. The
KVInputStream structure defines the input stream that contains the source for
the conversion. See KVInputStream, on page 175.

pOutput A pointer to the developer-assigned instance of KVOutputStream. The
KVOutputStream structure defines the output stream to which Export writes
the generated HTML. See KVOutputStream, on page 176.

pTemplates A pointer to the KVXMLTemplate data structure. It defines the overall structure
of the output. Individual elements within the structure define themarkup
written at specific points in the output stream. See KVXMLTemplate, on page
198.

If this pointer is NULL, the default values for the structure are used.

pOptions A pointer to the KVXMLOptions data structure. It defines the options that
control themarkup written in response to the general style and attributes (font,
color, and so on) of the document. See KVXMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

pCallbacks A pointer to the KVXMLCallbacks data structure. It is a structure of functions
that Export calls for specific, user-defined purposes. See KVXMLCallbacks,
on page 182.

If callbacks are not used, this can be NULL.

pTOCCreateOptions A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.

bIndex Set bIndex to TRUE to generate output with minimal markup and without
images. Because the generated output is minimized to textual content, it is
suitable for an indexing engine. If you set bIndex to FALSE, embedded images
in a document are regenerated as separate files and stored in the output
directory.

You can set this option through the bIndexOnlymember of the KVXMLOptions
structure. See KVXMLOptions, on page 190.

To generate output with verbosemarkup and without images, set the nType
argument of the KVXMLConfig() function to KVCFG_SUPPRESSIMAGES. See
KVXMLSetStyleSheet(), on page 163.

pError A pointer to an error code if the call to fpConvertStream() fails.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 136 of 346

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l Only pContext, pInput, pOutput, and bIndex are required. All other pointers should be NULL when
they are not set.

l If pCallbacksEx is NULL, pOptionsEx->pszDefaultOutputDirectory must be valid, except when
bIndex is set to TRUE.

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, this functionmust be called after the call to

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

l When converting out of process, the values for the KVXMLTemplate, KVXMLOptions, and
KVXMLTOCOptions structures should be set to NULL. These structures are already passed in the call
to KVXMLStartOOPSession(). See KVXMLStartOOPSession(), on page 165.

Example

The following sample code is from the cnv2xml sample program:

if(!(*KVXMLInt.fpConvertStream)(
 pKVXML, /* A pointer returned by fpInit() */
 NULL, /* A pointer for callback functions */
 &Input, /* Input stream */
 &Output, /* Output stream */
 NULL, /* Markup and related variables */
 &XMLOptions, /* Options */
 NULL, /* TOC options */
 NULL, /* A pointer to callback functions */
 FALSE, /* Index mode */
 &error)) /* Error return value */
{
 printf("Error converting %s to XML %d\n", argv[i - 1], error);
}
else
{
 printf("Conversion of %s to XML completed.\n\n", argv[i - 1]);

}

fpFileToInputStreamCreate()

This function creates an input stream from an input file.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 137 of 346

Syntax

BOOL pascal _export fpFileToInputStreamCreate(
 void *pContext,
 char *pszFileName,
 KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().

pszFileName A pointer to the name of the input file to be converted.

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToInputStreamFree() to free thememory allocated by
this function.

Example

The following sample code is from the cnv2xml sample program:

if(!(*KVXMLInt.fpFileToInputStreamCreate)(pKVXML, argv[i++], &Input))
{

 printf("Error creating input stream\n");
(*KVXMLInt.fpShutDown)(pKVXML);

 mpFreeLibrary(hKVXML);
 return (5);
 }

fpFileToInputStreamFree()

This function frees thememory used to create an input stream.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 138 of 346

Syntax

BOOL pascal _export fpFileToInputStreamFree(
 void *pContext,
 KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free thememory allocated by
fpFileToInputStreamCreate().

fpFileToOutputStreamCreate()

This function creates an output stream from an output file.

Syntax

BOOL pascal _export fpFileToOutputStreamCreate(
 void *pContext,
 char *pszFileName,
 KVOutputStream *pOutput);

Arguments

pContext A pointer returned from fpInit().

pszFileName A pointer to the name of the output file to create.

pOutput A pointer to the developer-assigned instance of KVOutputStream. The
KVOutputStream structure defines the output stream to which Export writes the
generated XML. See KVOutputStream, on page 176.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 139 of 346

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToOutputStreamFree() to free thememory allocated by
this function.

Example

The following sample code is from the cnv2xml sample program:

if (!(*KVXMLInt.fpFileToOutputStreamCreate)(pKVXML, argv[i], &Output))
{

 printf("Error creating output stream\n");
(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpShutDown)(pKVXML);

 mpFreeLibrary(hKVXML);
 return 6;
 }

fpFileToOutputStreamFree()

This function frees thememory used to create the output stream.

Syntax

BOOL pascal _export fpFileToOutputStreamFree(
 void *pContext,
 KVOutputStream *pOutput);

Arguments

pContext A pointer returned from fpInit().

pOutput A pointer to the developer-assigned instance of KVOutputStream. The KVOutputStream
structure defines the output stream to which Export writes the generated XML. See
KVOutputStream, on page 176.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 140 of 346

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free thememory allocated by
fpFileToOutputStreamCreate().

fpFreeImageInfos()

This function frees thememory associated with an image info context. Call this function when you
have finished using the image info context for calls to fpGetOutputImageCount() and
fpGetOutputImageInfo() (see fpGetOutputImageCount(), on page 145 and fpGetOutputImageInfo(),
on page 145).

Syntax

BOOL pascal fpFreeImageInfos (
void* const pContext,
void* const pImageInfos)

Arguments

pContext A pointer returned from fpInit() and the pointer originally passed to
fpGetOutputImageInfo() to create the image info context that you want to free. See
fpInit(), on page 149 and fpGetOutputImageInfo(), on page 145.

pImageInfos A pointer returned from fpGetOutputImageInfos(). See fpGetOutputImageInfos(),
on page 146.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l It is safe to call fpFreeImageInfos() with pImageInfos() set to NULL. The function returns TRUE in
this case.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 141 of 346

l Youmust call fpFreeImageInfos() before you call fpShutdown() (see fpShutDown(), on page
151).

l Youmust not call fpGetOutputImageCount(), fpGetOutputImageInfo(), and fpFreeImageInfos
() using an image info context pointer for which the associated system resources have already been
successfully freed by using fpFreeImageInfos().

fpGetAnchor()

This function gets the file name automatically generated by Export and used for external graphics
referenced with <a xmlns:xlink= xlink href=> tags and for heading-level table of contents entries.

Syntax

BOOL pascal fpGetAnchor(
 void *pCallingContext,
 KVHTMLAnchorTypeEx eAnchorTypeEx,
 KVXMLAnchorType eAnchorType,
 char *pszAnchor,
 int cbAnchorMax,
 BYTE *pcHTML,
 UINT cbHTML);

Arguments

pCallingContext A pointer passed back to the callback functions.

eAnchorTypeEx The graphic or block anchor type for the output stream. It must be one of the
enumerated types defined in KVXMLAnchorType. See KVXMLAnchorType, on
page 212.

pszAnchor A pointer to the location in which the new anchor is stored.

cbAnchorMax Themaximum number of bytes to place in pszAnchor.

pcHTML A pointer to either themarkup defining the contents of the table of contents
entry, a pointer to the external graphic name, or NULL.

cbHTML The number of valid bytes in pcHTML.

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE. Processing is halted.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 142 of 346

Discussion

l pszAnchor must be assigned. It might be derived from the cbAnchorMax, pcHTML, and cbHTML
values that are also provided.

l pcHTML can be NULL if the graphic is an internal part of the document.
l This function is exposed so that it can be called from the GetAnchor() callback function to obtain
default behavior for anchor types the callback is not set to handle.

fpGetConvertFileList()

This function gets the list of files automatically converted to XML during a call to fpConvertStream()
or KVXMLConvertFile().

Syntax

char ** pascal _export fpGetConvertFileList(
 void *pContext,
 int *pnSize);

Arguments

pContext A pointer returned from fpInit().

pnSize A pointer to the number of files generated by the conversion.

Returns

If no files are converted, the return value is a NULL pointer. Otherwise, the return value is a pointer to an
array of strings that provides the available path information for each converted file.

Discussion

l The array of file path information includes all externally generated files, including graphic files. Note
that themain output file is not included in the array, nor in the count of the number of files converted.

l Thememory used by the array of file path information is freed by the API.
l The array is not valid after a call to fpShutDown().
l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, this functionmust be called after the call to

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 143 of 346

fpGetKvErrorCode

This function gets an extended error code defined in KVErrorCode. If a KeyView HTMLExport function
fails, you can call fpGetKvErrorCode() to find extra information on the failure.

Syntax

KVErrorCode pascal fpGetKvErrorCode (
void *pContext);

Arguments

pContext A pointer returned from fpInit(). See fpInit(), on page 149.

Returns

The current error code.

Discussion

If there has not been a failure, this function returns KVERR_Success.

fpGetKvErrorCodeEx

This function gets an extended error code defined in KVErrorCodeEx. It is called to provide additional
information when fpGetKvErrorCode() returns the error KVERR_General.

Syntax

KVErrorCodeEx pascal fpGetKvErrorCodeEx (
void *pContext);

Arguments

pContext A pointer returned from fpInit(). See fpInit(), on page 149.

Returns

The current extended error code.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 144 of 346

fpGetOutputImageCount()

This function returns the number of images that would be obtained by the XMLExport, and for which
you can obtain image information by using fpGetOutputImageInfo().

Syntax

BOOL pascal fpGetOutputImageCount (
const void* const pImageInfos,
int* const pnImages)

Arguments

pImageInfos A pointer returned from fpGetOutputImageInfos().

pnImages A pointer to an integer to use to store the number of images found.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

If the function call is unsuccessful, it does not modify the value of the integer that pnImages points to.

fpGetOutputImageInfo()

This function returns the dimensions of the images that would be obtained during the XML Export
process.

Syntax

BOOL pascal fpGetOutputImageInfo (
const void* const pImageInfos,
const int nImage,
KVXMLImageInfo* const ptImageInfo)

Arguments

pImageInfos A pointer returned from fpGetOutputImageInfos().

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 145 of 346

nImage The zero-based index of the image to retrieve dimensions for.

ptImageInfo The pointer to a KVXMLImageInfo, on page 185 structure, initialized with the
KVStructInitmacro, which the function fills with the dimensions of the image with
index nImage.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

fpGetOutputImageInfos()

This function returns the image information context that must be supplied to the
fpGetOutputImageCount() or fpGetOutputImageInfo() functions. See fpGetOutputImageCount(),
on the previous page and fpGetOutputImageInfo(), on the previous page.

Youmust free the system resources associated with this context after you use it, by using the
fpFreeImageInfos() function.

Syntax

void* pascal fpGetOutputImageInfos (
void* const pContext,
KVInputStream* const pInput)

Arguments

pContext A pointer returned from fpInit(). See fpInit(), on page 149.

pInput The pointer to a KVInputStream instance. This instance defines the input stream that the
function processes to extract the images.

Returns

l If the call is successful, the return value is the pointer to an image info context object.
l If the call is unsuccessful, the return value is NULL.

Discussion

l To obtain image information out of process, call KVXMLStartOOPSession() before you call
fpGetOutputImageInfos(). Youmust open a new, secondOOP session for any subsequent
XML export from the input stream.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 146 of 346

l If this function fails, you can call fpGetKvErrorCode() and fpGetKvErrorCodeEx() to help identify
the cause of the failure.

l You can usemultiple image info contexts at any one time.

fpGetStreamInfo()

This function extracts file format and character set information from the source document.

Syntax

BOOL pascal _export fpGetStreamInfo (
void *pContext,

 KVInputStream *pInput,
 KVStreamInfo *pStreamInfo);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

pStreamInfo A pointer to the developer-assigned instance of KVStreamInfo. The KVStreamInfo
structure defines the input stream document type and character set. See
KVStreamInfo, on page 177.

You can examine the fields in the structure to determine the appropriate template to
use based on the document type.

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE.

fpGetSummaryInfo()

This function extracts all metadata from the input stream. See Extract Metadata, on page 67 for more
information.

Syntax

BOOL pascal _export fpGetSummaryInfo(
 void *pContext,
 KVInputStream *pInput,

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 147 of 346

 KVSummaryInfoEx *pSummary,
 BOOL bFree);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure points to the input stream that contains the source for the conversion. See
KVInputStream, on page 175.

pSummary A pointer to the developer-assigned instance of KVSummaryInfoEx.

In this structure, nElem provides a count of the number of metadata elements, and pElem
points to the first element of the array of individual elements as defined by the structure
KVSumInfoElemEx. See KVSummaryInfoEx, on page 180.

bFree A flag to free or fill thememory allocated to the document metadata.

Returns

l If the call is successful, the return value is TRUE. When the document does not contain metadata,
but the document reader can extract metadata from the specified format, this function returns TRUE
with nElem set to 0.

l If this call is unsuccessful, the return value is FALSE. This function returns FALSE when the
document reader does not support metadata extraction for the specified format, or there is an error in
extraction. The section Supported Formats, on page 225 lists the file formats for whichmetadata
can be determined.

Discussion

l Formetadata to be extracted by Export, metadatamust be defined in the source document, and the
document reader must be able to extract metadata for the file format. Supported Formats, on page
225 lists the file formats for whichmetadata can be determined. Export does not generatemetadata
automatically from the document contents.

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l You can call this function at any time after the call to KVXMLInit().
l When converting out of process, this functionmust be called after the call to

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession().
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

l Call this function with bFree set to FALSE to return an array of KVSummaryInfoEx structures, each
containing an element of available document metadata.

l After processing the information in the structure, call this function with bFree set to TRUE to free the
memory allocated to the document metadata.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 148 of 346

fpInit()

This function initializes an Export session. Its return value, pContext, is passed as the first parameter
to the File Extraction interface and all other Export functions.

Syntax

void* pascal _export fpInit(
 KVMemoryStream *pMemAllocator,
 char *pszKeyViewDir,
 char *pszDataFile,
 KVErrorCode *pError,
 DWORD dWord);

Arguments

pMemAllocator A pointer to a developer-definedmemory allocator. If NULL is passed, the default C
run-timememory allocation is used.

pszKeyViewDir A pointer to the directory where the Export components are located. This is
normally the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

pszDataFile A pointer to the directory and file name of the Export data file, formats_e.ini.
This file determines whether a format is supported. If a format does not exist in this
file, the conversion fails.

The formats_e.ini file is normally stored in the directory install\OS\bin, where
install is the path name of the Export installation directory and OS is the name of
the operating system. See File Format Detection, on page 311 for more
information.

pError A pointer to an error code defined in KVErrorCode or KVErrorCodeEx in kvtypes.h.
See KVErrorCode, on page 206 and KVErrorCodeEx, on page 208.

dWord Reserved. Must be 0.

Returns

l If the call is successful, the return value is a pointer passed to all other functions.
l If the call is unsuccessful, the return value is a NULL pointer.

Discussion

l If pszKeyViewDir is NULL, the required components cannot be found. Ensure that it is valid.
l If this function returns NULL, check stderr for the KeyView installation error messages, "KeyView

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 149 of 346

Export SDK License Key has Expired" and "KeyView Export SDK License Key is
Invalid", and pass them to your application. See theExport SDK Installation Instructions for more
information on the KeyView license feature.

l To ensuremultithreaded conversions are thread-safe, youmust create a unique context pointer for
every thread by calling fpInit(). In addition, threads must not share context pointers, and the same
context pointer must be used for all API calls in the same thread. Creating a context pointer for every
thread does not affect performance because the context pointer uses minimal resources.

l When the conversion context is no longer required, it should be terminated by calling fpShutdown().
See fpShutDown(), on the next page.

Example

The following sample code is from the cnv2xml sample program:

pKVXML = (*KVXMLInt.fpInit)(NULL, ".", NULL, &error, 0);
if(!pKVXML)

{
 printf("Error initializing KVXML: %d\n", error);
 mpFreeLibrary(hKVXML);
 return 4;
 }

fpSetStyleMapping()

This function is used to set themapping for user-defined styles. Export does not make a distinction
between paragraph styles or character styles, but operates under the assumption that each style has a
unique name.

Syntax

BOOL pascal _export fpSetStyleMapping(
 void *pContext,
 KVStyle *pStyles,
 int iStyles,
 BOOL bCopy);

Arguments

pContext A pointer returned from fpInit().

pStyles A pointer to the developer-assigned instance of KVStyle. See KVStyle , on page 179.
The KVStyle structure defines the elements of a custom style.

iStyles The number of elements in the pStyles array.

bCopy If Export is to allocatememory to copy the pStyles array, set this to TRUE. If pStyles
remains valid throughout the conversion process, set this to FALSE.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 150 of 346

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE.

Discussion

l Paragraph styles are presently implemented only for documents in Microsoft Word, RTF, Folio Flat
files, WordPro, andWordPerfect 6.x.

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, this functionmust be called after the call to

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), on page 161.

l After this API function is called, the styles are valid until fpShutDown() is called, or until this
function is called again with a new style or NULL.

fpShutDown()

This function terminates an Export session that was initialized by fpInit(), and frees allocated
system resources. It is called when the conversion context is no longer required.

Syntax

void pascal _export fpShutDown(KVHTMLContext *pContext);

Arguments

pContext A pointer returned from fpInit().

Returns

None.

Discussion

After this function is called, the pContext pointer must not be passed to any XMLExport API.

fpValidateTemplate()

This function is used to ensure that themarkup is well-formed and valid according to the DTD. It is
currently not implemented.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 151 of 346

KVXMLConfig()

This function is called directly and provides a way to configure options prior to the document
conversion. Currently, the function is used for the following configurations:

l Generate output without images
Generate output with verbosemarkup andwithout images. To generate output withminimalmarkup
(ID and style paragraph attributes) andwithout images, set the bIndexOnlymember of the
KVXMLOptions structure. See KVXMLOptions, on page 190.

l Enable PDF position information
Include position information in themarkup generated for a PDF document.

l Configure PDF bookmarks
Specify whether bookmarks in a PDF file are converted to simple XLinks in the XML output.

l Configure Word bookmarks
Disable the conversion of Microsoft Word bookmarks to zone elements.

l Designate temporary directory
Specify a directory in which temporary files created during XML conversion processes are stored.

NOTE: Note:OnWindows systems, there is a 64 K size limit to the temporary directory.
When the limit is reached, youmust either create a new directory or delete the contents of
the existing directory; otherwise, youmight receive an error message.

l Configure XML conversion
Specify the elements and attributes extracted from an XML document based on the files document
type.

l Enable PDF logical reading order
Convert paragraphs in PDF files in the order in which they appear on the page and with left-to-right or
right-to-left paragraph direction. See Convert PDF Files to a Logical Reading Order, on page 81.

l Configure PDF soft hyphens
Specify whether soft hyphens are removed from the XML output. See Control Hyphenation, on page
84.

l Enable Revision Marks
Convert text and graphics that were deleted from a document with revision tracking enabled and
include revision tracking information in the XML output. Convert Revision Tracking Information, on
page 79.

l Protected file password
Specify the password to use to open a password-protected file for export.

l Specify output character set for summary information
Specify the output character set for the document's metadata, when using fpGetSummaryInfo().

l Include position and invisible text tokens (with bounding boxes) in the output
Add top, left, height, width, and rotation attributes to <p> elements.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 152 of 346

Syntax

KVErrorCode pascal KVXMLConfig(
 void *pContext,
 int nType,
 int nValue,
 void *p);

Arguments

pContext A pointer returned from fpInit().

nType The configuration flag. This is a symbolic constant defined in kvtypes.h. The available
options are described in Configuration Flags, below.

nValue The integer value defined for the flags above.

This is TRUE or FALSE for all flags except KVCFG_LOGICALPDF, KVCFG_
SETMETADATACHARSET, KVCFG_SETTEMPDIRECTORY, and KVCFG_SETXMLCONFIGINFO.

For KVCFG_LOGICALPDF, this is one of the paragraph direction options defined in the
LPDF_DIRECTION enumerated type in kvtypes.h. See LPDF_DIRECTION, on page 222.

For KVCFG_SETTEMPDIRECTORY and KVCFG_SETXMLCONFIGINFO, this is not set.

For KVCFG_SETMETADATACHARSET, nValue is a character set enumerated in KVCharSet of
kvtypes.h. See Convert Character Sets, on page 70.

p The data for the configuration flag.

This is NULL for all flags except KVCFG_SETTEMPDIRECTORY and KVCFG_
SETXMLCONFIGINFO.

For KVCFG_SETTEMPDIRECTORY, this is path to the directory where temporary files are
stored.

For KVCFG_SETXMLCONFIGINFO, this is a pointer to the KVXConfigInfo structure. See
KVXConfigInfo, on page 181.

For KVCFG_SETPASSWORD, this is the source file password.

Configuration Flags

The following flags are available for the nType argument in KVXMLConfig(). These flags are defined in
kvtypes.h.

Flag Description

KVCFG_
SUPPRESSIMAGES

If you set KVCFG_SUPPRESSIMAGES, the XML output includes verbosemarkup,
but no images. If you do not set this option, embedded images in a document
are regenerated as separate files and stored in the output directory. To

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 153 of 346

Flag Description

KVXMLOptions structure to TRUE. KVXMLOptions, on page 190.

KVCFG_
ENABLEPOSITIONI
NFO

If you set KVCFG_ENABLEPOSITIONINFO, a position element is included in the
markup for PDF documents. The position element defines the absolute
position of the text relative to the bottom left corner of the page, and includes
additional information such as font and color.

KVCFG_
SETMETADATACHAR
SET

This option enables you to specify the output character set for metadata when
using fpGetSummaryInfo(). nValue is a character set enumerated in
KVCharSet of kvtypes.h. See Convert Character Sets, on page 70. This
function should be called before fpGetSummaryInfo().

KVCFG_
SUPPRESSTOCPRIN
TIMAGE

If you set KVCFG_SUPPRESSTOCPRINTIMAGE, bookmarks in a PDF file are not
converted to simple XLinks in the XML output. By default, PDF bookmarks are
converted to source and destination anchors. For example,

<a xmlns:xlink="http://www.w3.org/TR/xlink"
xlink:href="#bmk1">Highlight File Format
<a xmlns:xlink="http://www.w3.org/TR/xlink" name="bmk1">

KVCFG_
DISABLEZONE

If you set KVCFG_DISABLEZONE, the conversion of Microsoft Word bookmarks
to zone elements (<zone name ="xxx">) in the output XML is disabled.

A bookmark in Microsoft Word documents is a name given to a selected area
of the document. The bookmark might enclose words, paragraphs, tables,
table cells, lists, list items, or the entire document. In XML Export, bookmarks
are converted to zone elements (<Zone name="xxx">) by using the KeyView
KVT_ZONE token.

Depending on how bookmarks are defined in the original document, the
creation of zone elements might result in malformed XML. In this case, you can
disable zone creation to avoid these validity errors. Zone element creation is
enabled by default.

KVCFG_
SETTEMPDIRECTOR
Y

The KVCFG_SETTEMPDIRECTORY flag enables you to specify the directory in
which temporary files created during conversion processes are stored. By
default, the system temporary directory is used.

To define a directory for temporary files generated during an out-of-process
conversion, set the tempfilepath parameter in the formats_e.ini file. See
Convert Files Out of Process, on page 26.

NOTE:OnWindows systems, there is a 64 K size limit to the temporary
directory. When the limit is reached, youmust either create a new directory or
delete the contents of the existing directory; otherwise, youmight receive an
error message.

KVCFG_
SETXMLCONFIGINF
O

The KVCFG_SETXMLCONFIGINFO flag enables you to define which elements and
attributes are extracted from XML documents with a specified format ID or root
element. You can use this to override the default settings for the supported

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 154 of 346

Flag Description

XML formats (see Convert XML Files, on page 90), or to define settings for
custom XML document types.

The settings are defined in the KVXConfigInfo structure (see KVXConfigInfo,
on page 181). To set custom settings for more than one document type, call the
KVXMLConfig() function once for each type.

You can alsomodify element extraction settings by using the kvxconfig.ini
file. See Configure Element Extraction for XMLDocuments, on page 90.

KVCFG_
LOGICALPDF

The KVCFG_LOGICALPDF flag converts paragraphs in a PDF file in the order in
which they appear on the page (logical reading order). The nValue argument
specifies the paragraph direction. See Convert PDF Files to a Logical Reading
Order, on page 81.

KVCFG_
DELSOFTHYPHEN

If you set KVCFG_DELSOFTHYPHEN, soft hyphens in the source document are
removed, and the hyphenated words are joined in the XML output. By default,
soft hyphens aremaintained. See Control Hyphenation, on page 84.

Micro Focus recommends that you remove soft hyphens if you use Export to
generate text output for an indexing engine or are not concerned with
maintaining the document’s layout. See fpConvertStream(), on page 135 or
KVXMLConvertFile(), on page 159 for more information on running Export in
index mode.

KVCFG_
INCLREVISIONMAR
K

If you set this flag to TRUE, text and graphics that were deleted from a
document with a revision tracking feature enabled are converted, and revision
tracking information is included in the XML output.

To reset the flag and exclude deleted content and revision tracking information
from the XML output, set the flag to FALSE. See Convert Revision Tracking
Information, on page 79. The default is FALSE.

KVCFG_WP_
NOCOMMENTS

Set KVCFG_WP_NOCOMMENTS to TRUE not to export text from comments in
Microsoft Word documents. Comment text is exported by default from
Microsoft Word 97 to 2003 files.

You can also toggle comment output by modifying the formats_e.ini file. See
Show Hidden Data, on page 95.

KVCFG_WP_
SHOWHIDDENTEXT

Set KVCFG_WP_SHOWHIDDENTEXT to TRUE to export hidden text fromMicrosoft
Word documents.

KVCFG_WP_
SHOWDATEFIELDCO
DE

Set KVCFG_WP_SHOWDATEFIELDCODE to TRUE to export date field codes from
Microsoft Word documents.

KVCFG_WP_
SHOWFILENAMEFIE
LDCODE

Set KVCFG_WP_SHOWFILENAMEFIELDCODE to TRUE to export the file name field
code fromMicrosoft Word documents.

KVCFG_SS_
SHOWHIDDENINFOR

Set KVCFG_SS_SHOWHIDDENINFOR to TRUE to export hidden information from

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 155 of 346

Flag Description

Microsoft Excel files.

KVCFG_SS_
SHOWCOMMENTS

Set KVCFG_SS_SHOWCOMMENTS to TRUE to export comments fromMicrosoft
Excel files.

KVCFG_SS_
SHOWFORMULA

Set KVCFG_SS_SHOWFORMULA to TRUE to export formulas fromMicrosoft Excel
files.

KVCFG_PG_
HIDEHIDDENSLIDE

Set KVCFG_PG_HIDEHIDDENSLIDE to TRUE not to export hidden slides from
Microsoft PowerPoint files.

KVCFG_PG_
HIDECOMMENT

Set KVCFG_PG_HIDECOMMENT to TRUE not to export comments fromMicrosoft
PowerPoint files. Comments are exported by default from PowerPoint 97 to
2000 files.

KVCFG_PG_
SHOWCOMMENTSSLI
DE

Set KVCFG_PG_SHOWCOMMENTSSLIDE to TRUE to export comments slides from
Microsoft PowerPoint 2003 and 2007 files.

KVCFG_PG_
SHOWSLIDNOTES

Set KVCFG_PG_SHOWSLIDNOTES to TRUE to export slide notes fromMicrosoft
PowerPoint files.

You can also toggle slide note output by modifying the formats_e.ini file.
See Show Hidden Data, on page 95.

KVCFG_
SETPASSWORD

This flag enables you to define a password used to open a password-protected
file for export. See Export Password Protected Files, on page 344.

nValue is TRUE.

p is the source file password, which can have amaximum length of 255
characters (the final byte is null).

KVCFG_
POSITIONINFOOUT
PUTTYPE

This flag enables you to extend the existing <p> tags to include bounding box
information.

Returns

The return value is one of the error codes defined in KVErrorCode in kvtypes.h.

Discussion

l Youmust call this function after the call to fpInit() and before the call to fpConvertStream() or
KVXMLConvertFile().

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, youmust call this function after the call to KVXMLStartOOPSession

() and before the call to KVXMLEndOOPSession(). See KVXMLStartOOPSession(), on page 165 and
KVXMLEndOOPSession(), on page 161.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 156 of 346

Examples

l To generate verbosemarkup, but no images:

(*fpXMLConfig)(pKVXML, KVCFG_SUPPRESSIMAGES, TRUE, NULL);

l To produce summary information in UTF8:

(*fpXMLConfig)(pKVXML, KVCFG_SETMETADATACHARSET, KVCS_UTF8, NULL);

l To specify bookmarks in a PDF file are not converted to XLinks in the XML output:

(*fpXMLConfig)(pKVXML, KVCFG_SUPPRESSTOCPRINTIMAGE, TRUE, NULL);

l To disable the conversion of zone elements:

(*fpXMLConfig)(pKVXML, KVCFG_DISABLEZONE, TRUE, NULL);

l To set a directory for temporary files:

char tmpDir[250];
strcpy (tmpDir, "c:\\temp\\xmlexport");
(*fpXMLConfig)(pKVXML, KVCFG_SETTEMPDIRECTORY, 0, tmpDir);

l To specify custom extraction settings for conversion of an XML file:

KVXConfigInfo xinfo; /* populate xinfo */
(*fpXMLConfig)(pKVXML, KVCFG_SETXMLCONFIGINFO, 0, &xinfo);

l To specify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is left to right:

(*fpXMLConfig)(pKVXML, KVCFG_LOGICALPDF, LPDF_LTR, NULL);

l To specify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is right to left:

(*fpXMLConfig)(pKVXML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);

l To specify PDF files are converted to a logical reading order, and the paragraph direction for the PDF
output is determined on the fly for each page:

(*fpXMLConfig)(pKVXML, KVCFG_LOGICALPDF, LPDF_AUTO, NULL);

l To specify soft hyphens are removed from the XML output:

(*fpXMLConfig)(pKVXML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);

l To convert text and graphics that are identified by revisonmarks:

(*fpXMLConfig)(pKVXML, KVCFG_INCLREVISIOMARK, TRUE, NULL);

l To toggle hidden data output fromMicrosoft Word documents, use one of the KVCFG_WP flags:

(*fpXMLConfig)(pKVXML, KVCFG_WP_NOCOMMENTS, TRUE, NULL);

l To toggle hidden data output fromMicrosoft Excel documents, use one of the KVCFG_SS flags:

(*fpXMLConfig)(pKVXML, KVCFG_SS_SHOWHIDDENINFOR, TRUE, NULL);

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 157 of 346

l To toggle hidden data output fromMicrosoft PowerPoint documents, use one of the KVCFG_PG flags:

(*fpXMLConfig)(pKVXML, KVCFG_PG_HIDEHIDDENSLIDE, TRUE, NULL);

l To specify a password to open a password-protected file for export:

(*fpXMLConfig)(pKVXML, KVCFG_SETPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.
l To include a position element in themarkup for PDF documents:

(*fpXMLConfig)(pKVXML, KVCFG_ENABLEPOSITIONINFO, TRUE, NULL);

Using the PDF position element significantly changes the generatedmarkup. For example, without
the option, the XML output from a section of a PDF document looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE VerityXMLExport (View Source for full doctype...)>

- <VerityXMLExport>
- <WP>
- <p id="p1" font-size="33pt">

Economic Fiscal Update
Theand
October 30, 2002
Overview
</p>

With the option enabled, the same section of the PDF document looks like this:

<?xml version="1.0" encoding="utf-8" ?>
 <!DOCTYPE VerityXMLExport (View Source for full doctype...)>
- <VerityXMLExport>
- <WP>
 <Position style="position:absolute;top:534px;left:254px;font-family:'Times New
Roman';font-size:33pt;white-space:nowrap;" />
 <Position style="position:absolute;top:393px;left:254px;white-space:nowrap;" />

 <Position style="position:absolute;top:308px;left:256px;font-family:'Times New
Roman';font-size:33pt;white-space:nowrap;" />
 Economic
 <Position style="position:absolute;top:346px;left:256px;font-family:'Times New
Roman';font-size:33pt;white-space:nowrap;" />
 Fiscal Update
 <Position style="position:absolute;top:298px;left:281px;font-family:'Times New
Roman';font-size:18pt;color:#777777;background-color:#ffffff;white-space:nowrap;"
/>
 The
 <Position style="position:absolute;top:336px;left:299px;font-family:'Times New
Roman';font-size:18pt;color:#777777;background-color:#ffffff;white-space:nowrap;"
/>
 and

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 158 of 346

 <Position style="position:absolute;top:543px;left:397px;font-family:'Times New
Roman';font-size:14pt;color:#ffffff;background-color:#000000;white-space:nowrap;"
/>
 October 30, 2004
 <Position style="position:absolute;top:627px;left:382px;font-family:'Times New
Roman';font-size:29pt;color:#a4a4a4;background-color:#ffffff;white-space:nowrap;"
/>
 Overview

l To include position information in attributes of <p> tags:

(*fpXMLConfig)(pKVXML, KVCFG_ENABLEPOSITIONINFO, TRUE, NULL);
(*fpXMLConfig)(pKVXML, KVCFG_POSITIONINFOOUTPUTTYPE, KVPIOT_ATTRIBUTES, NULL);

In this mode, each piece of content output by the reader with a position is put in its own <p> element.
Line break (
) tags are not included in the output.
The <p> tags have position information, when this information is available from the reader. These are
included in new attributes of the <p> tag: top, left, height, width, and rotation.
The top, left, width, and height attributes are all expressed in pixels. The top and left attributes
give the coordinates of the top left corner of the content (an image, text box, and so on) relative to the
top left corner of the page. The width and height attributes are the width and height of the content.
Rotation is expressed in degrees, and gives the clockwise rotation of the content about the top left
corner. If the rotation attribute is not present, the rotation is assumed to be zero.

NOTE:
Not all readers output all these attributes for all pieces of content. Only pdf2sr outputs width,
height and rotation information for text. pdf2sr does not put height and width attributes on
<p> tags that enclose images; rather, the tags themselves have the height and width.
For example:

<p id="p1" font-size="12pt" top="0px" left="0px"></p>
<p id="p2" font-family="MyriadPro-It" font-size="16pt" top="59px"
left="129px" height="21px" width="447px"><i>Aufforderung zur Einreichung
von Vorschlägen 2005:
</i></p>

KVXMLConvertFile()

This function is called directly and converts a source file to an output file.

Syntax

BOOL pascal KVXMLConvertFile (
 void *pContext,
 void *pCallingContext,
 char *pInFileName,
 char *pOutFileName,

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 159 of 346

 KVXMLTemplate *pTemplates,
 KVXMLOptions *pOptions,
 KVXMLTOCOptions *pTOCCreateOptions,
 KVXMLCallbacks *pCallbacks,
 BOOL bIndex,
 KVErrorCode *pError)

Arguments

pContext A pointer returned from fpInit().

pCallingContext A pointer passed back to the callback functions.

pInFileName A pointer to the input file.

pOutFileName A pointer to the output file.

pTemplates A pointer to the data structure KVXMLTemplate data structure. It defines the
overall structure of the output. Individual elements within the structure define
themarkup written at specific points in the output stream. See
KVXMLTemplate, on page 198.

If this pointer is NULL, the default values for the structure are used.

pOptions A pointer to the data structure KVXMLOptions. It defines the options that
control themarkup written in response to the general style and attributes (font,
color, and so on) of the document. See KVXMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

pTOCCreateOptions A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.

pCallbacks A pointer to the KVXMLCallbacks data structure. It is a structure of functions
that Export calls for specific, user-defined purposes. See KVXMLCallbacks,
on page 182.

If callbacks are not used, this can be NULL.

bIndex Set bIndex to TRUE to generate output with minimal markup and without
images. Because the generated output is minimized to textual content, it is
suitable for an indexing engine. If bIndex is set to FALSE, embedded images in
a document are regenerated as separate files and stored in the output
directory.

This can also be set through the bNoPicturesmember in the template files.

pError A pointer to an error code if the call to KVXMLConvertFile() fails.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 160 of 346

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l Only pContext, pInFileName, pOutFileName, and bIndex are required. All other pointers should be
NULL when they are not set.

l If pCallbacks is NULL, pOptions->pszDefaultOutputDirectorymust be valid, except when you
set bIndex to TRUE.

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, this functionmust be called after the call to

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), on page 165 and KVXMLEndOOPSession(), below.

l When converting out of process, the values for the KVXMLTemplate, KVXMLOptions, and
KVXMLTOCOptions structures should be set to NULL. These structures are already passed in the call
to KVXMLStartOOPSession(). See KVXMLStartOOPSession(), on page 165.

Example

if(!(*KVXMLInt.KVXMLConvertFile)(
 pKVXML, /* Pointer returned by fpInit() */
 NULL, /* Pointer for callback functions */
 &InputFile, /* Input file */
 &OutputFile, /* Output file */
 &XMLTemplates, /* Markup and related variables */
 &XMLOptions, /* Options */
 NULL, /* TOC options */
 NULL, /* A pointer to callback functions */
 FALSE, /* Index mode */
 &error)) /* Error return value */
{
 printf("Error converting %s to XML %d\n", argv[i - 1], error);
}
else
{
 printf("Conversion of %s to XML completed.\n\n", argv[i - 1]);
}

KVXMLEndOOPSession()

This function terminates the current out-of-process conversion session, and releases the source data
and resources related to the session.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 161 of 346

Syntax

BOOL pascal KVXMLEndOOPSession(
 void *pContext,
 BOOL bKeepServantAlive,
 KVErrorCodeEx *pError
 DWORD dwOptions,
 void *pReserved1,
 void *pReserved2);

Arguments

pContext A pointer returned from fpInit().

bKeepServantAlive Set bKeepServantAlive to TRUE to keep a Servant process
active after the Export out-of-process session is terminated. If
the Servant remains active, subsequent conversion requests
are processedmore quickly because the Servant is already
prepared to receive data.

Set bKeepServantAlive to FALSE to terminate the Export out-
of-process session and the associated Servant process.

pError A pointer to an error code defined in KVErrorCodeEx in
kvtypes.h.

dwOptions Reserved for future use.

pReserved1 Reserved for future use.

pReserved2 Reserved for future use.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Example

The following sample code is from the cnv2xmloop sample program:

/* declare endsession function pointer */
BOOL (pascal *fpKVXMLEndOOPSession)(void *,
 BOOL ,
 KVErrorCode *,
 DWORD ,
 void *,
 void *);

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 162 of 346

/* assign OOP endsession function pointer */
fpKVXMLEndOOPSession = (BOOL (pascal *)(void *,
 BOOL ,
 KVErrorCode *,
 DWORD ,
 void *,
 void *))mpGetProcAddress(hKVXML,
"KVXMLEndOOPSession");
if(!fpKVXMLEndOOPSession)
{
 printf("Error assigning KVXMLEndOOPSession() pointer\n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);

 mpFreeLibrary(hKVXML);
 return 8;
}
/********END OOP SESSION, DO NOT KEEP SERVANT ALIVE *********/
if(!(*fpKVXMLEndOOPSession)(pKVXML,
 FALSE,
 &error,
 0,
 NULL,
 NULL))
{
 printf("Error calling fpKVXMLEndOOPSession \n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);
(*KVXMLInt.fpShutDown)(pKVXML);

 mpFreeLibrary(hKVXML);
 return 10;
}

KVXMLSetStyleSheet()

This function is called directly and is used to specify the full path and file name of an external Style
Sheet (XSL or CSS).

Syntax

BOOL pascal KVXMLSetStyleSheet(
 void *pContext,
 char *pszStyleSheetName,
 char *pszRef);

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 163 of 346

Arguments

pContext A pointer returned from fpInit().

pszStyleSheetName A pointer to the full path and file name of the style sheet.

pszUrlRef A pointer to the URL or file name of style sheet.

Returns

l If the call is successful, the return value is TRUE.
l If this call is unsuccessful, the return value is FALSE.

Discussion

l When the value for eStyleSheetType in KVXMLOptions is set to XML_XSL or XML_CSS, an external
style sheet is referenced by a processing instruction of the form:
<?xml-stylesheet href="pszRef" type="text/xsl"?>

or

<?xml-stylesheet href="pszRef" type="text/css"?>

l If the value for pszStyleSheetName includes the output directory, the href only consists of the file
name since the XML output resides in the same directory as the style sheet file.

l If the value for pszStyleSheetName points to a directory other than the output directory, the href
consists of the full path and file name.

l Style sheet information cannot be written to an external XSL file. XML Export can only reference an
existing XSL style sheet.

l When XML_CSS is specified, a CSS file can be created based on pszStyleSheetName.
l If the name of the CSS is not specified by using this function, a CSS style file is created with an
automatically-generated file name.

l If this function is used to specify the name of the style file, that file is referenced in the processing
instruction.
o If the CSS file does not exist in the specified location, it is created.
o If it exists, but is empty, CSS styles are written to it.
o If the CSS file exists and is not empty, the file is not altered. There is no attempt made to validate

the file.
l If there aremultiple calls made to fpConvertStream() or KVXMLConvertFile(), and the name of
the style sheet has been set with KVXMLSetStyleSheet, the file name can be disabled by calling
KVXMLSetStyleSheet again with the pszStyleSheetName and pszRef set to NULL. The file name
can then be set to a different value by calling KVXMLSetStyleSheet with the new file name prior to
the next call to fpConvertStream() or KVXMLConvertFile().

l This function runs in-process or out of process. See Convert Files Out of Process, on page 26.
l When converting out of process, this functionmust be called after the call to

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 164 of 346

KVXMLStartOOPSession() and before the call to KVXMLEndOOPSession(). See
KVXMLStartOOPSession(), below and KVXMLEndOOPSession(), on page 161.

KVXMLStartOOPSession()

This function performs the following:

l Initializes the out-of-process session.
l Specifies the input stream or file.
l Sets conversion options in the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data
structures.

l Creates a Servant process.
l Establishes a communication channel between the application thread and the Servant.
l Sends the data to the Servant.

Syntax

BOOL pascal KVXMLStartOOPSession(
 void *pContext,
 KVInputStream *pInputStream,
 char *pFileName,
 KVXMLTemplate *pTemplates,
 KVXMLOptions *pOptions,
 KVXMLTOCOptions *pTOCCreateOptions
 DWORD *pPID,
 KVErrorCode *pError
 DWORD dwOptions,
 void *pReserved1,
 void *pReserved2);

Arguments

pContext A pointer returned from fpInit().

pInputStream A pointer to the developer-assigned instance of KVInputStream. The
KVInputStream structure defines the input stream containing the source for
the conversion.

If pInput is defined, pFileNamemust be NULL. The input data can be defined
as a data stream or file, but not both.

pFileName A pointer to the file to be converted. The file must exist on the same file
system as the Servant.

If pFileName is defined, pInputmust be NULL. The input data can be defined
as a data stream or file, but not both.

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 165 of 346

pTemplatesEx A pointer to the KVXMLTemplate data structure. It defines the overall structure
of the output. Individual elements within the structure define themarkup
written at specific points in the output stream. See KVXMLTemplate, on page
198.

If this pointer is NULL, the default values for the structure are used.

pOptionsEx A pointer to the KVXMLOptions data structure. It defines the options that
control themarkup written in response to the general style and attributes (font,
color, and so on) of the document. See KVXMLOptions, on page 190.

If this pointer is NULL, the default values for the structure are used.

pTOCCreateOptions A pointer to the KVXMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVXMLTOCOptions, on
page 202.

If this pointer is NULL, the default values for the structure are used.

pPID The address of a DWORD into which the Servant process ID is returned.

pError A pointer to an error code defined in KVErrorCode in kvtypes.h.

dwOptions Reserved for future use.

pReserved1 Reserved for future use.

pReserved2 Reserved for future use.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l After the out-of-process session is started successfully, all conversion functions can be called. The
data is then processed on the Servant until the session is terminated by a call to
KVXMLEndOOPSession(), on page 161.

l All functions that can run out of process must be called within the out-of-process session, that is,
after the call to KVXMLStartOOPSession(), and before the call to KVXMLEndOOPSession().

l The KVXMLConvertFile(), and fpGetSummary() functions can be called only once in a single out-
of-process session.

l Because the KVXMLTemplate, KVXMLOptions, and KVXMLTOCOptions data structures are passed by
this function, the same pointers in the call to KVXMLConvertFile() are ignored.

Example

The following sample code is from the cnv2xmloop sample program:

XML Export SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 166 of 346

/* declare OOP startsession function pointer */
BOOL (pascal *fpKVXMLStartOOPSession)(void *,
 KVInputStream *,
 char *,
 KVXMLTemplate *,
 KVXMLOptions *,
 KVXMLTOCOptions *,
 DWORD *,
 KVErrorCode *,
 DWORD ,
 void *,
 void *);
/* assign OOP startsession function pointer */
fpKVXMLStartOOPSession = (BOOL (pascal *)(void *,
 KVInputStream *,
 char *,
 KVXMLTemplate *,
 KVXMLOptions *,
 KVXMLTOCOptions *,
 DWORD *,
 KVErrorCode *,
 DWORD ,
 void *,
 void *))mpGetProcAddress(hKVXML,
"KVXMLStartOOPSession");
if(!fpKVXMLStartOOPSession)
{
 printf("Error assigning KVXMLStartOOPSession() pointer\n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);

 mpFreeLibrary(hKVXML);
 return 7;
}
/********START OOP SESSION *****************/
if(!(*fpKVXMLStartOOPSession)(pKVXML,
 &Input,
 NULL,
 &XMLTemplates, /* Markup and related variables */
 &XMLOptions, /* Options */
 NULL, /* TOC options */
 &oopServantPID,
 &error,
 0,
 NULL,
 NULL))
{
 printf("Error calling fpKVXMLStartOOPSession \n");

(*KVXMLInt.fpFileToInputStreamFree)(pKVXML, &Input);
(*KVXMLInt.fpFileToOutputStreamFree)(pKVXML, &Output);

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 167 of 346

(*KVXMLInt.fpShutDown)(pKVXML);
 mpFreeLibrary(hKVXML);
 return 9;
}

XMLExport SDK C ProgrammingGuide
Chapter 8: XML Export API Functions

KeyView (11.6) Page 168 of 346

Chapter 9: XML Export API Callback Functions

This section describes the XMLExport API callback functions.

• Introduction 169
• Continue() 169
• GetAnchor() 170
• GetAuxOutput() 171
• UserCB() 172

Introduction

The fpConvertStream() and KVXMLConvertFile() functions enable you to specify a callback
function. A callback function controls the conversion while it is in progress. For example, you can
specify a callback function to report progress during the conversion.

To use the API callback functions, declare one or more instances of the KVXMLCallbacks structure.
Eachmember of this instance can then be initialized by assigning a function pointer to the application-
defined callback functions, cast to the appropriate function prototype. Each instance of
KVXMLCallbacks can define unique callback functions. Alternatively, the functions can be common to
all instances of KVXMLCallbacks; these functions take appropriate action, depending on the value of
the pointer pCallingContext.

The second parameter (pCallingContext) of the call to fpConvertStream() and KVXMLConvertFile
() provides a void pointer used to identify the context of this call. If more than one call to
fpConvertStream() or KVXMLConvertFile() is made within a single application, any resulting
callbacks are identified by the first parameter of the callback function. This enables the callback
function to take any appropriate action, depending on which calling context is returned.

The seventh parameter (pCallbacks) of the call to fpConvertStream() and KVXMLConvertFile()
must be set to the address of the KVXMLCallbacks structure to be used for this call.

For sample code, see the sample program xmlcallback.c. It creates an XML stream and
demonstrates the use of the callback functions.

Continue()

When fpConvertStream() or KVXMLConvertFile() is called, control is not returned to the application
until the entire document is processed. This callback function provides ameans of monitoring progress
and terminating the conversion process before the conversion is completed.

Syntax

BOOL (pascal *Continue) (
 void *pCallingContext,

KeyView (11.6) Page 169 of 346

 int nPercentComplete);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to
fpConvertStream() and KVXMLConvertFile().

nPercentComplete The approximate percentage of the current conversion that is completed.

You canmonitor the progress of the conversion by checking the value of
nPercentDone, which indicates how many blocks out of the total number of
blocks have been processed.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

l There is a callback to this function for every entry that appears in the generated table of contents.
l The application is free to execute any required code in the callback function, with the exception of

fpShutDown().

GetAnchor()

This function gets the file name automatically generated by Export and used for external graphics
referenced with <a xmlns:xlink= xlink href=> tags, heading-level table of contents entries, and
external files (such as CSS files and revision summary files).

Syntax

BOOL (pascal *GetAnchor) (
 void *pCallingContext,
 KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
 char *pszAnchor,
 int cbAnchorMax,
 BYTE *pcHTML,
 UINT cbHTML);

Arguments

pCallingContext A pointer that gets passed back to the caller-provided callback functions. This

XML Export SDK C ProgrammingGuide
Chapter 9: XML Export API Callback Functions

KeyView (11.6) Page 170 of 346

pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

eAnchorType The anchor type for the output stream. It must be one of the enumerated types
defined in KVXMLAnchorType.

pszAnchor A pointer to the location where the new anchor is stored.

cbAnchorMax Themaximum number of bytes to place in pszAnchor.

pcHTML This is either NULL or a pointer to one of the following:

l markup defining the contents of a table of contents entry
l the external graphic file name
l the external file name

cbHTML The number of valid bytes in pcHTML.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

l If this callback is NULL, default anchor names are generated. The generated names are unique
across the document.

l This function is called once per block, block chunk, graphic anchor, or extra file. Any required code
can be executed here as long as a unique value for pszAnchor is assigned. If this string is not
unique, an existing file might be overwritten, producing undesirable results. The callback function
should contain the functionality to verify whether files already exist.

l If you want to specify graphic anchor names, but use default anchor names for all other anchors,
provide the graphic names when eAnchorType is VectorPictureAnchor or RasterPictureAnchor.
For all other anchor types, call with the same parameters you were passed.

l pszAnchormust be assigned. It can be derived from the cbAnchorMax, pcHTML, and cbHTML values,
which are also provided.

l pcHTML can be null if the graphic is an internal part of the document.

GetAuxOutput()

This callback function enables the calling application to specify an auxiliary output stream for a block or
graphic.

XML Export SDK C ProgrammingGuide
Chapter 9: XML Export API Callback Functions

KeyView (11.6) Page 171 of 346

Syntax

BOOL (pascal *GetAuxOutput) (
 void *pCallingContext,
 KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
 char *pszAnchor,
 KVOutputStream *pNewOutput);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

eAnchorType A graphic or block anchor as defined by the enumerated types in
KVXMLAnchorType.

pszAnchor A pointer to location where a new anchor is stored. pszAnchor is based on the
call to GetAnchor().

pNewOutput A pointer to a KVOutputStream structure that can be used to write data to the
current block.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

l If GetAuxOutput() is NULL, the pszDefaultOutputDirectorymember of the instance of
KVXMLOptions is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory.

l For each pszAnchor provided, create (malloc) an appropriate I/O structure. Assign pNewOutput-
>pOutputStreamPrivateData to point to that structure. Each remainingmember of the
KVOutputStream should then be initialized by assigning a function pointer to the additional
application-defined functions, cast to the appropriate function prototype for Create(), Write(),
Seek(), Tell(), and Close(). Memory allocated to the I/O structuremust be tracked and can be
freed up within the call to Close(). See the callback.c sample program.

UserCB()

This callback function is triggered by including the $USERCB token in amember of KVXMLTemplate. For
example, placing “$USERCB=my_callback “ in pszFirstH1Start results in a callback at the point

XML Export SDK C ProgrammingGuide
Chapter 9: XML Export API Callback Functions

KeyView (11.6) Page 172 of 346

when pszFirstH1Start is processed. The user callback function is identified by the text assigned to
$USERCB, which in this example is my_callback. This identifier is passed to the argument
pszUserCBid.

Syntax

BOOL (pascal *UserCB) (
 void *pCallingContext,
 char *pszUserCBid,
 KVOutputStream *pNewOutput
 void *pReserved);

Arguments

pCallingContext A pointer that gets passed back to the caller-provided callback function. This
pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

pszUserCBid A pointer to a string that identifies the source of the callback. The identifier must
be delimited by a trailing white space. For example, "my_callback ".

pNewOutput A pointer to a KVOutputStream structure that can be used to write data to the
current block.

pReserved Reserved for future use.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE. Processing is halted.

XML Export SDK C ProgrammingGuide
Chapter 9: XML Export API Callback Functions

KeyView (11.6) Page 173 of 346

Chapter 10: XML Export API Structures

This section provides information on the structures used by the XMLExport API. These structures are
defined in kvxml.h, kvtypes.h, and adinfo.h.

• ADDOCINFO 174
• KVInputStream 175
• KVMemoryStream 176
• KVOutputStream 176
• KVSTR 177
• KVStreamInfo 177
• KVStructHead 178
• KVStyle 179
• KVSumInfoElemEx 180
• KVSummaryInfoEx 180
• KVXConfigInfo 181
• KVXMLCallbacks 182
• KVXMLHeadingInfo 183
• KVXMLImageInfo 185
• KVXMLInterface 186
• KVXMLInterfaceEx 188
• KVXMLOptions 190
• KVXMLTemplate 198
• KVXMLTOCOptions 202

ADDOCINFO

This structure provides the format, file class, and version number of the source document. It is defined
in adinfo.h, and is initialized by calling the fpGetStreamInfo() function. See fpGetStreamInfo(), on
page 147.

typedef struct
{
 ENdocClass eClass;
 ENdocFmt eFormat;
 long lVersion;
 unsigned long ulAttributes;
}
ADDOCINFO, *ADDOCINFOPTR;

KeyView (11.6) Page 174 of 346

Member Descriptions

eClass The file class of the source document (for example, spreadsheet, word processor, or
encapsulation format) as defined by the ENdocClass enumerated type in adinfo.h.

eFormat Themajor format of the source document (such as Microsoft Word or Corel
Presentation) as defined by the ENdocFmt enumerated type in adinfo.h.

lVersion The version number of the file format. The number is multiplied by 1000. For
example, 1.02 is represented by 1020.

ulAttributes Other attributes of the document as defined by the ENdocAttributes enumerated
type in adinfo.h.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format ID, your
code should check that the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVInputStream

This structure defines an input stream for the XML conversion.

typedef struct tag_InputStream
{
 void *pInputStreamPrivateData;
 long lcbFilesize;
 BOOL (pascal *fpOpen) (struct tag_InputStream *);
 UINT (pascal *fpRead) (struct tag_InputStream *, BYTE *, UINT);
 BOOL (pascal *fpSeek) (struct tag_InputStream *, long, int);
 long (pascal *fpTell) (struct tag_InputStream *);
 BOOL (pascal *fpClose)(struct tag_InputStream *);
}
KVInputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library, except fpOpen
(), which returns FALSE on failure. On fpOpen(), if the size of the stream is known, assign that value to
lcbFilesize. Otherwise, set lcbFilesize to 0.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 175 of 346

KVMemoryStream

This structure defines an optional memory allocator to be used by XMLExport. It is initialized by calling
fpInit(). See fpInit(), on page 149.

typedef struct tag_MemoryStream
{
 void *pMemoryStreamPrivateData;
 void * (pascal *fpMalloc)(struct tag_MemoryStream*,size_t);
 void (pascal *fpFree) (struct tag_MemoryStream*, void *);
 void * (pascal *fpRealloc)(struct tag_MemoryStream*,void *, size_t);
 void * (pascal *fpCalloc)(struct tag_MemoryStream*, size_t, size_t);
}
KVMemoryStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

Discussion

l fpRealloc()must handle a NULL pointer.
l For systems that do not support fpRealloc(), refer to the callback sample program, which
demonstrates how to use thememory management features.

l If KVMemoryStream is not provided, the default C run-timememory allocation is used.

KVOutputStream

This structure defines an output stream for the XML conversion.

typedef struct tag_OutputStream
{
 void *pOutputStreamPrivateData;
 BOOL (pascal *fpCreate)(struct tag_OutputStream *,TCHAR *);
 UINT (pascal *fpWrite) (struct tag_OutputStream *, BYTE *, UINT);
 BOOL (pascal *fpSeek) (struct tag_OutputStream *, long, int);
 long (pascal *fpTell) (struct tag_OutputStream *);
 BOOL (pascal *fpClose) (struct tag_OutputStream *);
}
KVOutputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 176 of 346

KVSTR

This structure is used to identify string types (string text and byte count) for the first threemembers of
KVStyle. See KVStyle , on page 179.

typedef struct tag_KVSTR
{
 char *pcString;
 int cbString;
}
KVSTR;

Member Descriptions

pcString A text string.

cbString The length of pcString, excluding the terminating NULL(s). This allows UNICODE or
double bytes to be employed.

KVStreamInfo

This structure defines a document’s character set and format. It is initialized by calling
fpGetStreamInfo(). See fpGetStreamInfo(), on page 147.

typedef struct tag_KVStreamInfo
{
 KVCharSet charset;
 ADDOCINFO adInfo;
}
KVStreamInfo;

Member Descriptions

charset The character set of the source document, if that information is ascertainable. The
available character sets are enumerated in KVCharSet in kvtypes.h. See Convert
Character Sets, on page 70.

adInfo The file class, major format, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h. See
ADDOCINFO, on page 174.

l adInfo.eClass represents the class of the source document, as defined by the
ENdocClass enumerated type.

l adInfo.eFormat represents the format of the source document, as defined by the
ENdocFmt enumerated type.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 177 of 346

l adInfo.lVersion represents the version number of the file format. The number is
multiplied by 1000. For example, 1.02 is represented by 1020.

l adInfo.ulAttributes represents other attributes of the document as defined by the
ENdocAttributes enumerated type.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format ID, your
code should check the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVStructHead

This structure contains the current KeyView version number and is the first member of other structures.
It enables Micro Focus tomodify the structures in future releases, but to maintain backward
compatibility. Before initializing a structure that contains the KVStructHead structure, use themacro
KVStructInit to initialize KVStructHead. The structure andmacro are defined in kvtypes.h.

typedef struct _KVStructHead
{
 WORD version;
 WORD size;
 DWORD reserved;
 void *internal;
} KVStructHeadRec, *KVStructHead;

Member Descriptions

version The current KeyView version number. This is a symbolic constant (KeyviewVersion)
defined in kvxtract.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec.

reserved Reserved for internal use.

internal Reserved for internal use.

Example

KVStructInit(&openArg);

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 178 of 346

KVStyle

This structure defines the style mapping support for KVSTR-defined styles. The first threemembers of
KVStyle are KVSTR structures (see KVSTR, on page 177). Each KVSTR structure contains the text
string and byte count for StyleName, MarkUpStart, and MarkUpEnd. The structure is initialized by
calling the function fpSetStyleMapping().

See fpSetStyleMapping(), on page 150 andMap Styles, on page 74.

XML Export supports both paragraph styles and character styles. It works on the assumption that each
style has a unique name. Only one paragraph style can be active at one time; therefore, the opening of
a new paragraph style automatically closes the previous paragraph style. By contrast, several
character styles can be active at once. When XMLExport receives an EndCharStyle token from the
format parser, themost recent character style is terminated.

typedef struct tag_KVStyles
{
 KVSTR StyleName;
 KVSTR MarkUpStart;
 KVSTR MarkUpEnd;
 DWORD dwFlags;
}
KVStyle;

Member Descriptions

StyleName The name of the word processing style (for example, "Heading 1") to which style
mapping applies. A pointer to the KVSTR structure. See KVSTR, on page 177.

Style names are case sensitive.

MarkUpStart Themarkup added to the beginning of a paragraph or character style. A pointer to the
KVSTR structure. See KVSTR, on page 177.

MarkUpEnd Themarkup added to the end of a paragraph or character style. A pointer to the KVSTR
structure. See KVSTR, on page 177.

dwFlags Instructions on how to process the content associated with a paragraph or character
style. The flag can be one of the types defined in kvtypes.h. They are described in
Flags for Defining Styles, on page 76.

The value associated with each flag is a hexadecimal number. You can set an option
by either entering the converted decimal value, or by entering the flag’s text (for
example, KVSTYLE_PRE).

The value of Flags in the template files is passed to this member of KVStyle.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 179 of 346

Discussion

l This structure applies to word processing documents only.
l By default, XML Export maps the heading style "Heading 1" to <h1></h1>, and so on, for heading
levels 1 through 6. If you use style mappings, the default mapping is overridden. Therefore, youmust
supply markup for all heading levels.

l When the user-definedmarkup in KVStyle conflicts with other markup generated by XMLExport, the
user-definedmarkup takes precedence.

KVSumInfoElemEx

This structure defines the individual metadata elements.

typedef struct tag_KVSumInfoElemEx
{
 int isValid;
 KVSumInfoType type;
 void *data;
 char *pcType;
}
KVSumInfoElemEx;

Member Descriptions

isValid Specifies whether the data value is present in the document. The setting 1 specifies that
the value is valid and exists.

type The data type of themetadata element. The types are defined in the KVSumInfoType
structure in kvtypes.h. See KVSumInfoType, on page 218.

data The content of themetadata field.

If the typemember is KV_Int4 or KV_Bool, this member contains the actual value.
Otherwise, this member is a pointer to the actual value.

KV_DateTime and KV_IEEE8 point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text.

pcType A pointer to the name of themetadata field.

KVSummaryInfoEx

This structure provides a count of the number of metadata elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling the fpGetSummaryInfo()
function. See fpGetSummaryInfo(), on page 147.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 180 of 346

typedef struct tag_KVSummaryInfoEx
{
 int nElem;
 KVSumInfoElemEx *pElem;
}
KVSummaryInfoEx;

Member Descriptions

nElem The number of metadata elements contained in the array. nElem can be zero. This indicates
that the document did not contain metadata, such as an ASCII text document.

pElem Points to the first element of the array of document metadata elements defined by the
KVSumInfoElemExstructure. See KVSumInfoElemEx, on the previous page.

KVXConfigInfo

This structure defines an XML document type and the element extraction settings for that type. The
settings can be applied based on the file format ID, or the file’s root element. This structure is in
kvtypes.h and is initialized by calling the KVHTMLConfig() function. See Convert XML Files, on page
90.

typedef struct TAG_KVXConfigInfo
{
 ENdocFmt eKVFormat;
 char* pszRoot;
 char* pszInMeta;
 char* pszExMeta;
 char* pszInContent;
 char* pszExContent;
 char* pszInAttribute;
}KVXConfigInfo;

Member Descriptions

eKVFormat The format ID as detected by the KeyView detectionmodule. This determines the
file type to which these extraction settings apply. The format ID is defined by the
ENdocFmt enumerated type in adinfo.h. See File Format Detection, on page 311
for more information on format ID values.

If you are adding configuration settings for a custom XML document type, this is
not defined.

pszRoot The file’s root element. When the format ID is not defined, the root element is
used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an Element’s
Namespace and Attribute, on page 94.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 181 of 346

pszInMeta The elements extracted from the file as metadata. All other elements are
extracted as text. Multiple entries must be separated by commas.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

pszExMeta The child elements in the includedmetadata elements that are not extracted from
the file as metadata. For example, the default extraction settings for the Visio
XML format extract the DocumentProperties element as metadata. This element
includes child elements such as Title, Subject, Author, Description, and so
on. However, the child element PreviewPicture is defined in pszExMeta
because it is binary data and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice files.
All metadata is extracted regardless of this setting.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

pszInContent The elements extracted from the file as content text. An asterisk (*) extracts all
elements including child elements.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

pszExContent The child elements in the included content elements that are not extracted from
the file as content text.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 94.

pszInAttribute The attribute values extracted from the file. If attributes are not defined, attribute
values are not extracted. The namespace (if used), element name, and attribute
namemust be defined in the following format:

namespace:elementname@attributename

For example:

microfocus:division@name

KVXMLCallbacks

This structure provides all callbacks that can result from a call to fpConvertStream() or
KVXMLConvertFile(). See fpConvertStream(), on page 135 and KVXMLConvertFile(), on page 159.
Any and all of the function pointers can be NULL.

typedef BOOL (pascal *KVXMLCB_CONTINUE)(
 void *pcallingContext,
 int nPercentDone);
typedef BOOL (pascal *KVXMLCB_GETANCHOR)(
 void *pCallingContext,
 KVXMLAnchorType eAnchorType,
 char *pszAnchor,

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 182 of 346

 Int cbAnchorMax,
 BYTE *pcHTML,
 UINT cbHTML);
typedef BOOL (pascal *KVXMLCB_GETAUXOUTPUT)(
 void *pCallingContext,
 KVXMLAnchorType eAnchorType,
 char *pszAnchor,
 KVOutputStream *pNewOutput);
typedef BOOL (pascal *KVXMLCB_USERCB) (
 void *pCallingContext,
 char *psUserCBid,
 KVOutputStream *pOutput,
 void *pReserved);
typedef struct tag_KVXMLCallbacks
{
 KVXMLCB_CONTINUE fpContinue;
 KVXMLCB_GETANCHOR fpGetAnchor;
 KVXMLCB_GETAUXOUTPUT fpGetAuxOutput;
 KVXMLCB_USERCB fpUserCB;
}
KVXMLCallbacks;

Member Descriptions

l Themembers of this structure are function pointers to the functions described in XML Export API
Callback Functions, on page 169.

l If fpGetAuxOutput() is NULL, the pszDefaultOutputDirectorymember of the instance of
KVXMLOptions is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory. See KVXMLOptions, on page 190.

KVXMLHeadingInfo

This structure defines how XMLExport creates heading information based on the source document’s
content and attributes. Source text is converted to a heading and included in the table of contents if

l it meets all the criteria defined by this structure, and
l you set the headingCreateTypemember of KVXMLTOCOptions to allow automatic heading
generation.

XML Export evaluates the text against eachmember in the order in which themembers appear below.

See KVXMLTOCOptions, on page 202 for more information on automatic generation of headings.

typedef struct tag_KVXMLHeadingInfo
{
 int minParaLen;
 int maxParaLen;
 int fontSizeMin;

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 183 of 346

 int fontSizeMax;
 BOOL bMustBeBold;
 BOOL bMustBeItalic;
 BOOL bMustBeUnderlined;
 BOOL bNonZeroIndent;
 BOOL bNoTabs;
 BOOL bNoMultiSpaces;
 int nSpaceBefore;
 int nSpaceAfter;
}
KVXMLHeadingInfo;

Member Descriptions

minParaLen Theminimum number of characters that a paragraph in the source document
can contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.

The default is 3 for heading levels 1 to 3.

maxParaLen Themaximum number of characters that a paragraph in the source document
can contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.

The default is 80 for heading levels 1 to 3.

fontSizeMin Theminimum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 14 for heading level 1, and 12 for heading levels 2 and 3.

fontSizeMax Themaximum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 20 for heading level 1, and 14 for heading levels 2 and 3.

bMustBeBold If you set bMustBeBold to TRUE, the text in the source document must be bold
tomeet the criteria for heading conversion.

The default is TRUE for heading levels 1 and 2, and FALSE for heading level 3.

bMustBeItalic If you set bMustBeItalic to TRUE, the text in the source document must be
italic to meet the criteria for heading conversion.

The default is FALSE.

bMustBeUnderlined If you set bMustBeUnderlined to TRUE, the text in the source document must
be underlined tomeet the criteria for heading conversion.

The default is FALSE.

bNonZeroIndent If you set bNonZeroIndent to TRUE, the text in the source document must be
indented tomeet the criteria for heading conversion.If you set
bNonZeroIndent to FALSE, the text must be aligned left.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 184 of 346

The default is FALSE.

bNoTabs If you set bNoTabs to TRUE, the text in the source document must not contain
tabs tomeet the criteria for heading conversion.

The default is FALSE.

bNoMultiSpaces If you set bNoMultiSpaces to TRUE, the text in the source document must not
contain two or more contiguous white spaces tomeet the criteria for heading
conversion.

The default is FALSE.

nSpaceBefore The amount of space in TWIPS (20th of a point) that must come before a
paragraph in the source document for the text to meet the criteria for heading
conversion. If –1 is used, the amount of space before the paragraph is not
considered in the heading generation.

The default is 0.

nSpaceAfter The amount of space in TWIPS (20th of a point) that must follow a paragraph in
the source document for the text to meet the criteria for heading conversion. If
–1 is used, the amount of space after the paragraph is not considered in the
heading generation.

The default is 0.

KVXMLImageInfo

This structure contains the dimensions of an image in pixels. It is defined in kvxml.h. Youmust
initialize it by calling KVStructInit() before you obtain image dimensions by using the
fpGetOutputImageInfo() function.

typedef struct tag_KVXMLImageInfo{
KVStructHeader;
int nWidth;
int nHeight;

}
KVXMLImageInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 178.

nWidth The image width in pixels.

nHeight The image height in pixels.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 185 of 346

KVXMLInterface

Themembers of this structure are pointers to the API functions described in XML Export API
Functions, on page 133.

NOTE:
This structure has been superseded by KVXMLInterfaceEx; KVXMLInterfaceEx should be used
instead of KVXMLInterface.

typedef void* (pascal *KVXML_INIT) (
KVMemoryStream *pMemAllocator,
char *pszKeyViewDir,
char *pszDataFile,
KVErrorCode *pError,
DWORD dWord);

typedef void (pascal *KVXML_SHUTDOWN)(void*);
typedef BOOL (pascal *KVXML_CONVERT_STREAM) (

void *pContext,
void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions,
KVXMLCallbacks *pCallbacks,
BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVXML_GET_FILE_LIST)(
void *pContext,
int *pnSize);

typedef BOOL (pascal *KVXML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo);

typedef BOOL (pascal *KVXML_GET_ANCHOR) (
void *pCallingContext,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT cbHTML);

typedef BOOL (pascal *KVXML_INPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVInputStream *pInput);

typedef BOOL (pascal *KVXML_INPUTSTREAM_FREE) (
void *pContext,
KVInputStream *pInput);

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 186 of 346

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVOutputStream *pOutput);

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_FREE)(
void *pContext,
KVOutputStream *pOutput);

typedef KVLanguageID (pascal *KVXML_LANGUAGE_ID)(void *pContext);
typedef BOOL (pascal *KVXML_GET_SUMMARY_INFO)(

void *pContext,
KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree);

typedef BOOL (pascal *KVXML_SET_STYLE_MAPPING) (
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);

typedef BOOL (pascal *KVXML_VALIDATE_TEMPLATE)(
void *pContext,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplate,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCOptions,
KVXMLCallbacks *pCallBalls,
KVMemoryStream *pMemStream)

typedef struct tag_KVXMLInterface
{

KVXML_INIT fpInit;
KVXML_SHUTDOWN fpShutDown;
KVXML_CONVERT_STREAM fpConvertStream;
KVXML_GET_FILE_LIST fpGetConvertFileList;
KVXML_GET_STREAM_INFO fpGetStreamInfo;
KVXML_GET_ANCHOR fpGetAnchor;
KVXML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVXML_INPUTSTREAM_FREE fpFileToInputStreamFree;
KVXML_OUTPUTSTREAM_CREATE fpFileToOutputStreamCreate;
KVXML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVXML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVXML_SET_STYLE_MAPPING fpSetStyleMapping;
KVXML_VALIDATE_TEMPLATE fpValidateTemplate;

}
KVXMLInterface;

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 187 of 346

Member Descriptions

Themembers of this structure are function pointers to the functions described in XML Export API
Functions, on page 133.

KVXML_VALIDATE_TEMPLATE is currently not implemented.

KVXMLInterfaceEx

Themembers of this structure are pointers to the API functions described in XML Export API
Functions, on page 133.

This structure supersedes KVXMLInterface. KVXMLInterfaceEx should be used instead of
KVXMLInterface.

Compared to KVXMLInterface, KVXMLInterfaceEx adds two functions for checking error codes, and
allows for binary compatible extensibility in future releases.

typedef void* (pascal *KVXML_INIT) (
KVMemoryStream *pMemAllocator,
char *pszKeyViewDir,
char *pszDataFile,
KVErrorCode *;,
DWORD dWord);
typedef void (pascal *KVXML_SHUTDOWN)(void*);
typedef BOOL (pascal *KVXML_CONVERT_STREAM) (

void *pContext,
void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplates,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCCreateOptions,
KVXMLCallbacks *pCallbacks,
BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVXML_GET_FILE_LIST)(
void *pContext,
int *pnSize);

typedef BOOL (pascal *KVXML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo);

typedef BOOL (pascal *KVXML_GET_ANCHOR) (
void *pCallingContext,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 188 of 346

UINT cbHTML);
typedef BOOL (pascal *KVXML_INPUTSTREAM_CREATE) (

void *pContext,
char *pszFileName,
KVInputStream *pInput);

typedef BOOL (pascal *KVXML_INPUTSTREAM_FREE) (
void *pContext,
KVInputStream *pInput);

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVOutputStream *pOutput);

typedef BOOL (pascal *KVXML_OUTPUTSTREAM_FREE)(
void *pContext,
KVOutputStream *pOutput);

typedef KVLanguageID (pascal *KVXML_LANGUAGE_ID)(void *pContext);
typedef BOOL (pascal *KVXML_GET_SUMMARY_INFO)(

void *pContext,
KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree);

typedef BOOL (pascal *KVXML_SET_STYLE_MAPPING) (
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);

typedef BOOL (pascal *KVXML_VALIDATE_TEMPLATE)(
void *pContext,
KVOutputStream *pOutput,
KVXMLTemplate *pTemplate,
KVXMLOptions *pOptions,
KVXMLTOCOptions *pTOCOptions,
KVXMLCallbacks *pCallBalls,
KVMemoryStream *pMemStream);

typedef KVErrorCode(pascal *KVXML_GET_KV_ERROR_CODE) (void *);
typedef KVErrorCodeEx(pascal *KVXML_GET_KV_ERROR_CODE_EX) (void *);

typedef struct tag_KVXMLInterfaceEx
{

KVStructHeader;
KVXML_INITEX fpInit;
KVXML_SHUTDOWN fpShutDown;
KVXML_CONVERT_STREAMEX fpConvertStream;
KVXML_GET_FILE_LIST fpGetConvertFileList;
KVXML_GET_STREAM_INFO fpGetStreamInfo;
KVXML_GET_ANCHOREX fpGetAnchor;
KVXML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVXML_INPUTSTREAM_FREE fpFileToInputStreamFree;

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 189 of 346

KVXML_OUTPUTSTREAM_CREATE fpFileToOutputStreamCreate;
KVXML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVXML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVXML_SET_STYLE_MAPPING fpSetStyleMapping;
KVXML_VALIDATE_TEMPLATE fpValidateTemplate;
KVXML_GET_KV_ERROR_CODE fpGetKvErrorCode;

KVXML_GET_KV_ERROR_CODE_EX fpGetKvErrorCodeEx;
}
KVXMLInterfaceEx;

KVXMLOptions

This structure defines the options that control the XMLmarkup written in response to the general style
and attributes (font, color, and so on) of the document. The structure is initialized by calling the
fpConvertStream() or KVXMLConvertFile() function. See fpConvertStream(), on page 135 or
KVXMLConvertFile(), on page 159.

typedef struct tag_KVXMLOptions
{
 BOOL bUseVerityDTD;
 char *pszVerityDTDPath;
 KVXMLStyleSheetType eStyleSheetType
 BOOL bUseExistingStyleSheet;
 char *pszStyleSheet;
 BOOL bIndexOnly;
 KVCharSet eOutputCharSet;
 BOOL bForceOutputCharSet;
 KVCharSet eSrcCharSet;
 BOOL bForceSrcCharSet;
 KVLanguageID eOutputLanguageID;
 BOOL bUseDocumentColors;
 BOOL bUseDocumentFontInfo;
 BOOL bNbspEmptyCells;
 ENSATableBorder eSATableBorder;
 int nTableBorderWidth;
 char *pszBaseURL;
 char *pszMainURL;
 char *pszDefaultOutputDirectory;
 char *pszPicPath;
 char *pszPicURL;
 char *pszJavaURL;
 BOOL bRemoveFileNameSpaces;
 BOOL bRasterizeFiles
 KVXMLGraphicType eOutputRasterGraphicType;
 KVXMLGraphicType eOutputVectorGraphicType;
 int cxVectorToRasterXRes;
 int cyVectorToRasterYRes;
 int nCompressionQuality;

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 190 of 346

 BOOL bGenerateURLs;
 long lcbMaxMemUsage;
 BYTE cReplaceChar;
 BYTE cRedact;
 KVXMLEmptyParaType eEmptyParaType;
 KVXMLHardPageBreakType eHardPageBreakType;
 BOOL bSupportColumnHeadings;
 BOOL bSupportRowHeadings;
 BOOL bSupportCellSpan;
 BOOL bSupportRowSpan;
 BOOL bSupportColumnWidth;
 BOOL bRemoveEmptyColumns;
 BOOL bRemoveEmptyRows;
 BOOL bEnableEmptyRows;
 int nRowsBeforeSplit;
}
KVXMLOptions;

Member Descriptions

bUseVerityDTD Set bUseVerityDTD to TRUE to generate XML based on the Verity
DTD. For more information, see Use the Verity Document Type
Definition (DTD), on page 42. This generates a valid XML document
suitable as a general interchange format. If you set bUseVerityDTD
to FALSE, the XML is based on the source document’s paragraph
structure.

The default is TRUE.

pszVerityDTDPath If youmove the Verity DTD from the default tempout directory to
another output directory, set the string value of pszVerityDTDPath
to the new location. This path is added to the document type
declaration in the XML file.

The default is no path, that is, the DTD is assumed to be in the same
directory as the generated XML files.

eStyleSheetType One of the enumerated options for processing style sheet
information. The options are defined in KVXMLStyleSheetType in
kvxml.h. See KVXMLStyleSheetType, on page 211.

l STYLESHEET_DISABLED—Disables style sheet formatting. This is
the default option.

l XML_CSS—Enables Cascading Style Sheet (CSS) formatting, and
outputs the generated formatting data in an external CSS file
referenced in the XML output as a tag.

l XML_XSL—Enables Extensible Style Sheet Language (XSL)
formatting, and uses an external XSL file referenced in a <?xml-
stylesheet...?> processing instruction.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 191 of 346

bUseExistingStyleSheet Set bUseExistingStyleSheet to TRUE to apply an existing XSL
style sheet or a CSS file to an XML document. The style sheet file
name is inserted into the type declaration at the beginning of the XML
file. The location of the external style sheet file is set by
pszStyleSheet. If pszStyleSheet is not specified and the style
sheet type is XSL, a default XSL style sheet appropriate for the
source document type is used. The default XSL style sheets are:

l wp.xls (for word processing documents)
l ss.xls (for spreadsheets)
l pg.xls (for presentations)
If pszStyleSheet is not specified and the style sheet type is CSS, a
CSS file is created.

Existing style sheets are not validated.

The default is FALSE.

pszStyleSheet The path and file name of an external style sheet.

The default is no path.

bIndexOnly Set bIndexOnly to TRUE to generate output with minimal markup (ID
and style paragraph attributes) and without images. Because the
generated output is minimized to textual content, it is suitable for an
indexing engine. If you set bIndexOnly to FALSE, embedded images
in a document are regenerated as separate files and stored in the
output directory.

The template file named xml_index.ini and the xmlindex sample
program demonstrate the effect of setting bIndexOnly.

To generate output with verbosemarkup and without images, set the
nType argument of the KVXMLConfig() function to KVCFG_
SUPPRESSIMAGES. See KVXMLConfig(), on page 152.

The default is FALSE.

eOutputCharSet The character set to use for textual output. To ensure that the
character set defined here is used, youmust set
bForceOutputCharSet to TRUE. The available character sets are
enumerated in KVCharSet in kvtypes.h. See Convert Character
Sets, on page 70.

Supported Formats, on page 225 lists the file formats for which
character set information can be determined.

The default is KVCS_UNKNOWN.

bForceOutputCharSet Set bForceOutputCharSet to TRUE to use the output character set
specified in eOutputCharSet, regardless of the internal document
information or the source character set specified by eSrcCharSet.
See Convert Character Sets, on page 70.

Forcing a character set to KVCS_UNKNOWN is always ignored.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 192 of 346

The default is FALSE.

eSrcCharSet This option specifies the character set of the document. To ensure
that the character set defined here is used, youmust set
bForceSrcCharSet to TRUE. The available character sets are
enumerated in KVCharSet in kvtypes.h. See Convert Character
Sets, on page 70. Supported Formats, on page 225 lists the file
formats for which character set information can be determined.

The default is KVCS_UNKNOWN.

bForceSrcCharSet Set bForceSrcCharSet to TRUE to use the source character set
specified in eSrcCharSet, regardless of the internal document
information. See Convert Character Sets, on page 70.

Forcing a character set to KVCS_UNKNOWN is always ignored.

The default is FALSE.

eOutputLanguageID The language for the textual output of language-specific data such as
time and date. eOutputLanguageIDmust be in the system locale. If
eOutputLanguageID is invalid or not supplied, the system default is
used. Language IDs are defined in KVLanguageID in kvtypes.h.

The default is Language_UNKNOWN.

bUseDocumentColors Set bUseDocumentColors to TRUE to retain the color attributes
information contained in the source document. If you set
bUseDocumentColors to FALSE, no color attributes appear in the
 tags of the output.

The default is FALSE.

bUseDocumentFontInfo Set bUseDocumentFontInfo to TRUE to retain the font information
contained in the source document. If you set
bUseDocumentFontInfo to FALSE, no font information appears in the
 tags in the output.

The default is FALSE.

bNbspEmptyCells Set bNbspEmptyCells to TRUE to include a non-breaking space
(<td> </td>) in themarkup for empty table cells in the source
document. If you set bNbspEmptyCells to FALSE, <td></td> is
generated for empty table cells.

This option applies to word processing documents and spreadsheets
only.

The default is TRUE.

eSATableBorder This option specifies whether table borders are based on the setting
in the source document, are always on, or are always off. The
options are enumerated in ENSATableBorder in kvtypes.h. See
ENSATableBorder, on page 205.

This option applies to word processing documents only.

The default is SA_BaseOnDocument.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 193 of 346

nTableBorderWidth This option sets the width of the table border in pixels.

This option applies to word processing documents only.

The default is 1.

pszBaseURL The base URL that replaces the $BASE token in the XML output.

The default is NULL.

pszMainURL Themain URL that replaces the $MAIN token in the XML output.

The default is NULL.

pszDefaultOutputDirectory The default output directory for auxiliary files created during the
conversion.

The default is NULL, and the files are placed in the directory in which
your application is running.

pszPicPath The output directory for graphic files created during the conversion. If
specified, this member can also be used by the callback functions
KVXMLGetAnchor and KVXMLGetAuxOutput.

This option applies to word processing documents only.

The default is NULL, and the files are placed in the directory in which
your application is running.

pszPicURL The URL of the graphic files created from embedded graphics in the
source document. To specify a complete image source, this element
must be combined with pszAnchor of the fpGetAnchor callback
function. SeeGetAnchor(), on page 170.

For example, setting pszPicURL to ../cgi-bin/ and setting
pszAnchor to pic.jpg results in the followingmarkup:

<a xmlns:xlink= xlink href="../cgi-bin/pic.jpg">

This option applies to word processing documents only.

The default is NULL.

pszJavaURL The URLwhere the Java rasterizer (kvvector.jar) is located.

The Java rasterizer is not currently enabled.

The default is NULL.

bRemoveFileNameSpaces Set bRemoveFileNameSpaces to TRUE to remove spaces from
generated output file names.

The default is FALSE.

bRasterizeFiles Set bRasterizeFiles to TRUE to rasterize slides from presentations
into single images. Set bRasterizeFiles to FALSE to only extract
text from presentation files. When you set this member to FALSE,
graphics do not appear in the output.

The default is FALSE.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 194 of 346

NOTE:
When bRasterizeFiles is FALSE, the export process uses the
ordering in the file to produce the output, which does not
necessarily match the logical reading order for the
presentation. To use a logical reading order instead, you can
set the LogicalOrder parameter in the [Options] section of
formats_e.ini. See Convert Presentation Files, on page 89.

eOutputRasterGraphicType The output format of rasterized embedded graphics. There are six
options enumerated in KVXMLGraphicType in kvxml.h. See
KVXMLGraphicType, on page 213.

The default is KVGFX_JPEG.

eOutputVectorGraphicType The output format of vector graphics. The options are enumerated in
KVXMLGraphicType in kvxml.h. The default is JPEG. See
KVXMLGraphicType, on page 213. For more information on
converting vector graphics on UNIX or Linux, see Display Vector
Graphics on UNIX and Linux, on page 78.

The default is KVGFX_JPEG.

cxVectorToRasterXRes Specifies the horizontal resolution when converting presentation files
and vector graphics. This is set in conjunction with
cyVectorToRasterYRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 198.

The default value is 0, whichmeans the original resolution is
retained.

cyVectorToRasterYRes Specifies the vertical resolution when converting presentation files
and vector graphics. This is set in conjunction with
cxVectorToRasterXRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 198.

The default value is 0, whichmeans the original resolution is
retained.

nCompressionQuality This option controls the output quality of graphics that support
compression quality (for example, JPEG). A value of 0means
default quality (85 compression); 1 is the lowest quality (highest
compression and therefore the smallest file size); 100 is the highest
quality (no compression and therefore the largest file size).

This option applies to word processing documents only.

The default is 0.

bGenerateURLs Set bGenerateURLs to TRUE to add anchor tags (<a xmlns:xlink=
xlink href=>) to text starting with "www", "http:" or "file:".

This option applies to word processing documents only.

The default is FALSE.

lcbMaxMemUsage Themaximummemory allocated dynamically for token buffers

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 195 of 346

during file processing. If this maximum is reached, Export performs a
swap-to-disk operation internally, and then reuses thememory
blocks. Export maintains an internal minimummemory size.

This option applies to word processing or text documents only.

The default is LONG_MAX. The unit is in bytes.

cReplaceChar The character used when a character in the source document’s
character set cannot bemapped to the output character set.

The default replacement character is a questionmark (?).

cRedact The character that replaces tagged text that has been designated,
through style mapping, to be omitted from the output. This
functionality is useful when you need to hide confidential or sensitive
information.

The specified character is used for all text that has beenmapped to a
style processed with the KVSTYLE_REDACT flag (defined in
kvtypes.h). SeeMap Styles, on page 74.

This option applies to word processing documents only.

The default replacement character is "X".

eEmptyParaType This option determines if paragraphs without content generate
markup or ID attributes in the output file. There are three options
enumerated in KVXMLEmptyParaType in kvxml.h. See
KVXMLEmptyParaType, on page 215.

This option applies to word processing documents only.

The default is KVEPT_SUPPRESS.

eHardPageBreakType This option determines if hard page breaks generatemarkup or ID
attributes in the output file. There are four options enumerated in
KVXMLEmptyParaType in kvxml.h. See
KVXMLHardPageBreakType, on page 215.

This option applies to word processing documents only.

The default is KVHPBT_SUPPRESS.

bSupportColumnHeadings Set bSupportColumnHeadings to TRUE to include column headings
from the source spreadsheet in the output.

This option applies to spreadsheets only.

The default is FALSE.

bSupportRowHeadings Set bSupportRowHeadings to TRUE to include row headings from the
source spreadsheet in the output.

This option applies to spreadsheets only.

The default is FALSE.

bSupportCellSpan Set bSupportCellSpan to TRUE to include colspan="n"markup in
the output.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 196 of 346

This option applies to spreadsheets only.

The default value is FALSE.

bSupportRowSpan Set bSupportRowSpan to TRUE to include row span data from the
source spreadsheet in the output.

This option applies to spreadsheets only.

The default value is FALSE. Currently not supported.

bSupportColumnWidth Set bSupportColumnWidth to TRUE to include columnwidth data
from the source spreadsheet in the output.

This option applies to spreadsheets only.

The default value is FALSE.

bRemoveEmptyColumns Set bRemoveEmptyColumns to TRUE to remove spreadsheet columns
that do not contain data and to disable cell merging.

This option applies to spreadsheets only.

The default is FALSE.

bRemoveEmptyRows Set bRemoveEmptyRows to TRUE to remove spreadsheet rows that do
not contain data or color, and to disable cell merging.

This option applies to spreadsheets only.

The default is FALSE.

bEnableEmptyRows Set bEnableEmptyRows to TRUE to display empty rows in a
spreadsheet format. If you set bEnableEmptyRows to FALSE, empty
rows are not displayed. This applies only to 20 or more consecutive
empty rows.

This option applies to spreadsheets only.

The default is FALSE.

nRowsBeforeSplit The approximate number of spreadsheet rows to be processed
before splitting a table. This helps to prevent large spreadsheet
tables from occurring in a single document, which can cause speed
and processing problems for the browser.

This option applies to spreadsheets only.

The default is 0.

Discussion

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of themembers specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 197 of 346

Set the Resolution of Presentations and Vector Graphics

Themembers cxVectorToRasterXRes and cyVectorToRasterYRes are set in conjunction to specify
the resolution (width and height) at which presentation files and vector graphics are converted.

You can specify the resolution as an absolute size in pixels, or as a proportion of the original size.

KeyView always maintains the aspect ratio of the original graphic and does not increase the resolution.
If you set values that would enlarge a graphic, KeyView only changes the size of the XML element.

To set the resolution in pixels

To specify the resolution in pixels, specify the width (cxVectorToRasterXRes) and/or height
(cyVectorToRasterYRes).

To export the largest image that fits within a bounding box, without changing the original aspect ratio,
set both the width and height. For example, to export the largest image that fits in an 800x500 bounding
box:

cxVectorToRasterXRes=800
cyVextorToRasterYRes=500

Alternatively you can fix one of the dimensions. Set one value and set the other to zero. For example, to
export images with a height of 1500 pixels and whatever width is necessary tomaintain the original
aspect ratio:

cxVectorToRasterXRes=0
cyVextorToRasterYRes=1500

Themaximum size permitted for either dimension is 4000 pixels.

To set the resolution proportionally

To set the resolution proportionally, set cxVectorToRasterXRes to a negative value. A negative value
represents a percentage of the original resolution. Set cyVectorToRasterYRes to 0 (zero). Negative
(percentage) values for cyVectorToRasterYRes are ignored.

The following example exports a graphic at 50 percent of its original resolution:

cxVectorToRasterXRes=-50
cyVectorToRasterYRes=0

KVXMLTemplate

This structure defines the overall framework of the XML output. Members in this structure define the
XMLmarkup written at specific points in the output stream. The pointers contain XMLmarkup that
might include embedded KeyView-defined tokens. The XMLmarkup contained in these strings should
be well-formed. For the generated document to be valid, themarkupmust conform to the Verity DTD.
The structure is initialized by calling the fpConvertStream() or KVXMLConvertFile() function. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.

typedef struct tag_KVXMLTemplate
{

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 198 of 346

 char *pszMainTop;
 char *pszMainBottom;
 char *pszFirstH1Start;
 char *pszFirstH1End;
 char *pszMiddleH1Start;
 char *pszMiddleH1End;
 char *pszLastH1Start;
 char *pszLastH1End;
 char *pszH[2..6]XML;
 char *pszTOCH[1..6]Start;
 char *pszTOC_H[1..6];
 char *pszTOCH[1..6]End;
 char *pszXFile;
 char *pszXStartBlock;
 char *pszXEndBlock;
 char *pszStartBlock;
 char *pszEndBlock;
 BOOL bPutBlocksInSeparateFiles;
 BOOL bHardPageMakesNewBlock
 long lcbBlockSize;
 char *pszChunkTemplate;
 char *pszUserSummary;
 char *pszTOCH[1..6]LeafNode;
}
KVXMLTemplate;

Member Descriptions

pszMainTop Themarkup and tokens inserted at the beginning of themain XML
file. Most of the sample template files feature <MetaData> tags with
tokens that store themetadata of the input document. This member
does not include the processing instructions or document type
declarations that appears at the beginning of an XML document. The
document type declaration <?xml version= ...> is automatically
generated by XMLExport. If you are using style sheets or the Verity
DTD, the <?xml stylesheet= ...> and <!DOCTYPE ...>
processing instructions are also automatically generated by XML
Export.

pszMainBottom Themarkup and tokens inserted at the end of themain XML file.

pszFirstH1Start Themarkup and tokens inserted at the beginning of the first created
H1 XML block (that is, the block associated with the first H1 table of
contents entry).

pszFirstH1End Themarkup and tokens inserted at the end of the first created H1
XML block (that is, the block associated with the first H1 table of
contents entry).

pszMiddleH1Start Themarkup and tokens inserted at the beginning of those H1 XML

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 199 of 346

blocks that are neither the first nor the last H1 blocks created (that is,
blocks associated with all but the first and last H1 table of contents
entries).

pszMiddleH1End Themarkup and tokens inserted at the end of those H1 XML blocks
that are neither the first nor the last H1 blocks created (that is, blocks
associated with all but the first and last H1 table of contents entries).

pszLastH1Start Themarkup and tokens inserted at the beginning of the last created
H1 XML block (that is, the block associated with the last H1 table of
contents entry).

pszLastH1End Themarkup and tokens inserted at the end of the last created H1
XML block (that is, the block associated with the last H1 table of
contents entry).

pszH[2..6]XML Themarkup and tokens inserted in an XML block for heading levels 2
through 6.

pszTOCH[1..6]Start Themarkup and tokens inserted at the beginning of a table of
contents block for heading levels 1 through 6 entries. For example:

<ol list-style-type="upper-roman">

pszTOC_H[1..6] Themarkup and tokens required to process the table of contents
entries for heading levels 1 through 6. For example:

<a xmlns:xlink="http://www.w3.org/TR/xlink" xlink href=
"#$ANCHOR"> $TOCTE

If the table of contents heading contains special characters, such as
an ampersand (&) or parentheses, youmust use the $TOCPE token in
the pszTOC_H[1..6]markup. This token retains character entities
and prevents validity errors. See Export Tokens, on page 308 for
more information on table of contents tokens.

pszTOCH[1..6]End Themarkup and tokens inserted at the end of a table of contents
block for heading levels 1 through 6 entries. For example:

pszXFile Themarkup and tokens generated and placed in an extra XML file.
This file holds content from the source document. To process this
file, you would use the $XANCHOR token. See Export Tokens, on page
308 for more information on Export tokens.

pszXStartBlock Themarkup and tokens inserted at the beginning of each XML block
generated by the $XANCHOR token. If either this member or
pszXEndBlock is defined, both pszStartBlock and pszEndBlock
are ignored. See Export Tokens, on page 308 for more information on
Export tokens.

pszXEndBlock Themarkup and tokens to include in the outoput output at the end of
each XML block generated by the $XANCHOR token. If either this
member or pszXStartBlock is defined, both pszStartBlock and
pszEndBlock are ignored. See Export Tokens, on page 308 for more

XMLExport SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 200 of 346

information on Export tokens.

pszStartBlock Themarkup and tokens inserted at the beginning of each block
created as a result of lcbBlockSize or bHardPageMakesNewBlock.

pszEndBlock Themarkup and tokens inserted at the end of each block created as
a result of lcbBlockSize or bHardPageMakesNewBlock.

bPutBlocksInSeparateFiles Set bPutBlocksInSeparateFiles to TRUE to create a separate XML
file for each heading level 1 block. Each new block uses themarkup
defined in pszStartBlock and pszEndBlock. If you set
bPutBlocksInSeparateFiles to FALSE, each heading level 1 block
is placed sequentially in the same file, after the initial markup is
written.

bHardPageMakesNewBlock Set bHardPageMakesNewBlock to TRUE to have hard page breaks in
the source document generate new XML files during the conversion
process. Themember pszchunktemplate provides the appropriate
table of contents entry for the new block.

This option applies to word processing documents and spreadsheets
only.

lcbBlockSize Themaximum size (in bytes) of heading level 1 XML output files.
This number is used as a guideline and can be exceeded to break
content at a logical location. This setting is not used when exporting
spreadsheets.

Setting lcbBlockSize to 0 indicates that there is nomaximum size.

pszChunkTemplate If an H1 XML block is subdivided into separate files as a result of the
size limitations specified in lcbBlockSize, this member provides a
template for creating a table of contents entry for the new file. The
block number can bemade a part of this template by inserting the
$SPLITBLOCKNUMBER token. For example:

Page $SPLITBLOCKNUMBER

pszUserSummary Themarkup and tokens generated when the $USERSUMMARY or
$SUMMARY tokens are used. For example:

<MetaData name="$NAME" content="$CONTENT"/>

pszTOCH[1..6]LeafNode Themarkup that replaces pszTOC_H[1..6] entries for leaf nodes in
the table of contents. A leaf node is a node that has no children.

Discussion

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of themembers specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 201 of 346

KVXMLTOCOptions

This structure defines whether a heading is included in the table of contents. Source text is converted
to a heading in the XML output if

l it meets all the criteria defined by themembers of KVXMLHeadingInfo, and
l the headingCreateTypemember of KVXMLTOCOptions is set to allow automatic heading generation.
The structure is initialized by calling the fpConvertStream() or KVXMLConvertFile() function. See
fpConvertStream(), on page 135 or KVXMLConvertFile(), on page 159.

See KVXMLOptions, on page 190 for more information on the criteria used to determine whether a
heading is included in the table of contents.

Typedef struct tag_KVXMLTOCOptions
{
 BOOL bAllowHeadingsInTables;
 KVHeadingCreateOptions headingCreateType;
 KVXMLHeadingInfo *pH1;
 KVXMLHeadingInfo *pH2;
 KVXMLHeadingInfo *pH3;
 KVXMLHeadingInfo *pH4;
 KVXMLHeadingInfo *pH5;
 KVXMLHeadingInfo *pH6;
}
KVXMLTOCOptions;

Member Descriptions

bAllowHeadingsInTables This option determines whether the text in tables is considered for
automatic heading generation. If you set bAllowHeadingsInTables to
TRUE, the text in tables is included in the determination of headings and
table of contents entries.

This option applies to word processing documents and spreadsheets
only.

The default is FALSE.

headingCreateType This option determines how XMLExport subdivides the source
document into table of contents entries. You can set this option to one of
the two options enumerated in KVHeadingCreateOptions in kvxml.h.
See KVHeadingCreateOptions, on page 214.

The determination of table of contents entries is based on whether the
source document contains heading styles or whether text attributes
conform to the criteria defined in the KVXMLHeadingInfo structure. See
KVXMLHeadingInfo, on page 183.

Heading styles are predefined style tags, such as "Heading 1" and
"Heading 2" tags in aMicrosoft Word document. Text attributes are bold,

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 202 of 346

underlined, italic, and so on.

This option applies to word processing documents only.

The default is KVCS_DocHeadingsOnly.

KVXMLHeadingInfo A pointer to the KVXMLHeadingInfo structure. See KVXMLHeadingInfo,
on page 183.

When the table of contents entries are not based on the heading styles
of the source document, the table of contents entries are determined by
whether text attributes (such as bold, underlined, and italic text) in the
source document meet all the criteria defined in KVXMLHeadingInfo.

Discussion

A pointer to this structure is passed as an argument to fpConvertStream() and KVXMLConvertFile().
If the pointer to the structure is not NULL, the values of themembers specified in the structure are used.
If the pointer to the structure is NULL, the default values are used.

XML Export SDK C ProgrammingGuide
Chapter 10: XML Export API Structures

KeyView (11.6) Page 203 of 346

Chapter 11: Enumerated Types

This section provides information on some of the enumerated types used by the XMLExport API.

• Introduction 204
• ENSATableBorder 205
• KVCredKeyType 206
• KVErrorCode 206
• KVErrorCodeEx 208
• KVXMLStyleSheetType 211
• KVXMLAnchorType 212
• KVXMLGraphicType 213
• KVHeadingCreateOptions 214
• KVXMLEmptyParaType 215
• KVXMLHardPageBreakType 215
• KVMetadataType 216
• KVMetaNameType 218
• KVSumInfoType 218
• KVSumType 219
• LPDF_DIRECTION 222

Introduction

The enumerated types are in adinfo.h, kvtypes.h,kvxml.h, and kvxtract.h. These header files are
in the include directory. The first entry in an enumerated type structure should be set to zero (0). Each
subsequent entry is increased by 1. For example, the first five entries of KVCharSet in kvtypes.h are:

KVCS_UNKNOWN

KVCS_SJIS

KVCS_GB

KVCS_BIG5

KVCS_KSC

They would be set in the following way:

Enumerated Type Setting

KVCS_UNKNOWN 0

KVCS_SJIS 1

KeyView (11.6) Page 204 of 346

Enumerated Type Setting

KVCS_GB 2

KVCS_BIG5 3

KVCS_KSC 4

You can also set many enumerated types by entering the appropriate symbolic constant, or TRUE or
FALSE.

Programming Guidelines

When KeyView is enhanced in future releases, some enumerated types might be expanded. For
example, new format IDs might be added to the ENdocFmt enumerated type, or new error codes might
be added to the KVErrorCodeEx enumerated type. When you use these expandable types, your code
should ensure binary compatibility with future releases.

For example, if you use an array to access error messages based on an error code, your code should
check that the error code is less than KVError_Last before accessing the data. This ensures that new
error codes are detected when you add KeyView binary files from new releases to your existing
installation.

The following enumerated types are expandable:

KVErrorCodeEx

KVMetadataType

KVCharSet

KVLanguageID

KVSubfileType

ENdocFmt

ENSATableBorder

This enumerated type defines the type of border to display around tables. This enumerated type is
defined in kvtypes.h.

Definition

typedef enum tag_ENSATableBorder
{

SA_BaseOnDocument,
SA_NoBorder,
SA_Border

}
ENSATableBorder;

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 205 of 346

Enumerators

SA_BaseOnDocument Border type is based on the document.

SA_NoBorder Table borders are always off.

SA_Border Table borders are always on.

KVCredKeyType

This enumerated type defines the type of credential used to open a protected file. See
KVCredentialComponent, on page 119. This enumerated type is defined in kvxtract.h.

Definition

typedef enum tag_KVCredKeyType
{
 KVCredKeyType_UserName,
 KVCredKeyType_UserIdFile,
 KVCredKeyType_Password,
}
KVCredKeyType;

Enumerators

KVCredKeyType_
UserName

The credential in KVCredentialComponent is a user name.

KVCredKeyType_
UserIdFile

The credential in KVCredentialComponent is a path to a file that
contains user IDs.

KVCredKeyType_
Password

The credential in KVCredentialComponent is a password.

KVErrorCode

This enumerated type defines the type of error generated if Export fails. This enumerated type is
defined in kvtypes.h.

Definition

typedef enum tag_KVErrorCode
{
KVERR_Success, /* 0 Success*/

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 206 of 346

KVERR_DLLNotFound, /* 1 DLL or shared library not found*/
KVERR_OutOfCore, /* 2 memory allocation failure*/
KVERR_processCancelled, /* 3 fpContinue() returns FALSE*/
KVERR_badInputStream, /* 4 Invalid/corrupt input stream*/
KVERR_badOutputType, /* 5 Invalid output type requested*/
KVERR_General, /* 6 General error.... */
KVERR_FormatNotSupported, /* 7 Format not supported*/
KVERR_PasswordProtected, /* 8 File is Password Protected*/
KVERR_ADSNotFound, /* 9 Adobe Document Server not found*/
KVERR_AutoDetFail, /* 10 Autodetect error*/
KVERR_AutoDetNoFormat, /* 11 Unable to detect file format*/
KVERR_ReaderInitError, /* 12 Error initializing the reader*/
KVERR_NoReader, /* 13 No reader available for this format*/
KVERR_CreateOutputFileFailed, /* 14 Unable to create output file*/
KVERR_CreateTempFileFailed, /* 15 Unable to create temp file*/
KVERR_ErrorWritingToOutputFile, /* 16 Error writing to output file*/
KVERR_CreateProcessFailed, /* 17 Error creating a child process*/
KVERR_WaitForChildFailed, /* 18 Wait for child process failed*/
KVERR_ChildTimeOut, /* 19 Child process hung / timed out*/
KVERR_ArchiveFileNotFound, /* 20 Attempt to extract nonexistent file*/
KVERR_ArchiveFatalError /* 21 Fatal error processing archive - should abort*/
}
KVErrorCode;

Enumerators

KVERR_SUCCESS The function completed successfully.

KVERR_DLLNotFound A DLL or shared library was not found.

KVERR_OutOfCore Memory allocation failure.

KVERR_processCancelled The callback function fpContinue() returns FALSE.

KVERR_badInputStream Invalid or corrupt input stream.

KVERR_badOutputType Invalid output is requested.

KVERR_General General error.

KVERR_FormatNotSupported The file format is not supported.

KVERR_PasswordProtected The file is encrypted or password-protected. KeyView supports only
secure PST files.

KVERR_ADSNotFound Adobe Document Server not found. This error is obsolete.

KVERR_AutoDetFail Autodetect error.

KVERR_AutoDetNoFormat Unable to detect file format.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 207 of 346

KVERR_ReaderInitError Error initializing the reader.

KVERR_NoReader No reader is available for this format.

KVERR_
CreateOutputFileFailed

Unable to create output file.

This error is generated if the overwrite flag in KVExtractSubFileArg is
FALSE, and a subfile has the same name as a file in the target path.

KVERR_
CreateTempFileFailed

Unable to create temporary file.

KVERR_
ErrorWritingToOutputFile

There was an error writing to the output file.

KVERR_
CreateProcessFailed

There was an errror creating a child process.

KVERR_WaitForChildFailed The wait for child process failed.

KVERR_ChildTimeOut The child process hung or timed out.

KVERR_
ArchiveFileNotFound

Attempt to extract nonexistent file.

KVERR_ArchiveFatalError A fatal error occurred processing an archive file.

KVErrorCodeEx

This enumerated type defines extended error codes. The type is defined in kvtypes.h.

Definition

typedef enum tag_KVErrorCodeEx
{
KVError_OpenStreamFailure = KVERR_ArchiveFatalError + 1, /* 22 KVOpen stream
failure */
KVError_InterfaceFunctionNotFound, /* 23 Interface function not found */
KVError_InputFileNotFound, /* 24 Cannot find input file*/
KVError_OpenOutputFileFailed, /* 25 Cannot open output file*/
KVError_MemoryLeak, /* 26 Memory leak*/
KVError_MemoryOverwrite, /* 27 Memory overwrite*/
KVError_GPF, /* 28 Exception during oop filtering*/
KVError_OopCore, /* 29 Core dump in child process*/
KVError_KVoopLogFailed, /* 30 Creation of oop error log failed*/
KVError_OverNestedFileLimit, /* 31 File exceeds nested file limit*/
KVError_PSTAccessFailed, /* 32 Access failed on PST files*/
KVError_PasswordRequired, /* 33 Password required to access file*/
KVError_InvalidArgs /* 34 Input argument/structure is invalid*/
KVError_ReaderUsageDenied, /* 35 Reader requires a valid license*/
KVError_OopBadConfig, /* 36 Config buffer data was incomplete*/

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 208 of 346

KVError_OopBrokenPipe, /* 37 Read/write to/from pipe failed*/
KVError_OopPipeOEF, /* 38 Pipe was closed prior to read/write*/
KVError_IPCTimeOut, /* 39 Pipe/socket timed out on poll/select*/
KVError_InvalidOopDriverSignature, /* 40 Client sent request to OOP server but
context driver does not exist on the server*/
KVError_InvalidOopServiceSignature, /* 41 Client sent request to OOP service that
does not exist*/
KVError_ZeroFile, /* 42 Input file is empty or zero bytes */
KVError_CompressionNotSupported /* 43 File or subfile is compressed with
unsupported method */KVError_NoTemplates /* 44 No templates found (nsfsr) */
KVError_NoMainTemplate /* 45 No main template found (nsfsr) */
KVError_InvalidTemplate /* 46 Invalid template (nsfsr) */
KVError_TemplateError /* 47 Template error (nsfsr) */
KVError_IsADirectory /* 48 A directory exists at the given pathname */
KVError_Last /* 49 */
}
KVErrorCodeEx;

Enumerators

KVError_OpenStreamFailure
= KVERR_ArchiveFatalError
+1

Failed to open a stream during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_
InterfaceFunctionNotFound

An interface function was not found during out-of-process filtering.
This is an extended error for the KVERR_General code. This
enumerator is used by KeyView Filter.

KVError_InputFileNotFound Could not find the input file during out-of-process filtering. This is
an extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_
OpenOutputFileFailed

Could not open the output file during out-of-process filtering. This
is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

KVError_MemoryLeak A memory leak occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_MemoryOverwrite A memory overwrite occurred during out-of-process filtering. This
is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

KVError_GPF An exception occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_OopCore A memory dumpwas generated in a child process during out-of-
process filtering. This is an extended error for the KVERR_General

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 209 of 346

code. This enumerator is used by KeyView Filter.

KVError_KVoopLogFailed The creation of the out-of-process error log failed. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

KVError_
OverNestedFileLimit

The container file has more than the allowable number of child
documents. One or more child documents were not converted.
Currently, this enumerator is not used.

KVError_PSTAccessFailed The PST file could not be converted. This error might be returned
when a call to fpOpenFile() returns NULL for one of the following
reasons:

l A Microsoft Outlook client is not installed.
l A Microsoft Outlook client is installed, but is not the default
email client.

l A Microsoft Outlook client is installed, but is not configured
correctly.

l The PST file is corrupt.
l The PST file is read-only (PST files must allow read and write
access).

l TheMAPI call fails.
l The bit editions of Microsoft Outlook do not match the bit
editions of the KeyView software.
For example, if 32-bit KeyView is used, 32-bit Outlook must be
installed. If 64-bit KeyView is used, 64-bit Outlook must be
installed.

KVError_PasswordRequired To open the file, youmust provide credentials. This error might be
returned when a call to fpOpenFile() returns NULL.

KVError_InvalidArgs The input argument or structure is invalid. This error is generated
by the File Extraction APIs.

KVError_ReaderUsageDenied The current license key does not enable the document reader
required to convert the file. This error might be returned when a call
to fpOpenFile() returns NULL.

Some document readers are considered advanced features and
are licensed separately from the KeyView SDK (for example, the
PST andMBX readers). Contact your Micro Focus sales
representative to get an updated license key.

KVError_OopBadConfig Information in the kvxconfig.ini file is incomplete and cannot be
used to the XML file. This is used by KeyView Filter.

KVError_OopBrokenPipe Data was not transferred between the parent and child processes
during out-of-process filtering because either the parent or child
failed. This is used by KeyView Filter.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 210 of 346

KVError_OopPipeOEF Data was not transferred between the parent and child processes
during out-of-process filtering because the parent process was
shut down. This is used by KeyView Filter.

KVError_IPCTimeOut Either the parent or child process is waiting for a reply or request
during out-of-process filtering. This is used by KeyView Filter.

KVError_
InvalidOopDriverSignature

A client sent a request to an out-of-process server, but the context
driver does not exist on the server. This is used by KeyView Filter.

KVError_
InvalidOopServiceSignature

A client sent a request to a File Extraction service that does not
exist.

If this error is generated on the call to fpClose(), you can ignore
it. This is used by KeyView Filter.

KVError_ZeroFile The input file is empty or zero bytes.

KVError_
CompressionNotSupported

The file or subfile is compressed with an unsupported
compressionmethod.

KVError_NoTemplates

KVError_NoMainTemplate

KVError_InvalidTemplate

KVError_TemplateError

KVError_IsADirectory

KVError_Last

Discussion

l When error reporting is enhanced in future releases, new error messages might be added to this
enumerator type. When you use this type, your codemust ensure binary compatibility with future
releases. See ProgrammingGuidelines, on page 205.

l If an extended error code is called for a format to which the error does not apply, the KVError_Last
code is returned.

KVXMLStyleSheetType

This enumerated type defines the options for processing style sheet information. This enumerated type
is defined in kvxml.h.

Definition

typedef enum tag_KVXMLStyleSheetType{ STYLESHEET_DISABLED = 0,

 XML_CSS,

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 211 of 346

 XML_XSL,

}
KVXMLStyleSheetType;

Enumerators

STYLESHEET_DISABLED Disables Cascading Style Sheet (CSS) formatting.

XML_CSS Enables Cascading Style Sheet (CSS) formatting and
generates an external file or uses an existing external file
which is referenced in a <?xml-stylesheet...?> processing
instruction.

XML_XSL Enables Extensible Style Sheet Language (XSL) formatting
and uses an external XSL file which is referenced in a <?xml-
stylesheet...?> processing instruction.

KVXMLAnchorType

This enumerated type defines the anchor types for the output stream. This enumerated type is defined
in kvxml.h.

Definition

typedef enum tag_KVXMLAnchorType

{

 VectorPictureAnchor = 0,

 RasterPictureAnchor,

 H1Anchor,

 H2Anchor,

 H3Anchor,

 H4Anchor,

 H5Anchor,

 H6Anchor,

 XAnchor,

 AnimatedGIFAnchor,

 CSSAnchor,

 XSLAnchor,

 GeneralAnchor,

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 212 of 346

 DBAnchor,

 JPEGAnchor

}

KVXMLAnchorType;

Enumerators

VectorPictureAnchor An anchor for embedded vector graphics.

RasterPictureAnchor An anchor for embedded raster graphics.

H1Anchor An anchor for level 1 heading blocks (H1).

H2Anchor An anchor for level 2 heading blocks (H2).

H3Anchor An anchor for level 3 heading blocks (H3).

H4Anchor An anchor for level 4 heading blocks (H4).

H5Anchor An anchor for level 5 heading blocks (H5).

H6Anchor An anchor for level 6 heading blocks (H6).

XAnchor An anchor for an external file.

AnimatedGIFAnchor An anchor for embedded animatedGIF graphics.

CSSAnchor An anchor for an external CSS file.

XSLAnchor An anchor for an external XSL file.

GeneralAnchor Reserved for future use.

DBAnchor Used internally.

JPEGAnchor An anchor for an embedded JPEG graphic.

KVXMLGraphicType

This enumerated type defines graphic formats to which embedded graphics and presentations are
converted. This enumerated type is defined in kvxml.h.

Definition

typedef enum tag_KVXMLGraphicType

{

 KVGFX_GIF,

 KVGFX_JPEG,

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 213 of 346

 KVGFX_PNG,

 KVGFX_CGM,

 KVGFX_WMF,

 KVGFX_JAVA

}

KVXMLGraphicType;

Enumerators

KVGFX_GIF Specifies GIF (Graphics Interchange Format) as the graphic type.

KVGFX_JPEG Specifies JPEG (Joint Photographic Experts Group) as the graphic
type.

KVGFX_PNG Specifies PNG (Portable Network Graphics) as the graphic type.

KVGFX_CGM Deprecated.

KVGFX_WMF Specifies WMF (Windows Metafile) as the graphic type.

KVGFX_JAVA Deprecated.

KVHeadingCreateOptions

This enumerated type defines whether Export generates blocks and block chunks based only on the
heading styles defined in a source document (if they are available), or based on both the source
document’s heading styles and headings that are created automatically by Export. Headings that are
created automatically by Export are based on the text attributes of the source document as defined by
KVXMLHeadingInfo). This enumerated type is defined in kvxml.h.

Definition

typedef enum tag_KVHeadingCreateOptions
{
 KVHC_DocHeadingsOnly,
 KVHC_CreateHeadingsAlways
}
KVHeadingCreateOptions;

Enumerators

KVHC_DocHeadingsOnly This instructs Export to rely exclusively on heading styles defined in the
source document. However, if the source document does not contain
heading styles, Export generates blocks on its own using the criteria
defined by the structure KVHeadingInfo.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 214 of 346

KVHC_
CreateHeadingsAlways

This instructs Export to use the heading styles in the source document
when available, and to also automatically create table of contents entries
based on the criteria defined by the structure KVHeadingInfo.

KVXMLEmptyParaType

This enumerated type defines the options for paragraphs that do not contain content. This enumerated
type is defined in kvxml.h.

Definition

typedef enum tag_KVXMLEmptyParaType
{

KVEPT_SUPPRESS, /* No markup generated */
KVEPT_EMPTY, /* Use <p/> */
KVEPT_VERBOSE /* Use <p id="...> </p> */

}
KVXMLEmptyParaType;

Enumerators

KVEPT_SUPPRESS paragraphs without content are ignored. They do not
contribute white space and do not affect the ID number of
subsequent paragraphs. This is the default value.

KVEPT_EMPTY paragraphs without content are represented by an "empty"
paragraph element <p/>. These contributeminimal white
space, but do not affect the ID number of subsequent
paragraphs.

KVEPT_VERBOSE paragraphs without content contain a fully-defined start
tag <p id="..."> with all non-default attributes, a
character entity, and end tag </p>. These contribute
additional white space and affect the ID number of
subsequent paragraphs.

KVXMLHardPageBreakType

This enumerated type defines the options for hard page breaks. This enumerated type is defined in
kvxml.h.

Definition

typedef enum tag_KVXMLHardPageBreakType
{

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 215 of 346

 KVHPBT_SUPPRESS, /* No markup generated */
 KVHPBT_EMPTY, /* Use <Page/> */
 KVHPBT_EMPTYID, /* Use <Page id="n"/> */
 KVHPBT_ID /* Use <Page id="n"> ... </Page> */
}
KVXMLHardPageBreakType;

Enumerators

KVHPBT_
SUPPRESS

Nomarkup is generated for hard page breaks. This is the default value.

KVHPBT_
EMPTY

An empty page element, <Page/>, without ID attributes is generated for hard page
breaks.

KVHPBT_
EMPTYID

An empty page element, <Page id="n"/>, with ID attributes is generated for hard page
breaks. The ID is incremented for each subsequent hard page break.

KVHPBT_
ID

A "non-empty" "Page" element is generated for hard page breaks. The page tags enclose
the contents immediately after the <WP> tag. When subsequent hard page breaks are
encountered, the previous "Page" element is closed with a </Page> tag, and a <Page
id="..."> opening tag is added. The final "Page" element is closed immediately before
the closing </WP> tag.

KVMetadataType

This enumerated type defines the data type of metadata that can be extracted from a subfile in amail
message or mail store. If a metadata field has a corresponding KeyView type in KVMetadataType, the
metadata is converted to the KVMetadataElem structure, and the structuremember isDataValid is 1.
This enumerated type is defined in kvtypes.h.

Definition

typedef enum
{
 KVMetadata_Unknown = 0,
 KVMetadata_Bool = 1,
 KVMetadata_Binary = 2,
 KVMetadata_Int4 = 3,
 KVMetadata_UInt4 = 4,
 KVMetadata_Int8 = 5,
 KVMetadata_UInt8 = 6,
 KVMetadata_String = 7,
 KVMetadata_Unicode = 8,
 KVMetadata_DateTime = 9,
 KVMetadata_Float = 10,
 KVMetadata_Double = 11,

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 216 of 346

 KVMetadata_Last
}
KVMetadataType;

Enumerators

KVMetadata_
Unknown

The value in the property is of an unknown type.

KVMetadata_
Bool

The value in the property is a Boolean value. The correspondingMAPI type is PT_
BOOLEAN.

KVMetadata_
Binary

The value in the property is a byte array. The correspondingMAPI type is PT_
BINARY.

KVMetadata_
Int4

The value in the property is a signed 4-byte integer. The correspondingMAPI types
are PT_I2, PT_SHORT, PT_I4, and PT_LONG.

KVMetadata_
UInt4

The value in the property is an unsigned 4-byte integer. This type is not currently
supported.

KVMetadata_
Int8

The value in the property is a signed 8-byte integer. This type is not currently
supported.

KVMetadata_
UInt8

The value in the property is an unsigned 8-byte integer. This type is not currently
supported.

KVMetadata_
String

The value in the property is a string. The correspondingMAPI type is PT_STRING8.

KVMetadata_
Unicode

The value in the property is a Unicode string. The correspondingMAPI type is PT_
UNICODE.

KVMetadata_
DateTime

The value in the property is a date and time. The correspondingMAPI type is PT_
SYSTIME.

KVMetadata_
Float

The value in the property is a 4-byte float. The correspondingMAPI type is PT_
FLOAT.

KVMetadata_
Double

The value in the property is an 8-byte double. The correspondingMAPI type is PT_
DOUBLE.

Discussion

New types might be added to this enumerated type. When you use this type, your code should ensure
binary compatibility with future releases. See ProgrammingGuidelines, on page 205.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 217 of 346

KVMetaNameType

This enumerated type defines the type of metadata fields extracted from a subfile in amail message or
mail store. See KVMetaName, on page 125. This enumerated type is defined in kvxtract.h.

Definition

typedef enum
{
 KVMetaNameType_Integer = 0,
 KVMetaNameType_String = 1
}
KVMetaNameType;

Enumerators

KVMetaNameType_Integer Themetadata field is an integer.

KVMetaNameType_String Themetadata field is a string.

KVSumInfoType

This enumerated type defines the data type of themetadata field extracted from a document. This
enumerated type is defined in kvtypes.h.

Definition

typedef enum tag_KVSumInfoType
{
 KV_String = 0x1,
 KV_Int4 = 0x2,
 KV_DateTime = 0x3,
 KV_ClipBoard = 0x4,
 KV_Bool = 0x5,
 KV_Unicode = 0x6,
 KV_IEEE8 = 0x7,
 KV_Other = 0x8
}
KVSumInfoType;

Enumerators

KV_String The value in themetadata field is a string.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 218 of 346

KV_Int4 The value in themetadata field is an integer.

KV_
DateTime

The value in themetadata field is a date and time. This type is a 64-bit value
representing the number of 100-nanosecond intervals since January 1, 1601 (Windows
FILETIME EPOCH). Youmight need to convert this value into another format.

KV_
ClipBoard

Currently not supported.

KV_Bool The value in themetadata field is a Boolean value.

KV_
Unicode

The value in themetadata field is a Unicode string.

KV_IEEE8 The value in themetadata field is an IEEE 8-byte integer.

KV_Other The value in themetadata field is user-defined.

KVSumType

This enumerated type defines themetadata fields that can be extracted from a document. This
enumerated type is defined in kvtypes.h.

l Types 0 to 34 and type 42 are Office summary fields.
l Types 35 to 40 are computer-aided design (CAD)metadata fields.
l Type 41, KV_OrigAppVersion, is shared by Office software and CAD.
Types 43 or greater are reserved for any non-standardmetadata field defined in a document.

Definition

typedef enum tag_KVSumType

KV_CodePage = 0,
KV_Title = 1,
KV_Subject = 2,
KV_Author = 3,
KV_Keywords = 4,
KV_Comments = 5,
KV_Template = 6,
KV_LastAuthor = 7,
KV_RevNumber = 8,
KV_EditTime = 9,
KV_LastPrinted = 10,
KV_Create_DTM = 11,
KV_LastSave_DTM = 12,
KV_PageCount = 13,
KV_WordCount = 14,
KV_CharCount = 15,
KV_ThumbNail = 16,

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 219 of 346

KV_AppName = 17,
KV_Security = 18,
KV_Category = 19,
KV_PresentationTarget = 20,
KV_Bytes = 21,
KV_Lines = 22,
KV_Paragraphs = 23,
KV_Slides = 24,
KV_Notes = 25,
KV_HiddenSlides = 26,
KV_MMClips = 27,
KV_ScaleCrop = 28,
KV_HeadingPairs = 29,
KV_TitlesofParts = 30,
KV_Manager = 31,
KV_Company = 32,
KV_LinksUpToDate = 33,
KV_HyperlinkBase = 34,
KV_Layouts = 35,
KV_Objects = 36,
KV_FileVersion = 37,
KV_LastFileVersion = 38,
KV_OrigFileVersion = 39,
KV_OrigFileType = 40,
KV_OrigAppVersion = 41,

 KV_ContentStatus = 42,
KV_UserDefined = 43

}
KVSumType;

Enumerators

KV_CodePage The code page of the document.

KV_Title The contents of the "Title" property field taken from the source document.

KV_Subject The contents of the "Subject" property field taken from the source document.

KV_Author The contents of the "Author" property field taken from the source document.

KV_Keywords The contents of the "Keywords" property field taken from the source
document.

KV_Comments The contents of the "Comments" property field taken from the source
document.

KV_Template The contents of the "Template" property field taken from the source
document.

KV_LastSavedby The contents of the "Last saved by" property field taken from the source

XMLExport SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 220 of 346

document.

KV_RevNumber The contents of the "Revision number" property field taken from the source
document.

KV_EditTime The contents of the "Total editing time" property field taken from the source
document.

KV_LastPrinted The contents of the "Printed" property field taken from the source document.

KV_Create_DTM The contents of the "Created" property field taken from the source
document.

KV_LastSave_DTM The contents of the "Modified" property field taken from the source
document.

KV_PageCount The contents of the "Pages" property field taken from the source document.
The field provides the number of pages in the document.

KV_WordCount The contents of the "Words" property field taken from the source document.
The field provides the number of words in the document.

KV_CharCount The contents of the "Characters" property field taken from the source
document. The field provides the number of characters in the document.

KV_ThumbNail A thumbnail image of a document.

KV_AppName The contents of the "Type" property field taken from the source document.
This field identifies the application used to read the document.

KV_Security The contents of the "Attributes" property field taken from the source
document.

KV_Category The contents of the "Category" property field taken from the source
document.

KV_
PresentationTarget

The target format for presentations (35mm, printer, video, and so on).

KV_Bytes The contents of the "Size" property field taken from the source document.
The field provides the size of the file in bytes.

KV_Lines The contents of the "Lines" property field taken from the source document.
The field provides the number of lines in the document.

KV_Paragraphs The contents of the "Paragraphs" property field taken from the source
document. The field provides the number of paragraphs in the document.

KV_Slides The contents of the "Slides" property field taken from a presentation
document. The field provides the number of slides in the document.

KV_Notes The contents of the "Notes" property field taken from a presentation
document. The field provides the number of notes in the document.

KV_HiddenSlides The contents of the "Hidden slides" property field taken from a presentation
document. The field provides the number of hidden slides in the document.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 221 of 346

KV_MMClips The contents of the "Multimedia clips" property field taken from a
presentation document. The field provides the number of multimedia clips in
the document.

KV_ScaleCrop A Boolean value that specifies whether thumbnails are cropped or scaled.

KV_HeadingPairs An internally-used property indicating the grouping of different document
parts and the number of items in each group.

KV_TitlesofParts The contents of the "Document Contents" property field taken from the
source document. The field contains a list of the parts of the file, such as the
names of macro sheets in Microsoft Excel or the headings inWord.

KV_Manager The contents of the "Manager" property field taken from the source
document.

KV_Company The contents of the "Company" property field taken from the source
document.

KV_LinksUpToDate A Boolean value that specifies whether links in the document are resolved
and current.

KV_HyperlinkBase The base address used for all relative links in the file.

KV_Layouts The number of layouts in the AutoCAD drawing.

KV_Objects The approximate number of objects in the AutoCAD drawing.

KV_FileVersion The AutoCAD version (for example, R13, R14) of the drawing.

KV_LastFileVersion The AutoCAD version (for example, R13, R14) that the AutoCAD drawing
was last saved as.

KV_OrigFileVersion The AutoCAD version (for example, R13, R14) of the original source file.

KV_OrigFileType The AutoCAD file type (for example, DWG, DXF, or DWB) of the original
source file.

KV_OrigAppVersion The AutoCAD version (for example, R13, R14) of the application that
created the original source file.

KV_ContentStatus The status of the content, for example Draft, Reviewed, or Final.

KV_UserDefined The contents of the first entry in the array of non-standardmetadata. This
could be user-definedmetadata, or metadata unique to a file type.

LPDF_DIRECTION

This enumerated type defines the paragraph direction of extracted paragraphs from a PDF file when
logical order is enabled. This enumerated type is defined in kvtypes.h.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 222 of 346

Definition

typedef enum{
 LPDF_RAW = 0,
 LPDF_LTR,
 LPDF_RTL,
 LPDF_AUTO
} LPDF_DIRECTION ;

Enumerators

LPDF_
RAW

Unstructured paragraph flow. This is the default behavior.

LPDF_
LTR

Logical reading order and left-to-right paragraph direction.

LPDF_
RTL

Logical reading order and right-to-left paragraph direction.

LPDF_
AUTO

Logical reading order. The PDF reader determines the paragraph direction for each PDF
page, and then sets the direction accordingly. This is the default when logical order is
enabled.

XML Export SDK C ProgrammingGuide
Chapter 11: Enumerated Types

KeyView (11.6) Page 223 of 346

Part IV: Appendixes

This section lists supported formats, supported character sets and redistributed files, and provides
information on format detection.

l Supported Formats
l Character Sets
l File Formats and Extensions
l Extract and Format Lotus Notes Subfiles
l Export Tokens
l File Format Detection
l Files Required for Redistribution
l Password Protected Files

KeyView (11.6) Page 224 of 346

Appendix A: Supported Formats

This section lists information about the file formats that can be detected and processed (either filtered,
converted, or displayed) by the KeyView suite of products. The KeyView suite includes KeyView Filter
SDK, KeyView Export SDK, and KeyView Viewing SDK.

• Supported Formats 225
• Supported Formats (Detected) 250

Supported Formats

The tables in this section provide the following information:

l The file formats supported by the Filter API, Export API, Viewing API, and File Extraction API. The
supported versions and the format’s extension are also listed.
The formats listed in this section can also be detected by the KeyView format detectionmodule
(kwad). The Supported Formats (Detected) section lists formats that can be detected, but cannot be
filtered, converted, or displayed.

l The file formats for which KeyView can detect and extract the character set andmetadata
information (properties such as title, author, and subject).
Even though a file format might be able to provide character set information, some documents might
not contain character set information. Therefore, the document reader would not be able to determine
the character set of the document. In this case, either the operating system code page or the
character set specified in the API is used.

l The document reader used to filter each format.

Symbol Description

Y The format is supported.

You can extract metadata for this format.

You can determine the character set for this format.

N The format is not supported.

You cannot extract metadata for this format.

You cannot determine the character set for this format.

P Partial metadata is extracted from this format. Some non-standard fields are not
extracted.

T Only text is extracted from this format. Formatting information is not extracted.

M Only metadata (title, subject, author, and so on) is extracted from this format. Text and

Key to Support Tables

KeyView (11.6) Page 225 of 346

Symbol Description

formatting information are not extracted.

Key to Support Tables, continued

XMLExport SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 226 of 346

Archive Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

7-Zip 4.57 z7zsr,
multiarcsr1

7Z N N Y Y N n/a N

AD1 n/a ad1sr AD1 N N Y Y N n/a N

ARJ n/a multiarcsr ARJ N N N Y N n/a N

B1 n/a b1sr B1 N N Y Y N n/a N

BinHex n/a kvhqxsr HQX N N Y Y N n/a N

Bzip2 n/a bzip2sr BZ2 N N Y Y N n/a N

Expert Witness
Compression Format
(EnCase)

6 encasesr E01, L01 N N Y Y N n/a N

7 encase2sr Lx01 N N Y Y N n/a N

GZIP 2 kvgzsr GZ N N N Y N n/a N

kvgz GZ N N Y N N n/a N

ISO n/a isosr ISO N N Y Y N n/a N

Java Archive n/a unzip JAR N N Y Y N n/a N

Legato EMailXtender n/a emxsr EMX N N Y Y N n/a N

Supported Archive Formats

17zip is supported with themultiarcsr reader on some platforms for Extract.

Page 227 of 346KeyView (11.6)

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Archive

MacBinary n/a macbinsr BIN N N Y Y N n/a N

Mac Disk Copy Disk Image n/a dmgsr DMG N N Y Y N n/a N

Microsoft Backup File n/a bkfsr BKF N N Y Y N n/a N

Microsoft Cabinet format 1.3 cabsr CAB N N Y Y N n/a N

Microsoft Compiled HTML
Help

3 chmsr CHM N N Y Y N n/a N

Microsoft Compressed
Folder

n/a lzhsr LZH
LHA

N N N Y N n/a N

PKZIP through
9.0

unzip ZIP N N Y Y N n/a N

RAR archive 2.0
through
3.5

rarsr RAR N N N Y N n/a N

RAR5 archive 5 multiarcsr RAR5 N N N Y N n/a N

Tape Archive n/a tarsr TAR N N Y Y N n/a N

UNIX Compress n/a kvzeesr Z N N N Y N n/a N

kvzee Z N N Y N N n/a N

UUEncoding all
versions

uudsr UUE N N Y Y N n/a N

XZ n/a multiarcsr XZ N N N Y N n/a N

Supported Archive Formats, continued

KeyView (11.6) Page 228 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Windows Scrap File n/a olesr SHS N N N Y N n/a N

WinZip through
10

unzip ZIP N N Y Y N n/a N

Supported Archive Formats, continued

Binary Format

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Executable n/a exesr EXE N N Y N N n/a N

Link Library n/a exesr DLL N N Y N N n/a N

Supported Binary Formats

Computer-Aided Design Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

AutoCAD
Drawing

R13, R14,
R15/2000, 2004,
2007, 2010, 2013

kpODArdr
kpDWGrdr1

DWG Y Y2 Y 3 N Y Y N

Supported CAD Formats

1OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.

KeyView (11.6) Page 229 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

AutoCAD
Drawing
Exchange

R13, R14,
R15/2000, 2004,
2007, 2010, 2013

kpODArdr
kpDXFrdr1

DXF Y Y2 Y3 N Y Y N

CATIA formats 5 kpCATrdr CAT4 Y N N N Y N N

Microsoft Visio 4, 5, 2000, 2002,
2003, 2007, 20105

vsdsr VSD Y Y Y Y6 Y Y N

kpVSD2rdr VSD, VSS
VST

Y Y Y N Y Y N

2013 ActiveX
components

VSDM
VSSM
VSTM
VSDX
VSSX
VSTX

N N Y7 N Y N N

kpVSDXrdr VSDM Y Y Y4 Y Y Y N

Supported CAD Formats, continued

1OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDXFrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
4All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.
5Viewing and Export use the graphic reader, kpVSD2rdr for Microsoft Visio 2003, 2007, and 2010, and vsdsr for all earlier versions. Image fidelity
in Viewing and Export is therefore only supported for versions 2003 and above. Filter uses the graphic reader kpVSD2rdr for Microsoft Visio 2003,
2007, and 2010, and vsdsr for all earlier versions.
6Extraction of embeddedOLE objects is supported for Filter onWindows platforms only.
7Visio 2013 is supported in Viewing only, with the support of ActiveX components from theMicrosoft Visio 2013 Viewer. Image fidelity is
supported but other features, such as highlighting, are not.

KeyView (11.6) Page 230 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VSSM
VSTM
VSDX
VSSX
VSTX

Unigraphics
(UG) NX

kpUGrdr PRT Y N N N N N N

Supported CAD Formats, continued

Database Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

dBase
Database

III+, IV dbfsr DBF Y Y Y N N N N

Microsoft
Access

95, 97, 2000, 2002, 2003,
2007, 2010, 2013, 2016

mdbsr MDB,
ACCDB

Y T T N N Y1 N

Microsoft
Project

2000, 2002, 2003, 2007,
2010, 2013

mppsr MPP Y Y Y Y Y Y N

Supported Database Formats

1Charset is not supported for Microsoft Access 95 or 97.

KeyView (11.6) Page 231 of 346

XMLExport SDK C ProgrammingGuide

Desktop Publishing

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Publisher 98 to 2016 mspubsr PUB Y T T Y Y Y N

Supported Desktop Publishing Formats

Display Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe PDF 1.1 to 1.7 pdfsr PDF Y Y N Y1 Y Y N

pdf2sr PDF N Y N N N N N

kppdfrdr PDF N Y Y N N N N

kppdf2rdr2 PDF N N Y N N N N

Supported Display Formats

1Includes support for extraction of subfiles from PDF Portfolio documents.
2kppdf2rdr is an alternate graphic-based reader that produces high-fidelity output but does not support other features such as highlighting or text
searching.

KeyView (11.6) Page 232 of 346

XMLExport SDK C ProgrammingGuide

Graphic Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Computer Graphics
Metafile

n/a kpcgmrdr1 CGM Y Y Y N N N N

CorelDRAW2 through
9.0

10, 11,
12, X3

kpcdrrdr CDR N Y Y N N N N

DCX Fax System n/a kpdcxrdr DCX N Y Y N N N N

Digital Imaging &
Communications in
Medicine (DICOM)

n/a dcmsr DCM M N N N Y N N

Encapsulated PostScript
(raster)

TIFF
header

kpepsrdr EPS N Y Y N N N N

EnhancedMetafile n/a kpemfrdr EMF Y Y Y N Y N N

GIF 87, 89 kpgifrdr GIF N Y Y N N N N

gifsr M M N N Y N N

JBIG2 n/a kpJBIG2rdr JBIG2 N Y Y N N N N

Supported Graphic Formats

1Files with non-partitioned data are supported.
2CDR/CDR with TIFF header.

KeyView (11.6) Page 233 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JPEG n/a kpjpgrdr JPEG N Y Y N N N N

jpgsr M M N N Y N N

JPEG 2000 n/a kpjp2000rdr JP2, JPF,
J2K, JPWL,
JPX, PGX

N Y Y N N N N

jp2000sr M M N N Y N N

Lotus AMIDraw
Graphics

n/a kpsdwrdr SDW N Y Y N N N N

Lotus Pic n/a kppicrdr PIC Y Y Y N N N N

Macintosh Raster 2 kppctrdr PIC
PCT

N Y Y N N N N

MacPaint n/a kpmacrdr PNTG N Y Y N N N N

Microsoft Office Drawing n/a kpmsordr MSO N Y Y N N N N

Omni Graffle n/a kpGFLrdr GRAFFLE Y N N N Y Y N

PC PaintBrush 3 kppcxrdr PCX N Y Y N N N N

Portable Network
Graphics

n/a kppngrdr PNG N Y Y N N N N

pngsr PNG M M N N Y N N

SGI RGB Image n/a kpsgirdr RGB N Y Y N N N N

SunRaster Image n/a kpsunrdr RS N Y Y N N N N

Supported Graphic Formats, continued

KeyView (11.6) Page 234 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Tagged Image File through
6.01

tifsr TIFF M M N N Y N N

kptifrdr TIFF N Y Y N N N N

Truevision Targa 2 kpTGArdr TGA N Y Y N N N N

Windows Animated
Cursor

n/a kpanirdr ANI N Y Y N N N N

Windows Bitmap n/a kpbmprdr BMP N Y Y N N N N

bmpsr BMP M M N N Y N N

Windows Icon Cursor n/a kpicordr ICO N Y Y N N N N

Windows Metafile 3 kpwmfrdr WMF Y Y Y N N N N

WordPerfect Graphics 1 1 kpwpgrdr WPG N Y Y N N N N

WordPerfect Graphics 2 2, 7 kpwg2rdr WPG N Y Y N N N N

Supported Graphic Formats, continued

1The following compression types are supported: no compression, CCITT Group 3 1-Dimensional Modified Huffman, CCITT Group 3 T4 1-
Dimensional, CCITT Group 4 T6, LZW, JPEG (only Gray, RGB and CMYK color space are supported), and PackBits.

KeyView (11.6) Page 235 of 346

XMLExport SDK C ProgrammingGuide

Mail Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Documentum
EMCMF

n/a msgsr EMCMF N N Y Y Y Y N

Domino XML
Language1

n/a dxlsr DXL N N Y Y Y N N

GroupWise FileSurf n/a gwfssr GWFS N N Y Y Y N N

Legato Extender n/a onmsr ONM N N Y Y Y N N

Lotus Notes
database

4, 5, 6.0, 6.5, 7.0, 8.0 nsfsr NSF N N Y Y Y N N

Mailbox2 Thunderbird 1.0,
Eudora 6.2

mbxsr3 MBX N N T Y Y Y N

Microsoft Entourage
Database

2004 entsr various N N Y Y Y Y N

Supported Mail Formats

1Supports non-encrypted embedded files only.
2KeyView supports MBX files created by Eudora Email andMozilla Thunderbird. MBX files created by other commonmail applications are
typically filtered, converted, and displayed.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.

KeyView (11.6) Page 236 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook 97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

msgsr1 MSG,
OFT

Y T T Y Y Y 2 N

Microsoft Outlook
DBX

5.0, 6.0 dbxsr DBX N N Y Y Y Y N

Microsoft Outlook
Express

Windows 6
MacIntosh 5

emlsr3 EML Y T T Y Y Y N

mbxsr4 EML N N T Y Y Y N

Microsoft Outlook
iCalendar

1.0, 2.0 icssr ICS, VCS N N Y Y Y Y N

Microsoft Outlook
for Macintosh

2011 olmsr OLM N N Y Y N Y N

Microsoft Outlook
Offline Storage File

97, 2000, 2002,
2003, 2007, 2010,
2013

pffsr5 OST N N Y Y Y Y N

Supported Mail Formats, continued

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
2Returns "Unicode" character set for version 2003 and up, and "Unknown" character set for previous versions.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
5The reader pffsr is available only onWindows and Linux.

KeyView (11.6) Page 237 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook
Personal Folder

97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

pstsr12 PST N N Y Y Y N N

97, 2000, 2002,
2003, 2007, 2010,
2013

pstnsr PST N N Y Y Y Y N

Microsoft Outlook
vCard Contact

2.1, 3.0, 4.0 vcfsr VCF Y Y T N Y N N

Text Mail (MIME) n/a emlsr3 various Y T T Y Y Y N

mbxsr4 various Y T T Y Y Y N

Transport Neutral
Encapsulation
Format

n/a tnefsr various N N Y Y Y Y N

Supported Mail Formats, continued

Multimedia Formats

Viewing SDK plays somemultimedia files using theWindows Media Control Interface (MCI). MCI is a set of Windows APIs that communicate
with multimedia devices.

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
2Uses Microsoft Messaging Application Programming Interface (MAPI). Note that the native PST reader (pstsr) works only onWindows, and
requires that you haveMicrosoft Outlook installed. As an alternative, theMAPI reader (pstnsr) runs on all platforms, and does not require
Microsoft Outlook. For more information on using the native PST reader or theMAPI reader, see the sections 'Use the Native PST Reader
(pstnsr) ' and 'Use theMAPI Reader (pstsr)' in Chapter 3.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.

KeyView (11.6) Page 238 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Advanced Systems Format 1.2 asfsr ASF
WMA
WMV

N N N N Y N N

Audio Interchange File
Format

n/a MCI AIFF N N Y N N N N

aiffsr AIFF M N N N Y N N

Microsoft Wave Sound n/a MCI WAV N N Y N N N N

riffsr WAV M N N N Y N N

MIDI n/a MCI MID N N Y N N N N

MPEG-1 Audio layer 3 ID3 v1 and
v2

MCI MP3 N N Y N N N N

mp3sr MP3 M M Y N Y N N

MPEG-1 Video 2, 3 MCI MPG N N Y N N N N

MPEG-2 Audio n/a MCI MPEGA N N Y N N N N

MPEG-4 Audio n/a mpeg4sr MP4
3GP

M N N N Y N N

NeXT/Sun Audio n/a MCI AU N N Y N N N N

QuickTimeMovie 2, 3, 4 MCI QT
MOV

N N Y N N N N

Windows Video 2.1 MCI AVI N N Y N N N N

Supported Multimedia Formats

NOTE:
Depending on the default multimedia player installed on your computer, the View API might not be able to play some supportedmultimedia
formats. To play multimedia files, the View API uses theWindows Media Control Interface (MCI) to communicate with themultimedia

KeyView (11.6) Page 239 of 346

XMLExport SDK C ProgrammingGuide

player installed on your computer. If the player does not play amultimedia file that is supported by the Viewing SDK, the View API cannot
play the file.

If you cannot play a supportedmultimedia file by using the View API, install a different multimedia player or compressor/decompressor
(codec) component.

Presentation Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Keynote 2, 3, ‘08, ‘09 kpIWPGrdr GZ Y Y Y N Y Y N

'13, '16 kplWPG13rdr KEY Y N N N N N N

Applix Presents 4.0, 4.2, 4.3,
4.4

kpagrdr AG Y Y Y N N N N

Corel Presentations 6, 7, 8, 9, 10,
11, 12, X3

kpshwrdr SHW Y Y Y N N N N

Extensible Forms
Description Language

n/a kpXFDLrdr XFD
XFDL

Y Y Y N Y Y N

Lotus Freelance
Graphics

96, 97, 98,
R9, 9.8

kpprzrdr PRZ Y Y Y N N N N

Lotus Freelance
Graphics 2

2 kpprerdr PRE Y Y Y N N N N

Macromedia Flash through 8.0 swfsr SWF Y Y Y N N Y1 N

Supported Presentation Formats

1The character set cannot be determined for versions 5.x and lower.

KeyView (11.6) Page 240 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft OneNote 2007, 2010,
2013, 2016

kpONErdr ONE
ONETOC2

Y Y Y Y N Y N

Microsoft PowerPoint
Macintosh

98 kpp40rdr PPT Y Y Y N N N N

2001, v.X,
2004

kpp97rdr PPT
PPS
POT

Y Y Y N P Y N

Microsoft PowerPoint
PC

4 kpp40rdr PPT Y Y Y N P N N

Microsoft PowerPoint
Windows

95 kpp95rdr PPT Y Y Y N P Y N

Microsoft PowerPoint
Windows

97, 2000,
2002, 2003

kpp97rdr PPT
PPS
POT

Y Y Y Y P Y Y1

Microsoft PowerPoint
Windows XML

2007, 2010,
2013, 2016

kpppxrdr PPTX
PPTM
POTX
POTM
PPSX
PPSM
PPAM

Y Y Y Y Y Y Y

OASIS Open 1, 22 kpodfrdr SXD Y Y Y Y3 Y Y N

Supported Presentation Formats, continued

1Slide footers are supported for Microsoft PowerPoint 97 and 2003.
2Generated by OpenOffice Impress 2.0, StarOffice 8 Impress, and IBM Lotus Symphony Presentation 3.0.
3Supported using the olesr embedded objects reader.

KeyView (11.6) Page 241 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Document Format SXI
ODG
ODP

OpenOffice Impress,
LibreOffice Impress

1 to 5 sosr SXI
SXP
ODP

Y T T N Y Y N

StarOffice Impress 6, 7, 8, 9 sosr SXI
SXP
ODP

Y T T N Y Y N

Supported Presentation Formats, continued

Spreadsheet Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Numbers ‘08, ‘09 iwsssr GZ Y Y Y N Y Y N

'13, '16 iwss13sr NUMBERS Y T T N N Y N

Applix Spreadsheets 4.2, 4.3, 4.4 assr AS Y Y Y N N Y N

CommaSeparated
Values

n/a csvsr CSV Y Y Y N N N N

Corel Quattro Pro 5, 6, 7, 8 qpssr WB2
WB3

Y Y Y N P Y N

X4 qpwsr QPW Y N Y N P Y N

Data Interchange n/a difsr Y Y Y N N N N

Supported Spreadsheet Formats

KeyView (11.6) Page 242 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Format

Lotus 1-2-3 96, 97, R9, 9.8 l123sr 123 Y Y Y N P Y N

Lotus 1-2-3 2, 3, 4, 5 wkssr WK4 Y Y Y N N Y N

Lotus 1-2-3 Charts 2, 3, 4, 5 kpchtrdr 123 N Y Y N N N N

Microsoft Excel Charts 2, 3, 4, 5, 6, 7 kpchtrdr XLS N Y Y N N N N

Microsoft Excel
Macintosh

98, 2001, v.X,
2004

xlssr XLS Y Y Y Y1 Y Y N

Microsoft Excel
Windows

2.2 through
2003

xlssr XLS
XLW
XLT
XLA

Y Y Y Y2 Y Y Y

Microsoft Excel
Windows XML

2007, 2010,
2013, 2016

xlsxsr XLSX
XLTX
XLSM
XLTM
XLAM

Y Y Y Y Y Y Y

Microsoft Excel Binary
Format

2007, 2010,
2013, 2016

xlsbsr XLSB Y Y Y N N N N

Microsoft Works
Spreadsheet

2, 3, 4 mwssr S30
S40

Y Y Y N N Y N

Supported Spreadsheet Formats, continued

1Supported using the embedded objects reader olesr.
2Supported for versions 97 and higher using the embedded objects reader olesr.

KeyView (11.6) Page 243 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

OASIS Open
Document Format

1, 21 odfsssr ODS
SXC
STC

Y Y Y Y2 Y Y N

OpenOffice Calc,
LibreOffice Calc

1 to 5 sosr SXC
ODS
OTS

Y T T N Y Y N

StarOffice Calc 6, 7, 8, 9 sosr SXC
ODS

Y T T N Y Y N

Supported Spreadsheet Formats, continued

Text and Markup Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

ANSI n/a afsr TXT Y Y Y N N N N

ASCII n/a afsr TXT Y Y Y N N N N

HTML 3, 4 htmsr HTM Y Y Y N P Y N

Microsoft Excel Windows
XML

2003 xmlsr XML Y T T N Y Y N

Microsoft WordWindows
XML

2003 xmlsr XML Y T T N Y Y N

Microsoft Visio XML 2003 xmlsr VDX Y T T N Y Y N

Supported Text and Markup Formats

1Generated by OpenOffice Calc 2.0, StarOffice 8 Calc, and IBM Lotus Symphony Spreadsheet 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 244 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VTX

MIME HTML n/a mhtsr MHT Y Y Y N Y Y N

Rich Text Format 1 through
1.7

rtfsr RTF Y Y Y N P Y Y

Unicode HTML n/a unihtmsr HTM Y Y Y N Y Y N

Unicode Text 3, 4 unisr TXT Y Y Y N N Y N

XHTML 1.0 htmsr HTM Y Y Y N Y Y N

XML (generic) 1.0 xmlsr XML Y T T N Y Y N

Supported Text and Markup Formats, continued

Word Processing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe FrameMaker
Interchange Format

5, 5.5, 6, 7 mifsr MIF Y Y Y N N Y N

Apple iChat Log 1, AV 2
AV 2.1, AV 3

ichatsr ICHAT Y Y Y N N N N

Apple iWork Pages ‘08, ‘09 iwwpsr GZ Y Y Y N Y Y N

'13, '16 iwwp13sr PAGES Y T T N N N N

Applix Words 3.11, 4, 4.1,
4.2, 4.3, 4.4

awsr AW Y Y Y N N Y Y

Supported Word Processing Formats

KeyView (11.6) Page 245 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Corel WordPerfect
Linux

6.0, 8.1 wp6sr WPS Y Y Y N P Y N

Corel WordPerfect
Macintosh

1.02, 2, 2.1,
2.2, 3, 3.1

wpmsr WPM Y Y Y N N Y N

Corel WordPerfect
Windows

5, 5.1 wosr WO Y Y Y N P Y Y

Corel WordPerfect
Windows

6, 7, 8, 9, 10,
11, 12, X3

wp6sr WPD Y Y Y N P Y Y

DisplayWrite 4 dw4sr IP Y Y Y N N Y N

Folio Flat File 3.1 foliosr FFF Y Y Y N Y Y Y

Founder Chinese E-
paper Basic

3.2.1 cebsr1 CEB Y N N N N N N

Fujitsu Oasys 7 oa2sr OA2 Y Y Y N P N N

Haansoft Hangul 97 hwpsr HWP Y N N N N Y N

2002, 2005,
2007, 2010

hwposr HWP Y T T Y Y Y N

Health level7 2.0 hl7sr HL7 Y Y Y N Y Y N

IBM DCA/RFT
(Revisable Form Text)

SC23-0758-1 dcasr DC Y Y Y N N Y N

Supported Word Processing Formats, continued

1This reader is only supported onWindows 32-bit platforms.

KeyView (11.6) Page 246 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JustSystems Ichitaro 8 through 2013 jtdsr JTD Y Y Y N P N Y

Lotus AMI Pro 2, 3 lasr SAM Y Y Y N P Y Y

Lotus AMI Professional
Write Plus

2.1 lasr AMI Y Y Y N N N Y

Lotus Word Pro 96, 97, R9 lwpsr LWP Y Y Y N P N Y

Lotus SmartMaster 96, 97 lwpsr MWP Y Y Y N N N N

Microsoft Word
Macintosh

4, 5, 6, 98 mbsr DOC Y Y Y N Y N Y

2001, v.X,
2004

mw8sr DOC
DOT

Y Y Y Y1 Y Y N

Microsoft Word PC 4, 5, 5.5, 6 mwsr DOC Y Y Y N N N Y

Microsoft Word
Windows

1.0 and 2.0 misr DOC Y Y Y N N N Y

Microsoft Word
Windows

6, 7, 8, 95 mw6sr DOC Y Y Y N Y Y Y

Microsoft Word
Windows

97, 2000,
2002, 2003

mw8sr DOC
DOT

Y Y Y Y2 Y Y Y

Microsoft Word
Windows XML

2007, 2010,
2013, 2016

mwxsr DOCM
DOCX

Y Y Y Y Y Y Y

Supported Word Processing Formats, continued

1Supported using the embedded objects reader olesr.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 247 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

DOTX
DOTM

Microsoft Word
Windows Flat XML

2007, 2010,
2013, 2016

mwxsr XML Y Y Y Y Y Y Y

Microsoft Works 1, 2, 3, 4 mswsr WPS Y Y Y N N N Y

Microsoft Works 6, 2000 msw6sr WPS Y Y Y N N N Y

Microsoft Windows
Write

1, 2, 3 mwsr WRI Y Y Y N N Y N

OASIS Open
Document Format

1, 21 odfwpsr ODT
SXW
STW

Y Y Y Y2 Y Y Y

Omni Outliner v3, OPML,
OOutline

oo3sr OO3
OPML
OOUTLINE

Y Y Y N N Y N

OpenOfficeWriter,
LibreOfficeWriter

1 to 5 sosr SXW
ODT

Y T T N Y Y N

Open Publication
Structure eBook

2.0, 3.0 epubsr EPUB Y Y Y N Y Y N

StarOfficeWriter 6, 7, 8, 9 sosr SXW
ODT

Y T T N Y Y N

Supported Word Processing Formats, continued

1Generated by OpenOfficeWriter 2.0, StarOffice 8Writer, and IBM Lotus Symphony Documents 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 248 of 346

XMLExport SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Skype Log 3 skypesr DBB Y Y Y N N N N

WordPad through 2003 rtfsr RTF Y Y Y N P Y N

XMLPaper
Specification

n/a xpssr XPS Y T T N N N N

XyWrite 4.12 xywsr XY4 Y Y Y N N N N

Yahoo! Instant
Messenger

n/a yimsr1 DAT Y Y Y N N N N

Supported Word Processing Formats, continued

1To successfully use this reader, youmust set the KV_YAHOO_ID environment variable to the Yahoo user ID. You can optionally set the KV_
OTHER_YAHOO_ID environment variable to the other Yahoo user ID. If you do not set it, "Other" is used by default. If you enter incorrect values for
the environment variables, erroneous data is generated.

KeyView (11.6) Page 249 of 346

XMLExport SDK C ProgrammingGuide

Supported Formats (Detected)

The file formats listed in this section can be detected by the KeyView format detectionmodule (kwad),
but cannot be filtered, converted, or displayed. The detectionmodule determines a file’s format and
reports the information to the developer’s application.

The formats listed in Supported Formats, on page 225 can be detected as well as filtered, exported, and
viewed.

l 3D Systems STL format
l Ability Office (SS, DB, GR, WP, COM)
l AC3 audio
l ACT
l Adobe FrameMaker
l Adobe FrameMaker Markup Language
l AES Multiplus Comm
l Aldus Freehand (Macintosh)
l Aldus PageMaker (DOS)
l Aldus PageMaker (Macintosh)
l Amiga IFF-8SVX sound
l AmigaMOD sound
l Apple Binary Property List
l Apple Double
l Apple iWork
l Apple Photoshop Document
l Apple Single
l Apple XML Property List
l Appleworks
l Applix Alis
l Applix Asterix
l Applix Graphics
l ARC/PAK Archive
l ASCII-armored PGP encoded
l ASCII-armored PGP Public Keyring
l ASCII-armored PGP signed
l AutoDesk Animator FLIC Animation
l AutoDesk Animator Pro FLIC Animation
l AutoDesk WHIP
l AutoShade Rendering
l B1 Archive

KeyView (11.6) Page 250 of 346

l BlackBerry Activation File
l CADAMDrawing
l CADAMDrawingOverlay
l CCITT Group 3 1-Dimensional (G31D)
l COMET TOPWord
l Confifer SoftwareWavPack
l Convergent Tech DEF Comm.
l Corel Draw CMX
l cpio Archive (UNIX/VAX/SUN)
l CPT Communication
l Creative Voice (VOC) sound
l Curses Screen Image (UNIX/VAX/SUN)
l Data Point VISTAWORD
l DCX Fax
l DEC WPS PLUS
l DECdx
l Desktop Color Separation (DCS)
l Device Independent file (DVI)
l DGCEOwrite
l DGCommonData Stream (CDS)
l DIF Spreadsheet
l Digital Document Interchange Format (DDIF)
l Digital Imaging and Communications in Medicine (DICOM)
l Disk Doubler Compression
l EBCDIC Text
l eFax
l ENABLE
l ENABLE Spreadsheet (SSF)
l Envoy (EVY)
l Executable UNIX/VAX/SUN
l FileMaker (Macintosh)
l FPX format
l Framework
l Framework II
l Freehand 11
l FTP Session Data
l GEM Bit Image
l Ghost Disk Image

XMLExport SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 251 of 346

l Google SketchUp
l Graphics Environment Manager (GEM VDI)
l Harvard Graphics
l Hewlett Packard
l Honey Bull DSA101
l HP Graphics Language (HP-GL)
l HP Graphics Language (Plotter)
l HP PCL and PJL Languages
l HPWord PC
l IBM 1403 Line Printer
l IBM DCA-FFT
l IBM DCF Script
l Informix SmartWare II
l Informix SmartWare II Communication File
l Informix SmartWare II Database
l Informix SmartWare Spreadsheet
l Interleaf
l ISO 10303-21 STEP format
l Java Class file
l JPEG File Interchange Format (JFIF)
l KeyholeMarkup Language
l KW ODA G4 (G4)
l KW ODA G31D (G31)
l KW ODA Internal G32D (G32)
l KW ODA Internal Raw Bitmap (RBM)
l Lasergraphics Language
l Link Library UNIX/VAX/SUN
l Lotus Notes Bitmap
l Lotus Notes CDF
l Lotus Screen Cam
l Lyrix
l Macromedia Director
l MacWrite
l MacWrite II
l MASS-11
l MATLAB MAT Format
l Micrografx Designer
l Microsoft Access 2007

XMLExport SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 252 of 346

l Microsoft Access 2007 Template
l Microsoft CommonObject File Format (COFF)
l Microsoft Compiled HTMLHelp
l Microsoft Device Independent Bitmap
l Microsoft Document Imaging (MDI)
l Microsoft Excel 2007Macro-Enabled Spreadsheet Template
l Microsoft Excel 2007 Spreadsheet Template
l Microsoft Exchange Server Database File
l Microsoft Object File Library
l Microsoft Office Drawing
l Microsoft Office Groove
l Microsoft Outlook Restricted PermissionMessage File
l Microsoft Windows Cursor (CUR) Graphics
l Microsoft Windows Group File
l Microsoft Windows Help File
l Microsoft Windows Icon (ICO)
l Microsoft Windows NT Event Log
l Microsoft Windows OLE 2 Encapsulation
l Microsoft Windows Vista Event Log
l Microsoft Word (UNIX)
l Microsoft Works (Macintosh)
l Microsoft Works Communication (Macintosh)
l Microsoft Works Communication (Windows)
l Microsoft Works Database (Macintosh)
l Microsoft Works Database (PC)
l Microsoft Works Database (Windows)
l Microsoft Works Spreadsheet (Macintosh)
l Microstation
l Milestone Document
l MORE DatabaseOutliner (Macintosh)
l MPEG4 (ISO IEC MPEG4)
l MPEG-PS container with CDXA stream
l MS DOS Batch File format
l MS DOS Device Driver
l MultiMate 4.0
l Multiplan Spreadsheet
l Navy DIF
l NBI Async Archive Format

XML Export SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 253 of 346

l NBI Net Archive Format
l Nero Encrypted File
l Netscape Bookmark file
l NeWS font file (SUN)
l NIOS TOP
l Nota Bene
l NURSTOR Drawing
l Object Module UNIX/VAX/SUN
l ODA/ODIF
l ODA/ODIF (FOD 26)
l OfficeWriter
l OLE DIB object
l OLIDIF
l Open PGP (new format packets)
l OS/2 PMMetafile Graphics
l PaperPort image file
l Paradox (PC) Database
l PC COM executable (detected in file mode only)
l PC Library Module
l PC Object Module
l PC True Type Font
l PCD Image
l PeachCalc Spreadsheet
l Persuasion Presentation
l PEX Binary Archive (SUN)
l PGP Compressed Data
l PGP Encrypted Data
l PGP Public Keyring
l PGP Secret Keyring
l PGP Signature Certificate
l PGP Signed and Encrypted Data
l PGP Signed Data
l Philips Script
l PKCS #12 (p12) Format
l Plan Perfect
l Portable Bitmap Utilities (PBM)
l Portable GreymapUtilities (PGM)
l Portable Pixmap Utilities (PPM)

XMLExport SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 254 of 346

l PostScript File
l PostScript Type 1 Font File
l PRIMEWORD
l Program Information File
l PTC Creo
l Q& A for DOS
l Q& A forWindows
l Quadratron Q-One (V1.93J)
l Quadratron Q-One (V2.0)
l Quark Xpress (Macintosh)
l QuickDraw 3D Metafile (3DMF)
l Real Audio
l RealLegal E-Transcript
l Reflex Database (R2D)
l RIFF Device Independent Bitmap
l RIFF MIDI
l RIFF MultimediaMovie
l SAMNAWord IV
l Samsung Electronics JungUmGlobal format
l SEG-Y Seismic Data format
l Serialized Object Format (SOF) Encapsulation
l SGML
l Simple Vector Format (SVF)
l SMTP document
l SolidWorks
l Sony WAVE64 format
l Star Office Calc Spreadsheet (versions 3-5)
l Star Office Impress Presentation (versions 3-5)
l Star OfficeMath (versions 3-5)
l Star OfficeWriter Text (versions 3-5)
l StuffIt Archive (Macintosh)
l SUN vfont definition
l SYLK Spreadsheet
l Symphony Spreadsheet
l TargonWord (V 2.0)
l Unigraphics NX
l Uniplex (V6.01)
l UNIX SHAR Encapsulation

XML Export SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 255 of 346

l Usenet format
l Volkswriter
l Vorbis OGG format
l VRML
l VRML 2.0
l WANGPC
l WangWITA
l WANGWPS Comm.
l WebARChive (WARC)
l Windows C++ Object Storage
l Windows Journal
l Windows Micrografx Draw (DRW)
l Windows Palette
l Windows scrap file (SHS)
l Wireless Markup Language
l Word Connection
l WordMARC word processor
l WordPerfect General File
l WordStar
l WordStar 6.0
l WordStar 2000
l WriteNow
l Writing Assistant word processor
l X Bitmap (XBM)
l X Image
l X Pixmap (XPM)
l Xerox 860 Comm.
l Xerox DocuWorks
l Xerox Writer word processor
l Yahoo! Messenger chat log
l Zipped KeyholeMarkup Language

XMLExport SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 256 of 346

Appendix B: Character Sets

This section provides information on the handling of character sets in the KeyView suite of products,
which includes KeyView Filter SDK, KeyView Export SDK, and KeyView Viewing SDK.

• Multibyte and Bidirectional Support 257
• Coded Character Sets 265

Multibyte and Bidirectional Support

The KeyView SDKs can process files that contain multibyte characters. A multibyte character
encoding represents a single character with consecutive bytes. KeyView can also process text from
files that contain bidirectional text. Bidirectional text contains both Latin-based text which is read from
left to right, and text that is read from right to left (Hebrew and Arabic).

The following table indicates which character encodings are supported by KeyView for each format.

Format Single-byte Multibyte Bidirectional

Archive

7-Zip (7Z) n/a n/a n/a

AD1 Evidence file n/a n/a n/a

ADJ n/a n/a n/a

B1 n/a n/a n/a

BinHex (HQX) n/a n/a n/a

Bzip2 (BZ2) n/a n/a n/a

EnCase – Expert Witness
Compression Format (E01)

n/a n/a n/a

GZIP (GZ) n/a n/a n/a

ISO (ISO) n/a n/a n/a

Java Archive (JAR) n/a n/a n/a

Legato EMailXtender Archive
(EMX)

n/a n/a n/a

MacBinary (BIN) n/a n/a n/a

Mac Disk Copy Disk Image (DMG) n/a n/a n/a

Microsoft Backup File (BKF) n/a n/a n/a

Multibyte and bidirectional support

KeyView (11.6) Page 257 of 346

Format Single-byte Multibyte Bidirectional

Microsoft Cabinet format (CAB) n/a n/a n/a

Microsoft Compiled HTMLHelp
(CHM)

n/a n/a n/a

Microsoft Compressed Folder
(LZH)

n/a n/a n/a

PKZip (ZIP) n/a n/a n/a

Microsoft Outlook DBX (DBX) Y Y Y

Microsoft Outlook Offline Storage
File (OST)

Y Y Y

RAR Archive (RAR) n/a n/a n/a

Tape Archive (TAR) n/a n/a n/a

UNIX Compress (Z) n/a n/a n/a

UUEncoding (UUE) n/a n/a n/a

Windows Scrap File (SHS) n/a n/a n/a

WinZip (ZIP) n/a n/a n/a

Binary

Executable (EXE) n/a n/a n/a

Link Library (DLL) n/a n/a n/a

Computer-aided Design

AutoCAD Drawing (DWG) Y Y Y

AutoCAD Drawing Exchange
(DXF)

Y Y Y

CATIA formats (CAT) Y N N

Microsoft Visio (VSD) Y Y Y

Database

dBase Database Y N N

Microsoft Access (MDB) Y Y N

Microsoft Project (MPP) Y Y N

Desktop Publishing

Microsoft Publisher N Y N

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 258 of 346

Format Single-byte Multibyte Bidirectional

Display

Adobe Portable Document Format
(PDF)

Y Y1 Y

Graphics

Computer Graphics Metafile
(CGM)

Y N N

Corel DRAW (CDR) n/a n/a n/a

DCX Fax System (DCX) Y N N

DICOM –Digital Imaging and
Communications in Medicine
(DCM)

n/a n/a n/a

Encapsulated PostScript (EPS) Y N N

EnhancedMetafile (EMF) Y Y N

Graphic Interchange Format (GIF) n/a n/a n/a

JBIG2 n/a n/a n/a

JPEG n/a n/a n/a

JPEG 2000 n/a n/a n/a

Lotus AMIDraw Graphics (SDW) n/a n/a n/a

Lotus Pic (PIC) n/a n/a n/a

Macintosh Raster (PICT/PCT) n/a n/a n/a

MacPaint (PNTG) n/a n/a n/a

Microsoft Office Drawing (MSO) n/a n/a n/a

Omni Graffle (GRAFFLE) Y N N

PC PaintBrush (PCX) n/a n/a n/a

Portable Network Graphics (PNG) n/a n/a n/a

SGI RGB Image (RGB) n/a n/a n/a

Sun Raster Image (RS) n/a n/a n/a

Tagged Image File (TIFF) Y N N

Truevision Targa (TGA) n/a n/a n/a

Windows Animated Cursor (ANI) n/a n/a n/a

Windows Bitmap (BMP) n/a n/a n/a

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 259 of 346

Format Single-byte Multibyte Bidirectional

Windows Icon Cursor (ICO) n/a n/a n/a

Windows Metafile (WMF) Y Y N

WordPerfect Graphics 1 (WPG) Y N N

WordPerfect Graphics 2 (WPG) Y N N

Mail

Documentum EMCMF Format Y Y Y

Domino XML Language (DXL) Y Y N

GroupWise FileSurf Y N N

Legato Extender (ONM) Y Y N

Lotus Notes database (NSF) Y Y Y

Mailbox (MBX) Y Y Y

Microsoft Entourage Database Y Y Y

Microsoft Outlook (MSG) Y Y Y

Microsoft Outlook Express (EML) Y Y Y

Microsoft Outlook iCalendar Y Y Y

Microsoft Outlook for Macintosh Y Y Y

Microsoft Outlook Offline Storage
File

Y Y Y

Microsoft Outlook Personal File
Folders (PST)

Y Y Y

Microsoft Outlook vCard Contact ? ? ?

Text Mail (MIME) Y Y Y

Transport Neutral Encapsulation
Format

Y Y Y

Multimedia

Advanced Systems Format (ASF) n/a n/a n/a

Audio Interchange File Format
(AIFF)

n/a n/a n/a

Microsoft Wave Sound (WAV) n/a n/a n/a

MIDI (MID) n/a n/a n/a

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 260 of 346

Format Single-byte Multibyte Bidirectional

MPEG 1Audio Layer 3 (MP3) n/a n/a n/a

MPEG 1Video (MPG) n/a n/a n/a

MPEG 2Audio (MPEGA) n/a n/a n/a

MPEG 4Audio (MP4) n/a n/a n/a

NeXT/Sun Audio (AU) n/a n/a n/a

QuickTimeMovie (QT/MOV) n/a n/a n/a

Windows Video (AVI) n/a n/a n/a

Presentations

Apple iWork Keynote (GZ) Y Y N

Applix Presents (AG) character set
1252 only

N N

Corel Presentations (SHW) character set
1252 only

N N

Extensible Forms Description
Language (XFD)

Y Y N

Lotus FreelanceGraphics 2 (PRE) character set
850 only

N N

Lotus FreelanceGraphics (PRZ) Y Japanese, Simple Chinese,
Traditional Chinese, Thai only

N

Macromedia Flash (SWF) Y Y N

Microsoft OneNote Y Y N

Microsoft PowerPoint PC (PPT) character set
1252 only

Traditional Chinese only N

Microsoft PowerPoint Windows
(PPT)

Y Japanese, Simple Chinese,
Traditional Chinese,
Korean only

Hebrew only

Microsoft PowerPoint Macintosh
(PPT)

Y N N

Microsoft PowerPoint Windows
XML 2007 and 2010 (PPTX)

Y Y Y

OASIS Open Document (ODP) Y Y N

OpenOffice Impress (ODP) Y Y N

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 261 of 346

Format Single-byte Multibyte Bidirectional

StarOffice Impress (ODP) Y Y N

Spreadsheets

Apple iWork Numbers (GZ) Y Y N

Applix Spreadsheets (AS) character set
1252 only

N N

CommaSeparated Values (CSV) character set
1252 only

N N

Corel Quattro Pro (QPW/WB3) Y N N

Data Interchange Format (DIF) Y Y Y2

Lotus 1-2-3 (123) Y Y Y

Lotus 1-2-3 (WK4) Y Y N

Lotus 123 Charts (123) Y Y N

Microsoft Excel Charts (XLS) Y Y N

Microsoft Excel Macintosh (XLS) Y N N

Microsoft Excel Windows (XLS) Y Y Y 2

Microsoft Excel Windows XML
2007 (XLSX)

Y Y N

Microsoft Office Excel Binary
Format (XLSB)

Y Y N

Microsoft Works Spreadsheet
(S30/S40)

Y N N

OASIS Open Document (ODS) Y Y N

OpenOffice Calc (ODS) Y Y N

StarOffice Calc (ODS) Y Y N

Text and Markup

ANSI (TXT) Y Y Y2

ASCII (TXT) Y Y Y2

HTML (HTM) Y Y Y2, 3

Microsoft Excel Windows XML
2003

Y Y Y

Microsoft Word forWindows XML
2003

Y Y Y

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 262 of 346

Format Single-byte Multibyte Bidirectional

Microsoft Visio XML 2003 Y Y Y

Rich Text Format (RTF) Y Y Y 3

Unicode HTML Y Y Y 2,3

Unicode Text (TXT) Y Y Y2

XHTML Y Y Y3

XML Y Y Y

Word Processing

AdobeMaker Interchange Format
(MIF)

character set
1252 only

N N

Apple iChat Log (ICHAT) Y Y N

Apple iWork Pages (GZ) Y Y N

Applix Words (AW) character set
1252 only

N N

DisplayWrite (IP) character set
500, 1026 only

N N

Folio Flat File (FFF) character set
1252 only

N N

Founder Chinese E-paper Basic
(CEB)

Y Y N

Fujitsu Oasys (OA2) Y Y N

Hangul (HWP) Y Y N

Health level7 (HL7) Y Y Y

IBM DCA/RTF (DC) character sets
500, 1026 only

N N

JustSystems Ichitaro (JTD) Y Y N

Lotus AMI Pro (SAM) Y Simple Chinese, Traditional
Chinese, Japanese, Thai only

Y

Lotus AMI Professional Write Plus
(AMI)

Y Simple Chinese, Traditional
Chinese, Japanese, Thai only

N

Lotus Word Pro (LWP) Y Y Y3

Lotus SmartMaster (MWP) Y Y N

Microsoft Word PC (DOC) character set N N

Multibyte and bidirectional support, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 263 of 346

Format Single-byte Multibyte Bidirectional

1252 only

Microsoft WordWindows V1-2
(DOC)

Y N N

Microsoft WordWindows V6, 7, 8,
95 (DOC)

Y Y Hebrew only3

Microsoft WordWindows V97
through 2003 (DOC)

Y Y Y3

Microsoft WordWindows XML
2007 and 2010 (DOCX)

Y Y Y3

Microsoft WordMacintosh (DOC) Y N Y3

Microsoft Works (WPS) Y Japanese only N

Microsoft Write (WRI) Y Japanese only N

OASIS Open Document (ODT) Y Y N

Omni Outliner (OO3) Y Y N

OpenOfficeWriter (ODT) Y Y N

Open Publication Structure eBook
(EPUB)

Y Y Y

StarOfficeWriter (ODT) Y Y N

Skype Log (DBB) Y Y (null-terminated charsets) N

WordPad (RTF) Y Y Y

WordPerfect Linux (WPS) Y N N

WordPerfect Macintosh (WPS) Y N N

WordPerfect Windows (WO) Y N N

XMLPaper Specification (XPS) Y Y N

XYWriteWindows (XY4) character set
1252 only

N N

Yahoo! Instant Messenger (DAT) Y Y (null-terminated charsets) N

Multibyte and bidirectional support, continued

1
Multibyte PDFs are supported, provided the PDF document is created by using either Character ID-
keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font encodings, and does not contain
embedded fonts. See the Adobe website and the Adobe Acrobat documentation for more information.
Any multibyte characters that are not supported are displayed using the replacement character. By
default, the replacement character is a questionmark (?).

To determine the type of font encodings that are used in a PDF, open the PDF in Adobe Acrobat, and

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 264 of 346

select File > Document Info > Fonts. If the Encoding column lists Custom or Embedded encodings,
youmight encounter problems converting the PDF.
2
The text direction in the output file might not be correct.
3
In Export SDK, a bidirectional right-to-left (RTL) tag is extracted from this format and included in the
direction element (<dir=RTL>) of the output.

Coded Character Sets

This section lists which character set you can use to specify the target character set. The coded
character sets are enumerated in kvtypes.h and defined in the Export class.

Coded Character
Set

Description Can be set as target
charset?

KVCS_
UNKNOWN

Unknown character set N

KVCS_SJIS Japanese (uses multibyte encoding), cp932 Y

KVCS_GB Simplified Chinese (China, Singapore, Malaysia)
cp936

Y

KVCS_BIG5 Traditional Chinese (Taiwan, Hong Kong, Macaw)
cp950

Y

KVCS_KSC Korean, cp949 Y

KVCS_1250 Windows Latin 2 (Central Europe) Y

KVCS_1251 Windows Cyrillic (Slavic) Y

KVCS_1252 Windows Latin 1 (ANSI) Y

KVCS_1253 Windows Greek Y

KVCS_1254 Windows Latin 5 (Turkish) Y

KVCS_1255 Windows Hebrew Y

KVCS_1256 Windows Arabic Y

KVCS_1257 Windows Baltic Rim Y

KVCS_1258 Windows Vietnamese Y

KVCS_8859_1 ISO 8859-1 Latin 1 (Western Europe, Latin
America)

Y

Code Character Sets

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 265 of 346

Coded Character
Set

Description Can be set as target
charset?

KVCS_8859_2 ISO 8859-2 Latin 2 (Central Eastern Europe) Y

KVCS_8859_3 ISO 8859-3 Latin 3 (S.E. Europe) Y

KVCS_8859_4 ISO 8859-4 Latin 4 (Scandinavia/Baltic) Y

KVCS_8859_5 ISO 8859-5 Latin/Cyrillic Y

KVCS_8859_6 ISO 8859-6 Latin/Arabic Y

KVCS_8859_7 ISO 8859-7 Latin/Greek Y

KVCS_8859_8 ISO 8859-8 Latin/Hebrew Y

KVCS_8859_9 ISO 8859-9 Latin/Turkish Y

KVCS_8859_14 ISO 8859-14 Y

KVCS_8859_15 ISO 8859-15 Y

KVCS_437 DOS Latin US Y

KVCS_737 DOS Greek Y

KVCS_775 DOS Baltic Rim Y

KVCS_850 DOS Latin 1 Y

KVCS_851 DOS Greek Y

KVCS_852 DOS Latin 2 Y

KVCS_855 DOS Cyrillic Y

KVCS_857 DOS Turkish Y

KVCS_860 DOS Portuguese Y

KVCS_861 DOS Icelandic Y

KVCS_862 DOS Hebrew Y

KVCS_863 DOS Canadian French Y

KVCS_864 DOS Arabic Y

KVCS_865 DOS Nordic Y

KVCS_866 DOS Cyrillic Russian Y

KVCS_869 DOS Greek 2 Y

Code Character Sets, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 266 of 346

Coded Character
Set

Description Can be set as target
charset?

KVCS_874 Thai Y

KVCS_
PDFMACDOC

PDFMAC DOC N

KVCS_
PDFWINDOC

PDFWIN DOC N

KVCS_STDENC Adobe Standard Encoding N

KVCS_PDFDOC Adobe standard PDF character set N

KVCS_037 EBCDIC code page 037 Y

KVCS_1026 EBCDIC code page 1026 Y

KVCS_500 EBCDIC code page 500 Y

KVCS_875 EBCDIC code page 875 Y

KVCS_LMBCS Lotus multibyte character set Group 1 andGroup 2 N

KVCS_UNICODE Unicode, UCS-2 N

KVCS_UTF16 16-bit Unicode transformation format N

KVCS_UTF8 8-bit Unicode transformation format Y

KVCS_UTF7 7-bit Unicode transformation format Y

KVCS_2022_JP ISO 2022-JP, Japanesemail and news safe
encoding (JIS-7)

N

KVCS_2022_CN ISO 2022-CN, Chinesemail and news safe
encoding

N

KVCS_2022_KR ISO 2022-KR, Koreanmail and news safe
encoding

N

KVCS_WP6X Word Perfect 6.x and higher character mapping N

KVCS_10000 Western European (Macintosh) Y

KVCS_KSC5601 Unified Hangul Y

KVCS_GB2312 Simplified Chinese (China, Singapore, Hong Kong) Y

KVCS_GB12345 Traditional Chinese (China) - analogue of GB2312 Y

KVCS_CNS11643 Traditional Chinese - Taiwan. Supplement to Big5 Y

Code Character Sets, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 267 of 346

Coded Character
Set

Description Can be set as target
charset?

KVCS_JIS0201 Japanese - contains ASCII character set (JIS-
Roman)

N

KVCS_JIS0212 Japanese. Supplement to JIS0208. Y

KVCS_EUC_JP Japanese Extended UNIX Code Y

KVCS_EUC_GB Simplified Chinese Extended UNIX Code Y

KVCS_EUC_
BIG5

Traditional Chinese Extended UNIX Code N

KVCS_EUC_KSC Korean Extended UNIX Code N

KVCS_424 EBCDIC Hebrew N

KVCS_856 PC Hebrew (old) N

KVCS_1006 IBM AIX Pakistan (Urdu) N

KVCS_KOI8R Cyrillic (Russian) Y

KVCS_PDF_
JAPAN1

Adobe-Japan1-2 character collection N

KVCS_PDF_
KOREA1

Adobe-Korea1-0 character collection N

KVCS_PDF_GB1 Adobe-GB1-3 character collection N

KVCS_PDF_
CNS1

Adobe-CNS1-2 character collection N

KVCS_2022_JP_
8

ISO 2022-JP, Japanesemail and news safe
encoding (JIS8)

N

KVCS_720 Arabic DOS-720 Y

KVCS_VISCII Vietnamese VISCII Y

KVCS_8859_10 ISO 8859-10 (Latin 6 Nordic) Y1

KVCS_8859_13 ISO 8859-13 (Latin 7 Baltic) Y 1

KVCS_57002 ISCII Devanagari (x-iscii-de) Y 1

KVCS_57003 ISCII Bengali (x-iscii-be) Y 1

KVCS_57004 ISCII Tamil (x-iscii-ta) Y1

KVCS_57005 ISCII Telugu (x-iscii-te) Y1

Code Character Sets, continued

XMLExport SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 268 of 346

Coded Character
Set

Description Can be set as target
charset?

KVCS_57006 ISCII Assamese (x-iscii-as) Y1

KVCS_57007 ISCII Oriya (x-iscii-or) Y1

KVCS_57008 ISCII Kannada (x-iscii-ka) Y1

KVCS_57009 ISCII Malayalam (x-iscii-ma) Y1

KVCS_57010 ISCII Gujarathi (x-iscii-gu) Y1

KVCS_57011 ISCII Panjabi (x-iscii-pa) Y 1

KVCS_
GB18030b2

Reserved for internal use n/a

KVCS_GB18030 GB18030 (Chinese 4-byte character set) Y

KVCS_8859_11 ISO 8859-11 (Thai) Y

KVCS_8859_16 ISO 8859-16 (Latin-10 South-Eastern Europe) Y

KVCS_
ARABICMAC

Arabic Mac (x-mac-arabic) Y

KVCS_KOI8U Cyrillic (KOI8U Ukrainian) Y

KVCS_
HZGB2312

The 7-bit representation of GB 2312 / RFC 1842 n/a

Code Character Sets, continued

1
The character set cannot be forced as output in Export SDK and Viewing SDK because the character
set is not supported by themajor browsers.

XML Export SDK C ProgrammingGuide
Appendix B: Character Sets

KeyView (11.6) Page 269 of 346

Appendix C: File Formats and Extensions

This section lists the KeyView file format numbers and their associated file extensions.

• File Format and Extension Table 270

File Format and Extension Table

This section lists the KeyView file format codes and the file extensions that they aremost commonly
associated with.

NOTE: This is not a complete list of file extensions. KeyView returns format codes based on
file content, which cannot always be predicted from the file extension. Some file extensions
might also be associated with multiple format numbers.

Format Name Format
Number

Format Description Associated File
Extension

AES_Multiplus_
Comm_Fmt

1 Multiplus (AES) PTF

ASCII_Text_Fmt 2 Text

MSDOS_Batch_
File_Fmt

3 MS-DOS Batch File BAT

Applix_Alis_Fmt 4 APPLIX ASTERIX AX

BMP_Fmt 5 Windows Bitmap BMP

CT_DEF_Fmt 6 Convergent Technologies DEF
Comm. Format

Corel_Draw_Fmt 7 Corel Draw CDR

CGM_ClearText_
Fmt

8 Computer Graphics Metafile (CGM) CGM1

CGM_Binary_Fmt 9 Computer Graphics Metafile (CGM) CGM 1

CGM_Character_
Fmt

10 Computer Graphics Metafile (CGM) CGM 1

Word_Connection_
Fmt

11 Word Connection CN

COMET_TOP_
Word_Fmt

12 COMET TOP

KeyView file formats and extensions

KeyView (11.6) Page 270 of 346

Format Name Format
Number

Format Description Associated File
Extension

CEOwrite_Fmt 13 CEOwrite CW

DSA101_Fmt 14 DSA101 (Honeywell Bull)

DCA_RFT_Fmt 15 DCA-RFT (IBM Revisable Form) RFT

CDA_DDIF_Fmt 16 CDA / DDIF

DG_CDS_Fmt 17 DGCommonData Stream (CDS) CDS

Micrografx_Draw_
Fmt

18 Windows Draw (Micrografx) DRW

Data_Point_
VistaWord_Fmt

19 Vistaword

DECdx_Fmt 20 DECdx DX

Enable_WP_Fmt 21 EnableWord Processing WPF

EPSF_Fmt 22 Encapsulated PostScript EPS 1

Preview_EPSF_Fmt 23 Encapsulated PostScript EPS 1

MS_Executable_Fmt 24 MSDOS/Windows Program EXE

G31D_Fmt 25 CCITT G3 1D

GIF_87a_Fmt 26 Graphics Interchange Format
(GIF87a)

GIF 1

GIF_89a_Fmt 27 Graphics Interchange Format
(GIF89a)

GIF 1

HP_Word_PC_Fmt 28 HPWord PC HW

IBM_1403_
LinePrinter_Fmt

29 IBM 1403 Line Printer I4

IBM_DCF_Script_
Fmt

30 DCF Script IC

IBM_DCA_FFT_Fmt 31 DCA-FFT (IBM Final Form) IF

Interleaf_Fmt 32 Interleaf

GEM_Image_Fmt 33 GEM Bit Image IMG

IBM_Display_Write_
Fmt

34 Display Write IP

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 271 of 346

Format Name Format
Number

Format Description Associated File
Extension

Sun_Raster_Fmt 35 Sun Raster RAS

Ami_Pro_Fmt 36 Lotus Ami Pro SAM

Ami_Pro_
StyleSheet_Fmt

37 Lotus Ami Pro Style Sheet

MORE_Fmt 38 MORE DatabaseMAC

Lyrix_Fmt 39 Lyrix Word Processing

MASS_11_Fmt 40 MASS-11 M1

MacPaint_Fmt 41 MacPaint PNTG

MS_Word_Mac_Fmt 42 Microsoft Word for Macintosh DOC 1

SmartWare_II_
Comm_Fmt

43 SmartWare II

MS_Word_Win_Fmt 44 Microsoft Word forWindows DOC 1

Multimate_Fmt 45 MultiMate MM 1

Multimate_Fnote_
Fmt

46 MultiMate Footnote File FNX 1

Multimate_Adv_Fmt 47 MultiMate Advantage

Multimate_Adv_
Fnote_Fmt

48 MultiMate Advantage Footnote File

Multimate_Adv_II_
Fmt

49 MultiMate Advantage II MM1

Multimate_Adv_II_
Fnote_Fmt

50 MultiMate Advantage II Footnote File FNX 1

Multiplan_PC_Fmt 51 Multiplan (PC)

Multiplan_Mac_Fmt 52 Multiplan (Mac)

MS_RTF_Fmt 53 Rich Text Format (RTF) RTF

MS_Word_PC_Fmt 54 Microsoft Word for PC DOC 1

MS_Word_PC_
StyleSheet_Fmt

55 Microsoft Word for PC Style Sheet DOC 1

MS_Word_PC_
Glossary_Fmt

56 Microsoft Word for PC Glossary DOC 1

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 272 of 346

Format Name Format
Number

Format Description Associated File
Extension

MS_Word_PC_
Driver_Fmt

57 Microsoft Word for PC Driver DOC 1

MS_Word_PC_
Misc_Fmt

58 Microsoft Word for PC Miscellaneous
File

DOC 1

NBI_Async_
Archive_Fmt

59 NBI Async Archive Format

Navy_DIF_Fmt 60 Navy DIF ND

NBI_Net_Archive_
Fmt

61 NBI Net Archive Format NN

NIOS_TOP_Fmt 62 NIOS TOP

FileMaker_Mac_Fmt 63 Filemaker MAC FP5, FP7

ODA_Q1_11_Fmt 64 ODA / ODIF OD1

ODA_Q1_12_Fmt 65 ODA / ODIF OD 1

OLIDIF_Fmt 66 OLIDIF (Olivetti)

Office_Writer_Fmt 67 OfficeWriter OW

PC_Paintbrush_Fmt 68 PC Paintbrush Graphics (PCX) PCX

CPT_Comm_Fmt 69 CPT

Lotus_PIC_Fmt 70 Lotus PIC PIC

Mac_PICT_Fmt 71 QuickDraw Picture PCT

Philips_Script_
Word_Fmt

72 Philips Script

PostScript_Fmt 73 PostScript PS

PRIMEWORD_Fmt 74 PRIMEWORD

Quadratron_Q_One_
v1_Fmt

75 Q-One V1.93J Q1 1, QX 1

Quadratron_Q_One_
v2_Fmt

76 Q-One V2.0 Q1 1, QX 1

SAMNA_Word_IV_
Fmt

77 SAMNAWord SAM

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 273 of 346

Format Name Format
Number

Format Description Associated File
Extension

Ami_Pro_Draw_Fmt 78 Lotus Ami Pro Draw SDW

SYLK_Spreadsheet_
Fmt

79 SYLK

SmartWare_II_WP_
Fmt

80 SmartWare II

Symphony_Fmt 81 Symphony WR1

Targa_Fmt 82 Targa TGA

TIFF_Fmt 83 TIFF TIF, TIFF

Targon_Word_Fmt 84 TargonWord TW

Uniplex_Ucalc_Fmt 85 Uniplex Ucalc SS

Uniplex_WP_Fmt 86 Uniplex UP

MS_Word_UNIX_
Fmt

87 Microsoft Word UNIX DOC1

WANG_PC_Fmt 88 WANGPC

WordERA_Fmt 89 WordERA

WANG_WPS_
Comm_Fmt

90 WANGWPS WF

WordPerfect_Mac_
Fmt

91 WordPerfect MAC WPM, WPD1

WordPerfect_Fmt 92 WordPerfect WO, WPD1

WordPerfect_VAX_
Fmt

93 WordPerfect VAX WPD1

WordPerfect_Macro_
Fmt

94 WordPerfect Macro

WordPerfect_
Dictionary_Fmt

95 WordPerfect Spelling Dictionary

WordPerfect_
Thesaurus_Fmt

96 WordPerfect Thesaurus

WordPerfect_
Resource_Fmt

97 WordPerfect Resource File

WordPerfect_Driver_ 98 WordPerfect Driver

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 274 of 346

Format Name Format
Number

Format Description Associated File
Extension

Fmt

WordPerfect_Cfg_
Fmt

99 WordPerfect Configuration File

WordPerfect_
Hyphenation_Fmt

100 WordPerfect Hyphenation Dictionary

WordPerfect_Misc_
Fmt

101 WordPerfect Miscellaneous File WPD1

WordMARC_Fmt 102 WordMARC WM, PW

Windows_Metafile_
Fmt

103 Windows Metafile WMF1

Windows_Metafile_
NoHdr_Fmt

104 Windows Metafile (no header) WMF1

SmartWare_II_DB_
Fmt

105 SmartWare II

WordPerfect_
Graphics_Fmt

106 WordPerfect Graphics WPG, QPG

WordStar_Fmt 107 WordStar WS

WANG_WITA_Fmt 108 WANGWITA WT

Xerox_860_Comm_
Fmt

109 Xerox 860

Xerox_Writer_Fmt 110 Xerox Writer

DIF_SpreadSheet_
Fmt

111 Data Interchange Format (DIF) DIF

Enable_
Spreadsheet_Fmt

112 Enable Spreadsheet SSF

SuperCalc_Fmt 113 Supercalc CAL

UltraCalc_Fmt 114 UltraCalc

SmartWare_II_SS_
Fmt

115 SmartWare II

SOF_Encapsulation_
Fmt

116 Serialized Object Format (SOF) SOF

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 275 of 346

Format Name Format
Number

Format Description Associated File
Extension

PowerPoint_Win_
Fmt

117 PowerPoint PC PPT1

PowerPoint_Mac_
Fmt

118 PowerPoint MAC PPT1

PowerPoint_95_Fmt 119 PowerPoint 95 PPT1

PowerPoint_97_Fmt 120 PowerPoint 97 PPT1

PageMaker_Mac_
Fmt

121 PageMaker for Macintosh

PageMaker_Win_
Fmt

122 PageMaker forWindows

MS_Works_Mac_
WP_Fmt

123 Microsoft Works for MAC

MS_Works_Mac_
DB_Fmt

124 Microsoft Works for MAC

MS_Works_Mac_
SS_Fmt

125 Microsoft Works for MAC

MS_Works_Mac_
Comm_Fmt

126 Microsoft Works for MAC

MS_Works_DOS_
WP_Fmt

127 Microsoft Works for DOS WPS1

MS_Works_DOS_
DB_Fmt

128 Microsoft Works for DOS WDB1

MS_Works_DOS_
SS_Fmt

129 Microsoft Works for DOS

MS_Works_Win_
WP_Fmt

130 Microsoft Works forWindows WPS1

MS_Works_Win_
DB_Fmt

131 Microsoft Works forWindows WDB1

MS_Works_Win_
SS_Fmt

132 Microsoft Works forWindows S30, S40

PC_Library_Fmt 133 DOS/Windows Object Library

MacWrite_Fmt 134 MacWrite

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 276 of 346

Format Name Format
Number

Format Description Associated File
Extension

MacWrite_II_Fmt 135 MacWrite II

Freehand_Fmt 136 FreehandMAC

Disk_Doubler_Fmt 137 Disk Doubler

HP_GL_Fmt 138 HP Graphics Language HPGL

FrameMaker_Fmt 139 FrameMaker FM, FRM

FrameMaker_Book_
Fmt

140 FrameMaker BOOK

Maker_Markup_
Language_Fmt

141 Maker Markup Language

Maker_Interchange_
Fmt

142 Maker Interchange Format (MIF) MIF

JPEG_File_
Interchange_Fmt

143 Interchange Format JPG, JPEG

Reflex_Fmt 144 Reflex

Framework_Fmt 145 Framework

Framework_II_Fmt 146 Framework II FW3

Paradox_Fmt 147 Paradox DB

MS_Windows_
Write_Fmt

148 Windows Write WRI

Quattro_Pro_DOS_
Fmt

149 Quattro Pro for DOS

Quattro_Pro_Win_
Fmt

150 Quattro Pro forWindows WB2, WB3

Persuasion_Fmt 151 Persuasion

Windows_Icon_Fmt 152 Windows Icon Format ICO

Windows_Cursor_
Fmt

153 Windows Cursor CUR

MS_Project_
Activity_Fmt

154 Microsoft Project MPP1

MS_Project_
Resource_Fmt

155 Microsoft Project MPP1

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 277 of 346

Format Name Format
Number

Format Description Associated File
Extension

MS_Project_Calc_
Fmt

156 Microsoft Project MPP1

PKZIP_Fmt 157 ZIP Archive ZIP

Quark_Xpress_Fmt 158 Quark Xpress MAC

ARC_PAK_Archive_
Fmt

159 PAK/ARC Archive ARC, PAK

MS_Publisher_Fmt 160 Microsoft Publisher PUB1

PlanPerfect_Fmt 161 PlanPerfect

WordPerfect_
Auxiliary_Fmt

162 WordPerfect auxiliary file WPW

MS_WAVE_Audio_
Fmt

163 Microsoft Wave WAV

MIDI_Audio_Fmt 164 MIDI MID, MIDI

AutoCAD_DXF_
Binary_Fmt

165 AutoCAD DXF DXF1

AutoCAD_DXF_
Text_Fmt

166 AutoCAD DXF DXF1

dBase_Fmt 167 dBase DBF

OS_2_PM_Metafile_
Fmt

168 OS/2 PMMetafile MET

Lasergraphics_
Language_Fmt

169 Lasergraphics Language

AutoShade_
Rendering_Fmt

170 AutoShade Rendering

GEM_VDI_Fmt 171 GEM VDI VDI

Windows_Help_Fmt 172 Windows Help File HLP

Volkswriter_Fmt 173 Volkswriter VW4

Ability_WP_Fmt 174 Ability

Ability_DB_Fmt 175 Ability

Ability_SS_Fmt 176 Ability

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 278 of 346

Format Name Format
Number

Format Description Associated File
Extension

Ability_Comm_Fmt 177 Ability

Ability_Image_Fmt 178 Ability

XyWrite_Fmt 179 XYWrite / Nota Bene XY4

CSV_Fmt 180 CSV (CommaSeparated Values) CSV

IBM_Writing_
Assistant_Fmt

181 IBMWriting Assistant IWA

WordStar_2000_Fmt 182 WordStar 2000 WS2

HP_PCL_Fmt 183 HP Printer Control Language PCL

UNIX_Exe_
PreSysV_VAX_Fmt

184 Unix Executable (PDP-11/pre-
System V VAX)

UNIX_Exe_Basic_
16_Fmt

185 Unix Executable (Basic-16)

UNIX_Exe_x86_Fmt 186 Unix Executable (x86)

UNIX_Exe_iAPX_
286_Fmt

187 Unix Executable (iAPX 286)

UNIX_Exe_MC68k_
Fmt

188 Unix Executable (MC680x0)

UNIX_Exe_3B20_
Fmt

189 Unix Executable (3B20)

UNIX_Exe_
WE32000_Fmt

190 Unix Executable (WE32000)

UNIX_Exe_VAX_
Fmt

191 Unix Executable (VAX)

UNIX_Exe_Bell_5_
Fmt

192 Unix Executable (Bell 5.0)

UNIX_Obj_VAX_
Demand_Fmt

193 Unix Object Module (VAX Demand)

UNIX_Obj_MS8086_
Fmt

194 Unix Object Module (old MS 8086)

UNIX_Obj_Z8000_
Fmt

195 Unix Object Module (Z8000)

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 279 of 346

Format Name Format
Number

Format Description Associated File
Extension

AU_Audio_Fmt 196 NeXT/Sun Audio Data AU

NeWS_Font_Fmt 197 NeWS bitmap font

cpio_Archive_
CRChdr_Fmt

198 cpio archive (CRC Header)

cpio_Archive_
CHRhdr_Fmt

199 cpio archive (CHR Header)

PEX_Binary_
Archive_Fmt

200 SUN PEX Binary Archive

Sun_vfont_Fmt 201 SUN vfont Definition

Curses_Screen_Fmt 202 Curses Screen Image

UUEncoded_Fmt 203 UU encoded UUE

WriteNow_Fmt 204 WriteNow MAC

PC_Obj_Fmt 205 DOS/Windows Object Module

Windows_Group_
Fmt

206 Windows Group

TrueType_Font_Fmt 207 TrueType Font TTF

Windows_PIF_Fmt 208 Program Information File (PIF) PIF

MS_COM_
Executable_Fmt

209 PC (.COM) COM

StuffIt_Fmt 210 StuffIt (MAC) HQX

PeachCalc_Fmt 211 PeachCalc

Wang_GDL_Fmt 212 WANGOffice GDLHeader

Q_A_DOS_Fmt 213 Q& A for DOS

Q_A_Win_Fmt 214 Q& A forWindows JW

WPS_PLUS_Fmt 215 WPS-PLUS WPL

DCX_Fmt 216 DCX FAX Format(PCX images DCX

OLE_Fmt 217 OLE Compound Document OLE

EBCDIC_Fmt 218 EBCDIC Text

DCS_Fmt 219 DCS

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 280 of 346

Format Name Format
Number

Format Description Associated File
Extension

UNIX_SHAR_Fmt 220 SHAR SHAR

Lotus_Notes_
BitMap_Fmt

221 Lotus Notes Bitmap

Lotus_Notes_CDF_
Fmt

222 Lotus Notes CDF CDF

Compress_Fmt 223 Unix Compress Z

GZ_Compress_Fmt 224 GZ Compress GZ1

TAR_Fmt 225 TAR TAR

ODIF_FOD26_Fmt 226 ODA / ODIF F26

ODIF_FOD36_Fmt 227 ODA / ODIF F36

ALIS_Fmt 228 ALIS

Envoy_Fmt 229 Envoy EVY

PDF_Fmt 230 Portable Document Format PDF

BinHex_Fmt 231 BinHex HQX

SMTP_Fmt 232 SMTP SMTP

MIME_Fmt 233 MIME2 EML, MBX

USENET_Fmt 234 USENET

SGML_Fmt 235 SGML SGML

HTML_Fmt 236 HTML HTM1, HTML 1

ACT_Fmt 237 ACT ACT

PNG_Fmt 238 Portable Network Graphics (PNG) PNG

MS_Video_Fmt 239 Video forWindows (AVI) AVI

Windows_Animated_
Cursor_Fmt

240 Windows Animated Cursor ANI

Windows_CPP_Obj_
Storage_Fmt

241 Windows C++ Object Storage

Windows_Palette_
Fmt

242 Windows Palette PAL

RIFF_DIB_Fmt 243 RIFF Device Independent Bitmap

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 281 of 346

Format Name Format
Number

Format Description Associated File
Extension

RIFF_MIDI_Fmt 244 RIFF MIDI RMI

RIFF_Multimedia_
Movie_Fmt

245 RIFF MultimediaMovie

MPEG_Fmt 246 MPEGMovie MPG, MPEG1

QuickTime_Fmt 247 QuickTimeMovie, MPEG-4 Audio MOV, QT, MP4

AIFF_Fmt 248 Audio Interchange File Format (AIFF) AIF, AIFF

Amiga_MOD_Fmt 249 AmigaMOD MOD

Amiga_IFF_8SVX_
Fmt

250 Amiga IFF (8SVX) Sound IFF

Creative_Voice_
Audio_Fmt

251 Creative Voice (VOC) VOC

AutoDesk_Animator_
FLI_Fmt

252 AutoDesk Animator FLIC FLI

AutoDesk_
AnimatorPro_FLC_
Fmt

253 AutoDesk Animator Pro FLIC FLC

Compactor_Archive_
Fmt

254 Compactor / Compact Pro

VRML_Fmt 255 VRML WRL

QuickDraw_3D_
Metafile_Fmt

256 QuickDraw 3D Metafile

PGP_Secret_
Keyring_Fmt

257 PGP Secret Keyring

PGP_Public_
Keyring_Fmt

258 PGP Public Keyring

PGP_Encrypted_
Data_Fmt

259 PGP Encrypted Data

PGP_Signed_Data_
Fmt

260 PGP Signed Data

PGP_
SignedEncrypted_
Data_Fmt

261 PGP Signed and Encrypted Data

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 282 of 346

Format Name Format
Number

Format Description Associated File
Extension

PGP_Sign_
Certificate_Fmt

262 PGP Signature Certificate

PGP_Compressed_
Data_Fmt

263 PGP Compressed Data

PGP_ASCII_Public_
Keyring_Fmt

264 ASCII-armored PGP Public Keyring

PGP_ASCII_
Encoded_Fmt

265 ASCII-armored PGP encoded PGP1

PGP_ASCII_
Signed_Fmt

266 ASCII-armored PGP encoded PGP1

OLE_DIB_Fmt 267 OLE DIB object

SGI_Image_Fmt 268 SGI Image RGB

Lotus_ScreenCam_
Fmt

269 Lotus ScreenCam

MPEG_Audio_Fmt 270 MPEGAudio MPEGA

FTP_Software_
Session_Fmt

271 FTP Session Data STE

Netscape_
Bookmark_File_Fmt

272 Netscape Bookmark File HTM1

Corel_Draw_CMX_
Fmt

273 Corel CMX CMX

AutoDesk_DWG_
Fmt

274 AutoDesk Drawing (DWG) DWG

AutoDesk_WHIP_
Fmt

275 AutoDesk WHIP WHP

Macromedia_
Director_Fmt

276 Macromedia Director DCR

Real_Audio_Fmt 277 Real Audio RM

MSDOS_Device_
Driver_Fmt

278 MSDOS Device Driver SYS

Micrografx_
Designer_Fmt

279 Micrografx Designer DSF

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 283 of 346

Format Name Format
Number

Format Description Associated File
Extension

SVF_Fmt 280 Simple Vector Format (SVF) SVF

Applix_Words_Fmt 281 Applix Words AW

Applix_Graphics_
Fmt

282 Applix Graphics AG

MS_Access_Fmt 283 Microsoft Access MDB1

MS_Access_95_Fmt 284 Microsoft Access 95 MDB1

MS_Access_97_Fmt 285 Microsoft Access 97 MDB1

MacBinary_Fmt 286 MacBinary BIN

Apple_Single_Fmt 287 Apple Single

Apple_Double_Fmt 288 Apple Double

Enhanced_Metafile_
Fmt

289 EnhancedMetafile EMF

MS_Office_Drawing_
Fmt

290 Microsoft Office Drawing

XML_Fmt 291 XML XML1

DeVice_
Independent_Fmt

292 DeVice Independent file (DVI) DVI

Unicode_Fmt 293 Unicode UNI

Lotus_123_
Worksheet_Fmt

294 Lotus 1-2-3 WK11

Lotus_123_Format_
Fmt

295 Lotus 1-2-3 Formatting FM3

Lotus_123_97_Fmt 296 Lotus 1-2-3 97 WK11

Lotus_Word_Pro_
96_Fmt

297 Lotus Word Pro 96 LWP1

Lotus_Word_Pro_
97_Fmt

298 Lotus Word Pro 97 LWP1

Freelance_DOS_Fmt 299 Lotus Freelance for DOS

Freelance_Win_Fmt 300 Lotus Freelance forWindows PRE

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 284 of 346

Format Name Format
Number

Format Description Associated File
Extension

Freelance_OS2_Fmt 301 Lotus Freelance for OS/2 PRS

Freelance_96_Fmt 302 Lotus Freelance 96 PRZ1

Freelance_97_Fmt 303 Lotus Freelance 97 PRZ1

MS_Word_95_Fmt 304 Microsoft Word 95 DOC1

MS_Word_97_Fmt 305 Microsoft Word 97 DOC1

Excel_Fmt 306 Microsoft Excel XLS1

Excel_Chart_Fmt 307 Microsoft Excel XLS1

Excel_Macro_Fmt 308 Microsoft Excel XLS1

Excel_95_Fmt 309 Microsoft Excel 95 XLS1

Excel_97_Fmt 310 Microsoft Excel 97 XLS1

Corel_
Presentations_Fmt

311 Corel Presentations XFD, XFDL

Harvard_Graphics_
Fmt

312 Harvard Graphics

Harvard_Graphics_
Chart_Fmt

313 Harvard Graphics Chart CH3, CHT

Harvard_Graphics_
Symbol_Fmt

314 Harvard Graphics Symbol File SY3

Harvard_Graphics_
Cfg_Fmt

315 Harvard Graphics Configuration File

Harvard_Graphics_
Palette_Fmt

316 Harvard Graphics Palette

Lotus_123_R9_Fmt 317 Lotus 1-2-3 Release 9

Applix_
Spreadsheets_Fmt

318 Applix Spreadsheets AS

MS_Pocket_Word_
Fmt

319 Microsoft Pocket Word PWD, DOC1

MS_DIB_Fmt 320 MSWindows Device Independent
Bitmap

MS_Word_2000_Fmt 321 Microsoft Word 2000 DOC1

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 285 of 346

Format Name Format
Number

Format Description Associated File
Extension

Excel_2000_Fmt 322 Microsoft Excel 2000 XLS1

PowerPoint_2000_
Fmt

323 Microsoft PowerPoint 2000 PPT

MS_Access_2000_
Fmt

324 Microsoft Access 2000 MDB1, MPP1

MS_Project_4_Fmt 325 Microsoft Project 4 MPP1

MS_Project_41_Fmt 326 Microsoft Project 4.1 MPP1

MS_Project_98_Fmt 327 Microsoft Project 98 MPP1

Folio_Flat_Fmt 328 Folio Flat File FFF

HWP_Fmt 329 HWP(Arae-Ah Hangul) HWP

ICHITARO_Fmt 330 ICHITAROV4-10

IS_XML_Fmt 331 Extended or Custom XML XML1

Oasys_Fmt 332 Oasys format OA2, OA3

PBM_ASC_Fmt 333 Portable Bitmap Utilities ASCII
Format

PBM_BIN_Fmt 334 Portable Bitmap Utilities Binary
Format

PGM_ASC_Fmt 335 Portable GreymapUtilities ASCII
Format

PGM_BIN_Fmt 336 Portable GreymapUtilities Binary
Format

PGM

PPM_ASC_Fmt 337 Portable Pixmap Utilities ASCII
Format

PPM_BIN_Fmt 338 Portable Pixmap Utilities Binary
Format

XBM_Fmt 339 X Bitmap Format XBM

XPM_Fmt 340 X Pixmap Format XPM

FPX_Fmt 341 FPX Format FPX

PCD_Fmt 342 PCD Format PCD

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 286 of 346

Format Name Format
Number

Format Description Associated File
Extension

MS_Visio_Fmt 343 Microsoft Visio VSD

MS_Project_2000_
Fmt

344 Microsoft Project 2000 MPP1

MS_Outlook_Fmt 345 Microsoft Outlook MSG, OFT

ELF_Relocatable_
Fmt

346 ELF Relocatable O

ELF_Executable_
Fmt

347 ELF Executable

ELF_Dynamic_Lib_
Fmt

348 ELF Dynamic Library SO

MS_Word_XML_Fmt 349 Microsoft Word 2003 XML XML1

MS_Excel_XML_Fmt 350 Microsoft Excel 2003 XML XML1

MS_Visio_XML_Fmt 351 Microsoft Visio 2003 XML VDX

SO_Text_XML_Fmt 352 StarOffice Text XML SXW1, ODT1

SO_Spreadsheet_
XML_Fmt

353 StarOffice Spreadsheet XML SXC1, ODS1

SO_Presentation_
XML_Fmt

354 StarOffice Presentation XML SXI1, SXP1, ODP1

XHTML_Fmt 355 XHTML XML1

MS_OutlookPST_
Fmt

356 Microsoft Outlook PST PST

RAR_Fmt 357 RAR RAR

Lotus_Notes_NSF_
Fmt

358 IBM Lotus Notes Database NSF/NTF NSF

Macromedia_Flash_
Fmt

359 SWF SWF

MS_Word_2007_Fmt 360 Microsoft Word 2007 XML DOCX, DOTX

MS_Excel_2007_
Fmt

361 Microsoft Excel 2007 XML XLSX, XLTX

MS_PPT_2007_Fmt 362 Microsoft PPT 2007 XML PPTX, POTX, PPSX

OpenPGP_Fmt 363 OpenPGP Message Format (with new PGP

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 287 of 346

Format Name Format
Number

Format Description Associated File
Extension

packet format)

Intergraph_V7_
DGN_Fmt

364 Intergraph Standard File Format
(ISFF) V7 DGN (non-OLE)

DGN1

MicroStation_V8_
DGN_Fmt

365 MicroStation V8 DGN (OLE) DGN1

MS_Word_Macro_
2007_Fmt

366 Microsoft WordMacro 2007 XML DOCM, DOTM

MS_Excel_Macro_
2007_Fmt

367 Microsoft Excel Macro 2007 XML XLSM, XLTM, XLAM

MS_PPT_Macro_
2007_Fmt

368 Microsoft PPT Macro 2007 XML PPTM, POTM, PPSM,
PPAM

LZH_Fmt 369 LHA Archive LZH, LHA

Office_2007_Fmt 370 Office 2007 document XLSB

MS_XPS_Fmt 371 Microsoft XML Paper Specification
(XPS)

XPS

Lotus_Domino_DXL_
Fmt

372 IBM Lotus representation of Domino
design elements in XML format

DXL

ODF_Text_Fmt 373 ODF Text ODT1, SXW1, STW

ODF_Spreadsheet_
Fmt

374 ODF Spreadsheet ODS1, SXC1, STC

ODF_Presentation_
Fmt

375 ODF Presentation SXD1, SXI1, ODG1, ,
ODP1

Legato_Extender_
ONM_Fmt

376 Legato Extender NativeMessage
ONM

ONM

bin_Unknown_Fmt 377 n/a

TNEF_Fmt 378 Transport Neutral Encapsulation
Format (TNEF)

various

CADAM_Drawing_
Fmt

379 CADAMDrawing CDD

CADAM_Drawing_
Overlay_Fmt

380 CADAMDrawingOverlay CDO

NURSTOR_ 381 NURSTOR Drawing NUR

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 288 of 346

Format Name Format
Number

Format Description Associated File
Extension

Drawing_Fmt

HP_GLP_Fmt 382 HP Graphics Language (Plotter) HPG

ASF_Fmt 383 Advanced Systems Format (ASF) ASF

WMA_Fmt 384 Window Media Audio Format (WMA) WMA

WMV_Fmt 385 Window Media Video Format (WMV) WMV

EMX_Fmt 386 Legato EMailXtender Archives
Format (EMX)

EMX

Z7Z_Fmt 387 7 Zip Format(7z) 7Z

MS_Excel_Binary_
2007_Fmt

388 Microsoft Excel Binary 2007 XLSB

CAB_Fmt 389 Microsoft Cabinet File (CAB) CAB

CATIA_Fmt 390 CATIA Formats (CAT*) CAT3

YIM_Fmt 391 Yahoo Instant Messenger History DAT1

ODF_Drawing_Fmt 392 ODF Drawing SXD1, SX1, ODG1

Founder_CEB_Fmt 393 Founder Chinese E-paper Basic (ceb) CEB

QPW_Fmt 394 Quattro Pro 9+ forWindows QPW

MHT_Fmt 395 MHT format2 MHT

MDI_Fmt 396 Microsoft Document Imaging Format MDI

GRV_Fmt 397 Microsoft Office Groove Format GRV

IWWP_Fmt 398 Apple iWork Pages format PAGES, GZ1

IWSS_Fmt 399 Apple iWork Numbers format NUMBERS, GZ1

IWPG_Fmt 400 Apple iWork Keynote format KEY, GZ1

BKF_Fmt 401 Windows Backup File BKF

MS_Access_2007_
Fmt

402 Microsoft Access 2007 ACCDB

ENT_Fmt 403 Microsoft Entourage Database
Format

DMG_Fmt 404 Mac Disk Copy Disk Image File

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 289 of 346

Format Name Format
Number

Format Description Associated File
Extension

CWK_Fmt 405 AppleWorks File

OO3_Fmt 406 Omni Outliner File OO3

OPML_Fmt 407 Omni Outliner File OPML

Omni_Graffle_XML_
Fmt

408 Omni Graffle XML File GRAFFLE

PSD_Fmt 409 Photoshop Document PSD

Apple_Binary_PList_
Fmt

410 Apple Binary Property List format

Apple_iChat_Fmt 411 Apple iChat format

OOUTLINE_Fmt 412 OOutliner File OOUTLINE

BZIP2_Fmt 413 Bzip 2 Compressed File BZ2

ISO_Fmt 414 ISO-9660 CD Disc Image Format ISO

DocuWorks_Fmt 415 DocuWorks Format XDW

RealMedia_Fmt 416 RealMedia StreamingMedia RM, RA

AC3Audio_Fmt 417 AC3 Audio File Format AC3

NEF_Fmt 418 Nero Encrypted File NEF

SolidWorks_Fmt 419 SolidWorks Format Files SLDASM, SLDPRT,
SLDDRW

XFDL_Fmt 420 Extensible Forms Description
Language

XFDL, XFD

Apple_XML_PList_
Fmt

421 Apple XML Property List format

OneNote_Fmt 422 OneNote Note Format ONE

Dicom_Fmt 424 Digital Imaging and Communications
in Medicine

DCM

EnCase_Fmt 425 Expert Witness Compression Format
(EnCase)

E01, L01, Lx01

Scrap_Fmt 426 Shell Scrap Object File SHS

MS_Project_2007_
Fmt

427 Microsoft Project 2007 MPP1

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 290 of 346

Format Name Format
Number

Format Description Associated File
Extension

MS_Publisher_98_
Fmt

428 Microsoft Publisher
98/2000/2002/2003/2007/

PUB1

Skype_Fmt 429 Skype Log File DBB

Hl7_Fmt 430 Health level7 message HL7

MS_OutlookOST_
Fmt

431 Microsoft Outlook OST OST

Epub_Fmt 432 Electronic Publication EPUB

MS_OEDBX_Fmt 433 Microsoft Outlook Express DBX DBX

BB_Activ_Fmt 434 BlackBerry Activation File DAT1

DiskImage_Fmt 435 Disk Image

Milestone_Fmt 436 Milestone Document MLS, ML3, ML4, ML5,
ML6, ML7, ML8, ML9

E_Transcript_Fmt 437 RealLegal E-Transcript File PTX

PostScript_Font_Fmt 438 PostScript Type 1 Font PFB

Ghost_DiskImage_
Fmt

439 Ghost Disk Image File GHO, GHS

JPEG_2000_JP2_
File_Fmt

440 JPEG-2000 JP2 File Format Syntax
(ISO/IEC 15444-1)

JP2, JPF, J2K, JPWL,
JPX, PGX

Unicode_HTML_Fmt 441 Unicode HTML HTM1, HTML1

CHM_Fmt 442 Microsoft Compiled HTMLHelp CHM

EMCMF_Fmt 443 Documentum EMCMF format EMCMF

MS_Access_2007_
Tmpl_Fmt

444 Microsoft Access 2007 Template ACCDT

Jungum_Fmt 445 Samsung Electronics JungumGlobal
document

GUL

JBIG2_Fmt 446 JBIG2 File Format JB2, JBIG2

EFax_Fmt 447 eFax file EFX

AD1_Fmt 448 AD1 Evidence file AD1

SketchUp_Fmt 449 Google SketchUp SKP

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 291 of 346

Format Name Format
Number

Format Description Associated File
Extension

GWFS_Email_Fmt 450 GroupWise File Surf email GWFS

JNT_Fmt 451 Windows Journal format JNT

Yahoo_yChat_Fmt 452 Yahoo! Messenger chat log YCHAT

PaperPort_MAX_
File_Fmt

453 PaperPort image file MAX

ARJ_Fmt 454 ARJ (Archive by Robert Jung) file
format

ARJ

RPMSG_Fmt 455 Microsoft Outlook Restricted
PermissionMessage

RPMSG

MAT_Fmt 456 MATLAB file format MAT, FIG

SGY_Fmt 457 SEG-Y Seismic Data format SGY, SEGY

CDXA_MPEG_PS_
Fmt

458 MPEG-PS container with CDXA
stream

MPG1

EVT_Fmt 459 Microsoft Windows NT Event Log EVT

EVTX_Fmt 460 Microsoft Windows Vista Event Log EVTX

MS_OutlookOLM_
Fmt

461 Microsoft Outlook for Macintosh
format

OLM

WARC_Fmt 462 Web ARChive WARC

JAVACLASS_Fmt 463 Java Class format CLASS

VCF_Fmt 464 Microsoft Outlook vCard file format VCF

EDB_Fmt 465 Microsoft Exchange Server Database
file format

EDB

ICS_Fmt 466 Microsoft Outlook iCalendar file
format

ICS, VCS

MS_Visio_2013_Fmt 467 Microsoft Visio 2013 VSDX, VSTX, VSSX

MS_Visio_2013_
Macro_Fmt

468 Microsoft Visio 2013macro VSDM, VSTM, VSSM

ICHITARO_Compr_
Fmt

469 ICHITAROCompressed format JTDC

IWWP13_Fmt 470 Apple iWork 2013 Pages format IWA

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 292 of 346

Format Name Format
Number

Format Description Associated File
Extension

IWSS13_Fmt 471 Apple iWork 2013 Numbers format IWA

IWPG13_Fmt 472 Apple iWork 2013 Keynote format IWA

XZ_Fmt 473 XZ archive format XZ

Sony_WAVE64_Fmt 474 Sony Wave64 format W64

Conifer_WAVPACK_
Fmt

475 ConiferWavpack format WV

Xiph_OGG_
VORBIS_Fmt

476 XiphOgg Vorbis format OGG

MS_Visio_2013_
Stencil_Fmt

477 MS Visio 2013 stencil format VSSX

MS_Visio_2013_
Stencil_Macro_Fmt

478 MS Visio 2013 stencil Macro format VSSM

MS_Visio_2013_
Template_Fmt

479 MS Visio 2013 template format VSTX

MS_Visio_2013_
Template_Macro_
Fmt

480 MS Visio 2013 templateMacro format VSTM

Borland_Reflex_2_
Fmt

481 Borland Reflex 2 format R2D

PKCS_12_Fmt 482 PKCS #12 (p12) format P12, PFX

B1_Fmt 483 B1 format B1

ISO_IEC_MPEG_4_
Fmt

484 ISO/IEC MPEG-4 format MP4

RAR5_Fmt 485 RAR5 Format RAR5

Unigraphics_NX_
Fmt

486 Unigraphics (UG) NX CAD Format PRT

PTC_Creo_Fmt 487 PTC Creo CAD Format ASM, PRT

KML_Fmt 488 KeyholeMarkup Language KML

KMZ_Fmt 489 Zipped KeyholeMarkup Language KMZ

WML_Fmt 490 Wireless Markup Language WML

KeyView file formats and extensions, continued

XMLExport SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 293 of 346

Format Name Format
Number

Format Description Associated File
Extension

SO_Text_Fmt 492 Star OfficeWriter Text SDW, SGL, VOR

SO_Spreadsheet_
Fmt

493 Star Office Calc Spreadsheet SDC

SO_Presentation_
Fmt

494 Star Office Impress Presentation SDD, SDA

SO_Math_Fmt 495 Star OfficeMath SMF

STEP_Fmt 496 ISO 10303-21 STEP format STEP

STL_Fmt 497 3D Systems STL format STL

MS_Word_2007_
Flat_XML_Fmt

546 Microsoft Word 2007 Flat XML XML

KeyView file formats and extensions, continued

1
This file extension can returnmore than one format number.
2
MHT, EML, andMBX files might return either format 2, 233, or 395, depending on the text in the file. In
general, files that contain fields such as To, From, Date, or Subject are considered to be email
messages; files that contain fields such as content-type andmime-version are considered to beMHT
files; and files that do not contain any of those fields are considered to be text files.
3
All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

XML Export SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 294 of 346

Appendix D: Extract and Format Lotus Notes
Subfiles

This section describes how to create XML templates to alter the appearance of extracted Lotus mail
note subfiles so that they maintain the look and feel of the original notes.

• Overview 295
• Customize XML Templates 295
• Template Elements and Attributes 297
• Date and Time Formats 301

Overview

KeyView uses the NSF reader, nsfsr, to extract Lotus database files, and places Lotus mail notes in
subfiles. The NSF reader uses a set of default XML templates to extract the notes and apply
formatting, thereby approximating the look and feel of the original notes.

In some cases, youmight need to customize the XML templates, for instance if your notes contain
custom data. In such cases, you canmodify the existing XML templates or create your own.

During extraction, the NSF reader loads all XML files in the NSFtemplates directory and its
subdirectories (except for the NSFtemplates\images directory, which is reserved for images). During
initialization, the KeyView XML parser verifies the XML templates. If the templates contain any invalid
XML, elements, or attributes, initialization fails and errors are recorded in the nsfsr.log file.

Customize XML Templates

XML templates are enabled by default. In most cases, the default templates should be sufficient;
however, you can customize them or create your own as required.

To customize XML templates for Lotus note extraction

1. Modify the template files in the following directory.
install\OS\bin\NSFtemplates

The main.xml file must exist in the NSFtemplates directory. It is the top-level template file that
extracts all subfiles, usually by calling other templates.

2. Make sure that any modifications or additional XML files conform to the supported elements and
attributes described in Template Elements and Attributes, on page 297.

3. Extract the Lotus database file.

KeyView (11.6) Page 295 of 346

Use Demo Templates

For testing purposes, you can extract notes by using a set of demo templates, which are provided to
demonstrate the proper usage of all the XML elements and attributes, because the default templates do
not use all the XML elements.

The demo templates are available at:

install\OS\bin\NSFtemplates

To use the demo XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
UseDemoTemplate=1

2. In the main.xml file, uncomment the following section.

<ifini name="UseDemoTemplate" text="1">
 <call file="demo.xml"/>
 <quit/>
</ifini>

Use Old Templates

For testing purposes, you can extract notes by using legacy templates, which produceMHTML output.
You can generate similar output by disabling the XML templates, but using the old templates enables
you to see the XML code and compare it to the standard and demo templates.

To use the old XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
UseOldTemplate=1

2. In the main.xml file, uncomment the following section.

<ifini name="UseOldTemplate" text="1">
 <call file="default_old.xml">
 <quit>
</ifini>

Disable XML Templates

For testing purposes, you can disable XML templates; KeyView extracts the notes in MHTML format.
You can compare theMHTML output directly by the NSF reader with theMHTML output indirectly by
the NSF reader through the XML templates.

XML Export SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 296 of 346

To disable XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
ExtractByTemplate=0

Template Elements and Attributes

This section lists the valid XML elements and attributes that you can use when creating or modifying
templates. See the demo templates for examples.

Conditional Elements

The following table lists the valid conditional elements.

Element Description

<keyview> The KeyView XML template container ("root") element

<if*> If the condition from the comparison is true, process the XML.
Conditions can be nested up to 25 levels deep.

Attributes

l name. (Required) The name of themain item to compare to item or
text.

l item. (Required if no text) The name of the item to compare to the
item specified by name.

l text. (Required if no item) The text to compare to the item specified
by name.

<ifex>, <ifnx> If name item exists and has a text value or not.

The Notes itemmight have a value that cannot be converted to text,
such as an image.

<ifeq>, <ifne>,
<iflt>, <ifle>,
<ifgt>, <ifge>

Respectively, if text ==, !=, <, >, <=, >, >=.

Text comparison uses a case-insensitive string compare.

<iftdeq>, <iftdne>,
<iftdlt>, <iftdle>,
<iftdgt>, <iftdge>

Respectively, if time/date ==, !=, <, >, <=, >, >=.

Time/date comparison converts dates to text in local time using the
Notes default, TZFMT_NEVER, because Notes also sometimes converts
fields to text internally. For example:

text="06/30/2005 02:52:04 PM"

<iftzeq>, <iftzne> Respectively, if the time zone equals or does not equal the comparison
text, for example CDT, EST, and so on.

Conditional elements

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 297 of 346

Element Description

<ifini> If the value of the INI option specified in name equals the text value.

<else> If the condition from the last <if> or <switch> was false, process XML.

<switch> If a name value exists, process XML.

Attributes

l name. (Required) The name of themain item to compare in <case>
subelements.

<case> If the comparison condition is true, process XML, then stop processing
the rest of <switch>.

Attributes

l text. (Required) The text to compare to the name item of <switch>.

<default> If all <case> conditions were false, process XML. This element must be
the last element in <switch>, after all the <case> elements. Any <case>
elements after the <default> element are ignored.

<for> If a name value exists, process XML. Process for each part of the name
item.

Attributes

l name. (Required) The name of themain item.
l max. (Optional) Themaximum index to process. By default, all are
processed.

<index> Output <for> loop index (1-based). <index> is only valid within a <for>
element.

Conditional elements, continued

Control Elements

The following table lists the valid control elements.

Element Description

<call> Call another XML template. You can nest templates up to 10 levels deep.

Attributes

l file. (Required) The template file name. This namemust be unique.

<log> Logmessage to the NSF log file.

Attributes

l text. (Required) The text to log.

Control Elements

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 298 of 346

Element Description

l type. (Optional) The type of logmessage. The following values are valid:
o ERROR
o WARN
o INFO

o DIAG (the default option)
o DEBUG
o DUMP

<quit> Stop processing the template. Exits without error.

Attributes

l text. (Optional) The text to log.
l type. (Optional) The type of logmessage. See <log>, on the previous page.

<stop> Stop processing the template. Exits with an ERROR logmessage.

Attributes

l text. (Required) The text to log.

Control Elements, continued

Data Elements

The following table lists the valid data elements.

Element Description

<text> Output text.

Attributes

l name. (Required if there is no parent) The name of the item to output.

<rich> Output rich text (MHTML). Images are output in the next part or parts of theMHTML,
after the first <HTML> part.

Attributes

l name. (Required if there is no parent) The name of the item to output.

<body> Output themessage body in rich text (MHTML). As with <rich>, above, images are
output in the next part or parts of theMHTML.

<form> Output themessage form (usually $Body field) in rich text (MHTML).

Attributes

l name. (Required if there is no parent) The name of the item to output.

Data elements

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 299 of 346

Element Description

<addr> Output an address.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l type. (Optional) The type of address to output. Set this attribute to CN (Common
Name), which is the only supported type.

<name> Output the name of the last name item, or in other words the current main item. The item
must exist.

<format> Set the default format for <date> and <date_kv>. This element does not set the <text>
format. See Date and Time Formats, on the next page for a list of all Notes and KeyView
date and time formats and integer values.

Attributes

l format. (Optional. Omit to reset to defaults) The Notes and KeyView date and time
format. You can set the following formats:
o TD=int. The TimeDate format (TDFMT_*)
o TS=int. The Time Show format (TSFMT_*)
o TT=int. The Time Time format (TTFMT_*)
o TZ=int. The Time Zone format (TZFMT_*)
o KV=int. The KeyView date and time format

where int is an integer value that corresponds to the desired format.

Separatemultiple formats with commas. For example:

format="TD=0,TS=2,TT=1,TZ=1,KV=55"

<date> Output a Notes date.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l format. (Optional) See <format>, above. You can set the following values:

o TD
o TS
o TT
o TZ

<date_
kv>

Output a KeyView date.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l format. (Optional) See <format>, above. You can set the following values:

o TZ

Data elements, continued

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 300 of 346

Element Description

o KV

<time> Output a time range, for example 1 hour, 30minutes.

Attributes

l name. (Required if there is no parent) The item name of the start date or time.
l item. (Required) The item name of the end date or time.

<zone> Output a Notes time zonemnemonic, for example MST.

Attributes

l name. (Required if there is no parent) The name of date item to output.

<zone_
utc>

Output a time zone as UTC, for example (UTC-06:00).

<logo> Output themail header logo.

The image link is included in the output; the actual image is output to a different part of
theMHTML subfile.

<image> Output an image.

The image link is included in the output; the actual image is output to theMHTML next
part, as with <rich>, on page 299 and <body>, on page 299.

<image_
uri>

Output an image URI, in quotationmarks. The actual image is output to a different part of
theMHTML subfile.

Attributes

l link. (Required if there is no file) The image link, such as a form or title name. For
example:

l link="StdNotesLtr0"

l file. (Required if there is no link) The name of the image file. The file must exist in
the ../../templates/images directory. For example:

l file="boxcheck.gif"

Data elements, continued

Date and Time Formats

This section lists the supported Notes and KeyView date and time formats for use with <format>,
<date>, and <date_kv>.

Lotus Notes Date and Time Formats

This section lists supported Lotus Notes date and time formats, and the integer values that specify
each one.

XML Export SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 301 of 346

Format Integer
Value

Description

TDFMT_FULL 0 (The Notes default) Year, month, and day

TDFMT_CPARTIAL 1 Month and day, year if not this year

TDFMT_PARTIAL 2 Month and day

TDFMT_DPARTIAL 3 Year andmonth

TDFMT_FULL4 4 Four-digit year, month, and day

TDFMT_
CPARTIAL4

5 Month and day, four-digit year if not this year

TDFMT_
DPARTIAL4

6 Four-digit year andmonth

TTFMT_FULL 0 (Notes default) Hour, minute, and second

TTFMT_PARTIAL 1 Hour andminute

TTFMT_HOUR 2 Hour

TZFMT_NEVER 0 (Notes default) All time zones are converted to the current time
zone

TZFMT_
SOMETIMES

1 Show only when outside the current time zone

TZFMT_ALWAYS 2 Show for all time zones

TSFMT_DATE 0 Date

TSFMT_TIME 1 Time

TSFMT_DATETIME 2 (The Notes default) Date and time

TSFMT_
CDATETIME

4 Date and time, or time today or time yesterday

Lotus Notes date and time formats

KeyView Date and Time Formats

This section lists KeyView date and time formats. The KeyView formats use the following syntax:

Month Month = full month name

Mon = abbreviatedmonth name

m = month (number)

mm = two-digit month (leading 0)

XML Export SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 302 of 346

Weekday Weekday = full weekday name

Wday = abbreviated weekday name

Year yy = two-digit year

yyyy = four-digit year

Day d = day (number)

dd = two-digit day (leading 0)

Time h = 12-hour

H = 24-hour

m = minutes

s = seconds

P = AM/PM

p = am/pm

Separators _ = space

c = comma

s = slash

a = dash

o = dot

Format Output Integer Value

12-Hour and 24-Hour Time Formats

KVDTF_P P 1

KVDTF_P_hmm P h:mm 2

KVDTF_hmm_P h:mm P 3

KVDTF_P_hhmm P hh:mm 4

KVDTF_hhmm_P hh:mm P 5

KVDTF_P_hmmss P h:mm:ss 6

KVDTF_hmmss_P h:mm:ss P 7

KVDTF_P_hhmmss P hh:mm:ss 8

KVDTF_hhmmss_P hh:mm:ss P 9

KVDTF_Hmm H:mm 10

KVDTF_HHmm HH:mm 11

KeyView date and time formats

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 303 of 346

Format Output Integer Value

KVDTF_mmss mm:ss 12

KVDTF_Hmmss H:mm:ss 13

KVDTF_HHmmss HH:mm:ss 14

Numerical Date Formats with Slashes

KVDTF_mmsdd mm/dd 15

KVDTF_msdsyy m/d/yy 16

KVDTF_mmsddsyy mm/dd/yy 17

KVDTF_mmsddsyyyy mm/dd/yyyy 18

KVDTF_ddsmm dd/mm 19

KVDTF_ddsmmsyy dd/mm/yy 20

KVDTF_ddsmmsyy_Hmm dd/mm/yy H:mm 21

KVDTF_ddsmm_P_hmm dd/mm P h:mm 22

KVDTF_ddsmm_hmm_P dd/mm h:mm P 23

KVDTF_ddsmm_P_hhmm dd/mm P hh:mm 24

KVDTF_ddsmm_hhmm_P dd/mm hh:mm P 25

KVDTF_ddsmmsyy_P_hmm dd/mm/yy P h:mm 26

KVDTF_ddsmmsyy_hmm_P dd/mm/yy h:mm P 27

KVDTF_ddsmmsyy_P_hmmss dd/mm/yy P h:mm:ss 28

KVDTF_ddsmmsyy_hmmss_P dd/mm/yy h:mm:ss P 29

KVDTF_ddsmmsyy_P_hhmmss dd/mm/yy P hh:mm:ss 30

KVDTF_ddsmmsyy_hhmmss_P dd/mm/yy hh:mm:ss P 31

KVDTF_yysmmsdd_P_hhmmss yy/mm/dd P hh:mm:ss 32

KVDTF_yysmmsdd_hhmmss_P yy/mm/dd hh:mm:ss P 33

KVDTF_msdsyy_Hmm m/d/yy H:mm 34

KVDTF_mmsddsyy_Hmm mm/dd/yy H:mm 35

KVDTF_msdsyy_P_hmm m/d/yy P h:mm 36

KVDTF_msdsyy_hmm_P m/d/yy h:mm P 37

KeyView date and time formats, continued

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 304 of 346

Format Output Integer Value

KVDTF_mmsddsyy_hmm_P mm/dd/yy h:mm P 38

KVDTF_mmsdd_P_hhmm mm/dd P hh:mm 39

KVDTF_mmsdd_hhmm_P mm/dd hh:mm P 40

KVDTF_mmsddsyy_P_hhmmss mm/dd/yy P hh:mm:ss 41

KVDTF_mmsddsyy_hhmmss_P mm/dd/yy hh:mm:ss P 42

KVDTF_msd m/d 43

KVDTF_yysm yy/m 44

KVDTF_yysmm yy/mm 45

KVDTF_yysmsd yy/m/d 46

KVDTF_yysmmsdd yy/mm/dd 47

KVDTF_yyyysmmsdd yyyy/mm/dd 48

Numerical Date Formats with Dashes

KVDTF_ddammayy dd-mm-yy 49

KVDTF_mmadd mm-dd 50

KVDTF_mmayy mm-yy 51

KVDTF_yyammadd yy-mm-dd 52

KVDTF_yyyyammadd yyyy-mm-dd 53

KVDTF_yyyyammaddaHHmmss yyyy-mm-dd-HH:mm:ss 54

Numerical Date Formats with Dots

KVDTF_yyomod yy.m.d 55

KVDTF_yyommodd yy.mm.dd 56

KVDTF_mod m.d 57

KVDTF_mmodd mm.dd 58

Numerical and String Date Formats with Dashes, Commas, and Spaces

KVDTF_ddaMon dd-Mon 59

KVDTF_daMonayy d-Mon-yy 60

KVDTF_ddaMonayy dd-Mon-yy 61

KeyView date and time formats, continued

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 305 of 346

Format Output Integer Value

KVDTF_ddaMonayyyy dd-Mon-yyyy 62

KVDTF_Mon Mon 63

KVDTF_Monayy Mon-yy 64

KVDTF_Monayyyy Mon-yyyy 65

KVDTF_Monaddayy Mon-dd-yy 66

KVDTF_yyammadd_P_hhmmss yy-mm-dd P hh:mm:ss 67

KVDTF_mmadd_P_hhmm mm-dd P hh:mm 68

KVDTF_Mon_yy Mon yy 69

KVDTF_Monc_yy Mon, yy 70

KVDTF_Month Month 71

KVDTF_Monthayy Month-yy 72

KVDTF_Month_yy Month yy 73

KVDTF_Monthc_yy Month, yy 74

KVDTF_Monthayyyy Month-yyyy 75

KVDTF_Month_yyyy Month yyyy 76

KVDTF_Monthc_yyyy Month, yyyy 77

KVDTF_Mon_dc_yyyy Mon d, yyyy 78

KVDTF_d_Monc_yyyy d Mon, yyyy 79

KVDTF_yyyy_Mon_d yyyy Mon d 80

KVDTF_Month_dc_yyyy Month d, yyyy 81

KVDTF_d_Monthc_yyyy d Month, yyyy 82

KVDTF_yyyy_Month_d yyyy Month d 83

Weekday Date Formats

KVDTF_Wday Wday 84

KVDTF_Weekday Weekday 85

KVDTF_Wdayc_Mon_dc_yyyy Wday, Mon d, yyyy 86

KVDTF_Weekdayc_Month_dc_yyyy Weekday, Month d, yyyy 87

KeyView date and time formats, continued

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 306 of 346

Format Output Integer Value

KVDTF_Weekdayc_d_Monthc_yyyy Weekday, d Month, yyyy 88

KeyView date and time formats, continued

XMLExport SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 307 of 346

Appendix E: Export Tokens

This section contains an alphabetized list of the Export tokens.

Tokens are special strings inserted into the KVXMLTemplate structure, XmlTemplateInfo class, and
template files. They are placeholders for markup that appears in the XML output. For example, the
$CHARSET tokenmarks the place in the XML output where the name of the source document’s character
set is inserted. It would be used in the tag <charset=$CHARSET>.

Word documents are split into blocks by heading level. By default, each section of text between
Heading Level 1 headings will be a single block.

See the template files for examples of how to use tokens.

Token Description

$ANCHOR Inserts an anchor for a heading level (h2-h6) for the current block.

$BASE Inserts the base URL for the XML file. Use in the
<base href=xx> tag.

$CHARSET Inserts the character set of the source document, if that information is
ascertainable. Supported Formats, on page 225 lists the file formats for which
character set information can be determined.

$CONTENT Inserts the content of themetadata field specified by the $NAME token. This
token is used in conjunction with the $SUMMARY, $USERSUMMARY, and $NAME
tokens to insert source document metadata into the XML output. An example
of this token’s use is:

pszUserSummary=<MetaData name="$NAME" content="$CONTENT">

Supported Formats, on page 225 lists file formats that support metadata.

$ENDNOTE Inserts endnotes from the current block at this point in the output stream.
Currently implemented for Microsoft Word documents only.

$ENDNOTEALL Inserts all endnotes at this point in the output stream. Currently implemented
for Microsoft Word documents only.

$FOOTER Inserts the footer from the current block at this point in the output stream.

$FOOTNOTE Inserts footnotes from the current block at this point in the output stream.
Currently implemented for Microsoft Word documents only.

$FOOTNOTEALL Inserts all footnotes at this point in the output stream. Currently implemented
for Microsoft Word documents only.

$HEADER Inserts the header from the current block at this point in the output stream.

$MAINURL Inserts the URL to the file containing the start of the generated XML, that is,

Export Tokens

KeyView (11.6) Page 308 of 346

Token Description

output stream.

$NAME Inserts the name of ametadata field. This token is used in conjunction with
the $SUMMARY, below, $USERSUMMARY, on the next page, and
$CONTENT, on the previous page tokens to insert source document
metadata into the XML output. An example of this token’s use is:

pszUserSummary=<MetaData name="$NAME" content="$CONTENT">

The section Supported Formats, on page 225 lists file formats that support
metadata.

$NEXT Inserts the anchor to the next block. If this is the last block, a link to the first
block is inserted.

$PREV Inserts the anchor to the previous block. If the current block is the first block,
a link to the last block is inserted.

$STYLESHEET Inserts the path to the style sheet.

$SUMMARY Inserts the data from standardmetadata fields using themarkup provided in
the pszUserSummarymember of the structure KVXMLTemplate. Standard
fields are enumerated from 0 to 33 in KVSumType in kvtypes.h. See the
tokens $USERSUMMARY, on the next page, $NAME, above, and
$CONTENT, on the previous page.

The section Supported Formats, on page 225 lists file formats that support
metadata.

$SUMMARYNN Inserts the data from a specifiedmetadata field. NN is a number from 0
through 33 enumerated in the KVSumType structure in kvtypes.h. An example
of this token’s use is:

pszMainTop= <title> $SUMMARY01 </head> <body>

The section Supported Formats, on page 225 lists file formats that support
metadata.

$SPLITBLOCKNUMBER Inserts the page number for each block generated as a result of
bHardPageMakesNewBlock or lcbBlockSize.

$TOC Inserts the table of contents at this point in the current output stream. This
token is typically embedded in pszMainTop.

$TOCB Inserts the table of contents at this point for the current block.

$TOCBE Inserts the beginning entry for the table of contents at this point in the current
output stream.

$TOCE Inserts a table of contents entry at this point in the current output stream.

$TOCTE Inserts a text entry without XMLmarkup at this point in the current output

Export Tokens, continued

XMLExport SDK C ProgrammingGuide
Appendix E: Export Tokens

KeyView (11.6) Page 309 of 346

Token Description

stream.

$TOCPE Inserts a partial table of contents entry at this point in the current output
stream. XML tags are removed; however, character entities are retained. This
enables angle brackets to appear in the table of contents entries (for example,
<text>). Without this token, <text> would be interpreted as a non-valid XML
tag and would be ignored by the browser.

$TOPANCHOR Inserts the anchor for the top heading level (h1) for the current block.

$USERCB Triggers the callback function UserCB() and identifies the callback used in
the function.

$USERSUMMARY Inserts the data from every valid non-standardmetadata field using the
markup provided in the pszUserSummarymember of the KVXMLTemplate
structure. Non-standardmetadata are any fields not listed from 0 to 33 in
KVSumType, such as user-defined fields (for example, custom property fields
inWord documents), or fields that are unique to a particular file type (for
example, “Artist” or “Genre” fields in MP3 files). See the tokens $SUMMARY,
on the previous page, $NAME, on the previous page, and $CONTENT, on
page 308.

The section Supported Formats, on page 225 lists file formats that support
metadata.

$XANCHOR Inserts the anchor to an extra file into the XML output.

The contents of the extra file is defined by pszXFile, and the block generated
by this token is defined by pszXStartBlock and pszXEndBlock.

Export Tokens, continued

XMLExport SDK C ProgrammingGuide
Appendix E: Export Tokens

KeyView (11.6) Page 310 of 346

Appendix F: File Format Detection

This section describes how file formats are detected in the KeyView Export SDK.

• Introduction 311
• Extract Format Information 311
• Determine Format Support 311
• Translate Format Information 313
• Determine a Document Reader 315
• Category Values in formats_e.ini 315

Introduction

The KeyView format detectionmodule (kwad) detects a file’s format, and reports the information to the
API, which in turn reports the information to the developer’s application. If the detected format is
supported by the KeyView SDK, the detectionmodule also loads the appropriate structured access
layer and document reader for further processing.

For a list of supported formats, see Supported Formats, on page 225.

Extract Format Information

You can extract format information from a document by using the fpGetStreamInfo() function. If
required, this format information can then be reported to the developer’s application. The
fpGetStreamInfo() function extracts format information, such as file class, format, and version, and
populates the ADDOCINFO structure. This structure is defined in the adinfo.h header file.

For information on how to translate the extracted format information, see Translate Format Information,
on page 313.

Determine Format Support

After the file format is extracted, the detectionmodule uses the formats_e.ini file to determine
whether the format is supported by KeyView, and the appropriate structured access layer and reader to
load.

The formats_e.ini file is in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system. It contains the following
information:

l Coded format information. To translate this information, see Translate Format Information, on page
313.

l The reader associated with each format. See Determine a Document Reader, on page 315.

KeyView (11.6) Page 311 of 346

l Configuration parameters for out-of-process conversions.
l Locale settings for internal use.
Below are some entries from the formats_e.ini file:

123=mw
152=xyw
178=wp6
189=mw6
2=af
200=pdf
205=mb
210=htm
251=htm

NOTE: The formats_e.ini file applies to all formats except graphics. Detection of graphics
formats is handled by an internal module named KeyView Picture Interchange Format (KPIF).

Refine Detection of Text Files

During text detection, KeyView analyzes the first 1 kB and last 1 kB of data in a document; if less than
10% of that data consists of non-ASCII characters, KeyView detects the document as a text file.

However, depending on the type of documents you are working with, the default settings might not
provide the desired level of accuracy. Configuration flags allow you to change the amount of data to
read at the end of a file, the percentage of non-ASCII characters permitted in a text file, and whether to
use or ignore the file extension to determine the document format.

Change the Amount of File Data to Read

During file detection, KeyView reads characters from the beginning and end of a file—by default, it
reads the first and last 1,024 bytes of data. Large text files might contain many irrelevant characters at
the end of a file, so KeyView might not accurately detect the file format. You can set a configuration
flag to increase the amount of data to read from the end of a file during detection.

To change the amount of data to read during detection

l In the formats_e.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_end_block_size=kB

where kB is the number of kilobytes to read from the end of the file, from 0 to 10. The default value is
1.

NOTE: The file sizemust be greater than the value specified in the flag. If the flag value is
greater than the file size, KeyView does not use the flag.

XML Export SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 312 of 346

Change the Percentage of Allowed Non-ASCII Characters

By default, if less than 10% of the analyzed data in a document consists of non-ASCII characters, it is
detected as a text file. Depending on the type of files you are working with, changing the default
percentagemight increase detection accuracy.

To change the percentage of non-ASCII characters allowed in text files

l In the formats_e.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_in_text=N

where N is the percentage of non-ASCII characters to allow in text files. Files that contain a lower
percentage of non-ASCII characters than N are detected as text files. The default value is 10.

Use the File Extension for Detection

Sometimes KeyView detects certain file formats (such as CSV) as ASCII because of the content of
the documents. In such cases, you can configure KeyView to use the file extension to determine the
document format. Using the file extension can improve detection of formats such as CSV, but might
not detect text files successfully if they have incorrect file extensions.

To use the file extension for ASCII files during detection

l In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
use_extension_for_ascii=1

The default is 0 (do not use the file extension).

Allow Consecutive NULL Bytes in a Text File

By default, if a document contains consecutive NULL bytes, it is not detected as text. Depending on the
type of files you are working with, changing the default might increase detection accuracy.

To allow consecutive NULL bytes of ASCII characters in text files

In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
ascii_allow_null_bytes=1

The default value is 0 (do not allow consecutive NULL bytes).

Translate Format Information

Format information can include file attributes in the following categories:

XML Export SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 313 of 346

l Major format
l File class
l Minor format
l Major version
l Minor version
Not all categories are required. Many formats only includemajor format and file class, or major format
only.

The format information has the following structure:

MajorFormat.FileClass.MinorFormat.MajorVersion.MinorVersion

For example:

81.2.0.9.0

Each number in the format information represents a file attribute. The entry 81.2.0.9.0 represents a
Lotus 1-2-3 Spreadsheet file version 9.0, where:

81 = Lotus 1-2-3 Spreadsheet (major format)

 2 = Spreadsheet (file class)

 0 = not defined (minor format)

 9 = 9 (major version)

 0 = 0 (minor version)

The example above applies to formats_e.ini file. When extracting format information by using the
fpGetStreamInfo() functionmethod, the same format information is represented as 294.2.0.9.

NOTE: The format values returned by fpGetStreamInfo() differ from those in formats_e.ini
because the former defines a unique ID for eachmajor format, whereas the latter uses amajor
version, minor version, andminor format to distinguish between formats.

Distinguish Between Formats

The ADDOCINFO structuremethod provides a unique ID for eachmajor format. For example, a call to
fpGetStreamInfo() returns 351.1.0 for aMicrosoft Word 2003 XML format. Themajor format 351 is
unique to this format.

Unlike ADDOCINFO, the formats_e.ini file distinguishes between formats by using themajor version
number. For example, in formats_e.ini, a Microsoft Word 2003 XML format is defined as
285.1.0.100.0. Themajor format 285 and file class 1 are the same values for generic XML. Themajor
version 100 distinguishes the format as Microsoft Word 2003 XML.

Themajor version is used in formats_e.ini to specify the following formats:

l TheMicrosoft Office 2003 XML format has the samemajor format and file class as generic XML
(285.1). It is distinguished from generic XML by using the followingmajor versions:
o Word: 100
o Excel: 101
o Visio: 110

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 314 of 346

l The XHTML format has the samemajor format and file class as HTML (210.1). It is distinguished
from HTML by using themajor version 100.

Determine a Document Reader

The format detectionmodule uses the formats_e.ini file to determine whether a format is supported
and which reader should be used to parse a format. The entries in the formats_e.ini file lists each
format’s coded value, and an abbreviation for the format’s reader. For example:

81.2.0.9.0=l123

The reader abbreviation is a truncated version of the reader’s library name. Adding “sr” to the end of an
abbreviation creates the name of the reader. The example entry above specifies that a Lotus 1-2-3
Spreadsheet file version 9.0 is parsed by the Lotus 1-2-3 reader, l123sr.

Files Required for Redistribution, on page 334 lists the document readers provided with KeyView.

Category Values in formats_e.ini

This section lists the possible category values for format information in the formats_e.ini file. The
corresponding values for the format information extracted from a call to fpGetStreamInfo() are listed
in the adinfo.h header file.

l Major Formats
l File Classes
l Minor Formats

Number Format File Class

1 AES Multiplus Comm Format Word processor

2 ASCII File word processor/MS DOS Batch File format Word processor

3 Applix Asterix Word processor

4 Microsoft Windows Bitmap image (BMP) Raster image

5 Convergent Tech DEF Comm. format Word processor

6 Corel Draw (CDR) Vector graphic

7 Keyword COM.FILE (KSIF)

8 Computer Graphics Metafile (CGM) Vector graphic

9 Word Connection Word processor

10 COMET TOPWord Word processor

11 DGCEOwrite Word processor

Major Formats

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 315 of 346

Number Format File Class

12 Honey Bull DSA101 Word processor

13 IBM DCA-RFT Word processor

14 DDIF Word processor

15 Dummy File (Internal)

16 DGCommonData Stream (CDS) Word processor

17 Dummy Print File (Internal)

18 Windows Micrografx Draw (DRW) Vector graphic

19 Data Point VISTAWORD Word processor

20 DECdx Word processor

21 Enable Word processor

22 Encapsulated PostScript (EPS) Raster image

23 DOS/Windows Executable (EXE, DLL) Executable

24 CCITT Group 3 1-Dimensional (G31D) Raster image

25 Graphics Interchange format (GIF) Raster image

26 Hewlett Packard Word processor

27 IBM 1403 Line Printer Word processor

28 IBM DCF Script Word processor

29 IBM DCA-FFT Word processor

30 Interleaf Word processor

31 GEM Bit Image Raster image

32 IBM Display Write 4 Word processor

33 Raster Graphics Raster image

34 Keywords PICL

35 Lotus AMI Pro Word processor

36 MORE DatabaseOutliner (Mac) Outline/planning

37 Lyrix Word processor

38 MASS-11 Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 316 of 346

Number Format File Class

39 MacPaint Raster image

40 Microsoft WordMac Word processor

41 Informix SmartWare II Communication File Communications

42 Microsoft Word forWindows Word processor

43 MultiMate 4.0 Word processor

44 Multiplan Spreadsheet Spreadsheet

45 Microsoft Rich Text Format (RTF) Word processor

46 Microsoft Word 5.0 (PC) Word processor

47 NBI Async Archive Format Word processor

48 Navy DIF Word processor

49 NBI Net Archive Format Word processor

50 NIOS TOP Word processor

51 FileMaker (Mac) Database

52 ODA/ODIF Word processor

53 OLIDIF Word processor

54 Keyword OSM

55 OfficeWriter Word processor

56 PC Paint BrushGraphics (PCX) Raster image

57 CPT Communication Format Word processor

58 Lotus PIC Vector graphic

59 Macintosh Quick Draw Picture Format (PICT) Raster image

60 Philips Script Word processor

61 PostScript File Vector graphic

62 PRIMEWORD Word processor

63 Quadratron Q-One (V1.93J) Word processor

64 Quadratron Q-One (V2.0) Word processor

65 SAMNAWord IV Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 317 of 346

Number Format File Class

66 Lotus AMI Pro Draw (SDW) Raster image

67 SYLK Spreadsheet Spreadsheet

68 Informix SmartWare II Word processor

69 Symphony Spreadsheet Spreadsheet

70 Truevision Targa Raster image

71 Tagged Image File (TIFF) Raster image

72 TargonWord (V 2.0) Word processor

73 Uniplex Ucalc Spreadsheet Spreadsheet

74 Uniplex (V6.01) Word processor

75 Microsoft Word (UNIX) Word processor

76 WANGPC Word processor

77 WordERA (V 1.0) Word processor

78 WANGWPS Comm. format Word processor

79 WordPerfect Mac Word processor

80 WordPerfect 5.2 Word processor

81 Lotus 1-2-3 Spreadsheet Spreadsheet

82 WordMARC word processor Word processor

83 Microsoft Windows Metafile (WMF) Graphics Raster image

84 Informix SmartWare II Database Database

85 WordPerfect Graphics V1.0 (WPG) Raster image

86 WordPerfect Word processor

87 WordStar Word processor

88 WangWITA Word processor

89 Xerox 860 Comm. format Word processor

90 Microsoft Excel Spreadsheet Spreadsheet

91 Xerox Writer word processor Word processor

92 DIF Spreadsheet Spreadsheet

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 318 of 346

Number Format File Class

93 ENABLE Spreadsheet Spreadsheet

94 Supercalc Spreadsheet Spreadsheet

95 Ultracalc Spreadsheet Spreadsheet

96 Informix SmartWare Spreadsheet Spreadsheet

97 Serialized Object Format (SOF) Encapsulation format Encapsulation

98 Microsoft PowerPoint (PC) Presentation

99 Microsoft PowerPoint (Mac) Presentation

100 Aldus PageMaker (Mac) Desktop Publishing

101 Aldus PageMaker (DOS) Desktop Publishing

103 Microsoft Works (Mac) Word processor

104 Microsoft Works Database (Mac) Database

105 Microsoft Works Spreadsheet (Mac) Spreadsheet

106 Microsoft Works Communication (Mac) Communications

107 Microsoft Works (PC) Word processor

108 Microsoft Works Database (PC) Database

109 Microsoft Works Spreadsheet (PC) Spreadsheet

111 PC Library Module Library module

112 MacWrite Word processor

113 MacWrite II Word processor

114 Aldus FreehandMac Vector graphic

115 Disk Doubler Compression format Encapsulation

116 HP Graphics Language (HP-GL) Vector graphic

117 AdobeMaker Interchange Format (MIF) Desktop Publishing

118 JPEG File Interchange Format (JFIF) Raster image

119 Reflex Database Database

120 Framework II Mixed format

121 Paradox (PC) Database Database

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 319 of 346

Number Format File Class

123 Microsoft Windows Write Word processor

124 Quattro Pro Spreadsheet (DOS) Spreadsheet

126 Persuasion Presentation Presentation

127 Corel Presentation Presentation

128 Microsoft Windows Icon Format (ICO) Graphics Raster image

129 Microsoft Project Time scheduling

131 Harvard Graphics Desktop publishing

132 Zip Archive Format Encapsulation

133 Microsoft Windows Cursor (CUR) Graphics Raster image

134 Quark Express (Mac) Desktop publishing

135 ARC/PAK Archive format Encapsulation

136 Adobe FrameMaker Desktop publishing

137 Microsoft Publisher Desktop publishing

138 Plan Perfect Time scheduling

139 WordPerfect General File Format Miscellaneous

140 Lotus Freelance Presentation

141 Microsoft Wave Sound File Sound

142 MIDI Sound File Sound

143 AutoCAD DXF Graphics Vector graphic

144 dBase Database Database

145 OS/2 PMMetafile Graphics Vector graphic

146 Lasergraphics Language Vector graphic

147 AutoShade Rendering File Format Vector graphic

148 Graphics Environment Manager (GEM VDI) Vector graphic

149 Microsoft Windows Help File Miscellaneous

150 Volkswriter Word processor

151 Ability Office (SS, DB, GR, WP, COM)

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 320 of 346

Number Format File Class

152 XyWrite/Nota Bene Word processor

153 CommaSeparated Values (CSV) Spreadsheet

154 Writing Assistant word processor Word processor

155 WordStar 2000 Word processor

156 WordStar 6.0 Word processor

157 HP Printer Control Language (PCL) Vector graphic

158 (UNIX/VAX/SUN) Executable Executable

159 (UNIX/VAX/SUN) Object Module Object module

160 (UNIX/VAX/SUN) Link Library Library module

161 NeXT SUN Audio Data Sound

162 NeWS font file (SUN) Font

163 cpio Archive Format (UNIX/VAX/SUN) Encapsulation

164 PEX Binary Archive (SUN) Encapsulation

165 SUN vfont definition Font

166 Curses Screen Image (UNIX/VAX/SUN) Raster image

167 UU Encoded Encryption File Encapsulation

168 WriteNow Word processor

169 PC Object Module Object module

170 Microsoft Windows Group File Miscellaneous

171 PC True Type Font Font

172 Program Information File Miscellaneous

173 PC COM executable file Executable

174 Adobe FrameMaker Markup Language Desktop publishing

175 Stuff It Archive (Mac) Encapsulation

176 PeachCalc Spreadsheet Spreadsheet

177 WangOffice GDLHeader Encapsulation Encapsulation

178 WordPerfect 6.0 Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 321 of 346

Number Format File Class

179 Q& A for DOS Word processor

180 Q& A forWindows Word processor

181 DEC WPS PLUS Word processor

182 DCX Fax format Fax

183 Microsoft Windows OLE 2 Encapsulation Encapsulation

184 Quattro Pro forWindows Spreadsheet

185 Keyword ViewerMarkup Format

186 EBCDIC Text Word processor

187 DCS Word processor

188 Microsoft Excel Spreadsheet 95, 2000 Spreadsheet

189 Microsoft Word forWindows 95 Word processor

190 UNIX SHAR Encapsulation Encapsulation

191 Lotus Notes Bitmap Raster image

192 UNIX Compress Encapsulation Encapsulation

193 Lotus Notes CDF Word processor

194 UNIX TAR Encapsulation Encapsulation

195 WordPerfect Graphics V2.0 (WPG2) Raster image

Vector graphic

196 ODA/ODIF (FOD 26) Word processor

197 ALIS Word processor

198 GZ Compress Encapsulation Encapsulation

199 Envoy (EVY) Word processor

200 Adobe Portable Document Format (PDF) Word processor

201 KW ODA Internal Raw Bitmap (RBM) Raster image

202 KW ODA G4 (G4) Raster image

203 KW ODA G31D (G31) Raster image

204 KW ODA Internal G32D (G32) Raster image

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 322 of 346

Number Format File Class

205 Microsoft Word for Mac V 4.x/5.x Word processor

206 BinHex 4.0 encoded file Encapsulation

207 SMTP document Encapsulation

208 MIME format - Microsoft Outlook Express (EML)/Mailbox (MBX) Encapsulation

209 SGML document Word processor

210 HTML document

XHTML 1
Word processor

211 ACT Format Word processor

212 Microsoft PowerPoint 95 Presentation

213 Portable Network Graphics (PNG) Raster image

214 Video forWindows Movie

215 Windows Animated Cursor Raster image

216 Windows C++ Object Storage Mixed format

217 Windows Palette Raster image

218 RIFF Device Independent Bitmap Raster image

219 RIFF MIDI Sound

220 RIFF MultimediaMovie Movie

221 MPEGMovie Movie

222 QuickTimeMovie Movie

223 Audio Interchange File Format (AIFF) Sound Sound

224 AmigaMOD Sound Sound

225 Amiga IFF (8SVX) Sound Sound

226 Creative Voice (VOC) Sound Sound

227 Microsoft Works (Windows) Word processor

228 Microsoft Works Spreadsheet (Windows) Spreadsheet

229 AutoDesk Animator FLIC Animation Animation

230 AutoDesk Animator Pro FLIC Animation Animation

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 323 of 346

Number Format File Class

231 Microsoft Works Database (Windows) Database

232 Microsoft Works Communication (Windows) Communications

233 Compactor / Compact Pro Archive Encapsulation

234 VRML Vector graphic

235 QuickDraw 3D Metafile (3DMF) Vector graphic

236 PGP Secret Keyring Encapsulation

237 PGP Public Keyring Encapsulation

238 PGP Encrypted Data Encapsulation

239 PGP Signed Data Encapsulation

240 PGP Signed and Encrypted Data Encapsulation

241 PGP Signature Certificate Encapsulation

242 ASCII-armored PGP Public Keyring Encapsulation

243 ASCII-armored PGP encoded Encapsulation

244 ASCII-armored PGP signed Encapsulation

245 OLE DIB object Raster image

246 PGP Compressed Data Encapsulation

247 SGI Image Raster image

248 Lotus Screen Cam Animation

249 MPEGAudio Sound

250 FTP Session Data Communications

251 Netscape Bookmark file Word processor

252 Corel Draw CMX Vector image

253 AutoCAD Drawing (DWG) Vector graphic

254 AutoDesk WHIP Vector graphic

255 Macromedia Director Animation

256 Real Audio Sound

257 MS DOS Device Driver Executable

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 324 of 346

Number Format File Class

258 Micrografx Designer Vector graphic

259 Simple Vector format (SVF) Vector graphic

260 WordPerfect Office document (WPD)

261 Applix Words Word processor

262 Applix Graphics Presentation

263 Microsoft Access Database

264 Usenet format Word processor

265 MacBinary Encapsulation

266 Apple Single Encapsulation

267 Apple Double Encapsulation

268 Lotus Word Pro Word processor

269 Microsoft Word 97, 2000 Word processor

270 EnhancedWindow Metafile Vector graphic

271 Microsoft Office Drawing Vector graphic

272 Microsoft PowerPoint 97, 2000 Presentation

273 Extended or Custom XML Word processor

274 Device Independent file (DVI) Vector graphic

275 Unicode Word processor

276 Framework Mixed

277 KPIF Chart Stream

278 Applix Spreadsheet Spreadsheet

279 Microsoft Device Independent Bitmap Raster image

280 KeyView GPF Filter

281 Microsoft Project 98, 2000, 2002 Time scheduling

282 Folio Flat file Word processor

283 HWP (Arae-Ah Hangul) Word processor

284 JustSystems Ichitaro Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 325 of 346

Number Format File Class

285 Generic XML format

Microsoft Office 2003 XML format 2
Word processor

286 Fujitsu Oasys Word processor

287 Portable Bitmap Utilities (PBM) Raster image

288 Portable GreymapUtilities (PGM) Raster image

289 Portable Pixmap Utilities (PPM) Raster image

290 X Bitmap (XBM) Raster image

291 X Pixmap (XPM) Raster image

292 X Image Raster image

293 PCD Image Raster image

294 Microsoft Visio Presentation

295 Microsoft Outlook (MSG) Encapsulation

296 XHTML document Word processor

297 Microsoft Outlook Personal Folders file (PST) Encapsulation

298 WinRAR Compressed Archive format (RAR) Encapsulation

299 Lotus Notes Database (NSF)
Legato Extender ONM

Encapsulation

300 Macromedia Flash Word processor

301 Microsoft Word 2007 (XML format) Word processor

302 Microsoft Excel 2007 (XML format) Spreadsheet

303 Microsoft PowerPoint 2007 (XML format) Presentation

304 Open PGP (new format packets only) Encapsulation

305 Intergraph version 7 DGN Vector graphic

306 Microstation version 8 DGN Vector graphic

307 Microsoft Word 2007Macro Word processor

308 Microsoft Excel 2007Macro Spreadsheet

309 Microsoft PowerPoint Macro Presentation

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 326 of 346

Number Format File Class

310 Microsoft Compression folder (LZH) Encapsulation

311 Office 2007 Document Miscellaneous

312 XMLPaper Specification Word processor

313 Lotus Domino Extensible Language Encapsulation

314 OASIS Open Document (ODT) Word processor

315 OASIS Open Document (ODS) Spreadsheet

316 OASIS Open Document (ODP) Presentation

317 Legato EMailXtender NativeMessage Word Processor

319 Transfer Neutral Encapsulation Format (TNEF) Encapsulation

320 CADAMDrawing Vector graphic

321 CADAMDrawingOverlay Vector graphic

322 NURSTOR Drawing Vector graphic

323 HP Graphics Language (Plotter) Vector graphic

324 Advanced Systems Format Miscellaneous

325 Windows Media Audio Format Sound

326 Windows Media Video Format Movie

327 Legato EMailXtender Archive Encapsulation

328 7-Zip Encapsulation

329 Microsoft Office 2007 Excel Binary Format Spreadsheet

330 Microsoft Cabinet File Encapsulation

331 CATIA formats Vector graphic

332 Yahoo! Instant Messenger Word processor

333 Founder Chinese E-paper Basic Word processor

334 Corel Quattro Pro X4 Spreadsheet

335 MIME HTML Word processor

336 Microsoft Document Imaging Format Raster image

337 Microsoft Office Groove File Format Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 327 of 346

Number Format File Class

338 Apple iWorks Pages Word processor

339 Apple iWorks Numbers Spreadsheet

340 Apple iWorks Keynote Presentation

341 Microsoft Backup File Encapsulation

342 Microsoft Access 2007 Database

343 Microsoft Entourage Database Encapsulation

344 Mac Disk Copy Disk Image File Encapsulation

345 Appleworks File Word processor

346 Omni Outliner (OO3) File Word processor

347 Omni Outliner (OPML) File Word processor

348 Omni Graffle XML File Vector graphic

349 Apple Photoshop Document Raster image

350 Apple Binary Property List Miscellaneous

351 Apple iChat Format Word processor

352 Omni Outliner (OOUTLINE) File Word processor

353 Bzip 2 Compressed File Encapsulation

354 ISO-9660 CD Disc Image Format Encapsulation

355 Xerox DocuWorks Word processor

356 RealMedia StreamingMedia Movie

357 AC3 Audio File Format Sound

358 Nero Encrypted File Encapsulation

359 SolidWorks Vector graphic

362 UniGraphics NX Vector graphic

364 3D Systems STL format Vector graphic

366 Extensible Forms Description Language Presentation

367 Apple XML Property List Miscellaneous

368 OneNote Note Format Presentation

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 328 of 346

Number Format File Class

370 Digital Imaging and Communications in Medicine (DICOM) Raster image

371 Expert Witness Compression Format Encapsulation

372 Shell Scrap Object File Encapsulation

373 Microsoft Project 2007 Time scheduling

374 Microsoft Publisher 98– Desktop publishing

375 Skype Log File Word processor

376 Lotus Notes Bitmap Format (DXL embedded images) Raster image

377 Health level7 message Word processor

378 Microsoft Outlook Offline Storage File Encapsulation

379 Open Publication Structure eBook Word processor

380 Microsoft Outlook Express DBX Encapsulation

381 BlackBerry Activation File Word processor

382 Disk Image Encapsulation

383 Milestone Raster Image

384 RealLegal E-Transcript File Word processor

385 PostScript Type 1 Font Font

386 Ghost Disk Image File Encapsulation

387 JPEG-2000 JP2 File Format Syntax (ISO/IEC 15444-1) Raster Image

388 Unicode HTML Word processor

389 Microsoft Compiled HTMLHelp Encapsulation

390 Documentum EMCMF Encapsulation

393 JBIG2 File Raster image

395 AD1 Evidence file Encapsulation

397 GroupWise File Surf email Encapsulation

402 ARJ Encapsulation

409 Microsoft Outlook for Macintosh Encapsulation

412 Microsoft Outlook vCard Contact Word processor

Major Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 329 of 346

Number Format File Class

414 Microsoft Outlook iCalendar Encapsulation

418 Apple iWork 2013 Pages Word processor

419 Apple iWork 2013 Numbers Spreadsheet

420 Apple iWork 2013 Keynote Presentation

421 XZ Encapsulation

427 B1 Encapsulation

428 MP4 Movie

429 Rar5 Encapsulation

430 PTC Creo Vector graphic

431 KeyholeMarkup Language

432 Zipped KeyholeMarkup Language

433 Wireless Markup Language

435 Star OfficeWriter Text

436 Star Office Calc Spreadsheet

437 Star Office Impress Presentation

438 Star OfficeMath

439 ISO 10303-21 STEP format Vector graphic

Major Formats, continued

1 If themajor version is 100, the file format is XHTML.

2 Themajor version determines whether theMicrosoft Office XML file is aWord, Excel or Visio
document. Themajor version for each format is as follows:
Word: 100
Excel: 101
Visio: 110

Attribute Number File Class

0 No file class

01 Word processor

02 Spreadsheet

03 Database

File Classes

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 330 of 346

Attribute Number File Class

04 Raster image

05 Vector graphic

06 Presentation

07 Executable

08 Encapsulation

09 Sound

10 Desktop publishing

11 Outline/planning

12 Miscellaneous

13 Mixed format

14 Font

15 Time scheduling

16 Communications

17 Object module

18 Library module

19 Fax

20 Movie

21 Animation

File Classes, continued

Attribute Number Minor Format

00 Minor format not defined

01 Standard

02 Book

03 Chart

04 Macro

05 Text

Minor Formats

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 331 of 346

Attribute Number Minor Format

06 Binary

07 PC

08 Windows

09 DOS

10 Macintosh

11 RGB

12 TIFF

13 IFF

14 Experimental

15 Format Information

16 RLE

17 Symbol

18 Old

19 Footnote

20 Style

21 Palette

22 Configuration

23 Activity

24 Resource

25 Calculation

26 Glossary

27 Spelling

28 Thesaurus

29 Hyphenation

30 Miscellaneous

31 UNIX

32 VAX

Minor Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 332 of 346

Attribute Number Minor Format

33 Driver

34 Archive

Minor Formats, continued

XMLExport SDK C ProgrammingGuide
Appendix F: File Format Detection

KeyView (11.6) Page 333 of 346

Appendix G: Files Required for Redistribution

This section lists the Export files that can be redistributed in your applications under the licensing
agreement. These files are in the directory install\OS\bin, where install is the path name of the
Export installation directory and OS is the name of the operating system.

• Core Files 334
• Support Files 335
• Document Readers andWriters 336
• Document Type Definition Files 342

NOTE: OnWindows systems, the libraries are .dll files. On UNIX systems, the libraries are
.so, .a, or .sl files.

Core Files

The following core files can be redistributed with your application.

File Description

formats_
e.ini

Initialization file. For more information on this file, see Determine Format Support,
on page 311.

htmlexport.* Required by the Java API.

xmlcnv.* XML converter for the document token stream.

kpifcnvt.* Graphic conversion routines.

kpifutil.* Graphic utility routines.

kvxtract.* File Extraction interface.

kvxml.* XMLExport C API.

kvexport.* Export C API. Interface to the HTML and XMLExport C APIs.

kvolefio.* EmbeddedOLE object writer.

kvutil.* Internal KeyView utility functions.

kvxpgsa.* Interface between presentations or graphic readers and the Export API.

kvxsssa.* Interface between spreadsheet readers and the Export API.

kvxwpsa.* Interface between word processing readers and the Export API.

kwad.* File auto-recognitionmodule.

KeyView (11.6) Page 334 of 346

File Description

regsvr32.exe A Microsoft Windows program used to register in-process COM objects.

txtcnv.* Converter for document token stream.

xmlexport.* Required by the Java API.

\vcredist Microsoft Visual C++ 2010 andMicrosoft Visual Studio C++ 2005 Redistributables.

NOTE: OnWindows platforms, theMicrosoft Visual C++ 2010 andMicrosoft
Visual Studio C++ 2005 Redistributables need to be deployed and installed
for KeyView to run.

Support Files

The following support files can be redistributed with your application.

File Description

bentofio.* Required by l123sr.* and kpprzrdr.*.

cbmap.map Character mappings for Adobe Portable Document Format
(PDF).

chartbls.ux Character mapping tables.

chmdll.* Required by chmsr.

kp3dwrld.* Required for 3D charts.

kpchtrdr.* Required for all spreadsheets (chart support).

kpjavwrt.* Java utility routines.

kpjpeg.* JPEG file interchange format shared routines.

kppng.* Portable Network Graphics (PNG) utilities.

kvxconfig.ini Contains element extraction settings for source XML files.

kvgraph.* Required for all spreadsheets (chart support).

kvpie.* Required for all spreadsheets (chart support).

kvradar.* Required for all spreadsheets (chart support).

kv.lic Contains license information for KeyView products. This file
is opened and validated when a KeyView API is used.

kvraster.class Java program used to convert vector graphics on UNIX and
Linux.

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 335 of 346

File Description

kvVector.class Java applet used to convert vector graphics on UNIX and
Linux.

kvvector.jar Java applet used to convert vector graphics on UNIX and
Linux. This must reside in the output directory.

mscomctl.ocx Microsoft CommonControl (for example, labels, dialog
boxes). Required for Visual Basic programs and COM
objects.

msvbvm60.* Microsoft Visual Basic Runtime library V6.0.

MSVCP60.* Microsoft Visual C++ Runtime Library V6.0.

msvcrt.* Microsoft Visual C Runtime library.

oleaut32.* Microsoft OLE Automation Controls.

olepro32.* Microsoft OLE property support library.

servant.exe Executable required for out-of-process conversions.

wpmap.* Extended character mapping forWordPerfect and Corel
Presentation.

xmlsh.* Contains a library of content handlers for each XML file type.
Required by the Expat XML parser.

Document Readers and Writers

The following readers and writers can be redistributed with your application.

File Description

ad1sr.* AD1 Evidence file reader

afsr.* ASCII reader

assr.* Applix spreadsheet reader

awsr.* Applix Words reader

bkfsr.* Microsoft Backup File reader

bzip2sr.* Bzip2 reader

cabsr.* Microsoft Cabinet format reader

cebsr.* Founder Chinese E-paper Basic reader

chmsr.* Microsoft Compiled HTMLHelp reader

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 336 of 346

File Description

csvsr.* Comma-Separated Values reader

dbfsr.* dBase Database reader

dbxsr.* Microsoft Outlook Express DBX reader

dcasr.* Document Content Architecture/Revisable Form Text (DCA/RFT) reader

difsr.* Data Interchange Format reader

dmgsr.* Mac Disk Copy Disk Image File reader

dw4sr.* DisplayWrite 4 reader

dxlsr.* Domino XML Language reader

emlsr.* Microsoft Outlook Express (EML) reader. This is used to convert EML files when
theMBX reader is not licensed.

emxsr.* Legato EMailXtender archive (EMX) reader

encasesr.* Expert Witness Compression Format (EnCase) v6 reader

encase2sr.* Expert Witness Compression Format (EnCase) v7 reader

entsr.* Microsoft Entourage Database Format reader

epubsr.* Open Publication Structure eBook reader

foliosr.* Folio Flat File reader

gwfssr.* GroupWise FileSurf reader

hl7sr.* Health level7 reader (metadata only)

htmsr.* HTML and XHTML reader

hwposr.* Hangul 2002, 2005, 2007 reader

ichatsr.* Apple iChat Log reader

icssr.* Microsoft Outlook iCalendar reader

isosr.* ISO-9660 CD Disc Image Format reader

iwsssr.* Apple iWork Numbers reader

iwwpsr.* Apple iWork Pages reader

jp2000sr.* JPEG 2000metadata reader

jtdsr.* JustSystems Ichitaro reader

kpagrdr.* Applix Presents reader

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 337 of 346

File Description

kpanirdr.* Animated cursor reader

kpbmprdr.* Windows Bitmap reader

kpbmpwrt.* Windows Bitmap writer

kpcdrrdr.* Corel Draw

kpcgmrdr.* Computer Graphics Metafile reader

kpcgmwrt.* Computer Graphics Metafile writer

kpdcxrdr.* DCX (fax) reader

kpDWGrdr.* AutoCAD Drawing format reader

kpDXFrdr.* AutoCAD Drawing Exchange format reader

kpemfrdr.* EnhancedMetafile reader

kpepsrdr.* Encapsulated PostScript (EPS) reader

kpgifrdr.* Graphic Interchange Format (GIF) reader

kpicordr.* Windows Icon reader

kpiwpgrdr.* Apple iWork Keynote reader

kpjbig2rdr.* JBIG2 reader

kpjp2000rdr.* JPEG 2000 reader

kpjpgrdr.* JPEG file interchange format reader

kpjpgwrt.* JPEG file interchange format writer

kpnbmprdr.* IBM Notes Bitmap reader (for embedded images in DXL files)

kpmacrdr.* MacPaint reader

kpmsordr.* Microsoft Office Drawing Objects (office 97, 2000, and XP) reader

kpodfrdr.* Oasis Open Document Format presentation (ODP) reader

kpODArdr.* AutoCAD reader (Windows only)

kpONErdr.* Microsoft OneNote reader

kppdfrdr.* Adobe Portable Document File (PDF) graphic-based reader

kppdf2rdr.* High-fidelity Adobe Portable Document File (PDF) graphic-based reader

kpp40rdr.* Microsoft PowerPoint PC 4.0 and PowerPoint Mac reader

kpp95rdr.* Microsoft PowerPoint 95 reader

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 338 of 346

File Description

kpp97rdr.* Microsoft PowerPoint 97 and higher reader

kppctrdr.* Macintosh Quick Draw Picture (PICT) reader

kppcxrdr.* PC Paintbrush (PCX) reader

kppicrdr.* Pictor PC Paint format (PIC) reader

kppngrdr.* Portable Network Graphics (PNG) reader

kppngwrt.* Portable Network Graphics (PNG) writer

kpppxrdr.* Microsoft PowerPoint XML reader 2007

kpprerdr.* Lotus FreelanceGraphics forWindows V2.0 reader

kpprzrdr.* Lotus FreelanceGraphics 96/97/98 reader

kpsdwrdr.* Lotus Ami Pro Graphics reader

kpsgirdr.* SGI RGB reader

kpshwrdr.* Corel Presentations reader

kpsunrdr.* SunRaster reader

kptgardr.* Truevision Targa reader

kptifrdr.* Tagged Image File Format (TIFF) reader

kpvsdrdr.dll Microsoft Visio reader

kpVSDXrdr.dll Microsoft Visio 2013 reader

kpwg2rdr.* WordPerfect Graphics 2 reader

kpwmfrdr.* Windows Metafile reader

kpwmfwrt.* Windows Metafile writer

kpwpgrdr.* WordPerfect Graphics 1 reader

kpxfdlrdr.* Extensible Forms Description Language reader

kvgzsr.* GZIP reader

kvhqxsr.* BinHex reader

kvzeesr.* UNIX Compress reader

l123sr.* Lotus 123 v96/97/98 reader

lasr.* Lotus AMI Pro reader

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 339 of 346

File Description

ltbenn30.dll Lotus Word Pro support (supported onWindows x86 platform only)

ltscsn10.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwpapin.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwppann.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwpsr.dll Lotus Word Pro reader (supported onWindows x86 platform only)

macbinsr.* MacBinary reader

mbsr.* Microsoft WordMacintosh reader

mbxsr.* Mailbox (MBX)1 andMicrosoft Outlook Express (EML) reader

mdbsr.* Microsoft Access reader.

mifsr.* AdobeMaker Interchange Format reader

misr.* Microsoft Word 2 reader

mp3sr.* MP3 reader for metadata extraction

mppsr.* Microsoft Project reader

msgsr.* Microsoft Outlook (MSG) reader

mspubsr.* Microsoft Publisher reader

msw6sr.* Microsoft Works 6 and 2000 reader

mswsr.* Microsoft Works V1 and 2 reader

multiarcsr ARJ reader

mw6sr.* Microsoft Word 95 reader

mw8sr.* Microsoft Word 97, 2000, and XP reader

mwsr.* Microsoft Word for DOS andMicrosoft Write reader

mwssr.* Microsoft Works Spreadsheet reader

mwxsr.* Microsoft Word 2007 XML reader

nsfsr.* IBM Notes Database reader2

oa2sr.* Fujitsu Oasys reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.
2This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 340 of 346

File Description

odfsssr.* Oasis Open Document Format spreadsheets (ODS) reader

odfwpsr.* Oasis Open Document Format word processing (ODT) reader

olesr.* EmbeddedOLE object reader.

olmsr.* Microsoft Outlook for Macintosh reader

oo3sr.* Omni Outliner reader

pdfsr.* Adobe Portable Document File (PDF) reader

pffsr.* Microsoft Outlook Offline Storage File reader

pstsr.dll Microsoft Outlook Personal Folders file MAPI-based reader (supported on
Windows platform only)1

pstnsr.* Microsoft Outlook Personal Folders file native reader2

qpssr.* Quattro Pro spreadsheet reader

rarsr.* RAR Archive reader

rtfsr.* Microsoft Rich Text Format reader

skypesr.* Skype log file reader

sosr.* StarOffice/OpenOffice reader

swfsr.* Macromedia Flash reader

tarsr.* Tape archive reader

tnefsr.* Transfer Neutral Encapsulation Format reader

unihtmsr.* Unicode HTML reader

unisr.* Unicode reader

unzip.* Zip file reader

uudsr.* UUEncoding reader

vsdsr.* Microsoft Visio reader

vcfsr.* Microsoft Outlook vCard Contact reader

wkssr.* Lotus 1-2-3 v2.0 through 5.0 reader

wosr.* WordPerfect 5.x reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.
2This reader is an advanced feature and is sold and licensed separately from KeyView Export SDK.

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 341 of 346

File Description

wp6sr.* WordPerfect 6.0 through 10.0 reader

wpmsr.* WordPerfect for Macintosh reader

xlsbsr.* Microsoft Office 2007 Excel Binary Format reader

xlssr.* Microsoft Excel reader

xlsxsr.* Microsoft Excel 2007 XML reader

xmlsr.* Generic XML reader

xpssr.* XMLPaper Specification reader

xywsr.* XYWrite reader

yimsr.* Yahoo! Instant Messenger reader

z7zsr.* 7-Zip reader

Document Type Definition Files

The following files related to the verity.dtd can be redistributed with your application.

File Description

Verity.dtd The document type definition file that defines the structure of an XML
document. XML document validity is based on the Verity.dtd. The
Verity.dtd is required andmust be in the same directory as the output XML
file.

HTMLlat1x.ent The file defining Latin characters. This file is referenced in the verity.dtd.
This file is required andmust be in the same directory as the Verity.dtd.

HTMLspecialx.ent The file defining special characters. This file is referenced in the verity.dtd.
This file is required andmust be in the same directory as the Verity.dtd.

HTMLsymbolx.ent The file defining symbols. This file is referenced in the verity.dtd. This file is
required andmust be in the same directory as the Verity.dtd.

wp.xsl The default style sheet for word processing documents. This file is optional
andmust be in the same directory as the output XML file.

pg.xsl The default style sheet for presentation graphics. This file is optional andmust
be in the same directory as the output XML file.

ss.xsl The default style sheet for spreadsheets. This file is optional andmust be in
the same directory as the output XML file.

XML Export SDK C ProgrammingGuide
Appendix G: Files Required for Redistribution

KeyView (11.6) Page 342 of 346

Appendix H: Password Protected Files

This section lists supported password-protected container and non-container files and describes how to
open them.

• Supported Password Protected File Types 343
• Open Password Protected Container Files 344
• Export Password Protected Files 344

Supported Password Protected File Types

The following table lists the password-protected file types that KeyView supports.

Symbol Description

Y Format is supported.

N Format is not supported.

S Support for viewing subfiles.

V Support for viewing content.

P Password required.

C Password and certificate or User ID file required.

Key to support table

File Type Version Filter Export Extract View Credentials

PST (Windows) n/a N N Y S P

PST (non-Windows)1 n/a N N Y S N

ZIP n/a N N Y S P

7-Zip n/a N N Y S P

RAR n/a N N Y S P

SMIME inMSG, EML, MBX n/a N N Y N C

Lotus Notes NSF n/a N N Y N C

Supported password-protected file types

1The native PST reader, pstnsr, does not require credentials to open password-protected PST files
that use compressible encryption.

KeyView (11.6) Page 343 of 346

File Type Version Filter Export Extract View Credentials

Adobe PDF n/a Y Y Y V P

Microsoft Office 97-2003
2007
2010

Y Y Y V P

Supported password-protected file types, continued

Open Password Protected Container Files

This section describes how to extract password-protected container files using the C API. The
following guidelines apply to specific file types.

l IBM Notes NSF files. If you are running a Notes client with an active user connected to a Domino
server, youmust specify the user’s password as a credential regardless of whether the NSF files
you are opening are protected. This enables KeyView to access the Notes client and the IBM Notes
API. If the Notes client is not running with an active user, KeyView does not require credentials to
access the client.

l PST files.To open password-protected PST files that use High Encryption (Microsoft Outlook 2003
only), youmust use theMAPI-based PST reader (pstsr). The native PST reader (pstnsr) returns the
error message KVERR_PasswordProtected if a PST is encrypted with High Encryption.

To open container files

1. Define the credential information in the KVOpenFileArg data structure.
2. Pass KVOpenFileArg to the fpOpenFile() function.
3. Call fpCloseFile().

Export Password Protected Files

This section describes how to export password-protected non-container files with the C API.

To export password-protected files

1. Call the fpInit() function.
2. Call the KVXMLConfig() function with the following arguments :

Argument Parameter

nType KVCFG_SETPASSWORD

nValue TRUE

pData The source file password. The password is a null-terminated string with a
maximum length of 255 characters (the final byte is null).

For example:

XML Export SDK C ProgrammingGuide
Appendix H: Password Protected Files

KeyView (11.6) Page 344 of 346

(*fpXMLConfig)(pKVXML, KVCFG_SETPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.
3. Call the fpConvertStream() or KVXMLConvertFile() function.

XML Export SDK C ProgrammingGuide
Appendix H: Password Protected Files

KeyView (11.6) Page 345 of 346

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on XML Export SDK C Programming Guide (Micro Focus KeyView 11.6)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

KeyView (11.6) Page 346 of 346

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on XML Export SDK C Programming Guide (Micro Focus KeyView 11.6)

	Part I: Overview of XML Export
	Chapter 1: Introducing XML Export
	Overview
	Features
	Platforms, Compilers, and Dependencies
	Supported Platforms
	Supported Compilers
	C++ Filter SDK

	Software Dependencies

	Windows Installation
	UNIX Installation
	Package Contents
	License Information
	Enable Advanced Document Readers
	Update License Information

	Directory Structure
	Definition of Terms

	Chapter 2: Getting Started
	Architectural Overview
	Memory Abstraction
	Enhance Performance
	File Caching

	Convert Files Out of Process
	Configure Out-of-Process Conversions
	Run Export Out of Process—Overview
	Recommendations

	Run Export Out of Process in the C API
	Example—KVXMLStartOOPSession
	Example—KVXMLEndOOPSession

	Convert Files
	Subfile Extraction
	Convert Outlook Email without Using the Extraction API

	Set Conversion Options
	Set Conversion Options by Using the API
	Set Conversion Options by Using the Template Files
	Templates

	Use the Export Demo Program
	Change Input/Output Directories
	Set Configuration Options
	Suppress Images
	Use PDF Position Information

	Convert Files

	Use the C-Language Implementation of the API
	Input/Output Operations
	Convert Files
	Multithreaded Conversions

	Use the Verity Document Type Definition (DTD)
	Use XML Style Language Transformation (XSLT)
	Add Elements and Attributes to the DTD
	Move the DTD

	Part II: Use the Export API
	Chapter 3: Use the File Extraction API
	Introduction
	Extract Subfiles
	Extract Images
	Recreate a File’s Hierarchy
	Create a Root Node
	Recreate a File’s Hierarchy—Example

	Extract Mail Metadata
	Default Metadata Set
	Extract the Default Metadata Set

	Microsoft Outlook (MSG) Metadata
	Extract MSG-Specific Metadata

	Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata
	Extract EML- or MBX-Specific Metadata

	Lotus Notes Database (NSF) Metadata
	Extract NSF-Specific Metadata

	Microsoft Personal Folders File (PST) Metadata
	MAPI Properties
	Extract PST-Specific Metadata

	Exclude Metadata from the Extracted Text File

	Extract Subfiles from Outlook Files
	Extract Subfiles from Outlook Express Files
	Extract Subfiles from Mailbox Files
	Extract Subfiles from Outlook Personal Folders Files
	Use the Native or MAPI-based Reader
	Use the Native PST Reader (pstnsr)
	Use the MAPI Reader (pstsr)
	System Requirements

	MAPI Attachment Methods
	Open Secured PST Files
	Detect PST Files While the Outlook Client is Running

	Extract Subfiles from Lotus Domino XML Language Files
	Extract .DXL Files to HTML

	Extract Subfiles from Lotus Notes Database Files
	System Requirements
	Installation and Configuration
	Windows
	Solaris
	AIX 5.x
	Linux

	Open Secured NSF Files
	Format Note Subfiles

	Extract Subfiles from PDF Files
	Improve Performance for PDFs with Many Small Images

	Extract Embedded OLE Objects
	Extract Subfiles from ZIP Files
	Default File Names for Extracted Subfiles
	Default File Name for Mail Formats
	Default File Name for Embedded OLE Objects

	Chapter 4: Use the XML Export API
	Extract Metadata
	Extract Metadata by Using the API
	Use the C API

	Extract Metadata by Using a Template File
	Examples
	$SUMMARYNN
	$SUMMARY
	$USERSUMMARY

	Extract File Format Information
	Use the C API

	Convert Character Sets
	Determine the Character Set of the Output Text
	Guidelines for Character Set Conversion

	Examples of Character Set Conversion
	Document Character Set Can be Determined
	Document Character Set Cannot be Determined

	Set the Character Set During Conversion
	Set the Character Set During File Extraction from a Container

	Map Styles
	Use the C API
	Use a Template file

	Use Style Sheets
	Use Extensible Style Sheet Language (XSL)
	Use Cascading Style Sheets (CSS)

	Display Vector Graphics on UNIX and Linux
	Convert Revision Tracking Information
	Convert PDF Files
	Use the pdf2sr Reader
	Convert PDF Files to a Logical Reading Order
	Logical Reading Order and Paragraph Direction
	Enable Logical Reading Order
	Use the C API
	Use the formats_e.ini File

	Control Hyphenation
	Extract Custom Metadata from PDF Files
	Configure the Size of Exported Images

	Convert Spreadsheet Files
	Convert Hidden Text in Microsoft Excel Files
	Convert Headers and Footers in Microsoft Excel 2003 Files
	Specify Date and Time Format on UNIX Systems
	Convert Very Large Numbers in Spreadsheet Cells to Precision Numbers
	Extract Microsoft Excel Formulas
	Set Minimum Image Size

	Convert Presentation Files
	Convert Presentation Files to Raster Images
	Convert Presentation Files to a Logical Reading Order

	Convert XML Files
	Configure Element Extraction for XML Documents
	Modify Element Extraction Settings
	Use the C API
	Use an Initialization File

	Modify Element Extraction Settings in the kvxconfig.ini File
	Specify an Element’s Namespace and Attribute
	Add Configuration Settings for Custom XML Document Types

	Show Hidden Data
	Hidden Data in Microsoft Documents
	Toggle Word Comment Settings in the formats_e.ini File
	Toggle PowerPoint Slide Note Settings in the formats_e.ini File

	Exclude Japanese Guide Text
	Obtain Image Info
	Example

	Chapter 5: Sample Programs
	Introduction
	C Sample Programs
	Compile the Visual Basic Sample Program

	tstxtract
	cnv2xml
	cnv2xmloop
	metadata
	xmlindex
	xmlini
	Use Style Sheets with xmlini

	xmlcallback
	xmlonefile
	xmlmulti
	Export Demo

	Part III: C API Reference
	Chapter 6: File Extraction API Functions
	KVGetExtractInterface()
	fpCloseFile()
	fpExtractSubFile()
	fpFreeStruct()
	fpGetMainFileInfo()
	fpGetSubFileInfo()
	fpGetSubFileMetaData()
	fpOpenFile()

	Chapter 7: File Extraction API Structures
	KVCredential
	KVCredentialComponent
	KVExtractInterface
	KVExtractSubFileArg
	KVGetSubFileMetaArg
	KVMainFileInfo
	KVMetadataElem
	KVMetaName
	KVOpenFileArg
	KVOutputStream
	KVSubFileExtractInfo
	KVSubFileInfo
	KVSubFileMetaData

	Chapter 8: XML Export API Functions
	KVXMLGetInterface()
	KVXMLGetInterfaceEx()
	fpConvertStream()
	fpFileToInputStreamCreate()
	fpFileToInputStreamFree()
	fpFileToOutputStreamCreate()
	fpFileToOutputStreamFree()
	fpFreeImageInfos()
	fpGetAnchor()
	fpGetConvertFileList()
	fpGetKvErrorCode
	fpGetKvErrorCodeEx
	fpGetOutputImageCount()
	fpGetOutputImageInfo()
	fpGetOutputImageInfos()
	fpGetStreamInfo()
	fpGetSummaryInfo()
	fpInit()
	fpSetStyleMapping()
	fpShutDown()
	fpValidateTemplate()
	KVXMLConfig()
	Configuration Flags
	Examples

	KVXMLConvertFile()
	KVXMLEndOOPSession()
	KVXMLSetStyleSheet()
	KVXMLStartOOPSession()
	Discussion
	Example

	Chapter 9: XML Export API Callback Functions
	Introduction
	Continue()
	GetAnchor()
	GetAuxOutput()
	UserCB()

	Chapter 10: XML Export API Structures
	ADDOCINFO
	KVInputStream
	KVMemoryStream
	KVOutputStream
	KVSTR
	KVStreamInfo
	KVStructHead
	KVStyle
	KVSumInfoElemEx
	KVSummaryInfoEx
	KVXConfigInfo
	KVXMLCallbacks
	KVXMLHeadingInfo
	KVXMLImageInfo
	KVXMLInterface
	KVXMLInterfaceEx
	KVXMLOptions
	Set the Resolution of Presentations and Vector Graphics

	KVXMLTemplate
	KVXMLTOCOptions

	Chapter 11: Enumerated Types
	Introduction
	Programming Guidelines

	ENSATableBorder
	KVCredKeyType
	KVErrorCode
	KVErrorCodeEx
	KVXMLStyleSheetType
	KVXMLAnchorType
	KVXMLGraphicType
	KVHeadingCreateOptions
	KVXMLEmptyParaType
	Definition
	Enumerators

	KVXMLHardPageBreakType
	Definition
	Enumerators

	KVMetadataType
	KVMetaNameType
	KVSumInfoType
	KVSumType
	LPDF_DIRECTION

	Part IV: Appendixes
	Appendix A: Supported Formats
	Supported Formats
	Archive Formats
	Binary Format
	Computer-Aided Design Formats
	Database Formats
	Desktop Publishing
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text and Markup Formats
	Word Processing Formats

	Supported Formats (Detected)

	Appendix B: Character Sets
	Multibyte and Bidirectional Support
	Coded Character Sets

	Appendix C: File Formats and Extensions
	File Format and Extension Table

	Appendix D: Extract and Format Lotus Notes Subfiles
	Overview
	Customize XML Templates
	Use Demo Templates
	Use Old Templates
	Disable XML Templates

	Template Elements and Attributes
	Conditional Elements
	Control Elements
	Data Elements

	Date and Time Formats
	Lotus Notes Date and Time Formats
	KeyView Date and Time Formats

	Appendix E: Export Tokens
	Appendix F: File Format Detection
	Introduction
	Extract Format Information
	Determine Format Support
	Refine Detection of Text Files
	Change the Amount of File Data to Read
	Change the Percentage of Allowed Non-ASCII Characters
	Use the File Extension for Detection

	Allow Consecutive NULL Bytes in a Text File

	Translate Format Information
	Distinguish Between Formats

	Determine a Document Reader
	Category Values in formats_e.ini

	Appendix G: Files Required for Redistribution
	Core Files
	Support Files
	Document Readers and Writers
	Document Type Definition Files

	Appendix H: Password Protected Files
	Supported Password Protected File Types
	Open Password Protected Container Files
	Export Password Protected Files

	Send documentation feedback

