KeyView

Software Version: 11.6

Filter SDK C Programming Guide

Filter SDK C Programming Guide

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice
© Copyright 2016-2018 EntIT Software LLC, a Micro Focus company
Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.
Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support

Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

Search for knowledge documents of interest

Submit and track support cases and enhancement requests
Access the Software Licenses and Downloads portal
Download software patches

Access product documentation

Manage support contracts

KeyView (11.6) Page 2 of 320

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

Filter SDK C Programming Guide

o Look up Micro Focus support contacts

« Review information about available services

« Enterinto discussions with other software customers
« Research and register for software training

Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.
You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

KeyView (11.6) Page 3 of 320

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Filter SDK C Programming Guide

Contents

Part I: Overview of Filter SDK .. 13
Chapter 1: Introducing Filter SDK .. 14
OV IV W . 14
Features il 14
Platforms, Compilers, and Dependencies 15
Supported Platforms ... 15
Supported Compilers .l 15
Software Dependenciesl 16
Windows Installation 17
UNIDX Installation 18
Package Contents 19
License INformation L 19
Enable Advanced Document Readers 20
Update License Information 20
Directory Structure ... 21
Chapter 2: Getting Started ...l 23
Architectural OVeIVIEW .. 23
Enhance Performance L 25
File Caching ... o L 25

I eriNg il 25
Subfile EXtraction 26
Memory Abstraction 26
Use the C-Language Implementation of the API 26
Input/Output Operations 26
Filteringin File Mode o e 27
Filteringin Stream Mode 28
Multithreaded Filtering 29
The Filter Process Model 29
Filter AP .. 30
File Extraction APl L 30
Persist the Child Process 30
INthe AP .. 30

Inthe formats.ini File 30

Run Filter In Process 31

IN TN AP 31

Inthe formats.ini File 31

Run File Extraction Functions Out of Process ... 31
Restart the File Extraction Server 32
Out-0f-Process LOgQiNg 32
Enable Out-of-Process LOgQingol 32
Setthe Verbosity Level ... 33

KeyView (11.6) Page 4 of 320

Filter SDK C Programming Guide

Enable Windows Minidump 33

Keep Log Files ... 33

Run File Detection Inor Out of Process 34
Specify the Process Type Inthe formats.iniFile 34
Specify the Process Type Inthe APl ... i 34
Part Il Use Filter SDK . L 35
Chapter 3: Use the File Extraction AP ... 36
INtrodUCHION L 36
EXtract SUDTIlES . L 37
Extract Images .. 38
Recreate a File’s Hierarchy .. 38
Create a Root NOde 38
Recreate a File’s Hierarchy—Example 39
Extract Mail Metadata 39
Default Metadata Set 40
Extract the Default Metadata Set 40
Microsoft Outlook (MSG)Metadata 41
Extract MSG-Specific Metadata 42
Microsoft Outlook Express (EML) and Mailbox (MBX)Metadata 43
Extract EML- or MBX-Specific Metadata 43

Lotus Notes Database (NSF)Metadata 43
Extract NSF-Specific Metadata 44
Microsoft Personal Folders File (PST)Metadata 44
MA P Properties ... L 44
Extract PST-Specific Metadata 45
Exclude Metadata from the Extracted Text File 46
Extract Subfiles from Outlook Files 46
Extract Subfiles from Outlook Express Files 46
Extract Subfiles from Mailbox Files 47
Extract Subfiles from Outlook Personal Folders Files 47
Usethe Native or MAPI-based Reader 47
Use the Native PST Reader (pStNSr)o i 48
Usethe MAPI Reader (pStSr) ... 48
System Requirements ... 49

MAPI Attachment Methods 49
Open Secured PST Files 50
Detect PST Files While the Outlook Clientis Running 50
Extract Subfiles from Lotus Domino XML Language Files 50
Extract .DXL Files to HTML L 51
Extract Subfiles from Lotus Notes Database Files 51
System RequIremMeNtS . L 52
Installation and Configuration 52
WiNAOWS 52
SOlaNS . 53

KeyView (11.6) Page 5 of 320

Filter SDK C Programming Guide

ADX B X il 53

LU 54

Open Secured NSF Files ... 54
Format Note Subfiles 54
Extract Subfiles from PDF Files 54
Improve Performance for PDFs with Many Small Images 54
Extract Embedded OLE Objects 55
Extract Subfiles from ZIP Files 55
Default File Names for Extracted Subfiles 55
Default File Name for Mail Formats 55
Default File Name for Embedded OLE Objects 56
Chapter 4: Use the Filter AP .. 58
Generate an Ermor Log o 58
Enable or Disable Error Logging 59
USethe AP L 59

Use Environment Variables 59
Change the Path and File Name of the Log File 59
Report Memory Ermors . iiiiiiiil. 60
USethe AP L 60

Use Environment Variables 60
Specify aMemory Guard 60
Report the File Namein StreamMode 60
Report Extended Error Codesl 61
Specify the Maximum Size of the Log File 61
Extract Metadata 61
Extract Metadata for File Filtering 62
Extract Metadata for Stream Filtering ... o . 62
EXamIple .. 62
Convert Character Sets 63
Determine the Character Set of the Output Text 64
Guidelines for Character Set Conversion 64

Set the Character Set During Filtering 65
Set the Character Set During Subfile Extraction 65
Prevent the Default Conversion of a CharacterSet 65
Extract Deleted Text Marked by Tracked Changes 66
Filter PDF Files . 66
Filter PDF Files to a Logical Reading Order 66
Enable Logical Reading Order i i 68
Usethe C APl L 68
Usethe formats.ini File .. . 68
Rotated TeXt ... 69
Extract Custom Metadata from PDF Files 69
Extract Custom Metadata by Tag 69
Extract All Custom Metadata 70

Filter Tagged PDF Content i 70
Skip Embedded FONts 71

KeyView (11.6) Page 6 of 320

Filter SDK C Programming Guide

Use the formats.ini File
Usethe C APl 71

Control Hyphenation 72
Usethe formats.ini File . . 72
Usethe C APl 72

Filter Spreadsheet Files 72

Filter Worksheet Names il 73

Filter Hidden Text in Microsoft Excel Files 73

Specify Date and Time Format on UNIX Systems 73

Filter Very Large Numbers in Spreadsheet Cells to Precision Numbers 74

Extract Microsoft Excel Formulas 74

Standardize Cell Formats 76
NUMDEIS . 76
T Xt 76
D ateS il 76

Filter XML Files ... 77

Configure Element Extraction for XML Documents 77
Modify Element Extraction Settings 78
Modify Element Extraction Settings in the kvxconfig.iniFile_____................_. 79
Specify an Element’s Namespace and Attribute 80
Add Configuration Settings for Custom XML Document Types 81

Configure Headers and Footers 81
Filter Hidden Data 82

Hidden Data in Microsoft Excel Documents 82
EXaMPIe 83
Toggle Hidden Excel Data Settings in the formats.iniFile __........................... 83

Hidden Datain HTML Documents 84

Tab Delimited Output for Embedded Tables 84
Table Detection for PDF Files ... L 84
Exclude Japanese Guide Text 85
Chapter 5: Sample Programs . 86
INtrodUCHiON .. 86
EStXtraCt . 86

L LY N 88
Partlll: C APIReferenceo 90
Chapter 6: File Extraction API Functions 91
KVGetExtractinterface() ... o il 91
fPClOseFIle) . . 92
fPEXtractSUbFile() .. 93
TOFTEE S UCT() <. 94
fpGetMainFilelnfo() il 95
PGt SUDFIlEINTO() . 96
fpGetSubFileMetaDatal) 97
fPOPENFIl) il 99

KeyView (11.6) Page 7 of 320

Filter SDK C Programming Guide

fpSetExtractionTimeout() 100
Chapter 7: File Extraction APl Structures ... il 102
KV Credential L 102
KVCredential Component 103
KVEXtractinterface ... 103
KVEXtractSUBFIleArg 104
KV GetSUBFIl Mt aA g 106
KVMaiNFIleINfO . e 107
KVMetadataElem . 108
KVMetaName .. 109
KVOPENFIIEATG . . . 110
KV QU UL S aM 111
KV SUbFIleEXtractinfO .. 112
KV SUBFIIEINTO . . 113
KVSUbFileMetaData 115
Chapter 8: Filter APl FUNCHIONS .. . 117
KV_GetFilterInterfaCeEX() 118
fpCanFilterFile() ...l 120
fpCanFilterStream() 121
fPCI0SE S reaM() <. 122
fpFiletolnputStreamCreatel) o 123
fpFileTolnputStreamFree() 124
fpFilterConfig() 125
Lo a1 =T T LT 130
TP eI reaM) « . 131
fpFreeOLESummaryInfo() - 132
fpFreeXmplnfo()o . 133
fPGEtDOCINTOF ()l 134
fPGetDOCINfOStreaM) . .. 135
fPGetKVEMOrCodeEX() ...l 136
fpGetOLESuUmmaryInfo() o .. 137
fpGetOLESUmMmaryInfoFile() - 138
PGt TIGC NarS e () . ..l 139
fPGetXmMPINTO() — . il 140
fpGetXmplnfoFile() . o o iiiiiiiiiiiil.. 141
BRIt) <o 143
TPOPEN S aAMI) . L 146
fPOPEeNStreamMEX2() il 147
fpRefreshFilterkKV OOP () 148
fpSetReplacementChar() 149
TSt SICC A S e) . .. L 150
S et TIMeEOUL () . 151
TS ULAOWN() .. 152
Chapter 9: Filter APl StructUres ... L 153
KVERINterfaCeEX . . L 154

KeyView (11.6) Page 8 of 320

Filter SDK C Programming Guide

AD D O CINF O 156
KV CONFI G ArG .o 157
KV erOUI UL . . . 158
KV INPUL S I aM . 159
KVMemory Stream . il 160

KV St ruCtHEad . .. 161

KV SUMIN OB OME X L 162
KVSummaryInfoEX ... 163

KV XCoNnfigInfo .. 164

KV XIMDIN O 166

KV XMPIN O M . e 167
Chapter 10: Enumerated Ty PeS ... o oo 168
INtrOdUCH ON 168
Programming Guidelines 169

KV CredK Y TY P .. 169
KVEMOrC 00 . 170
KVEOrC OO X oo 171
KVMetadataType 175
KVMetaName Ty Pe . 177

KV SUMIN O Y P - 177

KV SUM T Y P .. 178
LPDF DIRECTION 182
AP PENAIXES . 183
Appendix A: Supported Formats 184
Supported FOrmMats ... L 184
Archive FOrmats L 186
Binary FOrmat .. 188
Computer-Aided Design Formatso o 188
Database Formats 190
Desktop Publishing ... o . 191
Display FOrmats 191
GraphiC FOrmats 192

Mail FOrmats . 195
Multimedia Formats ... 197
Presentation Formats 199
Spreadsheet FOrmats 201

Text and Markup Formats 203

Word Processing FOrmats 204
Supported Formats (Detected) o 209
Appendix B: Character Sets 216
Multibyte and Bidirectional SUppOrt 216
Coded Character Sets o 223
Appendix C: File Formats and Extensions 229

KeyView (11.6) Page 9 of 320

Filter SDK C Programming Guide

File Format and Extension Table 229
Appendix D: Extract and Format Lotus Notes Subfiles 254
OV IV W 254
Customize XML Templates 254
Use Demo Templates L 255
Use Old Templateso 255
Disable XML Templates 255
Template Elements and Attributes L 256
Conditional Elements ... 256
Control Elements ... 257
Data Elements 258
Dateand Time Formats 260
Lotus Notes Date and Time Formats 260
KeyView Dateand Time Formats 261
Appendix E: File Format Detection 267
INErOAUC T ON L 267
Extract Format Information 267
Determine Format SUPPOM ... o 267
Example formats.inifileentries 268
Refine Detection of Text Files 268
Allow Consecutive NULL BytesinaTextFile 269
Translate Format Information L 270
Distinguish Between Formats 270
Determine a Document Reader L 271
Category Values informats.ini 271
Appendix F: List of Required Files for Redistribution 290
Core FIlES o 290
SUPPOIt FileS L 291
DocumMeENt REadErS . 291
Appendix G: Develop a Custom Reader 298
INErOAUC T ON L 298
How to Write a Custom Reader 299
Naming Conventions 299
BaSiC S OPS .. 300
TOKEN BUI I . . 300

M aC 0SS 301
Reader Interface L 302
FUNCtion FlOW . 302
Example Development of fffFillBuffer()o .. 303
Implementation 1—fpFillBuffer() Function 303
Structure of Implementation 1l 304
Problems with Implementation 1 304
Implementation 2—Processing a Large Token Stream 304
Structure of Implementation 2 305
Problems with Implementation 2 306

KeyView (11.6) Page 10 of 320

Filter SDK C Programming Guide

Boundary Conditionsl 306
Implementation 3—Interrupting Structured Access LayerCalls 307

Structure of Implementation 3 308
Development TIPS 309
FUNCHIONS .. 310
XXXSTAULOD €() . . . 310
XXXANOCatEC O Xt () . . L 311
xxxFreeContext()l 312
XXX D OC) .« L 312
XXX BUI O) L 313
XXXGetSummaryINfo() ... 314
XXXOPEN St aM() ... 315
XXXCloseStream () .. il 315
XXX O A B) . L 316
Appendix H: Password Protected Files 317
Supported Password Protected File Types 317
Open Password Protected Container Files 318
Filter Password Protected Files 318
Send documentation feedback 320

KeyView (11.6) Page 11 of 320

Filter SDK C Programming Guide

KeyView (11.6) Page 12 of 320

Part I: Overview of Filter SDK

This section provides an overview of the Micro Focus KeyView Filter SDK and describes how to use the C
implementation of the API.

KeyView (11.6)

Chapter 1: Introducing Filter SDK

This section describes the Filter SDK package.

O OVEIVIEW . . .o 14
R EatUrES o e 14
® Platforms, Compilers, and Dependencies 15
® Windows Installation 17
® UNDX INstallation .. 18
® Package CoNteNtS .. 19
® License INformation ..o L 19
® Directory StrUCIUIe 21

Overview

Micro Focus KeyView Filter SDK enables you to incorporate text extraction functionality into your own
applications. It extracts text and metadata from a wide variety of file formats on numerous platforms,
and can automatically recognize over 300 document types. It supports both file-based and stream-
based I/0O operations, and provides in-process or out-of-process filtering.

Filter SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

Features

« Document readers are threadsafe. The benefit of a threadsafe technology is that you can
successfully extract text from hundreds of documents simultaneously. Documents are not queued
for sequential filtering, but are actually filtered at the same time.

« Filter supports popular word processing, spreadsheet, and presentation formats. Body text,
endnotes, footnotes, and additional items such as document metadata are all included as part of the
filtering process.

« Sample programs are provided to demonstrate the functionality of the APlIs.

« You can extract files embedded within files, such as email attachments or embedded OLE objects,
by using the File Extraction API.

« You can configure memory management. If using the C API, you can provide your own memory
allocator to the document readers.

« Filterallows for redirected input and output. You can provide an input stream that is not restricted to
file system access.

« Filter automatically recognizes the file type being filtered and uses the appropriate filter. Your
application does not need to rely on file name extensions to determine file types.

« You can filter documents to specific character encodings, such as Unicode or UTF-8.

KeyView (11.6) Page 14 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

« You can use Filter SDK in conjunction with other KeyView technologies, such as the Index,
Highlight, and Annotate APIs.

« You can write custom document readers for formats not directly supported by KeyView.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

o CentOS7

o FreeBSD 8.1 x86

o IBMAIXL6.1 PowerPC 32-bit and 64-bit

o IBMAIXL7.1 PowerPC 32-bit and 64-bit

« Mac OS X Mountain Lion 10.8 or higher on 32- and 64-bit Apple-Intel architecture

« Microsoft Windows Vista Business Edition x86 and x64. Other editions of Vista have not been
tested, but are likely supported.

« Microsoft Windows 2008 Server Enterprise Edition x86 and x64
« Microsoft Windows 2008 Server R2

« Microsoft Windows 7 x86 and x64

« Microsoft Windows 8 x86 and x64

« Oracle Solaris 10 SPARC

« Oracle Solaris 10 x86 and x64

« Red Hat Enterprise Linux 5.0 x86 and x64

« RedHat Enterprise Linux 6.0 x86 and x64

o SuSE Linux Enterprise Server 10, 10.1, 11, x86 and x64

Supported Compilers

Platform Architecture Compiler Compiler Version
Name
Microsoft x86 cl Microsoft 32-bit C/C++ Optimizing Compiler
Windows Version 16.00.30319.01 for x86
x64 cl Microsoft C/C++ Optimizing Compiler Version
16.00.30319.01 for x64
Sun Solaris x86 64-bit Sun Studio Sun C 5.9 SunOS_i386 Patch 124868-01
12 2007/07/12

SPARC 64-bit Sun Studio Sun C 5.8 Patch 121015-06 2007/10/03

KeyView (11.6) Page 15 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

Platform Architecture Compiler Compiler Version
Name
11
Linux x86 gcc/g++ 3.4.3(Redhat 4), 4.1.0 (SUSE Linux 10)
x64 gcc/g++ 4.1.0 (Redhat 4), 4.1.0 (SuSE Linux 10)
IBM AIX Power xIC_r/cc_ IBM XL C/C++ Enterprise Edition V8.0
r
Mac OSX Apple-Intel 32-bit LLVM Apple LLVM 5.1 (clang-503.0.40) (based on LLVM
and 64-bit 3.4svn)
FreeBSD BSD x86 gcc/g++ 4.2.1[FreeBSD] 20070719

Supported Compilers for Java and .NET Components

Component Compiler
Java components Java 1.5

.NET components Microsoft Visual J# 2005 Compiler 8.00.50727.42

Software Dependencies

Some KeyView components require specific third-party software:

« Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 1.5 is required for
Java API and graphics conversion in Export SDK.

« Outlook 2002 client or later versions is required when processing Microsoft Outlook Personal
Folders (PST) files using the MAPI-based reader (pstsr). The native PST reader (pstnsr) does not
require an Outlook client.

NOTE:

If you are using 32-bit KeyView, you must install 32-bit Outlook. If you are using 64-bit
KeyView, you must install 64-bit Outlook.

If the bit editions do not match, an error message from Microsoft Office Outlook is displayed:
Either there is a no default mail client or the current mail client cannot

fulfill the messaging request. Please run Microsoft Outlook and set it as
the default mail client.

Additionally, KeyView displays the following return code:
Error 32: KVError_PSTAccessFailed.

« Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

o Microsoft .NET Framework SDK version 2.0, Microsoft .NET Framework version 2.0

KeyView (11.6) Page 16 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

Redistributable Package is required if you are programming in a .NET environment.

« Microsoft Visual C++ 2013 and Microsoft Visual C++ 2010 Redistributables (Windows only).

Windows Installation

Toinstall the SDK on Windows, use the following procedure.

To install the SDK

1.

Run the installation program, KeyViewProductNameSDK_VersionNumber_0S.exe, where
ProductName is the name of the product, VersionNumber is the product version number, and 0S is
the operating system.

For example:
KeyViewFilterSDK_11.6_Windows_X86_64.exe

The installation wizard opens.
Read the instructions and click Next.
The License Agreement page opens.

Read the agreement. If you agree to the terms, click | accept the agreement, and then click
Next.

The Installation Directory page opens.
Select the directory in which to install the SDK. To specify a directory other than the default, click

£
r , and then specify another directory. After choosing where to install the SDK, click Next.
The License Key page opens.

Type the company name and license key that were provided when you purchased KeyView, and
then click Next.

« The company name is case sensitive.

« Thelicense key is a string that contains 31 characters.

NOTE:

The installation program validates the company name and license key and generates the
file instal L\OS\bin\kv.1lic (where install is your chosen installation folder and 0S is
the name of the operating system platform). The license information is validated when the
KeyView API is used. If you do not enter alicense key at this step, or if you enter invalid
information, the KeyView SDK is installed, but the API does not function. When you obtain
avalid license key, you can either re-install the KeyView SDK, or manually update the
license key file (kv.1ic)with the new information. For more information, see License
Information, on page 19.

The Pre-Installation Summary dialog box opens.
Review the settings, and then click Next.

The SDK is installed.

Click Finish.

KeyView (11.6) Page 17 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

UNIX Installation

Toinstall the SDK, use one of the following procedures.

To install the SDK from the graphical interface

« Run the installation program and follow the on-screen instructions.

To install the SDK from the console

1. Run the installation program from the console as follows:
./KeyViewFilterSDK_VersionNumber_Platform.exe --mode text

where:
VersionNumber is the product version.
Platform is the name of the platform.

2. Read the welcome message and instructions and press Enter.
The first page of the license agreement is displayed.

3. Readthe license information, pressing Enter to continue through the text. After you finish reading
the text, and if you accept the agreement, type Y and press Enter.

You are asked to choose an installation folder.
4. Type an absolute path or press Enter to accept the default location.
You are asked for license information.

5. Atthe Company Name prompt, type the company name that was provided when you purchased
KeyView, and then press Enter. The company name is case sensitive.

6. Atthe License Key prompt, type the license key that was provided when you purchased
KeyView, and then press Enter. The license key is a string that contains 31 characters.

NOTE:

The installation program generates the file instal [\OS\bin\kv.1lic (where install is
your chosen installation folder and 0S is the name of the operating system platform). The
license information is validated when the KeyView API is used. If you do not enter a
license key at this step, or if you enter invalid information, the KeyView SDK is installed
but the API does not function. When you obtain a valid license key, you can either re-install
the KeyView SDK, or manually update the license key file (kv.1ic)with the new
information. For more information, see License Information, on the next page.

The Pre-Installation summary is displayed.
7. If you are satisfied with the information displayed in the summary, press Enter.
The SDK is installed.

KeyView (11.6) Page 18 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

Package Contents

The Filter SDK installation contains:

« All the libraries and executables necessary for extracting text from a wide variety of formats.

« Theinclude files that define the functions and structures used by the application to establish an
interface with Filter:

adapi.h kvfilter.h
adinfo.h kvioobj.h
kvcfsr.h kvtoken.h
kvxtract.h kvtypes.h
kvfilt.h kvxtract.h
kvfilt2.h kwautdef.h

« The Java APl implemented in the package com.verity.api.filter containedin the file
KeyView. jar.

« The .NET API implemented in the namespace Autonomy.API.Filter inthe library
FilterDotNet.d1l.

« The C++ SDK, which can be found in the cppapi folder.
« Sample programs that demonstrate File Extraction and Filter functionality using the APIs.

« Thefiles necessary to create a custom document reader, and the source for a sample document
reader for UTF-8. See Develop a Custom Reader, on page 298.

License Information

During installation, the installation program validates the organization name and license key that you
enter, and generates the install/0S/bin/kv.lic file, where install is the directory in which you
installed KeyView, and 0S is the operating system. This file is opened and validated when the KeyView
APl is used.

The kv. 1ic file contains the organization name and the 31-digit license key you specified during
installation. The contents of a kv. lic file looks similar to the following:

Company Name
XXXXXXX = XXXXXXX = XXXXXXX - XXXXXXX

The license key controls whether the following are enabled:

« thefull version of the KeyView SDK
« the trial version of the KeyView SDK

« language detection and advanced document readers—The following components are considered
advanced features, and are licensed separately:

KeyView (11.6) Page 19 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

o

Microsoft Outlook Personal Folders (PST) reader (pstsr and pstnsr)
o Lotus Notes database (NSF) reader (nsfsr)

Mailbox (MBX) reader (mbxsr)

o Character set detection library (kvlangdetect)

(o}

If you change the license key at any time, you must update the licensing information in the kv. 1ic file.
See Update License Information.

Enable Advanced Document Readers

To enable advanced readers in one of the KeyView SDKs, you must obtain an appropriate license key
from Micro Focus and update the installed license key with the new information as described in Update
License Information.

If you are enabling the MBX reader in an existing installation of Filter, in addition to updating the license
key, change the parameter 208=eml to 208=mbx in the formats. ini file.

Update License Information

If you currently have an evaluation version of KeyView and have purchased a full version of the SDK, or
you are adding a document reader (for example, the PST reader), you must update the license
information that was installed with the original version of the KeyView SDK.

If you installed a full version of KeyView, but did not enter licensing information at the time of
installation, you must also update the license information.

To update the information, do one of the following:

« Manually update the license information that is stored in the text file named kv. 1lic.

« Re-install the product and enter the new license information when prompted.

To update the KeyView license information

1. Openthelicense key file, kv.1lic, in atext editor. The file is in the instal L\0S\bin directory,
where install is the directory in which you installed KeyView, and 0S is the operating system.
The file contains the following text:

COMPANY NAME
XXXXXXX = XXXXXXX = XXX XXXX - XXXXXXX

2. Replace the text COMPANY NAME with the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

3. Replace the characters XXXXXX-XXXXXXX-XXXXXXX-XXXXXXX with the appropriate license key from
the License Key Sheet provided by Micro Focus. The license key is listed in the Key column in the
Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appear in the
document, including the dashes, but do not include a leading or trailing space.

4. Thefinished kv.lic file looks similar to the following:

Autonomy

KeyView (11.6) Page 20 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

24QD22D-2M6FV66-2KPF23S-2G8M59B

5. Savethekv.1licfile.

Directory Structure

The following table describes
install is the path name of t
/usr/autonomy/KeyviewFil
on Windows).

the directories created during the Filter SDK installation. The variable
he Filter installation directory (for example,
terSDK on UNIX, or C:\Program Files\Autonomy\KeyviewFilterSDK

The variable 0S is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at C: \Program

Files\Autonomy\KeyviewFi

Installed directory structure

Directory

install\0OS\bin

instal \OS\1ib

install\dotnetapi

install
\dotnetapil\dotnethelp

install
\dotnetapilsample

install\cppapi
install\cppapi\sample

install\guide

install\include

install
\javaapi\javadoc

install
\javaapi\sample

install\rel_notes

install
\samples\filter

KeyView (11.6)

1terSDK\WINDOWS\bin.

Description

Contains the libraries, the format detection file formats.ini, the license
key file kv. 1ic, and other supporting files.

(Solaris installations only) Contains the redistributable
libstlport.so.1 library, which is required to run KeyView on Solaris
platforms.

Contains the source files for the .NET API.

Contains the help for the .NET API.

Contains the sample programs for the .NET API.

Contains the source files for the C++ API.
Contains the sample programs for the C++ API.

Contains the KeyView Filter SDK programming guides in PDF and
HTML format.

Contains the header files required for Filter.

Contains the Javadoc for the Java API.

Contains the source files and sample programs for the Java API.

Contains the KeyView Filter SDK Release Notes in PDF format.

Contains a sample program demonstrating the Filter interface for the C
API.

Page 21 of 320

Filter SDK C Programming Guide
Chapter 1: Introducing Filter SDK

Installed directory structure, continued

Directory Description

install Contains a C sample program demonstrating extraction of a content

\samples\filterca access stream.

install Contains the initialization file used to extract custom metadata from

\samples\pdfini PDF documents.

install Contains a C sample program demonstrating the File Extraction

\samples\tstxtract interface.

install Contains the source for the sample document reader for UTF-8 files.

\samples\utf8sr You can use this to create your own custom document readers.

install Contains the C program filtertest. You can use this program to test

\samples\utf8sr\bin your custom document readers. See Develop a Custom Reader, on
page 298.

KeyView (11.6) Page 22 of 320

Chapter 2: Getting Started

This section provides an overview of Filter SDK, and describes how to use the C implementation of the
API.

® Architectural OvervieW . 23
® Enhance PerformanCe o 25
LA 11 0= (o o 25
® Subfile EXtraction ... il 26
® Memory AbStraction 26
® Use the C-Language Implementation of the APl ... 26
® The Filter Process Model L 29
® Run File Detection Inor Out of Process 34

Architectural Overview

The general architecture of the KeyView Filter technology is the same across all supported platforms
and is illustrated in the following diagram:

KeyView (11.6) Page 23 of 320

Filter SDK C Programming Guide

Chapter 2: Getting Started

Developer's Application

Filter Extraction API
kvfilter.*
Filter API ' ' Format Detection
kvfilter.* kwad.*
Structured Access Layer t
Word Processing Spreadsheets Presentation
Document Reader Document Reader Document Reader

Each component is described in the following table.

Architectural Components

Component Description

Developer’s
Application

File
Extraction
API

Filter API
Format

Detection

Structured

KeyView (11.6)

The developer’s application interfaces directly with the Filter API through either a C-
language or Java implementation.

The File Extraction API opens a file and extracts the file’s subfiles so that they are
exposed for filtering. See Use the File Extraction API, on page 36.

The Filter API exposes the filtering functionality and controls all other modules during
the filtering process. See Use the Filter API, on page 58.

This module determines the file type of the input stream, allowing the Filter API to
return that information to the developer’s application, or to load the appropriate
structured access layer for further processing. See File Format Detection, on page
267 for more information on format detection.

There are three modules that reside in the structured access layer—one each for word

Page 24 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

Architectural Components, continued

Component Description

Access metadata retrieval.
Layer

Document Each document reader reads a specific file format and sends a text stream of the

Readers document to the structured access layer. Each filter is loaded as required by the
structured access layer. See Document Readers, on page 291 for a complete list of
document readers.

Enhance Performance

KeyView is designed for optimal performance out of the box. However, there are some parameters that
you can adjust to improve system performance according to your needs.

File Caching

To reduce the frequency of 1/0 operations, and consequently improve performance, the KeyView
readers load file data into memory. The readers then read the data from the cache rather than the
physical disk. You can configure the amount of memory used for file caching through the formats.ini
file. Generally, when you increase the memory, performance improves.

By default, KeyView uses a maximum of 1 MB of memory for each thread—assuming a thread
contains only one instance of pContext that is returned from the session initialization (see fplnit(), on
page 143). If the file data is larger than 1 MB, up to 1 MB of data is cached and the data beyond 1 MB is
read from disk. The minimum amount of memory that can be used for file caching is 64 KB.

To determine a reasonable value, divide the maximum amount of memory you want KeyView to use for
file caching by the total number of threads. For example, if you want KeyView to use a maximum of 50
MB of memory and have 10 threads, set the value to 5 MB.

To modify the memory allocated for file caching, change the value for the following parameter in the
[DiskCache] section of the formats.ini file:

DiskCacheSize=1024

The value is in kilobytes. If this parameter is not set or is set to 0 (zero), the minimum value of 64 KB is
used.

Filtering

Filter SDK enables you to filter many different types of documents. Filtering is the process of extracting
the text from a document without the application-specific markup. However, the filtering process can
also include the following:

« Subfile extraction—this process exposes all subfiles for filtering. See Use the File Extraction API,
on page 36.

KeyView (11.6) Page 25 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

« File format extraction—this process detects a file’s format, and reports the information to the API,
which in tumn reports the information to the developer’s application. See File Format Detection, on
page 267.

« Metadata extraction—this process extracts selected metadata (document properties) from a file.
See Extract Metadata, on page 61.

« Character set conversion—this process controls the character set of both the input and the output
text. See Convert Character Sets, on page 63.

Subfile Extraction

Tofilter a file, you must first determine whether the file contains any subfiles (attachments, embedded
OLE objects, and so on). A file that contains subfiles is called a containerfile. Archive files (such as
ZIP), mail messages with attachments (such as Microsoft Outlook Express), mail stores (such as
Microsoft Outlook Personal Folders), and compound documents with embedded OLE objects (such as
a Microsoft Word document with an embedded Excel chart) are examples of container files.

If the file is a container file, the container must be opened and its subfiles extracted using the File
Extraction interface. The extraction process is done repeatedly until all subfiles are extracted and
exposed for filtering. After a subfile is extracted, you can use the Filter API to filter the file.

If afile is not a container, you should pass it directly to the Filter API for filtering without extraction.

The tstxtract sample program demonstrates the application logic for extracting and filtering files. See
Use the File Extraction API, on page 36 for more information.

Memory Abstraction

Dynamic memory allocations in the Filter modules are abstracted through a C interface. This memory
allocation interface is defined in the KvMemoryStream structure in kvtypes.h. You can override all
memory allocations by providing a C structure that contains pointers to functions identical in nature to
their standard ANSI C counterpart.

Use the C-Language Implementation of the API

The C-language implementation of the Filter API is divided into the following function suites:

« File Extraction AP| Functions—Open and extract subfiles in a container file. These functions also
extract metadata and file format information, and control character set conversion on extraction. The
tstxtract sample program demonstrates these functions.

« Filter APl Functions—Extract document information (metadata character set, format), create an
input/output stream, and filter a file or stream. The filter sample program demonstrates these
functions.

Input/Output Operations

In Filter, the source input can be either a physical file accessed through a file path, or a filter stream
created from a data source. A filter stream in the C API implementation is a C data structure that

KeyView (11.6) Page 26 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

contains pointers to I/0 functions similar to their standard ANSI C counterparts. This structure is
passed to filter functions in place of the standard input source. The input stream is defined by the
KVInputStream structure in kvtypes.h.

You can create an input stream by using the fpFiletolnputStreamCreate() function, or by using code
similar to the code in the Filter sample program. The fpFiletoInputStreamCreate() function assigns
C equivalent I/O functions to fpOpen (), fpRead(), fpSeek(), fpTell(), and fpClose(). The codein
the Filter sample program is shown below. This code assigns the file I/O functions (myOpen, myRead,
and so on) to KVInputStream.

typedef struct

{
char *pszName;
FILE *fp;

}

MyOpenInfo;

KVInputStream 1IO;
MyOpenInfo 0;

/* Initialize the input stream */
o.pszName = pszFileln;
I0.pInputStreamPrivateData = (void *)&o;
I0.fpOpen = myOpen;

I0.fpRead = myRead;

I0.fpSeek = mySeek;

I0.fpTell = myTell;

I0.fpClose = myClose;

The output for extracted content is either a physical file accessed through a file path and specified in
the call to fpFilterFile(), or an output buffer specified in the call to fpFilterStream(). The buffer is defined
by the KVFilterOutput data structure in kvtypes. h.

Filtering in File Mode

To use the Filter file-based 1/O

1. Load the kvfilter library and obtain the KV_GetFilterInterfaceEx() entry point by calling KV
GetFilterinterfaceEx(). The filter sample program contains sample code for all platforms.

2. Initialize afilter session by calling fpinit(). This function’s return value, pContext, is passed as the
first argument to the File Extraction interface and all other Filter functions.

3. Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KV GetExtractInterface().

Declare the file path in the K\VOpenFileArg structure.

5. Open the file by calling fpOpenFile() and passing the KvOpenFileArg structure. This call defines
the parameters necessary to open a file for extraction.

6. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling
fpGetMainFilelnfo().

KeyView (11.6) Page 27 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

10.

11.
12.
13.
14.

If the call to fpGetMainFileInfo() determined that the source file contains subfiles, proceed to
step 8; otherwise, proceed to step 11.

Determine whether the subfile is a container file by calling fpGetSubFilelnfo().

Extract the subfile or subfiles to afile by calling fpExtractSubFile() and setting filePath and
extractDir inthe KVExtractSubFileArg structure.

If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 4
through step 9 until all subfiles are extracted; otherwise, proceed to step 11.

Filter the file by calling fpFilterFile().
Close the file by calling fpCloseFile().
Repeat step 4 through step 12 as required for additional source files.

Terminate the filter session by calling fpShutdown().

Filtering in Stream Mode

To use the Filtering stream-based 1/0

1.

10.
1.
12.

13.

14.
15.
16.

Load the kvfilter library and obtain the KV_GetFilterInterfaceEx() entry point. The filter
sample program contains sample code for all platforms.

Initialize a filter session by calling fpInit(). This function’s return value, pContext, is passed as the
first argument to all other Filter functions.

Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KVGetExtractInterface(). See
KVGetExtractInterface(), on page 91.

Create an input stream (KVInputStream) by calling fpFiletolnputStreamCreate() or by using code
similar to the example code in the Filter sample program.

Open the stream by calling fpOpenStream().
Declare the input stream in the KVOpenFileArg structure.

Open the source file by calling fpOpenFile() and passing the KvOpenFileArg structure. This call
defines the parameters necessary to open a file for extraction.

Determine whether the source file is a container file (that is, whether it contains subfiles) by calling
fpGetMainFilelnfo().

If the call to fpGetMainFileInfo() determined that the source file is a container file, proceed to
step 10; otherwise, proceed to step 13.

Determine whether the subfile is a container file by calling fpGetSubFilelnfo().
Extract the subfile to a stream by calling fpExtractSubFile().

If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 4
through step 11 until all subfiles are extracted; otherwise, proceed to step 13.

Filter the stream by calling fpFilterStream(). Call fpFilterStream() repeatedly until the entire
output buffer is processed.

Close the stream by calling fpCloseStream().
Free the memory allocated for the input stream by calling fpFileTolnputStreamFree().
Close the file by calling fpCloseFile().

KeyView (11.6) Page 28 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

17. Repeat Step 4 through Step 16 as required for additional source files.
18. Terminate the filter session by calling fpShutdown().

Multithreaded Filtering

To make sure that multithreaded filter processes are thread-safe, you must create a unique context
pointer for every thread by calling fpInit(). In addition, threads must not share context pointers, and
the same context pointer must be used for all API calls in the same thread. This applies to in-process
and out-of-process API calls. Creating a context pointer for every thread does not affect performance
because the context pointer uses minimal resources.

For example, C code for file filtering must have the following logic in a thread:

fpInit()
KVGetExtractInterface()
fpOpenFile()
fpGetMainFileInfo() /* container file */
fpGetSubFileInfo()
fpExtractSubFile
fpGetSubFileMetadata()
fpFilterFile()
fpCloseFile()

fpOpenFile()

fpGetMainFileInfo() /* not a container file */
fpGetDocInfoFile()

fpGetOLESummaryInfoFile()

fpFilterFile()

fpCloseFile()

fpShutdown()

The Filter Process Model

By default, Filter runs independently from the calling application process. This is called out-of-process
filtering. Out-of-process filtering protects the stability of the calling application in the rare case when a
malformed document causes Filter to fail. You can configure Filter to run in the same process as the
calling application. This is called in-process filtering. However, Micro Focus strongly recommends that
you run Filter out of process whenever possible.

With the exception of Solaris and AlX, the creation of child processes on UNIX adheres to Portable
Operating System Interface (POSIX) standards. Solaris and AlX use thread semantics. If required, a
version of kvfilter with POSIX thread semantics is available for Solaris and AlX. For Solaris, the file
is kvfilter posix.so. ForAlX, thefileis kvfilter_nsl.a. These files must be renamed
kvfilter.soorkvfilter.a tobe used by Filter.

To monitor and debug filtering operations during out-of-process filtering, you can generate an error log at
run time. See Generate an Error Log, on page 58.

The following functions can run both in process or out of process:

KeyView (11.6) Page 29 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

Filter API

fpCanFilterFile() fpCanFilterStream()
fpFilterFile() fpFilterStream()
fpGetDocInfoFile() fpGetDocInfoStream()

fpGetOLESummaryInfo() fpGetOLESummaryInfoFile()

fpGetDocInfoFile() fpGetDocInfoStream()
File Extraction API

fpCloseFile() fpExtractSubFile()
fpFreeStruct() fpGetMainFileInfo()
fpGetSubFileInfo() fpGetSubFileMetaData()

fpOpenFile() KVGetExtractInterface()

Other Filter API functions always run in process.
Persist the Child Process

By default, in out-of-process filtering, the parent process maintains a persistent connection with the
child server after each file is filtered. When the connection is preserved in this way, subsequent filtering
requests are processed more quickly because the server is already prepared to receive data.

You can restart the server at regular intervals by using a function or a configuration setting.

In the API
To force KeyView to restart, call the fpRefreshFilterKVOOP() function.
In the formats.ini File

To control whether Filter persists the server, use the kvoopRefresh parameterinthe [FilterSDK_
Config] section of the formats.ini file

kvoopRefresh=When you set kvoopRefresh to @ (zero), the connection to the server persists for
0 as long as the parent process is running or until the server fails. This is the default.

kvoopRefresh=When you set kvoopRefresh to n (where n is a positive number), the connection
n persists for n filter requests. After the nth request, the server is shut down and
restarted before processing the next request.

For example, if you set kvoopRefresh to 5, the connection to the server persists
for five filter requests. For the sixth request, the serveris shut down and restarted.

KeyView (11.6) Page 30 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

To control whether the parent process attempts to filter a file after the file has caused the server to fail,
use the kvoopRetry parameterin the [FilterSDK_Config] section of the formats.ini file:

kvoopRetry=When you set kvoopRetry to @ and the server fails, the parent process does not
0 resend the file to a new server.

kvoopRetry=When you set kvoopRetry to n (where n is a positive number) and the server fails, the
n parent process resends the file to a new server n times. By default, kvoopRetry is
set to 1, and the file is resent to a server once.

NOTE:
The kvoopRefresh and kvoopRetry parameters do no apply when you run the File Extraction
functions out of process. See Run File Extraction Functions Out of Process, below.

Run Filter In Process

By default, Filter runs out of process. However, you can enable in-process filtering through the API orin
the formats. ini file. If the type of process is not specified in the formats.ini orin the API, Filteris
run out of process. If the type of process is specified in the formats.ini andin the API, the setting in
the API takes precedence.

In the API

To run Filter in process

Set the final argument (dwFlags) of either fpinit() or fpOpenStreamEx2() to KVF_INPROCESS.
dwFlags |= KVF_INPROCESS

Call afiltering function or a metadata extraction function. See Filter API Functions, on page 117.

DD~

Optionally, call a metadata extraction function if a filter function was called in the previous step.
See fpGetDocInfoFile(), on page 134 or fpGetDoclnfoStream(), on page 135.

In the formats.ini File

To run Filter in process, set the default_inprocess parameterin the [FilterSDK_Config] section of
the formats.ini fileto 1.

By default this parameter is set to @ (zero), which enables out-of-process filtering.
Run File Extraction Functions Out of Process

The out-of-process setting specified in the call to fpInit() orinthe formats.ini file is automatically
propagated to the File Extraction APl in the call to KVGetExtractInterface(). In
KVGetExtractInterface(), you pass a context pointer from fpInit() and the address of a structure
that contains pointers to the File Extraction functions.

When you extract subfiles from container files and pass the files for filtering out of process, Filter
generates a server called kvoop . exe for filtering and a duplicate server (also called kvoop . exe) for file

KeyView (11.6) Page 31 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

extraction. These servers are independent, so that if the filtering service stops responding, the file
extraction service can continue extracting files.

Restart the File Extraction Server

If the file extraction server fails with either the KVError_InvalidOopDriverSignature error, or the
KVError_InvalidOopServiceSignature error, you must restart the server by calling
KVGetExtractInterface() and passing the original extraction structure. (Restarting the serverin this
way does not affect performance beyond the cost of restarting the server.)

If you restart the file extraction server before the recursive extraction of subfiles is complete, the new
server has no history of the subfiles extracted prior to the restart. If you then call a File Extraction
function on one of the extracted files, the KVError_InvalidOopServiceSignature erroris generated,
because the server that extracted the files is no longer running and was replaced with a new kvoop
server. Micro Focus recommends that you do not make calls to the File Extraction functions by using
an invalid container context structure (KVContainerContext) after you restart the server.

NOTE:
Micro Focus recommends that whenever possible you restart the file extraction server only after
the file recursion is complete. There must be only one out-of-process session per file recursion.

Out-of-Process Logging

Logging is available for out-of-process filtering. The kvoop server can now create a log file that captures
information on the files being processed, storing one entry per process. The generated log file is called
xxxx_kvoop.log, where xxxx is a unique number identifying the process.

In the rare case when the kvoop server fails, you can use the log files to determine which file caused
the failure. After processing is complete and the system shuts down, the logs are automatically
deleted. To keep the log files after processing is successfully completed, see Keep Log Files, on the
next page.

NOTE:
Out-of-process logging is not supported on AlX.

Enable Out-of-Process Logging

To enable out-of-process logging, set the KVOOP_L0GS_DIR environment variable to the directory in
which you want the log files to be stored. By default, logging is not enabled.

On UNIX, set the variable as follows:

setenv KVOOP_LOGS_DIR /tmp

On Windows, set the variable as follows:

set KVOOP_LOGS DIR=c:\tmp

The following log file is created in the directory:

process_1d_kvoop.log

KeyView (11.6) Page 32 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

where process_1id is a numeric value that represents the logged process. New messages are
appended to the file, and truncation is disabled by default.

If KeyView terminates unexpectedly and Windows minidump is enabled, a process_1id_crash_
info.txt file is generated (see Enable Windows Minidump, below). If logging was not enabled at the
time of termination, this file contains instructions on how to enable logging.

Set the Verbosity Level

You can control how much information is written to the file by setting the KvOOP_LOG_VERBOSITY
environment variable.

Set the variable to one of the following options:

1 Include only error messages.
2 Include errors and warnings.
3 Include errors, warnings, and general information. This is the default.

4 Include all possible information. This setting is useful for debugging purposes.

Enable Windows Minidump

KeyView can use the Windows minidump feature to provide additional logging information, which can
be useful for debugging purposes.

The Windows minidump is disabled by default. To enable the Windows minidump, set KVOOP_DUMP_
ENABLE to 1. If an unexpected termination occurs after the minidump is enabled, three files are
generated:

e process_1id_crash_info.txt. This file contains KVOOP state and runtime information at the time of
termination. If logging was not enabled at the time of termination, this file contains instructions on
how to enable logging.

o process_1id_process_list.txt. This file contains information from the DLLs that were loaded at
the time of the termination.

e process_1id_report.dmp. The Windows dump file, which contains further information about the
termination. You can open it with either a Windows debugger or autnhelper.exe (you must copy
this file to the same directory).

You can control the amount of information presented in the Windows dump file by creating the following
files in the directory:

dumper.NORMAL

dumper .WITHDATASEGS
dumper .WITHFULLMEMORY
dumper .WITHHANDLEDATA

Keep Log Files

After processing is complete and the system is shut down, the log files are automatically deleted from
the directory. To keep the log files after a successful run, set the KvOOP_KEEP_LOGS environment

KeyView (11.6) Page 33 of 320

Filter SDK C Programming Guide
Chapter 2: Getting Started

variable.

On UNIX, set the variable as follows:
setenv KVOOP_KEEP_LOGS 1

On Windows, set the variable as follows:

set KVOOP_KEEP_LOGS=1

Run File Detection In or Out of Process

By default, detection runs in out-of-process mode. However, you can enable in-process detection
through the API or in the formats. ini file. If the type of process is not specified in the formats.ini or
in the API, detection runs in out-of-process mode. If the type of process is specified in the
formats.ini andin the API, the setting in the API takes precedence.

Specify the Process Type In the formats.ini File

Addthe default_detect_inprocess flagtoa [FilterSDK_Config] sectioninthe formats.ini file to
control the default behavior for detection. Set the flag to @ for out-of-process detection, and 1 forin-
process detection. For example,

[FilterSDK Config]
default_detect_inprocess=0

If this flag is not specified, the file detection behavior is determined by the default_inprocess flag for
filtering. For example, if you set default_inprocess to 1, filtering and file detection runs in in-process
mode by default; if you set default_inprocess to @, filtering and file detection runs in out-of-process
mode by default.

If you set both the default_inprocess and default_detect_inprocess flags, default_inprocess
controls the default filtering behavior and default_detect_inprocess controls the default file
detection behavior.

Specify the Process Type In the API

Set the final argument (dwF1lags) of either fpinit() or fpOpenStreamEx2() to KVF_DETECT_INPROCESS or
KVF_DETECT_OUTOFPROCESS.

KeyView (11.6) Page 34 of 320

Part lI: Use Filter SDK

This section explains how to perform some basic tasks by using the File Extraction and Filter APIs, and
describes the sample programs.

KeyView (11.6)

Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

® INtrOdUCH ON il 36
® Extract Subfiles 37
O EXIraCt IMaAgES . 38
® Recreate aFile’'s Hierarchy 38
® Extract Mail Metadata . il 39
* Extract Subfiles from Outlook Files 46
® Extract Subfiles from Outlook Express Files 46
® Extract Subfiles from Mailbox Files 47
* Extract Subfiles from Outlook Personal Folders Files 47
® Extract Subfiles from Lotus Domino XML Language Files 50
® Extract Subfiles from Lotus Notes Database Files 51
® Extract Subfiles from PDF Files 54
® Extract Embedded OLE ObjeCts e 55
* Extract Subfiles from ZIP Files ... il 55
* Default File Names for Extracted Subfiles L 55

Introduction

Tofilter a file, you must first determine whether the file contains any subfiles (attachments, embedded
OLE objects, and so on). A file that contains subfiles is called a containerfile. A container file has a
main file (parent) and subfiles (children) embedded in the main file.

The following are examples of container files:

« Archive files such as ZIP, TAR, and RAR.
« Mail messages such as Outlook (MSG) and Outlook Express (EML).

« Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

« PDF files that contain file attachments.

« Compound documents with embedded OLE objects such as a Microsoft Word document with an
embedded Excel chart.

NOTE: Supported Formats, on page 184 indicates which formats are treated as container files
and are supported by the File Extraction API.

KeyView (11.6) Page 36 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

« aMicrosoft Word document that contains an embedded Microsoft Excel spreadsheet.
« an AutoCAD drawing file (DWG).
« an EML file with an attached Zip file, which in turn contains four archived files.

MSG file
Microsoft Word DWG EML MSG body text
Embedded OLE | |
object (XLS)
Zip EML body text
Archived file 1 Archived file 2 Archived file 3 Archived file &

NOTE: The parent MSG file contains four first-level children. The body text of a message file,
although not a standalone file in the container, is considered a child of the parent file.

Extract Subfiles

Tofilter all files in a container file, you must open the container and extract its subfiles by using the File
Extraction API. The extraction process is done repeatedly until all subfiles are extracted and exposed
for filtering. After a subfile is extracted, you can call Filter AP functions to filter the file.

If you want to filter a container file and its subfiles to a single file, you must extract all files from the
container, filter the files, and then append each filtered output file to its parent.

To extract subfiles

1. Pass the context pointer from fpInit () and the address of a structure that contains pointers to
the File Extraction API functions in the call to KV GetExtractinterface().

Declare the input stream or file name in the K\VOpenFileArg structure.

Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call
defines the parameters necessary to open a file for extraction.

4. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling
fpGetMainFilelnfo().

5. Ifthe call to fpGetMainFileInfo() determined that the source file is a container file, proceed to
step 6; otherwise, filter the file.

KeyView (11.6) Page 37 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

6. Determine whether the subfile is itself a container (that is, whether it contains subfiles) by calling
fpGetSubFilelnfo().

7. Extract the subfile by calling fpExtractSubFile().

If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 2
through step 7 until all subfiles are extracted and the lowest level of subfiles is reached; otherwise,
filter the file.

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file:

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the same way as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [Y] is the extension. The format of
the image is the same as the format in which it is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

Recreate a File’s Hierarchy

When you extract a container file, any relationships between the subfiles in the container are not
maintained. However, the File Extraction interface provides information that enables you to recreate
the hierarchy. You can use the hierarchy to create a directory structure in a file system, or to categorize
documents according to their relationship to each other. For example, if you use KeyView to generate
text for a search engine, the hierarchical information enables your users to search for a document
based on the document’s parent or sibling. In addition, when the document is returned to the user, the
parent and sibling documents can be returned as recommendations.

The information needed to recreate a file’s hierarchy is provided in the call to fpGetSubFilelnfo(). The
members KVSubFileInfo->parentIndex and KVSubFileInfo->childArray provide information
about a subfile’s parent and children. Because you can only retrieve the first-level children in the
subfile, you must call fpGetSubFileInfo() repeatedly until information for the leaf-node children is
extracted.

Create a Root Node

Because of their structure, some container files do not contain a subfile or folder which acts as a root
directory on which the hierarchy can be based. For example, subfiles in a Zip archive can be extracted,
but none of the subfiles represent the root of the hierarchy. In this case, you must create an artificial
root node at the top of the file hierarchy as a point of reference for each child, and ultimately to recreate
the relationships. This artificial root node is an internal object, and is extracted to disk as a directory
called root. Its index numberis 0.

To create the root node, set openFlag to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile().
When you create a root node, the value of numSubFiles in KVMainFilelnfo includes the root node. For

KeyView (11.6) Page 38 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

example, when you call fpGetMainFileInfo() on a Microsoft Word document with three embedded
OLE objects and the root node is disabled, numSubFiles is 3. If you create a root node, numSubFiles is
4,

Recreate a File’s Hierarchy—Example

For example, you might extract a PST file that contains seven subfiles with a root node enabled. The
call to fpGetMainFileInfo()returns the number of subfiles as eight (seven subfiles and one root
node). The following diagram shows the structure and the available hierarchy information after the
subfiles are extracted:

PST

‘ Folder ‘ ‘ email ‘ ‘ email Zip ‘ ‘ Folder ‘ email ‘ ‘ email ‘ ‘ root ‘
Index 1 2 3 4 5 6 7 Y]
parentindex o] 1 1 3 o] 5 5 -1
childArray 2,3 &4 6,7 1.5

The parentIndex specifies the index number of a subfile’s parent. The childArray specifies an array
of a subfile’s children. With this information, you can recreate the hierarchy shown in the following
diagram.

Root

Folder Folder
1 5

email email email email

Zip

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, from MSG, EML, MBX, PST, and
NSF files, by calling the fpGetSubFileMetaData() function. You can extract a predefined set of
metadata fields, individual fields, or both, that are unique to a file format.

KeyView (11.6) Page 39 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Default Metadata Set

KeyView internally defines a set of common mail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table. When you retrieve all metadata
for a file—that is, pass NULL for the array of metadata—the complete set of default metadata, not all
available metadata in the file, is returned.

Default Mail Metadata List

Field Name (string to Description

specify)

From The display name and email address of the sender.

Sent The time that the message was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of the message.

Priority The priority applied to the message.

Because mail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the name Priority and is returned.

You can also extract the default field names individually by passing the field name (such as From, To,
and Subject); however, in this case, the string is not mapped to the format-specific name. For example,
if you pass Priority in the call, you retrieve the contents of the Priority field from an MBX file, but do not
retrieve the contents of the Importance field from an NSF file.

NOTE: You cannot pass the field names listed in the table individually for PST files. However,
you can pass either the MAPI tag number or the MAPI tag name as integers. See Microsoft
Personal Folders File (PST) Metadata, on page 44.

Extract the Default Metadata Set

To extract the default metadata set, call the fpGetSubFileMetaData() function, and pass @ for
metaNameCount and NULL for metaNameArray.

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);

metaArg.index = subFileIndex;
metaArg.metaNameCount = 0;

KeyView (11.6) Page 40 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

metaArg.metaNameArray = NULL;
error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Outlook (MSG) Metadata

In addition to the default metadata set, you can extract the metadata fields listed in the following table
for MSG files. You must pass the field name to metaNameArray in the call to the
fpGetSubFileMetadata() function.

MSG-specific Metadata List

Field Name (string to Description

specify)

AttachFileName An attachment's long file name and extension, excluding the path.

ConversationTopic The topic of the first message in a conversation thread. A conversation
thread is a series of messages and replies. This is the first message’s
subject with any prefix removed.

CreationTime The time that the message or attachment was created. This value is
displayed in the Sent field in the message’s Properties dialog in Outlook.

InternetMessageID The identifier for messages that come in over the Internet. This is the

MAPI property PR_INTERNET_MESSAGE_ID. This property is not in the
MAPI headers or MAP| documentation.

LastModificationTime The time that the message or attachment was last modified. This value is
displayed in the Modified field in the message’s Properties dialog in

Outlook.
Location The physical location of the event specified in the Outlook calendar entry.
MessagelD The message transfer system (MTS) identifier for the message transfer

agent (MTA). This value is displayed on the Message ID tab in the
message’s Properties dialog in Outlook.

Received The date and time a message was delivered. This value is displayed in
the Received field in the message’s Properties dialog in Outlook.

Sender The name and email address of the message sender. This value is a
concatenation of two MAPI properties in the following format:

"PR_SENDER_NAME" <PR_SENDER_EMAIL_ADDRESS>

The Sender value might be the same as or different than the default
metadata From value (see Default Metadata Set, on the previous page),
depending on which MAPI properties exist in the MSG file.

KeyView (11.6) Page 41 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

MSG-specific Metadata List, continued

Field Name (string to Description
specify)

Sensitivity The value indicating the message sender's opinion of the sensitivity of a
message. For example, Personal, Private, or Confidential. This value is
displayed in the Sensitivity field in the message’s Properties dialog in

Outlook.

TransportMsgHeaders Transport-specific message envelope information. This value
corresponds to the MAPI property PR_TRANSPORT_MESSAGE_HEADERS.

StartDate An appointment start date. This value corresponds to the PR_START_DATE

MAPI property.

EndDate An appointment end date. This value corresponds to the PR_END_DATE

MAPI property.

Extract MSG-Specific Metadata

To extract specific metadata fields from an MSG file, call the fpGetSubFileMetaData() function, and
pass the field name defined in Default Metadata Set, on page 40 to metaNameArray (the string is not

case sensitive).

For example, the following code extracts the contents of the ConversationTopic and MessageID

fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[0].type = KVMetaNameType_String;

names[@].name.sname = "conversationtopic";

names[1].type = KVMetaNameType_String;
names[1].name.sname = "MessagelD";

pname[@] = &names[0O];
pname[1] &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

KeyView (11.6)

Page 42 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata

In addition to the default metadata set, you can extract any metadata field that exists in the header of
an EML or MBX file by passing the field’'s name. If the name is a valid field in the file, the content of the
field is returned. For example, to retrieve the name of the last mail server that received the message
before it was delivered, you can pass the string "Received".

Extract EML- or MBX-Specific Metadata

To extract specific metadata fields from an EML or MBX file, call the fpGetSubFileMetaData() function,
and pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Received and Mime-version fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[@].type = KVMetaNameType_String;

names[@].name.sname = "Received";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Mime-version";
pname[@] = &names[0];

pname[1] &names[1];

metaArg.metaNameCount = 2;

metaArg.metaNameArray = pname;

metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Lotus Notes Database (NSF) Metadata

In addition to the default metadata set, you can extract any Lotus field name that exists in an NSF file
by passing the field’s name. (You can extract fields from mail NSF files and non-mail NSF files.) If the
name is a valid field in the file, the field is returned. For example, to retrieve the date when a document
in an NSF file was last accessed, you would pass the string "$LastAccessedDB".

NOTE: A complete list of NSF fields is provided in the Lotus Notes file stdnames. h. This
header file is available in the Lotus API Toolkit.

KeyView (11.6) Page 43 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Extract NSF-Specific Metadata

To extract specific metadata fields from an NSF file, call the fpGetSubFileMetaData() function, and
pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Description and Categories fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[@].type = KVMetaNameType_String;

names[@].name.sname = "description”;
names[1].type = KVMetaNameType_ String;
names[1].name.sname = "Categories";
pname[@] = &names[0];

pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Personal Folders File (PST) Metadata

In addition to the default metadata set, you can extract Messaging Application Programming Interface
(MAPI) properties from a PST file. These properties describe all elements of an Outlook item ina PST
file (such as subject, sender, recipient, and message text). Because the properties are stored in the
PST file itself, you can retrieve them before you extract the contents of the PST. This enables you to
determine whether an Outlook item should be extracted based on its attributes. Some MAPI properties
are also stored for Outlook attachments that are not mail messages (such as an attached Microsoft
Word document or Lotus 1-2-3 file).

NOTE: Because all elements of a message (except non-mail attachments) are represented by
MAPI properties, you can extract all components of a subfile, including the header and message
text, by calling the fpGetSubFileMetadata() function.

MAPI Properties

Each MAPI property is identified by a property tag, which is a constant that contains the property type
and a unique identifier. For example, the property that indicates whether a message has attachments

KeyView (11.6) Page 44 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

has the following components:

Property PR_HASATTACH
Identifier OXOE1B

Property type PT_BOOLEAN (000B)
Property tag OXxOE1B0O0OB

The Microsoft MAPI documentation on the Microsoft Developer Network website lists all available

MAPI properties, their tags, and types.

You can retrieve any MAPI property that is of one of the MAPI property types listed below:

PT_I2 PT_DOUBLE PT_STRINGS
PT_I4 PT_FLOAT PT_TSTRING
PT_BINARY PT_LONG PT_SYSTIME
PT_BOOLEAN PT_SHORT PT_UNICODE

NOTE: Properties with a PT_TSTRING type have the property type recompiled to either a
Unicode string (PT_UNICODE)orto an ANSI string (PT_STRING8) depending on the operating
system’s character set. To retrieve the Unicode property, pass in the Unicode version of the
tag. For example, the property tag for PR_SUBJECT is either 0x0037001E for an ANSI string, or

0x0037001F for a Unicode string.

Extract PST-Specific Metadata

In the call to extract subfile metadata, you can pass either the MAPI tag number (such as 6x0070001e)
or the MAPI tag name (such as PR_CONVERSATION_TOPIC). If you specify the MAPI tag name, you
must include the mapitags.h and mapidefs.h Windows header files, in which the MAPI tag name is

defined as a tag number.

To extract specific MAPI properties from a PST file, call the fpGetSubFileMetaData() function, and

pass the property tag to metaNameArray. The tag is passed as an integer.

For example, the following code extracts the MAPI properties PR_SUBJECT and PR_ALTERNATE_

RECIPIENT:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;

KVMetaNameRec
KVMetaName

names[0].type

names[0©].name.

names[1].type

names[1].name.

names[2];
pName[2];

= KVMetaNameType_Integer;
iname = PR_SUBJECT;

= KVMetaNameType_Integer;
iname = 0x3A010102;

pName[0]
pName[1]

&names[0];
&names[1];

KeyView (11.6)

Page 45 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

KVStructInit(&metaArg);

metaArg.metaNameCount 2;
metaArg.metaNameArray = pName;
metaArg.index = SubFileIndex;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&MetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

NOTE: You must include the mapitags.h and mapidefs.h Windows header files, in which PR_
SUBJECT is defined as 0x0037001E.

Exclude Metadata from the Extracted Text File

When you extract a mail message, the message text and header information (To, From, Sent, and so
on) is also extracted. You can prevent the header information from appearing in the text file.

To exclude the header information, set extractFlag to KVExtractionFlag_ExcludeMailHeader in
the call to fpExtractSubFile().

Extract Subfiles from Outlook Files

When you extract an Outlook file (MSG) to disk, the message text and header information (To, From,
Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in the
text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a non-
mail attachment, the attachment is extracted in its native format to a subdirectory. If the Outlook file
contains a mail attachment, the attachment’s message text is extracted to a subdirectory.

Extract Subfiles from Outlook Express Files

When you extract an Outlook Express (EML) file to disk, the message text and header information (To,
From, Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in
the text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a
non-mail attachment, the attachment is extracted in its native format to the same directory as the
message text file. If the Outlook file contains a mail attachment, the complete attachment (including
message text and attachments), the message text file, and any non-mail attachments are extracted to
the same directory as the main message.

NOTE: When the MBX reader (mbxsr) is enabled, it is used to filter MBX and EML files. If the
MBX reader is not enabled, the EML reader (emlsr)is used.

KeyView (11.6) Page 46 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There are many mail applications that export to an MBX
format, such as Eudora Email and Mozilla Thunderbird.

When an MBX file is extracted to disk, the message text and header information (To, From, Sent, and
so on) from each mail file is extracted to text files. (If you do not want the header information to appear
in the text file, see Exclude Metadata from the Extracted Text File, on the previous page.)

In Eudora MBX files, attachments are inserted as a link and are stored externally from the message.
These attachments are not extracted, but the path to the attachment is returned in the call to the
fpGetSubFilelnfo() function. You can write code to retrieve the attachment based on the returned path.

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

The Mailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, you must obtain the appropriate license key from Micro Focus. See Update
License Information, on page 20 for information on adding a new license key to an existing installation.

Extract Subfiles from Outlook Personal Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file. When a PST file is extracted to disk, the text and header information
(To, From, Sent, and so on) from each Outlook item is extracted to a text file. (If you do not want the
header information to appear in the text file, see Exclude Metadata from the Extracted Text File, on the
previous page.)

You can also extract messages from PST files as MSG files, including all their attachments, by setting
the KVExtractionFlag_SaveAsMSG flag in the KVExtractSubFileArg structure when you call
fpExtractSubFile().

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains an Outlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: The Microsoft Outlook Personal Folders (PST) reader is an advanced feature and is sold
and licensed separately. To enable this reader in a KeyView SDK, you must obtain the
appropriate license key from Micro Focus. See Update License Information, on page 20 for
information on adding a new license key to an existing installation.

Use the Native or MAPI-based Reader

KeyView accesses PST files in one of two ways:

« indirectly using the Microsoft Messaging Application Programming Interface (MAPI) reader named
pstsr.

« directly using the native PST reader named pstnsr.

KeyView (11.6) Page 47 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

On UNIX platforms, the native reader is always used to process PST files because the MAPI-based
reader only runs on Windows x86 and x64. On Windows, you can specify either reader; however, the
MAPI-based reader is used by default.

The differences between the two readers are summarized in the following table:

Feature/Requirement Native Reader (pstnsr) MAPI-based Reader
(pstsr)

All platforms supported Yes Windows x86 and x64 only

Outlook client required No Yes

MAPI properties supported Yes Yes
All properties defined in All properties defined in
mapitags.h. Object mapitags.h. Object
properties are not properties are not supported.
supported.

Password protection Yes Yes (using KVCredential

supported structure)

Compressible encryption Yes Yes

supported

High encryption supported No Yes

To use the MAPI-based reader for PST files, change the PST entry in the formats. ini file as follows:
297=pst
To use the native reader for PST files, change the PST entry in the formats. ini file as follows:

297=pstn

NOTE: You must make sure that the PST that you are extracting is not open in the Outlook
client, and that the Outlook process is not running.

Use the Native PST Reader (pstnsr)

The native PST reader accesses PST files directly without relying on the Microsoft interface to the PST
format. It runs on both Windows and UNIX, and does not require an Outlook client on the system
processing the PST files. However, the native reader does not support password-protected PST files
that use high encryption.

Use the MAPI Reader (pstsr)

The pstsr reader accesses PST files indirectly by using Microsoft’'s Messaging Application
Programming Interface (MAPI). MAPI is a standard Windows message interface that enables different
mail programs and other mail-aware applications (such as word processors and spreadsheets) to
exchange messages and attachments with each other. MAPI allows KeyView to open a PST file,
traverse the folders and Outlook items, and extract the items inside the PST file.

KeyView (11.6) Page 48 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: When extracting subfiles from PST files, information on the distribution list used in an
email is extracted to afile called emailname.dist. This applies to the MAPI reader (pstsr)
only.

System Requirements

Because MAPI is supported on Windows platforms only, you can filter PST files on Windows only.
Because MAPI relies on functionality in Microsoft Outlook, a Microsoft Outlook client must be installed
on the same machine as the application filtering PST files, and must be the default email application.
KeyView supports the following PST formats and Outlook clients:

« Outlook 97 or higher PST files

« Outlook 2002 or later clients
NOTE: The Outlook client must be the same version as, or newer than, the version of
Outlook that generated the PST file.

NOTE: The bit edition of Microsoft Outlook must match that of the KeyView software. For
example, if 32-bit KeyView is used, 32-bit Outlook must be installed. If 64-bit KeyView is used,
64-bit Outlook must be installed.

If the bit editions do not match, an error message from Microsoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as the
default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

MAPI Attachment Methods

The way in which you can access the contents of a PST message attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE
ATTACH_EMBEDDED_MSG
ATTACH_OLE
ATTACH_BY_REFERENCE
ATTACH_BY_REF_ONLY
ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method

KeyView (11.6) Page 49 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, you must retrieve the path to access the
attachment.

To extract "attach by reference" attachments

Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or ATTACH_
BY_REF_RESOLVE method by retrieving the MAPI property PR_ATTACH_METHOD.

If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving the MAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_PATHNAME.

You can then either copy the files from their original location to the path where the PST file is extracted,
or use the Filter API functions to filter the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

NOTE: To open password-protected PST files that use high encryption, you must use the
MAPI-based PST reader (pstsr).

The native PST reader (pstnsr) returns the error message KVERR_PasswordProtected if a PST
is encrypted with high encryption.

Detect PST Files While the Outlook Client is Running

If you are running an Outlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format because Outlook has
the file locked. In this case, you can do one of the following:

o Close Outlook when using the Extraction API.

« Detect PST files by extension only and bypass the format detection module. To enable this option,
add the following lines to the formats. ini file:

[container_flags]
detectPSTbyExtension=1

NOTE: The detectPSTbyExtension option applies only when you are using the MAPI reader
(pstsr).

NOTE: If you use this option, you must make sure in your code that valid PST files are
passed to KeyView, because the format detection module is not available to verify the file
type and pass the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML Language Files

When you extract a Lotus Domino XML Language (.DXL) file, the message text and header information
(To, From, Sent, and so on) is extracted to a text file.

KeyView (11.6) Page 50 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: To prevent header information from being extracted, see Exclude Metadata from the
Extracted Text File, on page 46.

You can make sure that dates and times extracted from Lotus Domino .DXL files are displayed ina
uniform format.

To extract custom date/time formats

o Inthe formats.ini file, set the DateTimeFormat optionin the [dx1sr] section. For example:

[dx1sr]
DateTimeFormat=%m/%d/%Y %I:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM

The format arguments are the same as those for the strftime() function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak %28V S.71%29.aspx for more information.

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML

« Set the following options in the formats. ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dx1sr]
LNDParser=2

Extract Subfiles from Lotus Notes Database Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, and OLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When a mail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in each message is extracted to a text
file. (If you do not want the header information to appear in the message text file, see Exclude Metadata
from the Extracted Text File, on page 46.)

KeyView (11.6) Page 51 of 320

http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and
licensed separately. To enable this reader in a KeyView SDK, you must obtain the appropriate
license key from Micro Focus. See Update License Information, on page 20 for information on
adding a new license key to an existing installation.

System Requirements

The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus
Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or
Lotus Domino server must be installed and configured on the same machine as the application filtering
NSF files. On UNIX and Linux, the Lotus Domino server is required. On Windows, the Lotus Notes
client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:

« Lotus Notes 6.5.1
o Lotus Domino 6.5.1
KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino:

« Windows XP x86 (Service Pack 1 and 2)

« Windows 2000 x86 (Service Pack 2)

« Solaris 8.0 and 9.0 (built on Solaris 8.0)

« Red Hat Enterprise Linux AS 3.0 (x86)

o SuSE Linux Enterprise Server 8 and 9 (x86)
o IBMAIX5.1, 5L version 5.2

Installation and Configuration

Before KeyView can filter NSF files, you must set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline the minimal setup for NSF filtering:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes. ini file is in the proper location.

« If Lotus Notes is installed, the file should appear in the instal \1lotus\notes directory, where
install is the installation directory.

« If only Lotus Domino is installed, the file should appear in the install\lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes. ini, and add the following text:
[Notes]

3. Addthe KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).

KeyView (11.6) Page 52 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installation might contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes. ini fileis inthe install/lotus/notes/latest/sunspa directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/sunspa directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Addthe install/lotus/notes/latest/sunspa andthe KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

AIX 5.x

1. Install the bos.iocp.rte file set if it is not already installed, and reboot the machine. See the
Lotus Domino server documentation for more information.

Install Lotus Domino server. You do not need to configure the server.

Make sure that the notes. ini fileis inthe install/lotus/notes/latest/ibmpow directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
4. Addthe install/lotus/notes/latest/ibmpow directory to the PATH environment variable:
setenv PATH 1install/lotus/notes/latest/ibmpow:$PATH

5. Addthe install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:

setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

KeyView (11.6) Page 53 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

Linux

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/1linux directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/1linux directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/linux:$PATH

4. Addthe install/lotus/notes/latest/linux and the KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 254.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using the Attach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speaker icon
on the page where they are located.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.
Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed a minimum width and/or height. If animage is smaller than the

KeyView (11.6) Page 54 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats. ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

Extract Embedded OLE Objects

The File Extraction API can extract embedded OLE objects from the following types of documents:

« Lotus Notes (DXL)

« Microsoft Excel

« Microsoft Word

« Microsoft PowerPoint
« Microsoft Outlook

« Microsoft Visio

« Microsoft Project

« OASIS Open Document
« Rich Text Format (RTF)

When an embedded OLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 37). However, some ZIP files use password protection, in which case you must use
a different method to enter the required credentials. See Password Protected Files, on page 317 for
more information.

Default File Names for Extracted Subfiles

When you do not specify a file name in the call to fpExtractSubFile(), in some cases a default file name
is applied to the extracted subfile.

Default File Name for Mail Formats

To avoid naming conflicts and problems with long file names, KeyView applies its own names to the
extracted mail items when you do not supply a name in the call to fpExtractSubFile(). A non-mail
attachment retains its original file name and extension.

When the contents of a mail store or the message body of a mail message are extracted, the extracted
file names can include the following:

KeyView (11.6) Page 55 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

« Thefirst valid eight characters of the original folder name or "Subject" line of the mail message. If the
"Subject"” line is empty, the characters kvext are used, where ext is the format’s extension. For
example, the characters would be "kvmsg" for MSG and "kvnsf" for NSF.

For notes, the file name is derived from the first 24 characters of the note text. For contact entries,
the file name is derived from the full name of the contact.

The following special characters are considered invalid and are ignored:

any non-printing character with a value less than ox1F

angle brackets (< >) double quotation marks (")
asterisk (*) forward slash (/)

back slash (\) pipe (|)

colon (;) question mark (?)

« The characters _kvn, where n is an integer incremented from 0 for each extracted item.
« One of the following extensions:

Type File Extension
email message .mail

calendar appointment .cal

contact entry .cont

task entry .task

note .note

journal entry .jrnl
distribution list .dist

posting note .post

o If the type cannot be determined for an MSG or PST file, the file is given a .mail extension.
o If the type cannot be determined for a NSF file, the file is given a . tmp extension.

o The format of a MAIL file is plain text by default, but can be set to RTF with the
KVExtractionFlag_ GetFormattedBody flag.

For example, an MSG mail message with the subject line RE: Product roadmap that contains the
Microsoft Excel attachment release_schedule.xls is extracted as:

RE produ_kve.mail
release_schedule.xls

If an extracted message contains an embedded OLE object or any attachment that does not have a
name, the object or attachment is extracted as _kvi. tmp.

Default File Name for Embedded OLE Objects

KeyView can apply a default name to an extracted embedded OLE object when you do not supply a
name in the call to fpExtractSubFile(). When an embedded OLE object is extracted, the extracted

KeyView (11.6) Page 56 of 320

Filter SDK C Programming Guide
Chapter 3: Use the File Extraction API

file name can include the following:

« Thecharacters subfile_kvn, where n is an integer incremented from 0 for each extracted object.

« If KeyView can determine the embedded OLE is a Microsoft Office document, the original extension
is used. If the file type cannot be determined, the file is given a . tmp extension.

For example, a Microsoft Word document (sales_quarterly.doc) might contain two embedded OLE
objects: a Microsoft Excel file called west_region.x1s, and a bitmap created in the Word document.
The embedded objects are extracted as subfile_kve@.x1ls and subfile kv1.tmp.

KeyView (11.6) Page 57 of 320

Chapter 4: Use the Filter API

This section describes how to perform some basic filtering tasks by using the Filter API.

® Generate an ErmOr LOg 58
¢ Extract Metadata 61
® Convert Character Sets . il 63
® Extract Deleted Text Marked by Tracked Changes 66
O Flter POF Files .. 66
® Filter Spreadsheet Files 72
® Filter XML Files .. 77
® Configure Headers and Footers 81
® Filter Hidden Data 82
® Tab Delimited Output for Embedded Tables 84
® Table Detection for PDF Files .. 84
® Exclude Japanese Guide Text ... il 85

Generate an Error Log

You can monitor and debug filtering operations by enabling a detailed error log. This enables you to see
errors that are generated at run time, and to track problem files in stream or file mode.

NOTE:
Error logs are not generated when in-process filtering is enabled.

The error log might include the following information:

« Generated error codes.
o Atime stamp.
« The path and file name of the file in which the error occurred.

« Thelength of the file in which the error occurred. If the name of the original file or the name of the
temporary file are not obtained in stream mode, the file length is reported.

The following is a sample log file:

-KVOOPE 12 # Time: 11:14:32 # File Len = 68140
-KVOOPE 13 # Time: 11:23:05 # H:\files\WP\Word97\fnldmsa.doc
-KVOOPE 5 # Time: 12:15:54 # H:\files\SS\XL2000\corporate.xsl
-KVOOPE 5 # Time: 12:45:19 # H:\files\WP\WPerf5\wp501.doc
-KVOOPE 12 # Time: 14:25:33 # H:\files\PG\PPoint95\95.ppt
-KVOOPE 26 # Time: 16:26:04 # 19117568
#

-KVOOPE 10 # Time: 20:27:40 19117568

File Len
File Len

You can specify the information that is written to the log file by using either the API or environment
variables. To configure a log file for a single filtering session, use environment variables. To configure a

KeyView (11.6) Page 58 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

log file for all filtering sessions, use the API. Configuring the log file by using the API overrides the
same settings in the environment variables. You can also specify additional settings in the
formats.ini file.

You can configure the following features of the log file:

« Enable or disable logging. See Enable or Disable Error Logging, below.

« Change the default path and file name of the log file. See Change the Path and File Name of the Log
File, below.

« Include memory errors in the log file. See Report Memory Errors, on the next page.

« Specify amemory guard that is used to generate memory overwrite errors in the log. See Specify a
Memory Guard, on the next page.

« Include the input file name in the log file when filtering a stream. See Report the File Name in Stream
Mode, on the next page.

« Include extended error codes that provide more detail on a general error (KVERR_General). See
Report Extended Error Codes, on page 61.

« Specify the maximum size of the log file. See Specify the Maximum Size of the Log File, on page 61.
Enable or Disable Error Logging

You can enable or disable error logging by using either the API or environment variables. By default, a
file called kvoop. log is created in the system temporary directory; however, you can change the path
and file name of this file (see Change the Path and File Name of the Log File, below).

Use the API

To enable or disable logging, set the final argument (dwF1lags) of fplnit() or fpOpenStreamEx2() to either
KVF_OOPLOGON or KVF_OOPLOGOFF.

Use Environment Variables

To enable logging, add the KVOOPLOGON environment variable, and set the variable value to 1. To disable
logging, do not set the KVOOPLOGON environment variable.

Change the Path and File Name of the Log File

You can change the default path and file name of the log file. The default is C: \temp\kvoop.logon
Windows and /tmp/kvoop.log on UNIX.

To change the path and file name of the log file, add the following to the formats. ini file:

[kvooplog]
KvoopLogName=f1ilepath

KeyView (11.6) Page 59 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Report Memory Errors

You can report memory leaks and memory overwrites in the log file by enabling the memory trace
system, either by using the API or environment variables. If the memory trace system is enabled, the
extended error codes for memory leaks and memory overwrites (26 and 27, respectively) are reported in
the log file when they are generated. The extended error codes are defined in KVErrorCodeEx in
kvtypes.h.

NOTE:
To report memory overwrites, you must also set a memory guard. See Specify a Memory
Guard, below.

Use the API

To enable or disable the memory trace system, set the final argument (dwFlags) of fplnit() or
fpOpenStreamEx2() to either KVF_OOPMEMTRACEON or KVF_OOPMEMTRACEOFF.

Use Environment Variables

To enable the memory trace system, add the KVOOPMT environment variable, and set its valueto 1. To
disable the memory trace system, do not set the KVOOPMT environment variable.

Specify a Memory Guard

To report memory overwrites in the log file, you must set a memory guard that protects against memory
overwrites. Normally, this is set in the range of 100-200 bytes. For example, if a memory guard of 100 is
set and 20 bytes of memory are specified, a total of 120 bytes of memory are allocated. The additional
memory is used to monitor and identify memory overwrites.

To configure the memory guard, add the following section to the formats. ini file:
[Kvooplog]
mg=100

Report the File Name in Stream Mode

When you run Filter in file mode, the file name is always reported in the log file. To report the file name
in stream mode, you must extract it through the API.

To add the input file name to the log, call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETOOPSRCFILE
nValue TRUE

pData input_filename

For example:

KeyView (11.6) Page 60 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

char inputfile[250];
(*fpFilterConfig) (pKVFilter, KVFLT_SETOOPSRCFILE, TRUE, input_filename);

Report Extended Error Codes

When a general error (KVERR_General) is generated during out-of-process filtering, extended error
codes can also be generated and reported in the error log. The extended error codes provide more
information about the error, and are defined in KVErrorCodeEx in kvtypes. h.

To report extended errors, call the function fpGetKvErrorCodeEx(). Extended error codes are generated
in the C sample program, Filter.

Specify the Maximum Size of the Log File

You can specify the maximum size of the log file. When this size is reached and new entries are
logged, either the first entry in the file is overwritten or the new entries are not reported.

To configure the maximum log size and whether old entries are overwritten, add the following section to
the formats.ini file

[Kvooplog]
LogFileSize=10
OverWritelLog=1

Option Description

LogFileSize This option specifies the maximum size of the log file in KB. The minimum is 1 K. If
you do not specify a size, the default of 2 MB is used.

OverWritelLog This option determines whether the log file is overwritten when the maximum log file
size (LogFileSize)is reached. If you set this option to 1, the first entry in the log
file is overwritten. If you set this option to @, new entries are not reported in the log
file.

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file’s format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

The metadata in mail formats (MSG and EML) and mail stores (PST, NSF, and MBX) is extracted
differently than other formats. For information on extracting metadata from these formats, see Extract
Mail Metadata, on page 39.

NOTE:

KeyView can only extract metadata from a document if metadata is defined in the document,
and if the document reader can extract metadata for the file format. The section Supported
Formats, on page 184 lists the file formats for which metadata can be extracted. KeyView does

KeyView (11.6) Page 61 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

I not generate metadata automatically from the document contents.

The sample program filter demonstrates how to extract metadata. See Sample Programs, on page
86.

Extract Metadata for File Filtering

To extract metadata for file filtering

Call fpFilterFile().
Declare a pointer to the KVSummaryInfoEx structure.
Call fpGetOLESummaryInfoFile() to extract the metadata.

oD~

Call fpFreeOLESummaryInfo() to free the memory allocated for metadata extraction.
Extract Metadata for Stream Filtering

To extract metadata for stream filtering

Call fpOpenStream() or fpOpenStreamEx2() to open a stream.
Call fpFilterStream() to filter the stream.

Call fpCloseStream() to close the input stream.

Declare a pointer to the KVSummaryInfoEx structure.

Call fpGetOLESummarylInfo() to extract the metadata.

IR S

Call fpFreeOLESummaryInfo() to free the memory allocated for metadata extraction.
Example

Below is an example of a call to fpGetOLESummaryInfo():

{

KVSummaryInfoEx si;

memset(&si, 0, sizeof(si));

if (KVERR_Success != (*pInterface->fpGetOLESummaryInfo)(pKVFilter, pInput, &si
))

{
fprintf(fpOut, "Error obtaining summary information\n");
return;

}

if (si.nElem == 0)

{
fprintf(fpOut, "No summary information\n");
goto end;

}

PrintSummaryInfo(&si, fpOut);

end:

KeyView (11.6) Page 62 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

(*pInterface->fpFreeOLESummaryInfo)(pKVFilter, &si);

}

where:

pKVFilter A pointer returned from fpInit().

pInput

si

A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Points to the structure KVSummaryInfoEx. In the structure, nElem provides a count of
the number of metadata elements, and pElem points to the first element of the array of
individual elements, as defined by the structure KVSuminfoElemEx.

To interpret the metadata after fpGetOLESummaryInfo() is called and returns a non-zero status:

o Ifsi.nElemis zero, the document did not contain metadata. If si.nElemis not zero, si.nElemis the
number of metadata elements contained in the array.

« Each kvsumInfoElemEx structure contains the following information for each metadata element:

si.pElem

[n
].isvalid

si.pElem
[n].type

si.pElem
[n].data

si.pElem

[
n].pcType

Specifies whether the data value is present in the document. 1 specifies that the value
is valid. For example, if the "Title" element was not populated in the document,
si.pElem[1].isValid == @ would evaluate to true.

Specifies the data type of the metadata element. The types are defined in the structure
KVSuminfoType in kvtypes. h.

A pointer to the content of the element.

If type is KV_Int4 orKV_Bool, then data contains the actual value. Otherwise, data is
a pointer to the actual value.

KV_DateTime and KV_IEEES point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text.
KV_Unicode is replaced with KV_String when the UNICODE value has been character
mapped to the desired output character set, as specified in the call to fpInit().

The name of the metadata field.

Convert Character Sets

Filter can convert the character set of a document to an arbitrary character set specified in the API, or
to the character set of the operating system on which the output text is viewed. For this conversion to
occur, a source character set must be identified. The source character set can either be determined by
the document reader, or can be set in the API. The section Supported Formats, on page 184 lists file
formats for which character set information can be determined by the document reader. The character
sets are enumerated in KVCharSet of kvtypes.h.

KeyView (11.6)

Page 63 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Determine the Character Set of the Output Text

To determine the output character set of a filtered document, Filter considers the following:

« Whether the document reader can determine the character set of the file format. If the document
reader cannot determine the character set information for the document type, set the source
character set in the API.

« Whether the source character set is specified in the API.
« Whether the target character set is specified in the API.

Guidelines for Character Set Conversion

Below are some rules for the determination of character set mapping:

« If the source is not determined by the document reader or configured in the API, the character set of
the output text is always unknown, regardless of the target character set configuration. The
document cannot be converted to a target character set or the operating system’s code page unless
the source character set is known.

« If the target character set is not specified in the API, and the source character set is identified, the
operating system’s code page is used for the output text.

« If the source character set is identified, and the target character set is specified in the API, the target
character set specified in the API is used for the output text.

« Fordocuments that contain multiple character sets, Micro Focus recommends that the target
character set be forced to UNICODE or UTF-8.

The following table illustrates how Filter determines the character set of the output text.

Determining the Output Character Set—Example

Source charset read by Source charset specified Target charset specified Output

Filter in API in API charset

No No No no
conversion

No KVCS_ 936 No OS code
page

No No UNICODE no
conversion

No KVCS_936 UNICODE UNICODE

Yes No No OS code
page

Yes KVCS_ 936 No OS code
page

Yes No UNICODE UNICODE

KeyView (11.6) Page 64 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Determining the Output Character Set—Example, continued

Source charset read by Source charset specified Target charset specified Output
Filter in API in API charset

Yes KVCS_936 UNICODE UNICODE

Set the Character Set During Filtering

You can convert the character set of a file at the time the file is filtered.

To specify the source character set of afile, after calling fpinit(), call fpSetSrcCharSet(), and set the
eCharsSet argument to any value in the enumerated list in KVCharsSet of kvtypes.h.

To determine the final output character set, call the fpGetTrgCharSet () function after filtering is
complete.

To specify the target character set, set the outputCharSet argument of fpInit() to any value in the
enumerated list in KVCharSet of kvtypes.h.

Not all values of the enumerated list can be used as a target character set. Coded Character Sets, on
page 223 lists character sets that can be used as output.

Set the Character Set During Subfile Extraction

You can convert the character set of a subfile at the time the subfile is extracted from the container and
before it is filtered. This is most often used to set the character set of a mail message’s body text. See
Filter PDF Files, on the next page for more information.

To specify the source character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->srcCharset argument to any value in the enumerated list in KVCharSet of
kvtypes.h.

To specify the target character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->trgCharSet argument to any value in the enumerated list in KVCharSet of
kvtypes.h.

Prevent the Default Conversion of a Character Set

You can prevent the default conversion of text to the operating system code page, and specify that
Filter retain the original character encoding of the document when it is available. Any document
identified as containing more than one character encoding is converted to the first encoding
encountered in the file.

To prevent the default conversion, set the flag KVF_NODEFAULTCHARSETCONVERT as the last argument of
the call to fplnit(). This setting overrides the source or target character set specified in the API.

This setting overrides the source or target character set specified in the API.

KeyView (11.6) Page 65 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Extract Deleted Text Marked by Tracked Changes

The revision tracking feature in applications—such as Microsoft Word’s Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

If revision tracking was enabled when text was deleted from a source document, you can configure
Filter to extract the deleted text. Filter does not extract the reviewer name and revision date.

To extract deleted text from a document and include it in the filtered output

1. Call the fplnit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_INCLREVISIONMARK
nValue TRUE
pData NULL

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_INCLREVISIONMARK, TRUE, NULL);

3. Call the fpFilterFile() or fpFilterStream() function.

Filter PDF Files

Filter has special configuration options that allow greater control over the conversion of Adobe Acrobat
PDF files.

Filter PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can filter a PDF file either by using the file’s internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to output PDF files that contain languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE:

The algorithm used to reproduce the reading order of a PDF page is based on common page
layouts. The paragraph flow generated for PDFs with unique or complex page designs might not
emulate the original reading order exactly.

KeyView (11.6) Page 66 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

For example, page design elements such as drop caps, callouts that cross column boundaries,
and significant changes in font size might disrupt the logical flow of the output text.

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they
appear on the visual page. For example, a three-column article could be output with the headers and
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available:

Paragraph Description
Direction
Option

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
when most of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to- Paragraphs flow logically and read from right to left. You should specify this option
left when most of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF filter determines the paragraph direction for each
PDF page, and then sets the direction accordingly. Filter uses this option when a
paragraph direction is not specified.

NOTE:
Filtering might be slower when logical reading order is enabled. For optimal speed, use an
unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, a PDF file might contain English paragraphs in three
columns that read from left to right, but 80% of the second paragraph might contain Hebrew characters.
If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the output—
title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column to the
bottom right of the third column. However, the text direction of the second paragraph is determined
independently of the page by the PDF filter, and is output from right to left.

NOTE:

Extraction of metadata is not affected by the paragraph direction setting. The characters and
words in metadata fields are extracted in the correct reading direction regardless of whether
logical reading order is enabled.

KeyView (11.6) Page 67 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Enable Logical Reading Order

You can enable logical reading order by using either the API or the formats. ini file. Setting the
paragraph direction in the AP overrides the setting in the formats. ini file.

Use the C API

To enable PDF logical reading order in the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter
nType KVFLT_LOGICALPDF

nValue Set to one of the following flags which are defined in kvtypes.h (see LPDF_
DIRECTION, on page 182):

« LPDF_LTR. Logical reading order and left-to-right paragraph direction.
« LPDF_RTL. Logical reading order and right-to-left paragraph direction.

« LPDF_AUTO. Logical reading order. The PDF reader determines the paragraph
direction for each PDF page, and then sets the direction accordingly. Filter uses this
option when a paragraph direction is not specified.

« LPDF_RAW. Unstructured paragraph flow. This is the default behavior. If logical
reading order is enabled, and you want to return to an unstructured paragraph flow,
set this flag.

pData NULL

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_LOGICALPDF, LPDF_LTR, NULL);
Use the formats.ini File

To enable logical reading order by using the formats.ini file

1. Change the PDF reader entry in the [Formats] section of the formats. ini file as follows:

[Formats]
200=1pdf

2. Optionally, add the following section to the end of the formats. ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:
Flag Description

LPDF_ Left-to-right paragraph direction.

KeyView (11.6) Page 68 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Flag Description
LTR

LPDF_ Right-to-left paragraph direction.
RTL

LPDF_ The PDF reader determines the paragraph direction for each PDF page, and then sets
AUTO the direction accordingly. Filter uses this option when a paragraph direction is not
specified.

LPDF_ Unstructured paragraph flow. This is the default behavior. If logical reading order is
RAW enabled, and you want to return to an unstructured paragraph flow, set this flag.

Rotated Text

When a PDF that contains rotated text is filtered, the rotated text is extracted after the text at the end of
the PDF page on which the rotated text appears. If the PDF is filtered with logical order enabled, and
the amount of rotated text on a page surpasses a predefined threshold, the page is automatically output
as an unstructured text stream. You cannot configure this threshold.

Extract Custom Metadata from PDF Files

You can extract custom metadata from PDF files either by specifying individual metadata tag names,
or by extracting all custom metadata at once.

Extract Custom Metadata by Tag

To extract custom metadata by metadata tag, add the custom metadata names to the pdfsr.ini file
provided, and copy the modified file to the bin directory. You can then extract metadata as you
normally would.

The pdfsr.ini is inthe directory samples\pdfini, and has the following structure:

<META>
<TOTAL>total_item_number</TOTAL>,
/metadata_tag_name datatype,

</META>
Parameter Description
total item The total number of metadata tags that are listed.
number
metadata_tag_ The metadata tag name used in the PDF files.
name
datatype The data type of the metadata field. Data types are defined in
KVSuminfoType.
For example:

KeyView (11.6) Page 69 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

<META>

<TOTAL>4</TOTAL>
/part_number INT4
/volume INT4
/purchase_date DATETIME
/customer STRING
</META>

Extract All Custom Metadata

You can extract all metadata through the API.

To extract all metadata by using the API

1. Call the fplnit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_EXPORTALLMETADATA
nValue TRUE

pData NULL

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_EXPORTALLMETADATA, TRUE, NULL);

3. Call the fpGetOLESummarylnfo() or fpGetOLESummaryInfoFile() function.
Filter Tagged PDF Content

A tagged PDF contains an additional layer of text for visually impaired readers. This text is used in text-
to-speech features in various PDF viewing programs. You can enable filtering of tagged PDF text in the
API.

Filtering the extra layer of tagged content might result in duplicate text in the output. This is the
expected behavior.

To filter tagged PDF content

1. Call the fpinit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_EXPORTTAGGEDCONTENT
nValue TRUE
pData NULL

KeyView (11.6) Page 70 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_EXPORTTAGGEDCONTENT, TRUE, NULL);
Skip Embedded Fonts

Text in PDF files sometimes contains embedded fonts. If you experience difficulties filtering embedded
fonts, there are options in the API, the formats. ini file, and the filter sample program that enable you
to skip this type of text.

NOTE:
If you skip embedded fonts, none of the content that contains embedded fonts is included in the
output.

Use the formats.ini File

When you use formats.ini to skip embedded fonts, you can also specify an embedded font
threshold, which is an arbitrary percentage probability that the glyph in the embedded text maps to a
character value in the output character set (ASCII, UTF-8, and so on).

For example, if you specify a threshold of 75, embedded text glyphs that have a 75% or greater
probability of correctly matching the character in the output character set are included in the output;
glyphs that have a probability of less than 75% of matching the output character set are omitted from
the output.

To skip embedded fonts by using the formats.ini file

« Set the following parameters:

[pdf_flags]
skipembeddedfont=TRUE
embedded_font_threshold=threshold

where threshold is a value between 0 and 100. A threshold of 100 skips all embedded font text; a
threshold of @ retains all embedded font text. Set skipembeddedfont to TRUE to enable the
embedded_font_threshold parameter.

The default value of embedded_font_threshold is 100. if you set skipembeddedfont to TRUE and
do not specify the embedded_font_threshold parameter, Filter skips all embedded text.

Use the C API

To skip embedded fonts by using the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter

nType KVFLT_SKIPEMBEDDEDFONT
nValue TRUE

pData NULL

KeyView (11.6) Page 71 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_SKIPEMBEDDEDFONT, TRUE, NULL);
Control Hyphenation

There are two types of hyphens in a PDF document:

« A soft hyphenis added to a word by a word processor to divide the word across two lines. This is a
discretionary hyphen and is used to ensure proper text flow in justified text.

« A hard hyphen s intentionally added to a word regardless of the word’s position in the text flow. It is
required by the rules of grammar or word usage. For example, compound words (such as three-week
vacation and self-confident) contain hard hyphens.

By default, KeyView skips the source document’s soft hyphens in the Filter output to provide more
searchable text content. However, if you want to maintain the document layout, you can keep soft
hyphens in the Filter output. To keep soft hyphens, you must enable the soft hyphen flag in
formats.ini orinthe API.

Use the formats.ini File

To keep soft hyphens by using the formats. ini file, set the following parameter:

[pdf_flags]
keepsofthyphen=TRUE

Use the C API

To keep soft hyphens by using the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter

nType KVFLT_KEEPSOFTHYPHEN
nValue TRUE

pData NULL

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_KEEPSOFTHYPHEN, TRUE, NULL);

Filter Spreadsheet Files

Filter has special configuration options that enable greater control over the conversion of spreadsheet
files.

KeyView (11.6) Page 72 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Filter Worksheet Names

Normally, Filter does not extract worksheet names from a spreadsheet because it is assumed that the
text should not be exposed. To extract worksheet names, add the following lines to the formats.ini
file:

[Options]
getsheetnames=1

Filter Hidden Text in Microsoft Excel Files

Normally, Filter does not filter hidden text from a Microsoft Excel spreadsheet because it is assumed
that the text should not be exposed. To extract text from hidden rows, columns, and sheets from Excel
spreadsheets, add the following lines to the formats. ini file:

[Options]
gethiddeninfo=1

NOTE:
You can also set an API flag to filter text from hidden sheets. See Hidden Data in Microsoft

Excel Documents, on page 82 for more information.

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be
formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats. ini file.

To specify the system date and time format on UNIX systems

« Inthe formats.ini file, specify the following options:

o SysDateTime. The format to use when a cell is formatted using the system format including both
the date and the time.

o SyslLongDate. The format to use when a cell is formatted using the system long date format.
o SysShortDate. The format to use when a cell is formatted using the system short date format.
o SysTime. The format to use when a cell is formatted using the system time format.

NOTE:
These values cannot contain spaces.

For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the following
format:

28/02/2008
The format arguments are the same as those for the strftime () function.
See http://linux.die.net/man/3/strftime for more information.

KeyView (11.6) Page 73 of 320

http://linux.die.net/man/3/strftime

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Filter Very Large Numbers in Spreadsheet Cells to Precision
Numbers

By default, numbers are extracted in the format specified by the Excel file (for example, General,
Currency and Date). Spreadsheets might contain cells that have very large numbers in them. Excel
displays the numbers in a scientific notation that rounds or truncates the numbers.

To extract numbers without formatting, add the following options in the formats. ini file:
[Options]

ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Filter is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245 and the formula from which the value is derived is SUM
(B21:B26).

NOTE:
Depending on the complexity of the formulas, enabling formula extraction might result in slightly
slower performance.

To set the extraction option for formulas

o Add the following lines to the formats. ini file:

[Options]
getformulastring=option

where option is one of the following:
Option Description

0 Extract the formula value only. This is the default.

If formula extraction is enabled, and you want to return to the default, set this option.
1 Extract the formula only.

2 Extract the formula and the formula value.
NOTE:

You can also set an API flag to filter formulas and formula values. See Hidden Data in Microsoft
Excel Documents, on page 82 for more information.

KeyView (11.6) Page 74 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

If a function in a formula is not supported or is invalid, and option 1 or 2 is specified, only the calculated
value is extracted. See Supported Microsoft Excel Functions, below for a list of supported functions.

When formula extraction is enabled, Filter can extract Microsoft Excel formulas that contain the

functions listed in the following table.

Supported Microsoft Excel Functions

=ABS () =ACOS () =AND()
=ASIN() =ATAN2() =ATAN2()
=CELL() =CHAR() =CHOOSE ()
=CODE () =COLUMN() =COLUMNS()
=C0S() =COUNT() =COUNTA()

=DATEVALUE() =DAVERAGE() =DAY()

=DDB() =DMAX () =DMIN()
=DSTDEV() =DSUM() =DVAR()
=EXP() =FACT() =FALSE()
=FIXED() =FV() =GROWTH()
=HOUR () =ISBLANK() =IF()
=INDIRECT() =INT() =IPMT()
=ISERR() =ISERROR() =ISNA()
=ISREF () =ISTEXT() =LEFT()
=LINEST() =LN() =L0G()
=LOGEST() =LOOKUP() =LOWER()
=MAX () =MDETERM() =MID()
=MINUTE () =MINVERSE() =MIRR()
=MOD() =MONTH() =N()
=NOT() =NOW() =NPER()
=OFFSET() =OR() =PI()
=PPMT() =PRODUCT() =PROPER()
=RATE() =REPLACE() =REPT()
=ROUND () =ROUND () =ROW()
=SEARCH() =SECOND() =SIGN()
=SLN() =SQRT() =STDEV()

KeyView (11.6)

=AREAS ()
=AVERAGE ()

=CLEAN()

=CONCATENATE ()

=DATE ()
=DCOUNT ()
=DOLLAR()
=EXACT()
=FIND()
=HLOOKUP ()
=INDEX()
=IRR()
=ISNUMBER ()
=LEN()
=L0G10()
=MATCH()
=MIN()
=MMULT ()
=NA()
=NPV()
=PMT()
=PV()
=RIGHT()
=ROWS ()

=SIN()

=SUBSTITUTE()

Page 75 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

=SUM() =SYD() =T() =TAN()
=TEXT() =TIME() =TIMEVALUE() =TODAY()
=TRANSPOSE() =TREND() =TRIM() =TRUE()
=TYPE() =UPPER() =VALUE () =VAR()
=VLOOKUP() =WEEKDAY() =YEAR()

Standardize Cell Formats

This options enables the standardization of cell formats within Microsoft Excel files. KeyView formats
any cell where a number has been entered according to the following rules.

Numbers

These include:

« rounded numbers
« exponentials

« fractions

« percentages

Numbers are printed to the maximum length entered—that is, the full number put into the cell, without
any rounding. Negative numbers are printed with a dash in front of them (as opposed to, for example,
bracket form).

Text
All text that is part of the format string is stripped, including currency symbols.
Dates

All dates are printed in full ISO-8601 format (that is YYYY-MM-DDTHH:MM: SS). There are two exceptions
to this rule:

« Cases where the date format contains a time delta (that is, "[h]", "[m]", or "[s]"). Inthis case, the
time is displayed as an interval, which is the number of days (where a day is defined as a period of
24 hours). The time is printed in the ISO-8601 time interval form, for example P1.234D.

« Cases where the absolute value of the cell is less than 1.0, and the date format contains only time
components. In Excel, values between 8.0 and 1.0 correspond to the fictional date 1900-01-00,
and are used to express times without an associated date. For example:

Value Date format KeyView output
0.5 hh:mm:ss 12:00:00
0.5 dd hh 1900-01-00 12:00:00

KeyView (11.6) Page 76 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Value Date format KeyView output
1.5 hh:mm:ss 1900-01-01 12:00:00
1.5 dd hh 1900-01-01 12:00:00

You can enable this option by adding the following to the formats. ini file:

[Options]
StandardizeCellFormats=TRUE

Alternatively, iyou can enable this option programatically by passing KVFLT_
STANDARDIZECELLFORMATS to fpFilterConfig

Filter XML Files

Filter enables you to extract all or selected content from source XML files. You can specify the
elements and attributes to extract from a document by using either the API or an INI file (see Configure
Element Extraction for XML Documents, below). Filter detects the following XML formats:

« generic XML

« Microsoft Office 2003 XML (Word, Excel, and Visio)

« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
See File Format Detection, on page 267 for more information on format detection.

Configure Element Extraction for XML Documents

When filtering XML files, you can specify which elements and attributes are extracted according to the
file’s format ID or root element. This is useful when you want to extract only relevant text elements,
such as abstracts from reports, or a list of authors from an anthology.

A root element is an element in which all other elements are contained. In the following XML sample,
book is the root element:

<book>
<title>XML Introduction</title>
<product id="33-657" status="draft">XML Tutorial</product>
<chapter>Introduction to XML
<para>What is HTML</para>
<para>What is XML</para>
</chapter>
<chapter>XML Syntax
<para>Elements must have a closing tag</para>
<para>Elements must be properly nested</para>
</chapter>
</book>

For example, you could specify that when filtering files with the root element book, the element title
is extracted as metadata, and only product elements with a status attribute value of draft are
extracted. When you extract an element, the child elements within the element are also extracted. For

KeyView (11.6) Page 77 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

example, if you extract the element chapter from the previous sample, the child element para is also
extracted.

Filter defines default element extraction settings for the following XML formats:

« generic XML
« Microsoft Office 2003 XML (Word, Excel, and Visio)
« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)

These settings are defined internally and are used when filtering these file formats; however, you can
modify their values.

In addition to the default extraction settings, you can also add custom settings for your own XML
document types. If you do not define custom settings for your own XML document types, the settings
for the generic XML are used.

Modify Element Extraction Settings

You can modify configuration settings for XML documents through either the API or the kvxconfig.ini
file.

Use the C API

You can use the C API to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

To modify settings

Call the fplnit() function.
2. Define the K\VXConfiglnfo structure.
Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETXMLCONFIGINFO

nValue 0

pData the address of the KvXConfigInfo structure
For example:

KVXConfigInfo xinfo; /* populate xinfo */
(*fpFilterConfig) (pKVFilter, KVFLT_SETXMLCONFIGINFO, @, &xinfo);

4. Repeat step 2 and step 3 until the settings for all the XML document types that you want to
customize are defined.

5. Call the fpFilterFile() function.
Use an Initialization File

You can use the initialization file to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

KeyView (11.6) Page 78 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

To modify settings

1. Modify the kvxconfig. ini file

2. Use the initialization file when processing the XML file. See Modify Element Extraction Settings in
the kvxconfig.ini File, below.

The C sample program (filter)demonstrates how to use the initialization file in the filtering
process. See Sample Programs, on page 86.

Modify Element Extraction Settings in the kvxconfig.ini File

The kvxconfig. ini file contains default element extraction settings for supported XML formats. The
fileis in the directory instal (\OS\bin, where install is the path name of the Filter installation
directory and 0s is the name of the operating system. For example, the following entry defines
extraction settings for the Microsoft Visio 2003 XML format:

[config3]

eKVFormat=MS_Visio XML_Fmt

szRoot=
szInMetaElement=DocumentProperties
szExMetaElement=PreviewPicture
szInContentElement=Text
szExContentElement=

szInAttribute=

The following options are available:

Configuration Description
Option
eKVFormat The format ID as detected by the KeyView detection module. This

determines the file type to which these extraction settings apply. See File
Format Detection, on page 267 for more information on format ID values.

If you are adding configuration settings for a custom XML document type,
this option is not defined.

szRoot The file’s root element. When the format ID is not defined, the root element
is used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an
Element’s Namespace and Attribute, on the next page.

szInMetaElement The elements extracted from the file as metadata. All other elements are
extracted as text.

Separate multiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, on the next page.

szExMetaElement The child elements in the included metadata elements that are not extracted
from the file as metadata. For example, the default extraction settings for
the Visio XML format extract the DocumentProperties element as

KeyView (11.6) Page 79 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

Configuration Description
Option

metadata. This element includes child elements such as Title, Subject,
Author, Description, and so on. However, the child element
PreviewPicture is defined in szExMetaElement because it is binary data
and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice
files. All metadata is extracted regardless of this setting.

Separate multiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szInContentElement The elements extracted from the file as content text. Enter an asterisk (*) to
extract all elements including child elements.

Separate multiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szeExContentElement The child elements in the included content elements that are not extracted
from the file as content text.

Separate multiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szInAttribute The attribute values extracted from the file. If attributes are not defined here,
attribute values are not extracted.

Enter the namespace (if used), element name, and attribute name in the
following format:

namespace: elementname@attributename
For example:
keyview:division@name

Separate multiple entries with commas.

Specify an Element’s Namespace and Attribute

To further qualify an element, you can specify that the element must exist in a certain namespace,
must contain a specific attribute, or both. To define the namespace and attribute of an element, enter
the following:

ns_prefix:elemname@attribname=attribvalue

NOTE:
Attribute values that contain spaces must be enclosed in quotation marks.

KeyView (11.6) Page 80 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

For example, the entry bg: language@id=xml extracts a 1anguage element in the namespace bg that
contains the attribute name id with the value of "xm1". This entry extracts the following element from
an XML file:

<bg:language id="xml">XML is a simple, flexible text format derived from
SGML</bg:language>

but does not extract:

<bg:language id="sgml">SGML is a system for defining markup
languages.</bg:language>

or

<adv:language id="xml">The namespace should be a Uniform Resource Identifier
(URI).</adv:language>

Add Configuration Settings for Custom XML Document Types

You can define element extraction settings for custom XML document types by adding the settings to
the kvxconfig.ini file. For example, for files that contain the root element keyviewxml, you could add
the following section to the end of the initialization file:

[configlel]

eKVFormat=

szRoot=keyviewxml
szInMetaElement=dc:title,dc:meta@title,dc:meta@name=title
szExMetaElement=

szInContentElement=keyview:division@name=dev,keyview:division@name=export,p@style="
Heading 1"

szExContentElement=

szInAttribute=keyview:division@name

The custom extraction settings must be preceded by a section heading named [configN], where N is
an integer starting at 100 and increasing by 1 for each additional file type, for example [configlee],
[configlel], [configle2], and so on. The default extraction settings for the supported XML formats
are numbered config0 to config99. Currently only o to 6 are used.

Because a custom XML document type is not recognized by the KeyView detection module, the format
ID is not defined. The file type is identified by the file’s root element only.

If a custom XML document type is not defined in the kvxconfig. ini file or by the fpFilterConfig()
function, the default extraction settings for a generic XML document are used.

Configure Headers and Footers

You can configure custom header and footer tags for word processing and spreadsheet documents by
editing the formats. ini file.

KeyView (11.6) Page 81 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

To configure headers and footers

1. Openthe formats.ini file
2. Inthe [Options] section, add the following items:

header_start_tag=HeaderStart
header_end_tag=HeaderEnd
footer_start_tag=FooterStart
footer_end_tag=FooterEnd

For example:

header_start_tag=<myHeaderTag>
header_end_tag=</myHeaderTag>
footer_start_tag=<myFooterTag>
footer_end_tag=</myFooterTag>

NOTE:
You must encode custom tags in UTF-8.

Filter Hidden Data

Some documents contain hidden information, which is not filtered by default. Depending on the type of
hidden data that you want to filter and the type of document that you are filtering, you can either use the
API or set parameters in the formats. ini file.

Hidden Data in Microsoft Excel Documents

There are several types of hidden data in Microsoft Excel documents, each of which has a
corresponding flag in the K\V_CONFIG_Arg structure, which you can toggle to determine whether the
hidden data is shown.

The following table lists each data type, its default behavior, and its corresponding configuration API
flag.

Hidden data settings
Hidden Data Type Default Behavior KV_CONFIG_Arg flag
Hidden sheets Not output KV_SS_SHOWHIDDENINFOR
Formulas Calculated value KV_SS_SHOWFORMULA

Values and formulas Calculated value KV_SS_SHOWVALUESANDFORMULAS

To toggle the display of any type of hidden data

1. Define the configurable argument variable to use in the KV_CONFIG_Arg structure. For example:
KV_CONFIG_Arg setArg = {0}

2. SettheKV_ALL_OVERWRITECONFIGFILE flag to overwrite the configuration file settings. For

KeyView (11.6) Page 82 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

example:

setArg.keyID = KV_ALLFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_ALL_OVERWRITECONFIGFILE;

NOTE:
To re-enable configuration file settings later, set !KV_ALL_OVERWRITECONFIGFILE.

3. Assign values to the members of the variable. For example:

setArg.keyID = KV_SSFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_SS_SHOWHIDDENINFOR;

4. Call fpFilterConfig() with the following arguments to set the variable:

Argument Parameter

nType KVFLT_SetConfigurableArguments
nValue TRUE
pData The variable defined in step 1.

For example:

(*fpFilterConfig) (pKVFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg)
Example

The following example overwrites the configuration file settings and enables filtering of formulas.
KV_CONFIG_Arg setArg = {0};

setArg.keyID = KV_ALLFLAGS;

setArg.keyType = KV_INT32ARG;

setArg.keyData.intArg = KV_ALL_OVERWRITECONFIGFILE;

fpKV_FilterConfig(pFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg);
setArg.keyID = KV_SSFLAGS;

setArg.keyType = KV_INT32ARG;

setArg.keyData.intArg = KV_SS_SHOWFORMULAS;

fpKV_FilterConfig(pFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg);
Toggle Hidden Excel Data Settings in the formats.ini File

You can control Microsoft Excel hidden data settings through parameters in the formats. ini file.

KeyView (11.6) Page 83 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

To toggle hidden Excel data settings in the formats.ini file

1. Openthe formats.ini file in a text editor.
2. Under [Options], set one or both of the following parameters.

« Tofilter text from hidden sheets, set gethiddeninfo to 1. See Filter Hidden Text in Microsoft
Excel Files, on page 73 for more information.

« Tofilter formulas and formula values, set getformulastring to the appropriate value. See
Extract Microsoft Excel Formulas, on page 74 for more information.

Hidden Data in HTML Documents

KeyView can filter comments from HTML documents. To enable comment filtering, you must set a flag
in the formats.ini file.

To enable filtering of comments from HTML files

1. Openthe formats.ini file in a text editor.
2. Under [Options], set the following flag.

GetHTMLHiddenInfo=1

Tab Delimited Output for Embedded Tables

You can use KeyView to convert embedded tables in Word Processing documents (for example,
Microsoft Word) to tab-delimited form, by specifying the following option in the formats. ini file:

[Options]
TabDelimitedOutput=TRUE

This option inserts a tab character between each cell, and a line break between each row. Tab and line
break characters in the cells are replaced with spaces.

Table Detection for PDF Files

PDF files often contain data presented in a tabular form. However, there is no information about the
table stored within the PDF itself — the text is simply placed in an arrangement that looks like a table to
the human eye. When this data is filtered, it can be very difficult to reconstruct the table.

If table detection is enabled, KeyView attempts to recognize tables within PDF pages, and to
reconstruct them before they are output. For each page of the document, KeyView outputs the contents
of each table first, and then outputs all remaining text on the page.

Micro Focus recommends that tab delimited output is also enabled when using table detection. This
means that any tables detected appear in the output text in tab delimited format.

To enable table detection and tab delimited output, specify the following in the formats. ini file:

KeyView (11.6) Page 84 of 320

Filter SDK C Programming Guide
Chapter 4: Use the Filter API

[Options]
TableDetection=TRUE
TabDelimited=TRUE

Alternatively, you can enable these options programmatically by setting KVFLT_TABLEDETECTION and
KVFLT_TABDELIMITED totruein fpFilterConfig().

NOTE:
Table detection is only available with the pdf2sr reader. To enable this reader, set the following
configuration parameter:

[Formats]
200=pdf2

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text when Microsoft Excel (. x1sx) files are
processed.

To prevent output of Japanese phonetic guide text

o Set NoPhoneticGuides to TRUE in the formats.ini file:

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

KeyView (11.6) Page 85 of 320

Chapter 5: Sample Programs

This section describes the sample programs provided with Filter SDK.

O INtrOdUCTION . 86
O St rACT 86
L 11 =] 88
Introduction

The C sample programs demonstrate how to use the C implementation of the Filter API. The sample
code is intended to provide a starting point for your own applications or to be used for reference
purposes.

The following C sample programs are provided:

o tstxtract
o filter

The source code and makefile (program_name_platform.mak) for the programs are in the directory
install\KeyviewFilterSDK\samples\program name, where install is the path name of the Filter
installation directory, and program_name is the name of the sample program.

The executable for the programs is in the directory instal [\KeyviewFilterSDK\0OS\bin, where 0S is
the name of the operating system.

To compile the sample programs, use the makefile provided for the appropriate platform. Make sure
that the Filter include directory is specified in the include path of the project. After the executable is
compiled and built, you must place it in the same directory as the Filter libraries.

tstxtract

The tstxtract sample program demonstrates the File Extraction API. It opens a file, extracts subfiles
from the file, and repeats the extraction process until all subfiles are extracted. It also demonstrates
how to extract the default set of metadata and pass integer or string names to extract specific
metadata. After the files are extracted, you can filter the files by using the filter sample program. The
filter sample program demonstrates the functionality of the Filter API.

The source code for the tstxtract sample program is the same for the Filter and Export SDKs. A flag
in the makefile specifies whether the program is compiled for Filter, HTML Export, or XML Export.

Torun tstxtract, type the following at the command line:
tstxtract [options] input_file output_directory bin_directory
where:

« options is one or more of the following:

KeyView (11.6) Page 86 of 320

Option

-c charset

-cf keyfilel,
keyfile2, ...

-1 logfile
-1m

-1ms
metanamel,
metaname2, ..

-1mi
metaintil,
metaint2,...

-1ma

-to <value in
seconds>

-1

-r

-msg

-e

-p passwordl,
password2, ...

-t

-h

Filter SDK C Programming Guide
Chapter 5: Sample Programs

Description

Specify the target character set, for example KVCS_SJ11S. See Coded Character
Sets, on page 223 for a full list of supported character sets.

Specify one or more credential files (private keys) to use to decrypt encrypted
.EML, .MBX, .PST, or .MSG files.

Specify the path and file name of the log file in which metadata is written.
Retrieve metadata and write the data to the log file.

Retrieve metadata with string metanames and write the data to the log file for
.MSG, .EML, .MBX, and .NSF files.

Retrieve metadata with integer (hexadecimal) metanames and write the data to
the log file for .PST files.

Retrieve all metadata from an .NSF file and write the data to the log file.

Specify the timeout value in seconds. This timeout allows for large files that take
longer than the default 7 minute timeout.

Run the file extraction in-process.

Recursively extract second-level subfiles to the specified output directory. For
example, if a .ZIP file contains a Microsoft Word file and the Word file contains an
embedded Microsoft Excel file, set the -r option to extract both the Word and
Excel files.

If this option is not set, only first-level subfiles are extracted. In this case, only the
Word file would be extracted.

Extract mail messages in a .PST file as an .MSG file, including all of its
attachments. If this flag is not set, the mail message is extracted as text. This
applies to PST files on Windows only.

Extract the formatted version of the message body (HTML or RTF) from mail files
when possible. If neither an HTML nor RTF version of the message body exists in
the mail file, it is extracted as plain text. If you do not set this flag, the message
body is extracted as plain text when possible.

Run the file extraction in stream mode.

Specify one or more passwords to open the input or credential file or files.

Preserve the timestamp of embedded files when possible.

Extract hidden text.

o 1input_fileis the full path and file name of the source document.

o output_directory is the directory to which the files are extracted.

KeyView (11.6)

Page 87 of 320

Filter SDK C Programming Guide
Chapter 5: Sample Programs

e bin_directory is the path to the Filter bin directory. This is required if you do not run the program
from the instal\Filter SDK\bin directory.

filter

The filter sample program demonstrates the advanced functionality of the Filter API. It is composed of
the following files:

e« filter.c—command line interface

« filtersupport.c—contains core functionality, such as file filtering, stream filtering, metadata
extraction, and format detection.

o filtersupport.h—structure and variable definitions
Torun filter, type the following at the command line:

filter [options] input_file output_file

where:

options is one or more of the options listed in Options for the Filter Sample Program , below.
input_file is the full path and file name of the source document.

output_file is the full path and file name of the output file.
Options for the Filter Sample Program

Option Description
-i Extract metadata. See Extract Metadata, on page 61.
-C Run Filter in the same process as the calling application (in process). See Run

Filter In Process, on page 31.

-e Run Filter in stream mode. See Filtering in Stream Mode, on page 28.

-h Extract headers and footers, as well as the body text. See fplnit(), on page 143.
-d Extract the file format information using the fpGetDocInfoFile() function.

-mt Enable the memory trace system in error logs. The memory trace system reports

memory leaks and memory overwrites in the log file. See Report Memory Errors,
on page 60. Error logs are not generated when in-process filtering is enabled.

-mtN Disable the memory trace system in error logs. The memory trace system reports
memory leaks and memory overwrites in the log file. See Report Memory Errors,
on page 60. Error logs are not generated when in-process filtering is enabled.

-L Enable error logging. See Enable or Disable Error Logging, on page 59. Error logs
are not generated when in-process filtering is enabled.

-LN Disable error logging. See Enable or Disable Error Logging, on page 59. Error logs
are not generated when in-process filtering is enabled.

-AF Include the input file name in an error log. See Report the File Name in Stream

KeyView (11.6) Page 88 of 320

Filter SDK C Programming Guide
Chapter 5: Sample Programs

Options for the Filter Sample Program , continued

Option Description
Mode, on page 60.

-r Filter a container file and the subfiles in the container file to a single output file.
This option uses the Container API, which is obsolete.

-rm If you set this option, text that was deleted from a document with revision tracking
enabled is extracted from the document and included in the filtered output. See
Extract Deleted Text Marked by Tracked Changes, on page 66.

-X Filter an XML file by using customized extraction settings defined in the
xmlconfigfile kvxconfig.ini file. If you do not enterthe full path to the INI file, the program
looks for the file in the current working directory.

See Filter XML Files, on page 77 for more information.

-z Specify a temporary directory where temporary files generated by the filtering
tempdirectory process are stored. The default is the current working directory.

On Windows systems, there is a 64 K size limit to the temporary directory. When
the limit is reached, you must either create a new directory or delete the contents
of the existing directory; otherwise, you might receive an error message.

-ps password = Specify a password to open a password-protected PST file. This option uses the
Container API, which is obsolete.

-pdfauto Specify that PDF files are output in a logical reading order. The PDF filter
determines the paragraph direction (left-to-right or right-to-left) for each PDF page,
and then sets the direction accordingly. See Filter PDF Files, on page 66.

-pdfltr Specify that PDF files are output in a logical reading order, and that the paragraph
direction is left to right. See Filter PDF Files, on page 66.

-pdfrtl Specify that PDF files are output in a logical reading order, and that the paragraph
direction is right to left. See Filter PDF Files, on page 66.

-pdfraw Specify that PDF files are output in an unstructured paragraph flow. This is the
default option . If logical reading order is enabled, and you want to return to an
unstructured paragraph flow, set this flag. See Filter PDF Files, on page 66.

-Xmp Parse and return XMP metadata as path and value pairs, and include the original
XMP packet. See fpGetXmplnfoFile(), on page 141 and fpGetXmplnfo(), on page
140.

-xmpr Return XMP metadata as a raw XMP packet. See fpGetXmplnfoFile(), on page

141 and fpGetXmplnfo(), on page 140.

-embeddedfont If you use this option, text that contains embedded fonts is not filtered from PDF
documents. See fpFilterConfig(), on page 125.

KeyView (11.6) Page 89 of 320

Part lll: C API Reference

This section provides detailed reference information for the C-language implementation of the File Extraction
and Filter APls.

KeyView (11.6)

Chapter 6: File Extraction API Functions

This section describes the functions in the File Extraction API. The File Extraction functions open a
container file, and extract the container’s subfiles so that the subfiles are exposed and available for
filtering. Subfiles can be files within a Zip archive, messages in a mail store, attachments in a mail
message, or OLE objects embedded in a compound document.

Each function appears as a function prototype followed by a description of its arguments, its return
value, and a discussion of its use.

® KVGetEXtractinterface() 91
O PCIOSEFIIE() - oo 92
® fpEXtractSUBFIle() .. . 93
O PFree S rUCT() . .. 94
® fpGetMainFilelNfO() <. . 95
® fpGetSUbFIlelNfO() il 96
® fpGetSubFileMetaDatal) 97
& POPENFI () il 99
® fpSetEXtractionTimeoUt() .. . 100

KVGetExtractinterface(

This function is the entry point to obtain the file extraction functions. It supplies pointers to the file
extraction functions, and in the case of out-of-process mode starts the kvoop . exe server and initializes
out-of-process extraction services. When kKVGetExtractInterface() is called, it assigns the function
pointers in the structure KVExtractInterface to the functions described in this section.

Syntax
int pascal KVGetExtractInterface (
void *pContext,
KVExtractInterface pIextract);
Arguments

pContext A pointer returned from fpInit().

pIextract A pointerto the KVExtractinterface structure, which contains function pointers that
KVGetExtractInterface()assigns to all other file extraction functions.

Before you initialize the KVExtractInterface structure, use the macro KvStructInit
toinitialize the KvStructHead structure.

KeyView (11.6) Page 91 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Returns

« Ifthe call is successful, the return value is KVERR_Success.
« Ifthe call is not successful, the return value is an error code.

Example

fpKVGetExtractInterface =

(int (pascal *)(void *, KVExtractInterface))myGetProcAddress(hKVFilter, (char¥*)
"KVGetExtractInterface");

/*Initialize file extraction interface structure using KVStructInit*/
KVStructInit(&extractInterface);

/* Retrieve file extraction interface */

error = (*fpkKVGetExtractInterface)(pFilter,&extractInterface))

Discussion

You can define only one extraction structure for one context pointer. For example, the following is not
allowed:

fpInit()
KVGetExtractInterface(pFilter, &extractInterfacel)

fpOpenFile()
fpGetMainFileInfo()
fpGetSubFileInfo()
fpExtractSubFile
fpGetSubFileMetadata()
fpFilterFile()
fpCloseFile()

KVGetExtractInterface(pFilter, &extractInterface2)
fpOpenFile()

fpGetMainFileInfo()

fpGetDocInfoFile()

fpGetOLESummaryInfoFile()

fpFilterFile()

fpCloseFile()

fpShutdown()

fpCloseFileQ

This function frees the memory allocated by fpOpenFile() and closes the file.

KeyView (11.6) Page 92 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction AP| Functions

Syntax
int (pascal *fpCloseFile) (void *pFile);

Arguments
pFile The identifier of the file. This is a file handle returned from fpOpenFile().

Returns

« Ifthefileis closed, the return value is KVERR_Success.
« Ifthefileis not closed, the return value is an error code.

Example

extractInterface->fpCloseFile(pFile);
pFile = NULL;

fpExtractSubFileQ

This function extracts a subfile from a container file to a user-defined path or output stream. This call
returns file format information when file is extracted to a path.

Syntax

int (pascal *fpExtractSubFile) (
void *pFile,
KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

extractArg A pointer to the structure KVExtractSubFileArg, which defines the subfile to be
extracted.

Before you initialize the KVExtractSubFileArg structure, use the macro
KVStructInit toinitialize the KvStructHead structure.

extractInfo A pointerto the structure KVSubFileExtractInfo, which defines information about
the extracted subfile.

KeyView (11.6) Page 93 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Returns

« If the subfile is extracted from the container file, the return value is KVERR_Success.
« |f the subfile is not extracted from the container file, the return value is an error code.

Discussion

« Afterthefile is extracted, call fpFreeStruct() to free the memory allocated by this function.

« If the subfile is embedded in the main file as a link and is stored externally, extractInfo->infoFlag
is set to KVSubFileExtractInfoFlag_External

For example, the subfile might be an object that was embedded in a Word document by using "Link
to File," or an attachment that is referenced in an MBX message. This type of subfile cannot be
extracted. You must write code to access the subfile based on the path in the member
extractInfo->filePath orextractInfo->fileName. See KVSubFileExtractinfo, on page 112.

Example

KVSubFileExtractInfo extractInfo = NULL;
KVStructInit(&extractArg);

extractArg.index = index;

extractArg.extractionFlag = KVExtractionFlag CreateDir | KVExtractionFlag_
Overwrite;

extractArg.filePath = subFileInfo->subFileName;

/*Extract this subfile*/
error=extractInterface->fpExtractSubFile(pFile,&extractArg,&extractInfo);
if (error)
{

extractInterface->fpFreeStruct(pFile,extractInfo);

subFileInfo = NULL;

fpFreeStruct()

This function frees the memory allocated by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetadata(), and fpExtractSubFile().

Syntax

int (pascal *fpFreeStruct) (
void *pFile,
void *obj);

KeyView (11.6) Page 94 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

obj A pointer to the result object returned by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetaData, or fpExtractSubFile().

Returns

« If the allocated memory is freed, the return value is KVERR_Success.

« Otherwise, the return value is an error code.

Example

The example below frees the memory allocated by fpGetSubFileInfo():

if (subFileInfo)

{
extractInterface->fpFreeStruct(pFile,subFileInfo);

subFileInfo = NULL;

fpGetMainFilelnfo(Q)

This function determines whether a file is a container file—that is, whether it contains subfiles—and
should be extracted further.

Syntax

int (pascal *fpGetMainFileInfo) (
void *pFile,
KVMainFileInfo *fileInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

fileInfo A pointerto the structure KVMainFilelnfo. This structure contains information about the
file.

KeyView (11.6) Page 95 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Returns

« If the file information is retrieved, the return value is KVERR_Success.

« If the file information is not retrieved, the return value is an error code.

Discussion

After the file information is retrieved, call fpFreeStruct() to free the memory allocated by this function.

If the file is a container (fileInfo->numSubFiles is non-zero), call fpGetSubFilelnfo() and
fpExtractSubFile() for each subfile.

If the file is not a container (fileInfo->numSubFiles is @) and contains text (fileInfo->infoFlagis
set to KVMainFileInfoFlag_HasContent), pass the file directly to the filtering functions.

Example

KVMainFileInfo fileInfo = NULL;
if((error=extractInterface->fpGetMainFileInfo(pFile,&fileInfo)))

{

/* Free result object allocated in fileInfo */
extractInterface->fpFreeStruct(pFile,fileInfo);
fileInfo = NULL;

fpGetSubFilelnfo()

This function gets information about a subfile in a container file.

Syntax
int (pascal *fpGetSubFileInfo) (
void *pFile,
int index,
KVSubFileInfo *subFileInfo);
Arguments
pFile The identifier of the main file. This is a file handle returned from fpOpenFile().
index The index number of the subfile for which to retrieve information.

subFileInfo A pointerto the KVSubFilelnfo structure, which defines information about the subfile.

KeyView (11.6) Page 96 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction AP| Functions

Returns

« If the file information is retrieved, the return value is KVERR_Success.

« If the file information is not retrieved, the return value is an error code.
Discussion

« After the subfile information is retrieved, call fpFreeStruct() to free the memory allocated by this
function.

« If the root node is not enabled, the first subfile is index o. If the root node is enabled, the first subfile
is index 1. The root node is required to recreate a file’s hierarchy. See Create a Root Node, on page
38.

« The members subFileInfo->parentIndex and subFileInfo->childArray enable you to recreate
afile’s hierarchy. Because childArray retrieves only the first-level children in the subfile, you must
call fpGetSubFileInfo() repeatedly until information for the leaf-node children is extracted. See
Recreate a File’s Hierarchy, on page 38.

« If the subfile is embedded in the main file as a link and is stored externally, subFileInfo->infoFlag
is set to KVSubFileInfoFlag External. For example, the subfile might be an object that was
embedded in a Word document by using "Link to File," or an attachment that is referenced in an MBX
message. This type of subfile cannot be extracted. You must write code to access the subfile based
on the path in the member subFileInfo->subFileName. See KVSubFilelnfo, on page 113.

« TheKVSubFileInfoFlag_ External flagis not set for an OLE object that is embedded as alink in a
Microsoft PowerPoint file. KeyView can detect linked objects in a Microsoft PowerPoint file only
when the object is extracted. See fpExtractSubFile(), on page 93.

Example

KVSubFileInfo subFileInfo = NULL;
for (index = ©@; index < fileInfo->numSubFiles; index++)

{
error=extractInterface->fpGetSubFileInfo(pFile,index,&subFileInfo);

if (error)

{

extractInterface->fpFreeStruct(pFile,subFileInfo);
subFileInfo = NULL;

fpGetSubFileMetaData(

This function extracts metadata from mail stores, mail messages, and non-mail items in an NSF file.
See Extract Mail Metadata, on page 39.

KeyView (11.6) Page 97 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Syntax
int (pascal *fpGetSubFileMetaData) (
void *pFile,
KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

metaArg A pointer to the K\VGetSubFileMetaArg structure, which defines metadata tags whose
values are retrieved.
Before you initialize the KvGetSubFileMetaArg structure, use the KVStructInit macro
toinitialize the KVStructHead structure.

metaData A pointer to the KVVSubFileMetaData structure, which contains the retrieved metadata
values.

Returns

« If the metadata is retrieved, the return value is KVERR_Success.
« If the metadatais not retrieved, the return value is an error code.

Discussion

« When you pass in @ for metaArg->metaNameCount, and NULL for metaArg->metaNameArray, a set of
default metadata is retrieved. See Extract Mail Metadata, on page 39.

« Afterthe metadata is retrieved, call fpFreeStruct() to free the memory allocated by this function.

« If afieldis repeated in an EML or MBX mail header, the values in each instance of the field are
concatenated and returned as one field. The values are separated by five pound signs (#####) as a
delimiter.

Example

KVSubFileMetaData metaData = NULL;
KVStructInit(&metaArg);

/* retrieve all the default metadata elements */
metaArg.metaNameCount = 0;

metaArg.metaNameArray = NULL;
metaArg.index = Index;

KeyView (11.6) Page 98 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

error = extractInterface->fpGetSubFileMetaData(pFile,&metaArg,&metaData);

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

/* retrieve specific metadata fields */
KVMetaName pName[2];
KVMetaNameRec names[2];

names[0@].type = KVMetaNameType_Integer;
names[©].name.iname = KVPR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = KVPR_DISPLAY_TO;

pName[@]
pName[1]

&names[0];
&names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&metaData);

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

fpOpenFileQ

This function opens a file to make the file accessible for subfile extraction or filtering.

Syntax

int (pascal *fpOpenFile) (
void *pContext,
KVOpenFileArg openArg,
void **pFile);

Arguments

pContext A pointer returned from fpInit().

openArg A pointer to the K\VOpenFileArg structure. This structure defines the input parameters
necessary to open a file for extraction, such as credentials, and the default extraction

KeyView (11.6) Page 99 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

directory.

Before you initialize the KvOpenFileArg structure, use the macro KVStructInit to
initialize the KVStructHead structure.

pFile A handle for the opened file. This handle is used in subsequent file extraction calls to
identify the source file.

Returns

« Ifthefile is opened, the return value is KVERR_Success.
« If thefile is not opened, the return value is an error code and pFile is NULL.

Discussion
Call fpCloseFile() to free the memory allocated by this function.
Example

KVOpenFileArgRec openArg;

/*Initialize the structure using KVStructInit*/
KVStructInit(&openArg);

openArg.extractDir = destDir;

openArg.filePath = srcFile;

/*0Open the main file */
if ((error = extractInterface->fpOpenFile(pFilter,&openArg,&pFile)))

{
extractInterface->fpCloseFile(pFile);

pFile = NULL;
fpSetExtractionTimeout(Q)

This function specifies the length of time that should elapse before assuming that out-of-process
extraction has stopped responding.

Syntax

BOOL pascal fpSetExtractionTimeout(void *pContext,
long 1Timeout);

KeyView (11.6) Page 100 of 320

Filter SDK C Programming Guide
Chapter 6: File Extraction APl Functions

Arguments

pContext A pointer returned from fpInit().

1Timeout The length of time, in seconds, that must elapse before assuming that out-of-process
extraction has stopped responding.

Returns

« Ifthe call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

If this APl is not used in out-of-process mode, the filter timeout duration is used on the fpOpenFile()
call. See fpSetTimeout(), on page 151.

Example

/* set extraction timeouts to 10 minutes */

if (FALSE == extractInterface->fpSetExtractionTimeout(pContext, 600))
{

/* could not set the extraction timeout */

}

KeyView (11.6) Page 101 of 320

Chapter 7: File Extraction API Structures

This section provides information on the structures used by the File Extraction API. These structures
define the input and output parameters required to extract subfiles from a container file, and are defined
in kvxtract.h.

¢ RKVCredential 102
* KVCredentialComponent 103
* KVEXtractinterface L 103
® KVEXtractSUBFIlCAIG . 104
¢ KVGetSUDFIlEMEtaArg e 106
¢ KVMaINFileINfo L. 107
® KVMetadataElem . il 108
® KVMetaName il 109
O RV OPENFI AIG ... 110
¢ KV OU PULSIrEaM . 111
® KVSubFileExtractinfo .. . 112
® KV SUbFIleIN O . 113
® KVSUubFileMetaDatao 115

KVCredential

This structure contains a count of the number of credential elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling fpOpenFile(), and is defined in
kvxtract.h.

typedef struct tag_KVCredential
{

int itemCount;
KVCredentialComponent *items;

}
KVCredentialRec, *KVCredential;

Member Descriptions
itemCount The number of credentials defined for this file.

items A pointer to the KV Credential Component structure. This structure contains the
individual credential elements used to open a protected file.

KeyView (11.6) Page 102 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVCredentialComponent

This structure contains the value of a credential item. The structure is defined in kvxtract.h.

typedef struct tag_KVCredentialComponent

{
KVCredKeyType keytype;
union
{
void *pkey;
char *skey;
unsigned int ikey;
b
keyobj;
¥

KVCredentialComponentRec, *KVCredentialComponent;

Member Descriptions

keytype The type of credential (such as a user name or password). The types are defined by the
KVCredKeyType enumerated type.

pkey A pointer to a structure defining credentials. Reserved for future use.
skey A pointer to a string credential key.
ikey An integer credential key.

KVExtractinterface

The members of this structure are pointers to the file extraction functions described in File Extraction
API Functions, on page 91. When you call the KVGetExtractinterface() function, this structure assigns
pointers to the functions. The structure is defined in kvxtract.h.

typedef struct tag KVExtractInterface
{
KVStructHeader;

int (pascal *fpOpenFile) (void *pContext,KVOpenFileArg openArg, void
**pFileHandle);

int (pascal *fpCloseFile) (void *pFileHandle);

int (pascal *fpGetMainFileInfo) (void *pFile, KVMainFileInfo *MainFileInfo);

int (pascal *fpGetSubFileInfo) (void *pFile, int index, KVSubFileInfo
*subFileInfo);

int (pascal *fpGetSubFileMetaData) (void *pFile, KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

int (pascal *fpExtractSubFile) (void *pFile, KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

KeyView (11.6) Page 103 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

int (pascal *fpFreeStruct) (void *pFile, void *obj);

}
KVExtractInterfaceRec, *KVExtractInterface;

Member Descriptions
The member functions are described in File Extraction API Functions, on page 91.
Discussion

Before you initialize a File Extraction structure, use the KVStructInit macro to initialize the
KVStructHead structure. This process sets the revision number of the File Extraction APl and supports
binary compatibility with future releases.

KVExtractSubFileArg

This structure defines the input parameters required to extract a subfile. See fpExtractSubFile(), on
page 93. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractSubFileArg

{
KVStructHeader;
int index;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;
DWORD extractionFlag
char *filePath;
char *extractDir;
KVOutputStream *stream;

}

KVExtractContainerSubFileArgRec, *KVExtractContainerSubFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.
index The index number of the subfile to be extracted.

srcCharset Specifies the source character set of the subfile when the file format’s reader
cannot determine the character set. The character sets are enumerated in
KvCharsSet of kvtypes.h. See Discussion, on page 106.

trgCharset If the file type is KVFileType_Main, this is the target character set of the
extracted file. Otherwise, this is ignored. The character sets are enumerated in
KVCharSet in kvtypes.h. See Discussion, on page 106.

KeyView (11.6) Page 104 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

isMSBLSB

extractionFlag

filePath

extractDir

KeyView (11.6)

This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

A bitwise flag that defines additional parameters for file extraction. The following
flags are available:

e KVExtractionFlag CreateDir

This flag indicates whether the directory structure of a subfile should be
created. If you set this flag, the path defined in filePath is created if it does
not already exist. If you do not set this flag, the path is not created, and the
function returns FALSE.

e KVExtractionFlag Overwrite

If you set this flag, and the file being extracted has the same name as afile in
the target path, the file in the target path is overwritten without warning. If you
do not set this flag, and a subfile has the same name as afile in the target path,
the error KVError_OutputFileExists is generated.

e KVExtractionFlag ExcludeMailHeader

If you set this flag, header information (To, From, Sent, and so on) in a mail file
is not included in the extracted data. If you do not set this flag, the extracted
data contains header information and the message’s body text. See Exclude
Metadata from the Extracted Text File, on page 46.

e KVExtractionFlag_ GetFormattedBody

If you set this flag, the formatted version of the message body (HTML or RTF)
is extracted from mail files when possible. If neither an HTML nor RTF version
of the message body exists in the mail file, it is extracted as plain text. If you
do not set this flag, the message body is extracted as plain text when possible.

NOTE: When an HTML or RTF message body is extracted, the message’s
mail headers (such as "From," "To," and "Subject,") are extracted, saved in
the same format, and added to the beginning of the subfile. This applies to
PST (MAPI-based reader), MSG, and NSF files only.

e KVExtractionFlag SaveAsMSG

If you set this flag, the mail message is extracted as an MSG file, including all
of its attachments. If you do not set this flag, the mail message is extracted as
text. This applies to PST files on Windows only.

NOTE: In file mode, when the application sets this flag in fpExtractSubFile
(), it must also check the KV SubFileExtractinfo structure’s filePath
parameter to verify the file name used for extraction.

A pointer to the suggested path or file name to which the subfile is extracted. This
can be a file name, partial path, or full path. You can use this in conjunction with
extractDir to create the full output path. See Discussion, on the next page.

A pointer to the directory to which subfiles are extracted. This directory must
exist. If you set this flag, the path specified in KvOpenFileArg->extractDir is
ignored. You can use this in conjunction with filePath to create the full output
path.

Page 105 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

stream A pointer to an output stream defined by KV OutputStream. See Discussion,

below.

Discussion

« If the document character set is detected and is also specified in srcCharset, the detected
character set is overridden by the specified character set. If the source character set is not detected
and is not specified, character set conversion does not occur. The Supported Formats, on page 184
section lists the formats for which the source character set can be determined.

o TheKVSubFileExtractInfoFlag_ CharsetConverted flagin the KVSubFileExtractInfo structure
indicates whether the character set of the subfile was converted during extraction.

« The following applies when the output is to afile:

(o}

[¢]

[e]

If filePath is a valid full path, filePath is the output path, and the path in extractDir is
ignored.

If filePath is a file name or partial path, the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir is used to create the full
path. See KVOpenFileArg, on page 110.

If filePath is a full path or partial path, and createDir is TRUE, the directory is created if it does
not already exist.

If filePath is not specified, a default name and the target directory specified in either
KVExtractSubFileArg->extractDir orKVOpenFileArg->extractDir are used to create a full
path.

If both filePath and extractDir are not specified or are invalid, an error is returned.
If filePath is valid, but extractDir is not valid, an error is returned.

« The following applies when the output is to a stream:

(o}

[¢]

[¢]

Set filePath and extractDir to NULL.

The file format (docInfo)and extraction file path (filePath) are not returned in
KVSubFileExtractInfo.

The KVExtractionFlag_CreateDir and KVExtractionFlag Overwrite flags are ignored.

KVGetSubFileMetaArg

This structure defines the metadata tags whose values are retrieved by fpGetSubFileMetaData(). This
structure is defined in kvxtract.h.

typedef struct tag_KVGetSubFileMetaArg

{

KVStructHeader;

int index;

int metaNameCount;
KVMetaName *metaNameArray;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;

KeyView (11.6) Page 106 of 320

}

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVGetSubFileMetaArgRec, *KVGetSubFileMetaArg;

Member Descriptions

KVStructHeader
index
metaNameCount

metaNameArray

srcCharset

trgCharset

isMSBLSB

Discussion

The KeyView version of the structure. See KV StructHead, on page 161.
The index number of the subfile for which metadata is extracted.
The number of metadata fields to be extracted.

A pointer to the K\VVMetaName structure that contains an array of metadata tags
whose values are retrieved.

Specifies the source character set of the metadata when the format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharsSet of kvtypes.h. See Discussion, below.

The target character set of the extracted metadata.
The character sets are enumerated in KvCharSet in kvtypes.h.

This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

« If the character set is detected and is also specified in srcCharset, the detected character set is
overridden by the specified character set. If the source character set is not detected and is not
specified, character set conversion does not occur. The section Supported Formats, on page 184
lists the formats for which the source character set can be determined.

« Toretrieve a predefined list of metadata, pass 0 for metaNameCount and NULL for metaNameArray.
The metadata in Extract Mail Metadata, on page 39 is extracted.

KVMainFilelnfo

This structure contains information about a main file that is open for extraction. It is initialized by calling

fpGetMainFilelnfo(). This structure is defined in kvxtract.h.

typedef struct
{

tag_KVMainFileInfo

KVStructHeader;

int numSubFiles;
ADDOCINFO docInfo;
KVCharSet charset;

int 1sSMSBLSB;
unsigned long infoFlag;

}

KVMainFileInfoRec, *KVMainFileInfo;

KeyView (11.6)

Page 107 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.
numSubFiles The number of subfiles in the main file.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 156.

charset The character set of the main file.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

infoFlag A bitwise flag that provides additional information about the main file. The
following flag is available:

KVMainFileInfoFlag HasContent—The main file contains text that can be
filtered. Below are some examples of how this flag is used:

For an MSG file without attachments, numSubFiles is 1 (message body text), and
this flag is FALSE because the MSG file itself does not contain text.

For a Zip file with three files, numSubFiles is 3, and this flag is FALSE because a
Zip file does not contain text.

For a Microsoft Word file with an embedded OLE object, numSubFilesis 1 (OLE
object), and this flag is TRUE (Word file contains text to be filtered).

Discussion

« If numSubFiles is non-zero, get information on the subfile by calling fpGetSubFilelnfo(), and then
extract the subfiles by using fpExtractSubFile().

« IfnumSubFiles is 0, the file does not contain subfiles and does not need to be extracted further. If

the KVMainInfoFlag HasContent flagis set, the file contains body text and can be passed directly
to the filtering functions. See Filter AP| Functions, on page 117.

o IfopenFlagis settoKVOpenFileFlag_CreateRootNode in the call to fpOpenFile(), numSubFiles
also includes the root object (index ©) which is created by KeyView for reconstructing the file’s
hierarchy. See KVOpenFileArg, on page 110.

KVMetadataElem

This structure contains metadata field values extracted from a mail file. This structure is defined in
kvtypes.h.

typedef struct tag_KVMetadataElem

{
int isDataValid;

int datalD;

KeyView (11.6) Page 108 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVMetadataType dataType;

char* strType;
void* data;
int dataSize;
}
KVMetadataElem;

Member Descriptions

isDatavalid Specifies whether the metadata returned from the API is valid data.
datalD The integer name of the extracted metadata field.

dataType The data type of the metadata field. The types are defined in KVMetadataType in

kvtypes.h.
strType A pointer to the string name of the metadata field.
data The contents of the metadata field.

If the type member is KvMetadata_Int4 or KVMetadata_Bool, this member contains
the actual value. Otherwise, this member is a pointer to the actual value.

KVMetadata_DateTime points to an 8-byte value.

KVMetadata_String and KVMetadata_Unicode point to the beginning of the string
that contains the text. The strings are NULL terminated.

KVMetadata_Binary points to the first element of a byte array.

dataSize The byte count of data when the type is KVMetadata_Binary, KVMetadata_Unicode,
or KVMetadata_String.

KVMetaName

This structure defines the names of the metadata fields to be extracted from a mail file. This structure is
defined in kvxtract.h.

typedef struct tag_KvMetaName

{
KVMetaNameType type;
union
{
void *pname;
int iname;
char *sname;
}name;
}

KVMetaNameRec, *KVMetaName;

KeyView (11.6) Page 109 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

type The type of metadata name (such as integer or string). The types are defined by the
KVMetaNameType enumerated type.

NOTE:
MAPI property names are of type integer.

pname A pointer to a structure defining the metadata fields to be retrieved.
iname The name of a metadata field of type integer.

sname A pointer to the name of a metadata field of type string.

Discussion

If you specify the MAPI tag name (for example, PR_CONVERSATION_TOPIC), you must include the
mapitags.h and mapidefs.h Windows header files, in which PR_CONVERSATION_TOPIC is defined as
0x0070001e.

KVOpenFileArg

This structure defines the input arguments necessary to open a file for extraction. It is initialized by
calling fpOpenFile(). This structure is defined in kvxtract.h.

typedef struct tag KVOpenFileArg

{
KVStructHeader;
KVCredential cred;
KVInputStream *stream;
char *filePath;
char *extractDir;
DWORD openFlag;
DWORD reserved;
void *pReserved;

}

KVOpenFileArgRec, *KVOpenFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

cred The credentials required to open a protected PST or NSF file. This is a pointer to
the KV Credential structure. Your application can define multiple credentials to
this member for multiple formats.

stream A pointer to the developer-assigned instance of KVInputStream. The

KeyView (11.6) Page 110 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

filePath

extractDir

openFlag

reserved

pReserved

KVInputStream structure defines the input stream that contains the source. See
KVInputStream, on page 159.

If you are using a file as input, this is NULL.

A pointer to the full file path to the source file.

If you are using a stream as input, this is NULL.

A pointer to the default directory to which subfiles are extracted. This directory
must exist.

You can use this in conjunction with KVExtractSubFileArg->filePath to create
the full output path. See KVExtractSubFileArg, on page 104.

A bitwise flag that defines additional parameters for opening the file. The following
flag is available:

KVOpenFileFlag CreateRootNode—If you set this flag, KeyView creates a root
object when extracting this file’s subfiles. This root node does not have a parent
and is at the highest level of the file’s tree structure. It is used internally to provide
a reference point from which all other child nodes are determined, and the file’s
hierarchy is created.

If you want to maintain the file’s hierarchy when you extract subfiles from a
container, you must set this flag. See Recreate a File’s Hierarchy, on page 38 for
more information.

The root node has an index of zero. Although not all container formats require an
artificial root node, the root is created for all container formats regardless of
whether the file itself contains a root directory or file.

Reserved for future use. It must be NULL.

Reserved for future use. It must be NULL.

KVOutputStream

This structure defines an output stream for the extracted subfile.

typedef struct tag_OutputStream

{

void *pOutputStreamPrivateData;

BOOL (pascal *fpCreate)(struct tag OutputStream *,TCHAR *);

UINT (pascal *fpWrite) (struct tag_ OutputStream *, BYTE *, UINT);
BOOL (pascal *fpSeek) (struct tag OutputStream *, long, int);
long (pascal *fpTell) (struct tag_OutputStream *);

BOOL (pascal *fpClose) (struct tag OutputStream *);

}
KvOutputStream;

KeyView (11.6)

Page 111 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

KVSubFileExtractinfo

This structure contains information about an extracted subfile. It is initialized by calling
fpExtractSubFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileExtractInfo

{
KVStructHeader;
char *filePath;
char *fileName;
unsigned long infoFlag;
ADDOCINFO docInfo;
}

KVSubFileExtractInfoRec, *KVSubFileExtractInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KV StructHead, on page 161.

filePath

fileName

infoFlag

KeyView (11.6)

The full path to which the subfile was extracted.

If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

If you output the data to a stream, the extraction path is not returned.
The original path, file name, or path and file name of the subfile.

If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

A bitwise flag that provides additional information about the extracted subfile. The
following flags are available:

o KVSubFileExtractInfoFlag NeedsExtraction—The file might contain
subfiles and should be extracted further.

o KVSubFileExtractInfoFlag FileCreated—The file was created on disk.

o KVSubFileExtractInfoFlag CharsetConverted—The subfile’s character set
was converted.

e KVSubFileExtractInfoFlag External—The subfile is embedded in the main
file as a link and is stored externally. For example, the subfile might be an
object that was embedded in a Word document using "Link to File," or an
attachment that is referenced in an MBX message. This type of file cannot be
extracted. You must write code to access the subfile based on the path in the
member filePath or fileName.

Page 112 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

e KVSubFileExtractInfoFlag FolderCreated—A folder was created.

e KVSubFileExtractInfoFlag NonFormattedBodyExtracted—Indicates that a
plain text version of the message was extracted due to an error extracting the
formatted version of the message.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 156.
If you output the data to a stream, the file format is not returned.
KVSubFilelnfo

This structure contains information about a subfile in a container file. It is initialized by calling
fpGetSubFilelnfo(). This structure is defined in kvxtract.h.

typedef struct tag KVSubFileInfo

{
KVStructHeader;
char *subFileName;
int subFileType;
long subFileSize;
unsigned long infoFlag;
KVCharSet charset;
int isMSBLSB;
BYTE fileTime[8];
int parentIndex;
int childCount;
int *childArray;
}

KVContainerSubFileInfoRec, *KVSubFileInfo;

Member Descriptions

KvStructHeader The KeyView version of the structure. See KV StructHead, on page 161.

subFileName

subFileType

KeyView (11.6)

The path, file name, or path and file name of the subfile.

If the subfile is the body text of a mail file or is an embedded OLE object, KeyView
provides a default file name. See Default File Names for Extracted Subfiles, on
page 55.

The subfile’s position in the container file’s hierarchy. The following options are
available:

KVSubFileType_Main—The subfile is at the top level of the main file. This is the
default subfile type. See Discussion, on page 115.

KVSubFileType_ Attachment—The subfile is an attachment in afile.

KVSubFileType OLE—The subfile is an embedded OLE object in a compound
document.

Page 113 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

KVSubFileType_Folder—The subfile is a folder or the artificial root node (see
Create a Root Node, on page 38).

subFileSize The size of the subfile in bytes. This information might be useful if you do not
want to extract very large files.

This value is approximate and is the maximum size of the subfile. The subfile is
usually smaller than this value when it is extracted.

infoFlag A bitwise flag that provides additional information about the subfile. The following
flags are available:

KVSubFileInfoFlag_ NeedsExtraction—The subfile might contain subfiles. It
must be extracted further to conclusively determine whether it contains subfiles.

KVSubFileInfoFlag Secure—The subfile is secured and credentials (such as
user name and password) are required to extract it. This flag applies to ZIP, RAR,
and PDF files only.

KVSubFileInfoFlag SMIME—The subfile is S/IMIME-encrypted and credentials
are required to extract it. This applies to .eml and .pst files only.

KVSubFileInfoFlag External—The subfile is embedded in the mainfile as a
link and is stored externally. For example, the subfile might be an object that was
embedded in a Word document by using "Link to File," or an attachment that is
referenced in an MBX message. This type of file cannot be extracted. You must
write code to access the subfile based on the path in the member subFileName.

KVSubFileInfoFlag MailItem—When the subfile typeis KVSubFileType_
Attachment, this indicates that the attachment is a mail item. This flag applies to
PST, MSG, and NSF files only.

charset If the subfile is not an attachment, this is the character set of the subfile. If the
subfile is an attachment, the character set is KVCS_UNKNOWN.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

fileTime When the subfile is a mail message, this is the file’s Sent time. Otherwise, it is
the last modified time. The file time is not available for the following file types:

« EML attachments
o OLE objects in a Microsoft Office document
« Embedded images

parentIndex The index number of this file’s parent. For example, the index of a folder in which
the subfile is stored, or the file to which the subfile is attached. If a file does not
have a parent, the parentIndexis -1.

childCount The number of first-level children in the subfile.

childArray A pointer to an array of first-level children in the subfile.

KeyView (11.6) Page 114 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

Discussion

The KvSubFileType_Main type applies to the following for each file format:

File format KVSubFileType_Main applies to...
MSG and EML The message body.

Zip files A file inside the archive.

PST files Anitem that is not an attachment, an OLE object, or a root node.
MBX files A message in the MBX file.

NSF files Anitem that is not an attachment, an OLE object, or a root node.
PDF files An item that is not an attachment or a root node.

« Ifyou set the KvSubFileInfoFlag_NeedsExtraction flag, open the subfile and extract its children.
See fpOpenFile(), on page 99 and fpExtractSubFile(), on page 93.

« TheparentIndex and childArray members provide information about the subfile’s parent and
children. You can use this information to recreate the file hierarchy on extraction. Because
childArray retrieves only the first-level children in the subfile, you must call fpGetSubFileInfo()
repeatedly until information for the leaf-node children is extracted. See Recreate a File’s Hierarchy,
on page 38.

KVSubFileMetaData

This structure contains a count of the number of metadata elements extracted from a mail file, and a
pointer to the first element of the array of elements. It is initialized by calling fpGetSubFileMetaData().
This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileMetaData

{
KVStructHeader;
int nElem;
KVMetadataElem** ppElem;
unsigned long infoFlag;
}

KVSubFileMetaDataRec, *KVSubFileMetaData;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.
nElem The number of metadata fields contained in the array.

ppElem A pointer to an array of pointers that are the memory addresses of metadata field
values in the KVVMetadataElem structure.

KeyView (11.6) Page 115 of 320

Filter SDK C Programming Guide
Chapter 7: File Extraction API Structures

infoFlag A bitwise flag that defines additional properties of the extracted metadata. The
following flag is available:

KVSubFileMetaInfoFlag_ CharsetConverted—Indicates that the metadata’s
character set was converted.

KeyView (11.6) Page 116 of 320

Chapter 8: Filter API Functions

This section describes the functions in the Filter API. Each function appears as a function prototype followed
by a description of its arguments, its return value, and a discussion of its use.

KV _GetFilterinterfaceE X ()l 118
fpCanFilterFilel) ... 120
fpCanFilterStream () o 121
fPClOSEStreamM() 122
fpFiletolnputStreamCreate() 123
fpFileTolnputStreamFree() 124
PRI ErCONfig() - L 125
ORI ErF Il) 130
PRI eSS ream) 131
fpFreeOLESuUMmMary INfo()o 132
fPFreeXmpPINfO() - 133
fpGetDocINfOFIle() ..o . 134
fpGetDocInfoStream) L 135
TPGEtKVEITOrCOAEEX() - ..o 136
fPGetOLESUMMAryINfO() 137
fpGetOLESummaryInfoFile() oL 138
PGt TrgC harSet() ... L 139
TG XMIPINTO() - . 140
fpGetXmpInfoFile() ..o 141
D NI) - 143
TPOPEN S aM() .. L 146
TPOPENStreamME X 2() ..o . 147
fPRefreshFiterkKV OOP () ... L 148
fpSetReplacementChar() 149
TPSetSreCharSet() ... L 150
TS et TIMEOUL() - .. L 151
TS UL AOWN() .. 152

KeyView (11.6) Page 117 of 320

KV_GetFilterinterfaceEx(Q

This function supplies pointers to other Filter functions. When KV_GetFilterInterfaceEx() is called, it
assigns the function pointers in the structure KVF1tInterfaceEx to other functions described in this chapter.
For example, KVF1tInterfaceEx.fpInit is assigned to point to the function Init().

NOTE:
This is used as an entry point to Filter API versions 7.4 and higher.

Syntax

KVErrorCode pascal KV_GetFilterInterfaceEx(
KVFltInterfaceEx *pInterfaceEx,
int version);

Arguments

pInterfaceEx A pointerto the structure K\VVFltinterfaceEx, which contains function pointers that kKv_
GetFilterInterfaceEx() assigns to all other API functions.

version The version number of the current Filter interface. This is a symbolic constant
(KVFLTINTERFACE_REVISION) definedin kvfilt.h.

Returns

If the revision number of the Filter interface AP is unknown, this function returns a general error (KVERR_
General).

Discussion

« One of the initial steps in using the Filter API is to create an instance of a KVF1tInterfaceEx structure and
use this function to gain access to all other functions. The sample programs provide examples of how to do
this.

« You can call the API functions directly. For example, you can call GetOLESummaryInfo() instead of using
fpGetOLESummaryInfo() in KVF1ltInterfaceEx. However, Micro Focus recommends that you assign the
function pointers in KVF1tInterfaceEx to the functions for efficiency.

Example

void *pKVFILTER;
KVF1tInterfaceEx FilterFunc;
KVErrorCode nRet = KVERR_Success;

KVErrorCode (pascal *fpGetFilterInterfaceEx)(KVFltInterfaceEx *FilterFunc, int version
)

KeyView (11.6) Page 118 of 320

Filter SDK C Programming Guide

pKVFILTER = myLoadLibrary(szDl1lName);

fpGetFilterInterfaceEx = (KVErrorCode (pascal *)(KVFltInterfaceEx *, int))
myGetProcAddress (pKVFILTER, "KV_GetFilterInterfaceEx");

KeyView (11.6) Page 119 of 320

Filter SDK C Programming Guide

fpCanFilterFileQ

This function determines whether a file’s format is supported by KeyView. The supported formats are
listed in Supported Formats, on page 184.

If KVERR_ General is returned, you can retrieve the extended error code by using fpGetKvErmrorCodeEx
(), on page 136.

Syntax

KVErrorCode pascal fpCanFilterFile(
void *pContext,
char *szFile);

Arguments

pContext A pointer returned from fpInit().

szFile The name of the input file to be filtered.

Returns

« If the file format is supported, the return value is KVERR_Success.

« If the file format is not supported, the return value is an error code. See KVErrorCode, on page 170.

KeyView (11.6) Page 120 of 320

Filter SDK C Programming Guide

fpCanFilterStreamQ

This function determines whether the format of the file to which a stream points is supported by
KeyView.

Syntax
KVErrorCode pascal fpCanFilterStream(
void *pcontext,
void *pStreamContext);
Arguments
pContext A pointer returned from fpInit().

pStreamContext A pointer returned from fpOpenStream() or fpOpenStreamEx2().

Returns

« If the file format is supported, the return value is KVERR_Success.

« If the file format is not supported, the return value is an error code. See KVErrorCode, on page 170.

KeyView (11.6) Page 121 of 320

Filter SDK C Programming Guide

fpCloseStream(Q

This function closes a document stream opened by using fpOpenStream().
Syntax

BOOL pascal fpCloseStream(void *pContext, void *pStreamContext);

Arguments

pContext A pointer returned from fpInit().

pStreamContext A pointer returned from fpOpenStream() or fpOpenStreamEx2().

Returns

« If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

After filtering is complete, call this function to free the memory allocated by fpOpenStream() or
fpOpenStreamEx2().

KeyView (11.6) Page 122 of 320

Filter SDK C Programming Guide

fpFiletolnputStreamCreate()

This function creates an input stream from afile.

Syntax

BOOL pascal fpFileToInputStreamCreate(
void *pContext,
char *pszFileName,

KVInputStream *pInput)

Arguments

pContext A pointer returned from fpInit().
pszFileName A pointer to the name of the input file to be filtered.

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

« If the call is successful, the return value is TRUE.
« Ifthe call is unsuccessful, the return value is FALSE.

Discussion
« Afterfiltering is complete, call fpFileToInputStreamFree() to free the memory allocated by this

function.

« You can access this function through the KV_GetFilterInterfaceEx() function, or call it directly.

KeyView (11.6) Page 123 of 320

Filter SDK C Programming Guide

fpFileTolnputStreamFree(Q
This function frees the memory allocated for the input stream created from a file.
Syntax

BOOL pascal fpFileToInputStreamFree(
void *pContext,
KVInputStream *pInput)

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

o If the call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the retumn value is FALSE.
Discussion
« Afterfiltering is complete, call this function to free the memory allocated by

fpFileToInputStreamCreate().
« You can access this function through the KV_GetFilterInterfaceEx() function, or call it directly.

KeyView (11.6) Page 124 of 320

Filter SDK C Programming Guide

fpFilterConfigQ

This function provides a way to enable and configure various options prior to document filtering, such
as providing a password for a file, or enabling hidden text extraction.

Syntax

BOOL pascal fpFilterConfig(
void *pContext,
int nType,
int nValue,
void *pData);

Arguments

pContext A pointer returned from fpInit().

nType The configuration flag. This is a symbolic constant defined in kvtypes.h. The available
options are described in the Filter Configuration Flags, below table.

nvalue The integer value defined for the flags above.

pData The data for the configuration flag.

Returns

« Ifthe call is successful, the return value is TRUE.
« Ifthe call is unsuccessful, the return value is FALSE.

Discussion

« You must call this function after the call to fpInit() and before the call to fpFilterStream() or
fpFilterFile().

« Although fpFilterConfig() does not run out of process, any configuration flags that are set
through fpFilterConfig() are passed to the out-of-process session.

« The configuration flags are described in the following table.
Filter Configuration Flags

Flag Description

KVFLT_SETOOPSRCFILE If you set this flag to TRUE, the input file name is reported in the out-
of-process error log when the file generates an error in stream mode.
See Report the File Name in Stream Mode, on page 60. The default
is FALSE.

KeyView (11.6) Page 125 of 320

Filter SDK C Programming Guide

Filter Configuration Flags, continued

Flag Description

nValue is TRUE or FALSE.

pData is the name of the input file generating errors.

KVFLT_SETTEMPDIRECTORY This flag enables you to specify the directory where temporary files
created during filtering processes are stored.

nValue is set to 0.

pData is the path name of the directory where temporary files are
stored.

KVFLT_LOGICALPDF This flag extracts paragraphs from a PDF file in the order in which
they appear on the page (logical reading order). The nvalue
argument specifies the paragraph direction. See Filter PDF Files, on
page 66.

nValue is one of the paragraph direction options defined in the
LPDF_DIRECTION enumerated type in kvtypes.h.

pDatais NULL.

KVFLT_SETXMLCONFIGINFO This flag enables you to define which elements and attributes are
extracted from XML documents with a specified format ID or root
element. You can use this option to override the default settings for
the supported XML formats (see Filter XML Files, on page 77), or to
define settings for custom XML document types.

The settings are defined in the KVXConfigInfo structure. To set
custom settings for more than one document type, call the
fpFilterConfig() function once for each type.

You can also modify element extraction settings by using the
kvxconfig.ini file. See Configure Element Extraction for XML
Documents, on page 77.

nValue is set to 0.

pData is a pointer to the KVXConfiglnfo structure.

KVFLT_INCLREVISIONMARK If you set this flag to TRUE, text that was deleted from a document
with revision tracking enabled is extracted from the document and
included in the filtered output.

To reset the flag and exclude deleted text from the filtered output, set
the flag to FALSE (the default). See Extract Deleted Text Marked by
Tracked Changes, on page 66.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_SETSRCPASSWORD This flag enables you to define a password used to open a password-
protected file for filtering. See Filter Password Protected Files, on

KeyView (11.6) Page 126 of 320

Filter SDK C Programming Guide

Filter Configuration Flags, continued

Flag Description

page 318.
nValue is TRUE.

pData is the source file password, which can have a maximum
length of 255 characters (the final byte is null).

KVFLT_NOEMBEDDEDOBJECT If you set this flag to TRUE, embedded objects in Microsoft Word
documents are not extracted.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_SHOWHIDDENTEXT If you set this flag to TRUE, hidden text from Microsoft Word, Excel,
and PowerPoint documents is extracted.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_NOCOMMENTS If you set this flag to TRUE, comments from Microsoft Word,
PowerPoint, or Excel documents are not extracted.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_SKIPEMBEDDEDFONT If you set this flag to TRUE, text that contains embedded fonts is not
filtered from PDF documents. See Filter PDF Files, on page 66.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_SHOWDATEFIELDCODE If you set this flag to TRUE, date/time field codes are extracted from
Microsoft Word, PowerPoint, and Rich Text Format documents
instead of the date/time values.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_ If you set this flag to TRUE, file name field codes are extracted from
SHOWFILENAMEFIELDCODE Microsoft Word documents.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_KEEPSOFTHYPHEN If you set this flag to TRUE, soft hyphens are retained when text is
filtered from PDF documents. See Filter PDF Files, on page 66.

nValue is TRUE or FALSE.

pData is NULL.

KeyView (11.6) Page 127 of 320

Filter SDK C Programming Guide

Filter Configuration Flags, continued

Flag Description

KVFLT_EXPORTALLMETADATA If you set this flag to TRUE, all custom metadata is filtered from PDF
documents when the metadata APIs are used. See Extract Custom
Metadata from PDF Files, on page 69.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_ If you set this flag to TRUE, tagged PDF content is filtered from PDF
EXPORTTAGGEDCONTENT documents. See Filter Tagged PDF Content, on page 70.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_ If you set this flag to TRUE, the pData is a variable of configurable
SetConfigurableArguments arguments.

nValue is TRUE or FALSE.

pData is a variable of configurable arguments.

KVFLT_SETOUTPUTCHARSET This flag enables the output character set to be changed.

pData is one of the character encodings defined in the KVCharSet
enumerated type in kvtypes.h.

KVFLT_SHOWHIDDENTEXT If you set this flag to TRUE, hidden text from Microsoft Word, Excel,
PowerPoint, and PDF documents is extracted.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_EXTRACTIMAGES If you set this flag to TRUE, the extract API also extracts images
contained within the file. See Extract Images, on page 38 for more
details.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_TABDELIMITED If you set this flag to TRUE, tables in word processing formats are
output in tab delimited formats. See Tab Delimited Output for
Embedded Tables, on page 84 for more details.

nValue is TRUE or FALSE.

pDatais NULL.

KVFLT_ If you set this flag to TRUE, standardization of cell formats in
STANDARDIZECELLFORMATS Microsoft Excel files is enabled. See Standardize Cell Formats, on
page 76.

nValue is TRUE or FALSE.

KeyView (11.6) Page 128 of 320

Filter SDK C Programming Guide

Filter Configuration Flags, continued

Flag Description

pDatais NULL.

Examples

« To specify a password to open a password-protected file for filtering:
(*fpFilterConfig) (pKVFilter, KVFLT_SETSRCPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.
o To extract hidden text from Microsoft Word, Excel, or PowerPoint files:

(*fpFilterConfig) (pKVFilter, KVFLT_SHOWHIDDENTEXT, TRUE, NULL);

« To extract all custom metadata fields from PDF documents:

(*fpFilterConfig) (pKVFilter, KVFLT_EXPORTALLMETADATA, TRUE, NULL);

KeyView (11.6) Page 129 of 320

Filter SDK C Programming Guide

fpFilterFileO

This function filters text from an input file to an output file.

If the output file path refers to an existing directory, an extended error code is set in pContext and
returns KVERR_General. If KVERR_ General is returned, you can retrieve the extended error code by
using fpGetKvErrorCodeEx(), on page 136.

Syntax

KVErrorCode pascal fpFilterFile(
void *pContext,
char *szInputFile,
char *szOutputFile,

KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().
szInputFile A pointerto the input file.
szOutputFile A pointerto the output file.

pSummaryInfo This argument is reserved. It must be NULL.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.
Example

error = (int)(*pFilterInterface->fpFilterFile)(pFilter, srcFile, outFile, NULL);

KeyView (11.6) Page 130 of 320

Filter SDK C Programming Guide

fpFilterStream(Q

This function filters text from an input stream to an output buffer.

Syntax

KVErrorCode pascal fpFilterStream(

void
void

*pContext,
*pStreamContext

KVFilterOutput *pFilterOutput,
KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext
pStreamContext
pFilterOutput

pSummaryInfo

Returns

A pointer returned from fpInit().

A pointer returned from fpOpenStream() or fpOpenStreamEx2().

A pointer to the KV FilterOutput structure. This structure defines the output buffer.

This argument is reserved. It must be NULL.

The return value is an error code. See KVErrorCode, on page 170.

Discussion

« This function processes data in chunks. To return the entire output stream, you must call this
function repeatedly until the entire output buffer is processed, that is, until the following condition

occurs:

pFilterOutput-> cbText == ©

« This function runs in process or out of process. See The Filter Process Model, on page 29.

Example

error = (int)(*pFilterInterface->fpFilterStream)(pFilter, pStream, &filterOut,

NULL);

KeyView (11.6)

Page 131 of 320

Filter SDK C Programming Guide

fpFreeOLESummaryinfoQ

This function frees the memory allocated by fpGetOLESummaryInfoFile() or fpGetOLESummaryInfo
() for metadata extraction.

Syntax

BOOL pascal fpFreeOLESummaryInfo(
void *pContext ,
KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

pSummaryInfo A pointertothe KVSummaryInfoEx structure.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

Call this function after fpGetOLESummaryInfo() or fpGetOLESummaryInfoFile() has successfully
filled pSummaryInfo, and the data is no longer required.

KeyView (11.6) Page 132 of 320

Filter SDK C Programming Guide

fpFreeXmplinfo(Q)

This function frees the memory allocated by fpGetXmpInfoFile() or fpGetXmpInfoStream() for
metadata extraction.

Syntax
BOOL pascal fpFreeXmpInfo(
void *pContext ,
KVXmpInfo *pXmpInfo);
Arguments

pContext A pointer returned from fpInit().

pXmpInfo A pointerto the structure K\VXmplnfo.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

Discussion

Call this function after fpGetXmpInfoFile() or fpGetXmpInfoStream() has successfully filled
pXmpInfo, and the datais no longer required.

KeyView (11.6) Page 133 of 320

Filter SDK C Programming Guide

fpGetDocInfoFileQ

This function gets the following format information for a file and populates the ADDOCINFO structure:

« File format

« Fileclass

« Major version

o Other attributes

The possible values are defined in adinfo.h.

An extended error code is set in pContext if an invalid input file is provided. You can retrieve the error
code by using fpGetKvErrorCodeEx(), on page 136.

Syntax

BOOL pascal fpGetDocInfoFile(
void *pContext,
char *szFile,

ADDOCINFO *pADDocInfo);

Arguments

pContext A pointer returned from fpInit().
szFile A pointer to the input file.

pADDOCINFO The format, file class, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h.

Returns

« If the format information is extracted, the return value for this function is TRUE.

« If the format information is not extracted, the returmn value is FALSE. If FALSE is returned, you can
retrieve the extended error code by using fpGetKvErrorCodeEx(), on page 136.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.

KeyView (11.6) Page 134 of 320

Filter SDK C Programming Guide

fpGetDocInfoStream(Q

This function gets the following format information for a stream and populates the ADDOCINFO structure:

o Format

« File Class

« Major version

o Other attributes

The possible values are defined in adinfo.h.

Syntax

BOOL pascal fpGetDocInfoStream(
void *pContext,
KVInputStream *pInput,
ADDOCINFO *pADDocInfo);

Arguments

pContext A pointer returned from fpInit().
pInput A pointer to the input stream.

pADDOCINFO The format, file class, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h.

Returns

« If the format information is extracted, the return value for this function is TRUE.
« If the format information is not extracted, the return value is FALSE.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.

KeyView (11.6) Page 135 of 320

Filter SDK C Programming Guide

fpGetKvErrorCodeEx(Q

This function gets an extended error code defined in KVErrorCodeEx. It is called to provide additional
information when fpFilterFile() or fpFilterStream() returns the error KVERR_General. See
KVErrorCode, on page 170.

Syntax
KVErrorCodeEx pascal fpGetKvErrorCodeEx (void *pContext)

Arguments
pContext A pointer returned from fpInit().

Returns

The return value is an error code from KVErrorCodeEx.

Discussion

You can access this function through the KV_GetFilterInterfaceEx() interface.
Example

KVErrorCode nReturnCode = 0;
if (nReturnCode == KVERR_General)
{ int kvErrorEx;
if (lsv->fpKV_GetKvErrorCodeEx)
{
kvErrorex = (*1sv->fpKV_GetKvErrorCodekEx)(pFilter);
if (kvErrorkEx != KVError_Last)
printf("KvErrorCodeEx = %d \n ", kvErrorEx);

KeyView (11.6) Page 136 of 320

Filter SDK C Programming Guide

fpGetOLESummaryinfoQ

This function extracts document metadata from an input stream.

Syntax

KVErrorCode pascal fpGetOLESummaryInfo(
void *pContext,
KVInputStream *pInput,

KVSummaryInfoEx *pSummaryInfo);

Arguments
pContext A pointer returned from fpInit().
pInput A pointer to the developer-assigned instance of KVInputStream. The structure

KVInputStream defines the input stream that contains the source.

pSummaryInfo A pointer to the structure KVSummaryInfoEx. In the structure, nElem provides a
count of the number of metadata elements, and pElem points to the first element of
the array of individual elements as defined by the structure KVSumInfoElemEXx.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

« Afterthe pSummaryInfo argumentis successfully filled, and its data is no longer required, call

fpFreeOLESummaryInfo() to free the memory allocated by this function.
« This function runs in process or out of process. See The Filter Process Model, on page 29.

KeyView (11.6) Page 137 of 320

Filter SDK C Programming Guide

fpGetOLESummarylinfoFileQ

This function extracts document metadata from a file.

Syntax

KVErrorCode pascal fpGetOLESummaryInfoFile(
void *pContext,
char *szFile,

KVSummaryInfoEx *pSummaryInfo);

Arguments
pContext A pointer returned from fpInit().
szFile The name of the input file.

pSummaryInfo A pointertothe KVSummarylnfoEx structure. In the structure, nElem provides a
count of the number of metadata elements, and pElem points to the first element of
the array of individual elements as defined by the KVSumInfoElemEx structure.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

« Afterthe psummaryInfo argumentis successfully filled, and its data is no longer required, call

fpFreeOLESummaryInfo() to free the memory allocated by this function.
« This function runs in process or out of process. See The Filter Process Model, on page 29.

KeyView (11.6) Page 138 of 320

Filter SDK C Programming Guide

fpGetTrgCharSetQ

This function verifies that the character set requested was actually used.
Syntax
KVCharSet pascal fpGetTrgCharSet(void *pContext);

Arguments
pContext A pointer returned from fpInit().

Returns

The return value is one of the character sets listed in kvtypes.h.

KeyView (11.6 Page 139 of 320
Yy

Filter SDK C Programming Guide

fpGetXmpinfo(Q)

This function extracts XMP metadata in stream mode.
Syntax

KVErrorCode pascal fpGetXmpInfo(
void *pContext,
KVInputStream *pInput,
KVXmpInfo *pXmpInfo,

DWORD dwXmpOptions);

Arguments
pContext The pointer returned by fplnit(), on page 143.
pInput A pointer to the input stream.
pXmpInfo A pointer to the KV Xmplnfo structure.

dwXmpOptions Set this argument to 1 to return charset information, the raw XMP packet, and the
path and value pairs of all XMP elements.

Set this argument to 2 to return the raw XMP packet.

Returns
The return value is an error code. See KVErrorCode, on page 170.
Discussion

« Afterthe pXmpInfo argument is successfully filled, and its data is no longer required, call
fpFreeXmplnfo() to free the memory allocated by this function.

« This function runs in process or out of process. See The Filter Process Model, on page 29.
« XMP extraction is supported only for PDF, JPG, TIFF, and XML files.
« XMP extraction is supported on the Windows, Linux, AlX, FreeBSD, and OSX platforms.

KeyView (11.6) Page 140 of 320

Filter SDK C Programming Guide

fpGetXmplinfoFileQ

This function extracts XMP metadata from a file.

Syntax

KVErrorCode pascal fpGetXmpInfoFile(
void *pMainContext,
char *szInputFile,
KVXmpInfo *pXmpInfo,
DWORD dwXmpOptions);

Arguments

pMainContext A pointertothe TPMainContext structure, which is defined in kvtypes.h.
szInputFile A pointerto the input file.
pXmpInfo A pointer to the KV Xmplnfo structure.

dwXmpOptions Set this argument to 1 to return charset information, the raw XMP packet, and the
path and value pairs of all XMP elements.

Set this argument to 2 to return the raw XMP packet.

Returns
The return value is an error code. See KVErrorCode, on page 170.
Discussion

« Afterthe pXmpInfo argument is successfully filled, and its data is no longer required, call
fpFreeXmplnfo() to free the memory allocated by this function.

« This function runs in process or out of process. See The Filter Process Model, on page 29.
« XMP extraction is only supported for the PDF, JPG, TIFF, and XML files.
« XMP extraction is supported for the following platforms:

o Windows x86 32-bit and 64-bit

o Linux x86 32-bit and 64-bit

o Linux x86 32-bit and 64-bit using libc6 library

o Linux x86 32-bit and 64-bit for Redhat 4

o Linux Itanium 64-bit

o AIX Risk 32-bit and 64-bit

KeyView (11.6) Page 141 of 320

Filter SDK C Programming Guide

o FreeBSD 32-bit
o OSX 32-bit Universal

KeyView (11.6) Page 142 of 320

Filter SDK C Programming Guide

fpInitQ

This function initializes a Filter session. Its return value, pContext, is passed as the first argument to
the File Extraction interface and all other Filter functions.

Syntax

void * pascal fpInit(
KVMemoryStream *pMemAllocator,

KVDynLink *pDynLink,

char *pszKeyViewDir,

KVCharSet outputCharSet,

DWORD dwFlags);
Arguments

pMemAllocator A pointer to a developer-defined memory allocator. If NULL is passed, the default C
run-time memory allocation is used.

pDynLink This argument is reserved. It must be NULL.

pszKeyViewDir A pointer to the directory where the Filter components (such as the formats.ini
file, license key file (kv.1ic), and file filters) are located. This is normally the
instal\OS\bin directory.

outputCharSet The character set to use for textual output when the source character set can be
determined from the document or is specified by fpSetSrcCharSet().

The character sets are enumerated in KvVCharSet in kvtypes. h.

dwFlags Instructions on how to process a file or stream. See Flags for dwFlags, below for
more information.

Flags for dwFlags
KVF_CONTENTACCESS Reserved for internal use.
KVF_METADATA Reserved for internal use.
KVF_OUTOFPROCESS Enables out-of-process filtering. This is enabled by default. See The
Filter Process Model, on page 29.
KVF_INPROCESS Enables in-process filtering. See The Filter Process Model, on page 29.

KVF_HEADERFOOTERTAGS Puts tags around header and footer data.

KVF_HEADERFOOTER Extracts headers and footers.

KeyView (11.6) Page 143 of 320

Filter SDK C Programming Guide

KVF_UNICODEMSBLSB Uses the byte order for Big Endian systems (MSBLSB) for Unicode
text. MSBLSB is the "Most Significant Byte Least Significant Byte."

KVF_UNICODELSBMSB Uses the byte order for Little Endian systems (LSBMSB) for Unicode
text. LSBMSB is the "Least Significant Byte Most Significant Byte."

KVF_UNICODEMARKER Generates the byte order marker for Unicode text.

KVF_NOCHARSETCONVERT Prevents default conversion of document character encoding. See
Prevent the Default Conversion of a Character Set, on page 65.

KVF_OOPLOGON Enables the out-of-process error log. See Enable or Disable Error
Logging, on page 59.

KVF_OOPMEMTRACEON Enables memory trace for the out-of-process error log. See Report
Memory Errors, on page 60.

KVF_OOPLOGOFF Disables the out-of-process error log. Enable or Disable Error Logging,
on page 59.
KVF_OOPMEMTRACEOFF Disables memory trace for the out-of-process error log. See Report

Memory Errors, on page 60.

KVF This flag is used by the Container AP| which is obsolete.

FILTERCONTAINERCONTENT i . ' .
It filters the main file and subfiles of a container file by using the

standard filtering functions, and extracts the text to a single file.

KVF_DETECT_ Set these flags in fpInit() or fpOpenStreamex2 () to specify whether
OUTOFPROCESS files are detected out of process or in process for a filtering session.
These flags override the default_detect_inprocess flagin
formats.ini.

KVF_DETECT_INPROCESS

If you set neither of these flags, file detection behavior is determined by
the KVF_OUTOFPROCESS or KVF_INPROCESS flags in these calls. If you do
not set these flags, behavior is determined by default_detect_
inprocessin formats.ini.

See Run File Detection In or Out of Process, on page 34.

Returns
« Ifthe call is successful, the return value is the pointer pContext which is passed as the first

argument to all other File Extraction API and Filter API functions.
« Ifthe call is unsuccessful, the return value is NULL.

Discussion

« If this function returns NULL, check stderr for the KeyView installation error messages "KeyView
Filter SDK License Key has Expired" and"KeyView Filter SDK License Key is
Invalid", and pass them to your application.

KeyView (11.6) Page 144 of 320

Filter SDK C Programming Guide

« Tomake sure that multithreaded filter processes are thread-safe, you must create a unique context
pointer for every thread by calling fpInit(). In addition, threads must not share context pointers,
and you must use the same context pointer for all API calls in the same thread. Creating a context

pointer for every thread does not affect performance because the context pointer uses minimal
resources.

« When the filtering context is no longer required, call fpShutdown() to terminate it.

KeyView (11.6) Page 145 of 320

Filter SDK C Programming Guide

fpOpenStream(
This function opens a stream for filtering.
Syntax

void * pascal fpOpenStream(
void *pContext,
KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

« Ifthe call is successful, the return value is a void * pointer passed to fpFilterStream(),
fpCanFilterStream(), and fpCloseStream().

o If the call is unsuccessful, the return value is NULL.
Discussion

« Before you call this function, you must create an input stream either by using the
fpFiletolnputStreamCreate() function, or by using code similar to the coding example in the Filter
sample program. See Use the C-Language Implementation of the API, on page 26 for more
information.

« Afterfiltering is complete, call fpCloseStream() to free the memory allocated by this function.

KeyView (11.6) Page 146 of 320

Filter SDK C Programming Guide

fpOpenStreamEx2Q

This function opens a stream for filtering and enables you to set bitwise flags for each stream.

Syntax

void * pascal fpOpenStreamEx2(
void *pContext,
KVInputStream *pInput,
DWORD dwFlags);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source.

dwFlags Instructions on how to process a stream. See Flags for dwFlags, on page 143.

Returns

« Ifthe call is successful, the return value is a void * pointer passed to fpFilterStream(),
fpCanFilterStream(), and fpCloseStream().

« If the call is unsuccessful, the return value is NULL.
Discussion

« Before you call this function, you must create an input stream either by using the
fpFiletolnputStreamCreate() function, or by using code similar to the coding example in the Filter
sample program. See Use the C-Language Implementation of the API, on page 26 for more
information.

« Afterfiltering is complete, call fpCloseStream() to free the memory allocated by this function.

KeyView (11.6) Page 147 of 320

Filter SDK C Programming Guide

fpRefreshFilterKVOOPQ

This function forces the out-of-process filtering server (kvoop . exe) to restart. This function is optional.
Syntax

int (pascal *fpRefreshFilterkVOOP)(void *pContext);

Arguments
pContext A pointer returned from fpInit().

Returns

« Ifthe restart is successful, the return value is KVERR_Success.

« If therestart is unsuccessful, the return value is an error code.

NOTE:
There are several different error codes.

KeyView (11.6) Page 148 of 320

Filter SDK C Programming Guide

fpSetReplacementCharQ

This function specifies a replacement character to use when a character cannot be mapped. This
function is optional.

Syntax
BOOL pascal fpSetReplacementChar(void *pContext, char c);

Arguments

pContext A pointer returned from fpInit().

C The replacement character to use when a character cannot be mapped. If you do not call
this function, the default character is used.

The default is a question mark ("?").

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

KeyView (11.6) Page 149 of 320

Filter SDK C Programming Guide

fpSetSrcCharSet(

This function specifies a character set for the source document. Use this function if the character set
information cannot be determined from the source document.

Syntax
BOOL pascal fpSetSrcCharSet(void *pContext, KVCharSet eCharSet);

Arguments

pContext A pointer returned from fpInit().

eCharSet Specifies the source character set when the document reader for the document type
cannot determine the character set. The character sets are enumerated in KvCharSet of
kvtypes.h.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

KeyView (11.6) Page 150 of 320

Filter SDK C Programming Guide

fpSetTimeout(

This function specifies the length of time that should elapse before assuming that the filtering process
has stopped responding.

Syntax
BOOL pascal fpSetTimeout(void *pContext, long 1lTimeout);

Arguments

pContext A pointer returned from fpInit().

1Timeout The length of time, in seconds, that must elapse before assuming that the filtering
process has stopped responding.

Returns

o If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.

KeyView (11.6) Page 151 of 320

Filter SDK C Programming Guide

fpShutdownQ

This function terminates a filtering session that was initialized by fpInit(), and frees allocated
system resources. It is called when the filtering context is no longer required.

Syntax
void pascal fpShutdown(void *pContext);

Arguments
pContext A pointer returned from fpInit().

Returns

None.

KeyView (11.6) Page 152 of 320

Chapter 9: Filter API Structures

This section describes the data structures used by the Filter API. These structures are defined in kvf1t.h,
kwautdef.h, and adinfo.h.

KV INterfaceEX ... 154
AD D OCINF O L 156
KV G ON I G TG - 157
KV R erOU pUL <L 158
KV INPU S M il 159
KV Memory Stream ... 160
KV StructHead .. 161
KV SumINfOEIemMEX ... 162
KV Summary INfOEX . L 163
KV X CoNfigINtO L 164
KNV XMPIN O L 166
KV XMpPIN OB emMS 167

KeyView (11.6) Page 153 of 320

KVFltInterfaceEx

The members of this structure are pointers to the functions described in Filter AP Functions, on page 117.
When you call the KV_GetFilterinterfaceEx() function, this structure assigns pointers to the functions. The
structure is defined in kvfilt.h

typedef struct tag_KVFltInterfaceEx

{

void * (pascal *fpInit) (KVMemoryStream *, KVDynLink *, char *, KVCharSet, DWORD
)

void (pascal *fpShutdown) (void *);

void * (pascal *fpOpenStream)(void *, KVInputStream *);

void * (pascal *fpOpenStreamkEx2) (void *, KVInputStream *, DWORD);

BOOL (pascal *fpCloseStream)(void *, void *);

BOOL (pascal *fpCanFilterCharMap)(void *, adDocDesc *);

KVErrorCode (pascal *fpCanFilterFile)(void *, char *);

KVErrorCode (pascal *fpCanFilterStream) (void *, void *);

KVErrorCode (pascal *fpFilterStream)(void *, void *, KVFilterOutput *,
KVSummaryInfoEx *);

KVErrorCode (pascal *fpFilterFile)(void *, char *, char *, KVSummaryInfoEx *);

KVErrorCode (pascal *fpGetOLESummaryInfo)(void *, KVInputStream *, KVSummaryInfoEx *

)
KVErrorCode (pascal *fpGetOLESummaryInfoFile)(void *, char *, KVSummaryInfoEx *);
BOOL (pascal *fpFreeOLESummaryInfo)(void *, KVSummaryInfoEx *);
KVCharSet (pascal *fpGetTrgCharSet)(void *);
BOOL (pascal *fpSetTimeout)(void *, long);
BOOL (pascal *fpSetSrcCharSet)(void *, KVCharSet);
BOOL (pascal *fpSetReplacementChar)(void *, char);
BOOL (pascal *fpGetDocInfoStream)(void *, KVInputStream *, ADDOCINFO *);
BOOL (pascal *fpGetDocInfoFile)(void *, char *, ADDOCINFO *);
BOOL (pascal *fpIsArchiveFile)(void *, char *);
BOOL (pascal *fpIsArchiveFileSupported)(void *, char *);
void * (pascal *fpOpenArchiveFile)(void *, char *);
int (pascal *fpGetNumFilesInArchiveFile)(void *);

KVErrorCode (pascal *fpGetArchiveFileInfo)(void *, int, TPArchiveFileInfo *);
KVErrorCode (pascal *fpExtractArchiveFile)(void *, int, char *);

BOOL (pascal *fpCloseArchiveFile)(void *);

/* Revision 1 of Filter Interface API starts here (#define KVFLTINTERFACE_REVISION). */
BOOL (pascal *fpFileToInputStreamCreate)(void *, char *, KVInputStream *);
BOOL (pascal *fpFileToInputStreamFree)(void *, KVInputStream *);

KVErrorCode (pascal *fpCanFilterAsContainer)(void *, KVInputStream *);
void * (pascal *fpOpenContainerStream)(void *, KVInputStream *);
BOOL (pascal *fpCloseContainerStream)(void *, void *);

int (pascal *fpGetNumFilesInContainer)(void *, void *);

KVErrorCode (pascal *fpGetContainerSubFileInfo)(void *, void *, int,
TPContainerSubFileInfo *);

BOOL (pascal *fpSetExtractionPath)(void *, void *, char *, BOOL);

void (pascal *fpSetExtractionOverwrite)(void *, void *, BOOL);

KVErrorCode (pascal *fpExtractContainerSubFile)(void *, void *, int,

KeyView (11.6) Page 154 of 320

Filter SDK C Programming Guide

TPContainerSubFileInfo *);

KVErrorCode (pascal *fpGetContainerContent)(void *, void *, KVFilterOutput *,
BOOL *);

KVErrorCodeEx (pascal *fpGetKvErrorCodekEx)(void *pContext);

BOOL (pascal *fpFilterConfig)(void *pContext, int nType, int nvalue, void
*p)
/* Revision 2 of Filter Interface API starts here (#define KVFLTINTERFACE_REVISION)
*/

KVErrorCode (pascal *fpGetSubFileMetadada)(void *, void *, int, int *, int,
KVSummaryInfoEx *, int);

KVErrorCode (pascal *fpFreeSubFileMetadada)(void *, void *, KVSummaryInfoEx *);

}
KVF1tInterfaceEx;

KVErrorCode pascal KV_GetFilterInterfaceEx(KVFltInterfaceEx *pInterfaceEx, int
version);

Member Descriptions
The member functions are described in Filter API Functions, on page 117.
Discussion

The following functions are deprecated:

o fpIsArchiveFile

e fpIsArchiveFileSupported
e fpOpenArchiveFile

o fpGetNumFilesInArchiveFile
o fpGetArchiveFileInfo

o fpExtractArchiveFile

e fpCloseArchiveFile

e fpCanFilterCharMap

o fpCanFilterAsContainer

e fpCloseContainerStream

e fpGetNumFilesInContainer
o fpGetContainerSubFileInfo
o fpSetExtractionPath

e fpSetExtractionOverwrite
e fpExtractContainerSubFile
o fpGetContainerContent

o fpFreeSubFileMetadada

KeyView (11.6) Page 155 of 320

Filter SDK C Programming Guide

ADDOCINFO

This structure contains the format, file class, and version number of the source document. The
structure is defined in adinfo.h, and is initialized by calling the fpGetDoclInfoFile() or
fpGetDoclnfoStream() functions.

typedef struct

{
ENdocClass eClass;
ENdocFmt eFormat;
long 1Version;
unsigned long ulAttributes;
}

ADDOCINFO, *ADDOCINFOPTR;

Member Descriptions

eClass The file class of the source document (for example, spreadsheet, word processor, or
encapsulation format), as defined by the enumerated type ENDocClass in adinfo.h.

eFormat The major format of the source document (for example Microsoft Word XML format
or Corel Presentation), as defined by the enumerated type ENdocFmt in adinfo.h.
The ENdocFmt type provides a unique ID for each major format.

1lversion The version number of the file format. The number is multiplied by 1,000 (for
example, 1.02 is represented by 1020).

ulAttributes Other attributes of the document, as defined by the enumerated type
ENdocAttributes inadinfo.h.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When using this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format 1D, your
code should check that the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KeyView (11.6) Page 156 of 320

Filter SDK C Programming Guide

KV_CONFIG_Arg

This structure defines configurable arguments to use as the data in the fpFilterConfig() function when
you set the KVFLT_SetConfigurableArguments flag to TRUE. The structure is described in kvtypes.h

Use this structure to control the filtering of hidden data from Microsoft Excel documents. See Filter
Hidden Data, on page 82.

typedef struct _KV_CONFIG_ARG_TAG

{
unsigned int keyID;
int keyType;
KV_CONFIG_DATA keyData;
unsigned int keyDataSize;
}

KV_CONFIG_Arg;

Member Descriptions

keyID Determines the kind of configuration flags that you can use as values of keyData. If
you use the same keyID more than once, the most recent setting overrides the
previous setting.

keyType The type of data for the keyData element. Set to KV_INT32ARG.

keyData KV_CONFIG_DATA is aunion defined in kvtypes.h. Only intArg is supported, where
the value of intArg is one of the flags in the corresponding keyID.

keyDataSize The size of keyData. This is reserved for future use.

KeyView (11.6) Page 157 of 320

Filter SDK C Programming Guide

KVFilterOutput

This structure defines an output buffer for filtering. The structure is defined in kvtypes.h.

typedef struct tag KVFilterOutput

{
BYTE *pcText;
int cbText;
}
KVFilterOutput;

Member Descriptions

pcText A pointer to the text returned from fpFilterStream().

cbText The number of valid bytes in pcText.

KeyView (11.6) Page 158 of 320

Filter SDK C Programming Guide

KVinputStream

This structure defines an input stream for filtering. The structure is defined in kvtypes.h.

typedef struct tag_InputStream

{

void *pInputStreamPrivateData;
long 1lcbFilesize;

BOOL (pascal
UINT (pascal
BOOL (pascal
long (pascal
BOOL (pascal

}
KVInputStream;

*fpOpen) (struct tag_InputStream
*fpRead) (struct tag_InputStream
*fpSeek) (struct tag InputStream
*fpTell) (struct tag InputStream
*fpClose) (struct tag InputStream

Member Descriptions

*)s

*, BYTE *, UINT);
*, long, int);
*)s

*)s

« All member functions are equivalent to their counterparts in the ANSI standard library, except
fpopen (), which returns FALSE on failure.

« On fpopen(), if the size of the stream is known, assign that value to 1cbFilesize. Otherwise, set
lcbFilesizetoo.

KeyView (11.6)

Page 159 of 320

Filter SDK C Programming Guide

KVMemoryStream

This structure defines an optional memory allocator to be used by Filter. Behavior for all functions is the
same as for their C run-time equivalents. The structure is defined in kvtypes.h.

typedef struct tag_MemoryStream

{
void *pMemoryStreamPrivateData;
void * (pascal *fpMalloc) (struct tag_MemoryStream*, size t);
void (pascal *fpFree) (struct tag_MemoryStream*, void *);
void * (pascal *fpRealloc) (struct tag_MemoryStream*, void *, size_t);
void * (pascal *fpCalloc) (struct tag_MemoryStream*, size_t, size t);
}
KVMemoryStream;

Member Descriptions

« All member functions are equivalent to their counterparts in the ANSI standard library.
« fpRealloc() must handle a NULL pointer.

KeyView (11.6) Page 160 of 320

Filter SDK C Programming Guide

KVStructHead

This structure contains the current KeyView version number, and is the first member of other
structures. It enables Micro Focus to modify the structures in future releases, but to maintain backward
compatibility. Before you initialize a structure that contains the KvStructHead structure, use the macro
KVStructInit toinitialize KVStructHead. The structure and macro are defined in kvtypes.h.

typedef struct _KVStructHead

{
WORD version;
WORD size;
DWORD reserved;
void *internal;
}

KVStructHeadRec, *KVStructHead;

Member Descriptions

version The current KeyView version number. This is a symbolic constant (Keyviewversion)
defined in kvxtract.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec.
reserved Reserved forinternal use.

internal Reserved forinternal use.

Example

KVOpenFileArgRec openArg;
KVStructInit(&openArg);

KeyView (11.6) Page 161 of 320

Filter SDK C Programming Guide

KVSuminfoElemEXx

This structure contains the individual metadata elements. The structure is defined in kvtypes.h.

typedef struct tag_KVSumInfoElemEx

{
int isvalid;
KVSumInfoType type;
void *data;
char *pcType;

}

KVSumInfoElemEx;

Member Descriptions

isvalid Specifies whether the data value is present in the document. The setting 1 specifies that
the value is valid and exists. For example, if the "Title" element is not populated in the
document, pSummaryInfo.pElem[1].isvValid == @ evaluates to true.

type The data type of the metadata element. The types are defined in K\VSumInfoType in
kvtypes.h.

data The content of the metadata field.

If the type member is KV_Int4, or KV_Bool, this member contains the actual value.
Otherwise, this member is a pointer to the actual value.

KV_DateTime and KV_IEEES point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text. Kv_
Unicode is replaced with KvV_String when the UNICODE value has been character
mapped to the desired output character set as specified in the call to fpInit().

pcType A pointer to the name of the metadata field.

KeyView (11.6) Page 162 of 320

Filter SDK C Programming Guide

KVSummaryinfoEx

This structure contains a count of the number of metadata elements, and a pointer to the first element
of the array of individual elements. The structure is defined in kvtypes.h.

typedef struct tag_KVSummaryInfoEx

{
int nElem;
KVSumInfoElemEx *pElem;
}
KVSummaryInfoEx;

Member Descriptions

nElem The number of metadata elements contained in the array. A value of zero indicates that the
document did not contain metadata, such as an ASCII text document.

pElem A pointer to the first element of the array of metadata elements defined by the structure
KVSuminfoElemEx.

KeyView (11.6) Page 163 of 320

Filter SDK C Programming Guide

KVXConfiginfo

This structure defines an XML document type and the element extraction settings for that type. You
can apply the settings based on the file format ID, or the root element of the file. This structure is in

kvtypes.h.

typedef struct TAG_KVXConfigInfo

{

ENdocFmt

char*
char*
char*
char*
char*
char*

}

KVXConfigInfo;

eKVFormat;
pszRoot;
pszInMeta;
pszExMeta;
pszInContent;
pszExContent;
pszInAttribute;

Member Descriptions

eKVFormat

pszRoot

pszInMeta

pszExMeta

KeyView (11.6)

The format ID as detected by the KeyView detection module. This determines the
file type to which these extraction settings apply. The format ID is defined by the
enumerated type ENdocFmt. See File Format Detection, on page 267 for more
information on format ID values.

If you are adding configuration settings for a custom XML document type, this is
not defined.

The root element of the file. If the format ID is not defined, the root element is
used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an Element’s
Namespace and Attribute, on page 80.

The elements extracted from the file as metadata. All other elements are
extracted as text. Separate multiple entries with commas.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

The child elements in the included metadata elements that are not extracted from
the file as metadata. For example, the default extraction settings for the Visio
XML format extract the DocumentProperties element as metadata. This element
includes child elements such as Title, Subject, Author, Description, and so
on. However, the child element PreviewPicture is defined in pszExMeta
because it is binary data and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice files.
All metadata is extracted regardless of this setting.

Page 164 of 320

Filter SDK C Programming Guide

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszInContent The elements extracted from the file as content text. An asterisk (*) extracts all
elements including child elements.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszExContent The child elements in the included content elements that are not extracted from
the file as content text.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszInAttribute The attribute values extracted from the file. If attributes are not defined, attribute
values are not extracted. You must define the namespace (if used), element
name, and attribute name in the following format:

namespace: elementname@attributename
For example:

microfocus:division@name

KeyView (11.6) Page 165 of 320

Filter SDK C Programming Guide

KVXmplinfo

This structure contains the XMP metadata, and is defined in kvtypes.h.

typedef struct tag_KVXmpInfo

{
KVCharSet encoding;
BOOL bIsLittleEndian;
UINT nNoOfElements;
KVXmpInfoElem *pXmpInfoElems;
KV_TI18NSTR usXpacketData;
void *pExtension;

}

KVXmpInfo;

Member Descriptions

encoding The type of encoding.

bIsLittleEndian Indicates whether little-endian byte ordering is used.
nNoOfElements The total number of elements.

pXmpInfoElems A pointer to the KVXmplnfoElems structure.
usXpacketData A copy of the XMP data.

pExtension A reserved pointer.

KeyView (11.6 Page 166 of 320
Yy

Filter SDK C Programming Guide

KVXmpinfoElems

This structure contains the individual XMP metadata elements, and is defined in kvtypes.h.

typedef struct tag_KVXmpInfoElem

{
KV_TI18NSTR usXPathToElement;
KV_TI18NSTR usValue;

}

KVXmpInfoElem;

Member Descriptions

usXPathToElement The path tothe XMP element.

usValue The value of the XMP element.

KeyView (11.6) Page 167 of 320

Chapter 10: Enumerated Types

This section provides information on some of the enumerated types used by the Filter API.

& NtrOdUCHION ... 168
¢ KV CredKeY TYPC ... 169
¢ KVEMOrCOUe 170
¢ KVEMOrCOodeEX ... 171
¢ KVMetadataT yPe ... 175
® KVMetaNamMe T Y Pe . e 177
® KV SUMIN O Y P .. 177
O RV UM T Y P .o 178
® LPDF _DIRECTION .. L 182

Introduction

The enumerated types are in adinfo.h, kvtypes.h, kv.h, and kvxtract.h. These header files are in
the include directory. The first entry in an enumerated type structure should be set to zero (0). Each
subsequent entry is increased by 1. For example, the first five entries of KVCharSet in kvtypes.h are:

KVCS_UNKNOWN
KVCS_SJIS
KVCS_GB
KVCS_BIG5
KVCS_KSC

They would be set in the following way:

Enumerated Type Setting
KVCS_UNKNOWN 0
KVCS_SJIS 1
KVCS_GB 2
KVCS_BIGS5 3
KVCS_KSC 4

You can also set many enumerated types by entering the appropriate symbolic constant, or TRUE or
FALSE.

KeyView (11.6) Page 168 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

Programming Guidelines

When KeyView is enhanced in future releases, some enumerated types might be expanded. For
example, new format IDs might be added to the ENdocFmt enumerated type, or new error codes might
be added to the KVErrorCodeEx enumerated type. When you use these expandable types, your code
should ensure binary compatibility with future releases.

For example, if you use an array to access error messages based on an error code, your code should
check that the error code is less than KVError_Last before accessing the data. This ensures that new
error codes are detected when you add KeyView binary files from new releases to your existing
installation.

The following enumerated types are expandable:
KVErrorCodeEx

KVMetadataType

KVCharSet

KVLanguageID

KVSubfileType

ENdocFmt

KVCredKeyType

This enumerated type defines the type of credential used to open a protected file. See
KVCredential Component, on page 103. This enumerated type is defined in kvxtract.h.

Definition

typedef enum tag_KVCredKeyType

{
KVCredKeyType_UserName,
KVCredKeyType_UserIdFile,
KVCredKeyType_Password,
}
KVCredKeyType;
Enumerators
KVCredKeyType_ The credential in KVCredentialComponent is a user name.
UserName
KVCredKeyType_ The credential in KVCredentialComponent is a path to a file that
UserIdFile contains user IDs.
KVCredKeyType_ The credential in KVCredentialComponent is a password.

KeyView (11.6) Page 169 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

Password

KVErrorCode

This enumerated type defines the type of error generated if Filter fails. This enumerated type is defined
in kvtypes.h.

Definition

typedef enum tag_KVErrorCode

{

KVERR_Success, /* @ Success*/

KVERR_DLLNotFound, /* 1 DLL or shared library not found*/
KVERR_OutOfCore, /* 2 memory allocation failure*/
KVERR_processCancelled, /* 3 fpContinue() returns FALSE*/
KVERR_badInputStream, /* 4 Invalid/corrupt input stream*/
KVERR_badOutputType, /* 5 1Invalid output type requested*/
KVERR_General, /*¥ 6 General error.... */
KVERR_FormatNotSupported, /* 7 Format not supported*/
KVERR_PasswordProtected, /* 8 File is Password Protected*/
KVERR_ADSNotFound, /* 9 Adobe Document Server not found*/
KVERR_AutoDetFail, /* 10 Autodetect error*/
KVERR_AutoDetNoFormat, /* 11 Unable to detect file format*/
KVERR_ReaderInitError, /* 12 Error initializing the reader*/
KVERR_NoReader, /* 13 No reader available for this format*/
KVERR_CreateOutputFileFailed, /* 14 Unable to create output file*/
KVERR_CreateTempFileFailed, /* 15 Unable to create temp file*/

KVERR_ErrorWritingToOutputFile, /* 16 Error writing to output file*/
KVERR_CreateProcessFailed, /* 17 Error creating a child process*/
KVERR_WaitForChildFailed, /* 18 Wait for child process failed*/

KVERR_ChildTimeOut, /* 19 Child process hung / timed out*/
KVERR_ArchiveFileNotFound, /* 20 Attempt to extract nonexistent file*/
KVERR_ArchiveFatalError /* 21 Fatal error processing archive - should abort*/
}
KVErrorCode;
Enumerators

KVERR_SUCCESS The function completed successfully.

KVERR_DLLNotFound A DLL or shared library was not found.

KVERR_OutOfCore Memory allocation failure.

KVERR_processCancelled The callback function fpContinue() returns FALSE.

KVERR_badInputStream Invalid or corrupt input stream.

KeyView (11.6) Page 170 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KVERR_badOutputType

KVERR_General

KVERR_FormatNotSupported

KVERR_PasswordProtected

KVERR_ADSNotFound
KVERR_AutoDetFail
KVERR_AutoDetNoFormat
KVERR_ReaderInitError
KVERR_NoReader

KVERR_
CreateOutputFileFailed

KVERR_
CreateTempFileFailed

KVERR_
ErrorWritingToOutputFile

KVERR_
CreateProcessFailed

KVERR_WaitForChildFailed
KVERR_ChildTimeOut

KVERR_
ArchiveFileNotFound

KVERR_ArchiveFatalError

KVErrorCodeEx

Invalid output is requested.

General error. To return a more detailed message for KVERR_
General, call fpGetKvErrorCodeEx().

The file format is not supported.

The file is encrypted or password-protected. KeyView supports only
secure PST files.

Adobe Document Server not found. This error is obsolete.
Autodetect error.

Unable to detect file format.

Error initializing the reader.

No reader is available for this format.

Unable to create output file.

This error is generated if the overwrite flag in KVExtractSubFileArg is
FALSE, and a subfile has the same name as a file in the target path.

Unable to create temporary file.

There was an error writing to the output file.

There was an errror creating a child process.

The wait for child process failed.
The child process hung or timed out.

Attempt to extract nonexistent file.

A fatal error occurred processing an archive file.

This enumerated type defines extended error codes. The type is defined in kvtypes.h.

Some of these error codes provide more information when fpFilterFile() or fpFilterStream()
returns the error KVERR_General. To return these error codes, call fpGetKvErrorCodeEx().

KeyView (11.6)

Page 171 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

Definition

typedef enum tag_KVErrorCodeEx

{

KVError_OpenStreamFailure = KVERR_ArchiveFatalError + 1, /* 22 KVOpen stream
failure */

KVError_InterfaceFunctionNotFound, /* 23 Interface function not found */
KVError_InputFileNotFound, /* 24 Cannot find input file*/
KVError_OpenOutputFileFailed, /* 25 Cannot open output file*/

KVError_MemoryLeak, /* 26 Memory leak*/
KVError_MemoryOverwrite, /* 27 Memory overwrite*/

KVError_GPF, /* 28 Exception during oop filtering*/
KVError_OopCore, /* 29 Core dump in child process*/
KVError_KVooplLogFailed, /* 30 Creation of oop error log failed*/
KVError_OverNestedFileLimit, /* 31 File exceeds nested file limit*/
KVError_PSTAccessFailed, /* 32 Access failed on PST files*/
KVError_PasswordRequired, /* 33 Password required to access file*/
KVError_InvalidArgs /* 34 Input argument/structure is invalid*/
KVError_ReaderUsageDenied, /* 35 Reader requires a valid license*/
KVError_OopBadConfig, /* 36 Config buffer data was incomplete*/
KVError_OopBrokenPipe, /* 37 Read/write to/from pipe failed*/
KVError_OopPipeOEF, /* 38 Pipe was closed prior to read/write*/
KVError_IPCTimeOut, /* 39 Pipe/socket timed out on poll/select*/

KVError_InvalidOopDriverSignature, /* 4@ Client sent request to OOP server but
context driver does not exist on the server*/

KVError_InvalidOopServiceSignature, /* 41 Client sent request to OOP service that
does not exist*/

KVError_ZeroFile, /* 42 Input file is empty or zero bytes */
KVError_CompressionNotSupported /* 43 File or subfile is compressed with
unsupported method */KVError_NoTemplates /* 44 No templates found (nsfsr) */
KVError_NoMainTemplate /* 45 No main template found (nsfsr) */
KVError_InvalidTemplate /* 46 Invalid template (nsfsr) */
KVError_TemplateError /* 47 Template error (nsfsr) */
KVError_IsADirectory /* 48 A directory exists at the given pathname */
KVError_Last /* 49 */

}

KVErrorCodeEx;

Enumerators

KVError_OpenStreamFailure Failed to open a stream during out-of-process filtering. This is an

= KVERR_ArchiveFatalError extended error for the KVERR_General code.
+1

KVError_ An interface function was not found during out-of-process filtering.
InterfaceFunctionNotFound This is an extended error for the KVERR_General code.

KeyView (11.6) Page 172 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KVError_InputFileNotFound

KVError_

OpenOutputFileFailed

KVError_MemorylLeak

KVError_MemoryOverwrite

KVError_GPF

KVError_OopCore

KVError_KVoopLogFailed

KVError_
OverNestedFileLimit

KVError_PSTAccessFailed

KVError_PasswordRequired

KVError_InvalidArgs

KeyView (11.6)

Could not find the input file during out-of-process filtering. This is
an extended error for the KVERR_General code.

Could not open the output file during out-of-process filtering. This
is an extended error for the KVERR_General code.

A memory leak occurred during out-of-process filtering. This is an
extended error for the KVERR_General code.

A memory overwrite occurred during out-of-process filtering. This
is an extended error for the KVERR_General code.

An exception occurred during out-of-process filtering. This is an
extended error for the KVERR_General code.

A memory dump was generated in a child process during out-of-
process filtering. This is an extended error for the KVERR_General
code.

The creation of the out-of-process error log failed. This is an
extended error for the KVERR_General code.

The container file has more than the allowable number of child
documents. One or more child documents were not converted.
Currently, this enumerator is not used.

The PST file could not be converted. This error might be returned
when a call to fpopenFile() returns NULL for one of the following
reasons:

« A Microsoft Outlook client is not installed.

« A Microsoft Outlook client is installed, but is not the default
email client.

« A Microsoft Outlook client is installed, but is not configured
correctly.

« The PST file is corrupt.

« The PST file is read-only (PST files must allow read and write
access).

« The MAPI call fails.

« The bit editions of Microsoft Outlook do not match the bit
editions of the KeyView software.

For example, if 32-bit KeyView is used, 32-bit Outlook must be
installed. If 64-bit KeyView is used, 64-bit Outlook must be
installed.

To open the file, you must provide credentials. This error might be
returned when a call to fpOpenFile() returns NULL.

The input argument or structure is invalid. This error is generated
by the File Extraction APls.

Page 173 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KVError_ReaderUsageDenied

KVError_OopBadConfig

KVError_OopBrokenPipe

KVError_OopPipeOEF

KVError_IPCTimeOut

KVError_
InvalidOopDriverSignature

KVError_
InvalidOopServiceSignature

KVError_ZeroFile

KVError_
CompressionNotSupported

KVError_NoTemplates
KVError_NoMainTemplate
KVError_InvalidTemplate
KVError_TemplateError
KVError_IsADirectory

KVError_Last

Discussion

The current license key does not enable the document reader
required to filter the file. This error might be returned when a call to
fpOpenFile() returns NULL.

Some document readers are considered advanced features and
are licensed separately from the KeyView SDK (for example, the
PST and MBX readers). Contact your Micro Focus sales
representative to get an updated license key.

Information in the kvxconfig. ini file is incomplete and cannot be
used to filter the XML file.

Data was not transferred between the parent and child processes
during out-of-process filtering because either the parent or child
failed.

Data was not transferred between the parent and child processes
during out-of-process filtering because the parent process was
shut down.

Either the parent or child process is waiting for a reply or request
during out-of-process filtering.

A client sent a request to an out-of-process server, but the context
driver does not exist on the server.

A client sent a request to a File Extraction service that does not
exist.

If this error is generated on the call to fpClose(), you can ignore
it.

The input file is empty or zero bytes.

The file or subfile is compressed with an unsupported
compression method.

« When error reporting is enhanced in future releases, new error messages might be added to this
enumerator type. When you use this type, your code must ensure binary compatibility with future

KeyView (11.6)

Page 174 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

releases. See Programming Guidelines, on page 169.

« If an extended error code is called for a format to which the error does not apply, the KVError_Last
code is returned.

VectorPictureAnchor An anchor for embedded vector graphics.
RasterPictureAnchor An anchor for embedded raster graphics.
H1Anchor An anchor for level 1 heading blocks (H1).
H2Anchor An anchor for level 2 heading blocks (H2).
H3Anchor An anchor for level 3 heading blocks (H3).
H4Anchor An anchor for level 4 heading blocks (H4).
H5Anchor An anchor for level 5 heading blocks (H5).
H6Anchor An anchor for level 6 heading blocks (H6).
XAnchor An anchor for an external file.
AnimatedGIFAnchor An anchor for embedded animated GIF graphics.
CSSAnchor An anchor for an external CSS file.
GeneralAnchor Reserved for future use.

DBAnchor Used internally.

JPEGAnchor An anchor for an embedded JPEG graphic.

KVMetadataType

This enumerated type defines the data type of metadata that can be extracted from a subfile in a mail
message or mail store. If a metadata field has a corresponding KeyView type in KVMetadataType, the
metadata is converted to the KVVMetadataElem structure, and the structure member isDatavalidis 1.
This enumerated type is defined in kvtypes.h.

Definition

typedef enum

{
KVMetadata_Unknown =
KVMetadata_Bool =
KVMetadata_Binary =
KVMetadata_Int4 =
KVMetadata_UInt4 =
KVMetadata_Int8 =
KVMetadata_UInt8 =
KVMetadata_String =

[

-

- - -

NoOo uh wnNnNREREO
-

-

KeyView (11.6 Page 175 of 320
Yy

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KVMetadata_Unicode = 8,
KVMetadata_DateTime =9,
KVMetadata_Float = 10,
KVMetadata_Double = 11,

KVMetadata_Last

}

KVMetadataType;

Enumerators
KVMetadata_ The value in the property is of an unknown type.
Unknown
KVMetadata_ The value in the property is a Boolean value. The corresponding MAPI type is PT_
Bool BOOLEAN.
KVMetadata_ The value in the property is a byte array. The corresponding MAPI type is PT_
Binary BINARY.
KvMetadata_ The value in the property is a signed 4-byte integer. The corresponding MAPI types
Int4 are PT_I2, PT_SHORT, PT_I4, and PT_LONG.
KVMetadata_ The value in the property is an unsigned 4-byte integer. This type is not currently
UInt4 supported.
KVMetadata_ The value in the property is a signed 8-byte integer. This type is not currently
Int8 supported.
KVMetadata_ The value in the property is an unsigned 8-byte integer. This type is not currently
UInt8 supported.
KVMetadata_ The value in the property is a string. The corresponding MAPI type is PT_STRINGS.
String
KvMetadata_ The value in the property is a Unicode string. The corresponding MAPI type is PT_
Unicode UNICODE.
KVMetadata_ The value in the property is a date and time. The corresponding MAPI type is PT_
DateTime SYSTIME.
KVMetadata_ The value in the property is a 4-byte float. The corresponding MAPI type is PT_
Float FLOAT.
KVMetadata_ The value in the property is an 8-byte double. The corresponding MAPI type is PT_
Double DOUBLE.

Discussion

New types might be added to this enumerated type. When you use this type, your code should ensure
binary compatibility with future releases. See Programming Guidelines, on page 169.

KeyView (11.6) Page 176 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KVMetaNameType

This enumerated type defines the type of metadata fields extracted from a subfile in a mail message or
mail store. See KVMetaName, on page 109. This enumerated type is defined in kvxtract.h.

Definition

typedef enum

{
KVMetaNameType_Integer = O,
KVMetaNameType_String =1
}
KVMetaNameType;
Enumerators

KVMetaNameType_Integer The metadata fieldis an integer.
KVMetaNameType_String The metadata field is a string.
KVSuminfoType

This enumerated type defines the data type of the metadata field extracted from a document. This
enumerated type is defined in kvtypes.h.

Definition

typedef enum tag_ KVSumInfoType

{
KV_String = ox1,
KV_Int4 = 0x2,
KV_DateTime = 0x3,
KV_ClipBoard = x4,
KV_Bool = 0x5,
KV_Unicode = 0x6,
KV_TIEEES = Ox7,
KV_Other = Ox8

}

KVSumInfoType;

Enumerators

KV_String The value in the metadata field is a string.

KeyView (11.6) Page 177 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KV_Int4 The value in the metadata field is an integer.

KV_ The value in the metadata field is a date and time. This type is a 64-bit value
DateTime representing the number of 100-nanosecond intervals since January 1, 1601 (Windows
FILETIME EPOCH). You might need to convert this value into another format.

The Filter sample program demonstrates how to convert this value to another format.
The program translates Kv_DATETIME to a UNIX timestamp, that is, the number of
seconds since 00:00:00 (UTC), January 1, 1970. It then uses the ctime system library
call, which works on UNIX and Windows, to print the date in the following format:

Thu Aug 22 16:19:07 2002

KV_ Currently not supported.
ClipBoard

KV_Bool The value in the metadata field is a Boolean value.

KV_ The value in the metadata field is a Unicode string.
Unicode

KV_IEEE8 The value in the metadata field is an IEEE 8-byte integer.

KV_Other The value in the metadata field is user-defined.

KVSumType

This enumerated type defines the metadata fields that can be extracted from a document. This
enumerated type is defined in kvtypes.h.

« Types 0to 34 and type 42 are Office summary fields.
« Types 351040 are computer-aided design (CAD) metadata fields.
o Type 41, KV_OrigAppVersion, is shared by Office software and CAD.

Types 43 or greater are reserved for any non-standard metadata field defined in a document.
Definition
typedef enum tag_KVSumType

KV_CodePage =
KV_Title =
KV_Subject =
KV_Author =
KV_Keywords =
KV_Comments =
KV_Template =
KV_LastAuthor =
KV_RevNumber =
KV_EditTime =
KV_LastPrinted =

. . -

-

- - - >

W o0 NOUV D WNEREO
-

=
® -
-

KeyView (11.6) Page 178 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

}

KV_Create_DTM = 11,
KV_LastSave_DTM = 12,
KV_PageCount = 13,
KV_WordCount = 14,
KV_CharCount = 15,
KV_ThumbNail = 16,
KV_AppName =17,
KV_Security = 18,
KV_Category = 19,
KV_PresentationTarget = 20,
KV_Bytes = 21,
KV_Lines = 22,
KV_Paragraphs = 23,
KV_Slides = 24,
KV_Notes = 25,
KV_HiddenSlides = 26,
KV_MMClips = 27,
KV_ScaleCrop = 28,
KV_HeadingPairs = 29,
KV_TitlesofParts = 30,
KV_Manager = 31,
KV_Company = 32,
KV_LinksUpToDate = 33,
KV_HyperlinkBase = 34,
KV_Layouts = 35,
KV_Objects = 36,
KV_FileVersion = 37,
KV_LastFileVersion = 38,
KV_OrigFileVersion = 39,
KV_OrigFileType = 40,
KV_OrigAppVersion = 41,
KV_ContentStatus = 42,
KV_UserDefined = 43

KVSumType;

Enumerators

KV_CodePage
KV_Title
KV_Subject
KV_Author

KV_Keywords

KeyView (11.6)

The code page of the document.

The contents of the "Title" property field taken from the source document.
The contents of the "Subject" property field taken from the source document.
The contents of the "Author" property field taken from the source document.

The contents of the "Keywords" property field taken from the source
document.

Page 179 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

KV_Comments The contents of the "Comments" property field taken from the source
document.

KV_Template The contents of the "Template" property field taken from the source
document.

KV_LastSavedby The contents of the "Last saved by" property field taken from the source
document.

KV_RevNumber The contents of the "Revision number" property field taken from the source
document.

KV_EditTime The contents of the "Total editing time" property field taken from the source
document.

KV_LastPrinted The contents of the "Printed" property field taken from the source document.

KV_Create DTM The contents of the "Created" property field taken from the source
document.

KV_LastSave DTM The contents of the "Modified" property field taken from the source
document.

KV_PageCount The contents of the "Pages" property field taken from the source document.

The field provides the number of pages in the document.

KV_WordCount The contents of the "Words" property field taken from the source document.
The field provides the number of words in the document.

KV_CharCount The contents of the "Characters" property field taken from the source
document. The field provides the number of characters in the document.

KV_ThumbNail A thumbnail image of a document.

KV_AppName The contents of the "Type" property field taken from the source document.
This field identifies the application used to read the document.

KV_Security The contents of the "Attributes" property field taken from the source
document.

KV_Category The contents of the "Category" property field taken from the source
document.

KV_ The target format for presentations (35mm, printer, video, and so on).

PresentationTarget

KV_Bytes The contents of the "Size" property field taken from the source document.

The field provides the size of the file in bytes.

KV_Lines The contents of the "Lines" property field taken from the source document.
The field provides the number of lines in the document.

KV_Paragraphs The contents of the "Paragraphs" property field taken from the source
document. The field provides the number of paragraphs in the document.

Kv_Slides The contents of the "Slides" property field taken from a presentation

KeyView (11.6) Page 180 of 320

KV_Notes

KV_HiddenSlides

KV_MMClips

KV_ScaleCrop

KV_HeadingPairs

KV_TitlesofParts

KV_Manager

KV_Company

KV_LinksUpToDate

KV_HyperlinkBase
KV_Layouts
KV_Objects

KV_FileVersion

KV_LastFileVersion

KV_OrigFileVersion

KV_OrigFileType

KV_OrigAppVersion

KV_ContentStatus

KV_UserDefined

KeyView (11.6)

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

document. The field provides the number of slides in the document.

The contents of the "Notes" property field taken from a presentation
document. The field provides the number of notes in the document.

The contents of the "Hidden slides" property field taken from a presentation
document. The field provides the number of hidden slides in the document.

The contents of the "Multimedia clips" property field taken from a
presentation document. The field provides the number of multimedia clips in
the document.

A Boolean value that specifies whether thumbnails are cropped or scaled.

An internally-used property indicating the grouping of different document
parts and the number of items in each group.

The contents of the "Document Contents" property field taken from the
source document. The field contains a list of the parts of the file, such as the
names of macro sheets in Microsoft Excel or the headings in Word.

The contents of the "Manager" property field taken from the source
document.

The contents of the "Company" property field taken from the source
document.

A Boolean value that specifies whether links in the document are resolved
and current.

The base address used for all relative links in the file.

The number of layouts in the AutoCAD drawing.

The approximate number of objects in the AutoCAD drawing.
The AutoCAD version (for example, R13, R14) of the drawing.

The AutoCAD version (for example, R13, R14) that the AutoCAD drawing
was last saved as.

The AutoCAD version (for example, R13, R14) of the original source file.

The AutoCAD file type (for example, DWG, DXF, or DWB) of the original
source file.

The AutoCAD version (for example, R13, R14) of the application that
created the original source file.

The status of the content, for example Draft, Reviewed, or Final.

The contents of the first entry in the array of non-standard metadata. This
could be user-defined metadata, or metadata unique to a file type.

Page 181 of 320

Filter SDK C Programming Guide
Chapter 10: Enumerated Types

LPDF_DIRECTION

This enumerated type defines the paragraph direction of extracted paragraphs from a PDF file when
logical order is enabled. This enumerated type is defined in kvtypes.h.

Definition

typedef enum{
LPDF_RAW = 9,
LPDF_LTR,
LPDF_RTL,
LPDF_AUTO

} LPDF_DIRECTION ;

Enumerators

LPDF_ Unstructured paragraph flow. This is the default behavior.
RAW

LPDF_ Logical reading order and left-to-right paragraph direction.
LTR

LPDF_ Logical reading order and right-to-left paragraph direction.
RTL

LPDF_ Logical reading order. The PDF reader determines the paragraph direction for each PDF
AUTO page, and then sets the direction accordingly. This is the default when logical order is
enabled.

KeyView (11.6) Page 182 of 320

Appendixes

This section lists supported formats, supported character sets, and redistributed files, and provides
information on format detection and developing a custom document reader.

KeyView (11.6)

Appendix A: Supported Formats

This section lists information about the file formats that can be detected and processed (either filtered,
converted, or displayed) by the KeyView suite of products. The KeyView suite includes KeyView Filter
SDK, KeyView Export SDK, and KeyView Viewing SDK.

® Supported Formats 184
® Supported Formats (Detected) 209

Supported Formats

The tables in this section provide the following information:

« Thefile formats supported by the Filter API, Export API, Viewing API, and File Extraction API. The
supported versions and the format’s extension are also listed.

The formats listed in this section can also be detected by the KeyView format detection module
(kwad). The Supported Formats (Detected) section lists formats that can be detected, but cannot be
filtered, converted, or displayed.

« Thefile formats for which KeyView can detect and extract the character set and metadata
information (properties such as title, author, and subject).

Even though a file format might be able to provide character set information, some documents might
not contain character set information. Therefore, the document reader would not be able to determine
the character set of the document. In this case, either the operating system code page or the
character set specified in the API is used.

« The document reader used to filter each format.

Key to Support Tables

Symbol Description

Y The format is supported.
You can extract metadata for this format.

You can determine the character set for this format.

N The format is not supported.
You cannot extract metadata for this format.

You cannot determine the character set for this format.

P Partial metadata is extracted from this format. Some non-standard fields are not
extracted.

Only text is extracted from this format. Formatting information is not extracted.

M Only metadata (title, subject, author, and so on) is extracted from this format. Text and

KeyView (11.6) Page 184 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

Key to Support Tables, continued

Symbol Description

formatting information are not extracted.

KeyView (11.6)

Page 185 of 320

Archive Formats

Supported Archive Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
7-Zip 4.57 z7zsr, 72 N N Y Y N n/a N
multiarcsr’
AD1 n/a adisr AD1 N N Y Y N n/a N
ARJ n/a multiarcsr ARJ N N N Y N n/a N
B1 n/a b1sr B1 N N Y Y N n/a N
BinHex n/a kvhagxsr HQX N N Y Y N n/a N
Bzip2 n/a bzip2sr BZ2 N N Y Y N n/a N
Expert Witness 6 encasesr EO1, LO1 N N Y Y N n/a N
Compression Format
(EnCase) 7 encase2sr Lx01 N N Y Y N n/a N
GzIP 2 kvgzsr Gz N N N Y N n/a N
kvgz GZ N N Y N N n/a N
ISO n/a isosr ISO N N Y Y N n/a N
Java Archive n/a unzip JAR N N Y Y N n/a N
Legato EMailXtender n/a emxsr EMX N N Y Y N n/a N

17zip is supported with the multiarcsr reader on some platforms for Extract.

KeyView (11.6) Page 186 of 320

Filter SDK C Programming Guide

Supported Archive Formats, continued

Format

Archive

MacBinary

Mac Disk Copy Disk Image
Microsoft Backup File
Microsoft Cabinet format

Microsoft Compiled HTML
Help

Microsoft Compressed
Folder

PKZIP

RAR archive

RARS5 archive

Tape Archive

UNIX Compress

UUEncoding

XZ

KeyView (11.6)

Version

n/a
n/a
n/a
1.3
3

n/a

through
9.0

2.0
through
3.5

5
n/a

n/a

all
versions

n/a

Reader

macbinsr
dmgsr
bkfsr
cabsr

chmsr

Izhsr

unzip

rarsr

multiarcsr

tarsr

kvzeesr

kvzee

uudsr

multiarcsr

Extension Filter Export View Extract Metadata Charset Header/Footer

BIN
DMG
BKF
CAB
CHM

LZH

LHA

ZIP

RAR

RARS
TAR

UUE

XZ

Z Z2 Z2 Z Z

zZz Z2 Z2 Z Z

Z Z Z Z Z

Z Z Z Z Z

< < < =< <

< < z < z

< < < =< <

< z < =< <

Z Z Z Z Z

Z Z Z Z Z

n/a
n/a
n/a
n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Z Z Z Z Z

ZzZ Z Z Z Z

Page 187 of 320

Filter SDK C Programming Guide

Supported Archive Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Windows Scrap File n/a olesr SHS N N N Y N n/a N
WinZip through unzip ZIP N N Y Y N n/a N

10

Binary Format

Supported Binary Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Executable n/a exesr EXE N N Y N N n/a N
Link Library n/a exesr DLL N N Y N N n/a N

Computer-Aided Design Formats

Supported CAD Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
AutoCAD R13, R14, kpODArdr DWG Y Y2 Y3 N Y Y N
Drawing R15/2000, 2004, kpDWGrdr'

2007, 2010, 2013

10n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is

supported through the kpDWGrdr or kpDXFrdr reader.
20n non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other

versions, only text extraction is supported.
30n non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other

versions, only text extraction is supported.

KeyView (11.6) Page 188 of 320

Filter SDK C Programming Guide

Supported CAD Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
AutoCAD R13, R14, kpODArdr DXF Y Y2 Y3 N Y Y N

Drawing R15/2000, 2004, kaXFrdr1

Exchange 2007, 2010, 2013

CATIAformats 5 kpCATrdr CAT4 Y N N N Y N N

Microsoft Visio 4, 5, 2000, 2002, vsdsr VSD Y Y Y Y6 Y Y N

2003, 2007, 2010°

=<
=<
=<
Z
<
<
Z

kpVSD2rdr VSD, VSS
VST

2013 ActiveX VSDM N N Y’ N Y N N
components VSSM
VSTM
VSDX
VSSX
VSTX

kpVSDXrdr VSDM Y Y v4 Y Y Y N

10n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.

20n non-Windows platforms, graphic rendering is supported through the kpDXFrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.

30n Windows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.

4All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

5Viewing and Export use the graphic reader, kpVSD2rdr for Microsoft Visio 2003, 2007, and 2010, and vsdsr for all earlier versions. Image fidelity
in Viewing and Export is therefore only supported for versions 2003 and above. Filter uses the graphic reader kpVSD2rdr for Microsoft Visio 2003,
2007, and 2010, and vsdsr for all earlier versions.

6Extraction of embedded OLE objects is supported for Filter on Windows platforms only.

"Visio 2013 is supported in Viewing only, with the support of ActiveX components from the Microsoft Visio 2013 Viewer. Image fidelity is
supported but other features, such as highlighting, are not.

KeyView (11.6) Page 189 of 320

Filter SDK C Programming Guide

Supported CAD Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VSSM
VSTM
VSDX
VSSX
VSTX

Unigraphics kpUGrdr PRT Y N N N N N N
(UG)NX

Database Formats

Supported Database Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
dBase "+, 1Iv dbfsr DBF Y Y Y N N N N

Database

Microsoft 95, 97, 2000, 2002, 2003, mdbsr MDB, Y T T N N y? N

Access 2007, 2010, 2013, 2016 ACCDB

Microsoft 2000, 2002, 2003, 2007, mppsr MPP Y Y Y Y Y Y N

Project 2010, 2013

1Charset is not supported for Microsoft Access 95 or 97.

KeyView (11.6) Page 190 of 320

Filter SDK C Programming Guide

Desktop Publishing

Supported Desktop Publishing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Publisher 98t02016 mspubsr PUB Y T T Y Y Y N

Display Formats

Supported Display Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Adobe PDF 1.1t01.7 pdfsr PDF Y Y N 4 Y Y N

pdf2sr PDF N Y N N N N N

kppdfrdr PDF N Y Y N N N N

kppdf2rdr? PDF N N Y N N N N

Tincludes support for extraction of subfiles from PDF Portfolio documents.
2kppdf2rdr is an alternate graphic-based reader that produces high-fidelity output but does not support other features such as highlighting or text
searching.

KeyView (11.6) Page 191 of 320

Filter SDK C Programming Guide

Graphic Formats

Supported Graphic Formats

Format Version
Computer Graphics n/a
Metafile
CorelDRAW?2 through
9.0
10, 11,
12, X3
DCX Fax System n/a
Digital Imaging & n/a

Communications in
Medicine (DICOM)

Encapsulated PostScript TIFF

(raster) header
Enhanced Metafile n/a
GIF 87, 89
JBIG2 n/a

Reader

kpcgmrdr1

kpcdrrdr

kpdcxrdr

dcmsr

kpepsrdr

kpemfrdr
kpgifrdr
gifsr
kpJBIG2rdr

TFiles with non-partitioned data are supported.

2CDR/CDR with TIFF header.

KeyView (11.6)

Extension

CGM

CDR

DCX
DCM

EPS

EMF
GIF

JBIG2

Filter Export View Extract Metadata Charset Header/Footer

Y

z =2 zZz <

Y

< z < <

Y

< z < <

N

Zz Z Z Z

N

z < zZz <

N

z Z2 Z2 Z

N

z Z Z Z

Page 192 of 320

Filter SDK C Programming Guide

Supported Graphic Formats, continued

Format Version
JPEG n/a
JPEG 2000 n/a
Lotus AMIDraw n/a
Graphics

Lotus Pic n/a
Macintosh Raster 2
MacPaint n/a

Microsoft Office Drawing n/a

Omni Graffle n/a
PC PaintBrush 3
Portable Network n/a
Graphics

SGI RGB Image n/a
Sun Raster Image n/a

KeyView (11.6)

Reader
kpjpgrdr
ipgsr
kpjp2000rdr
jp2000sr

kpsdwrdr

kppicrdr

kppctrdr

kpmacrdr
kpmsordr
kpGFLrdr
kppcxrdr
kppngrdr
pngsr
kpsgirdr

kpsunrdr

Extension

JPEG

JP2, JPF,
J2K, JPWL,
JPX, PGX

SDwW

PIC

PIC
PCT

PNTG
MSO
GRAFFLE
PCX

PNG
PNG
RGB

RS

Filter Export View Extract Metadata Charset Header/Footer

N

M
N

z <

z Zz2 Z Z2 Z < Z2 Z

Y

< 2 < £

< <

< < z < < z < <

Y

N

<

< < zZz < < zZ =< <

N

N

z

Z Z Z Z Z Z Z Z

N

Y

z

z z <X Zz zZz <X zZz Zz

N

N

pd

zZ Zz2 Z2 Z2Z Z < Z2 Z

N

N

z

zZz Z2 Z Z Z Z Z2 Z

Page 193 of 320

Filter SDK C Programming Guide

Supported Graphic Formats, continued

Format

Tagged Image File

Truevision Targa

Windows Animated
Cursor

Windows Bitmap

Windows lcon Cursor
Windows Metafile
WordPerfect Graphics 1

WordPerfect Graphics 2

Version

through
6.01

n/a

n/a

n/a

2,7

Reader
tifsr
kptifrdr
kpTGArdr

kpanirdr

kpbmprdr
bmpsr
kpicordr
kpwmfrdr
kpwpgrdr

kpwg2rdr

Extension
TIFF

TIFF

TGA

ANI

BMP
BMP
ICO
WMF
WPG
WPG

Filter Export View Extract Metadata Charset Header/Footer

M

Zz Z Z

z Zz2 < Z Z Z

M

< < <

< < < < z <

N

< < <

< < < < zZ <

N

Zz Z Z

Z Z Z Z Z Z

Y

Zz Z Z

z =z Zz Z <X Z

N

Zz2 Z2 Z2

zZ2 Z2 Z2 Z2 Z2 Z

N

Zz Z Z

Zz Z2 Z Z Z Z

The following compression types are supported: no compression, CCITT Group 3 1-Dimensional Modified Huffman, CCITT Group 3 T4 1-

Dimensional, CCITT Group 4 T6, LZW, JPEG (only Gray, RGB and CMYK color space are supported), and PackBits.

KeyView (11.6)

Page 194 of 320

Filter SDK C Programming Guide

Mail Formats

Supported Mail Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Documentum n/a msgsr EMCMF N N Y Y Y Y N

EMCMF

Domino XML n/a dxlsr DXL N N Y Y Y N N

Language1

GroupWise FileSurf n/a gwfssr GWFS N N Y Y Y N N

Legato Extender n/a onmsr ONM N N Y Y Y N N

Lotus Notes 4,5,6.0,6.5,7.0,8.0 nsfsr NSF N N Y Y Y N N

database

Mailbox? Thunderbird 1.0, mbxsr® MBX N N T Y Y Y N
Eudora 6.2

Microsoft Entourage 2004 entsr various N N Y Y Y Y N

Database

1Supports non-encrypted embedded files only.

2KeyView supports MBX files created by Eudora Email and Mozilla Thunderbird. MBX files created by other common mail applications are
typically filtered, converted, and displayed.

3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

KeyView (11.6) Page 195 of 320

Filter SDK C Programming Guide

Supported Mail Formats, continued

Format

Microsoft Outlook

Microsoft Outlook
DBX

Microsoft Outlook
Express

Microsoft Outlook
iCalendar

Microsoft Outlook
for Macintosh

Microsoft Outlook
Offline Storage File

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
2Returns "Unicode" character set for version 2003 and up, and "Unknown" character set for previous versions.

3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

Version Reader
97, 2000, 2002, msgsr’
2003, 2007, 2010,
2013, 2016
5.0,6.0 dbxsr
Windows 6 emlsr3
Maclntosh 5

mbxsrt
1.0, 2.0 icssr
2011 olmsr
97, 2000, 2002, pffsr®
2003, 2007, 2010,
2013

Extension
MSG,
OFT

DBX

EML
EML
ICS, VCS

OLM

OST

SThe reader pffsr is available only on Windows and Linux.

KeyView (11.6)

Filter Export View Extract Metadata Charset Header/Footer

Y

T

T

Y

Y

Y2

N

Page 196 of 320

Filter SDK C Programming Guide

Supported Mail Formats, continued

Format Version

Microsoft Outlook
Personal Folder

97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

97, 2000, 2002,
2003, 2007, 2010,
2013

Microsoft Outlook
vCard Contact

2.1,3.0,4.0

Text Mail (MIME) n/a

Transport Neutral n/a
Encapsulation
Format

Multimedia Formats

Reader

pstsr1 2

pstnsr

vcfsr

emlsr3
mbxsr#

tnefsr

Extension Filter Export View Extract Metadata Charset Header/Footer

PST

PST

VCF

various
various

various

N

N

Y

Y

Y

N

N

Viewing SDK plays some multimedia files using the Windows Media Control Interface (MCI). MCl is a set of Windows APIs that communicate

with multimedia devices.

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

2Uses Microsoft Messaging Application Programming Interface (MAPI). Note that the native PST reader (pstsr) works only on Windows, and
requires that you have Microsoft Outlook installed. As an alternative, the MAPI reader (pstnsr) runs on all platforms, and does not require
Microsoft Outlook. For more information on using the native PST reader or the MAPI reader, see the sections 'Use the Native PST Reader

(pstnsr) ' and 'Use the MAPI Reader (pstsr)' in Chapter 3.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, and MSG files.

KeyView (11.6)

Page 197 of 320

Filter SDK C Programming Guide

Supported Multimedia Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Advanced Systems Format 1.2 asfsr ASF N N N N Y N N
WMA
WMV
Audio Interchange File n/a MCI AIFF N N Y N N N N
Format
aiffsr AIFF M N N N Y N N
Microsoft Wave Sound n/a MCI WAV N N Y N N N N
riffsr WAV M N N N Y N N
MIDI n/a MCI MID N N Y N N N N
MPEG-1 Audio layer 3 ID3v1and MCI MP3 N N Y N N N N
v2
mp3sr MP3 M M Y N Y N N
MPEG-1 Video 2,3 MCI MPG N N Y N N N N
MPEG-2 Audio n/a MCI MPEGA N N Y N N N N
MPEG-4 Audio n/a mpegdsr MP4 M N N N Y N N
3GP
NeXT/Sun Audio n/a MCI AU N N Y N N N N
QuickTime Movie 2,34 MCI QT N N Y N N N N
MOV
Windows Video 2.1 MCI AVI N N Y N N N N
NOTE:

Depending on the default multimedia player installed on your computer, the View API might not be able to play some supported multimedia
formats. To play multimedia files, the View API uses the Windows Media Control Interface (MCI) to communicate with the multimedia

KeyView (11.6) Page 198 of 320

Filter SDK C Programming Guide

player installed on your computer. If the player does not play a multimedia file that is supported by the Viewing SDK, the View API cannot
play the file.

If you cannot play a supported multimedia file by using the View API, install a different multimedia player or compressor/decompressor
(codec) component.

Presentation Formats

Supported Presentation Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Keynote 2, 3,08, ‘09 kplWPGrdr Gz Y Y Y N Y Y N
'13,'16 kplIWPG13rdr KEY Y N N N N N N

Applix Presents 4.0,4.2,4.3, kpagrdr AG Y Y Y N N N N
4.4

Corel Presentations 6,7,8,9, 10, kpshwrdr SHW Y Y Y N N N N
11,12, X3

Extensible Forms n/a kpXFDLrdr XFD Y Y Y N Y Y N

Description Language XFDL

Lotus Freelance 96, 97, 98, kpprzrdr PRZ Y Y Y N N N N

Graphics R9, 9.8

Lotus Freelance 2 Kpprerdr PRE Y Y Y N N N N

Graphics 2

Macromedia Flash through 8.0 swfsr SWF Y Y Y N N Y1 N

1The character set cannot be determined for versions 5.x and lower.

KeyView (11.6) Page 199 of 320

Filter SDK C Programming Guide

Supported Presentation Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Microsoft OneNote 2007, 2010, kpONErdr ONE Y Y Y Y N Y N
2013, 2016 ONETOC2
Microsoft PowerPoint 98 kpp40rdr PPT Y Y Y N N N N
Macintosh
2001, v.X, kpp97rdr PPT Y Y Y N P Y N
2004 PPS
POT
Microsoft PowerPoint 4 kpp40rdr PPT Y Y Y N P N N
PC
Microsoft PowerPoint 95 kpp95rdr PPT Y Y Y N P Y N
Windows
Microsoft PowerPoint 97, 2000, kpp97rdr PPT Y Y Y Y P Y y1
Windows 2002, 2003 PPS
POT
Microsoft PowerPoint 2007, 2010, kpppxrdr PPTX Y Y Y Y Y Y Y
Windows XML 2013, 2016 PPTM
POTX
POTM
PPSX
PPSM
PPAM
OASIS Open 1,22 kpodfrdr SXD Y Y Y \& Y Y N

1Slide footers are supported for Microsoft PowerPoint 97 and 2003.
2Generated by OpenOffice Impress 2.0, StarOffice 8 Impress, and IBM Lotus Symphony Presentation 3.0.

3Supported using the olesr embedded objects reader.

KeyView (11.6) Page 200 of 320

Filter SDK C Programming Guide

Supported Presentation Formats, continued

Format Version

Document Format

OpenOffice Impress, 1to5
LibreOffice Impress

StarOffice Impress 6,7,8,9

Spreadsheet Formats

Supported Spreadsheet Formats

Format Version

Apple iWork Numbers ‘08, ‘09

'13,'16
Applix Spreadsheets 42,43,44
Comma Separated n/a
Values
Corel Quattro Pro 5,6,7,8
X4
Data Interchange n/a

KeyView (11.6)

Reader

SOsr

Sosr

Reader
iwsssr
iwss13sr
assr

csvsr

gpssr

gpwsr

difsr

Extension

SXI
ODG
ODP

SXI
SXP
ODP

SXI
SXP
ODP

Extension
Gz
NUMBERS
AS

CsVv

WB2
WB3

QPW

Filter Export View Extract Metadata Charset Header/Footer

Filter

Y

Y
Y
Y

Export

< < -+

View

< < -

Extract

N

N
N
N

Metadata Charset
Y

N
N
N

Y

Y
Y
N

Header/Footer

N

N
N
N

Page 201 of 320

Filter SDK C Programming Guide

Supported Spreadsheet Formats, continued

Format

Format

Lotus 1-2-3

Lotus 1-2-3

Lotus 1-2-3 Charts
Microsoft Excel Charts

Microsoft Excel
Macintosh

Microsoft Excel
Windows

Microsoft Excel
Windows XML

Microsoft Excel Binary
Format

Microsoft Works
Spreadsheet

1 Supported using the embedded objects reader olesr.

Version

96, 97, R9, 9.8
2,3,4,5
2,3,4,5
2,3,4,5,6,7

98, 2001, v.X,
2004

2.2 through
2003

2007, 2010,
2013, 2016

2007, 2010,
2013, 2016

2,3,4

Reader

[123sr
wkssr
kpchtrdr
kpchtrdr

xlssr

xlssr

xlsxsr

xlsbsr

mwssr

Extension

123
WK4
123
XLS
XLS

XLS
XLW
XLT
XLA

XLSX
XLTX
XLSM
XLTM
XLAM

XLSB

S30
S40

Filter Export View Extract Metadata Charset Header/Footer

< z z < <

< < < =< <

2Supported for versions 97 and higher using the embedded objects reader olesr.

KeyView (11.6)

< < < =< <

Z Z Z Z

< Z2 Z Z T

< z z < <

Z Z Z Z Z

Page 202 of 320

Filter SDK C Programming Guide

Supported Spreadsheet Formats, continued

Format

OASIS Open
Document Format

OpenOffice Calc,
LibreOffice Calc

StarOffice Calc

Text and Markup Formats

Version

1,21

1t05

6,7,89

Supported Text and Markup Formats

Format
ANSI
ASCII
HTML

Microsoft Excel Windows
XML

Microsoft Word Windows
XML

Microsoft Visio XML

Version
n/a

n/a

3,4
2003

2003

2003

Reader

odfsssr

Sosr

SOsr

Reader
afsr
afsr
htmsr

xmisr

xmisr

xmisr

Extension

ODS
SXC
STC

SXC
ODS
OTS

SXC
ODS

Extension
TXT

TXT

HTM

XML

XML

VDX

Filter Export View Extract Metadata Charset Header/Footer

Y

Filter Export View

Y

Y
Y
Y

Y

Y

Y
Y
T

Y

Y

Y
Y
T

Y2 Y Y N
N Y Y N
N Y Y N

Extract Metadata Charset Header/Footer

N N N N
N N N N
N P Y N
N Y Y N
N Y Y N
N Y Y N

1Generated by OpenOffice Calc 2.0, StarOffice 8 Calc, and IBM Lotus Symphony Spreadsheet 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6)

Page 203 of 320

Filter SDK C Programming Guide

Supported Text and Markup Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
VTX
MIME HTML n/a mhtsr MHT Y Y Y N Y Y N
Rich Text Format 1 through rtfsr RTF Y Y Y N P Y Y
1.7
Unicode HTML n/a unihtmsr HTM Y Y Y N Y Y N
Unicode Text 3,4 unisr TXT Y Y Y N N Y N
XHTML 1.0 htmsr HTM Y Y Y N Y Y N
XML (generic) 1.0 xmisr XML Y T T N Y Y N

Word Processing Formats

Supported Word Processing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
Adobe FrameMaker 5,565,6,7 mifsr MIF Y Y Y N N Y N
Interchange Format
Apple iChat Log 1, AV 2 ichatsr ICHAT Y Y Y N N N N
AV 2.1,AV 3
Apple iWork Pages ‘08, ‘09 iwwpsr GZ Y Y Y N Y Y N
'13,'16 iwwp13sr PAGES Y T T N N N N
Applix Words 3.11,4, 4.1, awsr AW Y Y Y N N Y Y
4.2,43,4.4

KeyView (11.6) Page 204 of 320

Filter SDK C Programming Guide

Supported Word Processing Formats, continued

Format

Corel WordPerfect
Linux

Corel WordPerfect
Macintosh

Corel WordPerfect
Windows

Corel WordPerfect
Windows

DisplayWrite
Folio Flat File

Founder Chinese E-
paper Basic

Fujitsu Oasys

Haansoft Hangul

Health level7

IBM DCA/RFT

(Revisable Form Text)

Version

6.0, 8.1

1.02, 2, 2.1,
2.2,3,3.1

5,56.1

6,7,8,910,
11,12, X3

4
3.1
3.2.1

7
97

2002, 2005,
2007, 2010

2.0

SC23-0758-1

Reader

wpBsr

wpmsr

wosr

wpBsr

dwd4sr
foliosr

cebsr!

oazsr
hwpsr

hwposr

hi7sr

dcasr

Extension

WPS

WPM

WO

WPD

FFF
CEB

OA2
HWP
HWP

HL7
DC

1This reader is only supported on Windows 32-bit platforms.

KeyView (11.6)

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

Y

N

P

Y

N

Page 205 of 320

Filter SDK C Programming Guide

Supported Word Processing Formats, continued

Format
JustSystems Ichitaro
Lotus AMI Pro

Lotus AMI Professional
Write Plus

Lotus Word Pro
Lotus SmartMaster

Microsoft Word
Macintosh

Microsoft Word PC

Microsoft Word
Windows

Microsoft Word
Windows

Microsoft Word
Windows

Microsoft Word
Windows XML

1 Supported using the embedded objects reader olesr.

2Supported using the embedded objects reader olesr.

KeyView (11.6)

Version

8 through 2013
2,3

2.1

96, 97, R9
96, 97
4,5, 6,98

2001, v.X,
2004

4,5,55,6
1.0and 2.0

6,7,8,95

97, 2000,
2002, 2003

2007, 2010,
2013, 2016

Reader
jtdsr
lasr

lasr

Iwpsr
Iwpsr
mbsr

mw38sr

mwsr

misr

mwosr

mw38sr

mwxsr

Extension
JTD

SAM

AMI

LWP
MWP
DOC

DOC
DOT

DOC
DOC

DOC

DOC
DOT

DOCM
DOCX

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

< < =< <

<

Y

Y

< < =< <

=<

Y

Y

< < =< <

<

N

N

P

P

< < z T

z

N

Y

< Zz2 Z2 Z

pd

Y

Y

z < zZz <

<

Page 206 of 320

Filter SDK C Programming Guide

Supported Word Processing Formats, continued

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer
DOTX
DOTM
Microsoft Word 2007, 2010, mwxsr XML Y Y Y Y Y Y Y
Windows Flat XML 2013, 2016
Microsoft Works 1,2,3,4 mswsr WPS Y Y Y N N N Y
Microsoft Works 6, 2000 msw6sr WPS Y Y Y N N N Y
Microsoft Windows 1,2,3 mwsr WRI Y Y Y N N Y N
Write
OASIS Open 1,21 odfwpsr ODT Y Y Y Y2 Y Y Y
Document Format SXW
STW
Omni Outliner v3, OPML, 003sr 003 Y Y Y N N Y N
OOQuitline OPML
OOUTLINE
OpenOffice Writer, 1to5 sosr SXW Y T T N Y Y N
LibreOffice Writer OoDT
Open Publication 2.0,3.0 epubsr EPUB Y Y Y N Y Y N
Structure eBook
StarOffice Writer 6,7,8,9 sosr SXW Y T T N Y Y N
oDT

1Generated by OpenOffice Writer 2.0, StarOffice 8 Writer, and IBM Lotus Symphony Documents 3.0.

2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 207 of 320

Filter SDK C Programming Guide

Supported Word Processing Formats, continued

Format
Skype Log
WordPad

XML Paper
Specification

XyWrite

Yahoo! Instant
Messenger

Version
3
through 2003

n/a

4.12

n/a

Reader
skypesr
rtfsr

Xpssr

XyWsr

yimsr1

Extension
DBB
RTF
XPS

XY4
DAT

Filter Export View Extract Metadata Charset Header/Footer

Y

Y

Y

Y

Y

Y

N

N

N

P

N

Y

N

N

To successfully use this reader, you must set the KV_YAHOO_ID environment variable to the Yahoo user ID. You can optionally set the Kv_
OTHER_YAHO0O_ID environment variable to the other Yahoo user ID. If you do not set it, "Other" is used by default. If you enter incorrect values for

the environment variables, erroneous data is generated.

KeyView (11.6)

Page 208 of 320

Supported Formats (Detected)

The file formats listed in this section can be detected by the KeyView format detection module (kwad),
but cannot be filtered, converted, or displayed. The detection module determines a file’s format and

reports the information to the developer’s application.

The formats listed in Supported Formats, on page 184 can be detected as well as filtered, exported, and
viewed.

3D Systems STL format

Ability Office (SS, DB, GR, WP, COM)
AC3 audio

ACT

Adobe FrameMaker

Adobe FrameMaker Markup Language
AES Multiplus Comm

Aldus Freehand (Macintosh)

Aldus PageMaker (DOS)

Aldus PageMaker (Macintosh)
Amiga IFF-8SVX sound

Amiga MOD sound

Apple Binary Property List

Apple Double

Apple iWork

Apple Photoshop Document

Apple Single

Apple XML Property List
Appleworks

Applix Alis

Applix Asterix

Applix Graphics

ARC/PAK Archive

ASCll-armored PGP encoded
ASCllI-armored PGP Public Keyring
ASCll-armored PGP signed
AutoDesk Animator FLIC Animation
AutoDesk Animator Pro FLIC Animation
AutoDesk WHIP

AutoShade Rendering

B1 Archive

KeyView (11.6)

Page 209 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

« BlackBerry Activation File

« CADAM Drawing

« CADAM Drawing Overlay

o CCITT Group 3 1-Dimensional (G31D)
« COMET TOP Word

« Confifer Software WavPack

« Convergent Tech DEF Comm.

« Corel Draw CMX

« cpio Archive (UNIX/VAX/SUN)

« CPT Communication

« Creative Voice (VOC) sound

« Curses Screen Image (UNIX/VAX/SUN)
« DataPoint VISTAWORD

« DCXFax

« DEC WPS PLUS

« DECdx

« Desktop Color Separation (DCS)

« Device Independent file (DVI)

« DG CEOwrite

« DG Common Data Stream (CDS)

« DIF Spreadsheet

« Digital Document Interchange Format (DDIF)
« Digital Imaging and Communications in Medicine (DICOM)
« Disk Doubler Compression

« EBCDIC Text

o eFax

« ENABLE

« ENABLE Spreadsheet (SSF)

« Envoy (EVY)

« Executable UNIX/VAX/SUN

« FileMaker (Macintosh)

o FPXformat

« Framework

o Framework Il

o Freehand 11

o FTP Session Data

« GEM Bit Image

« Ghost Disk Image

KeyView (11.6) Page 210 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

« Google SketchUp

« Graphics Environment Manager (GEM VDI)
« Harvard Graphics

« Hewlett Packard

« Honey Bull DSA101

« HP Graphics Language (HP-GL)

« HP Graphics Language (Plotter)

« HP PCL and PJL Languages

« HP Word PC

« |IBM 1403 Line Printer

« IBMDCA-FFT

« IBM DCF Script

o Informix SmartWare ||

o Informix SmartWare || Communication File
« Informix SmartWare Il Database

o Informix SmartWare Spreadsheet

o Interleaf

« 1SO 10303-21 STEP format

« JavaClass file

« JPEG File Interchange Format (JFIF)
« Keyhole Markup Language

« KW ODA G4 (G4)

« KW ODA G31D (G31)

« KW ODA Intemal G32D (G32)

« KW ODA Internal Raw Bitmap (RBM)
« Lasergraphics Language

« Link Library UNIX/VAX/SUN

« Lotus Notes Bitmap

« Lotus Notes CDF

« Lotus Screen Cam

o Lyrix

« Macromedia Director

o MacWrite

o MacWrite Il

« MASS-11

« MATLAB MAT Format

« Micrografx Designer

« Microsoft Access 2007

KeyView (11.6) Page 211 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

« Microsoft Access 2007 Template

« Microsoft Common Object File Format (COFF)
« Microsoft Compiled HTML Help

« Microsoft Device Independent Bitmap

« Microsoft Document Imaging (MDI)

« Microsoft Excel 2007 Macro-Enabled Spreadsheet Template
« Microsoft Excel 2007 Spreadsheet Template
« Microsoft Exchange Server Database File

« Microsoft Object File Library

« Microsoft Office Drawing

« Microsoft Office Groove

« Microsoft Outlook Restricted Permission Message File
« Microsoft Windows Cursor (CUR) Graphics

« Microsoft Windows Group File

« Microsoft Windows Help File

o Microsoft Windows Icon (ICO)

« Microsoft Windows NT Event Log

« Microsoft Windows OLE 2 Encapsulation

« Microsoft Windows Vista Event Log

« Microsoft Word (UNIX)

« Microsoft Works (Macintosh)

« Microsoft Works Communication (Macintosh)
« Microsoft Works Communication (Windows)
« Microsoft Works Database (Macintosh)

« Microsoft Works Database (PC)

« Microsoft Works Database (Windows)

« Microsoft Works Spreadsheet (Macintosh)

« Microstation

« Milestone Document

« MORE Database Outliner (Macintosh)

« MPEG4 (ISO IEC MPEG4)

« MPEG-PS container with CDXA stream

« MS DOS Batch File format

« MS DOS Device Driver

« MultiMate 4.0

« Multiplan Spreadsheet

« NavyDIF

« NBI Async Archive Format

KeyView (11.6) Page 212 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

NBI Net Archive Format

Nero Encrypted File

Netscape Bookmark file

NeWsS font file (SUN)

NIOS TOP

Nota Bene

NURSTOR Drawing

Object Module UNIX/VAX/SUN
ODA/ODIF

ODA/ODIF (FOD 26)

Office Writer

OLE DIB object

OLIDIF

Open PGP (new format packets)
0S/2 PM Metafile Graphics
PaperPort image file

Paradox (PC) Database

PC COM executable (detected in file mode only)

PC Library Module

PC Object Module

PC True Type Font

PCD Image

PeachCalc Spreadsheet
Persuasion Presentation

PEX Binary Archive (SUN)

PGP Compressed Data

PGP Encrypted Data

PGP Public Keyring

PGP Secret Keyring

PGP Signature Certificate

PGP Signed and Encrypted Data
PGP Signed Data

Philips Script

PKCS #12 (p12) Format

Plan Perfect

Portable Bitmap Utilities (PBM)
Portable Greymap Utilities (PGM)
Portable Pixmap Utilities (PPM)

KeyView (11.6)

Page 213 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

« PostScript File

o PostScript Type 1 Font File

« PRIMEWORD

« Program Information File

« PTC Creo

« Q&AforDOS

« Q& A for Windows

« Quadratron Q-One (V1.93J)

« Quadratron Q-One (V2.0)

« Quark Xpress (Macintosh)

o QuickDraw 3D Metafile (3DMF)

« Real Audio

« ReallLegal E-Transcript

« Reflex Database (R2D)

« RIFF Device Independent Bitmap

« RIFF MIDI

« RIFF Multimedia Movie

« SAMNA Word IV

« Samsung Electronics JungUm Global format
o SEG-Y Seismic Data format

« Serialized Object Format (SOF) Encapsulation
« SGML

« Simple Vector Format (SVF)

o SMTP document

« SolidWorks

« Sony WAVEG64 format

« Star Office Calc Spreadsheet (versions 3-5)
« Star Office Impress Presentation (versions 3-5)
« Star Office Math (versions 3-5)

« Star Office Writer Text (versions 3-5)

« Stufflt Archive (Macintosh)

« SUN vfont definition

o SYLK Spreadsheet

« Symphony Spreadsheet

« Targon Word (V 2.0)

« Unigraphics NX

« Uniplex (V6.01)

« UNIX SHAR Encapsulation

KeyView (11.6) Page 214 of 320

Filter SDK C Programming Guide
Appendix A: Supported Formats

Usenet format

Volkswriter

Vorbis OGG format

VRML

VRML 2.0

WANG PC

Wang WITA

WANG WPS Comm.

Web ARChive (WARC)
Windows C++ Object Storage
Windows Journal

Windows Micrografx Draw (DRW)
Windows Palette

Windows scrap file (SHS)
Wireless Markup Language
Word Connection
WordMARC word processor
WordPerfect General File
WordStar

WordStar 6.0

WordStar 2000

WriteNow

Writing Assistant word processor
X Bitmap (XBM)

X Image

X Pixmap (XPM)

Xerox 860 Comm.

Xerox DocuWorks

Xerox Writer word processor
Yahoo! Messenger chat log
Zipped Keyhole Markup Language

KeyView (11.6)

Page 215 of 320

Appendix B: Character Sets

This section provides information on the handling of character sets in the KeyView suite of products, which

includes KeyView Filter SDK, KeyView Export SDK, and KeyView Viewing SDK.

* Multibyte and Bidirectional Support

® Coded Character Sets 223

Multibyte and Bidirectional Support

The KeyView SDKs can process files that contain multibyte characters. A multibyte character encoding
represents a single character with consecutive bytes. KeyView can also process text from files that contain
bidirectional text. Bidirectional text contains both Latin-based text which is read from left to right, and text that
is read from right to left (Hebrew and Arabic).

The following table indicates which character encodings are supported by KeyView for each format.

Multibyte and bidirectional support

Format

Archive

7-Zip (72)

AD1 Evidence file
ADJ

B1

BinHex (HQX)
Bzip2 (BZ2)

EnCase — Expert Witness
Compression Format (E01)

GZIP (GZ)

ISO (1ISO)

Java Archive (JAR)

Legato EMailXtender Archive (EMX)
MacBinary (BIN)

Mac Disk Copy Disk Image (DMG)
Microsoft Backup File (BKF)
Microsoft Cabinet format (CAB)
Microsoft Compiled HTML Help

KeyView (11.6)

Single-byte

n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

Multibyte

n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

Bidirectional

n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

Page 216 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
(CHM)

Microsoft Compressed Folder (LZH) n/a n/a n/a
PKZip (ZIP) n/a n/a n/a
Microsoft Outlook DBX (DBX) Y Y Y
Microsoft Outlook Offline Storage File 'Y Y Y
(OST)

RAR Archive (RAR) n/a n/a n/a
Tape Archive (TAR) n/a n/a n/a
UNIX Compress (Z) n/a n/a n/a
UUEncoding (UUE) n/a n/a n/a
Windows Scrap File (SHS) n/a n/a n/a
WinZip (ZIP) n/a n/a n/a
Binary

Executable (EXE) n/a n/a n/a
Link Library (DLL) n/a n/a n/a

Computer-aided Design

AutoCAD Drawing (DWG) Y Y Y
AutoCAD Drawing Exchange (DXF) Y Y Y
CATIA formats (CAT) Y N N
Microsoft Visio (VSD) Y Y Y
Database

dBase Database N
Microsoft Access (MDB) Y Y N
Microsoft Project (MPP) Y Y N
Desktop Publishing

Microsoft Publisher N Y N
Display

Adobe Portable Document Format Y y1 Y
(PDF)

Graphics

KeyView (11.6) Page 217 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format

Computer Graphics Metafile (CGM)
Corel DRAW (CDR)

DCX Fax System (DCX)

DICOM - Digital Imaging and

Communications in Medicine (DCM)

Encapsulated PostScript (EPS)
Enhanced Metafile (EMF)
Graphic Interchange Format (GIF)
JBIG2

JPEG

JPEG 2000

Lotus AMIDraw Graphics (SDW)
Lotus Pic (PIC)

Macintosh Raster (PICT/PCT)
MacPaint (PNTG)

Microsoft Office Drawing (MSO)
Omni Graffle (GRAFFLE)

PC PaintBrush (PCX)

Portable Network Graphics (PNG)
SGI RGB Image (RGB)

Sun Raster Image (RS)

Tagged Image File (TIFF)
Truevision Targa (TGA)
Windows Animated Cursor (ANI)
Windows Bitmap (BMP)
Windows Icon Cursor (ICO)
Windows Metafile (WMF)
WordPerfect Graphics 1 (WPG)
WordPerfect Graphics 2 (WPG)
Mail

KeyView (11.6)

Single-byte
Y

n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

Multibyte
N

n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

Bidirectional
N

n/a

n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

n/a
n/a
n/a

n/a

Page 218 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Documentum EMCMF Format Y Y Y
Domino XML Language (DXL) Y Y N
GroupWise FileSurf Y N N
Legato Extender (ONM) Y Y N
Lotus Notes database (NSF) Y Y Y
Mailbox (MBX) Y Y Y
Microsoft Entourage Database Y Y Y
Microsoft Outlook (MSG) Y Y Y
Microsoft Outlook Express (EML) Y Y Y
Microsoft Outlook iCalendar Y Y Y
Microsoft Outlook for Macintosh Y Y Y
Microsoft Outlook Offline Storage File Y Y Y
Microsoft Outlook Personal File Y Y Y
Folders (PST)

Microsoft Outlook vCard Contact ? ? ?

Text Mail (MIME)

<
<
<

Transport Neutral Encapsulation Y

Format

Multimedia

Advanced Systems Format (ASF) n/a n/a n/a
Audio Interchange File Format (AIFF) n/a n/a n/a
Microsoft Wave Sound (WAV) n/a n/a n/a
MIDI (MID) n/a n/a n/a
MPEG 1 Audio Layer 3 (MP3) n/a n/a n/a
MPEG 1 Video (MPG) n/a n/a n/a
MPEG 2 Audio (MPEGA) n/a n/a n/a
MPEG 4 Audio (MP4) n/a n/a n/a
NeXT/Sun Audio (AU) n/a n/a n/a
QuickTime Movie (QT/MQV) n/a n/a n/a
Windows Video (AVI) n/a n/a n/a

KeyView (11.6) Page 219 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format

Presentations

Apple iWork Keynote (GZ)
Applix Presents (AG)

Corel Presentations (SHW)

Extensible Forms Description
Language (XFD)

Lotus Freelance Graphics 2 (PRE)

Lotus Freelance Graphics (PRZ)

Macromedia Flash (SWF)
Microsoft OneNote

Microsoft PowerPoint PC (PPT)

Microsoft PowerPoint Windows
(PPT)

Microsoft PowerPoint Macintosh
(PPT)

Microsoft PowerPoint Windows XML
2007 and 2010 (PPTX)

OASIS Open Document (ODP)
OpenOffice Impress (ODP)
StarOffice Impress (ODP)
Spreadsheets

Apple iWork Numbers (GZ)
Applix Spreadsheets (AS)

Comma Separated Values (CSV)

Corel Quattro Pro (QPW/WB3)
Data Interchange Format (DIF)

KeyView (11.6)

Single-byte

Y

character set
1252 only

character set
1252 only

Y

character set
850 only

Y

Y
Y

character set
1252 only

Y

<

Y

character set
1252 only

character set
1252 only

Y
Y

Multibyte

Japanese, Simple Chinese,
Traditional Chinese, Thai only

Y
Y

Traditional Chinese only

Japanese, Simple Chinese,
Traditional Chinese,

Korean only

N

Y

Bidirectional

Hebrew only

Page 220 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional
Lotus 1-2-3 (123) Y Y Y
Lotus 1-2-3 (WK4) Y Y N
Lotus 123 Charts (123) Y Y N
Microsoft Excel Charts (XLS) Y Y N
Microsoft Excel Macintosh (XLS) Y N N
Microsoft Excel Windows (XLS) Y Y y?2
Microsoft Excel Windows XML 2007 Y Y N
(XLSX)

Microsoft Office Excel Binary Format Y Y N
(XLSB)

Microsoft Works Spreadsheet Y N N
(S30/540)

OASIS Open Document (ODS) Y Y N
OpenOffice Calc (ODS) Y N
StarOffice Calc (ODS) Y Y N
Text and Markup

ANSI (TXT) Y Y Y2
ASCII (TXT) Y Y Y2
HTML (HTM) Y Y Y2 3
Microsoft Excel Windows XML 2003 Y Y Y
Microsoft Word for Windows XML Y Y Y
2003

Microsoft Visio XML 2003 Y Y Y
Rich Text Format (RTF) Y Y y3
Unicode HTML Y Y y23
Unicode Text (TXT) Y Y Y2
XHTML Y Y y3
XML Y Y Y
Word Processing

Adobe Maker Interchange Format character set N N

(MIF) 1252 only

KeyView (11.6) Page 221 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format Single-byte Multibyte Bidirectional

Apple iChat Log (ICHAT) Y Y N

Apple iWork Pages (GZ) Y Y N

Applix Words (AW) character set N N
1252 only

DisplayWrite (IP) character set N N
500, 1026 only

Folio Flat File (FFF) character set N N
1252 only

Founder Chinese E-paper Basic Y Y N

(CEB)

Fujitsu Oasys (OA2) Y Y N

Hangul (HWP) Y Y N

Health level7 (HL7) Y Y Y

IBM DCA/RTF (DC) charactersets N N
500, 1026 only

JustSystems Ichitaro (JTD) Y Y N

Lotus AMI Pro (SAM) Y Simple Chinese, Traditional Y

Chinese, Japanese, Thai only

Lotus AMI Professional Write Plus Y Simple Chinese, Traditional N

(AMI) Chinese, Japanese, Thai only

Lotus Word Pro (LWP) Y Y y3

Lotus SmartMaster (MWP) Y Y N

Microsoft Word PC (DOC) character set N N
1252 only

Microsoft Word Windows V1-2 (DOC) Y N N

Microsoft Word Windows V6, 7,8,95 Y Y Hebrew onIy3

(DOC)

Microsoft Word Windows V97 Y Y y3

through 2003 (DOC)

Microsoft Word Windows XML 2007 Y Y y3

and 2010 (DOCX)

Microsoft Word Macintosh (DOC) Y N y3

Microsoft Works (WPS) Y Japanese only N

KeyView (11.6) Page 222 of 320

Filter SDK C Programming Guide

Multibyte and bidirectional support, continued

Format

Microsoft Write (WRI)

OASIS Open Document (ODT)
Omni Outliner (OO3)
OpenOffice Writer (ODT)

Open Publication Structure eBook
(EPUB)

StarOffice Writer (ODT)

Skype Log (DBB)

WordPad (RTF)

WordPerfect Linux (WPS)
WordPerfect Macintosh (WPS)
WordPerfect Windows (WO)
XML Paper Specification (XPS)
XYWrite Windows (XY4)

Yahoo! Instant Messenger (DAT)
1

Single-byte
Y

< < < <

< < < < =< <

Y

character set
1252 only

Y

Multibyte

Japanese only

< < <

(null-terminated charsets)

Y
Y
Y
N
N
N
Y
N

Y (null-terminated charsets)

Bidirectional

N

< Zz Zz Z

z Zz2 Zz2 zZ2 Z2 < Z2 Z

Multibyte PDFs are supported, provided the PDF document is created by using either Character ID-
keyed (CID) fonts, predefined CJK CMap files, or Tounicode font encodings, and does not contain
embedded fonts. See the Adobe website and the Adobe Acrobat documentation for more information.
Any multibyte characters that are not supported are displayed using the replacement character. By

default, the replacement character is a question mark (?).

To determine the type of font encodings that are used in a PDF, open the PDF in Adobe Acrobat, and
select File > Document Info > Fonts. If the Encoding column lists Custom or Embedded encodings,
you might encounter problems converting the PDF.

2

The text direction in the output file might not be correct.

3

In Export SDK, a bidirectional right-to-left (RTL) tag is extracted from this format and included in the
direction element (<dir=RTL>) of the output.

Coded Character Sets

This section lists which character set you can use to specify the target character set. The coded
character sets are enumerated in kvtypes. h and defined in the Filter class.

KeyView (11.6)

Page 223 of 320

Filter SDK C Programming Guide

Code Character Sets

Coded Character Description

Set

KVCS_ Unknown character set

UNKNOWN

KVCS_SJIS Japanese (uses multibyte encoding), cp932

KVCS_GB Simplified Chinese (China, Singapore, Malaysia)
cp936

KVCS_BIG5 Traditional Chinese (Taiwan, Hong Kong, Macaw)
cp950

KVCS _KSC Korean, cp949

KVCS_1250 Windows Latin 2 (Central Europe)

KVCS_1251 Windows Cyrillic (Slavic)

KVCS_1252 Windows Latin 1 (ANSI)

KVCS_1253 Windows Greek

KVCS_1254 Windows Latin 5 (Turkish)

KVCS_ 1255 Windows Hebrew

KVCS_1256 Windows Arabic

KVCS 1257 Windows Baltic Rim

KVCS_ 1258 Windows Vietnamese

KVCS 8859 1 ISO 8859-1 Latin 1 (Western Europe, Latin
America)

KVCS 8859 2 ISO 8859-2 Latin 2 (Central Eastern Europe)

KVCS 8859 3 ISO 8859-3 Latin 3 (S.E. Europe)

KVCS 8859 4 ISO 8859-4 Latin 4 (Scandinavia/Baltic)

KVCS_8859 5 ISO 8859-5 Latin/Cyrillic

KVCS_8859 6 ISO 8859-6 Latin/Arabic

KVCS 8859 7 ISO 8859-7 Latin/Greek

KVCS_8859 8 ISO 8859-8 Latin/Hebrew

KVCS_8859 9 ISO 8859-9 Latin/Turkish

KVCS_8859 14 ISO 8859-14

KeyView (11.6)

Can be set as target

charset?

N

< < < < < < < < =< =< <

< < < < < < =< =< <

Page 224 of 320

Filter SDK C Programming Guide

Code Character Sets, continued

Coded Character Description Can be set as target

Set charset?
KVCS_8859 15 ISO 8859-15 Y
KVCS_437 DOS Latin US Y
KVCS_737 DOS Greek Y
KVCS_775 DOS Baltic Rim Y
KVCS_850 DOS Latin 1 Y
KVCS_851 DOS Greek Y
KVCS_852 DOS Latin 2 Y
KVCS_855 DOS Cyrillic Y
KVCS_857 DOS Turkish Y
KVCS_860 DOS Portuguese Y
KVCS_861 DOS Icelandic Y
KVCS 862 DOS Hebrew Y
KVCS_863 DOS Canadian French Y
KVCS_864 DOS Arabic Y
KVCS_865 DOS Nordic Y
KVCS_866 DOS Cyrillic Russian Y
KVCS_869 DOS Greek 2 Y
KVCS_874 Thai Y
KVCS_ PDF MAC DOC N
PDFMACDOC

KVCS_ PDF WIN DOC N
PDFWINDOC

KVCS_STDENC Adobe Standard Encoding N
KVCS_PDFDOC Adobe standard PDF character set N
KVCS_037 EBCDIC code page 037 Y
KVCS_ 1026 EBCDIC code page 1026 Y
KVCS_500 EBCDIC code page 500 Y

KeyView (11.6)

Page 225 of 320

Filter SDK C Programming Guide

Code Character Sets, continued

Coded Character
Set

KVCS_875
KVCS_LMBCS
KVCS_UNICODE
KVCS_UTF16
KVCS_UTF8
KVCS_UTF7
KVCS_2022 JP

KVCS_2022_CN

KVCS_2022_KR

KVCS_WP6X
KVCS_10000
KVCS_KSC5601
KVCS_GB2312
KVCS_GB12345
KVCS_CNS11643
KVCS_JI1S0201

KVCS_JIS0212
KVCS_EUC_JP
KVCS_EUC_GB

KVCS_EUC_
BIG5

KVCS_EUC_KSC
KVCS_424
KVCS_856
KVCS_1006

KeyView (11.6)

Description

EBCDIC code page 875

Lotus multibyte character set Group 1 and Group 2
Unicode, UCS-2

16-bit Unicode transformation format

8-bit Unicode transformation format

7-bit Unicode transformation format

ISO 2022-JP, Japanese mail and news safe
encoding (JIS-7)

1ISO 2022-CN, Chinese mail and news safe
encoding

1ISO 2022-KR, Korean mail and news safe
encoding

Word Perfect 6.x and higher character mapping
Western European (Macintosh)

Unified Hangul

Simplified Chinese (China, Singapore, Hong Kong)
Traditional Chinese (China) - analogue of GB2312
Traditional Chinese - Taiwan. Supplement to Big5

Japanese - contains ASCII character set (JIS-
Roman)

Japanese. Supplement to JIS0208.
Japanese Extended UNIX Code
Simplified Chinese Extended UNIX Code

Traditional Chinese Extended UNIX Code

Korean Extended UNIX Code
EBCDIC Hebrew
PC Hebrew (old)

IBM AIX Pakistan (Urdu)

Can be set as target

charset?

zZ < < < < z <

zZ < < < zZ < < < < =< z

z2 Z2 Z2 Z

Page 226 of 320

Filter SDK C Programming Guide

Code Character Sets, continued

Coded Character Description Can be set as target
Set charset?
KVCS_KOI8R Cyrillic (Russian) Y
KVCS_PDF_ Adobe-Japan1-2 character collection N
JAPAN1

KVCS_PDF_ Adobe-Korea1-0 character collection N
KOREA1

KVCS _PDF _GB1 Adobe-GB1-3 character collection N
KVCS_PDF_ Adobe-CNS1-2 character collection N
CNS1

KVCS 2022 JP_ IS0 2022-JP, Japanese mail and news safe N
8 encoding (JI1S8)

KVCS_720 Arabic DOS-720 Y
KVCS_VISCII Vietnamese VISCII Y
KVCS_8859 10 ISO 8859-10 (Latin 6 Nordic) 4
KVCS_8859 13 ISO 8859-13 (Latin 7 Baltic) y1
KVCS_57002 ISCII Devanagari (x-iscii-de) v
KVCS_ 57003 ISCII Bengali (x-iscii-be) y1
KVCS_57004 ISCII Tamil (x-iscii-ta) v
KVCS_57005 ISCII Telugu (x-iscii-te) 1
KVCS_57006 ISCIlI Assamese (x-iscii-as) y1
KVCS_57007 ISCII Oriya (x-iscii-or) y1
KVCS_ 57008 ISCII Kannada (x-iscii-ka) vy
KVCS_57009 ISCII Malayalam (x-iscii-ma) vy
KVCS_57010 ISCII Gujarathi (x-iscii-gu) y1
KVCS_57011 ISCII Panjabi (x-iscii-pa) y1
KVCS_ Reserved for internal use n/a
GB18030b2

KVCS_GB18030 GB18030 (Chinese 4-byte character set) Y
KVCS_8859 11 ISO 8859-11 (Thai) Y
KVCS_8859 16 ISO 8859-16 (Latin-10 South-Eastern Europe) Y

KeyView (11.6) Page 227 of 320

Filter SDK C Programming Guide

Code Character Sets, continued

Coded Character Description Can be set as target
Set charset?

KVCS_ Arabic Mac (x-mac-arabic) Y

ARABICMAC

KVCS_KOI8U Cyrillic (KOI8U Ukrainian) Y

KVCS_ The 7-bit representation of GB 2312/ RFC 1842 n/a

HZGB2312

1

The character set cannot be forced as output in Export SDK and Viewing SDK because the character
set is not supported by the major browsers.

KeyView (11.6) Page 228 of 320

Appendix C: File Formats and Extensions

This section lists the KeyView file format numbers and their associated file extensions.

®* File Format and Extension Table

File Format and Extension Table

This section lists the KeyView file format codes and the file extensions that they are most commonly

associated with.

NOTE: This is not a complete list of file extensions. KeyView returns format codes based on
file content, which cannot always be predicted from the file extension. Some file extensions
might also be associated with multiple format numbers.

KeyView file formats and extensions

Format Name

AES_Multiplus_
Comm_Fmt

ASCII_Text_Fmt

MSDOS_Batch_
File_Fmt

Applix_Alis_Fmt
BMP_Fmt

CT_DEF_Fmt

Corel Draw_Fmt

CGM_ClearText_
Fmt

CGM_Binary_Fmt

CGM_Character _
Fmt

Word_Connection_
Fmt

COMET_TOP_
Word_Fmt

KeyView (11.6)

Format
Number

1

12

Format Description

Multiplus (AES)

Text
MS-DOS Batch File

APPLIX ASTERIX
Windows Bitmap

Convergent Technologies DEF
Comm. Format

Corel Draw

Computer Graphics Metafile (CGM)

Computer Graphics Metafile (CGM)

Computer Graphics Metafile (CGM)

Word Connection

COMET TOP

Associated File
Extension

PTF

BAT

AX
BMP

CDR
cGMm’

cem !
cem!

CN

Page 229 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

CEOwrite_Fmt 13 CEOwrite Ccw

DSA101_Fmt 14 DSA101 (Honeywell Bull)

DCA_RFT_Fmt 15 DCA-RFT (IBM Revisable Form) RFT

CDA_DDIF_Fmt 16 CDA/DDIF

DG CDS _Fmt 17 DG Common Data Stream (CDS) CDS

Micrografx_Draw_ 18 Windows Draw (Micrografx) DRW

Fmt

Data_Point_ 19 Vistaword

VistaWord_Fmt

DECdx_Fmt 20 DECdx DX

Enable WP_Fmt 21 Enable Word Processing WPF

EPSF_Fmt 22 Encapsulated PostScript EpPS

Preview EPSF_Fmt 23 Encapsulated PostScript Eps

MS_Executable Fmt 24 MSDOS/Windows Program EXE

G31D_Fmt 25 CCITTG31D

GIF_87a_Fmt 26 Graphics Interchange Format GIF1
(GIF87a)

GIF_89a Fmt 27 Graphics Interchange Format GIF 1
(GIF89a)

HP_Word PC_Fmt 28 HP Word PC HW

IBM_1403_ 29 IBM 1403 Line Printer 14

LinePrinter_Fmt

IBM_DCF_Script_ 30 DCF Script IC

Fmt

IBM_DCA_FFT_Fmt 31 DCA-FFT (IBM Final Form) IF

Interleaf Fmt 32 Interleaf

GEM_Image_Fmt 33 GEM Bit Image IMG

IBM_Display_Write . 34 Display Write IP

Fmt

KeyView (11.6) Page 230 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Sun_Raster_Fmt 35 Sun Raster RAS

Ami_Pro_Fmt 36 Lotus Ami Pro SAM

Ami_Pro_ 37 Lotus Ami Pro Style Sheet

StyleSheet Fmt

MORE_Fmt 38 MORE Database MAC

Lyrix_Fmt 39 Lyrix Word Processing

MASS 11 _Fmt 40 MASS-11 M1

MacPaint_Fmt 41 MacPaint PNTG

MS_Word Mac_ Fmt 42 Microsoft Word for Macintosh poc

SmartWare Il 43 SmartWare Il

Comm_Fmt

MS_Word Win Fmt 44 Microsoft Word for Windows poc

Multimate_Fmt 45 MultiMate MM 1

Multimate_Fnote 46 MultiMate Footnote File FNX 1

Fmt

Multimate_Adv_Fmt 47 MultiMate Advantage

Multimate_Adv_ 48 MultiMate Advantage Footnote File

Fnote_Fmt

Multimate_Adv_Il_ 49 MultiMate Advantage Il Mm?!

Fmt

Multimate_Adv_Il_ 50 MultiMate Advantage Il Footnote File FNX 1

Fnote Fmt

Multiplan_PC_Fmt 51 Multiplan (PC)

Multiplan_Mac_Fmt 52 Multiplan (Mac)

MS_RTF_Fmt 53 Rich Text Format (RTF) RTF

MS Word PC Fmt 54 Microsoft Word for PC poc '

MS_Word_PC_ 55 Microsoft Word for PC Style Sheet poc '

StyleSheet Fmt

MS_Word PC_ 56 Microsoft Word for PC Glossary DOC 1

Glossary_Fmt

KeyView (11.6) Page 231 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

MS_Word PC_ 57 Microsoft Word for PC Driver DOC 1

Driver_Fmt

MS_Word PC_ 58 Microsoft Word for PC Miscellaneous DOC

Misc_Fmt File

NBI_Async_ 59 NBI Async Archive Format

Archive_Fmt

Navy DIF_Fmt 60 Navy DIF ND

NBI_Net_Archive 61 NBI Net Archive Format NN

Fmt

NIOS_TOP_Fmt 62 NIOS TOP

FileMaker Mac_Fmt 63 Filemaker MAC FP5, FP7

ODA_Q1_11_Fmt 64 ODA/ODIF oD’

ODA Q1 12 Fmt 65 ODA/ODIF op !

OLIDIF_Fmt 66 OLIDIF (Olivetti)

Office_Writer_Fmt 67 Office Writer ow

PC_Paintbrush_Fmt 68 PC Paintbrush Graphics (PCX) PCX

CPT_Comm_Fmt 69 CPT

Lotus PIC_Fmt 70 Lotus PIC PIC

Mac_PICT_Fmt 71 QuickDraw Picture PCT

Philips_Script_ 72 Philips Script

Word_Fmt

PostScript Fmt 73 PostScript PS

PRIMEWORD_Fmt 74 PRIMEWORD

Quadratron_Q_One_ 75 Q-One V1.93J Q1 1, ax !

vl Fmt

Quadratron_Q_One_ 76 Q-One V2.0 Q1 1, ax !

v2_Fmt

SAMNA Word IV_ 77 SAMNA Word SAM

Fmt

KeyView (11.6) Page 232 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Ami_Pro Draw_Fmt 78 Lotus Ami Pro Draw SDW

SYLK Spreadsheet 79 SYLK

Fmt

SmartWare || WP_ 80 SmartWare Il

Fmt

Symphony_Fmt 81 Symphony WRA1

Targa_Fmt 82 Targa TGA

TIFF_Fmt 83 TIFF TIF, TIFF

Targon_Word_Fmt 84 Targon Word TW

Uniplex_Ucalc Fmt 85 Uniplex Ucalc SS

Uniplex_ WP_Fmt 86 Uniplex UpP

MS_Word UNIX 87 Microsoft Word UNIX poc’

Fmt

WANG_PC_Fmt 88 WANG PC

WordERA Fmt 89 WordERA

WANG_WPS_ 90 WANG WPS WF

Comm_Fmt

WordPerfect Mac_ 91 WordPerfect MAC WPM, wpD'

Fmt

WordPerfect Fmt 92 WordPerfect wo, wpp'!

WordPerfect VAX_ 93 WordPerfect VAX wpD'

Fmt

WordPerfect Macro_ 94 WordPerfect Macro

Fmt

WordPerfect_ 95 WordPerfect Spelling Dictionary

Dictionary_Fmt

WordPerfect_ 96 WordPerfect Thesaurus
Thesaurus_Fmt

WordPerfect_ 97 WordPerfect Resource File
Resource_Fmt

WordPerfect_Driver 98 WordPerfect Driver

KeyView (11.6) Page 233 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

Fmt

WordPerfect_Cfg_ 99 WordPerfect Configuration File

Fmt

WordPerfect_ 100 WordPerfect Hyphenation Dictionary

Hyphenation_Fmt

WordPerfect Misc_ 101 WordPerfect Miscellaneous File wpD'

Fmt

WordMARC_Fmt 102 WordMARC WM, PW

Windows_Metafile_ 103 Windows Metafile wMmF!

Fmt

Windows_Metafile_ 104 Windows Metafile (no header) WMF?

NoHdr_Fmt

SmartWare Il DB 105 SmartWare Il

Fmt

WordPerfect 106 WordPerfect Graphics WPG, QPG

Graphics_Fmt

WordStar_Fmt 107 WordStar WS

WANG_WITA Fmt 108 WANG WITA WT

Xerox_860_ Comm_ 109 Xerox 860

Fmt

Xerox_Writer Fmt 110 Xerox Writer

DIF_SpreadSheet_ 111 Data Interchange Format (DIF) DIF

Fmt

Enable 112 Enable Spreadsheet SSF

Spreadsheet_Fmt

SuperCalc_Fmt 113 Supercalc CAL

UltraCalc_Fmt 114 UltraCalc

SmartWare Il SS_ 115 SmartWare Il

Fmt

SOF_Encapsulation_ 116 Serialized Object Format (SOF) SOF

Fmt

KeyView (11.6) Page 234 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

PowerPoint_Win_
Fmt

PowerPoint_Mac_
Fmt

PowerPoint_ 95 Fmt
PowerPoint_97 Fmt

PageMaker_Mac_
Fmt

PageMaker_Win_
Fmt

MS_Works Mac
WP_Fmt

MS_Works_Mac _
DB_Fmt

MS_Works Mac
SS Fmt

MS_Works Mac
Comm_Fmt

MS_Works DOS
WP_Fmt

MS_Works_DOS
DB _Fmt

MS_Works DOS
SS Fmt

MS_Works Win_
WP_Fmt

MS_Works_Win_
DB_Fmt

MS_Works_Win_
SS Fmt

PC_Library_Fmt

MacWrite_ Fmt

KeyView (11.6)

Format

Number

117

118

119
120
121

122

123

124

125

126

127

128

129

130

131

132

133
134

Format Description

PowerPoint PC

PowerPoint MAC

PowerPoint 95
PowerPoint 97

PageMaker for Macintosh

PageMaker for Windows

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for MAC

Microsoft Works for DOS

Microsoft Works for DOS

Microsoft Works for DOS

Microsoft Works for Windows

Microsoft Works for Windows

Microsoft Works for Windows

DOS/Windows Object Library

MacWrite

Associated File
Extension

PP’
PP’

PP
PP’

wps

wpB!

wps'
wDB!

530, S40

Page 235 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

MacWrite_Il_Fmt 135 MacWrite Il

Freehand_Fmt 136 Freehand MAC

Disk_Doubler_Fmt 137 Disk Doubler

HP_GL Fmt 138 HP Graphics Language HPGL

FrameMaker Fmt 139 FrameMaker FM, FRM

FrameMaker Book 140 FrameMaker BOOK

Fmt

Maker_Markup_ 141 Maker Markup Language

Language Fmt

Maker_Interchange . 142 Maker Interchange Format (MIF) MIF

Fmt

JPEG File 143 Interchange Format JPG, JPEG

Interchange_Fmt

Reflex Fmt 144 Reflex

Framework_Fmt 145 Framework

Framework_Il_Fmt 146 Framework I FW3

Paradox_Fmt 147 Paradox DB

MS_Windows__ 148 Windows Write WRI

Write_Fmt

Quattro Pro DOS_ 149 Quattro Pro for DOS

Fmt

Quattro Pro Win_ 150 Quattro Pro for Windows WB2, WB3

Fmt

Persuasion_Fmt 151 Persuasion

Windows_lcon_ Fmt 152 Windows Icon Format ICO

Windows_Cursor_ 153 Windows Cursor CUR

Fmt

MS_Project_ 154 Microsoft Project MPP]

Activity_Fmt

MS_Project_ 155 Microsoft Project mpP?!

Resource_Fmt

KeyView (11.6) Page 236 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

MS_Project_Calc__
Fmt

PKZIP_Fmt
Quark_Xpress_Fmt

ARC_PAK_Archive_
Fmt

MS_Publisher_Fmt
PlanPerfect Fmt

WordPerfect
Auxiliary_Fmt

MS_WAVE_Audio
Fmt

MIDI_Audio_Fmt

AutoCAD_DXF_
Binary_Fmt

AutoCAD_DXF_
Text Fmt

dBase_Fmt

0OS_2 PM_Metafile_
Fmt

Lasergraphics__
Language Fmt

AutoShade
Rendering_Fmt

GEM_VDI_Fmt
Windows_Help Fmt
Volkswriter_ Fmt
Ability WP_Fmt
Ability_DB_Fmt

Ability SS_Fmt

KeyView (11.6)

Format
Number

156

157
158
159

160
161
162

163

164
165

166

167
168

169

170

171
172
173
174
175
176

Format Description

Microsoft Project

ZIP Archive
Quark Xpress MAC

PAK/ARC Archive

Microsoft Publisher
PlanPerfect

WordPerfect auxiliary file

Microsoft Wave

MIDI

AutoCAD DXF

AutoCAD DXF

dBase

0S/2 PM Metafile

Lasergraphics Language

AutoShade Rendering

GEM VDI
Windows Help File
Volkswriter

Ability

Ability

Ability

Associated File
Extension
mpp?

ZIP

ARC, PAK

puB!

WPW

WAV

MID, MIDI
DXF]

DXF]

DBF
MET

VDI
HLP
VW4

Page 237 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Ability_ Comm_Fmt
Ability_Image_Fmt
XyWrite_Fmt
CSV_Fmt

IBM_Writing_
Assistant_Fmt

WordStar_2000_Fmt
HP_PCL_Fmt

UNIX_Exe_
PreSysV_VAX Fmt

UNIX_Exe Basic_
16_Fmt

UNIX_Exe x86_Fmt

UNIX_Exe_iAPX_
286_Fmt

UNIX_Exe MC68k
Fmt

UNIX Exe 3B20
Fmt

UNIX_Exe
WE32000_Fmt

UNIX_Exe VAX_
Fmt

UNIX_Exe Bell 5
Fmt

UNIX_Obj_VAX_
Demand_Fmt

UNIX_Obj_MS8086_
Fmt

UNIX_Obj_Z8000
Fmt

KeyView (11.6)

Format
Number

177
178
179
180
181

182
183
184

185

186
187

188

189

190

191

192

193

194

195

Format Description

Ability

Ability

XYWrite / Nota Bene

CSV (Comma Separated Values)

IBM Writing Assistant

WordStar 2000
HP Printer Control Language

Unix Executable (PDP-11/pre-
System V VAX)

Unix Executable (Basic-16)

Unix Executable (x86)

Unix Executable (IAPX 286)

Unix Executable (MC680x0)

Unix Executable (3B20)

Unix Executable (WE32000)

Unix Executable (VAX)

Unix Executable (Bell 5.0)

Unix Object Module (VAX Demand)

Unix Object Module (old MS 8086)

Unix Object Module (Z8000)

Associated File
Extension

XY4
Csv
IWA

WS2
PCL

Page 238 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

AU_Audio_Fmt
NeWS_Font Fmt

cpio_Archive_
CRChdr_Fmt

cpio_Archive
CHRhdr_Fmt

PEX_Binary_
Archive_Fmt

Sun_vfont_Fmt
Curses_Screen_Fmt
UUEncoded_Fmt
WriteNow_Fmt
PC_Obj_Fmt

Windows_Group_
Fmt

TrueType Font Fmt
Windows_PIF_Fmt

MS_COM_
Executable_Fmt

Stufflt_Fmt
PeachCalc_Fmt
Wang_GDL_Fmt
Q_A_DOS_Fmt
Q_A_Win_Fmt
WPS_PLUS_Fmt
DCX_Fmt
OLE_Fmt
EBCDIC_Fmt
DCS_Fmt

KeyView (11.6)

Format
Number

196
197
198

199

200

201
202
203
204
205
206

207
208
209

210
211
212
213
214
215
216
217
218
219

Format Description

NeXT/Sun Audio Data
NeWS bitmap font

cpio archive (CRC Header)

cpio archive (CHR Header)

SUN PEX Binary Archive

SUN vfont Definition

Curses Screen Image

UU encoded

WriteNow MAC
DOS/Windows Object Module

Windows Group

TrueType Font
Program Information File (PIF)

PC (.COM)

Stufflt (MAC)

PeachCalc

WANG Office GDL Header
Q&AforDOS

Q & A for Windows
WPS-PLUS

DCX FAX Format(PCX images
OLE Compound Document
EBCDIC Text

DCS

Associated File
Extension

AU

UUE

TTF
PIF
COM

HQX

JW
WPL
DCX
OLE

Page 239 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

UNIX_SHAR_Fmt 220 SHAR SHAR

Lotus_Notes__ 221 Lotus Notes Bitmap

BitMap_Fmt

Lotus Notes CDF_ 222 Lotus Notes CDF CDF

Fmt

Compress_Fmt 223 Unix Compress Z

GZ Compress_ Fmt 224 GZ Compress cz!

TAR_Fmt 225 TAR TAR

ODIF_FOD26_Fmt 226 ODA/ ODIF F26

ODIF_FOD36_Fmt 227 ODA/ODIF F36

ALIS_Fmt 228 ALIS

Envoy Fmt 229 Envoy EVY

PDF_Fmt 230 Portable Document Format PDF

BinHex_Fmt 231 BinHex HQX

SMTP_Fmt 232 SMTP SMTP

MIME_Fmt 233 MIME2 EML, MBX

USENET_Fmt 234 USENET

SGML_Fmt 235 SGML SGML

HTML_Fmt 236 HTML HTM!, HTML T

ACT_Fmt 237 ACT ACT

PNG_Fmt 238 Portable Network Graphics (PNG) PNG

MS_Video_Fmt 239 Video for Windows (AVI) AVI

Windows_Animated_ 240 Windows Animated Cursor ANI

Cursor_Fmt

Windows CPP_Obj 241 Windows C++ Object Storage

Storage Fmt

Windows_Palette 242 Windows Palette PAL

Fmt

RIFF_DIB_Fmt 243 RIFF Device Independent Bitmap

KeyView (11.6) Page 240 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

RIFF_MIDI_Fmt 244 RIFF MIDI RMI

RIFF_Multimedia_ 245 RIFF Multimedia Movie

Movie_Fmt

MPEG_Fmt 246 MPEG Movie MPG, MPEG!

QuickTime_Fmt 247 QuickTime Movie, MPEG-4 Audio MOV, QT, MP4

AIFF_Fmt 248 Audio Interchange File Format (AIFF) AlF, AIFF

Amiga_MOD_Fmt 249 Amiga MOD MOD

Amiga_IFF_8SVX_ 250 Amiga IFF (8SVX) Sound IFF

Fmt

Creative_Voice 251 Creative Voice (VOC) VOC

Audio_Fmt

AutoDesk_Animator 252 AutoDesk Animator FLIC FLI

FLI_Fmt

AutoDesk _ 253 AutoDesk Animator Pro FLIC FLC

AnimatorPro_FLC _

Fmt

Compactor_Archive 254 Compactor/ Compact Pro

Fmt

VRML_Fmt 255 VRML WRL

QuickDraw_3D_ 256 QuickDraw 3D Metafile

Metafile Fmt

PGP_Secret_ 257 PGP Secret Keyring

Keyring_Fmt

PGP_Public_ 258 PGP Public Keyring

Keyring_Fmt

PGP_Encrypted 259 PGP Encrypted Data

Data_Fmt

PGP_Signed Data_ 260 PGP Signed Data

Fmt

PGP_ 261 PGP Signed and Encrypted Data

SignedEncrypted

Data_Fmt

KeyView (11.6)

Page 241 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

PGP_Sign_ 262 PGP Signature Certificate

Certificate_Fmt

PGP_Compressed 263 PGP Compressed Data

Data_Fmt

PGP_ASCII_Public_ 264 ASCll-armored PGP Public Keyring

Keyring_Fmt

PGP_ASCII_ 265 ASCll-armored PGP encoded PGP

Encoded Fmt

PGP_ASCII_ 266 ASClIl-armored PGP encoded PGP1

Signed_Fmt

OLE_DIB_Fmt 267 OLE DIB object

SGI_Image Fmt 268 SGl Image RGB

Lotus_ScreenCam_ 269 Lotus ScreenCam

Fmt

MPEG_Audio_Fmt 270 MPEG Audio MPEGA

FTP_Software 271 FTP Session Data STE

Session_Fmt

Netscape 272 Netscape Bookmark File HTM]

Bookmark_File_Fmt

Corel Draw_ CMX_ 273 Corel CMX CMX

Fmt

AutoDesk DWG _ 274 AutoDesk Drawing (DWG) DWG

Fmt

AutoDesk_WHIP_ 275 AutoDesk WHIP WHP

Fmt

Macromedia_ 276 Macromedia Director DCR

Director_ Fmt

Real_Audio Fmt 277 Real Audio RM
MSDOS_Device 278 MSDOS Device Driver SYS
Driver_Fmt

Micrografx_ 279 Micrografx Designer DSF

Designer_Fmt

KeyView (11.6) Page 242 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

SVF_Fmt 280 Simple Vector Format (SVF) SVF

Applix_Words_Fmt 281 Applix Words AW

Applix_Graphics_ 282 Applix Graphics AG

Fmt

MS_Access_Fmt 283 Microsoft Access mDB"

MS_Access 95 Fmt 284 Microsoft Access 95 MDB

MS_Access 97 Fmt 285 Microsoft Access 97 MDB

MacBinary_Fmt 286 MacBinary BIN

Apple_Single Fmt 287 Apple Single

Apple_Double_Fmt 288 Apple Double

Enhanced Metafile 289 Enhanced Metafile EMF

Fmt

MS_Office_Drawing_ 290 Microsoft Office Drawing

Fmt

XML_Fmt 291 XML xmLT

DeVice 292 DeVice Independent file (DVI) DVI

Independent_Fmt

Unicode_Fmt 293 Unicode UNI

Lotus_123_ 294 Lotus 1-2-3 WK1

Worksheet Fmt

Lotus_123 Format_ 295 Lotus 1-2-3 Formatting FM3

Fmt

Lotus_123_97 Fmt 296 Lotus 1-2-3 97 wk11

Lotus Word Pro_ 297 Lotus Word Pro 96 Lwp?

96 Fmt

Lotus_Word_Pro_ 298 Lotus Word Pro 97 Lwp'!

97_Fmt

Freelance DOS_Fmt 299 Lotus Freelance for DOS

Freelance Win_Fmt 300 Lotus Freelance for Windows PRE

KeyView (11.6) Page 243 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File

Number Extension
Freelance_ OS2 _Fmt 301 Lotus Freelance for OS/2 PRS
Freelance 96 Fmt 302 Lotus Freelance 96 prz!
Freelance 97 Fmt 303 Lotus Freelance 97 prz!
MS_Word 95 Fmt 304 Microsoft Word 95 poc’
MS_Word 97 Fmt 305 Microsoft Word 97 poc
Excel_Fmt 306 Microsoft Excel XLS1
Excel Chart_ Fmt 307 Microsoft Excel xLs'
Excel_Macro_Fmt 308 Microsoft Excel xLs?
Excel_95 Fmt 309 Microsoft Excel 95 XLS1
Excel 97 Fmt 310 Microsoft Excel 97 xLs'
Corel _ 311 Corel Presentations XFD, XFDL
Presentations_ Fmt
Harvard_Graphics_ 312 Harvard Graphics
Fmt
Harvard Graphics_ 313 Harvard Graphics Chart CH3, CHT
Chart_Fmt
Harvard Graphics_ 314 Harvard Graphics Symbol File SY3
Symbol_Fmt
Harvard Graphics_ 315 Harvard Graphics Configuration File
Cfg_Fmt
Harvard_Graphics_ 316 Harvard Graphics Palette
Palette_ Fmt
Lotus_123 R9 Fmt 317 Lotus 1-2-3 Release 9
Applix_ 318 Applix Spreadsheets AS
Spreadsheets Fmt
MS_Pocket Word 319 Microsoft Pocket Word PWD, poc’
Fmt
MS_DIB_Fmt 320 MS Windows Device Independent

Bitmap

MS_Word 2000 Fmt 321 Microsoft Word 2000 poc

KeyView (11.6) Page 244 of 320

Filter SDK C Programming Guide

Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Excel_2000_Fmt

PowerPoint_2000_
Fmt

MS_Access_ 2000
Fmt

MS_Project 4 Fmt
MS_Project_41_Fmt
MS_Project 98 Fmt
Folio_Flat Fmt
HWP_Fmt
ICHITARO_Fmt
IS_XML_Fmt
Oasys_Fmt
PBM_ASC_Fmt

PBM_BIN_Fmt

PGM_ASC_Fmt

PGM_BIN_Fmt

PPM_ASC_Fmt

PPM_BIN_Fmt

XBM_Fmt
XPM_Fmt
FPX_Fmt

PCD_Fmt

KeyView (11.6)

Format
Number

322
323

324

325
326
327
328
329
330
331
332
333

334

335

336

337

338

339
340
341
342

Format Description

Microsoft Excel 2000

Microsoft PowerPoint 2000

Microsoft Access 2000

Microsoft Project 4
Microsoft Project 4.1
Microsoft Project 98

Folio Flat File
HWP(Arae-Ah Hangul)
ICHITARO V4-10
Extended or Custom XML
Oasys format

Portable Bitmap Utilities ASCII
Format

Portable Bitmap Utilities Binary
Format

Portable Greymap Utilities ASCII
Format

Portable Greymap Utilities Binary
Format

Portable Pixmap Utilities ASCII
Format

Portable Pixmap Utilities Binary
Format

X Bitmap Format
X Pixmap Format
FPX Format

PCD Format

Associated File
Extension

xLs?
PPT

mpB’1 mpp

mpp?
mpp?
mpp
FFF

HWP

XML?

OA2, OA3

PGM

XBM
XPM
FPX
PCD

Page 245 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

MS_Visio_Fmt 343 Microsoft Visio VSD

MS_Project 2000 _ 344 Microsoft Project 2000 mpP?!

Fmt

MS_Outlook_Fmt 345 Microsoft Outlook MSG, OFT

ELF_Relocatable_ 346 ELF Relocatable 0]

Fmt

ELF_Executable 347 ELF Executable

Fmt

ELF _Dynamic Lib 348 ELF Dynamic Library SO

Fmt

MS_Word XML_Fmt 349 Microsoft Word 2003 XML xmLT

MS_Excel XML _Fmt 350 Microsoft Excel 2003 XML xmL"

MS_Visio XML_Fmt 351 Microsoft Visio 2003 XML VDX

SO_Text XML_Fmt 352 StarOffice Text XML sxw' opT’

SO_Spreadsheet_ 353 StarOffice Spreadsheet XML SXC1, ops'

XML_Fmt

SO_Presentation_ 354 StarOffice Presentation XML SXI 1, SXP1, opp!

XML_Fmt

XHTML_Fmt 355 XHTML xmLT

MS_OutlookPST _ 356 Microsoft Outlook PST PST

Fmt

RAR_Fmt 357 RAR RAR

Lotus Notes NSF_ 358 IBM Lotus Notes Database NSF/NTF NSF

Fmt

Macromedia_Flash_ 359 SWF SWF

Fmt

MS_Word_2007_Fmt 360 Microsoft Word 2007 XML DOCX, DOTX

MS_Excel 2007_ 361 Microsoft Excel 2007 XML XLSX, XLTX

Fmt

MS_PPT _2007_Fmt 362 Microsoft PPT 2007 XML PPTX, POTX, PPSX

OpenPGP_Fmt 363 OpenPGP Message Format (withnew PGP

KeyView (11.6) Page 246 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Intergraph_V7_
DGN_Fmt

MicroStation_V8
DGN_Fmt

MS_Word Macro
2007_Fmt

MS_Excel Macro
2007_Fmt

MS_PPT_Macro_
2007_Fmt

LZH_Fmt
Office_2007_Fmt
MS_XPS_Fmt

Lotus_Domino_DXL_

Fmt

ODF_Text_Fmt

ODF_Spreadsheet_

Fmt

ODF_Presentation_

Fmt

Legato Extender
ONM_Fmt

bin_Unknown_Fmt

TNEF_Fmt

CADAM_Drawing_

Fmt

CADAM_Drawing_

Overlay_Fmt
NURSTOR _

KeyView (11.6)

Format
Number

364

365

366

367

368

369
370
371

372

373
374

375

376

377
378

379

380

381

Format Description

packet format)

Intergraph Standard File Format
(ISFF) V7 DGN (non-OLE)

MicroStation V8 DGN (OLE)

Microsoft Word Macro 2007 XML

Microsoft Excel Macro 2007 XML

Microsoft PPT Macro 2007 XML

LHA Archive
Office 2007 document

Microsoft XML Paper Specification
(XPS)

IBM Lotus representation of Domino
design elements in XML format

ODF Text

ODF Spreadsheet

ODF Presentation

Legato Extender Native Message
ONM

n/a

Transport Neutral Encapsulation
Format (TNEF)

CADAM Drawing

CADAM Drawing Overlay

NURSTOR Drawing

Associated File
Extension

DGN'

DGN

DOCM, DOTM
XLSM, XLTM, XLAM
PPTM, POTM, PPSM,
PPAM

LZH, LHA

XLSB
XPS

DXL

opT! sxw! sTw
obs’! sxcl sTC

sxp? sxi1, opa! |
oppr'!
ONM

various
CDD
CDO

NUR

Page 247 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

Drawing_Fmt
HP_GLP_Fmt
ASF_Fmt
WMA_Fmt
WMV_Fmt

EMX_Fmt

Z7Z_Fmt

MS_Excel Binary
2007_Fmt

CAB_Fmt
CATIA_Fmt
YIM_Fmt
ODF_Drawing_Fmt
Founder CEB_Fmt
QPW_Fmt
MHT_Fmt
MDI_Fmt
GRV_Fmt
IWWP_Fmt
IWSS_Fmt
IWPG_Fmt
BKF_Fmt

MS_Access_ 2007 _
Fmt

ENT_Fmt

DMG_Fmt

KeyView (11.6)

Format
Number

382
383
384
385
386

387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

403

404

Format Description

HP Graphics Language (Plotter)
Advanced Systems Format (ASF)
Window Media Audio Format (WMA)
Window Media Video Format (WMV)

Legato EMailXtender Archives
Format (EMX)

7 Zip Format(7z)

Microsoft Excel Binary 2007

Microsoft Cabinet File (CAB)

CATIA Formats (CAT*)

Yahoo Instant Messenger History
ODF Drawing

Founder Chinese E-paper Basic (ceb)
Quattro Pro 9+ for Windows

MHT format?

Microsoft Document Imaging Format
Microsoft Office Groove Format
Apple iWork Pages format

Apple iWork Numbers format

Apple iWork Keynote format
Windows Backup File

Microsoft Access 2007

Microsoft Entourage Database
Format

Mac Disk Copy Disk Image File

Associated File
Extension

HPG
ASF
WMA
WMV
EMX

7Z
XLSB

CAB
CAT3

DAT!

sxp!, sx!, opa!
CEB

QPW

MHT

MDI

GRV

PAGES, GZ!
NUMBERS, GZ'
KEY, GZ'

BKF

ACCDB

Page 248 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension
CWK_Fmt 405 AppleWorks File
003 _Fmt 406 Omni Outliner File 003
OPML_Fmt 407 Omni Outliner File OPML
Omni_Graffle XML_ 408 Omni Graffle XML File GRAFFLE
Fmt
PSD_Fmt 409 Photoshop Document PSD
Apple_Binary_PList_ 410 Apple Binary Property List format
Fmt
Apple_iChat_Fmt 411 Apple iChat format
OOUTLINE_Fmt 412 OOutliner File OOUTLINE
BZIP2_Fmt 413 Bzip 2 Compressed File BZ2
ISO_Fmt 414 ISO-9660 CD Disc Image Format ISO
DocuWorks_Fmt 415 DocuWorks Format XDW
RealMedia_Fmt 416 RealMedia Streaming Media RM, RA
AC3Audio Fmt 417 AC3 Audio File Format AC3
NEF_Fmt 418 Nero Encrypted File NEF
SolidWorks Fmt 419 SolidWorks Format Files SLDASM, SLDPRT,
SLDDRW
XFDL_Fmt 420 Extensible Forms Description XFDL, XFD
Language
Apple_ XML _PList_ 421 Apple XML Property List format
Fmt
OneNote Fmt 422 OneNote Note Format ONE
Dicom_Fmt 424 Digital Imaging and Communications DCM
in Medicine
EnCase Fmt 425 Expert Witness Compression Format = E01, LO1, Lx01
(EnCase)
Scrap_Fmt 426 Shell Scrap Object File SHS
MS_Project 2007 _ 427 Microsoft Project 2007 MPP1

Fmt

KeyView (11.6)

Page 249 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension
MS_Publisher_98 428 Microsoft Publisher PUB1
Fmt 98/2000/2002/2003/2007/
Skype Fmt 429 Skype Log File DBB
HI7_Fmt 430 Health level7 message HL7
MS_OutlookOST _ 431 Microsoft Outlook OST OST
Fmt
Epub_Fmt 432 Electronic Publication EPUB
MS_OEDBX_Fmt 433 Microsoft Outlook Express DBX DBX
BB_Activ_Fmt 434 BlackBerry Activation File DAT]
Disklmage Fmt 435 Disk Image
Milestone_Fmt 436 Milestone Document MLS, ML3, ML4, ML5,
ML6, ML7, ML8, ML9
E_Transcript_Fmt 437 ReallLegal E-Transcript File PTX
PostScript_ Font Fmt 438 PostScript Type 1 Font PFB
Ghost_Disklmage 439 Ghost Disk Image File GHO, GHS
Fmt
JPEG_2000_JP2_ 440 JPEG-2000 JP2 File Format Syntax JP2, JPF, J2K, JPWL,
File_Fmt (ISO/IEC 15444-1) JPX, PGX
Unicode HTML_Fmt 441 Unicode HTML HTM', HTML?
CHM_Fmt 442 Microsoft Compiled HTML Help CHM
EMCMF_Fmt 443 Documentum EMCMF format EMCMF
MS_Access 2007 444 Microsoft Access 2007 Template ACCDT
Tmpl_Fmt
Jungum_Fmt 445 Samsung Electronics Jungum Global =~ GUL
document
JBIG2_Fmt 446 JBIG2 File Format JB2, JBIG2
EFax_Fmt 447 eFax file EFX
AD1_Fmt 448 AD1 Evidence file AD1
SketchUp _Fmt 449 Google SketchUp SKP
KeyView (11.6) Page 250 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name

GWFS_Email_Fmt
JNT_Fmt
Yahoo_yChat_Fmt

PaperPort MAX
File_Fmt

ARJ_Fmt

RPMSG_Fmt

MAT_Fmt
SGY_Fmt

CDXA_MPEG _PS_
Fmt

EVT Fmt
EVTX_Fmt

MS_OutlookOLM_
Fmt

WARC_Fmt
JAVACLASS Fmt
VCF_Fmt

EDB_Fmt

ICS_Fmt

MS_Visio _2013_Fmt

MS_Visio 2013
Macro_Fmt

ICHITARO_Compr_
Fmt

IWWP13_Fmt

KeyView (11.6)

Format
Number

450
451
452
453

454

455

456
457
458

459
460
461

462
463
464
465

466

467
468

469

470

Format Description

Group Wise File Surf email
Windows Journal format
Yahoo! Messenger chat log

PaperPort image file

ARJ (Archive by Robert Jung) file
format

Microsoft Outlook Restricted
Permission Message

MATLAB file format
SEG-Y Seismic Data format

MPEG-PS container with CDXA
stream

Microsoft Windows NT Event Log

Microsoft Windows Vista Event Log

Microsoft Outlook for Macintosh
format

Web ARChive

Java Class format

Microsoft Outlook vCard file format

Microsoft Exchange Server Database

file format

Microsoft Outlook iCalendar file
format

Microsoft Visio 2013

Microsoft Visio 2013 macro

ICHITARO Compressed format

Apple iWork 2013 Pages format

Associated File
Extension

GWFS
JNT
YCHAT
MAX

ARJ

RPMSG

MAT, FIG
SGY, SEGY
MPG]

EVT
EVTX
OLM

WARC
CLASS
VCF
EDB

ICS, VCS

VSDX, VSTX, VSSX
VSDM, VSTM, VSSM

JTDC

IWA

Page 251 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

Format Name Format Format Description Associated File
Number Extension

IWSS13_Fmt 471 Apple iWork 2013 Numbers format IWA

IWPG13_Fmt 472 Apple iWork 2013 Keynote format IWA

XZ_Fmt 473 XZ archive format XZ

Sony_ WAVEG4 Fmt 474 Sony Wave64 format we4

Conifer WAVPACK 475 Conifer Wavpack format AY

Fmt

Xiph_OGG_ 476 Xiph Ogg Vorbis format OGG

VORBIS_Fmt

MS_Visio_2013_ 477 MS Visio 2013 stencil format VSSX

Stencil_Fmt

MS_Visio 2013 _ 478 MS Visio 2013 stencil Macro format VSSM

Stencil_Macro_Fmt

MS_Visio 2013 _ 479 MS Visio 2013 template format VSTX

Template_Fmt

MS_Visio_2013_ 480 MS Visio 2013 template Macro format VSTM

Template_Macro_

Fmt

Borland_Reflex 2 481 Borland Reflex 2 format R2D

Fmt

PKCS_12_Fmt 482 PKCS #12 (p12) format P12, PFX

B1_Fmt 483 B1 format B1

ISO_IEC_MPEG 4 484 ISO/IEC MPEG+4 format MP4

Fmt

RAR5_Fmt 485 RAR5 Format RAR5

Unigraphics NX_ 486 Unigraphics (UG) NX CAD Format PRT

Fmt

PTC_Creo Fmt 487 PTC Creo CAD Format ASM, PRT

KML_Fmt 488 Keyhole Markup Language KML

KMZ_Fmt 489 Zipped Keyhole Markup Language KMZ

WML_Fmt 490 Wireless Markup Language WML

KeyView (11.6) Page 252 of 320

Filter SDK C Programming Guide
Appendix C: File Formats and Extensions

KeyView file formats and extensions, continued

1

Format Name

SO_Text_Fmt

SO_Spreadsheet_
Fmt

SO_Presentation_
Fmt

SO_Math_Fmt
STEP_Fmt
STL Fmt

MS_Word 2007 _
Flat XML_Fmt

Format
Number

492
493

494

495
496
497
546

Format Description

Star Office Writer Text

Star Office Calc Spreadsheet

Star Office Impress Presentation

Star Office Math
ISO 10303-21 STEP format
3D Systems STL format

Microsoft Word 2007 Flat XML

This file extension can return more than one format number.

2

MHT, EML, and MBX files might return either format 2, 233, or 395, depending on the text in the file. In

Associated File
Extension

SDW, SGL, VOR
SDC

SDD, SDA

SMF
STEP
STL
XML

general, files that contain fields such as To, From, Date, or Subject are considered to be email

messages; files that contain fields such as content-type and mime-version are considered to be MHT

files; and files that do not contain any of those fields are considered to be text files.

3

All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

KeyView (11.6)

Page 253 of 320

Appendix D: Extract and Format Lotus Notes
Subfiles

This section describes how to create XML templates to alter the appearance of extracted Lotus mail
note subfiles so that they maintain the look and feel of the original notes.

O OV IVIBW . 254
® Customize XML Templates 254
® Template Elements and Attributes e, 256
® Dateand Time Formats 260
Overview

KeyView uses the NSF reader, nsfsr, to extract Lotus database files, and places Lotus mail notes in
subfiles. The NSF reader uses a set of default XML templates to extract the notes and apply
formatting, thereby approximating the look and feel of the original notes.

In some cases, you might need to customize the XML templates, for instance if your notes contain
custom data. In such cases, you can modify the existing XML templates or create your own.

During extraction, the NSF reader loads all XML files in the NSFtemplates directory and its
subdirectories (except for the NSFtemplates\images directory, which is reserved forimages). During
initialization, the KeyView XML parser verifies the XML templates. If the templates contain any invalid
XML, elements, or attributes, initialization fails and errors are recorded in the nsfsr. 1og file.

Customize XML Templates

XML templates are enabled by default. In most cases, the default templates should be sufficient;
however, you can customize them or create your own as required.

To customize XML templates for Lotus note extraction

1. Modify the template files in the following directory.
instal\OS\bin\NSFtemplates

The main.xml file must exist in the NSFtemplates directory. It is the top-level template file that
extracts all subfiles, usually by calling other templates.

2. Make sure that any modifications or additional XML files conform to the supported elements and
attributes described in Template Elements and Attributes, on page 256.

3. Extract the Lotus database file.

KeyView (11.6) Page 254 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Use Demo Templates

For testing purposes, you can extract notes by using a set of demo templates, which are provided to
demonstrate the proper usage of all the XML elements and attributes, because the default templates do
not use all the XML elements.

The demo templates are available at:
instal\OS\bin\NSFtemplates

To use the demo XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
UseDemoTemplate=1

2. Inthemain.xml file, uyncomment the following section.

<ifini name="UseDemoTemplate" text="1">
<call file="demo.xml"/>
quit/>

</ifini>

Use Old Templates

For testing purposes, you can extract notes by using legacy templates, which produce MHTML output.
You can generate similar output by disabling the XML templates, but using the old templates enables
you to see the XML code and compare it to the standard and demo templates.

To use the old XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
UseOldTemplate=1

2. Inthemain.xml file, uncomment the following section.

<ifini name="UseOldTemplate" text="1">
<call file="default_old.xml">
<quit>

</ifini>

Disable XML Templates

For testing purposes, you can disable XML templates; KeyView extracts the notes in MHTML format.
You can compare the MHTML output directly by the NSF reader with the MHTML output indirectly by
the NSF reader through the XML templates.

KeyView (11.6) Page 255 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

To disable XML templates

1. Inthe formats.ini file, set the following parameter.

[nsfsr]
ExtractByTemplate=0

Template Elements and Attributes

This section lists the valid XML elements and attributes that you can use when creating or modifying
templates. See the demo templates for examples.

Conditional Elements

The following table lists the valid conditional elements.

Conditional elements

Element Description

<keyview> The KeyView XML template container ("root") element

<if*> If the condition from the comparison is true, process the XML.
Conditions can be nested up to 25 levels deep.
Attributes

« name. (Required) The name of the main item to compare to item or
text.

« item. (Required if no text) The name of the item to compare to the
item specified by name.

« text. (Required if no item) The text to compare to the item specified
by name.

<ifex>, <ifnx> If name item exists and has a text value or not.

The Notes item might have a value that cannot be converted to text,
such as an image.

<ifeq>, <ifne>, Respectively, if text ==, =, <, >, <=, >, >=.
<iflt>, <ifle>,

<ifgt>, <ifge> Text comparison uses a case-insensitive strlng compare.

<iftdeq>, <iftdne>, Respectively, if time/date ==, !=, <, >, <=, >, >=.
<iftdlt>, <iftdle>,

<iftdgt>, <iftdge> Time/date comparison converts dates to text in local time using the

Notes default, TZFMT_NEVER, because Notes also sometimes converts
fields to text internally. For example:

text="06/30/2005 02:52:04 PM"

<iftzeq>, <iftzne> Respectively, if the time zone equals or does not equal the comparison
text, for example CDT, EST, and so on.

KeyView (11.6 Page 256 of 320
Yy

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Conditional elements, continued

Element
<ifini>
<else>

<switch>

<case>

<default>

<for>

<index>

Description
If the value of the INI option specified in name equals the text value.
If the condition from the last <if> or <switch> was false, process XML.

If a name value exists, process XML.
Attributes

« name. (Required) The name of the main item to compare in <case>
subelements.

If the comparison condition is true, process XML, then stop processing
the rest of <switch>.

Attributes

o text. (Required) The text to compare to the name item of <switch>.

If all <case> conditions were false, process XML. This element must be
the last element in <switch>, after all the <case> elements. Any <case>
elements after the <default> element are ignored.

If a name value exists, process XML. Process for each part of the name
item.

Attributes

« name. (Required) The name of the main item.

« max. (Optional) The maximum index to process. By default, all are
processed.

Output <for> loop index (1-based). <index> is only valid within a <for>
element.

Control Elements

The following table lists the valid control elements.

Control Elements

Element

<call>

<log>

KeyView (11.6)

Description

Call another XML template. You can nest templates up to 10 levels deep.
Attributes

« file. (Required) The template file name. This name must be unique.
Log message to the NSF log file.

Attributes

« text. (Required) The text to log.

Page 257 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Control Elements, continued
Element Description

« type. (Optional) The type of log message. The following values are valid:
o ERROR
o WARN
o INFO
o DIAG (the default option)
o DEBUG
o DUMP
<quit> Stop processing the template. Exits without error.
Attributes
« text. (Optional) The text to log.
« type. (Optional) The type of log message. See <log>, on the previous page.
<stop> Stop processing the template. Exits with an ERROR log message.
Attributes
« text. (Required) The text to log.

Data Elements

The following table lists the valid data elements.
Data elements
Element Description

<text> Output text.
Attributes

« name. (Required if there is no parent) The name of the item to output.

<rich> Output rich text (MHTML). Images are output in the next part or parts of the MHTML,
after the first <HTML > part.

Attributes

« name. (Required if there is no parent) The name of the item to output.

<body> Output the message body in rich text (MHTML). As with <rich>, above, images are
output in the next part or parts of the MHTML.

<form> Output the message form (usually $Body field) in rich text (MHTML).
Attributes

« name. (Required if there is no parent) The name of the item to output.

KeyView (11.6) Page 258 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Data elements, continued

Element

<addr>

<name>

<format>

<date>

<date_
kv>

KeyView (11.6)

Description

Output an address.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« type. (Optional) The type of address to output. Set this attribute to cCN (Common
Name), which is the only supported type.

Output the name of the last name item, or in other words the current main item. The item
must exist.

Set the default format for <date> and <date_kv>. This element does not set the <text>
format. See Date and Time Formats, on the next page for a list of all Notes and KeyView
date and time formats and integer values.

Attributes

o format. (Optional. Omit to reset to defaults) The Notes and KeyView date and time
format. You can set the following formats:

o TD=int. The Time Date format (TDFMT_*)
o TS=int. The Time Show format (TSFMT_*)
o TT=int. The Time Time format (TTFMT_*)
o TZ=int. The Time Zone format (TZFMT_*)
o Kv=int. The KeyView date and time format
where int is an integer value that corresponds to the desired format.

Separate multiple formats with commas. For example:

format="TD=0,TS=2,TT=1,TZ=1,KV=55"

Output a Notes date.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« format. (Optional) See <format>, above. You can set the following values:
o TD
o TS
o TT
o TZ

Output a KeyView date.
Attributes

« name. (Required if there is no parent) The name of the item to output.
« format. (Optional) See <format>, above. You can set the following values:
o TZ

Page 259 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Data elements, continued

Element Description
o KV

<time> Output a time range, for example 1 hour, 30 minutes.
Attributes
« name. (Required if there is no parent) The item name of the start date or time.
« item. (Required) The item name of the end date or time.
<zone> Output a Notes time zone mnemonic, for example MST.
Attributes

« name. (Required if there is no parent) The name of date item to output.

<zone_ Output atime zone as UTC, for example (UTC-06:00).
utc>

<logo> Output the mail header logo.

The image link is included in the output; the actual image is output to a different part of
the MHTML subfile.

<image> Output animage.

The image link is included in the output; the actual image is output to the MHTML next
part, as with <rich>, on page 258 and <body>, on page 258.
<image_ Output animage URI, in quotation marks. The actual image is output to a different part of
uri> the MHTML subfile.
Attributes

« link. (Required if there is no file) The image link, such as a form or title name. For
example:

e link="StdNotesLtro"

o file. (Required if there is no 1ink) The name of the image file. The file must exist in
the ../../templates/images directory. For example:

e file="boxcheck.gif"

Date and Time Formats

This section lists the supported Notes and KeyView date and time formats for use with <format>,
<date>, and <date_kv>.

Lotus Notes Date and Time Formats

This section lists supported Lotus Notes date and time formats, and the integer values that specify
each one.

KeyView (11.6) Page 260 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Lotus Notes date and time formats

Format Integer Description
Value
TDFMT_FULL 0 (The Notes default) Year, month, and day
TDFMT_CPARTIAL 1 Month and day, year if not this year
TDFMT_PARTIAL 2 Month and day
TDFMT_DPARTIAL 3 Year and month
TDFMT_FULL4 4 Four-digit year, month, and day
TDFMT_ 5 Month and day, four-digit year if not this year
CPARTIAL4
TDFMT_ 6 Four-digit year and month
DPARTIAL4
TTFMT_FULL 0 (Notes default) Hour, minute, and second
TTFMT_PARTIAL 1 Hour and minute
TTFMT_HOUR 2 Hour
TZFMT_NEVER 0 (Notes default) All time zones are converted to the current time
zone
TZFMT_ 1 Show only when outside the current time zone
SOMETIMES
TZFMT_ALWAYS 2 Show for all time zones
TSFMT_DATE 0 Date
TSFMT_TIME 1 Time
TSFMT_DATETIME 2 (The Notes default) Date and time
TSFMT_ 4 Date and time, or time today or time yesterday
CDATETIME

KeyView Date and Time Formats

This section lists KeyView date and time formats. The KeyView formats use the following syntax:

Month

KeyView (11.6)

Month = full month name

Mon = abbreviated month name

m = month (number)

mm = two-digit month (leading 0)

Page 261 of 320

Weekday

Year

Day

Time

Separators

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

Weekday = full weekday name

Wday = abbreviated weekday name

yy = two-digit year

yyyy = four-digit year

d = day (number)

dd = two-digit day (leading 0)

h = 12-hour
H = 24-hour
m = minutes
s = seconds
P = AM/PM

p = am/pm

_ =space

c =comma
s = slash
a =dash

o =dot

KeyView date and time formats

Format

Output

12-Hour and 24-Hour Time Formats

KVDTF_P
KVDTF_P_hmm
KVDTF_hmm_P
KVDTF_P_hhmm
KVDTF_hhmm_P
KVDTF_P_hmmss
KVDTF_hmmss_P
KVDTF_P_hhmmss
KVDTF_hhmmss_P
KVDTF_Hmm

KVDTF_HHmm

KeyView (11.6)

p

P h:mm

h:mm P

P hh:mm

hh:mm P

P h:mm:ss

h:mm:ss P

P hh:mm:ss

hh:mm:ss P

H:mm

HH : mm

Integer Value

© o0 N o o A W N -

-
- O

Page 262 of 320

Filter SDK C Programming Guide

Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format
KVDTF_mmss
KVDTF_Hmmss

KVDTF_HHmmss

Output
mm:ss
H:mm:ss

HH:mm:ss

Numerical Date Formats with Slashes

KVDTF_mmsdd
KVDTF_msdsyy
KVDTF_mmsddsyy
KVDTF_mmsddsyyyy
KVDTF_ddsmm
KVDTF_ddsmmsyy
KVDTF_ddsmmsyy_Hmm
KVDTF_ddsmm_P_hmm
KVDTF_ddsmm_hmm_P
KVDTF_ddsmm_P_hhmm
KVDTF_ddsmm_hhmm_P
KVDTF_ddsmmsyy_P_hmm
KVDTF_ddsmmsyy_hmm_P
KVDTF_ddsmmsyy P_hmmss
KVDTF_ddsmmsyy_hmmss_P
KVDTF_ddsmmsyy_ P_hhmmss
KVDTF_ddsmmsyy_hhmmss_P
KVDTF_yysmmsdd_P_hhmmss
KVDTF_yysmmsdd_hhmmss_P
KVDTF_msdsyy_Hmm
KVDTF_mmsddsyy_Hmm
KVDTF_msdsyy P_hmm

KVDTF_msdsyy_hmm_P

KeyView (11.6)

mm/dd

m/d/yy

mm/dd/yy

mm/dd/yyyy

dd/mm

dd/mm/yy

dd/mm/yy H:mm

dd/mm P h:mm

dd/mm h:mm P

dd/mm P hh:mm

dd/mm hh:mm P
dd/mm/yy P h:mm
dd/mm/yy h:mm P
dd/mm/yy P h:mm:ss
dd/mm/yy h:mm:ss P
dd/mm/yy P hh:mm:ss
dd/mm/yy hh:mm:ss P
yy/mm/dd P hh:mm:ss
yy/mm/dd hh:mm:ss P
m/d/yy H:mm
mm/dd/yy H:mm
m/d/yy P h:mm

m/d/yy h:mm P

Integer Value
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Page 263 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value
KVDTF_mmsddsyy_hmm_P mm/dd/yy h:mm P 38
KVDTF_mmsdd_P_hhmm mm/dd P hh:mm 39
KVDTF_mmsdd_hhmm_P mm/dd hh:mm P 40
KVDTF_mmsddsyy_P_hhmmss mm/dd/yy P hh:mm:ss 41
KVDTF_mmsddsyy_hhmmss_P mm/dd/yy hh:mm:ss P 42
KVDTF_msd m/d 43
KVDTF_yysm yy/m 44
KVDTF_yysmm yy/mm 45
KVDTF_yysmsd yy/m/d 46
KVDTF_yysmmsdd yy/mm/dd a7
KVDTF_yyyysmmsdd yyyy/mm/dd 48
Numerical Date Formats with Dashes

KVDTF_ddammayy dd-mm-yy 49
KVDTF_mmadd mm-dd 50
KVDTF_mmayy mm-yy 51
KVDTF_yyammadd yy-mm-dd 52
KVDTF_yyyyammadd yyyy-mm-dd 53
KVDTF_yyyyammaddaHHmmss yyyy-mm-dd-HH:mm:ss 54
Numerical Date Formats with Dots

KVDTF_yyomod yy.m.d 55
KVDTF_yyommodd yy.mm.dd 56
KVDTF_mod m.d 57
KVDTF_mmodd mm. dd 58

Numerical and String Date Formats with Dashes, Commas, and Spaces

KVDTF_ddaMon dd-Mon 59
KVDTF_daMonayy d-Mon-yy 60
KVDTF_ddaMonayy dd-Mon-yy 61

KeyView (11.6)

Page 264 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value
KVDTF_ddaMonayyyy dd-Mon-yyyy 62
KVDTF_Mon Mon 63
KVDTF_Monayy Mon-yy 64
KVDTF_Monayyyy Mon-yyyy 65
KVDTF_Monaddayy Mon-dd-yy 66
KVDTF_yyammadd_P_hhmmss yy-mm-dd P hh:mm:ss 67
KVDTF_mmadd_P_hhmm mm-dd P hh:mm 68
KVDTF_Mon_yy Mon yy 69
KVDTF_Monc_yy Mon, yy 70
KVDTF_Month Month 71
KVDTF_Monthayy Month-yy 72
KVDTF_Month_yy Month yy 73
KVDTF_Monthc_yy Month, yy 74
KVDTF_Monthayyyy Month-yyyy 75
KVDTF_Month_yyyy Month yyyy 76
KVDTF_Monthc_yyyy Month, yyyy 77
KVDTF_Mon_dc_yyyy Mon d, yyyy 78
KVDTF_d_Monc_yyyy d Mon, yyyy 79
KVDTF_yyyy Mon_d yyyy Mon d 80
KVDTF_Month_dc_yyyy Month d, yyyy 81
KVDTF_d_Monthc_yyyy d Month, yyyy 82
KVDTF_yyyy_Month_d yyyy Month d 83
Weekday Date Formats

KVDTF_Wday Wday 84
KVDTF_Weekday Weekday 85
KVDTF_Wdayc_Mon_dc_yyyy Wday, Mon d, yyyy 86

KVDTF_Weekdayc_Month_dc_yyyy Weekday, Month d, yyyy 87

KeyView (11.6) Page 265 of 320

Filter SDK C Programming Guide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView date and time formats, continued

Format Output Integer Value

KVDTF_Weekdayc_d_Monthc_yyyy Weekday, d Month, yyyy 88

KeyView (11.6) Page 266 of 320

Appendix E: File Format Detection

This section describes how file formats are detected in Filter SDK.

* Introduction
¢ Extract Format Information 267
® Determine Format SUPPOIt ... il 267
® Translate Format Information

Introduction

The KeyView format detection module (kwad) detects afile’s format, and reports the information to the API,

which in turn reports the information to the developer’s application. If the detected format is supported by the
KeyView SDK, the detection module also loads the appropriate structured access layer and document reader
for further processing. For a list of supported formats, see Supported Formats, on page 184.

Extract Format Information

You can extract format information from a document by using either the fpGetDocInfoStream() or
fpGetDocInfoFile() functions. If required, you can then report this information to the developer's
application.

The fpGetDocInfoStream() and fpGetDocInfoFile() functions extract the major format, file class,
version, and document attributes, and populate the ADDOCINFO structure. This structure and values are
defined in the header file adinfo.h. See Filter API Functions, on page 117 for more information.

For information on how to translate the extracted format information, see Translate Format Information, on
page 270.

Determine Format Support

After the file format is extracted, the detection module uses the formats. ini file to determine whether the
format is supported by KeyView, and the appropriate structured access layer and reader to load.

The formats. ini file is in the directory instal \0OS\bin, where install is the path name of the Filter
installation directory and 0sS is the name of the operating system. It contains the following information:

« Coded format information. To translate this information, see Translate Format Information, on page 270.
« The reader associated with each format. See Determine a Document Reader, on page 271.

« Configuration parameters.

« Locale settings for internal use.

KeyView (11.6) Page 267 of 320

Filter SDK C Programming Guide

Example formats.ini file entries

123=mw
152=xyw
178=wp6
189=mw6
2=af
200=pdf
205=mb
210=htm
251=htm

NOTE:
The formats.ini file applies to all formats except graphics. Detection of graphics formats is
handled by an internal module named KeyView Picture Interchange Format (KPIF).

Refine Detection of Text Files

During text detection, KeyView analyses the first 1 kB and last 1 kB of data in a document. If less than
10% of that data consists of non-ASCII characters, KeyView detects the document as a text file.

However, depending on the type of documents you are working with, the default settings might not
provide the desired level of accuracy. Configuration flags enable you to change the amount of data to
read at the end of afile, the percentage of non-ASCII characters permitted in a text file, and whether to
use or ignore the file extension to determine the document format.

Change the Amount of File Data to Read

During file detection, KeyView reads characters from the beginning and end of a file—by default, it
reads the first and last 1,024 bytes of data. Large text files might contain many irrelevant characters at
the end of afile, so KeyView might not accurately detect the file format. You can set a configuration
flag to increase the amount of data to read from the end of a file during detection.

To change the amount of data to read during detection

« Inthe formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_end_block_size=kB

where kB is the number of kilobytes to read from the end of the file, from 0 to 10. The default value is
1.

NOTE:
The file size must be greater than the value specified in the flag. If the flag value is greater
than the file size, KeyView does not use the flag.

KeyView (11.6) Page 268 of 320

Filter SDK C Programming Guide

Change the Percentage of Allowed Non-ASCIl Characters

By default, if less than 10% of the analyzed data in a document consists of non-ASCII characters, it is
detected as a text file. Depending on the type of files that you are working with, changing the default
percentage might increase detection accuracy.

To change the percentage of non-ASCIl characters allowed in text files

o Inthe formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_in_text=N

where N is the percentage of non-ASCII characters to allow in text files. Files that contain a lower
percentage of non-ASCII characters than N are detected as text files. The default value is 10.
Allow Consecutive NULL Bytes in a Text File
By default, if a document contains consecutive NULL bytes, it is not detected as text. Depending on the
type of files that you are working with, changing the default might increase detection accuracy.

To allow consecutive NULL bytes of ASCII characters in text files

Inthe formats. ini file, set the following flag in the detection_flags section:

[detection_flags]
ascii_allow_null_bytes=1

The default value is 0 (do not allow consecutive NULL bytes).
Use the File Extension for Detection

Sometimes KeyView detects certain file formats, such as CSV, as ASCII because of the content of
the documents. In such cases, you can configure KeyView to use the file extension to determine the
document format. Using the file extension can improve detection of formats such as CSV, but might
not detect text files successfully if they have incorrect file extensions.

To use the file extension for ASCII files during detection

o Inthe formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
use_extension_for_ascii=1

The default is 0 (do not use the file extension).

KeyView (11.6) Page 269 of 320

Filter SDK C Programming Guide

Translate Format Information

Format information can include file attributes in the following categories:

« Major format
« Fileclass

o Minor format
« Major version
« Minor version

Not all categories are required. Many formats only include major format and file class, or major format
only.

The format information has the following structure:
MajorFormat.FileClass.MinorFormat.MajorVersion.MinorVersion
For example:

81.2.0.9.0

Each number in the format information represents a file attribute. The entry 81.2.0.9.0 represents a
Lotus 1-2-3 Spreadsheet file version 9.0, where

81= Lotus 1-2-3 Spreadsheet (major format)
2 = Spreadsheet (file class)
0 = not defined (minor format)
9 = 9 (major version)
0 = 0 (minor version)

This example applies to the formats. ini file. When extracting format information using the
fpDocInfoFile() or fpDocInfoStream() functions, the same format is represented as 294.2.9.0.

NOTE:

The format values returned from fpDocInfoFile() or fpDocInfoStream() differ from those in
formats.ini because the former defines a unique ID for each major format, while the latter
uses a major version, minor version, and minor format to distinguish between formats.

Distinguish Between Formats

The ADDOCINFO structure provides a unique ID for each major format. For example, a call to
fpGetDocInfoFile() or fpGetDocInfoStream() would return 351.1.0 for a Microsoft Word XML
format. The major format 351 is unique to this format.

Unlike ADDOCINFO, the formats. ini file distinguishes between formats by using the major version
number. For example, in the formats. ini file, a Microsoft Word 2003 XML format is defined as
285.1.0.100.0. The major format 285 and file class 1 are the same values for generic XML. The major
version 100 distinguishes the format as Microsoft Word 2003 XML.

KeyView (11.6) Page 270 of 320

Filter SDK C Programming Guide

The major version is used to specify the following formats:

« Microsoft Office 2003 XML. This format has the same major format and file class as generic XML
(285.1). ltis distinguished from generic XML by using the following major versions:

o Word: 100
o Excel: 101
o Visio: 110

o The XHTML format has the same major format and file class as HTML (210.1). It is distinguished
from HTML by using the major version 100.

Determine a Document Reader

The format detection module uses the formats. ini file to determine whether a format is supported,
and to determine the reader to use to parse a format. The entries in the formats. ini file list each
format’s coded value, and an abbreviation for the format’s reader.

The reader abbreviation is a truncated version of the reader’s library name. Adding "sr" to the end of an
abbreviation creates the name of the reader. For example, this example entry specifies that a Lotus 1-2-
3 Spreadsheet file version 9.0 is parsed by the Lotus 1-2-3 filter, 1123sr:

81.2.0.9.0=1123

List of Required Files for Redistribution, on page 290 lists the readers provided with KeyView.

Category Values in formats.ini

This section lists the possible category values for format information in the formats. ini file. The
corresponding values for format information extracted by a call to fpGetDocInfoFile() or
fpGetDocInfoStream() are listed in the header file adinfo.h.

o Major Formats
o File Classes

« Minor Formats
Major Formats

Number Format File Class

1 AES Multiplus Comm Format Word processor
2 ASCII File word processor/MS DOS Batch File format Word processor
3 Applix Asterix Word processor
4 Microsoft Windows Bitmap image (BMP) Rasterimage

5 Convergent Tech DEF Comm. format Word processor
6 Corel Draw (CDR) Vector graphic

KeyView (11.6) Page 271 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

KeyView (11.6)

Format

Keyword COM.FILE (KSIF)
Computer Graphics Metafile (CGM)
Word Connection

COMET TOP Word

DG CEOwrite

Honey Bull DSA101

IBM DCA-RFT

DDIF

Dummy File (Internal)

DG Common Data Stream (CDS)
Dummy Print File (Internal)
Windows Micrografx Draw (DRW)
Data Point VISTAWORD

DECdx

Enable

Encapsulated PostScript (EPS)

DOS/Windows Executable (EXE, DLL)

CCITT Group 3 1-Dimensional (G31D)

Graphics Interchange format (GIF)
Hewlett Packard

IBM 1403 Line Printer

IBM DCF Script

IBM DCA-FFT

Interleaf

GEM Bit Image

IBM Display Write 4

Raster Graphics

File Class

Vector graphic

Word processor
Word processor
Word processor
Word processor
Word processor

Word processor

Word processor

Vector graphic
Word processor
Word processor
Word processor
Raster image
Executable
Rasterimage
Raster image
Word processor
Word processor
Word processor
Word processor
Word processor
Raster image
Word processor

Raster image

Page 272 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

KeyView (11.6)

Format

Keywords PICL

Lotus AMI Pro

MORE Database Outliner (Mac)
Lyrix

MASS-11

MacPaint

Microsoft Word Mac

Informix SmartWare II Communication File
Microsoft Word for Windows
MultiMate 4.0

Multiplan Spreadsheet

Microsoft Rich Text Format (RTF)
Microsoft Word 5.0 (PC)

NBI Async Archive Format

Navy DIF

NBI Net Archive Format

NIOS TOP

FileMaker (Mac)

ODA/ODIF

OLIDIF

Keyword OSM

Office Writer

PC Paint Brush Graphics (PCX)
CPT Communication Format
Lotus PIC

Macintosh Quick Draw Picture Format (PICT)

Philips Script

File Class

Word processor
Outline/planning
Word processor
Word processor
Rasterimage
Word processor
Communications
Word processor
Word processor
Spreadsheet
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Database

Word processor

Word processor

Word processor
Rasterimage
Word processor
Vector graphic
Rasterimage

Word processor

Page 273 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

KeyView (11.6)

Format

PostScript File
PRIMEWORD

Quadratron Q-One (V1.93J)
Quadratron Q-One (V2.0)
SAMNA Word IV

Lotus AMI Pro Draw (SDW)
SYLK Spreadsheet
Informix SmartWare Il
Symphony Spreadsheet
Truevision Targa

Tagged Image File (TIFF)
Targon Word (V 2.0)
Uniplex Ucalc Spreadsheet
Uniplex (V6.01)

Microsoft Word (UNIX)
WANG PC

WordERA (V 1.0)

WANG WPS Comm. format
WordPerfect Mac
WordPerfect 5.2

Lotus 1-2-3 Spreadsheet

WordMARC word processor

Microsoft Windows Metafile (WMF) Graphics
Informix SmartWare Il Database

WordPerfect Graphics V1.0 (WPG)

WordPerfect

WordStar

File Class
Vector graphic
Word processor
Word processor
Word processor
Word processor
Rasterimage
Spreadsheet
Word processor
Spreadsheet
Rasterimage
Raster image
Word processor
Spreadsheet
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Word processor
Spreadsheet
Word processor
Rasterimage
Database
Raster image
Word processor

Word processor

Page 274 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

88
89
90
91
92
93
94
95
96
97
98
99
100
101
103
104
105
106
107
108
109
111
112
113
114
115
116

KeyView (11.6)

Wang WITA

Xerox 860 Comm. format
Microsoft Excel Spreadsheet
Xerox Writer word processor
DIF Spreadsheet

ENABLE Spreadsheet
Supercalc Spreadsheet
Ultracalc Spreadsheet

Informix SmartWare Spreadsheet

Serialized Object Format (SOF) Encapsulation format

Microsoft PowerPoint (PC)
Microsoft PowerPoint (Mac)

Aldus PageMaker (Mac)

Aldus PageMaker (DOS)

Microsoft Works (Mac)

Microsoft Works Database (Mac)
Microsoft Works Spreadsheet (Mac)
Microsoft Works Communication (Mac)
Microsoft Works (PC)

Microsoft Works Database (PC)
Microsoft Works Spreadsheet (PC)
PC Library Module

MacWrite

MacWrite I

Aldus Freehand Mac

Disk Doubler Compression format

HP Graphics Language (HP-GL)

File Class

Word processor
Word processor
Spreadsheet
Word processor
Spreadsheet
Spreadsheet
Spreadsheet
Spreadsheet
Spreadsheet
Encapsulation
Presentation
Presentation
Desktop Publishing
Desktop Publishing
Word processor
Database
Spreadsheet
Communications
Word processor
Database
Spreadsheet
Library module
Word processor
Word processor
Vector graphic
Encapsulation

Vector graphic

Page 275 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

117
118
119
120
121
123
124
126
127
128
129
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

KeyView (11.6)

Adobe Maker Interchange Format (MIF)
JPEG File Interchange Format (JFIF)
Reflex Database

Framework I

Paradox (PC) Database

Microsoft Windows Write

Quattro Pro Spreadsheet (DOS)
Persuasion Presentation

Corel Presentation

Microsoft Windows Icon Format (ICO) Graphics
Microsoft Project

Harvard Graphics

Zip Archive Format

Microsoft Windows Cursor (CUR) Graphics
Quark Express (Mac)

ARC/PAK Archive format

Adobe FrameMaker

Microsoft Publisher

Plan Perfect

WordPerfect General File Format

Lotus Freelance

Microsoft Wave Sound File

MIDI Sound File

AutoCAD DXF Graphics

dBase Database

0OS/2 PM Metafile Graphics

Lasergraphics Language

File Class
Desktop Publishing
Rasterimage
Database

Mixed format
Database

Word processor
Spreadsheet
Presentation
Presentation
Rasterimage
Time scheduling
Desktop publishing
Encapsulation
Rasterimage
Desktop publishing
Encapsulation
Desktop publishing
Desktop publishing
Time scheduling
Miscellaneous
Presentation
Sound

Sound

Vector graphic
Database

Vector graphic

Vector graphic

Page 276 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

KeyView (11.6)

AutoShade Rendering File Format

Graphics Environment Manager (GEM VDI)

Microsoft Windows Help File
Volkswriter

Ability Office (SS, DB, GR, WP, COM)
XyWrite/Nota Bene

Comma Separated Values (CSV)
Writing Assistant word processor
WordStar 2000

WordStar 6.0

HP Printer Control Language (PCL)
(UNIX/VAX/SUN) Executable
(UNIX/VAX/SUN) Object Module
(UNIX/VAX/SUN) Link Library

NeXT SUN Audio Data

NeWS font file (SUN)

cpio Archive Format (UNIX/VAX/SUN)
PEX Binary Archive (SUN)

SUN vfont definition

Curses Screen Image (UNIX/VAX/SUN)
UU Encoded Encryption File
WriteNow

PC Object Module

Microsoft Windows Group File

PC True Type Font

Program Information File

PC COM executable file

File Class

Vector graphic
Vector graphic
Miscellaneous

Word processor

Word processor
Spreadsheet
Word processor
Word processor
Word processor
Vector graphic
Executable
Object module
Library module
Sound

Font
Encapsulation
Encapsulation
Font

Raster image
Encapsulation
Word processor
Object module
Miscellaneous
Font
Miscellaneous

Executable

Page 277 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199

KeyView (11.6)

Adobe FrameMaker Markup Language
Stuff It Archive (Mac)

PeachCalc Spreadsheet

Wang Office GDL Header Encapsulation
WordPerfect 6.0

Q& A forDOS

Q & A for Windows

DEC WPS PLUS

DCX Fax format

Microsoft Windows OLE 2 Encapsulation
Quattro Pro for Windows

Keyword Viewer Markup Format
EBCDIC Text

DCS

Microsoft Excel Spreadsheet 95, 2000
Microsoft Word for Windows 95

UNIX SHAR Encapsulation

Lotus Notes Bitmap

UNIX Compress Encapsulation

Lotus Notes CDF

UNIX TAR Encapsulation

WordPerfect Graphics V2.0 (WPG2)

ODA/ODIF (FOD 26)
ALIS
GZ Compress Encapsulation

Envoy (EVY)

File Class

Desktop publishing

Encapsulation
Spreadsheet
Encapsulation
Word processor
Word processor
Word processor
Word processor
Fax
Encapsulation

Spreadsheet

Word processor
Word processor
Spreadsheet
Word processor
Encapsulation
Rasterimage
Encapsulation
Word processor
Encapsulation

Rasterimage

Vector graphic
Word processor
Word processor
Encapsulation

Word processor

Page 278 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

KeyView (11.6)

Format

Adobe Portable Document Format (PDF)
KW ODA Internal Raw Bitmap (RBM)
KW ODA G4 (G4)

KW ODA G31D (G31)

KW ODA Internal G32D (G32)

Microsoft Word for Mac V 4.x/5.x
BinHex 4.0 encoded file

SMTP document

MIME format - Microsoft Outlook Express (EML)/Mailbox (MBX)
SGML document

HTML document
XHTML

ACT Format

Microsoft PowerPoint 95

Portable Network Graphics (PNG)
Video for Windows

Windows Animated Cursor
Windows C++ Object Storage
Windows Palette

RIFF Device Independent Bitmap
RIFF MIDI

RIFF Multimedia Movie

MPEG Movie

QuickTime Movie

Audio Interchange File Format (AIFF) Sound
Amiga MOD Sound

Amiga IFF (8SVX) Sound

File Class
Word processor
Rasterimage
Raster image
Raster image
Raster image
Word processor
Encapsulation
Encapsulation
Encapsulation
Word processor

Word processor

Word processor
Presentation
Raster image
Movie

Raster image
Mixed format
Rasterimage
Raster image
Sound

Movie

Movie

Movie

Sound

Sound

Sound

Page 279 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

KeyView (11.6)

Creative Voice (VOC) Sound

Microsoft Works (Windows)

Microsoft Works Spreadsheet (Windows)

AutoDesk Animator FLIC Animation

AutoDesk Animator Pro FLIC Animation
Microsoft Works Database (Windows)

Microsoft Works Communication (Windows)

Compactor/ Compact Pro Archive
VRML

QuickDraw 3D Metafile (3DMF)
PGP Secret Keyring

PGP Public Keyring

PGP Encrypted Data

PGP Signed Data

PGP Signed and Encrypted Data
PGP Signature Certificate
ASCllI-armored PGP Public Keyring
ASCIll-armored PGP encoded
ASCll-armored PGP signed

OLE DIB object

PGP Compressed Data

SGl Image

Lotus Screen Cam

MPEG Audio

FTP Session Data

Netscape Bookmark file

Corel Draw CMX

File Class
Sound

Word processor
Spreadsheet
Animation
Animation
Database
Communications
Encapsulation
Vector graphic
Vector graphic
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Raster image
Encapsulation
Rasterimage
Animation
Sound
Communications
Word processor

Vector image

Page 280 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

KeyView (11.6)

AutoCAD Drawing (DWG)
AutoDesk WHIP
Macromedia Director

Real Audio

MS DOS Device Driver
Micrografx Designer

Simple Vector format (SVF)
WordPerfect Office document (WPD)
Applix Words

Applix Graphics

Microsoft Access

Usenet format

MacBinary

Apple Single

Apple Double

Lotus Word Pro

Microsoft Word 97, 2000
Enhanced Window Metafile
Microsoft Office Drawing
Microsoft PowerPoint 97, 2000
Extended or Custom XML
Device Independent file (DVI)
Unicode

Framework

KPIF Chart Stream

Applix Spreadsheet

Microsoft Device Independent Bitmap

File Class
Vector graphic
Vector graphic
Animation
Sound
Executable
Vector graphic

Vector graphic

Word processor
Presentation
Database

Word processor
Encapsulation
Encapsulation
Encapsulation
Word processor
Word processor
Vector graphic
Vector graphic
Presentation
Word processor
Vector graphic
Word processor

Mixed

Spreadsheet

Raster image

Page 281 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301
302
303
304

KeyView (11.6)

Format

KeyView GPF Filter

Microsoft Project 98, 2000, 2002
Folio Flat file

HWP (Arae-Ah Hangul)
JustSystems Ichitaro

Generic XML format

Microsoft Office 2003 XML format 2

Fujitsu Oasys

Portable Bitmap Utilities (PBM)

Portable Greymap Utilities (PGM)

Portable Pixmap Utilities (PPM)

X Bitmap (XBM)

X Pixmap (XPM)

X Image

PCD Image

Microsoft Visio

Microsoft Outlook (MSG)

XHTML document

Microsoft Outlook Personal Folders file (PST)
WiInRAR Compressed Archive format (RAR)

Lotus Notes Database (NSF)
Legato Extender ONM

Macromedia Flash

Microsoft Word 2007 (XML format)
Microsoft Excel 2007 (XML format)
Microsoft PowerPoint 2007 (XML format)

Open PGP (new format packets only)

File Class

Time scheduling
Word processor
Word processor
Word processor

Word processor

Word processor
Raster image
Rasterimage
Rasterimage
Raster image
Raster image
Rasterimage
Raster image
Presentation
Encapsulation
Word processor
Encapsulation
Encapsulation

Encapsulation

Word processor
Word processor
Spreadsheet
Presentation

Encapsulation

Page 282 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
305
306
307
308
309
310
311
312
313
314
315
316
317
319
320
321
322
323
324
325
326
327
328
329
330
331
332

KeyView (11.6)

Format

Intergraph version 7 DGN
Microstation version 8 DGN

Microsoft Word 2007 Macro

Microsoft Excel 2007 Macro
Microsoft PowerPoint Macro
Microsoft Compression folder (LZH)
Office 2007 Document

XML Paper Specification

Lotus Domino Extensible Language
OASIS Open Document (ODT)
OASIS Open Document (ODS)
OASIS Open Document (ODP)
Legato EMailXtender Native Message
Transfer Neutral Encapsulation Format (TNEF)
CADAM Drawing

CADAM Drawing Overlay
NURSTOR Drawing

HP Graphics Language (Plotter)
Advanced Systems Format

Windows Media Audio Format
Windows Media Video Format

Legato EMailXtender Archive

7-Zip

Microsoft Office 2007 Excel Binary Format
Microsoft Cabinet File

CATIA formats

Yahoo! Instant Messenger

File Class
Vector graphic
Vector graphic
Word processor
Spreadsheet
Presentation
Encapsulation
Miscellaneous
Word processor
Encapsulation
Word processor
Spreadsheet
Presentation
Word Processor
Encapsulation
Vector graphic
Vector graphic
Vector graphic
Vector graphic
Miscellaneous
Sound

Movie
Encapsulation
Encapsulation
Spreadsheet
Encapsulation
Vector graphic

Word processor

Page 283 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number Format

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

KeyView (11.6)

Founder Chinese E-paper Basic
Corel Quattro Pro X4

MIME HTML

Microsoft Document Imaging Format
Microsoft Office Groove File Format
Apple iWorks Pages

Apple iWorks Numbers

Apple iWorks Keynote

Microsoft Backup File

Microsoft Access 2007

Microsoft Entourage Database
Mac Disk Copy Disk Image File
Appleworks File

Omni Outliner (OO3) File

Omni Outliner (OPML) File

Omni Graffle XML File

Apple Photoshop Document
Apple Binary Property List

Apple iChat Format

Omni Outliner (OOUTLINE) File
Bzip 2 Compressed File
ISO-9660 CD Disc Image Format
Xerox DocuWorks

RealMedia Streaming Media
AC3 Audio File Format

Nero Encrypted File

SolidWorks

File Class
Word processor
Spreadsheet
Word processor
Raster image
Word processor
Word processor
Spreadsheet
Presentation
Encapsulation
Database
Encapsulation
Encapsulation
Word processor
Word processor
Word processor
Vector graphic
Raster image
Miscellaneous
Word processor
Word processor
Encapsulation
Encapsulation
Word processor
Movie

Sound
Encapsulation

Vector graphic

Page 284 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
362
364
366
367
368
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
393

KeyView (11.6)

Format

UniGraphics NX

3D Systems STL format

Extensible Forms Description Language
Apple XML Property List

OneNote Note Format

Digital Imaging and Communications in Medicine (DICOM)

Expert Witness Compression Format

Shell Scrap Object File

Microsoft Project 2007

Microsoft Publisher 98—

Skype Log File

Lotus Notes Bitmap Format (DXL embedded images)
Health level7 message

Microsoft Outlook Offline Storage File

Open Publication Structure eBook

Microsoft Outlook Express DBX

BlackBerry Activation File

Disk Image

Milestone

ReallLegal E-Transcript File

PostScript Type 1 Font

Ghost Disk Image File

JPEG-2000 JP2 File Format Syntax (ISO/IEC 15444-1)
Unicode HTML

Microsoft Compiled HTML Help

Documentum EMCMF

JBIG2 File

File Class
Vector graphic
Vector graphic
Presentation
Miscellaneous
Presentation
Rasterimage
Encapsulation
Encapsulation

Time scheduling

Desktop publishing

Word processor
Raster image
Word processor
Encapsulation
Word processor
Encapsulation
Word processor
Encapsulation
Raster Image
Word processor
Font
Encapsulation
Raster Image
Word processor
Encapsulation
Encapsulation

Raster image

Page 285 of 320

Filter SDK C Programming Guide

Major Formats, continued

Number
395
397
402
409
412
414
418
419
420
421
427
428
429
430
431
432
433
435
436
437
438
439

1 If the major version is 100, the file format is XHTML.

Format

AD1 Evidence file

Group Wise File Surf email

ARJ

Microsoft Outlook for Macintosh
Microsoft Outlook vCard Contact
Microsoft Outlook iCalendar
Apple iWork 2013 Pages

Apple iWork 2013 Numbers
Apple iWork 2013 Keynote

XZ

B1

MP4

Rar5

PTC Creo

Keyhole Markup Language

Zipped Keyhole Markup Language

Wireless Markup Language

Star Office Writer Text

Star Office Calc Spreadsheet
Star Office Impress Presentation
Star Office Math

1ISO 10303-21 STEP format

File Class
Encapsulation
Encapsulation
Encapsulation
Encapsulation
Word processor
Encapsulation
Word processor
Spreadsheet
Presentation
Encapsulation
Encapsulation
Movie
Encapsulation

Vector graphic

Vector graphic

2 The major version determines whether the Microsoft Office XML file is a Word, Excel or Visio

document. The major version for each format is as follows:

Word: 100
Excel: 101
Visio: 110

KeyView (11.6)

Page 286 of 320

Filter SDK C Programming Guide

File Classes

Attribute Number File Class

0

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

Minor Formats

Attribute Number
00
01

KeyView (11.6)

Nofile class
Word processor
Spreadsheet
Database
Rasterimage
Vector graphic
Presentation
Executable
Encapsulation
Sound

Desktop publishing
Outline/planning
Miscellaneous
Mixed format
Font

Time scheduling
Communications
Object module
Library module
Fax

Movie

Animation

Minor Format
Minor format not defined

Standard

Page 287 of 320

Filter SDK C Programming Guide

Minor Formats, continued

Attribute Number Minor Format

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

KeyView (11.6)

Book

Chart

Macro

Text

Binary

PC

Windows
DOS
Macintosh
RGB

TIFF

IFF
Experimental
Format Information
RLE

Symbol

Old

Footnote
Style

Palette
Configuration
Activity
Resource
Calculation
Glossary
Spelling

Thesaurus

Page 288 of 320

Filter SDK C Programming Guide

Minor Formats, continued

Attribute Number Minor Format

29
30
31
32
33
34

KeyView (11.6)

Hyphenation
Miscellaneous
UNIX

VAX

Driver

Archive

Page 289 of 320

Appendix F: List of Required Files for Redistribution

This section lists the Filter files that can be redistributed in your applications under the licensing
agreement. These files are in the directory instal [\0S\bin, where install is the path name of the
Filter installation directory and 0s is the name of the operating system.

NOTE:
On Windows systems, the libraries are .d11 files. On UNIX systems, the libraries are .so, .a,
or .slfiles.

Core Files

The following core files can be redistributed with your application.

File Description

formats.ini Initialization file. For more information on this file, see Determine Format
Support, on page 267.

FilterDotNet.* Required by .NET API.

KeyViewFilter.* Required by the Java API.

kpifcnvt.* For presentation graphics, converts from one picture format to another.

kpifutil.* Utility for handling the internal picture interchange format for presentation
graphics.

kvxtract.* File Extraction API.

kvfilter.* Filter API.

kvolefio.* Embedded OLE object writer.

kvutil.* Internal KeyView utility functions.

kvxpgsa.* Interface between presentation readers and kvfilter. Required to extract

metadata from AutoCAD files.

kvxsssa.* Interface between spreadsheet readers and kvfilter.
kvxwpsa.* Interface between word processing readers and kvfilter.
kwad . * File auto-recognition module.

txtcnv.* Converter for document token stream.

KeyView (11.6) Page 290 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

Support Files

The following support files can be redistributed with your application.

File Description
bentofio.* Required by 1123sr and kpprzrdr.
cbmap.map Character mappings for Adobe Portable Document Format (PDF).

chartbls.ux Character mappings.
chmdll.* Required by chmsr.
kppng.* Required for ZLIB decompression.

kvxconfig.ini Contains element extraction settings for XML files.

kvoop. * Required for out-of-process filtering.
kvthread.* Required for multithreaded out-of-process filtering.
kv.lic Contains license information for KeyView products. This file is opened and

validated when a KeyView API is used.

MSVCP60. * Microsoft Visual C++ Runtime library V6.0.

msvcrt.* Microsoft Visual C Runtime library.

wpmap. * Extended character mapping for WordPerfect and Corel Presentation.

xmlsh.* Contains a library of content handlers for each XML file type. Required by the
Expat XML parser.

Document Readers

The following readers can be redistributed with your application.

File Description

adlsr.* AD1 Evidence file reader

afsr.* ASCII reader

aiffsr.* Audio Interchange Format File (AIFF) reader
asfsr.* Advanced Systems Format reader

assr.* Applix Spreadsheet reader

awsr.* Applix Word reader

KeyView (11.6) Page 291 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File Description

blisr.* B1 archive reader

bkfsr.* Microsoft Backup File reader

bmpsr. * Windows bitmap (BMP) reader

bzip2sr.* Bzip2 reader

cabsr.* Microsoft Cabinet format reader

cebsr.* Founder Chinese E-paper Basic reader

chmsp., * Microsoft Compiled HTML Help reader

csvsr.* Comma-Separated Values reader

dbfsr.* dBase Database reader

dbxsr. * Microsoft Outlook Express DBX reader

dcasr.* Document Content Architecture/Revisable Form Text (DCA/RFT) reader
dcmsr. * Digital Imaging and Communications in Medicine (DICOM) reader
difsr.* Data Interchange Format reader

dmgsr.* Mac Disk Copy Disk Image File reader

dwésr. * DisplayWrite reader

dxlsr.* Domino XML Language reader

emlsr.* Microsoft Outlook Express (EML) reader. This is used to filter EML files when the

MBX reader is not licensed.
emxsr. * Legato EMailXtender (EMX) reader
encasesr.* Expert Witness Compression Format (EnCase) v6 reader

encase2sr.* Expert Witness Compression Format (EnCase) v7 reader

entsr.* Microsoft Entourage Database Format reader
epubsr.* Open Publication Structure eBook reader
foliosr.* Folio Flat File reader

gifsr.* Graphics Interchange Format (GIF) reader
gwfssr.* GroupWise FileSurf reader

hl7spr.* Health level7 reader (metadata only)

htmsr. * HTML and XHTML reader

KeyView (11.6) Page 292 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File
hwpsr. *
hwposr. *
ichatsr.*
icssr.*
isosr.*
iwwpsr.*
iwsssr.*
jp2000sr.
jpgsr.*
jtdsr.*
kpagrdr.*
kpCATrdr.
kpcgmrdr.
kpDWGrdr.
kpDXFrdr.
kpemfrdr.
kpGFLrdr.

kpgifrdr.

kpIWPGrdr.*

kpmsordr.
kpODArdr.
kpodfrdr.
kpONErdr.
kpp4ordr.
kpp95rdr.
kpp97rdr.
kppctrdr.

kppicrdr.

KeyView (11.6)

*

*

*

*

*

Description

Hangul 97 reader

Hangul 2002, 2005, 2007 reader

Apple iChat Log reader

Microsoft Outlook iCalendar reader

ISO-9660 CD Disc Image Format reader

Apple iWork Pages reader

Apple iWork Numbers reader

JPEG 2000 metadata reader

JPEG metadata reader

JustSystems Ichitaro reader

Applix Presentations reader

CATIA format reader

Computer Graphics Metafile reader

AutoCAD Drawing format reader

AutoCAD Drawing Exchange format reader

Enhanced Metafile reader

Omni Graffle reader

Graphic Interchange Format (GIF) reader

Apple iWork Keynote reader

Microsoft Office Drawing Objects (office 97, 2000, and XP) reader
AutoCAD reader (Windows only)

Oasis Open Document Format presentation (ODP) reader
Microsoft OneNote reader

Microsoft PowerPoint PC 4.0 and PowerPoint Mac reader
Microsoft PowerPoint 95 reader

Microsoft PowerPoint 97 and higher reader

Macintosh Quick Draw Picture (PICT) reader

Pictor PC Paint (PIC) reader

Page 293 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File

kpppxrdr.*

*

kpprerdr.

kpprzrdr.*

*

kpshwrdr.
kpugrdr. *
kpwg2rdr.*
kpwmfrdr.*
kpwpgrdr. *
kpXFDLrdr.*
kvgzsr.*
kvhgxsr.*
kvzeesr.*
1123sr.*
lasr.*
ltbenn30.d11
ltscsnle.dll
lwpapin.dll
lwppann.dll
lwpsr.dll
lzhsr.*
macbinsr.*
mbsr.*
mbxsr.*
mdbsr.*
mhtsr.*

mifsr.*

Description

Microsoft PowerPoint XML reader 2007

Lotus Freelance Graphics for Windows V2.0 reader
Lotus Freelance Graphics 96/97/98 reader
Corel Presentations reader

Unigraphics (UG) NX reader

WordPerfect Graphics 2 reader

Windows Metafile reader

WordPerfect Graphics 1 reader

Extensible Forms Description Language reader
GZIP reader

BinHex reader

UNIX Compress reader

Lotus 123 v96/97/98 reader

Lotus AMI Pro reader

Lotus Word Pro support (supported on Windows x86 platform only)
Lotus Word Pro support (supported on Windows x86 platform only)
Lotus Word Pro support (supported on Windows x86 platform only)
Lotus Word Pro support (supported on Windows x86 platform only)

Lotus Word Pro reader (supported on Windows x86 platform only)

Microsoft Compression Folder reader
MacBinary reader

Microsoft Word Macintosh reader

Mailbox (MBX) and Microsoft Outlook Express (EML) reader’

Microsoft Access reader
MIME HTML reader

Adobe Maker Interchange reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Filter SDK. See
License Information, on page 19

KeyView (11.6)

Page 294 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File

misr.*
mp3sr.
mpegas
mppsr.
msgsr.
mspubs
mswésr

Mmswsr.

multiarcsr

mweésr.
mw8sr.
mwsr. *
mwssr.
mwxsr.
nsfsr.
oa2sr.
odfsss
odfwps
olesr.
olmsr.
onmsr.
0o03sr.
pdfsr.
pffsr.
pngsr.

pstsr.

pstnsr

*

r.*

*

*

r.*

Lk

*

*

*

*

r.*

r.*

*

*

*

dll

Uk

KeyView (11.6)

Description

Microsoft Word 2 reader

MP3 reader for metadata extraction reader
MPEG-4 Audio file reader

Microsoft Project reader

Microsoft Outlook (MSG) reader

Microsoft Publisher reader

Microsoft Works 6 and 2000 reader

Microsoft Works V1 and 2 reader

ARJ Reader

Microsoft Word 95 reader

Microsoft Word 97, 2000, and XP reader

Microsoft Word for DOS and Microsoft Write reader
Microsoft Works Spreadsheet reader

Microsoft Word 2007 XML reader

Lotus Notes database reader 1

Fujitsu Oasys reader

Oasis Open Document Format spreadsheets (ODS) reader
Oasis Open Document Format word processing (ODS) reader
Embedded OLE object reader

Microsoft Outlook for Macintosh reader

Legato EMailXtender Native Message reader

Omni Outliner reader

Adobe Portable Document Format file (PDF) reader
Microsoft Outlook Offline Storage File reader

Portable Network Graphics (PNG) reader

Microsoft Outlook Personal Folders file MAPI-based reader (supported on Windows

platform only)1

Microsoft Outlook Personal Folders file native reader1

Page 295 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File
gpssr.*
gpwsr.*
rarsr.*
riffsr.*
rtfsr.*
skypesr.*
sosr.*
sunadsr.*
swfsr.*
tarsr.*
tifsr.*
tnefsr.*
unihtmsr.*
unisr.*
unzip.*
utf8sr.*
uudsr.*
vcfsr. *
vsdsr.*
wkssr.*
wosr. *
wpésr. *
wpmsr., *
xlsbsr.*
xlssr.*
xlsxsr.*
xmlsr.*

xpssr.*

KeyView (11.6)

Description

Corel Quattro Pro spreadsheet reader
Corel Quattro Pro version X4 spreadsheet reader
RAR Archive reader

Microsoft WAVE reader

Microsoft Rich Text reader

Skype log file reader
StarOffice/OpenOffice reader

Sun Audio Data reader

Macromedia Flash reader

Tape archive reader

TIFF reader (metadata only)

Transfer Neutral Encapsulation Format
Unicode HTML reader

Unicode reader

Zip file reader

UTF-8 reader

UUEncoding reader

Microsoft Outlook vCard Contact reader
Microsoft Visio reader

Lotus 123 v2.0 through 5.0 reader
WordPerfect 5.x reader

WordPerfect 6.0 through 10.0 reader
WordPerfect for Macintosh reader
Microsoft Office 2007 Excel Binary Format reader
Microsoft Excel reader

Microsoft Excel 2007 XML reader
Generic XML reader

XML Paper Specification reader

Page 296 of 320

Filter SDK C Programming Guide
Appendix F: List of Required Files for Redistribution

File
xywsr.*
yimsr.*

z7zsr.*

KeyView (11.6)

Description
XY Write reader
Yahoo! Instant Messenger reader

7-Zip reader

Page 297 of 320

Appendix G: Develop a Custom Reader

This section describes how to develop a reader for a format not supported by KeyView.

O INtrOdUCTION L 298
®* How toWrite a Custom Reader 299
® Development TIPS . 309
O FUNCHIONS 310
Introduction

The Filter SDK enables you to write custom readers for formats not directly supported by KeyView. A
reader is required to parse the file format and generate a KeyView token stream, which represents the
content and format of the document. Filter can then use this token stream to generate a text version of
the original document. The readers interact with a structured access layer and a writer to generate a
text file in Filter, an HTML file in HTML Export, an XML file in XML Export, and a near-to-original view of
the document in the Viewing SDK.

The complexity of a custom reader depends on the file format used by the source document type. A
simple reader extracts only the textual content, but ignores formatting and all other non-textual content.
Readers of increasing complexity must address one or more of the following:

« formatting (including fonts, foreground and background colors, paragraph borders and shading,
character and paragraph styles)

. tables

o lists

« headers

« footers

. footnotes

« endnotes

o graphics

« bookmarks to internal links

« hyperlinks to external documents or webpages

« other structures, such as a table of contents or index

Even a simple reader might have to parse the following components of a document:

« word processing commands or tags

« encrypted or encoded text

« multiple character sets

« text modified, but retained within the file

« text displayed in an order other than its physical occurrence within the source file

KeyView (11.6) Page 298 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Itis very important to fully understand the file specification for the file format used by the document.
This is essential in determining how to parse the source file and generate a token stream that
accurately and effectively represents the original document.

Within Filter, the custom reader must interact with a structured access layer and the format detection
API, which in turn interacts with the top-level API. For a description of the Filter architecture, see
Architectural Overview, on page 23.

The custom reader must have a module definition file (*. def) that defines the exported API function
calls. In addition, the formats. ini file must be modified to identify the custom reader and its
associated format detection function.

See the source code for the sample custom reader (utf8sr), which parses plain text files encoded in
UTF-8. The source code is in the directory install/samples/utf8sr, where install is the path
name of the Filter installation directory.

How to Write a Custom Reader

Two include files define the requirements for a custom reader: kvcfsr.h and kvtoken.h. The
definitions of the KeyView tokens are in kvtoken.h. For more information on tokens, see Token Buffer,
on the next page. The file kvcfsr. h defines two structures: TPReaderInterface and adTPDocInfo.

The TPReaderInterface structure defines the API functions implemented by the custom reader. For
basic readers, only the first four functions must be implemented. These functions are called by the
structured access layer to parse the source file and generate the token stream.

All readers must be threadsafe. This means that global variables must not be used. To pass information
between functions, it is necessary to define a "global" context structure that stores all information
required throughout the life of the DLL. The initial parameter of all but one of the TPReaderInterface
functions is a pointer to a global context structure defined for the custom reader.

The adTPDocInfo structure defines the information required for the format detection API, which
associates the custom reader with the required file format.

Naming Conventions

Use the following naming conventions for functions and files:

« Theinitial letters of the custom reader file name should identify the file format being parsed. For
example, pdf for Adobe PDF files, rtf for RTF files, and x1s for Microsoft Excel files. In the
examples in this appendix, this is represented by xxx.

« The name of the shared library must end with the letters sr.
« The name of the exported functions in the module definition file must be xxxGetReaderInterface
and xxxsrAutoDet.

NOTE:
The letters sr are excluded from xxxGetReaderInterface, but are included in
xxxsrAutoDet.

KeyView (11.6) Page 299 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Basic Steps

The basic steps for developing a custom reader are as follows.

To develop a custom reader

1. Design the global context structure.
2. Write the basic API functions:

« XxxAllocateContext()

o xxxInitDoc()

o xxxFillBuffer()

o xxxFreeContext()

o XxxCharSet()

o xxxsrAutoDet()

From within the xxxFillBuffer() function, it is necessary to call other functions that repeatedly
read a chunk of a source file, parse the chunk, and generate a token stream until the entire source
file is processed.

3. Map all but the last function to the TPReaderInterface structure.

Write the module definition file (* . def), exporting the reader interface and format detection
functions.

5. Modify the formats. ini file to identify the custom reader and its associated format detection
function. See xxxsrAutoDet(), on page 310. For example, the following lines would be added to the
[Formats] section of the formats. ini file for the UTF-8 reader:

456.1.0.0=utf8
[CustomFilters]
1=utf8sr

Token Buffer

Filter technology parses the native file structure to generate an intermediate stream called a foken
buffer. The token buffer consists of multiple sequences of tokens, which are defined in kvtoken.h and

listed below.

#tdefine KVT_TEXT 0x00 /* PutText() */

#tdefine KVT_PARAINFO 0x01 /* SetParalnfo() */

#tdefine KVT_SETTABS 0x02 /* SetTabs() */

#tdefine KVT_TAB 0x03 /* Tab() */

#tdefine KVT_MODE 0x04 /* SetMode() */

#define KVT_PARASPACE 0x05 /* SetParaSpace() */

#tdefine KVT_ROWDEFN 0x06 /* DefineRow(), EndTable() */
#tdefine KVT_COLUMNS 0x07 /* StartColumns(), etc. */
#tdefine KVT_CELLSTART 0x08 /* NextCell() */

#tdefine KVT_BITMAP 0x09 /* Reserved for annotations. */
#tdefine KVT_PAGEOBIJ] Ox0A /* PutHeader(), PrintPage(), etc.*/

KeyView (11.6) Page 300 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

#tdefine KVT_NOOP
#define KVT_PAGE_BREAK
#define KVT_PARA_BREAK
#define KVT_LINE_BREAK
#define KVT_SET_FONT
#define KVT_PAGE
#tdefine KVT_HOTSPOT
#tdefine KVT_LINESPACE
#tdefine KVT_COLOR
#define KVT_PICTURE
#define KVT_CELLMERGE
#define KVT_RULE
#tdefine KVT_PATTERN
#define KVT_BORDER
#tdefine KVT_HEADING
#tdefine KVT_LISTING
#tdefine KVT_CHARSET
#define KVT_STYLE
#define KVT_BIDI
#define KVT_LOCALE
#define KVT_ZONE
#tdefine KVT_POSITION
#tdefine KVT_AUTOREC
#tdefine KVT_METADATA ox22 /*
#tdefine KVT_BYTEORDER ox23 /*
#define KVT_PARASPACEAUTO ©x24 /*
#tdefine KVT_ATTACH ox25 /*
#define KVT_TOCPRINTIMAGE ©x26 /*
#define KVT_STREAM ox27 /*
#define KVT_REVISIONMARK ©x28 /*
EndRevisionMark(), SetRMAuthor(),
#tdefine KVT_DOCXTRINFO ox29 /*
#tdefine KVT_PCTEMDFT ox30 /*

oxeB /*
oxec /*
oxeD /*
OXOE /*
OXOF /*
ox1e /*
ox11 /*
ox12 /*
ox13 /*
ox14 /*
ox15 /*
oxl1le6 /*
ox17 /*
ox18 /*
ox19 /*
Ox1A /*
ox1B /*
ox1C /*
ox1D /*
Ox1E /*
Ox1F /*
ox20 /*
ox21 /*

Just skip a BYTE. */
PageBreak() */
Paraknd() */
LineBreak() */
SetFont() */
SetPageInfo() */
StartHotSpot() */
SetLineSpacing() */
VESetTextColor(),VESetBkColor()*/
PutPicture() */
MergeCells() */
HorzRule() */
StartPattern(), etc. */
StartParaBorder(), etc. */
PutParaHeading() */
StartList(), etc. */
SetCharSet() */
PutCharStyle(), PutParaStyle()*/
Set Bidirectional text */
Set locale of a document */
StartZone(), EndZone() */
SetPosition(), etc. */
Reserved for Internal Use */
Rsserved for Internal Use */
SetByteOrder() */
SetParaSpaceAuto() */
PutAttachment() */
StartTOCPrintImage(), etc. */
PutStream(),Reserved */
StartRevisionMark(),
SetRMDateTime() */
SetDocXtrInfo() */
SetPctEmdFt() */

A token is a single-byte identifier that corresponds to attributes in a document. Each token has one or
more associated macros that provide detailed information about an attribute. Many of these tokens
define components of the document, such as page margins, line indentation, and foreground and
background color. Collectively, these are referred to as the state of the document. This state changes

as the document is parsed.

Macros

Some of the macros are simple while others are complicated. An example of a simple macro is
ParaEnd (pcBuf) which terminates the current paragraph.

#tdefine ParaEnd(pcBuf)
{

*pcBuf++ = KVT_PARA_B

KeyView (11.6)

~

REAK; \

Page 301 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

KVT_PUTINT(pcBuf, KVTSIZE_PARA_BREAK); \
}

In Filter SDK, this generates an exod, 6x0a pair of bytes on a Windows machine. In HTML Export this
cangenerate a<p style=".."> element, depending on the value of other paragraph attributes.

One of the more complicated macros is PutPictureEx().

#tdefine PutPictureEx(pcBuf, lpszKey, cx, cy, flags, \
scaleHeight, scaleWidth, \
cropFromL, cropFromT, cropFromR, cropFromB, \
anchorHorizontal, anchorVertical, offsetX, offsetY)\

{ \
PutPic(pcBuf, lpszKey, cx, cy, flags, \
scaleHeight, scaleWidth, \
cropFromL, cropFromT, cropFromR, cropFromB, \
anchorHorizontal, anchorVertical, offsetX, offsetY,\
180, o0, 180, 0, -1, @, 0, 0, 0) \

}

You can generate a representation of the token stream by running filtertest.exe with the -d
command-line option. This stream does not include the tokens generated for headers or footers. The
filtertest.exe is inthe directory install\samples\utf8\bin, where install is the path name of
the Filter installation directory.

Reader Interface

All custom readers use the reader interface defined in kvcfsr.h. The members of this structure are:

fpAllocateContext()
fpInitDoc()
fpFillBuffer()
fpFreeContext()
fpHotSpothit()
fpGetSummaryInfo()
fpOpenStream()
fpCloseStream()
fpGetURL()
fpGetCharSet()

NOTE:
fpHotSpothit () and fpGetURL() are currently reserved and must be NULL.

Function Flow

The structured access layer calls the functions as follows:

1. fpAllocateContext() is called and returns a pointer to the global context structure.

KeyView (11.6) Page 302 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

2. After further processing within the structured access layer, fpInitDoc() is called. This function
performs all required initialization for the global context structure and then returns control to the
structured access layer.

3. After further processing within the structured access layer, the fpFillBuffer() functionis called
repeatedly until the document is completely parsed.

4. Finally, fpFreeContext() is called. This function frees all memory allocated within the custom
reader and then returns control to the structured access layer.

Related Topics

« Functions, on page 310
Example Development of fffFillBufferQ

The following is an example of how the fpFillBuffer() functionin foliosr could be developed. The
example demonstrates how the code changes as limitations of the implementation are identified. With
each implementation, code revisions are shown in bold.

Implementation 1—fpFillBuffer() Function

/***

*Function: fffFillBuffer()
*Summary: Read fff input from stream and parse into kvtoken.h codes
***/
int pascal _export fffFillBuffer(

void *pCFContext,

BYTE *pcBuf,

UINT *pnBufOut,

int *pnPercentDone,

UINT cbBufOutMax)

{
BOOL bRetVal;
TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;
pContext->pcBufOut = pcBuf;
fffReadSourceFile(pContext);
bRetVal = fffProcessBuffer(pContext, pcBuf);
*pnPercentDone = (int)(pContext->unTotalBytesProcessed *
(UINT)100 / pContext->unFileSize);
*pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
return (bRetVal ? KVERR_Success : KVERR_General);
}
The parameters in fffFillBuffer() are as follows:
Parameter In/Out Description
pCFContext In A pointer to the context structure of the custom reader.
pcBuf In/Out A pointer to the token output buffer.

KeyView (11.6) Page 303 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Parameter In/Out Description

pnBufOut Out A pointer to the number of bytes written to the output buffer.

pnPercentDone Out A pointer to the percentage complete.

cbBufOutMax In The maximum number of bytes that the token output buffer can hold.

Structure of Implementation 1

1.

The local variable pContext is set to the address of the pCFContext void pointer, cast to a pointer
to the global context structure for the reader. This provides access to all members of this
structure.

2. After setting the pContext variable, a call is made to read the source file.

Next, a call is made to fffProcessBuffer(). The second parameter in the call is a pointer to the
token output buffer. If this call fails, usually because of memory allocation errors, it returns FALSE.

The percentage complete is calculated.

The number of BYTES written to the token output buffer is calculated. This is based on the value of
pContext->pcBufOut, which is increased each time a token is written to the buffer.

The function returns to the structured access layer.

Subsequent calls to fffFillBuffer() are made by the structured access layer until the
percentage complete is 100.

Problems with Implementation 1

There is alimit to the size of the token output buffer, typically 4 KB. If fffProcessBuffer()
generates a token stream larger than this, there is a memory overflow. If fffProcessBuffer()
generates a small token stream and the entire file has not been read, the output token buffer is
underutilized.

It might not be possible to process the entire input buffer from the source file because of boundary
conditions. An example of a "boundary condition" is when the input buffer terminates part way

through a control sequence in the original document. Another file read operation is required before the
complete control sequence can be parsed.

This function might be interrupted by other calls from the structured access layer to process
headers, footers, footnotes, and endnotes, or to retrieve the document summary information. This
can cause values of variables in the global context to change, and the source file to be repositioned.

Implementation 2—Processing a Large Token Stream

Implementation 2 addresses the problem of processing a token stream that is larger than the output
buffer size limit.

/***

* Function: fffFillBuffer()

* Summary: Read fff input from stream and parse into kvtoken.h codes
***/

int pascal _export fffFillBuffer(

KeyView (11.6)

Page 304 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

void *pCFContext,
BYTE *pcBuf,

UINT *pnBufOut,

int *pnPercentDone,
UINT cbBufOutMax)

BOOL bRetVal = TRUE;

TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;

pContext->pcBufOut = pcBuf;

pContext->cbBufOutMax = 9 * cbBufOutMax / 10; /* Process the portion of the
fff file that is in the input buffer but do * not return from the fffFillBuffer()
function unless the output buffer is * at least 90% full. If any of the memory
allocations fail during the * execution of fffProcessBuffer(), bRetVal will be
set to FALSE, resulting * in this conversion failing "gracefully".

*/
do
{
if(pContext->bBufOutFull)
{
pContext->bBufOutFull = FALSE;
}
else
{
fffReadSourceFile(pContext);
}
bRetVal = fffProcessBuffer(pContext, pcBuf);
*pnPercentDone = (int)(pContext->unTotalBytesProcessed *
(UINT)100 / pContext->unFileSize);
J}while(bRetVal && !pContext->bBufOutFull && *pnPercentDone < 100);
*pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
return (bRetVal ? KVERR_Success : KVERR_General);
}

Structure of Implementation 2

1. cbBufOutMax is used to set pContext->cbBufOutMax. This is usedin fffProcessBuffer() to
monitor how full the token output buffer becomes as the source file is processed.

2. When the source file input buffer has been processed, fffProcessBuffer() returns, and the
percentage complete is calculated.

3. If the token output buffer is not filled to a value greater than pContext - >cbBufOutMax, pContext-
>bBufOutFull remains set to FALSE, and if the percentage complete is less than 100, the do-
while loop is re-entered without returning from this function to the structured access layer. There
is another call to fffReadSourceFile(), followed by fffProcessBuffer().

KeyView (11.6) Page 305 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

4. When the token output buffer is filled to a value greater than pContext - >cbBufOutMax, pContext-
>bBufOutFull is set to TRUE. In this case, the do-while loop ends, the number of bytes written to
the token output buffer is calculated, and control retumns to the structured access layer.

5. The structured access layer continues to make calls to fffFillBuffer() until the entire source
file is processed.

6. Eachtime the structured access layer calls fffFillBuffer (), another empty token output buffer
is provided for the custom reader to use.

7. Ifthe previous call to fffFillBuffer() exited because the previous token output buffer exceeded
allowable capacity, pContext->bBufOutFull is reset to FALSE and no call is made to read the
next buffer from the input source file.

Problems with Implementation 2

« It might not be possible to process the entire input buffer from the source file because of boundary
conditions.

« This function might be interrupted by other calls from the structured access layer to process
headers, footers, footnotes, or endnotes, or to retrieve the document summary information. This can
cause values of variables in the global context to change, and the source file to be repositioned.

Boundary Conditions

A boundary condition can result from many situations arising from input file processing. For example,
the input buffer might end with an incomplete command. In Folio flat files, this could be an incomplete
element. In other word processing documents, a boundary condition might result from an incomplete
control sequence, a split double-byte character, or a partial UTF-7 or UTF-8 sequence. These can be
handled jointly by fffProcessBuffer (), which must detect the boundary condition, and
fffReadSourceFile().

The following example shows partial code used in fffReadSourceFile():

/**
*
* Function: fffReadSourceFile()
*
***/
int pascal fffReadSourceFile(TPfffGlobals *pContext)
{
int nBytes;
/* Transfer remaining data to beginning of buffer prior to next read */
if(pContext->nResidualBytes)

{
memcpy (pContext->cInputBuf, pContext->pcBufIn, pContext->nResidualBytes);

}
/* Read from file, without over-writing any text from the previous buffer */
nBytes = (*pContext->pI0->kwReadFunc)(pContext->pIO,
pContext->cInputBuf + pContext->nResidualBytes,
BUFFERSIZE - pContext->nResidualBytes);
/* Update input buffer control parameters */

KeyView (11.6) Page 306 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

pContext->unTotalBytesRead += (UINT)nBytes;

pContext->pcBufIn = pContext->cInputBuf;

pContext->pcBufInMax = pContext->pcBufIn + pContext->nResidualBytes + nBytes;
pContext->nResidualBytes = 0;

return nBytes;

}

If fffProcessBuffer() is unable to process the entire input source file buffer, it sets the value for
pContext->nResidualBytes. When the next call to fffReadSourceFile() is made, any residual
bytes are copied to the beginning of the input source file buffer, and the number of bytes to be read is
reduced to make sure that this buffer does not overflow.

A good way to test the code for boundary conditions is to vary the size of BUFFERSIZE and make sure
that the results remain consistent.

NOTE:
With ReadSourceFile(), the source file can be read by calls to retrieve header or footer
information. If this occurs, the value for pContext->unTotalBytesRead is incorrect.

Implementation 3—Interrupting Structured Access Layer Calls

Implementation 3 addresses the problem of boundary conditions and interrupting calls from the
structured access layer.

/**

* Function: fffFillBuffer()
* Summary: Read fff input from stream and parse into kvtoken.h codes
**/
int pascal _export fffFillBuffer(

void *pCFContext,

BYTE *pcBuf,

UINT *pnBufOut,

int *pnPercentDone,

UINT cbBufOutMax)

double dTotalBytesProcessed, dFileSize;

BOOL bRetVal = TRUE;

TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;

pContext->pcBufOut = pcBuf;

pContext->cbBufOutMax = 9 * cbBufOutMax / 10;
/* Process the portion of the fff file that is in the input buffer but do
* not return from the fffFillBuffer() function unless the output buffer is
* at least 90% full. If any of the memory allocations fail during the
* execution of fffProcessBuffer(), bRetVal will be set to FALSE, resulting
* in this conversion failing "gracefully". */

do

{

if(pContext->bBufOutFull)

{
pContext->bBufOutFull = FALSE;

KeyView (11.6) Page 307 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

}
else
{
fffReadSourceFile(pContext);
}

bRetVal = fffProcessBuffer(pContext, pcBuf);
if(pContext->bHeaderCompleted)

*pnPercentDone = 100;
pContext->bHeaderCompleted = FALSE;

}
else if(pContext->bFooterCompleted)

*pnPercentDone = 100;
pContext->bFooterCompleted = FALSE;
}

else

if(pContext->unTotalBytesProcessed >= pContext->unFileSize)
{
*pnPercentDone = 100;
}
else if(pContext->unFileSize < FFF_MAX_ULONG)
{
*pnPercentDone = (int)(pContext->unTotalBytesProcessed *
(UINT)100 / pContext->unFileSize);
}

else

dTotalBytesProcessed = pContext->unTotalBytesProcessed;
dFileSize = pContext->unFileSize;
*pnPercentDone = (int)(dTotalBytesProcessed * 100 / dFileSize);
}

}
}while(bRetVal && !pContext->bBufOutFull && *pnPercentDone < 100);

*pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
return (bRetVal ? KVERR_Success : KVERR_General);

}
Structure of Implementation 3

« The most significant change in Implementation 3 is the addition of the code that checks whether the
processing of the header or footer is complete. The variables for pContext->bHeaderCompleted and
pContext->bFooterCompleted are set to TRUE in fffProcessBuffer() when a header or footer is

KeyView (11.6) Page 308 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

processed and the end of that portion of the document is reached.

« The other piece of code added in Implementation 3 is unique to foliosr. Folio files can be 50 MB or
larger. Therefore, an unsigned integer is too small to accurately calculate the percentage complete.
If the file size exceeds FFF_MAX_ULONG, which is defined as (UINT) (6xFFFFFFFF / 0x64), the
doubles are used for that calculation.

« Prior to returing, the token output buffer is as full as possible and never overflows. The minimum
number of calls is made.

Development Tips

« Avoid unnecessary initialization.

The context variable is allocated in fpAllocateContext (). This structure must be immediately
memset () to zero. This sets all BOOL values to FALSE, all pointers to NULL, and all integers to @. Only
non-zero, non-NULL and BOOLs that must be TRUE need to be initialized. This is best done in
fpInitDoc().

« Know where you are in the input source file.

If you are processing headers, footers, notes, or (in the case of rtfsr)tables, you must be able to
reposition the file pointer as required.

« Check buffer boundaries continuously.

Whenever you advance through the buffer, you need to know whether there is enough of the input
stream to completely process the current command. If not, you need to append the next section of
the input file before continuing.

« Strive for a "clean" token stream.

Use filtertest with the -d command-line option to generate a token version of the document. If
there are redundant tokens, the reader is producing an inefficient token stream. You can keep the
token stream free from redundancies by storing the state of the document and then applying the
changes only when content is encountered. Content can be text, tabs, or picture objects. The
filtertest.exe is inthe directory install\samples\utf8\bin, where install is the path name
of the Filter installation directory.

« Avoid large switch() statements whenever possible. They make both development and debugging
more complicated than necessary. If there is a fixed set of commands, consider using a hash table
that enables you to quickly identify a pointer to the function that handles that command.

« Filtering document metadata is a separate process.

Remember that fpGetSummaryInfo() is a completely separate process from the rest of your code.
It creates its own context variable structure. It does not have to call fpFillBuffer().

« Use caution when processing headers, footers, and notes.

If you need to process these items, the structured access layer calls fpOpenStream() and
fpCloseStream(). It is critical that you save the state of your document and the file pointer position
prior to returning from fpOpenStream(). Prior to returning from fpCloseStream(), you must restore
the file pointer and the previous state of your document.

« Testyour code.

The structured access layer for each SDK is unique. Test your code in Filter SDK, Export SDK, and
Viewing SDK.

KeyView (11.6) Page 309 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Functions

This section describes the functions used by custom readers to manage the source file and generate
token streams required to convert a document.

xxxsrAutoDetQ

This function analyzes the source document and determines whether the detected file format requires
the custom reader. It is called only when the [CustomFilters] section of the formats.ini file
contains an entry identifying the complete file name of the custom reader. For more information on the
formats.ini file, see File Format Detection, on page 267.

Syntax

Bool pascal _export xxxsrAutoDet(
adTPDocInfo *pTPDocInfo,
KPTPIOob] *pI0)

Arguments

pTPDocInfo A pointerto the adTPDocInfo structure provided by the structured access layer.

pIO0 A pointer to the I/O stream object for the document processed.

Returns

« TRUE if the file format matches that of the custom reader.

o FALSE if the file format does not match that of the custom reader.
Discussion

« Typically, only the first 1 KB of the file is read into a buffer and analyzed to determine if it matches
the file format of the custom reader. If a match is determined, the following four members of the
adTPDocInfo structure must be assigned before returning TRUE:

adClass Must be setto 1.

adFormat A numerical value assigned to this reader in the [Formats] section of the
formats.ini file.

descStr A string describing the file format.

mMnmemStr The initial part of the custom reader file name with the "sr" excluded.

KeyView (11.6) Page 310 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

« If the return value is TRUE, the custom reader is used to parse the file and generate the token stream.

« Ifthe return value is FALSE, all other readers in the [CustomFilters] section of the formats.ini file
are tried. If no match is found, the file detection process continues checking for the formats
supported by Filter SDK.

« Theentry inthe [Formats] section of the formats. ini file should be of the form aaa.bbb.ccc.ddd,
where aaa is the value used for the adFormat parameter, bbb is the value of the file class, ccc is the
value of the minor format, and ddd is the value of the major version.

xxxAllocateContext(

This function allocates a global memory block for a data context. A handle to this memory is returned to
the structured access layer. The structured access layer passes this handle back to all reader entry
points.

Syntax

void * pascal _export xxxAllocateContext(
void *pSALContext,
LPARAM (pascal *fp)(void *,
UINT LPARAM) ,
Bool *pbOpenDoc,
TPVAPIServices *pVapi,
DWORD dwFlags)

Arguments

pSALContext A pointer to the global data context structure of the structured access layer.

fp A pointer to a structure of callback functions supported by the structured access
layer.

pbOpenDoc You must set this BOOL value to TRUE if the allocation of memory for the global data
context structure is successful.

pVapi A pointer to a structure providing memory management and character conversion
functions. Because this functionality is proprietary to Micro Focus, TPVAPIServices
is redefined as void in kvcfsr.h.

dwFlags Run-time flags controlled by the structured access layer.

Returns

« Upon success, a pointer to the global data context structure for the custom reader. This pointer is
passed back to all other custom reader entry points.

« Upon error, aNULL pointer. This causes the structured access layer to shut down the process.

KeyView (11.6) Page 311 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Discussion

The global context structure should be memset () to zero in this function.
xxxFreeContextQ

This function terminates an instance of the custom reader.

Syntax

int pascal _export xxxFreeContext(void *pCFContext)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code.
Discussion
All memory that still remains allocated within the custom reader must be freed within this function.

xxxInitDocQ

This function initializes non-zero, non-null members of pContext.

Syntax

int pascal _export xxxInitDoc(
void *pCFContext,
adDocDesc *pAutoInfo,
long lcbFileSize,
KPTPIOobj *pI0)

Arguments

pCFContext A pointer to the global context structure for the custom reader.
pAutoInfo A pointer to an adDocDesc structure defined in kwautdef.

lcbFileSize The length of the source file in bytes.

KeyView (11.6) Page 312 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

pIlo A pointer to a KPTPIOobj structure defined in kvioobj.h.

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code. This causes the structured access layer to shut down the
process.

Discussion

« Forcustom readers, the pAutoInfo variable can be ignored.

« If the structured access layer has determined the length of the source file, that value is provided by
the 1cbFileSize parameter. If it is zero, the file size must be determined in this function.

« The pointer pI0 provides access to file management functions defined in kvioobj.h.
« Inthis function, all non-zero, non-NULL members of the global context structure should be initialized.

xxxFillBufferQ

This function controls parsing of the source file and generation of tokens defined in kvtoken.h.
Syntax

int pascal _export xxxFillBuffer(
void *pCFContext,
BYTE *pcBuf,
UINT *pnBufout,

int *pnPercentDone,
UINT cbBufOutMax)
Arguments
pCFContext A pointer to the global context structure for the custom reader.
pcBuf A pointer to a memory buffer to which the tokens are written.
pnBufOut A pointer to a variable that specifies the actual number of bytes written to the token
buffer.

pnPercentDone A pointer to a variable that specifies the percentage completed of the file parsing.

cbBufOutMax A pointer to a variable that specifies the maximum number of bytes written to the
token buffer.

KeyView (11.6) Page 313 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code. This causes the structured access layer to shut down the
process.

Discussion

« Calls are made to read and parse the source file within this function.

« This function is called repeatedly by the structured access layer until either the return value is FALSE
or the percentage complete is 100.

« The actual number of bytes written to the token buffer must not exceed the value of cbBufOutMax.

xxxGetSummaryinfoQ

This function is required to extract document summary information.

Syntax

int pascal _export xxxGetSummaryInfo(
void *pCFContext,
KVSummaryInfoEx *pInfo,
BOOL bFreelInfo)

Arguments

pCFContext A pointer to the global context structure for the custom reader.
pInfo A pointer to a KvSummaryInfoEx structure defined in kvtypes.h.

bFreeInfo A BOOL value indicating whether to free memory allocated for summary information.

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code.
Discussion

This function uses an instance of the global context structure that is different from the one used by all
other reader interface functions.

This function can call the same functions used by xxxFillBuffer() or can be completely
independent.

For more information, see Extract Metadata, on page 61.

KeyView (11.6) Page 314 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

xxxOpenStreamQ

This function is required when initiating processing of peripheral elements such as document headers,
footers, footnotes, and endnotes.

Syntax

int pascal _export xxxOpenStream(
void *pCFContext,

int type,
int nOrdinal)
Arguments

pCFContext A pointer to the global context structure for the custom reader.

type An integer identifying a specific header, footer, footnote, or endnote. Options are
defined in kvcfsr. h.

nOrdinal Aninteger identifying a specific header, footer, footnote, or endnote. See the
associated macros in kvtoken.h.

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code.

Discussion

A call to this function results in a call to xxxFillBuffer(). The function xxxFillBuffer() provides a
new empty output buffer and a new token stream input buffer to process the alternate stream for
peripheral elements. In this alternate stream, paragraph and character style properties are likely
different from the main body. Therefore, as the document is parsed, the existing values from the main

body must be saved. When the processing of the altenate stream is completed and processing of the
main body resumes, these values must be restored in xxxCloseStream().

xxxCloseStream(Q

This function is required when terminating processing for document headers, footers, footnotes, and
endnotes.

Syntax

int pascal _export xxxCloseStream(
void *pCFContext,

KeyView (11.6) Page 315 of 320

Filter SDK C Programming Guide
Appendix G: Develop a Custom Reader

int type)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

type An integer identifying a specific header, footer, footnote, or endnote. Options are
defined in kvcfsr. h.

Returns

« Upon success, KVERR_Success.

« Upon error, a non-zero error code.
Discussion

Prior to exiting this function, the previously saved values in the global context structure must be
restored. This ensures that processing of the main body resumes with the correct document state.

xxxCharSetQ

This function identifies the character encoding used within the source document.
Syntax

KVCharSet pascal _export xxxCharSet(
void *pCFContext,
BOOL *bMSBLSB)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

bMSBLSB The BOOL value required for Unicode text. Set this argument to TRUE for Big Endian and
FALSE for Little Endian.

Returns
One of the enumerated values defined in the KVCharSet structure of kvtypes. h.
Discussion

If the custom reader can determine the character encoding of the document, the corresponding
enumerated value is returned. If the character encoding cannot be determined, KVCS_UNKNOWN is
returned.

KeyView (11.6) Page 316 of 320

Appendix H: Password Protected Files

This section lists supported password-protected container and non-container files and describes how to
open them.

® Supported Password Protected File Types o i 317
* Open Password Protected Container Files 318
® Filter Password Protected Files e 318

Supported Password Protected File Types

The following table lists the password-protected file types that KeyView supports.

Key to support table

Symbol Description

Format is supported.
Format is not supported.
Support for viewing subfiles.
Support for viewing content.

Password required.

O 1T < 0 zZz <<

Password and certificate or User ID file required.

Supported password-protected file types

File Type Version Filter Export Extract View Credentials
PST (Windows) n/a N N Y S P
PST (non—Windows)1 n/a N N Y S N
ZIP n/a N N Y S P
7-Zip n/a N N Y S P
RAR n/a N N Y S P
SMIME in MSG, EML, MBX n/a N N Y N C
Lotus Notes NSF n/a N N Y N C

1The native PST reader, pstnsr, does not require credentials to open password-protected PST files
that use compressible encryption.

KeyView (11.6) Page 317 of 320

Filter SDK C Programming Guide
Appendix H: Password Protected Files

Supported password-protected file types, continued

File Type Version Filter Export Extract View Credentials
Adobe PDF n/a Y Y Y \ P
Microsoft Office 972003 'Y Y Y V P

2007

2010

Open Password Protected Container Files

This section describes how to extract password-protected container files by using the C API. The
following guidelines apply to specific file types.

« Lotus Notes NSF files. If you are running a Notes client with an active user connected to a Domino
server, you must specify the user's password as a credential regardless of whether the NSF files
you are opening are protected. This enables KeyView to access the Notes client and the Lotus
Notes API. If the Notes client is not running with an active user, KeyView does not require
credentials to access the client.

« PST files.To open password-protected PST files that use high encryption (Microsoft Outlook 2003
only), you must use the MAPI-based PST reader (pstsr). The native PST reader (pstnsr) returns
the error message KVERR_PasswordProtected if a PST is encrypted with high encryption.

To open container files

1. Define the credential information in the KvOpenFileArg data structure.
2. Pass KVOpenFileArg tothe fpOpenFile() function.
3. Call fpCloseFile().

Filter Password Protected Files

This section describes how to filter password-protected non-container files with the C API.

To filter password-protected files

1. Call the fplnit() function.
Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETSRCPASSWORD
nValue TRUE
pData The source file password. The password is a null-terminated string with a

maximum length of 255 characters (the final byte is null).

For example:
2. (*fpFilterConfig)(pKVFilter, KVFLT_SETSRCPASSWORD, TRUE, password);

KeyView (11.6) Page 318 of 320

Filter SDK C Programming Guide
Appendix H: Password Protected Files

where password is a null-terminated string of 255 or fewer characters.
3. Call the fpFilterFile() or fpFilterStream() function.

KeyView (11.6 Page 319 of 320
Yy

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Filter SDK C Programming Guide (Micro Focus KeyView 11.6)
Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

KeyView (11.6) Page 320 of 320

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Filter SDK C Programming Guide (Micro Focus KeyView 11.6)

	Part I: Overview of Filter SDK
	Chapter 1: Introducing Filter SDK
	Overview
	Features
	Platforms, Compilers, and Dependencies
	Supported Platforms
	Supported Compilers
	Software Dependencies

	Windows Installation
	UNIX Installation
	Package Contents
	License Information
	Enable Advanced Document Readers
	Update License Information

	Directory Structure

	Chapter 2: Getting Started
	Architectural Overview
	Enhance Performance
	File Caching

	Filtering
	Subfile Extraction
	Memory Abstraction
	Use the C-Language Implementation of the API
	Input/Output Operations
	Filtering in File Mode
	Filtering in Stream Mode
	Multithreaded Filtering

	The Filter Process Model
	Filter API
	File Extraction API
	Persist the Child Process
	In the API
	In the formats.ini File

	Run Filter In Process
	In the API
	In the formats.ini File

	Run File Extraction Functions Out of Process
	Restart the File Extraction Server

	Out-of-Process Logging
	Enable Out-of-Process Logging
	Set the Verbosity Level
	Enable Windows Minidump
	Keep Log Files

	Run File Detection In or Out of Process
	Specify the Process Type In the formats.ini File
	Specify the Process Type In the API

	Part II: Use Filter SDK
	Chapter 3: Use the File Extraction API
	Introduction
	Extract Subfiles
	Extract Images
	Recreate a File’s Hierarchy
	Create a Root Node
	Recreate a File’s Hierarchy—Example

	Extract Mail Metadata
	Default Metadata Set
	Extract the Default Metadata Set

	Microsoft Outlook (MSG) Metadata
	Extract MSG-Specific Metadata

	Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata
	Extract EML- or MBX-Specific Metadata

	Lotus Notes Database (NSF) Metadata
	Extract NSF-Specific Metadata

	Microsoft Personal Folders File (PST) Metadata
	MAPI Properties
	Extract PST-Specific Metadata

	Exclude Metadata from the Extracted Text File

	Extract Subfiles from Outlook Files
	Extract Subfiles from Outlook Express Files
	Extract Subfiles from Mailbox Files
	Extract Subfiles from Outlook Personal Folders Files
	Use the Native or MAPI-based Reader
	Use the Native PST Reader (pstnsr)
	Use the MAPI Reader (pstsr)
	System Requirements

	MAPI Attachment Methods
	Open Secured PST Files
	Detect PST Files While the Outlook Client is Running

	Extract Subfiles from Lotus Domino XML Language Files
	Extract .DXL Files to HTML

	Extract Subfiles from Lotus Notes Database Files
	System Requirements
	Installation and Configuration
	Windows
	Solaris
	AIX 5.x
	Linux

	Open Secured NSF Files
	Format Note Subfiles

	Extract Subfiles from PDF Files
	Improve Performance for PDFs with Many Small Images

	Extract Embedded OLE Objects
	Extract Subfiles from ZIP Files
	Default File Names for Extracted Subfiles
	Default File Name for Mail Formats
	Default File Name for Embedded OLE Objects

	Chapter 4: Use the Filter API
	Generate an Error Log
	Enable or Disable Error Logging
	Use the API
	Use Environment Variables

	Change the Path and File Name of the Log File
	Report Memory Errors
	Use the API
	Use Environment Variables

	Specify a Memory Guard
	Report the File Name in Stream Mode
	Report Extended Error Codes
	Specify the Maximum Size of the Log File

	Extract Metadata
	Extract Metadata for File Filtering
	Extract Metadata for Stream Filtering
	Example

	Convert Character Sets
	Determine the Character Set of the Output Text
	Guidelines for Character Set Conversion

	Set the Character Set During Filtering
	Set the Character Set During Subfile Extraction
	Prevent the Default Conversion of a Character Set

	Extract Deleted Text Marked by Tracked Changes
	Filter PDF Files
	Filter PDF Files to a Logical Reading Order
	Enable Logical Reading Order
	Use the C API
	Use the formats.ini File

	Rotated Text
	Extract Custom Metadata from PDF Files
	Extract Custom Metadata by Tag
	Extract All Custom Metadata

	Filter Tagged PDF Content
	Skip Embedded Fonts
	Use the formats.ini File
	Use the C API

	Control Hyphenation
	Use the formats.ini File
	Use the C API

	Filter Spreadsheet Files
	Filter Worksheet Names
	Filter Hidden Text in Microsoft Excel Files
	Specify Date and Time Format on UNIX Systems
	Filter Very Large Numbers in Spreadsheet Cells to Precision Numbers
	Extract Microsoft Excel Formulas
	Standardize Cell Formats
	Numbers
	Text
	Dates

	Filter XML Files
	Configure Element Extraction for XML Documents
	Modify Element Extraction Settings
	Modify Element Extraction Settings in the kvxconfig.ini File
	Specify an Element’s Namespace and Attribute
	Add Configuration Settings for Custom XML Document Types

	Configure Headers and Footers
	Filter Hidden Data
	Hidden Data in Microsoft Excel Documents
	Example
	Toggle Hidden Excel Data Settings in the formats.ini File

	Hidden Data in HTML Documents

	Tab Delimited Output for Embedded Tables
	Table Detection for PDF Files
	Exclude Japanese Guide Text

	Chapter 5: Sample Programs
	Introduction
	tstxtract
	filter

	Part III: C API Reference
	Chapter 6: File Extraction API Functions
	KVGetExtractInterface()
	fpCloseFile()
	fpExtractSubFile()
	fpFreeStruct()
	fpGetMainFileInfo()
	fpGetSubFileInfo()
	fpGetSubFileMetaData()
	fpOpenFile()
	fpSetExtractionTimeout()

	Chapter 7: File Extraction API Structures
	KVCredential
	KVCredentialComponent
	KVExtractInterface
	KVExtractSubFileArg
	KVGetSubFileMetaArg
	KVMainFileInfo
	KVMetadataElem
	KVMetaName
	KVOpenFileArg
	KVOutputStream
	KVSubFileExtractInfo
	KVSubFileInfo
	KVSubFileMetaData

	Chapter 8: Filter API Functions
	KV_GetFilterInterfaceEx()
	fpCanFilterFile()
	fpCanFilterStream()
	fpCloseStream()
	fpFiletoInputStreamCreate()
	fpFileToInputStreamFree()
	fpFilterConfig()
	fpFilterFile()
	fpFilterStream()
	fpFreeOLESummaryInfo()
	fpFreeXmpInfo()
	fpGetDocInfoFile()
	fpGetDocInfoStream()
	fpGetKvErrorCodeEx()
	fpGetOLESummaryInfo()
	fpGetOLESummaryInfoFile()
	fpGetTrgCharSet()
	fpGetXmpInfo()
	fpGetXmpInfoFile()
	fpInit()
	fpOpenStream()
	fpOpenStreamEx2()
	fpRefreshFilterKVOOP()
	fpSetReplacementChar()
	fpSetSrcCharSet()
	fpSetTimeout()
	fpShutdown()

	Chapter 9: Filter API Structures
	KVFltInterfaceEx
	ADDOCINFO
	KV_CONFIG_Arg
	KVFilterOutput
	KVInputStream
	KVMemoryStream
	KVStructHead
	KVSumInfoElemEx
	KVSummaryInfoEx
	KVXConfigInfo
	KVXmpInfo
	KVXmpInfoElems

	Chapter 10: Enumerated Types
	Introduction
	Programming Guidelines

	KVCredKeyType
	KVErrorCode
	KVErrorCodeEx
	KVMetadataType
	KVMetaNameType
	KVSumInfoType
	KVSumType
	LPDF_DIRECTION

	Appendixes
	Appendix A: Supported Formats
	Supported Formats
	Archive Formats
	Binary Format
	Computer-Aided Design Formats
	Database Formats
	Desktop Publishing
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text and Markup Formats
	Word Processing Formats

	Supported Formats (Detected)

	Appendix B: Character Sets
	Multibyte and Bidirectional Support
	Coded Character Sets

	Appendix C: File Formats and Extensions
	File Format and Extension Table

	Appendix D: Extract and Format Lotus Notes Subfiles
	Overview
	Customize XML Templates
	Use Demo Templates
	Use Old Templates
	Disable XML Templates

	Template Elements and Attributes
	Conditional Elements
	Control Elements
	Data Elements

	Date and Time Formats
	Lotus Notes Date and Time Formats
	KeyView Date and Time Formats

	Appendix E: File Format Detection
	Introduction
	Extract Format Information
	Determine Format Support
	Example formats.ini file entries
	Refine Detection of Text Files
	Allow Consecutive NULL Bytes in a Text File

	Translate Format Information
	Distinguish Between Formats

	Determine a Document Reader
	Category Values in formats.ini

	Appendix F: List of Required Files for Redistribution
	Core Files
	Support Files
	Document Readers

	Appendix G: Develop a Custom Reader
	Introduction
	How to Write a Custom Reader
	Naming Conventions
	Basic Steps
	Token Buffer
	Macros
	Reader Interface
	Function Flow

	Example Development of fffFillBuffer()
	Implementation 1—fpFillBuffer() Function
	Structure of Implementation 1
	Problems with Implementation 1
	Implementation 2—Processing a Large Token Stream
	Structure of Implementation 2
	Problems with Implementation 2
	Boundary Conditions
	Implementation 3—Interrupting Structured Access Layer Calls
	Structure of Implementation 3

	Development Tips
	Functions
	xxxsrAutoDet()
	xxxAllocateContext()
	xxxFreeContext()
	xxxInitDoc()
	xxxFillBuffer()
	xxxGetSummaryInfo()
	xxxOpenStream()
	xxxCloseStream()
	xxxCharSet()

	Appendix H: Password Protected Files
	Supported Password Protected File Types
	Open Password Protected Container Files
	Filter Password Protected Files

	Send documentation feedback

