
ODBC Connector
Software Version: 11.6

Administration Guide

Document Release Date: February 2018

Software Release Date: February 2018

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set
forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors
or omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright notice

© Copyright 2018 EntIT Software LLC, a Micro Focus company

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation updates
The title page of this document contains the following identifying information:

 l Software Version number, which indicates the software version.
 l Document Release Date, which changes each time the document is updated.
 l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.

This site requires you to sign in with a Software Passport. You can register for a Passport through a link on
the site.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.

Support
Visit the Micro Focus Software Support Online website at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro
Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

 l Search for knowledge documents of interest
 l Submit and track support cases and enhancement requests
 l Access the Software Licenses and Downloads portal
 l Download software patches
 l Access product documentation
 l Manage support contracts

Administration Guide

ODBC Connector (11.6) Page 2 of 103

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://softwaresupport.softwaregrp.com/

 l Look up Micro Focus support contacts
 l Review information about available services
 l Enter into discussions with other software customers
 l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

About this PDF version of online Help
This document is a PDF version of the online Help.

This PDF file is provided so you can easily print multiple topics or read the online Help.

Because this content was originally created to be viewed as online help in a web browser, some topics may
not be formatted properly. Some interactive topics may not be present in this PDF version. Those topics can
be successfully printed from within the online Help.

Administration Guide

ODBC Connector (11.6) Page 3 of 103

https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Chapter 1: Introduction 9
ODBC Connector 9

Features and Capabilities 9
Supported Actions 10
Display Online Help 10

Connector Framework Server 11

The IDOL Platform 13

System Architecture 14

Related Documentation 15

Chapter 2: Install ODBC Connector 17
System Requirements 17

Permissions 17

Install ODBC Connector on Windows 18

Install ODBC Connector on Linux 19

Chapter 3: Configure ODBC Connector 20
ODBC Connector Configuration File 20

Modify Configuration Parameter Values 22

Include an External Configuration File 23
Include the Whole External Configuration File 24
Include Sections of an External Configuration File 24
Include a Parameter from an External Configuration File 25
Merge a Section from an External Configuration File 25

Encrypt Passwords 26
Create a Key File 26
Encrypt a Password 26
Decrypt a Password 27

Configure Client Authorization 28

Register with a Distributed Connector 29

Set Up Secure Communication 30
Configure Outgoing SSL Connections 30
Configure Incoming SSL Connections 31

Backup and Restore the Connector’s State 32
Backup a Connector’s State 32

Administration Guide

ODBC Connector (11.6) Page 4 of 103

Restore a Connector’s State 33

Validate the Configuration File 33

Chapter 4: Start and Stop the Connector 34
Start the Connector 34

Verify that ODBC Connector is Running 35
GetStatus 35
GetLicenseInfo 35

Stop the Connector 35

Chapter 5: Send Actions to ODBC Connector 37
Send Actions to ODBC Connector 37

Asynchronous Actions 37
Check the Status of an Asynchronous Action 38
Cancel an Asynchronous Action that is Queued 38
Stop an Asynchronous Action that is Running 38

Store Action Queues in an External Database 39
Prerequisites 39
Configure ODBC Connector 40

Store Action Queues in Memory 41

Use XSL Templates to Transform Action Responses 42
Example XSL Templates 43

Chapter 6: Use the Connector 44
Operating Modes 44

Non-Incremental Mode 44
Incremental Mode 44
Event Table Mode 45

Retrieve Information (Non-Incremental Mode) 45

Retrieve Information (Incremental Mode) 46

Retrieve Information from an Event Table 47

Schedule Fetch Tasks 48

Chapter 7: Construct Template Files 51
Template Files 51

Sub-Table Template Files 52

Chapter 8: Extract Data from a Database 54

Administration Guide

ODBC Connector (11.6) Page 5 of 103

Extract Data from a Single Table 54

Extract Data from Multiple Tables 55
Configure the Connector 56
Modify the Main Template File 57
Create the Sub Table Template File 57
Start the Connector 58

Extract Data from Multiple Tables using a JOIN 59
Configure the Connector 59
Modify the Main Template File 60
Create the Sub Table Template File 61
Start the Connector 61

Troubleshoot the Connector 62

Chapter 9: Manipulate Documents 64
Introduction 64

Add a Field to Documents using an Ingest Action 64

Customize Document Processing 65

Standardize Field Names 66
Configure Field Standardization 66
Customize Field Standardization 67

Run Lua Scripts 71
Write a Lua Script 71
Run a Lua Script using an Ingest Action 73

Example Lua Scripts 73
Add a Field to a Document 74
Merge Document Fields 74

Chapter 10: Ingestion 76
Introduction 76

Send Data to Connector Framework Server 77

Send Data to Haven OnDemand 78
Prepare Haven OnDemand 78
Send Data to Haven OnDemand 78

Send Data to Another Repository 80

Index Documents Directly into IDOL Server 80

Index Documents into Vertica 82
Prepare the Vertica Database 83
Send Data to Vertica 84

Send Data to a MetaStore 84

Run a Lua Script after Ingestion 85

Administration Guide

ODBC Connector (11.6) Page 6 of 103

Chapter 11: Monitor the Connector 87
IDOL Admin 87

Prerequisites 87
Supported Browsers 87

Install IDOL Admin 87
Access IDOL Admin 88

View Connector Statistics 89

Use the Connector Logs 90
Customize Logging 91

Monitor the Progress of a Task 92

Monitor Asynchronous Actions using Event Handlers 93
Configure an Event Handler 94
Write a Lua Script to Handle Events 95

Set Up Performance Monitoring 96
Configure the Connector to Pause 96
Determine if an Action is Paused 97

Set Up Document Tracking 98

Glossary 100

Send documentation feedback 103

Administration Guide

ODBC Connector (11.6) Page 7 of 103

Page 8 of 103ODBC Connector (11.6)

Administration Guide

Chapter 1: Introduction

This section provides an overview of the Micro Focus ODBC Connector.

• ODBC Connector 9
• Connector Framework Server 11
• The IDOL Platform 13
• System Architecture 14
• Related Documentation 15

ODBC Connector

ODBC Connector is an IDOL connector that automatically aggregates documents from an ODBC data
source. The files are then sent to Connector Framework Server (CFS), which processes the information and
indexes it into an IDOL Server.

After the documents are indexed, IDOL server automatically processes them, performing a number of
intelligent operations in real time, such as:

 l Agents
 l Alerting
 l Automatic Query Guidance
 l Categorization
 l Channels
 l Clustering
 l Collaboration
 l Dynamic Clustering
 l Dynamic Thesaurus

 l Eduction
 l Expertise
 l Hyperlinking
 l Mailing
 l Profiling
 l Retrieval
 l Spelling Correction
 l Summarization
 l Taxonomy Generation

Features and Capabilities

The ODBC Connector (CFS) retrieves data from an ODBC data source, for example Microsoft SQL Server or
MySQL.

Repository Any ODBC data source, as long as the relevant drivers are available on the
connector machine.

Data the connector can
retrieve

The connector can retrieve string, numeric, date, and binary values from the
database.

The connector can create documents by retrieving data from single tables or
views, or by extracting data from multiple, related tables.

ODBC Connector (11.6) Page 9 of 103

The connector can extract binary files from binary large object (LOB) fields.

Data the connector
cannot retrieve

The connector cannot retrieve XML data types, but these can be transformed
into strings by modifying the query used to retrieve the data.

The connector cannot retrieve bit-fields from a MySQL database, but you can
modify your query to convert the field value to an integer. For example: SELECT
bit_field+0 FROM mytable.

Supported Actions

The ODBC Connector supports the following actions:

Action Supported

Synchronize

Synchronize (identifiers)

Synchronize Groups

Collect

Identifiers

Insert

Delete/Remove

Hold/ReleaseHold

Update

Stub

GetURI

View

Display Online Help

You can display the ODBC Connector Reference by sending an action from your web browser. The
ODBC Connector Reference describes the actions and configuration parameters that you can use with
ODBC Connector.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 10 of 103

For ODBC Connector to display help, the help data file (help.dat) must be available in the installation
folder.

To display help for ODBC Connector

 1. Start ODBC Connector.
 2. Send the following action from your web browser:

http://host:port/action=Help

where:

host is the IP address or name of the machine on which ODBC Connector is installed.

port is the ACI port by which you send actions to ODBC Connector (set by the Port
parameter in the [Server] section of the configuration file).

For example:

http://12.3.4.56:9000/action=help

Connector Framework Server

Connector Framework Server (CFS) processes the information that is retrieved by connectors, and
then indexes the information into IDOL.

A single CFS can process information from any number of connectors. For example, a CFS might
process files retrieved by a File System Connector, web pages retrieved by a Web Connector, and e-
mail messages retrieved by an Exchange Connector.

To use the ODBC Connector to index documents into IDOL Server, you must have a CFS. When you
install the ODBC Connector, you can choose to install a CFS or point the connector to an existing
CFS.

For information about how to configure and use Connector Framework Server, refer to the Connector
Framework Server Administration Guide.

Filter Documents and Extract Subfiles

The documents that are sent by connectors to CFS contain only metadata extracted from the
repository, such as the location of a file or record that the connector has retrieved. CFS uses KeyView
to extract the file content and file specific metadata from over 1000 different file types, and adds this
information to the documents. This allows IDOL to extract meaning from the information contained in
the repository, without needing to process the information in its native format.

CFS also uses KeyView to extract and process sub-files. Sub-files are files that are contained within
other files. For example, an e-mail message might contain attachments that you want to index, or a
Microsoft Word document might contain embedded objects.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 11 of 103

Manipulate and Enrich Documents

CFS provides features to manipulate and enrich documents before they are indexed into IDOL. For
example, you can:

 l add additional fields to a document.
 l divide long documents into multiple sections.
 l run tasks including Eduction, Optical Character Recognition, or Face Recognition, and add the

information that is obtained to the document.
 l run a custom Lua script to modify a document.

Index Documents

After CFS finishes processing documents, it automatically indexes them into one or more indexes.
CFS can index documents into:

 l IDOL Server (or send them to a Distributed Index Handler, so that they can be distributed across
multiple IDOL servers).

 l Haven OnDemand.
 l Vertica.

Import Process

This section describes the import process for new files that are added to IDOL through CFS.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 12 of 103

 1. Connectors aggregate documents from repositories and send the files to CFS. A single CFS can
process documents from multiple connectors. For example, CFS might receive HTML files from
HTTP Connectors, e-mail messages from Exchange Connector, and database records from
ODBC Connector.

 2. CFS runs pre-import tasks. Pre-Import tasks occur before document content and file-specific
metadata is extracted by KeyView.

 3. KeyView filters the document content, and extracts sub-files.
 4. CFS runs post-import tasks. Post-Import tasks occur after KeyView has extracted document

content and file-specific metadata.
 5. The data is indexed into IDOL.

The IDOL Platform

At the core of ODBC Connector is the Intelligent Data Operating Layer (IDOL).

IDOL gathers and processes unstructured, semi-structured, and structured information in any format
from multiple repositories using IDOL connectors and a global relational index. It can automatically
form a contextual understanding of the information in real time, linking disparate data sources together
based on the concepts contained within them. For example, IDOL can automatically link concepts
contained in an email message to a recorded phone conversation, that can be associated with a stock
trade. This information is then imported into a format that is easily searchable, adding advanced
retrieval, collaboration, and personalization to an application that integrates the technology.

For more information on IDOL, see the IDOL Getting Started Guide.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 13 of 103

System Architecture

An IDOL infrastructure can include the following components:

 l Connectors. Connectors aggregate data from repositories and send the data to CFS.
 l Connector Framework Server (CFS). Connector Framework Server (CFS) processes and

enriches the information that is retrieved by connectors.
 l IDOL Server. IDOL stores and processes the information that is indexed into it by CFS.
 l Distributed Index Handler (DIH). The Distributed Index Handler distributes data across multiple

IDOL servers. Using multiple IDOL servers can increase the availability and scalability of the
system.

 l License Server. The License server licenses multiple products.
These components can be installed in many different configurations. The simplest installation consists
of a single connector, a single CFS, and a single IDOL Server.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 14 of 103

A more complex configuration might include more than one connector, or use a Distributed Index
Handler (DIH) to index content across multiple IDOL Servers.

Related Documentation

The following documents provide further information related to ODBC Connector.

 l ODBC Connector Reference
The ODBC Connector Reference describes the configuration parameters and actions that you can
use with the ODBC Connector.

 l Connector Framework Server Administration Guide

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 15 of 103

Connector Framework Server (CFS) processes documents that are retrieved by connectors. CFS
then indexes the documents into IDOL Server, Haven OnDemand, or Vertica. The Connector
Framework Server Administration Guide describes how to configure and use CFS.

 l IDOL Getting Started Guide
The IDOL Getting Started Guide provides an introduction to IDOL. It describes the system
architecture, how to install IDOL components, and introduces indexing and security.

 l IDOL Server Administration Guide
The IDOL Server Administration Guide describes the operations that IDOL server can perform with
detailed descriptions of how to set them up.

 l IDOL Document Security Administration Guide
The IDOL Document Security Administration Guide describes how to protect the information that
you index into IDOL Server.

 l License Server Administration Guide
This guide describes how to use a License Server to license multiple services.

Administration Guide
Chapter 1: Introduction

ODBC Connector (11.6) Page 16 of 103

Chapter 2: Install ODBC Connector

This section describes how to install the ODBC Connector.

• System Requirements 17
• Permissions 17
• Install ODBC Connector on Windows 18
• Install ODBC Connector on Linux 19

System Requirements

ODBC Connector can be installed as part of a larger system that includes an IDOL Server and an interface for
the information stored in IDOL Server. To maximize performance, Micro Focus recommends that you install
IDOL Server and the connector on different machines.

The connector can be installed on any computer provided it can communicate with the ODBC DSN
connection in order to contact the repository.

For information about the minimum system requirements required to run IDOL components, including ODBC
Connector, refer to the IDOL Getting Started Guide.

Prerequisites

To retrieve information through ODBC you must install an ODBC driver for the database that you want to
retrieve data from.

 l If you use the 64-bit ODBC Connector, you must use a 64-bit ODBC driver. On Windows, define the data
source in the 64-bit ODBC Data Source Administration utility.

 l If you use the 32-bit ODBC Connector on a 64-bit operating system, you must use a 32-bit ODBC driver.
On Windows, define the data source in the 32-bit ODBC Data Source Administration utility.

Permissions

This section describes the permissions that must be granted to the connector.

Action Permissions Required

Synchronize Micro Focus recommends that you set up a database user for the connector. The user must
have SELECT permission on the database.

Collect The same permissions as the synchronize action. The connector must also have write-
access to the collect destination folder.

View The same permissions as the synchronize action. Unless the connector communicates

ODBC Connector (11.6) Page 17 of 103

directly with the View server, the connector also requires access to the shared path for the
IDOL View Server.

Install ODBC Connector on Windows

To install the ODBC Connector on Windows, use the following procedure.

To install the ODBC Connector

 1. Run the ODBC Connector installation program.
The installation wizard opens.

 2. Read the installation instructions and click Next.
The License Agreement dialog box opens.

 3. Read the license agreement. If you agree to its terms, click I accept the agreement and click
Next.
The Installation Directory dialog box opens.

 4. Choose an installation folder for ODBC Connector and click Next.
The Service Name dialog box opens.

 5. In the Service name box, type a name to use for the connector’s Windows service and click Next.
The Service Port and ACI Port dialog box opens.

 6. Type the following information, and click Next.

Service port The port used by the connector to listen for service actions.

ACI port The port used by the connector to listen for actions.

The License Server Configuration dialog box opens.
 7. Type the following information, and click Next.

License server host The host name or IP address of your License server.

License server port The ACI port of your License server.

The IDOL database dialog box opens.
 8. In the IDOL Database box, type the name of the IDOL database that you to index data into, and

click Next.
The Connector Framework Server dialog box opens.

 9. Choose whether to install a new CFS or use an existing CFS.
 l To install a new CFS, select the Install a new CFS check box and click Next.

The Installation directory dialog box opens. Go to the next step.
 l To use an existing CFS, clear the Install a new CFS check box and click Next.

Type the Hostname and Port of your existing CFS installation. Then, click Next and go to step
14.

Administration Guide
Chapter 2: Install ODBC Connector

ODBC Connector (11.6) Page 18 of 103

 10. Choose an installation folder for the Connector Framework Server and then click Next.
The Installation name dialog box opens.

 11. In the Service name box, type a unique name for the Connector Framework service and click
Next. The name must not contain any spaces.
The CFS dialog box opens.

 12. Type the following information, and click Next.

Service port The port used by CFS to listen for service actions.

ACI port The port used by CFS to listen for actions.

 13. Type the following information and click Next.

IDOL Server
hostname

The host name or IP address of the IDOL server that you want to index
documents into.

ACI port The ACI port of the IDOL server.

The Pre-Installation Summary dialog box opens.
 14. Review the installation settings. If necessary, click Back to go back and change any settings. If

you are satisfied with the settings, click Next.
The connector is installed.

 15. Click Finish.
You can now edit the connector's configuration file and start the connector.

Install ODBC Connector on Linux

To install the ODBC Connector, use the following procedure.

To install ODBC Connector on Linux

 1. Open a terminal in the directory in which you have placed the installer, and run the following
command:

./ConnectorName_VersionNumber_Platform.exe --mode text

 2. Follow the on-screen instructions. For information about the options that are specified during
installation, see Install ODBC Connector on Windows. For more information about installing
IDOL components, refer to the IDOL Getting Started Guide.

Administration Guide
Chapter 2: Install ODBC Connector

ODBC Connector (11.6) Page 19 of 103

Chapter 3: Configure ODBC Connector

This section describes how to configure the ODBC Connector.

• ODBC Connector Configuration File 20
• Modify Configuration Parameter Values 22
• Include an External Configuration File 23
• Encrypt Passwords 26
• Configure Client Authorization 28
• Register with a Distributed Connector 29
• Set Up Secure Communication 30
• Backup and Restore the Connector’s State 32
• Validate the Configuration File 33

ODBC Connector Configuration File

You can configure the ODBC Connector by editing the configuration file. The configuration file is located in
the connector’s installation folder. You can modify the file with a text editor.

The parameters in the configuration file are divided into sections that represent connector functionality.

Some parameters can be set in more than one section of the configuration file. If a parameter is set in more
than one section, the value of the parameter located in the most specific section overrides the value of the
parameter defined in the other sections. For example, if a parameter can be set in "TaskName or FetchTasks
or Default", the value in the TaskName section overrides the value in the FetchTasks section, which in turn
overrides the value in the Default section. This means that you can set a default value for a parameter, and
then override that value for specific tasks.

For information about the parameters that you can use to configure the ODBC Connector, refer to the ODBC
Connector Reference.

Server Section

The [Server] section specifies the ACI port of the connector. It can also contain parameters that control the
way the connector handles ACI requests.

Service Section

The [Service] section specifies the service port of the connector.

ODBC Connector (11.6) Page 20 of 103

Actions Section

The [Actions] section contains configuration parameters that specify how the connector processes
actions that are sent to the ACI port. For example, you can configure event handlers that run when an
action starts, finishes, or encounters an error.

Logging Section

The [Logging] section contains configuration parameters that determine how messages are logged.
You can use log streams to send different types of message to separate log files. The configuration file
also contains a section to configure each of the log streams.

Connector Section

The [Connector] section contains parameters that control general connector behavior. For example,
you can specify a schedule for the fetch tasks that you configure.

Default Section

The [Default] section is used to define default settings for configuration parameters. For example,
you can specify default settings for the tasks in the [FetchTasks] section.

FetchTasks Section

The [FetchTasks] section lists the fetch tasks that you want to run. A fetch task is a task that
retrieves data from a repository. Fetch tasks are usually run automatically by the connector, but you
can also run a fetch task by sending an action to the connector’s ACI port.

In this section, enter the total number of fetch tasks in the Number parameter and then list the tasks in
consecutive order starting from 0 (zero). For example:

[FetchTasks]
 Number=2
 0=MyTask0
 1=MyTask1

[TaskName] Section

The [TaskName] section contains configuration parameters that apply to a specific task. There must be
a [TaskName] section for every task listed in the [FetchTasks] section.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 21 of 103

Ingestion Section

The [Ingestion] section specifies where to send the data that is extracted by the connector.

You can send data to a Connector Framework Server, Haven OnDemand, or another connector. For
more information about ingestion, see Ingestion, on page 76.

DistributedConnector Section

The [DistributedConnector] section configures the connector to operate with the Distributed
Connector. The Distributed Connector is an ACI server that distributes actions (synchronize, collect
and so on) between multiple connectors.

For more information about the Distributed Connector, refer to the Distributed Connector Administration
Guide.

ViewServer Section

The [ViewServer] section contains parameters that allow the connector’s view action to use a View
Server. If necessary, the View Server converts files to HTML so that they can be viewed in a web
browser.

License Section

The [License] section contains details about the License server (the server on which your license file
is located).

Document Tracking Section

The [DocumentTracking] section contains parameters that enable the tracking of documents through
import and indexing processes.

Related Topics

 l Modify Configuration Parameter Values, below
 l Customize Logging, on page 91

Modify Configuration Parameter Values

You modify ODBC Connector configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 22 of 103

CAUTION:
You must stop and restart ODBC Connector for new configuration settings to take effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n = 0

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can indicate
the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird,"wing,beak",turtle

Alternatively, you can escape the comma with a backslash:

ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into quotation
marks and escape each quotation mark in the string by inserting a backslash before it. For example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File

You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

../sharedconfig.cfg
 K:\sharedconfig\sharedsettings.cfg
 \\example.com\shared\idol.cfg
 file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 23 of 103

NOTE:
You can use nested inclusions, for example, you can refer to a shared configuration file that
references a third file. However, the external configuration files must not refer back to your
original configuration file. These circular references result in an error, and ODBC Connector
does not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

 4. Save and close the configuration file.

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections from an external configuration file
at a specified point in your configuration file. You can include a whole configuration section in this way,
but the configuration section name in the external file must exactly match what you want to use in your
file. If you want to use a configuration section from the external file with a different name, see Merge a
Section from an External Configuration File, on the next page.

To include sections of an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the external configuration file section.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the configuration section name that you want to include. For
example:

< "K:\sharedconfig\extrasettings.cfg" [License]

NOTE:
You cannot include a section that already exists in your configuration file.

 4. Save and close the configuration file.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 24 of 103

Include a Parameter from an External Configuration File

This method allows you to import a parameter from an external configuration file at a specified point in
your configuration file. You can include a section or a single parameter in this way, but the value in the
external file must exactly match what you want to use in your file.

To include a parameter from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find the place in the configuration file where you want to add the parameter from the external

configuration file.
 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external

configuration file, in quotation marks (""). You can use relative paths and network locations. After
the configuration file name, add the name of the configuration section name that contains the
parameter, followed by the parameter name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external configuration
file, specify the configuration section, parameter name, and then an equals sign (=) followed by the
default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

 4. Save and close the configuration file.

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your ODBC Connector configuration file. For example, you might want to specify a standard
SSL configuration section in an external file and share it between several servers. You can use this
method if the configuration section that you want to import has a different name to the one you want to
use.

To merge a configuration section from an external configuration file

 1. Open your configuration file in a text editor.
 2. Find or create the configuration section that you want to include from an external file. For example:

[SSLOptions1]

 3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 25 of 103

[SSLOptions1] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, ODBC Connector uses the values in the [SharedSSLOptions] section of the
external configuration file as the values in the [SSLOptions1] section of the ODBC Connector
configuration file.

NOTE:
You can include additional configuration parameters in the section in your file. If these
parameters also exist in the imported external configuration file, ODBC Connector uses
the values in the local configuration file. For example:

[SSLOptions1] < "ssloptions.cfg" [SharedSSLOptions]
 SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

 4. Save and close the configuration file.

Encrypt Passwords

Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

Create a Key File

A key file is required to use AES encryption.

To create a new key file

 1. Open a command-line window and change directory to the ODBC Connector installation folder.
 2. At the command line, type:

autpassword -x -tAES -oKeyFile=./MyKeyFile.ky

A new key file is created with the name MyKeyFile.ky

CAUTION:
To keep your passwords secure, you must protect the key file. Set the permissions on the key
file so that only authorized users and processes can read it. ODBC Connector must be able to
read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.

To encrypt a password

 1. Open a command-line window and change directory to the ODBC Connector installation folder.
 2. At the command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]
PasswordString

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 26 of 103

where:

Option Description

-t
EncryptionType

The type of encryption to use:
 l Basic

 l AES

For example: -tAES

NOTE:
AES is more secure than basic encryption.

-oKeyFile AES encryption requires a key file. This option specifies the path and file
name of a key file. The key file must contain 64 hexadecimal characters.
For example: -oKeyFile=./key.ky

-cFILE -
sSECTION -
pPARAMETER

(Optional) You can use these options to write the password directly into
a configuration file. You must specify all three options.
 l -c. The configuration file in which to write the encrypted password.
 l -s. The name of the section in the configuration file in which to write

the password.
 l -p. The name of the parameter in which to write the encrypted

password.
For example:
-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

Decrypt a Password

The following procedure describes how to decrypt a password.

To decrypt a password

 1. Open a command-line window and change directory to the ODBC Connector installation folder.
 2. At the command line, type:

autpassword -d -tEncryptionType [-oKeyFile] PasswordString

where:

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 27 of 103

Option Description

-t
EncryptionType

The type of encryption:
 l Basic

 l AES

For example: -tAES

-oKeyFile AES encryption and decryption requires a key file. This option specifies
the path and file name of the key file used to decrypt the password.
For example: -oKeyFile=./key.ky

PasswordString The password to decrypt.

For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A

autpassword -d -tAES -oKeyFile=./key.ky 9t3M3t7awt/J8A

The password is returned in plain text.

Configure Client Authorization

You can configure ODBC Connector to authorize different operations for different connections.

Authorization roles define a set of operations for a set of users. You define the operations by using the
StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

For more information about the available parameters, see the ODBC Connector Reference.

To configure authorization roles

 1. Open your configuration file in a text editor.
 2. Find the [AuthorizationRoles] section, or create one if it does not exist.
 3. In the [AuthorizationRoles] section, list the user authorization roles that you want to create.

For example:

[AuthorizationRoles]
 0=AdminRole
 1=UserRole

 4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

 5. In the section for each role, define the operations that you want the role to be able to perform. You
can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed actions
by using Actions, and ServiceActions. For example:

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 28 of 103

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus

 [UserRole]
 Actions=GetVersion
 ServiceActions=GetStatus

NOTE:
The standard roles do not overlap. If you want a particular role to be able to perform all
actions, you must include all the standard roles, or ensure that the clients, SSL identities,
and so on, are assigned to all relevant roles.

 6. In the section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the operations
allowed by the role. For example:

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus
 Clients=localhost
 SSLIdentities=admin.example.com

 7. Save and close the configuration file.
 8. Restart ODBC Connector for your changes to take effect.

Register with a Distributed Connector

To receive actions from a Distributed Connector, a connector must register with the Distributed
Connector and join a connector group. A connector group is a group of similar connectors. The
connectors in a group must be of the same type (for example, all HTTP Connectors), and must be able
to access the same repository.

To configure a connector to register with a Distributed Connector, follow these steps. For more
information about the Distributed Connector, refer to the Distributed Connector Administration Guide.

To register with a Distributed Connector

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [DistributedConnector] section, set the following parameters:

RegisterConnector (Required) To register with a Distributed Connector, set this parameter to
true.

HostN (Required) The host name or IP address of the Distributed Connector.

PortN (Required) The ACI port of the Distributed Connector.

DataPortN (Optional) The data port of the Distributed Connector.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 29 of 103

ConnectorGroup (Required) The name of the connector group to join. The value of this
parameter is passed to the Distributed Connector.

ConnectorPriority (Optional) The Distributed Connector can distribute actions to
connectors based on a priority value. The lower the value assigned to
ConnectorPriority, the higher the probability that an action is assigned
to this connector, rather than other connectors in the same connector
group.

SharedPath (Optional) The location of a shared folder that is accessible to all of the
connectors in the ConnectorGroup. This folder is used to store the
connectors’ datastore files, so that whichever connector in the group
receives an action, it can access the information required to complete it.
If you set the DataPortN parameter, the datastore file is streamed
directly to the Distributed Connector, and this parameter is ignored.

 4. Save and close the configuration file.
 5. Start the connector.

The connector registers with the Distributed Connector. When actions are sent to the Distributed
Connector for the connector group that you configured, they are forwarded to this connector or to
another connector in the group.

Set Up Secure Communication

You can configure Secure Socket Layer (SSL) connections between the connector and other ACI
servers.

Configure Outgoing SSL Connections

To configure the connector to send data to other components (for example Connector Framework
Server) over SSL, follow these steps.

To configure outgoing SSL connections

 1. Open the ODBC Connector configuration file in a text editor.
 2. Specify the name of a section in the configuration file where the SSL settings are provided:

 l To send data to an ingestion server over SSL, set the IngestSSLConfig parameter in the
[Ingestion] section. To send data from a single fetch task to an ingestion server over SSL,
set IngestSSLConfig in a [TaskName] section.

 l To send data to a Distributed Connector over SSL, set the SSLConfig parameter in the
[DistributedConnector] section.

 l To send data to a View Server over SSL, set the SSLConfig parameter in the [ViewServer]
section.

You can use the same settings for each connection. For example:

[Ingestion]
IngestSSLConfig=SSLOptions

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 30 of 103

 [DistributedConnector]
SSLConfig=SSLOptions

 3. Create a new section in the configuration file. The name of the section must match the name you
specified in the IngestSSLConfig or SSLConfig parameter. Then specify the SSL settings to use.

SSLMethod The SSL protocol to use.

SSLCertificate (Optional) The SSL certificate to use (in PEM format).

SSLPrivateKey (Optional) The private key for the SSL certificate (in PEM format).

For example:

[SSLOptions]
 SSLMethod=TLSV1.2
 SSLCertificate=host1.crt
 SSLPrivateKey=host1.key

 4. Save and close the configuration file.
 5. Restart the connector.

Related Topics

 l Start and Stop the Connector, on page 34

Configure Incoming SSL Connections

To configure a connector to accept data sent to its ACI port over SSL, follow these steps.

To configure an incoming SSL Connection

 1. Stop the connector.
 2. Open the configuration file in a text editor.
 3. In the [Server] section set the SSLConfig parameter to specify the name of a section in the

configuration file for the SSL settings. For example:

[Server]
SSLConfig=SSLOptions

 4. Create a new section in the configuration file (the name must match the name you used in the
SSLConfig parameter). Then, use the SSL configuration parameters to specify the details for the
connection. You must set the following parameters:

SSLMethod The SSL protocol to use.

SSLCertificate The SSL certificate to use (in PEM format).

SSLPrivateKey The private key for the SSL certificate (in PEM format).

For example:

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 31 of 103

[SSLOptions]
 SSLMethod=TLSV1.2
 SSLCertificate=host1.crt
 SSLPrivateKey=host1.key

 5. Save and close the configuration file.
 6. Restart the connector.

Related Topics

 l Start and Stop the Connector, on page 34

Backup and Restore the Connector’s State

After configuring a connector, and while the connector is running, you can create a backup of the
connector’s state. In the event of a failure, you can restore the connector’s state from the backup.

To create a backup, use the backupServer action. The backupServer action saves a ZIP file to a path
that you specify. The backup includes:

 l a copy of the actions folder, which stores information about actions that have been queued, are
running, and have finished.

 l a copy of the configuration file.
 l a copy of the connector’s datastore files, which contain information about the files, records, or other

data that the connector has retrieved from a repository.

Backup a Connector’s State

To create a backup of the connectors state

 l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=backupServer&path=path

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

path The folder where you want to save the backup.

For example:

http://localhost:1234/action=backupServer&path=./backups

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 32 of 103

Restore a Connector’s State

To restore a connector’s state

 l In the address bar of your Web browser, type the following action and press ENTER:

http://host:port/action=restoreServer&filename=filename

where,

host The host name or IP address of the machine where the connector is running.

port The connector’s ACI port.

filename The path of the backup that you created.

For example:

http://localhost:1234/action=restoreServer&filename=./backups/filename.zip

Validate the Configuration File

You can use the ValidateConfig service action to check for errors in the configuration file.

NOTE:
For the ValidateConfig action to validate a configuration section, ODBC Connector must
have previously read that configuration. In some cases, the configuration might be read when a
task is run, rather than when the component starts up. In these cases, ValidateConfig reports
any unread sections of the configuration file as unused.

To validate the configuration file

 l Send the following action to ODBC Connector:

http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where ODBC Connector is
installed.

ServicePort is the service port, as specified in the [Service] section of the configuration file.

Administration Guide
Chapter 3: Configure ODBC Connector

ODBC Connector (11.6) Page 33 of 103

Chapter 4: Start and Stop the Connector

This section describes how to start and stop the ODBC Connector.

• Start the Connector 34
• Verify that ODBC Connector is Running 35
• Stop the Connector 35

NOTE:
You must start and stop the Connector Framework Server separately from the ODBC Connector.

Start the Connector

After you have installed and configured a connector, you are ready to run it. Start the connector using one of
the following methods.

Start the Connector on Windows

To start the connector using Windows Services

 1. Open the Windows Services dialog box.
 2. Select the connector service, and click Start.
 3. Close the Windows Services dialog box.

To start the connector by running the executable

 l In the connector installation directory, double-click the connector executable file.

Start the Connector on UNIX

To start the connector on a UNIX operating system, follow these steps.

To start the connector using the UNIX start script

 1. Change to the installation directory.
 2. Enter the following command:

./startconnector.sh

 3. If you want to check the ODBC Connector service is running, enter the following command:

ps -aef | grep ConnectorInstallName

This command returns the ODBC Connector service process ID number if the service is running.

ODBC Connector (11.6) Page 34 of 103

Verify that ODBC Connector is Running

After starting ODBC Connector, you can run the following actions to verify that ODBC Connector is
running.

 l GetStatus
 l GetLicenseInfo

GetStatus

You can use the GetStatus service action to verify the ODBC Connector is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE:
You can send the GetStatus action to the ACI port instead of the service port. The GetStatus
ACI action returns information about the ODBC Connector setup.

GetLicenseInfo

You can send a GetLicenseInfo action to ODBC Connector to return information about your license.
This action checks whether your license is valid and returns the operations that your license includes.

Send the GetLicenseInfo action to the ODBC Connector ACI port. For example:

http://Host:ACIport/action=GetLicenseInfo

The following result indicates that your license is valid.

<autn:license>
 <autn:validlicense>true</autn:validlicense>
 </autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Stop the Connector

You must stop the connector before making any changes to the configuration file.

To stop the connector using Windows Services

 1. Open the Windows Services dialog box.
 2. Select the ConnectorInstallName service, and click Stop.
 3. Close the Windows Services dialog box.

Administration Guide
Chapter 4: Start and Stop the Connector

ODBC Connector (11.6) Page 35 of 103

To stop the connector by sending an action to the service port

 l Type the following command in the address bar of your Web browser, and press ENTER:

http://host:ServicePort/action=stop

host The IP address or host name of the machine where the connector is running.

ServicePort The connector’s service port (specified in the [Service] section of the
connector’s configuration file).

Administration Guide
Chapter 4: Start and Stop the Connector

ODBC Connector (11.6) Page 36 of 103

Chapter 5: Send Actions to ODBC Connector

This section describes how to send actions to ODBC Connector.

• Send Actions to ODBC Connector 37
• Asynchronous Actions 37
• Store Action Queues in an External Database 39
• Store Action Queues in Memory 41
• Use XSL Templates to Transform Action Responses 42

Send Actions to ODBC Connector

ODBC Connector actions are HTTP requests, which you can send, for example, from your web browser. The
general syntax of these actions is:

http://host:port/action=action¶meters

where:

host is the IP address or name of the machine where ODBC Connector is installed.

port is the ODBC Connector ACI port. The ACI port is specified by the Port parameter in the
[Server] section of the ODBC Connector configuration file. For more information about the
Port parameter, see the ODBC Connector Reference.

action is the name of the action you want to run.

parameters are the required and optional parameters for the action.

NOTE:
Separate individual parameters with an ampersand (&). Separate parameter names from values with
an equals sign (=). You must percent-encode all parameter values.

For more information about actions, see the ODBC Connector Reference.

Asynchronous Actions

When you send an asynchronous action to ODBC Connector, the connector adds the task to a queue and
returns a token. ODBC Connector performs the task when a thread becomes available. You can use the
token with the QueueInfo action to check the status of the action and retrieve the results of the action.

Most of the features provided by the connector are available through action=fetch, so when you use the
QueueInfo action, query the fetch action queue, for example:

 /action=QueueInfo&QueueName=Fetch&QueueAction=GetStatus

ODBC Connector (11.6) Page 37 of 103

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by ODBC Connector
with the QueueInfo action. For more information about the QueueInfo action, refer to the ODBC
Connector Reference.

To check the status of an asynchronous action

 l Send the QueueInfo action to ODBC Connector with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do not
specify a token, ODBC Connector returns the status of every action in
the queue.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

To cancel an asynchronous action that is queued

 l Send the QueueInfo action to ODBC Connector with the following parameters.

QueueName The name of the action queue that contains the action to cancel.

QueueAction The action to perform . Set this parameter to Cancel.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Cancel&Token=...

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 38 of 103

To stop an asynchronous action that is running

 l Send the QueueInfo action to ODBC Connector with the following parameters.

QueueName The name of the action queue that contains the action to stop.

QueueAction The action to perform. Set this parameter to Stop.

Token The token that the asynchronous action returned.

For example:

/action=QueueInfo&QueueName=fetch&QueueAction=Stop&Token=...

Store Action Queues in an External Database

ODBC Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. You can configure ODBC Connector to store
these queues either in an internal database file, or in an external database hosted on a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to the
shared queue. Whenever a server is ready to start processing a new request, it takes the next request
from the shared queue, runs the action, and adds the results of the action back to the shared database
so that they can be retrieved by any of the servers. You can therefore distribute requests between
components without configuring a Distributed Action Handler (DAH).

NOTE:
You cannot use multiple servers to process a single request. Each request is processed by one
server.

NOTE:
Although you can configure several connectors to share the same action queues, the
connectors do not share fetch task data. If you share action queues between several
connectors and distribute synchronize actions, the connector that processes a synchronize
action cannot determine which items the other connectors have retrieved. This might result in
some documents being ingested several times.

Prerequisites

 l Supported databases:
 o PostgreSQL 9.0 or later.
 o MySQL 5.0 or later.

 l If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVarChar to 0 (zero).
If you use a DSN, you can configure this parameter when you create the DSN. Otherwise, you can
set the MaxVarcharSize parameter in the connection string.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 39 of 103

Configure ODBC Connector

To configure ODBC Connector to use a shared action queue, follow these steps.

To store action queues in an external database

 1. Stop ODBC Connector, if it is running.
 2. Open the ODBC Connector configuration file.
 3. Find the relevant section in the configuration file:

 l To store queues for all asynchronous actions in the external database, find the [Actions]
section.

 l To store the queue for a single asynchronous action in the external database, find the section
that configures that action.

 4. Set the following configuration parameters.

AsyncStoreLibraryDirectory The path of the directory that contains the library to use to
connect to the database. Specify either an absolute path, or a
path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database. You
can omit the file extension. The following libraries are
available:
 l postgresAsyncStoreLibrary - for connecting to a

PostgreSQL database.
 l mysqlAsyncStoreLibrary - for connecting to a MySQL

database.

ConnectionString The connection string to use to connect to the database. The
user that you specify must have permission to create tables in
the database. For example:
ConnectionString=DSN=my_ASYNC_QUEUE

or
ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;
Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

For example:

[Actions]
 AsyncStoreLibraryDirectory=acidlls
 AsyncStoreLibraryName=postgresAsyncStoreLibrary
 ConnectionString=DSN=ActionStore

 5. If you are using the same database to store action queues for more than one type of component,
set the following parameter in the [Actions] section of the configuration file.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 40 of 103

DatastoreSharingGroupName The group of components to share actions with. You can set
this parameter to any string, but the value must be the same for
each server in the group. For example, to configure several
ODBC Connectors to share their action queues, set this
parameter to the same value in every ODBC Connector
configuration. Micro Focus recommends setting this parameter
to the name of the component.

CAUTION:
Do not configure different components (for example, two
different types of connector) to share the same action
queues. This will result in unexpected behavior.

 For example:

[Actions]
 ...
 DatastoreSharingGroupName=ComponentType

 6. Save and close the configuration file.
When you start ODBC Connector it connects to the shared database.

Store Action Queues in Memory

ODBC Connector provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. These queues are usually stored in a
datastore file or in a database hosted on a database server, but in some cases you can increase
performance by storing these queues in memory.

NOTE:
Storing action queues in memory improves performance only when the server receives large
numbers of actions that complete quickly. Before storing queues in memory, you should also
consider the following:

 l The queues (including queued actions and the results of finished actions) are lost if ODBC
Connector stops unexpectedly, for example due to a power failure or the component being
forcibly stopped. This could result in some requests being lost, and if the queues are restored
to a previous state some actions could run more than once.

 l Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

 l Storing action queues in memory increases memory use, so please ensure that the server
has sufficient memory to complete actions and store the action queues.

If you stop ODBC Connector cleanly, ODBC Connector writes the action queues from memory to disk
so that it can resume processing when it is next started.

To configure ODBC Connector to store asynchronous action queues in memory, follow these steps.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 41 of 103

To store action queues in memory

 1. Stop ODBC Connector, if it is running.
 2. Open the ODBC Connector configuration file and find the [Actions] section.
 3. If you have set any of the following parameters, remove them:

 l AsyncStoreLibraryDirectory

 l AsyncStoreLibraryName

 l ConnectionString

 l UseStringentDatastore

 4. Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep the
queues for asynchronous actions in memory. Set
this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at which
the action queues are written to disk. Writing the
queues to disk can reduce the number of queued
actions that would be lost if ODBC Connector
stops unexpectedly, but configuring a frequent
backup will increase the load on the datastore and
might reduce performance.

For example:

[Actions]
 UseInMemoryDatastore=TRUE
 InMemoryDatastoreBackupIntervalMins=30

 5. Save and close the configuration file.
When you start ODBC Connector, it stores action queues in memory.

Use XSL Templates to Transform Action Responses

You can transform the action responses returned by ODBC Connector using XSL templates. You must
write your own XSL templates and save them with either an .xsl or .tmpl file extension.

After creating the templates, you must configure ODBC Connector to use them, and then apply them to
the relevant actions.

To enable XSL transformations

 1. Ensure that the autnxslt library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from Micro Focus Support.

 2. Open the ODBC Connector configuration file in a text editor.
 3. In the [Server] section, ensure that the XSLTemplates parameter is set to true.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 42 of 103

CAUTION:
If XSLTemplates is set to true and the autnxslt library is not present in the same
directory as the configuration file, the server will not start.

 4. (Optional) In the [Paths] section, set the TemplateDirectory parameter to the path to the
directory that contains your XSL templates. The default directory is acitemplates.

 5. Save and close the configuration file.
 6. Restart ODBC Connector for your changes to take effect.

To apply a template to action output

 l Add the following parameters to the action:

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started, set this
parameter to true to force the ACI server to reload the template from
disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Fetch
 &QueueAction=GetStatus
 &Token=...
 &Template=myTemplate

In this example, ODBC Connector applies the XSL template myTemplate to the response from a
QueueInfo action.

NOTE:
If the action returns an error response, ODBC Connector does not apply the XSL template.

Example XSL Templates

ODBC Connector includes the following sample XSL templates, in the acitemplates folder:

XSL
Template

Description

LuaDebug Transforms the output from the LuaDebug action, to assist with debugging Lua
scripts.

Administration Guide
Chapter 5: Send Actions to ODBC Connector

ODBC Connector (11.6) Page 43 of 103

Chapter 6: Use the Connector

This section describes how to use the connector.

• Operating Modes 44
• Retrieve Information (Non-Incremental Mode) 45
• Retrieve Information (Incremental Mode) 46
• Retrieve Information from an Event Table 47
• Schedule Fetch Tasks 48

Operating Modes

The ODBC Connector has several modes of operation.

Non-Incremental Mode

In non-incremental mode, the connector performs a full synchronize every time you run a synchronize task.
This is the default mode, used when UseIncrementalStatements=false.

Every time you run a synchronize task, the connector retrieves information from the database using the query
specified by the SQL parameter. To identify new, updated, and deleted rows, the connector must process
every row returned by this query.

The SQL query might return many rows that the connector has processed before, and that have not changed.
The connector doesn't need to take any action for these rows but processing them does take time, especially
if the query returns millions of rows.

Running a full synchronize on every cycle might be necessary if it is not possible to construct a query to
extract only the new, modified, and deleted rows.

Incremental Mode

In incremental mode, the connector performs a full synchronize on the first cycle, and an incremental
synchronize on subsequent cycles. This can be more efficient.

The first time the connector runs a synchronize task it sends the query specified by the InitialStatement
parameter to the database and processes all of the rows that are returned. As the connector hasn't run the
task before, all of the rows represent new documents and the connector sends an ingest-add command to the
ingestion server (usually, a Connector Framework Server) for every row. This is a full synchronize, the same
as in non-incremental mode.

TIP:
If you do not set the InitialStatement parameter, the connector uses the query specified by
AddedAndUpdatedStatement for the initial synchronize.

ODBC Connector (11.6) Page 44 of 103

On subsequent synchronize cycles, the connector sends different queries to the database. The query
specified by AddedAndUpdatedStatement is used to identify rows that have been added or updated.
The query specified by DeletedStatement is used to identify rows that have been deleted.

An example AddedAndUpdatedStatement might be:

SELECT * FROM table_name WHERE last_modified > '@lastruntime'

The connector replaces the placeholder @lastrunime with the time of the last successful synchronize.

An example DeletedStatement might be:

SELECT * from table_name WHERE deleted=1

If your database stores items by modified date and identifies deleted rows, using incremental mode can
increase performance because the incremental queries are likely to return fewer rows than the initial
query. Also, in incremental mode the connector does not need to store information in its datastore about
the rows that it has retrieved.

Event Table Mode

In event-table mode, applications add rows to an event table. On each synchronize cycle, the
connector runs a query to extract information from the table and then deletes the rows that it has
processed.

Event-table mode cannot handle modified or deleted documents. Every row that the connector reads
from the event table is ingested as a new document.

In event-table mode, use the SQL configuration parameter to specify a query to use to retrieve
information from the event table. You must also set the DeleteEventSql parameter to specify the
query to use to delete rows from the event table after the information has been ingested. For example:

[EventTableTask]
 ConnectionString=...
 Template=main.tmpl
 PrimaryKeys=id
 SQL=SELECT id, metavalue, content FROM event_table
 DeleteEventSql=DELETE FROM event_table WHERE @Clause

The connector replaces the placeholder @Clause with a clause that identifies the rows that have been
ingested.

Retrieve Information (Non-Incremental Mode)

To automatically retrieve content from a database, create a new fetch task by following these steps.
The connector runs fetch tasks automatically, based on the schedule that is configured in the
configuration file.

To create a new Fetch Task

 1. Stop the connector.
 2. Open the configuration file in a text editor.

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 45 of 103

 3. In the [FetchTasks] section of the configuration file, specify the number of fetch tasks using the
Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1). Below
the Number parameter, specify the names of the fetch tasks, starting from zero (0). For example:

[FetchTasks]
Number=1
0=MyTask

 4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
 Number=1
 0=MyTask

[MyTask]

 5. In the new section, set the following parameters:

ConnectionString The connection string to connect to the database.

SQL The SQL command to execute to return the data from the database.

PrimaryKeys The column, or combination of columns, used as the primary key for the
table. The value of this parameter is case-sensitive.

Template (Optional) The template file used to form the documents that are sent to
CFS. For information about how to create a template file, see Construct
Template Files, on page 51.

 6. Save and close the configuration file. You can now start the connector.

TIP:
If you make changes to the configuration and want to reset the connector so that it
retrieves all of your data again, use the PurgeDatastore action.

Retrieve Information (Incremental Mode)

To automatically retrieve content from a database in incremental mode, create a new fetch task by
following these steps. The connector runs fetch tasks automatically, based on the schedule that is
configured in the configuration file.

To create a new Fetch Task

 1. Stop the connector.
 2. Open the configuration file in a text editor.
 3. In the [FetchTasks] section of the configuration file, specify the number of fetch tasks using the

Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1). Below
the Number parameter, specify the names of the fetch tasks, starting from zero (0). For example:

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 46 of 103

[FetchTasks]
Number=1
0=MyTask

 4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
 Number=1
 0=MyTask

[MyTask]

 5. In the new section, set the following parameters:

ConnectionString The connection string to connect to the database.

UseIncrementalStatements To use incremental mode, set this parameter to true.

InitialStatement The SQL query to use to return the data from the database on
the first synchronize cycle.

AddedAndUpdatedStatement The SQL query to use to identify new and updated records on
incremental synchronize cycles.

DeletedStatement The SQL query to use to identify deleted records on incremental
synchronize cycles.

PrimaryKeys The column, or combination of columns, used as the primary
key for the table. The value of this parameter is case-sensitive.

Template (Optional) The template file used to form the documents that are
sent to CFS. For information about how to create a template file,
see Construct Template Files, on page 51.

 6. Save and close the configuration file. You can now start the connector.

TIP:
If you make changes to the configuration and want to reset the connector so that it
retrieves all of your data again, use the PurgeDatastore action.

Retrieve Information from an Event Table

To automatically retrieve content from an event table, create a new fetch task by following these steps.
The connector runs fetch tasks automatically, based on the schedule that is configured in the
configuration file.

To create a new Fetch Task

 1. Stop the connector.
 2. Open the configuration file in a text editor.

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 47 of 103

 3. In the [FetchTasks] section of the configuration file, specify the number of fetch tasks using the
Number parameter. If you are configuring the first fetch task, type Number=1. If one or more fetch
tasks have already been configured, increase the value of the Number parameter by one (1). Below
the Number parameter, specify the names of the fetch tasks, starting from zero (0). For example:

[FetchTasks]
Number=1
0=MyTask

 4. Below the [FetchTasks] section, create a new TaskName section. The name of the section must
match the name of the new fetch task. For example:

[FetchTasks]
 Number=1
 0=MyTask

[MyTask]

 5. In the new section, set the following parameters:

ConnectionString The connection string to use to connect to the database.

Template (Optional) The template file used to form the documents that are sent to
CFS. For information about how to create a template file, see Construct
Template Files, on page 51.

PrimaryKeys The column, or combination of columns, used as the primary key for the
table. The value of this parameter is case-sensitive.

SQL The SQL query to use to return data from the event table.

DeleteEventSql The SQL query to use to delete information from the event table after it has
been ingested. The connector replaces the placeholder @Clause with a
clause that identifies the rows that have been ingested.

For example:

[EventTableTask]
 ConnectionString=...
 Template=main.tmpl
 PrimaryKeys=id
 SQL=SELECT id, metavalue, content FROM event_table
 DeleteEventSql=DELETE FROM event_table WHERE @Clause

 6. Save and close the configuration file. You can now start the connector.

Schedule Fetch Tasks

The connector automatically runs the fetch tasks that you have configured, based on the schedule in
the configuration file. To modify the schedule, follow these steps.

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 48 of 103

To schedule fetch tasks

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. Find the [Connector] section.
 4. The EnableScheduleTasks parameter specifies whether the connector should automatically run

the fetch tasks that have been configured in the [FetchTasks] section. To run the tasks, set this
parameter to true. For example:

[Connector]
EnableScheduledTasks=True

 5. In the [Connector] section, set the following parameters:

ScheduleStartTime The start time for the fetch task, the first time it runs after you start the
connector. The connector runs subsequent synchronize cycles after the
interval specified by ScheduleRepeatSecs.
Specify the start time in the format H[H][:MM][:SS]. To start running
tasks as soon as the connector starts, do not set this parameter or use
the value now.

ScheduleRepeatSecs The interval (in seconds) from the start of one scheduled synchronize
cycle to the start of the next. If a previous synchronize cycle is still
running when the interval elapses, the connector queues a maximum of
one action.

ScheduleCycles The number of times that each fetch task is run. To run the tasks
continuously until the connector is stopped, set this parameter to -1. To
run each task only one time, set this parameter to 1.

For example:

[Connector]
 EnableScheduledTasks=True
ScheduleStartTime=15:00:00
 ScheduleRepeatSecs=3600
 ScheduleCycles=-1

 6. (Optional) To run a specific fetch task on a different schedule, you can override these parameters
in a TaskName section of the configuration file. For example:

[Connector]
 EnableScheduledTasks=TRUE
 ScheduleStartTime=15:00:00
 ScheduleRepeatSecs=3600
 ScheduleCycles=-1

 ...

 [FetchTasks]
 Number=2

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 49 of 103

 0=MyTask0
 1=MyTask1
 ...

 [MyTask1]
ScheduleStartTime=16:00:00
 ScheduleRepeatSecs=60
 ScheduleCycles=-1

In this example, MyTask0 follows the schedule defined in the [Connector] section, and MyTask1
follows the scheduled defined in the [MyTask1] TaskName section.

 7. Save and close the configuration file. You can now start the connector.
Related Topics

 l Start and Stop the Connector, on page 34

Administration Guide
Chapter 6: Use the Connector

ODBC Connector (11.6) Page 50 of 103

Chapter 7: Construct Template Files

A template file specifies how the data returned from a database is structured for indexing into IDOL Server.
You can create template files to customize how information from the database is indexed into IDOL Server.
This section describes how to construct template files.

• Template Files 51
• Sub-Table Template Files 52

Template Files

A template file specifies how the data returned from a database is structured for indexing into IDOL Server.
You can create template files to customize how information from the database is transformed into
IDOL documents.

NOTE:
To retrieve information from sub-tables, you must create a template.

If you are not retrieving data from sub-tables, creating a template is optional. Without a template, the
connector creates documents where the names of metadata fields match the names of the columns in
the database.

The ODBC Connector runs the query defined in its configuration file, and uses the template to create a
document for every row that is returned.

NOTE:
The template must construct documents that conform to either IDX or Autonomy XML format.

The following is an example template file. Each HTML comment (<!--comment-->) refers to a column name
in the query results, and specifies that the information from that column should be inserted:

#DREREFERENCE <!--OrderID-->
 #DREFIELD OrderDate="<!--Date-->"
 #DREFIELD Customer="<!--CustomerID-->"
 #DREFIELD Status="<!--Status-->"
 #DRECONTENT
 Order information
 Date Received: <!--Date-->
 Status: <!--Status-->
 #DREENDDOC

A record retrieved from the table might produce the following IDX document:

#DREREFERENCE 012345
 #DREFIELD OrderDate="16/10/2012 15:27:11"
 #DREFIELD Customer="2563"
 #DREFIELD Status="Order complete"
 #DRECONTENT

ODBC Connector (11.6) Page 51 of 103

 Order information
 Date Received: 16/10/2012 15:27:11
 Status: Order complete
 #DREENDDOC

As shown in the example above, you can add information to the document as metadata or content.

If a column in the database contains information that you want to use as the document content (for
example a path to a file or base-64 encoded data), you can configure the connector to extract this data
by setting the ContentField and ContentFieldType parameters. In this case, do not include a
DRECONTENT section in the template.

Sub-Table Template Files

In a database, information about a single subject can be divided between multiple tables. This allows
data to be stored more efficiently.

To extract data from multiple tables, you can configure sub-tables by setting the SubTables parameter.
When you extract data from sub-tables, you need to create a template for the main table and a template
for each sub-table.

In the main template file, specify the locations where the data from the sub-tables is included in the
document. To do this, insert HTML comments (<!--comment-->) where comment is the name of a sub-
table defined in the configuration file.

For example, if you set SubTables=Customer the main template might look like this:

#DREREFERENCE <!--OrderID-->
 #DREFIELD Date="<!--Date-->"
 #DREFIELD CustomerID="<!--CustomerID-->"
 #DREFIELD Status="<!--Status-->"
<!--Customer-->
 #DRECONTENT
 Order information
 Date Received: <!--Date-->
 Status: <!--Status-->
 #DREENDDOC

The sub-table template (referenced by <!--Customer-->) might look like this:

#DREFIELD Customer_Title="<!--Title-->"
 #DREFIELD Customer_Name="<!--FirstName--> <!--LastName-->"

Each HTML comment in the sub-table template specifies that data should be inserted from a column in
the sub table.

Administration Guide
Chapter 7: Construct Template Files

ODBC Connector (11.6) Page 52 of 103

When the connector runs a fetch task, the templates are combined and used to create a single
document for each row returned by the query. A resulting document might look like this:

#DREREFERENCE 012345
 #DREFIELD OrderDate="16/10/2012 15:27:11"
 #DREFIELD Customer="2563"
 #DREFIELD Status="Order complete"
#DREFIELD Customer_Title="Mr."
 #DREFIELD Customer_Name="John Smith"
 #DRECONTENT
 Order information
 Date Received: 16/10/2012 15:27:11
 Status: Order complete
 #DREENDDOC

Administration Guide
Chapter 7: Construct Template Files

ODBC Connector (11.6) Page 53 of 103

Chapter 8: Extract Data from a Database

This section provides examples that demonstrate how to use the ODBC Connector. The examples show how
to configure the connector, construct template files, and extract data from multiple tables.

• Extract Data from a Single Table 54
• Extract Data from Multiple Tables 55
• Extract Data from Multiple Tables using a JOIN 59
• Troubleshoot the Connector 62

Extract Data from a Single Table

This example shows how to retrieve data from a single database table:

Table: Orders

OrderID

Date

CustomerID

Status

To retrieve data from a single table

 1. Stop the connector.
 2. Open the connector’s configuration file.
 3. Find the [FetchTasks] section and create a new fetch task to extract the data from the table. Set the

following parameters:

ConnectionString The connection string required to connect to the database.

SQL A SQL statement to retrieve the information from the table. In this example, the
SQL statement retrieves every field and every row from the Orders table.

PrimaryKeys The primary key of the Orders table.

Template The path to the template file. The template file defines how the data is indexed
into IDOL Server.

For example:

[Fetchtasks]
Number=1
 0=ExampleDatabase

 [ExampleDatabase]

ODBC Connector (11.6) Page 54 of 103

 ConnectionString=...
 SQL=select * from orders
 PrimaryKeys=OrderID
 Template=template.tmpl

 4. Save and close the configuration file.
 5. In a text editor, create the template file:

#DREREFERENCE <!--OrderID-->
 #DREFIELD OrderDate="<!--Date-->"
 #DREFIELD Customer="<!--CustomerID-->"
 #DREFIELD Status="<!--Status-->"
 #DRECONTENT
 Order information
 Date Received: <!--Date-->
 Status: <!--Status-->
 #DREENDDOC

The template file defines how data extracted from the table is structured for indexing into IDOL. It
must conform to IDX or Autonomy XML format. Each HTML comment in the template is replaced
by data extracted from the corresponding column in the table. For more information about template
files, see Construct Template Files, on page 51.

 6. Save the template file as template.tmpl in the connector's installation folder (the name you
specified in the configuration file).

 7. (Optional) If you want to view the data that is indexed into IDOL Server, configure Connector
Framework Server to write an IDX file to disk. For example, in the CFS configuration file:

[ImportTasks]
 Post0=IdxWriter:database_records.idx

This example produces an IDX file with the name database_records.idx, in the CFS installation
folder. For more information about Import Tasks, refer to the Connector Framework Server
Administration Guide.

 8. Start the CFS.
 9. Start the ODBC Connector.

The ODBC Connector retrieves the data from the database and sends it to CFS.
 10. To verify that the data has been extracted successfully, open the file database_records.idx.

Extract Data from Multiple Tables

In a relational database, information about a single subject can be divided between multiple tables. This
allows data to be stored more efficiently.

Consider the following tables. You might need to extract data from the Orders and Customers tables:

Table: Orders Table: Customers

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 55 of 103

OrderID

Date

CustomerID

Status

CustomerID

Title

FirstName

LastName

Address1

Address2

Town

Postcode

To extract data from multiple tables, you can use the SubTables parameter.

To extract data from multiple tables, complete the following tasks:

 l Configure the Connector, below
 l Modify the Main Template File, on the next page
 l Create the Sub Table Template File, on the next page
 l Start the Connector, on page 58

NOTE:
These procedures assume that you have completed the steps in Extract Data from a Single
Table, on page 54.

Configure the Connector

This section describes how to use the SubTables parameter to retrieve data from a sub-table.

To retrieve data from a sub-table

 1. Stop the connector.
 2. Open the connector’s configuration file and find the [FetchTasks] section.
 3. Use the SubTables parameter to specify the name of a new section in the configuration file. The

new section will contain parameters that instruct the connector to extract data from the sub-table.
For example:

[ExampleDatabase]
 ConnectionString=...
 SQL=select * from orders
 PrimaryKeys=OrderID
 Template=template.tmpl
SubTables=Customers

 4. Create the new section, and set the following parameters.

Template The path to a template file. The template file defines how the data extracted from the

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 56 of 103

table is indexed into IDOL Server.

SQL A SQL statement to retrieve the information from the sub-table.

For example:

[Customers]
 Template=customers.tmpl
 SQL=select * from Customers where CustomerID=@CustomerID

NOTE:
The connector runs this query for every row returned by the main SQL statement (select
* from orders). The connector automatically replaces @CustomerID with the
CustomerID retrieved from the main table (orders).

 5. Save and close the configuration file.

Modify the Main Template File

Modify the main template file so that information extracted from the sub-table is inserted into the
document.

To modify the main template file

 1. Open the main template file in a text editor. In this example, the main template file is
template.tmpl.

 2. Specify the location where data from the sub-table is included. To do this, insert an HTML
comment (<!--comment-->) where comment is the name of the section in the configuration file that
you specified in the SubTables parameter.
For example:

#DREREFERENCE <!--OrderID-->
 #DREFIELD Date="<!--Date-->"
 #DREFIELD CustomerID="<!--CustomerID-->"
 #DREFIELD Status="<!--Status-->"
 #DRECONTENT
 Order information
 Date Received: <!--Date-->
 Status: <!--Status-->

 Customer information
<!--Customers-->
 #DREENDDOC

 3. Save and close the main template file.

Create the Sub Table Template File

Create a new template file for the information extracted from the sub table. When the connector runs
the fetch task, this template is combined with the main template and used to generate a single

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 57 of 103

document for each row returned from the main table.

To create the sub-table template file

 1. In a text editor, create the sub-table template for data extracted from the Customers table:

Name: <!--Title--> <!--FirstName--> <!--LastName-->
 Address: <!--Address1-->, <!--Town-->, <!--Postcode-->

When the connector generates documents, each HTML comment in this template is replaced by
data extracted from the corresponding column in the Customers sub-table.

 2. Save the template as customers.tmpl in the connector's installation folder (this was the file name
you specified in the configuration file).

Start the Connector

After you have configured the connector and your template files, you can start the connector and verify
that the data is extracted successfully.

To start the connector

 1. In the ODBC Connector installation folder, delete the file connector_EXAMPLEDATABASE_
datastore.db. Deleting this file resets the connector so it retrieves the same data again (the data
in the database has not changed).

 2. Start the connector.
 3. To verify that the data has been extracted successfully, open the file database_records.idx (in

the CFS installation folder). The customer information should now be included in the document, for
example:

#DREREFERENCE 012345
 #DREFIELD OrderDate="16/10/2012 15:27:11"
 #DREFIELD Customer="2563"
 #DREFIELD Status="Order complete"
 #DRECONTENT
 Order information
 Date Received: 16/10/2012 15:27:11
 Status: Order complete

 Customer information
 Name: Mr. John Smith
 Address: 1234 North Road, Cambridge, POST1234

 #DREENDDOC

NOTE:
The main template and the sub-table template have been combined and used to generate a
single document, with data from both tables.

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 58 of 103

Extract Data from Multiple Tables using a JOIN

You can extract data from multiple tables using a JOIN command in your SQL statement.

This example shows how to configure the connector to retrieve data from both the Items and Products
tables of an example database:

Table: Orders

OrderID

Date

CustomerID

Status

Table: Items

OrderID

ProductID

Quantity

Table: Products

ProductID

ProductName

Description

Price

This example includes the following tasks:

 l Configure the Connector, below
 l Modify the Main Template File, on the next page
 l Create the Sub Table Template File, on page 61
 l Start the Connector, on page 61

NOTE:
This example assumes that you have completed the steps in Extract Data from a Single Table,
on page 54 and Extract Data from Multiple Tables, on page 55.

Configure the Connector

This section describes how to configure the connector to extract data from multiple tables using a JOIN
command in your SQL statement.

To extract data from multiple tables using a SQL JOIN

 1. Stop the connector.
 2. Open the ODBC Connector configuration file, and find the [FetchTasks] section.

[FetchTasks]
 Number=1
 0=ExampleDatabase

 [ExampleDatabase]
 ConnectionString=...
 SQL=select * from orders
 PrimaryKeys=OrderID
 Template=template.tmpl
 SubTables=Customers

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 59 of 103

 [Customers]
 Template=customers.tmpl
 SQL=select * from Customers where CustomerID=@CustomerID

 3. Modify the SubTables parameter so that it references a new section in the configuration file:

SubTables=Customers,ItemDetails

 4. Create a new section in the configuration file, using the name you specified in the SubTables
parameter. In the new section, specify the following parameters:

Template The path to a template file. The template file defines how the data is indexed into
IDOL Server.

SQL A SQL statement to retrieve the information from the sub-tables. This example uses
a JOIN command to extract data from both the Items and the Products tables.

For example:

[ItemDetails]
 Template=items.tmpl
 SQL=SELECT * FROM Items INNER JOIN Products ON products.productID =
items.productID WHERE orderID=@orderID

NOTE:
The connector runs this query for every row returned by the main query (select * from
orders). When the connector runs the query, it automatically replaces @orderID with the
OrderID retrieved from the main table (orders).

Modify the Main Template File

Modify the main template file to include the information extracted from the Items and Products tables.
This example shows how to insert a reference to the sub-table template.

To modify the main template file

 1. Open the main template file in a text editor. In this example, the main template file is
template.tmpl, in the connector's installation folder.

 2. Specify the location where data from the sub-tables should be included. To do this, insert an
HTML comment (<!--comment-->) where comment is the name of the section in the configuration
file that you specified in the SubTables parameter. For example:

#DREREFERENCE <!--OrderID-->
 #DREFIELD Date="<!--Date-->"
 #DREFIELD CustomerID="<!--CustomerID-->"
 #DREFIELD Status="<!--Status-->"
 #DRECONTENT
 Order information
 Date Received: <!--Date-->
 Status: <!--Status-->

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 60 of 103

 Customer information
 <!--Customers-->

Items
 <!--ItemDetails-->
 #DREENDDOC

 3. Save and close the main template file.

Create the Sub Table Template File

This section describes how to create the sub-table template file. This template file defines how the
information extracted from the Items and Products table is structured.

When the connector runs the fetch task, this template is combined with the main template and used to
generate a single document for each row returned from the main table (orders).

To create the sub-table template file

 1. In a text editor, create the sub-table template for data extracted from the Items and Products
tables:

ITEM <!--ProductID-->, <!--ProductName-->, QTY <!--Quantity-->, £<!--Price-->

Each HTML comment in the sub-table template is replaced by data extracted from the
corresponding column (ProductID, ProductName, and so on) from the joined Items and Products
tables.

 2. Save the file as items.tmpl in the connector's installation folder (the file name you specified in the
configuration file).

Start the Connector

After you have configured the connector and the template files, you can start the connector, and verify
that the data is extracted successfully.

To start the connector

 1. In the ODBC Connector installation folder, delete the file connector_EXAMPLEDATABASE_
datastore.db. Deleting this file resets the connector so it retrieves the same data again (the data
in the database has not changed).

 2. Start the ODBC Connector.
 3. To verify that the data has been extracted successfully, open the file database_records.idx, in

the CFS installation folder. The new information should now be included in the document, for
example:

#DREREFERENCE 012345
 #DREFIELD OrderDate="16/10/2012 15:27:11"
 #DREFIELD Customer="2563"
 #DREFIELD Status="Order complete"
 #DRECONTENT

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 61 of 103

 Order information
 Date Received: 16/10/2012 15:27:11
 Status: Order complete

 Customer information
 Name: Mr. John Smith
 Address: 1234 North Road, Cambridge, POST1234

Items
 ITEM 5001, Item 5001 description, QTY 1, £399
 ITEM 5002, Item 5002 description, QTY 1, £29

 #DREENDDOC

NOTE:
The main template and the two sub-table templates (for customer information and item
information) have been combined and used to generate a single document.
In this example, the Item Details query has also returned two rows from the combined
Items and Products tables.

Troubleshoot the Connector

This section describes how to troubleshoot common problems that might occur when you set up the
ODBC Connector.

ODBC Drivers for 32-bit and 64-bit platforms

If you use the 64-bit ODBC Connector, you must use a 64-bit ODBC driver. On Windows, define
your data source in the 64-bit ODBC Data Source Administration utility.

If you install the 32-bit ODBC Connector on a 64-bit operating system, you must use a 32-bit ODBC
driver. On Windows, define your data source in the 32-bit ODBC Data Source Administration utility.
You can find this utility at C:\Windows\SysWOW64\odbcad32.exe.

The number of connections is exceeded when using sub tables

The ODBC Connector opens a new connection to retrieve data from each sub-table that you specify
in the connector’s configuration file. However, some ODBC implementations limit the number of
connections. If this occurs, you can set the configuration parameter
UseSingleConnectionForSubtables to true. This ensures that the connector uses only one
connection for retrieving data from sub-tables.

Data is not returned as expected

If the connector does not return the data you expect, use a SQL tool or interface to run the query that
you entered in the connector’s configuration file. Check that the data returned matches what you
want to retrieve. The connector cannot retrieve XML data types, but you can modify your SELECT
statement to convert these data types into strings.

The connector does not populate a document field with the data from a content field

This is expected behavior. The information in the content field (specified by the ContentField

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 62 of 103

parameter) is used to populate the document content. If your content field contains a file path and
you want to write the path to a document field, you can modify your SQL query to return the column
under another name. For example:

SELECT myfield, myfield AS "anotherfield" FROM tablename...

Then, in your template file, specify the alternate name:

#DREFIELD MyFieldName="<!--anotherfield-->"

Retrieve BLOB values from an IBM DB2 database ("unsupported column data type" error)

The connector might fail to retrieve BLOB data from an IBM DB2 database, and write the following
message to the synchronize log:

Unsupported column data type

This is due to the data types returned by the IBM DB2 ODBC driver. To resolve this issue, set
LongDataCompat=1 in the DB2 ODBC driver configuration file db2cli.ini. This changes the types
that are returned. For more information about this parameter, refer to the IBM DB2 documentation.

Administration Guide
Chapter 8: Extract Data from a Database

ODBC Connector (11.6) Page 63 of 103

Chapter 9: Manipulate Documents

This section describes how to manipulate documents that are created by the connector and sent for ingestion.

• Introduction 64
• Add a Field to Documents using an Ingest Action 64
• Customize Document Processing 65
• Standardize Field Names 66
• Run Lua Scripts 71
• Example Lua Scripts 73

Introduction

IDOL Connectors retrieve data from repositories and create documents that are sent to Connector
Framework Server, another connector, or Haven OnDemand. You might want to manipulate the documents
that are created. For example, you can:

 l Add or modify document fields, to change the information that is indexed into IDOL Server or Haven
OnDemand.

 l Add fields to a document to customize the way the document is processed by CFS.
 l Convert information into another format so that it can be inserted into another repository by a connector

that supports the Insert action.
When a connector sends documents to CFS, the documents only contain metadata extracted from the
repository by the connector (for example, the location of the original files). To modify data extracted by
KeyView, you must modify the documents using CFS. For information about how to manipulate documents
with CFS, refer to the Connector Framework Server Administration Guide.

Add a Field to Documents using an Ingest Action

To add a field to all documents retrieved by a fetch task, or all documents sent for ingestion, you can use an
Ingest Action.

NOTE:
To add a field only to selected documents, use a Lua script (see Run Lua Scripts, on page 71). For an
example Lua script that demonstrates how to add a field to a document, see Add a Field to a
Document, on page 74.

To add a field to documents using an Ingest Action

 1. Open the connector’s configuration file.
 2. Find one of the following sections in the configuration file:

ODBC Connector (11.6) Page 64 of 103

 l To add the field to all documents retrieved by a specific fetch task, find the [TaskName]
section.

 l To add a field to all documents that are sent for ingestion, find the [Ingestion] section.

NOTE:
If you set the IngestActions parameter in a [TaskName] section, the connector does not
run any IngestActions set in the [Ingestion] section for documents retrieved by that
task.

 3. Use the IngestActions parameter to specify the name of the field to add, and the field value. For
example, to add a field named AUTN_NO_EXTRACT, with the value SET, type:

IngestActions0=META:AUTN_NO_EXTRACT=SET

 4. Save and close the configuration file.

Customize Document Processing

You can add the following fields to a document to control how the document is processed by CFS.
Unless stated otherwise, you can add the fields with any value.

AUTN_FILTER_META_ONLY

Prevents KeyView extracting file content from a file. KeyView only extracts metadata and adds this
information to the document.

AUTN_NO_FILTER

Prevents KeyView extracting file content and metadata from a file. You can use this field if you do not
want to extract text from certain file types.

AUTN_NO_EXTRACT

Prevents KeyView extracting subfiles. You can use this field to prevent KeyView extracting the
contents of ZIP archives and other container files.

AUTN_NEEDS_MEDIA_SERVER_ANALYSIS

Identifies media files (images, video, and documents such as PDF files that contain embedded
images) that you want to send to Media Server for analysis, using a MediaServerAnalysis import
task. You do not need to add this field if you are using a Lua script to run media analysis. For more
information about running analysis on media, refer to the Connector Framework Server Administration
Guide.

AUTN_NEEDS_TRANSCRIPTION

Identifies audio and video assets that you want to send to an IDOL Speech Server for speech-to-text
processing, using an IdolSpeech import task. You do not need to add this field if you are using a Lua
script to run speech-to-text. For more information about running speech-to-text on documents, refer to
the Connector Framework Server Administration Guide.

AUTN_FORMAT_CORRECT_FOR_TRANSCRIPTION

To bypass the transcoding step of an IdolSpeech import task, add the field AUTN_FORMAT_CORRECT_
FOR_TRANSCRIPTION. Documents that have this field are not sent to a Transcode Server. For more

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 65 of 103

information about the IdolSpeech task, refer to the Connector Framework Server Administration
Guide.

AUTN_AUDIO_LANGUAGE

To bypass the language identification step of an IdolSpeech import task add the field AUTN_AUDIO_
LANGUAGE. The value of the field must be the name of the IDOL Speech Server language pack to use for
extracting speech. Documents that have this field are not sent to the IDOL Speech Server for language
identification. For more information about the IdolSpeech task, refer to the Connector Framework
Server Administration Guide.

Standardize Field Names

Field standardization modifies documents so that they have a consistent structure and consistent field
names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information.

For example, documents created by the File System Connector can have a field named FILEOWNER.
Documents created by the Documentum Connector can have a field named owner_name. Both of these
fields store the name of the person who owns a file. Field standardization renames the fields so that
they have the same name.

Field standardization only modifies fields that are specified in a dictionary, which is defined in XML
format. A standard dictionary, named dictionary.xml, is supplied in the installation folder of every
connector. If a connector does not have any entries in the dictionary, field standardization has no
effect.

Configure Field Standardization

IDOL Connectors have several configuration parameters that control field standardization. All of these
are set in the [Connector] section of the configuration file:

 l EnableFieldNameStandardization specifies whether to run field standardization.
 l FieldNameDictionaryPath specifies the path of the dictionary file to use.
 l FieldNameDictionaryNode specifies the rules to use. The default value for this parameter matches

the name of the connector, and Micro Focus recommends that you do not change it. This prevents
one connector running field standardization rules that are intended for another.

To configure field standardization, use the following procedure.

NOTE:
You can also configure CFS to run field standardization. To standardize all field names, you
must run field standardization from both the connector and CFS.

To enable field standardization

 1. Stop the connector.
 2. Open the connector’s configuration file.
 3. In the [Connector] section, set the following parameters:

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 66 of 103

EnableFieldNameStandardization A Boolean value that specifies whether to enable field
standardization. Set this parameter to true.

FieldNameDictionaryPath The path to the dictionary file that contains the rules to
use to standardize documents. A standard dictionary is
included with the connector and is named
dictionary.xml.

For example:

[Connector]
 EnableFieldNameStandardization=true
 FieldNameDictionaryPath=dictionary.xml

 4. Save the configuration file and restart the connector.

Customize Field Standardization

Field standardization modifies documents so that they have a consistent structure and consistent field
names. You can use field standardization so that documents indexed into IDOL through different
connectors use the same fields to store the same type of information. Field standardization only
modifies fields that are specified in a dictionary, which is defined in XML format. A standard dictionary,
named dictionary.xml, is supplied in the installation folder of every connector.

In most cases you should not need to modify the standard dictionary, but you can modify it to suit your
requirements or create dictionaries for different purposes. By modifying the dictionary, you can
configure the connector to apply rules that modify documents before they are ingested. For example,
you can move fields, delete fields, or change the format of field values.

The following examples demonstrate how to perform some operations with field standardization.

The following rule renames the field Author to DOCUMENT_METADATA_AUTHOR_STRING. This rule applies
to all components that run field standardization and applies to all documents.

<FieldStandardization>
 <Field name="Author">
 <Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
 </Field>
 </FieldStandardization>

The following rule demonstrates how to use the Delete operation. This rule instructs CFS to remove
the field KeyviewVersion from all documents (the Product element with the attribute
key="ConnectorFrameWork" ensures that this rule is run only by CFS).

<FieldStandardization>
 <Product key="ConnectorFrameWork">
 <Field name="KeyviewVersion">
 <Delete/>
 </Field>
 </Product>
 </FieldStandardization>

There are several ways to select fields to process using the Field element.

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 67 of 103

Field element
attribute

Description Example

name Select a field where the field name
matches a fixed value.

Select the field MyField:

<Field name="MyField">
 ...
 </Field>

Select the field Subfield, which is a
subfield of MyField:

<Field name="MyField">
 <Field name="Subfield">
 ...
 </Field>
 </Field>

path Select a field where its path matches a
fixed value.

Select the field Subfield, which is a
subfield of MyField.

<Field path="MyField/Subfield">
 ...
 </Field>

nameRegex Select all fields at the current depth
where the field name matches a regular
expression.

In this case the field name must begin
with the word File:

<Field nameRegex="File.*">
 ...
 </Field>

pathRegex Select all fields where the path of the
field matches a regular expression.

This operation can be inefficient
because every metadata field must be
checked. If possible, select the fields to
process another way.

This example selects all subfields of
MyField.

<Field pathRegex="MyField/[^/]*">
 ...
 </Field>

This approach would be more efficient:

<Field name="MyField">
 <Field nameRegex=".*">
 ...
 </Field>
</Field>

You can also limit the fields that are processed based on their value, by using one of the following:

Field element
attribute

Description Example

matches Process a field if its value
matches a fixed value.

Process a field named MyField, if its value matches
abc.

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 68 of 103

<Field name="MyField" matches="abc">
 ...
 </Field>

matchesRegex Process a field if its entire
value matches a regular
expression.

Process a field named MyField, if its value matches
one or more digits.

<Field name="MyField" matchesRegex="\d+">
 ...
 </Field>

containsRegex Process a field if its value
contains a match to a
regular expression.

Process a field named MyField if its value contains
three consecutive digits.

<Field name="MyField" containsRegex="\d{3}">
 ...
 </Field>

The following rule deletes every field or subfield where the name of the field or subfield begins with
temp.

<FieldStandardization>
 <Field pathRegex="(.*/)?temp[^/]*">
 <Delete/>
 </Field>
 </FieldStandardization>

The following rule instructs CFS to rename the field Author to DOCUMENT_METADATA_AUTHOR_STRING,
but only when the document contains a field named DocumentType with the value 230 (the KeyView
format code for a PDF file).

<FieldStandardization>
 <Product key="ConnectorFrameWork">
 <IfField name="DocumentType" matches="230"> <!-- PDF -->
 <Field name="Author">
 <Move name="DOCUMENT_METADATA_AUTHOR_STRING"/>
 </Field>
 </IfField>
 </Product>
 </FieldStandardization>

TIP:
In this example, the IfField element is used to check the value of the DocumentType field. The
IfField element does not change the current position in the document. If you used the Field
element, field standardization would attempt to find an Author field that is a subfield of
DocumentType, instead of finding the Author field at the root of the document.

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 69 of 103

The following rules demonstrate how to use the ValueFormat operation to change the format of dates.
The only format that you can convert date values into is the IDOL AUTNDATE format. The first rule
transforms the value of a field named CreatedDate. The second rule transforms the value of an
attribute named Created, on a field named Date.

<FieldStandardization>
 <Field name="CreatedDate">
 <ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
 </Field>
 <Field name="Date">
 <Attribute name="Created">
 <ValueFormat type="autndate" format="YYYY-SHORTMONTH-DD HH:NN:SS"/>
 </Attribute>
 </Field>
 </FieldStandardization>

As demonstrated by this example, you can select field attributes to process in a similar way to
selecting fields.

You must select attributes using either a fixed name or a regular expression:

Select a field attribute by name <Attribute name="MyAttribute">

Select attributes that match a regular expression <Attribute nameRegex=".*">

You can then add a restriction to limit the attributes that are processed:

Process an attribute only if its value
matches a fixed value

<Attribute name="MyAttribute" matches="abc">

Process an attribute only if its value
matches a regular expression

<Attribute name="MyAttribute" matchesRegex=".*">

Process an attribute only if its value
contains a match to a regular
expression

<Attribute name="MyAttribute" containsRegex="\w+">

The following rule moves all of the attributes of a field to sub fields, if the parent field has no value. The
id attribute on the first Field element provides a name to a matching field so that it can be referred to
by later operations. The GetName and GetValue operations save the name and value of a selected field
or attribute (in this case an attribute) into variables (in this case $'name' and $'value') which can be
used by later operations. The AddField operation uses the variables to add a new field at the selected
location (the field identified by id="parent").

<FieldStandardization>
 <Field pathRegex=".*" matches="" id="parent">
 <Attribute nameRegex=".*">
 <GetName var="name"/>
 <GetValue var="value"/>
 <Field fieldId="parent">
 <AddField name="$'name'" value="$'value'"/>
 </Field>
 <Delete/>

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 70 of 103

 </Attribute>
 </Field>
 </FieldStandardization>

The following rule demonstrates how to move all of the subfields of UnwantedParentField to the root
of the document, and then delete the field UnwantedParentField.

<FieldStandardization id="root">
 <Product key="MyConnector">
 <Field name="UnwantedParentField">
 <Field nameRegex=".*">
 <Move destId="root"/>
 </Field>
 <Delete/>
 </Field>
 </Product>
 </FieldStandardization>

Run Lua Scripts

IDOL Connectors can run custom scripts written in Lua, an embedded scripting language. You can use
Lua scripts to process documents that are created by a connector, before they are sent to CFS and
indexed into IDOL Server. For example, you can:

 l Add or modify document fields.
 l Manipulate the information that is indexed into IDOL.
 l Call out to an external service, for example to alert a user.
There might be occasions when you do not want to send documents to a CFS. For example, you might
use the Collect action to retrieve documents from one repository and then insert them into another.
You can use a Lua script to transform the documents from the source repository so that they can be
accepted by the destination repository.

To run a Lua script from a connector, use one of the following methods:

 l Set the IngestActions configuration parameter in the connector’s configuration file. For information
about how to do this, see Run a Lua Script using an Ingest Action, on page 73. The connector runs
ingest actions on documents before they are sent for ingestion.

 l Set the IngestActions action parameter when using the Synchronize action.
 l Set the CollectActions action parameter when using the Collect action.

Write a Lua Script

A Lua script that is run from a connector must have the following structure:

function handler(config, document, params)
 ...
 end

The handler function is called for each document and is passed the following arguments:

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 71 of 103

Argument Description

config A LuaConfig object that you can use to retrieve the values of configuration parameters
from the connector’s configuration file.

document A LuaDocument object. The document object is an internal representation of the
document being processed. Modifying this object changes the document.

params The params argument is a table that contains additional information provided by the
connector:

 l TYPE. The type of task being performed. The possible values are ADD, UPDATE,
DELETE, or COLLECT.

 l SECTION. The name of the section in the configuration file that contains
configuration parameters for the task.

 l FILENAME. The document filename. The Lua script can modify this file, but must
not delete it.

 l OWNFILE. Indicates whether the connector (and CFS) has ownership of the file. A
value of true means that CFS deletes the file after it has been processed.

The following script demonstrates how you can use the config and params arguments:

function handler(config, document, params)
 -- Write all of the additional information to a log file
 for k,v in pairs(params) do
 log("logfile.txt", k..": "..tostring(v))
 end

 -- The following lines set variables from the params argument
 type = params["TYPE"]
 section = params["SECTION"]
 filename = params["FILENAME"]

 -- Read a configuration parameter from the configuration file
 -- If the parameter is not set, "DefaultValue" is returned
 val = config:getValue(section, "Parameter", "DefaultValue")

 -- If the document is not being deleted, set the field FieldName
 -- to the value of the configuration parameter
 if type ~= "DELETE" then
 document:setFieldValue("FieldName", val)
 end

 -- If the document has a file (that is, not just metadata),
 -- copy the file to a new location and write a stub idx file
 -- containing the metadata.
 if filename ~= "" then
 copytofilename = "./out/"..create_uuid(filename)
 copy_file(filename, copytofilename)
 document:writeStubIdx(copytofilename..".idx")

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 72 of 103

 end

 return true
 end

For the connector to continue processing the document, the handler function must return true. If the
function returns false, the document is discarded.

TIP:
You can write a library of useful functions to share between multiple scripts. To include a library
of functions in a script, add the code dofile("library.lua") to the top of the lua script,
outside of the handler function.

Run a Lua Script using an Ingest Action

To run a Lua script on documents that are sent for ingestion, use an Ingest Action.

To run a Lua script using an Ingest Action

 1. Open the connector’s configuration file.
 2. Find one of the following sections in the configuration file:

 l To run a Lua script on all documents retrieved by a specific task, find the [TaskName] section.
 l To run a Lua script on all documents that are sent for ingestion, find the [Ingestion] section.

NOTE:
If you set the IngestActions parameter in a [TaskName] section, the connector does not
run any IngestActions set in the [Ingestion] section for that task.

 3. Use the IngestActions parameter to specify the path to your Lua script. For example:

IngestActions=LUA:C:\Autonomy\myScript.lua

 4. Save and close the configuration file.
Related Topics

 l Write a Lua Script, on page 71

Example Lua Scripts

This section contains example Lua scripts.

 l Add a Field to a Document, on the next page
 l Merge Document Fields, on the next page

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 73 of 103

Add a Field to a Document

The following script demonstrates how to add a field named “MyField” to a document, with a value of
“MyValue”.

function handler(config, document, params)
 document:addField("MyField", "MyValue");
 return true;
 end

The following script demonstrates how to add the field AUTN_NEEDS_MEDIA_SERVER_ANALYSIS to all
JPEG, TIFF and BMP documents. This field indicates to CFS that the file should be sent to a Media
Server for analysis (you must also define the MediaServerAnalysis task in the CFS configuration file).

The script finds the file type using the DREREFERENCE document field, so this field must contain the file
extension for the script to work correctly.

function handler(config, document, params)
 local extensions_for_ocr = { jpg = 1 , tif = 1, bmp = 1 };
 local filename = document:getFieldValue("DREREFERENCE");
 local extension, extension_found = filename:gsub("^.*%.(%w+)$", "%1", 1);

 if extension_found > 0 then
 if extensions_for_ocr[extension:lower()] ~= nil then
 document:addField("AUTN_NEEDS_MEDIA_SERVER_ANALYSIS", "");
 end
 end

 return true;
 end

Merge Document Fields

This script demonstrates how to merge the values of document fields.

When you extract data from a repository, the connector can produce documents that have multiple
values for a single field, for example:

#DREFIELD ATTACHMENT="attachment.txt"
 #DREFIELD ATTACHMENT="image.jpg"
 #DREFIELD ATTACHMENT="document.pdf"

This script shows how to merge the values of these fields, so that the values are contained in a single
field, for example:

#DREFIELD ATTACHMENTS="attachment.txt, image.jpg, document.pdf"

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 74 of 103

Example Script

function handler(config, document, params)
 onefield(document,"ATTACHMENT","ATTACHMENTS")
 return true;
 end

 function onefield(document,existingfield,newfield)
 if document:hasField(existingfield) then
 local values = { document:getFieldValues(existingfield) }

 local newfieldvalue=""
 for i,v in ipairs(values) do
 if i>1 then
 newfieldvalue = newfieldvalue ..", "
 end

 newfieldvalue = newfieldvalue..v
 end

 document:addField(newfield,newfieldvalue)
 end

 return true;
 end

Administration Guide
Chapter 9: Manipulate Documents

ODBC Connector (11.6) Page 75 of 103

Chapter 10: Ingestion

After a connector finds new documents in a repository, or documents that have been updated or deleted, it
sends this information to another component called the ingestion target. This section describes where you
can send the information retrieved by the ODBC Connector, and how to configure the ingestion target.

• Introduction 76
• Send Data to Connector Framework Server 77
• Send Data to Haven OnDemand 78
• Send Data to Another Repository 80
• Index Documents Directly into IDOL Server 80
• Index Documents into Vertica 82
• Send Data to a MetaStore 84
• Run a Lua Script after Ingestion 85

Introduction

A connector can send information to a single ingestion target, which could be:

 l Connector Framework Server. To process information and then index it into IDOL, Haven OnDemand, or
Vertica, send the information to a Connector Framework Server (CFS). Any files retrieved by the connector
are imported using KeyView, which means the information contained in the files is converted into a form
that can be indexed. If the files are containers that contain subfiles, these are extracted. You can
manipulate and enrich documents using Lua scripts and automated tasks such as field standardization,
image analysis, and speech-to-text processing. CFS can index your documents into one or more indexes.
For more information about CFS, refer to the Connector Framework Server Administration Guide.

 l Haven OnDemand. You can index documents directly into a Haven OnDemand text index. Haven
OnDemand can extract text, metadata, and subfiles from over 1000 different file formats, so you might not
need to send documents to CFS.

 l Another Connector. Use another connector to keep another repository up-to-date. When a connector
receives documents, it inserts, updates, or deletes the information in the repository. For example, you
could use an Exchange Connector to extract information from Microsoft Exchange, and send the
documents to a Notes Connector so that the information is inserted, updated, or deleted in the Notes
repository.

NOTE:
The destination connector can only insert, update, and delete documents if it supports the insert,
update, and delete fetch actions.

ODBC Connector (11.6) Page 76 of 103

In most cases Micro Focus recommends ingesting documents through CFS, so that KeyView can
extract content from any files retrieved by the connector and add this information to your documents.
You can also use CFS to manipulate and enrich documents before they are indexed. However, if
required you can configure the connector to index documents directly into:

 l IDOL Server. You might index documents directly into IDOL Server when your connector produces
metadata-only documents (documents that do not have associated files). In this case there is no
need for the documents to be imported. Connectors that can produce metadata-only documents
include ODBC Connector and Oracle Connector.

 l Vertica. The metadata extracted by connectors is structured information held in structured fields, so
you might use Vertica to analyze this information.

 l MetaStore. You can index document metadata into a MetaStore for records management.

Send Data to Connector Framework Server

This section describes how to configure ingestion into Connector Framework Server (CFS).

To send data to a CFS

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to CFS, set this parameter to CFS.

IngestHost The host name or IP address of the CFS.

IngestPort The ACI port of the CFS.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=CFS
IngestHost=localhost
IngestPort=7000

 4. (Optional) If you are sending documents to CFS for indexing into IDOL Server, set the
IndexDatabase parameter. When documents are indexed, IDOL adds each document to the
database specified in the document's DREDBNAME field. The connector sets this field for each
document, using the value of IndexDatabase.

IndexDatabase The name of the IDOL database into which documents are indexed. Ensure
that this database exists in the IDOL Server configuration file.

 l To index all documents retrieved by the connector into the same IDOL database, set this
parameter in the [Ingestion] section.

 l To use a different database for documents retrieved by each task, set this parameter in the

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 77 of 103

TaskName section.
 5. Save and close the configuration file.

Send Data to Haven OnDemand

This section describes how to configure ingestion into Haven OnDemand. ODBC Connector can index
documents into a Haven OnDemand text index, or send the documents to a Haven OnDemand
combination which can perform additional processing and then index the documents into a text index.

NOTE:
Haven OnDemand combinations do not accept binary files, so any documents that have
associated binary files are indexed directly into a text index and cannot be sent to a
combination.

Prepare Haven OnDemand

Before you can send documents to Haven OnDemand, you must create a text index. For information
about how to create text indexes, refer to the Haven OnDemand documentation.

Before you can send documents to a Haven OnDemand combination endpoint, the combination must
exist. ODBC Connector requires your combination to accept the following input parameters, and
produce the following output.

Input Parameters

Name Type Description

json any A JSON object that contains a single attribute 'documents' that is
an array of document objects.

index string The name of the text index that you want the combination to add
documents to. ODBC Connector uses the value of the parameter
HavenOnDemandIndexName to set this value.

duplicate_mode string Specifies how to handle duplicates when adding documents to
the text index. ODBC Connector uses the value of the parameter
HavenOnDemandDuplicateMode to set this value.

Output

Name Type Description

result any The result of the call to AddToTextIndex made by the
combination.

Send Data to Haven OnDemand

This section describes how to send documents to Haven OnDemand.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 78 of 103

https://dev.havenondemand.com/docs

To send data to Haven OnDemand

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to Haven OnDemand, set this parameter to
HavenOnDemand.

HavenOnDemandApiKey Your Haven OnDemand API key. You can obtain the key
from your Haven OnDemand account.

HavenOnDemandIndexName The name of the Haven OnDemand text index to index
documents into.

IngestSSLConfig The name of a section in the connector's configuration file
that contains SSL settings. The connection to Haven
OnDemand must be made over TLS. For more information
about sending documents to the ingestion server over TLS,
see Configure Outgoing SSL Connections, on page 30.

HavenOnDemandCombinationName (Optional) The name of the Haven OnDemand combination
to send documents to. If you set this parameter, ODBC
Connector sends documents to the combination endpoint
instead of indexing them directly into the text index.

NOTE:
Haven OnDemand combinations do not accept binary
files. Therefore any document that has an associated
binary file is indexed directly into the text index.

If you don't set this parameter, ODBC Connector indexes
all documents directly into the text index specified by
HavenOnDemandIndexName.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=HavenOnDemand
HavenOnDemandApiKey=[Your API Key]
HavenOnDemandIndexName=MyTextIndex
 IngestSSLConfig=SSLOptions
 HavenOnDemandCombinationName=MyCombination

 [SSLOptions]
 SSLMethod=TLSV1

 4. Save and close the configuration file.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 79 of 103

Send Data to Another Repository

You can configure a connector to send the information it retrieves to another connector. When the
destination connector receives the documents, it inserts them into another repository. When
documents are updated or deleted in the source repository, the source connector sends this information
to the destination connector so that the documents can be updated or deleted in the other repository.

NOTE:
The destination connector can only insert, update, and delete documents if it supports the
insert, update, and delete fetch actions.

To send data to another connector for ingestion into another repository

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to another repository, set this parameter to Connector.

IngestHost The host name or IP address of the machine hosting the destination
connector.

IngestPort The ACI port of the destination connector.

IngestActions Set this parameter so that the source connector runs a Lua script to convert
documents into form that can be used with the destination connector's
insert action. For information about the required format, refer to the
Administration Guide for the destination connector.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Connector
 IngestHost=AnotherConnector
 IngestPort=7010
 IngestActions=Lua:transformation.lua

 4. Save and close the configuration file.

Index Documents Directly into IDOL Server

This section describes how to index documents from a connector directly into IDOL Server.

TIP:
In most cases, Micro Focus recommends sending documents to a Connector Framework

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 80 of 103

Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a Vertica
database. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 77

To index documents directly into IDOL Server

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to IDOL Server, set this parameter to Indexer.

IndexDatabase The name of the IDOL database to index documents into.

For example:

[Ingestion]
 EnableIngestion=True
 IngesterType=Indexer
 IndexDatabase=News

 4. In the [Indexing] section of the configuration file, set the following parameters:

IndexerType To send data to IDOL Server, set this parameter to IDOL.

Host The host name or IP address of the IDOL Server.

Port The IDOL Server ACI port.

SSLConfig (Optional) The name of a section in the connector's configuration file that
contains SSL settings for connecting to IDOL.

For example:

[Indexing]
 IndexerType=IDOL
 Host=10.1.20.3
 Port=9000
 SSLConfig=SSLOptions

 [SSLOptions]
 SSLMethod=SSLV23

 5. Save and close the configuration file.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 81 of 103

Index Documents into Vertica

ODBC Connector can index documents into Vertica, so that you can run queries on structured fields
(document metadata).

Depending on the metadata contained in your documents, you could investigate the average age of
documents in a repository. You might want to answer questions such as: How much time has passed
since the documents were last updated? How many files are regularly updated? Does this represent a
small proportion of the total number of documents? Who are the most active users?

TIP:
In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a Vertica
database. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 77

Prerequisites

 l ODBC Connector supports indexing into Vertica 7.1 and later.
 l You must install the appropriate Vertica ODBC drivers (version 7.1 or later) on the machine that

hosts ODBC Connector. If you want to use an ODBC Data Source Name (DSN) in your connection
string, you will also need to create the DSN. For more information about installing Vertica ODBC
drivers and creating the DSN, refer to the Vertica documentation.

New, Updated and Deleted Documents

When documents are indexed into Vertica, ODBC Connector adds a timestamp that contains the time
when the document was indexed. The field is named VERTICA_INDEXER_TIMESTAMP and the timestamp
is in the format YYYY-MM-DD HH:NN:SS.

When a document in a data repository is modified, ODBC Connector adds a new record to the
database with a new timestamp. All of the fields are populated with the latest data. The record
describing the older version of the document is not deleted. You can create a projection to make sure
your queries only return the latest record for a document.

When ODBC Connector detects that a document has been deleted from a repository, the connector
inserts a new record into the database. The record contains only the DREREFERENCE and the field
VERTICA_INDEXER_DELETED set to TRUE.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 82 of 103

http://www.vertica.com/documentation

Fields, Sub-Fields, and Field Attributes

Documents that are created by connectors can have multiple levels of fields, and field attributes. A
database table has a flat structure, so this information is indexed into Vertica as follows:

 l Document fields become columns in the flex table. An IDOL document field and the corresponding
database column have the same name.

 l Sub-fields become columns in the flex table. A document field named my_field with a sub-field
named subfield results in two columns, my_field and my_field.subfield.

 l Field attributes become columns in the flex table. A document field named my_field, with an
attribute named my_attribute results in two columns, my_field holding the field value and my_
field.my_attribute holding the attribute value.

Prepare the Vertica Database

Indexing documents into a standard database is problematic, because documents do not have a fixed
schema. A document that represents an image has different metadata fields to a document that
represents an e-mail message. Vertica databases solve this problem with flex tables. You can create a
flex table without any column definitions, and you can insert a record regardless of whether a
referenced column exists.

You must create a flex table before you index data into Vertica.

When creating the table, consider the following:

 l Flex tables store entire records in a single column named __raw__. The default maximum size of the
__raw__ column is 128K. You might need to increase the maximum size if you are indexing
documents with large amounts of metadata.

 l Documents are identified by their DREREFERENCE. Micro Focus recommends that you do not restrict
the size of any column that holds this value, because this could result in values being truncated. As
a result, rows that represent different documents might appear to represent the same document. If
you do restrict the size of the DREREFERENCE column, ensure that the length is sufficient to hold the
longest DREREFERENCE that might be indexed.

To create a flex table without any column definitions, run the following query:

 create flex table my_table();

To improve query performance, create real columns for the fields that you query frequently. For
documents indexed by a connector, this is likely to include the DREREFERENCE:

 create flex table my_table(DREREFERENCE varchar NOT NULL);

You can add new column definitions to a flex table at any time. Vertica automatically populates new
columns with values for existing records. The values for existing records are extracted from the __raw_
_ column.

For more information about creating and using flex tables, refer to the Vertica Documentation or contact
Vertica technical support.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 83 of 103

http://www.vertica.com/documentation

Send Data to Vertica

To send documents to a Vertica database, follow these steps.

To send data to Vertica

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a Vertica database, set this parameter to Indexer.

For example:

[Ingestion]
 EnableIngestion=TRUE
 IngesterType=Indexer

 4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a Vertica database, set this parameter to Library.

LibraryDirectory The directory that contains the library to use to index data.

LibraryName The name of the library to use to index data. You can omit the .dll or .so
file extension. Set this parameter to verticaIndexer.

ConnectionString The connection string to use to connect to the Vertica database.

TableName The name of the table in the Vertica database to index the documents into.
The table must be a flex table and must exist before you start indexing
documents. For more information, see Prepare the Vertica Database, on
the previous page.

For example:

[Indexing]
 IndexerType=Library
 LibraryDirectory=indexerdlls
 LibraryName=verticaIndexer
 ConnectionString=DSN=VERTICA
 TableName=my_flex_table

 5. Save and close the configuration file.

Send Data to a MetaStore

You can configure a connector to send documents to a MetaStore. When you send data to a Metastore,
any files associated with documents are ignored.

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 84 of 103

TIP:
In most cases, Micro Focus recommends sending documents to a Connector Framework
Server (CFS). CFS extracts metadata and content from any files that the connector has
retrieved, and can manipulate and enrich documents before they are indexed. CFS also has the
capability to insert documents into more than one index, for example IDOL Server and a
MetaStore. For information about sending documents to CFS, see Send Data to Connector
Framework Server, on page 77

To send data to a MetaStore

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. In the [Ingestion] section, set the following parameters:

EnableIngestion To enable ingestion, set this parameter to true.

IngesterType To send data to a MetaStore, set this parameter to Indexer.

For example:

[Ingestion]
EnableIngestion=True
IngesterType=Indexer

 4. In the [Indexing] section, set the following parameters:

IndexerType To send data to a MetaStore, set this parameter to MetaStore.

Host The host name of the machine hosting the MetaStore.

Port The port of the MetaStore.

For example:

[Indexing]
 IndexerType=Metastore
 Host=MyMetaStore
 Port=8000

 5. Save and close the configuration file.

Run a Lua Script after Ingestion

You can configure the connector to run a Lua script after batches of documents are successfully sent to
the ingestion server. This can be useful if you need to log information about documents that were
processed, for monitoring and reporting purposes.

To configure the file name of the Lua script to run, set the IngestBatchActions configuration
parameter in the connector's configuration file.

 l To run the script for all batches of documents that are ingested, set the parameter in the
[Ingestion] section.

 l To run the script for batches of documents retrieved by a specific task, set the parameter in the

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 85 of 103

[TaskName] section.

NOTE:
If you set the parameter in a [TaskName] section, the connector does not run any scripts
specified in the [Ingestion] section for that task.

For example:

[Ingestion]
 IngestBatchActions0=LUA:./scripts/myScript.lua

For more information about this parameter, refer to the ODBC Connector Reference.

The Lua script must have the following structure:

function batchhandler(documents, ingesttype)
 ...
 end

The batchhandler function is called after each batch of documents is sent to the ingestion server. The
function is passed the following arguments:

Argument Description

documents A table of document objects, where each object represents a document that was sent
to the ingestion server.

A document object is an internal representation of a document. You can modify the
document object and this changes the document. However, as the script runs after
the documents are sent to the ingestion server, any changes you make are not sent to
CFS or IDOL.

ingesttype A string that contains the ingest type for the documents. The batchhandler function
is called multiple times if different document types are sent.

For example, the following script prints the ingest type (ADD, DELETE, or UPDATE) and the reference for
all successfully processed documents to stdout:

function batchhandler(documents, ingesttype)
 for i,document in ipairs(documents) do
 local ref = document:getReference()
 print(ingesttype..": "..ref)
 end
 end

Administration Guide
Chapter 10: Ingestion

ODBC Connector (11.6) Page 86 of 103

Chapter 11: Monitor the Connector

This section describes how to monitor the connector.

• IDOL Admin 87
• View Connector Statistics 89
• Use the Connector Logs 90
• Monitor the Progress of a Task 92
• Monitor Asynchronous Actions using Event Handlers 93
• Set Up Performance Monitoring 96
• Set Up Document Tracking 98

IDOL Admin

IDOL Admin is an administration interface for performing ACI server administration tasks, such as gathering
status information, monitoring performance, and controlling the service. IDOL Admin provides an alternative
to constructing actions and sending them from your web browser.

Prerequisites

By default, the latest version of ODBC Connector should include the admin.dat file that is required to run
IDOL Admin. If you do not have this file, you must download it separately.

Supported Browsers

IDOL Admin supports the following browsers:

 l Internet Explorer 11 and later
 l Edge
 l Chrome (latest version)
 l Firefox (latest version)

Install IDOL Admin

You must install IDOL Admin on the same host that the ACI server or component is installed on. To set up a
component to use IDOL Admin, you must configure the location of the admin.dat file and enable Cross Origin
Resource Sharing.

ODBC Connector (11.6) Page 87 of 103

To install IDOL Admin

 1. Stop the ACI server.
 2. Save the admin.dat file to any directory on the host.
 3. Using a text editor, open the ACI server or component configuration file. For the location of the

configuration file, see the ACI server documentation.
 4. In the [Paths] section of the configuration file, set the AdminFile parameter to the location of the

admin.dat file. If you do not set this parameter, the ACI server attempts to find the admin.dat file
in its working directory when you call the IDOL Admin interface.

 5. Enable Cross Origin Resource Sharing.
 6. In the [Service] section, add the Access-Control-Allow-Origin parameter and set its value to

the URLs that you want to use to access the interface.
Each URL must include:
 l the http:// or https:// prefix

NOTE:
URLs can contain the https:// prefix if the ACI server or component has SSL enabled.

 l The host that IDOL Admin is installed on
 l The ACI port of the component that you are using IDOL Admin for
Separate multiple URLs with spaces.
For example, you could specify different URLs for the local host and remote hosts:

Access-Control-Allow-Origin=http://localhost:9010
http://Computer1.Company.com:9010

Alternatively, you can set Access-Control-Allow-Origin=*, which allows you to access IDOL
Admin using any valid URL (for example, localhost, direct IP address, or the host name). The
wildcard character (*) is supported only if no other entries are specified.
If you do not set the Access-Control-Allow-Origin parameter, IDOL Admin can communicate
only with the server’s ACI port, and not the index or service ports.

 7. Start the ACI server.
You can now access IDOL Admin (see Access IDOL Admin, below).

Access IDOL Admin

You access IDOL Admin from a web browser. You can access the interface only through URLs that are
set in the Access-Control-Allow-Origin parameter in the ACI server or component configuration file.
For more information about configuring URL access, see Install IDOL Admin, on the previous page.

To access IDOL Admin from the host that it is installed on

 l Type the following URL into the address bar of your web browser:

http://localhost:port/action=admin

where port is the ACI server or component ACI port.

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 88 of 103

To access IDOL Admin from a different host

 l Type the following URL into the address bar of your web browser:

http://host:port/action=admin

where:

host is the name or IP address of the host that IDOL Admin is installed on.

port is the ACI server or component ACI port of the IDOL Admin host.

View Connector Statistics

ODBC Connector collects statistics about the work it has completed. The statistics that are available
depend on the connector you are using, but all connectors provide information about the number and
frequency of ingest-adds, ingest-updates, and ingest-deletes.

To view connector statistics

 l Use the GetStatistics service action, for example:

http://host:serviceport/action=GetStatistics

where host is the host name or IP address of the machine where the connector is installed, and
serviceport is the connector’s service port.
For information about the statistics that are returned, refer to the documentation for the
GetStatistics service action.

The connector includes an XSL template (ConnectorStatistics.tmpl) that you can use to visualize
the statistics. You can use the template by adding the template parameter to the request:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics

When you are using the ConnectorStatistics template, you can also add the filter parameter to
the request to return specific statistics. The filter parameter accepts a regular expression that
matches against the string autnid::name, where autnid and name are the values of the corresponding
attributes in the XML returned by the GetStatistics action. For example, the following request returns
statistics only for synchronize actions:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
 &filter=^synchronize:

The following request returns statistics only for the task mytask:

http://host:serviceport/action=GetStatistics&template=ConnectorStatistics
 &filter=:mytask:

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 89 of 103

The following image shows some example statistics returned by a connector:

Above each chart is a title, for example SYNCHRONIZE:MYTASK, that specifies the action and task to
which the statistics belong.

You can see from the example that in the last 60 seconds, the connector has generated an average of
approximately 0.4 ingest-adds per second. In the charts, partially transparent bars indicate that the
connector has not completed collecting information for those time intervals. The information used to
generate statistics is stored in memory, so is lost if you stop the connector.

The following information is presented above the chart for each statistic:

 l Total is a running total since the connector started. In the example above, there have been 70
ingest-adds in total.

 l Current Total is the total for the actions that are currently running. In the example above, the
synchronize action that is running has resulted in 30 ingest-adds being sent to CFS.

 l Previous Total provides the totals for previous actions. In the example above, the previous
synchronize cycle resulted in 40 ingest-adds. To see the totals for the 24 most recent actions, hover
the mouse pointer over the value.

Use the Connector Logs

As the ODBC Connector runs, it outputs messages to its logs. Most log messages occur due to normal
operation, for example when the connector starts, receives actions, or sends documents for ingestion.
If the connector encounters an error, the logs are the first place to look for information to help
troubleshoot the problem.

The connector separates messages into the following message types, each of which relates to specific
features:

Log Message Type Description

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 90 of 103

Action Logs actions that are received by the connector, and related messages.

Application Logs application-related occurrences, such as when the connector starts.

Collect Messages related to the Collect fetch action.

Synchronize Messages related to the Synchronize fetch action.

View Messages related to the View action.

Customize Logging

You can customize logging by setting up your own log streams. Each log stream creates a separate log
file in which specific log message types (for example, action, index, application, or import) are logged.

To set up log streams

 1. Open the ODBC Connector configuration file in a text editor.
 2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, add

one.
 3. In the [Logging] section, create a list of the log streams that you want to set up, in the format

N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For example:

[Logging]
 LogLevel=FULL
 LogDirectory=logs
 0=ApplicationLogStream
 1=ActionLogStream

You can also use the [Logging] section to configure any default values for logging configuration
parameters, such as LogLevel. For more information, see the ODBC Connector Reference.

 4. Create a new section for each of the log streams. Each section must have the same name as the
log stream. For example:

[ApplicationLogStream]
 [ActionLogStream]

 5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console, the
maximum size of log files, and so on. For example:

[ApplicationLogStream]
 LogTypeCSVs=application
 LogFile=application.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 [ActionLogStream]
 LogTypeCSVs=action

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 91 of 103

 LogFile=logs/action.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 6. Save and close the configuration file. Restart the service for your changes to take effect.

Monitor the Progress of a Task

This section describes how to monitor the progress of a task.

NOTE:
Progress reporting is not available for every action.

To monitor the progress of a task

 l Send the following action to the connector:

action=QueueInfo&QueueName=fetch&QueueAction=progress&Token=...

where,

Token The token of the task that you want to monitor. If you started the task by sending an action
to the connector, the token was returned in the response. If the connector started the task
according to the schedule in its configuration file, you can use the QueueInfo action to
find the token (use /action=QueueInfo&QueueName=fetch&QueueAction=getstatus).

The connector returns the progress report, inside the <progress> element of the response. The
following example is for a File System Connector synchronize task.

<autnresponse>
 <action>QUEUEINFO</action>
 <response>SUCCESS</response>
 <responsedata>
 <action>
 <token>MTAuMi4xMDUuMTAzOjEyMzQ6RkVUQ0g6MTAxNzM0MzgzOQ==</token>
 <status>Processing</status>
 <progress>
 <building_mode>false</building_mode>
 <percent>7.5595</percent>
 <time_processing>18</time_processing>
 <estimated_time_remaining>194</estimated_time_remaining>
 <stage title="MYTASK" status="Processing" weight="1" percent="7.5595">
 <stage title="Ingestion" status="Processing" weight="999"
percent="7.567">
 <stage title="C:\Test Files\" status="Processing" weight="6601"
percent="7.567" progress="0" maximum="6601">
 <stage title="Folder01" status="Processing" weight="2317"
percent="43.116" progress="999" maximum="2317"/>
 <stage title="Folder02" status="Pending" weight="2567"/>

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 92 of 103

 <stage title="Folder03" status="Pending" weight="1715"/>
 <stage title="." status="Pending" weight="2"/>
 </stage>
 </stage>
 <stage title="Deletion" status="Pending" weight="1"/>
 </stage>
 </progress>
 </action>
 </responsedata>
 </autnresponse>

To read the progress report

The information provided in the progress report is unique to each connector and each action. For
example, the File System Connector reports the progress of a synchronize task by listing the folders
that require processing.

A progress report can include several stages:

 l A stage represents part of a task.
 l A stage can have sub-stages. In the previous example, the stage "C:\Test Files\" has three stages

that represent sub-folders ("Folder01", "Folder02", and "Folder03") and one stage that represents the
contents of the folder itself ("."). You can limit the depth of the sub-stages in the progress report by
setting the MaxDepth parameter in the QueueInfo action.

 l The weight attribute indicates the amount of work included in a stage, relative to other stages at the
same level.

 l The status attribute shows the status of a stage. The status can be "Pending", "Processing", or
"Finished".

 l The progress attribute shows the number of items that have been processed for the stage.
 l The maximum attribute shows the total number of items that must be processed to complete the

stage.
 l The percent attribute shows the progress of a stage (percentage complete). In the previous

example, the progress report shows that MYTASK is 7.5595% complete.
 l Finished stages are grouped, and pending stages are not expanded into sub-stages, unless you set

the action parameter AllStages=true in the QueueInfo action.

Monitor Asynchronous Actions using Event Handlers

The fetch actions sent to a connector are asynchronous. Asynchronous actions do not run
immediately, but are added to a queue. This means that the person or application that sends the action
does not receive an immediate response. However, you can configure the connector to call an event
handler when an asynchronous action starts, finishes, or encounters an error.

You can use an event handler to:

 l return data about an event back to the application that sent the action.
 l write event data to a text file, to log any errors that occur.

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 93 of 103

You can also use event handlers to monitor the size of asynchronous action queues. If a queue
becomes full this might indicate a problem, or that applications are making requests to ODBC
Connector faster than they can be processed.

ODBC Connector can call an event handler for the following events.

OnStart The OnStart event handler is called when ODBC Connector starts processing an
asynchronous action.

OnFinish The OnFinish event handler is called when ODBC Connector successfully
finishes processing an asynchronous action.

OnError The OnError event handler is called when an asynchronous action fails and
cannot continue.

OnQueueEvent The OnQueueEvent handler is called when an asynchronous action queue
becomes full, becomes empty, or the queue size passes certain thresholds.

 l A QueueFull event occurs when the action queue becomes full.
 l A QueueFilling event occurs when the queue size exceeds a configurable

threshold (QueueFillingThreshold) and the last event was a QueueEmpty or
QueueEmptying event.

 l A QueueEmptying event occurs when the queue size falls below a configurable
threshold (QueueEmptyingThreshold) and the last event was a QueueFull or
QueueFilling event.

 l A QueueEmpty event occurs when the action queue becomes empty.

ODBC Connector supports the following types of event handler:

 l The TextFileHandler writes event data to a text file.
 l The HttpHandler sends event data to a URL.
 l The LuaHandler runs a Lua script. The event data is passed into the script.

Configure an Event Handler

To configure an event handler, follow these steps.

To configure an event handler

 1. Stop the connector.
 2. Open the connector’s configuration file in a text editor.
 3. Set the OnStart, OnFinish, OnError, or OnQueueEvent parameter to specify the name of a

section in the configuration file that contains the event handler settings.
 l To run an event handler for all asynchronous actions, set these parameters in the [Actions]

section. For example:

[Actions]
 OnStart=NormalEvents
 OnFinish=NormalEvents
 OnError=ErrorEvents

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 94 of 103

 l To run an event handler for specific actions, use the action name as a section in the
configuration file. The following example calls an event handler when the Fetch action starts
and finishes successfully:

[Fetch]
 OnStart=NormalEvents
 OnFinish=NormalEvents

 4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish, OnError, or
OnQueueEvent parameter.

 5. In the new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event:
 l To write event data to a text file, set this parameter to TextFileHandler, and

then set the FilePath parameter to specify the path of the file.
 l To send event data to a URL, set this parameter to HttpHandler, and then

use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials and so on.

 l To run a Lua script, set this parameter to LuaHandler, and then set the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, below.

For example:

[NormalEvents]
 LibraryName=TextFileHandler
 FilePath=./events.txt

 [ErrorEvents]
 LibraryName=LuaHandler
 LuaScript=./error.lua

 6. Save and close the configuration file. You must restart ODBC Connector for your changes to take
effect.

Write a Lua Script to Handle Events

The Lua event handler runs a Lua script to handle events. The Lua script must contain a function named
handler with the arguments request and xml, as shown below:

function handler(request, xml)
 ...
 end

 l request is a table holding the request parameters. For example, if the request was
action=Example&MyParam=Value, the table will contain a key MyParam with the value Value. Some
events, for example queue size events, are not related to a specific action and so the table might be
empty.

 l xml is a string of XML that contains information about the event.

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 95 of 103

Set Up Performance Monitoring

You can configure a connector to pause tasks temporarily if performance indicators on the local
machine or a remote machine breach certain limits. For example, if there is a high load on the CPU or
memory of the repository from which you are retrieving information, you might want the connector to
pause until the machine recovers.

NOTE:
Performance monitoring is available on Windows platforms only. To monitor a remote machine,
both the connector machine and remote machine must be running Windows.

Configure the Connector to Pause

To configure the connector to pause

 1. Open the configuration file in a text editor.
 2. Find the [FetchTasks] section, or a [TaskName] section.

 l To pause all tasks, use the [FetchTasks] section.
 l To specify settings for a single task, find the [TaskName] section for the task.

 3. Set the following configuration parameters:

PerfMonCounterNameN The names of the performance counters that you want the
connector to monitor. You can use any counter that is available in
the Windows perfmon utility.

PerfMonCounterMinN The minimum value permitted for the specified performance
counter. If the counter falls below this value, the connector pauses
until the counter meets the limits again.

PerfMonCounterMaxN The maximum value permitted for the specified performance
counter. If the counter exceeds this value, the connector pauses
until the counter meets the limits again.

PerfMonAvgOverReadings (Optional) The number of readings that the connector averages
before checking a performance counter against the specified
limits. For example, if you set this parameter to 5, the connector
averages the last five readings and pauses only if the average
breaches the limits. Increasing this value makes the connector
less likely to pause if the limits are breached for a short time.
Decreasing this value allows the connector to continue working
faster following a pause.

PerfMonQueryFrequency (Optional) The amount of time, in seconds, that the connector
waits between taking readings from a performance counter.

For example:

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 96 of 103

[FetchTasks]
 PerfMonCounterName0=\\machine-hostname\Memory\Available MBytes
 PerfMonCounterMin0=1024
 PerfMonCounterMax0=1024000
 PerfMonCounterName1=\\machine-hostname\Processor(_Total)\% Processor Time
 PerfMonCounterMin1=0
 PerfMonCounterMax1=70
 PerfMonAvgOverReadings=5
 PerfMonQueryFrequency=10

NOTE:
You must set both a minimum and maximum value for each performance counter. You can
not set only a minimum or only a maximum.

 4. Save and close the configuration file.

Determine if an Action is Paused

To determine whether an action has been paused for performance reasons, use the QueueInfo action:

/action=queueInfo&queueAction=getStatus&queueName=fetch

You can also include the optional token parameter to return information about a single action:

/action=queueInfo&queueAction=getStatus&queueName=fetch&token=...

The connector returns the status, for example:

<autnresponse>
 <action>QUEUEINFO</action>
 <response>SUCCESS</response>
 <responsedata>
 <actions>
 <action owner="2266112570">
 <status>Processing</status>
 <queued_time>2016-Jul-27 14:49:40</queued_time>
 <time_in_queue>1</time_in_queue>
 <process_start_time>2016-Jul-27 14:49:41</process_start_time>
 <time_processing>219</time_processing>
 <documentcounts>
 <documentcount errors="0" task="MYTASK"/>
 </documentcounts>
 <fetchaction>SYNCHRONIZE</fetchaction>
 <pausedforperformance>true</pausedforperformance>
 <token>...</token>
 </action>
 </actions>
 </responsedata>
 </autnresponse>

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 97 of 103

When the element pausedforperformance has a value of true, the connector has paused the task for
performance reasons. If the pausedforperformance element is not present in the response, the
connector has not paused the task.

Set Up Document Tracking

Document tracking reports metadata about documents when they pass through various stages in the
indexing process. For example, when a connector finds a new document and sends it for ingestion, a
document tracking event is created that shows the document has been added. Document tracking can
help you detect problems with the indexing process.

You can write document tracking events to a database, log file, or IDOL Server. For information about
how to set up a database to store document tracking events, refer to the IDOL Server Administration
Guide.

To enable Document Tracking

 1. Open the connector's configuration file.
 2. Create a new section in the configuration file, named [DocumentTracking].
 3. In the new section, specify where the document tracking events are sent.

 l To send document tracking events to a database through ODBC, set the following parameters:

Backend To send document tracking events to a database, set this parameter to
Library.

LibraryPath Specify the location of the ODBC document tracking library. This is
included with IDOL Server.

ConnectionString The ODBC connection string for the database.

For example:

[DocumentTracking]
 Backend=Library
 LibraryPath=C:\Autonomy\IDOLServer\IDOL\modules\dt_odbc.dll
 ConnectionString=DSN=MyDatabase

 l To send document tracking events to the connector's synchronize log, set the following
parameters:

Backend To send document tracking events to the connector's logs, set this
parameter to Log.

DatabaseName The name of the log stream to send the document tracking events to. Set
this parameter to synchronize.

For example:

[DocumentTracking]
 Backend=Log
 DatabaseName=synchronize

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 98 of 103

 l To send document tracking events to an IDOL Server, set the following parameters:

Backend To send document tracking events to an IDOL Server, set this parameter to
IDOL.

TargetHost The host name or IP address of the IDOL Server.

TargetPort The index port of the IDOL Server.

For example:

[DocumentTracking]
 Backend=IDOL
 TargetHost=idol
 TargetPort=9001

For more information about the parameters you can use to configure document tracking, refer to
the ODBC Connector Reference.

 4. Save and close the configuration file.

Administration Guide
Chapter 11: Monitor the Connector

ODBC Connector (11.6) Page 99 of 103

Page 100 of 103ODBC Connector (11.6)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates operations
on unstructured information for cross-
enterprise applications. ACI enables an
automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email, Web
pages, Microsoft Office documents, and IBM
Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves information
from a local or remote repository (for
example, a file system, database, or Web
site).

Connector Framework Server (CFS)
Connector Framework Server processes the
information that is retrieved by connectors.
Connector Framework Server uses KeyView
to extract document content and metadata
from over 1,000 different file types. When the
information has been processed, it is sent to
an IDOL Server or Distributed Index Handler
(DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies of
IDOL Server or a component. It allows you to
use failover, load balancing, or distributed
content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the
Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It provides
a flexible way to batch, route, and categorize
the indexing of internal and external content
into IDOL Server.

Administration Guide
Glossary: IDOL - OmniGroupServer (OGS)

Page 101 of 103ODBC Connector (11.6)

I

IDOL
The Intelligent Data Operating Layer (IDOL)
Server, which integrates unstructured, semi-
structured and structured information from
multiple repositories through an
understanding of the content. It delivers a
real-time environment in which operations
across applications and content are
automated.

IDOL Proxy component
An IDOL Server component that accepts
incoming actions and distributes them to the
appropriate subcomponent. IDOL Proxy also
performs some maintenance operations to
make sure that the subcomponents are
running, and to start and stop them when
necessary.

Import
Importing is the process where CFS, using
KeyView, extracts metadata, content, and
sub-files from items retrieved by a connector.
CFS adds the information to documents so
that it is indexed into IDOL Server. Importing
allows IDOL server to use the information in
a repository, without needing to process the
information in its native format.

Ingest
Ingestion converts information that exists in
a repository into documents that can be
indexed into IDOL Server. Ingestion starts
when a connector finds new documents in a
repository, or documents that have been
updated or deleted, and sends this
information to CFS. Ingestion includes the
import process, and processing tasks that
can modify and enrich the information in a
document.

Intellectual Asset Protection System (IAS)
An integrated security solution to protect your
data. At the front end, authentication checks

that users are allowed to access the system
that contains the result data. At the back end,
entitlement checking and authentication
combine to ensure that query results contain
only documents that the user is allowed to
see, from repositories that the user has
permission to access. For more information,
refer to the IDOL Document Security
Administration Guide.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format for
viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must have a
License Server on a machine with a known,
static IP address.

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

Administration Guide
Glossary: primary domain controller - XML

Page 102 of 103ODBC Connector (11.6)

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer
resources. See also: active directory, LDAP.

V

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different attributes
of document content in a format that can be
read by humans and machines. In IDOL
Server, you can index documents in XML
format. IDOL Server also returns action
responses in XML format.

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Administration Guide (Micro Focus ODBC Connector 11.6)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

ODBC Connector (11.6) Page 103 of 103

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus ODBC Connector 11.6)

	Chapter 1: Introduction
	ODBC Connector
	Features and Capabilities
	Supported Actions
	Display Online Help

	Connector Framework Server
	The IDOL Platform
	System Architecture
	Related Documentation

	Chapter 2: Install ODBC Connector
	System Requirements
	Permissions
	Install ODBC Connector on Windows
	Install ODBC Connector on Linux

	Chapter 3: Configure ODBC Connector
	ODBC Connector Configuration File
	Modify Configuration Parameter Values
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include a Parameter from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Configure Client Authorization
	Register with a Distributed Connector
	Set Up Secure Communication
	Configure Outgoing SSL Connections
	Configure Incoming SSL Connections

	Backup and Restore the Connector’s State
	Backup a Connector’s State
	Restore a Connector’s State

	Validate the Configuration File

	Chapter 4: Start and Stop the Connector
	Start the Connector
	Verify that ODBC Connector is Running
	GetStatus
	GetLicenseInfo

	Stop the Connector

	Chapter 5: Send Actions to ODBC Connector
	Send Actions to ODBC Connector
	Asynchronous Actions
	Check the Status of an Asynchronous Action
	Cancel an Asynchronous Action that is Queued
	Stop an Asynchronous Action that is Running

	Store Action Queues in an External Database
	Prerequisites
	Configure ODBC Connector

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses
	Example XSL Templates

	Chapter 6: Use the Connector
	Operating Modes
	Non-Incremental Mode
	Incremental Mode
	Event Table Mode

	Retrieve Information (Non-Incremental Mode)
	Retrieve Information (Incremental Mode)
	Retrieve Information from an Event Table
	Schedule Fetch Tasks

	Chapter 7: Construct Template Files
	Template Files
	Sub-Table Template Files

	Chapter 8: Extract Data from a Database
	Extract Data from a Single Table
	Extract Data from Multiple Tables
	Configure the Connector
	Modify the Main Template File
	Create the Sub Table Template File
	Start the Connector

	Extract Data from Multiple Tables using a JOIN
	Configure the Connector
	Modify the Main Template File
	Create the Sub Table Template File
	Start the Connector

	Troubleshoot the Connector

	Chapter 9: Manipulate Documents
	Introduction
	Add a Field to Documents using an Ingest Action
	Customize Document Processing
	Standardize Field Names
	Configure Field Standardization
	Customize Field Standardization

	Run Lua Scripts
	Write a Lua Script
	Run a Lua Script using an Ingest Action

	Example Lua Scripts
	Add a Field to a Document
	Merge Document Fields

	Chapter 10: Ingestion
	Introduction
	Send Data to Connector Framework Server
	Send Data to Haven OnDemand
	Prepare Haven OnDemand
	Send Data to Haven OnDemand

	Send Data to Another Repository
	Index Documents Directly into IDOL Server
	Index Documents into Vertica
	Prepare the Vertica Database
	Send Data to Vertica

	Send Data to a MetaStore
	Run a Lua Script after Ingestion

	Chapter 11: Monitor the Connector
	IDOL Admin
	Prerequisites
	Supported Browsers

	Install IDOL Admin
	Access IDOL Admin

	View Connector Statistics
	Use the Connector Logs
	Customize Logging

	Monitor the Progress of a Task
	Monitor Asynchronous Actions using Event Handlers
	Configure an Event Handler
	Write a Lua Script to Handle Events

	Set Up Performance Monitoring
	Configure the Connector to Pause
	Determine if an Action is Paused

	Set Up Document Tracking

	Glossary
	Send documentation feedback

