
KeyView
Software Version: 11.6

Filter SDK C Programming Guide

Document Release Date: February 2018

Software Release Date: February 2018

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice

© Copyright 2016-2018 EntIT Software LLC, a Micro Focus company

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support
Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Access the Software Licenses and Downloads portal
l Download software patches
l Access product documentation
l Manage support contracts

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 2 of 320

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

l Look up Micro Focus support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 3 of 320

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Part I: Overview of Filter SDK 13
Chapter 1: Introducing Filter SDK 14

Overview 14
Features 14
Platforms, Compilers, and Dependencies 15

Supported Platforms 15
Supported Compilers 15
Software Dependencies 16

Windows Installation 17
UNIX Installation 18
Package Contents 19
License Information 19

Enable Advanced Document Readers 20
Update License Information 20

Directory Structure 21

Chapter 2: Getting Started 23
Architectural Overview 23
Enhance Performance 25

File Caching 25
Filtering 25
Subfile Extraction 26
Memory Abstraction 26
Use the C-Language Implementation of the API 26

Input/Output Operations 26
Filtering in File Mode 27
Filtering in StreamMode 28
Multithreaded Filtering 29

The Filter Process Model 29
Filter API 30
File Extraction API 30
Persist the Child Process 30

In the API 30
In the formats.ini File 30

Run Filter In Process 31
In the API 31
In the formats.ini File 31

Run File Extraction Functions Out of Process 31
Restart the File Extraction Server 32

Out-of-Process Logging 32
Enable Out-of-Process Logging 32
Set the Verbosity Level 33

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 4 of 320

EnableWindows Minidump 33
Keep Log Files 33

Run File Detection In or Out of Process 34
Specify the Process Type In the formats.ini File 34
Specify the Process Type In the API 34

Part II: Use Filter SDK 35
Chapter 3: Use the File Extraction API 36

Introduction 36
Extract Subfiles 37
Extract Images 38
Recreate a File’s Hierarchy 38

Create a Root Node 38
Recreate a File’s Hierarchy—Example 39

Extract Mail Metadata 39
Default Metadata Set 40

Extract the Default Metadata Set 40
Microsoft Outlook (MSG)Metadata 41

Extract MSG-Specific Metadata 42
Microsoft Outlook Express (EML) andMailbox (MBX)Metadata 43

Extract EML- or MBX-Specific Metadata 43
Lotus Notes Database (NSF)Metadata 43

Extract NSF-Specific Metadata 44
Microsoft Personal Folders File (PST)Metadata 44

MAPI Properties 44
Extract PST-Specific Metadata 45

ExcludeMetadata from the Extracted Text File 46
Extract Subfiles from Outlook Files 46
Extract Subfiles from Outlook Express Files 46
Extract Subfiles fromMailbox Files 47
Extract Subfiles from Outlook Personal Folders Files 47

Use the Native or MAPI-based Reader 47
Use the Native PST Reader (pstnsr) 48
Use theMAPI Reader (pstsr) 48

System Requirements 49
MAPI Attachment Methods 49
Open Secured PST Files 50
Detect PST Files While the Outlook Client is Running 50

Extract Subfiles from Lotus Domino XML Language Files 50
Extract .DXL Files to HTML 51

Extract Subfiles from Lotus Notes Database Files 51
System Requirements 52
Installation and Configuration 52

Windows 52
Solaris 53

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 5 of 320

AIX 5.x 53
Linux 54

Open Secured NSF Files 54
Format Note Subfiles 54

Extract Subfiles from PDF Files 54
Improve Performance for PDFs with Many Small Images 54

Extract EmbeddedOLE Objects 55
Extract Subfiles from ZIP Files 55
Default File Names for Extracted Subfiles 55

Default File Name for Mail Formats 55
Default File Name for EmbeddedOLE Objects 56

Chapter 4: Use the Filter API 58
Generate an Error Log 58

Enable or Disable Error Logging 59
Use the API 59
Use Environment Variables 59

Change the Path and File Name of the Log File 59
Report Memory Errors 60

Use the API 60
Use Environment Variables 60

Specify aMemory Guard 60
Report the File Name in StreamMode 60
Report Extended Error Codes 61
Specify theMaximum Size of the Log File 61

Extract Metadata 61
Extract Metadata for File Filtering 62
Extract Metadata for Stream Filtering 62
Example 62

Convert Character Sets 63
Determine the Character Set of the Output Text 64

Guidelines for Character Set Conversion 64
Set the Character Set During Filtering 65
Set the Character Set During Subfile Extraction 65
Prevent the Default Conversion of a Character Set 65

Extract Deleted Text Marked by Tracked Changes 66
Filter PDF Files 66

Filter PDF Files to a Logical Reading Order 66
Enable Logical Reading Order 68
Use the C API 68
Use the formats.ini File 68

Rotated Text 69
Extract CustomMetadata from PDF Files 69

Extract CustomMetadata by Tag 69
Extract All CustomMetadata 70

Filter Tagged PDF Content 70
Skip Embedded Fonts 71

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 6 of 320

Use the formats.ini File 71
Use the C API 71

Control Hyphenation 72
Use the formats.ini File 72
Use the C API 72

Filter Spreadsheet Files 72
FilterWorksheet Names 73
Filter Hidden Text in Microsoft Excel Files 73
Specify Date and Time Format on UNIX Systems 73
Filter Very Large Numbers in Spreadsheet Cells to Precision Numbers 74
Extract Microsoft Excel Formulas 74
Standardize Cell Formats 76

Numbers 76
Text 76
Dates 76

Filter XML Files 77
Configure Element Extraction for XMLDocuments 77

Modify Element Extraction Settings 78
Modify Element Extraction Settings in the kvxconfig.ini File 79
Specify an Element’s Namespace and Attribute 80
Add Configuration Settings for Custom XMLDocument Types 81

Configure Headers and Footers 81
Filter Hidden Data 82

Hidden Data in Microsoft Excel Documents 82
Example 83
Toggle Hidden Excel Data Settings in the formats.ini File 83

Hidden Data in HTMLDocuments 84
Tab Delimited Output for Embedded Tables 84
Table Detection for PDF Files 84
Exclude JapaneseGuide Text 85

Chapter 5: Sample Programs 86
Introduction 86
tstxtract 86
filter 88

Part III: C API Reference 90
Chapter 6: File Extraction API Functions 91

KVGetExtractInterface() 91
fpCloseFile() 92
fpExtractSubFile() 93
fpFreeStruct() 94
fpGetMainFileInfo() 95
fpGetSubFileInfo() 96
fpGetSubFileMetaData() 97
fpOpenFile() 99

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 7 of 320

fpSetExtractionTimeout() 100

Chapter 7: File Extraction API Structures 102
KVCredential 102
KVCredentialComponent 103
KVExtractInterface 103
KVExtractSubFileArg 104
KVGetSubFileMetaArg 106
KVMainFileInfo 107
KVMetadataElem 108
KVMetaName 109
KVOpenFileArg 110
KVOutputStream 111
KVSubFileExtractInfo 112
KVSubFileInfo 113
KVSubFileMetaData 115

Chapter 8: Filter API Functions 117
KV_GetFilterInterfaceEx() 118
fpCanFilterFile() 120
fpCanFilterStream() 121
fpCloseStream() 122
fpFiletoInputStreamCreate() 123
fpFileToInputStreamFree() 124
fpFilterConfig() 125
fpFilterFile() 130
fpFilterStream() 131
fpFreeOLESummaryInfo() 132
fpFreeXmpInfo() 133
fpGetDocInfoFile() 134
fpGetDocInfoStream() 135
fpGetKvErrorCodeEx() 136
fpGetOLESummaryInfo() 137
fpGetOLESummaryInfoFile() 138
fpGetTrgCharSet() 139
fpGetXmpInfo() 140
fpGetXmpInfoFile() 141
fpInit() 143
fpOpenStream() 146
fpOpenStreamEx2() 147
fpRefreshFilterKVOOP() 148
fpSetReplacementChar() 149
fpSetSrcCharSet() 150
fpSetTimeout() 151
fpShutdown() 152

Chapter 9: Filter API Structures 153
KVFltInterfaceEx 154

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 8 of 320

ADDOCINFO 156
KV_CONFIG_Arg 157
KVFilterOutput 158
KVInputStream 159
KVMemoryStream 160
KVStructHead 161
KVSumInfoElemEx 162
KVSummaryInfoEx 163
KVXConfigInfo 164
KVXmpInfo 166
KVXmpInfoElems 167

Chapter 10: Enumerated Types 168
Introduction 168

ProgrammingGuidelines 169
KVCredKeyType 169
KVErrorCode 170
KVErrorCodeEx 171
KVMetadataType 175
KVMetaNameType 177
KVSumInfoType 177
KVSumType 178
LPDF_DIRECTION 182

Appendixes 183
Appendix A: Supported Formats 184

Supported Formats 184
Archive Formats 186
Binary Format 188
Computer-Aided Design Formats 188
Database Formats 190
Desktop Publishing 191
Display Formats 191
Graphic Formats 192
Mail Formats 195
Multimedia Formats 197
Presentation Formats 199
Spreadsheet Formats 201
Text andMarkup Formats 203
Word Processing Formats 204

Supported Formats (Detected) 209

Appendix B: Character Sets 216
Multibyte and Bidirectional Support 216
Coded Character Sets 223

Appendix C: File Formats and Extensions 229

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 9 of 320

File Format and Extension Table 229

Appendix D: Extract and Format Lotus Notes Subfiles 254
Overview 254
Customize XML Templates 254

Use Demo Templates 255
UseOld Templates 255
Disable XML Templates 255

Template Elements and Attributes 256
Conditional Elements 256
Control Elements 257
Data Elements 258

Date and Time Formats 260
Lotus Notes Date and Time Formats 260
KeyView Date and Time Formats 261

Appendix E: File Format Detection 267
Introduction 267
Extract Format Information 267
Determine Format Support 267

Example formats.ini file entries 268
Refine Detection of Text Files 268

Allow Consecutive NULL Bytes in a Text File 269
Translate Format Information 270

Distinguish Between Formats 270
Determine a Document Reader 271
Category Values in formats.ini 271

Appendix F: List of Required Files for Redistribution 290
Core Files 290
Support Files 291
Document Readers 291

Appendix G: Develop a Custom Reader 298
Introduction 298
How toWrite a Custom Reader 299

Naming Conventions 299
Basic Steps 300
Token Buffer 300
Macros 301
Reader Interface 302

Function Flow 302
Example Development of fffFillBuffer() 303

Implementation 1—fpFillBuffer() Function 303
Structure of Implementation 1 304
Problems with Implementation 1 304
Implementation 2—Processing a Large Token Stream 304
Structure of Implementation 2 305
Problems with Implementation 2 306

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 10 of 320

Boundary Conditions 306
Implementation 3—Interrupting Structured Access Layer Calls 307
Structure of Implementation 3 308

Development Tips 309
Functions 310

xxxsrAutoDet() 310
xxxAllocateContext() 311
xxxFreeContext() 312
xxxInitDoc() 312
xxxFillBuffer() 313
xxxGetSummaryInfo() 314
xxxOpenStream() 315
xxxCloseStream() 315
xxxCharSet() 316

Appendix H: Password Protected Files 317
Supported Password Protected File Types 317
Open Password Protected Container Files 318
Filter Password Protected Files 318

Send documentation feedback 320

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 11 of 320

Page 12 of 320KeyView (11.6)

Filter SDK C ProgrammingGuide

KeyView (11.6)

Page 13 of 320

Part I: Overview of Filter SDK

This section provides an overview of theMicro Focus KeyView Filter SDK and describes how to use the C
implementation of the API.

Chapter 1: Introducing Filter SDK

This section describes the Filter SDK package.

• Overview 14
• Features 14
• Platforms, Compilers, and Dependencies 15
• Windows Installation 17
• UNIX Installation 18
• Package Contents 19
• License Information 19
• Directory Structure 21

Overview

Micro Focus KeyView Filter SDK enables you to incorporate text extraction functionality into your own
applications. It extracts text andmetadata from awide variety of file formats on numerous platforms,
and can automatically recognize over 300 document types. It supports both file-based and stream-
based I/O operations, and provides in-process or out-of-process filtering.

Filter SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

Features

l Document readers are threadsafe. The benefit of a threadsafe technology is that you can
successfully extract text from hundreds of documents simultaneously. Documents are not queued
for sequential filtering, but are actually filtered at the same time.

l Filter supports popular word processing, spreadsheet, and presentation formats. Body text,
endnotes, footnotes, and additional items such as document metadata are all included as part of the
filtering process.

l Sample programs are provided to demonstrate the functionality of the APIs.
l You can extract files embedded within files, such as email attachments or embeddedOLE objects,
by using the File Extraction API.

l You can configurememory management. If using the C API, you can provide your ownmemory
allocator to the document readers.

l Filter allows for redirected input and output. You can provide an input stream that is not restricted to
file system access.

l Filter automatically recognizes the file type being filtered and uses the appropriate filter. Your
application does not need to rely on file name extensions to determine file types.

l You can filter documents to specific character encodings, such as Unicode or UTF-8.

KeyView (11.6) Page 14 of 320

l You can use Filter SDK in conjunction with other KeyView technologies, such as the Index,
Highlight, and Annotate APIs.

l You can write custom document readers for formats not directly supported by KeyView.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

l CentOS 7
l FreeBSD 8.1 x86
l IBM AIX L6.1 PowerPC 32-bit and 64-bit
l IBM AIX L7.1 PowerPC 32-bit and 64-bit
l Mac OS X Mountain Lion 10.8 or higher on 32- and 64-bit Apple-Intel architecture
l Microsoft Windows Vista Business Edition x86 and x64. Other editions of Vista have not been
tested, but are likely supported.

l Microsoft Windows 2008 Server Enterprise Edition x86 and x64
l Microsoft Windows 2008 Server R2
l Microsoft Windows 7 x86 and x64
l Microsoft Windows 8 x86 and x64
l Oracle Solaris 10 SPARC
l Oracle Solaris 10 x86 and x64
l RedHat Enterprise Linux 5.0 x86 and x64
l RedHat Enterprise Linux 6.0 x86 and x64
l SuSE Linux Enterprise Server 10, 10.1, 11, x86 and x64

Supported Compilers

Platform Architecture Compiler
Name

Compiler Version

Microsoft
Windows

x86 cl Microsoft 32-bit C/C++ Optimizing Compiler
Version 16.00.30319.01 for x86

x64 cl Microsoft C/C++ Optimizing Compiler Version
16.00.30319.01 for x64

Sun Solaris x86 64-bit Sun Studio
12

Sun C 5.9 SunOS_i386 Patch 124868-01
2007/07/12

SPARC 64-bit Sun Studio Sun C 5.8 Patch 121015-06 2007/10/03

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 15 of 320

Platform Architecture Compiler
Name

Compiler Version

11

Linux x86 gcc / g++ 3.4.3 (Redhat 4), 4.1.0 (SuSE Linux 10)

x64 gcc / g++ 4.1.0 (Redhat 4), 4.1.0 (SuSE Linux 10)

IBM AIX Power xlC_r / cc_
r

IBM XLC/C++ Enterprise Edition V8.0

Mac OSX Apple-Intel 32-bit
and 64-bit

LLVM Apple LLVM 5.1 (clang-503.0.40) (based on LLVM
3.4svn)

FreeBSD BSD x86 gcc / g++ 4.2.1 [FreeBSD] 20070719

Component Compiler

Java components Java 1.5

.NET components Microsoft Visual J# 2005 Compiler 8.00.50727.42

Supported Compilers for Java and .NET Components

Software Dependencies

SomeKeyView components require specific third-party software:

l Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 1.5 is required for
Java API and graphics conversion in Export SDK.

l Outlook 2002 client or later versions is required when processingMicrosoft Outlook Personal
Folders (PST) files using theMAPI-based reader (pstsr). The native PST reader (pstnsr) does not
require anOutlook client.

NOTE:
If you are using 32-bit KeyView, youmust install 32-bit Outlook. If you are using 64-bit
KeyView, youmust install 64-bit Outlook.

If the bit editions do not match, an error message fromMicrosoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as
the default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

l Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

l Microsoft .NET Framework SDK version 2.0, Microsoft .NET Framework version 2.0

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 16 of 320

Redistributable Package is required if you are programming in a .NET environment.
l Microsoft Visual C++ 2013 andMicrosoft Visual C++ 2010 Redistributables (Windows only).

Windows Installation

To install the SDK onWindows, use the following procedure.

To install the SDK

1. Run the installation program, KeyViewProductNameSDK_VersionNumber_OS.exe, where
ProductName is the name of the product, VersionNumber is the product version number, and OS is
the operating system.
For example:

KeyViewFilterSDK_11.6_Windows_X86_64.exe

The installation wizard opens.
2. Read the instructions and click Next.

The License Agreement page opens.
3. Read the agreement. If you agree to the terms, click I accept the agreement, and then click

Next.
The Installation Directory page opens.

4. Select the directory in which to install the SDK. To specify a directory other than the default, click

, and then specify another directory. After choosing where to install the SDK, click Next.
The License Key page opens.

5. Type the company name and license key that were provided when you purchased KeyView, and
then click Next.
l The company name is case sensitive.
l The license key is a string that contains 31 characters.

NOTE:
The installation program validates the company name and license key and generates the
file install\OS\bin\kv.lic (where install is your chosen installation folder and OS is
the name of the operating system platform). The license information is validated when the
KeyView API is used. If you do not enter a license key at this step, or if you enter invalid
information, the KeyView SDK is installed, but the API does not function. When you obtain
a valid license key, you can either re-install the KeyView SDK, or manually update the
license key file (kv.lic) with the new information. For more information, see License
Information, on page 19.

The Pre-Installation Summary dialog box opens.
6. Review the settings, and then click Next.

The SDK is installed.
7. Click Finish.

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 17 of 320

UNIX Installation

To install the SDK, use one of the following procedures.

To install the SDK from the graphical interface

l Run the installation program and follow the on-screen instructions.

To install the SDK from the console

1. Run the installation program from the console as follows:

./KeyViewFilterSDK_VersionNumber_Platform.exe --mode text

where:

VersionNumber is the product version.

Platform is the name of the platform.

2. Read the welcomemessage and instructions and press Enter.
The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish reading
the text, and if you accept the agreement, type Y and press Enter.
You are asked to choose an installation folder.

4. Type an absolute path or press Enter to accept the default location.
You are asked for license information.

5. At theCompany Name prompt, type the company name that was provided when you purchased
KeyView, and then press Enter. The company name is case sensitive.

6. At the License Key prompt, type the license key that was provided when you purchased
KeyView, and then press Enter. The license key is a string that contains 31 characters.

NOTE:
The installation program generates the file install\OS\bin\kv.lic (where install is
your chosen installation folder and OS is the name of the operating system platform). The
license information is validated when the KeyView API is used. If you do not enter a
license key at this step, or if you enter invalid information, the KeyView SDK is installed
but the API does not function. When you obtain a valid license key, you can either re-install
the KeyView SDK, or manually update the license key file (kv.lic) with the new
information. For more information, see License Information, on the next page.

The Pre-Installation summary is displayed.
7. If you are satisfied with the information displayed in the summary, press Enter.

The SDK is installed.

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 18 of 320

Package Contents

The Filter SDK installation contains:

l All the libraries and executables necessary for extracting text from awide variety of formats.
l The include files that define the functions and structures used by the application to establish an
interface with Filter:

adapi.h kvfilter.h

adinfo.h kvioobj.h

kvcfsr.h kvtoken.h

kvxtract.h kvtypes.h

kvfilt.h kvxtract.h

kvfilt2.h kwautdef.h

l The Java API implemented in the package com.verity.api.filter contained in the file
KeyView.jar.

l The .NET API implemented in the namespace Autonomy.API.Filter in the library
FilterDotNet.dll.

l The C++ SDK, which can be found in the cppapi folder.
l Sample programs that demonstrate File Extraction and Filter functionality using the APIs.
l The files necessary to create a custom document reader, and the source for a sample document
reader for UTF-8. See Develop a Custom Reader, on page 298.

License Information

During installation, the installation program validates the organization name and license key that you
enter, and generates the install/OS/bin/kv.lic file, where install is the directory in which you
installed KeyView, and OS is the operating system. This file is opened and validated when the KeyView
API is used.

The kv.lic file contains the organization name and the 31-digit license key you specified during
installation. The contents of a kv.lic file looks similar to the following:

Company Name
XXXXXXX-XXXXXXX-XXXXXXX-XXXXXXX

The license key controls whether the following are enabled:

l the full version of the KeyView SDK
l the trial version of the KeyView SDK
l language detection and advanced document readers—The following components are considered
advanced features, and are licensed separately:

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 19 of 320

o Microsoft Outlook Personal Folders (PST) reader (pstsr and pstnsr)
o Lotus Notes database (NSF) reader (nsfsr)
o Mailbox (MBX) reader (mbxsr)
o Character set detection library (kvlangdetect)

If you change the license key at any time, youmust update the licensing information in the kv.lic file.
See Update License Information.

Enable Advanced Document Readers

To enable advanced readers in one of the KeyView SDKs, youmust obtain an appropriate license key
fromMicro Focus and update the installed license key with the new information as described in Update
License Information.

If you are enabling theMBX reader in an existing installation of Filter, in addition to updating the license
key, change the parameter 208=eml to 208=mbx in the formats.ini file.

Update License Information

If you currently have an evaluation version of KeyView and have purchased a full version of the SDK, or
you are adding a document reader (for example, the PST reader), youmust update the license
information that was installed with the original version of the KeyView SDK.

If you installed a full version of KeyView, but did not enter licensing information at the time of
installation, youmust also update the license information.

To update the information, do one of the following:

l Manually update the license information that is stored in the text file named kv.lic.
l Re-install the product and enter the new license information when prompted.

To update the KeyView license information

1. Open the license key file, kv.lic, in a text editor. The file is in the install\OS\bin directory,
where install is the directory in which you installed KeyView, and OS is the operating system.
The file contains the following text:

COMPANY NAME
XXXXXXX-XXXXXXX-XXXXXXX-XXXXXXX

2. Replace the text COMPANY NAMEwith the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

3. Replace the characters XXXXXX-XXXXXXX-XXXXXXX-XXXXXXXwith the appropriate license key from
the License Key Sheet provided by Micro Focus. The license key is listed in theKey column in the
Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appear in the
document, including the dashes, but do not include a leading or trailing space.

4. The finished kv.lic file looks similar to the following:

Autonomy

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 20 of 320

24QD22D-2M6FV66-2KPF23S-2G8M59B

5. Save the kv.lic file.

Directory Structure

The following table describes the directories created during the Filter SDK installation. The variable
install is the path name of the Filter installation directory (for example,
/usr/autonomy/KeyviewFilterSDK on UNIX, or C:\Program Files\Autonomy\KeyviewFilterSDK
onWindows).

The variable OS is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at C:\Program
Files\Autonomy\KeyviewFilterSDK\WINDOWS\bin.

Directory Description

install\OS\bin Contains the libraries, the format detection file formats.ini, the license
key file kv.lic, and other supporting files.

install\OS\lib (Solaris installations only) Contains the redistributable
libstlport.so.1 library, which is required to run KeyView on Solaris
platforms.

install\dotnetapi Contains the source files for the .NET API.

install
\dotnetapi\dotnethelp

Contains the help for the .NET API.

install
\dotnetapi\sample

Contains the sample programs for the .NET API.

install\cppapi Contains the source files for the C++ API.

install\cppapi\sample Contains the sample programs for the C++ API.

install\guide Contains the KeyView Filter SDK programming guides in PDF and
HTML format.

install\include Contains the header files required for Filter.

install
\javaapi\javadoc

Contains the Javadoc for the Java API.

install
\javaapi\sample

Contains the source files and sample programs for the Java API.

install\rel_notes Contains theKeyView Filter SDK Release Notes in PDF format.

install
\samples\filter

Contains a sample program demonstrating the Filter interface for the C
API.

Installed directory structure

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 21 of 320

Directory Description

install
\samples\filterca

Contains a C sample program demonstrating extraction of a content
access stream.

install
\samples\pdfini

Contains the initialization file used to extract custommetadata from
PDF documents.

install
\samples\tstxtract

Contains a C sample program demonstrating the File Extraction
interface.

install
\samples\utf8sr

Contains the source for the sample document reader for UTF-8 files.
You can use this to create your own custom document readers.

install
\samples\utf8sr\bin

Contains the C program filtertest. You can use this program to test
your custom document readers. See Develop a Custom Reader, on
page 298.

Installed directory structure, continued

Filter SDK C ProgrammingGuide
Chapter 1: Introducing Filter SDK

KeyView (11.6) Page 22 of 320

Chapter 2: Getting Started

This section provides an overview of Filter SDK, and describes how to use the C implementation of the
API.

• Architectural Overview 23
• Enhance Performance 25
• Filtering 25
• Subfile Extraction 26
• Memory Abstraction 26
• Use the C-Language Implementation of the API 26
• The Filter Process Model 29
• Run File Detection In or Out of Process 34

Architectural Overview

The general architecture of the KeyView Filter technology is the same across all supported platforms
and is illustrated in the following diagram:

KeyView (11.6) Page 23 of 320

Each component is described in the following table.

Component Description

Developer’s
Application

The developer’s application interfaces directly with the Filter API through either a C-
language or Java implementation.

File
Extraction
API

The File Extraction API opens a file and extracts the file’s subfiles so that they are
exposed for filtering. See Use the File Extraction API, on page 36.

Filter API The Filter API exposes the filtering functionality and controls all other modules during
the filtering process. See Use the Filter API, on page 58.

Format
Detection

This module determines the file type of the input stream, allowing the Filter API to
return that information to the developer’s application, or to load the appropriate
structured access layer for further processing. See File Format Detection, on page
267 for more information on format detection.

Structured There are threemodules that reside in the structured access layer—one each for word

Architectural Components

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 24 of 320

Component Description

Access
Layer

metadata retrieval.

Document
Readers

Each document reader reads a specific file format and sends a text stream of the
document to the structured access layer. Each filter is loaded as required by the
structured access layer. See Document Readers, on page 291 for a complete list of
document readers.

Architectural Components , continued

Enhance Performance

KeyView is designed for optimal performance out of the box. However, there are some parameters that
you can adjust to improve system performance according to your needs.

File Caching

To reduce the frequency of I/O operations, and consequently improve performance, the KeyView
readers load file data into memory. The readers then read the data from the cache rather than the
physical disk. You can configure the amount of memory used for file caching through the formats.ini
file. Generally, when you increase thememory, performance improves.

By default, KeyView uses amaximum of 1MB of memory for each thread—assuming a thread
contains only one instance of pContext that is returned from the session initialization (see fpInit(), on
page 143). If the file data is larger than 1MB, up to 1MB of data is cached and the data beyond 1MB is
read from disk. Theminimum amount of memory that can be used for file caching is 64 KB.

To determine a reasonable value, divide themaximum amount of memory you want KeyView to use for
file caching by the total number of threads. For example, if you want KeyView to use amaximum of 50
MB of memory and have 10 threads, set the value to 5MB.

Tomodify thememory allocated for file caching, change the value for the following parameter in the
[DiskCache] section of the formats.ini file:

DiskCacheSize=1024

The value is in kilobytes. If this parameter is not set or is set to 0 (zero), theminimum value of 64 KB is
used.

Filtering

Filter SDK enables you to filtermany different types of documents. Filtering is the process of extracting
the text from a document without the application-specific markup. However, the filtering process can
also include the following:

l Subfile extraction—this process exposes all subfiles for filtering. See Use the File Extraction API,
on page 36.

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 25 of 320

l File format extraction—this process detects a file’s format, and reports the information to the API,
which in turn reports the information to the developer’s application. See File Format Detection, on
page 267.

l Metadata extraction—this process extracts selectedmetadata (document properties) from a file.
See Extract Metadata, on page 61.

l Character set conversion—this process controls the character set of both the input and the output
text. See Convert Character Sets, on page 63.

Subfile Extraction

To filter a file, youmust first determine whether the file contains any subfiles (attachments, embedded
OLE objects, and so on). A file that contains subfiles is called a container file. Archive files (such as
ZIP), mail messages with attachments (such as Microsoft Outlook Express), mail stores (such as
Microsoft Outlook Personal Folders), and compound documents with embeddedOLE objects (such as
aMicrosoft Word document with an embedded Excel chart) are examples of container files.

If the file is a container file, the container must be opened and its subfiles extracted using the File
Extraction interface. The extraction process is done repeatedly until all subfiles are extracted and
exposed for filtering. After a subfile is extracted, you can use the Filter API to filter the file.

If a file is not a container, you should pass it directly to the Filter API for filtering without extraction.

The tstxtract sample program demonstrates the application logic for extracting and filtering files. See
Use the File Extraction API, on page 36 for more information.

Memory Abstraction

Dynamic memory allocations in the Filter modules are abstracted through a C interface. This memory
allocation interface is defined in the KVMemoryStream structure in kvtypes.h. You can override all
memory allocations by providing a C structure that contains pointers to functions identical in nature to
their standard ANSI C counterpart.

Use the C-Language Implementation of the API

The C-language implementation of the Filter API is divided into the following function suites:

l File Extraction API Functions—Open and extract subfiles in a container file. These functions also
extract metadata and file format information, and control character set conversion on extraction. The
tstxtract sample program demonstrates these functions.

l Filter API Functions—Extract document information (metadata character set, format), create an
input/output stream, and filter a file or stream. The filter sample program demonstrates these
functions.

Input/Output Operations

In Filter, the source input can be either a physical file accessed through a file path, or a filter stream
created from a data source. A filter stream in the C API implementation is a C data structure that

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 26 of 320

contains pointers to I/O functions similar to their standard ANSI C counterparts. This structure is
passed to filter functions in place of the standard input source. The input stream is defined by the
KVInputStream structure in kvtypes.h.

You can create an input stream by using the fpFiletoInputStreamCreate() function, or by using code
similar to the code in the Filter sample program. The fpFiletoInputStreamCreate() function assigns
C equivalent I/O functions to fpOpen(), fpRead(), fpSeek(), fpTell(), and fpClose(). The code in
the Filter sample program is shown below. This code assigns the file I/O functions (myOpen, myRead,
and so on) to KVInputStream.

typedef struct
{
 char *pszName;
 FILE *fp;
}
MyOpenInfo;

 KVInputStream IO;
 MyOpenInfo o;

/* Initialize the input stream */
o.pszName = pszFileIn;
IO.pInputStreamPrivateData = (void *)&o;
IO.fpOpen = myOpen;
IO.fpRead = myRead;
IO.fpSeek = mySeek;
IO.fpTell = myTell;
IO.fpClose = myClose;

The output for extracted content is either a physical file accessed through a file path and specified in
the call to fpFilterFile(), or an output buffer specified in the call to fpFilterStream(). The buffer is defined
by the KVFilterOutput data structure in kvtypes.h.

Filtering in File Mode

To use the Filter file-based I/O

1. Load the kvfilter library and obtain the KV_GetFilterInterfaceEx() entry point by calling KV_
GetFilterInterfaceEx(). The filter sample program contains sample code for all platforms.

2. Initialize a filter session by calling fpInit(). This function’s return value, pContext, is passed as the
first argument to the File Extraction interface and all other Filter functions.

3. Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KVGetExtractInterface().

4. Declare the file path in the KVOpenFileArg structure.
5. Open the file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call defines

the parameters necessary to open a file for extraction.
6. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling

fpGetMainFileInfo().

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 27 of 320

7. If the call to fpGetMainFileInfo() determined that the source file contains subfiles, proceed to
step 8; otherwise, proceed to step 11.

8. Determine whether the subfile is a container file by calling fpGetSubFileInfo().
9. Extract the subfile or subfiles to a file by calling fpExtractSubFile() and setting filePath and

extractDir in the KVExtractSubFileArg structure.
10. If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 4

through step 9 until all subfiles are extracted; otherwise, proceed to step 11.
11. Filter the file by calling fpFilterFile().
12. Close the file by calling fpCloseFile().
13. Repeat step 4 through step 12 as required for additional source files.
14. Terminate the filter session by calling fpShutdown().

Filtering in Stream Mode

To use the Filtering stream-based I/O

1. Load the kvfilter library and obtain the KV_GetFilterInterfaceEx() entry point. The filter
sample program contains sample code for all platforms.

2. Initialize a filter session by calling fpInit(). This function’s return value, pContext, is passed as the
first argument to all other Filter functions.

3. Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KVGetExtractInterface(). See
KVGetExtractInterface(), on page 91.

4. Create an input stream (KVInputStream) by calling fpFiletoInputStreamCreate() or by using code
similar to the example code in the Filter sample program.

5. Open the stream by calling fpOpenStream().
6. Declare the input stream in the KVOpenFileArg structure.
7. Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call

defines the parameters necessary to open a file for extraction.
8. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling

fpGetMainFileInfo().
9. If the call to fpGetMainFileInfo() determined that the source file is a container file, proceed to

step 10; otherwise, proceed to step 13.
10. Determine whether the subfile is a container file by calling fpGetSubFileInfo().
11. Extract the subfile to a stream by calling fpExtractSubFile().
12. If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 4

through step 11 until all subfiles are extracted; otherwise, proceed to step 13.
13. Filter the stream by calling fpFilterStream(). Call fpFilterStream() repeatedly until the entire

output buffer is processed.
14. Close the stream by calling fpCloseStream().
15. Free thememory allocated for the input stream by calling fpFileToInputStreamFree().
16. Close the file by calling fpCloseFile().

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 28 of 320

17. Repeat Step 4 through Step 16 as required for additional source files.
18. Terminate the filter session by calling fpShutdown().

Multithreaded Filtering

Tomake sure that multithreaded filter processes are thread-safe, youmust create a unique context
pointer for every thread by calling fpInit(). In addition, threads must not share context pointers, and
the same context pointer must be used for all API calls in the same thread. This applies to in-process
and out-of-process API calls. Creating a context pointer for every thread does not affect performance
because the context pointer uses minimal resources.

For example, C code for file filteringmust have the following logic in a thread:

fpInit()
 KVGetExtractInterface()
 fpOpenFile()
 fpGetMainFileInfo() /* container file */
 fpGetSubFileInfo()
 fpExtractSubFile
 fpGetSubFileMetadata()
 fpFilterFile()
 fpCloseFile()

 fpOpenFile()
 fpGetMainFileInfo() /* not a container file */
 fpGetDocInfoFile()
 fpGetOLESummaryInfoFile()
 fpFilterFile()
 fpCloseFile()
 ...
fpShutdown()

The Filter Process Model

By default, Filter runs independently from the calling application process. This is called out-of-process
filtering. Out-of-process filtering protects the stability of the calling application in the rare case when a
malformed document causes Filter to fail. You can configure Filter to run in the same process as the
calling application. This is called in-process filtering. However, Micro Focus strongly recommends that
you run Filter out of process whenever possible.

With the exception of Solaris and AIX, the creation of child processes on UNIX adheres to Portable
Operating System Interface (POSIX) standards. Solaris and AIX use thread semantics. If required, a
version of kvfilter with POSIX thread semantics is available for Solaris and AIX. For Solaris, the file
is kvfilter_posix.so. For AIX, the file is kvfilter_nsl.a. These files must be renamed
kvfilter.so or kvfilter.a to be used by Filter.

Tomonitor and debug filtering operations during out-of-process filtering, you can generate an error log at
run time. SeeGenerate an Error Log, on page 58.

The following functions can run both in process or out of process:

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 29 of 320

Filter API

fpCanFilterFile() fpCanFilterStream()

fpFilterFile() fpFilterStream()

fpGetDocInfoFile() fpGetDocInfoStream()

fpGetOLESummaryInfo() fpGetOLESummaryInfoFile()

fpGetDocInfoFile() fpGetDocInfoStream()

File Extraction API

fpCloseFile() fpExtractSubFile()

fpFreeStruct() fpGetMainFileInfo()

fpGetSubFileInfo() fpGetSubFileMetaData()

fpOpenFile() KVGetExtractInterface()

Other Filter API functions always run in process.

Persist the Child Process

By default, in out-of-process filtering, the parent process maintains a persistent connection with the
child server after each file is filtered. When the connection is preserved in this way, subsequent filtering
requests are processedmore quickly because the server is already prepared to receive data.

You can restart the server at regular intervals by using a function or a configuration setting.

In the API

To force KeyView to restart, call the fpRefreshFilterKVOOP() function.

In the formats.ini File

To control whether Filter persists the server, use the kvoopRefresh parameter in the [FilterSDK_
Config] section of the formats.ini file:

kvoopRefresh=
0

When you set kvoopRefresh to 0 (zero), the connection to the server persists for
as long as the parent process is running or until the server fails. This is the default.

kvoopRefresh=
n

When you set kvoopRefresh to n (where n is a positive number), the connection
persists for n filter requests. After the nth request, the server is shut down and
restarted before processing the next request.

For example, if you set kvoopRefresh to 5, the connection to the server persists
for five filter requests. For the sixth request, the server is shut down and restarted.

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 30 of 320

To control whether the parent process attempts to filter a file after the file has caused the server to fail,
use the kvoopRetry parameter in the [FilterSDK_Config] section of the formats.ini file:

kvoopRetry=
0

When you set kvoopRetry to 0 and the server fails, the parent process does not
resend the file to a new server.

kvoopRetry=
n

When you set kvoopRetry to n (where n is a positive number) and the server fails, the
parent process resends the file to a new server n times. By default, kvoopRetry is
set to 1, and the file is resent to a server once.

NOTE:
The kvoopRefresh and kvoopRetry parameters do no apply when you run the File Extraction
functions out of process. See Run File Extraction Functions Out of Process, below.

Run Filter In Process

By default, Filter runs out of process. However, you can enable in-process filtering through the API or in
the formats.ini file. If the type of process is not specified in the formats.ini or in the API, Filter is
run out of process. If the type of process is specified in the formats.ini and in the API, the setting in
the API takes precedence.

In the API

To run Filter in process

1. Set the final argument (dwFlags) of either fpInit() or fpOpenStreamEx2() to KVF_INPROCESS.
2. dwFlags |= KVF_INPROCESS

3. Call a filtering function or ametadata extraction function. See Filter API Functions, on page 117.
4. Optionally, call a metadata extraction function if a filter function was called in the previous step.

See fpGetDocInfoFile(), on page 134 or fpGetDocInfoStream(), on page 135.

In the formats.ini File

To run Filter in process, set the default_inprocess parameter in the [FilterSDK_Config] section of
the formats.ini file to 1.

By default this parameter is set to 0 (zero), which enables out-of-process filtering.

Run File Extraction Functions Out of Process

The out-of-process setting specified in the call to fpInit() or in the formats.ini file is automatically
propagated to the File Extraction API in the call to KVGetExtractInterface(). In
KVGetExtractInterface(), you pass a context pointer from fpInit() and the address of a structure
that contains pointers to the File Extraction functions.

When you extract subfiles from container files and pass the files for filtering out of process, Filter
generates a server called kvoop.exe for filtering and a duplicate server (also called kvoop.exe) for file

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 31 of 320

extraction. These servers are independent, so that if the filtering service stops responding, the file
extraction service can continue extracting files.

Restart the File Extraction Server

If the file extraction server fails with either the KVError_InvalidOopDriverSignature error, or the
KVError_InvalidOopServiceSignature error, youmust restart the server by calling
KVGetExtractInterface() and passing the original extraction structure. (Restarting the server in this
way does not affect performance beyond the cost of restarting the server.)

If you restart the file extraction server before the recursive extraction of subfiles is complete, the new
server has no history of the subfiles extracted prior to the restart. If you then call a File Extraction
function on one of the extracted files, the KVError_InvalidOopServiceSignature error is generated,
because the server that extracted the files is no longer running and was replaced with a new kvoop
server. Micro Focus recommends that you do not make calls to the File Extraction functions by using
an invalid container context structure (KVContainerContext) after you restart the server.

NOTE:
Micro Focus recommends that whenever possible you restart the file extraction server only after
the file recursion is complete. Theremust be only one out-of-process session per file recursion.

Out-of-Process Logging

Logging is available for out-of-process filtering. The kvoop server can now create a log file that captures
information on the files being processed, storing one entry per process. The generated log file is called
xxxx_kvoop.log, where xxxx is a unique number identifying the process.

In the rare case when the kvoop server fails, you can use the log files to determine which file caused
the failure. After processing is complete and the system shuts down, the logs are automatically
deleted. To keep the log files after processing is successfully completed, see Keep Log Files, on the
next page.

NOTE:
Out-of-process logging is not supported on AIX.

Enable Out-of-Process Logging

To enable out-of-process logging, set the KVOOP_LOGS_DIR environment variable to the directory in
which you want the log files to be stored. By default, logging is not enabled.

On UNIX, set the variable as follows:

setenv KVOOP_LOGS_DIR /tmp

OnWindows, set the variable as follows:

set KVOOP_LOGS_DIR=c:\tmp

The following log file is created in the directory:

process_id_kvoop.log

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 32 of 320

where process_id is a numeric value that represents the logged process. New messages are
appended to the file, and truncation is disabled by default.

If KeyView terminates unexpectedly andWindows minidump is enabled, a process_id_crash_
info.txt file is generated (see EnableWindows Minidump, below). If logging was not enabled at the
time of termination, this file contains instructions on how to enable logging.

Set the Verbosity Level

You can control how much information is written to the file by setting the KVOOP_LOG_VERBOSITY
environment variable.

Set the variable to one of the following options:

1 Include only error messages.

2 Include errors and warnings.

3 Include errors, warnings, and general information. This is the default.

4 Include all possible information. This setting is useful for debugging purposes.

Enable Windows Minidump

KeyView can use theWindows minidump feature to provide additional logging information, which can
be useful for debugging purposes.

TheWindows minidump is disabled by default. To enable theWindows minidump, set KVOOP_DUMP_
ENABLE to 1. If an unexpected termination occurs after theminidump is enabled, three files are
generated:

l process_id_crash_info.txt. This file contains KVOOP state and runtime information at the time of
termination. If logging was not enabled at the time of termination, this file contains instructions on
how to enable logging.

l process_id_process_list.txt. This file contains information from the DLLs that were loaded at
the time of the termination.

l process_id_report.dmp. TheWindows dump file, which contains further information about the
termination. You can open it with either aWindows debugger or autnhelper.exe (youmust copy
this file to the same directory).

You can control the amount of information presented in theWindows dump file by creating the following
files in the directory:

dumper.NORMAL
dumper.WITHDATASEGS
dumper.WITHFULLMEMORY
dumper.WITHHANDLEDATA

Keep Log Files

After processing is complete and the system is shut down, the log files are automatically deleted from
the directory. To keep the log files after a successful run, set the KVOOP_KEEP_LOGS environment

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 33 of 320

variable.

On UNIX, set the variable as follows:

setenv KVOOP_KEEP_LOGS 1

OnWindows, set the variable as follows:

set KVOOP_KEEP_LOGS=1

Run File Detection In or Out of Process

By default, detection runs in out-of-process mode. However, you can enable in-process detection
through the API or in the formats.ini file. If the type of process is not specified in the formats.ini or
in the API, detection runs in out-of-process mode. If the type of process is specified in the
formats.ini and in the API, the setting in the API takes precedence.

Specify the Process Type In the formats.ini File

Add the default_detect_inprocess flag to a [FilterSDK_Config] section in the formats.ini file to
control the default behavior for detection. Set the flag to 0 for out-of-process detection, and 1 for in-
process detection. For example,

[FilterSDK Config]
default_detect_inprocess=0

If this flag is not specified, the file detection behavior is determined by the default_inprocess flag for
filtering. For example, if you set default_inprocess to 1, filtering and file detection runs in in-process
mode by default; if you set default_inprocess to 0, filtering and file detection runs in out-of-process
mode by default.

If you set both the default_inprocess and default_detect_inprocess flags, default_inprocess
controls the default filtering behavior and default_detect_inprocess controls the default file
detection behavior.

Specify the Process Type In the API

Set the final argument (dwFlags) of either fpInit() or fpOpenStreamEx2() to KVF_DETECT_INPROCESS or
KVF_DETECT_OUTOFPROCESS.

Filter SDK C ProgrammingGuide
Chapter 2: Getting Started

KeyView (11.6) Page 34 of 320

KeyView (11.6)

Page 35 of 320

Part II: Use Filter SDK

This section explains how to perform some basic tasks by using the File Extraction and Filter APIs, and
describes the sample programs.

Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

• Introduction 36
• Extract Subfiles 37
• Extract Images 38
• Recreate a File’s Hierarchy 38
• Extract Mail Metadata 39
• Extract Subfiles from Outlook Files 46
• Extract Subfiles from Outlook Express Files 46
• Extract Subfiles fromMailbox Files 47
• Extract Subfiles from Outlook Personal Folders Files 47
• Extract Subfiles from Lotus Domino XML Language Files 50
• Extract Subfiles from Lotus Notes Database Files 51
• Extract Subfiles from PDF Files 54
• Extract EmbeddedOLE Objects 55
• Extract Subfiles from ZIP Files 55
• Default File Names for Extracted Subfiles 55

Introduction

To filter a file, youmust first determine whether the file contains any subfiles (attachments, embedded
OLE objects, and so on). A file that contains subfiles is called a container file. A container file has a
main file (parent) and subfiles (children) embedded in themain file.

The following are examples of container files:

l Archive files such as ZIP, TAR, and RAR.
l Mail messages such as Outlook (MSG) andOutlook Express (EML).
l Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

l PDF files that contain file attachments.
l Compound documents with embeddedOLE objects such as aMicrosoft Word document with an
embedded Excel chart.

NOTE: Supported Formats, on page 184 indicates which formats are treated as container files
and are supported by the File Extraction API.

KeyView (11.6) Page 36 of 320

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

l aMicrosoft Word document that contains an embeddedMicrosoft Excel spreadsheet.
l an AutoCAD drawing file (DWG).
l an EML file with an attached Zip file, which in turn contains four archived files.

NOTE: The parent MSG file contains four first-level children. The body text of amessage file,
although not a standalone file in the container, is considered a child of the parent file.

Extract Subfiles

To filter all files in a container file, youmust open the container and extract its subfiles by using the File
Extraction API. The extraction process is done repeatedly until all subfiles are extracted and exposed
for filtering. After a subfile is extracted, you can call Filter API functions to filter the file.

If you want to filter a container file and its subfiles to a single file, youmust extract all files from the
container, filter the files, and then append each filtered output file to its parent.

To extract subfiles

1. Pass the context pointer from fpInit() and the address of a structure that contains pointers to
the File Extraction API functions in the call to KVGetExtractInterface().

2. Declare the input stream or file name in the KVOpenFileArg structure.
3. Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call

defines the parameters necessary to open a file for extraction.
4. Determine whether the source file is a container file (that is, whether it contains subfiles) by calling

fpGetMainFileInfo().
5. If the call to fpGetMainFileInfo() determined that the source file is a container file, proceed to

step 6; otherwise, filter the file.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 37 of 320

6. Determine whether the subfile is itself a container (that is, whether it contains subfiles) by calling
fpGetSubFileInfo().

7. Extract the subfile by calling fpExtractSubFile().
8. If the call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 2

through step 7 until all subfiles are extracted and the lowest level of subfiles is reached; otherwise,
filter the file.

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file:

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the sameway as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [Y] is the extension. The format of
the image is the same as the format in which it is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

Recreate a File’s Hierarchy

When you extract a container file, any relationships between the subfiles in the container are not
maintained. However, the File Extraction interface provides information that enables you to recreate
the hierarchy. You can use the hierarchy to create a directory structure in a file system, or to categorize
documents according to their relationship to each other. For example, if you use KeyView to generate
text for a search engine, the hierarchical information enables your users to search for a document
based on the document’s parent or sibling. In addition, when the document is returned to the user, the
parent and sibling documents can be returned as recommendations.

The information needed to recreate a file’s hierarchy is provided in the call to fpGetSubFileInfo(). The
members KVSubFileInfo->parentIndex and KVSubFileInfo->childArray provide information
about a subfile’s parent and children. Because you can only retrieve the first-level children in the
subfile, youmust call fpGetSubFileInfo() repeatedly until information for the leaf-node children is
extracted.

Create a Root Node

Because of their structure, some container files do not contain a subfile or folder which acts as a root
directory on which the hierarchy can be based. For example, subfiles in a Zip archive can be extracted,
but none of the subfiles represent the root of the hierarchy. In this case, youmust create an artificial
root node at the top of the file hierarchy as a point of reference for each child, and ultimately to recreate
the relationships. This artificial root node is an internal object, and is extracted to disk as a directory
called root. Its index number is 0.

To create the root node, set openFlag to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile().
When you create a root node, the value of numSubFiles in KVMainFileInfo includes the root node. For

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 38 of 320

example, when you call fpGetMainFileInfo() on aMicrosoft Word document with three embedded
OLE objects and the root node is disabled, numSubFiles is 3. If you create a root node, numSubFiles is
4.

Recreate a File’s Hierarchy—Example

For example, youmight extract a PST file that contains seven subfiles with a root node enabled. The
call to fpGetMainFileInfo()returns the number of subfiles as eight (seven subfiles and one root
node). The following diagram shows the structure and the available hierarchy information after the
subfiles are extracted:

The parentIndex specifies the index number of a subfile’s parent. The childArray specifies an array
of a subfile’s children. With this information, you can recreate the hierarchy shown in the following
diagram.

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, fromMSG, EML, MBX, PST, and
NSF files, by calling the fpGetSubFileMetaData() function. You can extract a predefined set of
metadata fields, individual fields, or both, that are unique to a file format.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 39 of 320

Default Metadata Set

KeyView internally defines a set of commonmail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table. When you retrieve allmetadata
for a file—that is, pass NULL for the array of metadata—the complete set of default metadata, not all
available metadata in the file, is returned.

Field Name (string to
specify)

Description

From The display name and email address of the sender.

Sent The time that themessage was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of themessage.

Priority The priority applied to themessage.

Default Mail Metadata List

Becausemail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the namePriority and is returned.

You can also extract the default field names individually by passing the field name (such as From, To,
andSubject); however, in this case, the string is not mapped to the format-specific name. For example,
if you pass Priority in the call, you retrieve the contents of thePriority field from anMBX file, but do not
retrieve the contents of the Importance field from anNSF file.

NOTE: You cannot pass the field names listed in the table individually for PST files. However,
you can pass either theMAPI tag number or theMAPI tag name as integers. SeeMicrosoft
Personal Folders File (PST)Metadata, on page 44.

Extract the Default Metadata Set

To extract the default metadata set, call the fpGetSubFileMetaData() function, and pass 0 for
metaNameCount and NULL for metaNameArray.

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);

metaArg.index = subFileIndex;
metaArg.metaNameCount = 0;

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 40 of 320

metaArg.metaNameArray = NULL;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Outlook (MSG) Metadata

In addition to the default metadata set, you can extract themetadata fields listed in the following table
for MSG files. Youmust pass the field name to metaNameArray in the call to the
fpGetSubFileMetadata() function.

Field Name (string to
specify)

Description

AttachFileName An attachment's long file name and extension, excluding the path.

ConversationTopic The topic of the first message in a conversation thread. A conversation
thread is a series of messages and replies. This is the first message’s
subject with any prefix removed.

CreationTime The time that themessage or attachment was created. This value is
displayed in theSent field in themessage’s Properties dialog in Outlook.

InternetMessageID The identifier for messages that come in over the Internet. This is the
MAPI property PR_INTERNET_MESSAGE_ID. This property is not in the
MAPI headers or MAPI documentation.

LastModificationTime The time that themessage or attachment was last modified. This value is
displayed in theModified field in themessage’s Properties dialog in
Outlook.

Location The physical location of the event specified in the Outlook calendar entry.

MessageID Themessage transfer system (MTS) identifier for themessage transfer
agent (MTA). This value is displayed on theMessage ID tab in the
message’s Properties dialog in Outlook.

Received The date and time amessage was delivered. This value is displayed in
theReceived field in themessage’s Properties dialog in Outlook.

Sender The name and email address of themessage sender. This value is a
concatenation of twoMAPI properties in the following format:

"PR_SENDER_NAME" <PR_SENDER_EMAIL_ADDRESS>

The Sender valuemight be the same as or different than the default
metadata From value (see Default Metadata Set, on the previous page),
depending on whichMAPI properties exist in theMSG file.

MSG-specific Metadata List

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 41 of 320

Field Name (string to
specify)

Description

Sensitivity The value indicating themessage sender's opinion of the sensitivity of a
message. For example, Personal, Private, or Confidential. This value is
displayed in theSensitivity field in themessage’s Properties dialog in
Outlook.

TransportMsgHeaders Transport-specific message envelope information. This value
corresponds to theMAPI property PR_TRANSPORT_MESSAGE_HEADERS.

StartDate An appointment start date. This value corresponds to the PR_START_DATE
MAPI property.

EndDate An appointment end date. This value corresponds to the PR_END_DATE
MAPI property.

MSG-specific Metadata List, continued

Extract MSG-Specific Metadata

To extract specific metadata fields from anMSG file, call the fpGetSubFileMetaData() function, and
pass the field name defined in Default Metadata Set, on page 40 to metaNameArray (the string is not
case sensitive).

For example, the following code extracts the contents of the ConversationTopic and MessageID
fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "conversationtopic";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "MessageID";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 42 of 320

Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata

In addition to the default metadata set, you can extract any metadata field that exists in the header of
an EML orMBX file by passing the field’s name. If the name is a valid field in the file, the content of the
field is returned. For example, to retrieve the name of the last mail server that received themessage
before it was delivered, you can pass the string "Received".

Extract EML- or MBX-Specific Metadata

To extract specific metadata fields from an EML orMBX file, call the fpGetSubFileMetaData() function,
and pass themetadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Received and Mime-version fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "Received";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Mime-version";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;
error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Lotus Notes Database (NSF) Metadata

In addition to the default metadata set, you can extract any Lotus field name that exists in an NSF file
by passing the field’s name. (You can extract fields frommail NSF files and non-mail NSF files.) If the
name is a valid field in the file, the field is returned. For example, to retrieve the date when a document
in an NSF file was last accessed, you would pass the string "$LastAccessedDB".

NOTE: A complete list of NSF fields is provided in the Lotus Notes file stdnames.h. This
header file is available in the Lotus API Toolkit.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 43 of 320

Extract NSF-Specific Metadata

To extract specific metadata fields from anNSF file , call the fpGetSubFileMetaData() function, and
pass themetadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Description and Categories fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;
names[0].name.sname = "description";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Categories";

pname[0] = &names[0];
pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Personal Folders File (PST) Metadata

In addition to the default metadata set, you can extract Messaging Application Programming Interface
(MAPI) properties from a PST file. These properties describe all elements of an Outlook item in a PST
file (such as subject, sender, recipient, andmessage text). Because the properties are stored in the
PST file itself, you can retrieve them before you extract the contents of the PST. This enables you to
determine whether anOutlook item should be extracted based on its attributes. SomeMAPI properties
are also stored for Outlook attachments that are notmail messages (such as an attachedMicrosoft
Word document or Lotus 1-2-3 file).

NOTE: Because all elements of amessage (except non-mail attachments) are represented by
MAPI properties, you can extract all components of a subfile, including the header andmessage
text, by calling the fpGetSubFileMetadata() function.

MAPI Properties

EachMAPI property is identified by a property tag, which is a constant that contains the property type
and a unique identifier. For example, the property that indicates whether amessage has attachments

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 44 of 320

has the following components:

Property PR_HASATTACH

Identifier 0x0E1B

Property type PT_BOOLEAN (000B)

Property tag 0x0E1B000B

TheMicrosoft MAPI documentation on theMicrosoft Developer Network website lists all available
MAPI properties, their tags, and types.

You can retrieve any MAPI property that is of one of theMAPI property types listed below:

PT_I2 PT_DOUBLE PT_STRING8

PT_I4 PT_FLOAT PT_TSTRING

PT_BINARY PT_LONG PT_SYSTIME

PT_BOOLEAN PT_SHORT PT_UNICODE

NOTE: Properties with a PT_TSTRING type have the property type recompiled to either a
Unicode string (PT_UNICODE) or to an ANSI string (PT_STRING8) depending on the operating
system’s character set. To retrieve the Unicode property, pass in the Unicode version of the
tag. For example, the property tag for PR_SUBJECT is either 0x0037001E for an ANSI string, or
0x0037001F for a Unicode string.

Extract PST-Specific Metadata

In the call to extract subfile metadata, you can pass either theMAPI tag number (such as 0x0070001e)
or theMAPI tag name (such as PR_CONVERSATION_TOPIC). If you specify theMAPI tag name, you
must include the mapitags.h and mapidefs.hWindows header files, in which theMAPI tag name is
defined as a tag number.

To extract specific MAPI properties from a PST file, call the fpGetSubFileMetaData() function, and
pass the property tag to metaNameArray. The tag is passed as an integer.

For example, the following code extracts theMAPI properties PR_SUBJECT and PR_ALTERNATE_
RECIPIENT:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVMetaNameRec names[2];
KVMetaName pName[2];

names[0].type = KVMetaNameType_Integer;
names[0].name.iname = PR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = 0x3A010102;

pName[0] = &names[0];
pName[1] = &names[1];

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 45 of 320

KVStructInit(&metaArg);

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = SubFileIndex;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&pMetaData);
...
extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

NOTE: Youmust include the mapitags.h and mapidefs.hWindows header files, in which PR_
SUBJECT is defined as 0x0037001E.

Exclude Metadata from the Extracted Text File

When you extract amail message, themessage text and header information (To, From, Sent, and so
on) is also extracted. You can prevent the header information from appearing in the text file.

To exclude the header information, set extractFlag to KVExtractionFlag_ExcludeMailHeader in
the call to fpExtractSubFile().

Extract Subfiles from Outlook Files

When you extract an Outlook file (MSG) to disk, themessage text and header information (To, From,
Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in the
text file, see ExcludeMetadata from the Extracted Text File, above.) If the Outlook file contains a non-
mail attachment, the attachment is extracted in its native format to a subdirectory. If the Outlook file
contains amail attachment, the attachment’s message text is extracted to a subdirectory.

Extract Subfiles from Outlook Express Files

When you extract an Outlook Express (EML) file to disk, themessage text and header information (To,
From, Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in
the text file, see ExcludeMetadata from the Extracted Text File, above.) If the Outlook file contains a
non-mail attachment, the attachment is extracted in its native format to the same directory as the
message text file. If the Outlook file contains amail attachment, the complete attachment (including
message text and attachments), themessage text file, and any non-mail attachments are extracted to
the same directory as themainmessage.

NOTE:When theMBX reader (mbxsr) is enabled, it is used to filter MBX andEML files. If the
MBX reader is not enabled, the EML reader (emlsr) is used.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 46 of 320

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There aremany mail applications that export to anMBX
format, such as Eudora Email andMozilla Thunderbird.

When anMBX file is extracted to disk, themessage text and header information (To, From, Sent, and
so on) from eachmail file is extracted to text files. (If you do not want the header information to appear
in the text file, see ExcludeMetadata from the Extracted Text File, on the previous page.)

In EudoraMBX files, attachments are inserted as a link and are stored externally from themessage.
These attachments are not extracted, but the path to the attachment is returned in the call to the
fpGetSubFileInfo() function. You can write code to retrieve the attachment based on the returned path.

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

TheMailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, youmust obtain the appropriate license key fromMicro Focus. See Update
License Information, on page 20 for information on adding a new license key to an existing installation.

Extract Subfiles from Outlook Personal Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file. When a PST file is extracted to disk, the text and header information
(To, From, Sent, and so on) from eachOutlook item is extracted to a text file. (If you do not want the
header information to appear in the text file, see ExcludeMetadata from the Extracted Text File, on the
previous page.)

You can also extract messages from PST files as MSG files, including all their attachments, by setting
the KVExtractionFlag_SaveAsMSG flag in the KVExtractSubFileArg structure when you call
fpExtractSubFile().

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains anOutlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: TheMicrosoft Outlook Personal Folders (PST) reader is an advanced feature and is sold
and licensed separately. To enable this reader in a KeyView SDK, youmust obtain the
appropriate license key fromMicro Focus. See Update License Information, on page 20 for
information on adding a new license key to an existing installation.

Use the Native or MAPI-based Reader

KeyView accesses PST files in one of two ways:

l indirectly using theMicrosoft Messaging Application Programming Interface (MAPI) reader named
pstsr.

l directly using the native PST reader named pstnsr.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 47 of 320

OnUNIX platforms, the native reader is always used to process PST files because theMAPI-based
reader only runs onWindows x86 and x64. OnWindows, you can specify either reader; however, the
MAPI-based reader is used by default.

The differences between the two readers are summarized in the following table:

Feature/Requirement Native Reader (pstnsr) MAPI-based Reader
(pstsr)

All platforms supported Yes Windows x86 and x64 only

Outlook client required No Yes

MAPI properties supported Yes

All properties defined in
mapitags.h. Object
properties are not
supported.

Yes

All properties defined in
mapitags.h. Object
properties are not supported.

Password protection
supported

Yes Yes (using KVCredential
structure)

Compressible encryption
supported

Yes Yes

High encryption supported No Yes

To use theMAPI-based reader for PST files, change the PST entry in the formats.ini file as follows:

297=pst

To use the native reader for PST files, change the PST entry in the formats.ini file as follows:

297=pstn

NOTE: Youmust make sure that the PST that you are extracting is not open in the Outlook
client, and that the Outlook process is not running.

Use the Native PST Reader (pstnsr)

The native PST reader accesses PST files directly without relying on theMicrosoft interface to the PST
format. It runs on bothWindows and UNIX, and does not require anOutlook client on the system
processing the PST files. However, the native reader does not support password-protected PST files
that use high encryption.

Use the MAPI Reader (pstsr)

The pstsr reader accesses PST files indirectly by usingMicrosoft’s Messaging Application
Programming Interface (MAPI). MAPI is a standardWindows message interface that enables different
mail programs and other mail-aware applications (such as word processors and spreadsheets) to
exchangemessages and attachments with each other. MAPI allows KeyView to open a PST file,
traverse the folders andOutlook items, and extract the items inside the PST file.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 48 of 320

NOTE:When extracting subfiles from PST files, information on the distribution list used in an
email is extracted to a file called emailname.dist. This applies to theMAPI reader (pstsr)
only.

System Requirements

BecauseMAPI is supported onWindows platforms only, you can filter PST files onWindows only.
BecauseMAPI relies on functionality in Microsoft Outlook, aMicrosoft Outlook client must be installed
on the samemachine as the application filtering PST files, andmust be the default email application.
KeyView supports the following PST formats andOutlook clients:

l Outlook 97 or higher PST files
l Outlook 2002 or later clients

NOTE: TheOutlook client must be the same version as, or newer than, the version of
Outlook that generated the PST file.

NOTE: The bit edition of Microsoft Outlook must match that of the KeyView software. For
example, if 32-bit KeyView is used, 32-bit Outlook must be installed. If 64-bit KeyView is used,
64-bit Outlook must be installed.

If the bit editions do not match, an error message fromMicrosoft Office Outlook is displayed:

Either there is a no default mail client or the current mail client cannot
fulfill the messaging request. Please run Microsoft Outlook and set it as the
default mail client.

Additionally, KeyView displays the following return code:

Error 32: KVError_PSTAccessFailed.

MAPI Attachment Methods

The way in which you can access the contents of a PSTmessage attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE

ATTACH_EMBEDDED_MSG

ATTACH_OLE

ATTACH_BY_REFERENCE

ATTACH_BY_REF_ONLY

ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 49 of 320

means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, youmust retrieve the path to access the
attachment.

To extract "attach by reference" attachments

Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or ATTACH_
BY_REF_RESOLVEmethod by retrieving theMAPI property PR_ATTACH_METHOD.

If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving theMAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_PATHNAME.

You can then either copy the files from their original location to the path where the PST file is extracted,
or use the Filter API functions to filter the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

NOTE: To open password-protected PST files that use high encryption, youmust use the
MAPI-based PST reader (pstsr).
The native PST reader (pstnsr) returns the error message KVERR_PasswordProtected if a PST
is encrypted with high encryption.

Detect PST Files While the Outlook Client is Running

If you are running anOutlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format becauseOutlook has
the file locked. In this case, you can do one of the following:

l CloseOutlook when using the Extraction API.
l Detect PST files by extension only and bypass the format detectionmodule. To enable this option,
add the following lines to the formats.ini file:

[container_flags]
detectPSTbyExtension=1

NOTE: The detectPSTbyExtension option applies only when you are using theMAPI reader
(pstsr).

NOTE: If you use this option, youmust make sure in your code that valid PST files are
passed to KeyView, because the format detectionmodule is not available to verify the file
type and pass the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML Language Files

When you extract a Lotus Domino XML Language (.DXL) file, themessage text and header information
(To, From, Sent, and so on) is extracted to a text file.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 50 of 320

NOTE: To prevent header information from being extracted, see ExcludeMetadata from the
Extracted Text File, on page 46.

You canmake sure that dates and times extracted from Lotus Domino .DXL files are displayed in a
uniform format.

To extract custom date/time formats

l In the formats.ini file, set the DateTimeFormat option in the [dxlsr] section. For example:

[dxlsr]
DateTimeFormat=%m/%d/%Y %I:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM
The format arguments are the same as those for the strftime() function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak%28VS.71%29.aspx for more information.

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML

l Set the following options in the formats.ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dxlsr]
LNDParser=2

Extract Subfiles from Lotus Notes Database Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, andOLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When amail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in eachmessage is extracted to a text
file. (If you do not want the header information to appear in themessage text file, see ExcludeMetadata
from the Extracted Text File, on page 46.)

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 51 of 320

http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and
licensed separately. To enable this reader in a KeyView SDK, youmust obtain the appropriate
license key fromMicro Focus. See Update License Information, on page 20 for information on
adding a new license key to an existing installation.

System Requirements

The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus
Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or
Lotus Domino server must be installed and configured on the samemachine as the application filtering
NSF files. On UNIX and Linux, the Lotus Domino server is required. OnWindows, the Lotus Notes
client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:

l Lotus Notes 6.5.1
l Lotus Domino 6.5.1
KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino:

l Windows XP x86 (Service Pack 1 and 2)
l Windows 2000 x86 (Service Pack 2)
l Solaris 8.0 and 9.0 (built on Solaris 8.0)
l RedHat Enterprise Linux AS 3.0 (x86)
l SuSE Linux Enterprise Server 8 and 9 (x86)
l IBM AIX 5.1, 5L version 5.2

Installation and Configuration

Before KeyView can filter NSF files, youmust set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline theminimal setup for NSF filtering:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes.ini file is in the proper location.
l If Lotus Notes is installed, the file should appear in the install\lotus\notes directory, where

install is the installation directory.
l If only Lotus Domino is installed, the file should appear in the install\lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 52 of 320

Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installationmight contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.
2. Make sure that the notes.ini file is in the install/lotus/notes/latest/sunspa directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the install/lotus/notes/latest/sunspa directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Add the install/lotus/notes/latest/sunspa and the KeyView bin directory to the LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

AIX 5.x

1. Install the bos.iocp.rte file set if it is not already installed, and reboot themachine. See the
Lotus Domino server documentation for more information.

2. Install Lotus Domino server. You do not need to configure the server.
3. Make sure that the notes.ini file is in the install/lotus/notes/latest/ibmpow directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

4. Add the install/lotus/notes/latest/ibmpow directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/ibmpow:$PATH

5. Add the install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:

setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 53 of 320

Linux

1. Install Lotus Domino server. You do not need to configure the server.
2. Make sure that the notes.ini file is in the install/lotus/notes/latest/linux directory,

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes.ini, and add the following text:

[Notes]

3. Add the install/lotus/notes/latest/linux directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/linux:$PATH

4. Add the install/lotus/notes/latest/linux and the KeyView bin directory to the LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installationmight contain older
KeyView OEM libraries.

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 254.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using theAttach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speaker icon
on the page where they are located.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.

Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed aminimum width and/or height. If an image is smaller than the

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 54 of 320

minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats.ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

Extract Embedded OLE Objects

The File Extraction API can extract embeddedOLE objects from the following types of documents:

l Lotus Notes (DXL)
l Microsoft Excel
l Microsoft Word
l Microsoft PowerPoint
l Microsoft Outlook
l Microsoft Visio
l Microsoft Project
l OASIS Open Document
l Rich Text Format (RTF)
When an embeddedOLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 37). However, some ZIP files use password protection, in which case youmust use
a different method to enter the required credentials. See Password Protected Files, on page 317 for
more information.

Default File Names for Extracted Subfiles

When you do not specify a file name in the call to fpExtractSubFile(), in some cases a default file name
is applied to the extracted subfile.

Default File Name for Mail Formats

To avoid naming conflicts and problems with long file names, KeyView applies its own names to the
extractedmail items when you do not supply a name in the call to fpExtractSubFile(). A non-mail
attachment retains its original file name and extension.

When the contents of amail store or themessage body of amail message are extracted, the extracted
file names can include the following:

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 55 of 320

l The first valid eight characters of the original folder name or "Subject" line of themail message. If the
"Subject" line is empty, the characters kvext are used, where ext is the format’s extension. For
example, the characters would be "kvmsg" for MSG and "kvnsf" for NSF.
For notes, the file name is derived from the first 24 characters of the note text. For contact entries,
the file name is derived from the full name of the contact.
The following special characters are considered invalid and are ignored:

any non-printing character with a value less than 0x1F

angle brackets (< >) double quotationmarks (")

asterisk (*) forward slash (/)

back slash (\) pipe (|)

colon (:) questionmark (?)

l The characters _kvn, where n is an integer incremented from 0 for each extracted item.
l One of the following extensions:

Type File Extension

email message .mail

calendar appointment .cal

contact entry .cont

task entry .task

note .note

journal entry .jrnl

distribution list .dist

posting note .post

o If the type cannot be determined for anMSG or PST file, the file is given a .mail extension.
o If the type cannot be determined for a NSF file, the file is given a .tmp extension.
o The format of aMAIL file is plain text by default, but can be set to RTF with the

KVExtractionFlag_GetFormattedBody flag.
For example, anMSGmail message with the subject lineRE: Product roadmap that contains the
Microsoft Excel attachment release_schedule.xls is extracted as:

RE produ_kv0.mail
release_schedule.xls

If an extractedmessage contains an embeddedOLE object or any attachment that does not have a
name, the object or attachment is extracted as _kv#.tmp.

Default File Name for Embedded OLE Objects

KeyView can apply a default name to an extracted embeddedOLE object when you do not supply a
name in the call to fpExtractSubFile(). When an embeddedOLE object is extracted, the extracted

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 56 of 320

file name can include the following:

l The characters subfile_kvn, where n is an integer incremented from 0 for each extracted object.
l If KeyView can determine the embeddedOLE is aMicrosoft Office document, the original extension
is used. If the file type cannot be determined, the file is given a .tmp extension.

For example, aMicrosoft Word document (sales_quarterly.doc) might contain two embeddedOLE
objects: a Microsoft Excel file called west_region.xls, and a bitmap created in theWord document.
The embedded objects are extracted as subfile_kv0.xls and subfile_kv1.tmp.

Filter SDK C ProgrammingGuide
Chapter 3: Use the File Extraction API

KeyView (11.6) Page 57 of 320

Chapter 4: Use the Filter API

This section describes how to perform some basic filtering tasks by using the Filter API.

• Generate an Error Log 58
• Extract Metadata 61
• Convert Character Sets 63
• Extract Deleted Text Marked by Tracked Changes 66
• Filter PDF Files 66
• Filter Spreadsheet Files 72
• Filter XML Files 77
• Configure Headers and Footers 81
• Filter Hidden Data 82
• Tab Delimited Output for Embedded Tables 84
• Table Detection for PDF Files 84
• Exclude JapaneseGuide Text 85

Generate an Error Log

You canmonitor and debug filtering operations by enabling a detailed error log. This enables you to see
errors that are generated at run time, and to track problem files in stream or file mode.

NOTE:
Error logs are not generated when in-process filtering is enabled.

The error logmight include the following information:

l Generated error codes.
l A time stamp.
l The path and file name of the file in which the error occurred.
l The length of the file in which the error occurred. If the name of the original file or the name of the
temporary file are not obtained in streammode, the file length is reported.

The following is a sample log file:

-KVOOPE 12 # Time: 11:14:32 # File Len = 68140
-KVOOPE 13 # Time: 11:23:05 # H:\files\WP\Word97\fnldmsa.doc
-KVOOPE 5 # Time: 12:15:54 # H:\files\SS\XL2000\corporate.xsl
-KVOOPE 5 # Time: 12:45:19 # H:\files\WP\WPerf5\wp501.doc
-KVOOPE 12 # Time: 14:25:33 # H:\files\PG\PPoint95\95.ppt
-KVOOPE 26 # Time: 16:26:04 # File Len = 19117568
-KVOOPE 10 # Time: 20:27:40 # File Len = 19117568

You can specify the information that is written to the log file by using either the API or environment
variables. To configure a log file for a single filtering session, use environment variables. To configure a

KeyView (11.6) Page 58 of 320

log file for all filtering sessions, use the API. Configuring the log file by using the API overrides the
same settings in the environment variables. You can also specify additional settings in the
formats.ini file.

You can configure the following features of the log file:

l Enable or disable logging. See Enable or Disable Error Logging, below.
l Change the default path and file name of the log file. See Change the Path and File Name of the Log
File, below.

l Includememory errors in the log file. See Report Memory Errors, on the next page.
l Specify amemory guard that is used to generatememory overwrite errors in the log. See Specify a
Memory Guard, on the next page.

l Include the input file name in the log file when filtering a stream. See Report the File Name in Stream
Mode, on the next page.

l Include extended error codes that providemore detail on a general error (KVERR_General). See
Report Extended Error Codes, on page 61.

l Specify themaximum size of the log file. See Specify theMaximum Size of the Log File, on page 61.

Enable or Disable Error Logging

You can enable or disable error logging by using either the API or environment variables. By default, a
file called kvoop.log is created in the system temporary directory; however, you can change the path
and file name of this file (see Change the Path and File Name of the Log File, below).

Use the API

To enable or disable logging, set the final argument (dwFlags) of fpInit() or fpOpenStreamEx2() to either
KVF_OOPLOGON or KVF_OOPLOGOFF.

Use Environment Variables

To enable logging, add the KVOOPLOGON environment variable, and set the variable value to 1. To disable
logging, do not set the KVOOPLOGON environment variable.

Change the Path and File Name of the Log File

You can change the default path and file name of the log file. The default is C:\temp\kvoop.log on
Windows and /tmp/kvoop.log on UNIX.

To change the path and file name of the log file, add the following to the formats.ini file:

[kvooplog]
KvoopLogName=filepath

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 59 of 320

Report Memory Errors

You can report memory leaks andmemory overwrites in the log file by enabling thememory trace
system, either by using the API or environment variables. If thememory trace system is enabled, the
extended error codes for memory leaks andmemory overwrites (26 and 27, respectively) are reported in
the log file when they are generated. The extended error codes are defined in KVErrorCodeEx in
kvtypes.h.

NOTE:
To report memory overwrites, youmust also set amemory guard. See Specify aMemory
Guard, below.

Use the API

To enable or disable thememory trace system, set the final argument (dwFlags) of fpInit() or
fpOpenStreamEx2() to either KVF_OOPMEMTRACEON or KVF_OOPMEMTRACEOFF.

Use Environment Variables

To enable thememory trace system, add the KVOOPMT environment variable, and set its value to 1. To
disable thememory trace system, do not set the KVOOPMT environment variable.

Specify a Memory Guard

To report memory overwrites in the log file, youmust set amemory guard that protects against memory
overwrites. Normally, this is set in the range of 100-200 bytes. For example, if a memory guard of 100 is
set and 20 bytes of memory are specified, a total of 120 bytes of memory are allocated. The additional
memory is used tomonitor and identify memory overwrites.

To configure thememory guard, add the following section to the formats.ini file:

[Kvooplog]
mg=100

Report the File Name in Stream Mode

When you run Filter in file mode, the file name is always reported in the log file. To report the file name
in streammode, youmust extract it through the API.

To add the input file name to the log, call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETOOPSRCFILE

nValue TRUE

pData input_filename

For example:

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 60 of 320

char inputfile[250];
(*fpFilterConfig)(pKVFilter, KVFLT_SETOOPSRCFILE, TRUE, input_filename);

Report Extended Error Codes

When a general error (KVERR_General) is generated during out-of-process filtering, extended error
codes can also be generated and reported in the error log. The extended error codes providemore
information about the error, and are defined in KVErrorCodeEx in kvtypes.h.

To report extended errors, call the function fpGetKvErrorCodeEx(). Extended error codes are generated
in the C sample program, Filter.

Specify the Maximum Size of the Log File

You can specify themaximum size of the log file. When this size is reached and new entries are
logged, either the first entry in the file is overwritten or the new entries are not reported.

To configure themaximum log size and whether old entries are overwritten, add the following section to
the formats.ini file:

[Kvooplog]
LogFileSize=10
OverWriteLog=1

Option Description

LogFileSize This option specifies themaximum size of the log file in KB. Theminimum is 1 K. If
you do not specify a size, the default of 2 MB is used.

OverWriteLog This option determines whether the log file is overwritten when themaximum log file
size (LogFileSize) is reached. If you set this option to 1, the first entry in the log
file is overwritten. If you set this option to 0, new entries are not reported in the log
file.

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file’s format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

Themetadata in mail formats (MSG and EML) andmail stores (PST, NSF, andMBX) is extracted
differently than other formats. For information on extractingmetadata from these formats, see Extract
Mail Metadata, on page 39.

NOTE:
KeyView can only extract metadata from a document if metadata is defined in the document,
and if the document reader can extract metadata for the file format. The section Supported
Formats, on page 184 lists the file formats for whichmetadata can be extracted. KeyView does

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 61 of 320

not generatemetadata automatically from the document contents.

The sample program filter demonstrates how to extract metadata. See Sample Programs, on page
86.

Extract Metadata for File Filtering

To extract metadata for file filtering

1. Call fpFilterFile().
2. Declare a pointer to the KVSummaryInfoEx structure.
3. Call fpGetOLESummaryInfoFile() to extract themetadata.
4. Call fpFreeOLESummaryInfo() to free thememory allocated for metadata extraction.

Extract Metadata for Stream Filtering

To extract metadata for stream filtering

1. Call fpOpenStream() or fpOpenStreamEx2() to open a stream.
2. Call fpFilterStream() to filter the stream.
3. Call fpCloseStream() to close the input stream.
4. Declare a pointer to the KVSummaryInfoEx structure.
5. Call fpGetOLESummaryInfo() to extract themetadata.
6. Call fpFreeOLESummaryInfo() to free thememory allocated for metadata extraction.

Example

Below is an example of a call to fpGetOLESummaryInfo():

{
 KVSummaryInfoEx si;
 memset(&si, 0, sizeof(si));
 if (KVERR_Success != (*pInterface->fpGetOLESummaryInfo)(pKVFilter, pInput, &si
))

{
 fprintf(fpOut, "Error obtaining summary information\n");
 return;
 }
 if (si.nElem == 0)

{
 fprintf(fpOut, "No summary information\n");
 goto end;
 }
 PrintSummaryInfo(&si, fpOut);
end:

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 62 of 320

(*pInterface->fpFreeOLESummaryInfo)(pKVFilter, &si);
}

where:

pKVFilter A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

si Points to the structure KVSummaryInfoEx. In the structure, nElem provides a count of
the number of metadata elements, and pElem points to the first element of the array of
individual elements, as defined by the structure KVSumInfoElemEx.

To interpret themetadata after fpGetOLESummaryInfo() is called and returns a non-zero status:

l If si.nElem is zero, the document did not contain metadata. If si.nElem is not zero, si.nElem is the
number of metadata elements contained in the array.

l Each KVSumInfoElemEx structure contains the following information for eachmetadata element:

si.pElem
[n
].isValid

Specifies whether the data value is present in the document. 1 specifies that the value
is valid. For example, if the "Title" element was not populated in the document,
si.pElem[1].isValid == 0 would evaluate to true.

si.pElem
[n].type

Specifies the data type of themetadata element. The types are defined in the structure
KVSumInfoType in kvtypes.h.

si.pElem
[n].data

A pointer to the content of the element.

If type is KV_Int4 or KV_Bool, then data contains the actual value. Otherwise, data is
a pointer to the actual value.

KV_DateTime and KV_IEEE8 point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text.
KV_Unicode is replaced with KV_String when the UNICODE value has been character
mapped to the desired output character set, as specified in the call to fpInit().

si.pElem
[
n].pcType

The name of themetadata field.

Convert Character Sets

Filter can convert the character set of a document to an arbitrary character set specified in the API, or
to the character set of the operating system onwhich the output text is viewed. For this conversion to
occur, a source character setmust be identified. The source character set can either be determined by
the document reader, or can be set in the API. The section Supported Formats, on page 184 lists file
formats for which character set information can be determined by the document reader. The character
sets are enumerated in KVCharSet of kvtypes.h.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 63 of 320

Determine the Character Set of the Output Text

To determine the output character set of a filtered document, Filter considers the following:

l Whether the document reader can determine the character set of the file format. If the document
reader cannot determine the character set information for the document type, set the source
character set in the API.

l Whether the source character set is specified in the API.
l Whether the target character set is specified in the API.

Guidelines for Character Set Conversion

Below are some rules for the determination of character set mapping:

l If the source is not determined by the document reader or configured in the API, the character set of
the output text is always unknown, regardless of the target character set configuration. The
document cannot be converted to a target character set or the operating system’s code page unless
the source character set is known.

l If the target character set is not specified in the API, and the source character set is identified, the
operating system’s code page is used for the output text.

l If the source character set is identified, and the target character set is specified in the API, the target
character set specified in the API is used for the output text.

l For documents that contain multiple character sets, Micro Focus recommends that the target
character set be forced to UNICODE or UTF-8.

The following table illustrates how Filter determines the character set of the output text.

Source charset read by
Filter

Source charset specified
in API

Target charset specified
in API

Output
charset

No No No no
conversion

No KVCS_936 No OS code
page

No No UNICODE no
conversion

No KVCS_936 UNICODE UNICODE

Yes No No OS code
page

Yes KVCS_936 No OS code
page

Yes No UNICODE UNICODE

Determining the Output Character Set—Example

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 64 of 320

Source charset read by
Filter

Source charset specified
in API

Target charset specified
in API

Output
charset

Yes KVCS_936 UNICODE UNICODE

Determining the Output Character Set—Example, continued

Set the Character Set During Filtering

You can convert the character set of a file at the time the file is filtered.

To specify the source character set of a file, after calling fpInit(), call fpSetSrcCharSet(), and set the
eCharSet argument to any value in the enumerated list in KVCharSet of kvtypes.h.

To determine the final output character set, call the fpGetTrgCharSet() function after filtering is
complete.

To specify the target character set, set the outputCharSet argument of fpInit() to any value in the
enumerated list in KVCharSet of kvtypes.h.

Not all values of the enumerated list can be used as a target character set. Coded Character Sets, on
page 223 lists character sets that can be used as output.

Set the Character Set During Subfile Extraction

You can convert the character set of a subfile at the time the subfile is extracted from the container and
before it is filtered. This is most often used to set the character set of amail message’s body text. See
Filter PDF Files, on the next page for more information.

To specify the source character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->srcCharset argument to any value in the enumerated list in KVCharSet of
kvtypes.h.

To specify the target character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->trgCharSet argument to any value in the enumerated list in KVCharSet of
kvtypes.h.

Prevent the Default Conversion of a Character Set

You can prevent the default conversion of text to the operating system code page, and specify that
Filter retain the original character encoding of the document when it is available. Any document
identified as containingmore than one character encoding is converted to the first encoding
encountered in the file.

To prevent the default conversion, set the flag KVF_NODEFAULTCHARSETCONVERT as the last argument of
the call to fpInit(). This setting overrides the source or target character set specified in the API.

This setting overrides the source or target character set specified in the API.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 65 of 320

Extract Deleted Text Marked by Tracked Changes

The revision tracking feature in applications—such as Microsoft Word’s Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

If revision tracking was enabled when text was deleted from a source document, you can configure
Filter to extract the deleted text. Filter does not extract the reviewer name and revision date.

To extract deleted text from a document and include it in the filtered output

1. Call the fpInit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_INCLREVISIONMARK

nValue TRUE

pData NULL

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_INCLREVISIONMARK, TRUE, NULL);

3. Call the fpFilterFile() or fpFilterStream() function.

Filter PDF Files

Filter has special configuration options that allow greater control over the conversion of Adobe Acrobat
PDF files.

Filter PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can filter a PDF file either by using the file’s internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to output PDF files that contain languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE:
The algorithm used to reproduce the reading order of a PDF page is based on common page
layouts. The paragraph flow generated for PDFs with unique or complex page designs might not
emulate the original reading order exactly.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 66 of 320

For example, page design elements such as drop caps, callouts that cross column boundaries,
and significant changes in font sizemight disrupt the logical flow of the output text.

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they
appear on the visual page. For example, a three-column article could be output with the headers and
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available:

Paragraph
Direction
Option

Description

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
whenmost of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to-
left

Paragraphs flow logically and read from right to left. You should specify this option
whenmost of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF filter determines the paragraph direction for each
PDF page, and then sets the direction accordingly. Filter uses this option when a
paragraph direction is not specified.

NOTE:
Filteringmight be slower when logical reading order is enabled. For optimal speed, use an
unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, a PDF file might contain English paragraphs in three
columns that read from left to right, but 80% of the second paragraphmight contain Hebrew characters.
If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the output—
title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column to the
bottom right of the third column. However, the text direction of the second paragraph is determined
independently of the page by the PDF filter, and is output from right to left.

NOTE:
Extraction of metadata is not affected by the paragraph direction setting. The characters and
words in metadata fields are extracted in the correct reading direction regardless of whether
logical reading order is enabled.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 67 of 320

Enable Logical Reading Order

You can enable logical reading order by using either the API or the formats.ini file. Setting the
paragraph direction in the API overrides the setting in the formats.ini file.

Use the C API

To enable PDF logical reading order in the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter

nType KVFLT_LOGICALPDF

nValue Set to one of the following flags which are defined in kvtypes.h (see LPDF_
DIRECTION, on page 182):

l LPDF_LTR. Logical reading order and left-to-right paragraph direction.
l LPDF_RTL. Logical reading order and right-to-left paragraph direction.
l LPDF_AUTO. Logical reading order. The PDF reader determines the paragraph
direction for each PDF page, and then sets the direction accordingly. Filter uses this
option when a paragraph direction is not specified.

l LPDF_RAW. Unstructured paragraph flow. This is the default behavior. If logical
reading order is enabled, and you want to return to an unstructured paragraph flow,
set this flag.

pData NULL

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_LOGICALPDF, LPDF_LTR, NULL);

Use the formats.ini File

To enable logical reading order by using the formats.ini file

1. Change the PDF reader entry in the [Formats] section of the formats.ini file as follows:

[Formats]
200=lpdf

2. Optionally, add the following section to the end of the formats.ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:

Flag Description

LPDF_ Left-to-right paragraph direction.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 68 of 320

Flag Description

LTR

LPDF_
RTL

Right-to-left paragraph direction.

LPDF_
AUTO

The PDF reader determines the paragraph direction for each PDF page, and then sets
the direction accordingly. Filter uses this option when a paragraph direction is not
specified.

LPDF_
RAW

Unstructured paragraph flow. This is the default behavior. If logical reading order is
enabled, and you want to return to an unstructured paragraph flow, set this flag.

Rotated Text

When a PDF that contains rotated text is filtered, the rotated text is extracted after the text at the end of
the PDF page on which the rotated text appears. If the PDF is filtered with logical order enabled, and
the amount of rotated text on a page surpasses a predefined threshold, the page is automatically output
as an unstructured text stream. You cannot configure this threshold.

Extract Custom Metadata from PDF Files

You can extract custommetadata from PDF files either by specifying individual metadata tag names,
or by extracting all custommetadata at once.

Extract Custom Metadata by Tag

To extract custommetadata by metadata tag, add the custommetadata names to the pdfsr.ini file
provided, and copy themodified file to the bin directory. You can then extract metadata as you
normally would.

The pdfsr.ini is in the directory samples\pdfini, and has the following structure:

<META>
<TOTAL>total_item_number</TOTAL>,
/metadata_tag_name datatype,
</META>

Parameter Description

total item
number

The total number of metadata tags that are listed.

metadata_tag_
name

Themetadata tag name used in the PDF files.

datatype The data type of themetadata field. Data types are defined in
KVSumInfoType.

For example:

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 69 of 320

<META>
<TOTAL>4</TOTAL>
/part_number INT4
/volume INT4
/purchase_date DATETIME
/customer STRING
</META>

Extract All Custom Metadata

You can extract all metadata through the API.

To extract all metadata by using the API

1. Call the fpInit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_EXPORTALLMETADATA

nValue TRUE

pData NULL

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_EXPORTALLMETADATA, TRUE, NULL);

3. Call the fpGetOLESummaryInfo() or fpGetOLESummaryInfoFile() function.

Filter Tagged PDF Content

A tagged PDF contains an additional layer of text for visually impaired readers. This text is used in text-
to-speech features in various PDF viewing programs. You can enable filtering of tagged PDF text in the
API.

Filtering the extra layer of tagged content might result in duplicate text in the output. This is the
expected behavior.

To filter tagged PDF content

1. Call the fpInit() function.
2. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_EXPORTTAGGEDCONTENT

nValue TRUE

pData NULL

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 70 of 320

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_EXPORTTAGGEDCONTENT, TRUE, NULL);

Skip Embedded Fonts

Text in PDF files sometimes contains embedded fonts. If you experience difficulties filtering embedded
fonts, there are options in the API, the formats.ini file, and the filter sample program that enable you
to skip this type of text.

NOTE:
If you skip embedded fonts, none of the content that contains embedded fonts is included in the
output.

Use the formats.ini File

When you use formats.ini to skip embedded fonts, you can also specify an embedded font
threshold, which is an arbitrary percentage probability that the glyph in the embedded text maps to a
character value in the output character set (ASCII, UTF-8, and so on).

For example, if you specify a threshold of 75, embedded text glyphs that have a 75% or greater
probability of correctly matching the character in the output character set are included in the output;
glyphs that have a probability of less than 75% of matching the output character set are omitted from
the output.

To skip embedded fonts by using the formats.ini file

l Set the following parameters:

[pdf_flags]
skipembeddedfont=TRUE
embedded_font_threshold=threshold

where threshold is a value between 0 and 100. A threshold of 100 skips all embedded font text; a
threshold of 0 retains all embedded font text. Set skipembeddedfont to TRUE to enable the
embedded_font_threshold parameter.
The default value of embedded_font_threshold is 100. if you set skipembeddedfont to TRUE and
do not specify the embedded_font_threshold parameter, Filter skips all embedded text.

Use the C API

To skip embedded fonts by using the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter

nType KVFLT_SKIPEMBEDDEDFONT

nValue TRUE

pData NULL

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 71 of 320

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_SKIPEMBEDDEDFONT, TRUE, NULL);

Control Hyphenation

There are two types of hyphens in a PDF document:

l A soft hyphen is added to a word by a word processor to divide the word across two lines. This is a
discretionary hyphen and is used to ensure proper text flow in justified text.

l A hard hyphen is intentionally added to a word regardless of the word’s position in the text flow. It is
required by the rules of grammar or word usage. For example, compound words (such as three-week
vacation and self-confident) contain hard hyphens.

By default, KeyView skips the source document’s soft hyphens in the Filter output to providemore
searchable text content. However, if you want to maintain the document layout, you can keep soft
hyphens in the Filter output. To keep soft hyphens, youmust enable the soft hyphen flag in
formats.ini or in the API.

Use the formats.ini File

To keep soft hyphens by using the formats.ini file, set the following parameter:

[pdf_flags]
keepsofthyphen=TRUE

Use the C API

To keep soft hyphens by using the C API, call the fpFilterConfig() function with the following
arguments:

Argument Parameter

nType KVFLT_KEEPSOFTHYPHEN

nValue TRUE

pData NULL

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_KEEPSOFTHYPHEN, TRUE, NULL);

Filter Spreadsheet Files

Filter has special configuration options that enable greater control over the conversion of spreadsheet
files.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 72 of 320

Filter Worksheet Names

Normally, Filter does not extract worksheet names from a spreadsheet because it is assumed that the
text should not be exposed. To extract worksheet names, add the following lines to the formats.ini
file:

[Options]
getsheetnames=1

Filter Hidden Text in Microsoft Excel Files

Normally, Filter does not filter hidden text from aMicrosoft Excel spreadsheet because it is assumed
that the text should not be exposed. To extract text from hidden rows, columns, and sheets from Excel
spreadsheets, add the following lines to the formats.ini file:

[Options]
gethiddeninfo=1

NOTE:
You can also set an API flag to filter text from hidden sheets. See Hidden Data in Microsoft
Excel Documents, on page 82 for more information.

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be
formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats.ini file.

To specify the system date and time format on UNIX systems

l In the formats.ini file, specify the following options:
o SysDateTime. The format to use when a cell is formatted using the system format including both

the date and the time.
o SysLongDate. The format to use when a cell is formatted using the system long date format.
o SysShortDate. The format to use when a cell is formatted using the system short date format.
o SysTime. The format to use when a cell is formatted using the system time format.

NOTE:
These values cannot contain spaces.

For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the following
format:
28/02/2008
The format arguments are the same as those for the strftime() function.
See http://linux.die.net/man/3/strftime for more information.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 73 of 320

http://linux.die.net/man/3/strftime

Filter Very Large Numbers in Spreadsheet Cells to Precision
Numbers

By default, numbers are extracted in the format specified by the Excel file (for example, General,
Currency andDate). Spreadsheets might contain cells that have very large numbers in them. Excel
displays the numbers in a scientific notation that rounds or truncates the numbers.

To extract numbers without formatting, add the following options in the formats.ini file:

[Options]
ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Filter is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245 and the formula from which the value is derived is SUM
(B21:B26).

NOTE:
Depending on the complexity of the formulas, enabling formula extractionmight result in slightly
slower performance.

To set the extraction option for formulas

l Add the following lines to the formats.ini file:

[Options]
getformulastring=option

where option is one of the following:

Option Description

0 Extract the formula value only. This is the default.

If formula extraction is enabled, and you want to return to the default, set this option.

1 Extract the formula only.

2 Extract the formula and the formula value.

NOTE:
You can also set an API flag to filter formulas and formula values. See Hidden Data in Microsoft
Excel Documents, on page 82 for more information.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 74 of 320

If a function in a formula is not supported or is invalid, and option 1 or 2 is specified, only the calculated
value is extracted. See SupportedMicrosoft Excel Functions, below for a list of supported functions.

When formula extraction is enabled, Filter can extract Microsoft Excel formulas that contain the
functions listed in the following table.

Supported Microsoft Excel Functions

=ABS() =ACOS() =AND() =AREAS()

=ASIN() =ATAN2() =ATAN2() =AVERAGE()

=CELL() =CHAR() =CHOOSE() =CLEAN()

=CODE() =COLUMN() =COLUMNS() =CONCATENATE()

=COS() =COUNT() =COUNTA() =DATE()

=DATEVALUE() =DAVERAGE() =DAY() =DCOUNT()

=DDB() =DMAX() =DMIN() =DOLLAR()

=DSTDEV() =DSUM() =DVAR() =EXACT()

=EXP() =FACT() =FALSE() =FIND()

=FIXED() =FV() =GROWTH() =HLOOKUP()

=HOUR() =ISBLANK() =IF() =INDEX()

=INDIRECT() =INT() =IPMT() =IRR()

=ISERR() =ISERROR() =ISNA() =ISNUMBER()

=ISREF() =ISTEXT() =LEFT() =LEN()

=LINEST() =LN() =LOG() =LOG10()

=LOGEST() =LOOKUP() =LOWER() =MATCH()

=MAX() =MDETERM() =MID() =MIN()

=MINUTE() =MINVERSE() =MIRR() =MMULT()

=MOD() =MONTH() =N() =NA()

=NOT() =NOW() =NPER() =NPV()

=OFFSET() =OR() =PI() =PMT()

=PPMT() =PRODUCT() =PROPER() =PV()

=RATE() =REPLACE() =REPT() =RIGHT()

=ROUND() =ROUND() =ROW() =ROWS()

=SEARCH() =SECOND() =SIGN() =SIN()

=SLN() =SQRT() =STDEV() =SUBSTITUTE()

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 75 of 320

=SUM() =SYD() =T() =TAN()

=TEXT() =TIME() =TIMEVALUE() =TODAY()

=TRANSPOSE() =TREND() =TRIM() =TRUE()

=TYPE() =UPPER() =VALUE() =VAR()

=VLOOKUP() =WEEKDAY() =YEAR()

Standardize Cell Formats

This options enables the standardization of cell formats within Microsoft Excel files. KeyView formats
any cell where a number has been entered according to the following rules.

Numbers

These include:

l rounded numbers
l exponentials
l fractions
l percentages
Numbers are printed to themaximum length entered–that is, the full number put into the cell, without
any rounding. Negative numbers are printed with a dash in front of them (as opposed to, for example,
bracket form).

Text

All text that is part of the format string is stripped, including currency symbols.

Dates

All dates are printed in full ISO-8601 format (that is YYYY-MM-DDTHH:MM:SS). There are two exceptions
to this rule:

l Cases where the date format contains a time delta (that is, "[h]", "[m]", or "[s]"). In this case, the
time is displayed as an interval, which is the number of days (where a day is defined as a period of
24 hours). The time is printed in the ISO-8601 time interval form, for example P1.234D.

l Cases where the absolute value of the cell is less than 1.0, and the date format contains only time
components. In Excel, values between 0.0 and 1.0 correspond to the fictional date 1900-01-00,
and are used to express times without an associated date. For example:

Value Date format KeyView output

0.5 hh:mm:ss 12:00:00

0.5 dd hh 1900-01-00 12:00:00

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 76 of 320

Value Date format KeyView output

1.5 hh:mm:ss 1900-01-01 12:00:00

1.5 dd hh 1900-01-01 12:00:00

You can enable this option by adding the following to the formats.ini file:

[Options]
StandardizeCellFormats=TRUE

Alternatively, iyou can enable this option programatically by passing KVFLT_
STANDARDIZECELLFORMATS to fpFilterConfig.

Filter XML Files

Filter enables you to extract all or selected content from source XML files. You can specify the
elements and attributes to extract from a document by using either the API or an INI file (see Configure
Element Extraction for XMLDocuments, below). Filter detects the following XML formats:

l generic XML
l Microsoft Office 2003 XML (Word, Excel, and Visio)
l StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
See File Format Detection, on page 267 for more information on format detection.

Configure Element Extraction for XML Documents

When filtering XML files, you can specify which elements and attributes are extracted according to the
file’s format ID or root element. This is useful when you want to extract only relevant text elements,
such as abstracts from reports, or a list of authors from an anthology.

A root element is an element in which all other elements are contained. In the following XML sample,
book is the root element:

<book>
 <title>XML Introduction</title>
 <product id="33-657" status="draft">XML Tutorial</product>
 <chapter>Introduction to XML
 <para>What is HTML</para>
 <para>What is XML</para>
 </chapter>
 <chapter>XML Syntax
 <para>Elements must have a closing tag</para>
 <para>Elements must be properly nested</para>
 </chapter>
</book>

For example, you could specify that when filtering files with the root element book, the element title
is extracted as metadata, and only product elements with a status attribute value of draft are
extracted. When you extract an element, the child elements within the element are also extracted. For

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 77 of 320

example, if you extract the element chapter from the previous sample, the child element para is also
extracted.

Filter defines default element extraction settings for the following XML formats:

l generic XML
l Microsoft Office 2003 XML (Word, Excel, and Visio)
l StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)
These settings are defined internally and are used when filtering these file formats; however, you can
modify their values.

In addition to the default extraction settings, you can also add custom settings for your own XML
document types. If you do not define custom settings for your own XML document types, the settings
for the generic XML are used.

Modify Element Extraction Settings

You canmodify configuration settings for XML documents through either the API or the kvxconfig.ini
file.

Use the C API

You can use the C API tomodify the settings for the standard XML document types or add
configuration settings for your own XML document types.

To modify settings

1. Call the fpInit() function.
2. Define the KVXConfigInfo structure.
3. Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETXMLCONFIGINFO

nValue 0

pData the address of the KVXConfigInfo structure

For example:

KVXConfigInfo xinfo; /* populate xinfo */

(*fpFilterConfig)(pKVFilter, KVFLT_SETXMLCONFIGINFO, 0, &xinfo);

4. Repeat step 2 and step 3 until the settings for all the XML document types that you want to
customize are defined.

5. Call the fpFilterFile() function.
Use an Initialization File

You can use the initialization file to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 78 of 320

To modify settings

1. Modify the kvxconfig.ini file.
2. Use the initialization file when processing the XML file. SeeModify Element Extraction Settings in

the kvxconfig.ini File, below.
The C sample program (filter) demonstrates how to use the initialization file in the filtering
process. See Sample Programs, on page 86.

Modify Element Extraction Settings in the kvxconfig.ini File

The kvxconfig.ini file contains default element extraction settings for supported XML formats. The
file is in the directory install\OS\bin, where install is the path name of the Filter installation
directory and OS is the name of the operating system. For example, the following entry defines
extraction settings for theMicrosoft Visio 2003 XML format:

[config3]
eKVFormat=MS_Visio_XML_Fmt
szRoot=
szInMetaElement=DocumentProperties
szExMetaElement=PreviewPicture
szInContentElement=Text
szExContentElement=
szInAttribute=

The following options are available:

Configuration
Option

Description

eKVFormat The format ID as detected by the KeyView detectionmodule. This
determines the file type to which these extraction settings apply. See File
Format Detection, on page 267 for more information on format ID values.

If you are adding configuration settings for a custom XML document type,
this option is not defined.

szRoot The file’s root element. When the format ID is not defined, the root element
is used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an
Element’s Namespace and Attribute, on the next page.

szInMetaElement The elements extracted from the file as metadata. All other elements are
extracted as text.

Separatemultiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, on the next page.

szExMetaElement The child elements in the includedmetadata elements that are not extracted
from the file as metadata. For example, the default extraction settings for
the Visio XML format extract the DocumentProperties element as

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 79 of 320

Configuration
Option

Description

metadata. This element includes child elements such as Title, Subject,
Author, Description, and so on. However, the child element
PreviewPicture is defined in szExMetaElement because it is binary data
and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice
files. All metadata is extracted regardless of this setting.

Separatemultiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szInContentElement The elements extracted from the file as content text. Enter an asterisk (*) to
extract all elements including child elements.

Separatemultiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szExContentElement The child elements in the included content elements that are not extracted
from the file as content text.

Separatemultiple entries with commas. To further qualify the element,
specify its namespace, its attributes, or both. See Specify an Element’s
Namespace and Attribute, below.

szInAttribute The attribute values extracted from the file. If attributes are not defined here,
attribute values are not extracted.

Enter the namespace (if used), element name, and attribute name in the
following format:

namespace:elementname@attributename

For example:

keyview:division@name

Separatemultiple entries with commas.

Specify an Element’s Namespace and Attribute

To further qualify an element, you can specify that the element must exist in a certain namespace,
must contain a specific attribute, or both. To define the namespace and attribute of an element, enter
the following:

ns_prefix:elemname@attribname=attribvalue

NOTE:
Attribute values that contain spaces must be enclosed in quotationmarks.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 80 of 320

For example, the entry bg:language@id=xml extracts a language element in the namespace bg that
contains the attribute name id with the value of "xml". This entry extracts the following element from
an XML file:

<bg:language id="xml">XML is a simple, flexible text format derived from
SGML</bg:language>

but does not extract:

<bg:language id="sgml">SGML is a system for defining markup
languages.</bg:language>

or

<adv:language id="xml">The namespace should be a Uniform Resource Identifier
(URI).</adv:language>

Add Configuration Settings for Custom XML Document Types

You can define element extraction settings for custom XML document types by adding the settings to
the kvxconfig.ini file. For example, for files that contain the root element keyviewxml, you could add
the following section to the end of the initialization file:

[config101]
eKVFormat=
szRoot=keyviewxml
szInMetaElement=dc:title,dc:meta@title,dc:meta@name=title
szExMetaElement=

szInContentElement=keyview:division@name=dev,keyview:division@name=export,p@style="
Heading 1"
szExContentElement=
szInAttribute=keyview:division@name

The custom extraction settings must be preceded by a section heading named [configN], where N is
an integer starting at 100 and increasing by 1 for each additional file type, for example [config100],
[config101], [config102], and so on. The default extraction settings for the supported XML formats
are numbered config0 to config99. Currently only 0 to 6 are used.

Because a custom XML document type is not recognized by the KeyView detectionmodule, the format
ID is not defined. The file type is identified by the file’s root element only.

If a custom XML document type is not defined in the kvxconfig.ini file or by the fpFilterConfig()
function, the default extraction settings for a generic XML document are used.

Configure Headers and Footers

You can configure custom header and footer tags for word processing and spreadsheet documents by
editing the formats.ini file.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 81 of 320

To configure headers and footers

1. Open the formats.ini file.
2. In the [Options] section, add the following items:

header_start_tag=HeaderStart
header_end_tag=HeaderEnd
footer_start_tag=FooterStart
footer_end_tag=FooterEnd

For example:

header_start_tag=<myHeaderTag>
header_end_tag=</myHeaderTag>
footer_start_tag=<myFooterTag>
footer_end_tag=</myFooterTag>

NOTE:
Youmust encode custom tags in UTF-8.

Filter Hidden Data

Some documents contain hidden information, which is not filtered by default. Depending on the type of
hidden data that you want to filter and the type of document that you are filtering, you can either use the
API or set parameters in the formats.ini file.

Hidden Data in Microsoft Excel Documents

There are several types of hidden data in Microsoft Excel documents, each of which has a
corresponding flag in the KV_CONFIG_Arg structure, which you can toggle to determine whether the
hidden data is shown.

The following table lists each data type, its default behavior, and its corresponding configuration API
flag.

Hidden Data Type Default Behavior KV_CONFIG_Arg flag

Hidden sheets Not output KV_SS_SHOWHIDDENINFOR

Formulas Calculated value KV_SS_SHOWFORMULA

Values and formulas Calculated value KV_SS_SHOWVALUESANDFORMULAS

Hidden data settings

To toggle the display of any type of hidden data

1. Define the configurable argument variable to use in the KV_CONFIG_Arg structure. For example:

KV_CONFIG_Arg setArg = {0}

2. Set the KV_ALL_OVERWRITECONFIGFILE flag to overwrite the configuration file settings. For

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 82 of 320

example:

setArg.keyID = KV_ALLFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_ALL_OVERWRITECONFIGFILE;

NOTE:
To re-enable configuration file settings later, set !KV_ALL_OVERWRITECONFIGFILE.

3. Assign values to themembers of the variable. For example:

setArg.keyID = KV_SSFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_SS_SHOWHIDDENINFOR;

4. Call fpFilterConfig() with the following arguments to set the variable:

Argument Parameter

nType KVFLT_SetConfigurableArguments

nValue TRUE

pData The variable defined in step 1.

For example:

(*fpFilterConfig)(pKVFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg)

Example

The following example overwrites the configuration file settings and enables filtering of formulas.

KV_CONFIG_Arg setArg = {0};

setArg.keyID = KV_ALLFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_ALL_OVERWRITECONFIGFILE;

fpKV_FilterConfig(pFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg);

setArg.keyID = KV_SSFLAGS;
setArg.keyType = KV_INT32ARG;
setArg.keyData.intArg = KV_SS_SHOWFORMULAS;

fpKV_FilterConfig(pFilter, KVFLT_SetConfigurableArguments, TRUE, &setArg);

Toggle Hidden Excel Data Settings in the formats.ini File

You can control Microsoft Excel hidden data settings through parameters in the formats.ini file.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 83 of 320

To toggle hidden Excel data settings in the formats.ini file

1. Open the formats.ini file in a text editor.
2. Under [Options], set one or both of the following parameters.

l To filter text from hidden sheets, set gethiddeninfo to 1. See Filter Hidden Text in Microsoft
Excel Files, on page 73 for more information.

l To filter formulas and formula values, set getformulastring to the appropriate value. See
Extract Microsoft Excel Formulas, on page 74 for more information.

Hidden Data in HTML Documents

KeyView can filter comments from HTML documents. To enable comment filtering, youmust set a flag
in the formats.ini file.

To enable filtering of comments from HTML files

1. Open the formats.ini file in a text editor.
2. Under [Options], set the following flag.

GetHTMLHiddenInfo=1

Tab Delimited Output for Embedded Tables

You can use KeyView to convert embedded tables inWord Processing documents (for example,
Microsoft Word) to tab-delimited form, by specifying the following option in the formats.ini file:

[Options]
TabDelimitedOutput=TRUE

This option inserts a tab character between each cell, and a line break between each row. Tab and line
break characters in the cells are replaced with spaces.

Table Detection for PDF Files

PDF files often contain data presented in a tabular form. However, there is no information about the
table stored within the PDF itself – the text is simply placed in an arrangement that looks like a table to
the human eye. When this data is filtered, it can be very difficult to reconstruct the table.

If table detection is enabled, KeyView attempts to recognize tables within PDF pages, and to
reconstruct them before they are output. For each page of the document, KeyView outputs the contents
of each table first, and then outputs all remaining text on the page.

Micro Focus recommends that tab delimited output is also enabled when using table detection. This
means that any tables detected appear in the output text in tab delimited format.

To enable table detection and tab delimited output, specify the following in the formats.ini file:

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 84 of 320

[Options]
TableDetection=TRUE
TabDelimited=TRUE

Alternatively, you can enable these options programmatically by setting KVFLT_TABLEDETECTION and
KVFLT_TABDELIMITED to true in fpFilterConfig().

NOTE:
Table detection is only available with the pdf2sr reader. To enable this reader, set the following
configuration parameter:

[Formats]
200=pdf2

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text whenMicrosoft Excel (.xlsx) files are
processed.

To prevent output of Japanese phonetic guide text

l Set NoPhoneticGuides to TRUE in the formats.ini file:

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

Filter SDK C ProgrammingGuide
Chapter 4: Use the Filter API

KeyView (11.6) Page 85 of 320

Chapter 5: Sample Programs

This section describes the sample programs provided with Filter SDK.

• Introduction 86
• tstxtract 86
• filter 88

Introduction

The C sample programs demonstrate how to use the C implementation of the Filter API. The sample
code is intended to provide a starting point for your own applications or to be used for reference
purposes.

The following C sample programs are provided:

l tstxtract
l filter
The source code andmakefile (program_name_platform.mak) for the programs are in the directory
install\KeyviewFilterSDK\samples\program_name, where install is the path name of the Filter
installation directory, and program_name is the name of the sample program.

The executable for the programs is in the directory install\KeyviewFilterSDK\OS\bin, where OS is
the name of the operating system.

To compile the sample programs, use themakefile provided for the appropriate platform. Make sure
that the Filter include directory is specified in the include path of the project. After the executable is
compiled and built, youmust place it in the same directory as the Filter libraries.

tstxtract

The tstxtract sample program demonstrates the File Extraction API. It opens a file, extracts subfiles
from the file, and repeats the extraction process until all subfiles are extracted. It also demonstrates
how to extract the default set of metadata and pass integer or string names to extract specific
metadata. After the files are extracted, you can filter the files by using the filter sample program. The
filter sample program demonstrates the functionality of the Filter API.

The source code for the tstxtract sample program is the same for the Filter and Export SDKs. A flag
in themakefile specifies whether the program is compiled for Filter, HTML Export, or XML Export.

To run tstxtract, type the following at the command line:

tstxtract [options] input_file output_directory bin_directory

where:

l options is one or more of the following:

KeyView (11.6) Page 86 of 320

Option Description

-c charset Specify the target character set, for example KVCS_SJIS. See Coded Character
Sets, on page 223 for a full list of supported character sets.

-cf keyfile1,
keyfile2,...

Specify one or more credential files (private keys) to use to decrypt encrypted
.EML, .MBX, .PST, or .MSG files.

-l logfile Specify the path and file name of the log file in whichmetadata is written.

-lm Retrievemetadata and write the data to the log file.

-lms
metaname1,
metaname2,...

Retrievemetadata with stringmetanames and write the data to the log file for
.MSG, .EML, .MBX, and .NSF files.

-lmi
metaint1,
metaint2,...

Retrievemetadata with integer (hexadecimal) metanames and write the data to
the log file for .PST files.

-lma Retrieve all metadata from an .NSF file and write the data to the log file.

-to <value in
seconds>

Specify the timeout value in seconds. This timeout allows for large files that take
longer than the default 7 minute timeout.

-i Run the file extraction in-process.

-r Recursively extract second-level subfiles to the specified output directory. For
example, if a .ZIP file contains aMicrosoft Word file and theWord file contains an
embeddedMicrosoft Excel file, set the -r option to extract both theWord and
Excel files.

If this option is not set, only first-level subfiles are extracted. In this case, only the
Word file would be extracted.

-msg Extract mail messages in a .PST file as an .MSG file, including all of its
attachments. If this flag is not set, themail message is extracted as text. This
applies to PST files onWindows only.

-f Extract the formatted version of themessage body (HTML or RTF) frommail files
when possible. If neither an HTML nor RTF version of themessage body exists in
themail file, it is extracted as plain text. If you do not set this flag, themessage
body is extracted as plain text when possible.

-e Run the file extraction in streammode.

-p password1,
password2,...

Specify one or more passwords to open the input or credential file or files.

-t Preserve the timestamp of embedded files when possible.

-h Extract hidden text.

l input_file is the full path and file name of the source document.
l output_directory is the directory to which the files are extracted.

Filter SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 87 of 320

l bin_directory is the path to the Filter bin directory. This is required if you do not run the program
from the install\Filter SDK\bin directory.

filter

The filter sample program demonstrates the advanced functionality of the Filter API. It is composed of
the following files:

l filter.c—command line interface
l filtersupport.c—contains core functionality, such as file filtering, stream filtering, metadata
extraction, and format detection.

l filtersupport.h—structure and variable definitions
To run filter, type the following at the command line:

filter [options] input_file output_file

where:

options is one or more of the options listed in Options for the Filter Sample Program , below.

input_file is the full path and file name of the source document.

output_file is the full path and file name of the output file.

Option Description

-i Extract metadata. See Extract Metadata, on page 61.

-c Run Filter in the same process as the calling application (in process). See Run
Filter In Process, on page 31.

-e Run Filter in streammode. See Filtering in StreamMode, on page 28.

-h Extract headers and footers, as well as the body text. See fpInit(), on page 143.

-d Extract the file format information using the fpGetDocInfoFile() function.

-mt Enable thememory trace system in error logs. Thememory trace system reports
memory leaks andmemory overwrites in the log file. See Report Memory Errors,
on page 60. Error logs are not generated when in-process filtering is enabled.

-mtN Disable thememory trace system in error logs. Thememory trace system reports
memory leaks andmemory overwrites in the log file. See Report Memory Errors,
on page 60. Error logs are not generated when in-process filtering is enabled.

-L Enable error logging. See Enable or Disable Error Logging, on page 59. Error logs
are not generated when in-process filtering is enabled.

-LN Disable error logging. See Enable or Disable Error Logging, on page 59. Error logs
are not generated when in-process filtering is enabled.

-AF Include the input file name in an error log. See Report the File Name in Stream

Options for the Filter Sample Program

Filter SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 88 of 320

Option Description

Mode, on page 60.

-r Filter a container file and the subfiles in the container file to a single output file.
This option uses the Container API, which is obsolete.

-rm If you set this option, text that was deleted from a document with revision tracking
enabled is extracted from the document and included in the filtered output. See
Extract Deleted Text Marked by Tracked Changes, on page 66.

-x
xmlconfigfile

Filter an XML file by using customized extraction settings defined in the
kvxconfig.ini file. If you do not enter the full path to the INI file, the program
looks for the file in the current working directory.

See Filter XML Files, on page 77 for more information.

-z
tempdirectory

Specify a temporary directory where temporary files generated by the filtering
process are stored. The default is the current working directory.

OnWindows systems, there is a 64 K size limit to the temporary directory. When
the limit is reached, youmust either create a new directory or delete the contents
of the existing directory; otherwise, youmight receive an error message.

-ps password Specify a password to open a password-protected PST file. This option uses the
Container API, which is obsolete.

-pdfauto Specify that PDF files are output in a logical reading order. The PDF filter
determines the paragraph direction (left-to-right or right-to-left) for each PDF page,
and then sets the direction accordingly. See Filter PDF Files, on page 66.

-pdfltr Specify that PDF files are output in a logical reading order, and that the paragraph
direction is left to right. See Filter PDF Files, on page 66.

-pdfrtl Specify that PDF files are output in a logical reading order, and that the paragraph
direction is right to left. See Filter PDF Files, on page 66.

-pdfraw Specify that PDF files are output in an unstructured paragraph flow. This is the
default option . If logical reading order is enabled, and you want to return to an
unstructured paragraph flow, set this flag. See Filter PDF Files, on page 66.

-xmp Parse and return XMP metadata as path and value pairs, and include the original
XMP packet. See fpGetXmpInfoFile(), on page 141 and fpGetXmpInfo(), on page
140.

-xmpr Return XMP metadata as a raw XMP packet. See fpGetXmpInfoFile(), on page
141 and fpGetXmpInfo(), on page 140.

-embeddedfont If you use this option, text that contains embedded fonts is not filtered from PDF
documents. See fpFilterConfig(), on page 125.

Options for the Filter Sample Program , continued

Filter SDK C ProgrammingGuide
Chapter 5: Sample Programs

KeyView (11.6) Page 89 of 320

KeyView (11.6)

Page 90 of 320

Part III: C API Reference

This section provides detailed reference information for the C-language implementation of the File Extraction
and Filter APIs.

Chapter 6: File Extraction API Functions

This section describes the functions in the File Extraction API. The File Extraction functions open a
container file, and extract the container’s subfiles so that the subfiles are exposed and available for
filtering. Subfiles can be files within a Zip archive, messages in amail store, attachments in amail
message, or OLE objects embedded in a compound document.

Each function appears as a function prototype followed by a description of its arguments, its return
value, and a discussion of its use.

• KVGetExtractInterface() 91
• fpCloseFile() 92
• fpExtractSubFile() 93
• fpFreeStruct() 94
• fpGetMainFileInfo() 95
• fpGetSubFileInfo() 96
• fpGetSubFileMetaData() 97
• fpOpenFile() 99
• fpSetExtractionTimeout() 100

KVGetExtractInterface()

This function is the entry point to obtain the file extraction functions. It supplies pointers to the file
extraction functions, and in the case of out-of-process mode starts the kvoop.exe server and initializes
out-of-process extraction services. When KVGetExtractInterface() is called, it assigns the function
pointers in the structure KVExtractInterface to the functions described in this section.

Syntax

int pascal KVGetExtractInterface (
 void *pContext,
 KVExtractInterface pIextract);

Arguments

pContext A pointer returned from fpInit().

pIextract A pointer to the KVExtractInterface structure, which contains function pointers that
KVGetExtractInterface() assigns to all other file extraction functions.

Before you initialize the KVExtractInterface structure, use themacro KVStructInit
to initialize the KVStructHead structure.

KeyView (11.6) Page 91 of 320

Returns

l If the call is successful, the return value is KVERR_Success.
l If the call is not successful, the return value is an error code.

Example

fpKVGetExtractInterface =
(int (pascal *)(void *, KVExtractInterface))myGetProcAddress(hKVFilter, (char*)
"KVGetExtractInterface");
/*Initialize file extraction interface structure using KVStructInit*/
KVStructInit(&extractInterface);
/* Retrieve file extraction interface */
error = (*fpKVGetExtractInterface)(pFilter,&extractInterface))

Discussion

You can define only one extraction structure for one context pointer. For example, the following is not
allowed:

fpInit()
 KVGetExtractInterface(pFilter, &extractInterface1)

 fpOpenFile()
 fpGetMainFileInfo()
 fpGetSubFileInfo()
 fpExtractSubFile
 fpGetSubFileMetadata()
 fpFilterFile()
 fpCloseFile()
 ...

 KVGetExtractInterface(pFilter, &extractInterface2)
 fpOpenFile()
 fpGetMainFileInfo()
 fpGetDocInfoFile()
 fpGetOLESummaryInfoFile()
 fpFilterFile()
 fpCloseFile()
 ...
fpShutdown()

fpCloseFile()

This function frees thememory allocated by fpOpenFile() and closes the file.

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 92 of 320

Syntax

int (pascal *fpCloseFile) (void *pFile);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

Returns

l If the file is closed, the return value is KVERR_Success.
l If the file is not closed, the return value is an error code.

Example

extractInterface->fpCloseFile(pFile);
pFile = NULL;

fpExtractSubFile()

This function extracts a subfile from a container file to a user-defined path or output stream. This call
returns file format information when file is extracted to a path.

Syntax

int (pascal *fpExtractSubFile) (
void *pFile,
KVExtractSubFileArg extractArg,

 KVSubFileExtractInfo *extractInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

extractArg A pointer to the structure KVExtractSubFileArg, which defines the subfile to be
extracted.

Before you initialize the KVExtractSubFileArg structure, use themacro
KVStructInit to initialize the KVStructHead structure.

extractInfo A pointer to the structure KVSubFileExtractInfo, which defines information about
the extracted subfile.

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 93 of 320

Returns

l If the subfile is extracted from the container file, the return value is KVERR_Success.
l If the subfile is not extracted from the container file, the return value is an error code.

Discussion

l After the file is extracted, call fpFreeStruct() to free thememory allocated by this function.
l If the subfile is embedded in themain file as a link and is stored externally, extractInfo->infoFlag
is set to KVSubFileExtractInfoFlag_External.
For example, the subfile might be an object that was embedded in aWord document by using "Link
to File," or an attachment that is referenced in anMBX message. This type of subfile cannot be
extracted. Youmust write code to access the subfile based on the path in themember
extractInfo->filePath or extractInfo->fileName. See KVSubFileExtractInfo, on page 112.

Example

KVSubFileExtractInfo extractInfo = NULL;

KVStructInit(&extractArg);

extractArg.index = index;
extractArg.extractionFlag = KVExtractionFlag_CreateDir | KVExtractionFlag_
Overwrite;
extractArg.filePath = subFileInfo->subFileName;

/*Extract this subfile*/
error=extractInterface->fpExtractSubFile(pFile,&extractArg,&extractInfo);
if (error)
{

extractInterface->fpFreeStruct(pFile,extractInfo);
subFileInfo = NULL;

}

fpFreeStruct()

This function frees thememory allocated by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetadata(), and fpExtractSubFile().

Syntax

int (pascal *fpFreeStruct) (
 void *pFile,
 void *obj);

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 94 of 320

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

obj A pointer to the result object returned by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetaData, or fpExtractSubFile().

Returns

l If the allocatedmemory is freed, the return value is KVERR_Success.
l Otherwise, the return value is an error code.

Example

The example below frees thememory allocated by fpGetSubFileInfo():

if (subFileInfo)
{

 extractInterface->fpFreeStruct(pFile,subFileInfo);
 subFileInfo = NULL;
 }

fpGetMainFileInfo()

This function determines whether a file is a container file—that is, whether it contains subfiles—and
should be extracted further.

Syntax

int (pascal *fpGetMainFileInfo) (
 void *pFile,
 KVMainFileInfo *fileInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

fileInfo A pointer to the structure KVMainFileInfo. This structure contains information about the
file.

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 95 of 320

Returns

l If the file information is retrieved, the return value is KVERR_Success.
l If the file information is not retrieved, the return value is an error code.

Discussion

After the file information is retrieved, call fpFreeStruct() to free thememory allocated by this function.

If the file is a container (fileInfo->numSubFiles is non-zero), call fpGetSubFileInfo() and
fpExtractSubFile() for each subfile.

If the file is not a container (fileInfo->numSubFiles is 0) and contains text (fileInfo->infoFlag is
set to KVMainFileInfoFlag_HasContent), pass the file directly to the filtering functions.

Example

KVMainFileInfo fileInfo = NULL;
if((error=extractInterface->fpGetMainFileInfo(pFile,&fileInfo)))
{
 /* Free result object allocated in fileInfo */
 extractInterface->fpFreeStruct(pFile,fileInfo);
 fileInfo = NULL;
}

fpGetSubFileInfo()

This function gets information about a subfile in a container file.

Syntax

int (pascal *fpGetSubFileInfo) (
 void *pFile,
 int index,
 KVSubFileInfo *subFileInfo);

Arguments

pFile The identifier of themain file. This is a file handle returned from fpOpenFile().

index The index number of the subfile for which to retrieve information.

subFileInfo A pointer to the KVSubFileInfo structure, which defines information about the subfile.

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 96 of 320

Returns

l If the file information is retrieved, the return value is KVERR_Success.
l If the file information is not retrieved, the return value is an error code.

Discussion

l After the subfile information is retrieved, call fpFreeStruct() to free thememory allocated by this
function.

l If the root node is not enabled, the first subfile is index 0. If the root node is enabled, the first subfile
is index 1. The root node is required to recreate a file’s hierarchy. See Create a Root Node, on page
38.

l Themembers subFileInfo->parentIndex and subFileInfo->childArray enable you to recreate
a file’s hierarchy. Because childArray retrieves only the first-level children in the subfile, youmust
call fpGetSubFileInfo() repeatedly until information for the leaf-node children is extracted. See
Recreate a File’s Hierarchy, on page 38.

l If the subfile is embedded in themain file as a link and is stored externally, subFileInfo->infoFlag
is set to KVSubFileInfoFlag_External. For example, the subfile might be an object that was
embedded in aWord document by using "Link to File," or an attachment that is referenced in anMBX
message. This type of subfile cannot be extracted. Youmust write code to access the subfile based
on the path in themember subFileInfo->subFileName. See KVSubFileInfo, on page 113.

l The KVSubFileInfoFlag_External flag is not set for an OLE object that is embedded as a link in a
Microsoft PowerPoint file. KeyView can detect linked objects in aMicrosoft PowerPoint file only
when the object is extracted. See fpExtractSubFile(), on page 93.

Example

KVSubFileInfo subFileInfo = NULL;
for (index = 0; index < fileInfo->numSubFiles; index++)
{
 error=extractInterface->fpGetSubFileInfo(pFile,index,&subFileInfo);
 if (error)

{
 extractInterface->fpFreeStruct(pFile,subFileInfo);
 subFileInfo = NULL;
 }

fpGetSubFileMetaData()

This function extracts metadata frommail stores, mail messages, and non-mail items in an NSF file.
See Extract Mail Metadata, on page 39.

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 97 of 320

Syntax

int (pascal *fpGetSubFileMetaData) (
 void *pFile,
 KVGetSubFileMetaArg metaArg,

 KVSubFileMetaData *metaData);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

metaArg A pointer to the KVGetSubFileMetaArg structure, which defines metadata tags whose
values are retrieved.

Before you initialize the KVGetSubFileMetaArg structure, use the KVStructInitmacro
to initialize the KVStructHead structure.

metaData A pointer to the KVSubFileMetaData structure, which contains the retrievedmetadata
values.

Returns

l If themetadata is retrieved, the return value is KVERR_Success.
l If themetadata is not retrieved, the return value is an error code.

Discussion

l When you pass in 0 for metaArg->metaNameCount, and NULL for metaArg->metaNameArray, a set of
default metadata is retrieved. See Extract Mail Metadata, on page 39.

l After themetadata is retrieved, call fpFreeStruct() to free thememory allocated by this function.
l If a field is repeated in an EML orMBX mail header, the values in each instance of the field are
concatenated and returned as one field. The values are separated by five pound signs (#####) as a
delimiter.

Example

KVSubFileMetaData metaData = NULL;

KVStructInit(&metaArg);

/* retrieve all the default metadata elements */
metaArg.metaNameCount = 0;
metaArg.metaNameArray = NULL;
metaArg.index = Index;

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 98 of 320

error = extractInterface->fpGetSubFileMetaData(pFile,&metaArg,&metaData);
...

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

/* retrieve specific metadata fields */
KVMetaName pName[2];
KVMetaNameRec names[2];

names[0].type = KVMetaNameType_Integer;
names[0].name.iname = KVPR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = KVPR_DISPLAY_TO;

pName[0] = &names[0];
pName[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&metaData);
...
extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

fpOpenFile()

This function opens a file to make the file accessible for subfile extraction or filtering.

Syntax

int (pascal *fpOpenFile) (
 void *pContext,
 KVOpenFileArg openArg,
 void **pFile);

Arguments

pContext A pointer returned from fpInit().

openArg A pointer to the KVOpenFileArg structure. This structure defines the input parameters
necessary to open a file for extraction, such as credentials, and the default extraction

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 99 of 320

directory.

Before you initialize the KVOpenFileArg structure, use themacro KVStructInit to
initialize the KVStructHead structure.

pFile A handle for the opened file. This handle is used in subsequent file extraction calls to
identify the source file.

Returns

l If the file is opened, the return value is KVERR_Success.
l If the file is not opened, the return value is an error code and pFile is NULL.

Discussion

Call fpCloseFile() to free thememory allocated by this function.

Example

KVOpenFileArgRec openArg;

/*Initialize the structure using KVStructInit*/
KVStructInit(&openArg);
openArg.extractDir = destDir;
openArg.filePath = srcFile;

/*Open the main file */
if ((error = extractInterface->fpOpenFile(pFilter,&openArg,&pFile)))
{
 extractInterface->fpCloseFile(pFile);
 pFile = NULL;
}

fpSetExtractionTimeout()

This function specifies the length of time that should elapse before assuming that out-of-process
extraction has stopped responding.

Syntax

BOOL pascal fpSetExtractionTimeout(void *pContext,
long lTimeout);

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 100 of 320

Arguments

pContext A pointer returned from fpInit().

lTimeout The length of time, in seconds, that must elapse before assuming that out-of-process
extraction has stopped responding.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

If this API is not used in out-of-process mode, the filter timeout duration is used on the fpOpenFile()
call. See fpSetTimeout(), on page 151.

Example

/* set extraction timeouts to 10 minutes */

if (FALSE == extractInterface->fpSetExtractionTimeout(pContext, 600))
{
 /* could not set the extraction timeout */
}

Filter SDK C ProgrammingGuide
Chapter 6: File Extraction API Functions

KeyView (11.6) Page 101 of 320

Chapter 7: File Extraction API Structures

This section provides information on the structures used by the File Extraction API. These structures
define the input and output parameters required to extract subfiles from a container file, and are defined
in kvxtract.h.

• KVCredential 102
• KVCredentialComponent 103
• KVExtractInterface 103
• KVExtractSubFileArg 104
• KVGetSubFileMetaArg 106
• KVMainFileInfo 107
• KVMetadataElem 108
• KVMetaName 109
• KVOpenFileArg 110
• KVOutputStream 111
• KVSubFileExtractInfo 112
• KVSubFileInfo 113
• KVSubFileMetaData 115

KVCredential

This structure contains a count of the number of credential elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling fpOpenFile(), and is defined in
kvxtract.h.

typedef struct tag_KVCredential
{
 int itemCount;
 KVCredentialComponent *items;
}
KVCredentialRec, *KVCredential;

Member Descriptions

itemCount The number of credentials defined for this file.

items A pointer to the KVCredentialComponent structure. This structure contains the
individual credential elements used to open a protected file.

KeyView (11.6) Page 102 of 320

KVCredentialComponent

This structure contains the value of a credential item. The structure is defined in kvxtract.h.

typedef struct tag_KVCredentialComponent
{
 KVCredKeyType keytype;
 union

{
 void *pkey;
 char *skey;
 unsigned int ikey;
 }
 keyobj;
}
KVCredentialComponentRec, *KVCredentialComponent;

Member Descriptions

keytype The type of credential (such as a user name or password). The types are defined by the
KVCredKeyType enumerated type.

pkey A pointer to a structure defining credentials. Reserved for future use.

skey A pointer to a string credential key.

ikey An integer credential key.

KVExtractInterface

Themembers of this structure are pointers to the file extraction functions described in File Extraction
API Functions, on page 91. When you call the KVGetExtractInterface() function, this structure assigns
pointers to the functions. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractInterface
{
KVStructHeader;
 int (pascal *fpOpenFile) (void *pContext,KVOpenFileArg openArg, void
**pFileHandle);
 int (pascal *fpCloseFile) (void *pFileHandle);
 int (pascal *fpGetMainFileInfo) (void *pFile, KVMainFileInfo *MainFileInfo);
 int (pascal *fpGetSubFileInfo) (void *pFile, int index, KVSubFileInfo
*subFileInfo);
 int (pascal *fpGetSubFileMetaData) (void *pFile, KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);
 int (pascal *fpExtractSubFile) (void *pFile, KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 103 of 320

 int (pascal *fpFreeStruct) (void *pFile, void *obj);
}
KVExtractInterfaceRec, *KVExtractInterface;

Member Descriptions

Themember functions are described in File Extraction API Functions, on page 91.

Discussion

Before you initialize a File Extraction structure, use the KVStructInitmacro to initialize the
KVStructHead structure. This process sets the revision number of the File Extraction API and supports
binary compatibility with future releases.

KVExtractSubFileArg

This structure defines the input parameters required to extract a subfile. See fpExtractSubFile(), on
page 93. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractSubFileArg
{
 KVStructHeader;
 int index;
 KVCharSet srcCharset;
 KVCharSet trgCharset;
 int isMSBLSB;
 DWORD extractionFlag
 char *filePath;
 char *extractDir;
 KVOutputStream *stream;
}
KVExtractContainerSubFileArgRec, *KVExtractContainerSubFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

index The index number of the subfile to be extracted.

srcCharset Specifies the source character set of the subfile when the file format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet of kvtypes.h. See Discussion, on page 106.

trgCharset If the file type is KVFileType_Main, this is the target character set of the
extracted file. Otherwise, this is ignored. The character sets are enumerated in
KVCharSet in kvtypes.h. See Discussion, on page 106.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 104 of 320

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

extractionFlag A bitwise flag that defines additional parameters for file extraction. The following
flags are available:

l KVExtractionFlag_CreateDir

This flag indicates whether the directory structure of a subfile should be
created. If you set this flag, the path defined in filePath is created if it does
not already exist. If you do not set this flag, the path is not created, and the
function returns FALSE.

l KVExtractionFlag_Overwrite

If you set this flag, and the file being extracted has the same name as a file in
the target path, the file in the target path is overwritten without warning. If you
do not set this flag, and a subfile has the same name as a file in the target path,
the error KVError_OutputFileExists is generated.

l KVExtractionFlag_ExcludeMailHeader

If you set this flag, header information (To, From, Sent, and so on) in amail file
is not included in the extracted data. If you do not set this flag, the extracted
data contains header information and themessage’s body text. See Exclude
Metadata from the Extracted Text File, on page 46.

l KVExtractionFlag_GetFormattedBody

If you set this flag, the formatted version of themessage body (HTML or RTF)
is extracted frommail files when possible. If neither an HTML nor RTF version
of themessage body exists in themail file, it is extracted as plain text. If you
do not set this flag, themessage body is extracted as plain text when possible.

NOTE:When an HTML or RTFmessage body is extracted, themessage’s
mail headers (such as "From," "To," and "Subject,") are extracted, saved in
the same format, and added to the beginning of the subfile. This applies to
PST (MAPI-based reader), MSG, and NSF files only.

l KVExtractionFlag_SaveAsMSG

If you set this flag, themail message is extracted as anMSG file, including all
of its attachments. If you do not set this flag, themail message is extracted as
text. This applies to PST files onWindows only.

NOTE: In file mode, when the application sets this flag in fpExtractSubFile
(), it must also check the KVSubFileExtractInfo structure’s filePath
parameter to verify the file name used for extraction.

filePath A pointer to the suggested path or file name to which the subfile is extracted. This
can be a file name, partial path, or full path. You can use this in conjunction with
extractDir to create the full output path. See Discussion, on the next page.

extractDir A pointer to the directory to which subfiles are extracted. This directory must
exist. If you set this flag, the path specified in KVOpenFileArg->extractDir is
ignored. You can use this in conjunction with filePath to create the full output
path.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 105 of 320

stream A pointer to an output stream defined by KVOutputStream. See Discussion,
below.

Discussion

l If the document character set is detected and is also specified in srcCharset, the detected
character set is overridden by the specified character set. If the source character set is not detected
and is not specified, character set conversion does not occur. The Supported Formats, on page 184
section lists the formats for which the source character set can be determined.

l The KVSubFileExtractInfoFlag_CharsetConverted flag in the KVSubFileExtractInfo structure
indicates whether the character set of the subfile was converted during extraction.

l The following applies when the output is to a file:
o If filePath is a valid full path, filePath is the output path, and the path in extractDir is

ignored.
o If filePath is a file name or partial path, the target directory specified in either

KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir is used to create the full
path. See KVOpenFileArg, on page 110.

o If filePath is a full path or partial path, and createDir is TRUE, the directory is created if it does
not already exist.

o If filePath is not specified, a default name and the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir are used to create a full
path.

o If both filePath and extractDir are not specified or are invalid, an error is returned.
o If filePath is valid, but extractDir is not valid, an error is returned.

l The following applies when the output is to a stream:
o Set filePath and extractDir to NULL.
o The file format (docInfo) and extraction file path (filePath) are not returned in

KVSubFileExtractInfo.
o The KVExtractionFlag_CreateDir and KVExtractionFlag_Overwrite flags are ignored.

KVGetSubFileMetaArg

This structure defines themetadata tags whose values are retrieved by fpGetSubFileMetaData(). This
structure is defined in kvxtract.h.

typedef struct tag_KVGetSubFileMetaArg
{
 KVStructHeader;
 int index;
 int metaNameCount;
 KVMetaName *metaNameArray;
 KVCharSet srcCharset;
 KVCharSet trgCharset;
 int isMSBLSB;

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 106 of 320

}
KVGetSubFileMetaArgRec, *KVGetSubFileMetaArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

index The index number of the subfile for whichmetadata is extracted.

metaNameCount The number of metadata fields to be extracted.

metaNameArray A pointer to the KVMetaName structure that contains an array of metadata tags
whose values are retrieved.

srcCharset Specifies the source character set of themetadata when the format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet of kvtypes.h. See Discussion, below.

trgCharset The target character set of the extractedmetadata.

The character sets are enumerated in KVCharSet in kvtypes.h.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

Discussion

l If the character set is detected and is also specified in srcCharset, the detected character set is
overridden by the specified character set. If the source character set is not detected and is not
specified, character set conversion does not occur. The section Supported Formats, on page 184
lists the formats for which the source character set can be determined.

l To retrieve a predefined list of metadata, pass 0 for metaNameCount and NULL for metaNameArray.
Themetadata in Extract Mail Metadata, on page 39 is extracted.

KVMainFileInfo

This structure contains information about amain file that is open for extraction. It is initialized by calling
fpGetMainFileInfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVMainFileInfo
{
 KVStructHeader;
 int numSubFiles;
 ADDOCINFO docInfo;
 KVCharSet charset;
 int isMSBLSB;
 unsigned long infoFlag;
}
KVMainFileInfoRec, *KVMainFileInfo;

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 107 of 320

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

numSubFiles The number of subfiles in themain file.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 156.

charset The character set of themain file.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

infoFlag A bitwise flag that provides additional information about themain file. The
following flag is available:

KVMainFileInfoFlag_HasContent—Themain file contains text that can be
filtered. Below are some examples of how this flag is used:

For anMSG file without attachments, numSubFiles is 1 (message body text), and
this flag is FALSE because theMSG file itself does not contain text.

For a Zip file with three files, numSubFiles is 3, and this flag is FALSE because a
Zip file does not contain text.

For aMicrosoft Word file with an embeddedOLE object, numSubFiles is 1 (OLE
object), and this flag is TRUE (Word file contains text to be filtered).

Discussion

l If numSubFiles is non-zero, get information on the subfile by calling fpGetSubFileInfo(), and then
extract the subfiles by using fpExtractSubFile().

l If numSubFiles is 0, the file does not contain subfiles and does not need to be extracted further. If
the KVMainInfoFlag_HasContent flag is set, the file contains body text and can be passed directly
to the filtering functions. See Filter API Functions, on page 117.

l If openFlag is set to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile(), numSubFiles
also includes the root object (index 0) which is created by KeyView for reconstructing the file’s
hierarchy. See KVOpenFileArg, on page 110.

KVMetadataElem

This structure contains metadata field values extracted from amail file. This structure is defined in
kvtypes.h.

typedef struct tag_KVMetadataElem
{
 int isDataValid;
 int dataID;

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 108 of 320

 KVMetadataType dataType;
 char* strType;
 void* data;
 int dataSize;
}
KVMetadataElem;

Member Descriptions

isDataValid Specifies whether themetadata returned from the API is valid data.

dataID The integer name of the extractedmetadata field.

dataType The data type of themetadata field. The types are defined in KVMetadataType in
kvtypes.h.

strType A pointer to the string name of themetadata field.

data The contents of themetadata field.

If the typemember is KVMetadata_Int4 or KVMetadata_Bool, this member contains
the actual value. Otherwise, this member is a pointer to the actual value.

KVMetadata_DateTime points to an 8-byte value.

KVMetadata_String and KVMetadata_Unicode point to the beginning of the string
that contains the text. The strings are NULL terminated.

KVMetadata_Binary points to the first element of a byte array.

dataSize The byte count of data when the type is KVMetadata_Binary, KVMetadata_Unicode,
or KVMetadata_String.

KVMetaName

This structure defines the names of themetadata fields to be extracted from amail file. This structure is
defined in kvxtract.h.

typedef struct tag_KVMetaName
{
 KVMetaNameType type;
 union

{
 void *pname;
 int iname;
 char *sname;
 }name;
}
KVMetaNameRec, *KVMetaName;

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 109 of 320

Member Descriptions

type The type of metadata name (such as integer or string). The types are defined by the
KVMetaNameType enumerated type.

NOTE:
MAPI property names are of type integer.

pname A pointer to a structure defining themetadata fields to be retrieved.

iname The name of ametadata field of type integer.

sname A pointer to the name of ametadata field of type string.

Discussion

If you specify theMAPI tag name (for example, PR_CONVERSATION_TOPIC), youmust include the
mapitags.h and mapidefs.hWindows header files, in which PR_CONVERSATION_TOPIC is defined as
0x0070001e.

KVOpenFileArg

This structure defines the input arguments necessary to open a file for extraction. It is initialized by
calling fpOpenFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVOpenFileArg
{
 KVStructHeader;
 KVCredential cred;
 KVInputStream *stream;
 char *filePath;
 char *extractDir;
 DWORD openFlag;
 DWORD reserved;
 void *pReserved;
}
KVOpenFileArgRec, *KVOpenFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

cred The credentials required to open a protected PST or NSF file. This is a pointer to
the KVCredential structure. Your application can definemultiple credentials to
this member for multiple formats.

stream A pointer to the developer-assigned instance of KVInputStream. The

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 110 of 320

KVInputStream structure defines the input stream that contains the source. See
KVInputStream, on page 159.

If you are using a file as input, this is NULL.

filePath A pointer to the full file path to the source file.

If you are using a stream as input, this is NULL.

extractDir A pointer to the default directory to which subfiles are extracted. This directory
must exist.

You can use this in conjunction with KVExtractSubFileArg->filePath to create
the full output path. See KVExtractSubFileArg, on page 104.

openFlag A bitwise flag that defines additional parameters for opening the file. The following
flag is available:

KVOpenFileFlag_CreateRootNode—If you set this flag, KeyView creates a root
object when extracting this file’s subfiles. This root node does not have a parent
and is at the highest level of the file’s tree structure. It is used internally to provide
a reference point from which all other child nodes are determined, and the file’s
hierarchy is created.

If you want to maintain the file’s hierarchy when you extract subfiles from a
container, youmust set this flag. See Recreate a File’s Hierarchy, on page 38 for
more information.

The root node has an index of zero. Although not all container formats require an
artificial root node, the root is created for all container formats regardless of
whether the file itself contains a root directory or file.

reserved Reserved for future use. It must be NULL.

pReserved Reserved for future use. It must be NULL.

KVOutputStream

This structure defines an output stream for the extracted subfile.

typedef struct tag_OutputStream
{
 void *pOutputStreamPrivateData;
 BOOL (pascal *fpCreate)(struct tag_OutputStream *,TCHAR *);
 UINT (pascal *fpWrite) (struct tag_OutputStream *, BYTE *, UINT);
 BOOL (pascal *fpSeek) (struct tag_OutputStream *, long, int);
 long (pascal *fpTell) (struct tag_OutputStream *);
 BOOL (pascal *fpClose) (struct tag_OutputStream *);
}
KVOutputStream;

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 111 of 320

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

KVSubFileExtractInfo

This structure contains information about an extracted subfile. It is initialized by calling
fpExtractSubFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileExtractInfo
{
 KVStructHeader;
 char *filePath;
 char *fileName;
 unsigned long infoFlag;
 ADDOCINFO docInfo;
}
KVSubFileExtractInfoRec, *KVSubFileExtractInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

filePath The full path to which the subfile was extracted.

If the subfile is embedded in themain file as a link, this is the external path to the
subfile.

If you output the data to a stream, the extraction path is not returned.

fileName The original path, file name, or path and file name of the subfile.

If the subfile is embedded in themain file as a link, this is the external path to the
subfile.

infoFlag A bitwise flag that provides additional information about the extracted subfile. The
following flags are available:

l KVSubFileExtractInfoFlag_NeedsExtraction—The file might contain
subfiles and should be extracted further.

l KVSubFileExtractInfoFlag_FileCreated—The file was created on disk.
l KVSubFileExtractInfoFlag_CharsetConverted—The subfile’s character set
was converted.

l KVSubFileExtractInfoFlag_External—The subfile is embedded in themain
file as a link and is stored externally. For example, the subfile might be an
object that was embedded in aWord document using "Link to File," or an
attachment that is referenced in anMBX message. This type of file cannot be
extracted. Youmust write code to access the subfile based on the path in the
member filePath or fileName.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 112 of 320

l KVSubFileExtractInfoFlag_FolderCreated—A folder was created.
l KVSubFileExtractInfoFlag_NonFormattedBodyExtracted—Indicates that a
plain text version of themessage was extracted due to an error extracting the
formatted version of themessage.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 156.

If you output the data to a stream, the file format is not returned.

KVSubFileInfo

This structure contains information about a subfile in a container file. It is initialized by calling
fpGetSubFileInfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileInfo
{
 KVStructHeader;
 char *subFileName;
 int subFileType;
 long subFileSize;
 unsigned long infoFlag;
 KVCharSet charset;
 int isMSBLSB;
 BYTE fileTime[8];
 int parentIndex;
 int childCount;
 int *childArray;
}
KVContainerSubFileInfoRec, *KVSubFileInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

subFileName The path, file name, or path and file name of the subfile.

If the subfile is the body text of amail file or is an embeddedOLE object, KeyView
provides a default file name. See Default File Names for Extracted Subfiles, on
page 55.

subFileType The subfile’s position in the container file’s hierarchy. The following options are
available:

KVSubFileType_Main—The subfile is at the top level of themain file. This is the
default subfile type. See Discussion, on page 115.

KVSubFileType_Attachment—The subfile is an attachment in a file.

KVSubFileType_OLE—The subfile is an embeddedOLE object in a compound
document.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 113 of 320

KVSubFileType_Folder—The subfile is a folder or the artificial root node (see
Create a Root Node, on page 38).

subFileSize The size of the subfile in bytes. This informationmight be useful if you do not
want to extract very large files.

This value is approximate and is themaximum size of the subfile. The subfile is
usually smaller than this value when it is extracted.

infoFlag A bitwise flag that provides additional information about the subfile. The following
flags are available:

KVSubFileInfoFlag_NeedsExtraction—The subfile might contain subfiles. It
must be extracted further to conclusively determine whether it contains subfiles.

KVSubFileInfoFlag_Secure—The subfile is secured and credentials (such as
user name and password) are required to extract it. This flag applies to ZIP, RAR,
and PDF files only.

KVSubFileInfoFlag_SMIME—The subfile is S/MIME-encrypted and credentials
are required to extract it. This applies to .eml and .pst files only.

KVSubFileInfoFlag_External—The subfile is embedded in themain file as a
link and is stored externally. For example, the subfile might be an object that was
embedded in aWord document by using "Link to File," or an attachment that is
referenced in anMBX message. This type of file cannot be extracted. Youmust
write code to access the subfile based on the path in themember subFileName.

KVSubFileInfoFlag_MailItem—When the subfile type is KVSubFileType_
Attachment, this indicates that the attachment is amail item. This flag applies to
PST, MSG, and NSF files only.

charset If the subfile is not an attachment, this is the character set of the subfile. If the
subfile is an attachment, the character set is KVCS_UNKNOWN.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

fileTime When the subfile is amail message, this is the file’s Sent time. Otherwise, it is
the last modified time. The file time is not available for the following file types:

l EML attachments
l OLE objects in aMicrosoft Office document
l Embedded images

parentIndex The index number of this file’s parent. For example, the index of a folder in which
the subfile is stored, or the file to which the subfile is attached. If a file does not
have a parent, the parentIndex is -1.

childCount The number of first-level children in the subfile.

childArray A pointer to an array of first-level children in the subfile.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 114 of 320

Discussion

The KVSubFileType_Main type applies to the following for each file format:

File format KVSubFileType_Main applies to...

MSG and EML Themessage body.

Zip files A file inside the archive.

PST files An item that is not an attachment, an OLE object, or a root node.

MBX files A message in theMBX file.

NSF files An item that is not an attachment, an OLE object, or a root node.

PDF files An item that is not an attachment or a root node.

l If you set the KVSubFileInfoFlag_NeedsExtraction flag, open the subfile and extract its children.
See fpOpenFile(), on page 99 and fpExtractSubFile(), on page 93.

l The parentIndex and childArraymembers provide information about the subfile’s parent and
children. You can use this information to recreate the file hierarchy on extraction. Because
childArray retrieves only the first-level children in the subfile, youmust call fpGetSubFileInfo()
repeatedly until information for the leaf-node children is extracted. See Recreate a File’s Hierarchy,
on page 38.

KVSubFileMetaData

This structure contains a count of the number of metadata elements extracted from amail file, and a
pointer to the first element of the array of elements. It is initialized by calling fpGetSubFileMetaData().
This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileMetaData
{
 KVStructHeader;
 int nElem;
 KVMetadataElem** ppElem;
 unsigned long infoFlag;
}
KVSubFileMetaDataRec, *KVSubFileMetaData;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 161.

nElem The number of metadata fields contained in the array.

ppElem A pointer to an array of pointers that are thememory addresses of metadata field
values in the KVMetadataElem structure.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 115 of 320

infoFlag A bitwise flag that defines additional properties of the extractedmetadata. The
following flag is available:

KVSubFileMetaInfoFlag_CharsetConverted—Indicates that themetadata’s
character set was converted.

Filter SDK C ProgrammingGuide
Chapter 7: File Extraction API Structures

KeyView (11.6) Page 116 of 320

Chapter 8: Filter API Functions

This section describes the functions in the Filter API. Each function appears as a function prototype followed
by a description of its arguments, its return value, and a discussion of its use.

• KV_GetFilterInterfaceEx() 118
• fpCanFilterFile() 120
• fpCanFilterStream() 121
• fpCloseStream() 122
• fpFiletoInputStreamCreate() 123
• fpFileToInputStreamFree() 124
• fpFilterConfig() 125
• fpFilterFile() 130
• fpFilterStream() 131
• fpFreeOLESummaryInfo() 132
• fpFreeXmpInfo() 133
• fpGetDocInfoFile() 134
• fpGetDocInfoStream() 135
• fpGetKvErrorCodeEx() 136
• fpGetOLESummaryInfo() 137
• fpGetOLESummaryInfoFile() 138
• fpGetTrgCharSet() 139
• fpGetXmpInfo() 140
• fpGetXmpInfoFile() 141
• fpInit() 143
• fpOpenStream() 146
• fpOpenStreamEx2() 147
• fpRefreshFilterKVOOP() 148
• fpSetReplacementChar() 149
• fpSetSrcCharSet() 150
• fpSetTimeout() 151
• fpShutdown() 152

KeyView (11.6) Page 117 of 320

KV_GetFilterInterfaceEx()

This function supplies pointers to other Filter functions. When KV_GetFilterInterfaceEx() is called, it
assigns the function pointers in the structure KVFltInterfaceEx to other functions described in this chapter.
For example, KVFltInterfaceEx.fpInit is assigned to point to the function Init().

NOTE:
This is used as an entry point to Filter API versions 7.4 and higher.

Syntax

KVErrorCode pascal KV_GetFilterInterfaceEx(
 KVFltInterfaceEx *pInterfaceEx,
 int version);

Arguments

pInterfaceEx A pointer to the structure KVFltInterfaceEx, which contains function pointers that KV_
GetFilterInterfaceEx() assigns to all other API functions.

version The version number of the current Filter interface. This is a symbolic constant
(KVFLTINTERFACE_REVISION) defined in kvfilt.h.

Returns

If the revision number of the Filter interface API is unknown, this function returns a general error (KVERR_
General).

Discussion

l One of the initial steps in using the Filter API is to create an instance of a KVFltInterfaceEx structure and
use this function to gain access to all other functions. The sample programs provide examples of how to do
this.

l You can call the API functions directly. For example, you can call GetOLESummaryInfo() instead of using
fpGetOLESummaryInfo() in KVFltInterfaceEx. However, Micro Focus recommends that you assign the
function pointers in KVFltInterfaceEx to the functions for efficiency.

Example

void *pKVFILTER;
KVFltInterfaceEx FilterFunc;
KVErrorCode nRet = KVERR_Success;
KVErrorCode (pascal *fpGetFilterInterfaceEx)(KVFltInterfaceEx *FilterFunc, int version
);

KeyView (11.6) Page 118 of 320

pKVFILTER = myLoadLibrary(szDllName);

fpGetFilterInterfaceEx = (KVErrorCode (pascal *)(KVFltInterfaceEx *, int))
myGetProcAddress(pKVFILTER, "KV_GetFilterInterfaceEx");

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 119 of 320

fpCanFilterFile()

This function determines whether a file’s format is supported by KeyView. The supported formats are
listed in Supported Formats, on page 184.

If KVERR_ General is returned, you can retrieve the extended error code by using fpGetKvErrorCodeEx
(), on page 136.

Syntax

KVErrorCode pascal fpCanFilterFile(
 void *pContext,
 char *szFile);

Arguments

pContext A pointer returned from fpInit().

szFile The name of the input file to be filtered.

Returns

l If the file format is supported, the return value is KVERR_Success.
l If the file format is not supported, the return value is an error code. See KVErrorCode, on page 170.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 120 of 320

fpCanFilterStream()

This function determines whether the format of the file to which a stream points is supported by
KeyView.

Syntax

KVErrorCode pascal fpCanFilterStream(
 void *pcontext,
 void *pStreamContext);

Arguments

pContext A pointer returned from fpInit().

pStreamContext A pointer returned from fpOpenStream() or fpOpenStreamEx2().

Returns

l If the file format is supported, the return value is KVERR_Success.
l If the file format is not supported, the return value is an error code. See KVErrorCode, on page 170.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 121 of 320

fpCloseStream()

This function closes a document stream opened by using fpOpenStream().

Syntax

BOOL pascal fpCloseStream(void *pContext, void *pStreamContext);

Arguments

pContext A pointer returned from fpInit().

pStreamContext A pointer returned from fpOpenStream() or fpOpenStreamEx2().

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

After filtering is complete, call this function to free thememory allocated by fpOpenStream() or
fpOpenStreamEx2().

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 122 of 320

fpFiletoInputStreamCreate()

This function creates an input stream from a file.

Syntax

BOOL pascal fpFileToInputStreamCreate(
 void *pContext,
 char *pszFileName,
 KVInputStream *pInput)

Arguments

pContext A pointer returned from fpInit().

pszFileName A pointer to the name of the input file to be filtered.

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l After filtering is complete, call fpFileToInputStreamFree() to free thememory allocated by this
function.

l You can access this function through the KV_GetFilterInterfaceEx() function, or call it directly.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 123 of 320

fpFileToInputStreamFree()

This function frees thememory allocated for the input stream created from a file.

Syntax

BOOL pascal fpFileToInputStreamFree(
 void *pContext,
 KVInputStream *pInput)

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l After filtering is complete, call this function to free thememory allocated by
fpFileToInputStreamCreate().

l You can access this function through the KV_GetFilterInterfaceEx() function, or call it directly.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 124 of 320

fpFilterConfig()

This function provides a way to enable and configure various options prior to document filtering, such
as providing a password for a file, or enabling hidden text extraction.

Syntax

BOOL pascal fpFilterConfig(
 void *pContext,
 int nType,
 int nValue,
 void *pData);

Arguments

pContext A pointer returned from fpInit().

nType The configuration flag. This is a symbolic constant defined in kvtypes.h. The available
options are described in the Filter Configuration Flags, below table.

nValue The integer value defined for the flags above.

pData The data for the configuration flag.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

l Youmust call this function after the call to fpInit() and before the call to fpFilterStream() or
fpFilterFile().

l Although fpFilterConfig() does not run out of process, any configuration flags that are set
through fpFilterConfig() are passed to the out-of-process session.

l The configuration flags are described in the following table.

Flag Description

KVFLT_SETOOPSRCFILE If you set this flag to TRUE, the input file name is reported in the out-
of-process error log when the file generates an error in streammode.
See Report the File Name in StreamMode, on page 60. The default
is FALSE.

Filter Configuration Flags

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 125 of 320

Flag Description

nValue is TRUE or FALSE.

pData is the name of the input file generating errors.

KVFLT_SETTEMPDIRECTORY This flag enables you to specify the directory where temporary files
created during filtering processes are stored.

nValue is set to 0.

pData is the path name of the directory where temporary files are
stored.

KVFLT_LOGICALPDF This flag extracts paragraphs from a PDF file in the order in which
they appear on the page (logical reading order). The nValue
argument specifies the paragraph direction. See Filter PDF Files, on
page 66.

nValue is one of the paragraph direction options defined in the
LPDF_DIRECTION enumerated type in kvtypes.h.

pData is NULL.

KVFLT_SETXMLCONFIGINFO This flag enables you to define which elements and attributes are
extracted from XML documents with a specified format ID or root
element. You can use this option to override the default settings for
the supported XML formats (see Filter XML Files, on page 77), or to
define settings for custom XML document types.

The settings are defined in the KVXConfigInfo structure. To set
custom settings for more than one document type, call the
fpFilterConfig() function once for each type.

You can alsomodify element extraction settings by using the
kvxconfig.ini file. See Configure Element Extraction for XML
Documents, on page 77.

nValue is set to 0.

pData is a pointer to the KVXConfigInfo structure.

KVFLT_INCLREVISIONMARK If you set this flag to TRUE, text that was deleted from a document
with revision tracking enabled is extracted from the document and
included in the filtered output.

To reset the flag and exclude deleted text from the filtered output, set
the flag to FALSE (the default). See Extract Deleted Text Marked by
Tracked Changes, on page 66.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_SETSRCPASSWORD This flag enables you to define a password used to open a password-
protected file for filtering. See Filter Password Protected Files, on

Filter Configuration Flags, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 126 of 320

Flag Description

page 318.

nValue is TRUE.

pData is the source file password, which can have amaximum
length of 255 characters (the final byte is null).

KVFLT_NOEMBEDDEDOBJECT If you set this flag to TRUE, embedded objects in Microsoft Word
documents are not extracted.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_SHOWHIDDENTEXT If you set this flag to TRUE, hidden text fromMicrosoft Word, Excel,
and PowerPoint documents is extracted.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_NOCOMMENTS If you set this flag to TRUE, comments fromMicrosoft Word,
PowerPoint, or Excel documents are not extracted.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_SKIPEMBEDDEDFONT If you set this flag to TRUE, text that contains embedded fonts is not
filtered from PDF documents. See Filter PDF Files, on page 66.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_SHOWDATEFIELDCODE If you set this flag to TRUE, date/time field codes are extracted from
Microsoft Word, PowerPoint, and Rich Text Format documents
instead of the date/time values.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_
SHOWFILENAMEFIELDCODE

If you set this flag to TRUE, file name field codes are extracted from
Microsoft Word documents.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_KEEPSOFTHYPHEN If you set this flag to TRUE, soft hyphens are retained when text is
filtered from PDF documents. See Filter PDF Files, on page 66.

nValue is TRUE or FALSE.

pData is NULL.

Filter Configuration Flags, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 127 of 320

Flag Description

KVFLT_EXPORTALLMETADATA If you set this flag to TRUE, all custommetadata is filtered from PDF
documents when themetadata APIs are used. See Extract Custom
Metadata from PDF Files, on page 69.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_
EXPORTTAGGEDCONTENT

If you set this flag to TRUE, tagged PDF content is filtered from PDF
documents. See Filter Tagged PDF Content, on page 70.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_
SetConfigurableArguments

If you set this flag to TRUE, the pData is a variable of configurable
arguments.

nValue is TRUE or FALSE.

pData is a variable of configurable arguments.

KVFLT_SETOUTPUTCHARSET This flag enables the output character set to be changed.

pData is one of the character encodings defined in the KVCharSet
enumerated type in kvtypes.h.

KVFLT_SHOWHIDDENTEXT If you set this flag to TRUE, hidden text fromMicrosoft Word, Excel,
PowerPoint, and PDF documents is extracted.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_EXTRACTIMAGES If you set this flag to TRUE, the extract API also extracts images
contained within the file. See Extract Images, on page 38 for more
details.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_TABDELIMITED If you set this flag to TRUE, tables in word processing formats are
output in tab delimited formats. See Tab Delimited Output for
Embedded Tables, on page 84 for more details.

nValue is TRUE or FALSE.

pData is NULL.

KVFLT_
STANDARDIZECELLFORMATS

If you set this flag to TRUE, standardization of cell formats in
Microsoft Excel files is enabled. See Standardize Cell Formats, on
page 76.

nValue is TRUE or FALSE.

Filter Configuration Flags, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 128 of 320

Flag Description

pData is NULL.

Filter Configuration Flags, continued

Examples

l To specify a password to open a password-protected file for filtering:

(*fpFilterConfig)(pKVFilter, KVFLT_SETSRCPASSWORD, TRUE, password);

where password is a null-terminated string of 255 or fewer characters.
l To extract hidden text fromMicrosoft Word, Excel, or PowerPoint files:

(*fpFilterConfig)(pKVFilter, KVFLT_SHOWHIDDENTEXT, TRUE, NULL);

l To extract all custommetadata fields from PDF documents:

(*fpFilterConfig)(pKVFilter, KVFLT_EXPORTALLMETADATA, TRUE, NULL);

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 129 of 320

fpFilterFile()

This function filters text from an input file to an output file.

If the output file path refers to an existing directory, an extended error code is set in pContext and
returns KVERR_General. If KVERR_ General is returned, you can retrieve the extended error code by
using fpGetKvErrorCodeEx(), on page 136.

Syntax

KVErrorCode pascal fpFilterFile(
 void *pContext,
 char *szInputFile,
 char *szOutputFile,
 KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

szInputFile A pointer to the input file.

szOutputFile A pointer to the output file.

pSummaryInfo This argument is reserved. It must be NULL.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.

Example

error = (int)(*pFilterInterface->fpFilterFile)(pFilter, srcFile, outFile, NULL);

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 130 of 320

fpFilterStream()

This function filters text from an input stream to an output buffer.

Syntax

KVErrorCode pascal fpFilterStream(
 void *pContext,
 void *pStreamContext
 KVFilterOutput *pFilterOutput,
 KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

pStreamContext A pointer returned from fpOpenStream() or fpOpenStreamEx2().

pFilterOutput A pointer to the KVFilterOutput structure. This structure defines the output buffer.

pSummaryInfo This argument is reserved. It must be NULL.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

l This function processes data in chunks. To return the entire output stream, youmust call this
function repeatedly until the entire output buffer is processed, that is, until the following condition
occurs:

pFilterOutput-> cbText == 0

l This function runs in process or out of process. See The Filter Process Model, on page 29.

Example

error = (int)(*pFilterInterface->fpFilterStream)(pFilter, pStream, &filterOut,
NULL);

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 131 of 320

fpFreeOLESummaryInfo()

This function frees thememory allocated by fpGetOLESummaryInfoFile() or fpGetOLESummaryInfo
() for metadata extraction.

Syntax

BOOL pascal fpFreeOLESummaryInfo(
 void *pContext ,
 KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

pSummaryInfo A pointer to the KVSummaryInfoEx structure.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

Call this function after fpGetOLESummaryInfo() or fpGetOLESummaryInfoFile() has successfully
filled pSummaryInfo, and the data is no longer required.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 132 of 320

fpFreeXmpInfo()

This function frees thememory allocated by fpGetXmpInfoFile() or fpGetXmpInfoStream() for
metadata extraction.

Syntax

BOOL pascal fpFreeXmpInfo(
 void *pContext ,
 KVXmpInfo *pXmpInfo);

Arguments

pContext A pointer returned from fpInit().

pXmpInfo A pointer to the structure KVXmpInfo.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Discussion

Call this function after fpGetXmpInfoFile() or fpGetXmpInfoStream() has successfully filled
pXmpInfo, and the data is no longer required.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 133 of 320

fpGetDocInfoFile()

This function gets the following format information for a file and populates the ADDOCINFO structure:

l File format
l File class
l Major version
l Other attributes
The possible values are defined in adinfo.h.

An extended error code is set in pContext if an invalid input file is provided. You can retrieve the error
code by using fpGetKvErrorCodeEx(), on page 136.

Syntax

BOOL pascal fpGetDocInfoFile(
 void *pContext,
 char *szFile,

ADDOCINFO *pADDocInfo);

Arguments

pContext A pointer returned from fpInit().

szFile A pointer to the input file.

pADDOCINFO The format, file class, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h.

Returns

l If the format information is extracted, the return value for this function is TRUE.
l If the format information is not extracted, the return value is FALSE. If FALSE is returned, you can
retrieve the extended error code by using fpGetKvErrorCodeEx(), on page 136.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 134 of 320

fpGetDocInfoStream()

This function gets the following format information for a stream and populates the ADDOCINFO structure:

l Format
l File Class
l Major version
l Other attributes
The possible values are defined in adinfo.h.

Syntax

BOOL pascal fpGetDocInfoStream(
 void *pContext,
 KVInputStream *pInput,

ADDOCINFO *pADDocInfo);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the input stream.

pADDOCINFO The format, file class, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h.

Returns

l If the format information is extracted, the return value for this function is TRUE.
l If the format information is not extracted, the return value is FALSE.

Discussion

This function runs in process or out of process. See The Filter Process Model, on page 29.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 135 of 320

fpGetKvErrorCodeEx()

This function gets an extended error code defined in KVErrorCodeEx. It is called to provide additional
information when fpFilterFile() or fpFilterStream() returns the error KVERR_General. See
KVErrorCode, on page 170.

Syntax

KVErrorCodeEx pascal fpGetKvErrorCodeEx (void *pContext)

Arguments

pContext A pointer returned from fpInit().

Returns

The return value is an error code from KVErrorCodeEx.

Discussion

You can access this function through the KV_GetFilterInterfaceEx() interface.

Example

KVErrorCode nReturnCode = 0;
if (nReturnCode == KVERR_General)

{ int kvErrorEx;
 if (lsv->fpKV_GetKvErrorCodeEx)

{
 kvErrorEx = (*lsv->fpKV_GetKvErrorCodeEx)(pFilter);
 if (kvErrorEx != KVError_Last)
 printf("KvErrorCodeEx = %d \n ", kvErrorEx);
...

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 136 of 320

fpGetOLESummaryInfo()

This function extracts document metadata from an input stream.

Syntax

KVErrorCode pascal fpGetOLESummaryInfo(
 void *pContext,
 KVInputStream *pInput,
 KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

pSummaryInfo A pointer to the structure KVSummaryInfoEx. In the structure, nElem provides a
count of the number of metadata elements, and pElem points to the first element of
the array of individual elements as defined by the structure KVSumInfoElemEx.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

l After the pSummaryInfo argument is successfully filled, and its data is no longer required, call
fpFreeOLESummaryInfo() to free thememory allocated by this function.

l This function runs in process or out of process. See The Filter Process Model, on page 29.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 137 of 320

fpGetOLESummaryInfoFile()

This function extracts document metadata from a file.

Syntax

KVErrorCode pascal fpGetOLESummaryInfoFile(
 void *pContext,
 char *szFile,
 KVSummaryInfoEx *pSummaryInfo);

Arguments

pContext A pointer returned from fpInit().

szFile The name of the input file.

pSummaryInfo A pointer to the KVSummaryInfoEx structure. In the structure, nElem provides a
count of the number of metadata elements, and pElem points to the first element of
the array of individual elements as defined by the KVSumInfoElemEx structure.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

l After the pSummaryInfo argument is successfully filled, and its data is no longer required, call
fpFreeOLESummaryInfo() to free thememory allocated by this function.

l This function runs in process or out of process. See The Filter Process Model, on page 29.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 138 of 320

fpGetTrgCharSet()

This function verifies that the character set requested was actually used.

Syntax

KVCharSet pascal fpGetTrgCharSet(void *pContext);

Arguments

pContext A pointer returned from fpInit().

Returns

The return value is one of the character sets listed in kvtypes.h.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 139 of 320

fpGetXmpInfo()

This function extracts XMP metadata in streammode.

Syntax

KVErrorCode pascal fpGetXmpInfo(
void *pContext,
KVInputStream *pInput,
KVXmpInfo *pXmpInfo,
DWORD dwXmpOptions);

Arguments

pContext The pointer returned by fpInit(), on page 143.

pInput A pointer to the input stream.

pXmpInfo A pointer to the KVXmpInfo structure.

dwXmpOptions Set this argument to 1 to return charset information, the raw XMP packet, and the
path and value pairs of all XMP elements.

Set this argument to 2 to return the raw XMP packet.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

l After the pXmpInfo argument is successfully filled, and its data is no longer required, call
fpFreeXmpInfo() to free thememory allocated by this function.

l This function runs in process or out of process. See The Filter Process Model, on page 29.
l XMP extraction is supported only for PDF, JPG, TIFF, and XML files.
l XMP extraction is supported on theWindows, Linux, AIX, FreeBSD, andOSX platforms.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 140 of 320

fpGetXmpInfoFile()

This function extracts XMP metadata from a file.

Syntax

KVErrorCode pascal fpGetXmpInfoFile(
 void *pMainContext,
 char *szInputFile,
 KVXmpInfo *pXmpInfo,
 DWORD dwXmpOptions);

Arguments

pMainContext A pointer to the TPMainContext structure, which is defined in kvtypes.h.

szInputFile A pointer to the input file.

pXmpInfo A pointer to the KVXmpInfo structure.

dwXmpOptions Set this argument to 1 to return charset information, the raw XMP packet, and the
path and value pairs of all XMP elements.

Set this argument to 2 to return the raw XMP packet.

Returns

The return value is an error code. See KVErrorCode, on page 170.

Discussion

l After the pXmpInfo argument is successfully filled, and its data is no longer required, call
fpFreeXmpInfo() to free thememory allocated by this function.

l This function runs in process or out of process. See The Filter Process Model, on page 29.
l XMP extraction is only supported for the PDF, JPG, TIFF, and XML files.
l XMP extraction is supported for the following platforms:

o Windows x86 32-bit and 64-bit
o Linux x86 32-bit and 64-bit
o Linux x86 32-bit and 64-bit using libc6 library
o Linux x86 32-bit and 64-bit for Redhat 4
o Linux Itanium 64-bit
o AIX Risk 32-bit and 64-bit

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 141 of 320

o FreeBSD 32-bit
o OSX 32-bit Universal

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 142 of 320

fpInit()

This function initializes a Filter session. Its return value, pContext, is passed as the first argument to
the File Extraction interface and all other Filter functions.

Syntax

void * pascal fpInit(
 KVMemoryStream *pMemAllocator,
 KVDynLink *pDynLink,

 char *pszKeyViewDir,
 KVCharSet outputCharSet,
 DWORD dwFlags);

Arguments

pMemAllocator A pointer to a developer-definedmemory allocator. If NULL is passed, the default C
run-timememory allocation is used.

pDynLink This argument is reserved. It must be NULL.

pszKeyViewDir A pointer to the directory where the Filter components (such as the formats.ini
file, license key file (kv.lic), and file filters) are located. This is normally the
install\OS\bin directory.

outputCharSet The character set to use for textual output when the source character set can be
determined from the document or is specified by fpSetSrcCharSet().

The character sets are enumerated in KVCharSet in kvtypes.h.

dwFlags Instructions on how to process a file or stream. See Flags for dwFlags, below for
more information.

Flags for dwFlags

KVF_CONTENTACCESS Reserved for internal use.

KVF_METADATA Reserved for internal use.

KVF_OUTOFPROCESS Enables out-of-process filtering. This is enabled by default. See The
Filter Process Model, on page 29.

KVF_INPROCESS Enables in-process filtering. See The Filter Process Model, on page 29.

KVF_HEADERFOOTERTAGS Puts tags around header and footer data.

KVF_HEADERFOOTER Extracts headers and footers.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 143 of 320

KVF_UNICODEMSBLSB Uses the byte order for Big Endian systems (MSBLSB) for Unicode
text. MSBLSB is the "Most Significant Byte Least Significant Byte."

KVF_UNICODELSBMSB Uses the byte order for Little Endian systems (LSBMSB) for Unicode
text. LSBMSB is the "Least Significant ByteMost Significant Byte."

KVF_UNICODEMARKER Generates the byte order marker for Unicode text.

KVF_NOCHARSETCONVERT Prevents default conversion of document character encoding. See
Prevent the Default Conversion of a Character Set, on page 65.

KVF_OOPLOGON Enables the out-of-process error log. See Enable or Disable Error
Logging, on page 59.

KVF_OOPMEMTRACEON Enables memory trace for the out-of-process error log. See Report
Memory Errors, on page 60.

KVF_OOPLOGOFF Disables the out-of-process error log. Enable or Disable Error Logging,
on page 59.

KVF_OOPMEMTRACEOFF Disables memory trace for the out-of-process error log. See Report
Memory Errors, on page 60.

KVF_
FILTERCONTAINERCONTENT

This flag is used by the Container API which is obsolete.

It filters themain file and subfiles of a container file by using the
standard filtering functions, and extracts the text to a single file.

KVF_DETECT_
OUTOFPROCESS

KVF_DETECT_INPROCESS

Set these flags in fpInit() or fpOpenStreamEx2() to specify whether
files are detected out of process or in process for a filtering session.
These flags override the default_detect_inprocess flag in
formats.ini.

If you set neither of these flags, file detection behavior is determined by
the KVF_OUTOFPROCESS or KVF_INPROCESS flags in these calls. If you do
not set these flags, behavior is determined by default_detect_
inprocess in formats.ini.

See Run File Detection In or Out of Process, on page 34.

Returns

l If the call is successful, the return value is the pointer pContext which is passed as the first
argument to all other File Extraction API and Filter API functions.

l If the call is unsuccessful, the return value is NULL.

Discussion

l If this function returns NULL, check stderr for the KeyView installation error messages "KeyView
Filter SDK License Key has Expired" and "KeyView Filter SDK License Key is
Invalid", and pass them to your application.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 144 of 320

l Tomake sure that multithreaded filter processes are thread-safe, youmust create a unique context
pointer for every thread by calling fpInit(). In addition, threads must not share context pointers,
and youmust use the same context pointer for all API calls in the same thread. Creating a context
pointer for every thread does not affect performance because the context pointer uses minimal
resources.

l When the filtering context is no longer required, call fpShutdown() to terminate it.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 145 of 320

fpOpenStream()

This function opens a stream for filtering.

Syntax

void * pascal fpOpenStream(
 void *pContext,
 KVInputStream *pInput);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The structure
KVInputStream defines the input stream that contains the source.

Returns

l If the call is successful, the return value is a void * pointer passed to fpFilterStream(),
fpCanFilterStream(), and fpCloseStream().

l If the call is unsuccessful, the return value is NULL.

Discussion

l Before you call this function, youmust create an input stream either by using the
fpFiletoInputStreamCreate() function, or by using code similar to the coding example in the Filter
sample program. See Use the C-Language Implementation of the API, on page 26 for more
information.

l After filtering is complete, call fpCloseStream() to free thememory allocated by this function.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 146 of 320

fpOpenStreamEx2()

This function opens a stream for filtering and enables you to set bitwise flags for each stream.

Syntax

void * pascal fpOpenStreamEx2(
 void *pContext,
 KVInputStream *pInput,
 DWORD dwFlags);

Arguments

pContext A pointer returned from fpInit().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source.

dwFlags Instructions on how to process a stream. See Flags for dwFlags, on page 143.

Returns

l If the call is successful, the return value is a void * pointer passed to fpFilterStream(),
fpCanFilterStream(), and fpCloseStream().

l If the call is unsuccessful, the return value is NULL.

Discussion

l Before you call this function, youmust create an input stream either by using the
fpFiletoInputStreamCreate() function, or by using code similar to the coding example in the Filter
sample program. See Use the C-Language Implementation of the API, on page 26 for more
information.

l After filtering is complete, call fpCloseStream() to free thememory allocated by this function.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 147 of 320

fpRefreshFilterKVOOP()

This function forces the out-of-process filtering server (kvoop.exe) to restart. This function is optional.

Syntax

int (pascal *fpRefreshFilterKVOOP)(void *pContext);

Arguments

pContext A pointer returned from fpInit().

Returns

l If the restart is successful, the return value is KVERR_Success.
l If the restart is unsuccessful, the return value is an error code.

NOTE:
There are several different error codes.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 148 of 320

fpSetReplacementChar()

This function specifies a replacement character to use when a character cannot bemapped. This
function is optional.

Syntax

BOOL pascal fpSetReplacementChar(void *pContext, char c);

Arguments

pContext A pointer returned from fpInit().

c The replacement character to use when a character cannot bemapped. If you do not call
this function, the default character is used.

The default is a questionmark ("?").

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 149 of 320

fpSetSrcCharSet()

This function specifies a character set for the source document. Use this function if the character set
information cannot be determined from the source document.

Syntax

BOOL pascal fpSetSrcCharSet(void *pContext, KVCharSet eCharSet);

Arguments

pContext A pointer returned from fpInit().

eCharSet Specifies the source character set when the document reader for the document type
cannot determine the character set. The character sets are enumerated in KVCharSet of
kvtypes.h.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 150 of 320

fpSetTimeout()

This function specifies the length of time that should elapse before assuming that the filtering process
has stopped responding.

Syntax

BOOL pascal fpSetTimeout(void *pContext, long lTimeout);

Arguments

pContext A pointer returned from fpInit().

lTimeout The length of time, in seconds, that must elapse before assuming that the filtering
process has stopped responding.

Returns

l If the call is successful, the return value is TRUE.
l If the call is unsuccessful, the return value is FALSE.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 151 of 320

fpShutdown()

This function terminates a filtering session that was initialized by fpInit(), and frees allocated
system resources. It is called when the filtering context is no longer required.

Syntax

void pascal fpShutdown(void *pContext);

Arguments

pContext A pointer returned from fpInit().

Returns

None.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 152 of 320

Chapter 9: Filter API Structures

This section describes the data structures used by the Filter API. These structures are defined in kvflt.h,
kwautdef.h, and adinfo.h.

• KVFltInterfaceEx 154
• ADDOCINFO 156
• KV_CONFIG_Arg 157
• KVFilterOutput 158
• KVInputStream 159
• KVMemoryStream 160
• KVStructHead 161
• KVSumInfoElemEx 162
• KVSummaryInfoEx 163
• KVXConfigInfo 164
• KVXmpInfo 166
• KVXmpInfoElems 167

KeyView (11.6) Page 153 of 320

KVFltInterfaceEx

Themembers of this structure are pointers to the functions described in Filter API Functions, on page 117.
When you call the KV_GetFilterInterfaceEx() function, this structure assigns pointers to the functions. The
structure is defined in kvfilt.h.

typedef struct tag_KVFltInterfaceEx
{
 void * (pascal *fpInit) (KVMemoryStream *, KVDynLink *, char *, KVCharSet, DWORD
);
 void (pascal *fpShutdown) (void *);
 void * (pascal *fpOpenStream)(void *, KVInputStream *);
 void * (pascal *fpOpenStreamEx2) (void *, KVInputStream *, DWORD);
 BOOL (pascal *fpCloseStream)(void *, void *);
 BOOL (pascal *fpCanFilterCharMap)(void *, adDocDesc *);
 KVErrorCode (pascal *fpCanFilterFile)(void *, char *);
 KVErrorCode (pascal *fpCanFilterStream) (void *, void *);
 KVErrorCode (pascal *fpFilterStream)(void *, void *, KVFilterOutput *,
KVSummaryInfoEx *);
 KVErrorCode (pascal *fpFilterFile)(void *, char *, char *, KVSummaryInfoEx *);
 KVErrorCode (pascal *fpGetOLESummaryInfo)(void *, KVInputStream *, KVSummaryInfoEx *
);
 KVErrorCode (pascal *fpGetOLESummaryInfoFile)(void *, char *, KVSummaryInfoEx *);
 BOOL (pascal *fpFreeOLESummaryInfo)(void *, KVSummaryInfoEx *);
 KVCharSet (pascal *fpGetTrgCharSet)(void *);
 BOOL (pascal *fpSetTimeout)(void *, long);
 BOOL (pascal *fpSetSrcCharSet)(void *, KVCharSet);
 BOOL (pascal *fpSetReplacementChar)(void *, char);
 BOOL (pascal *fpGetDocInfoStream)(void *, KVInputStream *, ADDOCINFO *);
 BOOL (pascal *fpGetDocInfoFile)(void *, char *, ADDOCINFO *);
 BOOL (pascal *fpIsArchiveFile)(void *, char *);
 BOOL (pascal *fpIsArchiveFileSupported)(void *, char *);
 void * (pascal *fpOpenArchiveFile)(void *, char *);
 int (pascal *fpGetNumFilesInArchiveFile)(void *);
 KVErrorCode (pascal *fpGetArchiveFileInfo)(void *, int, TPArchiveFileInfo *);
 KVErrorCode (pascal *fpExtractArchiveFile)(void *, int, char *);
 BOOL (pascal *fpCloseArchiveFile)(void *);
/* Revision 1 of Filter Interface API starts here (#define KVFLTINTERFACE_REVISION). */
 BOOL (pascal *fpFileToInputStreamCreate)(void *, char *, KVInputStream *);
 BOOL (pascal *fpFileToInputStreamFree)(void *, KVInputStream *);
 KVErrorCode (pascal *fpCanFilterAsContainer)(void *, KVInputStream *);
 void * (pascal *fpOpenContainerStream)(void *, KVInputStream *);
 BOOL (pascal *fpCloseContainerStream)(void *, void *);
 int (pascal *fpGetNumFilesInContainer)(void *, void *);
 KVErrorCode (pascal *fpGetContainerSubFileInfo)(void *, void *, int,
TPContainerSubFileInfo *);
 BOOL (pascal *fpSetExtractionPath)(void *, void *, char *, BOOL);
 void (pascal *fpSetExtractionOverwrite)(void *, void *, BOOL);
 KVErrorCode (pascal *fpExtractContainerSubFile)(void *, void *, int,

KeyView (11.6) Page 154 of 320

TPContainerSubFileInfo *);
 KVErrorCode (pascal *fpGetContainerContent)(void *, void *, KVFilterOutput *,
BOOL *);
 KVErrorCodeEx (pascal *fpGetKvErrorCodeEx)(void *pContext);
 BOOL (pascal *fpFilterConfig)(void *pContext, int nType, int nValue, void
*p);
/* Revision 2 of Filter Interface API starts here (#define KVFLTINTERFACE_REVISION)
*/
 KVErrorCode (pascal *fpGetSubFileMetadada)(void *, void *, int, int *, int,
KVSummaryInfoEx *, int);
 KVErrorCode (pascal *fpFreeSubFileMetadada)(void *, void *, KVSummaryInfoEx *);
}
KVFltInterfaceEx;
KVErrorCode pascal KV_GetFilterInterfaceEx(KVFltInterfaceEx *pInterfaceEx, int
version);

Member Descriptions

Themember functions are described in Filter API Functions, on page 117.

Discussion

The following functions are deprecated:

l fpIsArchiveFile

l fpIsArchiveFileSupported

l fpOpenArchiveFile

l fpGetNumFilesInArchiveFile

l fpGetArchiveFileInfo

l fpExtractArchiveFile

l fpCloseArchiveFile

l fpCanFilterCharMap

l fpCanFilterAsContainer

l fpCloseContainerStream

l fpGetNumFilesInContainer

l fpGetContainerSubFileInfo

l fpSetExtractionPath

l fpSetExtractionOverwrite

l fpExtractContainerSubFile

l fpGetContainerContent

l fpFreeSubFileMetadada

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 155 of 320

ADDOCINFO

This structure contains the format, file class, and version number of the source document. The
structure is defined in adinfo.h, and is initialized by calling the fpGetDocInfoFile() or
fpGetDocInfoStream() functions.

typedef struct
{
 ENdocClass eClass;
 ENdocFmt eFormat;
 long lVersion;
 unsigned long ulAttributes;
}
ADDOCINFO, *ADDOCINFOPTR;

Member Descriptions

eClass The file class of the source document (for example, spreadsheet, word processor, or
encapsulation format), as defined by the enumerated type ENDocClass in adinfo.h.

eFormat Themajor format of the source document (for exampleMicrosoft Word XML format
or Corel Presentation), as defined by the enumerated type ENdocFmt in adinfo.h.
The ENdocFmt type provides a unique ID for eachmajor format.

lVersion The version number of the file format. The number is multiplied by 1,000 (for
example, 1.02 is represented by 1020).

ulAttributes Other attributes of the document, as defined by the enumerated type
ENdocAttributes in adinfo.h.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When using this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format ID, your
code should check that the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 156 of 320

KV_CONFIG_Arg

This structure defines configurable arguments to use as the data in the fpFilterConfig() function when
you set the KVFLT_SetConfigurableArguments flag to TRUE. The structure is described in kvtypes.h.

Use this structure to control the filtering of hidden data fromMicrosoft Excel documents. See Filter
Hidden Data, on page 82.

typedef struct _KV_CONFIG_ARG_TAG
{
 unsigned int keyID;
 int keyType;
 KV_CONFIG_DATA keyData;
 unsigned int keyDataSize;
}
KV_CONFIG_Arg;

Member Descriptions

keyID Determines the kind of configuration flags that you can use as values of keyData. If
you use the same keyIDmore than once, themost recent setting overrides the
previous setting.

keyType The type of data for the keyData element. Set to KV_INT32ARG.

keyData KV_CONFIG_DATA is a union defined in kvtypes.h. Only intArg is supported, where
the value of intArg is one of the flags in the corresponding keyID.

keyDataSize The size of keyData. This is reserved for future use.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 157 of 320

KVFilterOutput

This structure defines an output buffer for filtering. The structure is defined in kvtypes.h.

typedef struct tag_KVFilterOutput
{
 BYTE *pcText;
 int cbText;
}
KVFilterOutput;

Member Descriptions

pcText A pointer to the text returned from fpFilterStream().

cbText The number of valid bytes in pcText.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 158 of 320

KVInputStream

This structure defines an input stream for filtering. The structure is defined in kvtypes.h.

typedef struct tag_InputStream
{
 void *pInputStreamPrivateData;
 long lcbFilesize;
 BOOL (pascal *fpOpen) (struct tag_InputStream *);
 UINT (pascal *fpRead) (struct tag_InputStream *, BYTE *, UINT);
 BOOL (pascal *fpSeek) (struct tag_InputStream *, long, int);
 long (pascal *fpTell) (struct tag_InputStream *);
 BOOL (pascal *fpClose)(struct tag_InputStream *);
}
KVInputStream;

Member Descriptions

l All member functions are equivalent to their counterparts in the ANSI standard library, except
fpOpen(), which returns FALSE on failure.

l On fpOpen(), if the size of the stream is known, assign that value to lcbFilesize. Otherwise, set
lcbFilesize to 0.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 159 of 320

KVMemoryStream

This structure defines an optional memory allocator to be used by Filter. Behavior for all functions is the
same as for their C run-time equivalents. The structure is defined in kvtypes.h.

typedef struct tag_MemoryStream
{
 void *pMemoryStreamPrivateData;
 void * (pascal *fpMalloc) (struct tag_MemoryStream*, size_t);
 void (pascal *fpFree) (struct tag_MemoryStream*, void *);
 void * (pascal *fpRealloc) (struct tag_MemoryStream*, void *, size_t);
 void * (pascal *fpCalloc) (struct tag_MemoryStream*, size_t, size_t);
}
KVMemoryStream;

Member Descriptions

l All member functions are equivalent to their counterparts in the ANSI standard library.
l fpRealloc()must handle a NULL pointer.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 160 of 320

KVStructHead

This structure contains the current KeyView version number, and is the first member of other
structures. It enables Micro Focus tomodify the structures in future releases, but to maintain backward
compatibility. Before you initialize a structure that contains the KVStructHead structure, use themacro
KVStructInit to initialize KVStructHead. The structure andmacro are defined in kvtypes.h.

typedef struct _KVStructHead
{
 WORD version;
 WORD size;
 DWORD reserved;
 void *internal;
}
KVStructHeadRec, *KVStructHead;

Member Descriptions

version The current KeyView version number. This is a symbolic constant (KeyviewVersion)
defined in kvxtract.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec.

reserved Reserved for internal use.

internal Reserved for internal use.

Example

KVOpenFileArgRec openArg;
KVStructInit(&openArg);

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 161 of 320

KVSumInfoElemEx

This structure contains the individual metadata elements. The structure is defined in kvtypes.h.

typedef struct tag_KVSumInfoElemEx
{
 int isValid;
 KVSumInfoType type;
 void *data;
 char *pcType;
}
KVSumInfoElemEx;

Member Descriptions

isValid Specifies whether the data value is present in the document. The setting 1 specifies that
the value is valid and exists. For example, if the "Title" element is not populated in the
document, pSummaryInfo.pElem[1].isValid == 0 evaluates to true.

type The data type of themetadata element. The types are defined in KVSumInfoType in
kvtypes.h.

data The content of themetadata field.

If the typemember is KV_Int4, or KV_Bool, this member contains the actual value.
Otherwise, this member is a pointer to the actual value.

KV_DateTime and KV_IEEE8 point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text. KV_
Unicode is replaced with KV_String when the UNICODE value has been character
mapped to the desired output character set as specified in the call to fpInit().

pcType A pointer to the name of themetadata field.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 162 of 320

KVSummaryInfoEx

This structure contains a count of the number of metadata elements, and a pointer to the first element
of the array of individual elements. The structure is defined in kvtypes.h.

typedef struct tag_KVSummaryInfoEx
{
 int nElem;

 KVSumInfoElemEx *pElem;
}
KVSummaryInfoEx;

Member Descriptions

nElem The number of metadata elements contained in the array. A value of zero indicates that the
document did not contain metadata, such as an ASCII text document.

pElem A pointer to the first element of the array of metadata elements defined by the structure
KVSumInfoElemEx.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 163 of 320

KVXConfigInfo

This structure defines an XML document type and the element extraction settings for that type. You
can apply the settings based on the file format ID, or the root element of the file. This structure is in
kvtypes.h.

typedef struct TAG_KVXConfigInfo
{
 ENdocFmt eKVFormat;
 char* pszRoot;
 char* pszInMeta;
 char* pszExMeta;
 char* pszInContent;
 char* pszExContent;
 char* pszInAttribute;
}
KVXConfigInfo;

Member Descriptions

eKVFormat The format ID as detected by the KeyView detectionmodule. This determines the
file type to which these extraction settings apply. The format ID is defined by the
enumerated type ENdocFmt. See File Format Detection, on page 267 for more
information on format ID values.

If you are adding configuration settings for a custom XML document type, this is
not defined.

pszRoot The root element of the file. If the format ID is not defined, the root element is
used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an Element’s
Namespace and Attribute, on page 80.

pszInMeta The elements extracted from the file as metadata. All other elements are
extracted as text. Separatemultiple entries with commas.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszExMeta The child elements in the includedmetadata elements that are not extracted from
the file as metadata. For example, the default extraction settings for the Visio
XML format extract the DocumentProperties element as metadata. This element
includes child elements such as Title, Subject, Author, Description, and so
on. However, the child element PreviewPicture is defined in pszExMeta
because it is binary data and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice files.
All metadata is extracted regardless of this setting.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 164 of 320

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszInContent The elements extracted from the file as content text. An asterisk (*) extracts all
elements including child elements.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszExContent The child elements in the included content elements that are not extracted from
the file as content text.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element’s Namespace and Attribute, on page 80.

pszInAttribute The attribute values extracted from the file. If attributes are not defined, attribute
values are not extracted. Youmust define the namespace (if used), element
name, and attribute name in the following format:

namespace:elementname@attributename

For example:

microfocus:division@name

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 165 of 320

KVXmpInfo

This structure contains the XMP metadata, and is defined in kvtypes.h.

typedef struct tag_KVXmpInfo
{
 KVCharSet encoding;
 BOOL bIsLittleEndian;
 UINT nNoOfElements;
 KVXmpInfoElem *pXmpInfoElems;
 KV_I18NSTR usXpacketData;
 void *pExtension;
}
KVXmpInfo;

Member Descriptions

encoding The type of encoding.

bIsLittleEndian Indicates whether little-endian byte ordering is used.

nNoOfElements The total number of elements.

pXmpInfoElems A pointer to the KVXmpInfoElems structure.

usXpacketData A copy of the XMP data.

pExtension A reserved pointer.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 166 of 320

KVXmpInfoElems

This structure contains the individual XMP metadata elements, and is defined in kvtypes.h.

typedef struct tag_KVXmpInfoElem
{
 KV_I18NSTR usXPathToElement;
 KV_I18NSTR usValue;
}
KVXmpInfoElem;

Member Descriptions

usXPathToElement The path to the XMP element.

usValue The value of the XMP element.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 167 of 320

Chapter 10: Enumerated Types

This section provides information on some of the enumerated types used by the Filter API.

• Introduction 168
• KVCredKeyType 169
• KVErrorCode 170
• KVErrorCodeEx 171
• KVMetadataType 175
• KVMetaNameType 177
• KVSumInfoType 177
• KVSumType 178
• LPDF_DIRECTION 182

Introduction

The enumerated types are in adinfo.h, kvtypes.h, kv.h, and kvxtract.h. These header files are in
the include directory. The first entry in an enumerated type structure should be set to zero (0). Each
subsequent entry is increased by 1. For example, the first five entries of KVCharSet in kvtypes.h are:

KVCS_UNKNOWN

KVCS_SJIS

KVCS_GB

KVCS_BIG5

KVCS_KSC

They would be set in the following way:

Enumerated Type Setting

KVCS_UNKNOWN 0

KVCS_SJIS 1

KVCS_GB 2

KVCS_BIG5 3

KVCS_KSC 4

You can also set many enumerated types by entering the appropriate symbolic constant, or TRUE or
FALSE.

KeyView (11.6) Page 168 of 320

Programming Guidelines

When KeyView is enhanced in future releases, some enumerated types might be expanded. For
example, new format IDs might be added to the ENdocFmt enumerated type, or new error codes might
be added to the KVErrorCodeEx enumerated type. When you use these expandable types, your code
should ensure binary compatibility with future releases.

For example, if you use an array to access error messages based on an error code, your code should
check that the error code is less than KVError_Last before accessing the data. This ensures that new
error codes are detected when you add KeyView binary files from new releases to your existing
installation.

The following enumerated types are expandable:

KVErrorCodeEx

KVMetadataType

KVCharSet

KVLanguageID

KVSubfileType

ENdocFmt

KVCredKeyType

This enumerated type defines the type of credential used to open a protected file. See
KVCredentialComponent, on page 103. This enumerated type is defined in kvxtract.h.

Definition

typedef enum tag_KVCredKeyType
{
 KVCredKeyType_UserName,
 KVCredKeyType_UserIdFile,
 KVCredKeyType_Password,
}
KVCredKeyType;

Enumerators

KVCredKeyType_
UserName

The credential in KVCredentialComponent is a user name.

KVCredKeyType_
UserIdFile

The credential in KVCredentialComponent is a path to a file that
contains user IDs.

KVCredKeyType_ The credential in KVCredentialComponent is a password.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 169 of 320

Password

KVErrorCode

This enumerated type defines the type of error generated if Filter fails. This enumerated type is defined
in kvtypes.h.

Definition

typedef enum tag_KVErrorCode
{
KVERR_Success, /* 0 Success*/
KVERR_DLLNotFound, /* 1 DLL or shared library not found*/
KVERR_OutOfCore, /* 2 memory allocation failure*/
KVERR_processCancelled, /* 3 fpContinue() returns FALSE*/
KVERR_badInputStream, /* 4 Invalid/corrupt input stream*/
KVERR_badOutputType, /* 5 Invalid output type requested*/
KVERR_General, /* 6 General error.... */
KVERR_FormatNotSupported, /* 7 Format not supported*/
KVERR_PasswordProtected, /* 8 File is Password Protected*/
KVERR_ADSNotFound, /* 9 Adobe Document Server not found*/
KVERR_AutoDetFail, /* 10 Autodetect error*/
KVERR_AutoDetNoFormat, /* 11 Unable to detect file format*/
KVERR_ReaderInitError, /* 12 Error initializing the reader*/
KVERR_NoReader, /* 13 No reader available for this format*/
KVERR_CreateOutputFileFailed, /* 14 Unable to create output file*/
KVERR_CreateTempFileFailed, /* 15 Unable to create temp file*/
KVERR_ErrorWritingToOutputFile, /* 16 Error writing to output file*/
KVERR_CreateProcessFailed, /* 17 Error creating a child process*/
KVERR_WaitForChildFailed, /* 18 Wait for child process failed*/
KVERR_ChildTimeOut, /* 19 Child process hung / timed out*/
KVERR_ArchiveFileNotFound, /* 20 Attempt to extract nonexistent file*/
KVERR_ArchiveFatalError /* 21 Fatal error processing archive - should abort*/
}
KVErrorCode;

Enumerators

KVERR_SUCCESS The function completed successfully.

KVERR_DLLNotFound A DLL or shared library was not found.

KVERR_OutOfCore Memory allocation failure.

KVERR_processCancelled The callback function fpContinue() returns FALSE.

KVERR_badInputStream Invalid or corrupt input stream.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 170 of 320

KVERR_badOutputType Invalid output is requested.

KVERR_General General error. To return amore detailedmessage for KVERR_
General, call fpGetKvErrorCodeEx().

KVERR_FormatNotSupported The file format is not supported.

KVERR_PasswordProtected The file is encrypted or password-protected. KeyView supports only
secure PST files.

KVERR_ADSNotFound Adobe Document Server not found. This error is obsolete.

KVERR_AutoDetFail Autodetect error.

KVERR_AutoDetNoFormat Unable to detect file format.

KVERR_ReaderInitError Error initializing the reader.

KVERR_NoReader No reader is available for this format.

KVERR_
CreateOutputFileFailed

Unable to create output file.

This error is generated if the overwrite flag in KVExtractSubFileArg is
FALSE, and a subfile has the same name as a file in the target path.

KVERR_
CreateTempFileFailed

Unable to create temporary file.

KVERR_
ErrorWritingToOutputFile

There was an error writing to the output file.

KVERR_
CreateProcessFailed

There was an errror creating a child process.

KVERR_WaitForChildFailed The wait for child process failed.

KVERR_ChildTimeOut The child process hung or timed out.

KVERR_
ArchiveFileNotFound

Attempt to extract nonexistent file.

KVERR_ArchiveFatalError A fatal error occurred processing an archive file.

KVErrorCodeEx

This enumerated type defines extended error codes. The type is defined in kvtypes.h.

Some of these error codes providemore information when fpFilterFile() or fpFilterStream()
returns the error KVERR_General. To return these error codes, call fpGetKvErrorCodeEx().

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 171 of 320

Definition

typedef enum tag_KVErrorCodeEx
{
KVError_OpenStreamFailure = KVERR_ArchiveFatalError + 1, /* 22 KVOpen stream
failure */
KVError_InterfaceFunctionNotFound, /* 23 Interface function not found */
KVError_InputFileNotFound, /* 24 Cannot find input file*/
KVError_OpenOutputFileFailed, /* 25 Cannot open output file*/
KVError_MemoryLeak, /* 26 Memory leak*/
KVError_MemoryOverwrite, /* 27 Memory overwrite*/
KVError_GPF, /* 28 Exception during oop filtering*/
KVError_OopCore, /* 29 Core dump in child process*/
KVError_KVoopLogFailed, /* 30 Creation of oop error log failed*/
KVError_OverNestedFileLimit, /* 31 File exceeds nested file limit*/
KVError_PSTAccessFailed, /* 32 Access failed on PST files*/
KVError_PasswordRequired, /* 33 Password required to access file*/
KVError_InvalidArgs /* 34 Input argument/structure is invalid*/
KVError_ReaderUsageDenied, /* 35 Reader requires a valid license*/
KVError_OopBadConfig, /* 36 Config buffer data was incomplete*/
KVError_OopBrokenPipe, /* 37 Read/write to/from pipe failed*/
KVError_OopPipeOEF, /* 38 Pipe was closed prior to read/write*/
KVError_IPCTimeOut, /* 39 Pipe/socket timed out on poll/select*/
KVError_InvalidOopDriverSignature, /* 40 Client sent request to OOP server but
context driver does not exist on the server*/
KVError_InvalidOopServiceSignature, /* 41 Client sent request to OOP service that
does not exist*/
KVError_ZeroFile, /* 42 Input file is empty or zero bytes */
KVError_CompressionNotSupported /* 43 File or subfile is compressed with
unsupported method */KVError_NoTemplates /* 44 No templates found (nsfsr) */
KVError_NoMainTemplate /* 45 No main template found (nsfsr) */
KVError_InvalidTemplate /* 46 Invalid template (nsfsr) */
KVError_TemplateError /* 47 Template error (nsfsr) */
KVError_IsADirectory /* 48 A directory exists at the given pathname */
KVError_Last /* 49 */
}
KVErrorCodeEx;

Enumerators

KVError_OpenStreamFailure
= KVERR_ArchiveFatalError
+1

Failed to open a stream during out-of-process filtering. This is an
extended error for the KVERR_General code.

KVError_
InterfaceFunctionNotFound

An interface function was not found during out-of-process filtering.
This is an extended error for the KVERR_General code.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 172 of 320

KVError_InputFileNotFound Could not find the input file during out-of-process filtering. This is
an extended error for the KVERR_General code.

KVError_
OpenOutputFileFailed

Could not open the output file during out-of-process filtering. This
is an extended error for the KVERR_General code.

KVError_MemoryLeak A memory leak occurred during out-of-process filtering. This is an
extended error for the KVERR_General code.

KVError_MemoryOverwrite A memory overwrite occurred during out-of-process filtering. This
is an extended error for the KVERR_General code.

KVError_GPF An exception occurred during out-of-process filtering. This is an
extended error for the KVERR_General code.

KVError_OopCore A memory dumpwas generated in a child process during out-of-
process filtering. This is an extended error for the KVERR_General
code.

KVError_KVoopLogFailed The creation of the out-of-process error log failed. This is an
extended error for the KVERR_General code.

KVError_
OverNestedFileLimit

The container file has more than the allowable number of child
documents. One or more child documents were not converted.
Currently, this enumerator is not used.

KVError_PSTAccessFailed The PST file could not be converted. This error might be returned
when a call to fpOpenFile() returns NULL for one of the following
reasons:

l A Microsoft Outlook client is not installed.
l A Microsoft Outlook client is installed, but is not the default
email client.

l A Microsoft Outlook client is installed, but is not configured
correctly.

l The PST file is corrupt.
l The PST file is read-only (PST files must allow read and write
access).

l TheMAPI call fails.
l The bit editions of Microsoft Outlook do not match the bit
editions of the KeyView software.
For example, if 32-bit KeyView is used, 32-bit Outlook must be
installed. If 64-bit KeyView is used, 64-bit Outlook must be
installed.

KVError_PasswordRequired To open the file, youmust provide credentials. This error might be
returned when a call to fpOpenFile() returns NULL.

KVError_InvalidArgs The input argument or structure is invalid. This error is generated
by the File Extraction APIs.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 173 of 320

KVError_ReaderUsageDenied The current license key does not enable the document reader
required to filter the file. This error might be returned when a call to
fpOpenFile() returns NULL.

Some document readers are considered advanced features and
are licensed separately from the KeyView SDK (for example, the
PST andMBX readers). Contact your Micro Focus sales
representative to get an updated license key.

KVError_OopBadConfig Information in the kvxconfig.ini file is incomplete and cannot be
used to filter the XML file.

KVError_OopBrokenPipe Data was not transferred between the parent and child processes
during out-of-process filtering because either the parent or child
failed.

KVError_OopPipeOEF Data was not transferred between the parent and child processes
during out-of-process filtering because the parent process was
shut down.

KVError_IPCTimeOut Either the parent or child process is waiting for a reply or request
during out-of-process filtering.

KVError_
InvalidOopDriverSignature

A client sent a request to an out-of-process server, but the context
driver does not exist on the server.

KVError_
InvalidOopServiceSignature

A client sent a request to a File Extraction service that does not
exist.

If this error is generated on the call to fpClose(), you can ignore
it.

KVError_ZeroFile The input file is empty or zero bytes.

KVError_
CompressionNotSupported

The file or subfile is compressed with an unsupported
compressionmethod.

KVError_NoTemplates

KVError_NoMainTemplate

KVError_InvalidTemplate

KVError_TemplateError

KVError_IsADirectory

KVError_Last

Discussion

l When error reporting is enhanced in future releases, new error messages might be added to this
enumerator type. When you use this type, your codemust ensure binary compatibility with future

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 174 of 320

releases. See ProgrammingGuidelines, on page 169.
l If an extended error code is called for a format to which the error does not apply, the KVError_Last
code is returned.

VectorPictureAnchor An anchor for embedded vector graphics.

RasterPictureAnchor An anchor for embedded raster graphics.

H1Anchor An anchor for level 1 heading blocks (H1).

H2Anchor An anchor for level 2 heading blocks (H2).

H3Anchor An anchor for level 3 heading blocks (H3).

H4Anchor An anchor for level 4 heading blocks (H4).

H5Anchor An anchor for level 5 heading blocks (H5).

H6Anchor An anchor for level 6 heading blocks (H6).

XAnchor An anchor for an external file.

AnimatedGIFAnchor An anchor for embedded animatedGIF graphics.

CSSAnchor An anchor for an external CSS file.

GeneralAnchor Reserved for future use.

DBAnchor Used internally.

JPEGAnchor An anchor for an embedded JPEG graphic.

KVMetadataType

This enumerated type defines the data type of metadata that can be extracted from a subfile in amail
message or mail store. If a metadata field has a corresponding KeyView type in KVMetadataType, the
metadata is converted to the KVMetadataElem structure, and the structuremember isDataValid is 1.
This enumerated type is defined in kvtypes.h.

Definition

typedef enum
{
 KVMetadata_Unknown = 0,
 KVMetadata_Bool = 1,
 KVMetadata_Binary = 2,
 KVMetadata_Int4 = 3,
 KVMetadata_UInt4 = 4,
 KVMetadata_Int8 = 5,
 KVMetadata_UInt8 = 6,
 KVMetadata_String = 7,

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 175 of 320

 KVMetadata_Unicode = 8,
 KVMetadata_DateTime = 9,
 KVMetadata_Float = 10,
 KVMetadata_Double = 11,
 KVMetadata_Last
}
KVMetadataType;

Enumerators

KVMetadata_
Unknown

The value in the property is of an unknown type.

KVMetadata_
Bool

The value in the property is a Boolean value. The correspondingMAPI type is PT_
BOOLEAN.

KVMetadata_
Binary

The value in the property is a byte array. The correspondingMAPI type is PT_
BINARY.

KVMetadata_
Int4

The value in the property is a signed 4-byte integer. The correspondingMAPI types
are PT_I2, PT_SHORT, PT_I4, and PT_LONG.

KVMetadata_
UInt4

The value in the property is an unsigned 4-byte integer. This type is not currently
supported.

KVMetadata_
Int8

The value in the property is a signed 8-byte integer. This type is not currently
supported.

KVMetadata_
UInt8

The value in the property is an unsigned 8-byte integer. This type is not currently
supported.

KVMetadata_
String

The value in the property is a string. The correspondingMAPI type is PT_STRING8.

KVMetadata_
Unicode

The value in the property is a Unicode string. The correspondingMAPI type is PT_
UNICODE.

KVMetadata_
DateTime

The value in the property is a date and time. The correspondingMAPI type is PT_
SYSTIME.

KVMetadata_
Float

The value in the property is a 4-byte float. The correspondingMAPI type is PT_
FLOAT.

KVMetadata_
Double

The value in the property is an 8-byte double. The correspondingMAPI type is PT_
DOUBLE.

Discussion

New types might be added to this enumerated type. When you use this type, your code should ensure
binary compatibility with future releases. See ProgrammingGuidelines, on page 169.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 176 of 320

KVMetaNameType

This enumerated type defines the type of metadata fields extracted from a subfile in amail message or
mail store. See KVMetaName, on page 109. This enumerated type is defined in kvxtract.h.

Definition

typedef enum
{
 KVMetaNameType_Integer = 0,
 KVMetaNameType_String = 1
}
KVMetaNameType;

Enumerators

KVMetaNameType_Integer Themetadata field is an integer.

KVMetaNameType_String Themetadata field is a string.

KVSumInfoType

This enumerated type defines the data type of themetadata field extracted from a document. This
enumerated type is defined in kvtypes.h.

Definition

typedef enum tag_KVSumInfoType
{
 KV_String = 0x1,
 KV_Int4 = 0x2,
 KV_DateTime = 0x3,
 KV_ClipBoard = 0x4,
 KV_Bool = 0x5,
 KV_Unicode = 0x6,
 KV_IEEE8 = 0x7,
 KV_Other = 0x8
}
KVSumInfoType;

Enumerators

KV_String The value in themetadata field is a string.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 177 of 320

KV_Int4 The value in themetadata field is an integer.

KV_
DateTime

The value in themetadata field is a date and time. This type is a 64-bit value
representing the number of 100-nanosecond intervals since January 1, 1601 (Windows
FILETIME EPOCH). Youmight need to convert this value into another format.

The Filter sample program demonstrates how to convert this value to another format.
The program translates KV_DATETIME to a UNIX timestamp, that is, the number of
seconds since 00:00:00 (UTC), January 1, 1970. It then uses the ctime system library
call, which works on UNIX andWindows, to print the date in the following format:

Thu Aug 22 16:19:07 2002

KV_
ClipBoard

Currently not supported.

KV_Bool The value in themetadata field is a Boolean value.

KV_
Unicode

The value in themetadata field is a Unicode string.

KV_IEEE8 The value in themetadata field is an IEEE 8-byte integer.

KV_Other The value in themetadata field is user-defined.

KVSumType

This enumerated type defines themetadata fields that can be extracted from a document. This
enumerated type is defined in kvtypes.h.

l Types 0 to 34 and type 42 are Office summary fields.
l Types 35 to 40 are computer-aided design (CAD)metadata fields.
l Type 41, KV_OrigAppVersion, is shared by Office software and CAD.
Types 43 or greater are reserved for any non-standardmetadata field defined in a document.

Definition

typedef enum tag_KVSumType

KV_CodePage = 0,
KV_Title = 1,
KV_Subject = 2,
KV_Author = 3,
KV_Keywords = 4,
KV_Comments = 5,
KV_Template = 6,
KV_LastAuthor = 7,
KV_RevNumber = 8,
KV_EditTime = 9,
KV_LastPrinted = 10,

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 178 of 320

KV_Create_DTM = 11,
KV_LastSave_DTM = 12,
KV_PageCount = 13,
KV_WordCount = 14,
KV_CharCount = 15,
KV_ThumbNail = 16,
KV_AppName = 17,
KV_Security = 18,
KV_Category = 19,
KV_PresentationTarget = 20,
KV_Bytes = 21,
KV_Lines = 22,
KV_Paragraphs = 23,
KV_Slides = 24,
KV_Notes = 25,
KV_HiddenSlides = 26,
KV_MMClips = 27,
KV_ScaleCrop = 28,
KV_HeadingPairs = 29,
KV_TitlesofParts = 30,
KV_Manager = 31,
KV_Company = 32,
KV_LinksUpToDate = 33,
KV_HyperlinkBase = 34,
KV_Layouts = 35,
KV_Objects = 36,
KV_FileVersion = 37,
KV_LastFileVersion = 38,
KV_OrigFileVersion = 39,
KV_OrigFileType = 40,
KV_OrigAppVersion = 41,

 KV_ContentStatus = 42,
KV_UserDefined = 43

}
KVSumType;

Enumerators

KV_CodePage The code page of the document.

KV_Title The contents of the "Title" property field taken from the source document.

KV_Subject The contents of the "Subject" property field taken from the source document.

KV_Author The contents of the "Author" property field taken from the source document.

KV_Keywords The contents of the "Keywords" property field taken from the source
document.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 179 of 320

KV_Comments The contents of the "Comments" property field taken from the source
document.

KV_Template The contents of the "Template" property field taken from the source
document.

KV_LastSavedby The contents of the "Last saved by" property field taken from the source
document.

KV_RevNumber The contents of the "Revision number" property field taken from the source
document.

KV_EditTime The contents of the "Total editing time" property field taken from the source
document.

KV_LastPrinted The contents of the "Printed" property field taken from the source document.

KV_Create_DTM The contents of the "Created" property field taken from the source
document.

KV_LastSave_DTM The contents of the "Modified" property field taken from the source
document.

KV_PageCount The contents of the "Pages" property field taken from the source document.
The field provides the number of pages in the document.

KV_WordCount The contents of the "Words" property field taken from the source document.
The field provides the number of words in the document.

KV_CharCount The contents of the "Characters" property field taken from the source
document. The field provides the number of characters in the document.

KV_ThumbNail A thumbnail image of a document.

KV_AppName The contents of the "Type" property field taken from the source document.
This field identifies the application used to read the document.

KV_Security The contents of the "Attributes" property field taken from the source
document.

KV_Category The contents of the "Category" property field taken from the source
document.

KV_
PresentationTarget

The target format for presentations (35mm, printer, video, and so on).

KV_Bytes The contents of the "Size" property field taken from the source document.
The field provides the size of the file in bytes.

KV_Lines The contents of the "Lines" property field taken from the source document.
The field provides the number of lines in the document.

KV_Paragraphs The contents of the "Paragraphs" property field taken from the source
document. The field provides the number of paragraphs in the document.

KV_Slides The contents of the "Slides" property field taken from a presentation

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 180 of 320

document. The field provides the number of slides in the document.

KV_Notes The contents of the "Notes" property field taken from a presentation
document. The field provides the number of notes in the document.

KV_HiddenSlides The contents of the "Hidden slides" property field taken from a presentation
document. The field provides the number of hidden slides in the document.

KV_MMClips The contents of the "Multimedia clips" property field taken from a
presentation document. The field provides the number of multimedia clips in
the document.

KV_ScaleCrop A Boolean value that specifies whether thumbnails are cropped or scaled.

KV_HeadingPairs An internally-used property indicating the grouping of different document
parts and the number of items in each group.

KV_TitlesofParts The contents of the "Document Contents" property field taken from the
source document. The field contains a list of the parts of the file, such as the
names of macro sheets in Microsoft Excel or the headings inWord.

KV_Manager The contents of the "Manager" property field taken from the source
document.

KV_Company The contents of the "Company" property field taken from the source
document.

KV_LinksUpToDate A Boolean value that specifies whether links in the document are resolved
and current.

KV_HyperlinkBase The base address used for all relative links in the file.

KV_Layouts The number of layouts in the AutoCAD drawing.

KV_Objects The approximate number of objects in the AutoCAD drawing.

KV_FileVersion The AutoCAD version (for example, R13, R14) of the drawing.

KV_LastFileVersion The AutoCAD version (for example, R13, R14) that the AutoCAD drawing
was last saved as.

KV_OrigFileVersion The AutoCAD version (for example, R13, R14) of the original source file.

KV_OrigFileType The AutoCAD file type (for example, DWG, DXF, or DWB) of the original
source file.

KV_OrigAppVersion The AutoCAD version (for example, R13, R14) of the application that
created the original source file.

KV_ContentStatus The status of the content, for example Draft, Reviewed, or Final.

KV_UserDefined The contents of the first entry in the array of non-standardmetadata. This
could be user-definedmetadata, or metadata unique to a file type.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 181 of 320

LPDF_DIRECTION

This enumerated type defines the paragraph direction of extracted paragraphs from a PDF file when
logical order is enabled. This enumerated type is defined in kvtypes.h.

Definition

typedef enum{
 LPDF_RAW = 0,
 LPDF_LTR,
 LPDF_RTL,
 LPDF_AUTO
} LPDF_DIRECTION ;

Enumerators

LPDF_
RAW

Unstructured paragraph flow. This is the default behavior.

LPDF_
LTR

Logical reading order and left-to-right paragraph direction.

LPDF_
RTL

Logical reading order and right-to-left paragraph direction.

LPDF_
AUTO

Logical reading order. The PDF reader determines the paragraph direction for each PDF
page, and then sets the direction accordingly. This is the default when logical order is
enabled.

Filter SDK C ProgrammingGuide
Chapter 10: Enumerated Types

KeyView (11.6) Page 182 of 320

KeyView (11.6)

Page 183 of 320

Appendixes

This section lists supported formats, supported character sets, and redistributed files, and provides
information on format detection and developing a custom document reader.

Appendix A: Supported Formats

This section lists information about the file formats that can be detected and processed (either filtered,
converted, or displayed) by the KeyView suite of products. The KeyView suite includes KeyView Filter
SDK, KeyView Export SDK, and KeyView Viewing SDK.

• Supported Formats 184
• Supported Formats (Detected) 209

Supported Formats

The tables in this section provide the following information:

l The file formats supported by the Filter API, Export API, Viewing API, and File Extraction API. The
supported versions and the format’s extension are also listed.
The formats listed in this section can also be detected by the KeyView format detectionmodule
(kwad). The Supported Formats (Detected) section lists formats that can be detected, but cannot be
filtered, converted, or displayed.

l The file formats for which KeyView can detect and extract the character set andmetadata
information (properties such as title, author, and subject).
Even though a file format might be able to provide character set information, some documents might
not contain character set information. Therefore, the document reader would not be able to determine
the character set of the document. In this case, either the operating system code page or the
character set specified in the API is used.

l The document reader used to filter each format.

Symbol Description

Y The format is supported.

You can extract metadata for this format.

You can determine the character set for this format.

N The format is not supported.

You cannot extract metadata for this format.

You cannot determine the character set for this format.

P Partial metadata is extracted from this format. Some non-standard fields are not
extracted.

T Only text is extracted from this format. Formatting information is not extracted.

M Only metadata (title, subject, author, and so on) is extracted from this format. Text and

Key to Support Tables

KeyView (11.6) Page 184 of 320

Symbol Description

formatting information are not extracted.

Key to Support Tables, continued

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 185 of 320

Archive Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

7-Zip 4.57 z7zsr,
multiarcsr1

7Z N N Y Y N n/a N

AD1 n/a ad1sr AD1 N N Y Y N n/a N

ARJ n/a multiarcsr ARJ N N N Y N n/a N

B1 n/a b1sr B1 N N Y Y N n/a N

BinHex n/a kvhqxsr HQX N N Y Y N n/a N

Bzip2 n/a bzip2sr BZ2 N N Y Y N n/a N

Expert Witness
Compression Format
(EnCase)

6 encasesr E01, L01 N N Y Y N n/a N

7 encase2sr Lx01 N N Y Y N n/a N

GZIP 2 kvgzsr GZ N N N Y N n/a N

kvgz GZ N N Y N N n/a N

ISO n/a isosr ISO N N Y Y N n/a N

Java Archive n/a unzip JAR N N Y Y N n/a N

Legato EMailXtender n/a emxsr EMX N N Y Y N n/a N

Supported Archive Formats

17zip is supported with themultiarcsr reader on some platforms for Extract.

Page 186 of 320KeyView (11.6)

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Archive

MacBinary n/a macbinsr BIN N N Y Y N n/a N

Mac Disk Copy Disk Image n/a dmgsr DMG N N Y Y N n/a N

Microsoft Backup File n/a bkfsr BKF N N Y Y N n/a N

Microsoft Cabinet format 1.3 cabsr CAB N N Y Y N n/a N

Microsoft Compiled HTML
Help

3 chmsr CHM N N Y Y N n/a N

Microsoft Compressed
Folder

n/a lzhsr LZH
LHA

N N N Y N n/a N

PKZIP through
9.0

unzip ZIP N N Y Y N n/a N

RAR archive 2.0
through
3.5

rarsr RAR N N N Y N n/a N

RAR5 archive 5 multiarcsr RAR5 N N N Y N n/a N

Tape Archive n/a tarsr TAR N N Y Y N n/a N

UNIX Compress n/a kvzeesr Z N N N Y N n/a N

kvzee Z N N Y N N n/a N

UUEncoding all
versions

uudsr UUE N N Y Y N n/a N

XZ n/a multiarcsr XZ N N N Y N n/a N

Supported Archive Formats, continued

KeyView (11.6) Page 187 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Windows Scrap File n/a olesr SHS N N N Y N n/a N

WinZip through
10

unzip ZIP N N Y Y N n/a N

Supported Archive Formats, continued

Binary Format

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Executable n/a exesr EXE N N Y N N n/a N

Link Library n/a exesr DLL N N Y N N n/a N

Supported Binary Formats

Computer-Aided Design Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

AutoCAD
Drawing

R13, R14,
R15/2000, 2004,
2007, 2010, 2013

kpODArdr
kpDWGrdr1

DWG Y Y2 Y 3 N Y Y N

Supported CAD Formats

1OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3On non-Windows platforms, graphic rendering is supported through the kpDWGrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.

KeyView (11.6) Page 188 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

AutoCAD
Drawing
Exchange

R13, R14,
R15/2000, 2004,
2007, 2010, 2013

kpODArdr
kpDXFrdr1

DXF Y Y2 Y3 N Y Y N

CATIA formats 5 kpCATrdr CAT4 Y N N N Y N N

Microsoft Visio 4, 5, 2000, 2002,
2003, 2007, 20105

vsdsr VSD Y Y Y Y6 Y Y N

kpVSD2rdr VSD, VSS
VST

Y Y Y N Y Y N

2013 ActiveX
components

VSDM
VSSM
VSTM
VSDX
VSSX
VSTX

N N Y7 N Y N N

kpVSDXrdr VSDM Y Y Y4 Y Y Y N

Supported CAD Formats, continued

1OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
2On non-Windows platforms, graphic rendering is supported through the kpDXFrdr reader for versions R13, R14, R15, and R18 (2004); for other
versions, only text extraction is supported.
3OnWindows platforms, kpODArdr is used for all versions up to 2007 and graphic rendering is supported; for later versions, only text extraction is
supported through the kpDWGrdr or kpDXFrdr reader.
4All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.
5Viewing and Export use the graphic reader, kpVSD2rdr for Microsoft Visio 2003, 2007, and 2010, and vsdsr for all earlier versions. Image fidelity
in Viewing and Export is therefore only supported for versions 2003 and above. Filter uses the graphic reader kpVSD2rdr for Microsoft Visio 2003,
2007, and 2010, and vsdsr for all earlier versions.
6Extraction of embeddedOLE objects is supported for Filter onWindows platforms only.
7Visio 2013 is supported in Viewing only, with the support of ActiveX components from theMicrosoft Visio 2013 Viewer. Image fidelity is
supported but other features, such as highlighting, are not.

KeyView (11.6) Page 189 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VSSM
VSTM
VSDX
VSSX
VSTX

Unigraphics
(UG) NX

kpUGrdr PRT Y N N N N N N

Supported CAD Formats, continued

Database Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

dBase
Database

III+, IV dbfsr DBF Y Y Y N N N N

Microsoft
Access

95, 97, 2000, 2002, 2003,
2007, 2010, 2013, 2016

mdbsr MDB,
ACCDB

Y T T N N Y1 N

Microsoft
Project

2000, 2002, 2003, 2007,
2010, 2013

mppsr MPP Y Y Y Y Y Y N

Supported Database Formats

1Charset is not supported for Microsoft Access 95 or 97.

KeyView (11.6) Page 190 of 320

Filter SDK C ProgrammingGuide

Desktop Publishing

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Publisher 98 to 2016 mspubsr PUB Y T T Y Y Y N

Supported Desktop Publishing Formats

Display Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe PDF 1.1 to 1.7 pdfsr PDF Y Y N Y1 Y Y N

pdf2sr PDF N Y N N N N N

kppdfrdr PDF N Y Y N N N N

kppdf2rdr2 PDF N N Y N N N N

Supported Display Formats

1Includes support for extraction of subfiles from PDF Portfolio documents.
2kppdf2rdr is an alternate graphic-based reader that produces high-fidelity output but does not support other features such as highlighting or text
searching.

KeyView (11.6) Page 191 of 320

Filter SDK C ProgrammingGuide

Graphic Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Computer Graphics
Metafile

n/a kpcgmrdr1 CGM Y Y Y N N N N

CorelDRAW2 through
9.0

10, 11,
12, X3

kpcdrrdr CDR N Y Y N N N N

DCX Fax System n/a kpdcxrdr DCX N Y Y N N N N

Digital Imaging &
Communications in
Medicine (DICOM)

n/a dcmsr DCM M N N N Y N N

Encapsulated PostScript
(raster)

TIFF
header

kpepsrdr EPS N Y Y N N N N

EnhancedMetafile n/a kpemfrdr EMF Y Y Y N Y N N

GIF 87, 89 kpgifrdr GIF N Y Y N N N N

gifsr M M N N Y N N

JBIG2 n/a kpJBIG2rdr JBIG2 N Y Y N N N N

Supported Graphic Formats

1Files with non-partitioned data are supported.
2CDR/CDR with TIFF header.

KeyView (11.6) Page 192 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JPEG n/a kpjpgrdr JPEG N Y Y N N N N

jpgsr M M N N Y N N

JPEG 2000 n/a kpjp2000rdr JP2, JPF,
J2K, JPWL,
JPX, PGX

N Y Y N N N N

jp2000sr M M N N Y N N

Lotus AMIDraw
Graphics

n/a kpsdwrdr SDW N Y Y N N N N

Lotus Pic n/a kppicrdr PIC Y Y Y N N N N

Macintosh Raster 2 kppctrdr PIC
PCT

N Y Y N N N N

MacPaint n/a kpmacrdr PNTG N Y Y N N N N

Microsoft Office Drawing n/a kpmsordr MSO N Y Y N N N N

Omni Graffle n/a kpGFLrdr GRAFFLE Y N N N Y Y N

PC PaintBrush 3 kppcxrdr PCX N Y Y N N N N

Portable Network
Graphics

n/a kppngrdr PNG N Y Y N N N N

pngsr PNG M M N N Y N N

SGI RGB Image n/a kpsgirdr RGB N Y Y N N N N

SunRaster Image n/a kpsunrdr RS N Y Y N N N N

Supported Graphic Formats, continued

KeyView (11.6) Page 193 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Tagged Image File through
6.01

tifsr TIFF M M N N Y N N

kptifrdr TIFF N Y Y N N N N

Truevision Targa 2 kpTGArdr TGA N Y Y N N N N

Windows Animated
Cursor

n/a kpanirdr ANI N Y Y N N N N

Windows Bitmap n/a kpbmprdr BMP N Y Y N N N N

bmpsr BMP M M N N Y N N

Windows Icon Cursor n/a kpicordr ICO N Y Y N N N N

Windows Metafile 3 kpwmfrdr WMF Y Y Y N N N N

WordPerfect Graphics 1 1 kpwpgrdr WPG N Y Y N N N N

WordPerfect Graphics 2 2, 7 kpwg2rdr WPG N Y Y N N N N

Supported Graphic Formats, continued

1The following compression types are supported: no compression, CCITT Group 3 1-Dimensional Modified Huffman, CCITT Group 3 T4 1-
Dimensional, CCITT Group 4 T6, LZW, JPEG (only Gray, RGB and CMYK color space are supported), and PackBits.

KeyView (11.6) Page 194 of 320

Filter SDK C ProgrammingGuide

Mail Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Documentum
EMCMF

n/a msgsr EMCMF N N Y Y Y Y N

Domino XML
Language1

n/a dxlsr DXL N N Y Y Y N N

GroupWise FileSurf n/a gwfssr GWFS N N Y Y Y N N

Legato Extender n/a onmsr ONM N N Y Y Y N N

Lotus Notes
database

4, 5, 6.0, 6.5, 7.0, 8.0 nsfsr NSF N N Y Y Y N N

Mailbox2 Thunderbird 1.0,
Eudora 6.2

mbxsr3 MBX N N T Y Y Y N

Microsoft Entourage
Database

2004 entsr various N N Y Y Y Y N

Supported Mail Formats

1Supports non-encrypted embedded files only.
2KeyView supports MBX files created by Eudora Email andMozilla Thunderbird. MBX files created by other commonmail applications are
typically filtered, converted, and displayed.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.

KeyView (11.6) Page 195 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook 97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

msgsr1 MSG,
OFT

Y T T Y Y Y 2 N

Microsoft Outlook
DBX

5.0, 6.0 dbxsr DBX N N Y Y Y Y N

Microsoft Outlook
Express

Windows 6
MacIntosh 5

emlsr3 EML Y T T Y Y Y N

mbxsr4 EML N N T Y Y Y N

Microsoft Outlook
iCalendar

1.0, 2.0 icssr ICS, VCS N N Y Y Y Y N

Microsoft Outlook
for Macintosh

2011 olmsr OLM N N Y Y N Y N

Microsoft Outlook
Offline Storage File

97, 2000, 2002,
2003, 2007, 2010,
2013

pffsr5 OST N N Y Y Y Y N

Supported Mail Formats, continued

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
2Returns "Unicode" character set for version 2003 and up, and "Unknown" character set for previous versions.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
5The reader pffsr is available only onWindows and Linux.

KeyView (11.6) Page 196 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft Outlook
Personal Folder

97, 2000, 2002,
2003, 2007, 2010,
2013, 2016

pstsr12 PST N N Y Y Y N N

97, 2000, 2002,
2003, 2007, 2010,
2013

pstnsr PST N N Y Y Y Y N

Microsoft Outlook
vCard Contact

2.1, 3.0, 4.0 vcfsr VCF Y Y T N Y N N

Text Mail (MIME) n/a emlsr3 various Y T T Y Y Y N

mbxsr4 various Y T T Y Y Y N

Transport Neutral
Encapsulation
Format

n/a tnefsr various N N Y Y Y Y N

Supported Mail Formats, continued

Multimedia Formats

Viewing SDK plays somemultimedia files using theWindows Media Control Interface (MCI). MCI is a set of Windows APIs that communicate
with multimedia devices.

1This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
2Uses Microsoft Messaging Application Programming Interface (MAPI). Note that the native PST reader (pstsr) works only onWindows, and
requires that you haveMicrosoft Outlook installed. As an alternative, theMAPI reader (pstnsr) runs on all platforms, and does not require
Microsoft Outlook. For more information on using the native PST reader or theMAPI reader, see the sections 'Use the Native PST Reader
(pstnsr) ' and 'Use theMAPI Reader (pstsr)' in Chapter 3.
3This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.
4This reader supports both clear signed and encrypted S/MIME. KeyView supports S/MIME for PST, EML, MBX, andMSG files.

KeyView (11.6) Page 197 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Advanced Systems Format 1.2 asfsr ASF
WMA
WMV

N N N N Y N N

Audio Interchange File
Format

n/a MCI AIFF N N Y N N N N

aiffsr AIFF M N N N Y N N

Microsoft Wave Sound n/a MCI WAV N N Y N N N N

riffsr WAV M N N N Y N N

MIDI n/a MCI MID N N Y N N N N

MPEG-1 Audio layer 3 ID3 v1 and
v2

MCI MP3 N N Y N N N N

mp3sr MP3 M M Y N Y N N

MPEG-1 Video 2, 3 MCI MPG N N Y N N N N

MPEG-2 Audio n/a MCI MPEGA N N Y N N N N

MPEG-4 Audio n/a mpeg4sr MP4
3GP

M N N N Y N N

NeXT/Sun Audio n/a MCI AU N N Y N N N N

QuickTimeMovie 2, 3, 4 MCI QT
MOV

N N Y N N N N

Windows Video 2.1 MCI AVI N N Y N N N N

Supported Multimedia Formats

NOTE:
Depending on the default multimedia player installed on your computer, the View API might not be able to play some supportedmultimedia
formats. To play multimedia files, the View API uses theWindows Media Control Interface (MCI) to communicate with themultimedia

KeyView (11.6) Page 198 of 320

Filter SDK C ProgrammingGuide

player installed on your computer. If the player does not play amultimedia file that is supported by the Viewing SDK, the View API cannot
play the file.

If you cannot play a supportedmultimedia file by using the View API, install a different multimedia player or compressor/decompressor
(codec) component.

Presentation Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Keynote 2, 3, ‘08, ‘09 kpIWPGrdr GZ Y Y Y N Y Y N

'13, '16 kplWPG13rdr KEY Y N N N N N N

Applix Presents 4.0, 4.2, 4.3,
4.4

kpagrdr AG Y Y Y N N N N

Corel Presentations 6, 7, 8, 9, 10,
11, 12, X3

kpshwrdr SHW Y Y Y N N N N

Extensible Forms
Description Language

n/a kpXFDLrdr XFD
XFDL

Y Y Y N Y Y N

Lotus Freelance
Graphics

96, 97, 98,
R9, 9.8

kpprzrdr PRZ Y Y Y N N N N

Lotus Freelance
Graphics 2

2 kpprerdr PRE Y Y Y N N N N

Macromedia Flash through 8.0 swfsr SWF Y Y Y N N Y1 N

Supported Presentation Formats

1The character set cannot be determined for versions 5.x and lower.

KeyView (11.6) Page 199 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Microsoft OneNote 2007, 2010,
2013, 2016

kpONErdr ONE
ONETOC2

Y Y Y Y N Y N

Microsoft PowerPoint
Macintosh

98 kpp40rdr PPT Y Y Y N N N N

2001, v.X,
2004

kpp97rdr PPT
PPS
POT

Y Y Y N P Y N

Microsoft PowerPoint
PC

4 kpp40rdr PPT Y Y Y N P N N

Microsoft PowerPoint
Windows

95 kpp95rdr PPT Y Y Y N P Y N

Microsoft PowerPoint
Windows

97, 2000,
2002, 2003

kpp97rdr PPT
PPS
POT

Y Y Y Y P Y Y1

Microsoft PowerPoint
Windows XML

2007, 2010,
2013, 2016

kpppxrdr PPTX
PPTM
POTX
POTM
PPSX
PPSM
PPAM

Y Y Y Y Y Y Y

OASIS Open 1, 22 kpodfrdr SXD Y Y Y Y3 Y Y N

Supported Presentation Formats, continued

1Slide footers are supported for Microsoft PowerPoint 97 and 2003.
2Generated by OpenOffice Impress 2.0, StarOffice 8 Impress, and IBM Lotus Symphony Presentation 3.0.
3Supported using the olesr embedded objects reader.

KeyView (11.6) Page 200 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Document Format SXI
ODG
ODP

OpenOffice Impress,
LibreOffice Impress

1 to 5 sosr SXI
SXP
ODP

Y T T N Y Y N

StarOffice Impress 6, 7, 8, 9 sosr SXI
SXP
ODP

Y T T N Y Y N

Supported Presentation Formats, continued

Spreadsheet Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Apple iWork Numbers ‘08, ‘09 iwsssr GZ Y Y Y N Y Y N

'13, '16 iwss13sr NUMBERS Y T T N N Y N

Applix Spreadsheets 4.2, 4.3, 4.4 assr AS Y Y Y N N Y N

CommaSeparated
Values

n/a csvsr CSV Y Y Y N N N N

Corel Quattro Pro 5, 6, 7, 8 qpssr WB2
WB3

Y Y Y N P Y N

X4 qpwsr QPW Y N Y N P Y N

Data Interchange n/a difsr Y Y Y N N N N

Supported Spreadsheet Formats

KeyView (11.6) Page 201 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Format

Lotus 1-2-3 96, 97, R9, 9.8 l123sr 123 Y Y Y N P Y N

Lotus 1-2-3 2, 3, 4, 5 wkssr WK4 Y Y Y N N Y N

Lotus 1-2-3 Charts 2, 3, 4, 5 kpchtrdr 123 N Y Y N N N N

Microsoft Excel Charts 2, 3, 4, 5, 6, 7 kpchtrdr XLS N Y Y N N N N

Microsoft Excel
Macintosh

98, 2001, v.X,
2004

xlssr XLS Y Y Y Y1 Y Y N

Microsoft Excel
Windows

2.2 through
2003

xlssr XLS
XLW
XLT
XLA

Y Y Y Y2 Y Y Y

Microsoft Excel
Windows XML

2007, 2010,
2013, 2016

xlsxsr XLSX
XLTX
XLSM
XLTM
XLAM

Y Y Y Y Y Y Y

Microsoft Excel Binary
Format

2007, 2010,
2013, 2016

xlsbsr XLSB Y Y Y N N N N

Microsoft Works
Spreadsheet

2, 3, 4 mwssr S30
S40

Y Y Y N N Y N

Supported Spreadsheet Formats, continued

1Supported using the embedded objects reader olesr.
2Supported for versions 97 and higher using the embedded objects reader olesr.

KeyView (11.6) Page 202 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

OASIS Open
Document Format

1, 21 odfsssr ODS
SXC
STC

Y Y Y Y2 Y Y N

OpenOffice Calc,
LibreOffice Calc

1 to 5 sosr SXC
ODS
OTS

Y T T N Y Y N

StarOffice Calc 6, 7, 8, 9 sosr SXC
ODS

Y T T N Y Y N

Supported Spreadsheet Formats, continued

Text and Markup Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

ANSI n/a afsr TXT Y Y Y N N N N

ASCII n/a afsr TXT Y Y Y N N N N

HTML 3, 4 htmsr HTM Y Y Y N P Y N

Microsoft Excel Windows
XML

2003 xmlsr XML Y T T N Y Y N

Microsoft WordWindows
XML

2003 xmlsr XML Y T T N Y Y N

Microsoft Visio XML 2003 xmlsr VDX Y T T N Y Y N

Supported Text and Markup Formats

1Generated by OpenOffice Calc 2.0, StarOffice 8 Calc, and IBM Lotus Symphony Spreadsheet 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 203 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

VTX

MIME HTML n/a mhtsr MHT Y Y Y N Y Y N

Rich Text Format 1 through
1.7

rtfsr RTF Y Y Y N P Y Y

Unicode HTML n/a unihtmsr HTM Y Y Y N Y Y N

Unicode Text 3, 4 unisr TXT Y Y Y N N Y N

XHTML 1.0 htmsr HTM Y Y Y N Y Y N

XML (generic) 1.0 xmlsr XML Y T T N Y Y N

Supported Text and Markup Formats, continued

Word Processing Formats

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Adobe FrameMaker
Interchange Format

5, 5.5, 6, 7 mifsr MIF Y Y Y N N Y N

Apple iChat Log 1, AV 2
AV 2.1, AV 3

ichatsr ICHAT Y Y Y N N N N

Apple iWork Pages ‘08, ‘09 iwwpsr GZ Y Y Y N Y Y N

'13, '16 iwwp13sr PAGES Y T T N N N N

Applix Words 3.11, 4, 4.1,
4.2, 4.3, 4.4

awsr AW Y Y Y N N Y Y

Supported Word Processing Formats

KeyView (11.6) Page 204 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Corel WordPerfect
Linux

6.0, 8.1 wp6sr WPS Y Y Y N P Y N

Corel WordPerfect
Macintosh

1.02, 2, 2.1,
2.2, 3, 3.1

wpmsr WPM Y Y Y N N Y N

Corel WordPerfect
Windows

5, 5.1 wosr WO Y Y Y N P Y Y

Corel WordPerfect
Windows

6, 7, 8, 9, 10,
11, 12, X3

wp6sr WPD Y Y Y N P Y Y

DisplayWrite 4 dw4sr IP Y Y Y N N Y N

Folio Flat File 3.1 foliosr FFF Y Y Y N Y Y Y

Founder Chinese E-
paper Basic

3.2.1 cebsr1 CEB Y N N N N N N

Fujitsu Oasys 7 oa2sr OA2 Y Y Y N P N N

Haansoft Hangul 97 hwpsr HWP Y N N N N Y N

2002, 2005,
2007, 2010

hwposr HWP Y T T Y Y Y N

Health level7 2.0 hl7sr HL7 Y Y Y N Y Y N

IBM DCA/RFT
(Revisable Form Text)

SC23-0758-1 dcasr DC Y Y Y N N Y N

Supported Word Processing Formats, continued

1This reader is only supported onWindows 32-bit platforms.

KeyView (11.6) Page 205 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

JustSystems Ichitaro 8 through 2013 jtdsr JTD Y Y Y N P N Y

Lotus AMI Pro 2, 3 lasr SAM Y Y Y N P Y Y

Lotus AMI Professional
Write Plus

2.1 lasr AMI Y Y Y N N N Y

Lotus Word Pro 96, 97, R9 lwpsr LWP Y Y Y N P N Y

Lotus SmartMaster 96, 97 lwpsr MWP Y Y Y N N N N

Microsoft Word
Macintosh

4, 5, 6, 98 mbsr DOC Y Y Y N Y N Y

2001, v.X,
2004

mw8sr DOC
DOT

Y Y Y Y1 Y Y N

Microsoft Word PC 4, 5, 5.5, 6 mwsr DOC Y Y Y N N N Y

Microsoft Word
Windows

1.0 and 2.0 misr DOC Y Y Y N N N Y

Microsoft Word
Windows

6, 7, 8, 95 mw6sr DOC Y Y Y N Y Y Y

Microsoft Word
Windows

97, 2000,
2002, 2003

mw8sr DOC
DOT

Y Y Y Y2 Y Y Y

Microsoft Word
Windows XML

2007, 2010,
2013, 2016

mwxsr DOCM
DOCX

Y Y Y Y Y Y Y

Supported Word Processing Formats, continued

1Supported using the embedded objects reader olesr.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 206 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

DOTX
DOTM

Microsoft Word
Windows Flat XML

2007, 2010,
2013, 2016

mwxsr XML Y Y Y Y Y Y Y

Microsoft Works 1, 2, 3, 4 mswsr WPS Y Y Y N N N Y

Microsoft Works 6, 2000 msw6sr WPS Y Y Y N N N Y

Microsoft Windows
Write

1, 2, 3 mwsr WRI Y Y Y N N Y N

OASIS Open
Document Format

1, 21 odfwpsr ODT
SXW
STW

Y Y Y Y2 Y Y Y

Omni Outliner v3, OPML,
OOutline

oo3sr OO3
OPML
OOUTLINE

Y Y Y N N Y N

OpenOfficeWriter,
LibreOfficeWriter

1 to 5 sosr SXW
ODT

Y T T N Y Y N

Open Publication
Structure eBook

2.0, 3.0 epubsr EPUB Y Y Y N Y Y N

StarOfficeWriter 6, 7, 8, 9 sosr SXW
ODT

Y T T N Y Y N

Supported Word Processing Formats, continued

1Generated by OpenOfficeWriter 2.0, StarOffice 8Writer, and IBM Lotus Symphony Documents 3.0.
2Supported using the embedded objects reader olesr.

KeyView (11.6) Page 207 of 320

Filter SDK C ProgrammingGuide

Format Version Reader Extension Filter Export View Extract Metadata Charset Header/Footer

Skype Log 3 skypesr DBB Y Y Y N N N N

WordPad through 2003 rtfsr RTF Y Y Y N P Y N

XMLPaper
Specification

n/a xpssr XPS Y T T N N N N

XyWrite 4.12 xywsr XY4 Y Y Y N N N N

Yahoo! Instant
Messenger

n/a yimsr1 DAT Y Y Y N N N N

Supported Word Processing Formats, continued

1To successfully use this reader, youmust set the KV_YAHOO_ID environment variable to the Yahoo user ID. You can optionally set the KV_
OTHER_YAHOO_ID environment variable to the other Yahoo user ID. If you do not set it, "Other" is used by default. If you enter incorrect values for
the environment variables, erroneous data is generated.

KeyView (11.6) Page 208 of 320

Filter SDK C ProgrammingGuide

Supported Formats (Detected)

The file formats listed in this section can be detected by the KeyView format detectionmodule (kwad),
but cannot be filtered, converted, or displayed. The detectionmodule determines a file’s format and
reports the information to the developer’s application.

The formats listed in Supported Formats, on page 184 can be detected as well as filtered, exported, and
viewed.

l 3D Systems STL format
l Ability Office (SS, DB, GR, WP, COM)
l AC3 audio
l ACT
l Adobe FrameMaker
l Adobe FrameMaker Markup Language
l AES Multiplus Comm
l Aldus Freehand (Macintosh)
l Aldus PageMaker (DOS)
l Aldus PageMaker (Macintosh)
l Amiga IFF-8SVX sound
l AmigaMOD sound
l Apple Binary Property List
l Apple Double
l Apple iWork
l Apple Photoshop Document
l Apple Single
l Apple XML Property List
l Appleworks
l Applix Alis
l Applix Asterix
l Applix Graphics
l ARC/PAK Archive
l ASCII-armored PGP encoded
l ASCII-armored PGP Public Keyring
l ASCII-armored PGP signed
l AutoDesk Animator FLIC Animation
l AutoDesk Animator Pro FLIC Animation
l AutoDesk WHIP
l AutoShade Rendering
l B1 Archive

KeyView (11.6) Page 209 of 320

l BlackBerry Activation File
l CADAMDrawing
l CADAMDrawingOverlay
l CCITT Group 3 1-Dimensional (G31D)
l COMET TOPWord
l Confifer SoftwareWavPack
l Convergent Tech DEF Comm.
l Corel Draw CMX
l cpio Archive (UNIX/VAX/SUN)
l CPT Communication
l Creative Voice (VOC) sound
l Curses Screen Image (UNIX/VAX/SUN)
l Data Point VISTAWORD
l DCX Fax
l DEC WPS PLUS
l DECdx
l Desktop Color Separation (DCS)
l Device Independent file (DVI)
l DGCEOwrite
l DGCommonData Stream (CDS)
l DIF Spreadsheet
l Digital Document Interchange Format (DDIF)
l Digital Imaging and Communications in Medicine (DICOM)
l Disk Doubler Compression
l EBCDIC Text
l eFax
l ENABLE
l ENABLE Spreadsheet (SSF)
l Envoy (EVY)
l Executable UNIX/VAX/SUN
l FileMaker (Macintosh)
l FPX format
l Framework
l Framework II
l Freehand 11
l FTP Session Data
l GEM Bit Image
l Ghost Disk Image

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 210 of 320

l Google SketchUp
l Graphics Environment Manager (GEM VDI)
l Harvard Graphics
l Hewlett Packard
l Honey Bull DSA101
l HP Graphics Language (HP-GL)
l HP Graphics Language (Plotter)
l HP PCL and PJL Languages
l HPWord PC
l IBM 1403 Line Printer
l IBM DCA-FFT
l IBM DCF Script
l Informix SmartWare II
l Informix SmartWare II Communication File
l Informix SmartWare II Database
l Informix SmartWare Spreadsheet
l Interleaf
l ISO 10303-21 STEP format
l Java Class file
l JPEG File Interchange Format (JFIF)
l KeyholeMarkup Language
l KW ODA G4 (G4)
l KW ODA G31D (G31)
l KW ODA Internal G32D (G32)
l KW ODA Internal Raw Bitmap (RBM)
l Lasergraphics Language
l Link Library UNIX/VAX/SUN
l Lotus Notes Bitmap
l Lotus Notes CDF
l Lotus Screen Cam
l Lyrix
l Macromedia Director
l MacWrite
l MacWrite II
l MASS-11
l MATLAB MAT Format
l Micrografx Designer
l Microsoft Access 2007

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 211 of 320

l Microsoft Access 2007 Template
l Microsoft CommonObject File Format (COFF)
l Microsoft Compiled HTMLHelp
l Microsoft Device Independent Bitmap
l Microsoft Document Imaging (MDI)
l Microsoft Excel 2007Macro-Enabled Spreadsheet Template
l Microsoft Excel 2007 Spreadsheet Template
l Microsoft Exchange Server Database File
l Microsoft Object File Library
l Microsoft Office Drawing
l Microsoft Office Groove
l Microsoft Outlook Restricted PermissionMessage File
l Microsoft Windows Cursor (CUR) Graphics
l Microsoft Windows Group File
l Microsoft Windows Help File
l Microsoft Windows Icon (ICO)
l Microsoft Windows NT Event Log
l Microsoft Windows OLE 2 Encapsulation
l Microsoft Windows Vista Event Log
l Microsoft Word (UNIX)
l Microsoft Works (Macintosh)
l Microsoft Works Communication (Macintosh)
l Microsoft Works Communication (Windows)
l Microsoft Works Database (Macintosh)
l Microsoft Works Database (PC)
l Microsoft Works Database (Windows)
l Microsoft Works Spreadsheet (Macintosh)
l Microstation
l Milestone Document
l MORE DatabaseOutliner (Macintosh)
l MPEG4 (ISO IEC MPEG4)
l MPEG-PS container with CDXA stream
l MS DOS Batch File format
l MS DOS Device Driver
l MultiMate 4.0
l Multiplan Spreadsheet
l Navy DIF
l NBI Async Archive Format

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 212 of 320

l NBI Net Archive Format
l Nero Encrypted File
l Netscape Bookmark file
l NeWS font file (SUN)
l NIOS TOP
l Nota Bene
l NURSTOR Drawing
l Object Module UNIX/VAX/SUN
l ODA/ODIF
l ODA/ODIF (FOD 26)
l OfficeWriter
l OLE DIB object
l OLIDIF
l Open PGP (new format packets)
l OS/2 PMMetafile Graphics
l PaperPort image file
l Paradox (PC) Database
l PC COM executable (detected in file mode only)
l PC Library Module
l PC Object Module
l PC True Type Font
l PCD Image
l PeachCalc Spreadsheet
l Persuasion Presentation
l PEX Binary Archive (SUN)
l PGP Compressed Data
l PGP Encrypted Data
l PGP Public Keyring
l PGP Secret Keyring
l PGP Signature Certificate
l PGP Signed and Encrypted Data
l PGP Signed Data
l Philips Script
l PKCS #12 (p12) Format
l Plan Perfect
l Portable Bitmap Utilities (PBM)
l Portable GreymapUtilities (PGM)
l Portable Pixmap Utilities (PPM)

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 213 of 320

l PostScript File
l PostScript Type 1 Font File
l PRIMEWORD
l Program Information File
l PTC Creo
l Q& A for DOS
l Q& A forWindows
l Quadratron Q-One (V1.93J)
l Quadratron Q-One (V2.0)
l Quark Xpress (Macintosh)
l QuickDraw 3D Metafile (3DMF)
l Real Audio
l RealLegal E-Transcript
l Reflex Database (R2D)
l RIFF Device Independent Bitmap
l RIFF MIDI
l RIFF MultimediaMovie
l SAMNAWord IV
l Samsung Electronics JungUmGlobal format
l SEG-Y Seismic Data format
l Serialized Object Format (SOF) Encapsulation
l SGML
l Simple Vector Format (SVF)
l SMTP document
l SolidWorks
l Sony WAVE64 format
l Star Office Calc Spreadsheet (versions 3-5)
l Star Office Impress Presentation (versions 3-5)
l Star OfficeMath (versions 3-5)
l Star OfficeWriter Text (versions 3-5)
l StuffIt Archive (Macintosh)
l SUN vfont definition
l SYLK Spreadsheet
l Symphony Spreadsheet
l TargonWord (V 2.0)
l Unigraphics NX
l Uniplex (V6.01)
l UNIX SHAR Encapsulation

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 214 of 320

l Usenet format
l Volkswriter
l Vorbis OGG format
l VRML
l VRML 2.0
l WANGPC
l WangWITA
l WANGWPS Comm.
l WebARChive (WARC)
l Windows C++ Object Storage
l Windows Journal
l Windows Micrografx Draw (DRW)
l Windows Palette
l Windows scrap file (SHS)
l Wireless Markup Language
l Word Connection
l WordMARC word processor
l WordPerfect General File
l WordStar
l WordStar 6.0
l WordStar 2000
l WriteNow
l Writing Assistant word processor
l X Bitmap (XBM)
l X Image
l X Pixmap (XPM)
l Xerox 860 Comm.
l Xerox DocuWorks
l Xerox Writer word processor
l Yahoo! Messenger chat log
l Zipped KeyholeMarkup Language

Filter SDK C ProgrammingGuide
Appendix A: Supported Formats

KeyView (11.6) Page 215 of 320

Appendix B: Character Sets

This section provides information on the handling of character sets in the KeyView suite of products, which
includes KeyView Filter SDK, KeyView Export SDK, and KeyView Viewing SDK.

• Multibyte and Bidirectional Support 216
• Coded Character Sets 223

Multibyte and Bidirectional Support

The KeyView SDKs can process files that contain multibyte characters. A multibyte character encoding
represents a single character with consecutive bytes. KeyView can also process text from files that contain
bidirectional text. Bidirectional text contains both Latin-based text which is read from left to right, and text that
is read from right to left (Hebrew and Arabic).

The following table indicates which character encodings are supported by KeyView for each format.

Format Single-byte Multibyte Bidirectional

Archive

7-Zip (7Z) n/a n/a n/a

AD1 Evidence file n/a n/a n/a

ADJ n/a n/a n/a

B1 n/a n/a n/a

BinHex (HQX) n/a n/a n/a

Bzip2 (BZ2) n/a n/a n/a

EnCase – Expert Witness
Compression Format (E01)

n/a n/a n/a

GZIP (GZ) n/a n/a n/a

ISO (ISO) n/a n/a n/a

Java Archive (JAR) n/a n/a n/a

Legato EMailXtender Archive (EMX) n/a n/a n/a

MacBinary (BIN) n/a n/a n/a

Mac Disk Copy Disk Image (DMG) n/a n/a n/a

Microsoft Backup File (BKF) n/a n/a n/a

Microsoft Cabinet format (CAB) n/a n/a n/a

Microsoft Compiled HTMLHelp n/a n/a n/a

Multibyte and bidirectional support

KeyView (11.6) Page 216 of 320

Format Single-byte Multibyte Bidirectional

(CHM)

Microsoft Compressed Folder (LZH) n/a n/a n/a

PKZip (ZIP) n/a n/a n/a

Microsoft Outlook DBX (DBX) Y Y Y

Microsoft Outlook Offline Storage File
(OST)

Y Y Y

RAR Archive (RAR) n/a n/a n/a

Tape Archive (TAR) n/a n/a n/a

UNIX Compress (Z) n/a n/a n/a

UUEncoding (UUE) n/a n/a n/a

Windows Scrap File (SHS) n/a n/a n/a

WinZip (ZIP) n/a n/a n/a

Binary

Executable (EXE) n/a n/a n/a

Link Library (DLL) n/a n/a n/a

Computer-aided Design

AutoCAD Drawing (DWG) Y Y Y

AutoCAD Drawing Exchange (DXF) Y Y Y

CATIA formats (CAT) Y N N

Microsoft Visio (VSD) Y Y Y

Database

dBase Database Y N N

Microsoft Access (MDB) Y Y N

Microsoft Project (MPP) Y Y N

Desktop Publishing

Microsoft Publisher N Y N

Display

Adobe Portable Document Format
(PDF)

Y Y1 Y

Graphics

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 217 of 320

Format Single-byte Multibyte Bidirectional

Computer Graphics Metafile (CGM) Y N N

Corel DRAW (CDR) n/a n/a n/a

DCX Fax System (DCX) Y N N

DICOM –Digital Imaging and
Communications in Medicine (DCM)

n/a n/a n/a

Encapsulated PostScript (EPS) Y N N

EnhancedMetafile (EMF) Y Y N

Graphic Interchange Format (GIF) n/a n/a n/a

JBIG2 n/a n/a n/a

JPEG n/a n/a n/a

JPEG 2000 n/a n/a n/a

Lotus AMIDraw Graphics (SDW) n/a n/a n/a

Lotus Pic (PIC) n/a n/a n/a

Macintosh Raster (PICT/PCT) n/a n/a n/a

MacPaint (PNTG) n/a n/a n/a

Microsoft Office Drawing (MSO) n/a n/a n/a

Omni Graffle (GRAFFLE) Y N N

PC PaintBrush (PCX) n/a n/a n/a

Portable Network Graphics (PNG) n/a n/a n/a

SGI RGB Image (RGB) n/a n/a n/a

Sun Raster Image (RS) n/a n/a n/a

Tagged Image File (TIFF) Y N N

Truevision Targa (TGA) n/a n/a n/a

Windows Animated Cursor (ANI) n/a n/a n/a

Windows Bitmap (BMP) n/a n/a n/a

Windows Icon Cursor (ICO) n/a n/a n/a

Windows Metafile (WMF) Y Y N

WordPerfect Graphics 1 (WPG) Y N N

WordPerfect Graphics 2 (WPG) Y N N

Mail

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 218 of 320

Format Single-byte Multibyte Bidirectional

Documentum EMCMF Format Y Y Y

Domino XML Language (DXL) Y Y N

GroupWise FileSurf Y N N

Legato Extender (ONM) Y Y N

Lotus Notes database (NSF) Y Y Y

Mailbox (MBX) Y Y Y

Microsoft Entourage Database Y Y Y

Microsoft Outlook (MSG) Y Y Y

Microsoft Outlook Express (EML) Y Y Y

Microsoft Outlook iCalendar Y Y Y

Microsoft Outlook for Macintosh Y Y Y

Microsoft Outlook Offline Storage File Y Y Y

Microsoft Outlook Personal File
Folders (PST)

Y Y Y

Microsoft Outlook vCard Contact ? ? ?

Text Mail (MIME) Y Y Y

Transport Neutral Encapsulation
Format

Y Y Y

Multimedia

Advanced Systems Format (ASF) n/a n/a n/a

Audio Interchange File Format (AIFF) n/a n/a n/a

Microsoft Wave Sound (WAV) n/a n/a n/a

MIDI (MID) n/a n/a n/a

MPEG 1Audio Layer 3 (MP3) n/a n/a n/a

MPEG 1Video (MPG) n/a n/a n/a

MPEG 2Audio (MPEGA) n/a n/a n/a

MPEG 4Audio (MP4) n/a n/a n/a

NeXT/Sun Audio (AU) n/a n/a n/a

QuickTimeMovie (QT/MOV) n/a n/a n/a

Windows Video (AVI) n/a n/a n/a

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 219 of 320

Format Single-byte Multibyte Bidirectional

Presentations

Apple iWork Keynote (GZ) Y Y N

Applix Presents (AG) character set
1252 only

N N

Corel Presentations (SHW) character set
1252 only

N N

Extensible Forms Description
Language (XFD)

Y Y N

Lotus FreelanceGraphics 2 (PRE) character set
850 only

N N

Lotus FreelanceGraphics (PRZ) Y Japanese, Simple Chinese,
Traditional Chinese, Thai only

N

Macromedia Flash (SWF) Y Y N

Microsoft OneNote Y Y N

Microsoft PowerPoint PC (PPT) character set
1252 only

Traditional Chinese only N

Microsoft PowerPoint Windows
(PPT)

Y Japanese, Simple Chinese,
Traditional Chinese,
Korean only

Hebrew only

Microsoft PowerPoint Macintosh
(PPT)

Y N N

Microsoft PowerPoint Windows XML
2007 and 2010 (PPTX)

Y Y Y

OASIS Open Document (ODP) Y Y N

OpenOffice Impress (ODP) Y Y N

StarOffice Impress (ODP) Y Y N

Spreadsheets

Apple iWork Numbers (GZ) Y Y N

Applix Spreadsheets (AS) character set
1252 only

N N

CommaSeparated Values (CSV) character set
1252 only

N N

Corel Quattro Pro (QPW/WB3) Y N N

Data Interchange Format (DIF) Y Y Y2

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 220 of 320

Format Single-byte Multibyte Bidirectional

Lotus 1-2-3 (123) Y Y Y

Lotus 1-2-3 (WK4) Y Y N

Lotus 123 Charts (123) Y Y N

Microsoft Excel Charts (XLS) Y Y N

Microsoft Excel Macintosh (XLS) Y N N

Microsoft Excel Windows (XLS) Y Y Y 2

Microsoft Excel Windows XML 2007
(XLSX)

Y Y N

Microsoft Office Excel Binary Format
(XLSB)

Y Y N

Microsoft Works Spreadsheet
(S30/S40)

Y N N

OASIS Open Document (ODS) Y Y N

OpenOffice Calc (ODS) Y Y N

StarOffice Calc (ODS) Y Y N

Text and Markup

ANSI (TXT) Y Y Y2

ASCII (TXT) Y Y Y2

HTML (HTM) Y Y Y2, 3

Microsoft Excel Windows XML 2003 Y Y Y

Microsoft Word forWindows XML
2003

Y Y Y

Microsoft Visio XML 2003 Y Y Y

Rich Text Format (RTF) Y Y Y 3

Unicode HTML Y Y Y 2,3

Unicode Text (TXT) Y Y Y2

XHTML Y Y Y3

XML Y Y Y

Word Processing

AdobeMaker Interchange Format
(MIF)

character set
1252 only

N N

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 221 of 320

Format Single-byte Multibyte Bidirectional

Apple iChat Log (ICHAT) Y Y N

Apple iWork Pages (GZ) Y Y N

Applix Words (AW) character set
1252 only

N N

DisplayWrite (IP) character set
500, 1026 only

N N

Folio Flat File (FFF) character set
1252 only

N N

Founder Chinese E-paper Basic
(CEB)

Y Y N

Fujitsu Oasys (OA2) Y Y N

Hangul (HWP) Y Y N

Health level7 (HL7) Y Y Y

IBM DCA/RTF (DC) character sets
500, 1026 only

N N

JustSystems Ichitaro (JTD) Y Y N

Lotus AMI Pro (SAM) Y Simple Chinese, Traditional
Chinese, Japanese, Thai only

Y

Lotus AMI Professional Write Plus
(AMI)

Y Simple Chinese, Traditional
Chinese, Japanese, Thai only

N

Lotus Word Pro (LWP) Y Y Y3

Lotus SmartMaster (MWP) Y Y N

Microsoft Word PC (DOC) character set
1252 only

N N

Microsoft WordWindows V1-2 (DOC) Y N N

Microsoft WordWindows V6, 7, 8, 95
(DOC)

Y Y Hebrew only3

Microsoft WordWindows V97
through 2003 (DOC)

Y Y Y3

Microsoft WordWindows XML 2007
and 2010 (DOCX)

Y Y Y3

Microsoft WordMacintosh (DOC) Y N Y3

Microsoft Works (WPS) Y Japanese only N

Multibyte and bidirectional support, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 222 of 320

Format Single-byte Multibyte Bidirectional

Microsoft Write (WRI) Y Japanese only N

OASIS Open Document (ODT) Y Y N

Omni Outliner (OO3) Y Y N

OpenOfficeWriter (ODT) Y Y N

Open Publication Structure eBook
(EPUB)

Y Y Y

StarOfficeWriter (ODT) Y Y N

Skype Log (DBB) Y Y (null-terminated charsets) N

WordPad (RTF) Y Y Y

WordPerfect Linux (WPS) Y N N

WordPerfect Macintosh (WPS) Y N N

WordPerfect Windows (WO) Y N N

XMLPaper Specification (XPS) Y Y N

XYWriteWindows (XY4) character set
1252 only

N N

Yahoo! Instant Messenger (DAT) Y Y (null-terminated charsets) N

Multibyte and bidirectional support, continued

1
Multibyte PDFs are supported, provided the PDF document is created by using either Character ID-
keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font encodings, and does not contain
embedded fonts. See the Adobe website and the Adobe Acrobat documentation for more information.
Any multibyte characters that are not supported are displayed using the replacement character. By
default, the replacement character is a questionmark (?).

To determine the type of font encodings that are used in a PDF, open the PDF in Adobe Acrobat, and
select File > Document Info > Fonts. If the Encoding column lists Custom or Embedded encodings,
youmight encounter problems converting the PDF.
2
The text direction in the output file might not be correct.
3
In Export SDK, a bidirectional right-to-left (RTL) tag is extracted from this format and included in the
direction element (<dir=RTL>) of the output.

Coded Character Sets

This section lists which character set you can use to specify the target character set. The coded
character sets are enumerated in kvtypes.h and defined in the Filter class.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 223 of 320

Coded Character
Set

Description Can be set as target
charset?

KVCS_
UNKNOWN

Unknown character set N

KVCS_SJIS Japanese (uses multibyte encoding), cp932 Y

KVCS_GB Simplified Chinese (China, Singapore, Malaysia)
cp936

Y

KVCS_BIG5 Traditional Chinese (Taiwan, Hong Kong, Macaw)
cp950

Y

KVCS_KSC Korean, cp949 Y

KVCS_1250 Windows Latin 2 (Central Europe) Y

KVCS_1251 Windows Cyrillic (Slavic) Y

KVCS_1252 Windows Latin 1 (ANSI) Y

KVCS_1253 Windows Greek Y

KVCS_1254 Windows Latin 5 (Turkish) Y

KVCS_1255 Windows Hebrew Y

KVCS_1256 Windows Arabic Y

KVCS_1257 Windows Baltic Rim Y

KVCS_1258 Windows Vietnamese Y

KVCS_8859_1 ISO 8859-1 Latin 1 (Western Europe, Latin
America)

Y

KVCS_8859_2 ISO 8859-2 Latin 2 (Central Eastern Europe) Y

KVCS_8859_3 ISO 8859-3 Latin 3 (S.E. Europe) Y

KVCS_8859_4 ISO 8859-4 Latin 4 (Scandinavia/Baltic) Y

KVCS_8859_5 ISO 8859-5 Latin/Cyrillic Y

KVCS_8859_6 ISO 8859-6 Latin/Arabic Y

KVCS_8859_7 ISO 8859-7 Latin/Greek Y

KVCS_8859_8 ISO 8859-8 Latin/Hebrew Y

KVCS_8859_9 ISO 8859-9 Latin/Turkish Y

KVCS_8859_14 ISO 8859-14 Y

Code Character Sets

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 224 of 320

Coded Character
Set

Description Can be set as target
charset?

KVCS_8859_15 ISO 8859-15 Y

KVCS_437 DOS Latin US Y

KVCS_737 DOS Greek Y

KVCS_775 DOS Baltic Rim Y

KVCS_850 DOS Latin 1 Y

KVCS_851 DOS Greek Y

KVCS_852 DOS Latin 2 Y

KVCS_855 DOS Cyrillic Y

KVCS_857 DOS Turkish Y

KVCS_860 DOS Portuguese Y

KVCS_861 DOS Icelandic Y

KVCS_862 DOS Hebrew Y

KVCS_863 DOS Canadian French Y

KVCS_864 DOS Arabic Y

KVCS_865 DOS Nordic Y

KVCS_866 DOS Cyrillic Russian Y

KVCS_869 DOS Greek 2 Y

KVCS_874 Thai Y

KVCS_
PDFMACDOC

PDFMAC DOC N

KVCS_
PDFWINDOC

PDFWIN DOC N

KVCS_STDENC Adobe Standard Encoding N

KVCS_PDFDOC Adobe standard PDF character set N

KVCS_037 EBCDIC code page 037 Y

KVCS_1026 EBCDIC code page 1026 Y

KVCS_500 EBCDIC code page 500 Y

Code Character Sets, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 225 of 320

Coded Character
Set

Description Can be set as target
charset?

KVCS_875 EBCDIC code page 875 Y

KVCS_LMBCS Lotus multibyte character set Group 1 andGroup 2 N

KVCS_UNICODE Unicode, UCS-2 Y

KVCS_UTF16 16-bit Unicode transformation format Y

KVCS_UTF8 8-bit Unicode transformation format Y

KVCS_UTF7 7-bit Unicode transformation format Y

KVCS_2022_JP ISO 2022-JP, Japanesemail and news safe
encoding (JIS-7)

N

KVCS_2022_CN ISO 2022-CN, Chinesemail and news safe
encoding

N

KVCS_2022_KR ISO 2022-KR, Koreanmail and news safe
encoding

N

KVCS_WP6X Word Perfect 6.x and higher character mapping N

KVCS_10000 Western European (Macintosh) Y

KVCS_KSC5601 Unified Hangul Y

KVCS_GB2312 Simplified Chinese (China, Singapore, Hong Kong) Y

KVCS_GB12345 Traditional Chinese (China) - analogue of GB2312 Y

KVCS_CNS11643 Traditional Chinese - Taiwan. Supplement to Big5 Y

KVCS_JIS0201 Japanese - contains ASCII character set (JIS-
Roman)

N

KVCS_JIS0212 Japanese. Supplement to JIS0208. Y

KVCS_EUC_JP Japanese Extended UNIX Code Y

KVCS_EUC_GB Simplified Chinese Extended UNIX Code Y

KVCS_EUC_
BIG5

Traditional Chinese Extended UNIX Code N

KVCS_EUC_KSC Korean Extended UNIX Code N

KVCS_424 EBCDIC Hebrew N

KVCS_856 PC Hebrew (old) N

KVCS_1006 IBM AIX Pakistan (Urdu) N

Code Character Sets, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 226 of 320

Coded Character
Set

Description Can be set as target
charset?

KVCS_KOI8R Cyrillic (Russian) Y

KVCS_PDF_
JAPAN1

Adobe-Japan1-2 character collection N

KVCS_PDF_
KOREA1

Adobe-Korea1-0 character collection N

KVCS_PDF_GB1 Adobe-GB1-3 character collection N

KVCS_PDF_
CNS1

Adobe-CNS1-2 character collection N

KVCS_2022_JP_
8

ISO 2022-JP, Japanesemail and news safe
encoding (JIS8)

N

KVCS_720 Arabic DOS-720 Y

KVCS_VISCII Vietnamese VISCII Y

KVCS_8859_10 ISO 8859-10 (Latin 6 Nordic) Y1

KVCS_8859_13 ISO 8859-13 (Latin 7 Baltic) Y 1

KVCS_57002 ISCII Devanagari (x-iscii-de) Y 1

KVCS_57003 ISCII Bengali (x-iscii-be) Y 1

KVCS_57004 ISCII Tamil (x-iscii-ta) Y1

KVCS_57005 ISCII Telugu (x-iscii-te) Y1

KVCS_57006 ISCII Assamese (x-iscii-as) Y1

KVCS_57007 ISCII Oriya (x-iscii-or) Y1

KVCS_57008 ISCII Kannada (x-iscii-ka) Y1

KVCS_57009 ISCII Malayalam (x-iscii-ma) Y1

KVCS_57010 ISCII Gujarathi (x-iscii-gu) Y1

KVCS_57011 ISCII Panjabi (x-iscii-pa) Y 1

KVCS_
GB18030b2

Reserved for internal use n/a

KVCS_GB18030 GB18030 (Chinese 4-byte character set) Y

KVCS_8859_11 ISO 8859-11 (Thai) Y

KVCS_8859_16 ISO 8859-16 (Latin-10 South-Eastern Europe) Y

Code Character Sets, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 227 of 320

Coded Character
Set

Description Can be set as target
charset?

KVCS_
ARABICMAC

Arabic Mac (x-mac-arabic) Y

KVCS_KOI8U Cyrillic (KOI8U Ukrainian) Y

KVCS_
HZGB2312

The 7-bit representation of GB 2312 / RFC 1842 n/a

Code Character Sets, continued

1
The character set cannot be forced as output in Export SDK and Viewing SDK because the character
set is not supported by themajor browsers.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 228 of 320

Appendix C: File Formats and Extensions

This section lists the KeyView file format numbers and their associated file extensions.

• File Format and Extension Table 229

File Format and Extension Table

This section lists the KeyView file format codes and the file extensions that they aremost commonly
associated with.

NOTE: This is not a complete list of file extensions. KeyView returns format codes based on
file content, which cannot always be predicted from the file extension. Some file extensions
might also be associated with multiple format numbers.

Format Name Format
Number

Format Description Associated File
Extension

AES_Multiplus_
Comm_Fmt

1 Multiplus (AES) PTF

ASCII_Text_Fmt 2 Text

MSDOS_Batch_
File_Fmt

3 MS-DOS Batch File BAT

Applix_Alis_Fmt 4 APPLIX ASTERIX AX

BMP_Fmt 5 Windows Bitmap BMP

CT_DEF_Fmt 6 Convergent Technologies DEF
Comm. Format

Corel_Draw_Fmt 7 Corel Draw CDR

CGM_ClearText_
Fmt

8 Computer Graphics Metafile (CGM) CGM1

CGM_Binary_Fmt 9 Computer Graphics Metafile (CGM) CGM 1

CGM_Character_
Fmt

10 Computer Graphics Metafile (CGM) CGM 1

Word_Connection_
Fmt

11 Word Connection CN

COMET_TOP_
Word_Fmt

12 COMET TOP

KeyView file formats and extensions

KeyView (11.6) Page 229 of 320

Format Name Format
Number

Format Description Associated File
Extension

CEOwrite_Fmt 13 CEOwrite CW

DSA101_Fmt 14 DSA101 (Honeywell Bull)

DCA_RFT_Fmt 15 DCA-RFT (IBM Revisable Form) RFT

CDA_DDIF_Fmt 16 CDA / DDIF

DG_CDS_Fmt 17 DGCommonData Stream (CDS) CDS

Micrografx_Draw_
Fmt

18 Windows Draw (Micrografx) DRW

Data_Point_
VistaWord_Fmt

19 Vistaword

DECdx_Fmt 20 DECdx DX

Enable_WP_Fmt 21 EnableWord Processing WPF

EPSF_Fmt 22 Encapsulated PostScript EPS 1

Preview_EPSF_Fmt 23 Encapsulated PostScript EPS 1

MS_Executable_Fmt 24 MSDOS/Windows Program EXE

G31D_Fmt 25 CCITT G3 1D

GIF_87a_Fmt 26 Graphics Interchange Format
(GIF87a)

GIF 1

GIF_89a_Fmt 27 Graphics Interchange Format
(GIF89a)

GIF 1

HP_Word_PC_Fmt 28 HPWord PC HW

IBM_1403_
LinePrinter_Fmt

29 IBM 1403 Line Printer I4

IBM_DCF_Script_
Fmt

30 DCF Script IC

IBM_DCA_FFT_Fmt 31 DCA-FFT (IBM Final Form) IF

Interleaf_Fmt 32 Interleaf

GEM_Image_Fmt 33 GEM Bit Image IMG

IBM_Display_Write_
Fmt

34 Display Write IP

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 230 of 320

Format Name Format
Number

Format Description Associated File
Extension

Sun_Raster_Fmt 35 Sun Raster RAS

Ami_Pro_Fmt 36 Lotus Ami Pro SAM

Ami_Pro_
StyleSheet_Fmt

37 Lotus Ami Pro Style Sheet

MORE_Fmt 38 MORE DatabaseMAC

Lyrix_Fmt 39 Lyrix Word Processing

MASS_11_Fmt 40 MASS-11 M1

MacPaint_Fmt 41 MacPaint PNTG

MS_Word_Mac_Fmt 42 Microsoft Word for Macintosh DOC 1

SmartWare_II_
Comm_Fmt

43 SmartWare II

MS_Word_Win_Fmt 44 Microsoft Word forWindows DOC 1

Multimate_Fmt 45 MultiMate MM 1

Multimate_Fnote_
Fmt

46 MultiMate Footnote File FNX 1

Multimate_Adv_Fmt 47 MultiMate Advantage

Multimate_Adv_
Fnote_Fmt

48 MultiMate Advantage Footnote File

Multimate_Adv_II_
Fmt

49 MultiMate Advantage II MM1

Multimate_Adv_II_
Fnote_Fmt

50 MultiMate Advantage II Footnote File FNX 1

Multiplan_PC_Fmt 51 Multiplan (PC)

Multiplan_Mac_Fmt 52 Multiplan (Mac)

MS_RTF_Fmt 53 Rich Text Format (RTF) RTF

MS_Word_PC_Fmt 54 Microsoft Word for PC DOC 1

MS_Word_PC_
StyleSheet_Fmt

55 Microsoft Word for PC Style Sheet DOC 1

MS_Word_PC_
Glossary_Fmt

56 Microsoft Word for PC Glossary DOC 1

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 231 of 320

Format Name Format
Number

Format Description Associated File
Extension

MS_Word_PC_
Driver_Fmt

57 Microsoft Word for PC Driver DOC 1

MS_Word_PC_
Misc_Fmt

58 Microsoft Word for PC Miscellaneous
File

DOC 1

NBI_Async_
Archive_Fmt

59 NBI Async Archive Format

Navy_DIF_Fmt 60 Navy DIF ND

NBI_Net_Archive_
Fmt

61 NBI Net Archive Format NN

NIOS_TOP_Fmt 62 NIOS TOP

FileMaker_Mac_Fmt 63 Filemaker MAC FP5, FP7

ODA_Q1_11_Fmt 64 ODA / ODIF OD1

ODA_Q1_12_Fmt 65 ODA / ODIF OD 1

OLIDIF_Fmt 66 OLIDIF (Olivetti)

Office_Writer_Fmt 67 OfficeWriter OW

PC_Paintbrush_Fmt 68 PC Paintbrush Graphics (PCX) PCX

CPT_Comm_Fmt 69 CPT

Lotus_PIC_Fmt 70 Lotus PIC PIC

Mac_PICT_Fmt 71 QuickDraw Picture PCT

Philips_Script_
Word_Fmt

72 Philips Script

PostScript_Fmt 73 PostScript PS

PRIMEWORD_Fmt 74 PRIMEWORD

Quadratron_Q_One_
v1_Fmt

75 Q-One V1.93J Q1 1, QX 1

Quadratron_Q_One_
v2_Fmt

76 Q-One V2.0 Q1 1, QX 1

SAMNA_Word_IV_
Fmt

77 SAMNAWord SAM

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 232 of 320

Format Name Format
Number

Format Description Associated File
Extension

Ami_Pro_Draw_Fmt 78 Lotus Ami Pro Draw SDW

SYLK_Spreadsheet_
Fmt

79 SYLK

SmartWare_II_WP_
Fmt

80 SmartWare II

Symphony_Fmt 81 Symphony WR1

Targa_Fmt 82 Targa TGA

TIFF_Fmt 83 TIFF TIF, TIFF

Targon_Word_Fmt 84 TargonWord TW

Uniplex_Ucalc_Fmt 85 Uniplex Ucalc SS

Uniplex_WP_Fmt 86 Uniplex UP

MS_Word_UNIX_
Fmt

87 Microsoft Word UNIX DOC1

WANG_PC_Fmt 88 WANGPC

WordERA_Fmt 89 WordERA

WANG_WPS_
Comm_Fmt

90 WANGWPS WF

WordPerfect_Mac_
Fmt

91 WordPerfect MAC WPM, WPD1

WordPerfect_Fmt 92 WordPerfect WO, WPD1

WordPerfect_VAX_
Fmt

93 WordPerfect VAX WPD1

WordPerfect_Macro_
Fmt

94 WordPerfect Macro

WordPerfect_
Dictionary_Fmt

95 WordPerfect Spelling Dictionary

WordPerfect_
Thesaurus_Fmt

96 WordPerfect Thesaurus

WordPerfect_
Resource_Fmt

97 WordPerfect Resource File

WordPerfect_Driver_ 98 WordPerfect Driver

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 233 of 320

Format Name Format
Number

Format Description Associated File
Extension

Fmt

WordPerfect_Cfg_
Fmt

99 WordPerfect Configuration File

WordPerfect_
Hyphenation_Fmt

100 WordPerfect Hyphenation Dictionary

WordPerfect_Misc_
Fmt

101 WordPerfect Miscellaneous File WPD1

WordMARC_Fmt 102 WordMARC WM, PW

Windows_Metafile_
Fmt

103 Windows Metafile WMF1

Windows_Metafile_
NoHdr_Fmt

104 Windows Metafile (no header) WMF1

SmartWare_II_DB_
Fmt

105 SmartWare II

WordPerfect_
Graphics_Fmt

106 WordPerfect Graphics WPG, QPG

WordStar_Fmt 107 WordStar WS

WANG_WITA_Fmt 108 WANGWITA WT

Xerox_860_Comm_
Fmt

109 Xerox 860

Xerox_Writer_Fmt 110 Xerox Writer

DIF_SpreadSheet_
Fmt

111 Data Interchange Format (DIF) DIF

Enable_
Spreadsheet_Fmt

112 Enable Spreadsheet SSF

SuperCalc_Fmt 113 Supercalc CAL

UltraCalc_Fmt 114 UltraCalc

SmartWare_II_SS_
Fmt

115 SmartWare II

SOF_Encapsulation_
Fmt

116 Serialized Object Format (SOF) SOF

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 234 of 320

Format Name Format
Number

Format Description Associated File
Extension

PowerPoint_Win_
Fmt

117 PowerPoint PC PPT1

PowerPoint_Mac_
Fmt

118 PowerPoint MAC PPT1

PowerPoint_95_Fmt 119 PowerPoint 95 PPT1

PowerPoint_97_Fmt 120 PowerPoint 97 PPT1

PageMaker_Mac_
Fmt

121 PageMaker for Macintosh

PageMaker_Win_
Fmt

122 PageMaker forWindows

MS_Works_Mac_
WP_Fmt

123 Microsoft Works for MAC

MS_Works_Mac_
DB_Fmt

124 Microsoft Works for MAC

MS_Works_Mac_
SS_Fmt

125 Microsoft Works for MAC

MS_Works_Mac_
Comm_Fmt

126 Microsoft Works for MAC

MS_Works_DOS_
WP_Fmt

127 Microsoft Works for DOS WPS1

MS_Works_DOS_
DB_Fmt

128 Microsoft Works for DOS WDB1

MS_Works_DOS_
SS_Fmt

129 Microsoft Works for DOS

MS_Works_Win_
WP_Fmt

130 Microsoft Works forWindows WPS1

MS_Works_Win_
DB_Fmt

131 Microsoft Works forWindows WDB1

MS_Works_Win_
SS_Fmt

132 Microsoft Works forWindows S30, S40

PC_Library_Fmt 133 DOS/Windows Object Library

MacWrite_Fmt 134 MacWrite

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 235 of 320

Format Name Format
Number

Format Description Associated File
Extension

MacWrite_II_Fmt 135 MacWrite II

Freehand_Fmt 136 FreehandMAC

Disk_Doubler_Fmt 137 Disk Doubler

HP_GL_Fmt 138 HP Graphics Language HPGL

FrameMaker_Fmt 139 FrameMaker FM, FRM

FrameMaker_Book_
Fmt

140 FrameMaker BOOK

Maker_Markup_
Language_Fmt

141 Maker Markup Language

Maker_Interchange_
Fmt

142 Maker Interchange Format (MIF) MIF

JPEG_File_
Interchange_Fmt

143 Interchange Format JPG, JPEG

Reflex_Fmt 144 Reflex

Framework_Fmt 145 Framework

Framework_II_Fmt 146 Framework II FW3

Paradox_Fmt 147 Paradox DB

MS_Windows_
Write_Fmt

148 Windows Write WRI

Quattro_Pro_DOS_
Fmt

149 Quattro Pro for DOS

Quattro_Pro_Win_
Fmt

150 Quattro Pro forWindows WB2, WB3

Persuasion_Fmt 151 Persuasion

Windows_Icon_Fmt 152 Windows Icon Format ICO

Windows_Cursor_
Fmt

153 Windows Cursor CUR

MS_Project_
Activity_Fmt

154 Microsoft Project MPP1

MS_Project_
Resource_Fmt

155 Microsoft Project MPP1

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 236 of 320

Format Name Format
Number

Format Description Associated File
Extension

MS_Project_Calc_
Fmt

156 Microsoft Project MPP1

PKZIP_Fmt 157 ZIP Archive ZIP

Quark_Xpress_Fmt 158 Quark Xpress MAC

ARC_PAK_Archive_
Fmt

159 PAK/ARC Archive ARC, PAK

MS_Publisher_Fmt 160 Microsoft Publisher PUB1

PlanPerfect_Fmt 161 PlanPerfect

WordPerfect_
Auxiliary_Fmt

162 WordPerfect auxiliary file WPW

MS_WAVE_Audio_
Fmt

163 Microsoft Wave WAV

MIDI_Audio_Fmt 164 MIDI MID, MIDI

AutoCAD_DXF_
Binary_Fmt

165 AutoCAD DXF DXF1

AutoCAD_DXF_
Text_Fmt

166 AutoCAD DXF DXF1

dBase_Fmt 167 dBase DBF

OS_2_PM_Metafile_
Fmt

168 OS/2 PMMetafile MET

Lasergraphics_
Language_Fmt

169 Lasergraphics Language

AutoShade_
Rendering_Fmt

170 AutoShade Rendering

GEM_VDI_Fmt 171 GEM VDI VDI

Windows_Help_Fmt 172 Windows Help File HLP

Volkswriter_Fmt 173 Volkswriter VW4

Ability_WP_Fmt 174 Ability

Ability_DB_Fmt 175 Ability

Ability_SS_Fmt 176 Ability

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 237 of 320

Format Name Format
Number

Format Description Associated File
Extension

Ability_Comm_Fmt 177 Ability

Ability_Image_Fmt 178 Ability

XyWrite_Fmt 179 XYWrite / Nota Bene XY4

CSV_Fmt 180 CSV (CommaSeparated Values) CSV

IBM_Writing_
Assistant_Fmt

181 IBMWriting Assistant IWA

WordStar_2000_Fmt 182 WordStar 2000 WS2

HP_PCL_Fmt 183 HP Printer Control Language PCL

UNIX_Exe_
PreSysV_VAX_Fmt

184 Unix Executable (PDP-11/pre-
System V VAX)

UNIX_Exe_Basic_
16_Fmt

185 Unix Executable (Basic-16)

UNIX_Exe_x86_Fmt 186 Unix Executable (x86)

UNIX_Exe_iAPX_
286_Fmt

187 Unix Executable (iAPX 286)

UNIX_Exe_MC68k_
Fmt

188 Unix Executable (MC680x0)

UNIX_Exe_3B20_
Fmt

189 Unix Executable (3B20)

UNIX_Exe_
WE32000_Fmt

190 Unix Executable (WE32000)

UNIX_Exe_VAX_
Fmt

191 Unix Executable (VAX)

UNIX_Exe_Bell_5_
Fmt

192 Unix Executable (Bell 5.0)

UNIX_Obj_VAX_
Demand_Fmt

193 Unix Object Module (VAX Demand)

UNIX_Obj_MS8086_
Fmt

194 Unix Object Module (old MS 8086)

UNIX_Obj_Z8000_
Fmt

195 Unix Object Module (Z8000)

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 238 of 320

Format Name Format
Number

Format Description Associated File
Extension

AU_Audio_Fmt 196 NeXT/Sun Audio Data AU

NeWS_Font_Fmt 197 NeWS bitmap font

cpio_Archive_
CRChdr_Fmt

198 cpio archive (CRC Header)

cpio_Archive_
CHRhdr_Fmt

199 cpio archive (CHR Header)

PEX_Binary_
Archive_Fmt

200 SUN PEX Binary Archive

Sun_vfont_Fmt 201 SUN vfont Definition

Curses_Screen_Fmt 202 Curses Screen Image

UUEncoded_Fmt 203 UU encoded UUE

WriteNow_Fmt 204 WriteNow MAC

PC_Obj_Fmt 205 DOS/Windows Object Module

Windows_Group_
Fmt

206 Windows Group

TrueType_Font_Fmt 207 TrueType Font TTF

Windows_PIF_Fmt 208 Program Information File (PIF) PIF

MS_COM_
Executable_Fmt

209 PC (.COM) COM

StuffIt_Fmt 210 StuffIt (MAC) HQX

PeachCalc_Fmt 211 PeachCalc

Wang_GDL_Fmt 212 WANGOffice GDLHeader

Q_A_DOS_Fmt 213 Q& A for DOS

Q_A_Win_Fmt 214 Q& A forWindows JW

WPS_PLUS_Fmt 215 WPS-PLUS WPL

DCX_Fmt 216 DCX FAX Format(PCX images DCX

OLE_Fmt 217 OLE Compound Document OLE

EBCDIC_Fmt 218 EBCDIC Text

DCS_Fmt 219 DCS

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 239 of 320

Format Name Format
Number

Format Description Associated File
Extension

UNIX_SHAR_Fmt 220 SHAR SHAR

Lotus_Notes_
BitMap_Fmt

221 Lotus Notes Bitmap

Lotus_Notes_CDF_
Fmt

222 Lotus Notes CDF CDF

Compress_Fmt 223 Unix Compress Z

GZ_Compress_Fmt 224 GZ Compress GZ1

TAR_Fmt 225 TAR TAR

ODIF_FOD26_Fmt 226 ODA / ODIF F26

ODIF_FOD36_Fmt 227 ODA / ODIF F36

ALIS_Fmt 228 ALIS

Envoy_Fmt 229 Envoy EVY

PDF_Fmt 230 Portable Document Format PDF

BinHex_Fmt 231 BinHex HQX

SMTP_Fmt 232 SMTP SMTP

MIME_Fmt 233 MIME2 EML, MBX

USENET_Fmt 234 USENET

SGML_Fmt 235 SGML SGML

HTML_Fmt 236 HTML HTM1, HTML 1

ACT_Fmt 237 ACT ACT

PNG_Fmt 238 Portable Network Graphics (PNG) PNG

MS_Video_Fmt 239 Video forWindows (AVI) AVI

Windows_Animated_
Cursor_Fmt

240 Windows Animated Cursor ANI

Windows_CPP_Obj_
Storage_Fmt

241 Windows C++ Object Storage

Windows_Palette_
Fmt

242 Windows Palette PAL

RIFF_DIB_Fmt 243 RIFF Device Independent Bitmap

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 240 of 320

Format Name Format
Number

Format Description Associated File
Extension

RIFF_MIDI_Fmt 244 RIFF MIDI RMI

RIFF_Multimedia_
Movie_Fmt

245 RIFF MultimediaMovie

MPEG_Fmt 246 MPEGMovie MPG, MPEG1

QuickTime_Fmt 247 QuickTimeMovie, MPEG-4 Audio MOV, QT, MP4

AIFF_Fmt 248 Audio Interchange File Format (AIFF) AIF, AIFF

Amiga_MOD_Fmt 249 AmigaMOD MOD

Amiga_IFF_8SVX_
Fmt

250 Amiga IFF (8SVX) Sound IFF

Creative_Voice_
Audio_Fmt

251 Creative Voice (VOC) VOC

AutoDesk_Animator_
FLI_Fmt

252 AutoDesk Animator FLIC FLI

AutoDesk_
AnimatorPro_FLC_
Fmt

253 AutoDesk Animator Pro FLIC FLC

Compactor_Archive_
Fmt

254 Compactor / Compact Pro

VRML_Fmt 255 VRML WRL

QuickDraw_3D_
Metafile_Fmt

256 QuickDraw 3D Metafile

PGP_Secret_
Keyring_Fmt

257 PGP Secret Keyring

PGP_Public_
Keyring_Fmt

258 PGP Public Keyring

PGP_Encrypted_
Data_Fmt

259 PGP Encrypted Data

PGP_Signed_Data_
Fmt

260 PGP Signed Data

PGP_
SignedEncrypted_
Data_Fmt

261 PGP Signed and Encrypted Data

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 241 of 320

Format Name Format
Number

Format Description Associated File
Extension

PGP_Sign_
Certificate_Fmt

262 PGP Signature Certificate

PGP_Compressed_
Data_Fmt

263 PGP Compressed Data

PGP_ASCII_Public_
Keyring_Fmt

264 ASCII-armored PGP Public Keyring

PGP_ASCII_
Encoded_Fmt

265 ASCII-armored PGP encoded PGP1

PGP_ASCII_
Signed_Fmt

266 ASCII-armored PGP encoded PGP1

OLE_DIB_Fmt 267 OLE DIB object

SGI_Image_Fmt 268 SGI Image RGB

Lotus_ScreenCam_
Fmt

269 Lotus ScreenCam

MPEG_Audio_Fmt 270 MPEGAudio MPEGA

FTP_Software_
Session_Fmt

271 FTP Session Data STE

Netscape_
Bookmark_File_Fmt

272 Netscape Bookmark File HTM1

Corel_Draw_CMX_
Fmt

273 Corel CMX CMX

AutoDesk_DWG_
Fmt

274 AutoDesk Drawing (DWG) DWG

AutoDesk_WHIP_
Fmt

275 AutoDesk WHIP WHP

Macromedia_
Director_Fmt

276 Macromedia Director DCR

Real_Audio_Fmt 277 Real Audio RM

MSDOS_Device_
Driver_Fmt

278 MSDOS Device Driver SYS

Micrografx_
Designer_Fmt

279 Micrografx Designer DSF

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 242 of 320

Format Name Format
Number

Format Description Associated File
Extension

SVF_Fmt 280 Simple Vector Format (SVF) SVF

Applix_Words_Fmt 281 Applix Words AW

Applix_Graphics_
Fmt

282 Applix Graphics AG

MS_Access_Fmt 283 Microsoft Access MDB1

MS_Access_95_Fmt 284 Microsoft Access 95 MDB1

MS_Access_97_Fmt 285 Microsoft Access 97 MDB1

MacBinary_Fmt 286 MacBinary BIN

Apple_Single_Fmt 287 Apple Single

Apple_Double_Fmt 288 Apple Double

Enhanced_Metafile_
Fmt

289 EnhancedMetafile EMF

MS_Office_Drawing_
Fmt

290 Microsoft Office Drawing

XML_Fmt 291 XML XML1

DeVice_
Independent_Fmt

292 DeVice Independent file (DVI) DVI

Unicode_Fmt 293 Unicode UNI

Lotus_123_
Worksheet_Fmt

294 Lotus 1-2-3 WK11

Lotus_123_Format_
Fmt

295 Lotus 1-2-3 Formatting FM3

Lotus_123_97_Fmt 296 Lotus 1-2-3 97 WK11

Lotus_Word_Pro_
96_Fmt

297 Lotus Word Pro 96 LWP1

Lotus_Word_Pro_
97_Fmt

298 Lotus Word Pro 97 LWP1

Freelance_DOS_Fmt 299 Lotus Freelance for DOS

Freelance_Win_Fmt 300 Lotus Freelance forWindows PRE

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 243 of 320

Format Name Format
Number

Format Description Associated File
Extension

Freelance_OS2_Fmt 301 Lotus Freelance for OS/2 PRS

Freelance_96_Fmt 302 Lotus Freelance 96 PRZ1

Freelance_97_Fmt 303 Lotus Freelance 97 PRZ1

MS_Word_95_Fmt 304 Microsoft Word 95 DOC1

MS_Word_97_Fmt 305 Microsoft Word 97 DOC1

Excel_Fmt 306 Microsoft Excel XLS1

Excel_Chart_Fmt 307 Microsoft Excel XLS1

Excel_Macro_Fmt 308 Microsoft Excel XLS1

Excel_95_Fmt 309 Microsoft Excel 95 XLS1

Excel_97_Fmt 310 Microsoft Excel 97 XLS1

Corel_
Presentations_Fmt

311 Corel Presentations XFD, XFDL

Harvard_Graphics_
Fmt

312 Harvard Graphics

Harvard_Graphics_
Chart_Fmt

313 Harvard Graphics Chart CH3, CHT

Harvard_Graphics_
Symbol_Fmt

314 Harvard Graphics Symbol File SY3

Harvard_Graphics_
Cfg_Fmt

315 Harvard Graphics Configuration File

Harvard_Graphics_
Palette_Fmt

316 Harvard Graphics Palette

Lotus_123_R9_Fmt 317 Lotus 1-2-3 Release 9

Applix_
Spreadsheets_Fmt

318 Applix Spreadsheets AS

MS_Pocket_Word_
Fmt

319 Microsoft Pocket Word PWD, DOC1

MS_DIB_Fmt 320 MSWindows Device Independent
Bitmap

MS_Word_2000_Fmt 321 Microsoft Word 2000 DOC1

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 244 of 320

Format Name Format
Number

Format Description Associated File
Extension

Excel_2000_Fmt 322 Microsoft Excel 2000 XLS1

PowerPoint_2000_
Fmt

323 Microsoft PowerPoint 2000 PPT

MS_Access_2000_
Fmt

324 Microsoft Access 2000 MDB1, MPP1

MS_Project_4_Fmt 325 Microsoft Project 4 MPP1

MS_Project_41_Fmt 326 Microsoft Project 4.1 MPP1

MS_Project_98_Fmt 327 Microsoft Project 98 MPP1

Folio_Flat_Fmt 328 Folio Flat File FFF

HWP_Fmt 329 HWP(Arae-Ah Hangul) HWP

ICHITARO_Fmt 330 ICHITAROV4-10

IS_XML_Fmt 331 Extended or Custom XML XML1

Oasys_Fmt 332 Oasys format OA2, OA3

PBM_ASC_Fmt 333 Portable Bitmap Utilities ASCII
Format

PBM_BIN_Fmt 334 Portable Bitmap Utilities Binary
Format

PGM_ASC_Fmt 335 Portable GreymapUtilities ASCII
Format

PGM_BIN_Fmt 336 Portable GreymapUtilities Binary
Format

PGM

PPM_ASC_Fmt 337 Portable Pixmap Utilities ASCII
Format

PPM_BIN_Fmt 338 Portable Pixmap Utilities Binary
Format

XBM_Fmt 339 X Bitmap Format XBM

XPM_Fmt 340 X Pixmap Format XPM

FPX_Fmt 341 FPX Format FPX

PCD_Fmt 342 PCD Format PCD

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 245 of 320

Format Name Format
Number

Format Description Associated File
Extension

MS_Visio_Fmt 343 Microsoft Visio VSD

MS_Project_2000_
Fmt

344 Microsoft Project 2000 MPP1

MS_Outlook_Fmt 345 Microsoft Outlook MSG, OFT

ELF_Relocatable_
Fmt

346 ELF Relocatable O

ELF_Executable_
Fmt

347 ELF Executable

ELF_Dynamic_Lib_
Fmt

348 ELF Dynamic Library SO

MS_Word_XML_Fmt 349 Microsoft Word 2003 XML XML1

MS_Excel_XML_Fmt 350 Microsoft Excel 2003 XML XML1

MS_Visio_XML_Fmt 351 Microsoft Visio 2003 XML VDX

SO_Text_XML_Fmt 352 StarOffice Text XML SXW1, ODT1

SO_Spreadsheet_
XML_Fmt

353 StarOffice Spreadsheet XML SXC1, ODS1

SO_Presentation_
XML_Fmt

354 StarOffice Presentation XML SXI1, SXP1, ODP1

XHTML_Fmt 355 XHTML XML1

MS_OutlookPST_
Fmt

356 Microsoft Outlook PST PST

RAR_Fmt 357 RAR RAR

Lotus_Notes_NSF_
Fmt

358 IBM Lotus Notes Database NSF/NTF NSF

Macromedia_Flash_
Fmt

359 SWF SWF

MS_Word_2007_Fmt 360 Microsoft Word 2007 XML DOCX, DOTX

MS_Excel_2007_
Fmt

361 Microsoft Excel 2007 XML XLSX, XLTX

MS_PPT_2007_Fmt 362 Microsoft PPT 2007 XML PPTX, POTX, PPSX

OpenPGP_Fmt 363 OpenPGP Message Format (with new PGP

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 246 of 320

Format Name Format
Number

Format Description Associated File
Extension

packet format)

Intergraph_V7_
DGN_Fmt

364 Intergraph Standard File Format
(ISFF) V7 DGN (non-OLE)

DGN1

MicroStation_V8_
DGN_Fmt

365 MicroStation V8 DGN (OLE) DGN1

MS_Word_Macro_
2007_Fmt

366 Microsoft WordMacro 2007 XML DOCM, DOTM

MS_Excel_Macro_
2007_Fmt

367 Microsoft Excel Macro 2007 XML XLSM, XLTM, XLAM

MS_PPT_Macro_
2007_Fmt

368 Microsoft PPT Macro 2007 XML PPTM, POTM, PPSM,
PPAM

LZH_Fmt 369 LHA Archive LZH, LHA

Office_2007_Fmt 370 Office 2007 document XLSB

MS_XPS_Fmt 371 Microsoft XML Paper Specification
(XPS)

XPS

Lotus_Domino_DXL_
Fmt

372 IBM Lotus representation of Domino
design elements in XML format

DXL

ODF_Text_Fmt 373 ODF Text ODT1, SXW1, STW

ODF_Spreadsheet_
Fmt

374 ODF Spreadsheet ODS1, SXC1, STC

ODF_Presentation_
Fmt

375 ODF Presentation SXD1, SXI1, ODG1, ,
ODP1

Legato_Extender_
ONM_Fmt

376 Legato Extender NativeMessage
ONM

ONM

bin_Unknown_Fmt 377 n/a

TNEF_Fmt 378 Transport Neutral Encapsulation
Format (TNEF)

various

CADAM_Drawing_
Fmt

379 CADAMDrawing CDD

CADAM_Drawing_
Overlay_Fmt

380 CADAMDrawingOverlay CDO

NURSTOR_ 381 NURSTOR Drawing NUR

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 247 of 320

Format Name Format
Number

Format Description Associated File
Extension

Drawing_Fmt

HP_GLP_Fmt 382 HP Graphics Language (Plotter) HPG

ASF_Fmt 383 Advanced Systems Format (ASF) ASF

WMA_Fmt 384 Window Media Audio Format (WMA) WMA

WMV_Fmt 385 Window Media Video Format (WMV) WMV

EMX_Fmt 386 Legato EMailXtender Archives
Format (EMX)

EMX

Z7Z_Fmt 387 7 Zip Format(7z) 7Z

MS_Excel_Binary_
2007_Fmt

388 Microsoft Excel Binary 2007 XLSB

CAB_Fmt 389 Microsoft Cabinet File (CAB) CAB

CATIA_Fmt 390 CATIA Formats (CAT*) CAT3

YIM_Fmt 391 Yahoo Instant Messenger History DAT1

ODF_Drawing_Fmt 392 ODF Drawing SXD1, SX1, ODG1

Founder_CEB_Fmt 393 Founder Chinese E-paper Basic (ceb) CEB

QPW_Fmt 394 Quattro Pro 9+ forWindows QPW

MHT_Fmt 395 MHT format2 MHT

MDI_Fmt 396 Microsoft Document Imaging Format MDI

GRV_Fmt 397 Microsoft Office Groove Format GRV

IWWP_Fmt 398 Apple iWork Pages format PAGES, GZ1

IWSS_Fmt 399 Apple iWork Numbers format NUMBERS, GZ1

IWPG_Fmt 400 Apple iWork Keynote format KEY, GZ1

BKF_Fmt 401 Windows Backup File BKF

MS_Access_2007_
Fmt

402 Microsoft Access 2007 ACCDB

ENT_Fmt 403 Microsoft Entourage Database
Format

DMG_Fmt 404 Mac Disk Copy Disk Image File

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 248 of 320

Format Name Format
Number

Format Description Associated File
Extension

CWK_Fmt 405 AppleWorks File

OO3_Fmt 406 Omni Outliner File OO3

OPML_Fmt 407 Omni Outliner File OPML

Omni_Graffle_XML_
Fmt

408 Omni Graffle XML File GRAFFLE

PSD_Fmt 409 Photoshop Document PSD

Apple_Binary_PList_
Fmt

410 Apple Binary Property List format

Apple_iChat_Fmt 411 Apple iChat format

OOUTLINE_Fmt 412 OOutliner File OOUTLINE

BZIP2_Fmt 413 Bzip 2 Compressed File BZ2

ISO_Fmt 414 ISO-9660 CD Disc Image Format ISO

DocuWorks_Fmt 415 DocuWorks Format XDW

RealMedia_Fmt 416 RealMedia StreamingMedia RM, RA

AC3Audio_Fmt 417 AC3 Audio File Format AC3

NEF_Fmt 418 Nero Encrypted File NEF

SolidWorks_Fmt 419 SolidWorks Format Files SLDASM, SLDPRT,
SLDDRW

XFDL_Fmt 420 Extensible Forms Description
Language

XFDL, XFD

Apple_XML_PList_
Fmt

421 Apple XML Property List format

OneNote_Fmt 422 OneNote Note Format ONE

Dicom_Fmt 424 Digital Imaging and Communications
in Medicine

DCM

EnCase_Fmt 425 Expert Witness Compression Format
(EnCase)

E01, L01, Lx01

Scrap_Fmt 426 Shell Scrap Object File SHS

MS_Project_2007_
Fmt

427 Microsoft Project 2007 MPP1

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 249 of 320

Format Name Format
Number

Format Description Associated File
Extension

MS_Publisher_98_
Fmt

428 Microsoft Publisher
98/2000/2002/2003/2007/

PUB1

Skype_Fmt 429 Skype Log File DBB

Hl7_Fmt 430 Health level7 message HL7

MS_OutlookOST_
Fmt

431 Microsoft Outlook OST OST

Epub_Fmt 432 Electronic Publication EPUB

MS_OEDBX_Fmt 433 Microsoft Outlook Express DBX DBX

BB_Activ_Fmt 434 BlackBerry Activation File DAT1

DiskImage_Fmt 435 Disk Image

Milestone_Fmt 436 Milestone Document MLS, ML3, ML4, ML5,
ML6, ML7, ML8, ML9

E_Transcript_Fmt 437 RealLegal E-Transcript File PTX

PostScript_Font_Fmt 438 PostScript Type 1 Font PFB

Ghost_DiskImage_
Fmt

439 Ghost Disk Image File GHO, GHS

JPEG_2000_JP2_
File_Fmt

440 JPEG-2000 JP2 File Format Syntax
(ISO/IEC 15444-1)

JP2, JPF, J2K, JPWL,
JPX, PGX

Unicode_HTML_Fmt 441 Unicode HTML HTM1, HTML1

CHM_Fmt 442 Microsoft Compiled HTMLHelp CHM

EMCMF_Fmt 443 Documentum EMCMF format EMCMF

MS_Access_2007_
Tmpl_Fmt

444 Microsoft Access 2007 Template ACCDT

Jungum_Fmt 445 Samsung Electronics JungumGlobal
document

GUL

JBIG2_Fmt 446 JBIG2 File Format JB2, JBIG2

EFax_Fmt 447 eFax file EFX

AD1_Fmt 448 AD1 Evidence file AD1

SketchUp_Fmt 449 Google SketchUp SKP

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 250 of 320

Format Name Format
Number

Format Description Associated File
Extension

GWFS_Email_Fmt 450 GroupWise File Surf email GWFS

JNT_Fmt 451 Windows Journal format JNT

Yahoo_yChat_Fmt 452 Yahoo! Messenger chat log YCHAT

PaperPort_MAX_
File_Fmt

453 PaperPort image file MAX

ARJ_Fmt 454 ARJ (Archive by Robert Jung) file
format

ARJ

RPMSG_Fmt 455 Microsoft Outlook Restricted
PermissionMessage

RPMSG

MAT_Fmt 456 MATLAB file format MAT, FIG

SGY_Fmt 457 SEG-Y Seismic Data format SGY, SEGY

CDXA_MPEG_PS_
Fmt

458 MPEG-PS container with CDXA
stream

MPG1

EVT_Fmt 459 Microsoft Windows NT Event Log EVT

EVTX_Fmt 460 Microsoft Windows Vista Event Log EVTX

MS_OutlookOLM_
Fmt

461 Microsoft Outlook for Macintosh
format

OLM

WARC_Fmt 462 Web ARChive WARC

JAVACLASS_Fmt 463 Java Class format CLASS

VCF_Fmt 464 Microsoft Outlook vCard file format VCF

EDB_Fmt 465 Microsoft Exchange Server Database
file format

EDB

ICS_Fmt 466 Microsoft Outlook iCalendar file
format

ICS, VCS

MS_Visio_2013_Fmt 467 Microsoft Visio 2013 VSDX, VSTX, VSSX

MS_Visio_2013_
Macro_Fmt

468 Microsoft Visio 2013macro VSDM, VSTM, VSSM

ICHITARO_Compr_
Fmt

469 ICHITAROCompressed format JTDC

IWWP13_Fmt 470 Apple iWork 2013 Pages format IWA

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 251 of 320

Format Name Format
Number

Format Description Associated File
Extension

IWSS13_Fmt 471 Apple iWork 2013 Numbers format IWA

IWPG13_Fmt 472 Apple iWork 2013 Keynote format IWA

XZ_Fmt 473 XZ archive format XZ

Sony_WAVE64_Fmt 474 Sony Wave64 format W64

Conifer_WAVPACK_
Fmt

475 ConiferWavpack format WV

Xiph_OGG_
VORBIS_Fmt

476 XiphOgg Vorbis format OGG

MS_Visio_2013_
Stencil_Fmt

477 MS Visio 2013 stencil format VSSX

MS_Visio_2013_
Stencil_Macro_Fmt

478 MS Visio 2013 stencil Macro format VSSM

MS_Visio_2013_
Template_Fmt

479 MS Visio 2013 template format VSTX

MS_Visio_2013_
Template_Macro_
Fmt

480 MS Visio 2013 templateMacro format VSTM

Borland_Reflex_2_
Fmt

481 Borland Reflex 2 format R2D

PKCS_12_Fmt 482 PKCS #12 (p12) format P12, PFX

B1_Fmt 483 B1 format B1

ISO_IEC_MPEG_4_
Fmt

484 ISO/IEC MPEG-4 format MP4

RAR5_Fmt 485 RAR5 Format RAR5

Unigraphics_NX_
Fmt

486 Unigraphics (UG) NX CAD Format PRT

PTC_Creo_Fmt 487 PTC Creo CAD Format ASM, PRT

KML_Fmt 488 KeyholeMarkup Language KML

KMZ_Fmt 489 Zipped KeyholeMarkup Language KMZ

WML_Fmt 490 Wireless Markup Language WML

KeyView file formats and extensions, continued

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 252 of 320

Format Name Format
Number

Format Description Associated File
Extension

SO_Text_Fmt 492 Star OfficeWriter Text SDW, SGL, VOR

SO_Spreadsheet_
Fmt

493 Star Office Calc Spreadsheet SDC

SO_Presentation_
Fmt

494 Star Office Impress Presentation SDD, SDA

SO_Math_Fmt 495 Star OfficeMath SMF

STEP_Fmt 496 ISO 10303-21 STEP format STEP

STL_Fmt 497 3D Systems STL format STL

MS_Word_2007_
Flat_XML_Fmt

546 Microsoft Word 2007 Flat XML XML

KeyView file formats and extensions, continued

1
This file extension can returnmore than one format number.
2
MHT, EML, andMBX files might return either format 2, 233, or 395, depending on the text in the file. In
general, files that contain fields such as To, From, Date, or Subject are considered to be email
messages; files that contain fields such as content-type andmime-version are considered to beMHT
files; and files that do not contain any of those fields are considered to be text files.
3
All CAT file extensions, for example CATDrawing, CATProduct, CATPart, and so on.

Filter SDK C ProgrammingGuide
Appendix C: File Formats and Extensions

KeyView (11.6) Page 253 of 320

Appendix D: Extract and Format Lotus Notes
Subfiles

This section describes how to create XML templates to alter the appearance of extracted Lotus mail
note subfiles so that they maintain the look and feel of the original notes.

• Overview 254
• Customize XML Templates 254
• Template Elements and Attributes 256
• Date and Time Formats 260

Overview

KeyView uses the NSF reader, nsfsr, to extract Lotus database files, and places Lotus mail notes in
subfiles. The NSF reader uses a set of default XML templates to extract the notes and apply
formatting, thereby approximating the look and feel of the original notes.

In some cases, youmight need to customize the XML templates, for instance if your notes contain
custom data. In such cases, you canmodify the existing XML templates or create your own.

During extraction, the NSF reader loads all XML files in the NSFtemplates directory and its
subdirectories (except for the NSFtemplates\images directory, which is reserved for images). During
initialization, the KeyView XML parser verifies the XML templates. If the templates contain any invalid
XML, elements, or attributes, initialization fails and errors are recorded in the nsfsr.log file.

Customize XML Templates

XML templates are enabled by default. In most cases, the default templates should be sufficient;
however, you can customize them or create your own as required.

To customize XML templates for Lotus note extraction

1. Modify the template files in the following directory.
install\OS\bin\NSFtemplates

The main.xml file must exist in the NSFtemplates directory. It is the top-level template file that
extracts all subfiles, usually by calling other templates.

2. Make sure that any modifications or additional XML files conform to the supported elements and
attributes described in Template Elements and Attributes, on page 256.

3. Extract the Lotus database file.

KeyView (11.6) Page 254 of 320

Use Demo Templates

For testing purposes, you can extract notes by using a set of demo templates, which are provided to
demonstrate the proper usage of all the XML elements and attributes, because the default templates do
not use all the XML elements.

The demo templates are available at:

install\OS\bin\NSFtemplates

To use the demo XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
UseDemoTemplate=1

2. In the main.xml file, uncomment the following section.

<ifini name="UseDemoTemplate" text="1">
 <call file="demo.xml"/>
 <quit/>
</ifini>

Use Old Templates

For testing purposes, you can extract notes by using legacy templates, which produceMHTML output.
You can generate similar output by disabling the XML templates, but using the old templates enables
you to see the XML code and compare it to the standard and demo templates.

To use the old XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
UseOldTemplate=1

2. In the main.xml file, uncomment the following section.

<ifini name="UseOldTemplate" text="1">
 <call file="default_old.xml">
 <quit>
</ifini>

Disable XML Templates

For testing purposes, you can disable XML templates; KeyView extracts the notes in MHTML format.
You can compare theMHTML output directly by the NSF reader with theMHTML output indirectly by
the NSF reader through the XML templates.

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 255 of 320

To disable XML templates

1. In the formats.ini file, set the following parameter.

[nsfsr]
ExtractByTemplate=0

Template Elements and Attributes

This section lists the valid XML elements and attributes that you can use when creating or modifying
templates. See the demo templates for examples.

Conditional Elements

The following table lists the valid conditional elements.

Element Description

<keyview> The KeyView XML template container ("root") element

<if*> If the condition from the comparison is true, process the XML.
Conditions can be nested up to 25 levels deep.

Attributes

l name. (Required) The name of themain item to compare to item or
text.

l item. (Required if no text) The name of the item to compare to the
item specified by name.

l text. (Required if no item) The text to compare to the item specified
by name.

<ifex>, <ifnx> If name item exists and has a text value or not.

The Notes itemmight have a value that cannot be converted to text,
such as an image.

<ifeq>, <ifne>,
<iflt>, <ifle>,
<ifgt>, <ifge>

Respectively, if text ==, !=, <, >, <=, >, >=.

Text comparison uses a case-insensitive string compare.

<iftdeq>, <iftdne>,
<iftdlt>, <iftdle>,
<iftdgt>, <iftdge>

Respectively, if time/date ==, !=, <, >, <=, >, >=.

Time/date comparison converts dates to text in local time using the
Notes default, TZFMT_NEVER, because Notes also sometimes converts
fields to text internally. For example:

text="06/30/2005 02:52:04 PM"

<iftzeq>, <iftzne> Respectively, if the time zone equals or does not equal the comparison
text, for example CDT, EST, and so on.

Conditional elements

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 256 of 320

Element Description

<ifini> If the value of the INI option specified in name equals the text value.

<else> If the condition from the last <if> or <switch> was false, process XML.

<switch> If a name value exists, process XML.

Attributes

l name. (Required) The name of themain item to compare in <case>
subelements.

<case> If the comparison condition is true, process XML, then stop processing
the rest of <switch>.

Attributes

l text. (Required) The text to compare to the name item of <switch>.

<default> If all <case> conditions were false, process XML. This element must be
the last element in <switch>, after all the <case> elements. Any <case>
elements after the <default> element are ignored.

<for> If a name value exists, process XML. Process for each part of the name
item.

Attributes

l name. (Required) The name of themain item.
l max. (Optional) Themaximum index to process. By default, all are
processed.

<index> Output <for> loop index (1-based). <index> is only valid within a <for>
element.

Conditional elements, continued

Control Elements

The following table lists the valid control elements.

Element Description

<call> Call another XML template. You can nest templates up to 10 levels deep.

Attributes

l file. (Required) The template file name. This namemust be unique.

<log> Logmessage to the NSF log file.

Attributes

l text. (Required) The text to log.

Control Elements

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 257 of 320

Element Description

l type. (Optional) The type of logmessage. The following values are valid:
o ERROR
o WARN
o INFO

o DIAG (the default option)
o DEBUG
o DUMP

<quit> Stop processing the template. Exits without error.

Attributes

l text. (Optional) The text to log.
l type. (Optional) The type of logmessage. See <log>, on the previous page.

<stop> Stop processing the template. Exits with an ERROR logmessage.

Attributes

l text. (Required) The text to log.

Control Elements, continued

Data Elements

The following table lists the valid data elements.

Element Description

<text> Output text.

Attributes

l name. (Required if there is no parent) The name of the item to output.

<rich> Output rich text (MHTML). Images are output in the next part or parts of theMHTML,
after the first <HTML> part.

Attributes

l name. (Required if there is no parent) The name of the item to output.

<body> Output themessage body in rich text (MHTML). As with <rich>, above, images are
output in the next part or parts of theMHTML.

<form> Output themessage form (usually $Body field) in rich text (MHTML).

Attributes

l name. (Required if there is no parent) The name of the item to output.

Data elements

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 258 of 320

Element Description

<addr> Output an address.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l type. (Optional) The type of address to output. Set this attribute to CN (Common
Name), which is the only supported type.

<name> Output the name of the last name item, or in other words the current main item. The item
must exist.

<format> Set the default format for <date> and <date_kv>. This element does not set the <text>
format. See Date and Time Formats, on the next page for a list of all Notes and KeyView
date and time formats and integer values.

Attributes

l format. (Optional. Omit to reset to defaults) The Notes and KeyView date and time
format. You can set the following formats:
o TD=int. The TimeDate format (TDFMT_*)
o TS=int. The Time Show format (TSFMT_*)
o TT=int. The Time Time format (TTFMT_*)
o TZ=int. The Time Zone format (TZFMT_*)
o KV=int. The KeyView date and time format

where int is an integer value that corresponds to the desired format.

Separatemultiple formats with commas. For example:

format="TD=0,TS=2,TT=1,TZ=1,KV=55"

<date> Output a Notes date.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l format. (Optional) See <format>, above. You can set the following values:

o TD
o TS
o TT
o TZ

<date_
kv>

Output a KeyView date.

Attributes

l name. (Required if there is no parent) The name of the item to output.
l format. (Optional) See <format>, above. You can set the following values:

o TZ

Data elements, continued

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 259 of 320

Element Description

o KV

<time> Output a time range, for example 1 hour, 30minutes.

Attributes

l name. (Required if there is no parent) The item name of the start date or time.
l item. (Required) The item name of the end date or time.

<zone> Output a Notes time zonemnemonic, for example MST.

Attributes

l name. (Required if there is no parent) The name of date item to output.

<zone_
utc>

Output a time zone as UTC, for example (UTC-06:00).

<logo> Output themail header logo.

The image link is included in the output; the actual image is output to a different part of
theMHTML subfile.

<image> Output an image.

The image link is included in the output; the actual image is output to theMHTML next
part, as with <rich>, on page 258 and <body>, on page 258.

<image_
uri>

Output an image URI, in quotationmarks. The actual image is output to a different part of
theMHTML subfile.

Attributes

l link. (Required if there is no file) The image link, such as a form or title name. For
example:

l link="StdNotesLtr0"

l file. (Required if there is no link) The name of the image file. The file must exist in
the ../../templates/images directory. For example:

l file="boxcheck.gif"

Data elements, continued

Date and Time Formats

This section lists the supported Notes and KeyView date and time formats for use with <format>,
<date>, and <date_kv>.

Lotus Notes Date and Time Formats

This section lists supported Lotus Notes date and time formats, and the integer values that specify
each one.

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 260 of 320

Format Integer
Value

Description

TDFMT_FULL 0 (The Notes default) Year, month, and day

TDFMT_CPARTIAL 1 Month and day, year if not this year

TDFMT_PARTIAL 2 Month and day

TDFMT_DPARTIAL 3 Year andmonth

TDFMT_FULL4 4 Four-digit year, month, and day

TDFMT_
CPARTIAL4

5 Month and day, four-digit year if not this year

TDFMT_
DPARTIAL4

6 Four-digit year andmonth

TTFMT_FULL 0 (Notes default) Hour, minute, and second

TTFMT_PARTIAL 1 Hour andminute

TTFMT_HOUR 2 Hour

TZFMT_NEVER 0 (Notes default) All time zones are converted to the current time
zone

TZFMT_
SOMETIMES

1 Show only when outside the current time zone

TZFMT_ALWAYS 2 Show for all time zones

TSFMT_DATE 0 Date

TSFMT_TIME 1 Time

TSFMT_DATETIME 2 (The Notes default) Date and time

TSFMT_
CDATETIME

4 Date and time, or time today or time yesterday

Lotus Notes date and time formats

KeyView Date and Time Formats

This section lists KeyView date and time formats. The KeyView formats use the following syntax:

Month Month = full month name

Mon = abbreviatedmonth name

m = month (number)

mm = two-digit month (leading 0)

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 261 of 320

Weekday Weekday = full weekday name

Wday = abbreviated weekday name

Year yy = two-digit year

yyyy = four-digit year

Day d = day (number)

dd = two-digit day (leading 0)

Time h = 12-hour

H = 24-hour

m = minutes

s = seconds

P = AM/PM

p = am/pm

Separators _ = space

c = comma

s = slash

a = dash

o = dot

Format Output Integer Value

12-Hour and 24-Hour Time Formats

KVDTF_P P 1

KVDTF_P_hmm P h:mm 2

KVDTF_hmm_P h:mm P 3

KVDTF_P_hhmm P hh:mm 4

KVDTF_hhmm_P hh:mm P 5

KVDTF_P_hmmss P h:mm:ss 6

KVDTF_hmmss_P h:mm:ss P 7

KVDTF_P_hhmmss P hh:mm:ss 8

KVDTF_hhmmss_P hh:mm:ss P 9

KVDTF_Hmm H:mm 10

KVDTF_HHmm HH:mm 11

KeyView date and time formats

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 262 of 320

Format Output Integer Value

KVDTF_mmss mm:ss 12

KVDTF_Hmmss H:mm:ss 13

KVDTF_HHmmss HH:mm:ss 14

Numerical Date Formats with Slashes

KVDTF_mmsdd mm/dd 15

KVDTF_msdsyy m/d/yy 16

KVDTF_mmsddsyy mm/dd/yy 17

KVDTF_mmsddsyyyy mm/dd/yyyy 18

KVDTF_ddsmm dd/mm 19

KVDTF_ddsmmsyy dd/mm/yy 20

KVDTF_ddsmmsyy_Hmm dd/mm/yy H:mm 21

KVDTF_ddsmm_P_hmm dd/mm P h:mm 22

KVDTF_ddsmm_hmm_P dd/mm h:mm P 23

KVDTF_ddsmm_P_hhmm dd/mm P hh:mm 24

KVDTF_ddsmm_hhmm_P dd/mm hh:mm P 25

KVDTF_ddsmmsyy_P_hmm dd/mm/yy P h:mm 26

KVDTF_ddsmmsyy_hmm_P dd/mm/yy h:mm P 27

KVDTF_ddsmmsyy_P_hmmss dd/mm/yy P h:mm:ss 28

KVDTF_ddsmmsyy_hmmss_P dd/mm/yy h:mm:ss P 29

KVDTF_ddsmmsyy_P_hhmmss dd/mm/yy P hh:mm:ss 30

KVDTF_ddsmmsyy_hhmmss_P dd/mm/yy hh:mm:ss P 31

KVDTF_yysmmsdd_P_hhmmss yy/mm/dd P hh:mm:ss 32

KVDTF_yysmmsdd_hhmmss_P yy/mm/dd hh:mm:ss P 33

KVDTF_msdsyy_Hmm m/d/yy H:mm 34

KVDTF_mmsddsyy_Hmm mm/dd/yy H:mm 35

KVDTF_msdsyy_P_hmm m/d/yy P h:mm 36

KVDTF_msdsyy_hmm_P m/d/yy h:mm P 37

KeyView date and time formats, continued

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 263 of 320

Format Output Integer Value

KVDTF_mmsddsyy_hmm_P mm/dd/yy h:mm P 38

KVDTF_mmsdd_P_hhmm mm/dd P hh:mm 39

KVDTF_mmsdd_hhmm_P mm/dd hh:mm P 40

KVDTF_mmsddsyy_P_hhmmss mm/dd/yy P hh:mm:ss 41

KVDTF_mmsddsyy_hhmmss_P mm/dd/yy hh:mm:ss P 42

KVDTF_msd m/d 43

KVDTF_yysm yy/m 44

KVDTF_yysmm yy/mm 45

KVDTF_yysmsd yy/m/d 46

KVDTF_yysmmsdd yy/mm/dd 47

KVDTF_yyyysmmsdd yyyy/mm/dd 48

Numerical Date Formats with Dashes

KVDTF_ddammayy dd-mm-yy 49

KVDTF_mmadd mm-dd 50

KVDTF_mmayy mm-yy 51

KVDTF_yyammadd yy-mm-dd 52

KVDTF_yyyyammadd yyyy-mm-dd 53

KVDTF_yyyyammaddaHHmmss yyyy-mm-dd-HH:mm:ss 54

Numerical Date Formats with Dots

KVDTF_yyomod yy.m.d 55

KVDTF_yyommodd yy.mm.dd 56

KVDTF_mod m.d 57

KVDTF_mmodd mm.dd 58

Numerical and String Date Formats with Dashes, Commas, and Spaces

KVDTF_ddaMon dd-Mon 59

KVDTF_daMonayy d-Mon-yy 60

KVDTF_ddaMonayy dd-Mon-yy 61

KeyView date and time formats, continued

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 264 of 320

Format Output Integer Value

KVDTF_ddaMonayyyy dd-Mon-yyyy 62

KVDTF_Mon Mon 63

KVDTF_Monayy Mon-yy 64

KVDTF_Monayyyy Mon-yyyy 65

KVDTF_Monaddayy Mon-dd-yy 66

KVDTF_yyammadd_P_hhmmss yy-mm-dd P hh:mm:ss 67

KVDTF_mmadd_P_hhmm mm-dd P hh:mm 68

KVDTF_Mon_yy Mon yy 69

KVDTF_Monc_yy Mon, yy 70

KVDTF_Month Month 71

KVDTF_Monthayy Month-yy 72

KVDTF_Month_yy Month yy 73

KVDTF_Monthc_yy Month, yy 74

KVDTF_Monthayyyy Month-yyyy 75

KVDTF_Month_yyyy Month yyyy 76

KVDTF_Monthc_yyyy Month, yyyy 77

KVDTF_Mon_dc_yyyy Mon d, yyyy 78

KVDTF_d_Monc_yyyy d Mon, yyyy 79

KVDTF_yyyy_Mon_d yyyy Mon d 80

KVDTF_Month_dc_yyyy Month d, yyyy 81

KVDTF_d_Monthc_yyyy d Month, yyyy 82

KVDTF_yyyy_Month_d yyyy Month d 83

Weekday Date Formats

KVDTF_Wday Wday 84

KVDTF_Weekday Weekday 85

KVDTF_Wdayc_Mon_dc_yyyy Wday, Mon d, yyyy 86

KVDTF_Weekdayc_Month_dc_yyyy Weekday, Month d, yyyy 87

KeyView date and time formats, continued

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 265 of 320

Format Output Integer Value

KVDTF_Weekdayc_d_Monthc_yyyy Weekday, d Month, yyyy 88

KeyView date and time formats, continued

Filter SDK C ProgrammingGuide
Appendix D: Extract and Format Lotus Notes Subfiles

KeyView (11.6) Page 266 of 320

Appendix E: File Format Detection

This section describes how file formats are detected in Filter SDK.

• Introduction 267
• Extract Format Information 267
• Determine Format Support 267
• Translate Format Information 270
• Determine a Document Reader 271
• Category Values in formats.ini 271

Introduction

The KeyView format detectionmodule (kwad) detects a file’s format, and reports the information to the API,
which in turn reports the information to the developer’s application. If the detected format is supported by the
KeyView SDK, the detectionmodule also loads the appropriate structured access layer and document reader
for further processing. For a list of supported formats, see Supported Formats, on page 184.

Extract Format Information

You can extract format information from a document by using either the fpGetDocInfoStream() or
fpGetDocInfoFile() functions. If required, you can then report this information to the developer’s
application.

The fpGetDocInfoStream() and fpGetDocInfoFile() functions extract themajor format, file class,
version, and document attributes, and populate the ADDOCINFO structure. This structure and values are
defined in the header file adinfo.h. See Filter API Functions, on page 117 for more information.

For information on how to translate the extracted format information, see Translate Format Information, on
page 270.

Determine Format Support

After the file format is extracted, the detectionmodule uses the formats.ini file to determine whether the
format is supported by KeyView, and the appropriate structured access layer and reader to load.

The formats.ini file is in the directory install\OS\bin, where install is the path name of the Filter
installation directory and OS is the name of the operating system. It contains the following information:

l Coded format information. To translate this information, see Translate Format Information, on page 270.
l The reader associated with each format. See Determine a Document Reader, on page 271.
l Configuration parameters.
l Locale settings for internal use.

KeyView (11.6) Page 267 of 320

Example formats.ini file entries

123=mw
152=xyw
178=wp6
189=mw6
2=af
200=pdf
205=mb
210=htm
251=htm

NOTE:
The formats.ini file applies to all formats except graphics. Detection of graphics formats is
handled by an internal module named KeyView Picture Interchange Format (KPIF).

Refine Detection of Text Files

During text detection, KeyView analyses the first 1 kB and last 1 kB of data in a document. If less than
10% of that data consists of non-ASCII characters, KeyView detects the document as a text file.

However, depending on the type of documents you are working with, the default settings might not
provide the desired level of accuracy. Configuration flags enable you to change the amount of data to
read at the end of a file, the percentage of non-ASCII characters permitted in a text file, and whether to
use or ignore the file extension to determine the document format.

Change the Amount of File Data to Read

During file detection, KeyView reads characters from the beginning and end of a file—by default, it
reads the first and last 1,024 bytes of data. Large text files might contain many irrelevant characters at
the end of a file, so KeyView might not accurately detect the file format. You can set a configuration
flag to increase the amount of data to read from the end of a file during detection.

To change the amount of data to read during detection

l In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_end_block_size=kB

where kB is the number of kilobytes to read from the end of the file, from 0 to 10. The default value is
1.

NOTE:
The file sizemust be greater than the value specified in the flag. If the flag value is greater
than the file size, KeyView does not use the flag.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 268 of 320

Change the Percentage of Allowed Non-ASCII Characters

By default, if less than 10% of the analyzed data in a document consists of non-ASCII characters, it is
detected as a text file. Depending on the type of files that you are working with, changing the default
percentagemight increase detection accuracy.

To change the percentage of non-ASCII characters allowed in text files

l In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
non_ascii_chars_in_text=N

where N is the percentage of non-ASCII characters to allow in text files. Files that contain a lower
percentage of non-ASCII characters than N are detected as text files. The default value is 10.

Allow Consecutive NULL Bytes in a Text File

By default, if a document contains consecutive NULL bytes, it is not detected as text. Depending on the
type of files that you are working with, changing the default might increase detection accuracy.

To allow consecutive NULL bytes of ASCII characters in text files

In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
ascii_allow_null_bytes=1

The default value is 0 (do not allow consecutive NULL bytes).

Use the File Extension for Detection

Sometimes KeyView detects certain file formats, such as CSV, as ASCII because of the content of
the documents. In such cases, you can configure KeyView to use the file extension to determine the
document format. Using the file extension can improve detection of formats such as CSV, but might
not detect text files successfully if they have incorrect file extensions.

To use the file extension for ASCII files during detection

l In the formats.ini file, set the following flag in the detection_flags section:

[detection_flags]
use_extension_for_ascii=1

The default is 0 (do not use the file extension).

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 269 of 320

Translate Format Information

Format information can include file attributes in the following categories:

l Major format
l File class
l Minor format
l Major version
l Minor version
Not all categories are required. Many formats only includemajor format and file class, or major format
only.

The format information has the following structure:

MajorFormat.FileClass.MinorFormat.MajorVersion.MinorVersion

For example:

81.2.0.9.0

Each number in the format information represents a file attribute. The entry 81.2.0.9.0 represents a
Lotus 1-2-3 Spreadsheet file version 9.0, where

81= Lotus 1-2-3 Spreadsheet (major format)

 2 = Spreadsheet (file class)

 0 = not defined (minor format)

 9 = 9 (major version)

 0 = 0 (minor version)

This example applies to the formats.ini file. When extracting format information using the
fpDocInfoFile() or fpDocInfoStream() functions, the same format is represented as 294.2.9.0.

NOTE:
The format values returned from fpDocInfoFile() or fpDocInfoStream() differ from those in
formats.ini because the former defines a unique ID for eachmajor format, while the latter
uses amajor version, minor version, andminor format to distinguish between formats.

Distinguish Between Formats

The ADDOCINFO structure provides a unique ID for eachmajor format. For example, a call to
fpGetDocInfoFile() or fpGetDocInfoStream() would return 351.1.0 for aMicrosoft Word XML
format. Themajor format 351 is unique to this format.

Unlike ADDOCINFO, the formats.ini file distinguishes between formats by using themajor version
number. For example, in the formats.ini file, a Microsoft Word 2003 XML format is defined as
285.1.0.100.0. Themajor format 285 and file class 1 are the same values for generic XML. Themajor
version 100 distinguishes the format as Microsoft Word 2003 XML.

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 270 of 320

Themajor version is used to specify the following formats:

l Microsoft Office 2003 XML. This format has the samemajor format and file class as generic XML
(285.1). It is distinguished from generic XML by using the followingmajor versions:
o Word: 100
o Excel: 101
o Visio: 110

l The XHTML format has the samemajor format and file class as HTML (210.1). It is distinguished
from HTML by using themajor version 100.

Determine a Document Reader

The format detectionmodule uses the formats.ini file to determine whether a format is supported,
and to determine the reader to use to parse a format. The entries in the formats.ini file list each
format’s coded value, and an abbreviation for the format’s reader.

The reader abbreviation is a truncated version of the reader’s library name. Adding "sr" to the end of an
abbreviation creates the name of the reader. For example, this example entry specifies that a Lotus 1-2-
3 Spreadsheet file version 9.0 is parsed by the Lotus 1-2-3 filter, l123sr:

81.2.0.9.0=l123

List of Required Files for Redistribution, on page 290 lists the readers provided with KeyView.

Category Values in formats.ini

This section lists the possible category values for format information in the formats.ini file. The
corresponding values for format information extracted by a call to fpGetDocInfoFile() or
fpGetDocInfoStream() are listed in the header file adinfo.h.

l Major Formats
l File Classes
l Minor Formats

Number Format File Class

1 AES Multiplus Comm Format Word processor

2 ASCII File word processor/MS DOS Batch File format Word processor

3 Applix Asterix Word processor

4 Microsoft Windows Bitmap image (BMP) Raster image

5 Convergent Tech DEF Comm. format Word processor

6 Corel Draw (CDR) Vector graphic

Major Formats

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 271 of 320

Number Format File Class

7 Keyword COM.FILE (KSIF)

8 Computer Graphics Metafile (CGM) Vector graphic

9 Word Connection Word processor

10 COMET TOPWord Word processor

11 DGCEOwrite Word processor

12 Honey Bull DSA101 Word processor

13 IBM DCA-RFT Word processor

14 DDIF Word processor

15 Dummy File (Internal)

16 DGCommonData Stream (CDS) Word processor

17 Dummy Print File (Internal)

18 Windows Micrografx Draw (DRW) Vector graphic

19 Data Point VISTAWORD Word processor

20 DECdx Word processor

21 Enable Word processor

22 Encapsulated PostScript (EPS) Raster image

23 DOS/Windows Executable (EXE, DLL) Executable

24 CCITT Group 3 1-Dimensional (G31D) Raster image

25 Graphics Interchange format (GIF) Raster image

26 Hewlett Packard Word processor

27 IBM 1403 Line Printer Word processor

28 IBM DCF Script Word processor

29 IBM DCA-FFT Word processor

30 Interleaf Word processor

31 GEM Bit Image Raster image

32 IBM Display Write 4 Word processor

33 Raster Graphics Raster image

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 272 of 320

Number Format File Class

34 Keywords PICL

35 Lotus AMI Pro Word processor

36 MORE DatabaseOutliner (Mac) Outline/planning

37 Lyrix Word processor

38 MASS-11 Word processor

39 MacPaint Raster image

40 Microsoft WordMac Word processor

41 Informix SmartWare II Communication File Communications

42 Microsoft Word forWindows Word processor

43 MultiMate 4.0 Word processor

44 Multiplan Spreadsheet Spreadsheet

45 Microsoft Rich Text Format (RTF) Word processor

46 Microsoft Word 5.0 (PC) Word processor

47 NBI Async Archive Format Word processor

48 Navy DIF Word processor

49 NBI Net Archive Format Word processor

50 NIOS TOP Word processor

51 FileMaker (Mac) Database

52 ODA/ODIF Word processor

53 OLIDIF Word processor

54 Keyword OSM

55 OfficeWriter Word processor

56 PC Paint BrushGraphics (PCX) Raster image

57 CPT Communication Format Word processor

58 Lotus PIC Vector graphic

59 Macintosh Quick Draw Picture Format (PICT) Raster image

60 Philips Script Word processor

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 273 of 320

Number Format File Class

61 PostScript File Vector graphic

62 PRIMEWORD Word processor

63 Quadratron Q-One (V1.93J) Word processor

64 Quadratron Q-One (V2.0) Word processor

65 SAMNAWord IV Word processor

66 Lotus AMI Pro Draw (SDW) Raster image

67 SYLK Spreadsheet Spreadsheet

68 Informix SmartWare II Word processor

69 Symphony Spreadsheet Spreadsheet

70 Truevision Targa Raster image

71 Tagged Image File (TIFF) Raster image

72 TargonWord (V 2.0) Word processor

73 Uniplex Ucalc Spreadsheet Spreadsheet

74 Uniplex (V6.01) Word processor

75 Microsoft Word (UNIX) Word processor

76 WANGPC Word processor

77 WordERA (V 1.0) Word processor

78 WANGWPS Comm. format Word processor

79 WordPerfect Mac Word processor

80 WordPerfect 5.2 Word processor

81 Lotus 1-2-3 Spreadsheet Spreadsheet

82 WordMARC word processor Word processor

83 Microsoft Windows Metafile (WMF) Graphics Raster image

84 Informix SmartWare II Database Database

85 WordPerfect Graphics V1.0 (WPG) Raster image

86 WordPerfect Word processor

87 WordStar Word processor

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 274 of 320

Number Format File Class

88 WangWITA Word processor

89 Xerox 860 Comm. format Word processor

90 Microsoft Excel Spreadsheet Spreadsheet

91 Xerox Writer word processor Word processor

92 DIF Spreadsheet Spreadsheet

93 ENABLE Spreadsheet Spreadsheet

94 Supercalc Spreadsheet Spreadsheet

95 Ultracalc Spreadsheet Spreadsheet

96 Informix SmartWare Spreadsheet Spreadsheet

97 Serialized Object Format (SOF) Encapsulation format Encapsulation

98 Microsoft PowerPoint (PC) Presentation

99 Microsoft PowerPoint (Mac) Presentation

100 Aldus PageMaker (Mac) Desktop Publishing

101 Aldus PageMaker (DOS) Desktop Publishing

103 Microsoft Works (Mac) Word processor

104 Microsoft Works Database (Mac) Database

105 Microsoft Works Spreadsheet (Mac) Spreadsheet

106 Microsoft Works Communication (Mac) Communications

107 Microsoft Works (PC) Word processor

108 Microsoft Works Database (PC) Database

109 Microsoft Works Spreadsheet (PC) Spreadsheet

111 PC Library Module Library module

112 MacWrite Word processor

113 MacWrite II Word processor

114 Aldus FreehandMac Vector graphic

115 Disk Doubler Compression format Encapsulation

116 HP Graphics Language (HP-GL) Vector graphic

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 275 of 320

Number Format File Class

117 AdobeMaker Interchange Format (MIF) Desktop Publishing

118 JPEG File Interchange Format (JFIF) Raster image

119 Reflex Database Database

120 Framework II Mixed format

121 Paradox (PC) Database Database

123 Microsoft Windows Write Word processor

124 Quattro Pro Spreadsheet (DOS) Spreadsheet

126 Persuasion Presentation Presentation

127 Corel Presentation Presentation

128 Microsoft Windows Icon Format (ICO) Graphics Raster image

129 Microsoft Project Time scheduling

131 Harvard Graphics Desktop publishing

132 Zip Archive Format Encapsulation

133 Microsoft Windows Cursor (CUR) Graphics Raster image

134 Quark Express (Mac) Desktop publishing

135 ARC/PAK Archive format Encapsulation

136 Adobe FrameMaker Desktop publishing

137 Microsoft Publisher Desktop publishing

138 Plan Perfect Time scheduling

139 WordPerfect General File Format Miscellaneous

140 Lotus Freelance Presentation

141 Microsoft Wave Sound File Sound

142 MIDI Sound File Sound

143 AutoCAD DXF Graphics Vector graphic

144 dBase Database Database

145 OS/2 PMMetafile Graphics Vector graphic

146 Lasergraphics Language Vector graphic

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 276 of 320

Number Format File Class

147 AutoShade Rendering File Format Vector graphic

148 Graphics Environment Manager (GEM VDI) Vector graphic

149 Microsoft Windows Help File Miscellaneous

150 Volkswriter Word processor

151 Ability Office (SS, DB, GR, WP, COM)

152 XyWrite/Nota Bene Word processor

153 CommaSeparated Values (CSV) Spreadsheet

154 Writing Assistant word processor Word processor

155 WordStar 2000 Word processor

156 WordStar 6.0 Word processor

157 HP Printer Control Language (PCL) Vector graphic

158 (UNIX/VAX/SUN) Executable Executable

159 (UNIX/VAX/SUN) Object Module Object module

160 (UNIX/VAX/SUN) Link Library Library module

161 NeXT SUN Audio Data Sound

162 NeWS font file (SUN) Font

163 cpio Archive Format (UNIX/VAX/SUN) Encapsulation

164 PEX Binary Archive (SUN) Encapsulation

165 SUN vfont definition Font

166 Curses Screen Image (UNIX/VAX/SUN) Raster image

167 UU Encoded Encryption File Encapsulation

168 WriteNow Word processor

169 PC Object Module Object module

170 Microsoft Windows Group File Miscellaneous

171 PC True Type Font Font

172 Program Information File Miscellaneous

173 PC COM executable file Executable

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 277 of 320

Number Format File Class

174 Adobe FrameMaker Markup Language Desktop publishing

175 Stuff It Archive (Mac) Encapsulation

176 PeachCalc Spreadsheet Spreadsheet

177 WangOffice GDLHeader Encapsulation Encapsulation

178 WordPerfect 6.0 Word processor

179 Q& A for DOS Word processor

180 Q& A forWindows Word processor

181 DEC WPS PLUS Word processor

182 DCX Fax format Fax

183 Microsoft Windows OLE 2 Encapsulation Encapsulation

184 Quattro Pro forWindows Spreadsheet

185 Keyword ViewerMarkup Format

186 EBCDIC Text Word processor

187 DCS Word processor

188 Microsoft Excel Spreadsheet 95, 2000 Spreadsheet

189 Microsoft Word forWindows 95 Word processor

190 UNIX SHAR Encapsulation Encapsulation

191 Lotus Notes Bitmap Raster image

192 UNIX Compress Encapsulation Encapsulation

193 Lotus Notes CDF Word processor

194 UNIX TAR Encapsulation Encapsulation

195 WordPerfect Graphics V2.0 (WPG2) Raster image

Vector graphic

196 ODA/ODIF (FOD 26) Word processor

197 ALIS Word processor

198 GZ Compress Encapsulation Encapsulation

199 Envoy (EVY) Word processor

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 278 of 320

Number Format File Class

200 Adobe Portable Document Format (PDF) Word processor

201 KW ODA Internal Raw Bitmap (RBM) Raster image

202 KW ODA G4 (G4) Raster image

203 KW ODA G31D (G31) Raster image

204 KW ODA Internal G32D (G32) Raster image

205 Microsoft Word for Mac V 4.x/5.x Word processor

206 BinHex 4.0 encoded file Encapsulation

207 SMTP document Encapsulation

208 MIME format - Microsoft Outlook Express (EML)/Mailbox (MBX) Encapsulation

209 SGML document Word processor

210 HTML document

XHTML 1
Word processor

211 ACT Format Word processor

212 Microsoft PowerPoint 95 Presentation

213 Portable Network Graphics (PNG) Raster image

214 Video forWindows Movie

215 Windows Animated Cursor Raster image

216 Windows C++ Object Storage Mixed format

217 Windows Palette Raster image

218 RIFF Device Independent Bitmap Raster image

219 RIFF MIDI Sound

220 RIFF MultimediaMovie Movie

221 MPEGMovie Movie

222 QuickTimeMovie Movie

223 Audio Interchange File Format (AIFF) Sound Sound

224 AmigaMOD Sound Sound

225 Amiga IFF (8SVX) Sound Sound

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 279 of 320

Number Format File Class

226 Creative Voice (VOC) Sound Sound

227 Microsoft Works (Windows) Word processor

228 Microsoft Works Spreadsheet (Windows) Spreadsheet

229 AutoDesk Animator FLIC Animation Animation

230 AutoDesk Animator Pro FLIC Animation Animation

231 Microsoft Works Database (Windows) Database

232 Microsoft Works Communication (Windows) Communications

233 Compactor / Compact Pro Archive Encapsulation

234 VRML Vector graphic

235 QuickDraw 3D Metafile (3DMF) Vector graphic

236 PGP Secret Keyring Encapsulation

237 PGP Public Keyring Encapsulation

238 PGP Encrypted Data Encapsulation

239 PGP Signed Data Encapsulation

240 PGP Signed and Encrypted Data Encapsulation

241 PGP Signature Certificate Encapsulation

242 ASCII-armored PGP Public Keyring Encapsulation

243 ASCII-armored PGP encoded Encapsulation

244 ASCII-armored PGP signed Encapsulation

245 OLE DIB object Raster image

246 PGP Compressed Data Encapsulation

247 SGI Image Raster image

248 Lotus Screen Cam Animation

249 MPEGAudio Sound

250 FTP Session Data Communications

251 Netscape Bookmark file Word processor

252 Corel Draw CMX Vector image

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 280 of 320

Number Format File Class

253 AutoCAD Drawing (DWG) Vector graphic

254 AutoDesk WHIP Vector graphic

255 Macromedia Director Animation

256 Real Audio Sound

257 MS DOS Device Driver Executable

258 Micrografx Designer Vector graphic

259 Simple Vector format (SVF) Vector graphic

260 WordPerfect Office document (WPD)

261 Applix Words Word processor

262 Applix Graphics Presentation

263 Microsoft Access Database

264 Usenet format Word processor

265 MacBinary Encapsulation

266 Apple Single Encapsulation

267 Apple Double Encapsulation

268 Lotus Word Pro Word processor

269 Microsoft Word 97, 2000 Word processor

270 EnhancedWindow Metafile Vector graphic

271 Microsoft Office Drawing Vector graphic

272 Microsoft PowerPoint 97, 2000 Presentation

273 Extended or Custom XML Word processor

274 Device Independent file (DVI) Vector graphic

275 Unicode Word processor

276 Framework Mixed

277 KPIF Chart Stream

278 Applix Spreadsheet Spreadsheet

279 Microsoft Device Independent Bitmap Raster image

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 281 of 320

Number Format File Class

280 KeyView GPF Filter

281 Microsoft Project 98, 2000, 2002 Time scheduling

282 Folio Flat file Word processor

283 HWP (Arae-Ah Hangul) Word processor

284 JustSystems Ichitaro Word processor

285 Generic XML format

Microsoft Office 2003 XML format 2
Word processor

286 Fujitsu Oasys Word processor

287 Portable Bitmap Utilities (PBM) Raster image

288 Portable GreymapUtilities (PGM) Raster image

289 Portable Pixmap Utilities (PPM) Raster image

290 X Bitmap (XBM) Raster image

291 X Pixmap (XPM) Raster image

292 X Image Raster image

293 PCD Image Raster image

294 Microsoft Visio Presentation

295 Microsoft Outlook (MSG) Encapsulation

296 XHTML document Word processor

297 Microsoft Outlook Personal Folders file (PST) Encapsulation

298 WinRAR Compressed Archive format (RAR) Encapsulation

299 Lotus Notes Database (NSF)
Legato Extender ONM

Encapsulation

300 Macromedia Flash Word processor

301 Microsoft Word 2007 (XML format) Word processor

302 Microsoft Excel 2007 (XML format) Spreadsheet

303 Microsoft PowerPoint 2007 (XML format) Presentation

304 Open PGP (new format packets only) Encapsulation

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 282 of 320

Number Format File Class

305 Intergraph version 7 DGN Vector graphic

306 Microstation version 8 DGN Vector graphic

307 Microsoft Word 2007Macro Word processor

308 Microsoft Excel 2007Macro Spreadsheet

309 Microsoft PowerPoint Macro Presentation

310 Microsoft Compression folder (LZH) Encapsulation

311 Office 2007 Document Miscellaneous

312 XMLPaper Specification Word processor

313 Lotus Domino Extensible Language Encapsulation

314 OASIS Open Document (ODT) Word processor

315 OASIS Open Document (ODS) Spreadsheet

316 OASIS Open Document (ODP) Presentation

317 Legato EMailXtender NativeMessage Word Processor

319 Transfer Neutral Encapsulation Format (TNEF) Encapsulation

320 CADAMDrawing Vector graphic

321 CADAMDrawingOverlay Vector graphic

322 NURSTOR Drawing Vector graphic

323 HP Graphics Language (Plotter) Vector graphic

324 Advanced Systems Format Miscellaneous

325 Windows Media Audio Format Sound

326 Windows Media Video Format Movie

327 Legato EMailXtender Archive Encapsulation

328 7-Zip Encapsulation

329 Microsoft Office 2007 Excel Binary Format Spreadsheet

330 Microsoft Cabinet File Encapsulation

331 CATIA formats Vector graphic

332 Yahoo! Instant Messenger Word processor

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 283 of 320

Number Format File Class

333 Founder Chinese E-paper Basic Word processor

334 Corel Quattro Pro X4 Spreadsheet

335 MIME HTML Word processor

336 Microsoft Document Imaging Format Raster image

337 Microsoft Office Groove File Format Word processor

338 Apple iWorks Pages Word processor

339 Apple iWorks Numbers Spreadsheet

340 Apple iWorks Keynote Presentation

341 Microsoft Backup File Encapsulation

342 Microsoft Access 2007 Database

343 Microsoft Entourage Database Encapsulation

344 Mac Disk Copy Disk Image File Encapsulation

345 Appleworks File Word processor

346 Omni Outliner (OO3) File Word processor

347 Omni Outliner (OPML) File Word processor

348 Omni Graffle XML File Vector graphic

349 Apple Photoshop Document Raster image

350 Apple Binary Property List Miscellaneous

351 Apple iChat Format Word processor

352 Omni Outliner (OOUTLINE) File Word processor

353 Bzip 2 Compressed File Encapsulation

354 ISO-9660 CD Disc Image Format Encapsulation

355 Xerox DocuWorks Word processor

356 RealMedia StreamingMedia Movie

357 AC3 Audio File Format Sound

358 Nero Encrypted File Encapsulation

359 SolidWorks Vector graphic

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 284 of 320

Number Format File Class

362 UniGraphics NX Vector graphic

364 3D Systems STL format Vector graphic

366 Extensible Forms Description Language Presentation

367 Apple XML Property List Miscellaneous

368 OneNote Note Format Presentation

370 Digital Imaging and Communications in Medicine (DICOM) Raster image

371 Expert Witness Compression Format Encapsulation

372 Shell Scrap Object File Encapsulation

373 Microsoft Project 2007 Time scheduling

374 Microsoft Publisher 98– Desktop publishing

375 Skype Log File Word processor

376 Lotus Notes Bitmap Format (DXL embedded images) Raster image

377 Health level7 message Word processor

378 Microsoft Outlook Offline Storage File Encapsulation

379 Open Publication Structure eBook Word processor

380 Microsoft Outlook Express DBX Encapsulation

381 BlackBerry Activation File Word processor

382 Disk Image Encapsulation

383 Milestone Raster Image

384 RealLegal E-Transcript File Word processor

385 PostScript Type 1 Font Font

386 Ghost Disk Image File Encapsulation

387 JPEG-2000 JP2 File Format Syntax (ISO/IEC 15444-1) Raster Image

388 Unicode HTML Word processor

389 Microsoft Compiled HTMLHelp Encapsulation

390 Documentum EMCMF Encapsulation

393 JBIG2 File Raster image

Major Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 285 of 320

Number Format File Class

395 AD1 Evidence file Encapsulation

397 GroupWise File Surf email Encapsulation

402 ARJ Encapsulation

409 Microsoft Outlook for Macintosh Encapsulation

412 Microsoft Outlook vCard Contact Word processor

414 Microsoft Outlook iCalendar Encapsulation

418 Apple iWork 2013 Pages Word processor

419 Apple iWork 2013 Numbers Spreadsheet

420 Apple iWork 2013 Keynote Presentation

421 XZ Encapsulation

427 B1 Encapsulation

428 MP4 Movie

429 Rar5 Encapsulation

430 PTC Creo Vector graphic

431 KeyholeMarkup Language

432 Zipped KeyholeMarkup Language

433 Wireless Markup Language

435 Star OfficeWriter Text

436 Star Office Calc Spreadsheet

437 Star Office Impress Presentation

438 Star OfficeMath

439 ISO 10303-21 STEP format Vector graphic

Major Formats, continued

1 If themajor version is 100, the file format is XHTML.

2 Themajor version determines whether theMicrosoft Office XML file is aWord, Excel or Visio
document. Themajor version for each format is as follows:
Word: 100
Excel: 101
Visio: 110

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 286 of 320

Attribute Number File Class

0 No file class

01 Word processor

02 Spreadsheet

03 Database

04 Raster image

05 Vector graphic

06 Presentation

07 Executable

08 Encapsulation

09 Sound

10 Desktop publishing

11 Outline/planning

12 Miscellaneous

13 Mixed format

14 Font

15 Time scheduling

16 Communications

17 Object module

18 Library module

19 Fax

20 Movie

21 Animation

File Classes

Attribute Number Minor Format

00 Minor format not defined

01 Standard

Minor Formats

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 287 of 320

Attribute Number Minor Format

02 Book

03 Chart

04 Macro

05 Text

06 Binary

07 PC

08 Windows

09 DOS

10 Macintosh

11 RGB

12 TIFF

13 IFF

14 Experimental

15 Format Information

16 RLE

17 Symbol

18 Old

19 Footnote

20 Style

21 Palette

22 Configuration

23 Activity

24 Resource

25 Calculation

26 Glossary

27 Spelling

28 Thesaurus

Minor Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 288 of 320

Attribute Number Minor Format

29 Hyphenation

30 Miscellaneous

31 UNIX

32 VAX

33 Driver

34 Archive

Minor Formats, continued

Filter SDK C ProgrammingGuide

KeyView (11.6) Page 289 of 320

Appendix F: List of Required Files for Redistribution

This section lists the Filter files that can be redistributed in your applications under the licensing
agreement. These files are in the directory install\OS\bin, where install is the path name of the
Filter installation directory and OS is the name of the operating system.

NOTE:
OnWindows systems, the libraries are .dll files. On UNIX systems, the libraries are .so, .a,
or .sl files.

Core Files

The following core files can be redistributed with your application.

File Description

formats.ini Initialization file. For more information on this file, see Determine Format
Support, on page 267.

FilterDotNet.* Required by .NET API.

KeyViewFilter.* Required by the Java API.

kpifcnvt.* For presentation graphics, converts from one picture format to another.

kpifutil.* Utility for handling the internal picture interchange format for presentation
graphics.

kvxtract.* File Extraction API.

kvfilter.* Filter API.

kvolefio.* EmbeddedOLE object writer.

kvutil.* Internal KeyView utility functions.

kvxpgsa.* Interface between presentation readers and kvfilter. Required to extract
metadata from AutoCAD files.

kvxsssa.* Interface between spreadsheet readers and kvfilter.

kvxwpsa.* Interface between word processing readers and kvfilter.

kwad.* File auto-recognitionmodule.

txtcnv.* Converter for document token stream.

KeyView (11.6) Page 290 of 320

Support Files

The following support files can be redistributed with your application.

File Description

bentofio.* Required by l123sr and kpprzrdr.

cbmap.map Character mappings for Adobe Portable Document Format (PDF).

chartbls.ux Character mappings.

chmdll.* Required by chmsr.

kppng.* Required for ZLIB decompression.

kvxconfig.ini Contains element extraction settings for XML files.

kvoop.* Required for out-of-process filtering.

kvthread.* Required for multithreaded out-of-process filtering.

kv.lic Contains license information for KeyView products. This file is opened and
validated when a KeyView API is used.

MSVCP60.* Microsoft Visual C++ Runtime library V6.0.

msvcrt.* Microsoft Visual C Runtime library.

wpmap.* Extended character mapping forWordPerfect and Corel Presentation.

xmlsh.* Contains a library of content handlers for each XML file type. Required by the
Expat XML parser.

Document Readers

The following readers can be redistributed with your application.

File Description

ad1sr.* AD1 Evidence file reader

afsr.* ASCII reader

aiffsr.* Audio Interchange Format File (AIFF) reader

asfsr.* Advanced Systems Format reader

assr.* Applix Spreadsheet reader

awsr.* Applix Word reader

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 291 of 320

File Description

bl1sr.* B1 archive reader

bkfsr.* Microsoft Backup File reader

bmpsr.* Windows bitmap (BMP) reader

bzip2sr.* Bzip2 reader

cabsr.* Microsoft Cabinet format reader

cebsr.* Founder Chinese E-paper Basic reader

chmsr.* Microsoft Compiled HTMLHelp reader

csvsr.* Comma-Separated Values reader

dbfsr.* dBase Database reader

dbxsr.* Microsoft Outlook Express DBX reader

dcasr.* Document Content Architecture/Revisable Form Text (DCA/RFT) reader

dcmsr.* Digital Imaging and Communications in Medicine (DICOM) reader

difsr.* Data Interchange Format reader

dmgsr.* Mac Disk Copy Disk Image File reader

dw4sr.* DisplayWrite reader

dxlsr.* Domino XML Language reader

emlsr.* Microsoft Outlook Express (EML) reader. This is used to filter EML files when the
MBX reader is not licensed.

emxsr.* Legato EMailXtender (EMX) reader

encasesr.* Expert Witness Compression Format (EnCase) v6 reader

encase2sr.* Expert Witness Compression Format (EnCase) v7 reader

entsr.* Microsoft Entourage Database Format reader

epubsr.* Open Publication Structure eBook reader

foliosr.* Folio Flat File reader

gifsr.* Graphics Interchange Format (GIF) reader

gwfssr.* GroupWise FileSurf reader

hl7sr.* Health level7 reader (metadata only)

htmsr.* HTML and XHTML reader

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 292 of 320

File Description

hwpsr.* Hangul 97 reader

hwposr.* Hangul 2002, 2005, 2007 reader

ichatsr.* Apple iChat Log reader

icssr.* Microsoft Outlook iCalendar reader

isosr.* ISO-9660 CD Disc Image Format reader

iwwpsr.* Apple iWork Pages reader

iwsssr.* Apple iWork Numbers reader

jp2000sr.* JPEG 2000metadata reader

jpgsr.* JPEGmetadata reader

jtdsr.* JustSystems Ichitaro reader

kpagrdr.* Applix Presentations reader

kpCATrdr.* CATIA format reader

kpcgmrdr.* Computer Graphics Metafile reader

kpDWGrdr.* AutoCAD Drawing format reader

kpDXFrdr.* AutoCAD Drawing Exchange format reader

kpemfrdr.* EnhancedMetafile reader

kpGFLrdr.* Omni Graffle reader

kpgifrdr.* Graphic Interchange Format (GIF) reader

kpIWPGrdr.* Apple iWork Keynote reader

kpmsordr.* Microsoft Office Drawing Objects (office 97, 2000, and XP) reader

kpODArdr.* AutoCAD reader (Windows only)

kpodfrdr.* Oasis Open Document Format presentation (ODP) reader

kpONErdr.* Microsoft OneNote reader

kpp40rdr.* Microsoft PowerPoint PC 4.0 and PowerPoint Mac reader

kpp95rdr.* Microsoft PowerPoint 95 reader

kpp97rdr.* Microsoft PowerPoint 97 and higher reader

kppctrdr.* Macintosh Quick Draw Picture (PICT) reader

kppicrdr.* Pictor PC Paint (PIC) reader

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 293 of 320

File Description

kpppxrdr.* Microsoft PowerPoint XML reader 2007

kpprerdr.* Lotus FreelanceGraphics forWindows V2.0 reader

kpprzrdr.* Lotus FreelanceGraphics 96/97/98 reader

kpshwrdr.* Corel Presentations reader

kpugrdr.* Unigraphics (UG) NX reader

kpwg2rdr.* WordPerfect Graphics 2 reader

kpwmfrdr.* Windows Metafile reader

kpwpgrdr.* WordPerfect Graphics 1 reader

kpXFDLrdr.* Extensible Forms Description Language reader

kvgzsr.* GZIP reader

kvhqxsr.* BinHex reader

kvzeesr.* UNIX Compress reader

l123sr.* Lotus 123 v96/97/98 reader

lasr.* Lotus AMI Pro reader

ltbenn30.dll Lotus Word Pro support (supported onWindows x86 platform only)

ltscsn10.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwpapin.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwppann.dll Lotus Word Pro support (supported onWindows x86 platform only)

lwpsr.dll Lotus Word Pro reader (supported onWindows x86 platform only)

lzhsr.* Microsoft Compression Folder reader

macbinsr.* MacBinary reader

mbsr.* Microsoft WordMacintosh reader

mbxsr.* Mailbox (MBX) andMicrosoft Outlook Express (EML) reader1

mdbsr.* Microsoft Access reader

mhtsr.* MIME HTML reader

mifsr.* AdobeMaker Interchange reader

1This reader is an advanced feature and is sold and licensed separately from KeyView Filter SDK. See
License Information, on page 19

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 294 of 320

File Description

misr.* Microsoft Word 2 reader

mp3sr.* MP3 reader for metadata extraction reader

mpeg4sr.* MPEG-4 Audio file reader

mppsr.* Microsoft Project reader

msgsr.* Microsoft Outlook (MSG) reader

mspubsr.* Microsoft Publisher reader

msw6sr.* Microsoft Works 6 and 2000 reader

mswsr.* Microsoft Works V1 and 2 reader

multiarcsr ARJ Reader

mw6sr.* Microsoft Word 95 reader

mw8sr.* Microsoft Word 97, 2000, and XP reader

mwsr.* Microsoft Word for DOS andMicrosoft Write reader

mwssr.* Microsoft Works Spreadsheet reader

mwxsr.* Microsoft Word 2007 XML reader

nsfsr.* Lotus Notes database reader 1

oa2sr.* Fujitsu Oasys reader

odfsssr.* Oasis Open Document Format spreadsheets (ODS) reader

odfwpsr.* Oasis Open Document Format word processing (ODS) reader

olesr.* EmbeddedOLE object reader

olmsr.* Microsoft Outlook for Macintosh reader

onmsr.* Legato EMailXtender NativeMessage reader

oo3sr.* Omni Outliner reader

pdfsr.* Adobe Portable Document Format file (PDF) reader

pffsr.* Microsoft Outlook Offline Storage File reader

pngsr.* Portable Network Graphics (PNG) reader

pstsr.dll Microsoft Outlook Personal Folders file MAPI-based reader (supported onWindows
platform only)1

pstnsr.* Microsoft Outlook Personal Folders file native reader1

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 295 of 320

File Description

qpssr.* Corel Quattro Pro spreadsheet reader

qpwsr.* Corel Quattro Pro version X4 spreadsheet reader

rarsr.* RAR Archive reader

riffsr.* Microsoft WAVE reader

rtfsr.* Microsoft Rich Text reader

skypesr.* Skype log file reader

sosr.* StarOffice/OpenOffice reader

sunadsr.* Sun Audio Data reader

swfsr.* Macromedia Flash reader

tarsr.* Tape archive reader

tifsr.* TIFF reader (metadata only)

tnefsr.* Transfer Neutral Encapsulation Format

unihtmsr.* Unicode HTML reader

unisr.* Unicode reader

unzip.* Zip file reader

utf8sr.* UTF-8 reader

uudsr.* UUEncoding reader

vcfsr.* Microsoft Outlook vCard Contact reader

vsdsr.* Microsoft Visio reader

wkssr.* Lotus 123 v2.0 through 5.0 reader

wosr.* WordPerfect 5.x reader

wp6sr.* WordPerfect 6.0 through 10.0 reader

wpmsr.* WordPerfect for Macintosh reader

xlsbsr.* Microsoft Office 2007 Excel Binary Format reader

xlssr.* Microsoft Excel reader

xlsxsr.* Microsoft Excel 2007 XML reader

xmlsr.* Generic XML reader

xpssr.* XMLPaper Specification reader

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 296 of 320

File Description

xywsr.* XYWrite reader

yimsr.* Yahoo! Instant Messenger reader

z7zsr.* 7-Zip reader

Filter SDK C ProgrammingGuide
Appendix F: List of Required Files for Redistribution

KeyView (11.6) Page 297 of 320

Appendix G: Develop a Custom Reader

This section describes how to develop a reader for a format not supported by KeyView.

• Introduction 298
• How toWrite a Custom Reader 299
• Development Tips 309
• Functions 310

Introduction

The Filter SDK enables you to write custom readers for formats not directly supported by KeyView. A
reader is required to parse the file format and generate a KeyView token stream, which represents the
content and format of the document. Filter can then use this token stream to generate a text version of
the original document. The readers interact with a structured access layer and a writer to generate a
text file in Filter, an HTML file in HTMLExport, an XML file in XML Export, and a near-to-original view of
the document in the Viewing SDK.

The complexity of a custom reader depends on the file format used by the source document type. A
simple reader extracts only the textual content, but ignores formatting and all other non-textual content.
Readers of increasing complexity must address one or more of the following:

l formatting (including fonts, foreground and background colors, paragraph borders and shading,
character and paragraph styles)

l tables
l lists
l headers
l footers
l footnotes
l endnotes
l graphics
l bookmarks to internal links
l hyperlinks to external documents or webpages
l other structures, such as a table of contents or index
Even a simple reader might have to parse the following components of a document:

l word processing commands or tags
l encrypted or encoded text
l multiple character sets
l text modified, but retained within the file
l text displayed in an order other than its physical occurrence within the source file

KeyView (11.6) Page 298 of 320

It is very important to fully understand the file specification for the file format used by the document.
This is essential in determining how to parse the source file and generate a token stream that
accurately and effectively represents the original document.

Within Filter, the custom reader must interact with a structured access layer and the format detection
API, which in turn interacts with the top-level API. For a description of the Filter architecture, see
Architectural Overview, on page 23.

The custom reader must have amodule definition file (*.def) that defines the exported API function
calls. In addition, the formats.ini file must bemodified to identify the custom reader and its
associated format detection function.

See the source code for the sample custom reader (utf8sr), which parses plain text files encoded in
UTF-8. The source code is in the directory install/samples/utf8sr, where install is the path
name of the Filter installation directory.

How to Write a Custom Reader

Two include files define the requirements for a custom reader: kvcfsr.h and kvtoken.h. The
definitions of the KeyView tokens are in kvtoken.h. For more information on tokens, see Token Buffer,
on the next page. The file kvcfsr.h defines two structures: TPReaderInterface and adTPDocInfo.

The TPReaderInterface structure defines the API functions implemented by the custom reader. For
basic readers, only the first four functions must be implemented. These functions are called by the
structured access layer to parse the source file and generate the token stream.

All readers must be threadsafe. This means that global variables must not be used. To pass information
between functions, it is necessary to define a "global" context structure that stores all information
required throughout the life of the DLL. The initial parameter of all but one of the TPReaderInterface
functions is a pointer to a global context structure defined for the custom reader.

The adTPDocInfo structure defines the information required for the format detection API, which
associates the custom reader with the required file format.

Naming Conventions

Use the following naming conventions for functions and files:

l The initial letters of the custom reader file name should identify the file format being parsed. For
example, pdf for Adobe PDF files, rtf for RTF files, and xls for Microsoft Excel files. In the
examples in this appendix, this is represented by xxx.

l The name of the shared library must end with the letters sr.
l The name of the exported functions in themodule definition file must be xxxGetReaderInterface
and xxxsrAutoDet.

NOTE:
The letters sr are excluded from xxxGetReaderInterface, but are included in
xxxsrAutoDet.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 299 of 320

Basic Steps

The basic steps for developing a custom reader are as follows.

To develop a custom reader

1. Design the global context structure.
2. Write the basic API functions:

l xxxAllocateContext()
l xxxInitDoc()
l xxxFillBuffer()
l xxxFreeContext()
l xxxCharSet()
l xxxsrAutoDet()
From within the xxxFillBuffer() function, it is necessary to call other functions that repeatedly
read a chunk of a source file, parse the chunk, and generate a token stream until the entire source
file is processed.

3. Map all but the last function to the TPReaderInterface structure.
4. Write themodule definition file (*.def), exporting the reader interface and format detection

functions.
5. Modify the formats.ini file to identify the custom reader and its associated format detection

function. See xxxsrAutoDet(), on page 310. For example, the following lines would be added to the
[Formats] section of the formats.ini file for the UTF-8 reader:

456.1.0.0=utf8
[CustomFilters]
1=utf8sr

Token Buffer

Filter technology parses the native file structure to generate an intermediate stream called a token
buffer. The token buffer consists of multiple sequences of tokens, which are defined in kvtoken.h and
listed below.

#define KVT_TEXT 0x00 /* PutText() */
#define KVT_PARAINFO 0x01 /* SetParaInfo() */
#define KVT_SETTABS 0x02 /* SetTabs() */
#define KVT_TAB 0x03 /* Tab() */
#define KVT_MODE 0x04 /* SetMode() */
#define KVT_PARASPACE 0x05 /* SetParaSpace() */
#define KVT_ROWDEFN 0x06 /* DefineRow(), EndTable() */
#define KVT_COLUMNS 0x07 /* StartColumns(), etc. */
#define KVT_CELLSTART 0x08 /* NextCell() */
#define KVT_BITMAP 0x09 /* Reserved for annotations. */
#define KVT_PAGEOBJ 0x0A /* PutHeader(), PrintPage(), etc.*/

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 300 of 320

#define KVT_NOOP 0x0B /* Just skip a BYTE. */
#define KVT_PAGE_BREAK 0x0C /* PageBreak() */
#define KVT_PARA_BREAK 0x0D /* ParaEnd() */
#define KVT_LINE_BREAK 0x0E /* LineBreak() */
#define KVT_SET_FONT 0x0F /* SetFont() */
#define KVT_PAGE 0x10 /* SetPageInfo() */
#define KVT_HOTSPOT 0x11 /* StartHotSpot() */
#define KVT_LINESPACE 0x12 /* SetLineSpacing() */
#define KVT_COLOR 0x13 /* VESetTextColor(),VESetBkColor()*/
#define KVT_PICTURE 0x14 /* PutPicture() */
#define KVT_CELLMERGE 0x15 /* MergeCells() */
#define KVT_RULE 0x16 /* HorzRule() */
#define KVT_PATTERN 0x17 /* StartPattern(), etc. */
#define KVT_BORDER 0x18 /* StartParaBorder(), etc. */
#define KVT_HEADING 0x19 /* PutParaHeading() */
#define KVT_LISTING 0x1A /* StartList(), etc. */
#define KVT_CHARSET 0x1B /* SetCharSet() */
#define KVT_STYLE 0x1C /* PutCharStyle(), PutParaStyle()*/
#define KVT_BIDI 0x1D /* Set Bidirectional text */
#define KVT_LOCALE 0x1E /* Set locale of a document */
#define KVT_ZONE 0x1F /* StartZone(), EndZone() */
#define KVT_POSITION 0x20 /* SetPosition(), etc. */
#define KVT_AUTOREC 0x21 /* Reserved for Internal Use */
#define KVT_METADATA 0x22 /* Rsserved for Internal Use */
#define KVT_BYTEORDER 0x23 /* SetByteOrder() */
#define KVT_PARASPACEAUTO 0x24 /* SetParaSpaceAuto() */
#define KVT_ATTACH 0x25 /* PutAttachment() */
#define KVT_TOCPRINTIMAGE 0x26 /* StartTOCPrintImage(), etc. */
#define KVT_STREAM 0x27 /* PutStream(),Reserved */
#define KVT_REVISIONMARK 0x28 /* StartRevisionMark(),
EndRevisionMark(), SetRMAuthor(), SetRMDateTime() */
#define KVT_DOCXTRINFO 0x29 /* SetDocXtrInfo() */
#define KVT_PCTEMDFT 0x30 /* SetPctEmdFt() */

A token is a single-byte identifier that corresponds to attributes in a document. Each token has one or
more associatedmacros that provide detailed information about an attribute. Many of these tokens
define components of the document, such as pagemargins, line indentation, and foreground and
background color. Collectively, these are referred to as the state of the document. This state changes
as the document is parsed.

Macros

Some of themacros are simple while others are complicated. An example of a simplemacro is
ParaEnd (pcBuf) which terminates the current paragraph.

#define ParaEnd(pcBuf) \
{ \

 *pcBuf++ = KVT_PARA_BREAK; \

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 301 of 320

 KVT_PUTINT(pcBuf, KVTSIZE_PARA_BREAK); \
 }

In Filter SDK, this generates an 0x0d, 0x0a pair of bytes on aWindows machine. In HTMLExport this
can generate a <p style="…"> element, depending on the value of other paragraph attributes.

One of themore complicatedmacros is PutPictureEx().

#define PutPictureEx(pcBuf, lpszKey, cx, cy, flags, \
 scaleHeight, scaleWidth, \
 cropFromL, cropFromT, cropFromR, cropFromB, \
 anchorHorizontal, anchorVertical, offsetX, offsetY)\

{ \
 PutPic(pcBuf, lpszKey, cx, cy, flags, \
 scaleHeight, scaleWidth, \
 cropFromL, cropFromT, cropFromR, cropFromB, \
 anchorHorizontal, anchorVertical, offsetX, offsetY,\
 180, 0, 180, 0, -1, 0, 0, 0, 0) \
 }

You can generate a representation of the token stream by running filtertest.exe with the -d
command-line option. This stream does not include the tokens generated for headers or footers. The
filtertest.exe is in the directory install\samples\utf8\bin, where install is the path name of
the Filter installation directory.

Reader Interface

All custom readers use the reader interface defined in kvcfsr.h. Themembers of this structure are:

fpAllocateContext()
fpInitDoc()
fpFillBuffer()
fpFreeContext()
fpHotSpothit()
fpGetSummaryInfo()
fpOpenStream()
fpCloseStream()
fpGetURL()
fpGetCharSet()

NOTE:
fpHotSpothit() and fpGetURL() are currently reserved andmust be NULL.

Function Flow

The structured access layer calls the functions as follows:

1. fpAllocateContext() is called and returns a pointer to the global context structure.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 302 of 320

2. After further processing within the structured access layer, fpInitDoc() is called. This function
performs all required initialization for the global context structure and then returns control to the
structured access layer.

3. After further processing within the structured access layer, the fpFillBuffer() function is called
repeatedly until the document is completely parsed.

4. Finally, fpFreeContext() is called. This function frees all memory allocated within the custom
reader and then returns control to the structured access layer.

Related Topics

l Functions, on page 310

Example Development of fffFillBuffer()

The following is an example of how the fpFillBuffer() function in foliosr could be developed. The
example demonstrates how the code changes as limitations of the implementation are identified. With
each implementation, code revisions are shown in bold.

Implementation 1—fpFillBuffer() Function

/***
*Function: fffFillBuffer()
*Summary: Read fff input from stream and parse into kvtoken.h codes
***/
int pascal _export fffFillBuffer(
 void *pCFContext,
 BYTE *pcBuf,
 UINT *pnBufOut,
 int *pnPercentDone,
 UINT cbBufOutMax)
{
 BOOL bRetVal;
 TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;
 pContext->pcBufOut = pcBuf;
 fffReadSourceFile(pContext);
 bRetVal = fffProcessBuffer(pContext, pcBuf);
 *pnPercentDone = (int)(pContext->unTotalBytesProcessed *

(UINT)100 / pContext->unFileSize);
 *pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
 return (bRetVal ? KVERR_Success : KVERR_General);
}

The parameters in fffFillBuffer() are as follows:

Parameter In/Out Description

pCFContext In A pointer to the context structure of the custom reader.

pcBuf In/Out A pointer to the token output buffer.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 303 of 320

Parameter In/Out Description

pnBufOut Out A pointer to the number of bytes written to the output buffer.

pnPercentDone Out A pointer to the percentage complete.

cbBufOutMax In Themaximum number of bytes that the token output buffer can hold.

Structure of Implementation 1

1. The local variable pContext is set to the address of the pCFContext void pointer, cast to a pointer
to the global context structure for the reader. This provides access to all members of this
structure.

2. After setting the pContext variable, a call is made to read the source file.
3. Next, a call is made to fffProcessBuffer(). The second parameter in the call is a pointer to the

token output buffer. If this call fails, usually because of memory allocation errors, it returns FALSE.
4. The percentage complete is calculated.
5. The number of BYTES written to the token output buffer is calculated. This is based on the value of

pContext->pcBufOut, which is increased each time a token is written to the buffer.
6. The function returns to the structured access layer.
7. Subsequent calls to fffFillBuffer() aremade by the structured access layer until the

percentage complete is 100.

Problems with Implementation 1

l There is a limit to the size of the token output buffer, typically 4 KB. If fffProcessBuffer()
generates a token stream larger than this, there is amemory overflow. If fffProcessBuffer()
generates a small token stream and the entire file has not been read, the output token buffer is
underutilized.

l It might not be possible to process the entire input buffer from the source file because of boundary
conditions. An example of a "boundary condition" is when the input buffer terminates part way
through a control sequence in the original document. Another file read operation is required before the
complete control sequence can be parsed.

l This functionmight be interrupted by other calls from the structured access layer to process
headers, footers, footnotes, and endnotes, or to retrieve the document summary information. This
can cause values of variables in the global context to change, and the source file to be repositioned.

Implementation 2—Processing a Large Token Stream

Implementation 2 addresses the problem of processing a token stream that is larger than the output
buffer size limit.

/***
* Function: fffFillBuffer()
* Summary: Read fff input from stream and parse into kvtoken.h codes
***/
int pascal _export fffFillBuffer(

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 304 of 320

 void *pCFContext,
 BYTE *pcBuf,
 UINT *pnBufOut,
 int *pnPercentDone,
 UINT cbBufOutMax)
{
 BOOL bRetVal = TRUE;
 TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;
 pContext->pcBufOut = pcBuf;

pContext->cbBufOutMax = 9 * cbBufOutMax / 10; /* Process the portion of the
fff file that is in the input buffer but do * not return from the fffFillBuffer()
function unless the output buffer is * at least 90% full. If any of the memory
allocations fail during the * execution of fffProcessBuffer(), bRetVal will be
set to FALSE, resulting * in this conversion failing "gracefully".

*/
do

{
if(pContext->bBufOutFull)

{
pContext->bBufOutFull = FALSE;

}
else

{
 fffReadSourceFile(pContext);
 }
 bRetVal = fffProcessBuffer(pContext, pcBuf);
 *pnPercentDone = (int)(pContext->unTotalBytesProcessed *

(UINT)100 / pContext->unFileSize);
}while(bRetVal && !pContext->bBufOutFull && *pnPercentDone < 100);

 *pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
 return (bRetVal ? KVERR_Success : KVERR_General);
}

Structure of Implementation 2

1. cbBufOutMax is used to set pContext->cbBufOutMax. This is used in fffProcessBuffer() to
monitor how full the token output buffer becomes as the source file is processed.

2. When the source file input buffer has been processed, fffProcessBuffer() returns, and the
percentage complete is calculated.

3. If the token output buffer is not filled to a value greater than pContext->cbBufOutMax, pContext-
>bBufOutFull remains set to FALSE, and if the percentage complete is less than 100, the do-
while loop is re-entered without returning from this function to the structured access layer. There
is another call to fffReadSourceFile(), followed by fffProcessBuffer().

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 305 of 320

4. When the token output buffer is filled to a value greater than pContext->cbBufOutMax, pContext-
>bBufOutFull is set to TRUE. In this case, the do-while loop ends, the number of bytes written to
the token output buffer is calculated, and control returns to the structured access layer.

5. The structured access layer continues tomake calls to fffFillBuffer() until the entire source
file is processed.

6. Each time the structured access layer calls fffFillBuffer(), another empty token output buffer
is provided for the custom reader to use.

7. If the previous call to fffFillBuffer() exited because the previous token output buffer exceeded
allowable capacity, pContext->bBufOutFull is reset to FALSE and no call is made to read the
next buffer from the input source file.

Problems with Implementation 2

l It might not be possible to process the entire input buffer from the source file because of boundary
conditions.

l This functionmight be interrupted by other calls from the structured access layer to process
headers, footers, footnotes, or endnotes, or to retrieve the document summary information. This can
cause values of variables in the global context to change, and the source file to be repositioned.

Boundary Conditions

A boundary condition can result frommany situations arising from input file processing. For example,
the input buffer might end with an incomplete command. In Folio flat files, this could be an incomplete
element. In other word processing documents, a boundary conditionmight result from an incomplete
control sequence, a split double-byte character, or a partial UTF-7 or UTF-8 sequence. These can be
handled jointly by fffProcessBuffer(), whichmust detect the boundary condition, and
fffReadSourceFile().

The following example shows partial code used in fffReadSourceFile():

/**
*
* Function: fffReadSourceFile()
*
***/

int pascal fffReadSourceFile(TPfffGlobals *pContext)
{
 int nBytes;
 /* Transfer remaining data to beginning of buffer prior to next read */
 if(pContext->nResidualBytes)

{
 memcpy(pContext->cInputBuf, pContext->pcBufIn, pContext->nResidualBytes);
 }
 /* Read from file, without over-writing any text from the previous buffer */
 nBytes = (*pContext->pIO->kwReadFunc)(pContext->pIO,
 pContext->cInputBuf + pContext->nResidualBytes,
 BUFFERSIZE - pContext->nResidualBytes);
 /* Update input buffer control parameters */

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 306 of 320

 pContext->unTotalBytesRead += (UINT)nBytes;
 pContext->pcBufIn = pContext->cInputBuf;
 pContext->pcBufInMax = pContext->pcBufIn + pContext->nResidualBytes + nBytes;
 pContext->nResidualBytes = 0;
 return nBytes;
}

If fffProcessBuffer() is unable to process the entire input source file buffer, it sets the value for
pContext->nResidualBytes. When the next call to fffReadSourceFile() is made, any residual
bytes are copied to the beginning of the input source file buffer, and the number of bytes to be read is
reduced tomake sure that this buffer does not overflow.

A good way to test the code for boundary conditions is to vary the size of BUFFERSIZE andmake sure
that the results remain consistent.

NOTE:
With ReadSourceFile(), the source file can be read by calls to retrieve header or footer
information. If this occurs, the value for pContext->unTotalBytesRead is incorrect.

Implementation 3—Interrupting Structured Access Layer Calls

Implementation 3 addresses the problem of boundary conditions and interrupting calls from the
structured access layer.

/**
* Function: fffFillBuffer()
* Summary: Read fff input from stream and parse into kvtoken.h codes
**/
int pascal _export fffFillBuffer(
 void *pCFContext,
 BYTE *pcBuf,
 UINT *pnBufOut,
 int *pnPercentDone,
 UINT cbBufOutMax)
{

double dTotalBytesProcessed, dFileSize;
 BOOL bRetVal = TRUE;
 TPfffGlobals *pContext = (TPfffGlobals *)pCFContext;
 pContext->pcBufOut = pcBuf;
 pContext->cbBufOutMax = 9 * cbBufOutMax / 10;
/* Process the portion of the fff file that is in the input buffer but do
* not return from the fffFillBuffer() function unless the output buffer is
* at least 90% full. If any of the memory allocations fail during the
* execution of fffProcessBuffer(), bRetVal will be set to FALSE, resulting
* in this conversion failing "gracefully". */
 do

{
 if(pContext->bBufOutFull)

{
 pContext->bBufOutFull = FALSE;

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 307 of 320

 }
 else

{
 fffReadSourceFile(pContext);
 }
 bRetVal = fffProcessBuffer(pContext, pcBuf);

if(pContext->bHeaderCompleted)

{
*pnPercentDone = 100;
pContext->bHeaderCompleted = FALSE;

}
else if(pContext->bFooterCompleted)

{
*pnPercentDone = 100;
pContext->bFooterCompleted = FALSE;

}
else

{
 if(pContext->unTotalBytesProcessed >= pContext->unFileSize)

{
 *pnPercentDone = 100;
 }
 else if(pContext->unFileSize < FFF_MAX_ULONG)

{
 *pnPercentDone = (int)(pContext->unTotalBytesProcessed *

(UINT)100 / pContext->unFileSize);
 }

else

{
dTotalBytesProcessed = pContext->unTotalBytesProcessed;
dFileSize = pContext->unFileSize;
*pnPercentDone = (int)(dTotalBytesProcessed * 100 / dFileSize);

}
}

 }while(bRetVal && !pContext->bBufOutFull && *pnPercentDone < 100);
 *pnBufOut = (UINT)(pContext->pcBufOut - pcBuf);
 return (bRetVal ? KVERR_Success : KVERR_General);
}

Structure of Implementation 3

l Themost significant change in Implementation 3 is the addition of the code that checks whether the
processing of the header or footer is complete. The variables for pContext->bHeaderCompleted and
pContext->bFooterCompleted are set to TRUE in fffProcessBuffer() when a header or footer is

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 308 of 320

processed and the end of that portion of the document is reached.
l The other piece of code added in Implementation 3 is unique to foliosr. Folio files can be 50MB or
larger. Therefore, an unsigned integer is too small to accurately calculate the percentage complete.
If the file size exceeds FFF_MAX_ULONG, which is defined as (UINT)(0xFFFFFFFF / 0x64), the
doubles are used for that calculation.

l Prior to returning, the token output buffer is as full as possible and never overflows. Theminimum
number of calls is made.

Development Tips

l Avoid unnecessary initialization.
The context variable is allocated in fpAllocateContext(). This structuremust be immediately
memset() to zero. This sets all BOOL values to FALSE, all pointers to NULL, and all integers to 0. Only
non-zero, non-NULL and BOOLs that must be TRUE need to be initialized. This is best done in
fpInitDoc().

l Know where you are in the input source file.
If you are processing headers, footers, notes, or (in the case of rtfsr) tables, youmust be able to
reposition the file pointer as required.

l Check buffer boundaries continuously.
Whenever you advance through the buffer, you need to know whether there is enough of the input
stream to completely process the current command. If not, you need to append the next section of
the input file before continuing.

l Strive for a "clean" token stream.
Use filtertest with the -d command-line option to generate a token version of the document. If
there are redundant tokens, the reader is producing an inefficient token stream. You can keep the
token stream free from redundancies by storing the state of the document and then applying the
changes only when content is encountered. Content can be text, tabs, or picture objects. The
filtertest.exe is in the directory install\samples\utf8\bin, where install is the path name
of the Filter installation directory.

l Avoid large switch() statements whenever possible. They make both development and debugging
more complicated than necessary. If there is a fixed set of commands, consider using a hash table
that enables you to quickly identify a pointer to the function that handles that command.

l Filtering document metadata is a separate process.
Remember that fpGetSummaryInfo() is a completely separate process from the rest of your code.
It creates its own context variable structure. It does not have to call fpFillBuffer().

l Use caution when processing headers, footers, and notes.
If you need to process these items, the structured access layer calls fpOpenStream() and
fpCloseStream(). It is critical that you save the state of your document and the file pointer position
prior to returning from fpOpenStream(). Prior to returning from fpCloseStream(), youmust restore
the file pointer and the previous state of your document.

l Test your code.
The structured access layer for each SDK is unique. Test your code in Filter SDK, Export SDK, and
Viewing SDK.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 309 of 320

Functions

This section describes the functions used by custom readers tomanage the source file and generate
token streams required to convert a document.

xxxsrAutoDet()

This function analyzes the source document and determines whether the detected file format requires
the custom reader. It is called only when the [CustomFilters] section of the formats.ini file
contains an entry identifying the complete file name of the custom reader. For more information on the
formats.ini file, see File Format Detection, on page 267.

Syntax

Bool pascal _export xxxsrAutoDet(
 adTPDocInfo *pTPDocInfo,
 KPTPIOobj *pIO)

Arguments

pTPDocInfo A pointer to the adTPDocInfo structure provided by the structured access layer.

pIO A pointer to the I/O stream object for the document processed.

Returns

l TRUE if the file format matches that of the custom reader.
l FALSE if the file format does not match that of the custom reader.

Discussion

l Typically, only the first 1 KB of the file is read into a buffer and analyzed to determine if it matches
the file format of the custom reader. If a match is determined, the following four members of the
adTPDocInfo structuremust be assigned before returning TRUE:

adClass Must be set to 1.

adFormat A numerical value assigned to this reader in the [Formats] section of the
formats.ini file.

descStr A string describing the file format.

mMnmemStr The initial part of the custom reader file namewith the "sr" excluded.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 310 of 320

l If the return value is TRUE, the custom reader is used to parse the file and generate the token stream.
l If the return value is FALSE, all other readers in the [CustomFilters] section of the formats.ini file
are tried. If nomatch is found, the file detection process continues checking for the formats
supported by Filter SDK.

l The entry in the [Formats] section of the formats.ini file should be of the form aaa.bbb.ccc.ddd,
where aaa is the value used for the adFormat parameter, bbb is the value of the file class, ccc is the
value of theminor format, and ddd is the value of themajor version.

xxxAllocateContext()

This function allocates a global memory block for a data context. A handle to this memory is returned to
the structured access layer. The structured access layer passes this handle back to all reader entry
points.

Syntax

void * pascal _export xxxAllocateContext(
 void *pSALContext,
 LPARAM (pascal *fp)(void *,
 UINT LPARAM),
 Bool *pbOpenDoc,
 TPVAPIServices *pVapi,
 DWORD dwFlags)

Arguments

pSALContext A pointer to the global data context structure of the structured access layer.

fp A pointer to a structure of callback functions supported by the structured access
layer.

pbOpenDoc Youmust set this BOOL value to TRUE if the allocation of memory for the global data
context structure is successful.

pVapi A pointer to a structure providingmemory management and character conversion
functions. Because this functionality is proprietary to Micro Focus, TPVAPIServices
is redefined as void in kvcfsr.h.

dwFlags Run-time flags controlled by the structured access layer.

Returns

l Upon success, a pointer to the global data context structure for the custom reader. This pointer is
passed back to all other custom reader entry points.

l Upon error, a NULL pointer. This causes the structured access layer to shut down the process.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 311 of 320

Discussion

The global context structure should be memset() to zero in this function.

xxxFreeContext()

This function terminates an instance of the custom reader.

Syntax

int pascal _export xxxFreeContext(void *pCFContext)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code.

Discussion

All memory that still remains allocated within the custom reader must be freed within this function.

xxxInitDoc()

This function initializes non-zero, non-null members of pContext.

Syntax

int pascal _export xxxInitDoc(
 void *pCFContext,
 adDocDesc *pAutoInfo,
 long lcbFileSize,
 KPTPIOobj *pIO)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

pAutoInfo A pointer to an adDocDesc structure defined in kwautdef.

lcbFileSize The length of the source file in bytes.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 312 of 320

pIo A pointer to a KPTPIOobj structure defined in kvioobj.h.

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code. This causes the structured access layer to shut down the
process.

Discussion

l For custom readers, the pAutoInfo variable can be ignored.
l If the structured access layer has determined the length of the source file, that value is provided by
the lcbFileSize parameter. If it is zero, the file sizemust be determined in this function.

l The pointer pIO provides access to file management functions defined in kvioobj.h.
l In this function, all non-zero, non-NULLmembers of the global context structure should be initialized.

xxxFillBuffer()

This function controls parsing of the source file and generation of tokens defined in kvtoken.h.

Syntax

int pascal _export xxxFillBuffer(
 void *pCFContext,
 BYTE *pcBuf,
 UINT *pnBufOut,
 int *pnPercentDone,
 UINT cbBufOutMax)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

pcBuf A pointer to amemory buffer to which the tokens are written.

pnBufOut A pointer to a variable that specifies the actual number of bytes written to the token
buffer.

pnPercentDone A pointer to a variable that specifies the percentage completed of the file parsing.

cbBufOutMax A pointer to a variable that specifies themaximum number of bytes written to the
token buffer.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 313 of 320

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code. This causes the structured access layer to shut down the
process.

Discussion

l Calls aremade to read and parse the source file within this function.
l This function is called repeatedly by the structured access layer until either the return value is FALSE
or the percentage complete is 100.

l The actual number of bytes written to the token buffer must not exceed the value of cbBufOutMax.

xxxGetSummaryInfo()

This function is required to extract document summary information.

Syntax

int pascal _export xxxGetSummaryInfo(
 void *pCFContext,
 KVSummaryInfoEx *pInfo,
 BOOL bFreeInfo)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

pInfo A pointer to a KVSummaryInfoEx structure defined in kvtypes.h.

bFreeInfo A BOOL value indicating whether to freememory allocated for summary information.

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code.

Discussion

This function uses an instance of the global context structure that is different from the one used by all
other reader interface functions.

This function can call the same functions used by xxxFillBuffer() or can be completely
independent.

For more information, see Extract Metadata, on page 61.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 314 of 320

xxxOpenStream()

This function is required when initiating processing of peripheral elements such as document headers,
footers, footnotes, and endnotes.

Syntax

int pascal _export xxxOpenStream(
 void *pCFContext,
 int type,
 int nOrdinal)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

type An integer identifying a specific header, footer, footnote, or endnote. Options are
defined in kvcfsr.h.

nOrdinal An integer identifying a specific header, footer, footnote, or endnote. See the
associatedmacros in kvtoken.h.

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code.

Discussion

A call to this function results in a call to xxxFillBuffer(). The function xxxFillBuffer() provides a
new empty output buffer and a new token stream input buffer to process the alternate stream for
peripheral elements. In this alternate stream, paragraph and character style properties are likely
different from themain body. Therefore, as the document is parsed, the existing values from themain
body must be saved. When the processing of the alternate stream is completed and processing of the
main body resumes, these values must be restored in xxxCloseStream().

xxxCloseStream()

This function is required when terminating processing for document headers, footers, footnotes, and
endnotes.

Syntax

int pascal _export xxxCloseStream(
 void *pCFContext,

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 315 of 320

 int type)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

type An integer identifying a specific header, footer, footnote, or endnote. Options are
defined in kvcfsr.h.

Returns

l Upon success, KVERR_Success.
l Upon error, a non-zero error code.

Discussion

Prior to exiting this function, the previously saved values in the global context structuremust be
restored. This ensures that processing of themain body resumes with the correct document state.

xxxCharSet()

This function identifies the character encoding used within the source document.

Syntax

KVCharSet pascal _export xxxCharSet(
 void *pCFContext,
 BOOL *bMSBLSB)

Arguments

pCFContext A pointer to the global context structure for the custom reader.

bMSBLSB The BOOL value required for Unicode text. Set this argument to TRUE for Big Endian and
FALSE for Little Endian.

Returns

One of the enumerated values defined in the KVCharSet structure of kvtypes.h.

Discussion

If the custom reader can determine the character encoding of the document, the corresponding
enumerated value is returned. If the character encoding cannot be determined, KVCS_UNKNOWN is
returned.

Filter SDK C ProgrammingGuide
Appendix G: Develop a Custom Reader

KeyView (11.6) Page 316 of 320

Appendix H: Password Protected Files

This section lists supported password-protected container and non-container files and describes how to
open them.

• Supported Password Protected File Types 317
• Open Password Protected Container Files 318
• Filter Password Protected Files 318

Supported Password Protected File Types

The following table lists the password-protected file types that KeyView supports.

Symbol Description

Y Format is supported.

N Format is not supported.

S Support for viewing subfiles.

V Support for viewing content.

P Password required.

C Password and certificate or User ID file required.

Key to support table

File Type Version Filter Export Extract View Credentials

PST (Windows) n/a N N Y S P

PST (non-Windows)1 n/a N N Y S N

ZIP n/a N N Y S P

7-Zip n/a N N Y S P

RAR n/a N N Y S P

SMIME inMSG, EML, MBX n/a N N Y N C

Lotus Notes NSF n/a N N Y N C

Supported password-protected file types

1The native PST reader, pstnsr, does not require credentials to open password-protected PST files
that use compressible encryption.

KeyView (11.6) Page 317 of 320

File Type Version Filter Export Extract View Credentials

Adobe PDF n/a Y Y Y V P

Microsoft Office 97-2003
2007
2010

Y Y Y V P

Supported password-protected file types, continued

Open Password Protected Container Files

This section describes how to extract password-protected container files by using the C API. The
following guidelines apply to specific file types.

l Lotus Notes NSF files. If you are running a Notes client with an active user connected to a Domino
server, youmust specify the user’s password as a credential regardless of whether the NSF files
you are opening are protected. This enables KeyView to access the Notes client and the Lotus
Notes API. If the Notes client is not running with an active user, KeyView does not require
credentials to access the client.

l PST files.To open password-protected PST files that use high encryption (Microsoft Outlook 2003
only), youmust use theMAPI-based PST reader (pstsr). The native PST reader (pstnsr) returns
the error message KVERR_PasswordProtected if a PST is encrypted with high encryption.

To open container files

1. Define the credential information in the KVOpenFileArg data structure.
2. Pass KVOpenFileArg to the fpOpenFile() function.
3. Call fpCloseFile().

Filter Password Protected Files

This section describes how to filter password-protected non-container files with the C API.

To filter password-protected files

1. Call the fpInit() function.

2.

Call the fpFilterConfig() function with the following arguments:

Argument Parameter

nType KVFLT_SETSRCPASSWORD

nValue TRUE

pData The source file password. The password is a null-terminated string with a
maximum length of 255 characters (the final byte is null).

For example:
(*fpFilterConfig)(pKVFilter, KVFLT_SETSRCPASSWORD, TRUE, password);

Filter SDK C ProgrammingGuide
Appendix H: Password Protected Files

KeyView (11.6) Page 318 of 320

where password is a null-terminated string of 255 or fewer characters.
3. Call the fpFilterFile() or fpFilterStream() function.

Filter SDK C ProgrammingGuide
Appendix H: Password Protected Files

KeyView (11.6) Page 319 of 320

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Filter SDK C Programming Guide (Micro Focus KeyView 11.6)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

KeyView (11.6) Page 320 of 320

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Filter SDK C Programming Guide (Micro Focus KeyView 11.6)

	Part I: Overview of Filter SDK
	Chapter 1: Introducing Filter SDK
	Overview
	Features
	Platforms, Compilers, and Dependencies
	Supported Platforms
	Supported Compilers
	Software Dependencies

	Windows Installation
	UNIX Installation
	Package Contents
	License Information
	Enable Advanced Document Readers
	Update License Information

	Directory Structure

	Chapter 2: Getting Started
	Architectural Overview
	Enhance Performance
	File Caching

	Filtering
	Subfile Extraction
	Memory Abstraction
	Use the C-Language Implementation of the API
	Input/Output Operations
	Filtering in File Mode
	Filtering in Stream Mode
	Multithreaded Filtering

	The Filter Process Model
	Filter API
	File Extraction API
	Persist the Child Process
	In the API
	In the formats.ini File

	Run Filter In Process
	In the API
	In the formats.ini File

	Run File Extraction Functions Out of Process
	Restart the File Extraction Server

	Out-of-Process Logging
	Enable Out-of-Process Logging
	Set the Verbosity Level
	Enable Windows Minidump
	Keep Log Files

	Run File Detection In or Out of Process
	Specify the Process Type In the formats.ini File
	Specify the Process Type In the API

	Part II: Use Filter SDK
	Chapter 3: Use the File Extraction API
	Introduction
	Extract Subfiles
	Extract Images
	Recreate a File’s Hierarchy
	Create a Root Node
	Recreate a File’s Hierarchy—Example

	Extract Mail Metadata
	Default Metadata Set
	Extract the Default Metadata Set

	Microsoft Outlook (MSG) Metadata
	Extract MSG-Specific Metadata

	Microsoft Outlook Express (EML) and Mailbox (MBX) Metadata
	Extract EML- or MBX-Specific Metadata

	Lotus Notes Database (NSF) Metadata
	Extract NSF-Specific Metadata

	Microsoft Personal Folders File (PST) Metadata
	MAPI Properties
	Extract PST-Specific Metadata

	Exclude Metadata from the Extracted Text File

	Extract Subfiles from Outlook Files
	Extract Subfiles from Outlook Express Files
	Extract Subfiles from Mailbox Files
	Extract Subfiles from Outlook Personal Folders Files
	Use the Native or MAPI-based Reader
	Use the Native PST Reader (pstnsr)
	Use the MAPI Reader (pstsr)
	System Requirements

	MAPI Attachment Methods
	Open Secured PST Files
	Detect PST Files While the Outlook Client is Running

	Extract Subfiles from Lotus Domino XML Language Files
	Extract .DXL Files to HTML

	Extract Subfiles from Lotus Notes Database Files
	System Requirements
	Installation and Configuration
	Windows
	Solaris
	AIX 5.x
	Linux

	Open Secured NSF Files
	Format Note Subfiles

	Extract Subfiles from PDF Files
	Improve Performance for PDFs with Many Small Images

	Extract Embedded OLE Objects
	Extract Subfiles from ZIP Files
	Default File Names for Extracted Subfiles
	Default File Name for Mail Formats
	Default File Name for Embedded OLE Objects

	Chapter 4: Use the Filter API
	Generate an Error Log
	Enable or Disable Error Logging
	Use the API
	Use Environment Variables

	Change the Path and File Name of the Log File
	Report Memory Errors
	Use the API
	Use Environment Variables

	Specify a Memory Guard
	Report the File Name in Stream Mode
	Report Extended Error Codes
	Specify the Maximum Size of the Log File

	Extract Metadata
	Extract Metadata for File Filtering
	Extract Metadata for Stream Filtering
	Example

	Convert Character Sets
	Determine the Character Set of the Output Text
	Guidelines for Character Set Conversion

	Set the Character Set During Filtering
	Set the Character Set During Subfile Extraction
	Prevent the Default Conversion of a Character Set

	Extract Deleted Text Marked by Tracked Changes
	Filter PDF Files
	Filter PDF Files to a Logical Reading Order
	Enable Logical Reading Order
	Use the C API
	Use the formats.ini File

	Rotated Text
	Extract Custom Metadata from PDF Files
	Extract Custom Metadata by Tag
	Extract All Custom Metadata

	Filter Tagged PDF Content
	Skip Embedded Fonts
	Use the formats.ini File
	Use the C API

	Control Hyphenation
	Use the formats.ini File
	Use the C API

	Filter Spreadsheet Files
	Filter Worksheet Names
	Filter Hidden Text in Microsoft Excel Files
	Specify Date and Time Format on UNIX Systems
	Filter Very Large Numbers in Spreadsheet Cells to Precision Numbers
	Extract Microsoft Excel Formulas
	Standardize Cell Formats
	Numbers
	Text
	Dates

	Filter XML Files
	Configure Element Extraction for XML Documents
	Modify Element Extraction Settings
	Modify Element Extraction Settings in the kvxconfig.ini File
	Specify an Element’s Namespace and Attribute
	Add Configuration Settings for Custom XML Document Types

	Configure Headers and Footers
	Filter Hidden Data
	Hidden Data in Microsoft Excel Documents
	Example
	Toggle Hidden Excel Data Settings in the formats.ini File

	Hidden Data in HTML Documents

	Tab Delimited Output for Embedded Tables
	Table Detection for PDF Files
	Exclude Japanese Guide Text

	Chapter 5: Sample Programs
	Introduction
	tstxtract
	filter

	Part III: C API Reference
	Chapter 6: File Extraction API Functions
	KVGetExtractInterface()
	fpCloseFile()
	fpExtractSubFile()
	fpFreeStruct()
	fpGetMainFileInfo()
	fpGetSubFileInfo()
	fpGetSubFileMetaData()
	fpOpenFile()
	fpSetExtractionTimeout()

	Chapter 7: File Extraction API Structures
	KVCredential
	KVCredentialComponent
	KVExtractInterface
	KVExtractSubFileArg
	KVGetSubFileMetaArg
	KVMainFileInfo
	KVMetadataElem
	KVMetaName
	KVOpenFileArg
	KVOutputStream
	KVSubFileExtractInfo
	KVSubFileInfo
	KVSubFileMetaData

	Chapter 8: Filter API Functions
	KV_GetFilterInterfaceEx()
	fpCanFilterFile()
	fpCanFilterStream()
	fpCloseStream()
	fpFiletoInputStreamCreate()
	fpFileToInputStreamFree()
	fpFilterConfig()
	fpFilterFile()
	fpFilterStream()
	fpFreeOLESummaryInfo()
	fpFreeXmpInfo()
	fpGetDocInfoFile()
	fpGetDocInfoStream()
	fpGetKvErrorCodeEx()
	fpGetOLESummaryInfo()
	fpGetOLESummaryInfoFile()
	fpGetTrgCharSet()
	fpGetXmpInfo()
	fpGetXmpInfoFile()
	fpInit()
	fpOpenStream()
	fpOpenStreamEx2()
	fpRefreshFilterKVOOP()
	fpSetReplacementChar()
	fpSetSrcCharSet()
	fpSetTimeout()
	fpShutdown()

	Chapter 9: Filter API Structures
	KVFltInterfaceEx
	ADDOCINFO
	KV_CONFIG_Arg
	KVFilterOutput
	KVInputStream
	KVMemoryStream
	KVStructHead
	KVSumInfoElemEx
	KVSummaryInfoEx
	KVXConfigInfo
	KVXmpInfo
	KVXmpInfoElems

	Chapter 10: Enumerated Types
	Introduction
	Programming Guidelines

	KVCredKeyType
	KVErrorCode
	KVErrorCodeEx
	KVMetadataType
	KVMetaNameType
	KVSumInfoType
	KVSumType
	LPDF_DIRECTION

	Appendixes
	Appendix A: Supported Formats
	Supported Formats
	Archive Formats
	Binary Format
	Computer-Aided Design Formats
	Database Formats
	Desktop Publishing
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text and Markup Formats
	Word Processing Formats

	Supported Formats (Detected)

	Appendix B: Character Sets
	Multibyte and Bidirectional Support
	Coded Character Sets

	Appendix C: File Formats and Extensions
	File Format and Extension Table

	Appendix D: Extract and Format Lotus Notes Subfiles
	Overview
	Customize XML Templates
	Use Demo Templates
	Use Old Templates
	Disable XML Templates

	Template Elements and Attributes
	Conditional Elements
	Control Elements
	Data Elements

	Date and Time Formats
	Lotus Notes Date and Time Formats
	KeyView Date and Time Formats

	Appendix E: File Format Detection
	Introduction
	Extract Format Information
	Determine Format Support
	Example formats.ini file entries
	Refine Detection of Text Files
	Allow Consecutive NULL Bytes in a Text File

	Translate Format Information
	Distinguish Between Formats

	Determine a Document Reader
	Category Values in formats.ini

	Appendix F: List of Required Files for Redistribution
	Core Files
	Support Files
	Document Readers

	Appendix G: Develop a Custom Reader
	Introduction
	How to Write a Custom Reader
	Naming Conventions
	Basic Steps
	Token Buffer
	Macros
	Reader Interface
	Function Flow

	Example Development of fffFillBuffer()
	Implementation 1—fpFillBuffer() Function
	Structure of Implementation 1
	Problems with Implementation 1
	Implementation 2—Processing a Large Token Stream
	Structure of Implementation 2
	Problems with Implementation 2
	Boundary Conditions
	Implementation 3—Interrupting Structured Access Layer Calls
	Structure of Implementation 3

	Development Tips
	Functions
	xxxsrAutoDet()
	xxxAllocateContext()
	xxxFreeContext()
	xxxInitDoc()
	xxxFillBuffer()
	xxxGetSummaryInfo()
	xxxOpenStream()
	xxxCloseStream()
	xxxCharSet()

	Appendix H: Password Protected Files
	Supported Password Protected File Types
	Open Password Protected Container Files
	Filter Password Protected Files

	Send documentation feedback

