
Media Server
Software Version 12.4

Administration Guide

Document Release Date: October 2019
Software Release Date: October 2019

Legal notices

Copyright notice

© Copyright 2019 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:

 l Software Version number, which indicates the software version.
 l Document Release Date, which changes each time the document is updated.
 l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

 l Search for knowledge documents of interest
 l Access product documentation
 l View software vulnerability alerts
 l Enter into discussions with other software customers
 l Download software patches
 l Manage software licenses, downloads, and support contracts
 l Submit and track service requests
 l Contact customer support
 l View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted
to sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

About this PDF version of online Help
This document is a PDF version of the online Help.

This PDF file is provided so you can easily print multiple topics or read the online Help.

Because this content was originally created to be viewed as online help in a web browser, some topics may
not be formatted properly. Some interactive topics may not be present in this PDF version. Those topics can
be successfully printed from within the online Help.

Administration Guide

Media Server (12.4) Page 2 of 399

https://www.microfocus.com/support-and-services/documentation/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Part I: Getting Started 15
Chapter 1: Introduction 17

Media Server 17
Ingest Media 18
Analyze Media 18
Encode Media 18
Event Stream Processing 19
Output Information 19
OEM Certification 19

Media Server Architecture 20
The IDOL Platform 21
Related Documentation 22

Chapter 2: Install Media Server 23
System Requirements 23

Memory Requirements 24
Software Dependencies 25

Install Media Server on Windows 25
Install Media Server on UNIX 27
Install Media Server from the ZIP Package 29
Install an IDOL Component as a Service on Windows 30
Install an IDOL Component as a Service on Linux 32

Install a Component as a Service for a systemd Boot System 32
Install a Component as a Service for a System V Boot System 33

Upgrade Media Server 34
Licenses 34

Display License Information 35
Configure the License Server Host and Port 36
Revoke a Client License 36
Troubleshoot License Errors 37

Install Speech-to-Text Language Packs 39
Distribute Media Server Operations 39

Chapter 3: Set up a Training Database 40
Introduction 40
Use the Internal Database 40
Use an External Database 41

Supported External Databases 41
Set Up a PostgreSQL Database on Windows 42
Set Up a PostgreSQL Database on Linux 44
Create a PostgreSQL DSN on Windows 46
Create a PostgreSQL DSN on Linux 48

Administration Guide

Media Server (12.4) Page 3 of 399

Set Up a MySQL Database 50
Create a MySQL DSN on Windows 52
Create a MySQL DSN on Linux 54
Configure Media Server 55

Upgrade the Database Schema 56

Chapter 4: Configure Media Server 58
The Media Server Configuration File 58
Modify Configuration Parameter Values 59
Include an External Configuration File 59

Include the Whole External Configuration File 60
Include Sections of an External Configuration File 60
Include Parameters from an External Configuration File 61
Merge a Section from an External Configuration File 61

Encrypt Passwords 62
Create a Key File 62
Encrypt a Password 63
Decrypt a Password 64

Configure Client Authorization 64
Specify Modules to Enable 66
Customize Logging 67
Validate the Configuration File 68

Chapter 5: Start and Stop Media Server 69
Start Media Server 69
Stop Media Server 69
Verify that Media Server is Running 70

GetStatus 70
GetLicenseInfo 70

Access IDOL Admin 71
Display Online Help 71

Chapter 6: Send Actions to Media Server 73
Synchronous and Asynchronous Actions 73
Send Actions to Media Server 73

Send Actions by Using a GET Method 74
Send Data by Using a POST Method 74

Application/x-www-form-urlencoded 75
Multipart/form-data 76

Override Configuration Parameters 76
Use Asynchronous Actions 77
Monitor Asynchronous Actions using Event Handlers 78

Configure an Event Handler 79
Write a Lua Script to Handle Events 80

Process Multiple Requests Simultaneously 81
Process Asynchronous Requests Simultaneously 81
Process Synchronous Requests Simultaneously 81

Store Action Queues in an External Database 82

Administration Guide

Media Server (12.4) Page 4 of 399

Prerequisites 82
Configure Media Server 83

Store Action Queues in Memory 85
Use XSL Templates to Transform Action Responses 86

Chapter 7: Start Processing Media 88
Configuration Overview 88

Tasks 89
Tracks 89
Records 91
Analysis Task Output Tracks 92

Create a Session Configuration 95
Ingestion 95
Analysis 96
Transform 97
Encoding 98
Output 98

Example Configuration 99
Example Configuration - Advanced 101
Validate a Task Configuration File 103
Image and Video Processing 104
Determine whether Media Server can Ingest Media 106
Start Processing 106
Verify Media Server is Processing 108
Monitor Progress 108
Stop Processing 109
Synchronize with the Latest Training 110
Optimize Analysis Performance with Parallel Processing 112
Optimize Performance when Processing Images 113

Part II: Ingest Media 115
Chapter 8: Video Files and Streams 117

Supported Audio and Video Codecs and Formats 117
Choose the Rate of Ingestion 118
Ingest Video from a File 120
Ingest Video from a Stream 121

Chapter 9: Images and Documents 123
Introduction 123
Supported Image and Document File Formats 124
Ingest Images and Documents 124
Output Records 125

Chapter 10: Cameras and Third-Party Systems 128
Ingest MJPEG Video streamed over HTTP 128
Ingest MxPEG Video from a File or Stream 129
Ingest Video from a DirectShow Device 129

Administration Guide

Media Server (12.4) Page 5 of 399

Obtain a List of Device Names 130
Ingest Video from Milestone XProtect 131
Ingest Video from Genetec Security Center 133
Ingest Video from VMS 134

Part III: Analyze Media 136
Chapter 11: Face Detection, Recognition, and Demographics 138

Introduction 138
Detect Faces 138
Train Media Server to Recognize Faces 140

Select Images for Training 140
Create a Database to Contain Faces 141
Add a Face to a Database 141

Add a Face to a Database (Using Separate Steps) 142
Add a Face to a Database (Using a Single Action) 143

List the Faces in a Database 145
Update or Remove Faces and Databases 146

Recognize Faces 146
Obtain Demographic Information 148
Analyze Facial Expression 148
Face Detection Results 149
Face Recognition Results 151
Face Demographics Results 152
Face Expression Analysis Results 153
Automatically Enroll Unrecognized Faces 154
Face Enrollment Results 155
Optimize Face Analysis Performance 156

Chapter 12: Optical Character Recognition 158
Introduction 158
Set up an OCR Analysis Task 159
OCR Results 160

Results by Line 160
Results by Word 161

Improve OCR 162

Chapter 13: Image Classification 163
Train Media Server to Classify Images 163

Training Requirements 164
Create a Classifier 165
Classifier Training Options 165
Add Classes to a Classifier 166
List Classifiers and Classes 167
Update or Remove Classes and Classifiers 168

Import a Classifier 169
Classify Images 170
Classification Results 170

Administration Guide

Media Server (12.4) Page 6 of 399

Chapter 14: Object Class Recognition 172
Introduction 172
Train Media Server to Recognize Objects 172

Recognizer Types 173
Create and Train a Recognizer 174
Import a Recognizer 175

Recognize Objects 176
Object Class Recognition Results 177

Chapter 15: Object Recognition 179
Introduction 179

2D Object Recognition 180
Train Media Server to Recognize Objects 181

Select Images for Training 182
Create a Database to Contain Objects 182
Add an Object to a Database 183

Add an Object to a Database (Using Separate Steps) 183
Add an Object to a Database (Using a Single Action) 185

Object Training Options 187
List the Objects in a Database 187
Update or Remove Objects and Databases 188

Recognize Objects 189
Object Recognition Results 190
Optimize Object Recognition Performance 192

Chapter 16: Text Detection 193
Introduction 193
Set up Text Detection 193
Text Detection Results 194
Example Configuration 195

Chapter 17: Number Plate Recognition 196
Requirements for ANPR 196
Detect and Read Number Plates 196

Chapter 18: Vehicle Make and Model Recognition 199
Introduction 199
Train Media Server to Recognize Vehicle Models 199

Obtain Images for Training 200
List the Supported Vehicle Makes 201
Create a Database to Contain Vehicle Models 201
Add a Vehicle Model to a Database 202

Add a Vehicle Model to a Database (Using Separate Steps) 202
Add a Vehicle Model to a Database (Using a Single Action) 204

List the Vehicle Models in a Database 206
Update or Remove Vehicle Models and Databases 207

Recognize Vehicles (Make and Model) 207
Vehicle Make and Model Recognition Results 209
Identify Vehicle Colors 210

Administration Guide

Media Server (12.4) Page 7 of 399

Chapter 19: Clothing Color Analysis 212
Introduction 212
Find Clothing 212
Clothing Analysis Results 214

Chapter 20: Scene Analysis 215
Introduction to Scene Analysis 215
Train Scene Analysis 215
Run Scene Analysis 216

Chapter 21: Extract Keyframes 217
Configure Keyframe Extraction 217

Chapter 22: Image Comparison 218
Introduction 218
Train Media Server to Compare Images 218

Select Images for Training 219
Create an Image Comparison Database 220
Add a Reference to a Database 220
List the References in a Database 221
Update or Remove References and Databases 222

Compare Images 222
Image Comparison Results 223

Chapter 23: Color Clustering 226
Perform Color Analysis 226
Color Dictionaries 227
Color Analysis Results 228

Chapter 24: Barcode Recognition 229
Supported Barcode Types 229
Read Barcodes 230
Example Barcode Task Configuration 231
Barcode Analysis Results 231

Chapter 25: Generate Image Hashes 233
Introduction 233
Train Media Server to Identify Duplicate Images 233

Create an Image Hash Database 234
Add an Image Hash to a Database 235
List the Image Hashes in a Database 235
Update or Remove Image Hashes and Databases 236

Identify Duplicate Images 236
Example Configuration 237
Image Hash Results 238

Chapter 26: Audio Categorization 239
Categorize Audio 239
Audio Categorization Results 240

Chapter 27: Language Identification 241
Identify the Language of Speech 241

Administration Guide

Media Server (12.4) Page 8 of 399

Chapter 28: Speaker Identification 243
Train Speaker Identification 243

Create a Speaker Database 244
Add Speakers to a Database 244
Generate Speaker Thresholds 245
Optimize Speaker Thresholds 246
List the Speakers in a Database 247

Identify Speakers 247

Chapter 29: Speech-to-Text 249
Introduction 249
Custom Language Models 249

Select Text for Training 250
Prepare Text for Training 251
Train a Custom Language Model 251

Assess Language Models 252
Custom Word Databases 253
Transcribe Speech 254
Pre-Load Language Resources 255
Speech-to-Text Results 256
Redact Words in the Audio 257

Chapter 30: Audio Matching 259
Train Audio Matching 259

Create a Database to Contain Audio Clips 259
Add a Clip to the Database 259
List the Clips in a Database 260
Manage Audio Clips and Databases 261

Recognize Audio Clips 261

Chapter 31: Transcript Alignment 263
Introduction 263
Run Transcript Alignment 263

Chapter 32: Segment Video into News Stories 265
Introduction 265
Prerequisites 265
Configure News Segmentation 266
Example Configuration 267
News Segmentation Results 268

Part IV: Encode Media 270
Chapter 33: Encode Video to a File or UDP Stream 272

Introduction 272
Encode Video to MPEG Files 272
Encode Video to a UDP Stream 273

Chapter 34: Encode Video to a Rolling Buffer 275
Store Video in a Rolling Buffer 275

Administration Guide

Media Server (12.4) Page 9 of 399

Calculate Storage Requirements 276
Set Up Rolling Buffers 276
Pre-Allocate Storage for a Rolling Buffer 278
Write Video to a Rolling Buffer 278
Write Video to an Evidential Rolling Buffer 279
View the Rolling Buffer Contents 280
Retrieve an HLS Playlist 280
Create a Clip from a Rolling Buffer 281
Create an Image from a Rolling Buffer 282
Use Multiple Media Servers 283

Chapter 35: Encode Images to Disk 284
Introduction 284
Encode Images 284

Part V: Event Stream Processing 286
Chapter 36: Event Stream Processing 288

Introduction to Event Stream Processing 288
Event Stream Processing with Documents 290
Filter a Track 290
Deduplicate Records in a Track 291
Combine Tracks 294
Identify Time-Related Events in Two Tracks–And Engine 295
Identify Time-Related Events in Two Tracks–AndThen Engine 297
Identify Isolated Events–AndNot Engine 298
Identify Isolated Events–AndNotThen Engine 300
Identify and Combine Time-Related Events 301
Write a Lua Script for an ESP Engine 303

Part VI: Transform Data 305
Chapter 37: Crop Images 307

Crop Images 307

Chapter 38: Blur Regions of Images 309
Blur Images 309
Example Configuration 310

Chapter 39: Draw Regions 311
Introduction 311
Draw Regions 311
Configure Drawing with a Lua Script 314

Chapter 40: Create Overlays 317
Create an Overlay 317
Create an Overlay with a Lua Script 319

Chapter 41: Rotate Images 321
Introduction 321

Administration Guide

Media Server (12.4) Page 10 of 399

Rotate Images 321

Chapter 42: Resize Images 323
Resize Images 323

Chapter 43: Change the Format of Images 325
Change the Format of Images 325

Part VII: Output Data 327
Chapter 44: Introduction 328

Process Data 328
Select Input Records 329
Combine Records into Documents 329
XSL Transformation 330
Send the Data to the External System 330

Choose How to Output Data 330
Single Record Mode 330
Time Mode 331
Event Mode 333
Bounded Event Mode 335
At End Mode 337
Page Mode 338

Chapter 45: ACI Response 339
Introduction 339
Output Data to the Process Action Response 339

Chapter 46: Files on Disk 341
Output Data to Files 341

Chapter 47: Connector Framework Server 343
Introduction 343
Send Documents to Connector Framework Server 343

Chapter 48: IDOL Server 345
Set up an IDOL Output Task 345

Chapter 49: Vertica Database 348
Insert Data into a Vertica Database 348

Chapter 50: ODBC Database 350
Insert Records into a Database 350
Before You Begin 351
Configure the Output Task 351
Example Configuration 353
Insert Image Data into a Database 353
Troubleshooting 353

Chapter 51: HTTP POST 355
Send Information over HTTP 355

Chapter 52: Milestone XProtect 357

Administration Guide

Media Server (12.4) Page 11 of 399

Introduction 357
Before You Begin 357
Configure Media Server 357
Configure Milestone 358

Part VIII: Advanced Configuration 360
Chapter 53: Enable GPU Acceleration 361

Introduction 361
GPU Requirements 361
Configure Media Server 363

Use a GPU to Ingest and Encode Video 363
Use a GPU for Analysis 364

Optimize Analysis Performance with a GPU 365

Chapter 54: Chain Media Servers 367
Introduction 367
Configure One-Way Chaining 369

Configure the Upstream Media Server 369
Configure the Downstream Media Server 370
Example Configurations 371
Start and Stop Processing 372
Configure the Maximum Number of Sessions 373

Configure Feedback Chaining 373
Enable Feedback Chaining 374
Configure the Upstream Media Server 375
Configure the Remote Media Server 376
Example Configurations 377

Chapter 55: Schedule Actions in Media Server 379
Use IDOL Site Admin to Schedule Media Server Actions 379

Set Up IDOL Site Admin to Monitor Media Server 379
Schedule Actions 380

Appendixes 381
Appendix A: OCR Supported Languages 382

Appendix B: OCR Supported Specialized Fonts 384

Appendix C: ANPR Supported Locations 385

Appendix D: Speech Analysis Supported Languages 390

Appendix E: Pre-Trained Classifiers 392

Appendix F: Pre-Trained Object Class Recognizers 393

Appendix G: Encoding Profiles 394

Glossary 396

Administration Guide

Media Server (12.4) Page 12 of 399

Send documentation feedback 399

Administration Guide

Media Server (12.4) Page 13 of 399

Page 14 of 399Media Server (12.4)

Administration Guide

Media Server (12.4) Page 15 of 399

Part I: Getting Started

This section describes how to install, configure, and start Media Server.

 l Introduction

 l Install Media Server

 l Set up a Training Database

 l Configure Media Server

 l Start and Stop Media Server

 l Send Actions to Media Server

 l Start Processing Media

Media Server (12.4) Page 16 of 399

Administration Guide
Part I: Getting Started

Chapter 1: Introduction

This section provides an overview of Media Server.

• Media Server 17
• Media Server Architecture 20
• The IDOL Platform 21
• Related Documentation 22

Media Server

Images and video are examples of unstructured information that represent a vast quantity of data.
Media Server enables you to maximize the utility of this data by extracting meaningful information
about its content.

For example, Media Server can:

 l run optical character recognition, to read text in a scanned document or subtitles in a video.

 l identify a person who appears in an image or video by matching their face to a database of known
faces.

 l identify logos and other objects when they appear in images and video.

 l identify the exact time of a scene change in video.

 l determine whether a video contains speech, and convert the speech into text.

You can deploy Media Server for broadcast monitoring purposes, to identify when individuals or
organizations appear in television broadcasts and extract information about these appearances. You
might also use Media Server to catalog an existing archive of audio and video clips.

In security and surveillance deployments, Media Server can help security personnel. Human operators
can become overwhelmed by the amount of data available from CCTV cameras. Media Server reduces
the operator's workload with automatic processing, such as reading the number plates on vehicles and
automatically identifying suspicious events.

Media Server can transform the metadata that it extracts into many output formats, and send the data
to many systems.

Media Server can be used to analyze images, video, and audio for a custom application that you
develop. You can also use Media Server as part of a larger IDOL deployment, to run analysis on files
that your connectors extract from your organization's data repositories, from web sites, and from social
media. If you index information from Media Server into IDOL Server, you can use IDOL to search within
your media. Searches will return images such as scanned documents that contain the search terms.
You can search ingested video for specific events, such as the appearance of a particular speaker or
discussion of a particular subject. If you are running Media Server for broadcast monitoring you can run
sentiment analysis to determine whether the appearance of an individual or organization contained
positive sentiment. If you are cataloging clips, you can use IDOL to categorize the clips into a custom
taxonomy.

Media Server (12.4) Page 17 of 399

The following sections provide more information about Media Server features.

Ingest Media

Ingestion is the process of bringing media into Media Server so that it can be processed and analyzed.
Media Server can ingest the following media:

 l image files.

 l office documents such as PDF files that contain embedded images.

 l video files.

 l video from IP streams. Many devices, for example IP cameras, network encoders, and IPTV
devices can produce IP streams.

 l video from cameras and third-party video management systems.

Analyze Media

Media Server can run many types of analysis, including:

 l number plate recognition

 l barcode recognition

 l color analysis

 l face detection, face recognition, demographic analysis and expression analysis

 l scene analysis

 l keyframe extraction

 l object class recognition

 l object recognition

 l image classification

 l optical character recognition

 l speech analysis including language identification, speech-to-text, and speaker identification

For more information about the types of analysis that you can run, see Analyze Media, on page 136.

Encode Media

Media Server can write a copy of ingested video to disk. You can encode video in several formats,
segment the video, and change the size and bit rate of the video to create files that are optimized for
your use case.

Media Server can also write video to rolling buffers, fixed-size storage areas on disk where the oldest
content is discarded to make space for the latest. For example, if you deploy Media Server for video
surveillance, you could configure a rolling buffer to store the last seven days of video from a camera.

Administration Guide
Chapter 1: Introduction

Media Server (12.4) Page 18 of 399

Media Server can also write images to disk. You can encode copies of ingested images, or use the
image encoder to encode still images from video. For example, if you run face recognition on a video
file, you might want to encode images of the recognized faces.

You can also create a live UDP stream of the content ingested by Media Server.

Event Stream Processing

You can configure Media Server to filter, deduplicate, and find combinations of events in analysis
results. For example, you could use Event Stream Processing (ESP) rules to identify events where the
text "Breaking News" appears in a television broadcast and the newsreader speaks the words "election
results" within 10 seconds. You can add custom logic by writing scripts using the Lua scripting
language.

Output Information

Media Server can output the metadata that it extracts to many formats and systems, including:

 l Connector Framework Server (CFS)

 l IDOL Server

 l Vertica databases

 l XML

 l Milestone XProtect

OEM Certification

Media Server works in OEM licensed environments.

Administration Guide
Chapter 1: Introduction

Media Server (12.4) Page 19 of 399

Media Server Architecture

The following diagram shows the architecture of Media Server.

A Media Server engine performs a single function such as ingestion or analysis. There are several
types of engine:

 l Ingest engines bring information into Media Server for processing. Images might be decoded or
extracted from documents; video must be demuxed and decoded into audio, video, and metadata.

Administration Guide
Chapter 1: Introduction

Media Server (12.4) Page 20 of 399

 l Analysis engines run analysis on ingested media to extract information about its content. Each
engine performs a different type of analysis.

 l Event stream processing engines can be used to introduce additional custom logic into
analysis. For example, you can filter or deduplicate the information produced during analysis.
Event stream processing can change the schema of the data.

 l Transform engines transform data. For example, you can change the size of video frames
before sending them to the image encoder.

 l Encoding engines write a copy of ingested video to disk, or encode it into different formats.
Some encoding engines, such as the MPEG encoder, can produce a live UDP stream that you
can view in a media player.

 l Output engines convert the metadata produced by Media Server into different formats and send
it to other systems such as IDOL Server or a Vertica database.

Information is passed between engines in the server. For example, an ingest engine decodes video and
produces video frames and uncompressed audio for the other engines to use. Analysis engines run
analysis on the decoded data. Output engines take information from the analysis engines and index it
into other systems, such as IDOL Server.

The IDOL Platform

Media Server is one of the components in the Intelligent Data Operating Layer (IDOL). You can use
Media Server independently or as part of a larger IDOL system.

You can use Media Server independently by writing a custom application that communicates with
Media Server. Media Server accepts commands over HTTP and returns responses in XML format. You
can also use the Autonomy Content Infrastructure (ACI) Client API to develop a custom application.

In a typical IDOL deployment, IDOL Connectors retrieve information from your data repositories for
indexing into IDOL Server. You can configure your Connector Framework Server (CFS) to send images
and video to Media Server and request one or more analysis operations. Media Server returns the
results of the analysis operations to CFS, which enriches the information indexed into IDOL Server.

Administration Guide
Chapter 1: Introduction

Media Server (12.4) Page 21 of 399

For example, a repository might contain video clips that you want to search or categorize. You could
configure CFS to send the video to Media Server and request analysis such as face detection, face
recognition, object recognition, keyframe extraction and optical character recognition. Media Server
returns information about the video content to CFS, which might perform additional operations, such as
Eduction, before indexing the information into IDOL Server.

For more information about IDOL, refer to the IDOL Getting Started Guide.

Related Documentation

The following documents provide more details on Media Server.

 l Media Server Reference

The Media Server Reference describes the ACI actions and configuration parameters that you
can use with Media Server. For information about how to view the reference, see Display Online
Help, on page 71.

 l Media Management and Analysis Platform Installation Guide

The Media Management and Analysis Platform (MMAP) is a media analytics platform designed
for viewing and searching video footage coming from a variety of sources, typically CCTV
surveillance camera footage and broadcast footage from IP streams. The Media Management
and Analysis Platform Installation Guide provides more information about MMAP.

 l License Server Administration Guide

This guide describes how to use a License Server to license multiple services.

Administration Guide
Chapter 1: Introduction

Media Server (12.4) Page 22 of 399

Chapter 2: Install Media Server

This section describes how to install Media Server.

• System Requirements 23
• Install Media Server on Windows 25
• Install Media Server on UNIX 27
• Install Media Server from the ZIP Package 29
• Install an IDOL Component as a Service on Windows 30
• Install an IDOL Component as a Service on Linux 32
• Upgrade Media Server 34
• Licenses 34
• Install Speech-to-Text Language Packs 39
• Distribute Media Server Operations 39

System Requirements

The following table provides the minimum and recommended hardware specifications for running Media
Server. The recommended specifications are only a guide, because actual requirements depend on the
data that is being ingested and the processing tasks that you configure.

Component Minimum Recommended

CPU The minimum number of CPU cores
can be calculated as follows:

Number of concurrent process
actions x (1 core for ingest + 1 core for
continuous encoding + 1 core for each
analysis task) + 1

Continuous encoding is defined as
encoding every frame, for example to
a rolling buffer.

To ingest video from four cameras
simultaneously, run three analysis
tasks on each stream, and encode
video from each camera into a rolling
buffer, the server should have a
minimum of:

4 x (1 + 1 + 3) + 1 = 21 cores.

To ingest video from four cameras

Micro Focus recommends Intel Xeon
CPUs, because Media Server has
been optimized for Intel processors.

Media Server (12.4) Page 23 of 399

simultaneously, run three analysis
tasks on each stream, but encode only
result images, the server should have
a minimum of:

4 x (1 + 0 + 3) + 1 = 17 cores.

Memory 4 GB 16 GB

IMPORTANT: To run tasks that use convolutional neural networks on a machine that has a
processor from the AMD Bulldozer series, rename libopenblas_AMD_Bulldozer.dll (included in
the Media Server installation) such that it replaces the file libopenblas.dll. This is necessary to
work around a known issue with these processors.

If you deploy multiple Media Servers across multiple machines, ensure that all of the machines
synchronize their clocks with a time server.

Antivirus Recommendations

If you are running antivirus software on the Media Server host machine, you must ensure for
performance reasons that it does not monitor the Media Server directories.

Some advanced antivirus software can scan the network and might block some Media Server traffic,
which can cause errors. Where possible, exempt the Media Server processes from this kind of network
traffic analysis.

Memory Requirements

The amount of memory required by Media Server depends on many factors, including the type of tasks
that you run. The following table provides minimum memory requirements for some analysis tasks.

The requirements listed below are the same regardless of the number of media sources that you
process concurrently, and the number of threads that are used for each task.

Analysis Task Memory Requirement

Face analysis

Face detection 25 MB

Face recognition 65 MB

Face demographics 42 MB

Vehicle analysis

Vehicle make recognition 43 MB

Image classification

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 24 of 399

Image classification 55 MB

Additional memory required for the pre-trained ImageNet classifier 240 MB

Additional memory required for the pre-trained road scene classifier 50 MB

Object class recognition

Object class recognition 18 MB

Additional memory required for the pre-trained person recognizer 340 MB

Additional memory required for the pre-trained road scene recognizer 338 MB

Optical Character Recognition

OCR 28 MB

Additional memory required for Simplified Chinese text 40 MB

Additional memory required for Traditional Chinese text 53 MB

Additional memory required for Japanese text 31 MB

Additional memory required for Korean text 13 MB

Software Dependencies

The following software is required by Media Server:

 l (Linux platforms only) Java Runtime Environment (JRE) 7 or later is required by KeyView to
ingest some file types.

Install Media Server on Windows

Use the following procedure to install Media Server on Microsoft Windows operating systems, by using
the IDOL Server installer.

The IDOL Server installer provides the major IDOL components. It also includes License Server, which
Media Server requires to run.

To install Media Server

 1. Double-click the appropriate installer package:

IDOLServer_VersionNumber_Platform.exe

where:

VersionNumber is the product version.

Platform is your software platform.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 25 of 399

The Setup dialog box opens.

 2. Click Next.

The License Agreement dialog box opens.

 3. Read the license agreement. Select I accept the agreement, and then click Next.

The Installation Directory dialog box opens.

 4. Specify the directory to install Media Server (and optionally other components such as License
Server) in. By default, the system installs on C:\MicroFocus\IDOLServer-VersionNumber.

Click to choose another location. Click Next.

The Installation Mode dialog box opens.

 5. Select Custom, and then click Next.

The OEM installation dialog box opens.

 6. Choose whether to install IDOL for OEM usage.

 l To install IDOL for OEM usage

 a. Select the OEM installation check box.

 b. Select how to provide your license key file by choosing one of the following options:

 o Copy from file, then click to find the licensekey.dat file to use.

 o Copy the licensekey.dat manually after the installation.

 c. Click Next.

The Component Selection dialog box opens. Skip to Step 8.

 l To install IDOL for standard usage, click Next.

The License Server dialog box opens. Proceed to Step 7.

 7. Choose whether you have an existing License Server.

 l To use an existing License Server

 a. On the License Server dialog box, click Yes, and then click Next. The Existing License
Server dialog box opens.

 b. Specify the host and ACI port of your License Server, and then click Next.

 l To install a new instance of License Server

 a. On the License Server dialog box, click No, and then click Next. The Service Name
dialog box opens.

 b. In the Service name box, type the name of the Windows service to use for the License
Server, and then click Next. The License Server dialog box opens.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 26 of 399

 c. Specify the ports that you want License Server to listen on, and then type the path to your
IDOL license key file (licensekey.dat), which you obtained when you purchased Media

Server, or click and navigate to the location. Click Next.

The Component Selection dialog box opens.

 8. Click Next.

 9. Select the check boxes for the components that you want to install, and specify the port
information for each component, or leave the fields blank to accept the default port settings.

For Media Server you must specify the following information:

ACI Port The port that you want Media Server to listen on, for ACI actions.

Service Port The port that you want Media Server to listen on, for service actions.

If you want to install a Windows service for Media Server, select the Create Windows service
check box and choose a name for the service. If you do not install a Windows service you can
create one later by following the procedure in Install an IDOL Component as a Service on
Windows, on page 30.

Click Next or Back to move between components.

 10. After you have specified your settings, the Summary dialog box opens. Verify the settings you
made and click Next.

The Ready to Install dialog box opens.

 11. Click Next.

The Installing dialog box opens, indicating the progress of the installation. If you want to end the
installation process, click Cancel.

 12. After installation is complete, click Finish to close the installation wizard.

Install Media Server on UNIX

Use the following procedure to install Media Server in text mode on UNIX platforms.

To install Media Server on UNIX

 1. Open a terminal in the directory in which you have placed the installer, and enter the following
command:

./IDOLServer_VersionNumber_Platform.exe --mode text

where:

VersionNumber is the product version

Platform is the name of your UNIX platform

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 27 of 399

NOTE: Ensure that you have execute permission for the installer file.

The console installer starts and displays the Welcome screen.

 2. Read the information and then press the Enter key.

The license information is displayed.

 3. Read the license information, pressing Enter to continue through the text. After you finish
reading the text, type Y to accept the license terms.

 4. Type the path to the location where you want to install the servers, or press Enter to accept the
default path.

The Installation Mode screen is displayed.

 5. Press 2 to select the Custom installation mode.

 6. Choose whether to install IDOL for OEM usage.

 l To install IDOL for OEM usage

 a. Press 2 to select the OEM installation mode.

 b. Select how to provide your license key file by choosing one of the following options:

 o Copy from file. Press 1, and then type the location of your licensekey.dat file.

 o Copy the licensekey.dat manually after the installation. Press 2.

The Component Selection dialog box opens. Go to Step 9.

 l To install IDOL for standard usage, click Next.

The License Server screen is displayed. Proceed to Step 7.

 7. Choose whether you have an existing License Server.

 l To use an existing License Server, type Y. Specify the host and port details for your License
Server (or press Enter to accept the defaults), and then press Enter. Go to Step 9.

 l To install a new instance of License Server, type N.

 8. If you want to install a new License Server, provide information for the ports that the License
Server uses.

 a. Type the value for the ACI Port and press Enter (or press Enter to accept the default
value).

ACI Port The port that client machines use to send ACI actions to the License Server.

 b. Type the value for the Service Port and press Enter (or press Enter to accept the default
value).

Service
Port

The port by which you send service actions to the License Server. This port
must not be used by any other service.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 28 of 399

 c. Type the location of your IDOL license key file (licensekey.dat), which you obtained when
you purchased Media Server. Press Enter.

 9. The Component Selection screen is displayed. Press Enter. When prompted, type Y for the
components that you want to install. Specify the port information for each component, and then
press Enter. Alternatively, leave the fields blank and press Enter to accept the default port
settings.

For Media Server you must specify the following information:

ACI Port The port that you want Media Server to listen on, for ACI actions.

Service Port The port that you want Media Server to listen on, for service actions.

NOTE: These ports must not be used by any other service.

The Init Scripts screen is displayed.

 10. Type the user that the server should run as, and then press Enter.

NOTE: The installer does not create this user. It must exist already.

 11. Type the group that the server should run under, and then press Enter.

NOTE: If you do not want to generate init scripts for installed components, you can simply
press Enter to move to the next stage of the installation process without specifying a user or
group.

The Summary screen is displayed.

 12. Verify the settings that you made, then press Enter to begin installation.

The Installing screen is displayed.

This screen indicates the progress of the installation process.

The Installation Complete screen is displayed.

 13. Press Enter to finish the installation.

Install Media Server from the ZIP Package

You can install Media Server from the standalone ZIP package. Use the ZIP package if you want to
install Media Server without installing other IDOL components. If you need to install other IDOL
components you can install Media Server using the IDOL Server installer (see Install Media Server on
Windows, on page 25 or Install Media Server on UNIX, on page 27).

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 29 of 399

To install Media Server from the ZIP package (on Windows)

 1. Extract the contents of the ZIP package to your chosen installation directory.

 2. Install all of the redistributables located in the runtime folder. These install prerequisites that are
necessary to run Media Server.

 3. Modify the parameters in the [License] section of the Media Server configuration file so that
Media Server can query your License Server. For information about how to do this, see Configure
the License Server Host and Port, on page 36.

 4. (Optional) If you want to run Media Server as a Windows service, create the service by following
the instructions in Install an IDOL Component as a Service on Windows, below.

 5. Start Media Server by following the instructions in Start Media Server, on page 69.

To install Media Server from the ZIP package (on Linux)

 1. Extract the contents of the ZIP package to your chosen installation directory.

 2. Modify the parameters in the [License] section of the Media Server configuration file so that
Media Server can query your License Server. For information about how to do this, see Configure
the License Server Host and Port, on page 36.

 3. (Optional) If you want to run Media Server as a service, create the service by following the
instructions in Install an IDOL Component as a Service on Linux, on page 32.

 4. Start Media Server by following the instructions in Start Media Server, on page 69.

Install an IDOL Component as a Service on Windows

On Microsoft Windows operating systems, you can install any IDOL component as a Windows
service. Installing a component as a Windows service makes it easy to start and stop the component,
and you can configure a component to start automatically when you start Windows.

Use the following procedure to install Media Server as a Windows service from a command line.

To install a component as a Windows service

 1. Open a command prompt with administrative privileges (right-click the icon and select Run as
administrator).

 2. Navigate to the directory that contains the component that you want to install as a service.

 3. Send the following command:

Component.exe -install

where Component.exe is the executable file of the component that you want to install as a
service.

The -install command has the following optional arguments:

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 30 of 399

-start {[auto] | [manual]
| [disable]}

The startup mode for the component. Auto means that
Windows services automatically starts the component.
Manual means that you must start the service manually.
Disable means that you cannot start the service. The default
option is Auto.

-username UserName The user name that the service runs under. By default, it uses
a local system account.

-password Password The password for the service user.

-servicename ServiceName The name to use for the service. If your service name
contains spaces, use quotation marks (") around the name.
By default, it uses the executable name.

-displayname DisplayName The name to display for the service in the Windows services
manager. If your display name contains spaces, use
quotation marks (") around the name. By default, it uses the
service name.

-depend Dependency1
[,Dependency2 ...]

A comma-separated list of the names of Windows services
that Windows must start before the new service. For
example, you might want to add the License Server as a
dependency.

For example:

Component.exe -install -servicename ServiceName -displayname "Component Display
Name" -depend LicenseServer

After you have installed the service, you can start and stop the service from the Windows Services
manager.

When you no longer require a service, you can uninstall it again.

To uninstall an IDOL Windows Service

 1. Open a command prompt.

 2. Navigate to the directory that contains the component service that you want to uninstall.

 3. Send the following command:

Component.exe -uninstall

where Component.exe is the executable file of the component service that you want to uninstall.

If you did not use the default service name when you installed the component, you must also add
the -servicename argument. For example:

Component.exe -uninstall -servicename ServiceName

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 31 of 399

Install an IDOL Component as a Service on Linux

On Linux operating systems, you can configure a component as a service to allow you to easily start
and stop it. You can also configure the service to run when the machine boots. The following
procedures describe how to install Media Server as a service on Linux.

NOTE: To use these procedures, you must have root permissions.

NOTE: When you install Media Server on Linux, the installer prompts you to supply a user name to
use to run the server. The installer populates the init scripts, but it does not create the user in your
system (the user must already exist).

The procedure that you must use depends on the operating system and boot system type.

 l For Linux operating system versions that use systemd (including CentOS 7, and Ubuntu version
15.04 and later), see Install a Component as a Service for a systemd Boot System, below.

 l For Linux operating system versions that use System V, see Install a Component as a Service for
a System V Boot System, on the next page.

Install a Component as a Service for a systemd Boot System

NOTE: If your setup has an externally mounted drive that Media Server uses, you might need to
modify the init script. The installed init script contains examples for an NFS mount requirement.

To install an IDOL component as a service

 1. Run the appropriate command for your Linux operating system environment to copy the init
scripts to your init.d directory.

 l Red Hat Enterprise Linux (and CentOS)

cp IDOLInstallDir/scripts/init/systemd/componentname
/etc/systemd/system/componentname.service

 l Debian (including Ubuntu):

cp IDOLInstallDir/scripts/init/systemd/componentname
/lib/systemd/system/componentname.service

where componentname is the name of the init script that you want to use, which is the name of the
component executable (without the file extension).

For other Linux environments, refer to the operating system documentation.

 2. Run the following commands to set the appropriate access, owner, and group permissions for the
component:

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 32 of 399

 l Red Hat Enterprise Linux (and CentOS)

chmod 755 /etc/systemd/system/componentname
 chown root /etc/systemd/system/componentname
 chgrp root /etc/systemd/system/componentname

 l Debian (including Ubuntu):

chmod 755 /lib/systemd/system/componentname
 chown root /lib/systemd/system/componentname
 chgrp root /lib/systemd/system/componentname

where componentname is the name of the component executable that you want to run (without the
file extension).

For other Linux environments, refer to the operating system documentation.

 3. (Optional) If you want to start the component when the machine boots, run the following
command:

systemctl enable componentname

Install a Component as a Service for a System V Boot System

To install an IDOL component as a service

 1. Run the following command to copy the init scripts to your init.d directory.

cp IDOLInstallDir/scripts/init/systemv/componentname /etc/init.d/

where componentname is the name of the init script that you want to use, which is the name of the
component executable (without the file extension).

 2. Run the following commands to set the appropriate access, owner, and group permissions for the
component:

chmod 755 /etc/init.d/componentname
 chown root /etc/init.d/componentname
 chgrp root /etc/init.d/componentname

 3. (Optional) If you want to start the component when the machine boots, run the appropriate
command for your Linux operating system environment:

 l Red Hat Enterprise Linux (and CentOS):

chkconfig --add componentname
chkconfig componentname on

 l Debian (including Ubuntu):

update-rc.d componentname defaults

For other Linux environments, refer to the operating system documentation.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 33 of 399

Upgrade Media Server

If you have previously installed Media Server and need to upgrade to the latest version, follow these
steps.

To upgrade to the latest version of Media Server

 1. Make a backup of the following files from your current installation:

 l The Media Server configuration file, mediaserver.cfg.

 l Any session configuration files, from the configurations folder.

 l Any scene analysis training data, from the scene analysis training directory.

 l If you are using an internal database, the Media Server database which contains your training
data. By default, the database is named mediaserver.db.

 2. Perform a clean installation of the latest version of Media Server.

 3. If a patch has been released for the latest version of Media Server, download and install the latest
patch. Patches are cumulative, so you only need to download the latest.

 a. Download the latest patch from Micro Focus.

 b. Unzip the files into the Media Server installation directory, overwriting any files that already
exist.

 4. Copy your configuration files into the new installation, overwriting the configuration files that were
installed.

 5. Restore or upgrade the database:

 l If you are using an internal database, copy the database file into the new installation.

 l If you are using an external database, you might need to run a script to upgrade the database
schema. For more information, see Upgrade the Database Schema, on page 56.

Licenses

To use IDOL solutions, you must have a running License Server, and a valid license key file for the
products that you want to use. Contact Micro Focus Big Data Support to request a license file for your
installation.

License Server controls the IDOL licenses, and assigns them to running components. License Server
must run on a machine with a static, known IP address, MAC address, or host name. The license key
file is tied to the IP address and ACI port of your License Server and cannot be transferred between
machines. For more information about installing License Server and managing licenses, see the
License Server Administration Guide.

When you start Media Server, it requests a license from the configured License Server. You must
configure the host and port of your License Server in the Media Server configuration file.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 34 of 399

You can revoke the license from a product at any time, for example, if you want to change the client
IP address or reallocate the license.

CAUTION: Taking any of the following actions causes the licensed module to become inoperable.

You must not:

 l Change the IP address of the machine on which a licensed module runs (if you use an IP
address to lock your license).

 l Change the service port of a module without first revoking the license.

 l Replace the network card of a client without first revoking the license.

 l Remove the contents of the license and uid directories.

All modules produce a license.log and a service.log file. If a product fails to start, check the
contents of these files for common license errors. See Troubleshoot License Errors, on page 37.

Display License Information

You can verify which modules you have licensed either by using the IDOL Admin interface, or by
sending the LicenseInfo action from a web browser.

To display license information in IDOL Admin

 l In the Control menu of the IDOL Admin interface for your License Server, click Licenses.

The Summary tab displays summary information for each licensed component, including:

 o The component name.

 o The number of seats that the component is using.

 o The total number of available seats for the component.

 o (Content component only) The number of documents that are currently used across all
instances of the component.

 o (Content component only) The maximum number of documents that you can have across all
instances of the component.

The Seats tab displays details of individual licensed seats, and allows you to revoke licenses.

To display license information by sending the LicenseInfo action

 l Send the following action from a web browser to the running License Server.

http://LicenseServerHost:Port/action=LicenseInfo

where:

LicenseServerHost is the IP address of the machine where License Server resides.

Port is the ACI port of License Server (specified by the Port parameter in the
[Server] section of the License Server configuration file).

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 35 of 399

In response, License Server returns the requested license information. This example describes a
license to run four instances of IDOL Server.

<?xml version="1.0" encoding="UTF-8" ?>
 <autnresponse xmlns:autn="http://schemas.autonomy.com/aci/">
 <action>LICENSEINFO</action>
 <response>SUCCESS</response>
 <responsedata>
 <LicenseDiSH>
 <LICENSEINFO>
 <autn:Product>
 <autn:ProductType>IDOLSERVER</autn:ProductType>
 <autn:TotalSeats>4</autn:TotalSeats>
 <autn:SeatsInUse>0</autn:SeatsInUse>
 </autn:Product>
 </LICENSEINFO>
 </LicenseDiSH>
 </responsedata>
 </autnresponse>

Configure the License Server Host and Port

Media Server is licensed through License Server. In the Media Server configuration file, specify the
information required to connect to the License Server.

To specify the license server host and port

 1. Open your configuration file in a text editor.

 2. In the [License] section, modify the following parameters to point to your License Server.

LicenseServerHost The host name or IP address of your License Server.

LicenseServerACIPort The ACI port of your License Server.

For example:

[License]
 LicenseServerHost=licenses
 LicenseServerACIPort=20000

 3. Save and close the configuration file.

Revoke a Client License

After you set up licensing, you can revoke licenses at any time, for example, if you want to change the
client configuration or reallocate the license. The following procedure revokes the license from a
component.

NOTE: If you cannot contact the client (for example, because the machine is inaccessible), you can

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 36 of 399

free the license for reallocation by sending an AdminRevokeClient action to the License Server. For
more information, see the License Server Administration Guide.

To revoke a license

 1. Stop the IDOL solution that uses the license.

 2. At the command prompt, run the following command:

InstallDir/ExecutableName[.exe] –revokelicense –configfile cfgFilename

This command returns the license to the License Server.

You can send the LicenseInfo action from a web browser to the running License Server to check for
free licenses. In this sample output from the action, one IDOL Server license is available for allocation
to a client.

<autn:Product>
 <autn:ProductType>IDOLSERVER</autn:ProductType>
 <autn:Client>
 <autn:IP>192.123.51.23</autn:IP>
 <autn:ServicePort>1823</autn:ServicePort>
 <autn:IssueDate>1063192283</autn:IssueDate>
 <autn:IssueDateText>10/09/2003 12:11:23</autn:IssueDateText>
 </autn:Client>
 <autn:TotalSeats>2</autn:TotalSeats>
 <autn:SeatsInUse>1</autn:SeatsInUse>
 </autn:Product>

Troubleshoot License Errors

The table contains explanations for typical licensing-related error messages.

Error message Explanation

Error: Failed to update license from the
license server. Your license cache details do
not match the current service configuration.
Shutting the service down.

The configuration of the service has been
altered. Verify that the service port and IP
address have not changed since the service
started.

Error: License for ProductName is invalid.
Exiting.

The license returned from the License Server is
invalid. Ensure that the license has not expired.

Error: Failed to connect to license server
using cached licensed details.

Cannot communicate with the License Server.
The product still runs for a limited period;
however, you should verify whether your
License Server is still available.

License-related error messages

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 37 of 399

Error message Explanation

Error: Failed to connect to license server.
Error code is SERVICE: ErrorCode

Failed to retrieve a license from the License
Server or from the backup cache. Ensure that
your License Server can be contacted.

Error: Failed to decrypt license keys. Please
contact Autonomy support. Error code is
SERVICE:ErrorCode

Provide Micro Focus Big Data Support with the
exact error message and your license file.

Error: Failed to update the license from the
license server. Shutting down

Failed to retrieve a license from the License
Server or from the backup cache. Ensure that
your License Server can be contacted.

Error: Your license keys are invalid. Please
contact Autonomy support. Error code is
SERVICE:ErrorCode

Your license keys appear to be out of sync.
Provide Micro Focus Big Data Support with the
exact error message and your license file.

Failed to revoke license: No license to revoke
from server.

The License Server cannot find a license to
revoke.

Failed to revoke license from server
LicenseServer Host:LicenseServerPort. Error
code is ErrorCode

Failed to revoke a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message.

Failed to revoke license from server. An
instance of this application is already running.
Please stop the other instance first.

You cannot revoke a license from a running
service. Stop the service and try again.

Failed to revoke license. Error code is
SERVICE:ErrorCode

Failed to revoke a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message.

Your license keys are invalid. Please contact
Autonomy Support. Error code is
ACISERVER:ErrorCode

Failed to retrieve a license from the License
Server. Provide Micro Focus Big Data Support
with the exact error message and your license
file.

Your product ID does not match the generated
ID.

Your installation appears to be out of sync.
Forcibly revoke the license from the License
Server and rename the license and uid
directories.

Your product ID does not match this
configuration.

The service port for the module or the IP
address for the machine appears to have
changed. Check your configuration file.

License-related error messages, continued

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 38 of 399

Install Speech-to-Text Language Packs

To run speech-to-text, you must install a language pack. There are more than 60 language packs
available for Media Server. Language packs can contain hundreds of megabytes of data, so they are
not included in the Media Server installation and must be downloaded separately.

TIP: A language pack supports a single language and a single audio sample rate. For example,
there is a language pack for processing US English (16kHz) and another for US English (8kHz). The
8kHz language packs are for processing telephony audio. For a list of available language packs, see
Speech Analysis Supported Languages, on page 390.

To install a language pack

 1. Download the language pack from the MySupport portal.

 2. Extract the contents of the zip file into the folder staticdata/speechtotext/, where
staticdata is the folder specified by the StaticDataDirectory parameter in the [Paths]
section of the Media Server configuration file. The default value of this parameter is the
staticdata folder in the Media Server installation directory.

 3. To confirm that the language pack was installed successfully, start Media Server and run the
action ListSpeechLanguagePacks. The response lists each language pack that is available,
along with its supported sample rate.

Distribute Media Server Operations

In large systems where you want to process large numbers of images, documents, and videos, you can
install Media Server on more than one machine. In this case, you can use a Distributed Action Handler
(DAH) to distribute actions to each Media Server, to ensure that each Media Server receives a similar
number of requests.

You can use the IDOL Server installer to install the DAH. For more information about installing the
DAH, refer to the Distributed Action Handler Administration Guide.

Administration Guide
Chapter 2: Install Media Server

Media Server (12.4) Page 39 of 399

https://softwaresupport.softwaregrp.com/

Chapter 3: Set up a Training Database

This section describes how to set up a database to store training data for analysis operations that
require training.

• Introduction 40
• Use the Internal Database 40
• Use an External Database 41
• Upgrade the Database Schema 56

Introduction

Media Server uses a database to store information that it requires for recognition operations, such as
face recognition, object recognition, or image classification. Media Server can be configured to use an
internal database file or an external database hosted on a database server.

The default configuration supplied with Media Server uses an internal database and using this type of
database requires no additional configuration.

Micro Focus recommends that you use a database hosted on an external database server for the
following reasons:

 l Better performance. A database hosted on an external database server is likely to achieve
significantly higher performance when your Media Server is used by multiple users and many
training actions are sent to the Media Server simultaneously.

 l Sharing training data. If you analyze large numbers of images and videos you can spread the
load across multiple Media Servers. Multiple Media Servers can share a database hosted on an
external database server so that all of the Media Servers use the same training data and you only
need to maintain one database. Sharing an internal database is not supported.

 l Improved handling of concurrent requests. When Media Server modifies data in an internal
database file, it can lock the file. Any requests that need to modify the database at the same time
might fail, especially if the file is locked for a significant amount of time (such as when you add
large amounts of training). An external database hosted on a database server is able to handle
concurrent requests.

Use the Internal Database

The default configuration supplied with Media Server stores training data in a database file
(mediaserver.db, in the installation directory). If this file does not exist, Media Server creates it when
you use an action that requires a database.

You can move or rename the database file but you will then need to change your configuration file to
match the new file path.

Media Server (12.4) Page 40 of 399

To use an internal database

 1. Open the Media Server configuration file in a text editor.

 2. In the [Database] section, check that the DatabaseType configuration parameter is set to
internal. This is the default setting and specifies that Media Server uses an internal database.

 3. In the [Paths] section, set the DatabasePath parameter to the path and file name of the
database file. If this file does not exist, Media Server creates an empty database at this location.

 4. Save and close the configuration file.

 5. Restart Media Server for your changes to take effect.

Use an External Database

This section describes how to set up an external database and configure Media Server to use that
database.

Supported External Databases

This section lists the databases that you can use to store training data:

Supported Database Requirements

MySQL 8.x l MySQL ODBC Connector 8.0.11 to 8.0.15.

Due to an issue in the MySQL ODBC Connector, if you use
versions 8.0.12 to 8.0.15 of the connector you must add the
option no_ssps=1 to your connection string.

 l (Linux only) unixODBC version 2.2.14 or later.

MySQL 5.x l MySQL ODBC Connector 5.3.11, 5.3.12, or 8.0.11 to 8.0.15
with MySQL server 5.6.10 or later.

Due to an issue in the MySQL ODBC Connector, if you use
versions 5.3.11, 5.3.12, or 8.0.12 to 8.0.15 of the connector
you must add the option no_ssps=1 to your connection
string.

 l MySQL ODBC Connector 5.3.2 to 5.3.10 with MySQL server
5.x.

 l (Linux only) unixODBC version 2.2.14 or later.

PostgreSQL 11.0, 10.x,
9.1 to 9.6

 l PostgreSQL ODBC driver 09.03.0300 to 11.00.0000.

 l (Linux only) unixODBC version 2.2.14 or later.

TIP: You can also store asynchronous action queues in a database. If you want to use the same
database server to store training data and action queues, review the database requirements in the

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 41 of 399

section Store Action Queues in an External Database, on page 82, because the requirements for
storing action queues might be different.

Set Up a PostgreSQL Database on Windows

This section describes how to set up a training database using PostgreSQL on Windows. The database
can be on a different machine to your Media Server.

To set up a PostgreSQL database on Windows

 1. Install the PostgreSQL database server. On Windows you can download an installer that installs
the database server as a Windows service.

 2. Configure the database server for use with Media Server. The default configuration for a new
PostgreSQL installation allows only local connections, so if your Media Server is on a different
machine you might need to edit the configuration file pg_hba.conf, to allow your Media Server to
connect to the database.

 3. Add the PostgreSQL bin directory to your PATH environment variable. This step enables you to
use the command psql to start the PostgreSQL command-line tool from the Windows command
prompt. If you do not add the directory to the PATH environment variable, you must specify the full
path of the tool.

 4. Create a new database to store Media Server training data and set up the database schema that
Media Server requires. To set up the schema, run the postgres.sql script provided in the sql
folder of the Media Server installation directory.

 a. Open a command prompt and change directory to the sql folder of the Media Server
installation directory. This is important because the postgres.sql script refers to other files
in the same directory.

cd C:\MediaServer\sql

 b. Start the psql command-line tool.

psql -U postgres

 c. Enter your password when prompted. This is the password you chose for the postgres
superuser during the installation process.

 d. Run a CREATE DATABASE command to create a new database. Specify the following database
settings.

Database name Any name.

Encoding Must be Unicode–either UTF8 or UCS2.

Collation Any that is compatible with the encoding.

Locale Any that is compatible with the encoding.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 42 of 399

For example:

CREATE DATABASE mediatraining WITH ENCODING 'UTF8' LC_COLLATE='English_
United Kingdom' LC_CTYPE='English_United Kingdom';

where mediatraining is the name for the new database.

 e. Connect to the new database:

\c mediatraining

 f. (Optional) Run the following command to ensure a script stops running if it encounters an
error.

\set ON_ERROR_STOP on

 g. Run the postgres.sql script provided in the sql folder of the Media Server installation
directory.

\i postgres.sql

 h. Close the psql tool.

\q

 5. Create a user for Media Server to use and grant the following privileges to that user:

Grant... On...

Create Temporary Tables Database

Select, Insert, Update, Delete All tables

Execute All functions and stored procedures

Usage All sequences

 a. Start the psql command-line tool.

psql -U postgres

 b. Create a new user:

CREATE USER mediaserver WITH LOGIN PASSWORD 'password';

where mediaserver is the name of the new user, and password is the password for the new
user.

 c. Grant the necessary privileges to the new user:

GRANT TEMP ON DATABASE mediatraining TO mediaserver;

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 43 of 399

 GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO
mediaserver;
 GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA public TO mediaserver;
 GRANT USAGE ON ALL SEQUENCES IN SCHEMA public TO mediaserver;

where mediatraining is the name of the database you created and mediaserver is the name
of the user you created for Media Server.

 d. Close the psql tool.

\q

 6. You can now set up a data source name (DSN) so that Media Server can connect to the
database. If you are running Media Server on Windows, see Create a PostgreSQL DSN on
Windows, on page 46. If you are running Media Server on Linux, see Create a PostgreSQL DSN
on Linux, on page 48.

Set Up a PostgreSQL Database on Linux

This section describes how to set up a training database using PostgreSQL on Linux. The database
can be on a different machine to your Media Server.

To set up a PostgreSQL database on Linux

 1. Install the PostgreSQL database server using your package manager.

TIP: PostgreSQL is installed by default on some Linux distributions, but it might be an older
version. Your package manager might also offer an older version, unless you use the
PostgreSQL yum or apt repositories (see https://www.postgresql.org).

 2. Configure the database server for use with Media Server. The default configuration for a new
PostgreSQL installation allows only local connections, so if your Media Server is on a different
machine you might need to make the following changes:

 l Edit the configuration file postgresql.conf and configure PostgreSQL to listen on an
IP address and port.

 l Edit the configuration file pg_hba.conf, to allow your Media Server to connect to the
database.

 3. Create a new database to store Media Server training data and set up the database schema that
Media Server requires. To set up the schema, run the postgres.sql script provided in the sql
folder of the Media Server installation directory.

 a. Open a terminal and change directory to the sql folder of the Media Server installation
directory. This is important because the postgres.sql script refers to other files in the same
directory. For example:

cd /opt/MediaServer/sql

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 44 of 399

https://www.postgresql.org/

 b. Start the psql command-line tool as the postgres user.

sudo -u postgres psql

 c. Run a CREATE DATABASE command to create a new database. Specify the following database
settings.

Database name Any name.

Encoding Must be Unicode–either UTF8 or UCS2.

Collation Any that is compatible with the encoding.

Locale Any that is compatible with the encoding.

For example:

CREATE DATABASE mediatraining WITH ENCODING 'UTF8' LC_COLLATE='en_US.UTF-
8' LC_CTYPE='en_US.UTF-8';

where mediatraining is the name for the new database.

 d. Connect to the new database:

\c mediatraining

 e. (Optional) Run the following command to ensure a script stops running if it encounters an
error:

\set ON_ERROR_STOP on

 f. Run the postgres.sql script provided in the sql folder of the Media Server installation
directory.

\i postgres.sql

 g. Close the psql tool.

\q

 4. Create a user for Media Server to use and grant the following privileges to that user:

Grant... On...

Create Temporary Tables Database

Select, Insert, Update, Delete All tables

Execute All functions and stored procedures

Usage All sequences

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 45 of 399

 a. Start the psql command-line tool.

sudo -u postgres psql

 b. Create a new user:

CREATE USER mediaserver WITH LOGIN PASSWORD 'password';

where mediaserver is the name of the new user, and password is the password for the new
user.

 c. Grant the necessary privileges to the new user:

GRANT TEMP ON DATABASE mediatraining TO mediaserver;
 GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO
mediaserver;
 GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA public TO mediaserver;
 GRANT USAGE ON ALL SEQUENCES IN SCHEMA public TO mediaserver;

where mediatraining is the name of the database you created and mediaserver is the name
of the user you created for Media Server.

 d. Close the psql tool.

\q

 5. You can now set up a data source name (DSN) so that Media Server can connect to the
database. If you are running Media Server on Windows, see Create a PostgreSQL DSN on
Windows, below. If you are running Media Server on Linux, see Create a PostgreSQL DSN on
Linux, on page 48.

Create a PostgreSQL DSN on Windows

This section describes how to create a PostgreSQL data source name (DSN), so that Media Server
can connect to your database. You must complete these steps on every Media Server host.

TIP: Create the DSN on the same machine as Media Server. If your Media Server is running on
Linux, see Create a PostgreSQL DSN on Linux, on page 48.

To create a PostgreSQL DSN on Windows

 1. Download and install the PostgreSQL ODBC driver.

 2. Open the ODBC Data Sources program (Windows Control Panel > Administrative Tools > ODBC
Data Sources 64-bit).

 3. In the User DSN or System DSN tab, click Add... . (System DSNs are available to all users. If
you create a User DSN, check which user the Media Server service is running as).

The Create New Data Source dialog box opens.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 46 of 399

https://odbc.postgresql.org/

 4. In the list, select PostgreSQL Unicode(x64) and click Finish.

The PostgreSQL Unicode ODBC Driver (psqlODBC) Setup dialog box opens.

 5. Type the following information:

Data Source A name for the new data source. You will configure Media Server to
use this data source name.

Description An optional description for the data source.

Database The name of the database that you created.

SSL Mode Whether to use SSL to connect to the database server.

NOTE: To enable SSL, you must also configure the database
server to support SSL. For instructions, refer to the PostgreSQL
documentation.

Server The IP address or hostname of the database server.

Port The database server port.

User Name The user name of the user you created for Media Server.

Password The password of the user you created for Media Server.

 6. Click Datasource.

The Advanced Options dialog box opens.

 7. (Optional) Micro Focus recommends that you select the Use Declare/Fetch check box, to reduce
memory use.

 8. Click Page 2.

 9. Select the bytea as LO check box.

IMPORTANT: If you do not select this option, Media Server fails to start.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 47 of 399

 10. Click Apply and then OK.

 11. Click Test to test the connection.

A dialog box opens, describing the result of the test. If the connection failed, use the information
in the message to resolve any issues.

 12. Click OK to close the Connection Test box.

 13. Click Save to close the PostgreSQL Unicode ODBC Driver (psqlODBC) Setup dialog box.

 14. Click OK to close the ODBC Data Source Administrator dialog box.

You can now configure Media Server to connect to the database (see Configure Media Server, on
page 55).

Create a PostgreSQL DSN on Linux

This section describes how to create a PostgreSQL data source name (DSN), so that Media Server
can connect to your database. You must complete these steps on every Media Server host.

TIP: Create the DSN on the same machine as Media Server. If your Media Server is running on
Windows, see Create a PostgreSQL DSN on Windows, on page 46.

To create a PostgreSQL DSN on Linux

 1. Install the PostgreSQL ODBC driver. For example, if you have configured the relevant yum
repository:

sudo yum install postgresql11-odbc

 2. Install unixODBC driver manager version 2.2.14 or later. For example:

sudo yum install unixODBC

 3. Configure the ODBC driver.

 a. Open the file odbcinst.ini with a text editor. This file is usually in the /etc directory.

 b. Unless there is already a section to configure the ODBC driver, add a new section and set the
relevant parameters. When you configure the Data Source Name (DSN) you will need to refer
to the name of this section.

Parameter Description

Description A description of the driver.

Driver The path of the PostgreSQL ODBC driver library.

For example:

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 48 of 399

[PostgreSQL]
 Description=ODBC for PostgreSQL
 Driver=/usr/pgsql-11/lib/psqlodbcw.so

NOTE: You can set other parameters in this file, but these have not been tested with
Media Server.

 c. Save and close the file.

 4. Create a Data Source Name (DSN) for Media Server to use.

 a. Open the file odbc.ini with a text editor. System DSNs are usually defined in
/etc/odbc.ini.

 b. Add a data source name in square brackets and configure the DSN.

Parameter Description

Driver The driver to use (must match the section name in
odbcinst.ini)

ServerName The IP address or hostname of the database server.

Port The database server port.

UserName The user name of the user you created for Media Server.

Password The password of the user you created for Media Server.

Database The name of the database that you created.

ByteaAsLongVarBinary You must set this parameter to 1.

IMPORTANT: If this value is not set to 1, Media Server fails
to start.

UseDeclareFetch (Optional) Micro Focus recommends setting this parameter to 1,
to reduce memory use.

For example:

[MediaServerPSQL]
 Driver=PostgreSQL
 ServerName=host.example.com
 Port=5432
 UserName=mediaserver
 Password=password
 Database=mediatraining
 ByteaAsLongVarBinary=1
 UseDeclareFetch=1

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 49 of 399

NOTE: You can set other parameters in this file, but these have not been tested with
Media Server.

 c. Save and close the file.

You can now configure Media Server to connect to the database (see Configure Media Server, on
page 55).

Set Up a MySQL Database

This section describes how to set up a training database using MySQL. The database can be on a
Windows or Linux machine and can be on a different machine to your Media Server.

To set up a MySQL database

 1. Download and install a MySQL server. Ensure that the package includes the mysql command-
line tool. During installation, set up a user account with superuser privileges. The MySQL server
is typically installed to run as a service. For detailed instructions, refer to the MySQL
documentation.

 2. Configure the database server for use with Media Server:

 a. Open the configuration file for the MySQL server in a text editor. This file is usually my.ini on
Windows, or /etc/my.cnf on Linux.

 b. So that Media Server can send large amounts of binary data (such as images) to the
database, set the configuration parameter max_allowed_packet=1073741824.

 c. Save and close the configuration file.

 3. (Windows only) Add the MySQL bin directory to your PATH environment variable. This step
enables you to use the command mysql to start the mysql command-line tool from the Windows
Command Prompt. If you do not add the directory to the PATH environment variable, you must
specify the full path of the tool. This step is usually not required on Linux because the tool is
installed to a directory such as /usr/bin, which is already in the PATH.

 4. Create a new database to store Media Server training data.

 a. Open a command-prompt or terminal and start the mysql command line tool:

mysql -u user -p

where user is your MySQL user name.

 b. Enter your password when prompted.

 c. Run a CREATE DATABASE command to create a new database. Specify the following database
settings.

Database name Any name.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 50 of 399

https://www.mysql.com/
https://www.mysql.com/

Character set Must be Unicode–either UTF8 or UCS2.

Collation Any that is compatible with the encoding.

For example:

CREATE DATABASE MediaTraining CHARACTER SET utf8 COLLATE utf8_unicode_ci;

 d. Close the mysql command-line tool:

quit

 5. Set up the database schema that Media Server requires. To do this, run the my.sql script
provided in the sql folder of the Media Server installation directory.

 a. Change directory to the sql folder of the Media Server installation directory (for example,
C:\MediaServer\sql on Windows or /opt/MediaServer/sql on Linux). This is important
because the my.sql script refers to other files in the same directory.

 b. Run the my.sql script. Running the script non-interactively from the terminal ensures that the
script terminates if an error occurs. For example:

 mysql -u user -p -v -D MediaTraining < my.sql

where user is your MySQL user name, and MediaTraining is the name of the database you
created.

 6. Create a user for Media Server to use and grant the following privileges to that user:

Grant... On...

Create Temporary Tables Database

Select, Insert, Update, Delete All tables

Execute All functions and stored procedures

 a. Start the mysql command-line tool:

mysql -u user -p

 b. Create a new user:

CREATE USER 'MediaServer' IDENTIFIED BY 'password';

where MediaServer is the name of the new user, and password is the password for the new
user.

 c. Grant the necessary privileges to the new user:

GRANT CREATE TEMPORARY TABLES ON MediaTraining.* TO 'MediaServer';

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 51 of 399

 GRANT SELECT, INSERT, UPDATE, DELETE ON MediaTraining.* TO 'MediaServer';
 GRANT EXECUTE ON MediaTraining.* TO 'MediaServer';

where MediaTraining is the name of the database you created and MediaServer is the name
of the user you created for Media Server.

 d. Close the mysql command-line tool:

quit

 7. You can now set up a data source name (DSN) so that Media Server can connect to the
database. If you are running Media Server on Windows, see Create a MySQL DSN on Windows,
below. If you are running Media Server on Linux, see Create a MySQL DSN on Linux, on page 54.

Create a MySQL DSN on Windows

This section describes how to create a MySQL data source name (DSN), so that Media Server can
connect to your database. You must complete these steps on every Media Server host.

TIP: Create the DSN on the same machine as Media Server. If your Media Server is running on
Linux, see Create a MySQL DSN on Linux, on page 54.

To create a MySQL DSN on Windows

 1. Install the MySQL ODBC Driver (Connector/ODBC).

 2. Open the ODBC Data Sources program (Windows Control Panel > Administrative Tools >
ODBC Data Sources 64-bit).

 3. In the User DSN or System DSN tab, click Add.... (System DSNs are available to all users. If
you create a User DSN, check which user the Media Server service is running as).

The Create New Data Source dialog box opens.

 4. In the list, select the MySQL ODBC Unicode driver and click Finish.

The MySQL Connector/ODBC Data Source Configuration dialog box opens.

 5. Type the following information:

Data Source Name A name for the new data source. You will configure Media Server to
use this data source name.

Description An optional description for the data source.

TCP/IP Server The IP address or hostname of the database server.

Port The database server port.

User The user name of the user you created for Media Server.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 52 of 399

Password The password of the user you created for Media Server.

Database The name of the database that you created.

 6. Click Details >> and then click the Misc tab.

 7. Select the Prepare statements on the client check box.

 8. Click Test to test the connection.

A dialog box opens, describing the result of the test. If the connection failed, use the information
in the message to resolve any issues.

 9. Click OK to close the MySQL Connector/ODBC Data Source Configuration dialog box.

 10. Click OK to close the ODBC Data Source Administrator dialog box.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 53 of 399

You can now configure Media Server to connect to the database (see Configure Media Server, on
the next page).

Create a MySQL DSN on Linux

This section describes how to create a MySQL data source name (DSN), so that Media Server can
connect to your database. You must complete these steps on every Media Server host. The procedure
includes example commands suitable for a CentOS 7 distribution.

TIP: Create the DSN on the same machine as Media Server. If your Media Server is running on
Windows, see Create a MySQL DSN on Windows, on page 52.

To create a MySQL DSN on Linux

 1. Install the MySQL ODBC driver. For example, if you have configured the relevant Yum repository:

sudo yum install mysql-connector-odbc

 2. Install unixODBC driver manager version 2.2.14 or later. For example:

sudo yum install unixODBC

 3. Configure the ODBC driver.

 a. Open the file odbcinst.ini with a text editor. This file is usually in the /etc directory.

 b. Unless there is already a section to configure the ODBC driver, add a new section and set the
relevant parameters. When you configure the Data Source Name (DSN) you will need to refer
to the name of this section.

Parameter Description

Driver The location of the MySQL ODBC driver library file.

For example:

[MySQL ODBC 8.0 Unicode Driver]
 Driver=/usr/lib64/libmyodbc8w.so
 UsageCount=1

NOTE: You can set other parameters in this file, but these have not been tested with
Media Server.

 c. Save and close the file.

 4. Create a Data Source Name (DSN) for Media Server to use.

 a. Open the file odbc.ini with a text editor. System DSNs are usually defined in
/etc/odbc.ini.

 b. Add a data source name in square brackets and configure the DSN.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 54 of 399

Parameter Description

Driver The driver to use (must match the section name in odbcinst.ini)

Server The IP address or hostname of the database server.

Port The database server port.

User The user name of the user you created for Media Server.

Password The password of the user you created for Media Server.

Database The name of the database that you created.

no_ssps Set this parameter to 1.

For example:

[MediaServerMySQL]
 Driver=MySQL ODBC 8.0 Unicode Driver
 Server=host.example.com
 Port=3306
 User=MediaServer
 Password=password
 Database=MediaTraining
 no_ssps=1

NOTE: You can set other parameters in this file, but these have not been tested with
Media Server.

 c. Save and close the file.

You can now configure Media Server to connect to the database (see Configure Media Server,
below).

Configure Media Server

To configure Media Server to use an external database

 1. Stop Media Server, if it is running.

 2. Open the Media Server configuration file (mediaserver.cfg) with a text editor.

 3. Find the [Database] section of the configuration file. Create this section if it does not exist.

 4. Set the following parameters:

DatabaseType The type of database to use, either mysql or postgres.

ODBCConnectionString The ODBC Connection string to use to connect to the database. For

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 55 of 399

example:

DSN=MyDatabase;

Driver = {PostgreSQL UNICODE}; Server = IPAddress; Port
= port; Database = myDatabase; Uid = myUsername; Pwd =
myPassword;

Driver = {MySQL ODBC 5.x UNICODE Driver}; Server =
IPAddress; Database = myDatabase; User = myUsername;
Password = myPassword; Option = 3;

For example:

[Database]
 DatabaseType=postgres
 ODBCConnectionString=DSN=MyDatabase;

 5. If you are running Media Server on Linux, set the following parameter:

ODBCDriverManager The unixODBC Driver Manager shared object file.

For example:

 ODBCDriverManager=libodbc.so

 6. Save and close the configuration file.

 7. Start Media Server.

Upgrade the Database Schema

Sometimes the schema of the Media Server database must change in order to provide new features or
enhancements. If you are using a database that is hosted on an external database server, you must run
an upgrade script when you upgrade Media Server. If you are using an internal database, any schema
changes are applied automatically.

IMPORTANT: If you are upgrading from Media Server 11.3 or earlier, and your training data is
stored in the internal database, upgrade to Media Server 11.4, 11.5, or 11.6 and start the Media
Server. You can then upgrade to Media Server 12.4.

Micro Focus provides scripts to upgrade to the latest version of the database schema. The following
table describes the schema changes for the Media Server database.

Schema
version

Media Server
version

Script to run to upgrade to latest schema

7 12.2 You are using the latest database schema

6 12.1 my-upgrade_from_v6.sql (for MYSQL databases)
postgres-upgrade_from_v6.sql (for PostgreSQL databases)

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 56 of 399

5 11.4 my-upgrade_from_v5.sql (for MYSQL databases)
postgres-upgrade_from_v5.sql (for PostgreSQL databases)

4 11.2 First upgrade to schema version 5, using the upgrade scripts
provided with Media Server 11.4, 11.5, or 11.6, and then upgrade to
the latest version.

3 11.0 First upgrade to schema version 5, using the upgrade scripts
provided with Media Server 11.4, 11.5, or 11.6, and then upgrade to
the latest version.

Running one of these scripts upgrades your database to the latest schema. Older versions of Media
Server (with the same major version number) can still use the upgraded database, but do not offer any
accuracy or performance improvements associated with the new version.

To upgrade the database schema

 1. In the table above, find the version of Media Server that you are upgrading from.

 2. Run the corresponding upgrade script for your database, using the same command syntax as
used to create the database (see the following topics):

 l Set Up a PostgreSQL Database on Windows, on page 42

 l Set Up a PostgreSQL Database on Linux, on page 44

 l Set Up a MySQL Database, on page 50

NOTE: Run the upgrade script using the psql command-line tool (for PostgreSQL databases)
or the mysql command-line tool (for MySQL databases). The script contains instructions that
are only supported when the script runs through these tools.

 3. Start Media Server 12.4, and run training and analysis as normal.

Administration Guide
Chapter 3: Set up a Training Database

Media Server (12.4) Page 57 of 399

Chapter 4: Configure Media Server

This section describes how to configure Media Server.

• The Media Server Configuration File 58
• Modify Configuration Parameter Values 59
• Include an External Configuration File 59
• Encrypt Passwords 62
• Configure Client Authorization 64
• Specify Modules to Enable 66
• Customize Logging 67
• Validate the Configuration File 68

The Media Server Configuration File

The configuration file is named mediaserver.cfg, and is located in the Media Server installation
directory. You can modify the configuration file to customize the operation of Media Server.

The configuration file must include some parameters, such as those that specify the ports to use and
those that configure the connection to the License Server.

The Media Server configuration file includes the following sections:

[License] Contains parameters that configure the connection to your License Server.

[Channels] Contains parameters that configure how many visual analysis, surveillance analysis,
and audio analysis operations the Media Server can perform at one time. Media Server
requests visual, surveillance, and audio channels from your License Server.

[Logging] Contains parameters that determine how messages are logged. You can configure log
streams to send different types of message to separate log files.

[Paths] Contains parameters that specify the location of files required by Media Server.

[Server] Contains general settings for Media Server. Specifies the ACI port of the Media Server
and contains parameters that control the way the connector handles ACI requests.

[Service] Contains settings that determine which machines can use and control the Media
Server service.

[Database] Contains settings required to connect to the database where training data is stored.

For a complete list of parameters that you can use in the configuration file, refer to the Media Server
Reference.

Media Server (12.4) Page 58 of 399

Modify Configuration Parameter Values

You modify Media Server configuration parameters by directly editing the parameters in the
configuration file. When you set configuration parameter values, you must use UTF-8.

CAUTION: You must stop and restart Media Server for new configuration settings to take effect.

This section describes how to enter parameter values in the configuration file.

Enter Boolean Values

The following settings for Boolean parameters are interchangeable:

TRUE = true = ON = on = Y = y = 1

FALSE = false = OFF = off = N = n = 0

Enter String Values

To enter a comma-separated list of strings when one of the strings contains a comma, you can indicate
the start and the end of the string with quotation marks, for example:

ParameterName=cat,dog,bird,"wing,beak",turtle

Alternatively, you can escape the comma with a backslash:

ParameterName=cat,dog,bird,wing\,beak,turtle

If any string in a comma-separated list contains quotation marks, you must put this string into quotation
marks and escape each quotation mark in the string by inserting a backslash before it. For example:

ParameterName="","<p>"

Here, quotation marks indicate the beginning and end of the string. All quotation marks that are
contained in the string are escaped.

Include an External Configuration File

You can share configuration sections or parameters between ACI server configuration files. The
following sections describe different ways to include content from an external configuration file.

You can include a configuration file in its entirety, specified configuration sections, or a single
parameter.

When you include content from an external configuration file, the GetConfig and ValidateConfig
actions operate on the combined configuration, after any external content is merged in.

In the procedures in the following sections, you can specify external configuration file locations by
using absolute paths, relative paths, and network locations. For example:

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 59 of 399

../sharedconfig.cfg
 K:\sharedconfig\sharedsettings.cfg
 \\example.com\shared\idol.cfg
 file://example.com/shared/idol.cfg

Relative paths are relative to the primary configuration file.

NOTE: You can use nested inclusions, for example, you can refer to a shared configuration file that
references a third file. However, the external configuration files must not refer back to your original
configuration file. These circular references result in an error, and Media Server does not start.

Similarly, you cannot use any of these methods to refer to a different section in your primary
configuration file.

Include the Whole External Configuration File

This method allows you to import the whole external configuration file at a specified point in your
configuration file.

To include the whole external configuration file

 1. Open your configuration file in a text editor.

 2. Find the place in the configuration file where you want to add the external configuration file.

 3. On a new line, type a left angle bracket (<), followed by the path to and name of the external
configuration file, in quotation marks (""). You can use relative paths and network locations. For
example:

< "K:\sharedconfig\sharedsettings.cfg"

 4. Save and close the configuration file.

Include Sections of an External Configuration File

This method allows you to import one or more configuration sections (including the section headings)
from an external configuration file at a specified point in your configuration file. You can include a whole
configuration section in this way, but the configuration section name in the external file must exactly
match what you want to use in your file. If you want to use a configuration section from the external file
with a different name, see Merge a Section from an External Configuration File, on the next page.

To include sections of an external configuration file

 1. Open your configuration file in a text editor.

 2. Find the place in the configuration file where you want to add the external configuration file
section.

 3. On a new line, type a left angle bracket (<), followed by the path of the external configuration file,

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 60 of 399

in quotation marks (""). You can use relative paths and network locations. After the configuration
file path, add the configuration section name that you want to include. For example:

< "K:\sharedconfig\extrasettings.cfg" [License]

NOTE: You cannot include a section that already exists in your configuration file.

 4. Save and close the configuration file.

Include Parameters from an External Configuration File

This method allows you to import one or more parameters from an external configuration file at a
specified point in your configuration file. You can import a single parameter or use wildcards to specify
multiple parameters. The parameter values in the external file must match what you want to use in your
file. This method does not import the section heading, such as [License] in the following examples.

To include parameters from an external configuration file

 1. Open your configuration file in a text editor.

 2. Find the place in the configuration file where you want to add the parameters from the external
configuration file.

 3. On a new line, type a left angle bracket (<), followed by the path of the external configuration file,
in quotation marks (""). You can use relative paths and network locations. After the configuration
file path, add the name of the section that contains the parameter, followed by the parameter
name. For example:

< "license.cfg" [License] LicenseServerHost

To specify a default value for the parameter, in case it does not exist in the external configuration
file, specify the configuration section, parameter name, and then an equals sign (=) followed by
the default value. For example:

< "license.cfg" [License] LicenseServerHost=localhost

You can use wildcards to import multiple parameters, but this method does not support default
values. The * wildcard matches zero or more characters. The ? wildcard matches any single
character. Use the pipe character | as a separator between wildcard strings. For example:

< "license.cfg" [License] LicenseServer*

 4. Save and close the configuration file.

Merge a Section from an External Configuration File

This method allows you to include a configuration section from an external configuration file as part of
your Media Server configuration file. For example, you might want to specify a standard
SSL configuration section in an external file and share it between several servers. You can use this
method if the configuration section that you want to import has a different name to the one you want to
use.

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 61 of 399

To merge a configuration section from an external configuration file

 1. Open your configuration file in a text editor.

 2. Find or create the configuration section that you want to include from an external file. For
example:

[SSLOptions1]

 3. After the configuration section name, type a left angle bracket (<), followed by the path to and
name of the external configuration file, in quotation marks (""). You can use relative paths and
network locations. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg"

If the configuration section name in the external configuration file does not match the name that
you want to use in your configuration file, specify the section to import after the configuration file
name. For example:

[SSLOptions1] < "../sharedconfig/ssloptions.cfg" [SharedSSLOptions]

In this example, Media Server uses the values in the [SharedSSLOptions] section of the
external configuration file as the values in the [SSLOptions1] section of the Media Server
configuration file.

NOTE: You can include additional configuration parameters in the section in your file. If these
parameters also exist in the imported external configuration file, Media Server uses the values
in the local configuration file. For example:

[SSLOptions1] < "ssloptions.cfg" [SharedSSLOptions]
 SSLCACertificatesPath=C:\IDOL\HTTPConnector\CACERTS\

 4. Save and close the configuration file.

Encrypt Passwords

Micro Focus recommends that you encrypt all passwords that you enter into a configuration file.

Create a Key File

A key file is required to use AES encryption.

To create a new key file

 1. Open a command-line window and change directory to the Media Server installation folder.

 2. At the command line, type:

autpassword -x -tAES -oKeyFile=./MyKeyFile.ky

A new key file is created with the name MyKeyFile.ky

CAUTION: To keep your passwords secure, you must protect the key file. Set the permissions on

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 62 of 399

the key file so that only authorized users and processes can read it. Media Server must be able to
read the key file to decrypt passwords, so do not move or rename it.

Encrypt a Password

The following procedure describes how to encrypt a password.

To encrypt a password

 1. Open a command-line window and change directory to the Media Server installation folder.

 2. At the command line, type:

autpassword -e -tEncryptionType [-oKeyFile] [-cFILE -sSECTION -pPARAMETER]
PasswordString

where:

Option Description

-t
EncryptionType

The type of encryption to use:

 l Basic

 l AES

For example: -tAES

NOTE: AES is more secure than basic encryption.

-oKeyFile AES encryption requires a key file. This option specifies the path and
file name of a key file. The key file must contain 64 hexadecimal
characters.

For example: -oKeyFile=./key.ky

-cFILE -
sSECTION -
pPARAMETER

(Optional) You can use these options to write the password directly into
a configuration file. You must specify all three options.

 l -c. The configuration file in which to write the encrypted password.

 l -s. The name of the section in the configuration file in which to write
the password.

 l -p. The name of the parameter in which to write the encrypted
password.

For example:

-c./Config.cfg -sMyTask -pPassword

PasswordString The password to encrypt.

For example:

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 63 of 399

autpassword -e -tBASIC MyPassword

autpassword -e -tAES -oKeyFile=./key.ky MyPassword

autpassword -e -tAES -oKeyFile=./key.ky -c./Config.cfg -sDefault -pPassword
MyPassword

The password is returned, or written to the configuration file.

Decrypt a Password

The following procedure describes how to decrypt a password.

To decrypt a password

 1. Open a command-line window and change directory to the Media Server installation folder.

 2. At the command line, type:

autpassword -d -tEncryptionType [-oKeyFile] PasswordString

where:

Option Description

-t
EncryptionType

The type of encryption:

 l Basic

 l AES

For example: -tAES

-oKeyFile AES encryption and decryption requires a key file. This option specifies
the path and file name of the key file used to decrypt the password.

For example: -oKeyFile=./key.ky

PasswordString The password to decrypt.

For example:

autpassword -d -tBASIC 9t3M3t7awt/J8A

autpassword -d -tAES -oKeyFile=./key.ky 9t3M3t7awt/J8A

The password is returned in plain text.

Configure Client Authorization

You can configure Media Server to authorize different operations for different connections.

Authorization roles define a set of operations for a set of users. You define the operations by using the
StandardRoles configuration parameter, or by explicitly defining a list of allowed actions in the
Actions and ServiceActions parameters. You define the authorized users by using a client IP
address, SSL identities, and GSS principals, depending on your security and system configuration.

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 64 of 399

For more information about the available parameters, see the Media Server Reference.

IMPORTANT: To ensure that Media Server allows only the options that you configure in
[AuthorizationRoles], make sure that you delete any deprecated RoleClients parameters from
your configuration (where Role corresponds to a standard role name, for example AdminClients).

To configure authorization roles

 1. Open your configuration file in a text editor.

 2. Find the [AuthorizationRoles] section, or create one if it does not exist.

 3. In the [AuthorizationRoles] section, list the user authorization roles that you want to create.
For example:

[AuthorizationRoles]
 0=AdminRole
 1=UserRole

 4. Create a section for each authorization role that you listed. The section name must match the
name that you set in the [AuthorizationRoles] list. For example:

[AdminRole]

 5. In the section for each role, define the operations that you want the role to be able to perform. You
can set StandardRoles to a list of appropriate values, or specify an explicit list of allowed actions
by using Actions, and ServiceActions. For example:

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus

 [UserRole]
 Actions=GetVersion
 ServiceActions=GetStatus

NOTE: The standard roles do not overlap. If you want a particular role to be able to perform all
actions, you must include all the standard roles, or ensure that the clients, SSL identities, and
so on, are assigned to all relevant roles.

 6. In the section for each role, define the access permissions for the role, by setting Clients,
SSLIdentities, and GSSPrincipals, as appropriate. If an incoming connection matches one of
the allowed clients, principals, or SSL identities, the user has permission to perform the
operations allowed by the role. For example:

[AdminRole]
 StandardRoles=Admin,ServiceControl,ServiceStatus
 Clients=localhost
 SSLIdentities=admin.example.com

 7. Save and close the configuration file.

 8. Restart Media Server for your changes to take effect.

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 65 of 399

IMPORTANT: If you do not provide any authorization roles for a standard role, Media Server uses
the default client authorization for the role (localhost for Admin and ServiceControl, all clients for
Query and ServiceStatus). If you define authorization only by actions, Micro Focus recommends
that you configure an authorization role that disallows all users for all roles by default. For example:

[ForbidAllRoles]
StandardRoles=*
Clients=""

This configuration ensures that Media Server uses only your action-based authorizations.

Specify Modules to Enable

You can choose the modules to enable when Media Server starts. To use less memory and increase
the speed at which Media Server starts, enable only the modules that you want to use.

Any module not listed below is always enabled and cannot be disabled.

To use any of the following modules you must specify the modules to enable when Media Server starts.

 l AudioCategorize

 l AudioMatch

 l Barcode

 l Demographics - face demographics.

 l FaceDetect - face detection.

 l FaceRecognize - face recognition.

 l FaceState - provides information about facial expression, whether the person's eyes are open,
and whether the person is wearing spectacles.

 l ImageClassification

 l ImageComparison

 l ImageHash

 l NumberPlate - number plate recognition.

 l ObjectClassRecognition

 l ObjectRecognition

 l OCR

 l SpeakerID

 l SpeechToText

 l VehicleModel - vehicle model recognition.

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 66 of 399

To specify the modules to enable

 1. Open the Media Server configuration file in a text editor.

 2. Find the [Modules] configuration section. If the section does not exist, add it by typing
[Modules] on a new line.

 3. Use the Enable parameter to specify a comma-separated list of modules to enable. For example:

 [Modules]
 Enable=barcode,ocr

 4. Save and close the configuration file.

When you restart Media Server, only the specified modules are enabled.

Customize Logging

You can customize logging by setting up your own log streams. Each log stream creates a separate log
file in which specific log message types (for example, action, index, application, or import) are logged.

To set up log streams

 1. Open the Media Server configuration file in a text editor.

 2. Find the [Logging] section. If the configuration file does not contain a [Logging] section, add
one.

 3. In the [Logging] section, create a list of the log streams that you want to set up, in the format
N=LogStreamName. List the log streams in consecutive order, starting from 0 (zero). For example:

[Logging]
 LogLevel=FULL
 LogDirectory=logs
 0=ApplicationLogStream
 1=ActionLogStream

You can also use the [Logging] section to configure any default values for logging configuration
parameters, such as LogLevel. For more information, see the Media Server Reference.

 4. Create a new section for each of the log streams. Each section must have the same name as the
log stream. For example:

[ApplicationLogStream]
 [ActionLogStream]

 5. Specify the settings for each log stream in the appropriate section. You can specify the type of
logging to perform (for example, full logging), whether to display log messages on the console, the
maximum size of log files, and so on. For example:

[ApplicationLogStream]
 LogTypeCSVs=application

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 67 of 399

 LogFile=application.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 [ActionLogStream]
 LogTypeCSVs=action
 LogFile=logs/action.log
 LogHistorySize=50
 LogTime=True
 LogEcho=False
 LogMaxSizeKBs=1024

 6. Save and close the configuration file. Restart the service for your changes to take effect.

Validate the Configuration File

You can use the ValidateConfig service action to check for errors in the configuration file.

NOTE: For the ValidateConfig action to validate a configuration section, Media Server must have
previously read that configuration. In some cases, the configuration might be read when a task is
run, rather than when the component starts up. In these cases, ValidateConfig reports any unread
sections of the configuration file as unused.

To validate the configuration file

 l Send the following action to Media Server:

http://Host:ServicePort/action=ValidateConfig

where:

Host is the host name or IP address of the machine where Media Server is installed.

ServicePort is the service port, as specified in the [Service] section of the configuration
file.

Administration Guide
Chapter 4: Configure Media Server

Media Server (12.4) Page 68 of 399

Chapter 5: Start and Stop Media Server

The following sections describe how to start and stop Media Server.

• Start Media Server 69
• Stop Media Server 69
• Verify that Media Server is Running 70
• Access IDOL Admin 71
• Display Online Help 71

Start Media Server

NOTE: Your License Server must be running before you start Media Server.

To start Media Server

 l Start Media Server from the command line using the following command:

ServerName.exe -configfile configname.cfg

where ServerName is the name of the server executable file, and the optional -configfile
argument specifies the path of a configuration file that you want to use.

 l On Windows, if you have installed Media Server as a service, start the service from the Windows
Services dialog box.

 l On UNIX, if you have installed Media Server as a service, use one of the following commands:

 o On machines that use systemd:

systemctl start ServerName

 o On machines that use system V:

service ServerName start

TIP: On both Windows and UNIX platforms, you can configure services to start automatically when
you start the machine.

Stop Media Server

You can stop Media Server by using one of the following procedures.

Media Server (12.4) Page 69 of 399

To stop Media Server

 l Send the Stop service action to the service port.

http://host:ServicePort/action=Stop

where:

host is the host name or IP address of the machine where Media Server is installed.

ServicePort is the Media Server service port (specified in the [Service] section of the
configuration file).

 l On Windows platforms, if Media Server is running as a service, stop Media Server from the
Windows Services dialog box.

 l On UNIX platforms, if Media Server is running as a service, use one of the following commands:

 o On machines that use systemd:

systemctl stop ServerName

 o On machines that use system V:

service ServerName stop

Verify that Media Server is Running

After starting Media Server, you can run the following actions to verify that Media Server is running.

 l GetStatus

 l GetLicenseInfo

GetStatus

You can use the GetStatus service action to verify the Media Server is running. For example:

http://Host:ServicePort/action=GetStatus

NOTE: You can send the GetStatus action to the ACI port instead of the service port. The
GetStatus ACI action returns information about the Media Server setup.

GetLicenseInfo

You can send a GetLicenseInfo action to Media Server to return information about your license. This
action checks whether your license is valid and returns the operations that your license includes.

Send the GetLicenseInfo action to the Media Server ACI port. For example:

http://Host:ACIport/action=GetLicenseInfo

The following result indicates that your license is valid.

Administration Guide
Chapter 5: Start and Stop Media Server

Media Server (12.4) Page 70 of 399

<autn:license>
 <autn:validlicense>true</autn:validlicense>
 </autn:license>

As an alternative to submitting the GetLicenseInfo action, you can view information about your
license, and about licensed and unlicensed actions, on the License tab in the Status section of
IDOL Admin.

Access IDOL Admin

IDOL Admin is a utility that you can use to help monitor and configure Media Server. You can access
IDOL Admin from a Web browser. For more information about IDOL Admin, refer to the IDOL Admin
User Guide.

To access IDOL Admin

 l Type the following URL into the address bar of your Web browser:

http://host:port/action=admin

where:

host is the name or IP address of the host that Media Server is installed on.

port is the Media Server ACI port.

Display Online Help

You can display the Media Server Reference by sending an action from your web browser. The Media
Server Reference describes the actions and configuration parameters that you can use with Media
Server.

For Media Server to display help, the help data file (help.dat) must be available in the installation
folder.

To display help for Media Server

 1. Start Media Server.

 2. Send the following action from your web browser:

http://host:port/action=Help

where:

host is the IP address or name of the machine on which Media Server is installed.

port is the ACI port by which you send actions to Media Server (set by the Port parameter in
the [Server] section of the configuration file).

Administration Guide
Chapter 5: Start and Stop Media Server

Media Server (12.4) Page 71 of 399

For example:

http://12.3.4.56:9000/action=help

Administration Guide
Chapter 5: Start and Stop Media Server

Media Server (12.4) Page 72 of 399

Chapter 6: Send Actions to Media Server

This section describes how to send actions to Media Server.

• Synchronous and Asynchronous Actions 73
• Send Actions to Media Server 73
• Override Configuration Parameters 76
• Use Asynchronous Actions 77
• Monitor Asynchronous Actions using Event Handlers 78
• Process Multiple Requests Simultaneously 81
• Store Action Queues in an External Database 82
• Store Action Queues in Memory 85
• Use XSL Templates to Transform Action Responses 86

Synchronous and Asynchronous Actions

The actions that you send to Media Server can be synchronous or asynchronous.

Media Server does not respond to a synchronous action until it has completed the request. The result of
the action is usually in the response to the request.

Media Server responds to an asynchronous action immediately. This means that you do not have to
wait for a response if the action takes a long time. The response to an asynchronous action includes
only a token. You can use this token to determine the status of the task through the QueueInfo action
at a later time. An asynchronous request is added to a queue (each action has its own queue) and if the
server is under load it is held in the queue until Media Server is ready to process it. The action queues
are stored in a database, so requests are not lost if there is an interruption in service. You can also set
priorities for asynchronous requests, so that the most important are processed first.

As a result, actions that complete quickly usually run synchronously. For example, action=getstatus
is a synchronous action. Actions that can take a significant time to complete are usually asynchronous.
These actions are asynchronous because otherwise requests might time out before Media Server is
able to process them.

Send Actions to Media Server

You can make requests to Media Server by using either GET or POST HTTP request methods.

 l A GET request sends parameter-value pairs in the request URL. GET requests are appropriate for
sending actions that retrieve information from Media Server, such as the GetStatus action. For
more information, see Send Actions by Using a GET Method, on the next page.

 l A POST request sends parameter-value pairs in the HTTP message body of the request. POST
requests are appropriate for sending data to Media Server. In particular, you must use POST

Media Server (12.4) Page 73 of 399

requests to upload and send files to Media Server. For more information, see Send Data by Using
a POST Method, below.

Micro Focus recommends that you send video data to Media Server by providing a URL or a path to a
file. Video files are very large and sending them over HTTP, as either multipart/form-data or a base64
encoded string, could cause Media Server to slow and potentially lead to interruptions in service.
Image, audio, and text files are generally much smaller and so you can send these files over HTTP.

NOTE: The MaxInputString and MaxFileUploadSize configuration parameters set a limit on the
maximum size of HTTP strings and the maximum size of files that you can upload. The default
values for these parameters allow HTTP strings that contain a maximum of 64,000 characters, and
uploaded files with a maximum size of 10,000,000 bytes.

Send Actions by Using a GET Method

You can use GET requests to send actions that retrieve information from Media Server.

When you send an action using a GET method, you use a URL of the form:

http://host:port/?action=action¶meters

where:

host is the IP address or name of the machine where Media Server is installed.

port is the Media Server ACI port.

action is the name of the action that you want to run. The action (or a) parameter must be the
first parameter in the URL string, directly after the host and port details.

parameters are the required and optional parameters for the action. These parameters can follow
the action parameter in any order.

You must:

 l Separate each parameter from its value with an equals symbol (=).

 l Separate multiple values with a comma (,).

 l Separate each parameter-value pair with an ampersand (&).

For more information about the actions that you can use with Media Server, refer to the Media Server
Reference.

GET requests can send only limited amounts of data and cannot send files directly. However, you can
set a parameter to a file path if the file is on a file system that Media Server can access. Media Server
must also be able to read the file.

Send Data by Using a POST Method

You can send files and binary data directly to Media Server using a POST request. One possible way to
send a POST request over a socket to Media Server is using the cURL command-line tool.

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 74 of 399

The data that you send in a POST request must adhere to specific formatting requirements. You can
send only the following content types in a POST request to Media Server:

 l application/x-www-form-urlencoded

 l multipart/form-data

TIP: Media Server rejects POST requests larger than the size specified by the configuration
parameter MaxFileUploadSize.

Application/x-www-form-urlencoded

The application/x-www-form-urlencoded content type describes form data that is sent in a single
block in the HTTP message body. Unlike the query part of the URL in a GET request, the length of the
data is unrestricted. However, Media Server rejects requests that exceed the size specified by the
configuration parameter MaxFileUploadSize.

This content type is inefficient for sending large quantities of binary data or text containing non-ASCII
characters, and does not allow you to upload files. For these purposes, Micro Focus recommends
sending data as multipart/form-data (see Multipart/form-data, on the next page).

In the request:

 l Separate each parameter from its value with an equals symbol (=).

 l Separate multiple values with a comma (,).

 l Separate each parameter-value pair with an ampersand (&).

 l Base-64 encode any binary data.

 l URL encode all non-alphanumeric characters, including those in base-64 encoded data.

Example

The following example base-64 encodes the file image.jpg into a file imagedata.dat and sends it
(using cURL) as application/x-www-form-urlencoded data to Media Server located on the
localhost, using port 14000. The example action adds the image to a new face in an existing face
database named politicians.

 1. Base-64 encode the image.

 l On Windows, create a Powershell script called base64encode.ps1 that contains the
following:

Param([String]$path)
 [convert]::ToBase64String((get-content $path -encoding byte))

Then from the command line, run the script using Powershell:

powershell.exe base64encode.ps1 image.jpg > imagedata.dat

 l On Linux:

 base64 -w 0 image.jpg > imagedata.dat

 2. Send the request to Media Server:

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 75 of 399

 curl http://localhost:14000
 -d 'action=TrainFace&database=politicians&identifier=president'
 --data-urlencode imagedata@imagedata.dat

You can send multiple images in a single request by separating the binary data for each image by a
comma (in imagedata.dat).

Multipart/form-data

In the multipart/form-data content type, the HTTP message body is divided into parts, each
containing a discrete section of data.

Each message part requires a header containing information about the data in the part. Each part can
contain a different content type; for example, text/plain, image/png, image/gif, or
multipart/mixed. If a parameter specifies multiple files, you must specify the multipart/mixed
content type in the part header.

Encoding is optional for each message part. The message part header must specify any encoding other
than the default (7BIT).

Multipart/form-data is ideal for sending non-ASCII or binary data, and is the only content type that
allows you to upload files. For more information about form data, see
http://www.w3.org/TR/html401/interact/forms.html.

NOTE: In cURL, you specify each message part using the -F (or --form) option. To upload a file in
a message part, prefix the file name with the @ symbol. For more information on cURL syntax, see
the cURL documentation.

Example

The following example sends image.jpg (using cURL) as multipart/form-data to Media Server
located on the localhost, using port 14000. The example action adds the image to a new face in an
existing face database named politicians.

curl http://localhost:14000 -F action=TrainFace
 –F database=politicians
 –F identifier=president
 –F imagedata=@image.jpg

Override Configuration Parameters

In actions that you send to Media Server, you can override some configuration parameters that are set
in a configuration file.

To send new parameter values with an action, add the following to the action that you are sending:

&[ConfigSection]ParameterName=NewParameterValue

where:

ConfigSection is the name of the configuration section that contains the parameter to

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 76 of 399

http://www.w3.org/TR/html401/interact/forms.html

override.

ParameterName is the name of the configuration parameter to override.

NewParameterValue is the new value to set.

For example, to override the Orientation configuration parameter for barcode analysis, in a single
process action without changing the configuration file:

localhost:14000/action=process&configname=barcodes
 &source=./media/document.pdf
 &[BarcodeAnalysisTaskName]Orientation=Any

Use Asynchronous Actions

When you send an asynchronous action, Media Server adds the task to a queue and returns a token
that you can use to check its status. Media Server performs the task when a thread becomes available.

Check the Status of an Asynchronous Action

To check the status of an asynchronous action, use the token that was returned by Media Server with
the QueueInfo action. For more information about the QueueInfo action, see the Media Server
Reference.

To check the status of an asynchronous action

 l Send the QueueInfo action to Media Server with the following parameters.

QueueName The name of the action queue that you want to check.

QueueAction The action to perform. Set this parameter to GetStatus.

Token (Optional) The token that the asynchronous action returned. If you do
not specify a token, Media Server returns the status of every action in
the queue.

For example:

/action=QueueInfo&QueueName=...&QueueAction=getstatus&Token=...

Cancel an Asynchronous Action that is Queued

To cancel an asynchronous action that is waiting in a queue, use the following procedure.

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 77 of 399

To cancel an asynchronous action that is queued

 l Send the QueueInfo action to Media Server with the following parameters.

QueueName The name of the action queue that contains the action to cancel.

QueueAction The action to perform . Set this parameter to Cancel.

Token The token that the asynchronous action returned.

Stop an Asynchronous Action that is Running

You can stop an asynchronous action at any point.

To stop an asynchronous action that is running

 l Send the QueueInfo action to Media Server with the following parameters.

QueueName The name of the action queue that contains the action to stop.

QueueAction The action to perform. Set this parameter to Stop.

Token The token that the asynchronous action returned.

Monitor Asynchronous Actions using Event Handlers

Some of the actions that you can send to Media Server are asynchronous. Asynchronous actions do
not run immediately, but are added to a queue. This means that the person or application that sends the
action does not receive an immediate response. However, you can configure Media Server to call an
event handler when an asynchronous action starts, finishes, or encounters an error.

You might use an event handler to:

 l Return data about an event back to the application that sent the action.

 l Write event data to a text file, to log any errors that occur.

You can also use event handlers to monitor the size of asynchronous action queues. If a queue
becomes full this might indicate a problem, or that applications are making requests to Media Server
faster than they can be processed.

Media Server can call an event handler for the following events.

OnStart The OnStart event handler is called when Media Server starts processing an
asynchronous action.

OnFinish The OnFinish event handler is called when Media Server successfully finishes
processing an asynchronous action.

OnError The OnError event handler is called when an asynchronous action fails and

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 78 of 399

cannot continue.

OnQueueEvent The OnQueueEvent handler is called when an asynchronous action queue
becomes full, becomes empty, or the queue size passes certain thresholds.

 l A QueueFull event occurs when the action queue becomes full.

 l A QueueFilling event occurs when the queue size exceeds a configurable
threshold (QueueFillingThreshold) and the last event was a QueueEmpty
or QueueEmptying event.

 l A QueueEmptying event occurs when the queue size falls below a
configurable threshold (QueueEmptyingThreshold) and the last event was a
QueueFull or QueueFilling event.

 l A QueueEmpty event occurs when the action queue becomes empty.

Media Server supports the following types of event handler:

 l The TextFileHandler writes event data to a text file.

 l The HttpHandler sends event data to a URL.

 l The LuaHandler runs a Lua script. The event data is passed into the script.

Configure an Event Handler

To configure an event handler, follow these steps.

To configure an event handler

 1. Stop Media Server.

 2. Open the Media Server configuration file in a text editor.

 3. Set the OnStart, OnFinish, OnError, or OnQueueEvent parameter to specify the name of a
section in the configuration file that contains the event handler settings.

 l To run an event handler for all asynchronous actions, set these parameters in the [Actions]
section. For example:

[Actions]
 OnStart=NormalEvents
 OnFinish=NormalEvents
 OnError=ErrorEvents

 l To run an event handler for a specific action, set these parameters in the [ActionName]
section, where ActionName is the name of the action. The following example calls an event
handler when the Example action starts and finishes successfully, and uses a different event
handler to monitor the queue size:

[Example]
 OnStart=NormalEvents

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 79 of 399

 OnFinish=NormalEvents
 OnQueueEvent=QueueSizeEvents

 4. Create a new section in the configuration file to contain the settings for your event handler. You
must name the section using the name you specified with the OnStart, OnFinish, OnError, or
OnQueueEvent parameter.

 5. In the new section, set the LibraryName parameter.

LibraryName The type of event handler to use to handle the event.

 l To write event data to a text file, set this parameter to TextFileHandler,
and then set the FilePath parameter to specify the path of the file.

 l To send event data to a URL, set this parameter to HttpHandler, and then
use the HTTP event handler parameters to specify the URL, proxy server
settings, credentials, and so on.

 l To run a Lua script, set this parameter to LuaHandler, and then use the
LuaScript parameter to specify the script to run. For information about
writing the script, see Write a Lua Script to Handle Events, below.

For example:

[NormalEvents]
 LibraryName=TextFileHandler
 FilePath=./events.txt

 [ErrorEvents]
 LibraryName=HTTPHandler
 URL=http://handlers:8080/lo-proxy/callback.htm?

 [QueueSizeEvents]
 LibraryName=LuaHandler
 LuaScript=./handle_queue_events.lua

 6. Save and close the configuration file. You must restart Media Server for your changes to take
effect.

Write a Lua Script to Handle Events

The Lua event handler runs a Lua script to handle events. The Lua script must contain a function named
handler with the arguments request and xml, as shown below:

function handler(request, xml)
 ...
 end

 l request is a table holding the request parameters. For example, if the request was
action=Example&MyParam=Value, the table will contain a key MyParam with the value Value.
Some events, for example queue size events, are not related to a specific action and so the table

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 80 of 399

might be empty.

 l xml is a string of XML that contains information about the event.

Process Multiple Requests Simultaneously

Media Server can process multiple requests simultaneously.

This means that if required, you can process multiple media sources concurrently. You can configure
Media Server to do this to increase throughput (the total amount of media processed in a fixed time), or
so that you can process several live video streams at the same time.

Process Asynchronous Requests Simultaneously

The way in which Media Server handles asynchronous actions is defined in the [Actions] section of
the configuration file.

To configure the number of requests to process concurrently from each action queue, set the
configuration parameter MaximumThreads. For example, to configure Media Server to simultaneously
process up to two requests from each action queue set this parameter as follows:

[Actions]
MaximumThreads=2

You can override the value of MaximumThreads for specific actions by setting the parameter in the
[ActionName] section of the configuration file (where ActionName is the name of the action). For
example, if most of the requests received by your Media Server are for the Process action, you could
increase the number of Process actions that run simultaneously by setting the MaximumThreads
parameter in the [Process] section.

In the following example, Media Server runs up to four Process actions simultaneously, but for other
asynchronous actions runs only one request at a time:

[Actions]
MaximumThreads=1

 [Process]
 MaximumThreads=4

NOTE: The MaximumThreads parameter specifies the number of actions that run simultaneously,
not the number of threads that are used. For example, the number of threads required to run a
Process action depends on the analysis, encoding, and other tasks that are configured.

Process Synchronous Requests Simultaneously

To configure the number of synchronous requests to process simultaneously, set the Threads
parameter in the [Server] section of the configuration file. In the following example, Media Server can
process a total of eight synchronous requests simultaneously:

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 81 of 399

[Server]
 Threads=8

NOTE: Micro Focus recommends that you only run Process actions synchronously if you expect
them to complete within a few seconds.

Store Action Queues in an External Database

Media Server provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. You can configure Media Server to store
these queues either in an internal database file, or in an external database hosted on a database server.

The default configuration stores queues in an internal database. Using this type of database does not
require any additional configuration.

You might want to store the action queues in an external database so that several servers can share
the same queues. In this configuration, sending a request to any of the servers adds the request to the
shared queue. Whenever a server is ready to start processing a new request, it takes the next request
from the shared queue, runs the action, and adds the results of the action back to the shared database
so that they can be retrieved by any of the servers. You can therefore distribute requests between
components without configuring a Distributed Action Handler (DAH).

NOTE: You cannot use multiple servers to process a single request. Each request is processed by
one server.

NOTE: Requests that contain multipart/form-data are always processed on the server that received
them. These requests are added to the shared queue, but can only be taken from the queue by the
server that received the request and placed it on the queue.

TIP: You can also store training data used by Media Server in an external database. You can use
the same database server to store training data and asynchronous action queues. However, you
must create separate databases for storing training data and action queues. As a result you must
also create separate data source names (DSNs), and connection strings. For information about
configuring Media Server to use an external database for training data, see Configure Media Server,
on page 55.

Prerequisites

 l Supported databases:

 o PostgreSQL 9.0 or later.

 o MySQL 5.0 or later.

TIP: These are the earliest versions of PostgreSQL and MySQL that you can use to store
action queues. If you want to use the same database server to store training data, review the

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 82 of 399

database requirements in the section Supported External Databases, on page 41, because a
later version might be required.

 l If you use PostgreSQL, you must set the PostgreSQL ODBC driver setting MaxVarChar to 0
(zero). If you use a DSN, you can configure this parameter when you create the DSN. Otherwise,
you can set the MaxVarcharSize parameter in the connection string.

Configure Media Server

To configure Media Server to use a shared action queue, follow these steps.

To store action queues in an external database

 1. Stop Media Server, if it is running.

 2. Open the Media Server configuration file.

 3. Find the relevant section in the configuration file:

 l To store queues for all asynchronous actions in the external database, find the [Actions]
section.

 l To store the queue for a single asynchronous action in the external database, find the section
that configures that action.

 4. Set the following configuration parameters.

AsyncStoreLibraryDirectory The path of the directory that contains the library to use to
connect to the database. Specify either an absolute path, or a
path relative to the server executable file.

AsyncStoreLibraryName The name of the library to use to connect to the database.
You can omit the file extension. The following libraries are
available:

 l postgresAsyncStoreLibrary - for connecting to a
PostgreSQL database.

 l mysqlAsyncStoreLibrary - for connecting to a MySQL
database.

ConnectionString The connection string to use to connect to the database. The
user that you specify must have permission to create tables
in the database. For example:

ConnectionString=DSN=ActionStore

or

ConnectionString=Driver={PostgreSQL};
Server=10.0.0.1; Port=9876;

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 83 of 399

Database=SharedActions; Uid=user; Pwd=password;
MaxVarcharSize=0;

If your connection string includes a password, Micro Focus
recommends encrypting the value of the parameter before
entering it into the configuration file. Encrypt the entire
connection string. For information about how to encrypt
parameter values, see Encrypt Passwords, on page 62.

TIP: Do not use the same database, data source name,
and connection string that you use for storing training data.
You must create a separate database, DSN, and
connection string.

For example:

[Actions]
 AsyncStoreLibraryDirectory=acidlls
 AsyncStoreLibraryName=postgresAsyncStoreLibrary
 ConnectionString=DSN=ActionStore

 5. You can use the same database to store action queues for more than one type of IDOL
component (for example, a group of File System Connectors and a group of Media Servers). To
use a database for more than one type of component, set the following parameter in the
[Actions] section of the configuration file.

DatastoreSharingGroupName The group of components to share actions with. You can set
this parameter to any string, but the value must be the same
for each server in the group. For example, to configure several
Media Servers to share their action queues, set this parameter
to the same value in every Media Server configuration. Micro
Focus recommends setting this parameter to the name of the
component.

CAUTION: Do not configure different components (for
example, two different types of connector) to share the
same action queues. This will result in unexpected
behavior.

 For example:

[Actions]
 ...
 DatastoreSharingGroupName=MediaServer

 6. Save and close the configuration file.

When you start Media Server it connects to the shared database.

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 84 of 399

Store Action Queues in Memory

Media Server provides asynchronous actions. Each asynchronous action has a queue to store
requests until threads become available to process them. These queues are usually stored in a
datastore file or in a database hosted on a database server, but in some cases you can increase
performance by storing these queues in memory.

NOTE: Storing action queues in memory improves performance only when the server receives large
numbers of actions that complete quickly. Before storing queues in memory, you should also
consider the following:

 l The queues (including queued actions and the results of finished actions) are lost if Media
Server stops unexpectedly, for example due to a power failure or the component being forcibly
stopped. This could result in some requests being lost, and if the queues are restored to a
previous state some actions could run more than once.

 l Storing action queues in memory prevents multiple instances of a component being able to
share the same queues.

 l Storing action queues in memory increases memory use, so please ensure that the server has
sufficient memory to complete actions and store the action queues.

If you stop Media Server cleanly, Media Server writes the action queues from memory to disk so that it
can resume processing when it is next started.

To configure Media Server to store asynchronous action queues in memory, follow these steps.

To store action queues in memory

 1. Stop Media Server, if it is running.

 2. Open the Media Server configuration file and find the [Actions] section.

 3. If you have set any of the following parameters, remove them:

 l AsyncStoreLibraryDirectory

 l AsyncStoreLibraryName

 l ConnectionString

 l UseStringentDatastore

 4. Set the following configuration parameters.

UseInMemoryDatastore A Boolean value that specifies whether to keep
the queues for asynchronous actions in memory.
Set this parameter to TRUE.

InMemoryDatastoreBackupIntervalMins (Optional) The time interval (in minutes) at which

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 85 of 399

the action queues are written to disk. Writing the
queues to disk can reduce the number of queued
actions that would be lost if Media Server stops
unexpectedly, but configuring a frequent backup
will increase the load on the datastore and might
reduce performance.

For example:

[Actions]
 UseInMemoryDatastore=TRUE
 InMemoryDatastoreBackupIntervalMins=30

 5. Save and close the configuration file.

When you start Media Server, it stores action queues in memory.

Use XSL Templates to Transform Action Responses

You can transform the action responses returned by Media Server using XSL templates. You must
write your own XSL templates and save them with either an .xsl or .tmpl file extension. For more
information about XSL, see http://www.w3.org/TR/xslt.

After creating the templates, you must configure Media Server to use them, and then apply them to the
relevant actions.

To enable XSL transformations

 1. Ensure that the autnxslt library is located in the same directory as your configuration file. If the
library is not included in your installation, you can obtain it from Micro Focus Technical Support.

 2. Open the Media Server configuration file in a text editor.

 3. In the [Server] section, set the XSLTemplates parameter to True.

CAUTION: If XSLTemplates is set to True and the autnxslt library is not present in the same
directory as the configuration file, the server will not start.

 4. In the [Paths] section, set the TemplateDirectory parameter to the path to the directory that
contains your XSL templates.

 5. Save and close the configuration file.

 6. Restart Media Server for your changes to take effect.

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 86 of 399

http://www.w3.org/TR/xslt

To apply a template to action output

 l Add the following parameters to the action.

Template The name of the template to use to transform the action output.
Exclude the folder path and file extension.

ForceTemplateRefresh (Optional) If you modified the template after the server started, set
this parameter to True to force the ACI server to reload the template
from disk rather than from the cache.

For example:

action=QueueInfo&QueueName=Process
 &QueueAction=GetStatus
 &Token=MTkyLjE2OC45NS4yNDox
 &Template=Form

In this example, Media Server applies the XSL template Form.tmpl to the response from a
QueueInfo action.

NOTE: If the action returns an error response, Media Server does not apply the XSL template.

Administration Guide
Chapter 6: Send Actions to Media Server

Media Server (12.4) Page 87 of 399

Chapter 7: Start Processing Media

This section describes how to create a configuration and use that configuration to start processing.

• Configuration Overview 88
• Create a Session Configuration 95
• Example Configuration 99
• Example Configuration - Advanced 101
• Validate a Task Configuration File 103
• Image and Video Processing 104
• Determine whether Media Server can Ingest Media 106
• Start Processing 106
• Verify Media Server is Processing 108
• Monitor Progress 108
• Stop Processing 109
• Synchronize with the Latest Training 110
• Optimize Analysis Performance with Parallel Processing 112
• Optimize Performance when Processing Images 113

Configuration Overview

Before you begin processing a file or stream, you must create a configuration that instructs Media
Server how to process the media.

You cannot configure ingestion, analysis, encoding, data transformation, event stream processing, or
output in the Media Server configuration file (mediaserver.cfg). Instead, pass a task configuration to
Media Server in the process action, when you start processing. This allows you to process media from
different sources and run different analysis tasks for different types of media.

To pass a configuration to Media Server in the process action, you can:

 l Create a configuration and save the file in the directory specified by the ConfigDirectory
parameter, in the [Paths] section of the Media Server configuration file. When you run the
process action to start processing, use the ConfigName action parameter to specify the name of
the configuration file to use.

 l Create a configuration and save the file somewhere that is accessible to Media Server. When you
run the process action to start processing, use the ConfigPath action parameter to specify the
path of the configuration file to use.

 l Base-64 encode the configuration and send it with the process action when you start processing.
Use the Config action parameter to include the base-64 encoded data.

Media Server (12.4) Page 88 of 399

Tasks

To create a configuration for processing media, you must define tasks, which are individual operations
that Media Server can perform.

 l Ingest tasks bring media into Media Server so that it can be processed. Ingestion splits the data
contained in a file or stream, for example video is split into images (video frames), audio, and
metadata. A configuration must contain exactly one ingest task.

 l Encoding tasks make a copy of ingested media, or encode it into different formats. A
configuration can contain any number of encoding tasks.

 l Analysis tasks run analysis on ingested media, and produce metadata that describes the content
of the media. A configuration can contain any number of analysis tasks.

 l Event stream processing (ESP) tasks introduce additional custom logic into media analysis.
For example, you can filter or deduplicate the information produced during analysis. A
configuration can contain any number of ESP tasks.

 l Transform tasks transform the data produced by other tasks (and might modify its schema). For
example, you can change the size of video frames before sending them to the image encoder. A
configuration can contain any number of transformation tasks.

 l Output tasks send the data produced by Media Server to other systems. A configuration can
contain any number of output tasks.

In a complete configuration, tasks that you define are connected. The output of an ingest task becomes
the input for an analysis or encoding task. The output of an analysis task might become the input for an
encoding, ESP, or output task. You can connect tasks in many different ways, which allows Media
Server to be used to meet many different use cases.

Tracks

Information is passed between tasks in the form of tracks.

Tasks usually produce multiple tracks. For example, an ingest task can produce an image track that
contains frames from the ingested video, and an audio track that contains the audio packages.

In the following example, an ingest task takes the source video and produces an image track and an
audio track. The image track is used as the input for an analysis task. This could be object recognition,
OCR, or another type of analysis that operates on images. In this example the audio track is not used.
The analysis task produces some metadata tracks which contain information about the video content.
One of the tracks is used as the input for an output task.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 89 of 399

When you configure a task, you might need to specify the track(s) to use as the input for the task:

Task type Default input tracks

Ingest Ingest tasks do not accept input tracks. Specify the source media in the
process action, when you start processing.

Encoding Encoding tasks automatically use the first image and audio tracks produced by
your ingest task, so you only need to specify the input for an encoding task if you
want to encode different data, for example:

 l Some video sources contain more than one audio stream, to supply audio
in multiple languages. You might want to encode an audio stream other
than the default.

 l You might want to encode data produced by another task. For example,
you might want to encode the keyframes identified during keyframe
analysis, instead of all ingested frames.

Analysis Most analysis tasks automatically analyze the first image or audio track
produced by your ingest task, so in most cases you do not need to specify an
input track. However, some analysis operations require additional data. For
example, face recognition requires the metadata produced by face detection, so
when you configure face recognition you must specify an input track.

ESP You must always specify the input track(s) to use.

Transform You must always specify the input track to use.

Output Output tasks automatically use the default output tracks produced by your
analysis tasks, but you can specify the input track(s) so that the output tasks
use different tracks.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 90 of 399

Records

Tracks contain records. A record is a collection of metadata that contains information about the media
content. For example, face recognition produces records for each recognized face. All records in a
track contain the same type of information and have the same schema.

When you process images or office documents, records contain a page number that indicates which
page of the image or document the record is related to:

<record>
 <pageNumber>1</pageNumber>
 <trackname>OCR.Result</trackname>
 <OCRResult>
 <id>bcba9983-8dee-450e-9d67-3234e1a0c17a</id>
 <text>FOCUS ON ECONOMY</text>
 <region>
 <left>114</left>
 <top>476</top>
 <width>194</width>
 <height>19</height>
 </region>
 <confidence>84</confidence>
 <angle>0</angle>
 <source>image</source>
 </OCRResult>
 </record>

When you process video, a record can represent data extracted from a single frame, or span multiple
frames. Records created during video processing contain a timestamp that indicates which part of the
video is described by the record. The timestamp includes a start time, peak time, duration, and end
time. All of these values are provided in both epoch microseconds and ISO 8601 time format.

The peak time describes the time at which the event was most clearly visible in the video. For example,
if you are running face recognition a face might appear in the video, remain in the scene for several
seconds, and then leave the scene. The peak time describes the time at which the face was most
clearly visible and at which face recognition recorded the highest confidence score.

The following is an example record produced by OCR, and shows an example timestamp:

<record>
 <timestamp>
 <startTime iso8601="2015-09-22T14:30:35.531005Z">1442932235531005</startTime>
 <duration iso8601="PT00H01M16.820000S">76820000</duration>
 <peakTime iso8601="2015-09-22T14:30:35.531005Z">1442932235531005</peakTime>
 <endTime iso8601="2015-09-22T14:31:52.351005Z">1442932312351005</endTime>
 </timestamp>
 <trackname>OCR.Result</trackname>
 <OCRResult>
 <id>bcba9983-8dee-450e-9d67-3234e1a0c17a</id>
 <text>FOCUS ON ECONOMY</text>
 <region>

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 91 of 399

 <left>114</left>
 <top>476</top>
 <width>194</width>
 <height>19</height>
 </region>
 <confidence>84</confidence>
 <angle>0</angle>
 <source>image</source>
 </OCRResult>
 </record>

Analysis Task Output Tracks

The events that occur in video usually span many frames. For example, a person, object, or logo might
appear on screen and remain there for several minutes. Media Server analyzes video frame by frame,
but many analysis engines track events across frames because analyzing multiple frames can improve
accuracy.

Analysis tasks can produce many different output tracks but, regardless of which track they belong to,
records that relate to the same event always have the same ID.

 l Result tracks contain records that summarize the analysis results for complete event. Each
record can span many video frames and has a start time, peak time, end time, duration, and an
ID. You can use the ID to find other records that are related to the same event. The purpose of a
result track is to provide a summary of the analysis results that is suitable to output from Media
Server. Media Server does not generate a record in a result track until an event has finished,
because these records represent an entire event from beginning to end.

Example: A face detection result track contains a single record for each detected face. Each
record has a different ID.

Example: A face recognition result track contains zero or more records for each detected face
(there can be multiple recognition results when there are several matches that exceed the
recognition threshold). Face recognition results inherit their ID from the detected face, so all of the
recognition results for the same detected face have the same ID.

 l ResultWithSource tracks are similar to result tracks because the records represent complete
events. The records are the same as records in the result track, except that each record also
includes the video frame that produced the best analysis result. For example, when you run face
recognition the video frame with the highest confidence score is added to the record. This frame
corresponds to the "peak" timestamp.

 l Data tracks contain records that correspond to a single analyzed frame. A data track can contain
hundreds of records that relate to the same event. A data track can also contain multiple records
that relate to the same video frame, because multiple events can occur at the same time.

Example: A face detection data track contains at least one record for every analyzed frame in
which a face appears. If a person remains in the scene for several seconds, this track could
contain hundreds of records that identify the same face and have the same ID. If a video frame
contains three faces, the face detection data track will contain three records with timestamps
matching that frame, each with a different ID.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 92 of 399

 l DataWithSource tracks are similar to data tracks because the records correspond to a single
analyzed frame. The records are the same as the records in the data track, except that each
record also includes the video frame that was analyzed.

TIP: Data and DataWithSource tracks contain a lot of information, usually more than you want to
output from Media Server. These tracks are intended to provide data for subsequent analysis tasks.
For example, you can use the DataWithSource track from face detection as the input for face
recognition, so that face recognition can analyze each face across multiple video frames.

 l Start and End tracks contain records that describe the beginning or end of an event in the video.

Example: With face detection the start track contains a record when a face appears in the scene,
and the end track contains a record when the face disappears.

Example: Face recognition does not produce a start or end track, because information about
events (detected faces) is provided by face detection.

 l SegmentedResult tracks are similar to result tracks, except that the maximum duration of a
record is limited by a configuration parameter named SegmentDuration. When a record reaches
the maximum duration, Media Server outputs the record and begins a new one with the same ID.
This means that for every record in the result track that exceeds the maximum duration, there will
be two or more records in the SegmentedResult track. Segmented results are useful when you
need to obtain information about an event before it finishes.

 l SegmentedResultWithSource tracks are similar to SegmentedResult tracks. The records are the
same, except that each record also includes the best source frame that was available at the time
the record was generated.

The following diagram shows how face detection creates records (represented by rectangles) when a
face appears in a video.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 93 of 399

The following diagram shows how face detection creates records (represented by rectangles) when two
faces appear in a video. All of the records related to the same detected face (the same event) have the
same ID. So, in the following example, all of the blue records (1) would have the same ID and all of the
green records (2) would have the same ID.

In both of the previous examples:

 l Media Server creates a single record in the Result and ResultWithSource tracks for each event
(in this example a detected face). These records span the event and summarize the analysis
results. When there are multiple people in the scene at the same time, the records overlap
chronologically.

 l The records in the Data and DataWithSource tracks correspond to a single analyzed frame. This
means that there can be many records for each event. When there are multiple people in the
scene, there are multiple records with timestamps matching the same video frame.

 l Media Server creates a record in the Start track when a person appears in the scene.

 l Media Server creates a record in the End track when a person leaves the scene.

 l In these examples, each person remains in the scene longer than the configured
SegmentDuration, so Media Server creates multiple records in the SegmentedResult and
SegmentedResultWithSource tracks. Media Server starts a new record when the
SegmentDuration is reached.

Some analysis tasks process the output of other engines. Face recognition, for example, processes
records that are produced by face detection. You can see from the examples, above, that the face
detection DataWithSource track provides much more information than the ResultWithSource track.
When you configure face recognition, you can choose which track to process. Processing the
DataWithSource track can result in better accuracy, because face recognition processes multiple
video frames for each detected face. However, processing all of these frames is more computationally
intensive and you should configure this only if your server has sufficient resources.

For information about the tracks that are produced by Media Server tasks, and the information
contained in each track, refer to the Media Server Reference.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 94 of 399

Create a Session Configuration

To create a configuration, you need to consider:

 l the media source, because this determines how to ingest the video.

 l which analysis tasks you want to run, for example face recognition or speech-to-text.

 l the way in which data will flow between tasks. For example, you cannot run face recognition
without first running face detection. You must configure the input of the face recognition task to be
the output from the face detection task.

 l how to output data.

A configuration must have a section named [Session]. This section contains a list of tasks that you
want to run:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=FaceRecognize
 Engine3=EncodeImages
 Engine4=OutputToIDOL
 ...

NOTE: Task names cannot include any of the following characters:

 l period (.)

 l comma (,)

 l colon (:)

 l semicolon (;)

 l asterisk (*)

 l equals sign (=)

These tasks are configured in other sections of the configuration file. The previous example defines a
task named Ingest which you would configure in a section named [Ingest].

Every task section must include the Type parameter to specify the engine to use to complete the task,
and any settings that the engine requires to complete the task. For example:

[Ingest]
 Type=Video

Ingestion

Ingestion brings media into Media Server so that it can be processed. For example, if you ingest video
then Media Server must extract the video and audio from the container and decode the streams so that
they can be analyzed and transcoded.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 95 of 399

Your configuration must include exactly one ingest task. For example:

[Session]
 Engine0=Ingest

 [Ingest]
 Type=Video

This example has a task named Ingest. The engine used to complete the task is specified by the Type
parameter, in this case the Video ingest engine. Notice that no source file or stream is specified in the
configuration. You provide the path of a file or the URL of a stream to Media Server in the Process
action when you start processing.

Ingest engines produce one or more image tracks and possibly audio tracks:

 l Each image track is named taskName.Image_n, where taskName is the name of the task and n is
a unique number. Tracks are numbered from 1.

 l Each audio track is named taskName.Audio_lang_n, where taskName is the name of the task,
lang is the language, and n is a unique number. If the language is unknown, each track is named
Audio__n (note the double underscore), where n is a unique number. The tracks are numbered
from 1.

For example, if you ingest video from a TV broadcast, Media Server might produce an image track
named taskName.Image_1, and three audio tracks: taskName.Audio_French_1, taskName.Audio_
English_2, and taskName.Audio_German_3.

When you configure Media Server, the first image track produced by the ingest task can be specified by
the aliases Default_Image and Image_1. The first audio track produced by an ingest engine can be
specified by the alias Default_Audio.

Analysis

A configuration can contain any number of analysis tasks. For example, you can run face detection and
object recognition at the same time.

The following example includes a single analysis task named OCR. The task uses the OCR analysis
engine:

[Session]
 Engine0=Ingest
 Engine1=OCR

 [OCR]
 Type=ocr
 Input=Default_Image

An analysis engine accepts input of a particular type. For example, the OCR engine requires an image
track, and the SpeakerID engine requires an audio track. The analysis engine only processes records
from the track specified by the Input configuration parameter. In this example, the OCR engine
processes the Default_Image track produced by the ingest engine. The default value of the Input
parameter is Default_Image for engines that require images and Default_Audio for engines that
require audio, so in many cases you do not need to include the Input parameter in the configuration.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 96 of 399

Some analysis engines require more complex input. For example, the face recognition analysis engine
requires records that contain an image but also region information that specifies the position of the face
in the image. The region information is not available in the Default_Image track from the ingest engine
so you cannot use that track as the input and you must set the Input configuration parameter. The
region information is provided by a face detection analysis task. The DataWithSource track produced
by face detection includes the location of each face in every frame and the corresponding source
images.

In the following example the input of the face recognition task is the DataWithSource track produced
by the face detection task:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=FaceRecognize

 [FaceDetect]
 Type=FaceDetect
 ...

 [FaceRecognize]
 Type=FaceRecognize
 Input=FaceDetect.DataWithSource
 ...

The response to action=ListEngines describes the type of input required by each analysis engine. It
also describes the output tracks that are produced. To be used as the input for a task, a track must
provide at least the required record types. For more information about the output tracks produced by
Media Server engines, refer to the Media Server Reference.

Transform

A configuration can contain any number of transformation tasks.

A transformation task requires a single input, transforms the data in some way (and might change its
schema), and produces a single output. For example, you can use a transformation task to resize
keyframes extracted by keyframe analysis, before sending them to the image encoder and writing them
to disk.

The following example includes a single transformation task named ScaleKeyframes. The task uses
the Scale transformation engine:

[Session]
 Engine0=Ingest
 Engine1=IdentifyKeyframes
 Engine2=ScaleKeyframes

 ...

 [ScaleKeyframes]
 Type=Scale

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 97 of 399

 Input=IdentifyKeyframes.ResultWithSource
 ImageSize=300,0

All transformation engines produce a single output track with the name TaskName.Output, where
TaskName is the name of the transformation task.

Encoding

A configuration can contain any number of encoding tasks. For example:

[Session]
 Engine0=Ingest
 Engine1=MyRollingBuffer

 [MyRollingBuffer]
 Type=rollingbuffer
 // rolling buffer configuration

This example specifies a single encoding task named MyRollingBuffer.

An encoding engine accepts image and/or audio tracks produced by an ingest or analysis engine. For
example, you can:

 l make a copy of ingested video.

 l make a copy of ingested video at a different resolution or bitrate to the source.

 l encode the output of an analysis engine - for example use the Image Encoder to write the
keyframes identified by keyframe analysis to disk.

All encoding tasks produce a single output track with the name TaskName.Proxy, where TaskName is
the name of the encoding task. This track contains information about the encoded media. You can
output this information alongside your analysis results so that a front-end application can open and
display the encoded media that shows a specific event, such as an identified news story or a
recognized face.

Output

Usually a configuration contains at least one output task. The following example includes an output
task named IDOL:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=FaceRecognize
 Engine3=IDOL

 [IDOL]
 Type=IDOL
 Input=FaceRecognize.Result
 // idol engine options

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 98 of 399

All output tasks can include the configuration parameter Input. This specifies a comma-separated list
of tracks that you want to output to an external system. If you do not specify a list of tracks, Media
Server outputs a default selection of tracks. For information about whether a track is output by default,
refer to the Media Server Reference.

Output engines do not produce records, and therefore do not have output tracks.

Example Configuration

The following diagram shows a simple configuration for performing OCR on a video stream and sending
the results to IDOL Server. The setup includes an ingest engine, an analysis engine, and an output
engine. These are usually the minimum required for any configuration.

 1. Media Server receives a Process action, which starts a new session. The Video ingest engine
receives video from the source specified in the action. It produces an image track and audio track.

 2. The image track is used as the input for the OCR analysis engine.

 3. The audio track cannot be used by the OCR analysis engine so is discarded.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 99 of 399

 4. The OCR engine produces several output tracks. The Result track contains the OCR results and
is used as the input for the IDOL output task.

 5. The other tracks produced by the OCR engine are not required and so are discarded.

 6. The IDOL output engine indexes the data produced by Media Server into IDOL.

A Media Server configuration that matches this process is shown below.

 l The OCR task includes the parameter Input=Default_Image, which specifies that the input for
the OCR task is the first image track from the ingest engine. Setting this parameter is optional,
because the default value of the Input parameter for engines that require images is Default_
Image.

 l The IDOLOutput task includes the parameter Input=OCR.Result. This specifies that the input for
the IDOL output task is the Result track from the OCR task.

[Session]
 Engine0=Ingest
 Engine1=OCR
 Engine2=IDOLOutput

 [Ingest]
 Type=Video

 [OCR]
 Type=OCR
 Input=Default_Image

 [IDOLOutput]
 Input=OCR.Result
 Type=IDOL
 Mode=time
 OutputInterval=60s
 XslTemplate=./xsl/toIDX.xsl

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 100 of 399

Example Configuration - Advanced

The following diagram shows a more complex configuration, which includes an encoding task and
multiple analysis tasks.

 1. Media Server receives a Process action, which starts a new session. The Video ingest engine
receives video from the source specified in the action. It produces an image track and an audio
track.

 2. The image track is used as the input for the MPEG encoder and Face Detection analysis tasks.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 101 of 399

 3. The audio track is used as the input for the MPEG encoder, and the Speaker ID and Speech-to-
text analysis tasks.

 4. The MPEG encoder writes a copy of the video to disk as a set of MPEG files. It also produces
proxy information that is available to the output engine.

 5. The face detection engine produces a track that contains information about detected faces. This
is used as the input for the face recognition analysis engine.

 6. The output tracks from the analysis engines are used as the input for the IDOL Server output
engine. The analysis engines all produce multiple tracks, some of which are not used.

 7. The IDOL output engine transforms the records produced by the MPEG encoder and analysis
engines into documents and indexes the information into IDOL Server.

A Media Server configuration that matches this process is shown below.

[Session]
 Engine0=Ingest
 Engine1=MPEGencode
 Engine2=Face
 Engine3=FaceRec
 Engine4=SpeakerID
 Engine5=SpeechToText
 Engine6=IDOLOutput

 [Ingest]
 Type=Video

 [MPEGencode]
 Type=mpeg
 OutputPath=\\server\folder\file.mpg
 URLBase=https://www.myserver.com/folder/
 Segment=TRUE

 [Face]
 Type=FaceDetect

 [FaceRec]
 Type=FaceRecognize
 Input=Face.DataWithSource

 [SpeakerID]
 Input=Default_Audio
 Type=SpeakerID
 Database=speakers

 [SpeechToText]
 Input=Default_Audio
 Type=SpeechToText
 LanguagePack=ENUK
 SpeedBias=Live

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 102 of 399

 [IDOLOutput]
 Type=IDOL
 Input=FaceRec.Result,SpeakerID.Result,SpeechToText.Result,MPEGencode.Proxy
 IDOLHost=
 IDOLPort=
 Mode=time
 OutputInterval=60s
 XslTemplate=./xsl/toIDX.xsl
 SavePostXML=true
 XMLOutputPath=./output/idol/

Validate a Task Configuration File

You can use the action ValidateProcessConfig to check for errors in a task configuration file.

To validate a task configuration file

 l Send the action ValidateProcessConfig to Media Server, including one of the following
parameters:

Config A base64 encoded configuration file to validate.

ConfigName The name of a configuration file to validate, when the configuration file is stored
in the directory specified by the ConfigDirectory parameter, in the [Paths]
section of the Media Server configuration file.

ConfigPath The path of a configuration file to validate.

For example, to validate the configuration facedetect.cfg, which is stored in the directory
specified by the ConfigDirectory parameter:

http://host:14000/action=ValidateProcessConfig&ConfigName=facedetect

The response to the action includes a processable element. This contains a Boolean value that
indicates whether the configuration could be used to start processing. The value true indicates
that there were no fatal errors. If you have used deprecated configuration parameters or the
configuration contains unused parameters these are listed in the errors element of the response
but are not considered to be fatal errors.

A value of true does not guarantee that processing will succeed, because this might depend on
the source media and whether resources (such as another Media Server) are available. If the
configuration sends records to another Media Server, the action does not validate configurations
on the downstream server.

If errors are detected, they are described in the errors element of the response.

For more information about this action, refer to the Media Server Reference.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 103 of 399

Image and Video Processing

This section shows which Media Server features are supported for different types of media.

 l Image includes single image files and images that are extracted from documents such as PDF
files.

 l Video includes video files and video streams.

Analysis Image Video

Face detection, recognition, and demographics ✓ ✓

Optical Character Recognition ✓ ✓

Image classification ✓ ✓

Object class recognition ✓ ✓

Object recognition ✓ ✓

Text detection ✓ ✓

Number plate recognition ✓ ✓

Vehicle make and model recognition ✓ ✓

Clothing color analysis ✓ ✓

Scene analysis ✗ ✓

Keyframe extraction ✗ ✓

Image comparison ✓ ✓

Color clustering ✓ ✓

Barcode recognition ✓ ✓

Image hash generation ✓ ✓

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 104 of 399

Audio analysis (audio categorization, language identification, speaker
identification, speech-to-text, audio matching)

✗ ✓

News segmentation ✗ ✓

Encoding Image Video

MPEG encoder (to file or UDP stream) ✗ ✓

Image encoder ✓ ✓

Rolling buffer encoder ✗ ✓

Event Stream Processing Image Video

Filter ✓ ✓

Combine ✓ ✓

Deduplicate ✓ ✓

And ✓ ✓

AndThen ✗ ✓

AndAny ✓ ✓

AndThenAny ✗ ✓

AndNot ✓ ✓

AndNotThen ✗ ✓

Or ✓ ✓

Output Image Video

ACI Response ✓ ✓

Files on disk ✓ ✓

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 105 of 399

Connector Framework Server ✓ ✓

IDOL Server ✓ ✓

Vertica ✓ ✓

ODBC database ✓ ✓

HTTP POST ✓ ✓

Milestone XProtect ✗ ✓

Determine whether Media Server can Ingest Media

Media Server can analyze a media file or stream and return information about whether it can be
ingested.

To determine whether Media Server can Ingest a File or Stream

 l Run the action DescribeMedia. For example:

/action=DescribeMedia&source=./media/my_video.ts

Media Server returns information about the media and its ability to ingest it.

The supported element in the response indicates the likelihood that Media Server can ingest the
media. The value can be:

 l yes - the format and codecs are supported, so in most cases Media Server should be able to
ingest the media. Ingestion can still fail in some cases, for example if Media Server encounters
corrupt data.

 l maybe - Media Server can open the media but the format or codecs have not been tested.

 l no - indicates that the media cannot be ingested.

Related Topics

 l Supported Audio and Video Codecs and Formats, on page 117

 l Supported Image and Document File Formats, on page 124

Start Processing

To start processing, send the process action to Media Server.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 106 of 399

Media Server adds your request to the process action queue. When the request reaches the top of the
queue and a thread is available, Media Server starts to ingest the media and perform the configured
tasks.

To start processing

 l Send the process action to Media Server.

From the following list of parameters, you must set either Source or SourceData to specify the
source, and Config, ConfigName, or ConfigPath to specify the configuration to use.

Source The media source to process. Specify one of the following:

 o a path to a file residing on a file system that Media Server can access.

 o the URL of a stream.

 o the name of a DirectShow video device (to ingest video from a DirectShow
source, such as a capture card).

 o to ingest video from Milestone XProtect:

 n a camera name.

 n a camera UUID.

 n (Milestone XProtect Corporate only) a camera UUID followed by a
stream ID, in the following format:

id:camera_uuid,streamid:stream_id

If your camera produces multiple streams and you do not specify a
stream ID, Media Server ingests the stream that is configured as the
default in the Milestone XProtect system.

 o to ingest video from Genetec Security Center, specify a camera logical ID.

SourceData The media file to process (as binary data). For information about sending data to
Media Server, see Send Actions to Media Server, on page 73.

Persist Specifies whether the action restarts in the event that processing stops for any
reason. For example, if you are processing video from an RTSP camera which
becomes unreachable and persist=true, Media Server will wait for the stream
to become available again. Persistent actions only stop when you stop them
using the QueueInfo action with QueueAction=stop, or when Media Server
finishes processing the media.

Config A base-64 encoded configuration that defines the tasks to run.

ConfigName The name of a configuration file that defines the tasks to run. The file must be
stored in the directory specified by the ConfigDirectory parameter in the
[Paths] section of the configuration file.

ConfigPath The path of a configuration file that defines the tasks to run. Specify an absolute
path or a path relative to the Media Server executable file.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 107 of 399

For example,

http://localhost:14000/action=Process&Source=.\video\broadcast.mpeg
 &ConfigName=broadcast

This action is asynchronous, so Media Server returns a token for the request. You can use the
QueueInfo action, with QueueName=Process to retrieve more information about the request.

Verify Media Server is Processing

You can run the action GetLatestRecord to verify that Media Server is processing media. This action
returns the latest records that have been added to the tracks you specify in the action.

For example, send the following action:

http://localhost:14000/action=GetLatestRecord
 &Token=...
 &Tracks=Keyframe.Result,OCR.Result

 l where the token parameter specifies the asynchronous action token returned by the process
action,

 l and tracks specifies the tracks to retrieve the latest records from. You can set this parameter to
an asterisk (*) to retrieve the latest records from all tracks.

Monitor Progress

You can use the QueueInfo action to monitor the progress of Media Server as it processes a file (but
not a stream).

For example, send the following action:

http://localhost:14000/action=QueueInfo
 &QueueName=process
 &QueueAction=progress
 &Token=...

where the token parameter specifies the asynchronous action token returned by the process action.

Media Server returns a response similar to:

<autnresponse>
 <action>QUEUEINFO</action>
 <response>SUCCESS</response>
 <responsedata>
 <action>
 <token>......................................</token>
 <status>Processing</status>
 <progress>
 <building_mode>false</building_mode>
 <percent>26.407</percent>
 <time_processing>71</time_processing>

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 108 of 399

 <estimated_time_remaining>198</estimated_time_remaining>
 </progress>
 </action>
 </responsedata>
 </autnresponse>

The response includes the following information:

 l The building_mode element specifies whether Media Server is building progress information. If
the value here is true, Media Server is still analyzing the file to determine its length.

 l The percent element specifies the progress of Media Server. In the previous example, Media
Server has processed 26% of the file.

 l The time_processing element indicates how long Media Server has spent processing the file so
far.

 l The estimated_time_remaining element provides an estimate of how long Media Server needs
to complete processing the file.

Stop Processing

When you process a file, the process action finishes when Media Server reaches the end of the file.
However, you might be processing a video stream that does not end. In this case, you might want to
stop processing.

To stop processing video

 l Use the QueueInfo action, with the following parameters:

QueueName The name of the queue. Processing is initiated using the process action, so set
QueueAction=process.

QueueAction The action to perform on the queue. To stop processing, set
QueueAction=stop.

Token (Optional) The token for the request that you want to stop. If you don't specify a
token, Media Server stops the task that is currently processing.

For example,

http://localhost:14000/action=queueinfo
 &queuename=process
 &queueaction=stop

&token=MTAuMi4xMDQuODI6MTQwMDA6UFJPQ0VTUzoxMTgzMzYzMjQz

Media Server returns a response stating whether the request was successfully completed.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 109 of 399

Synchronize with the Latest Training

Some analysis operations require training. When you train Media Server the training is added to the
database, but is not used for analysis until Media Server has synchronized with the database.
Synchronization loads the data into memory and makes it ready for use. Synchronization is necessary
so that you can use any Media Server to perform training, even when several Media Servers share a
single database.

Automatic Synchronization

The default configuration ensures that analysis uses the latest training data.

Before it starts a process action that requires training data, Media Server synchronizes with the
database and waits for the synchronization to complete. This is because the SyncDatabase parameter
- available for tasks that use training from the database - has a default value of TRUE.

Media Server also synchronizes with the database at regular intervals. You can configure the interval
by setting the SyncInterval parameter in the [Database] section of the configuration file. This is
important for processing video streams, because Media Server could continue processing the same
stream for days or weeks. Automatic synchronization ensures that Media Server regularly loads the
latest training without you having to intervene.

NOTE: If you add a large amount of training data and immediately start a process action, Media
Server might not use the latest training. This is because some training actions are asynchronous
and the new training might not have been committed to the database before the process action
starts. The new training therefore cannot be synchronized. To be sure that Media Server is using the
latest training, wait for your training actions to complete before sending the process action.

NOTE: With the Audio Match and Speaker ID analysis engines, synchronizing with the latest
training has no effect on actions that are already running.

Manual Synchronization

In some cases, you might want to control when Media Server synchronizes with the training database:

 l In a production environment, you might modify the training only at known times. In this case you
might prefer to disable automatic synchronization, because forcing Media Server to query the
database before it starts processing each request can reduce the processing speed.

 l If you are processing a continuous video stream, you might not want Media Server to synchronize
with the latest training while processing is in progress.

 l You might want to disable automatic synchronization to ensure that a batch of process requests
all use the same training. If you are processing discrete files, you might perform training in bulk
and then process batches of files.

The configuration parameter ScheduledSync specifies whether Media Server synchronizes with the
database at regular intervals. The default value is periodic, which enables scheduled synchronization

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 110 of 399

at intervals defined by the parameter SyncInterval. To load training data when Media Server starts,
but not synchronize at regular intervals, set ScheduledSync=startup. To disable scheduled
synchronization completely, set ScheduledSync=never. In this case, Media Server does not load any
training data when it starts and does not synchronize with the database at timed intervals.

To prevent Media Server synchronizing with the database before it starts a process action, set
SyncDatabase=FALSE in the configuration section for each relevant analysis task. With this setting, be
aware that process requests could use outdated training.

If you disable automatic synchronization but want to load the latest training, you can run an action (see
Actions to Load and Unload Training, below).

Reduce Memory Use

With automatic synchronization, described above, Media Server loads all training data into memory. If
you have an extremely large training database that contains many face databases, object databases,
classifiers, and so on, this can consume a significant amount of memory.

To load only the training you need, set ScheduledSync=startup or ScheduledSync=never to disable
scheduled synchronization. If you set ScheduledSync=startup, Media Server loads all training data
when it starts but you can remove training from memory as required. If you set ScheduledSync=never,
Media Server does not load any training data when it starts, so you can load only the training data you
need.

To load training or remove training from memory, use one of the following methods:

 l Allow Media Server to synchronize with the latest training before beginning an analysis task (this
occurs by default). Media Server loads the training it needs to complete the task.

 l To prevent Media Server synchronizing with the training database before beginning a task, set
SyncDatabase=FALSE in the [TaskName] section for your analysis task. In this case, you, must
manually synchronize the training data you need by running actions (see Actions to Load and
Unload Training, below).

Actions to Load and Unload Training

The following table lists the actions that you can use when you have disabled automatic
synchronization but want to synchronize with the latest training, or remove training from memory.

Analysis task Action to load training Action to unload training

Audio matching SyncAudioMatchClips

Face recognition SyncFaces UnsyncFaces

Image classification SyncClassifiers UnsyncClassifiers

Image hashing SyncImageHashes UnsyncImageHashes

Object class recognition SyncObjectClasses UnsyncObjectClasses

Object recognition SyncObjects UnsyncObjects

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 111 of 399

Speaker identification SyncSpeakers

Speech-to-text SyncCustomSpeechResources

Vehicle model ID SyncVehicleModels UnsyncVehicleModels

Optimize Analysis Performance with Parallel Processing

Media Server can use multiple threads to perform some analysis tasks on video. (If your source media
is a single image or document, Media Server always uses one thread for each analysis task).

Using multiple threads allows Media Server to process multiple video frames simultaneously. You
might want to use multiple threads for the following reasons:

 l Some analysis operations are resource-intensive and cannot process video frames as quickly as
they are ingested. To process a video in real time, Media Server might need to skip frames.
Allowing Media Server to use more than one thread means that it can process more frames and
this can increase accuracy.

 l If you have configured Media Server to process a video file without skipping frames, allowing
Media Server to use more threads means that the media is processed in less time.

Media Server can use multiple threads for performing:

 l face detection.

 l face recognition.

 l face demographics analysis.

 l face expression analysis.

 l clothing analysis.

 l optical character recognition.

 l object class recognition.

 l object recognition.

 l number plate recognition.

 l image classification.

To specify the number of threads that an analysis task can use, set the NumParallel configuration
parameter in the task section of your configuration. For example:

 [FaceDetect]
 Type=FaceDetect
 Database=Faces
NumParallel=2

 [NumberPlate]
 Type=NumberPlate
 Location=UK
NumParallel=2

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 112 of 399

NOTE: If you have installed Media Server with GPU support and are configuring a task that can use
the GPU, set NumParallel=1 and use the configuration parameter GPUNumParallel to specify the
number of video frames to process concurrently on the GPU. For more information, see Optimize
Analysis Performance with a GPU, on page 365.

It is important to consider the total number of threads that Media Server will use. For example, a
configuration for monitoring a television broadcast might include the following tasks:

 l Face detection, with NumParallel=2 (so face detection will use two threads).

 l Face recognition to recognize known faces (one thread).

 l Object recognition to detect corporate logos, with NumParallel=2 (two threads).

 l Speech-to-text (one thread)

 l Optical character recognition with NumParallel=1 (one thread).

 l An encoding task to write the video to disk or a rolling buffer (one thread).

This demonstrates that a single process action can easily consume many threads (at least eight in the
previous example). If you have configured Media Server to run multiple process actions
simultaneously, then the total number of threads consumed is multiplied by the number of actions that
you are running. It is important to install Media Server on a server with sufficient resources.

The optimum number of threads to use for processing depends on the number of CPU cores your
server has available. Increasing the number of threads used by Media Server up to this limit will
increase throughput. For example if your server has 20 CPU cores then allowing Media Server to
consume 16 threads rather than 8 should almost double throughput. Using more threads than the server
has CPU cores may increase throughput but the improvement will be smaller for each additional thread.
Using significantly more threads than the server has CPU cores is not recommended and may
decrease performance.

Optimize Performance when Processing Images

When Media Server begins an analysis task it might have to load information. For example, if you start
processing and your configuration includes OCR, Media Server must load language data for the
languages that you have chosen. You can optimize performance by configuring Media Server to load
the data when it starts and keep the data in memory. Throughput is improved because the data required
is already stored in memory, and the overhead of loading data at the start of each task and unloading it
at the end is removed. This can significantly increase throughput when you run many process actions
that complete quickly, for example when you are processing batches of images or individual frames
extracted from a video. Loading data when Media Server starts does not significantly improve
throughput when you are processing video files or streams.

TIP: Media Server automatically loads training data for analysis tasks such as face recognition or
object recognition. For information about customizing how training data is loaded, see the relevant
sections in Analyze Media, on page 136.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 113 of 399

Number Plate Recognition

To load number plate formats when Media Server starts, and keep the data in memory, set the
NumberPlateLocation parameter in the [PersistentData] section of the configuration file:

[PersistentData]
 NumberPlateLocation=US-ME

This parameter accepts a comma-separated list of ISO-3166 location codes. To obtain a list of
supported locations with ISO-3166 codes, use the action ListNumberPlateLocations.

NOTE: If you set this parameter then all number plate recognition tasks must be configured with the
same location (when you configure the number plate analysis task, set the Location parameter to
the same value).

OCR

To load OCR languages when Media Server starts, and keep the data in memory, set the
OCRLanguages parameter in the [PersistentData] section of the configuration file:

[PersistentData]
 OCRLanguages=en,fr

This parameter accepts a comma-separated list of ISO 639-1 language codes. For a list of supported
languages and their language codes, see OCR Supported Languages, on page 382.

You must still set the Languages parameter when you configure an OCR task. If an OCR task requires
languages that are not pre-loaded, the languages are loaded when the task begins and unloaded when
the task ends.

Administration Guide
Chapter 7: Start Processing Media

Media Server (12.4) Page 114 of 399

Media Server (12.4) Page 115 of 399

Part II: Ingest Media

Before you can start processing media, you must create a configuration that defines which operations to
perform. This section describes how to configure Media Server to ingest media.

 l Video Files and Streams

 l Images and Documents

 l Cameras and Third-Party Systems

Media Server (12.4) Page 116 of 399

Administration Guide
Part II: Ingest Media

Chapter 8: Video Files and Streams

This section describes how to ingest video files and streams. When you ingest video, an ingest engine
receives video input and produces demuxed and decoded streams ready for processing by other
engines.

• Supported Audio and Video Codecs and Formats 117
• Choose the Rate of Ingestion 118
• Ingest Video from a File 120
• Ingest Video from a Stream 121

Supported Audio and Video Codecs and Formats

This page lists the audio and video codecs, and the file formats, supported by Media Server. To ingest
files that use these codecs and formats, use a Video ingest task (see Ingest Video from a File, on
page 120).

Other codecs and file formats might work, but they are not supported.

Video Codecs

 l MPEG1

 l MPEG2

 l MPEG4 part 2

 l MPEG4 part 10 (Advanced Video Coding) (h264)

 l MPEGH part 2 (High Efficiency Video Coding) (h265)

 l Windows media 7

 l Windows media 8

Audio Codecs

 l MPEG audio layer 1

 l MPEG audio layer 2

 l MPEG audio layer 3

 l MPEG 4 audio (Advanced Audio Coding) (AAC)

 l PCM (wav)

 l Windows media audio 1

Media Server (12.4) Page 117 of 399

 l Windows media audio 2

 l AC3 (ATSC A/52)

File Formats

 l MPEG packet stream (for example .mpg)

 l MPEG2 transport stream (for example .ts)

 l MPEG4 (for example .mp4)

 l WAVE (Waveform Audio) (.wav)

 l asf (Windows media) (.asf, .wmv)

 l raw aac (.aac)

 l raw ac3 (.ac3)

Choose the Rate of Ingestion

Some analysis operations are resource-intensive and cannot process video frames as quickly as they
can be ingested. For this reason, and because processing every frame does not necessarily improve
detection performance or capture rates, analysis tasks usually do not process every frame of a video.

The interval at which an analysis task selects frames to be analyzed is called the sample interval. For
example, if a task has a sample interval of 125 milliseconds then any two frames analyzed by the task
will be separated by at least 125 milliseconds. This means that at most eight frames are analyzed for
every second of video.

Media Server uses default sample intervals that have been chosen to produce good accuracy in most
cases. Micro Focus recommends using the default values but you can increase or decrease the sample
interval for an analysis task by setting the SampleInterval configuration parameter.

If you are processing a live stream, Media Server is ingesting video at a fixed rate and must keep up
with the video. This means that if your Media Server does not have sufficient resources, it will not be
able to process frames at the sample interval that you have requested. In this case, an analysis task
will automatically increase its sample interval to ensure that analysis keeps up with the video. This
might cause a reduction in accuracy because the frames that are analyzed will be further apart, making
it more difficult for Media Server to track objects across frames and reducing the effectiveness of
integration. When you are processing a live stream, you cannot change the rate at which video is
ingested, so to prevent the sample interval being increased the only solution is to increase the
resources (particularly CPU cores) available to Media Server.

If you are processing video that is ingested from a file, you can choose the rate at which video is
ingested. The rate at which Media Server ingests video is controlled by the IngestRate configuration
parameter. You can set this parameter to one of the following values:

 l 1 - This is the default value and must be used if you are processing a live stream. Media Server
ingests video at normal (playback) speed. Assuming there are no external limitations such as
network bandwidth, Media Server ingests one minute of video every minute. If an analysis task
cannot process frames at the requested sample interval, it will automatically increase its sample

Administration Guide
Chapter 8: Video Files and Streams

Media Server (12.4) Page 118 of 399

interval and analyze fewer frames.

 l 0 - The rate at which video is ingested is determined by the slowest analysis task that you have
configured. The interval between the frames selected for analysis will always be as close as
possible to SampleInterval. Some analysis tasks are very fast, but some are slower and can
analyze only one or two frames per second per thread. With IngestRate=0, the amount of time
required to ingest a video file depends on the analysis tasks that you have configured and the
resources available to Media Server.

TIP: The sample interval and rate of ingestion have no effect on the speed at which a video frame is
analyzed. The speed of analysis is determined by the resources available to Media Server. If your
server has sufficient resources (CPU cores) and an analysis task supports it, you can set the
NumParallel parameter. This specifies the number of video frames for an analysis task to process
concurrently. Processing frames in parallel can increase the total number of frames processed in a
certain time. Depending on the ingest rate, this will either result in the actual sample interval being
closer to the requested interval, or the file being processed in less time.

The following table summarizes the combinations that are available for IngestRate and
SampleInterval:

Options Default SampleInterval SampleInterval = 0

IngestRate=1 Micro Focus recommends using
IngestRate=1 and the default sample
intervals for processing live streams.

Media Server does not attempt to
process every frame, but selects
frames for analysis based on the
specified sample interval. The default
sample intervals should provide good
accuracy in most cases. If necessary,
Media Server will increase the sample
interval to ensure that analysis occurs
at normal (playback) speed.

If Media Server does not have sufficient
resources, it will increase the sample
interval, which might cause a reduction
in accuracy.

Media Server attempts to analyze every
frame, but frames are skipped if the
analysis tasks you have configured
cannot process the frames at normal
(playback) speed.

Micro Focus does not recommend these
settings because processing every frame
is usually not necessary and Media
Server is likely to skip large numbers of
frames.

IngestRate=0 Micro Focus recommends
IngestRate=0 and the default sample
intervals for processing video from
files.

Media Server does not attempt to
process every frame, but selects
frames for analysis based on the
specified sample interval. The default
sample intervals should provide good

Ensures that all frames are analyzed.

Micro Focus does not recommend these
settings because in most cases this will
take much longer and might not increase
accuracy.

Use this mode only if it is critical that
every frame is analyzed.

Administration Guide
Chapter 8: Video Files and Streams

Media Server (12.4) Page 119 of 399

accuracy in most cases. If analysis is
slow, Media Server ingests the file at a
slower rate so that frames can be
analyzed at the requested sample
interval.

If Media Server does not have sufficient
resources, it will take longer to process
the file, but accuracy is maintained.

Ingest Video from a File

To ingest video from a file, follow these steps.

To ingest video from a file

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, set the following configuration parameters:

IngestRate The rate at which Media Server ingests video. If you are ingesting video from
files, Micro Focus recommends setting this parameter to 0. For more information
about choosing an ingest rate, see Choose the Rate of Ingestion, on page 118.

EngineN The name of a section in the configuration file that will contain the ingestion
settings

For example:

[Session]
 IngestRate=0
 Engine0=Ingest

 3. Create a new section in the configuration file to contain the ingestion settings (using the name you
specified with the EngineN parameter). Then, set the following parameters:

Type The ingest engine to use. Set this parameter to Video.

IngestDateTime (Optional) The ingest engine produces output tracks that contain
timestamped records. You can use this parameter to control the timestamp
values, which is useful if you are ingesting video that was originally
broadcast at an earlier time. Specify the time in epoch milliseconds or ISO
8601 UTC.

StartOffset (Optional) The position in the video at which to start processing. For
example, to ignore the first minute of a video file, set this parameter to
60seconds.

Administration Guide
Chapter 8: Video Files and Streams

Media Server (12.4) Page 120 of 399

MaximumDuration (Optional) The maximum amount of video and audio to ingest, before
stopping ingestion. If you do not set this parameter, there is no limit on the
amount of video and audio that is ingested. You can set this parameter to
ingest part of a video file. If the maximum duration is reached, Media
Server stops ingestion but does finish processing any frames that have
already been ingested.

For example:

[Ingest]
 Type=Video

TIP: There is no configuration parameter to specify the source. You must specify the path of
the source file or the IP address of the stream that you want to ingest as the value of the
Source parameter in the Process action, when you start processing.

For more information about the parameters you can set to configure ingestion, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Ingest Video from a Stream

To ingest video from a stream, follow these steps.

To ingest video from a stream

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, set the following configuration parameters:

IngestRate The rate at which Media Server ingests video. If you are ingesting video from a
stream, you must set this parameter to 1.

EngineN The name of a section in the configuration file that will contain the ingestion
settings

For example:

[Session]
 IngestRate=1
 Engine0=Ingest

 3. Create a new section in the configuration file to contain the ingestion settings, and set the
following parameters:

Administration Guide
Chapter 8: Video Files and Streams

Media Server (12.4) Page 121 of 399

Type The ingest engine to use. Set this parameter to Video.

IngestDateTime (Optional) The ingest engine produces output tracks that contain
timestamped records. You can use this parameter to control the timestamp
values, which is useful if you are ingesting video that was originally
broadcast at an earlier time. Specify the time in epoch milliseconds or ISO
8601 UTC.

MaximumDuration (Optional) The maximum amount of video and audio to ingest, before
stopping ingestion. If you do not set this parameter, there is no limit on the
amount of video and audio that is ingested. If the maximum duration is
reached, Media Server stops ingestion but does finish processing any
frames that have already been ingested.

For example:

[Ingest]
 Type=Video

TIP: There is no configuration parameter to specify the source. You must specify the IP
address of the stream that you want to ingest as the value of the Source parameter in the
Process action, when you start processing.

For more information about the parameters you can set to configure ingestion, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 8: Video Files and Streams

Media Server (12.4) Page 122 of 399

Chapter 9: Images and Documents

This section describes how to ingest image files and documents, such as Microsoft Word or Adobe
PDF files.

• Introduction 123
• Supported Image and Document File Formats 124
• Ingest Images and Documents 124
• Output Records 125

Introduction

Media Server uses IDOL KeyView to process images and documents. Media Server can ingest most
image files, including multi-page images, and also accepts documents such as PDF files and
PowerPoint presentations.

There are some differences in the way that these files are ingested:

 l When you ingest an image the ingest engine creates a single record that contains the image.

 l When you ingest a multi-page image the ingest engine creates a record for each page, and each
record contains the image from the relevant page.

 l When you ingest a presentation (.PPT, .PPTX, or .ODP) file, the ingest engine creates a record
for each slide contained within the presentation. Each record contains an image of the slide.

 l When you ingest a PDF file, the ingest engine creates a record for each page of the document.
Each record contains an image of the full page. Each record also contains information about any
text elements that are associated with the page (PDF files can include embedded text, which is
stored as encoded data, such as UTF8, instead of as an image of the text). For each text
element, Media Server extracts the text, its position on the page, and its orientation.

 l For other document formats, Media Server does not extract information about pages or the
position of text elements. In some cases this is because the file formats do not contain this
information. When you ingest a document in a format other than PDF, the ingest engine creates a
record for each image that is embedded in the document. Each record contains the embedded
image and any text that follows the image, as extracted by KeyView. In this case, Media Server
does provide co-ordinates for text elements contained in the document, but this is only so that the
information has a consistent form for all input file formats, and the co-ordinates do not represent
the position of the text in the original document.

When you ingest images and documents, Media Server does not perform tracking between images.
Images are considered to be independent and are not considered as a sequence.

For information about which analysis operations you can run on images and documents, see Image and
Video Processing, on page 104.

Media Server (12.4) Page 123 of 399

Supported Image and Document File Formats

Media Server can ingest all standard image formats:

 l TIFF

 l JPEG

 l JPEG 2000

 l PNG

 l GIF (Media Server only ingests the first frame of an animated GIF)

 l BMP (compressed BMP files are not supported) and ICO

 l PBM, PGM, and PPM

 l WebP

Additionally, Media Server uses IDOL KeyView to support other document formats, including:

 l Adobe PDF

 l Microsoft Word Document (.DOC and .DOCX)

 l Microsoft Excel Sheet (.XLS and .XLSX)

 l Microsoft PowerPoint Presentation (.PPT and .PPTX)

 l OpenDocument Text (.ODT)

 l OpenDocument Spreadsheet (.ODS)

 l OpenDocument Presentation (.ODP)

 l Rich Text (RTF)

Ingest Images and Documents

To ingest image files or documents

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a new section to contain the task settings, and set the following parameters:

Administration Guide
Chapter 9: Images and Documents

Media Server (12.4) Page 124 of 399

Type The ingest engine to use. Set this parameter to image.

StartPage (Optional) The page in the image or document at which to start ingesting.

MaximumPages (Optional) The maximum number of pages to ingest from a multi-page image or
document.

For example:

[Ingest]
 Type=image

TIP: There is no configuration parameter to specify the source. You must specify the path of
the source file that you want to ingest as the value of the Source parameter in the Process
action, when you start processing.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Output Records

This section describes the records that are produced when you ingest an image or document file.

Image Data

The image ingest engine writes image data to a track named Image_1.

The following sample XML shows a record produced when you ingest an image, multi-page image such
as a TIFF file, or a presentation file (.PPT, .PPTX, .ODP).

<record>
 <pageNumber>1</pageNumber>
 <trackname>Image_1</trackname>
 <Page>
 
 <pagetext/>
 </Page>
 </record>

Administration Guide
Chapter 9: Images and Documents

Media Server (12.4) Page 125 of 399

The record contains the following information:

 l The pagenumber element describes the page that the record is associated with. Most image files
have a single page but formats such as TIFF support multiple pages.

 l The image element contains information about the image.

 o The imagedata element contains the image data, base-64 encoded.

 o The width and height elements provide the size of the image.

 o The pixelAspectRatio element describes the shape of the pixels that make up the image,
for example 1:1 pixels are square.

 o The format element describes the format of the image data contained in the imagedata
element. For images in the Image_1 track, this value is always PNG.

 o The compressionQuality element describes the amount of compression that is applied to
the data in the imagedata element. For images in the Image_1 track, this value is always 100
(indicating maximum quality and no compression).

If you ingest a document such as a PDF file, the output might also include the text extracted from text
elements:

<record>
 <pageNumber>1</pageNumber>
 <trackname>Image_1</trackname>
 <Page>
 
 <pagetext>
 <element>
 <text>Some text</text>
 <region>
 <left>115</left>
 <top>503</top>
 <width>460</width>
 <height>41</height>
 </region>
 <angle>0</angle>
 </element>
 ...
 </pagetext>
 </Page>
 </record>

Administration Guide
Chapter 9: Images and Documents

Media Server (12.4) Page 126 of 399

The pagetext element contains information about associated text elements. If the ingested media was
a PDF file, each record represents a page. If the ingested media was another type of document the
record represents an embedded image and the text that follows it, up to the next embedded image.

Each element element describes a text element and contains the following data:

 l The text element contains the text from the text element.

 l The region element provides the position of the text element on the page.

NOTE: The region information is accurate only if the ingested document was an Adobe PDF
file.

 l The angle element provides the orientation of the text.

Information about text elements is used by the OCR analysis engine, which automatically combines
the text elements with the text extracted from images, to produce a complete transcript of the text that
appears on the page.

Source Information

The image ingest engine produces a proxy track, named taskName.proxy, where taskName is the
name of your ingest task. The purpose of the proxy track is to contain information about the ingested
source. The engine produces one record in this track for each page in the ingested image or document.

The following XML shows a sample record:

<record>
 <pageNumber>1</pageNumber>
 <trackname>ImageIngestTask.Proxy</trackname>
 <proxy path="./image.jpeg" url="./image.jpeg" mimeType="image/jpeg"
 estimatedDuration="0" pages="1">
 <streams>
 <videoStream id="0" width="2592" height="1936" sar="1:1" codec=""/>
 </streams>
 <metadata>
 <tag name="Author">A Name</tag>
 <tag name="Creation Date">2014-04-09T09:15:19Z</tag>
 <tag name="Flash">Flash did not fire</tag>
 <tag name="GPS Latitude">52° 13' 10.69"</tag>
 <tag name="GPS Longitude">0° 8' 49.23"</tag>
 ...
 </metadata>
 </proxy>
 </record>

The metadata element contains any metadata that Media Server was able to extract from the source.
The information present in this element varies based on the format of the source file and the information
present in the source.

Administration Guide
Chapter 9: Images and Documents

Media Server (12.4) Page 127 of 399

Chapter 10: Cameras and Third-Party Systems

Media Server can ingest video from cameras and third-party video management systems.

• Ingest MJPEG Video streamed over HTTP 128
• Ingest MxPEG Video from a File or Stream 129
• Ingest Video from a DirectShow Device 129
• Ingest Video from Milestone XProtect 131
• Ingest Video from Genetec Security Center 133
• Ingest Video from VMS 134

Ingest MJPEG Video streamed over HTTP

This section describes how to ingest MJPEG video that is streamed over HTTP.

To ingest MJPEG video that is streamed over HTTP

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a new section to contain the task settings, and set the following parameters:

Type The ingest engine to use. Set this parameter to MJPEG_HTTP.

For example:

[Ingest]
 Type=MJPEG_HTTP

TIP: There is no configuration parameter to specify the source. You must specify the URL of
the stream that you want to ingest as the value of the Source parameter in the Process action,
when you start processing.

For more information about the parameters you can set to configure ingestion, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Media Server (12.4) Page 128 of 399

Ingest MxPEG Video from a File or Stream

Media Server can ingest MxPEG video (but not the audio) from a file or stream.

To ingest MxPEG video

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, set the following configuration parameters:

EngineN The name of a section in the configuration file that will contain the ingestion
settings.

IngestRate To ingest MxPEG video from a stream, set this parameter to 1.

To ingest MxPEG video from a file set this parameter to 0. IngestRate=1 is not
supported with MxPEG files.

For example:

[Session]
 Engine0=Ingest
 IngestRate=1

 3. Create a new section in the configuration file to contain the ingestion settings, and set the
following parameters:

Type The ingest engine to use. Set this parameter to MxPEG.

For example:

[Ingest]
 Type=MxPEG

TIP: There is no configuration parameter to specify the source. You must specify the path of
the file or the URL of the stream that you want to ingest as the value of the Source parameter
in the Process action, when you start processing.

For more information about the parameters you can set to configure ingestion, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Ingest Video from a DirectShow Device

Media Server can ingest video directly from a DirectShow device, such as a video capture card or
camera.

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 129 of 399

NOTE: Ingestion from a DirectShow device is supported only on Windows.

To ingest video from a DirectShow device

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a new section to contain the task settings, and set the following parameters:

Type The ingest engine to use. Set this parameter to Video.

Format The video format. Set this parameter to dshow.

IngestDateTime (Optional) The ingest engine produces output tracks that contain
timestamped records. You can use this parameter to control the timestamp
values, which is useful if you are ingesting video that was originally
broadcast at an earlier time. Specify the time in epoch milliseconds or ISO
8601 UTC.

For example:

[Ingest]
 Type=Video
 Format=dshow

TIP: There is no configuration parameter to specify the source. You must specify the name of
the DirectShow device that you want to use as the value of the Source parameter in the
Process action, when you start processing.

For more information about the parameters you can set to configure ingestion, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Obtain a List of Device Names

Media Server can ingest video directly from a DirectShow device, such as a video capture card or
camera. This section describes how to obtain the name of your device, so that you use the name in the
source action parameter, when you start the process action.

NOTE: Ingestion from a DirectShow device is supported only on Windows.

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 130 of 399

To obtain a list of DirectShow devices

 1. Download and install FFmpeg.

 2. In a command-line window, run the following command:

ffmpeg -list_devices true -f dshow -i dummy

FFmpeg lists the devices that are available, for example:

C:\MediaServer_11.3.0>ffmpeg -list_devices true -f dshow -i dummy
 ffmpeg version ... Copyright (c) 2000-2016 the FFmpeg developers
 ...
 [dshow @ 000000000050a400] DirectShow video devices (some may be both video and
audio devices)
 [dshow @ 000000000050a400] "HP HD Webcam [Fixed]"
 [dshow @ 000000000050a400] Alternative name ...
 [dshow @ 000000000050a400] DirectShow audio devices
 [dshow @ 000000000050a400] "Internal Microphone Array (IDT "
 [dshow @ 000000000050a400] Alternative name ...
 [dshow @ 000000000050a400] "Stereo Mix (IDT High Definition"
 [dshow @ 000000000050a400] Alternative name ...

In this case you could ingest video from a device named HP HD Webcam [Fixed]. The name
must be URL-encoded in the process action, for example:

http://mediaserver:14000/a=process&configname=myconfig
 &source=HP%20HD%20Webcam%20%5BFixed%5D

Ingest Video from Milestone XProtect

Media Server can ingest live video from Milestone XProtect Enterprise and Milestone XProtect
Corporate.

Media Server connects to the Milestone XProtect recording server to obtain video. The recording server
requires user authentication, so you must specify a user name and password in the Media Server
configuration. Micro Focus recommends that you encrypt passwords before entering them into the
configuration file. For information on how to do this, see Encrypt Passwords, on page 62.

To ingest video from Milestone XProtect

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a configuration section to contain the task settings. Type the task name inside square

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 131 of 399

https://ffmpeg.org/

brackets, and then set the following parameters:

Type The ingest engine to use. Set this parameter to milestone.

RecorderHost The host name or IP address of the XProtect recording server.

RecorderPort The port of the XProtect recording server.

For example:

[Ingest]
 Type=milestone
 RecorderHost=XProtect
 RecorderPort=7563

 4. Configure how the ingest engine should authenticate with the Milestone XProtect system.

NOTE: To ingest video from Milestone XProtect Corporate, you must use NTLM
authentication against the Milestone XProtect authentication server. To ingest video from
Milestone XProtect Enterprise, you can use any of the following options.

 l To use NTLM authentication against a Milestone authentication server, set the following
parameters:

SOAPAuthentication Set this parameter to true. The engine authenticates against the
XProtect authentication server.

NTLMUsername The NT user name to use to retrieve video.

NTLMPassword The NT password to use to retrieve video.

AuthenticationHost The host name or IP address of the XProtect authentication server.

AuthenticationPort The port of the XProtect authentication server.

 l To use Milestone credentials (Basic authentication) against a Milestone authentication
server, set the following parameters:

SOAPAuthentication Set this parameter to true. The engine authenticates against the
XProtect authentication server.

BasicUsername The user name to use to retrieve video.

BasicPassword The password to use to retrieve video.

AuthenticationHost The host name or IP address of the XProtect authentication server.

AuthenticationPort The port of the XProtect authentication server.

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 132 of 399

 l To use Milestone credentials (Basic authentication) against the Milestone recording server,
set the following parameters:

SOAPAuthentication Set this parameter to false. The engine sends credentials to the
recording server.

BasicUsername The user name to use to retrieve video.

BasicPassword The password to use to retrieve video.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

You can now start ingesting video. When you use the process action, you must set the source
parameter to a Milestone camera GUID. For information about how to find the GUID, refer to the
Milestone documentation. For more information about how to start processing, see Start Processing,
on page 106.

Ingest Video from Genetec Security Center

Media Server can ingest live video from Genetec Security Center.

NOTE: This feature is available only when you run Media Server on Windows.

Before you begin

 1. Install the Genetec Security Center SDK, version 5.6, on the same machine as Media Server.

 2. In the [Paths] section of the Media Server configuration file, set the configuration parameter
GenetecSDKDirectory to the directory that contains the SDK, for example:

 [Paths]
 ...
 GenetecSDKDirectory=C:\Genetec_Security_Center_5.6_SDK

 3. Restart Media Server.

To ingest video from Genetec

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a configuration section to contain the task settings. Type the task name inside square

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 133 of 399

brackets, and then set the following parameters:

Type The ingest engine to use. Set this parameter to GenetecIngest.

RecorderHost The host name or IP address of the Genetec Security Center recording
server.

RecorderPort The port of the Genetec Security Center recording server.

BasicUsername The user name to use to retrieve video from Genetec Security Center.

BasicPassword The password to use to retrieve video from Genetec Security Center. Micro
Focus recommends encrypting user names and passwords before entering
them in configuration files. For information about how to do this, see Encrypt
Passwords, on page 62.

For example:

[Ingest]
 Type=GenetecIngest
 RecorderHost=Genetec
 RecorderPort=5500
 BasicUsername=user
 BasicPassword=encrypted_password

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

You can now start ingesting video. When you use the process action, you must set the source
parameter to the logical ID of a camera. For information about how to find the logical ID, refer to the
Genetec Security Center documentation. For more information about how to start processing, see Start
Processing, on page 106.

Ingest Video from VMS

Media Server can ingest video from a Micro Focus Video Management Server.

To ingest video from VMS

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest

 3. Create a new section to contain the task settings, and set the following parameters:

Type The ingest engine to use. Set this parameter to VMS.

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 134 of 399

For example:

[Ingest]
 Type=VMS

TIP: There is no configuration parameter to specify the source. You must specify the URL of
the stream that you want to ingest as the value of the Source parameter in the Process action,
when you start processing.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 10: Cameras and Third-Party Systems

Media Server (12.4) Page 135 of 399

Media Server (12.4) Page 136 of 399

Part III: Analyze Media

This section describes how to configure the analysis operations that Media Server can perform.

 l Face Detection, Recognition, and Demographics

 l Optical Character Recognition

 l Image Classification

 l Object Class Recognition

 l Object Recognition

 l Text Detection

 l Number Plate Recognition

 l Vehicle Make and Model Recognition

 l Clothing Color Analysis

 l Scene Analysis

 l Extract Keyframes

 l Image Comparison

 l Color Clustering

 l Barcode Recognition

 l Generate Image Hashes

 l Audio Categorization

 l Language Identification

 l Speaker Identification

 l Speech-to-Text

 l Audio Matching

 l Transcript Alignment

 l Segment Video into News Stories

Media Server (12.4) Page 137 of 399

Administration Guide
Part III: Analyze Media

Chapter 11: Face Detection, Recognition, and
Demographics

Media Server can run several types of face analysis including face detection and face recognition.

• Introduction 138
• Detect Faces 138
• Train Media Server to Recognize Faces 140
• Recognize Faces 146
• Obtain Demographic Information 148
• Analyze Facial Expression 148
• Face Detection Results 149
• Face Recognition Results 151
• Face Demographics Results 152
• Face Expression Analysis Results 153
• Automatically Enroll Unrecognized Faces 154
• Face Enrollment Results 155
• Optimize Face Analysis Performance 156

Introduction

Face Detection detects faces and returns their location.

Face Recognition identifies people by comparing detected faces to faces in your training database.

After detecting faces, Media Server can also:

 l estimate demographic information such as age, gender, and ethnicity.

 l report information such as the facial expression, whether the person's eyes are open or closed,
and whether the person is wearing spectacles.

NOTE: Media Server can analyze faces for demographics and facial expression only when the
person is looking directly at the camera.

You can run face detection and face analysis operations out-of-the-box. To run face recognition, you
must train Media Server using images of people that you want to identify. For information about how to
train Media Server, see Train Media Server to Recognize Faces, on page 140.

Detect Faces

To detect faces that appear in media, follow these steps.

Media Server (12.4) Page 138 of 399

To detect faces in media

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=FaceDetect

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to FaceDetect.

Input (Optional) The image track to process. If you do not set this parameter, Media
Server processes the first track of the correct type.

Region (Optional) The region that you want to search for faces.

RegionUnit (Optional) The units to use for specifying the region (default pixel). To
specify the position and size of the region as a percentage of the media size,
set this parameter to percent.

FaceDirection (Optional) Media Server can detect faces looking in any direction, but if you
know that all faces will look directly at the camera you can set
FaceDirection=Front. This is faster and might produce fewer false
detections.

ColorAnalysis (Optional) A Boolean value that specifies whether to perform color analysis
on detected faces. This can reduce the number of false detections.

MinSize (Optional) The minimum expected size of faces in the video (in pixels unless
you set the SizeUnit parameter). Increasing the minimum size can increase
processing speed.

SizeUnit (Optional) The units to use for setting the MinSize parameter (default pixel).
To specify the size as a percentage of the smallest image side, set this
parameter to percent.

For example:

[FaceDetect]
 Type=FaceDetect
 FaceDirection=Front
 ColorAnalysis=TRUE
 MinSize=200
 SizeUnit=pixel

For more information about the parameters that you can use to configure Face Detection, refer to
the Media Server Reference.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 139 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Train Media Server to Recognize Faces

To run face recognition you must train Media Server by providing images of people that you want to
identify. When you run face recognition, Media Server compares the faces it detects in the image or
video to the faces that you added during training.

The following diagram shows how Media Server stores information you provide during training.

The "Media Server database" can represent either the internal Media Server database or a database on
an external database server. For information on setting up this database, see Introduction, on page 40.

You can organize faces into databases. These face databases are for organizational purposes. For
example, you might have a database for politicians, a database for actors and a database for
musicians. If you want to recognize only actors, you can then run face recognition using only that
database.

A database can contain any number of faces, each representing a single person. Each face has an
identifier, which must be unique. You can associate metadata with a face, for example the person's
name or other information.

To each face you must add one or more training images. Micro Focus recommends adding multiple
training images for best performance. For information about choosing suitable training images, see
Select Images for Training, below.

Select Images for Training

Add one or more training images to each face that you want to recognize.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 140 of 399

Micro Focus recommends using images that are representative of how you will use face recognition.
For example, if you intend to use face recognition in a situation that is not controlled for facial
expression, add several images to each face showing different facial expressions.

It is better to use fewer high-quality images, rather than many low-quality images, because low-quality
images can reduce accuracy.

A good training image for a face:

 l should contain only one face. An image that contains multiple faces is accepted only if one of the
faces covers more than double the image area of the others. The largest face is used to train
Media Server and the others are ignored.

 l must be rotated correctly (the face cannot be upside down).

 l contains a face that is wider than approximately 150 pixels; the face should constitute a large
proportion of the image.

 l contains a front view of the face, so that both eyes are visible.

 l is not blurry.

 l has even illumination, because dark shadows or bright highlights on the face reduce recognition
accuracy.

 l has not been converted from another file format to JPEG. Converting images to JPEG introduces
compression artifacts. If you have JPEG images, avoid making many rounds of edits. Each time
that a new version of the image is saved as a JPEG, the image quality degrades.

 l shows a face that is not partially obscured (for example a person standing behind a microphone).

Create a Database to Contain Faces

To create a database to contain faces, use the following procedure.

To create a database to contain faces

 l Use the CreateFaceDatabase action with the database parameter.

database The name of the new database (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateFaceDatabase
 -F database=Faces

Add a Face to a Database

To add a face to a database of faces, you can:

 l Perform training in separate steps. Create a new (empty) face, then add training images, and
then train Media Server, using separate actions. You can also add metadata to the face but this is
an optional step. You might want to perform training in this way if you are building a front end
application that responds to user input.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 141 of 399

 l Perform training in a single action. You might use this approach when writing a script to train
Media Server from a collection of images and metadata.

Add a Face to a Database (Using Separate Steps)

This section describes how to create a new (empty) face, then add training images, and then train
Media Server, using separate actions. You can also add metadata to the face but this is an optional
step. You might want to perform training in this way if you are building a front end application that
responds to user input.

Alternatively, you can train Media Server to recognize a face by sending a single action. To do this, see
Add a Face to a Database (Using a Single Action), on the next page.

To add a face to a database (using separate steps)

 1. Add a face using the NewFace action. Set the following parameters:

database The name of the database to add the face to. The database must already exist.

identifier (Optional) A unique identifier for the face (maximum 254 bytes). If you do not set
this parameter, Media Server generates an identifier automatically.

You can use the person's name as the identifier, but you might have several
people with the same name and all identifiers within a database must be unique.
Alternatively, allow Media Server to generate an identifier and add the person's
name to a metadata field (see step 3, below).

For example:

curl http://localhost:14000 -F action=NewFace
 -F database=Faces

Media Server adds the face and returns the identifier.

 2. Add one or more training images to the face using the AddFaceImages action. Set the following
parameters:

database The name of the database that contains the face.

identifier The identifier for the face, returned by the NewFace action.

imagedata (Set this or imagepath, but not both). The training images to add. Files must
be uploaded as multipart/form-data. For more information about sending data
to Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to add.
The paths must be absolute or relative to the Media Server executable file.

imagelabels A comma-separated list of labels. One label is associated with each image.
(maximum 254 bytes for each label). The number of labels must match the
number of images. If you do not set this parameter, Media Server generates
labels automatically.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 142 of 399

For example, to add training images by supplying the image data:

curl http://localhost:14000 -F action=AddFaceImages
 -F database=Faces
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F imagedata=@face1_smile.jpg,face1_neutral.jpg
 -F imagelabels=image1,image2

Alternatively, to add training images by supplying their paths:

curl http://localhost:14000 -F action=AddFaceImages
 -F database=Faces
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F imagepath=face1_smile.jpg,face1_neutral.jpg
 -F imagelabels=image1,image2

 3. (Optional) Add metadata to the face using the AddFaceMetadata action. You can add any number
of key-value pairs. Set the following parameters:

database The name of the database that contains the face.

identifier The identifier for the face, returned by the NewFace action.

key The key to add (maximum 254 bytes).

value The value to add (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=AddFaceMetadata
 -F database=Faces
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F key=firstname
 -F value=John

 4. Complete the training for the face using the BuildFace action. Set the following parameters:

database The name of the database that contains the face.

identifier The identifier for the face, returned by the NewFace action.

For example:

curl http://localhost:14000 -F action=BuildFace
 -F database=Faces
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62

Add a Face to a Database (Using a Single Action)

You can train Media Server to recognize a face by sending a single action (TrainFace).

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 143 of 399

Running this action is equivalent to running the following actions in the following order:

 l NewFace

 l AddFaceImages

 l AddFaceMetadata (optional)

 l BuildFace

The TrainFace action is atomic, so that any interruption to the server does not leave the database in an
inconsistent state.

Alternatively, you can train Media Server by sending these actions individually. You might want to do
this if you are building a front end application that trains Media Server in response to user input. For
more information about how to do this, see Add a Face to a Database (Using Separate Steps), on
page 142.

To add a face to a database (using a single action)

 l Add a face using the TrainFace action. Set the following parameters:

database The name of the database to add the face to. The database must already exist.

identifier (Optional) A unique identifier for the face (maximum 254 bytes). If you do not set
this parameter, Media Server generates an identifier automatically.

imagedata (Set this or imagepath, but not both). The training images to add. Files must be
uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to add.
The paths must be absolute or relative to the Media Server executable file.

imagelabels (Optional) A comma-separated list of labels. One label is associated with each
image (maximum 254 bytes for each label). The number of labels must match
the number of images. If you do not set this parameter, Media Server generates
labels automatically.

metadata (Optional) A comma-separated list of metadata key-value pairs to add to the
face. Separate keys from values using a colon (:). To include a comma or colon
in a key name or value, you must enclose the key name or value in quotation
marks (") and escape any quotation marks that occur within the string with a
backslash (\).

For example:

curl http://localhost:14000 -F action=TrainFace
 -F database=Faces
 -F imagedata=@face1_smile.jpg,face1_neutral.jpg
 -F imagelabels=image1,image2
 -F "metadata=lastname:Smith,fullname:\"John Smith,
Jr\""

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 144 of 399

Alternatively, the following example provides the paths of the training images rather than sending
the image data:

curl http://localhost:14000 -F action=TrainFace
 -F database=Faces
 -F imagepath=face1_smile.jpg,face1_neutral.jpg
 -F imagelabels=image1,image2
 -F "metadata=lastname:Smith,fullname:\"John Smith,
Jr\""

Media Server adds the face to the database and returns the identifier.

List the Faces in a Database

To list the faces that you have added to a database, and check whether training was successful, use
the following procedure.

To list the faces in a database

 1. (Optional) First list the databases that have been created to store faces. Use the action
ListFaceDatabases:

http://localhost:14000/action=ListFaceDatabases

Media Server returns a list of databases that you have created to store faces.

 2. List the faces that exist in one of the databases. Use the action ListFaces, for example:

http://localhost:14000/action=ListFaces&database=faces
 &metadata=true
 &imagestatus=true

Media Server returns a list of faces in the specified database, and the number of training images
associated with each face.

If you set the action parameter metadata to true, Media Server returns the metadata you have
added to a face.

If you set the action parameter imagestatus to true, Media Server returns the status of each
training image associated with each face.

 l The status element indicates the status of training:

 o trained indicates that training was successful.

 o untrained indicates that training has not been attempted. Run training for the face using
the action BuildFace, or run training for all faces that have incomplete training using the
action BuildAllFaces.

 o failed indicates that Media Server could not use the image for training. For example, if
Media Server does not detect a face in an image, it cannot be used as a training image.
Remove the failed image using the action RemoveFaceImages.

 l The hasimagedata element indicates whether the training image is stored in the database. If
the value of this element is false, the image has been removed from the database by the

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 145 of 399

action NullFaceImageData. Images that have been removed and have a status of untrained
cannot be trained, so Micro Focus recommends you remove these images with the action
RemoveFaceImages.

Update or Remove Faces and Databases

To update or remove a face use the following actions:

 l To complete training for all faces that exist in the Media Server database but have incomplete
training, use the action BuildAllFaces. To confirm that training was successful, use the action
ListFaces (see List the Faces in a Database, on the previous page).

 l To add additional training images to a face, use the action AddFaceImages. Media Server does
not use the new images for face recognition until you run training using the action BuildFace or
BuildAllFaces. To confirm that training was successful, use the action ListFaces (see List the
Faces in a Database, on the previous page).

 l To remove a training image from a face, for example if Media Server cannot detect a face in the
image, use the action RemoveFaceImages.

 l To change the label of an image that you added to a face, use the action RelabelFaceImage.

 l To move an image of a face from one face to another, for example if you add an image to the
wrong face, use the action MoveFaceImage.

 l To add, remove, or update custom metadata for a face, use the actions AddFaceMetadata,
RemoveFaceMetadata, and UpdateFaceMetadata.

 l To change the identifier of a face you added to a face database, use the action RenameFace.

 l To move a face to a different database, use the action MoveFace.

 l To remove a face from a database and discard all associated images and metadata, use the
action RemoveFace.

To update or remove face databases, use the following actions:

 l To rename a face database, use the action RenameFaceDatabase.

 l To delete a face database and all of the information that it contains, use the action
RemoveFaceDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Recognize Faces

This section describes how to create an analysis task to recognize faces that appear in media.

TIP: To run face recognition, you must first detect faces by setting up a face detection task. For
information about how to do this, see Detect Faces, on page 138.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 146 of 399

To recognize faces in media

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
Engine2=FaceRecognize

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to FaceRecognize.

Input The track that contains detected faces that you want to recognize.
Providing you have sufficient computational resources, Micro
Focus recommends setting this parameter to the DataWithSource
output track from your face detection task. For example, if your
face detection task is named FaceDetect, set this parameter to
FaceDetect.DataWithSource. Alternatively, you can use the
ResultWithSource track produced by your face detection task.

Database (Optional) The database to use for recognizing the detected faces.
By default, Media Server uses all available data. Database names
are case-sensitive.

MaxFaces The total number of faces that you want to recognize. For example
if there are 600 faces in your face database, set MaxFaces=600.
The value of this parameter determines how many channels are
required to run the face recognition task.

RecognitionThreshold (Optional) The minimum confidence score required to recognize a
face.

MaxRecognitionResults (Optional) The maximum number of results to return, if the face
matches more than one entry in the training database(s).

For example:

[FaceRecognize]
 Type=FaceRecognize
 Input=FaceDetect.DataWithSource
 RecognitionThreshold=60
 MaxRecognitionResults=1

For a complete list of parameters that you can use to configure a face recognition task, and more
information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 147 of 399

Obtain Demographic Information

This section describes how to obtain demographic information for detected faces.

TIP: You must first detect faces by setting up a face detection task. For information about how to do
this, see Detect Faces, on page 138.

To obtain demographic information for detected faces

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
Engine2=FaceDemographics

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The analysis engine to use. Set this parameter to Demographics.

Input The track that contains detected faces that you want to analyze. Providing you have
sufficient computational resources, Micro Focus recommends setting this parameter to
the DataWithSource output track from your face detection task. For example, if your
face detection task is named FaceDetect, set this parameter to
FaceDetect.DataWithSource. Alternatively, you can use the ResultWithSource
track produced by your face detection task.

For example:

[FaceDemographics]
 Type=demographics
 Input=FaceDetect.DataWithSource

For more information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Analyze Facial Expression

This section describes how to analyze the facial expression for detected faces.

TIP: You must first detect faces by setting up a face detection task. For information about how to do
this, see Detect Faces, on page 138.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 148 of 399

To analyze facial expression

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
Engine2=FaceState

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to FaceState.

Input The track that contains detected faces that you want to analyze. Providing you have
sufficient computational resources, Micro Focus recommends setting this parameter to
the DataWithSource output track from your face detection task. For example, if your
face detection task is named FaceDetect, set this parameter to
FaceDetect.DataWithSource. Alternatively, you can use the ResultWithSource
track produced by your face detection task.

For example:

[FaceState]
 Type=facestate
 Input=FaceDetect.DataWithSource

For more information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Face Detection Results

The following XML shows a single record produced by face detection.

<output>
 <record>
 ...
 <trackname>FaceDetect.Result</trackname>
 <FaceResult>
 <id>4895aeee-6a8f-44f9-915c-b86eff702118</id>
 <face>
 <region>
 <left>282</left>
 <top>84</top>
 <width>236</width>
 <height>236</height>

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 149 of 399

 </region>
 <outOfPlaneAngleX>0</outOfPlaneAngleX>
 <outOfPlaneAngleY>0</outOfPlaneAngleY>
 <percentageInImage>100</percentageInImage>
 <ellipse>
 <center>
 <x>398.5</x>
 <y>194.25</y>
 </center>
 <a>106.25
 148.75
 <angle>0</angle>
 </ellipse>
 <lefteye>
 <center>
 <x>441</x>
 <y>173</y>
 </center>
 <radius>16</radius>
 </lefteye>
 <righteye>
 <center>
 <x>356</x>
 <y>173</y>
 </center>
 <radius>16</radius>
 </righteye>
 </face>
 </FaceResult>
 </record>
 </output>

The record contains the following information:

 l The id element provides a unique identifier for the detected face. The face detection engine
issues an ID for each detected appearance of a face. If you are detecting faces in video and
consecutive frames show the same face in a near-identical location, all records related to that
appearance will have the same ID.

For example, if a face appears in the same location for a hundred consecutive video frames, the
engine uses the same ID for each record in the data track and the single record in the result track.
The record in the result track will have a timestamp that covers all of the frames.

If the face disappears and then reappears, the engine considers this as a new detection and
produces a new ID and a new record in the result track.

 l The face element contains the location of the detected face:

 o region describes the location of the face within the image or video frame. The left and top
elements provide the position of the top-left corner of a rectangle that surrounds the face, and
the width and height elements provide its size.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 150 of 399

 o outOfPlaneAngleX indicates how far the person is looking to the left or right.
outOfPlaneAngleY indicates how far the person is looking up or down. When both of these
angles are zero, the person is looking directly at the camera.

 o percentageInImage indicates how much of the face is within the image boundary. If a face
appears on the edge of an image and is only partially visible, this value will be less than 100.

 o the ellipse element describes the location of the detected face as a circle or ellipse. When
DetectEyes=FALSE, Media Server returns a circle that describes the approximate position of
the face. When DetectEyes=TRUE and the person is looking towards the camera (so that
outOfPlaneAngleX is less than 90), Media Server returns an ellipse that should more
accurately describe the position.

 o the lefteye and righteye elements describe eye locations. These are returned only if
DetectEyes=TRUE and the person is looking towards the camera (so that outOfPlaneAngleX
is less than 90).

TIP: Face detection can return co-ordinates that are negative. For example, in the region
element the values for left and top can be negative if a face is detected on the edge of an
image. In cases where a face fills the source image, the values for width and height might
also exceed the image dimensions.

Face Recognition Results

The following XML shows a single record produced by face recognition.

<record>
 ...
 <trackname>facerec.Result</trackname>
 <FaceRecognitionResult>
 <id>69ff21d8-bc3b-44b1-9a47-1eabedb75dd0</id>
 <face>
 ...
 </face>
 <identity>
 <identifier>A N Example</identifier>
 <database>politicians</database>
 <confidence>50.11</confidence>
 </identity>
 </FaceRecognitionResult>
 </record>

The record contains the following information:

 l The id element contains a unique identifier for the detected face. The face detection engine
issues an ID for each detected appearance of a face, and the records output from the face
recognition engine use the same IDs as the input records.

 l The face element contains the location of the detected face. For more information about this
data, see Face Detection Results, on page 149.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 151 of 399

 l The identity element contains information about the recognized face.

 o The identifier element provides the identifier of the database entry that matched the face.

 o The database element provides the name of the database in which the match was found.

 o The confidence element provides the confidence score for the match.

The identity element can be empty when there are no matches that meet the recognition
threshold. You can configure Media Server to output only recognized faces by setting
OutputIdentities=Known.

Face Demographics Results

The following XML shows a single record produced by face demographics analysis.

<record>
 ...
 <trackname>FaceDemographics.Result</trackname>
 <DemographicsResult>
 <id>8774d02a-dcf0-4410-b591-bd2b7d3981f5</id>
 <face>
 ...
 </face>
 <ethnicity>Caucasian</ethnicity>
 <age>Elderly</age>
 <gender>Male</gender>
 </DemographicsResult>
 </record>

The record contains the following information:

 l The id element contains a unique identifier for the detected face. The face detection engine
issues an ID for each detected appearance of a face, and the records output from the face
demographics engine use the same IDs as the input records.

 l The face element contains the location of the detected face. For more information about this
data, see Face Detection Results, on page 149.

 l The ethnicity element provides the ethnicity of the person:

 o African/Caribbean

 o Arab

 o Caucasian

 o East Asian

 o Hispanic

 o Indian Subcontinent

 l The age element provides the approximate age of the person, as one of the following values:

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 152 of 399

 o Baby (below approximately 2 years)

 o Child (approximately 2–15 years)

 o Young Adult (approximately 15–35 years)

 o Adult (approximately 35–55 years)

 o Elderly (above approximately 55 years)

 l The gender element provides the gender of the person (either Male or Female). However, Media
Server does not attempt to determine the gender of babies, and will return the value
Unclassified.

Face Expression Analysis Results

The following XML shows a single record produced by face expression analysis.

<record>
 ...
 <trackname>FaceExpression.Result</trackname>
 <FaceStateResult>
 <id>ca444959-3609-4e06-a633-1bd95e7b3440</id>
 <face>
 ...
 </face>
 <expression>Neutral</expression>
 <eyesopen>true</eyesopen>
 <spectacles>false</spectacles>
 </FaceStateResult>
 </record>

The record contains the following information:

 l The id element contains a unique identifier for the detected face. The face detection engine
issues an ID for each detected appearance of a face, and the records output from the face state
analysis engine use the same IDs as the input records.

 l The face element contains the location of the detected face. For more information about this
data, see Face Detection Results, on page 149.

 l The expression element describes the facial expression (Happy or Neutral).

 l The eyesopen element specifies whether the person's eyes are open (true) or closed (false). If
the person has only one eye open (for example, if they are winking), Media Server reports that
their eyes are open. The value might be unknown if the face is only partially visible or the person is
not looking at the camera.

 l The spectacles element specifies whether the person is wearing spectacles. The possible
results are true, false, or unknown. The value might be unknown if the face is only partially
visible or the person is not looking at the camera.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 153 of 399

Automatically Enroll Unrecognized Faces

Media Server can automatically enroll unrecognized faces (add them to the training database).

A configuration to enroll unrecognized faces is included in the Media Server installation folder
(configurations/examples/Face/Enroll.cfg). It contains the following steps:

 l Face detection, to detect all faces that appear in the media.

 l Face recognition, to determine whether a face is already present in the training database. This
task uses the RecognitionThreshold parameter to specify the minimum confidence required to
successfully recognize a face. The OutputIdentities parameter is set to Unknown so that the
output includes only unknown faces.

 l An event stream processing (ESP) task, to discard faces that are in profile or partially outside the
image. To achieve the best performance, face recognition should be trained with images that
show a complete face with both eyes visible.

 l A crop transformation task, to create cropped images that each show a single unrecognized face.
Images that contain more than one face cannot be used for training face recognition, so this step
is important in case several unrecognized people appear at the same time.

 l A rotate transformation task, to rotate the images (if necessary) so that the face is upright.

 l An enroll task, to enroll the images of unrecognized faces in the database.

 l An output task so that you can see what Media Server has added to the database. To see the
images, you could also add an encoding task, or use the action GetFaceImage after enrollment is
complete.

The following procedure describes how to configure an enroll task.

To automatically enroll faces

 1. Open the configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter.

 3. Create a new configuration section that matches the name of the task and configure Media Server
to enroll the images. Use the following configuration parameters:

Type The engine to use. Set this parameter to Enroll.

Module Set this parameter to Face.

Input The track that contains the images to enroll.

Database The name of the database to add the faces to.

Micro Focus recommends that you add faces to a new database, not the
database you use for recognition. An operator can then check the enrolled
faces. For example, you should make sure that all of the images added to

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 154 of 399

a face represent the same person. After verifying the enrolled faces, you
can move them to the correct recognition database.

PostAction Specifies what Media Server should do after enrolling an image in the
database. The default value, build, trains Media Server to recognize the
face.

PostSyncDatabase Specifies whether Media Server should synchronize with the training
database after enrolling an image.

You might want to use this parameter if you are adding faces to the same
database that is used for recognition. If an unrecognized face appears
again but you have not trained Media Server and synchronized with the
database, the face remains unrecognized. This means that Media Server
adds another entry to the database for the same face.

If you are enrolling faces in a different database to the one that is used for
recognition, there is no need to set this parameter.

Identifier The identifier to use when adding a new face to the database. Micro
Focus recommends using the macro %record.id%, because this
identifier is set by the face detection task and is unique for each detected
face.

For example:

 [EnrollFaces]
 Type=Enroll
 Module=Face
 Input=CropFaces.Output
 Database=EnrolledFaces
 PostAction=Build
 PostSyncDatabase=TRUE
 Identifier=%record.id%

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Face Enrollment Results

The following XML shows a single record that is produced when Media Server enrolls an image of a
face.

<record>
 ...
 <trackname>EnrollFaces.Result</trackname>
 <EnrollResult>
 <id>608f22bb-06ad-469f-811b-5d6cabd0db98</id>
 <identity>
 <identifier>608f22bb-06ad-469f-811b-5d6cabd0db98</identifier>
 <database>EnrolledFaces</database>

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 155 of 399

 <imagelabel>f6e5e0f8aa471812fe0e01c4dd35c05d</imagelabel>
 </identity>
 <error>Failed: no face detected</error>
 </EnrollResult>
 </record>

The record contains the following information:

 l The id element contains a unique identifier for the detected face. The face detection engine
issues an ID for each detected appearance of a face, and the records output from the enroll
engine use the same IDs as the input records.

 l The identity element provides information about the image that was enrolled in the database.

 o The database element provides the name of the database that the image was added to.

 o The identifier element provides the identifier of the face that the image was added to.

 o The imagelabel element provides the label that was created to identify the enrolled image.

 l The error element is present only when an error occurs and provides information about the
problem.

Optimize Face Analysis Performance

The quality of the image or video that you send to Media Server can have a significant effect on the
performance of face analysis.

 l To be detected, faces must exceed the minimum size specified by the MinSize parameter in your
task configuration.

 l To recognize faces and run demographics analysis and state analysis, the face must be large
enough in the image that facial features are clearly visible.

 l Faces should be in focus, not blurry.

 l Face detection performs best when faces are looking towards the camera, so that both eyes are
visible, but faces can be detected when viewed in profile (side-on). For face recognition,
demographics analysis, and expression analysis, the person must be looking toward the camera
so that both eyes are visible.

 l Ideally faces should be fully visible and not be partially obscured (for example a person standing
behind a microphone).

 l Although face detection can process a relatively wide range of facial expressions, faces with
neutral expressions are usually detected with the greatest reliability. Particularly unusual facial
expressions might cause face detection and recognition to fail.

 l Spectacles or large amounts of facial hair increase the difficulty in detecting and recognizing
faces and accuracy may be reduced in these cases.

 l The image or video should have even illumination, because dark shadows or bright highlights on
the face reduce accuracy.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 156 of 399

 l The image or video should not be affected by significant compression artifacts that can affect
some formats (such as highly compressed JPEG images). Micro Focus recommends that you do
not save your image files as JPEG images with high levels of compression or transcode video
that has been captured from a camera. If you are using a digital video recorder (DVR) to record the
footage from a camera and are then sending the video to Media Server, ensure the DVR is saving
the video at full resolution and is not reducing the bit rate.

 l For face recognition, Micro Focus recommends that you configure Media Server to return the top
five or ten results and then have a person select the best match from these results. Using face
recognition in this way can produce better accuracy than using Media Server alone.

Administration Guide
Chapter 11: Face Detection, Recognition, and Demographics

Media Server (12.4) Page 157 of 399

Chapter 12: Optical Character Recognition

Media Server can perform Optical Character Recognition (OCR) to extract text from media. OCR
makes text in images and video computer-readable, so that it can be indexed into IDOL Server and
used in analysis operations.

• Introduction 158
• Set up an OCR Analysis Task 159
• OCR Results 160
• Improve OCR 162

Introduction

Media Server can run Optical Character Recognition (OCR) on images such as scanned documents
and photographs of documents. You can also run OCR on video to extract subtitles and scrolling text
that sometimes appears during television news broadcasts.

Media Server OCR:

 l searches images and video for text-like regions, and only performs OCR on those regions.

 l provides options to restrict the language and character types used during recognition, which can
increase the accuracy of OCR in some cases.

 l supports specialized font types.

 l supports many languages.

 l can automatically adjust when scanned documents are rotated by either 90 or 180 degrees from
upright.

 l can automatically adjust for skewed text in scanned documents and photographs.

NOTE: Media Server OCR recognizes machine-printed text. Handwritten text is not supported.

OCR Document File Formats

When you ingest a PDF or office document file, Media Server extracts both embedded images and text
elements. The OCR engine runs OCR on the images that are extracted from the document, and by
default, merges the text that was contained in text elements into the results. This means that the
OCR results contain both the text that is extracted from images and the text that was contained in text
elements.

Media Server (12.4) Page 158 of 399

Set up an OCR Analysis Task

To perform OCR

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=OCR

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to OCR.

Input (Optional) The track to process. If you do not specify an input track,
Media Server processes the first track of the correct type that is
produced by the ingest engine.

Languages The language of the text. Setting this parameter narrows the character
and word choices for the OCR process, which increases speed and
accuracy. For a list of supported languages, see OCR Supported
Languages, on page 382.

ProcessTextElements (Optional) (Only affects documents) Specifies whether to merge the
content of text elements into the OCR results. If the text elements in
the document are not consistent with the text that appears in the
image, you might want to set this parameter to false.

CharacterTypes (Optional) If the document uses a particular type of characters only,
such as all uppercase, or all lowercase, you can specify the type in
the CharacterTypes parameter. This can improve accuracy.

HollowText (Optional) Set this parameter if you are processing subtitles that
consist of white characters with black outlines.

Region (Optional) Restrict OCR to a region of the image, instead of the entire
image.

RegionUnit (Optional) The units to use for specifying the region (default percent).
To specify the position and size of the region in pixels, set this
parameter to pixel.

For example:

Administration Guide
Chapter 12: Optical Character Recognition

Media Server (12.4) Page 159 of 399

[OCR]
 Type=ocr
 Languages=en

For more information about the parameters you can use to customize OCR, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

OCR Results

This section describes the format of the results produced by an OCR analysis task.

Results by Line

The following XML shows records from the Result track of an OCR task. The analysis engine
produces one record for each line of text in the analyzed image or video frame.

If you are processing a document, then unless you have set ProcessTextElements=FALSE, some of
the records in the Result track could represent text that has been extracted from text elements that
were present in the document.

<record>
 ...
 <trackname>ocr.Result</trackname>
 <OCRResult>
 <id>14565401-b521-4135-94c8-b30f02264f38</id>
 <text>rover discovers life on Mars</text>
 <region>
 <left>240</left>
 <top>31</top>
 <width>194</width>
 <height>12</height>
 </region>
 <confidence>89</confidence>
 <angle>0</angle>
 <source>image</source>
 </OCRResult>
 </record>
 <record>
 ...
 <trackname>ocr.Result</trackname>
 <OCRResult>
 <id>59dad245-c268-4506-ac42-5752dd123576</id>
 <text>discovery confirmed yesterday and announced to world press</text>
 <region>
 <left>120</left>
 <top>62</top>

Administration Guide
Chapter 12: Optical Character Recognition

Media Server (12.4) Page 160 of 399

 <width>434</width>
 <height>15</height>
 </region>
 <confidence>88</confidence>
 <angle>0</angle>
 <source>image</source>
 </OCRResult>
 </record>

Each record contains the following information:

 l The id element provides a unique identifier for the line of text. The OCR analysis engine issues
an ID for each detected appearance of a line of text. If you are running OCR on video and
consecutive frames show the same text, all records related to that appearance will have the same
ID.

For example, if text appears in the same location for fifty consecutive video frames, the engine
uses the same ID for each record in the data track and produces a single record in the result track.
The record in the result track will have a timestamp that covers all fifty frames.

If the text moves to a different location on the screen, or disappears and then reappears, the
engine considers this as a new detection and produces a new ID and a new record in the result
track.

 l The text element contains the text recognized by OCR.

 l The region element describes the position of the text in the ingested media. If the record
represents a text element that has been extracted from a document, the region is accurate only if
the source media was a PDF file. Position information is not extracted from other document
formats.

 l The confidence element provides the confidence score for the OCR process (from 0 to 100). For
text that was extracted from a text element in a document, the confidence score is always 100.

 l The angle element gives the orientation of the text (rotated clockwise in degrees from upright).

 l The source element specifies the origin of the text. The possible values are:

 o image - static text from an image or video.

 o scroller, left - text from video of a news ticker, with text scrolling from right to left.

 o text - the text originated from a text element in a document.

Results by Word

An OCR analysis task that analyzes an image or document (but not video) also produces a
WordResult output track. To this track the OCR analysis engine adds a record for each word. The
following XML shows an example record.

NOTE: Text that is extracted from a text element in a document is not output to the WordResult
track.

Administration Guide
Chapter 12: Optical Character Recognition

Media Server (12.4) Page 161 of 399

<record>
 ...
 <trackname>ocr.WordResult</trackname>
 <OCRResult>
 <id>cdbca09b-c289-40af-b6e6-02427fafad91</id>
 <text>rover</text>
 <region>
 <left>240</left>
 <top>31</top>
 <width>194</width>
 <height>12</height>
 </region>
 <confidence>89</confidence>
 <angle>0</angle>
 <source>image</source>
 </OCRResult>
 </record>

Improve OCR

To get the best results from OCR, the ingested images or video must have sufficient contrast and be in
focus.

The minimum height for a readable character in a high-quality image is approximately 10 pixels. In a
poorer quality image, the characters must be larger.

If you know that all of the text in your images matches a specific character type, for example is upper
case or only contains numbers, set the CharacterTypes configuration parameter. This can improve
accuracy in some cases, because Media Server does not look for other character types.

Administration Guide
Chapter 12: Optical Character Recognition

Media Server (12.4) Page 162 of 399

Chapter 13: Image Classification

Image classification classifies images or video frames. For example, you could create a classifier
named vehicles and train Media Server to classify each vehicle detected by Number Plate
Recognition or Scene Analysis as a car, truck, or motorcycle.

• Train Media Server to Classify Images 163
• Import a Classifier 169
• Classify Images 170
• Classification Results 170

Train Media Server to Classify Images

To classify images, you must train Media Server by providing images that are representative of your
chosen classes.

The following diagram shows how Media Server stores information you provide during training.

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information about how to set up this database, see Introduction, on page 40.

When you run image classification, Media Server classifies your images into the classes in your
chosen classifier. For example, to classify vehicles into "cars", "trucks", "motorcycles", and so on, you
would create a classifier named "vehicles" and create classes named "car", "truck", and "motorcycle".

Media Server (12.4) Page 163 of 399

A classifier must contain at least two classes. To determine whether an image contains a car or doesn't
contain a car, you would need to train a "car" class and also a "not car" class.

To each class you must add training images. Usually around 100 training images per class is sufficient
to obtain good performance. For information about choosing suitable training images, see Training
Requirements, below.

Training Requirements

Media Server image classification uses Convolutional Neural Network (CNN) classifiers. A CNN
classifier usually produces more accurate results than other types of classifier, but can require a
significant amount of time to train.

The more time you allow Media Server to train the classifier, the greater the accuracy. Before you train
a CNN classifier, you can choose how many training iterations to run. The time required to train the
classifier is proportional to the number of training iterations and the number of training images.
Increasing the number of iterations always improves the training and results in better accuracy, but
each additional iteration that you add has a smaller effect.

For classifiers that have four or five dissimilar classes with around 100 training images per class,
approximately 500 iterations produces reasonable results. This number of iterations with this number of
training images requires approximately three hours to complete on a CPU or five minutes to complete
with a GPU. Micro Focus recommends a larger number of iterations for classifiers that contain many
similar classes. For extremely complex classifiers that have hundreds of classes, you might run
200,000 training iterations. Be aware that running this number of training iterations with large numbers
of training images on a CPU is likely to take weeks.

To find the optimum number of iterations, Micro Focus recommends that you start with a small number
of iterations. Double the number of iterations each time you train, until classification accuracy is
acceptable.

When you run classification, the classifier outputs a confidence score for each class. These scores
can be compared across classifiers, and you can set a threshold to discard results below a specified
confidence level.

The performance of classification is generally better if:

 l the classifier contains only a few classes (but it must contain at least two classes).

 l the classes are dissimilar. For example, when training a 'field' class and a 'beach' class, the
presence of clouds in the sky in both sets of training images might cause confusion between the
classes.

 l the classes are trained with many images. Usually around 100 images are sufficient to train a
class. If the images in a class are very similar, fewer images might be sufficient.

 l the training images are representative of the variation typically found within the class. For
example, to train a "dog" class, use images of dogs of different sizes, breeds, colors, and from
different viewpoints.

 l the training images contain little background or clutter around the object in the image.

 l the longest dimension (width or height) of the training image is at least 500 pixels - smaller images
might result in reduced accuracy.

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 164 of 399

TIP: High-resolution images where the object covers a small proportion of the image make
poor training images. If you have a large image showing the object and it can be cropped such
that its longest dimension still exceeds 500 pixels, Micro Focus recommends cropping the
image. If you crop an image, leave a gap around the object of at least 16 pixels.

Create a Classifier

Image classification classifies images or video frames into the classes that are defined by a classifier.

To create a classifier

 1. Use the CreateClassifier action with the classifier parameter.

classifier The name of the new classifier (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateClassifier
 -F classifier=vehicles

 2. (Optional) Set training options on the classifier (such as selecting the number of training
iterations) using the SetClassifierTrainingOption action:

classifier The name of the classifier that you created in the previous step.

key The name of the training option to set.

value The value for the training option.

For example:

curl http://localhost:14000 -F action=SetClassifierTrainingOption
 -F classifier=vehicles
 -F key=iterations
 -F value=1000

Classifier Training Options

After you create a new classifier, you can set training options for it.

Set or modify training options using the actions SetClassifierTrainingOption and
UnsetClassifierTrainingOption. When you change a training option all training associated with the
classifier becomes invalid and you must retrain the classifier using the BuildClassifier action. For
more information about these actions, refer to the Media Server Reference.

You can set the following training options:

Training Option Description Default
value

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 165 of 399

iterations The number of iterations to perform when training a neural
network classifier. For information about how to set this training
option, see Training Requirements, on page 164.

500

For an example that shows how to add a new classifier and set training options, see Create a
Classifier, on the previous page.

Add Classes to a Classifier

To add classes to a classifier, complete the following procedure.

To add classes to a classifier

 1. Add each new class using the action CreateClass. Set the following parameters:

classifier The name of the classifier to add the class to. The classifier must already exist.
To create a classifier, see Create a Classifier, on the previous page.

identifier (Optional) A unique identifier for the class (maximum 254 bytes). If you do not
set this parameter, Media Server generates an identifier automatically.

imagedata (Set this or imagepath, but not both). The training images to add. Files must be
uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to add to
the class. The paths must be absolute or relative to the Media Server
executable file.

imagelabels (Optional) A comma-separated list of labels. One label is associated with each
image. (maximum 254 bytes for each label). The number of labels must match
the number of images. If you do not set this parameter, Media Server generates
labels automatically.

For example:

curl http://localhost:14000 -F action=createclass
 -F classifier=vehicles
 -F identifier=cars
 -F imagedata=@car1.jpg,car2.jpg,...

Alternatively, the following example provides the paths of the training images rather than sending
the image data:

curl http://localhost:14000 -F action=createclass
 -F classifier=vehicles
 -F identifier=cars
 -F imagepath=car1.jpg,car2.jpg,...

Media Server adds the new class.

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 166 of 399

 2. (Optional) Add metadata to the class using the AddClassMetadata action. You can add any
number of key-value pairs. Set the following parameters:

classifier The name of the classifier that contains the class.

identifier The identifier for the class, as returned by the CreateClass action.

key The key to add (maximum 254 bytes).

value The value to add (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=AddClassMetadata
 -F classifier=vehicles
 -F identifier=cars
 -F key=notes
 -F value=motor%20vehicles

 3. Complete the training for the classifier by running the action BuildClassifier:

curl http://localhost:14000 -F action=BuildClassifier
 -F classifier=vehicles

This action is asynchronous, so Media Server returns a token. You can use the token with the
QueueInfo action to retrieve the response.

List Classifiers and Classes

To list the classifiers that you have created, and check their status (whether they need training), use
the following procedure.

To list classifiers

 l Run the action ListClassifiers:

http://localhost:14000/action=ListClassifiers&trainingoptions=TRUE

Media Server returns a list of classifiers that you have created. For example:

<autnresponse>
 <action>LISTCLASSIFIERS</action>
 <response>SUCCESS</response>
 <responsedata>
 <classifier>
 <classifier>vehicles</classifier>
 <state>STALE</state>
 <numclasses>3</numclasses>
 <trainingoptions>
 <trainingoption>
 <key>iterations</key>
 <value>2000</value>

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 167 of 399

 </trainingoption>
 </trainingoptions>
 </classifier>
 </responsedata>
 </autnresponse>

The state element specifies whether the classifier needs training. If this element contains the
value "stale", train the classifier using the action BuildClassifier. The other possible states are
training, trained, and failed.

The numclasses element specifies the number of classes in the classifier.

If you set the trainingoptions parameter to true, the response also includes training options
that you have set for the classifier.

To list the classes in a classifier

 l Run the action ListClasses:

http://localhost:14000/action=ListClasses&classifier=vehicles
 &metadata=true
 &imagelabels=true

Media Server returns a list of classes in the specified classifier.

If you set the action parameter imagelabels to true, Media Server returns the labels of images
associated with each class.

If you set the action parameter metadata to true, Media Server returns the metadata you have
added to each class.

Update or Remove Classes and Classifiers

To update or remove a class use the following actions:

 l To add additional training images to a class, use the action AddClassImages. After adding images
to a class you must retrain the classifier using the action BuildClassifier. To confirm that
training was successful, use the action ListClassifiers (see List Classifiers and Classes, on
the previous page).

 l To remove training images from a class, use the action RemoveClassImages. After removing
images from a class you must retrain the classifier using the action BuildClassifier. To
confirm that training was successful, use the action ListClassifiers (see List Classifiers and
Classes, on the previous page).

 l To change the label of an image that you added to a class, use the action RelabelClassImage.

 l To move an image from one class to another, for example if you add an image to the wrong class,
use the action MoveClassImage.

 l To add, remove, or update custom metadata for a class, use the actions AddClassMetadata,
RemoveClassMetadata, and UpdateClassMetadata.

 l To rename a class, use the action RenameClass.

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 168 of 399

 l To remove a class from a classifier and discard all associated images and metadata, use the
action RemoveClass.

To update or remove a classifier, use the following actions:

 l To modify the training options for a classifier, use the actions SetClassifierTrainingOption
and UnsetClassifierTrainingOption.

 l To rename a classifier, use the action RenameClassifier.

 l To delete a classifier and all of the information that it contains, use the action RemoveClassifier.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Import a Classifier

Micro Focus may provide classifiers that you can use with Media Server to classify images. These
classifiers are pre-trained, and to use one you only need to import the training data into your Media
Server database.

For a list of the available pre-trained classifiers, see Pre-Trained Classifiers, on page 392.

To import a classifier

 1. Go to the MySupport portal and download the classifier to your Media Server machine. When you
download the classifier, ensure the version of the classifier matches the version of Media Server
that you are using.

 2. Import the training data by running the action ImportClassifer, for example if you downloaded
the file to the folder pretrained, in the Media Server installation folder:

/action=ImportClassifier&classifier=imagenet
 &classifierpath=./pretrained/imagenet.dat

where,

classifier The name to give to the imported classifier.

classifierpath The path of the classifier data file on disk

classifierdata The classifier data (you can set this as an alternative to classifierpath).

Media Server imports the data. You can now run classification.

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 169 of 399

https://softwaresupport.softwaregrp.com/

Classify Images

To classify images or video frames

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=Classification

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to
ImageClassification.

Input (Optional) The image track to process. If you do not specify an
input track, Media Server processes the first track of the correct
type that is produced by the ingest engine.

Classifier The classifier to use for classification. Media Server categorizes
images into the classes in this classifier.

ClassificationThreshold (Optional) The minimum confidence score necessary for Media
Server to output a classification result. Any classification result
with a confidence score below the threshold is discarded.

For example:

[Classification]
 Type=ImageClassification
 Classifier=Vehicles
 ClassificationThreshold=15

For more information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Classification Results

The following XML shows a single record produced by image classification.

<output>
 <record>
 ...
 <trackname>Classification.Result</trackname>

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 170 of 399

 <ImageClassificationResult>
 <id>7fcf8741-9b80-4edd-943e-2d7492467dd4</id>
 <classification>
 <identifier>badger</identifier>
 <confidence>99.26</confidence>
 <metadata>
 <item>
 <key>nocturnal</key>
 <value>true</value>
 </item>
 </metadata>
 </classification>
 <classifier>imagenet</classifier>
 </ImageClassificationResult>
 </record>
 </output>

The record contains the following information:

 l The id element provides a unique identifier for the result.

 l The classification element represents a match between the image and a class in your chosen
classifier.

 o The identifier element provides the identifier of the class into which the image was
classified.

 o The confidence element provides the confidence score for the classification (from 0 to 100).

 o The metadata element provides metadata that you have added to the class in the training
database. If there is no metadata associated with the class, this element is omitted.

 l The classifier element provides the name of your chosen classifier.

Administration Guide
Chapter 13: Image Classification

Media Server (12.4) Page 171 of 399

Chapter 14: Object Class Recognition

Object class recognition uses convolutional neural networks to locate instances of objects that belong
to known, pre-defined classes. For example, if you are processing video of a road captured by a CCTV
camera, you can configure Media Server to return the locations of all pedestrians, vans, and cars that
appear in the video.

• Introduction 172
• Train Media Server to Recognize Objects 172
• Recognize Objects 176
• Object Class Recognition Results 177

Introduction

Object class recognition locates instances of objects that belong to pre-defined classes, such as "car"
or "van". This is more general than object recognition, which recognizes specific objects such as a red
van that matches a specific model and has the logo of "ABC company" painted on its side.

Object class recognition differs from image classification because it returns the position for every
recognized object. Object class recognition can find multiple objects within the analyzed image or
region, whereas classification returns a single classification result and no position information. For
example, using object class recognition to locate cars and people might return more than one instance
of a car and more than one instance of a person in the same image.

Train Media Server to Recognize Objects

Before using object class recognition, you must either import a recognizer that is provided by Micro
Focus, or train your own recognizer. The recognizers provided by Micro Focus are pre-trained, so you
do not need to perform any training. For information about the recognizers that are available, see Pre-
Trained Object Class Recognizers, on page 393.

Media Server (12.4) Page 172 of 399

The following diagram shows how Media Server stores information for object class recognition:

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information on setting up this database, see Set up a Training Database, on
page 40.

The Media Server database can contain any number of recognizers. An object class recognition task
uses a single recognizer and finds instances of objects that are described by classes in that recognizer.
For example, if you are processing video captured by a CCTV camera, you could use the RoadScene
recognizer which contains classes for finding people, cars, and vans.

To train object class recognition you add your training images and chosen classes to the recognizer.
You then add annotations to the images. An annotation identifies a region of a training image that
contains an example object, and the class that the object belongs to. Media Server can then use that
region of the image to train the recognizer. You can add multiple annotations to the same image, which
is useful if an image contains more than one example object.

Recognizer Types

Object Class Recognition supports three different types of recognizer. All three use neural networks
but have different characteristics.

 l The default recognizer is the Generation1 recognizer. This was the sole type of recognizer in
Media Server versions 12.3 and earlier. This type of recognizer is the fastest to train but the other
recognizers provide equal or better accuracy and are much faster at run-time.

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 173 of 399

 l Generation2 recognizers offer the best accuracy, but take the longest to train. The training time
is impractical on a CPU, so Micro Focus recommends that you train the recognizer on a machine
with a supported GPU. You can use a trained Generation2 recognizer with or without a GPU but
Micro Focus recommends using a GPU for best performance. If you run recognition on a GPU,
this type of recognizer is much faster than the Generation1 recognizer, which allows you to set
much shorter sample intervals.

 l Generation3 recognizers are the fastest at run-time, but accuracy is slightly lower than the
Generation2 recognizer.

Before you train a recognizer you can also choose how many training iterations to run. Increasing the
number of iterations improves the training and results in better accuracy, but each additional iteration
that you add has a smaller effect.

To find the optimum number of iterations, Micro Focus recommends that you start with a small number
of iterations. Double the number of iterations each time you train, until accuracy is acceptable. As a
general rule, good accuracy can be obtained by multiplying the number of object classes in the
recognizer by 2000.

Create and Train a Recognizer

To create and train an object class recognizer, follow these steps. For more information about the
actions used in this section, refer to the Media Server Reference.

To create and train a recognizer

 1. Start by creating a new recognizer. For example:

curl http://localhost:14000 -F action=CreateObjectClassRecognizer
 -F recognizer=vehicles

 2. (Optional) Choose the type of recognizer that you want to train. For example:

curl http://localhost:14000 -F action=SetObjectClassRecognizerTrainingOption
 -F key=recognizer_type
 -F value=generation2

 3. Add your chosen object classes to the recognizer.

The following example adds a new class named "car" to the "vehicles" recognizer.

curl http://localhost:14000 -F action=CreateObjectClass
 -F recognizer=vehicles
 -F identifier=car

 4. Add images to the recognizer that contain example objects for training.

The following example adds two images to the "vehicles" recognizer, and labels them "car42" and
"bike19":

curl http://localhost:14000 -F action=AddObjectClassImages
 -F recognizer=vehicles

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 174 of 399

 -F imagedata=@car42.jpg,bike19.jpg
 -F imagelabels=car42,bike19

 5. Annotate each training image. An annotation identifies a region of a training image that contains
an object, and the class that the object belongs to. Media Server can then use that region of the
image to train the recognizer. You can add multiple annotations to the same image, if the image
contains multiple objects.

The following example adds an annotation to the image "car42", associating a region covering the
center 25% of the image with the "car" object class. The region is specified by the Boxes
parameter, which is a comma-separated list of values in the form (left,top,width,height).
Left specifies the distance from the left side of the image to the left side of the region. Top
specifies the distance from the top of the image to the top of the region. Width and Height specify
the width and height of the region. The values are in pixels, unless you set
RegionsAsPercentage=true (in which case specify Left and Width as a percentage of the
image width and Top and Height as a percentage of the image height).

curl http://localhost:14000 -F action=AddObjectClassAnnotations
 -F recognizer=vehicles
 -F imagelabel=car42
 -F identifiers=car
 -F boxes=(25,25,50,50)
 -F regionsaspercentage=true

TIP: To obtain a list of training images that have been added to the recognizer but have not
been annotated, use the action ListUnannotatedObjectClassImages.

 6. Train Media Server by building the recognizer. For example:

curl http://localhost:14000 -F action=BuildObjectClassRecognizer
 -F recognizer=vehicles

Import a Recognizer

Micro Focus may provide recognizers that you can use with Media Server to run object class
recognition. These are pre-trained, and to use one you only need to import the training data into your
Media Server database. For a list of the available pre-trained recognizers, see Pre-Trained Object
Class Recognizers, on page 393.

To import a recognizer

 1. Go to the MySupport portal and download the recognizer to your Media Server machine. When
you download the recognizer, ensure the version matches the version of Media Server that you
are using.

 2. Import the training data by running the action ImportObjectClassRecognizer, for example if you
downloaded the file to the folder pretrained, in the Media Server installation folder:

/action=ImportObjectClassRecognizer&recognizer=roadscene
 &recognizerpath=./pretrained/roadscene.dat

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 175 of 399

https://softwaresupport.softwaregrp.com/

where,

recognizer The name to give to the imported recognizer.

recognizerpath The path of the recognizer data file on disk

recognizerdata The recognizer data (you can set this as an alternative to recognizerpath).

Media Server imports the data. You can now run object class recognition.

Recognize Objects

To recognize objects

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=ObjectClassRecognition

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to
ObjectClassRecognition.

Input (Optional) The image track to process. If you do not specify an input
track, Media Server processes the first track of the correct type that is
produced by the ingest engine.

Recognizer The recognizer to use.

DetectionThreshold (Optional) The minimum confidence score necessary for Media Server
to output a result. Any result with a confidence score below the
threshold is discarded.

For example:

[ObjectClassRecognition]
 Type=ObjectClassRecognition
 Recognizer=roadscene
 DetectionThreshold=30

For more information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 176 of 399

Object Class Recognition Results

The following XML shows two records produced by object class recognition.

<output>
 <record>
 ...
 <trackname>ObjectClassRecognition.Result</trackname>
 <ObjectClassRecognitionResult>
 <id>d5a249f7-3207-4a41-9a23-0b8ac4aafbf6</id>
 <classification>
 <identifier>van</identifier>
 <confidence>100</confidence>
 </classification>
 <recognizer>roadscene</recognizer>
 <region>
 <left>31</left>
 <top>54</top>
 <width>206</width>
 <height>159</height>
 </region>
 </ObjectClassRecognitionResult>
 </record>
 <record>
 ...
 <trackname>ObjectClassRecognition.Result</trackname>
 <ObjectClassRecognitionResult>
 <id>d5a249f7-3207-4a41-9a23-0b8ac4aafbf7</id>
 <classification>
 <identifier>person</identifier>
 <confidence>99.94</confidence>
 </classification>
 <recognizer>roadscene</recognizer>
 <region>
 <left>243</left>
 <top>33</top>
 <width>96</width>
 <height>182</height>
 </region>
 </ObjectClassRecognitionResult>
 </record>
 </output>

Each record contains the following information:

 l The id element provides a unique identifier for the recognized object.

 l The classification element provides information about the recognized object.

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 177 of 399

 o The identifier element provides the identifier of the class that resulted in the object being
recognized.

 o The confidence element provides the confidence score (from 0 to 100).

 l The recognizer element provides the name of the object class recognizer that was used.

 l The region element provides the location of the object in the image or video frame.

Administration Guide
Chapter 14: Object Class Recognition

Media Server (12.4) Page 178 of 399

Chapter 15: Object Recognition

Object recognition detects the appearance of specific objects in video; for example, a specific
company logo.

• Introduction 179
• Train Media Server to Recognize Objects 181
• Recognize Objects 189
• Object Recognition Results 190
• Optimize Object Recognition Performance 192

Introduction

You can train Media Server to recognize objects, such as logos, that appear in images and video.
These objects can be two-dimensional or three-dimensional.

2-D object with 2-D similarity transform

For example, a company logo on a scanned document.
Media Server can still recognize the logo when it is
subject to 2-D similarity transformations such as rotation
and scaling.

2-D object with perspective transform

For example, a photograph or video frame that shows a
sign displaying a company logo.

Perspective transformations result from viewing the
object from any angle other than directly perpendicular to
its plane. This can result in skewing of the image.
Perspective transformations often occur in photographs
of objects when the camera axis is not directly aligned
with the object.

Media Server can only recognize 2-D objects that appear
on flat, rigid objects. For example, if you attempt to
recognize a logo printed on a flag or item of clothing,
recogntion may not be reliable.

Media Server (12.4) Page 179 of 399

3-D object

For example, a photograph or video frame that shows
product packaging.

If you supply sufficient training images, Media Server can
recognize a 3-D object from any angle.

2D Object Recognition

Media Server can recognize 2-D objects in images and video, even when they are subject to similarity
or perspective transformation. However, Media Server expects the object to appear on a flat, rigid
surface.

The following table provides some examples of transformations that are supported and are not
supported.

Transformation Example Supported?

Original object ✓

Scaling ✓

Rotation ✓

Perspective distortion or skew (horizontal
or vertical only)

✓

Perspective distortion or skew (both
horizontal and vertical)

✓

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 180 of 399

2-D object on a surface that is not flat ✗

TIP: Media Server does not support the recognition of 2-D objects on surfaces that are not flat.
However, acceptable accuracy is achievable if you train Media Server using images of the object on
the curved surface, rather than images of the object on a flat surface (so that the training is
representative of the images you want to analyze).

Train Media Server to Recognize Objects

You must train Media Server by providing images of objects that you want to recognize. When you run
object recognition, Media Server uses the training data to recognize objects in your media.

The following diagram shows how Media Server stores information you provide during training.

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information on setting up this database, see Introduction, on page 40.

You can organize objects into databases. These object databases are for organizational purposes. For
example, you might have a database for company logos, and a database for your company's products.
If you want to recognize only one category of objects in your images, you can use only that database.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 181 of 399

A database can contain any number of objects, both 2D and 3D. You can associate training options and
custom metadata with each object.

To each object you must add a training image (multiple training images for a 3-D object). For information
about choosing suitable training images, see Select Images for Training, below.

Select Images for Training

The following table describes the training requirements for 2-D and 3-D objects:

Object type Requirements

2-D One or more training images.

Media Server creates a separate model for each training image. For
example, if a company has many different variations of its logo, you only
need to add one 2-D object to your object database. Add all of the training
images for the logo to the same object, even if some variations of the logo
do not look like the others.

3-D Multiple training images depicting the same 3-D object from all angles.

Provide images of the object from all angles that you expect it to appear in
target images. Micro Focus recommends that the images are taken in one
continuous process. One way to obtain training images is by recording a
video of the object from all angles and extracting images from the video.

As a rough estimate, between 20 and 40 images of an object are usually
sufficient to provide accurate detection in a small image.

Media Server uses all of the training images to create a single model.

A good training image for an object:

 l contains only the object, with as little background as possible. The object should be the dominant
feature in the image but there should be at least 16 pixels of background surrounding the object. If
any parts of an object touch the image edges, the features corresponding to those parts of the
image are likely to be lost.

 l includes transparency information, if you intend to recognize the object against many different
backgrounds (for example, superimposed on TV footage). Ideally all parts of the image that are
not part of the object are transparent (by having their alpha channel set appropriately).

NOTE: Only some image formats support transparency information, for example .PNG and
.TIFF. Media Server does not support transparency information in .GIF files.

 l has not been converted from another file format to JPEG. Converting images to JPEG introduces
compression artifacts. If you have JPEG images, avoid making many rounds of edits. Each time
that a new version of the image is saved as a JPEG, the image quality degrades.

Create a Database to Contain Objects

To create a database to contain objects, use the following procedure.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 182 of 399

To create a database to contain objects

 l Use the CreateObjectDatabase action, with the database parameter:

database The name of the new database (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateObjectDatabase
 -F database=CompanyLogos

Add an Object to a Database

To add an object to a database of objects, you can:

 l Perform training in separate steps. Create a new (empty) object, then add training images, and
then train Media Server, using separate actions. You can also add metadata to the object and
configure training options, but these are optional steps. You might want to perform training in this
way if you are building a front end application that responds to user input.

 l Perform training in a single action. You might use this approach when writing a script to train
Media Server from a collection of images and metadata.

Add an Object to a Database (Using Separate Steps)

This section describes how to create a new (empty) object, then add training images, and then train
Media Server, using separate actions. You can also add metadata to the object, and configure training
options, but these are optional steps. You might want to perform training in this way if you are building a
front end application that responds to user input.

Alternatively, you can train Media Server to recognize an object by sending a single action. To do this,
see Add an Object to a Database (Using a Single Action), on page 185.

To add an object to a database (using separate steps)

 1. Add an object using the NewObject action. Set the following parameters:

database The name of the database to add the object to. The database must already exist.

identifier (Optional) A unique identifier for the object (maximum 254 bytes). If you do not
set this parameter, Media Server generates an identifier automatically.

For example:

curl http://localhost:14000 -F action=NewObject
 -F database=CompanyLogos

Media Server adds an object to the database and returns the identifier.

 2. Add one or more training images to the object using the AddObjectImages action. Set the

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 183 of 399

following parameters:

database The name of the database that contains the object.

identifier The identifier for the object, returned by the NewObject action.

imagedata (Set this or imagepath, but not both). The training images to add. Files must
be uploaded as multipart/form-data. For more information about sending data
to Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to add.
The paths must be absolute or relative to the Media Server executable file.

imagelabels A comma-separated list of labels. One label is associated with each image.
(maximum 254 bytes for each label). The number of labels must match the
number of images. If you do not set this parameter, Media Server generates
labels automatically.

For example, to add a training image by supplying the image data:

curl http://localhost:14000 -F action=AddObjectImages
 -F database=CompanyLogos
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F imagedata=@logo1.png

Alternatively, to add a training image by supplying its path:

curl http://localhost:14000 -F action=AddObjectImages
 -F database=CompanyLogos
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F imagepath=logo1.png

 3. (Optional) Configure the way that Media Server is trained by setting training options for the object.
To do this use the SetObjectTrainingOption action with the following parameters:

database The name of the database that contains the object.

identifier The identifier for the object, returned by the NewObject action.

key The name of the training option that you want to change. For more
information about training options, see Object Training Options, on page 187.

value The new value for the training option.

For example:

curl http://localhost:14000 -F action=SetObjectTrainingOption
 -F database=CompanyLogos
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F key=useColor
 -F value=true

 4. (Optional) Add metadata to the object using the AddObjectMetadata action. You can add any

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 184 of 399

number of key-value pairs. Set the following parameters:

database The name of the database that contains the object.

identifier The identifier for the object, returned by the NewObject action.

key The key to add (maximum 254 bytes).

value The value to add (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=AddObjectMetadata
 -F database=CompanyLogos
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62
 -F key=CompanyName
 -F value=HewlettPackard

 5. Complete the training for the object using the BuildObject action. Set the following parameters:

database The name of the database that contains the object.

identifier The identifier for the object, returned by the NewObject action.

For example:

curl http://localhost:14000 -F action=BuildObject
 -F database=CompanyLogos
 -F identifier=6600dc0f9dd72d0cb55589e8f1d28b62

Add an Object to a Database (Using a Single Action)

You can train Media Server to recognize an object by sending a single action (TrainObject).

Running this action is equivalent to running the following actions in the following order:

 l NewObject

 l AddObjectImages

 l SetObjectTrainingOption (optional)

 l AddObjectMetadata (optional)

 l BuildObject

The TrainObject action is atomic, so that any interruption to the server does not leave the database in
an inconsistent state.

Alternatively, you can train Media Server by sending these actions individually. You might want to do
this if you are building a front end application that trains Media Server in response to user input. For
more information about how to do this, see Add an Object to a Database (Using Separate Steps), on
page 183.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 185 of 399

To add an object to a database (using a single action)

 l Add an object using the TrainObject action. Set the following parameters:

database The name of the database to add the object to. The database must already
exist.

identifier (Optional) A unique identifier for the object (maximum 254 bytes). If you do
not set this parameter, Media Server generates an identifier automatically.

imagedata (Set this or imagepath, but not both). The training images to add. Files
must be uploaded as multipart/form-data. For more information about
sending data to Media Server, see Send Data by Using a POST Method,
on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to
add. The paths must be absolute or relative to the Media Server executable
file.

imagelabels (Optional) A comma-separated list of labels. One label is associated with
each image. (maximum 254 bytes for each label). The number of labels
must match the number of images. If you do not set this parameter, Media
Server generates labels automatically.

metadata (Optional) A comma-separated list of metadata key-value pairs to add to
the object. Separate keys from values using a colon (:). To include a
comma or colon in a key name or value, you must enclose the key name or
value in quotation marks (") and escape any quotation marks that occur
within the string with a backslash (\).

trainingoptions (Optional) A comma-separated list of training options to apply to the object.
Separate training options from their values using a colon (:).

For example:

curl http://localhost:14000 -F action=TrainObject
 -F database=CompanyLogos
 -F imagedata=@logo.png
 -F
"metadata=CompanyName:HPE,\"another:value\":\"1,000\""
 -F trainingoptions=useColor:true,3D:false

Alternatively, the following example provides the path of the training image rather than sending
the image data:

curl http://localhost:14000 -F action=TrainObject
 -F database=CompanyLogos
 -F imagepath=logo.png
 -F
"metadata=CompanyName:HPE,\"another:value\":\"1,000\""

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 186 of 399

 -F trainingoptions=useColor:true,3D:false

Media Server adds the object to the database and returns the identifier.

Object Training Options

After you create a new object in an object database, you can set training options for the object. Training
options configure how Media Server uses the training data that you supply to create a model of the
object.

You can set the following training options:

Training Option Description Acceptable
values

Default
value

3D Specifies whether the object is a three-dimensional
object.

true, false false

boundaryFeatures Specifies whether there are important features at the
edges of the training images. For example if you
supply a training image of a rectangular flag, and the
edge of the image represents the edge of the flag, set
this option to true.

true, false false

useColor Specifies whether Media Server adds color
information from the training images into the models
that it creates for recognition. For example, if you are
recognizing company logos but one company often
prints its logo in different colors, set this option to
false.

true, false false

For an example that shows how to add a new object and set training options, see Add an Object to a
Database, on page 183.

List the Objects in a Database

To list the objects that you have added to a database, and check whether training was successful, use
the following procedure.

To list the objects in a database

 1. (Optional) First list the databases that have been created to store objects. Use the action
ListObjectDatabases:

http://localhost:14000/action=ListObjectDatabases

Media Server returns a list of databases that you have created.

 2. List the objects that exist in one of the databases. Use the action ListObjects, for example:

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 187 of 399

http://localhost:14000/action=ListObjects&database=logos
 &metadata=true
 &trainingoptions=true
 &imagestatus=true

Media Server returns a list of objects in the specified database, and the number of training images
associated with each object.

If you set the action parameter metadata to true, Media Server returns the metadata you have
added to the object.

If you set the action parameter trainingoptions to true, Media Server returns the training
options you have set for the object.

If you set the action parameter imagestatus to true, Media Server returns the status of each
training image associated with each object.

 l The status element indicates the status of training:

 o trained indicates that training was successful.

 o untrained indicates that training has not been attempted. Run training for the object
using the action BuildObject, or run training for all objects that have incomplete training
using the action BuildAllObjects.

 o failed indicates that Media Server could not use the image for training. Remove the
failed image using the action RemoveObjectImages.

 l The hasimagedata element indicates whether the training image is stored in the database. If
the value of this element is false, the image has been removed from the database by the
action NullObjectImageData. Images that have been removed and have a status of
untrained cannot be trained, so Micro Focus recommends you remove these images with
the action RemoveObjectImages.

Update or Remove Objects and Databases

To update or remove an object use the following actions:

 l To complete training for all objects that exist in the Media Server database but have incomplete
training, use the action BuildAllObjects. To confirm that training was successful, use the
action ListObjects (see List the Objects in a Database, on the previous page).

 l To add additional training images to an object, use the action AddObjectImages. Media Server
does not use the new images for object detection until you run the action BuildObject. To
confirm that training was successful, use the action ListObjects (see List the Objects in a
Database, on the previous page).

 l To remove a training image from an object, use the action RemoveObjectImages.

 l To modify the training options for an object, use the actions SetObjectTrainingOption and
UnsetObjectTrainingOption.

 l To change the label of an image that you added to an object, use the action
RelabelObjectImage.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 188 of 399

 l To move an image of an object from one object to another, for example if you add an image to the
wrong object, use the action MoveObjectImage.

 l To add, remove, or update custom metadata for an object, use the actions AddObjectMetadata,
RemoveObjectMetadata, and UpdateObjectMetadata.

 l To change the identifier of an object you added to an object database, use the action
RenameObject.

 l To move an object to a different database, use the action MoveObject.

 l To remove an object from a database and discard all associated images and metadata, use the
action RemoveObject.

To update or remove object databases, use the following actions:

 l To rename an object database, use the action RenameObjectDatabase.

 l To delete an object database and all of the information that it contains, use the action
RemoveObjectDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Recognize Objects

To recognize objects, configure an object analysis task by following these steps.

To recognize objects

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=ObjectRecognition

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to ObjectRecognition.

Input (Optional) The image track to process.

Database (Optional) The database to use for recognizing objects. By default,
Media Server searches for objects from all object databases. Database
names are case-sensitive.

ColorAnalysis (Optional) A Boolean value that specifies whether to check the color of
detected objects in order to reduce false identification. Set this

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 189 of 399

parameter if the objects are primarily distinguished by color; for
example, some flags differ from each other by color only.

ObjectEnvironment (Optional) Some objects, such as logos, might be partially or completely
transparent, meaning that their appearance changes depending on the
background on which they are superimposed. In such cases, set this
parameter to specify the type of background in target images.

NOTE: For the ObjectEnvironment parameter to have an effect, the
image of the object used for training the database must contain
transparent pixels.

Occlusion (Optional) By default, Media Server assumes that an object might be
partially hidden in target images, for example by overlapping objects. If
the object is never obscured in target images, set this parameter to
FALSE to reduce false positives.

Region (Optional) Search for objects in a region of the image, instead of the
entire image.

For example:

[ObjectRecognition]
 Type=ObjectRecognition
 Database=CompanyLogos

For more details about the parameters that you can use to customize object recognition, refer to
the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Object Recognition Results

The following XML shows a single record produced by object recognition.

<output>
 <record>
 ...
 <trackname>object.Result</trackname>
 <ObjectRecognitionResult>
 <id>ed1f3af7-9f00-434f-8bc4-a328ff4c67fc</id>
 <identity>
 <identifier>MicroFocus</identifier>
 <database>logos</database>
 <confidence>100</confidence>
 <metadata>
 <item>
 <key>CompanyName</key>
 <value>MicroFocus</value>

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 190 of 399

 </item>
 </metadata>
 </identity>
 <boundary>
 <point>
 <x>106</x>
 <y>100</y>
 </point>
 <point>
 <x>271</x>
 <y>101</y>
 </point>
 <point>
 <x>272</x>
 <y>183</y>
 </point>
 <point>
 <x>107</x>
 <y>183</y>
 </point>
 </boundary>
 </ObjectRecognitionResult>
 </record>
 </output>

The record contains the following information:

 l The id element provides a unique identifier for the recognized object. Media Server issues an ID
for each appearance of an object. If you are recognizing objects in video and consecutive frames
show the same object in a near-identical location, all records related to that appearance will have
the same ID.

For example, if an object appears in the same location for a hundred consecutive video frames,
the engine uses the same ID for each record in the data track and the single record in the result
track. The record in the result track will have a timestamp that covers all of the frames.

If the object disappears and then reappears, the engine considers this as a new detection and
produces a new ID and a new record in the result track.

 l The identity element represents a match between the ingested media and an object in your
training database.

 o The identifier element provides the identifier of the object that was detected in the
ingested media.

 o The database element provides the name of the database in which the object exists.

 o The confidence element provides the confidence score for the match (from 0 to 100).

 o The metadata element provides metadata that you associated with the object when you
trained Media Server. If there is no metadata in the training database, this element is omitted.

 l The boundary element provides the position of the object in the ingested media, as a set of points
that form a polygon which surrounds the object.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 191 of 399

Optimize Object Recognition Performance

The quality of the image or video that you send to Media Server can have a significant effect on the
performance of object recognition.

Consider the following expectations for input images and video:

 l The size of the object within the image or video frame is important. Object recognition works
reliably (depending on other factors) if the object occupies a minimum area of 100x100 pixels.
Some objects can be recognized down to 50x50 pixels, but Media Server does not usually
recognize any object smaller than this. The size of the image or video is less important than the
size of the object; however a large image might contain a large amount of clutter, which means
that object recognition might take longer.

 l Objects should not appear blurry.

 l Objects can be recognized if they are partially obscured (set the Occlusion configuration
parameter), but this might reduce accuracy.

 l Object recognition performs best when the image or video has even illumination, because dim
lighting, dark shadows, or bright highlights can reduce accuracy.

 l The image or video should not be affected by significant compression artifacts that can affect
some formats (such as highly compressed JPEG images). Micro Focus recommends that you do
not save your image files as JPEG images with high levels of compression or transcode video
that has been captured from a camera. If you are using a digital video recorder (DVR) to record the
footage from a camera and are then sending the video to Media Server, ensure the DVR is saving
the video at full resolution and is not reducing the bit rate.

Administration Guide
Chapter 15: Object Recognition

Media Server (12.4) Page 192 of 399

Chapter 16: Text Detection

Media Server can detect regions, in images and video, that contain text.

• Introduction 193
• Set up Text Detection 193
• Text Detection Results 194
• Example Configuration 195

Introduction

Media Server can detect regions, in images and video, that contain text.

You can also use text detection to identify vehicles (by finding the text on the vehicle's number plate),
and then identify the vehicle's make, model, and color (see Vehicle Make and Model Recognition, on
page 199). You should only use text detection for this purpose if you cannot use number plate
recognition, for example when the number plates exhibit out of plane rotation, because text detection
identifies all text in a frame rather than just the number plates.

Text detection does not read the text. If you want to detect and recognize text, you can use OCR, or
run text detection to locate regions that contain text and then run OCR on those regions. In cases
where the media contains small amounts of text within a scene (and you would use OCRMode=scene),
using text detection to find the text and then running OCR can provide better performance than running
OCR on the entire image or video frame. Where there is a large amount of text, for example an image of
a document, using OCR (with OCRMode=Document) is the best approach.

In some cases text detection might be able to detect text that cannot be read by OCR or number plate
recognition, for example due to out-of-plane skew. You can use text detection to ensure that the text is
captured, to be read and evaluated by a person. This might be useful for saving images or video for
evidential purposes, for example.

Set up Text Detection

To detect regions that contain text

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=DetectText

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Media Server (12.4) Page 193 of 399

Type The analysis engine to use. Set this parameter to TextDetection.

Input (Optional) The track to process. If you do not specify an input track,
Media Server processes the first track of the correct type that is
produced by the ingest engine.

DetectionThreshold (Optional) The minimum confidence score required for Media Server to
detect text.

NumParallel (Optional) The maximum number of CPU threads to use for analysis. In
most cases this specifies the number of video frames to analyze
concurrently. This parameter has no effect on single images (Media
Server always uses a single thread on images).

For example:

[DetectText]
 Type=TextDetection
 DetectionThreshold=55

For more information about the parameters you can use to customize text detection, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Text Detection Results

The following XML shows a single record produced by text detection.

<record>
 ...
 <trackname>DetectText.Result</trackname>
 <TextDetectionResult>
 <id>aa056c5e-3cea-4cfa-a090-713384270424</id>
 <region>
 <left>264</left>
 <top>280</top>
 <width>106</width>
 <height>18</height>
 </region>
 <confidence>100</confidence>
 </TextDetectionResult>
 </record>

The record contains the following information:

 l The id element provides a unique identifier for each example of detected text. The text detection
engine does not track text across video frames, so if you process video and the same text
appears in consecutive frames there will be records (with different identifiers) in the result track
for each frame. There might be multiple records per frame if text is detected in more than one

Administration Guide
Chapter 16: Text Detection

Media Server (12.4) Page 194 of 399

region.

 l The region element describes the position of the detected text in the image or video frame (as a
rectangle). left provides the number of pixels between the left side of the image and the left side
of the region. top provides the number of pixels between the top of the image and the top of the
region. width and height provide the width and height of the region.

 l The confidence element describes the confidence score for the detection, from 0 to 100, where
higher values represent greater confidence.

Example Configuration

The following is an example configuration that demonstrates how to detect text in ingested images. The
configuration includes a transformation task to draw the region(s) and an encoding task to output the
resulting image(s).

[Session]
 Engine0=Ingest
 Engine1=DetectText
 Engine2=DrawRegion
 Engine3=EncodeImage
 Engine4=Output

 [Ingest]
 Type=Image

 [DetectText]
 Type=TextDetection
 DetectionThreshold=50

 [DrawRegion]
 Type=Draw
 Input=DetectText.ResultWithSource
 Color=Red
 Thickness=3

 [EncodeImage]
 Type=ImageEncoder
 ImageInput=DrawRegion.Output
 OutputPath=output/%session.token%/%segment.sequence%-%source.filename%

 [Output]
 Type=Response
 Input=DetectText.Result

Administration Guide
Chapter 16: Text Detection

Media Server (12.4) Page 195 of 399

Chapter 17: Number Plate Recognition

Media Server can detect and read the number plates of vehicles in a scene. Number plate recognition
has many applications; you can detect stolen and uninsured vehicles, monitor the length of stay for
vehicles in car parks, and provide a drive-off deterrent at petrol filling stations.

• Requirements for ANPR 196
• Detect and Read Number Plates 196

Requirements for ANPR

For reliable number plate detection and recognition, ensure that your system meets the following
requirements.

Camera Micro Focus recommends a separate camera for each lane of
traffic. If you use a single camera for several lanes of traffic, high-
definition recording is required (1080p or better).

Manually focus the camera on the middle of the region where
number plates are read, and use a fast shutter speed to avoid
blurring.

Image contrast The contrast must be sufficient for the number plates to be human-
readable. If you are reading retroreflective number plates, the best
results are obtained with infra-red (IR) illumination.

Number plate size The number plates must be human-readable and characters in the
video must not be less than 10 pixels high.

Number plate rotation Position the camera above the traffic, so that number plates appear
to be horizontal. The closer the plates are to horizontal, the better
the performance.

Video frame rate Media Server improves accuracy by reading number plates across
multiple frames. For moving traffic Media Server requires 25 or 30
frames per second. Do not reduce the frame rate of the captured
video.

Detect and Read Number Plates

Media Server can detect and read number plates that appear in video.

Media Server (12.4) Page 196 of 399

To detect and read number plates in video

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=ANPR

 3. Create a new section in the configuration file to contain the task settings and set the following
parameters:

Type The analysis engine to use. Set this parameter to numberplate.

Input (Optional) The image track to process. If you do not specify an
input track, Media Server processes the first track of the correct
type that is produced by the ingest engine.

Location (Set this or LocationWithPriorities) A comma-separated list of
ISO-3166 codes to specify the locations for which you want to
recognize number plates. Specify the primary location first. For
example, if you are recognizing number plates in France but also
want to recognize plates from Germany and Belgium, set this
parameter to Location=FR,DE,BE.

LocationWithPriorities (Set this or Location) A comma-separated list of ISO-3166 codes
to specify the locations for which you want to recognize number
plates, and their relative priorities.

For example, if you are recognizing number plates in France but
are near the border and also want to recognize plates from
Germany and Belgium, you might set
LocationWithPriorities=fr:1.0,de:0.1,be:0.01. This
instructs Media Server that French, German, and Belgian number
plates are expected, but German plates are 10 times less likely to
be seen than French plates, and Belgian number plates are 100
times less likely to be seen than French plates.

Region (Optional) The region of interest (ROI) to monitor for number plates
(left, top, width, height). If you do not specify a region, Media
Server detects and reads number plates anywhere in the scene.

RegionUnit (Optional) The units used to specify the position and size of the
region of interest (pixel or percent).

Sensitivity (Optional) The confidence level required to detect a number plate.

MinValidScore (Optional) The average character score required for a number plate
to be recognized.

Administration Guide
Chapter 17: Number Plate Recognition

Media Server (12.4) Page 197 of 399

For example:

[ANPR]
 Type=numberplate
 Location=GB
 RegionUnit=percent
 Region=20,10,60,90
 Sensitivity=14

For more information about the parameters that customize number plate recognition, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 17: Number Plate Recognition

Media Server (12.4) Page 198 of 399

Chapter 18: Vehicle Make and Model Recognition

Media Server can identify the make, model, and color of vehicles that are detected in a scene.

• Introduction 199
• Train Media Server to Recognize Vehicle Models 199
• Recognize Vehicles (Make and Model) 207
• Vehicle Make and Model Recognition Results 209
• Identify Vehicle Colors 210

Introduction

Media Server can recognize the make, model, and color of vehicles that are detected in a scene.

Vehicle make and model recognition can help law enforcement identify stolen vehicles. If you also run
number plate recognition, you can compare the make and model detected by Media Server to a
database and identify vehicles that have false number plates.

To recognize the make and model of a vehicle, you must first identify the vehicle within the scene. You
can do this by running text detection or number plate recognition to detect the vehicle's number plate.
The vehicle model analysis engine requires as input either the DataWithSource or ResultWithSource
track from a number plate analysis task, or the ResultWithSource track from a text detection task.

To recognize the color of a vehicle, you must first identify the vehicle make.

Train Media Server to Recognize Vehicle Models

Vehicle recognition identifies both the make and model of a vehicle detected by number plate
recognition.

Media Server has been pre-trained to identify the make of vehicles, but you must train Media Server to
recognize vehicle models by providing images of those models.

Media Server (12.4) Page 199 of 399

The following diagram shows how Media Server stores information about vehicle models.

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information on setting up this database, see Introduction, on page 40.

You can organize vehicle models into databases. These databases are for organizational purposes. For
example, you might have a database for European vehicle models, and a database for American
vehicle models. When you run vehicle recognition, you must choose the database to use.

A database can contain any number of vehicle models. You must associate a vehicle make with each
model. After Media Server identifies the make of a vehicle it can then perform recognition against a
much smaller number of models.

To each vehicle model you must add at least one training image. Vehicle manufacturers update the
design of their models over time, and might offer vehicles in different configurations. You can choose
whether to consider these the same model or train different models.

Obtain Images for Training

Vehicle model recognition performs best when vehicles are moving towards the camera, and the front
of the vehicle is visible in the video. Ideally your cameras should be positioned above the lane(s) of
traffic being monitored, and not at the roadside. Cameras that are positioned directly above the traffic
are better for recognition because they capture images where the vehicles approach head-on.

Usually three to five training images are sufficient to train each model. You should supply images from
several angles (for example, head-on, 15 degrees left/right of center, and 30 degrees left/right of
center). It can help to add a set of images at a smaller size and a set at a larger size, in case vehicles
are detected at different distances.

The training images that you use to train a single model should be different from each other, such that
each image adds new information to the model. Adding many almost identical images to a single model
is unlikely to improve accuracy and increases the time required for processing.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 200 of 399

You can use Media Server to obtain training images. Run vehicle make and model recognition on a
sample video, crop the video frames to the region identified by the vehicle model analysis engine, and
encode the cropped images using the image encoder. Media Server includes an example configuration,
configurations/examples/VehicleModel/OutputModelPatches.cfg, that performs these steps.
You can then use a selection of the encoded images for training.

In some cases you might need to produce the training images manually. Media Server might not crop
frames successfully for some types of vehicles, including larger vehicles such as trucks. If you are
training Media Server to recognize a brand new model and the prototype vehicle does not have a
number plate, Media Server cannot produce training images because the number plate is used to
identify the position of the vehicle in the image.

List the Supported Vehicle Makes

Media Server has been pre-trained to identify the make of many vehicles. To see the list of supported
vehicle makes, use the action ListVehicleMakes.

To list the supported vehicle makes

 l Run the action ListVehicleMakes, for example:

curl http://localhost:14000 -F action=ListVehicleMakes

Media Server returns the list of supported makes.

If you want to recognize a vehicle model that is not from one of the supported makes, you can train the
vehicle model using the make Unknown.

To request support for a vehicle make, first obtain training images. Media Server includes a sample
configuration, configurations/examples/VehicleModel/OutputMakePatches.cfg, that encodes
suitable images. The configuration saves images into folders which match the name of an existing
vehicle make, or "unknown". The images for an unknown make might be classified as "unknown", but
depending on the recognition threshold and the similarity with existing vehicle makes, they might also
be classified, incorrectly, as an existing vehicle make. After obtaining training images, contact Micro
Focus IDOL Technical Support.

Create a Database to Contain Vehicle Models

To create a database to contain vehicle models, use the following procedure.

To create a database to contain vehicle models

 l Use the CreateVehicleModelDatabase action, with the database parameter:

database The name of the new database (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateVehicleModelDatabase
 -F database=Cars

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 201 of 399

Add a Vehicle Model to a Database

To add a vehicle model to a database of vehicle models, you can:

 l Perform training in separate steps. Create a new (empty) model, add training images, and then
train Media Server, using separate actions. You can also add metadata to the vehicle model, but
this is an optional step.

 l Perform training in a single action. Add and train a new vehicle model with a single action.
You might use this approach when all of the required information is available and ready to be
added to the database. When adding a vehicle model using a single action, either all of the training
steps are successful or nothing is added to the database.

Add a Vehicle Model to a Database (Using Separate Steps)

This section describes how to create a new (empty) vehicle model, add training images, and then train
Media Server, using separate actions. You can also add metadata to the vehicle model, but this is an
optional step.

Alternatively, you can train Media Server to recognize a vehicle model by sending a single action. To do
this, see Add a Vehicle Model to a Database (Using a Single Action), on page 204.

To add a vehicle model to a database (using separate steps)

 1. Add a new vehicle model using the NewVehicleModel action. Set the following parameters:

database The name of the database to add the vehicle model to. The database must
already exist.

identifier (Optional) A unique identifier for the vehicle model (maximum 254 bytes). If you
do not set this parameter, Media Server generates an identifier automatically.

vehiclemake The vehicle manufacturer. You must set this to one of the makes returned by
the action ListVehicleMakes, or Unknown.

For example:

curl http://localhost:14000 -F action=NewVehicleModel
 -F database=Cars
 -F identifier=FordFocus
 -F vehiclemake=Ford

Media Server adds the vehicle model to the database and returns the identifier.

 2. Add one or more training images to the model using the AddVehicleModelImages action. Set the
following parameters:

database The name of the database that contains the vehicle model.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 202 of 399

identifier The identifier for the vehicle model, returned by the NewVehicleModel action.

imagedata (Set this or imagepath, but not both). The training images to add. Files must
be uploaded as multipart/form-data. For more information about sending data
to Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training images to add.
The paths must be absolute or relative to the Media Server executable file.

imagelabels A comma-separated list of labels. One label is associated with each image.
(maximum 254 bytes for each label). The number of labels must match the
number of images. If you do not set this parameter, Media Server generates
labels automatically.

For example, to add a training image by supplying the image data:

curl http://localhost:14000 -F action=AddVehicleModelImages
 -F database=Cars
 -F identifier=FordFocus
 -F imagedata=@ford-focus.png

Alternatively, to add a training image by supplying its path:

curl http://localhost:14000 -F action=AddVehicleModelImages
 -F database=Cars
 -F identifier=FordFocus
 -F imagepath=./images/ford-focus.png

 3. (Optional) Add metadata to the vehicle model using the AddVehicleModelMetadata action. You
can add any number of key-value pairs. Set the following parameters:

database The name of the database that contains the vehicle model.

identifier The identifier for the vehicle model, returned by the NewVehicleModel action.

key The key to add (maximum 254 bytes).

value The value to add (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=AddVehicleModelMetadata
 -F database=Cars
 -F identifier=FordFocus
 -F key=type
 -F value=hatchback

 4. Complete the training for the vehicle model using the BuildVehicleModel action. Set the
following parameters:

database The name of the database that contains the vehicle model.

identifier The identifier for the vehicle model, returned by the NewVehicleModel action.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 203 of 399

For example:

curl http://localhost:14000 -F action=BuildVehicleModel
 -F database=Cars
 -F identifier=FordFocus

Add a Vehicle Model to a Database (Using a Single Action)

You can train Media Server to recognize a vehicle model by sending a single action
(TrainVehicleModel).

Running this action is equivalent to running the following actions in the following order:

 l NewVehicleModel

 l AddVehicleModelImages

 l AddVehicleModelMetadata (optional)

 l BuildVehicleModel

The TrainVehicleModel action is atomic, so that any interruption to the server does not leave the
database in an inconsistent state.

Alternatively, you can train Media Server by sending these actions individually. For more information
about how to do this, see Add a Vehicle Model to a Database (Using Separate Steps), on page 202.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 204 of 399

To add a vehicle model to a database (using a single action)

 l Add a vehicle model using the TrainVehicleModel action. Set the following parameters:

database The name of the database to add the vehicle model to. The database
must already exist.

identifier (Optional) A unique identifier for the model (maximum 254 bytes). If
you do not set this parameter, Media Server generates an identifier
automatically.

imagedata (Set this or imagepath, but not both). The training images to add.
Files must be uploaded as multipart/form-data. For more information
about sending data to Media Server, see Send Data by Using a
POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The paths of the training
images to add. The paths must be absolute or relative to the Media
Server executable file.

imagelabels (Optional) A comma-separated list of labels. One label is associated
with each image. (maximum 254 bytes for each label). The number of
labels must match the number of images. If you do not set this
parameter, Media Server generates labels automatically.

metadata (Optional) A comma-separated list of metadata key-value pairs to
add to the vehicle model. Separate keys from values using a colon
(:). To include a comma or colon in a key name or value, you must
enclose the key name or value in quotation marks (") and escape any
quotation marks that occur within the string with a backslash (\).

vehiclemake The vehicle manufacturer. You must set this to one of the makes
returned by the action ListVehicleMakes, or Unknown.

For example:

curl http://localhost:14000 -F action=TrainVehicleModel
 -F database=Cars
 -F identifier=FordFocus
 -F vehiclemake=Ford
 -F imagedata=@ford-focus.png
 -F metadata=type:hatchback

Alternatively, the following example provides the path of the training image rather than sending
the image data:

curl http://localhost:14000 -F action=TrainVehicleModel
 -F database=Cars
 -F identifier=FordFocus
 -F vehiclemake=Ford
 -F imagepath=./images/ford-focus.png

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 205 of 399

 -F metadata=type:hatchback

Media Server adds the vehicle model to the database and returns the identifier.

List the Vehicle Models in a Database

To list the vehicle models that you have added to a database, and check whether training was
successful, use the following procedure.

To list the vehicle models in a database

 1. (Optional) First list the databases that have been created to store vehicle models. Use the action
ListVehicleModelDatabases:

http://localhost:14000/action=ListVehicleModelDatabases

Media Server returns a list of databases that you have created.

 2. List the vehicle models that exist in one of the databases. Use the action ListVehicleModels,
for example:

http://localhost:14000/action=ListVehicleModels&database=Cars
 &metadata=true
 &imagestatus=true

Media Server returns a list of vehicle models in the specified database, and the number of training
images associated with each model.

If you set the action parameter metadata to true, Media Server returns the metadata you have
added to each vehicle model.

If you set the action parameter imagestatus to true, Media Server returns the status of each
training image associated with each vehicle model.

 l The status element indicates the status of training:

 o trained indicates that training was successful.

 o untrained indicates that training has not been attempted. Run training for the vehicle
model using the action BuildVehicleModel, or run training for all vehicle models that
have incomplete training using the action BuildAllVehicleModels.

 o failed indicates that Media Server could not use the image for training. Remove the
failed image using the action RemoveVehicleModelImages.

 l The hasimagedata element indicates whether the training image is stored in the database. If
the value of this element is false, the image has been removed from the database by the
action NullVehicleModelImageData. Images that have been removed and have a status of
untrained cannot be trained, so Micro Focus recommends you remove these images with
the action RemoveVehicleModelImages.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 206 of 399

Update or Remove Vehicle Models and Databases

To update or remove a vehicle model use the following actions:

 l To complete training for all vehicle models that exist in the Media Server database but have
incomplete training, use the action BuildAllVehicleModels. To confirm that training was
successful, use the action ListVehicleModels (see List the Vehicle Models in a Database, on
the previous page).

 l To add additional training images to a vehicle model, use the action AddVehicleModelImages.
Media Server does not use the new images for recognition until you run the action
BuildVehicleModel. To confirm that training was successful, use the action
ListVehicleModels (see List the Vehicle Models in a Database, on the previous page).

 l To remove a training image from a vehicle model, use the action RemoveVehicleModelImages.

 l To modify the vehicle make that is associated with a vehicle model, use the action
SetVehicleMake.

 l To change the label of an image that you added to a vehicle model, use the action
RelabelVehicleModelImage.

 l To move an image from one vehicle model to another, for example if you add an image to the
wrong model, use the action MoveVehicleModelImage.

 l To add, remove, or update custom metadata for a vehicle model, use the actions
AddVehicleModelMetadata, RemoveVehicleModelMetadata, and
UpdateVehicleModelMetadata.

 l To change the identifier of a vehicle model you already added to a database, use the action
RenameVehicleModel.

 l To move a vehicle model to a different database, use the action MoveVehicleModel.

 l To remove a vehicle model from a database and discard all associated images and metadata, use
the action RemoveVehicleModel.

To update or remove vehicle model databases, use the following actions:

 l To rename a vehicle model database, use the action RenameVehicleModelDatabase.

 l To delete a vehicle model database and all of the information that it contains, use the action
RemoveVehicleModelDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Recognize Vehicles (Make and Model)

To recognize the make and model of vehicles detected by number plate recognition, use the following
procedure.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 207 of 399

To recognize vehicles

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=ANPR
Engine2=VehicleMakeModel

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to vehiclemodel.

Input The track to process. Micro Focus recommends that you use the
DataWithSource or ResultWithSource track from a number plate analysis
task, but you can also use the ResultWithSource track from a text detection
task.

Database The name of the vehicle model database to use to identify vehicles. For
information about creating this database, see Obtain Images for Training, on
page 200.

Perspective (Optional) If the video frames show the vehicle from a different perspective to
that used in the training images, set this parameter to TRUE so that Media Server
compensates accordingly.

ColorRegion (Optional) The region to output to the ColorRegionWithSource output track, so
that you can configure an analysis task to identify the color of the vehicle. If you
don't specify a region, Media Server uses a default region.

For example:

 [VehicleMakeModel]
 Type=vehiclemodel
 Input=ANPR.DataWithSource
 Database=vehicles
 Perspective=FALSE

For more information about the parameters that you can use, including the values that they
accept, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 208 of 399

Vehicle Make and Model Recognition Results

The following XML shows a single record produced by vehicle make and model recognition.

<record>
 ...
 <trackname>VehicleMakeModel.Result</trackname>
 <VehicleModelResult>
 <id>e2fb50f1-a71a-46e0-8af6-c5e7e5ba3afc</id>
 <grillepatch>
 <point>
 <x>168</x>
 <y>172</y>
 </point>
 <point>
 <x>473</x>
 <y>172</y>
 </point>
 <point>
 <x>473</x>
 <y>280</y>
 </point>
 <point>
 <x>168</x>
 <y>280</y>
 </point>
 </grillepatch>
 <identity>
 <identifier>FocusRS</identifier>
 <database>Cars</database>
 <confidence>77</confidence>
 <metadata>
 <item>
 <key>type</key>
 <value>hatchback</value>
 </item>
 </metadata>
 </identity>
 <grillepercentage>100</grillepercentage>
 <vehiclemake>Ford</vehiclemake>
 <vehiclemakescore>100</vehiclemakescore>
 </VehicleModelResult>
 </record>

The record contains the following information:

 l The id element provides a unique identifier for the recognized number plate. The number plate
recognition engine issues an ID for each detected appearance of a number plate, and the records

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 209 of 399

output from the vehicle make/model recognition engine use the same IDs as the input records.

 l The grillepatch element describes the region of the input image that was used for recognizing
the vehicle make and model.

 l The identity element represents a match between the ingested media and a vehicle model in
your training database. This element is present only when you train Media Server to recognize
vehicle models, you set the Database parameter when you configure the task, and when a match
is found.

 o The identifier element provides the identifier of the vehicle model that was detected in the
ingested media.

 o The database element provides the name of the database in which the vehicle model exists.

 o The confidence element provides the confidence score for the match (from 0 to 100, where
100 is maximum confidence).

 o The metadata element provides metadata that you associated with the vehicle model when
you trained Media Server. If there is no metadata in the training database, this element is
omitted.

 l The vehiclemake element provides the identified vehicle make.

 l The vehiclemakescore element provides a confidence score for vehicle make recognition, from
0 to 100, where 100 indicates maximum confidence.

Identify Vehicle Colors

Media Server can detect the color of vehicles identified by vehicle model detection.

To detect the color of vehicles

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=ANPR
 Engine2=VehicleModel
Engine3=VehicleColor

 3. Create a new section in the configuration file to contain the task settings and set the following
parameters:

Type The analysis engine to use. Set this parameter to ColorCluster.

Input The image track to process. This track must be the

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 210 of 399

ColorRegionWithSource output track from a vehicle model
analysis task. This track contains a region identified by the vehicle
model task, which should contain a sample of the vehicle's color.
You can customize the selection of this region by setting the
parameter ColorRegion in your vehicle model analysis task.

RestrictToInputRegion A Boolean value that specifies whether to analyze a region of the
input image or video frame that is specified in the input record,
instead of the entire image. Set this parameter to TRUE, because
you want the color analysis task to analyze only the region that
represents the vehicle, and not the entire image.

ColorDictionary (Optional) To match vehicle colors against the colors that are
defined in a dictionary, specify the path to a dictionary file.

ColorThreshold (Optional) The analysis task discards colors that do not make up a
significant proportion of the region (as specified by this parameter).

ColorSpace (Optional) The color space in which the results are provided (RGB,
YCbCr, HSL, HSV, CIELAB).

For example:

[VehicleColor]
 Type=ColorCluster
 Input=VehicleModel.ColorRegionWithSource
 RestrictToInputRegion=TRUE
 ColorDictionary=./colorcluster/carcolors.dat
 ColorThreshold=20
 ColorSpace=HSV

For more information about the parameters that customize color analysis, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 18: Vehicle Make and Model Recognition

Media Server (12.4) Page 211 of 399

Chapter 19: Clothing Color Analysis

Media Server can locate the region of an image or video frame that contains a person's clothing. You
can then use this information with other analysis tasks, for example you can run color analysis to
identify the dominant colors of the clothing.

• Introduction 212
• Find Clothing 212
• Clothing Analysis Results 214

Introduction

To locate the region containing a person's clothing you must first identify people. You can do this by:

 l configuring face detection to look for faces

 l configuring object class recognition to recognize people with the pre-trained person recognizer.

Find Clothing

Clothing analysis provides the location of the clothing for a person who has been identified by face
detection or object class recognition.

To determine the location of clothing

 1. Open the configuration file in which you configured your face detection or object class recognition
task for identifying people.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
Engine2=Clothing

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to Clothing.

Input The track on which you want to run analysis. You can specify:

 l the DataWithSource output track from a face detection task.

 l the ResultWithSource output track from any face analysis task.

Media Server (12.4) Page 212 of 399

 l the ResultWithSource output track from an object class recognition task,
when that task runs detection using the pre-trained person recognizer.

ClothingMode (Optional) A comma-separated list of regions to identify. You can use the
values Full (clothing covering the full body), Upper (upper body), and Lower
(lower body). By default, clothing analysis only identifies the location of the
clothing covering the full body.

For example:

[Clothing]
 Type=Clothing
 Input=FaceDetect.ResultWithSource
 ClothingMode=Upper,Lower

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

You can run clothing analysis followed by a color analysis task to find the dominant color of a person's
clothing. For more information about the color analysis task, see Color Clustering, on page 226. The
following procedure describes how to add a task for color analysis.

To determine the color of clothing

 1. Open the configuration file in which you configured the clothing analysis task.

 2. In the [Session] section, add a new analysis task (for color analysis) by setting the EngineN
parameter. You can give the task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Clothing
 Engine3=ClothingColors

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to ColorCluster.

Input The track that contains information about the location of the
clothing (and the image to analyze). Set this parameter to the
ResultWithSource output track from your clothing analysis task.
For example, if your clothing analysis task is named Clothing, set
this parameter to Clothing.ResultWithSource.

RestrictToInputRegion A Boolean value that specifies whether to analyze a region of the
input image or video frame that is specified in the input record,
instead of the entire image. Set this parameter to TRUE, because
you want the color analysis task to analyze only the region that
represents the clothing, and not the entire image.

Administration Guide
Chapter 19: Clothing Color Analysis

Media Server (12.4) Page 213 of 399

For example:

[ClothingColors]
 Type=ColorCluster
 Input=Clothing.ResultWithSource
 RestrictToInputRegion=True

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Clothing Analysis Results

The following XML shows a single record produced by clothing analysis.

<record>
 ...
 <trackname>Clothing.Result</trackname>
 <ClothingResult>
 <id>63f77e13-e916-4528-acfb-559e1db28574</id>
 <region>
 <left>116</left>
 <top>190</top>
 <width>248</width>
 <height>480</height>
 </region>
 <regiontype>Full</regiontype>
 </ClothingResult>
 </record>

The record contains the following information:

 l The id element contains an identifier which is the same as that in the input record. This means
that if the person was identified by face detection the identifier matches the ID for the detected
face, and if the person was identified by object class recognition the identifier matches the ID for
the recognized person.

 l The region element contains the location of the clothing. The values are in pixels. The left and
top elements give the position of the top-left corner of a rectangle, and width and height provide
its width and height.

 l The regiontype element specifies whether the region represents clothing covering the full body
(Full), upper body (Upper), or lower body (Lower). These values correspond to those for the
configuration parameter ClothingMode.

Clothing analysis can produce several records for each detected face. For example, if you set
ClothingMode=Full,Upper,Lower, Media Server might produce three records. One contains the
location of the clothing covering the full body, one contains the location of the clothing covering the
upper body, and one contains the location of the clothing covering the lower body. Media Server does
not produce a record if the region is outside the boundary of the image or clothing analysis cannot find
the region.

Administration Guide
Chapter 19: Clothing Color Analysis

Media Server (12.4) Page 214 of 399

Chapter 20: Scene Analysis

Scene analysis detects important events that occur in video. You can use scene analysis to monitor
video streamed from CCTV cameras, to assist with the detection of potential threats, illegal actions, or
alert human operators to situations where help is required.

• Introduction to Scene Analysis 215
• Train Scene Analysis 215
• Run Scene Analysis 216

Introduction to Scene Analysis

Scene analysis recognizes events in video that you consider important. Typical examples of objects
and events you might want to detect in CCTV footage include:

 l A vehicle breaking traffic laws, for example by running a red light.

 l Abandoned bags.

 l Abandoned vehicles.

 l Traffic congestion.

 l Zone breaches and trip wire events, for example a person entering a restricted area.

Train Scene Analysis

To run scene analysis, you must create a training configuration that specifies how to detect objects and
describes the events that you want to detect. A configuration describes all of the events that you want
to detect from a single camera.

A configuration can include multiple categories. A category describes a single type of event for which
you want to generate alarms, for example a vehicle breaching a red light or a person entering a
restricted area.

Media Server includes the scene analysis training utility, a Windows application that you can use to
rapidly train scene analysis. You can use the Training Utility to:

 l Define regions of interest for each category in your configuration.

 l Mask parts of the scene that you do not want to monitor for any category.

 l Define the size, shape, orientation, velocity, and color of the objects that you want to detect, and
the permitted variations in all of these properties.

 l Define the position of traffic lights in the scene, so that Media Server can read the lights and
generate alarms if an event occurs while the lights are red.

Media Server (12.4) Page 215 of 399

 l Display the video being analyzed by Media Server, with an overlay that shows objects being
tracked, so that you can confirm objects are tracked correctly.

 l Set up filters to reduce the number of false alarms. For example, you might want Media Server to
generate alarms only for objects that remain in the scene for a certain amount of time.

 l Review the alarms that have been generated using your training, and classify each one as a true
alarm for a specific category, or as a false alarm. The training utility can then optimize the training
to minimize the number of false alarms and the number of missed alarms.

Run Scene Analysis

While you are training Media Server, you can use the Training Utility to start and stop ingestion and
analysis (process actions). However, to run scene analysis in a production environment, do not start
processing through the Training Utility. Instead, use the following procedure to create a configuration
that contains a scene analysis task, and start the process action as described in Start Processing, on
page 106.

To detect important events in video

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=SceneAnalysis

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to SceneAnalysis.

TrainingCfgName The name of the training configuration file to use to detect important
events. This is the name of the file that you created using the Scene
Analysis Training Utility.

For example:

[SceneAnalysis]
 Type=SceneAnalysis
 TrainingCfgName=redlights

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 20: Scene Analysis

Media Server (12.4) Page 216 of 399

Chapter 21: Extract Keyframes

Media Server can identify the keyframes in a video. A keyframe is the first frame following a significant
scene change. Keyframes are often used as preview images for video clips.

• Configure Keyframe Extraction 217

Configure Keyframe Extraction

To extract keyframes from video

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=Keyframes

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to keyframe.

Input (Optional) The name of the image track to process.

ForceAfter (Optional) The maximum time interval between keyframes.

QuietPeriod (Optional) The minimum time interval between keyframes.

Sensitivity (Optional) The sensitivity of the engine to scene changes.

For example:

[Keyframes]
 Type=keyframe
 Sensitivity=0.6
 ForceAfter=5minutes

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Media Server (12.4) Page 217 of 399

Chapter 22: Image Comparison

Image comparison identifies which parts of an image have changed, by comparing the image to a
reference image that is stored in the Media Server database.

• Introduction 218
• Train Media Server to Compare Images 218
• Compare Images 222
• Image Comparison Results 223

Introduction

Image comparison identifies which parts of an image have changed, by comparing the image to a
reference image that is stored in the Media Server database. You can run image comparison on a video
file or stream - in this case Media Server compares each video frame to the reference image.

You can use image comparison to identify changes in a scene. You might want to identify new objects
that have appeared, objects that have disappeared, or objects that have moved to different locations.

If you have deployed Media Server for security and surveillance purposes, you can capture an image of
the scene from a camera and store this in the database. Then, you can compare subsequent images to
the reference image and identify any changes, such a person being present in a restricted area. Having
an automated process to identify changes like this can significantly reduce the amount of data that
needs to be reviewed by a human operator.

The images that you send to Media Server for comparison should be similar to your reference images in
terms of perspective and rotation. The images do not need to be the same size but if there are
significant changes in perspective or rotation Media Server will consider the entire image to have
changed.

Train Media Server to Compare Images

You must train Media Server by providing reference images as a basis for comparison.

Media Server (12.4) Page 218 of 399

The following diagram shows how Media Server stores the information you provide during training.

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information on setting up this database, see Set up a Training Database, on
page 40.

You can organize image comparison references into databases. These databases are for organizational
purposes. When you run image comparison, you can restrict comparison to all of the references in a
specific database, or to specific references in a specific database. Media Server creates a record for
each comparison.

A database can contain any number of references. For each reference you must provide one training
image. For information about choosing suitable training images, see Select Images for Training, below.
You can also associate custom metadata with each reference.

Select Images for Training

When you train Media Server you must provide one training image for each image comparison
reference.

A good training image for image comparison:

 l should measure at least 400 pixels along the shortest dimension.

 l contains only the part of the scene that you want to compare. If you take a reference image from a
camera but only want to detect changes in part of the scene, you should crop the image before
adding it to the image comparison database. When you run image comparison, you can set the
region configuration parameter to limit analysis to the corresponding part of the ingested (source)
media.

 l is not blurry.

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 219 of 399

 l has not been converted from another file format to JPEG. Converting images to JPEG can
introduce compression artifacts. If you have JPEG images, avoid making many rounds of edits.
Each time that a new version of the image is saved as a JPEG, the image quality degrades.

Create an Image Comparison Database

To create a database to contain information for image comparison, use the following procedure.

To create a database for image comparison

 l Use the CreateImageComparisonDatabase action, with the database parameter:

database The name of the new database (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateImageComparisonDatabase
 -F database=ReferenceImages

Add a Reference to a Database

To add a new reference for image comparison, follow these steps.

To add a reference to a database

 l Add the reference using the action TrainImageComparisonReference, with the following
parameters:

database The name of the database to add the reference to. The database must already
exist.

identifier (Optional) A unique identifier for the reference (maximum 254 bytes). If you do
not set this parameter, Media Server generates an identifier automatically.

imagedata (Set this or imagepath, but not both). The training image to add. The file must
be uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The path of the training image to add. The
path must be absolute or relative to the Media Server executable file.

imagelabels (Optional) A label to identify the image that you are adding (maximum 254
bytes). If you do not set this parameter, Media Server generates a label
automatically.

metadata (Optional) A comma-separated list of metadata key-value pairs to add to the
reference. Separate keys from values using a colon (:). To include a comma or
colon in a key name or value, you must enclose the key name or value in

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 220 of 399

quotation marks (") and escape any quotation marks that occur within the string
with a backslash (\).

For example:

curl http://localhost:14000 -F action=TrainImageComparisonReference
 -F database=ReferenceImages
 -F imagedata=@camera39.png
 -F metadata=Location:Cambridge

Alternatively, the following example provides the path of the training image rather than sending
the image data:

curl http://localhost:14000 -F action=TrainImageComparisonReference
 -F database=ReferenceImages
 -F imagepath=./training/comparison/camera39.png
 -F "metadata=Location:Cambridge"

Media Server adds the reference to the database and returns the identifier.

List the References in a Database

To list the image comparison references that you have added to a database, and check whether training
was successful, use the following procedure.

To list the image comparison references in a database

 1. (Optional) First list the databases that have been created for use with image comparison. Use the
action ListImageComparisonDatabases:

http://localhost:14000/action=ListImageComparisonDatabases

Media Server returns a list of databases that you have created.

 2. List the references that exist in one of the databases. Use the action
ListImageComparisonReferences, for example:

/action=ListImageComparisonReferences&database=ReferenceImages
 &imagestatus=true
 &metadata=true

Media Server returns a list of references in the specified database.

If you set the action parameter metadata to true, Media Server returns any metadata you have
added to the references.

If you set the action parameter imagestatus to true, Media Server returns the status of each
training image associated with each reference.

 l The status element indicates the status of training:

 o trained indicates that training was successful.

 o failed indicates that Media Server could not use the image for training.

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 221 of 399

Update or Remove References and Databases

To update or remove an image comparison reference use the following actions:

 l To add, remove, or update custom metadata for a reference, use the actions
AddImageComparisonMetadata, RemoveImageComparisonMetadata, and
UpdateImageComparisonMetadata.

 l To retrieve the training image from an image comparison reference, use the action
GetImageComparisonReferenceImage.

 l To change the identifier of a reference you added to an image comparison database, use the
action RenameImageComparisonReference.

 l To change the label of an image that you added to a reference, use the action
RelabelImageComparisonReferenceImage.

 l To move an image comparison reference to a different database, use the action
MoveImageComparisonReference.

 l To remove a reference from a database and discard the training image and all associated
metadata, use the action RemoveImageComparisonReference.

To update or remove change detection databases, use the following actions:

 l To rename a database, use the action RenameImageComparisonDatabase.

 l To delete an image comparison database and all of the information that it contains, use the action
RemoveImageComparisonDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Compare Images

To identify differences between an image and a reference image that you added to the Media Server
database, configure an image comparison analysis task by following these steps.

To compare images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=CompareImages

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 222 of 399

Type The analysis engine to use. Set this parameter to ImageComparison.

Input (Optional) The image track to process.

Database (Optional) The database that contains the references to compare to. By default,
Media Server uses all databases. Database names are case-sensitive.

Identifier (Optional) A comma-separated list of identifiers that specifies the reference
images to compare against. To use this parameter you must set the Database
parameter and the references that you specify must exist in that database.

Micro Focus recommends that you set both Database and Identifier to reduce
the number of comparisons.

Region (Optional) Set this parameter to compare a region of the ingested image to the
reference image(s).

For example:

[CompareImages]
 Type=ImageComparison
 Database=ReferenceImages
 Identifier=TransportCamera39

For more details about the parameters that you can use to customize image comparison, refer to
the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Image Comparison Results

The following XML shows a single record produced by image comparison.

<output>
 <record>
 <pageNumber>1</pageNumber>
 <trackname>Compare.Result</trackname>
 <ImageComparisonResult>
 <id>60480c72-fa13-401d-92e6-e7ec87eb3e13</id>
 <identity>
 <identifier>Camera39</identifier>
 <database>ReferenceImages</database>
 <imagelabel>4132cf6ee5bcff7b03037140767ff32c</imagelabel>
 <metadata>
 <item>
 <key>Location</key>
 <value>Cambridge</value>
 </item>
 </metadata>
 </identity>

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 223 of 399

 <imageChangeScore>19.27</imageChangeScore>
 <changedRegion>
 <region>
 <left>40</left>
 <top>8</top>
 <width>40</width>
 <height>40</height>
 </region>
 <score>82.72</score>
 </changedRegion>
 <changedRegion>
 <region>
 <left>80</left>
 <top>8</top>
 <width>40</width>
 <height>40</height>
 </region>
 <score>30.14</score>
 </changedRegion>
 ...
 </output>

The record contains the following information:

 l The identity element describes the reference image (in your training database) that was used
for comparison. Media Server creates a separate record for each reference that the ingested
image was compared to.

 o The identifier element provides the identifier of the reference.

 o The database element provides the name of the database in which the reference exists.

 o The imagelabel element provides the label of the reference image that was used for
comparison.

 o The metadata element provides metadata that you associated with the reference when you
trained Media Server. If there is no metadata in the training database, this element is omitted.

 l The imageChangeScore element indicates the amount of change between the images. This value
is a percentage, between zero (no changes) and 100 (every region has significant changes).

 l Each changedRegion element describes a change between the reference image (in the training
database) and the source image (that was analyzed). If there are no differences, there will be no
changedRegion elements present. Each changedRegion element describes a small part of the
image.

 o The region element describes the position of the top-left corner of the region, and its width
and height. The region refers to the source image, not the reference image. This is particularly
important in cases where the source media is a different size to your reference image. If you
set the region configuration parameter to analyze only part of the source media, the co-
ordinates 0,0 still refer to the top-left corner of the full source media.

 o The score element specifies how much the region has changed, as a percentage from zero to
100. A high score indicates that there are major changes within the region and a low score

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 224 of 399

indicates minor differences. You can use the scores to locate the regions that show the
greatest change.

Administration Guide
Chapter 22: Image Comparison

Media Server (12.4) Page 225 of 399

Chapter 23: Color Clustering

Media Server can identify the dominant colors in images and video frames, or in a region of an image or
video frame. The region can be manually defined in the configuration, or supplied by another analysis
task. Media Server clusters similar colors and returns the color at the center of each cluster as a value
in the selected color space (for example, RGB). It also returns the proportion of the pixels in the frame
that belong to each cluster.

• Perform Color Analysis 226
• Color Dictionaries 227
• Color Analysis Results 228

Perform Color Analysis

To configure color analysis

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 ...
 Engine2=ColorClusterTask

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The analysis engine to use. Set this to ColorCluster.

Input (Optional) The name of the track that contains the images to process. If
you do not specify an input track, Media Server processes the first track of
the correct type.

ColorSpace (Optional) The color space in which the results of analysis are provided.

ColorDictionary (Optional) A dictionary file that associates names with RGB color values.
If you set this parameter, the task clusters colors around colors that are
defined in the dictionary, and the results will include a name (such as "light
blue" or "red") for each cluster.

If the dictionary file is located in the colorcluster folder, in the static data
directory, you can specify just the file name. Otherwise specify a path -
either absolute or relative to the Media Server executable file.

For example:

Media Server (12.4) Page 226 of 399

[ColorClusterTask]
 Type=ColorCluster
 Input=MyTask.ResultWithSource
 ColorSpace=RGB

 4. (Optional) You can restrict color analysis to a specific region of the image or video frame.

 l To restrict analysis to a region that you define manually, add the following configuration
parameters to the task:

Region The region to analyze. Specify the region using a comma-separated list of
values that describe a rectangle (left,top,width,height).

RegionUnit The units you want to use to define the region (pixel or percent).

 l To restrict analysis to a region that is supplied by another analysis task, add the following
configuration parameter:

RestrictToInputRegion A Boolean value that specifies whether to analyze a region of
the input image or video frame that is specified in the input
record, instead of the entire image. Set this parameter to TRUE.

NOTE: If you set RestrictToInputRegion, the input track that you specify must contain
region data. Many analysis engines, for example clothing detection or object recognition,
produce records that contain regions.

 5. Save and close the configuration file.

Color Dictionaries

You can configure the color cluster analysis task to cluster colors around colors that are defined in a
dictionary. If you configure a dictionary, Media Server also returns the name of a color for each cluster
in the analysis results. Media Server includes some dictionaries in the colorcluster folder, in the
static data directory.

To list the colors that have been defined in a color dictionary

 l Use the action ListColors. For example:

/action=ListColors&ColorDictionary=basiccolors.dat

where the ColorDictionary parameter specifies either:

 o the name of a dictionary file that is located in the colorcluster folder in the static data
directory. The static data directory is the folder specified by the StaticDataDirectory
parameter in the [Paths] section of the Media Server configuration file.

 o the path of a dictionary file. A path can be absolute or relative to the Media Server executable
file.

Administration Guide
Chapter 23: Color Clustering

Media Server (12.4) Page 227 of 399

Color Analysis Results

The following XML shows a single record produced by color analysis.

<output>
 <record>
 ...
 <trackname>ColorCluster.Result</trackname>
 <ColorClusterResult>
 <id>76b7b8dd-59f6-4fe7-9a6e-bcfae3cf94e8</id>
 <colorspace>RGB</colorspace>
 <cluster>
 <color>232 242 252</color>
 <colorname>white</colorname>
 <proportion>77.12</proportion>
 </cluster>
 <cluster>
 <color>10 11 13</color>
 <colorname>black</colorname>
 <proportion>21.54</proportion>
 </cluster>
 </ColorClusterResult>
 </record>
 </output>

The record contains the following information:

 l The colorspace element specifies the color space in which the results are provided. You can
choose the color space by setting the ColorSpace configuration parameter.

 l Each cluster element represent a cluster of similar colors.

 o The color element provides the color at the center of the cluster, in the color space
requested.

 o The colorname element provides a name for the color. This element is present only if you
have specified the path to a dictionary that associates names with color values. For
information about color dictionaries, see Color Dictionaries, on the previous page.

 o The proportion element specifies the percentage of the image or video frame that belongs to
that cluster.

In addition to the Result track, the color clustering task also produces a track named ClusteredImage.
This contains the source image, containing only colors that match the center of a color cluster, and
cropped to the analyzed region. If the analyzed region is not rectangular any pixels outside the region
are transparent (or black if you use an image format that does not support transparency).

Administration Guide
Chapter 23: Color Clustering

Media Server (12.4) Page 228 of 399

Chapter 24: Barcode Recognition

Media Server can detect and read barcodes that appear in media. For each detected barcode, Media
Server returns the barcode type, its location in the image, and the information that it encodes.

• Supported Barcode Types 229
• Read Barcodes 230
• Example Barcode Task Configuration 231
• Barcode Analysis Results 231

Supported Barcode Types

Media Server can read the following types of barcode:

 l Codabar

 l Code-128

 l Code-39

 l Code-93

 l Datalogic 2/5

 l Data Matrix

 l EAN-13 (including optional EAN-2 or EAN-5 supplement)

 l EAN-8 (including optional EAN-2 or EAN-5 supplement)

 l I25

 l IATA 2/5

 l Industrial 2/5

 l Matrix 2/5

 l Patch Code

 l PDF417

 l QR

 l UPC-A (including optional EAN-2 or EAN-5 supplement)

 l UPC-E (including optional EAN-2 or EAN-5 supplement)

NOTE: Some types of barcode are a subset of other types.

 l UPC-A is a subset of EAN-13. If you configure Media Server to detect EAN-13 barcodes,
Media Server returns all EAN-13 barcodes including UPC-A.

Media Server (12.4) Page 229 of 399

 l ISBN barcodes are a subset of EAN-13 that begin with 978 or 979, so you can detect
ISBN barcodes by configuring Media Server to detect EAN-13 barcodes, but Media Server will
also return EAN-13 barcodes than are not in the ISBN range.

 l GS1-128 barcodes (sometimes known as UCC/EAN-128) are a subset of Code-128
barcodes, so you can detect these using the Code-128 type.

Read Barcodes

To read barcodes

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=Barcodes

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The analysis engine to use. Set this parameter to barcode.

Input (Optional) The image track to process. If you do not specify an input track,
Media Server processes the first track of the correct type that is produced by
the ingest engine.

Orientation (Optional) The orientation of barcodes in the ingested media. If barcodes might
appear at an orientation other than upright, set this parameter to any. Media
Server will automatically detect the orientation (from 90-degree rotations, not
arbitrary angles).

Region (Optional) To search for barcodes in a region of the image, instead of the entire
image, specify the region to search.

RegionUnit (Optional) By default, the Region parameter specifies the size and position of a
region using percentages of the frame dimensions. Set the RegionUnit
parameter to pixel if you want to use pixels instead.

For example:

[Barcodes]
 Type=barcode
 Orientation=any

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

Administration Guide
Chapter 24: Barcode Recognition

Media Server (12.4) Page 230 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example Barcode Task Configuration

To detect and read barcodes, you could use the following task configuration:

[Barcodes]
 Type=barcode
 BarcodeTypes=all
 Orientation=any

Setting the BarcodeTypes parameter to all detects all types of barcodes, including QR codes.

By default Media Server only detects barcodes that are upright, but setting the Orientation parameter
to any means that Media Server can also detect barcodes that have been rotated by 90 or 180 degrees.

Barcode Analysis Results

The following XML is a single record produced during barcode analysis:

<record>
 ...
 <trackname>barcode.Result</trackname>
 <BarcodeResult>
 <id>b8c4331e-6058-4786-83d9-a43e605f463e</id>
 <text>some text</text>
 <barcodeType>Code-128</barcodeType>
 <region>
 <left>94</left>
 <top>66</top>
 <width>311</width>
 <height>98</height>
 </region>
 </BarcodeResult>
 </record>

The record includes the following information:

 l The id element provides a unique identifier for the detected barcode. The barcode analysis engine
issues an ID for each detected appearance of a barcode. If you are detecting barcodes in video
and consecutive frames show the same barcode in a near-identical location, all records related to
that appearance will have the same ID.

For example, if a barcode appears in the same location for fifty consecutive video frames, the
engine uses the same ID for each record in the data track and produces a single record in the
result track. The record in the result track will have a timestamp that covers all fifty frames.

Administration Guide
Chapter 24: Barcode Recognition

Media Server (12.4) Page 231 of 399

If the barcode moves to a different location on the screen, or disappears and then reappears, the
engine considers this as a new detection and produces a new ID and a new record in the result
track.

 l The text element contains the data encoded by the barcode. If Media Server detects a barcode
with a supplement, for example EAN-13+EAN-2, the text element contains the digits from both
parts of the barcode, separated by a hyphen.

 l The barcodeType element contains a string which describes the type of the detected barcode.
This can be any of the following values:

 o Codabar

 o Code-128

 o Code-39

 o Code-93

 o Datalogic 2/5

 o Data Matrix

 o EAN-13

 o EAN-13+EAN-2

 o EAN-13+EAN-5

 o EAN-8

 o EAN-8+EAN-2

 o EAN-8+EAN-5

 o I25

 o IATA 2/5

 o Industrial 2/5

 o Matrix 2/5

 o Patch Code

 o PDF417

 o QR

 o UPC-A

 o UPC-A+EAN-2

 o UPC-A+EAN-5

 o UPC-E

 o UPC-E+EAN-2

 o UPC-E+EAN-5

 l The region element describes the position of the barcode in the ingested media. If Media Server
detects a barcode with a supplement, for example EAN-13+EAN-2, the region includes both parts
of the barcode.

Administration Guide
Chapter 24: Barcode Recognition

Media Server (12.4) Page 232 of 399

Chapter 25: Generate Image Hashes

Media Server can generate an image hash from an image. This section describes how to use the image
hash feature to identify duplicates in a set of images.

• Introduction 233
• Train Media Server to Identify Duplicate Images 233
• Identify Duplicate Images 236
• Example Configuration 237
• Image Hash Results 238

Introduction

An image hash can be considered as a cursory summary of an image. You can use image hash
analysis to identify exact duplicates in a set of images, because identical images produce identical
hashes. Image hash analysis can tolerate small distortions, but an image that is subject to significant
changes results in a different hash.

Image hash analysis is much faster than object recognition or image comparison because it considers
each image as a whole and does not analyze the detail within an image. To identify which parts of an
image have changed, use image comparison instead. If you need a solution that can identify matching
images while tolerating distortion (including scaling, rotation, and perspective changes or skew),
consider using object recognition.

Train Media Server to Identify Duplicate Images

You must train Media Server by providing reference images as a basis for comparison.

Media Server (12.4) Page 233 of 399

The following diagram shows how Media Server stores the information you provide during training.

The "Media Server database" represents the Media Server datastore file or a database on an external
database server. For information about setting up this database, see Set up a Training Database, on
page 40.

You can organize image hashes into databases. These databases are for organizational purposes.
When you run the analysis task, you can restrict comparison to all of the hashes in a specific database,
or to specific hashes in a specific database.

A database can contain any number of image hashes. For each image hash you must provide one
training image.

Create an Image Hash Database

To create a database to contain image hashes, use the following procedure.

To create a database for image hashes

 l Use the CreateImageHashDatabase action, with the database parameter:

database The name of the new database (maximum 254 bytes).

For example:

curl http://localhost:14000 -F action=CreateImageHashDatabase
 -F database=ImageHashes

Administration Guide
Chapter 25: Generate Image Hashes

Media Server (12.4) Page 234 of 399

Add an Image Hash to a Database

To add a new image hash and train Media Server to identify duplicate images, follow these steps.

To add an image hash to a database

 l Add the image hash using the action TrainImageHash, with the following parameters:

database The name of the database to add the image hash to. The database must already
exist.

identifier (Optional) A unique identifier for the image hash (maximum 254 bytes). If you do
not set this parameter, Media Server generates an identifier automatically.

imagedata (Set this or imagepath, but not both). The training image to add. The file must be
uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

imagepath (Set this or imagedata, but not both). The path of the training image to add. The
path must be absolute or relative to the Media Server executable file.

imagelabel (Optional) A label to identify the image that you are adding (maximum 254 bytes).
If you do not set this parameter, Media Server generates a label automatically.

For example:

curl http://localhost:14000 -F action=TrainImageHash
 -F database=ImageHashes
 -F imagedata=@image1.png

Alternatively, provide the path of the training image:

curl http://localhost:14000 -F action=TrainImageHash
 -F database=ImageHashes
 -F imagepath=./training/image1.png

Media Server adds the image hash to the database and returns the identifier.

List the Image Hashes in a Database

To list the image hashes that you have added to a database, use the following procedure.

To list the image hashes in a database

 1. (Optional) First list the databases that have been created. Use the action
ListImageHashDatabases:

http://localhost:14000/action=ListImageHashDatabases

Media Server returns a list of databases that you have created.

Administration Guide
Chapter 25: Generate Image Hashes

Media Server (12.4) Page 235 of 399

 2. List the image hashes that exist in one of the databases. Use the action ListImageHashes, for
example:

/action=ListImageHashes&database=ImageHashes
 &imagestatus=true

Media Server returns a list of image hashes in the specified database.

Update or Remove Image Hashes and Databases

To update or remove an image hash use the following actions:

 l To retrieve the training image from an image hash, use the action GetImageHashImage.

 l To change the identifier of an existing image hash, use the action RenameImageHash.

 l To change the label of the image associated with an image hash, use the action
RelabelImageHashImage.

 l To move an image hash to a different database, use the action MoveImageHash.

 l To remove an image hash from a database and discard the training image, use the action
RemoveImageHash.

To update or remove image hash databases, use the following actions:

 l To rename a database, use the action RenameImageHashDatabase.

 l To delete a database and all of the information that it contains, use the action
RemoveImageHashDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Identify Duplicate Images

To identify duplicate images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=ImageHash

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The analysis engine to use. Set this parameter to ImageHash.

Administration Guide
Chapter 25: Generate Image Hashes

Media Server (12.4) Page 236 of 399

Input (Optional) The name of the track that contains the images to analyze.

Database (Optional) The image hash database to use to identify duplicate images. If
you do not set this parameter, Media Server uses all image hash databases.

MatchThreshold (Optional) The minimum confidence score required for a match.

For example:

[ImageHash]
 Type=ImageHash
 Database=MyImageHashes
 MatchThreshold=60

For a complete list of parameters you can use to customize this task, refer to the Media Server
Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example Configuration

The following example configuration ingests an image file, analyzes the image to see whether it is a
match for any of the image hashes in a database named ImageHashes, and then outputs the results to
the ACI response.

 [Session]
 Engine0=Ingest
 Engine1=ImageHash
 Engine2=OutputACI

 [Ingest]
 Type=Image

 [ImageHash]
 Type=ImageHash
 Database=ImageHashes
 MatchThreshold=50

 [OutputACI]
 Type=Response
 Input=ImageHash.Result

If you add this configuration to the configurations directory as ImageHash.cfg you could run a process
action as follows (where the source parameter specifies the image to analyze):

http://localhost:14000/action=process&configname=ImageHash
 &source=./image_to_analyze.png

Administration Guide
Chapter 25: Generate Image Hashes

Media Server (12.4) Page 237 of 399

Image Hash Results

The following XML shows a single record produced by image hash analysis:

 <output>
 <record>
 <pageNumber>1</pageNumber>
 <startTime iso8601="2018-01-05T11:02:49.038357Z">1515150169038357</startTime>
 <trackname>ImageHash.Result</trackname>
 <ImageHashResult>
 <id>5536224b-4fdf-4fee-bb7a-fe47eee9f010</id>
 <identity>
 <identifier>MyImage</identifier>
 <database>ImageHashes</database>
 <confidence>100</confidence>
 </identity>
 </ImageHashResult>
 </record>
 </output>

Media Server creates a separate record for each image hash that an ingested image is compared to.

The identity element of the record describes the image hash (in your training database) that was used
for comparison. This element contains the following information:

 l The identifier element provides the identifier of the image hash.

 l The database element provides the name of the database.

 l The confidence element provides the confidence score for the match, from 0 to 100 where 100
indicates maximum confidence. You can configure Media Server to discard results with a low
confidence score by setting the parameter MatchThreshold (see Identify Duplicate Images, on
page 236).

Administration Guide
Chapter 25: Generate Image Hashes

Media Server (12.4) Page 238 of 399

Chapter 26: Audio Categorization

Media Server can categorize audio. Audio categorization segments and classifies audio into predefined
categories such as "speech", "music", "noise", and "silence".

You can use audio categorization to inspect an audio file and decide whether to perform further
processing. For example, when audio categorization reports that a file contains mostly speech, you
might decide to run language identification and speech-to-text.

If you are processing recordings of telephone calls, you can use audio categorization to identify DTMF
tones.

• Categorize Audio 239
• Audio Categorization Results 240

Categorize Audio

To run audio categorization

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=AudioCategorize

 3. Create a new section to contain the settings for the task and set the following parameters:

Type The analysis engine to use. Set this parameter to AudioCategorize.

Input (Optional) The audio track to analyze. If you do not specify an input track,
Media Server processes the first track of the correct type produced by the
ingest engine.

SampleFrequency (Optional) The sample frequency of the audio to send to the audio service
for analysis, in samples per second (Hz).

For example:

[AudioCategorize]
 Type=AudioCategorize
 SampleFrequency=16000

For more information about the parameters that you can use to configure audio categorization,
refer to the Media Server Reference.

Media Server (12.4) Page 239 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Audio Categorization Results

The following XML shows a single record produced by audio categorization.

<record>
 <timestamp>
 <startTime iso8601="1970-01-01T00:00:01Z">1000000</startTime>
 <duration iso8601="PT00H00M00.500000S">500000</duration>
 <peakTime iso8601="1970-01-01T00:00:01Z">1000000</peakTime>
 <endTime iso8601="1970-01-01T00:00:01.500000Z">1500000</endTime>
 </timestamp>
 <trackname>AudioCategorize.Result</trackname>
 <AudioCategorizeResult>
 <id>e8d84838-bdf2-4b9b-9a92-e7e42b249103</id>
 <category>Music</category>
 <confidence>80</confidence>
 </AudioCategorizeResult>
 </record>

The record contains the following information:

 l The id element contains the identifier for the audio segment.

 l The category element shows how the audio segment was classified. The categories are pre-
defined and this value can be:

 o DialTone

 o DTMF-*, DTMF-0, DTMF-1, DTMF-2, and so on. These values indicate that the audio contains a
DTMF tone. For example, DTMF-2 indicates the tone for the "2" button.

 o Music

 o Noise

 o Silence

 o Speech

NOTE: Dial tone and DTMF tone detection are enabled only when you process audio with a
sample rate of 8KHz.

 l The confidence element provides the confidence score for the classification, from 0 to 100,
where 100 indicates the greatest confidence.

Administration Guide
Chapter 26: Audio Categorization

Media Server (12.4) Page 240 of 399

Chapter 27: Language Identification

Language identification identifies the language of speech.

• Identify the Language of Speech 241

Identify the Language of Speech

To identify the language of speech

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=SpeechLanguageId

 3. Create a new section to contain the settings for the task, and set the following parameters:

Type The analysis engine to use. Set this parameter to LanguageID.

Input (Optional) The audio track to process. If you do not specify an
input track, Media Server processes the first audio track produced
by the ingest engine.

Languages (Optional) The list of languages to consider when running
language identification. If you know which languages are likely to
be present in the media, Micro Focus recommends setting this
parameter because restricting the possible languages can
increase accuracy and improve performance. For a list of
supported languages with language codes, see Speech Analysis
Supported Languages, on page 390.

Mode The type of language identification task to run. Set this parameter
to one of the following options:

 l Boundary - Language identification seeks to determine
boundaries in the audio where the language changes, and
returns results for the time between boundaries.

 l Segmented - The audio is divided into fixed-size segments and
Media Server does not consider previous segments when
running analysis. You can use this mode to determine the

Media Server (12.4) Page 241 of 399

language if there are multiple languages present in the audio,
but this mode does not identify the exact boundary points at
which the language changes. Media Server outputs a record in
the SegmentedResult track for each analyzed segment, and
one or more records in the Result track (Media Server starts a
new record if the detected language changes).

 l Cumulative - The audio is divided into fixed-size segments
and every result is based on analysis of the current segment
and all of the previous segments. You might use this mode if
you are processing a video file and expect the audio to contain
only one language or you want to identify the primary language
that is spoken. Media Server outputs a record in the
SegmentedResult track for each analyzed segment, and one
record in the Result track when analysis has finished.

NOTE: Cumulative mode is not suitable for analyzing
continuous streams.

SegmentDuration (Optional, default 30s) The amount of audio to analyze as a single
segment. This parameter is ignored in boundary mode.

For example:

[SpeechLanguageId]
 Type=LanguageID
 Languages=ENUK,DEDE
 Mode=Cumulative
 SegmentDuration=30s

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 27: Language Identification

Media Server (12.4) Page 242 of 399

Chapter 28: Speaker Identification

Speaker identification identifies the people who speak in audio or video.

• Train Speaker Identification 243
• Identify Speakers 247

Train Speaker Identification

Speaker identification divides audio into different speakers. Media Server can identify the gender of
each speaker without training, but to recognize individual speakers you must train Media Server by
providing audio samples for each person.

Micro Focus recommends that you provide at least five minutes of speech for each speaker. An audio
sample must not contain speech from any other speakers. Ideally, you should use high-quality audio
samples that contain only the speaker's voice and no background noise. However, you should include
samples from a range of environments (indoors, outdoors, noisy, and so on) that match what you
expect to process. The audio sample can contain any vocabulary - the speaker does not need to say
any specific phrase.

If you want to process audio that includes unknown speakers (people who you have not trained and do
not exist in the database) there are some additional training requirements:

 l You must provide audio samples that represent unknown speakers (any speakers you have not
trained; the audio samples you provide for unknown speakers do not need to match the unknown
speakers in the audio you are going to process). Micro Focus recommends that you provide at
least 60 minutes of audio containing unknown speakers. This audio must not contain any of the
speakers that you have trained.

 l You must provide additional audio samples for each of the speakers you have trained, to be used
as development rather than training samples. The development samples must be different to the
training samples. Micro Focus recommends that you provide at least five minutes of speech for
each speaker.

These additional audio samples are used to generate the thresholds that Media Server uses to
distinguish between a match to a known speaker and an unknown speaker.

The speakers that you train are organized into databases. When you run speaker identification you
provide the name of the database to use and Media Server attempts to recognize speakers against the
speakers in that database. For example, you could create a database named "news" for processing
news broadcasts and train various speakers (newsreaders, politicians, and so on) who you expect to
appear.

A television news broadcast is an example that contains unknown speakers, because you cannot
expect to predict who will speak or provide audio samples for every person. So in this case you would
need to provide development audio samples for each speaker you train, and add audio samples to the
database that represent unknown speakers.

Media Server (12.4) Page 243 of 399

Create a Speaker Database

To create a new speaker database, use the following procedure.

To create a speaker database

 l Use the CreateSpeakerDatabase action with the following parameters.

database The name of the new database (maximum 254 bytes).

samplefrequency The sample frequency of the audio that this speaker database can be used
with. Specify either 8000 (8kHz telephony) or 16000 (16kHz broadband).
The default is 16000.

For example:

curl http://localhost:14000 -F action=CreateSpeakerDatabase
 -F database=news
 -F samplefrequency=16000

Add Speakers to a Database

To add a speaker to a speaker database, follow these steps.

To add a speaker

 1. Create a new speaker using the NewSpeaker action. Set the following parameters:

database The name of the database to add the speaker to. The database must already
exist.

identifier (Optional) A unique identifier for the speaker (maximum 254 bytes). If you do not
set this parameter, Media Server generates an identifier automatically.

For example:

curl http://localhost:14000 -F action=NewSpeaker
 -F database=news
 -F identifier=newsreader

Media Server adds the speaker and returns the identifier.

 2. Add audio samples for the speaker using the AddSpeakerAudio action. Set the following
parameters:

database The name of the database that contains the speaker.

Administration Guide
Chapter 28: Speaker Identification

Media Server (12.4) Page 244 of 399

identifier The identifier for the speaker, as returned by the NewSpeaker action.

audiodata (Set this or audiopath, but not both). The audio data to add. Files must be
uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

audiopath (Set this or audiodata, but not both). A comma-separated list of paths to the
audio files. The paths must be absolute or relative to the Media Server
executable file.

audiolabels (Optional) A comma-separated list of labels to identify the audio samples that
you are adding (maximum 254 bytes for each label). Every audio sample
added to the same speaker must have a unique label, so the number of labels
must match the number of samples provided using either audiodata or
audiopath. If you do not set this parameter, Media Server generates labels
automatically.

For example:

curl http://localhost:14000 -F action=AddSpeakerAudio
 -F database=news
 -F identifier=newsreader
 -F audiodata=@sample1.wav,sample2.wav
 -F audiolabels=sample1,sample2

 3. Train Media Server to recognize the speaker by running the BuildSpeaker action. Set the
following parameters:

database The name of the database that contains the speaker.

identifier The identifier for the speaker, as returned by the NewSpeaker action.

For example:

curl http://localhost:14000 -F action=BuildSpeaker
 -F database=news
 -F identifier=newsreader

Generate Speaker Thresholds

This section describes how to generate the speaker thresholds that are used to distinguish between
known and unknown speakers.

You only need to complete the steps in this section if you want to process audio that contains unknown
speakers (people who you have not trained and do not exist in the database). For more information
about training speaker identification, see Train Speaker Identification, on page 243.

Administration Guide
Chapter 28: Speaker Identification

Media Server (12.4) Page 245 of 399

To generate speaker thresholds

 1. For each of the speakers you have trained, add additional audio samples for generating speaker
thresholds. To add these audio samples, use the AddSpeakerAudio action but set the parameter
training=false. For example:

curl http://localhost:14000 -F action=AddSpeakerAudio
 -F database=news
 -F identifier=newsreader
 -F audiodata=@sample3.wav,sample4.wav
 -F audiolabels=sample3,sample4
 -F training=FALSE

 2. Add audio samples that represent unknown speakers, using the action
AddUnknownSpeakerAudio. Set the following parameters:

database The name of the database to add the audio samples to.

audiodata (Set this or audiopath, but not both) The audio data to add. Files must be
uploaded as multipart/form-data. For more information about sending data to
Media Server, see Send Data by Using a POST Method, on page 74.

audiopath (Set this or audiodata, but not both) A comma-separated list of paths to the
audio files to add. The paths must be absolute, or relative to the Media Server
executable file.

audiolabels (Optional) A comma-separated list of labels to identify the audio samples that
you are adding (maximum 254 bytes for each label). Every audio sample
representing unknown speakers must have a unique label, so the number of
labels must match the number of samples provided using either audiodata or
audiopath. If you do not set this parameter, Media Server generates labels
automatically.

For example:

curl http://localhost:14000 -F action=AddUnknownSpeakerAudio
 -F database=news
 -F audiodata=@UnknownSpeakers.wav

 3. Calculate speaker thresholds, by running the action EstimateAllSpeakerThresholds. Set the
database parameter to specify the name of the database. For example:

curl http://localhost:14000 -F action=EstimateAllSpeakerThresholds
 -F database=news

Optimize Speaker Thresholds

When you process audio that includes unknown speakers, Media Server uses speaker thresholds to
distinguish between a match to a known speaker and an unknown speaker. Micro Focus recommends
that you set speaker thresholds using the action EstimateAllSpeakerThresholds, as described in
Generate Speaker Thresholds, on the previous page

Administration Guide
Chapter 28: Speaker Identification

Media Server (12.4) Page 246 of 399

If necessary, you can optimize the thresholds that Media Server sets:

 l The EstimateAllSpeakerThresholds and EstimateSpeakerThreshold actions have a
parameter named bias. Increasing the value of this parameter increases the thresholds that are
generated, which reduces the probability of false positives but could increase the number of
missed results (where a known speaker is classified as unknown). Decreasing the value of the
bias parameter has the opposite effect (fewer missed results but potentially more false
positives).

 l You can use the action SetSpeakerThreshold to manually specify a threshold for a speaker. If
you run speaker identification and Media Server incorrectly identifies a speaker you can compare
the confidence score in the speaker identification output to the speaker threshold and change the
threshold appropriately. To obtain the current threshold for each speaker, use the action
ListSpeakers.

List the Speakers in a Database

To list the speakers that you have added to a database, use the following procedure.

To list the speakers in a database

 1. (Optional) First list the speaker databases that have been created. For example:

http://localhost:14000/action=ListSpeakerDatabases

Media Server returns a list of speaker databases.

 2. List the speakers that exist in one of the databases. For example:

http://localhost:14000/action=ListSpeakers&database=news
 &audiostatus=true

Media Server returns a list of speakers in the specified database. For more information about this
action and the response, refer to the Media Server Reference.

Identify Speakers

To identify speakers

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=RecognizeSpeakers

 3. Create a new section to contain the settings for the task, and set the following parameters:

Administration Guide
Chapter 28: Speaker Identification

Media Server (12.4) Page 247 of 399

Type The analysis engine to use. Set this parameter to SpeakerID.

Input (Optional) The audio track to process. If you do not specify an input track,
Media Server processes the first track of the correct type produced by the
ingest engine.

Database The name of the database to use to recognize speakers. If you do not set
this parameter Media Server cannot identify speakers, but can divide the
audio into different speakers and detect the gender of each speaker.

ClosedSet A Boolean value (default false) that specifies whether the audio contains
only known speakers (who are in the database specified by the Database
parameter). If the audio that you are processing contains only known
speakers, set this parameter to true.

SampleFrequency (Optional, default 16000) The sample frequency of the audio to send to the
audio service for analysis, in samples per second (Hz).

For example:

[RecognizeSpeakers]
 Type=SpeakerID
 Database=news
 ClosedSet=false
 SampleFrequency=16000

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 28: Speaker Identification

Media Server (12.4) Page 248 of 399

Chapter 29: Speech-to-Text

Speech-to-text converts words spoken in audio and video into text.

• Introduction 249
• Custom Language Models 249
• Assess Language Models 252
• Custom Word Databases 253
• Transcribe Speech 254
• Pre-Load Language Resources 255
• Speech-to-Text Results 256
• Redact Words in the Audio 257

Introduction

Media Server can perform Speech-to-Text, which extracts speech from the audio and converts it into
text. When the audio or video source contains narration or dialogue, running Speech-to-Text and
indexing the resulting metadata into IDOL Server means that IDOL can:

 l search all of the video that you have processed to find clips where a speaker talks about a
specific topic.

 l categorize video clips.

 l cluster together video clips that contain related concepts.

Custom Language Models

Speech-to-text is supported out-of-the-box and does not require training, but you can often improve
accuracy by creating a custom language model. A language model is just one part of the training for a
language. It describes the vocabulary and contains information about how sentences are composed
from individual words. This section explains when you might want to use a custom language model and
how to build one.

Using a custom language model can improve accuracy when:

 l The audio contains specialized vocabulary. Any language model has a finite vocabulary and your
audio might contain words that are not in the standard vocabulary. For example, a recording of a
lecture to medical professionals might include specialized medical terminology, and a recording of
a telephone call to a customer support center might include product names.

 l You have access to many transcripts that are representative of typical conversations, such as
call center conversations.

Building a language model requires a lot of text - millions or billions of words. The language models
supplied with Media Server are trained with billions of words across a wide range of topics. This is a

Media Server (12.4) Page 249 of 399

significant training burden, but you can build a small, focused, language model and use it to supplement
one of the standard models.

Standard language model Custom language model

 l Available out of the box.

 l Trained on billions of words.

 l Covers a wide range of topics.

 l Might not cover specialist vocabulary.

 l You need to create it yourself.

 l Generally trained on a smaller number of
words. The custom language model is
combined with a standard language model,
to increase the coverage.

 l Focuses on particular topics, to increase
accuracy.

 l Can cover specialist vocabulary, such as
technical terms or product names.

Select Text for Training

To create an effective custom language model, you need sample text that strongly resembles the
speech you want to process. For example, if you use speech-to-text for news monitoring, you could
train a language model using recent news articles gathered from the web.

To process a recording of a lecture to medical professionals, you could source text from:

 l Transcripts of similar lectures.

 l Articles written by the speaker who delivered the lecture.

 l Slides used in delivering the lecture.

 l Any other document related to the topic or event.

 l A web article that discusses the particular topic.

Other useful sources of text include:

 l Transcripts of call conversations.

 l Literature that describes a product or company.

 l Company websites that contain natural language descriptions (rather than images or
advertisements).

The amount of text required to build a custom language model can vary from a few thousand words to
several hundred thousand words, depending on the topic. Generally, using more text to build the
custom language model increases accuracy. However, the gains in accuracy reduce after you exceed
a certain number of words (approximately 100,000 words for a typical topic such as technical support).

The training text does not need to cover all the vocabulary in the audio. The custom language model is
combined with a standard language model, so that the coverage is the sum of the two models.
Therefore, building a custom language model using small quantities of text still provides benefits.

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 250 of 399

Prepare Text for Training

You might have to clean up your sample text before you can use it for training.

To prepare sample text

 l Remove anything that does occur in spoken language, such as HTML tags and tables.

 l Ensure that sentence breaks (periods) are present in appropriate places.

 l Ensure that there are no duplicated sections in the text.

 l Ensure the text is encoded in UTF-8.

Text must also be normalized. Media Server automatically normalizes the text for most languages. You
only need to normalize text yourself when automatic normalization is not supported for your language,
or you set normalize=false when you train the custom language model.

To normalize text

 l Change digits to words. For example, replace "2" with "two". Replace "37" with "thirty seven" (not
"three seven"). Replace the year "1997" with "nineteen ninety seven".

 l Write individually pronounced character sequences as spaced characters; for example, “the word
rules is spelled R U L E S”.

 l Write pronounced punctuation as it sounds; for example, “sales at Micro Focus dot com".

 l For all sentence breaks, replace periods (.) with <s>. Other punctuation must be removed.

Train a Custom Language Model

To create a new custom language model, use the action TrainCustomSpeechLanguageModel.

To train a custom language model

 l Train a custom language model using the TrainCustomSpeechLanguageModel action. Set the
following parameters:

identifier (Optional) A unique identifier for the custom language model (maximum 254
bytes). If you do not set this parameter, Media Server generates an identifier
automatically.

languagepack The language to base the custom language model on. You cannot train a
custom language model with one language and use it with another, so this
parameter and the LanguagePack parameter in your speech-to-text task must
have the same value.

textdata (Set this or textpath, but not both). The text to use for training. Text files must

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 251 of 399

be uploaded as multipart/form-data. For more information about sending data
to Media Server, see Send Data by Using a POST Method, on page 74.

textpath (Set this or textdata, but not both). A comma-separated list of paths to the
files that contain the text to use for training. The paths must be absolute, or
relative to the Media Server executable file.

For example:

curl http://localhost:14000 -F action=TrainCustomSpeechLanguageModel
 -F languagepack=ENUK
 -F textdata=@sample1.txt,sample2.txt

Alternatively, the following example provides the paths of the text files, rather than sending the
data:

curl http://localhost:14000 -F action=TrainCustomSpeechLanguageModel
 -F languagepack=ENUK
 -F textpath=data/sample1.txt,data/sample2.txt

You can list the custom language models that you have trained using the action
ListCustomSpeechLanguageModels. For more information about the actions that you can use for
training custom language models, refer to the Media Server Reference.

Assess Language Models

Before running speech-to-text you can assess whether a language pack, optionally combined with a
custom language model, is suitable for processing your audio. You can check:

 l whether the words that you want to recognize are included in the vocabulary. Media Server
cannot recognize words unless they are in the vocabulary. If your audio has many words that are
not in the vocabulary (for example product names), you can increase accuracy by training a
custom language model.

 l the estimated branching factor for the words in the speech (the perplexity). A lower value is
generally better. Call center conversations typically follow a set pattern and therefore have a
lower perplexity than broadcast audio.

To check whether words are present in the vocabulary

 l Obtain sample text that closely resembles the speech you want to process. Then, submit the text
to the action AssessSpeechLanguageModel. Media Server returns statistics and information
about unknown words.

 l Compile a list of words that you know you need to recognize and use the
QuerySpeechLanguageModel action to check whether the words are present in the vocabulary.

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 252 of 399

To measure perplexity for a language model

 l Obtain sample text that closely resembles the speech that you want to process. Then, submit the
text to the action AssessSpeechLanguageModel. Media Server returns a perplexity value.
Perplexity values around or below 100 are acceptable for processing call center conversations.
Perplexity values around or below 250 are acceptable for television news/broadcast audio. A
lower perplexity value is generally better. If the AssessSpeechLangaugeModel action returns a
perplexity value that is much higher, consider training a custom language model.

For more information about the AssessSpeechLanguageModel and QuerySpeechLanguageModel
actions, refer to the Media Server Reference.

Custom Word Databases

The language packs that are available for Media Server are trained with billions of words, but any
language model has a finite vocabulary. When you run speech-to-text you might find that some words,
such as product names, are not included in the vocabulary. A word that is not in the vocabulary is never
detected.

The best way to expand the vocabulary for a speech-to-text analysis task is to create a custom
language model (see Custom Language Models, on page 249), but if you have insufficient text to train a
custom language model or you want to add some extra words alongside a custom language model, you
can use a custom word database.

A custom word database contains a list of words that you want to add to the vocabulary. To add a
custom word you only need to supply the word, but Micro Focus recommends that you also specify a
base word and weight. A base word is a word that exists in the standard language model and could
appear in the same context as the custom word. For example, if you want to add a company name
"AcmeSoft" to the custom word database, you could specify "Microsoft" as the base word. This
instructs Media Server that "AcmeSoft" is expected to appear in the same context or similar contexts
as "Microsoft". The weight is a multiplier that specifies how likely the word is to appear, relative to the
base word. For example, if the word you are adding is only slightly less likely to appear than the base
word, you might set a weight of 0.8. If the word is much less likely to appear you might set a weight of
0.1.

To create and use a custom word database

 1. Create the database with the action CreateCustomWordDatabase. For example:

/action=CreateCustomWordDatabase&database=words

 2. Add each custom word with the action TrainCustomSpeechWord. For example:

/action=TrainCustomSpeechWord&database=words
 &word=AcmeSoft
 &baseword=Microsoft
 &weight=0.8

 3. When you configure your speech-to-text analysis task, use the configuration parameter
CustomWordDatabase to specify the name of the custom word database that you created. For

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 253 of 399

more information about configuring a speech-to-text analysis task, see Transcribe Speech,
below.

For more information about the actions that you can use to manage custom word databases, refer to
the Media Server Reference.

Transcribe Speech

To run speech-to-text

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=TranscribeSpeech

 3. Create a new section to contain the settings for the task and set the following parameters:

Type The analysis engine to use. Set this parameter to SpeechToText.

Input (Optional) The audio track to analyze. If you do not specify an input
track, Media Server processes the first track of the correct type
produced by the ingest engine.

LanguagePack The language pack to use. For a list of available language packs, see
Speech Analysis Supported Languages, on page 390.

CustomLanguageModel (Optional) A comma-separated list of custom language models to use.
For each custom language model, specify the identifier and
interpolation weight, separated by a colon.

CustomWordDatabase (Optional) The name of a custom word database to use. For more
information about custom word databases, see Custom Word
Databases, on the previous page.

SpeedBias Specifies whether to prioritize accuracy or speed. If you are
processing a live stream, you must set this parameter to Live.
Otherwise, set this parameter to an integer from 1 to 6, where 1
prioritizes accuracy and 6 prioritizes speed.

FilterMusic (Optional, default false) Specifies whether to ignore speech-to-text
results for audio segments that are identified as music or noise. To
filter these results from the output, set this parameter to true.

SampleFrequency (Optional, default 16000) The sample frequency of the audio to send

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 254 of 399

to the audio service for analysis, in samples per second (Hz).
Language packs are dependent on the audio sample rate, and accept
audio at either 8000Hz or 16000Hz.

For example:

[TranscribeSpeech]
 Type=SpeechToText
 LanguagePack=ENUK
 CustomLanguageModel=MedicalTerms:0.1
 SpeedBias=2
 FilterMusic=TRUE

For more information about the parameters that you can use to configure speech-to-text, refer to
the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Pre-Load Language Resources

Media Server automatically loads any resources that are needed to run speech-to-text, but processing
cannot start until the resources have finished loading and, due to the amount of data, this might be 15 or
20 seconds after the process action is received.

You can load language resources before you send a process action, so that the resources required by
the session configuration are ready and processing can begin immediately. This is particularly
beneficial when you process live streams, to avoid missing the start of a broadcast.

Any language resources that you load remain in memory until you unload them, so pre-loading
resources can sometimes help to increase throughput when you process many audio or video files with
the same configuration.

NOTE: A language resource is a combination of a language pack, zero or more custom language
models with specific interpolation weights, and an optional custom word database. For example, the
following would all be loaded as separate language resources:

 l The ENUK language pack (British English, for audio with a 16kHz sample rate) without a
custom language model.

 l The ENUK language pack (British English, for audio with a 16kHz sample rate) combined with a
custom language model named MedicalTerms with an interpolation weight of 0.1.

 l The ENUK language pack (British English, for audio with a 16kHz sample rate) combined with a
custom language model named MedicalTerms with an interpolation weight of 0.2.

 l The ENUK language pack (British English, for audio with a 16kHz sample rate) with a custom
word database.

Micro Focus recommends that you pre-load the language resources that you expect to use frequently,
and allow Media Server to load other language resources on demand.

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 255 of 399

To load language resources, use the action LoadSpeechLanguageResource. Any language resources
you load with this action remain in memory until you unload them or until Media Server is stopped.

To load language resources automatically when Media Server starts, set the
SpeechLanguageResources parameter in the [PersistentData] section of the Media Server
configuration file.

You can list the language resources that you have loaded by running the action
ListSpeechLanguageResources, and unload them by running the action
UnloadSpeechLanguageResources.

For more information about these actions and configuration parameters, refer to the Media Server
Reference.

Speech-to-Text Results

The following XML shows a single record produced by speech-to-text.

<output>
 <record>
 <timestamp>
 ...
 </timestamp>
 <trackname>SpeechToText.Result</trackname>
 <SpeechToTextResult>
 <id>5c6a6fe9-04aa-4ec2-9f06-9c28827a1cb6</id>
 <text>all</text>
 <confidence>80</confidence>
 <alternative>
 <id>b05a75af-8515-4ed5-845e-caf86e2b25b9</id>
 <text>fall</text>
 <score>97</score>
 <startOffset>-60</startOffset>
 <endOffset>170</endOffset>
 </alternative>
 <alternative>
 <id>98cfe8e2-a377-4719-a12c-441266cfe657</id>
 <text>call</text>
 <score>91</score>
 <startOffset>-60</startOffset>
 <endOffset>170</endOffset>
 </alternative>
 ...
 <matched>false</matched>
 </SpeechToTextResult>
 </record>
 </output>

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 256 of 399

The record contains the following information:

 l The id element provides a unique identifier for the result.

 l The text element provides the recognized word (the "primary" word).

 l The confidence element provides the confidence score for the recognized word.

 l One or more alternative elements might be present, but only if you set the parameter
AlternativeWordsThreshold. The following elements are present for each alternative word:

 o The text element provides the alternative word.

 o The score element provides the score for the alternative word. The scores for alternative
words are relative to the primary word.

 o The startOffset and endOffset elements provide offsets for the start and end times. For
example, the alternative choice "fall" begins 60 milliseconds before the record start time and
ends 170 milliseconds after the record start time.

An alternative word is included in the result if it overlaps chronologically with the primary word,
and has a score that exceeds the threshold specified by the AlternativeWordsThreshold
parameter. This means that you might see the same alternative word repeated in several records.

 l The matched element indicates whether the primary word is in the list of words specified by the
MatchWords configuration parameter (or an overlapping alternative word is in the list and has a
score greater than the value of the MatchWordsThreshold parameter). You might use this
information to perform audio redaction on specific words.

Redact Words in the Audio

You can configure Media Server to redact words that appear in an audio track, replacing them with
either a beep or with silence. The Media Server installation includes an example session configuration
that demonstrates how to configure audio redaction
(configurations/examples/SpeechToText/AudioRedaction.cfg).

The example configuration includes the following steps:

 l Speech-to-text converts spoken words into text. The speech-to-text task includes the
MatchWords parameter so that certain words are tagged.

 l An event processing task combines the default audio track with the speech-to-text results.

 l The audio redaction task redacts the relevant parts of the audio. The task runs a Lua script to
determine whether an individual audio record is redacted. The example script checks whether the
associated speech-to-text record was tagged as a result of matching one of the words specified
by MatchWords.

 l The audio is encoded by an MPEG encoding task. The modified audio produced by the audio
redaction task is used in place of the default audio track.

Words are redacted only if they are recognized correctly by speech-to-text. Sometimes the recognized
word might be incorrect but the correct word was one of the alternatives considered by Media Server. In
this case you could consider setting the parameter MatchWordsThreshold in the speech-to-text task,
so that alternative words can be considered as matches to the list of MatchWords. However, be aware
that reducing the threshold might result in some words being redacted unnecessarily. If you want to see

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 257 of 399

alternative words in the speech-to-text results, set the configuration parameter
AlternativeWordsThreshold.

Administration Guide
Chapter 29: Speech-to-Text

Media Server (12.4) Page 258 of 399

Chapter 30: Audio Matching

Audio matching identifies when known audio clips appear in the ingested media. You can use audio
matching to help identify copyright infringement if copyrighted music is played or detect specific
advertisements in ingested video.

• Train Audio Matching 259
• Recognize Audio Clips 261

Train Audio Matching

You must train Media Server by providing the audio clips that you want to recognize. Each clip you
provide is added to a database. Add all of the clips that you want to use in the same task to the same
database.

Create a Database to Contain Audio Clips

To create a database to contain known audio clips, use the following procedure.

To create a database to contain audio clips

 l Use the action CreateAudioMatchDatabase:

database The name of the new database (maximum 254 bytes).

samplefrequency (Optional) The sample frequency of the audio that this audio clip database
can be used with. Specify either 8000 (8kHz telephony) or 16000 (16kHz
broadband). The default is 16000.

For example:

curl http://localhost:14000 -F action=CreateAudioMatchDatabase
 -F database=Music

Add a Clip to the Database

After creating a database, train Media Server to recognize each audio clip by running the action
TrainAudioMatchClip.

Media Server (12.4) Page 259 of 399

To add an audio clip to the database

 l Add a clip using the action TrainAudioMatchClip. Set the following parameters:

database The name of the database to add the clip to. The database must already exist.

identifier (Optional) A unique identifier for the clip (maximum 254 bytes). If you do not set
this parameter, Media Server generates an identifier automatically.

audiodata (Set this or audiopath, but not both). The audio data. Files must be uploaded as
multipart/form-data. For more information about sending data to Media Server,
see Send Data by Using a POST Method, on page 74.

audiopath (Set this or audiodata, but not both). The path of the audio clip. The path must
be absolute or relative to the Media Server executable file.

For example:

curl http://localhost:14000 -F action=TrainAudioMatchClip
 -F database=Music
 -F audiodata=@clip1.wav

Alternatively, the following example provides the path of the audio clip rather than sending the
audio data:

curl http://localhost:14000 -F action=TrainAudioMatchClip
 -F database=Music
 -F audiopath=clip1.wav

Media Server adds the clip to the database and returns the identifier.

List the Clips in a Database

To list the audio clips that you have added to a database, use the following procedure.

To list the clips in a database

 1. (Optional) First list the databases that have been created for audio matching. Use the action
ListAudioMatchDatabases:

http://localhost:14000/action=ListAudioMatchDatabases

Media Server returns a list of databases.

 2. List the clips that exist in one of the databases. Use the action ListAudioMatchClips, for
example:

http://localhost:14000/action=ListAudioMatchClips&database=music

Media Server returns a list of clips in the specified database.

Administration Guide
Chapter 30: Audio Matching

Media Server (12.4) Page 260 of 399

Manage Audio Clips and Databases

To remove an audio clip from a database, use the action RemoveAudioMatchClip.

To update or remove databases, use the following actions:

 l To rename an audio match database, use the action RenameAudioMatchDatabase.

 l To delete an audio match database and all of the information that it contains, use the action
RemoveAudioMatchDatabase.

For more information about the actions that you can use to train Media Server, refer to the Media Server
Reference.

Recognize Audio Clips

To recognize audio clips

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new analysis task by setting the EngineN parameter. You can
give the task any name, for example:

[Session]
 Engine0=Ingest
Engine1=AudioMatch

 3. Create a new section to contain the settings for the task and set the following parameters:

Type The analysis engine to use. Set this parameter to AudioMatch.

Input (Optional) The audio track to analyze. If you do not specify an input track,
Media Server processes the first track of the correct type produced by the
ingest engine.

Database The name of the audio match database to use for recognizing audio clips.

SampleFrequency (Optional) The sample frequency of the audio to send to the audio service
for analysis, in samples per second (Hz).

For example:

[AudioMatch]
 Type=AudioMatch
 Database=Music
 SampleFrequency=16000

For more information about the parameters that you can use to configure audio matching, refer to
the Media Server Reference.

Administration Guide
Chapter 30: Audio Matching

Media Server (12.4) Page 261 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 30: Audio Matching

Media Server (12.4) Page 262 of 399

Chapter 31: Transcript Alignment

Transcript alignment aligns a transcript with the speech in a media file.

• Introduction 263
• Run Transcript Alignment 263

Introduction

Transcript alignment takes a transcript of the speech in a media file and, by processing the speech,
assigns timestamps to all the words in the transcript. This is useful because it allows an application to
provide search results from the transcript and open the media file at the correct position. You can also
synchronize manually created subtitle text with the speech in a video file.

The transcript does not need to be an exact match for the speech. Media Server can tolerate small
numbers of errors in the transcript, and some background noise and music in the audio. However,
transcript alignment is intended to be used when you already have a transcript that contains the words
that are spoken (such the script for a television broadcast). If you do not have a transcript you can
create one manually; otherwise, you might prefer to run speech-to-text instead. There is no advantage
in running transcript alignment on a transcript that was produced by speech-to-text (unless you find and
correct any errors in the speech-to-text output).

The transcript must be normalized, but Media Server automatically normalizes transcripts in many
languages. You only need to normalize the transcript yourself when automatic normalization is not
supported for the language you are using. If you need to normalize the transcript yourself, use the same
procedure as described for custom language models (see Prepare Text for Training, on page 251).
Then, run the AlignAudioTranscript action again but send the normalized text and set
normalize=false.

Run Transcript Alignment

To run transcript alignment you must have installed a speech-to-text language pack that matches the
language of the speech. You must also enable the speech-to-text module. For information about how to
install speech-to-text language packs, see Install Speech-to-Text Language Packs, on page 39. For
information about how to enable and disable modules, see Specify Modules to Enable, on page 66.

To run transcript alignment, follow these steps.

To run transcript alignment

 1. Prepare a transcript of the speech in your media file. The transcript should be a plain text file.

 2. Send the transcript and the media file to the AlignAudioTranscript action. For example:

curl http://localhost:14000 -F action=AlignAudioTranscript
 -F audiodata=@audio.wav
 -F textdata=@transcript.txt

Media Server (12.4) Page 263 of 399

 -F languagepack=ENUS
 -F samplefrequency=16000

Media Server returns a token. You can use the token with the QueueInfo action to retrieve the
results. For more information about the AlignAudioTranscript action, refer to the Media Server
Reference.

Administration Guide
Chapter 31: Transcript Alignment

Media Server (12.4) Page 264 of 399

Chapter 32: Segment Video into News Stories

News segmentation analyzes news broadcasts, identifies the times at which new stories begin and
end, and extracts the key concepts from each story.

• Introduction 265
• Prerequisites 265
• Configure News Segmentation 266
• Example Configuration 267
• News Segmentation Results 268

Introduction

News segmentation analyzes news broadcasts, identifies the times at which stories start and finish,
and extracts the key concepts from each story.

News segmentation classifies the ingested video into segments that can be:

 l A story - a video segment that contains a consistent set of concepts.

 l A short story - a video segment that contains a consistent set of concepts, but the total length is
too short to be considered a complete story. For example, a news presenter might briefly describe
the news headlines at the end of the hour, so each topic is likely to be covered for only 20 or 30
seconds.

 l No topic - a video segment that does not contain a consistent set of concepts.

The news segmentation task is intended to be used on speech that has been transcribed from the audio
track of a news broadcast, and segmented into sentences by a text segmentation task.

News segmentation enables Media Server to output documents that correspond to stories in a news
broadcast. When you configure Media Server to output documents, use bounded event mode and use
the news segmentation result track as the event track. For more information about configuring Media
Server to output documents, see Output Data, on page 327.

Prerequisites

To perform news segmentation you must have an IDOL Server (Content component) that contains
recent examples of news stories that are relevant to the news channel that you are analyzing. The
Content component should contain no other data, because Media Server uses all documents, across
all databases, to aid classification.

Media Server (12.4) Page 265 of 399

Configure News Segmentation

To configure news segmentation , follow these steps.

To configure news segmentation

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add three analysis tasks. The first should run speech-to-text on an
audio track of the ingested video. The second should run text segmentation to group the words
extracted by speech-to-text into sentences. The third is the news segmentation task. For
example:

[Session]
 Engine0=Ingest
 Engine1=SpeechToText
 Engine2=TextSegmentation
Engine3=NewsSegmentation

 3. Create a new configuration section and configure the speech-to-text task. For information about
how to set up speech-to-text, see Speech-to-Text, on page 249.

 4. Create a new configuration section and configure the text segmentation task. For example:

 [TextSegmentation]
 Type=TextSegmentation
 Input=SpeechToText.Result

 5. Create a new configuration section to contain the news segmentation task settings, and set the
following parameters:

Type The analysis engine to use. Set this parameter to
NewsSegmentation.

Input (Optional) The track to process. Micro Focus recommends that you
transcribe speech from the audio track of the news broadcast and
then group the extracted words into sentences using a text
segmentation task. Set this parameter to the result track of the text
segmentation task.

IdolHost The host name or IP address of the IDOL Server (Content
component) to use for news segmentation.

IdolPort The ACI port of the IDOL Server (Content component) to use for
news segmentation.

MaxStoryDuration The maximum duration of a video segment that can be classified as
a story. If a story exceeds this duration, Media Server begins a new

Administration Guide
Chapter 32: Segment Video into News Stories

Media Server (12.4) Page 266 of 399

story regardless of whether the concepts in the video have
changed.

For example:

[NewsSegmentation]
 Type=NewsSegmentation
 Input=TextSegmentation.Result
 IdolHost=localhost
 IdolPort=9000
 MaxStoryDuration=30minutes

For more information about the parameters that you can use to configure news segmentation,
refer to the Media Server Reference.

 6. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example Configuration

The following is an example configuration that runs news segmentation on ingested video. This
configuration runs segmentation using an IDOL Server that is on the same machine as Media Server. It
also includes an output task to write the results of segmentation to files on disk.

[Ingest]
 IngestEngine=AV

 [AV]
 Type=Video

 [Analysis]
 AnalysisEngine0=SpeechToText
 AnalysisEngine1=TextSegmentation
 AnalysisEngine2=NewsSegmentation

 [SpeechToText]
 Type=SpeechToText
 Language=ENUS
 Mode=relative
 ModeValue=0.90
 FilterMusic=true

 [TextSegmentation]
 Type=TextSegmentation
 Input=SpeechToText.Result

 [NewsSegmentation]
 Type=NewsSegmentation
 Input=TextSegmentation.Result

Administration Guide
Chapter 32: Segment Video into News Stories

Media Server (12.4) Page 267 of 399

 IdolHost=localhost
 IdolPort=9000

 [Output]
 OutputEngine0=XML

 [XML]
 Type=xml
 Input=NewsSegmentation.Result,SpeechToText.Result
 Mode=bounded
 EventTrack=NewsSegmentation.Result
 XMLOutputPath=./output/%token%/Story_%segment.type%_%segment.sequence%.html

News Segmentation Results

The following XML shows a single record produced by news segmentation.

<NewsSegmentationResult>
 <id>af4475f5-beb2-401e-bf73-fb494f63af27</id>
 <storyText>business secretary says the government will consider co investing
 with a Buy on commercial terms <SIL> ...</storyText>
 <score>0</score>
 <terms>
 <term>
 <text>Buy</text>
 <weight>170</weight>
 </term>
 <term>
 <text>business secretary says</text>
 <weight>120</weight>
 </term>
 <term>
 <text>consider co investing</text>
 <weight>110</weight>
 </term>
 <term>
 <text>commercial terms</text>
 <weight>90</weight>
 </term>
 ...
 </terms>
 <type>Short story</type>
 </NewsSegmentationResult>

The record contains the following elements:

 l storyText contains the text extracted from the video. The text is extracted from the audio by
speech-to-text. Words are then combined into segments by the text segmentation task. News
Segmentation analyzes the segments and combines one or more segments into a result that

Administration Guide
Chapter 32: Segment Video into News Stories

Media Server (12.4) Page 268 of 399

represents a story, short story, or video with no topic.

 l score is an integer from 0 to 100 that indicates the consistency between the terms in each
segment that makes up the storyText.

 l each terms/term/text element contains a key term extracted from the text.

 l each terms/term/weight element contains the weight of the associated term. You might want to
use this weight when building a term cloud. The weights are relative to the other terms in the
story, and cannot be compared across stories.

 l the type element specifies whether the news segmentation task has classified the segment as a
Story, Short Story, or a segment with No topic.

Administration Guide
Chapter 32: Segment Video into News Stories

Media Server (12.4) Page 269 of 399

Media Server (12.4) Page 270 of 399

Part IV: Encode Media

This section describes how to encode media using Media Server.

 l Encode Video to a File or UDP Stream

 l Encode Video to a Rolling Buffer

 l Encode Images to Disk

Media Server (12.4) Page 271 of 399

Administration Guide
Part IV: Encode Media

Chapter 33: Encode Video to a File or UDP Stream

This section describes how to encode video to a file, or to a UDP stream.

• Introduction 272
• Encode Video to MPEG Files 272
• Encode Video to a UDP Stream 273

Introduction

Media Server can encode the video it ingests and write the video to files, to a stream, or to a rolling
buffer.

There are several reasons for encoding video:

 l If you are ingesting video from a stream, you can encode the video for playback at a later time. If
your analysis tasks detect interesting events in the video, you might want to review those events.

 l You can choose the size and bit rate of the encoded video. If you are analyzing sources such as
high-definition television broadcasts, you might want to reduce the size and bit rate of the video
for storage and streaming to users when they search for clips.

Encoding video does not affect the video frames used for analysis. Analysis always uses the source
video.

Media Server provides several audio and video profiles that contain settings for encoding. For example,
there are profiles for high-quality output, which you can use if you want to prioritize quality over disk
space. By default, the files are stored in the profiles folder in the Media Server installation directory.
You should not need to modify the profiles. When you configure encoding, you can select the profiles
that you want to use.

Encode Video to MPEG Files

To encode video to one or more MPEG files on disk, follow these steps.

To encode video to a file

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
Engine1=MyEncodingTask

Media Server (12.4) Page 272 of 399

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The type of encoding engine to use. Set this parameter to mpeg.

VideoSize (Optional) The size of the encoded video, in pixels, width followed by
height. If you want to use the same dimensions as the source, set this
parameter to copy. To ensure Media Server uses the same aspect ratio as
the source video, set either the width or height and set the other dimension
to zero.

OutputPath The path of the encoded output file(s). You can use macros to create
output paths based on the information contained in the encoded records.
Specify the path as an absolute path or relative to the Media Server
executable file.

UrlBase The base URL that will be used to access the encoded files. This is used
when Media Server generates proxy information. You can use macros to
create the URL base from information contained in the encoded records.

Segment (Optional) Specifies whether to split the output file into segments.

SegmentDuration (Optional) The maximum duration of a segment.

For example:

[MyEncodingTask]
 Type=mpeg
 VideoSize=0x720

OutputPath=./mp4/%currentTime.year%/%currentTime.month%/%currentTime.day%/%curr
entTime.timestamp%_%segment.sequence%.mp4

UrlBase=http://www.mysite.com/video/clips/mp4/%currentTime.year%/%currentTime.m
onth%/%currentTime.day%/

For more information about the configuration parameters and macros that you can use, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Encode Video to a UDP Stream

To generate a live UDP stream of the content that Media Server is ingesting, use the following
procedure.

To encode video to a stream

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

Administration Guide
Chapter 33: Encode Video to a File or UDP Stream

Media Server (12.4) Page 273 of 399

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
Engine1=EncodeStream

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The type of encoding engine to use. Set this parameter to mpeg.

VideoSize (Optional) The size of the encoded video, in pixels, width followed by height. If you
want to use the same dimensions as the source, set this parameter to copy. To
ensure Media Server uses the same aspect ratio as the source video, set either
the width or height and set the other dimension to zero.

OutputURL The URL to stream to. For example, udp://239.255.1.123:4321.

Format The container format. For example, mpegts for MPEG transport stream.

For example:

[EncodeStream]
 Type=mpeg
 VideoSize=0x720
 OutputUrl=udp://239.255.1.123:4321
 Format=mpegts

For more information about the configuration parameters that you can use to configure this task,
refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 33: Encode Video to a File or UDP Stream

Media Server (12.4) Page 274 of 399

Chapter 34: Encode Video to a Rolling Buffer

This section describes how to configure encoding to a rolling buffer.

• Store Video in a Rolling Buffer 275
• Calculate Storage Requirements 276
• Set Up Rolling Buffers 276
• Pre-Allocate Storage for a Rolling Buffer 278
• Write Video to a Rolling Buffer 278
• Write Video to an Evidential Rolling Buffer 279
• View the Rolling Buffer Contents 280
• Retrieve an HLS Playlist 280
• Create a Clip from a Rolling Buffer 281
• Create an Image from a Rolling Buffer 282
• Use Multiple Media Servers 283

Store Video in a Rolling Buffer

Media Server can save a copy of the video it ingests to a rolling buffer. A rolling buffer is a fixed amount
of storage where the oldest content is discarded to make space for the latest.

Media Server can write video directly into the rolling buffer, producing an evidential copy that has not
been modified in any way. You might require an evidential copy for legal reasons. Media Server can
also encode video before writing it to the buffer, creating a non-evidential copy that is optimized for
storage and playback.

NOTE: Evidential mode is not supported when the source video is in MJPEG format.

A rolling buffer is useful for both broadcast monitoring and surveillance applications. For example, in a
surveillance application you could configure the rolling buffer with sufficient storage to contain all the
video captured by a camera in the last 7 days. If an event occurs you can play the content from the
rolling buffer and view the video around the time of the event. If you needed to document the event, you
would have 7 days to extract images and video from the rolling buffer before the video is overwritten.

Rolling buffers are configured in a separate configuration file (not in the Media Server configuration file).
The rolling buffer configuration file contains settings such as the paths to the storage locations on disk,
and the amount of storage to allocate to each rolling buffer.

You can configure as many rolling buffers as you need. For example, you could choose to save an
evidential copy of the ingested video to one rolling buffer and a smaller compressed copy to another.
You might also want to set up multiple rolling buffers if you ingest video from separate cameras or
channels. For example, if you ingest 12 hours of video from one channel and then 48 hours from another
you can use multiple rolling buffers to store the last 12 hours from each channel.

Media Server (12.4) Page 275 of 399

Video is served from the rolling buffer using the HTTP Live Streaming (HLS) protocol. An HLS-
compliant media player can request an HLS playlist from Media Server or the MMAP REST endpoint.
The playlist points to video segments in the rolling buffer, and these segments are served by an
external component such as a Web server or MMAP. Media Server does not include a Web server.

Calculate Storage Requirements

When setting up a rolling buffer, consider what you intend to store and determine the amount of storage
you need. It is important to allocate sufficient storage space because as soon as the buffer is full,
Media Server overwrites the oldest video to make space for the latest. To avoid losing important data,
ensure you have sufficient capacity.

The amount of storage you should allocate to a rolling buffer depends on:

 l the amount of time for which you want to keep video before it is overwritten.

 l the bitrate of the video you encode to the rolling buffer.

For example, if you intend to store video for 1 week, and you encode the video at 4 megabits per
second, you would need approximately 350GB of disk space.

After setting up your rolling buffer, Micro Focus recommends that you check that the buffer is storing as
much video as you expected.

Set Up Rolling Buffers

The settings for your rolling buffers are stored in a separate configuration file. This is so that you can
share the rolling buffer configuration between multiple Media Servers . For example, you might have
one Media Server writing video to a rolling buffer and another generating playlists.

A default rolling buffer configuration file is included with Media Server in the
/encoding/rollingBuffer folder.

In rollingBuffer.cfg, you can control the following settings:

 l the location of the root folder for each rolling buffer.

 l the maximum number and size of the files allocated to each rolling buffer. The number of files
multiplied by their size gives the total amount of storage for a rolling buffer. Media Server saves
video across multiple files because this is beneficial to disk performance. You can set a default
value for all rolling buffers and override it for individual rolling buffers.

 l the prefixes added to URLs used in playlists.

NOTE: Apart from the settings in the [Defaults] section, do not edit the rolling buffer configuration
file in a text editor. To add or modify rolling buffers, use the ACI actions provided by Media Server.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 276 of 399

To set the path to the rolling buffer configuration file

 1. Open the Media Server configuration file and find the [Paths] section.

 2. Ensure that the path to the rolling buffer configuration file is set, for example:

[Paths]
 RollingBufferConfigPath=./encoding/rollingBuffer/rollingBuffer.cfg

Relative paths must be relative to the Media Server working directory. If you share a rolling buffer
configuration file between multiple Media Servers, specify a UNC path.

 3. Save and close the configuration file.

 4. If you made any changes to the configuration file, restart Media Server.

To configure default settings for rolling buffers

 1. Open the rolling buffer configuration file.

 2. In the [Defaults] section, set the following parameters:

RootPath The path of the directory to store the rolling buffer files in. Relative
paths must be relative to the rolling buffer configuration file.

MaxFiles The maximum number of files for each rolling buffer.

MaxFileSizeMB The maximum size in MB for each file.

MediaSegmentTemplate (Optional) A template to use to construct the URL of every media
segment in a playlist.

VariantSegmentTemplate (Optional) A template to use to construct the URL of every
GetPlaylist action that is produced by Media Server.

For example:

[Defaults]
 RootPath=C:\VideoRecording\
 MaxFiles=10
 MaxFileSizeMB=100

For more information about these configuration parameters, refer to the Media Server Reference.

To add a new rolling buffer

 l Use the ACI action AddStream, for example:

/action=AddStream&Stream=NewsChannel&MaxFiles=10&MaxFileSize=100

where the Stream parameter is required and specifies the name of the rolling buffer. The other
parameters are optional and override the default rolling buffer settings.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 277 of 399

To remove a rolling buffer

CAUTION: This deletes all video that has been stored in the rolling buffer.

 l Use the ACI action RemoveStream, for example:

/action=RemoveStream&Stream=NewsChannel

where the Stream parameter is required and specifies the name of the rolling buffer to remove.

For more information about the actions that you can use to configure rolling buffers, refer to the Media
Server Reference.

Pre-Allocate Storage for a Rolling Buffer

Media Server must allocate storage for a rolling buffer before it can write encoded video to the buffer.
Allocating storage is not instantaneous so to ensure that Media Server can start recording from a
stream immediately, pre-allocate storage before you start a session.

To pre-allocate storage in the rolling buffer

 l Send the PreAllocateStorage action to Media Server:

http://localhost:14000/action=PreAllocateStorage

For more information about this action, refer to the Media Server Reference.

Write Video to a Rolling Buffer

To write ingested video to a rolling buffer, follow these steps.

To write video to a rolling buffer

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
Engine1=RollingBuffer

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The type of engine to use. Set this parameter to RollingBuffer.

Stream The name of the rolling buffer to write video to. You must have created the

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 278 of 399

rolling buffer (see Set Up Rolling Buffers, on page 276).

AudioProfile The audio encoding profile to use.

VideoProfile The video encoding profile to use.

For example:

 [RollingBuffer]
 Type=RollingBuffer
 Stream=NewsChannel
 AudioProfile=mpeg4audio
 VideoProfile=mpeg4video_h264_sd

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Write Video to an Evidential Rolling Buffer

To write ingested video to an evidential rolling buffer, follow these steps.

To write video to an evidential rolling buffer

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
Engine1=EvidentialRollingBuffer

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The type of engine to use. Set this parameter to EvidentialRollingBuffer.

Stream The name of the rolling buffer to write video to. You must have created the rolling
buffer (see Set Up Rolling Buffers, on page 276).

For example:

 [EvidentialRollingBuffer]
 Type=EvidentialRollingBuffer
 Stream=Camera3

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 279 of 399

View the Rolling Buffer Contents

To retrieve a list of all the rolling buffers that have been configured use the following procedure.

To list your rolling buffers

 l Send the GetStreams action to Media Server. For example:

http://localhost:14000/action=GetStreams

Media Server returns a list of all of your rolling buffers.

You can also retrieve information about the video stored in a rolling buffer. For example, you might
record video for one hour each morning and two hours each afternoon. To get information about what
has been stored in a rolling buffer, use the following procedure.

To return a list of the content in a rolling buffer

 l Send the GetRecordedRanges action to Media Server.

You can filter the results by setting the following optional parameters:

Stream The rolling buffer to list of recorded content for. If this parameter is not set, Media
Server returns results for all rolling buffers.

StartTime Only show content available after this time. Specify the start time in epoch
milliseconds or ISO-8601 format.

Duration The length of time after the start time to return a list of available content for.
Specify the duration as a time duration.

For example, to retrieve a list of content available in the BBCNews rolling buffer for 24 hours from
16:27:54 on 21 February 2014:

http://localhost:14000/action=GetRecordedRanges&Stream=BBCNews
 &StartTime=1393000074243
 &Duration=24hours

Retrieve an HLS Playlist

Media Server generates HTTP Live Streaming (HLS) playlists that can be used by a media player to
request content from a rolling buffer. To play video from a rolling buffer, your system must meet the
following requirements:

 l You must configure a Web server or use the MMAP REST endpoint to serve video segments
from your file system to the media player.

 l The media player that you use must be HLS-compliant. By default, Media Server generates HLS
version 4 playlists, but you can also configure Media Server to generate HLS version 1 playlists.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 280 of 399

To retrieve a playlist

 l Send the GetPlaylist action to Media Server. Set the following parameters:

Stream The name of the rolling buffer to request video from.

StartTime (Set this parameter or Offset) The start time of the playlist in ISO 8601 format or
epoch milliseconds.

Offset (Set this parameter or StartTime) Specifies the start time of the playlist by
calculating an offset from the current time. For example, if you specify an offset
of one hour, the start time for the playlist is one hour ago.

Duration (Optional) The length of time after the start time that the playlist covers.

HLSVersion (Optional) By default, Media Server generates HLS version 4 playlists. To obtain
an HLS version 1 playlist set this parameter to 1.

For example, to retrieve a playlist that contains five minutes of content from the BBCNews rolling
buffer, starting from 16:27:54 on 21 February 2014:

http://localhost:14000/action=GetPlaylist&Stream=BBCNews
 &StartTime=2014-02-21T16:27:54Z
 &Duration=5minutes

To retrieve a playlist that contains content from the BBCNews rolling buffer, starting from 16:27:54
on 21 February 2014, with no end time, use the following action. If you play the content at normal
speed and there is no break in recording, the media player could continue playing content forever:

http://localhost:14000/action=GetPlaylist&Stream=BBCNews
 &StartTime=2014-02-21T16:27:54Z

Media Server returns the playlist. If you open the playlist with an HLS-compliant media player, the
player will play the video from the rolling buffer.

Create a Clip from a Rolling Buffer

Use the following procedure to retrieve a section of video from the rolling buffer.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 281 of 399

To create a clip from a rolling buffer

 l Send the CreateClip action to Media Server. Set the following parameters:

Stream The name of the rolling buffer to create the clip from.

StartTime The start time of the clip in epoch-milliseconds or ISO-8601 format. Video
must exist in the rolling buffer for the start time that you specify (or begin within
15 seconds of the start time). If video begins within 15 seconds after the start
time that you specify, Media Server automatically adjusts the start time. If
there is no video in the rolling buffer within 15 seconds after the start time, the
action fails.

Duration The duration of the clip.

OutputFormat (Optional) The format of the container file that is returned (default ts, but you
can also choose mp4).

Path (Optional) The path to save the clip to. The directory must be on a file system
that Media Server can access. If you do not set this parameter, the file is
returned in the response.

For example,

http://localhost:14000/action=CreateClip&Stream=BBCNews
 &StartTime=1393000074243
 &Duration=5minutes
 &Path=./temp/News1.ts

This action instructs Media Server to create a five minute clip from the rolling buffer BBCNews,
beginning from Fri, 21 Feb 2014 16:27:54 GMT, and to save the clip as the News1.ts file in the
temp directory.

Create an Image from a Rolling Buffer

To obtain a single video frame from a rolling buffer, use the following procedure.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 282 of 399

To create an image from a rolling buffer

 l Send the CreateImage action to Media Server. Set the following parameters:

Stream The name of the rolling buffer to create the image from.

Time The time that the desired frame occurs in the rolling buffer. Specify the time in epoch-
milliseconds or ISO-8601 format.

For example,

http://localhost:14000/action=CreateImage&Stream=BBCNews
 &Time=1393000074243

Use Multiple Media Servers

It is possible to configure multiple Media Servers to use the same rolling buffer configuration file. You
can have a maximum of one Media Server writing video into a rolling buffer, but other Media Servers
can read content from the rolling buffer.

If you configure multiple Media Servers to use the same rolling buffer configuration file, you must:

 l grant read access to the rolling buffer configuration file to all of the Media Servers.

 l grant write access to the rolling buffer configuration file to only one Media Server. If you need to
change the settings for your rolling buffers, you must send actions to this Media Server.

 l allow only one Media Server to write video into each rolling buffer. The Stream parameter in a
rolling buffer encoding task specifies which rolling buffer to write video to.

Administration Guide
Chapter 34: Encode Video to a Rolling Buffer

Media Server (12.4) Page 283 of 399

Chapter 35: Encode Images to Disk

This section describes how to encode images to disk.

• Introduction 284
• Encode Images 284

Introduction

Media Server can encode images to disk.

There are several reasons you might want to do this:

 l To use the images in a front-end application. For example, if you deploy Media Server for
broadcast monitoring purposes, you might extract keyframes from the ingested video and use
these as thumbnails in a web application that presents the analysis results.

 l To obtain training images. For example, if you run face detection on a video, you can write an
image of each detected face to disk. You could then use these images for training face
recognition.

You can encode images in one of several formats. If you intend to use the images for training, Micro
Focus recommends using a format that is not compressed, or uses lossless compression. PNG is a
good choice for training images. The JPEG image format uses lossy compression to reduce file size
and, as a result, the quality of the image is reduced. This makes JPEG images unsuitable for training
but the smaller file size is advantageous if you intend to use the images in a front-end that might be
viewed over the web.

Encode Images

To encode images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=KeyframeAnalysis
Engine2=ImageEncoder

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Media Server (12.4) Page 284 of 399

Type The encoding engine to use. Set this parameter to ImageEncoder.

ImageInput The name of the track that contains the images to encode.

OutputPath The path and file name for the output files. If the directory does not exist, Media
Server creates it. You can use macros to create output paths based on the
information contained in a record. Specify the path as an absolute path or relative
to the Media Server executable file.

UrlBase The URL that will be used to access the encoded files.

ImageSize (Optional) The output image size in pixels, width followed by height. If you do not
set this parameter, Media Server uses the original image size. If you specify only
one dimension, Media Server calculates the other, maintaining the original
aspect ratio. For example, to specify a width of 300 pixels and have Media
Server calculate the appropriate height, set this parameter to ImageSize=300x0.

Setting this parameter only modifies the size of the encoded image. The image
encoder does not scale any metadata that describes the position of an object in
the image. To scale images and position metadata, consider using a scale
transformation task.

For example:

[ImageEncoder]
 Type=ImageEncoder
 ImageInput=KeyframeAnalysis.ResultWithSource

OutputPath=c:\output\keyframes\%record.starttime.year%-%record.starttime.month%
-%record.starttime.day%\%record.starttime.timestamp%.jpg

UrlBase=http://www.mysite.com/keyframes/%record.starttime.year%-%record.startti
me.month%-%record.starttime.day%/
 ImageSize=192x108

For more information about the parameters that you can use to configure the image encoder, refer
to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 35: Encode Images to Disk

Media Server (12.4) Page 285 of 399

Media Server (12.4) Page 286 of 399

Part V: Event Stream Processing

This section describes how to use Event Stream Processing (ESP). You can use ESP to introduce custom
logic into your processing tasks.

 l Event Stream Processing

Media Server (12.4) Page 287 of 399

Administration Guide
Part V: Event Stream Processing

Chapter 36: Event Stream Processing

This section describes event stream processing in Media Server.

• Introduction to Event Stream Processing 288
• Event Stream Processing with Documents 290
• Filter a Track 290
• Deduplicate Records in a Track 291
• Combine Tracks 294
• Identify Time-Related Events in Two Tracks–And Engine 295
• Identify Time-Related Events in Two Tracks–AndThen Engine 297
• Identify Isolated Events–AndNot Engine 298
• Identify Isolated Events–AndNotThen Engine 300
• Identify and Combine Time-Related Events 301
• Write a Lua Script for an ESP Engine 303

Introduction to Event Stream Processing

Event Stream Processing (ESP) applies rules to the output of other tasks, including other ESP tasks.

One use of ESP is to identify interesting events from a large number of records. A simple example is
detecting the occurrence of a particular word in an audio stream. A more complex example is detecting
when a combination or sequence of events occurs within a specific time interval; for example, a
number plate is detected shortly after a traffic light changes to red.

The tracks passed to ESP engines are not modified. An ESP task produces a new output track that
contains records which meet the specified conditions.

ESP engine Description Example

Filter Filters a track, and produces an output track
that contains only records that meet specified
conditions.

Filter speech-to-text results for a
news channel to produce an output
track that only contains records for
the word "weather".

Deduplicate Identifies duplicate records in a track, and
produces an output track without the
duplicates.

Face recognition produces a result
each time a person is recognized.
Deduplication can filter the output
to remove any records produced
when the same person is
recognized again within a certain
number of seconds.

Or Combines two or more tracks into a single Combine tracks from OCR,

Media Server (12.4) Page 288 of 399

output track. The output track contains all of
the records from all of the input tracks.

speech-to-text, and face
recognition to produce an output
track that contains information
about text, speech, and faces in a
video.

And Compares two tracks to identify combinations
of events. The event in the second track must
occur within a specific time interval (before or
after) the event in the first track. The records in
the output track each contain a pair of related
records. A record in the first track can appear
in the output track more than once if it
becomes part of multiple combinations.

Identify when the text "election
results" appears on-screen and a
news presenter speaks the name
of a politician up to ten seconds
before or after the text appears.

AndThen Compares two tracks to identify combinations
of events. The event in the second track must
occur at the same time as, or within a specific
time interval after the event in the first track.
The records in the output track each contain a
pair of related records. A record in the first
track can appear in the output track more than
once if it becomes part of multiple
combinations.

Identify when the text "election
results" appears on-screen and a
news presenter speaks the name
of a politician up to ten seconds
after the text appears.

AndNot Compares a track (Input0) with one or more
other tracks. The output contains every record
from the Input0 track which is not preceded or
followed, within a specified time interval, by an
event in any of the other tracks.

Produce a track containing records
for all appearances of a logo that
are not accompanied by the
company name in the ten seconds
preceding or following the logo's
appearance.

AndNotThen Compares a track (Input0) with one or more
other tracks. The output contains every record
from the Input0 track which is not followed,
within a specified time interval, by an event in
any of the other tracks.

Produce a track containing records
for all appearances of a logo that
are not followed within ten seconds
by the company name.

AndAny Compares a track (Input0) with one or more
other tracks. The output contains every record
from the Input0 track which is preceded or
followed, within a specified time interval, by at
least one event in any of the other tracks.

AndThenAny Compares a track (Input0) with one or more
other tracks. The output contains every record
from the Input0 track which is followed, within
a specified time interval, by at least one event
in any of the other tracks.

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 289 of 399

Combine Combines records from two or more tracks.
This is similar to the And ESP task, except:

 l It produces an output record for every
record in the first input track, and this
output record contains copies of all
related records from the other input track
(s). In comparison, the And task creates
one output record for each pair of related
records.

 l Every record from the first input track
always appears in the output, even if
there are no related records in the other
input track(s).

Combine information about
detected faces that appear at the
same time so that all of the faces
can be blurred by a transformation
task.

The ESP engines support configuration parameters that allow you to customize the operations for your
data. Some engines also allow you to run scripts written in the Lua scripting language. For more
information about Lua scripts, see Write a Lua Script for an ESP Engine, on page 303.

ESP engines can accept any track. They also accept the output of other ESP engines.

Event Stream Processing with Documents

Event stream processing can be used to discover combinations or sequences of events that occur in
video. If you are processing images or documents you can use event stream processing to determine
when interesting records occur on the same page.

NOTE: The AndThen, AndThenAny, and AndNotThen tasks are not supported for image and
document processing.

When you process images and documents, the ESP time interval parameters are ignored. Instead,
Media Server considers that records are related if they are related to the same page of an image or
document.

Filter a Track

You can filter a track to extract records that match particular conditions. For example, you can:

 l extract records from OCR analysis results that match or contain a specified string

 l extract records from a speech-to-text task that match or contain a specified string

 l extract records from a face detection task that describe faces that appear in a particular region of
the frame

 l extract records from an object recognition task that match a specific object

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 290 of 399

To filter a track

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine5=Weather

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The ESP engine to use. Set this parameter to filter.

Input The output track, produced by another Media Server task, that you want to filter.

 4. Set one of the following parameters to specify how the input track is filtered:

RequiredString A string that a record must match to be included in the output track. (The
input track must contain text data).

RequiredSubString A string that a record must contain to be included in the output track.
(The input track must contain text data).

LuaScript The name of a Lua script that defines conditions that a record must meet
in order to be included in the output track from the ESP engine. For more
information, see Write a Lua Script for an ESP Engine, on page 303.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following configuration produces a new track called Weather.Output. This track only contains
records that include the word "weather".

 [Weather]
 Type=filter
 Input=speechtotext.result
 RequiredSubString=weather

Deduplicate Records in a Track

Deduplication identifies duplicate records in a track, and produces a new track that has the duplicate
records removed.

The engine identifies two identical records that occur within a specific time interval and discards the
second record. For example, face recognition can produce a record for each frame that a person is

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 291 of 399

recognized in. The Deduplicate ESP engine can remove duplicate records so that the track contains a
single record for each recognized person.

You can specify the conditions that make two records identical. There are several options:

 l any records are considered identical; Media Server discards any record that occurs within the
minimum time interval of the first record

 l use the default equivalence conditions for the track. Each type of track has its own default
equivalence conditions; for example, OCR records are considered equivalent if the text is
identical. The table lists the equivalence conditions for each output track.

Analysis
engine

Output tracks Equivalence conditions

Barcode Data, DataWithSource, Result,
ResultWithSource

Text field must be identical.

Face detection Data, DataWithSource, Result,
ResultWithSource

Rectangle field must be identical.

Face
demographics

Result, ResultWithSource All custom fields must be identical.

Face
recognition

Result, ResultWithSource Database and identifier fields must be
identical.

Face state Result, ResultWithSource All custom fields must be identical.

Numberplate Data, DataWithSource, Result,
ResultWithSource

Text field must be identical.

PlateRegion Polygon field must be identical.

Object class
recognition

Result, ResultWithSource The recognizer, classification identifier,
and region must be identical.

Object
recognition

Data, DataWithSource, Result,
ResultWithSource

Database and identifier fields must be
identical.

Image
classification

Result, ResultWithSource Classifier and identifier fields must be
identical.

OCR Data, DataWithSource, Result,
ResultWithSource

Text field must be identical.

SceneAnalysis Data, DataWithSource, Result,
ResultWithSource

All custom fields must be identical.

SpeakerID Result Text field must be identical.

SpeechToText Result Text field must be identical.

 l specify equivalence conditions using a Lua script. For example, you might want to declare two
Face records identical if they contain the same person, even if the location of the face in the frame

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 292 of 399

is different. For more information about Lua scripts, see Write a Lua Script for an ESP Engine, on
page 303.

To deduplicate a track

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine5=Deduplicate

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The ESP engine to use. Set this parameter to deduplicate.

Input The name of the track to deduplicate. This must be an output track
produced by another task.

MinTimeInterval The minimum time between records. When you process video, the engine
only discards duplicate records that occur within this time interval. If you
are processing images or documents this parameter is ignored.

PredicateType (Optional) The conditions to use to determine whether two records are
considered identical. You can set one of:

 l always. Any records are considered identical.

 l default. Use the default equivalence conditions for the track type.

 l lua. Use the conditions defined in a Lua script specified in the
LuaScript parameter.

LuaScript (Optional) The name of a Lua script that determines whether two records
are considered identical. For more information, see Write a Lua Script for
an ESP Engine, on page 303.

For more information about these parameters, including the values that they accept, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example deduplicates the output track from an OCR task by discarding all identical
records that occur within 1 second after a record. The records are judged to be identical based on the
default equivalence conditions for the OCR track (the text is identical).

[DeduplicateOCR]
 Type=deduplicate

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 293 of 399

 Input=myocr.data
 MinTimeInterval=1000ms
 PredicateType=default

Combine Tracks

You can combine two or more tracks into a single track. The "Or" ESP engine creates an output track
that contains the records from all of the input tracks. Each record in the resulting track includes the
name of the track that it originated from.

For example, you could combine output tracks from speech-to-text and face recognition. The records in
the resulting track would contain a transcript of speech in the video, or details of recognized faces.

TIP: This engine combines tracks, not records.

To combine tracks

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine5=Combine

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The ESP engine to use. Set this parameter to or.

Input
N

The names of the tracks that you want to output as a single track. Specify two or more
tracks that are produced by other tasks.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following configuration combines output tracks from a Barcode task and an OCR task:

 [Combine]
 Type=or
 Input0=mybarcode.result
 Input1=myocr.result

This task produces a new track, named Combine.Output, that contains all of the records from
mybarcode.result and myocr.result.

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 294 of 399

Identify Time-Related Events in Two Tracks–And Engine

The And ESP engine compares two tracks to identify combinations of events. The engine produces an
output track containing the identified record pairs.

NOTE: To detect events in the second track that occur only after (or at the same time as) events in
the first track, use the AndThen engine. For more information, see Identify Time-Related Events in
Two Tracks–AndThen Engine, on page 297.

For example, you might want to identify all the times that a specific person appears in conjunction with
a specific product. There are several ways you can accomplish this, but all involve the And ESP
engine:

 l Set up the analysis engines so they produce output tracks containing only relevant events. In this
case, you would configure face recognition to recognize the specified person only, and object
recognition to recognize the specified product only. You could then send the output tracks from
the analysis tasks to the And engine to produce a track containing pairs of records that occurred
at similar times.

 l Filter the output tracks from the analysis engines, before sending the filtered tracks to the And
engine. In this case, you do not need to configure face recognition and object recognition to
recognize only specific faces and objects; these are extracted by Filter engines before being sent
to the And engine. As with the previous method, the And engine produces a track containing pairs
of records that occurred at similar times.

 l Send the unfiltered output tracks from the analysis engines to an And engine that uses a Lua
script to determine which events it should consider. Each time the engine detects records that
occur within the specified time interval of each other, the engine runs the function in the Lua script
to determine if the record pair should be included in the And output track. For more information on
writing a Lua script, see Write a Lua Script for an ESP Engine, on page 303.

To identify time-linked events in two tracks

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine5=AndEvents

 3. Create a new configuration section for the task, and set the following parameters:

Type The ESP engine to use. Set this parameter to and.

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 295 of 399

Input0 The first input track. This track must be an output track produced by
another task.

Input1 The second input track. This track must be an output track produced by
another task.

TimestampCondition (Optional) Specifies time limits for matching records, based on the
record timestamps. If you do not set this parameter, the records must
start at exactly the same time.

If you are processing images or documents, this parameter is ignored
and records are considered related if they are associated with the same
page.

For more details about these parameters, including the values that they accept, refer to the Media
Server Reference.

 4. (Optional) To add custom logic that discards pairs of records unless they meet additional
conditions, set the LuaScript parameter so that Media Server runs a Lua script to filter the
results. For information about writing the script, see Write a Lua Script for an ESP Engine, on
page 303.

LuaScript The path and file name of a Lua script to run.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example produces an output track named BreakingNewsSyria.Output. This track
contains speech-to-text records that contain the word "Syria", and OCR records that match the string
"Breaking News". However, the records are only included when they occur within two seconds (2000
milliseconds) of the other record type.

ESP filter tasks are used to filter the OCR and speech-to-text results, before those results are passed
to the "and" ESP task.

[Session]
 ...
 Engine5=BreakingNews
 Engine6=Syria
 Engine7=BreakingNewsSyria

 [BreakingNews]
 Type=filter
 Input=ocr.result
 RequiredString=Breaking News

 [Syria]
 Type=filter
 Input=speechtotext.result
 RequiredSubString=Syria

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 296 of 399

 [BreakingNewsSyria]
 Type=and
 Input0=BreakingNews.output
 Input1=Syria.output
 TimestampCondition=start1>=start0-2s,start1<=start0+2s

Identify Time-Related Events in Two Tracks–AndThen
Engine

The AndThen ESP engine compares two tracks to identify events in the second track that occur within
a specific time interval after (or at the same time as) events in the first track. The engine produces a
track containing the identified record pairs.

NOTE: The AndThen engine enforces the order of events in the two tracks: events in the second
track must occur after events in the first track. To detect events in two tracks that occur within a
specified time interval, when the event order does not matter, use an And task. For more
information, see Identify Time-Related Events in Two Tracks–And Engine, on page 295.

To identify time-linked events in two tracks

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
Engine0=Ingest
 ...
Engine5=AndThen

 3. Create a new configuration section for the task and set the following parameters:

Type The ESP engine to use. Set this parameter to andthen.

Input0 The first input track. This track must be an output track produced by
another task.

Input1 The second input track. This track must be an output track produced by
another task.

TimestampCondition (Optional) Specifies time limits for matching records, based on the
record timestamps. If you do not set this parameter, the records must
start at exactly the same time.

LuaScript (Optional) The name of a Lua script that defines conditions that a

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 297 of 399

record pair must meet in order to be included in the output track. For
information about writing the script, see Write a Lua Script for an ESP
Engine, on page 303.

For more information about these parameters and the values they accept, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example produces an output track (RedLightBreach.Output) containing records
produced when a number plate is detected up to five seconds (5000 milliseconds) after traffic lights turn
red. The engine takes tracks produced by SceneAnalysis and NumberPlate engines. The
SceneAnalysis output track contains a record for every time the traffic lights turned red. The
Numberplate output track contains a record for every number plate detected in the video.

[RedLightBreach]
 Type=andthen
 Input0=sceneanalysis.ResultWithSource
 Input1=numberplate.ResultWithSource
 TimestampCondition=start1 <= start0 +5s

Identify Isolated Events–AndNot Engine

The AndNot engine compares tracks to identify when an event occurs in the first track and nothing
happens in the other track(s) within a specified time interval.

For example, you can identify all the occasions when a company logo appears in a video without
mention of the company name in the speech:

 1. An object recognition task recognizes the logo.

 2. A speech-to-text task produces a transcript of the speech.

 3. An ESP filter task extracts records from the speech-to-text output that contain the company
name and outputs them to a new track.

 4. An ESP task (using the AndNot engine) uses the output tracks from the object recognition and
filter tasks. It compares events in both tracks and identifies isolated events in the first track (the
object track). The engine produces an output track containing records from the object track for
when a logo is recognized but is not followed within the specified time interval by the company
name in the filtered SpeechToText track.

NOTE: The AndNot engine does not enforce an order of events: the first track's event is considered
isolated if an event in another track does not occur either before or after it. If you want to consider
only events occurring after (or at the same time as) events in the first track, you can use the
AndNotThen engine (see Identify Isolated Events–AndNotThen Engine, on page 300).

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 298 of 399

To identify isolated events

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
...
Engine5=IsolatedEvents

 3. Create a new configuration section for the task and set the following parameters:

Type The ESP engine to use. Set this parameter to AndNot.

Input0 The first input track. This track must be an output track produced by
another task.

InputN One or more additional input tracks. These must be output tracks
produced by other tasks.

TimestampCondition (Optional) Specifies time limits for matching records, based on the
record timestamps.

If you are processing images or documents, this parameter is ignored
and records are considered related if they are associated with the same
page.

LuaScript (Optional) The name of a Lua script that defines conditions for a
discarding a record from the first track. For information about writing
the script, see Write a Lua Script for an ESP Engine, on page 303.

For more details about the parameters, including the values that they accept, refer to the Media
Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example produces an output track called LogoWithoutCompanyName.Output. This track
contains records from an object recognition task that indicate when the company logo was recognized.
However, the track only contains the appearances when the company name was not mentioned in the
audio within five seconds.

[Session]
 ...
Engine5=FilterAudio
 Engine6=LogoWithoutCompanyName

 [FilterAudio]
 Type=filter

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 299 of 399

 ...

 [LogoWithoutCompanyName]
 Type=andnot
 Input0=RecognizeCompanyLogo.Result
 Input1=FilterAudio.output
 TimestampCondition=start1 >= start0 -5s, start1 <= start0 +5s

Identify Isolated Events–AndNotThen Engine

The AndNotThen engine compares tracks to identify when an event occurs in the first track and nothing
happens in the other track(s) within a specified time interval.

NOTE: The AndNotThen engine enforces the order of events: the first track's event is considered
isolated only if an event in another track does not occur after (or at the same time as) it. If you want
to consider events in the other tracks occurring both before or after events in the first track, use the
AndNot engine (see Identify Isolated Events–AndNot Engine, on page 298).

To identify isolated events

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
Engine0=Ingest
 ...
Engine5=MyAndNotThen

 3. Create a configuration section for the task and set the following parameters:

Type The ESP engine to use. Set this parameter to AndNotThen.

Input0 The first input track. This track must be an output track produced by
another task.

InputN One or more additional input tracks. These must be output tracks
produced by other tasks.

TimestampCondition (Optional) Specifies time limits for matching records, based on the
record timestamps.

LuaScript (Optional) The name of a Lua script that defines conditions for a
discarding a record from the first track. For information about writing
the script, see Write a Lua Script for an ESP Engine, on page 303.

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 300 of 399

For more information about these parameters, including the values that they accept, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example produces an output track containing records produced when a number plate is
not detected within thirty seconds (30,000 milliseconds) of a barrier being raised. The AndNot engine
takes tracks produced by SceneAnalysis and NumberPlate engines. The SceneAnalysis output track
contains a record for every time a barrier is raised. The Numberplate output track contains a record for
every number plate detected in the video. The AndNot engine output track contains all records from the
SceneAnalysis output track that are not followed within thirty seconds by an event in the NumberPlate
track.

[Barrier]
 Type=andnotthen
 Input0=sceneanalysis.Result
 Input1=numberplate.Result
 TimestampCondition=start1<=start0 + 30s

Identify and Combine Time-Related Events

The Combine ESP engine combines records from two or more tracks. The engine produces an output
track that contains exactly one record for every record in the first (Input0) input track. Each of the
output records contains all related records from the other input track(s). The records from the first input
track are output even if there are no related events in the other track(s).

One use case for this engine is combining records from analysis engines before running a
transformation task. For example, face detection produces a record for each detected face. To blur
several faces that appear simultaneously, you could combine the relevant records from face detection
with the each ingested image before running the blur transformation task.

To identify and combine time-related events in two tracks

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine5=Combine

 3. Create a new configuration section for the task, and set the following parameters:

Type The ESP engine to use. Set this parameter to combine.

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 301 of 399

Input0 The first input track.

InputN The other input tracks (Input1, Input2, and so on). You must specify
at least Input1.

TimestampCondition (Optional) Specifies time limits for matching records, based on the
record timestamps.

If you are processing images or documents, this parameter is ignored
and records are considered related if they are associated with the same
page.

For more details about these parameters, including the values that they accept, refer to the Media
Server Reference.

 4. (Optional) To add custom logic that discards pairs of records unless they meet additional
conditions, set the LuaScript parameter so that Media Server runs a Lua script to filter the
results. For information about writing the script, see Write a Lua Script for an ESP Engine, on the
next page.

LuaScript The path and file name of a Lua script to run.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following example runs face detection on an image file and blurs all of the faces that appear in the
image. The combine task is used to combine the regions identified by face detection with the original
image record produced by the ingest engine.

 [Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Combine
 Engine3=Blur
 Engine4=ToDisk

 [Ingest]
 Type=image

 [FaceDetect]
 Type=FaceDetect
 FaceDirection=any
 Orientation=any

 [Combine]
 Type=combine
 Input0=Image_1
 Input1=FaceDetect.Result

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 302 of 399

 [Blur]
 Type=Blur
 Input=Combine.Output

 [ToDisk]
 Type=ImageEncoder
 ImageInput=Blur.Output
 OutputPath=./_outputEncode/%token%.jpg

Write a Lua Script for an ESP Engine

All of the ESP engines, except for the "Or" engine, can run a Lua script to determine whether to include
a record in the task's output track. Writing a Lua script allows you to specify more complex rules than
you can specify using configuration parameters. For example, a Lua script might specify where in an
image recognized text must appear. If text appears within this region, then depending on the engine
type, the engine includes or excludes this record from its output track.

The Lua script must define a function with the name pred. This function takes one or two parameters
(depending on the engine type) and must return true or false. Each parameter is a record object: this
is a representation of the record being processed and has the same structure as the record XML.

The pred function is called once for each record (or pair of records) that the engine has to consider. The
engine's response to the function depends on the engine type.

ESP Engine Number of
record
parameters

Engine response if the function returns true

And 2 The record pair is included in the engine output track.

AndThen 2 The record pair is included in the engine output track.

AndAny 2 The record in the Input0 track is included in the output. (Records
from the other tracks are never included in the output).

AndThenAny 2 The record in the Input0 track is included in the output. (Records
from the other tracks are never included in the output).

AndNot 2 The record in the Input0 track is discarded. (Records from the
other tracks are never included in the output).

AndNotThen 2 The record in the Input0 track is discarded. (Records from the
other tracks are never included in the output).

Deduplicate 2 The second record is discarded.

Filter 1 The record is included in the engine output track.

When the pred function takes two parameters, each individual record may feature in many different
pairs, so might be processed by the pred function any number of times. For example, for the AndNot or
AndNotThen engine, a record in the first track might be passed to the function several times, being

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 303 of 399

paired with different records from the second track. The record will only appear in the output track if
pred returns false every time.

The ESP engine cannot modify the record objects passed to the pred function. Any effects of the
function other than the return value are ignored.

To run a Lua script from an ESP engine, add the LuaScript parameter to the task configuration section
and set it to the path of the script. For example, LuaScript=./scripts/breakingnews.lua.

Example Script

The following is an example script for the Filter ESP engine. The script filters records based on where
text, read by an OCR task, appears in the image. The function returns true if text appears in the region
between x=100 and x=300, and the record is included in the output track. If the text region is outside
these coordinates, the record is discarded.

function pred(rec)
 return rec.OCRResult.region.left > 100 and rec.OCRResult.region.right < 300
 end

Administration Guide
Chapter 36: Event Stream Processing

Media Server (12.4) Page 304 of 399

Media Server (12.4) Page 305 of 399

Part VI: Transform Data

This section describes how to transform the data produced by Media Server, so that you can customize how it
is encoded or output to external systems.

 l Crop Images

 l Blur Regions of Images

 l Draw Regions

 l Create Overlays

 l Rotate Images

 l Resize Images

 l Change the Format of Images

Media Server (12.4) Page 306 of 399

Administration Guide
Part VI: Transform Data

Chapter 37: Crop Images

Many analysis tasks identify regions of interest in images or video frames. For example, face detection
identifies the location of faces and number plate recognition identifies the location of number plates.

In some cases you might want to output the source image or video frame, cropped to show only the
region of interest. This section describes how to crop images.

• Crop Images 307

Crop Images

The Crop transformation task crops an image or video frame, to a region of interest that has been
identified by another task. The task creates a new output track containing the cropped images. The
track is named taskName.Output, where taskName is the name of the transformation task. The original
input track is not modified.

The Crop transformation engine also translates any co-ordinates contained in records, so that their
position is correct for the cropped image. For example, face detection outputs the locations of a
person's eyes. The co-ordinates are modified so that the positions are correct for the cropped image.

TIP: To write the cropped images to disk, use the image encoder.

To crop images or video frames

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine2=Crop

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Crop.

Input The name of the image track that contains the images to crop, and supplies region data
to use for cropping the images.

For example:

Media Server (12.4) Page 307 of 399

[Crop]
 Type=Crop
 Input=FaceRecognition.ResultWithSource

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 37: Crop Images

Media Server (12.4) Page 308 of 399

Chapter 38: Blur Regions of Images

Many analysis tasks identify regions of interest in images and video frames. In some cases you might
want to blur these regions before encoding the images. For example, you can produce images where
detected faces are blurred and are therefore unrecognizable.

• Blur Images 309
• Example Configuration 310

Blur Images

The Blur transformation task blurs regions of an image or video frame. The task blurs any regions
(including rectangles, polygons, and faces) that are present in the input records. It creates a new output
track which contains the blurred images. This track is named taskName.Output, where taskName is
the name of the transformation task. The original input track is not modified.

TIP: To write the blurred images to disk, use the image encoder.

To blur regions of images and video frames

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine3=Blur

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Blur.

Input The name of the track that contains the images to blur, with region data. The track must
supply records that contain both an image and at least one region. Any regions
(including rectangles, polygons, and faces) present in an input record are blurred in the
output.

For example:

[Blur]
 Type=Blur
 Input=FaceDetect.ResultWithSource

Media Server (12.4) Page 309 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example Configuration

The following is an example configuration that blurs faces in a source image and encodes the resulting
image to disk.

 [Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Combine
 Engine3=Blur
 Engine4=ToDisk
 Engine5=ACI

 [Ingest]
 Type=Image

 [FaceDetect]
 Type=FaceDetect

 [Combine]
 // Combine FaceDetect results in case there are multiple faces in the image
 Type=Combine
 Input0=Default_Image
 Input1=FaceDetect.Result

 [Blur]
 Type=Blur
 Input=Combine.Output

 [ToDisk]
 Type=ImageEncoder
 ImageInput=Blur.Output
 OutputPath=./output/%token%/blurred-faces-%source.filename%

 [ACI]
 Type=Response
 Input=FaceDetect.Result

Administration Guide
Chapter 38: Blur Regions of Images

Media Server (12.4) Page 310 of 399

Chapter 39: Draw Regions

Many analysis tasks identify regions in images and video frames. In some cases you might want to
draw these regions on the images or video before encoding. For example, you can produce a video
where detected faces are surrounded by an ellipse or number plates are surrounded by a polygon.

• Introduction 311
• Draw Regions 311
• Configure Drawing with a Lua Script 314

Introduction

The Draw transformation task draws regions, that were identified during analysis, on images or video
frames.

By default, Media Server draws the regions described in the following table:

Face detection An ellipse that describes the position of a face. The ellipse is
described by the ellipse element in the records created by face
detection.

Number plate recognition A polygon that describes the position of the numberplate. The
polygon is described by the plateregion element in the records
created by number plate recognition.

Other tracks where the records
contain regions

If the record contains a polygon, Media Server draws the
polygon. Otherwise Media Server draws the bounding rectangle
for the region.

To draw outlines around multiple types of region, for example both detected faces and recognized
logos, you can combine multiple tracks using a combine ESP task. The output from the combine ESP
task, and therefore the input for the drawing task, is a track where records contain other records. In this
case the drawing task iterates over the nested records.

You can configure the line color and line thickness that Media Server uses for drawing.

You can also customize the drawing task by writing a Lua script that defines the regions to draw. For
example, if you run face detection and demographic analysis, you can write a Lua script to outline male
and female faces in different colors.

The Draw task creates an output track named taskName.Output, where taskName is the name of the
task. The images in this track are permanently modified (the regions that you draw on the images
cannot be removed).

Draw Regions

The Draw transformation task draws regions on images or video frames.

Media Server (12.4) Page 311 of 399

To draw regions on images and video frames

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine2=Draw

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Draw.

Input The name of the track that contains the images to draw on, with region data. The
track must supply records that contain both an image and at least one region.

Color (Optional) The line color to use when drawing.

Thickness (Optional) The line thickness to use when drawing. Specify the thickness in
pixels.

For example:

[Draw]
 Type=Draw
 Input=CombineESP.Output
 Color=Red
 Thickness=1

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example configuration to ingest video and draw regions on encoded images

The following example configuration ingests a video file or stream and encodes one image for each
detected face. Each image will show a red ellipse around the detected face.

 [Session]
 Engine0=Ingest
 Engine1=FaceDetect
Engine2=Draw
 Engine3=Images

 [Ingest]
 Type=Video

 [FaceDetect]
 Type=FaceDetect

Administration Guide
Chapter 39: Draw Regions

Media Server (12.4) Page 312 of 399

 NumParallel=6
 SizeUnit=percent
 MinSize=10

[Draw]
 Type=Draw
 Input=FaceDetect.ResultWithSource
 Color=Red
 Thickness=2

 [Images]
 Type=ImageEncoder
 ImageInput=Draw.Output
 OutputPath=./output/%session.token%/%record.starttime.iso8601%.png

Example configuration to ingest video and draw regions on encoded video

The following example configuration ingests a video file or stream and encodes a video that shows
detected faces by surrounding them with a red ellipse.

In this example, an ESP task combines the Image_1 track and the FaceDetect.Data track. This is
necessary because the tracks produced by face detection only contain frames with detected faces,
but to encode the video correctly we need to encode every frame.

 [Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Combine
Engine3=Draw
 Engine4=MPEG

 [Ingest]
 Type=Video

 [FaceDetect]
 Type=FaceDetect
 NumParallel=6
 SizeUnit=percent
 MinSize=10

 [Combine]
 Type=Combine
 Input0=Image_1
 Input1=FaceDetect.Data
 MaxTimeInterval=50ms
 [Draw]
 Type=Draw
 Input=Combine.Output
 Color=Red
 Thickness=2

Administration Guide
Chapter 39: Draw Regions

Media Server (12.4) Page 313 of 399

 [MPEG]
 Type=mpeg
 VideoProfile=mpeg4video_h264_720p
 ImageInput=Draw.Output
 OutputPath=./output/%session.token%/%segment.startTime.iso8601%.ts

Configure Drawing with a Lua Script

The Draw transformation task draws regions on images or video frames. This section demonstrates
how to customize the regions that are drawn by using a Lua script.

The Lua script that you write must define a function with the name draw. The function is passed each
record from the input track. For example, the following function draws an ellipse on each record from
the ResultWithSource track produced by face detection:

function draw(record)
 drawEllipse(record.FaceResultAndImage.face.ellipse, 3, rgb(255,255,255))
 end

For information about the Lua functions that you can use to draw regions on images and video frames,
refer to the Media Server Reference.

To configure drawing with a Lua script

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine3=Draw

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Draw.

Input The name of the track that contains the images to draw on, with region data. The
track must supply records that contain both an image and at least one region.

LuaScript The path of a Lua script to run to draw on the source images or video frames.

For example:

[Draw]
 Type=Draw
 Input=Demographics.ResultWithSource
 LuaScript=lua/drawDemographics.lua

Administration Guide
Chapter 39: Draw Regions

Media Server (12.4) Page 314 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example configuration to draw regions on encoded images using a Lua script

An example configuration file, configurations/examples/Other/Draw_Faces.cfg, is included in
your Media Server installation.

The following example runs face detection and demographics analysis on a video file or stream. It
encodes images of the detected faces, using a Lua script to outline male faces in orange and female
faces in purple.

 [Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Demographics
 Engine3=Draw
 Engine4=Images

 [Ingest]
 Type=Video

 [FaceDetect]
 Type=FaceDetect
 NumParallel=6
 SizeUnit=percent
 MinSize=10

 [Demographics]
 Type=Demographics
 Input=FaceDetect.ResultWithSource
 NumParallel=2

[Draw]
 Type=Draw
 Input=Demographics.ResultWithSource
 LuaScript=drawDemographics.lua

 [Images]
 Type=ImageEncoder
 ImageInput=Draw.Output
 OutputPath=./output/%session.token%/%record.starttime.iso8601%.png

The Lua script drawDemographics.lua is included below:

function draw(record)
 local result = record.DemographicsResultAndImage

 if ('Male' == result.gender) then

Administration Guide
Chapter 39: Draw Regions

Media Server (12.4) Page 315 of 399

 -- draw orange ellipse
 drawEllipse(result.face.ellipse, 5, rgb(255, 128, 0))

 elseif ('Female' == result.gender) then
 -- draw purple ellipse
 drawEllipse(result.face.ellipse, 5, rgb(64, 0, 128))

 else
 -- draw grey ellipse
 drawEllipse(result.face.ellipse, 5, rgb(128, 128, 128))

 end
 end

Example Lua script to process combined/nested records

To draw outlines around multiple types of region, for example both detected faces and recognized
logos, you can combine multiple tracks using a combine ESP task. The output from the combine
ESP task, and the input for the drawing task, is therefore a track where records contain other
records. In this case, your Lua script must process the nested records. The following script
demonstrates how to do this:

function dispatchResult(record)
 -- handle the single records here
 end

 function uncombine(record)
 if (record.CombineOperationData) then
 local i = 1
 while (record.CombineOperationData.combinedRecords[i]) do
 uncombine(record.CombineOperationData.combinedRecords[i])
 i = i + 1
 end
 uncombine(record.CombineOperationData.record0)
 else
 dispatchResult(record)
 end
 end

 function draw(record)
 uncombine(record)
 end

Administration Guide
Chapter 39: Draw Regions

Media Server (12.4) Page 316 of 399

Chapter 40: Create Overlays

Many analysis tasks identify regions in video. In some cases you might want to encode a video with an
overlay that identifies these regions. For example, you can produce a video where detected faces are
surrounded by an ellipse or number plates are surrounded by a polygon.

Creating an overlay produces similar results to drawing on the video with the draw transform engine.
However, the overlay is written to the subtitle track so the video frames are not modified and the
overlay can be turned on and off when you play the video in the MMAP Media Player.

Overlays are supported only for video. If you want to draw on images, use the draw transform engine.

• Create an Overlay 317
• Create an Overlay with a Lua Script 319

Create an Overlay

The Overlay transformation task creates an overlay for a video. The task draws regions (such as
rectangles, polygons, and ellipses) that are present in the input records.

To create an overlay for a video

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine2=Overlay

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Overlay.

Input The name of the track that contains the metadata to use to draw the overlay. This
track does not need to include the video frames.

Color (Optional) The line color to use when drawing.

Thickness (Optional) The line thickness to use when drawing. Specify the thickness in
pixels.

For example:

[Overlay]
 Type=Overlay

Media Server (12.4) Page 317 of 399

 Input=FaceDetection.Result
 Color=Red
 Thickness=1

 4. When you define your encoding task, use the parameter OverlayInput to specify the name of the
output track from the overlay transformation task. In this example the track is named
Overlay.Output.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example configuration to ingest video and create an overlay

The following example configuration ingests a video file or stream and encodes a video with an
overlay that shows detected faces.

[Ingest]
 IngestEngine=AV

 [AV]
 Type=Video

 [Analysis]
 AnalysisEngine0=FaceDetect

 [FaceDetect]
 Type=FaceDetect
 NumParallel=6
 SizeUnit=percent
 MinSize=10

[Transform]
 TransformEngine0=Overlay

 [Overlay]
 Type=Overlay
 Input=FaceDetect.Result
 Color=Orange
 Thickness=1

 [Encoding]
 EncodingEngine0=RollingBuffer

 [RollingBuffer]
 Type=RollingBuffer
 ImageInput=Image_1
 AudioInput=None
 OverlayInput=Overlay.Output
 Stream=stream1

Administration Guide
Chapter 40: Create Overlays

Media Server (12.4) Page 318 of 399

Create an Overlay with a Lua Script

The Overlay transformation task creates an overlay for a video. This section demonstrates how to
draw a custom overlay using a Lua script.

The Lua script that you write must define a function with the name draw. The function is passed each
record from the input track. For example, the following function draws an ellipse using each record from
the Result track produced by face detection:

function draw(record)
 drawEllipse(record.FaceResult.face.ellipse, 3, rgb(255,255,255))
 end

For information about the Lua functions that you can use to draw an overlay, refer to the Media Server
Reference.

To create an overlay with a Lua script

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine3=Overlay

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Overlay.

Input The name of the track that contains the metadata to use to draw the overlay. This
track does not need to include the video frames.

LuaScript The path of a Lua script to run to draw the overlay.

For example:

[Overlay]
 Type=Overlay
 Input=FaceDemographics.Result
 LuaScript=./configurations/overlayDemographics.lua

 4. When you define your encoding task, use the parameter OverlayInput to specify the name of the
output track from the overlay transformation task. In this example the track is named
Overlay.Output.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 40: Create Overlays

Media Server (12.4) Page 319 of 399

Example configuration to create an overlay using a Lua script

An example configuration file, configurations/examples/Other/Overlay_Faces.cfg, is
included in your Media Server installation. This example ingests a video file or stream, performs
face detection and demographics analysis, and encodes video with an overlay. The overlay is
drawn by a Lua script that uses metadata from the demographics task to outline male faces in
orange and female faces in purple.

Administration Guide
Chapter 40: Create Overlays

Media Server (12.4) Page 320 of 399

Chapter 41: Rotate Images

You might want to rotate ingested images before analysis, or rotate images that have been analyzed so
that they are in the correct orientation before being encoded. This section explains how to rotate
images.

• Introduction 321
• Rotate Images 321

Introduction

The rotate transformation engine duplicates an existing track that contains images, and rotates the
images (the input track is not modified). The engine also updates coordinates that are contained in
records, so that the positions remain correct after the images have been rotated. The new track is
named taskName.Output, where taskName is the name of the transformation task.

You might want to rotate images when:

 l You want to process an image that is upside down and need to rotate the image before it is
analyzed. Though you can configure some analysis engines to work regardless of orientation, you
might obtain better performance by rotating the ingested image and restricting analysis to a single
orientation.

 l You run analysis tasks that detect faces or text in an image, and you want to make sure that
copies of the image are encoded in the correct orientation.

Rotate Images

To configure Media Server to rotate images, follow these steps.

To rotate images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine3=Rotation

 3. Create a new configuration section to contain the task settings and set the following parameters:

Media Server (12.4) Page 321 of 399

Type The transformation engine to use. Set this parameter to Rotate.

Input The name of the image track to process.

Angle (Set this or LuaScript) The rotation to apply to the input image, in degrees,
clockwise.

LuaScript (Set this or Angle) The path to a Lua script that returns the rotation to apply to the
input image, in degrees, clockwise. The Lua script must define a function named
getAngle, which must return the angle. Media Server can rotate images in 90-
degree increments, so all other angles are rounded.

For example:

[Rotation]
 Type=Rotate
 Input=FaceDetect.ResultWithSource
 LuaScript=Rotate.Lua

A suitable Lua script is included below:

function getAngle(record)
 if (record.OCRResultAndImage) then
 return -record.OCRResultAndImage.angle
 elseif (record.FaceResultAndImage) then
 return -record.FaceResultAndImage.face.ellipse.angle
 elseif (record.FaceRecognitionResultAndImage) then
 return -record.FaceRecognitionResultAndImage.face.ellipse.angle
 elseif (record.DemographicsResultAndImage) then
 return -record.DemographicsResultAndImage.face.ellipse.angle
 elseif (record.FaceStateResultAndImage) then
 return -record.FaceStateResultAndImage.face.ellipse.angle
 end

 return 0
 end

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 41: Rotate Images

Media Server (12.4) Page 322 of 399

Chapter 42: Resize Images

Many processing tasks produce images. When Media Server ingests video, it decodes the video into
individual frames. Analysis tasks can also produce images, for example keyframe extraction, face
detection, and number plate recognition produce images of keyframes, faces, and number plates,
respectively.

You might want to resize these images before encoding them. For example, you might extract
keyframes for use in a web application, so that your users can navigate through a video file. In this case
you might prefer to have thumbnail-size images rather than the high-definition video frames.

This section describes how to resize images in Media Server metadata tracks.

• Resize Images 323

Resize Images

You can use a scale transformation task to duplicate an existing track and resize the images in the
new track (the input track is not modified). The new output track is named taskName.Output, where
taskName is the name of the transformation task.

The scale transformation engine also scales metadata that refers to the position of an object in the
video frame, so that the positions remain correct after the image has been scaled. For example, when
you resize images of faces, the metadata that describes the bounding box surrounding the face is also
scaled.

To resize images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
 Engine2=ScaleKeyframes

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to Scale.

Input The name of the image track to process.

ImageSize (Set this or ScaleFactor) The output image size in pixels (width followed by
height). If you specify one dimension and set the other to 0 (zero), Media Server

Media Server (12.4) Page 323 of 399

preserves the aspect ratio of the original image.

ScaleFactor (Set this or ImageSize) The scale factor to use to calculate the size of the
output image. Specify a number or a fraction. For example, to resize images to
one third of the original dimensions, set ScaleFactor=1/3.

For example:

[ScaleKeyFrames]
 Type=Scale
 Input=Keyframe.ResultWithSource
 ImageSize=300,0

or, using a scale factor:

[ScaleKeyFrames]
 Type=Scale
 Input=Keyframe.ResultWithSource
 ScaleFactor=1/2

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 42: Resize Images

Media Server (12.4) Page 324 of 399

Chapter 43: Change the Format of Images

Many processing tasks produce images. When Media Server ingests video, it decodes the video into
individual frames. Analysis tasks can also produce images, for example keyframe extraction, face
detection, and number plate recognition produce images of keyframes, faces, and number plates,
respectively.

You might want to change the format of these images before sending them to an output task (output
tasks can output base-64 encoded image data).

• Change the Format of Images 325

Change the Format of Images

The ImageFormat transformation task transforms images in a track into another format. The new output
track is named taskName.Output, where taskName is the name of the transformation task (the input
track is not modified).

To change the format of images

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 ...
Engine2=KeyframesFormat

 3. Create a new configuration section to contain the task settings and set the following parameters:

Type The transformation engine to use. Set this parameter to ImageFormat.

Input The name of the image track to process.

Format The output format for the images in the new track.

For example:

[KeyframesFormat]
 Type=ImageFormat
 Input=Keyframe.ResultWithSource
 Format=jpg

For more information about the parameters that you can use to configure this task, refer to the
Media Server Reference.

Media Server (12.4) Page 325 of 399

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 43: Change the Format of Images

Media Server (12.4) Page 326 of 399

Media Server (12.4) Page 327 of 399

Part VII: Output Data

Media Server can send the metadata it produces to many systems including IDOL Server, CFS, Vertica, and
Milestone XProtect. Media Server can also write metadata to XML files on disk.

This section describes how to configure Media Server to output data.

 l Introduction

 l ACI Response

 l Files on Disk

 l Connector Framework Server

 l IDOL Server

 l Vertica Database

 l ODBC Database

 l HTTP POST

 l Milestone XProtect

Chapter 44: Introduction

Media Server can output data in many formats, including XML and documents that you can send to
CFS or index into IDOL Server.

• Process Data 328
• Choose How to Output Data 330

Process Data

Media Server output tasks export the metadata produced by Media Server. This can include information
about the ingested video, information about copies of the video that you create through encoding, and
any information extracted from the video during analysis.

TIP: Output tasks do not output video. For information about saving video, see Encode Video to a
File or UDP Stream, on page 272

The following diagram shows the steps that occur when you configure Media Server to output data.

Media Server (12.4) Page 328 of 399

Select Input Records

An output task receives records that are produced by your ingest, analysis, encoding, transform, and
ESP tasks. You can choose the information to output by setting the Input configuration parameter in
the output task. If you do not set this parameter, the output task receives records from all tracks that
are considered by default as 'output' tracks. For information about whether a track is considered by
default to be an 'output' track, refer to Media Server Reference.

Combine Records into Documents

An output task receives individual records, but you might want to combine the information from many
records and index that information as a single document. For example, if you are processing a news
broadcast, you might want to index a document for each news story, rather than a document for each
word spoken in the audio and a document for each recognized face. To do this, the Media Server must
combine records representing recognized faces, speech-to-text results, recognized objects, and so on.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 329 of 399

Most output engines have several indexing modes so that you can configure how to create documents.
For more information about these indexing modes, see Choose How to Output Data, below.

XSL Transformation

The output task performs an XSL transformation to convert the combined records into a format that is
suitable for the destination repository.

Media Server is supplied with XSL templates to transform data into IDOL documents and other
formats. You can modify the default templates to suit your needs. Set the XSLTemplate configuration
parameter in the output task to specify the path of the XSL template to use.

If you want to customize the XSL template, or you need to troubleshoot a problem, set the configuration
parameters SavePreXML=TRUE, SavePostXML=TRUE, and XMLOutputPath so that Media Server writes
documents to disk before and after performing the transformation. Viewing the data before and after
transformation might help you optimize your XSL template. In a production system, Micro Focus
recommends setting SavePreXML and SavePostXML to FALSE.

Send the Data to the External System

After performing the XSL transformation, Media Server sends the data to its destination.

Choose How to Output Data

Media Server analysis engines produce records, each of which describes something that happens in a
video. A record might describe a recognized face, a scene change, or a word spoken in the audio.
When you index data into some systems, such as IDOL Server, you might want to combine the data
from many records to produce documents that represent video segments or clips.

For example, the speech-to-text analysis engine produces a record for each word in the audio. If you
are indexing data into a SQL database, you could insert a separate row into a database table for each
word. If you are indexing data into IDOL Server, you might prefer to combine records so that each
document contains the transcription from an entire news story or interview.

The following sections describe the indexing modes that you can choose when you configure Media
Server to output data.

Single Record Mode

Single record mode creates documents that each represent a single record.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 330 of 399

Consider the following records. In single record mode, Media Server creates a separate document for
every record. No document contains more than one record.

This mode is suitable when you:

 l send data to a database, where each record becomes a row in the database.

 l need to index documents that represent discrete records, for example a recognized face or an
ANPR result.

 l need to use the metadata produced by Media Server in a front end application in real-time. In
single record mode, Media Server outputs information about a record as soon as the record has
finished. It does not need to hold records so that they can be combined with other related records.

Time Mode

Time mode creates documents that represent a fixed amount of video content. A document contains all
of the records that occurred during the time interval, or that overlap the start or end of the interval. You
can define the duration of a document, for example 30 seconds. The duration is measured using video
time, so you do not need to modify the duration if the ingest rate is slower or faster than normal
(playback) speed.

TIP: Time-based output does not mean that Media Server outputs data at regular intervals. Media
Server cannot output data for a video segment until all records in that segment have finished. As a
result, Media Server might produce several documents, which represent consecutive time periods,
at the same time.

For example, if you run logo detection on a news broadcast, the news logo could be present on
screen continuously for an hour. In that case, Media Server does not output any data until the logo
disappears. Although Media Server creates documents that each represent 30 seconds of content,
all of the documents are output at the end of the hour when the record describing the logo finishes.

In time mode, all records are output to at least one document. If a record spans more than one interval it
is output to multiple documents.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 331 of 399

The following diagrams demonstrate how Media Server constructs documents in time mode. Consider
the following records:

The first document contains the records related to the first interval (in this case, 30 seconds) of video
content. Media Server does not output data at the 30-second point because a face recognition record
has not ended (the face is still present in the video). Media Server can output data about the first
interval as soon as this record ends:

The second document contains the records related to the second interval (in this case, 30 seconds) of
video content. Notice that the second face recognition result is output in the second document as well,
because it relates to both time intervals.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 332 of 399

The third document contains the records related to the third interval (in this case, 30 seconds) of video
content:

Time mode is simple to set up but documents might begin and end in the middle of a sentence or
segment, rather than at meaningful point in the video.

Event Mode

Event mode helps to create documents that contain information about a single topic, which can provide
a better experience for your users when they retrieve the content, and improves the performance of
IDOL operations such as categorization.

In event mode, Media Server creates a document for each record in an event track. The document that
is generated contains the event from the event track. Other records are included if they overlap with the
event in the event track or if they occurred after the end of the previous event. Each document might
represent a different amount of video content.

The event track can be any track that you choose, though often it will be a track that you create using
event stream processing. The event track could contain a record whenever there is a scene change, or
whenever there is a pause in speech. For example, if you are analyzing news content Media Server can
start a new document whenever there is a pause in speech, which could indicate the start of a new
story.

In event mode, all of the records in the selected tracks are output to at least one document. Compare
this with Bounded Event Mode, on page 335, in which some records can be omitted.

NOTE: Be aware that if you choose an event track that has overlapping records (for example the
result track from a face recognition task), the resulting documents might contain more than one
record from the event track, and some records will be output to multiple documents.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 333 of 399

The following diagrams demonstrate how Media Server constructs documents in event mode. The
FaceRecognition.Result track has been chosen as the event track. Consider the following records:

The first document contains the first record in the event track (the first event). Other records are
included if they overlap with this event or if they occurred since the end of the previous event. In this
case the previous event is the beginning of the video:

The second document contains the second record in the event track (the second event). Other records
are included if they overlap with this event or if they occurred since the end of the previous event:

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 334 of 399

The third document contains the third record in the event track (the third event). Other records are
included if they overlap with this event or if they occurred since the end of the previous event:

The end of the video is considered as an event, so in this case a final document is produced containing
the final records in the speech-to-text result track:

Bounded Event Mode

Bounded event mode, like event mode, helps to create documents that contain information about a
single topic. Media Server creates a document for each record in an event track. The document that is
generated contains the event from the event track. However, unlike event mode, other records are
included only if they overlap with the event in the event track.

NOTE: In bounded event mode, it is possible that some records are not output to documents.

The event track can be any track that you choose, though often it will be a track that you create using
event stream processing. You could use speaker identification results as your event track, so that a
document is created for each speaker detected in the audio.

Each document might represent a different amount of video content.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 335 of 399

The following diagrams demonstrate how Media Server constructs documents in bounded event
mode. The FaceRecognition.Result track has been chosen as the event track. Consider the
following records:

The first document contains the first record that occurs in the event track, and all of the records that
occur at the same time:

The second document contains the second record that occurs in the event track, and those records that
overlap with it. Notice that if records in the event track overlap, the output document can contain more
than one record from the event track:

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 336 of 399

The next document contains the next record from the event track, and the records that overlap with it:

In bounded event mode, the records shown here are not output to any document, because they do not
overlap with a record in the event track:

At End Mode

At End mode creates documents that each represent an asset such as a PDF file, image file, or video
file. Media Server creates a maximum of one document for each process action. The document
contains all of the records that were generated when Media Server processed that asset.

For example, if you process a video file, all of the records are output to the same document:

This mode is suitable when you are processing image files, because all of the information extracted
from the image is added to a single document. You can also use this mode if you are processing video
assets but want all of the information about a video file to be indexed as a single document.

At End mode is not suitable if you are processing video streams for broadcast monitoring or
surveillance purposes, because Media Server does not output information until processing is complete.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 337 of 399

Information about events would not be output until hours, days, or weeks after the events had occurred,
because in these scenarios process actions are expected to run for a long time.

Page Mode

Page mode creates documents that represent a page of a processed image or document.

You can use this mode only when ingesting images and documents.

Some image file formats (for example TIFF) support multiple pages, and some document formats (such
as Adobe PDF) provide page numbers for embedded text and images. If you are processing multi-page
images or documents, you can use page mode to create separate documents for each page.

Administration Guide
Chapter 44: Introduction

Media Server (12.4) Page 338 of 399

Chapter 45: ACI Response

This section describes how to configure Media Server to output data in the response to the process
action.

• Introduction 339
• Output Data to the Process Action Response 339

Introduction

Media Server does not output records to the process action response by default.

You can configure Media Server to do this so that another server, such as a Connector Framework
Server, can send requests to Media Server for analysis and then retrieve the results from the action
response.

TIP: Micro Focus recommends that you do not write results to the action response in cases where
Media Server produces a large amount of data. If you output data from tracks that contain a large
amount of metadata, the ACI response could become extremely large. This might result in the
system running out of resources, or external applications failing to retrieve the response.

Output Data to the Process Action Response

To write records to the action response

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Response

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to response.

Input (Optional) A comma-separated list of the tracks that you want to
output. Specify one or more tracks. If you do not set this parameter,
the engine outputs all tracks that are configured by default as 'output'
tracks. For information about whether a track is considered an 'output'
track, refer to documentation for your analysis and encoding engines in
the Media Server Reference.

Media Server (12.4) Page 339 of 399

For more information about these parameters, refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following is an example configuration to output data to the process action response.

[Response]
 Type=response
 Input=OCR.Result,Keyframe.Result

Administration Guide
Chapter 45: ACI Response

Media Server (12.4) Page 340 of 399

Chapter 46: Files on Disk

This section describes how to configure Media Server to output data to files on disk.

• Output Data to Files 341

Output Data to Files

Media Server can output records to files, so that you can index the information into any system that
accepts data in a format such as XML.

To write records to files, use the XML output engine. The default format is XML but you can configure
the engine to apply an XSL transformation to the output, to transform it into another format such as
HTML.

To write records to files

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=XmlWriter

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to XML.

Input (Optional) A comma-separated list of the tracks that you want to
output. Specify one or more tracks. If you do not set this parameter,
the engine outputs all tracks that are configured by default as 'output'
tracks. For information about whether a track is considered an 'output'
track, refer to documentation for your analysis and encoding engines in
the Media Server Reference.

XmlOutputPath The path and file name of the XML files to create. Specify the path as
an absolute path or relative to the Media Server executable file.

XSLTemplate (Optional) The path to the XSL template to use to transform the output
into the desired format. If you do not set this parameter, the output is
not transformed.

For more information about the parameters that you can use to customize an XML output task,
refer to the Media Server Reference.

 4. Configure how to combine records into XML files. For information about how you can combine

Media Server (12.4) Page 341 of 399

records, see Choose How to Output Data, on page 330.

 l To output data in single record mode, set Mode=SingleRecord.

 l To output data in time mode, set Mode=Time and use the OutputInterval parameter to
specify the amount of video content represented by each document.

 l To output data in event mode, set Mode=Event and use the EventTrack parameter to specify
the event track.

 l To output data in bounded event mode, set Mode=BoundedEvent and use the EventTrack
parameter to specify the event track.

 l To output data in at-end mode, set Mode=AtEnd.

 l To output data in page mode, set Mode=Page.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following is an example configuration to output data using the XML output engine.

[XmlWriter]
 Type=xml
 XMLOutputPath=./output/html/%segment.type%_
results_%timestamp%_%segment.sequence%.html
 XSLTemplate=toHTML.xsl
 Mode=Time
 OutputInterval=30s

Administration Guide
Chapter 46: Files on Disk

Media Server (12.4) Page 342 of 399

Chapter 47: Connector Framework Server

This section describes how to configure Media Server to send IDOL documents to Connector
Framework Server (CFS).

• Introduction 343
• Send Documents to Connector Framework Server 343

Introduction

Media Server includes an output engine for indexing documents into IDOL Server. However, if you
want to manipulate and enrich documents before they are indexed into IDOL you can send the
documents to a Connector Framework Server (CFS) instead. For example, if you have used speech-to-
text to convert the words that are spoken in a video into text, you might want to run Eduction on the text
to extract the names of people or places and add these to the document metadata.

NOTE: The CFS output engine is intended for cases where media is ingested from an external
source but you want to send documents to CFS for further processing before they are indexed into
IDOL.

Do not use this output engine if the source media originated from CFS and you need to return the
analysis results. To return analysis results for media files that originated from CFS, configure a
response output task instead. (CFS sends process actions to Media Server and expects the
analysis results to be returned in the ACI response).

For more information about using CFS, refer to the Connector Framework Server Administration Guide.

Send Documents to Connector Framework Server

To send documents to CFS, use the following procedure.

To send documents to CFS

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=CFS

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Media Server (12.4) Page 343 of 399

Type The output engine to use. Set this parameter to CFS.

CfsHost The host name or IP address of your CFS.

CfsPort The ACI port of your CFS.

XslTemplate The path to the XSL template to use to transform records into
documents. Media Server includes an XSL template for sending
documents to CFS (configurations/xsl/toCFS.xsl) in the Media
Server installation directory.

Input (Optional) A comma-separated list of the tracks that you want to
output. Specify one or more tracks. If you do not set this parameter,
the engine outputs all tracks that are configured by default as 'output'
tracks. For information about whether a track is considered an 'output'
track, refer to documentation for your analysis, encoding, and ESP
engines in the Media Server Reference.

 4. Configure how to combine records into documents. For information about how you can combine
records, see Choose How to Output Data, on page 330.

 l To output data in single record mode, set Mode=SingleRecord.

 l To output data in time mode, set Mode=Time and use the OutputInterval parameter to
specify the amount of video content represented by each document.

 l To output data in event mode, set Mode=Event and use the EventTrack parameter to specify
the event track.

 l To output data in bounded event mode, set Mode=BoundedEvent and use the EventTrack
parameter to specify the event track.

 l To output data in at-end mode, set Mode=AtEnd.

 l To output data in page mode, set Mode=Page.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following is an example configuration to send documents to CFS.

 [CFS]
 Type=CFS
 CfsHost=localhost
 CfsPort=7000
 XSLTemplate=toCFS.xsl
 Mode=time
 OutputInterval=20s

Administration Guide
Chapter 47: Connector Framework Server

Media Server (12.4) Page 344 of 399

Chapter 48: IDOL Server

This section describes how to configure Media Server to index data into IDOL Server.

• Set up an IDOL Output Task 345

Set up an IDOL Output Task

Media Server's IDOL output engine transforms metadata produced by Media Server into
IDOL documents and indexes the documents into an IDOL Server.

The IDOL output engine uses an XSL template to transform records into IDX files. To modify the
structure of the IDX file, modify the XSL template. For more information about indexing content into
IDOL Server, refer to the IDOL Server Administration Guide.

To index information into IDOL Server

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=IDOL

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to IDOL.

Input (Optional) A comma-separated list of the tracks that you want to
output. Specify one or more tracks. If you do not set this parameter,
the engine outputs all tracks that are configured by default as 'output'
tracks. For information about whether a track is considered an 'output'
track, refer to documentation for your analysis, encoding, and ESP
engines in the Media Server Reference.

IdolHost (Optional) The host name or IP address of the IDOL Server. This
overrides the IDOL Server host specified by the IdolServer
parameter in the [Resources] section, if it has been set.

IdolPort (Optional) The ACI port of the IDOL Server (by default, 9000). This
overrides the port specified by the IdolServer parameter in the
[Resources] section, if it has been set.

IdolDB (Optional) The IDOL database to index documents into. This overrides
the database specified by the IdolServer parameter in the

Media Server (12.4) Page 345 of 399

[Resources] section, if it has been set.

If you do not set this parameter, documents are indexed into the
database specified by their DREDBNAME metadata field. You can modify
your XSL template to create this field. If a document does not specify a
database it is indexed into the default database specified by the
DefaultDatabase parameter, in the [Databases] section of the IDOL
Server configuration file.

IDOLParams (Optional) Additional IDOL index action parameters. The IDOL output
engine sends the DREADDDATA action to IDOL Server, which instructs
the server to index the data contained in the request. You can send
additional parameters with this action. For information about the
available index action parameters, refer to the IDOL Server Reference.

XSLTemplate The path to the XSL template to use to transform records into
documents in IDX format. You can modify the default XSL template as
required - for example to produce XML rather than IDX files.

SavePostXML (Optional) Specifies whether to save IDX files produced by the IDOL
output engine. If this parameter is set to true, you must also set the
XMLOutputPath parameter.

SavePreXML (Optional) Specifies whether to save records received by the IDOL
output engine. This might be useful if you want to customize your
XSL template. If this parameter is set to true, you must also set the
XMLOutputPath parameter.

XMLOutputPath (Optional) The path and file name of the file to save pre-XML and post-
XML output to. Specify the path as an absolute path or relative to the
Media Server executable file.

 4. Configure how to combine records into documents. For information about how you can combine
records, see Choose How to Output Data, on page 330.

 l To output data in single record mode, set Mode=SingleRecord.

 l To output data in time mode, set Mode=Time and use the OutputInterval parameter to
specify the amount of video content represented by each document.

 l To output data in event mode, set Mode=Event and use the EventTrack parameter to specify
the event track.

 l To output data in bounded event mode, set Mode=BoundedEvent and use the EventTrack
parameter to specify the event track.

 l To output data in at-end mode, set Mode=AtEnd.

 l To output data in page mode, set Mode=Page.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

Administration Guide
Chapter 48: IDOL Server

Media Server (12.4) Page 346 of 399

The following is an example configuration to output data using the IDOL output engine.

 [IDOLOutput]
 Type=IDOL
 IdolHost=localhost
 IdolPort=9000
 IdolDB=BroadcastVideo
 Mode=Time
 OutputInterval=30s
 XslTemplate=toIDX.xsl
 SavePreXML=true
 SavePostXML=true
 XMLOutputPath=./Output/%segment.type%_%segment.sequence%_%segment.timestamp%.xml

Administration Guide
Chapter 48: IDOL Server

Media Server (12.4) Page 347 of 399

Chapter 49: Vertica Database

This section describes how to configure Media Server to insert data into a Vertica database.

• Insert Data into a Vertica Database 348

Insert Data into a Vertica Database

To insert records into a Vertica database, use the Vertica output engine.

The Vertica output engine uses an XSL template to transform the XML produced by Media Server into a
format, such as a CSV file, that can be inserted into the database. It then connects to the database
using ODBC and inserts the information using a COPY query:

COPY <table>
 FROM LOCAL '<local_file>'
 DELIMITER '<delimiter>'
 ENCLOSED BY '<quote>'
 ESCAPE AS '<escape>'

where:

<table> is the Vertica database table to copy data into. This is read from the TrackMapping
configuration parameter.

<delimiter>, <quote>, and <escape> are replaced by values from the corresponding configuration
parameters.

To insert records into a Vertica database

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=VerticaOutput

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to vertica.

TrackMapping The tracks that you want to output, mapped to Vertica database
tables.

OdbcConnectionString The ODBC connection string to use to connect to the database. For
information about how to connect to a Vertica database, refer to the

Media Server (12.4) Page 348 of 399

Vertica documentation.

OdbcDriverManager (Required only on UNIX platforms) The path of the ODBC driver
manager to use.

XMLOutputPath The path to the directory to use for temporary files and saved output.

XSLTemplate The XSL template to use to transform records from analysis engines
to a format that can be inserted into the database (such as a CSV
file).

OutputInterval (Optional) The interval between inserting batches of records into the
database. The default interval is 60 seconds.

For example:

[VerticaOutput]
 Type=vertica
 TrackMapping0=FaceRecog.Result : face_recognition
 TrackMapping1=Ocr.Result : ocr
 OdbcConnectionString=DSN=mydb
 OdbcDriverManager=libodbc.so
 XMLOutputPath=./tmp
 XSLTemplate=toCSV.xsl
 OutputInterval=120s

For more information about the parameters that you can set to configure a Vertica output task,
refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Administration Guide
Chapter 49: Vertica Database

Media Server (12.4) Page 349 of 399

Chapter 50: ODBC Database

This section describes how to configure Media Server to insert data into a database that can be
accessed through ODBC.

• Insert Records into a Database 350
• Before You Begin 351
• Configure the Output Task 351
• Example Configuration 353
• Insert Image Data into a Database 353
• Troubleshooting 353

Insert Records into a Database

You can use the ODBC output engine to insert information into a database through ODBC.

The ODBC output engine uses an XSL template to extract data from Media Server records. Your XSL
template must produce a file which contains a list of transactions to run. Apart from the last, each
transaction must end with the delimiter ==END==, followed by a new line character.

Each transaction can contain one or more queries, separated by new line characters, and each query
should have the following format:

 l A statement to run.

 l A list of alternating, tab-separated, column types and column values.

The following is an example post-XML file that contains five transactions, each with a single query.

insert into segment(uuid, sessionToken, startTime, endTime) VALUES (?, ?, ?, ?);
string 67589a12-d7fe-44c6-915f-ad36b20e39da string
MTYuMjguOTQuMTMxOjE0MDAwOlBST0NFU1M6MTQ2MDM3MzY4OTMxNzAxNDMyODM0MDcw bigint
1460373884855305 bigint 1460373899855305

==END==

insert into speech(segmentId, startTime, duration, text, confidence) VALUES (?, ?,
?, ?, ?); string 67589a12-d7fe-44c6-915f-ad36b20e39da bigint 1460373898073305
bigint 450000 string satellite double 0

==END==

insert into speech(segmentId, startTime, duration, text, confidence) VALUES (?, ?,
?, ?, ?); string 67589a12-d7fe-44c6-915f-ad36b20e39da bigint 1460373898523305
bigint 370000 string images double 0

==END==

insert into speech(segmentId, startTime, duration, text, confidence) VALUES (?, ?,
?, ?, ?); string 67589a12-d7fe-44c6-915f-ad36b20e39da bigint 1460373898893305
bigint 90000 string are double 0

==END==

Media Server (12.4) Page 350 of 399

insert into speech(segmentId, startTime, duration, text, confidence) VALUES (?, ?,
?, ?, ?); string 67589a12-d7fe-44c6-915f-ad36b20e39da bigint 1460373898983305
bigint 420000 string released double 0

TIP: Media Server only executes valid queries. A valid query must have a statement to run, must
have the same number of column types and column values, and must not attempt to insert data into
more than 100 columns. If a query results in an error, the entire transaction is rolled back.

To see an example XSL transformation that converts information into the correct format, see
configurations/xsl/toODBC.xsl in the Media Server installation folder.

Before You Begin

If you are running Media Server on Linux, ODBC connector drivers for your database might be included
in the operating system distribution, or be available from a package manager. It is likely that later
versions of the connector driver will be available for download directly from the database provider. The
later drivers might contain stability and performance improvements. If you experience issues using the
ODBC output engine, Micro Focus recommends downloading the latest ODBC connector drivers for
your database as the first step in the troubleshooting process.

If you have configured the ODBC output engine to output data into a table or column that has an
extended Unicode character (a character that is not included in the ASCII character set) in its name,
then you must use a Unicode ODBC driver. These drivers are often identified by a "w" being appended
to the driver name.

Configure the Output Task

To configure an output task to insert information into a database, follow these steps.

To insert information into a database

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=MyDatabase

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to ODBC.

Input (Optional) A comma-separated list of the tracks that contain
information you want to output. Specify one or more tracks. If
you do not set this parameter, the engine outputs all tracks
that are configured by default as 'output' tracks. For

Administration Guide
Chapter 50: ODBC Database

Media Server (12.4) Page 351 of 399

information about whether a track is considered an 'output'
track, refer to documentation for your analysis, encoding, and
ESP engines in the Media Server Reference.

OdbcConnectionString The ODBC connection string to use to connect to the
database. Micro Focus recommends encrypting any
connection string that includes a user name or password,
before entering it into a session configuration file. Encrypt the
entire parameter value (the entire connection string). For
information about how to encrypt parameter values, see
Encrypt Passwords, on page 62.

OdbcDriverManager (Linux only) The path of the ODBC driver manager shared
library. This parameter is not required if you are running
Media Server on Windows.

XSLTemplate The path to the XSL template to use to extract values from
records and construct a list of queries to run against the
database.

 4. Configure how to combine records into SQL queries. For more information about how you can
combine records, see Choose How to Output Data, on page 330.

 l To output data in single record mode, set Mode=SingleRecord.

 l To output data in time mode, set Mode=Time and use the OutputInterval parameter to
specify the amount of video content represented by each document.

 l To output data in event mode, set Mode=Event and use the EventTrack parameter to specify
the event track.

 l To output data in bounded event mode, set Mode=BoundedEvent and use the EventTrack
parameter to specify the event track.

 l To output data in at-end mode, set Mode=AtEnd.

 l To output data in page mode, set Mode=Page.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following is an example configuration to output data using the ODBC output engine.

 [MyDatabase]
 Type=odbc
 OdbcConnectionString=DSN=MyDSN;
 Mode=singlerecord
 XslTemplate=toODBC.xsl
 SavePreXML=true
 SavePostXML=true
 XMLOutputPath=./output/odbc/%segment.type%_%segment.sequence%.xml

Administration Guide
Chapter 50: ODBC Database

Media Server (12.4) Page 352 of 399

Example Configuration

Media Server includes an example SQL script, configuration file, and XSL template that demonstrate
how to output data to a database through ODBC.

The example configuration runs OCR and speech-to-text on a video file or stream. It also encodes the
video to disk in 30 second segments.

The example includes the following files:

 l configurations/examples/Other/broadcast_schema.sql is an example SQL script that
creates tables in your database to store information about the processed video, and information
extracted by OCR and speech-to-text. If you want to run a task from the example configuration,
use this script to create the required tables in your database.

 l configurations/examples/Other/BroadcastODBC.cfg is an example configuration file that
outputs data through ODBC. Before starting a process action with this configuration, find the
[ODBC] section, and set the configuration parameter ODBCConnectionString to the connection
string to use to connect to your database.

 l configurations/xsl/toODBC.xsl is an XSL template that takes the data produced by Media
Server and creates transactions for inserting the data into the database.

Insert Image Data into a Database

Some of the tracks that are produced by Media Server engines contain binary data (images). Usually
Media Server output engines output this data in base-64 encoded form. However, when the ODBC
output engine creates and processes pre- and post-XML, it replaces the image data with a GUID. This
prevents the XML becoming excessively large and increases the speed of the XSL transformation.
When the engine inserts information into your database, the GUID is replaced by the actual binary data.

If you use the ODBC output engine to write images, such as keyframes, into a database, you can
therefore insert the images into a column that accepts binary object (BLOB) data.

Troubleshooting

Information is not inserted into the database.

If information is not inserted into the database, ensure that Media Server can connect to the
database. If Media Server cannot send information to the database, the information is saved to an
XML file named as follows:

 l If either SavePreXml or SavePostXml is set to true, Media Server saves the information to the
directory specified by XmlOutputPath.

 l If SavePreXml and SavePostXml are both set to false, the information is saved to
 ./failed/sessionToken/taskName/failed_segmentNumber.xml, where sessionToken is
the asynchronous action token and taskName is the name of the ODBC output task.

Administration Guide
Chapter 50: ODBC Database

Media Server (12.4) Page 353 of 399

If the connection to the database is lost and re-established, Media Server continues inserting
information, but does not insert the records that were saved to disk. You must insert these into the
database manually.

Administration Guide
Chapter 50: ODBC Database

Media Server (12.4) Page 354 of 399

Chapter 51: HTTP POST

This section describes how to configure Media Server to output data by sending the data in the body of
HTTP POST requests.

• Send Information over HTTP 355

Send Information over HTTP

Media Server includes an output engine for sending data to a server through an HTTP POST request.
The body of the request contains the information produced by the XSL transformation.

To send information over HTTP

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=HTTPpost

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to httppost.

DestinationURL The URL to send the information to. You can include macros in the
URL.

XSLTemplate The path to the XSL template to use to transform records and produce
the body of the request.

Input (Optional) A comma-separated list of the tracks that you want to
include in the output. Specify one or more tracks. If you do not set this
parameter, the engine includes all tracks that are preset as 'output'
tracks. For information about whether a track is considered an 'output'
track, refer to documentation for your analysis, encoding, and ESP
engines in the Media Server Reference.

 4. Configure how to combine records into HTTP requests. For information about how you can
combine records, see Choose How to Output Data, on page 330.

 l To output data in single record mode, set Mode=SingleRecord.

 l To output data in time mode, set Mode=Time and use the OutputInterval parameter to
specify the amount of video content represented by each document.

Media Server (12.4) Page 355 of 399

 l To output data in event mode, set Mode=Event and use the EventTrack parameter to specify
the event track.

 l To output data in bounded event mode, set Mode=BoundedEvent and use the EventTrack
parameter to specify the event track.

 l To output data in at-end mode, set Mode=AtEnd.

 l To output data in page mode, set Mode=Page.

 5. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Example

The following is an example configuration to send documents to a CFS over HTTP.

 [HTTPpost]
 Type=httppost
 DestinationURL=http://localhost:7000/action=ingest
 XSLTemplate=toCFS.xsl
 Mode=event
 EventTrack=NewsSegment.Result

Administration Guide
Chapter 51: HTTP POST

Media Server (12.4) Page 356 of 399

Chapter 52: Milestone XProtect

This section describes how to configure Media Server to send data to a Milestone XProtect, a third-
party video management system.

• Introduction 357
• Before You Begin 357
• Configure Media Server 357
• Configure Milestone 358

Introduction

Media Server's Milestone output engine sends data to Milestone XProtect Corporate and XProtect
Enterprise surveillance systems.

The Milestone Smart Client displays the events detected by Media Server, by showing information
overlaid on the video. For example, detected objects are identified by bounding polygons. The Smart
Client also shows metadata produced by Media Server, such as a message, event type, and location.

Before You Begin

To use Media Server with a Milestone XProtect surveillance system, Micro Focus recommends using:

 l Milestone XProtect Enterprise 8.1a (96231)

 l Milestone XProtect Corporate 2013 R2

NOTE: Other versions might work but have not been tested.

Configure Media Server

To send data to Milestone XProtect, follow these steps.

To send data to Milestone XProtect

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=XProtect

Media Server (12.4) Page 357 of 399

 3. Create a new configuration section to contain the task settings, and set the following parameters:

Type The output engine to use. Set this parameter to milestoneoutput.

Input A comma-separated list of the tracks that you want to output. To output
information to Milestone, ensure you include the Proxy track generated by the
Milestone ingest engine.

ProxyTrack The Proxy track generated by the Milestone ingest engine.

XSLTemplate The XSL template to use to transform the output track into a format that can be
accepted by the Milestone system.

Host The host name or IP address of the Milestone XProtect system.

Port (Optional) The Milestone XProtect server port.

GUID (Optional) The Milestone GUID of the camera that the events are associated
with. This is not required if the video is ingested using the Milestone ingest
engine.

Location (Optional) Location metadata to send with the event.

For example:

[XProtect]
 Type=milestoneoutput
 Input=ANPR.Result,MilestoneIngest.Proxy
 ProxyTrack=MilestoneIngest.Proxy
 XSLTemplate=toMilestone.xsl
 Host=milestone-server
 Port=9090
 Location=Cambridge

For more information out the configuration parameters that you can use to configure this task,
refer to the Media Server Reference.

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Configure Milestone

To configure your Milestone surveillance system to process information sent by Media
Server

 1. Open the Milestone XProtect management application.

 2. Make sure that the Milestone system has Analytics Events enabled, and is listening on the same
port you specified in the Media Server configuration file.

 3. For each type of event that you send to Milestone, add an Analytic Event to the Milestone

Administration Guide
Chapter 52: Milestone XProtect

Media Server (12.4) Page 358 of 399

system. The name of the analytic event must match the message produced by Media Server.

 l The default message for intelligent scene analysis events is the iSAS category name.

 l The default message for all ANPR events is ANPR.

 l The default message for recognized faces is the name of the face database.

 l The default message for unrecognized faces is NOT IN DATABASE.

TIP: To modify the message produced by Media Server, modify the toMilestone.xsl XSL
template. The <message> element in the XML sent to Milestone can contain any name, but the
names of the analytic events that you create in Milestone must match the messages produced
by Media Server.

NOTE: The names are case-sensitive. For example, if you have a category in your iSAS
configuration called "JumpRedLight", create an Analytic Event of the same name.

 4. Add Alarm Definitions to the Milestone system as necessary. Use the Analytic Events that you
created as the Triggering Events.

 5. In the Alarm List Configuration (Advanced Configuration > Alarms > Alarm Data Settings), select
all of the columns. This allows users of the Milestone XProtect Smart Client to view all of the
metadata that is provided by Media Server.

For more information about how to configure your Milestone system, refer to the Milestone
documentation.

Administration Guide
Chapter 52: Milestone XProtect

Media Server (12.4) Page 359 of 399

Media Server (12.4) Page 360 of 399

Part VIII: Advanced Configuration

This section includes advanced topics such as configuring Media Server to use a GPU.

 l Enable GPU Acceleration

 l Chain Media Servers

 l Schedule Actions in Media Server

Chapter 53: Enable GPU Acceleration

This section describes how to use a graphics card (GPU) with Media Server.

• Introduction 361
• GPU Requirements 361
• Configure Media Server 363
• Optimize Analysis Performance with a GPU 365

Introduction

Media Server can use a graphics card (GPU) to perform some processing tasks:

 l Analysis tasks. Using a GPU rather than the CPU can significantly increase the speed of
training and analysis tasks that use Convolutional Neural Networks. The analysis tasks that
benefit from GPU acceleration are:

 o Image classification.

 o Face demographics analysis.

 o Face recognition.

 o Object class recognition.

 o Vehicle make recognition.

 l Ingesting (decoding) and encoding video. You can use the GPU to decode and encode some
types of video. This can reduce the load on the CPU, releasing resources for media analysis.

GPU Requirements

To accelerate processing by using a GPU, your system must have a NVIDIA graphics card with CUDA
compute capability version 3.0 to 7.5 (Kepler, Maxwell, Pascal, Volta, or Turing micro-architecture). All
Quadro and Tesla series cards that meet this requirement are supported. GeForce GTX series cards
that meet this requirement are supported, but only with headless Linux operating systems. Tegra series
cards are not supported, but you can request support by contacting Micro Focus. Media Server has
been tested with NVIDIA Quadro K6000, Quadro M6000, and Tesla K80 graphics cards.

The number of concurrent tasks that you can run on the GPU is constrained by the resources (such as
the amount of memory) available on the graphics card. To achieve the best performance, the amount of
memory in the machine must match or exceed the amount of RAM available on the GPU(s). For
example, if you have two GPUs and each has 12 GB RAM, the machine must have at least 24 GB
RAM to use the full performance of the GPUs.

If you are installing Media Server on a virtual machine, the virtual machine might need additional
configuration to use the GPU successfully.

Media Server (12.4) Page 361 of 399

Install the NVIDIA CUDA Driver

To use GPU acceleration, you must install the NVIDIA CUDA driver. The following table shows the
required driver version.

Platform Driver version

Windows 411.31 or later

Linux 410.48 or later

The driver can be installed independently, or by installing the appropriate version of the CUDA toolkit.
Micro Focus recommends installing the driver only because this is easier and faster, and only installs
the required components.

To install the NVIDIA CUDA driver on Windows

 l Download the driver from http://www.nvidia.co.uk/Download/index.aspx?lang=en-uk. If asked to
choose a "Download Type", select "Optimal Driver for Enterprise" because this option provides
stable, supported drivers. After downloading the driver, run the installation program as an
administrator, and follow the on-screen instructions.

To install the NVIDIA CUDA driver on Ubuntu

 1. Verify that your machine is running a supported operating system. Run the following command:

lsb_release -a

The operating system is described:

Distributor ID: Ubuntu
 Description: Ubuntu 14.04.3 LTS
 Release: 14.04
 Codename: trusty

 2. Verify that a CUDA-compatible card is available. Run the following command:

lspci | grep -i nvidia | grep -i VGA

This should produce output similar to:

 0f:00.0 VGA compatible controller: NVIDIA Corporation GF106GL [Quadro 2000]
(rev a1)
 28:00.0 VGA compatible controller: NVIDIA Corporation GK110GL [Quadro K6000]
(rev a1)

Administration Guide
Chapter 53: Enable GPU Acceleration

Media Server (12.4) Page 362 of 399

http://www.nvidia.co.uk/Download/index.aspx?lang=en-uk

You must verify that one or more of these GPUs support the required CUDA Compute Capability
version (see GPU Requirements, on page 361). In the previous example, the Quadro 2000 GPU
is not supported.

 3. Install the essential utilities required to install the NVIDIA driver, by running the following
command.

sudo apt-get install build-essential

 4. Install the NVIDIA driver by running the following commands.

sudo apt-get purge nvidia*
 sudo add-apt-repository ppa:graphics-drivers/ppa
 sudo apt-get update
 sudo apt-get install nvidia-410
 sudo reboot

 5. Verify that the driver installation was successful by running the nvidia-smi command. The driver
version must meet the minimum version described above:

410.48

Configure the GPU (Windows only)

Perform this step only if you are running Media Server on Windows. This step is not necessary on
Linux.

To use a GPU to accelerate Media Server processing tasks, you must place the GPU in TCC mode. In
this mode the graphics card is used for computation only and does not provide output for a display.
Unless you use TCC mode, the GPU does not provide adequate performance and can be slower than
using a CPU. Many GPUs are not in TCC mode by default, so you must place the card in TCC mode
using the nvidia-smi tool.

Configure Media Server

This section describes how to configure Media Server to use a GPU.

 l Use a GPU to Ingest and Encode Video

 l Use a GPU for Analysis

TIP: The number of concurrent tasks that you can run on the GPU is constrained by the resources
(such as the amount of memory) available on the graphics card. Micro Focus recommends that you
use the NVIDIA tools to monitor the resources used. For more information about support for video
decoding and encoding, refer to the NVIDIA documentation.

Use a GPU to Ingest and Encode Video

This section describes how to use a GPU for ingesting and encoding video.

Administration Guide
Chapter 53: Enable GPU Acceleration

Media Server (12.4) Page 363 of 399

https://developer.nvidia.com/video-encode-decode-gpu-support-matrix

To use a GPU for ingesting video

 l In your session configuration file, find the section that configures the video ingest engine and set
the EnableGPU configuration parameter to TRUE. If the server has more than one graphics card you
can use the GPUDeviceID parameter to choose the GPU to use. For example:

[Session]
 Engine0=IngestVideo
 Engine1=EncodeVideo

 [IngestVideo]
 Type=video
EnableGPU=TRUE
 GPUDeviceID=0

To use a GPU for encoding video

 l In your session configuration file, find the section that configures the video encoder and set the
VideoProfile configuration parameter to a profile that enables the use of the GPU. If the server
has more than one graphics card you can use the GPUDeviceID parameter to choose the GPU to
use. For example:

[Session]
 Engine0=IngestVideo
 Engine1=EncodeVideo

 [EncodeVideo]
 Type=MPEG
VideoProfile=mpeg4video_h264_nvenc_hd
 GPUDeviceID=0
 OutputPath=\\server\folder\file.ts

For a list of encoding profiles, see Encoding Profiles, on page 394.

Use a GPU for Analysis

This section describes how to use a GPU to accelerate analysis tasks.

To use a GPU to accelerate analysis tasks

 1. Open the Media Server configuration file in a text editor.

 2. In the [Server] section, set the following configuration parameters:

CUDAVersion Specifies whether to enable GPU support for analysis and which CUDA version
to use. Set this parameter to 10.

GPUDeviceID (Optional) If the server has more than one GPU, set this parameter to the device

Administration Guide
Chapter 53: Enable GPU Acceleration

Media Server (12.4) Page 364 of 399

ID of the GPU to use. You can find the device ID for each graphics card in the
application log when Media Server starts. To find out which GPU device ID
corresponds to which GPU, match the PCI Bus ID logged by Media Server to
the PCI Bus ID output by the nvidia-smi command, which also provides the
GPU name.

For example:

[Server]
 ...
 CUDAVersion=10

 3. Save and close the configuration file.

Verify that Media Server is Using the GPU

To determine whether Media Server is using a GPU for analysis, start Media Server and open the
application log. The log should show the following after Media Server starts:

 GPU devices available for use
 GPU deviceID 0 (Hex PCIBusId: ..)
 GPU deviceID 1 (Hex PCIBusId: ..)
 GPU deviceID 2 (Hex PCIBusId: ..)
 GPU deviceID 3 (Hex PCIBusId: ..)
 GPU mode used for MediaServer
 GPU Memory: ... bytes free ... bytes total
 GPU deviceID currently used: 2 (Hex PCIBusId: ..)

If installation was unsuccessful, Media Server does not start and logs the reason to the application log.

Optimize Analysis Performance with a GPU

Media Server can use a graphics card (GPU) to perform some processing tasks. Using a GPU rather
than the CPU can significantly increase the speed of analysis tasks that use Convolutional Neural
Networks.

This section describes how to configure the following tasks to achieve optimum performance when you
accelerate processing using a GPU.

 l Face recognition.

 l Face demographics analysis.

 l Image classification.

When you are using a GPU to accelerate processing, configure your analysis task with
NumParallel=1. To specify the number of video frames to process concurrently on the GPU, set the
parameter GPUNumParallel. The value of this parameter must be a power of 2, such as 4, 8, 16, 32, 64,
and so on.

Administration Guide
Chapter 53: Enable GPU Acceleration

Media Server (12.4) Page 365 of 399

 [Demographics]
 Type=Demographics
 Input=FaceDetect.DataWithSource
NumParallel=1
 GPUNumParallel=32

You should choose the highest possible value for GPUNumParallel; the limit is the amount of memory
available on your GPU. If you set a value that is too high and the GPU runs out of memory, analysis will
fail. You can monitor the amount of GPU memory used by Media Server with the nvidia-smi tool.

If you are processing low numbers of frames, Media Server might send video frames to the GPU before
there are enough for a complete batch. You can configure the amount of time that Media Server waits
for video frames by setting the configuration parameter GPUBatchingDuration. To maximize
throughput and use the GPU most efficiently, configure a long GPUBatchingDuration so that Media
Server waits until there is a full batch of video frames to analyze. If you are processing low volumes of
frames or require the analysis results as rapidly as possible, you can reduce the duration.

If your analysis task supports the configuration parameter SampleInterval, you can decrease the
interval. (For more information about sample intervals, see Choose the Rate of Ingestion, on page 118).
Analysis with a GPU is significantly faster than with a CPU and so Media Server can process
significantly more frames. In the case of face recognition and demographics analysis, which process
the output of another analysis task, set the SampleInterval parameter on the first analysis task (face
detection).

 [FaceDetect]
 Type=FaceDetect
 // NumParallel is set because Face Detection uses the CPU for analysis
 NumParallel=8
 FaceDirection=Front
 MinSize=200
 SizeUnit=pixel
SampleInterval=0ms

 [Demographics]
 Type=Demographics
Input=FaceDetect.DataWithSource
 NumParallel=1
 GPUNumParallel=32

In this example, face detection attempts to process every frame because SampleInterval=0ms. Every
frame that contains a detected face is written to the FaceDetect.DataWithSource track, and the
demographics analysis task processes these frames using the GPU.

Administration Guide
Chapter 53: Enable GPU Acceleration

Media Server (12.4) Page 366 of 399

Chapter 54: Chain Media Servers

This section describes how to send records to another Media Server, for further processing.

• Introduction 367
• Configure One-Way Chaining 369
• Configure Feedback Chaining 373

Introduction

Media Server can send records to another Media Server for further processing. For example, you can
run face detection on one Media Server and then send the records describing detected faces to another
Media Server that runs face recognition.

In this architecture, the Media Server that ingests the source media is referred to as the "upstream"
server, and the Media Server that you send records to is referred to as the "downstream" or "remote"
server.

This feature, called chaining, can be useful in cases where:

 l The downstream server is equipped with hardware, such as a graphics card, that enables it to
perform some types of analysis much faster than the upstream server(s). Chaining can help you
make best use of your hardware.

 l The downstream server has access to resources, such as face databases, that are not available
to the upstream server(s).

Consider a scenario where you want to run face detection and recognition on the video recorded by ten
cameras. You could have several Media Servers ingesting video and running face detection. You could
then send all of the detected faces to a single Media Server that is equipped with a GPU and has
access to your face recognition databases. Face recognition is much faster when performed with a
GPU, so with this configuration you only need a single Media Server to perform the face recognition
step.

NOTE: Audio data cannot be transferred between Media Servers. This means that you cannot run
analysis operations such as language identification, speaker identification, and speech-to-text on a
downstream Media Server. The rolling buffer encoder cannot be used on a downstream Media
Server, and other encoding engines can be used only if you set AudioInput=none.

Transferring data between Media Servers involves some overhead, so chaining performs best when the
amount of data transferred between the servers is small and the downstream Media Server performs
resource-intensive analysis tasks. In the previous scenario, the upstream Media Server sends images
of detected faces to the downstream server so that they can be identified. You should configure each
upstream server to send only the best frame for each detected face, rather than every frame in which a
face appears. You should also crop the images before sending them, so that each image includes only
a detected face and not the entire scene. This significantly reduces the amount of data that is
transferred between the servers.

Media Server (12.4) Page 367 of 399

If your use case requires only a moderate amount of analysis to be performed by the downstream
Media Server, or the downstream Media Server requires a large proportion of the data that is ingested
upstream, it can be more efficient to do all of the analysis on a single server.

There are two ways to configure chaining: one-way chaining and feedback chaining. The following table
describes the differences between these configurations.

Feature One-way chaining Feedback chaining

Licensing A visual channel on the downstream
server is required for each process
action running upstream.

(When you start processing on the
upstream server, a processing session
also begins on the downstream server.
This remains active until all processing
has finished).

A visual channel on the downstream
server can handle requests from several
process actions running upstream, but
requests from upstream servers must
wait if more requests are received than
visual channels are available.

(Each processing session on the
downstream server processes a single
record. A processing session exists on
the downstream server only while a
record is being processed).

Architecture The upstream Media Server sends
records to the downstream server, and
processing continues on the
downstream server. Information is not
returned to the upstream server.

Configure your output tasks on the
downstream server.

(If you configure a response output task
on the downstream server, the
information is returned to you by the
upstream server because you do not
receive a response from the
downstream Media Server).

The upstream Media Server sends
records to the downstream server, which
performs analysis and returns the results
so that processing can continue on the
upstream server.

Configure your output tasks on the
upstream server.

Media Server sends all records to the
downstream server as soon as they are
ready to be processed.

Tracking and integration work as you
would expect on a single server.

Media Server sends one record to the
downstream server, and waits for it to be
analyzed and the results to be returned
before sending another.

This means that records are considered
to be independent. Feedback chaining is
therefore unsuitable when analysis
depends on tracking and integration
(analyzing many frames to produce a
single result).

An example of an analysis task that
depends on tracking and integration is

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 368 of 399

number plate recognition (ANPR). You
can use analysis engines on the
downstream server that have tracking
capabilities, but these capabilities
provide no benefit and tracking results are
not available.

You can send multiple tracks to the
downstream server.

You can send only one track to the
downstream server.

Configuration The upstream Media Server sends
records downstream using the Post
output engine. The downstream server
receives them using the Receive ingest
engine.

The upstream Media Server sends
records downstream using the
RemoteAnalysis analysis engine. The
downstream server receives them using
the Receive ingest engine.

To divide processing between two servers, you must create two configurations. The configuration for
the downstream Media Server must be saved in the folder specified by the ConfigDirectory
parameter in the [Paths] section of the configuration file (on the downstream Media Server that you are
sending records to). You cannot include the configuration for the downstream server in the process
action you send to the upstream server.

Configure One-Way Chaining

This section describes how to configure one-way chaining.

Configure the Upstream Media Server

This section describes how to configure Media Server to send records to another Media Server for
further processing.

To send records to another Media Server

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 ...
 Engine3=FurtherProcessing

 3. Create a new configuration section by typing the task name inside square brackets. Then, set the
following parameters:

Type The output engine to use. Set this parameter to Post.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 369 of 399

Input A comma-separated list of the tracks that you want to send to the
downstream Media Server.

You can provide aliases to simplify the track names when you
configure the downstream Media Server. To do this specify the track
names as Alias:TaskName.TrackName, where:

 l Alias is the track name to present to the downstream Media
Server.

 l TaskName is the name of the task that produced the track.

 l TrackName is the name of the track.

NOTE: You cannot send audio tracks to a downstream Media
Server.

Host The host name or IP address of the Media Server to send records to.

Port The ACI port of the Media Server to send records to.

ConfigName The name of the configuration file that the downstream Media Server
must use to continue processing the records (this file must be present
in the folder specified by the ConfigDirectory configuration
parameter on the downstream Media Server).

For example:

[FurtherProcessing]
 Type=Post
 Input=FaceDetect.ResultWithSource
 // or using alias "DetectedFaces" for "FaceDetect.ResultWithSource":
 // Input=DetectedFaces:FaceDetect.ResultWithSource
 Host=gpu-mediaserver
 Port=14000
 ConfigName=DownstreamFaceRec

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Configure the Downstream Media Server

This section describes how to configure Media Server to receive records from another Media Server
and continue processing them.

To receive records from another Media Server

 1. Create a new configuration file, or open an existing configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 370 of 399

[Session]
 Engine0=RecordsFromUpstream

 3. Create a new configuration section by typing the task name inside square brackets. Then, set the
following parameters:

Type The ingest engine to use. Set this parameter to Receive.

Input A comma-separated list of tracks to receive from the other Media
Server.

For example:

[RecordsFromUpstream]
 Type=Receive
 Input=FaceDetect.ResultWithSource
 // or using alias "DetectedFaces", if defined in upstream configuration:
 // Input=DetectedFaces

 4. Configure the analysis, encoding, ESP, and output tasks that you want to run on the ingested
records.

NOTE: The tracks produced by the Receive engine are prefixed with the name of the ingest
task. For example, if you use the configuration above the track produced by the Receive
engine is named:

 l RecordsFromUpstream.FaceDetect.ResultWithSource (if no alias is defined).

 l RecordsFromUpstream.DetectedFaces (if the alias DetectedFaces is defined by the
upstream Media Server).

You must use the correct track name for the input of your face recognition task on the
downstream Media Server.

 5. Save the configuration file in the location specified by the ConfigDirectory parameter.

Example Configurations

This section includes example configurations that demonstrate how to chain two Media Servers.

The following configuration, for the upstream Media Server, runs face detection and then sends the
records to a Media Server at gpu-mediaserver:14000:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=FurtherProcessing

 [Ingest]
 Type=Video

 [FaceDetect]

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 371 of 399

 Type=FaceDetect
 NumParallel=4
 FaceDirection=Front
 MinSize=10
 SizeUnit=percent

 [FurtherProcessing]
 Type=Post
 Input=FaceDetect.ResultWithSource
 Host=gpu-mediaserver
 Port=14000
 ConfigName=DownstreamFaceRec

The following configuration, for the downstream Media Server, runs face recognition on records
received from other Media Servers. To match the upstream configuration, above, this should be saved
as DownstreamFaceRec.cfg, in the folder specified by the ConfigDirectory parameter on the
downstream Media Server.

[Session]
 Engine0=RecordsFromUpstream
 Engine1=FaceRecognition
 Engine2=IDOL

 [RecordsFromUpstream]
 Type=Receive
 Input=FaceDetect.ResultWithSource

 [FaceRecognition]
 Type=FaceRecognize
 Input=RecordsFromUpstream.FaceDetect.ResultWithSource
 RecognitionThreshold=60
 MaxRecognitionResults=1

 [IDOL]
 Type=IDOL
 Input=FaceRecognition.Result
 IdolHost=content
 IdolPort=9000
 IdolDB=BroadcastVideo
 Mode=Time
 OutputInterval=60
 XslTemplate=toIDX.xsl

Start and Stop Processing

This section describes how to start and stop processing, when you have chosen to split processing
between multiple Media Servers.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 372 of 399

To start processing

 l Start processing as described in Start Processing, on page 106. Send the Process action to the
upstream Media Server only. You can use the Config, ConfigName, or ConfigPath action
parameter to specify the configuration for the upstream Media Server.

The upstream Media Server automatically starts a session on the downstream Media Server.

To stop processing

 l Stop processing as described in Stop Processing, on page 109. Send the QueueInfo action to the
upstream Media Server only.

The upstream Media Server automatically stops the session on the downstream Media Server.

Configure the Maximum Number of Sessions

Your Media Server may receive many requests from upstream Media Servers. For example, you might
have several Media Servers running face detection but use a single Media Server with a GPU to
perform face recognition for all of your cameras or video feeds.

The maximum number of processing sessions to run concurrently (as a result of requests from
upstream Media Servers) is configured by the MaxProcessingSessions parameter in the [Chaining]
section of the Media Server configuration file:

[Chaining]
 MaxProcessingSessions=1
 QueueTimeout=60s

The MaxProcessingSessions parameter only limits sessions requested by upstream Media Servers; it
has no effect on process actions sent directly to the Media Server (the number of process actions to
run concurrently is controlled by the MaximumThreads parameter, as described in Process Multiple
Requests Simultaneously, on page 81).

The default value of the MaxProcessingSessions parameter is 1, so if you want to run more than one
downstream session concurrently, you must increase the value of this parameter.

If the Media Server receives a greater number of requests than specified by MaxProcessingSessions,
the additional requests are added to a queue and only start when other sessions finish. The upstream
Media Server does not start ingesting the source media until the downstream Media Server is ready to
start processing.

The QueueTimeout configuration parameter specifies the maximum amount of time that a request from
an upstream Media Server can remain in the queue. If this timeout is exceeded then the request is
removed from the queue and an error is returned to the upstream Media Server. If you are processing
live streams, you might want to return an error to the upstream Media Server quickly.

Configure Feedback Chaining

This section describes how to configure feedback chaining.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 373 of 399

Enable Feedback Chaining

You must enable feedback chaining by making some configuration changes on your downstream Media
Server.

In the [Chaining] section of the configuration file, set the parameter
RemoteAnalysisConfigurations. Specify a comma-separated list of configurations that can be used
to perform remote analysis for other Media Servers, and the maximum number of processing sessions
to allow concurrently for each configuration. For example:

RemoteAnalysisConfigurations=RemoteFaceRecognition:2,RemoteObjectDetection:3

This example permits Media Server to use the configuration files RemoteFaceRecognition.cfg and
RemoteObjectDetection.cfg to perform analysis for other Media Servers.

An upstream Media Server could run two process actions that include remote face recognition, and
three that include remote object recognition, and the downstream Media Server could handle requests
from all of these actions simultaneously.

An upstream Media Server could run more than two process actions that include remote face
recognition and more than three that include remote object recognition. In this case the requests for
remote analysis might have to be queued on the downstream Media Server until previous requests
have completed. However, the remote analysis tasks on the upstream server are unlikely to send every
video frame downstream. Remote analysis requests that originated from one upstream process action
can be processed while there are no requests being received from another. Each remote analysis
request contains only a single record, so even if requests do need to be queued, the requests do not
wait in the queue for very long.

The limit for the total number of connections to the downstream server is specified by the parameter
MaxRemoteAnalysisConnections. The value that you choose for this parameter is the maximum
number of process actions, that include remote analysis, that you can run concurrently on the
upstream server(s).

You should also ensure that the downstream Media Server requests sufficient visual channels from
your License Server. Media Server requires a visual channel for each remote analysis request that is
processed concurrently. For the previous example, you would need to set VisualChannels to a value
no less than 5. The visual channels are required regardless of whether Media Server receives any
requests.

The configuration file for the downstream Media Server might therefore contain the following:

[Channels]
VisualChannels=5

[Chaining]
 RemoteAnalysisConfigurations=RemoteFaceRecognition:2,RemoteObjectDetection:3
 MaxRemoteAnalysisConnections=10

The chaining configuration parameters MaxProcessingSessions and QueueTimeout do not apply to
feedback chaining.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 374 of 399

Configure the Upstream Media Server

This section describes how to configure Media Server to send records to another Media Server.

To send records to another Media Server

 1. Create a new configuration to send to Media Server with the process action, or open an existing
configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=Ingest
 Engine1=...
Engine2=RemoteAnalysis

 3. Create a new configuration section by typing the task name inside square brackets. Then, set the
following parameters:

Type The analysis engine to use. Set this parameter to RemoteAnalysis.

Host The host name or IP address of the Media Server to send records to.

Port The ACI port of the Media Server to send records to.

ConfigName The name of the configuration file that the downstream Media Server
must use to ingest and analyze the records (this file must be present in
the folder specified by the ConfigDirectory configuration parameter
on the downstream Media Server).

Input The name of the track to send to the remote Media Server for remote
analysis.

You can provide an alias to simplify the track name when you
configure the other Media Server. To do this specify the track name as
Alias:TaskName.TrackName, where:

 l Alias is the track name to present to the remote Media Server.

 l TaskName is the name of the task that produced the track.

 l TrackName is the name of the track.

NOTE: You cannot send audio tracks to a downstream Media
Server.

Output A comma-separated list of tracks, generated by the remote Media
Server, to output from the remote analysis task. These tracks are then
available for further processing on this Media Server.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 375 of 399

Specify the track names as Alias:TaskName.TrackName, where:

 l Alias is the track name to present to subsequent tasks on this
Media Server.

 l TaskName is the name of the task, on the remote Media Server,
that produced the track.

 l TrackName is the name of the track, on the remote Media Server.

For example:

[RemoteAnalysis]
 Type=RemoteAnalysis
 Host=gpu-mediaserver
 Port=14000
 ConfigName=RemoteFaceRecognition
 Input=DetectedFaces:Crop.Output
 // where "Crop" is a transform task to crop images of
 // detected faces from the face detection ResultWithSource track
 Output=RecognizedFaces:FaceRecognition.Result
 // makes results available to subsequent tasks
 // as RemoteAnalysis.RecognizedFaces

 4. Save and close the configuration file. Micro Focus recommends that you save your configuration
files in the location specified by the ConfigDirectory parameter.

Configure the Remote Media Server

This section describes how to create a configuration that ingests records from an upstream Media
Server, and performs analysis on those records.

NOTE: Before starting this procedure, enable feedback chaining by following the instructions in
Enable Feedback Chaining, on page 374.

To receive records from another Media Server

 1. Create a new configuration file, or open an existing configuration that you want to modify.

 2. In the [Session] section, add a new task by setting the EngineN parameter. You can give the
task any name, for example:

[Session]
 Engine0=RecordsFromUpstream

 3. Create a new configuration section by typing the task name inside square brackets. Then, set the
following parameters:

Type The ingest engine to use. Set this parameter to Receive.

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 376 of 399

Input The name of the track to receive from the upstream Media Server.

For example:

[RecordsFromUpstream]
 Type=Receive
 Input=DetectedFaces
 // where "DetectedFaces" is the alias specified by the Input parameter
 // of the remote analysis task on the upstream server

 4. Configure the analysis tasks that you want to run on the ingested records.

NOTE: The tracks produced by the Receive engine are prefixed with the name of the ingest
task. For example, if you use the configuration above the input track for your analysis task
would be named RecordsFromUpstream.DetectedFaces.

NOTE: Do not configure an output task. The records specified by the Output parameter in the
remote analysis task on the upstream Media Server are returned to the upstream server
automatically.

 5. Save the configuration file in the location specified by the ConfigDirectory parameter.

Example Configurations

This section includes example configurations that demonstrate how to configure feedback chaining.

The following configuration, for the upstream Media Server, runs face detection and then sends records
to a Media Server at gpu-mediaserver:14000 for remote face recognition:

[Session]
 Engine0=Ingest
 Engine1=FaceDetect
 Engine2=Crop
 Engine3=RemoteAnalysis
 Engine4=XML

 [Ingest]
 Type=Video

 [FaceDetect]
 Type=FaceDetect
 FaceDirection=Front
 MinSize=200
 SizeUnit=pixel

 [Crop]
 Type=Crop
 Input=FaceDetect.ResultWithSource

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 377 of 399

 [RemoteAnalysis]
 Type=RemoteAnalysis
 Host=gpu-mediaserver
 Port=14000
 ConfigName=RemoteFaceRecognition
 Input=DetectedFaces:Crop.Output
 Output=RecognizedFaces:FaceRecognition.Result

 [XML]
 Type=XML
 Input=RemoteAnalysis.RecognizedFaces
 XMLOutputPath=./output/html/%segment.type%_results_%segment.sequence%.html
 XSLTemplate=toHTML.xsl
 Mode=Time
 OutputInterval=30s

The following configuration, for the remote Media Server, runs face recognition on records received
from the upstream Media Server. To match the upstream configuration, above, this should be saved as
RemoteFaceRecognition.cfg, in the folder specified by the ConfigDirectory parameter on the
remote Media Server.

[Session]
 Engine0=RecordsFromUpstream
 Engine1=FaceRecognition

 [RecordsFromUpstream]
 Type=Receive
 Input=DetectedFaces

 [FaceRecognition]
 Type=FaceRecognize
 Input=RecordsFromUpstream.DetectedFaces
 RecognitionThreshold=60
 MaxRecognitionResults=1

Administration Guide
Chapter 54: Chain Media Servers

Media Server (12.4) Page 378 of 399

Chapter 55: Schedule Actions in Media Server

This section describes how to schedule Media Server actions to run regularly.

• Use IDOL Site Admin to Schedule Media Server Actions 379

Use IDOL Site Admin to Schedule Media Server Actions

The IDOL Site Admin user interface is an IDOL product that allows you to monitor and maintain your
IDOL components from a central location. You can also use IDOL Site Admin to schedule actions in
your IDOL components.

Set Up IDOL Site Admin to Monitor Media Server

The following section provides an overview of how to install and use IDOL Site Admin to monitor your
Media Server systems. For more details about how to install and use IDOL Site Admin, refer to the
IDOL Site Admin documentation.

To set up IDOL Site Admin

 1. Install IDOL Site Admin and its prerequisite IDOL components. For details, refer to the IDOL Site
Admin Installation Guide.

 2. Start your IDOL Site Admin components, and then start the IDOL Site Admin service. You might
need to perform some initial setup configuration. For details, refer to the IDOL Site Admin
Installation Guide.

 3. Log on to IDOL Site Admin.

 4. On the top menu, click Settings, and then click Settings.

The Settings page opens.

 5. In the Site Admin Application DB section, select the database type. By default, IDOL Site
Admin uses an embedded database. If you want to use a PostgreSQL database, you must
perform additional setup steps. In this case, refer to the IDOL Site Admin Installation Guide.

 6. Click the Service Discovery Default Lookup Path section to open it. This section enables you
to set the paths on your hosts where you have IDOL components that you want to monitor, to
allow IDOL Site Admin to discover services on those paths.

Add all the paths that you use for the Media Servers that you want to use for scheduling.

 7. Click Save Changes to save your configuration changes.

After you have installed and set up IDOL Site Admin, you can register your Media Server services to
add them to IDOL Site Admin control.

Media Server (12.4) Page 379 of 399

To monitor Media Server

 1. On each host machine that hosts a Media Server that you want to monitor and use for scheduling,
install a Controller component.

The Controller component monitors the IDOL components on a single host, and communicates
with the Coordinator component, which in turn provides information to the IDOL Site Admin
interface. For information about how to install Controller, refer to the IDOL Site Admin Installation
Guide.

 2. Start all your Media Servers and Controller components.

 3. Log on to IDOL Site Admin.

 4. Use the Discover Hosts page to find and register your Controllers. Register all the Controllers on
the hosts you want to monitor. For more information, refer to the IDOL Site Admin User Guide.

 5. Use the Discover Services page to find the installed IDOL components on each of your Controller
hosts. Register all the Media Servers that you want to monitor. For more information, refer to the
IDOL Site Admin User Guide.

Schedule Actions

After you have registered all your Media Servers, you can use the Monitor Scheduler page in IDOL Site
Admin to add a schedule to run Media Server actions on your hosts. The scheduler sets up any ACI
action to run on a regular schedule.

An IDOL Site Admin schedule runs a specified ACI action at a specified time, often with a recurrence
schedule to repeat the action on a regular basis.

For more information about how to set up a schedule in IDOL Site Admin, refer to the IDOL Site Admin
User Guide.

NOTE: IDOL Site Admin does not limit the duration of an individual action. For Media Server actions
that run on a video stream, you might need to set a maximum duration for the action.

You can do this by setting the MaximumDuration parameter in either the video ingest engine
configuration (see Ingest Video from a Stream, on page 121), or as an override parameter in the ACI
action (see Override Configuration Parameters, on page 76).

For example:

action=process
source=/video/sourcepath
configname=myconfig
[VideoStream]MaximumDuration=4h

Setting this action in the IDOL Site Admin schedule processes the specified source file or stream
with the configuration specified in the myconfig file. It overrides the value of MaximumDuration in
the [VideoStream] configuration section to run the action for a maximum of four hours (where
[VideoStream] is an ingest engine configuration with Type=Video).

Administration Guide
Chapter 55: Schedule Actions in Media Server

Media Server (12.4) Page 380 of 399

Media Server (12.4) Page 381 of 399

Appendixes

This section contains the following appendixes.

 l OCR Supported Languages

 l OCR Supported Specialized Fonts

 l ANPR Supported Locations

 l Speech Analysis Supported Languages

 l Pre-Trained Classifiers

 l Pre-Trained Object Class Recognizers

 l Encoding Profiles

Appendix A: OCR Supported Languages

This appendix describes the languages that are supported by Media Server OCR.

Latin Alphabet

Afrikaans (af) Esperanto (eo) Irish (ga) Romanian (ro)

Basque (eu) Estonian (et) Latin (la) Slovak (sk)

Catalan (ca) Finnish (fi) Latvian (lv) Slovenian (sl)

Croatian (hr) French (fr) Lithuanian (lt) Spanish (es)

Czech (cs) German (de) Maltese (mt) Swedish (sv)

Danish (da) Hungarian (hu) Norwegian (no) Turkish (tr)

Dutch (nl) Icelandic (is) Polish (pl) Welsh (cy)

English (en) Italian (it) Portuguese (pt)

Arabic Alphabet

Arabic (ar) Urdu (ur)

Persian (fa)

Chinese Alphabet

Simplified Chinese (zhs) Traditional Chinese (zht)

Cyrillic Alphabet

Bulgarian (bg) Serbian (sr)

Macedonian (mk) Ukrainian (uk)

Russian (ru)

Media Server (12.4) Page 382 of 399

Other Alphabets

Greek (el)

Hebrew (he)

Japanese (ja)

Korean (ko)

Administration Guide
Appendix A: OCR Supported Languages

Media Server (12.4) Page 383 of 399

Appendix B: OCR Supported Specialized Fonts

OCR supports the following specialized fonts and character sets.

Font Code

General auto

OCR-A ocra

OCR-B ocrb

E13B e13b

Farrington 7B fa7b

Custom font used for Bloomberg Terminal GUI blmt

Media Server (12.4) Page 384 of 399

Appendix C: ANPR Supported Locations

The Automatic Number Plate Recognition (ANPR) analysis engine supports reading number plates
from the following locations.

Location ISO-3166 code

Albania AL

Algeria DZ

Argentina AR

Australia - Australian Capital Territory AU-ACT

Australia - New South Wales AU-NSW

Australia - Northern Territory AU-NT

Australia - Queensland AU-QLD

Australia - South Australia AU-SA

Australia - Tasmania AU-TAS

Australia - Victoria AU-VIC

Australia - Western Australia AU-WA

Austria AT

Bahrain BH

Belarus BY

Belgium BE

Bosnia and Herzegovina BA

Brazil BR

Bulgaria BG

Canada CA

China CN

Colombia CO

Croatia HR

Czech Republic CZ

Media Server (12.4) Page 385 of 399

Denmark DK

Estonia EE

Finland FI

France FR

Georgia GE

Germany DE

Greece GR

Hungary HU

India IN

Indonesia ID

Ireland IE

Israel IL

Italy IT

Japan JP

Kingdom of Saudi Arabia SA

Kuwait KW

Latvia LV

Lebanon LB

Lithuania LT

Macedonia MK

Malaysia MY

Mexico MX

Moldova MD

Montenegro ME

Netherlands NL

Nigeria NG

Norway NO

New Zealand NZ

Administration Guide
Appendix C: ANPR Supported Locations

Media Server (12.4) Page 386 of 399

Oman OM

Pakistan PK

Peru PE

Philippines PH

Poland PL

Portugal PT

Qatar QA

Romania RO

Russia RU

Serbia RS

Singapore SG

Slovakia SK

Slovenia SI

South Africa ZA

Spain ES

Sweden SE

Switzerland CH

Syria SY

Thailand TH

Tunisia TN

Turkey TR

Ukraine UA

United Arab Emirates - Abu Dhabi AE-AZ

United Arab Emirates - Ajman AE-AJ

United Arab Emirates - Dubai AE-DU

United Arab Emirates - Fujairah AE-FU

United Arab Emirates - Ras al-Khaimah AE-RK

United Arab Emirates - Sharjah AE-SH

Administration Guide
Appendix C: ANPR Supported Locations

Media Server (12.4) Page 387 of 399

United Arab Emirates - Umm al-Quwain AE-UQ

United Kingdom GB

United States - Alabama US-AL

United States - Alaska US-AK

United States - Arizona US-AZ

United States - Arkansas US-AR

United States - California US-CA

United States - Colorado US-CO

United States - Connecticut US-CT

United States - Delaware US-DE

United States - Florida US-FL

United States - Georgia US-GA

United States - Hawaii US-HI

United States - Idaho US-ID

United States - Illinois US-IL

United States - Indiana US-IN

United States - Iowa US-IA

United States - Kansas US-KS

United States - Kentucky US-KY

United States - Louisiana US-LA

United States - Maine US-ME

United States - Maryland US-MD

United States - Massachusetts US-MA

United States - Michigan US-MI

United States - Minnesota US-MN

United States - Mississippi US-MS

United States - Missouri US-MO

United States - Montana US-MT

Administration Guide
Appendix C: ANPR Supported Locations

Media Server (12.4) Page 388 of 399

United States - Nebraska US-NE

United States - Nevada US-NV

United States - New Hampshire US-NH

United States - New Jersey US-NJ

United States - New Mexico US-NM

United States - New York US-NY

United States - North Carolina US-NC

United States - North Dakota US-ND

United States - Ohio US-OH

United States - Oklahoma US-OK

United States - Oregon US-OR

United States - Pennsylvania US-PA

United States - Rhode Island US-RI

United States - South Carolina US-SC

United States - South Dakota US-SD

United States - Tennessee US-TN

United States - Texas US-TX

United States - Utah US-UT

United States - Vermont US-VT

United States - Virginia US-VA

United States - Washington US-WA

United States - Washington, DC US-DC

United States - West Virginia US-WV

United States - Wisconsin US-WI

United States - Wyoming US-WY

Venezuela VE

Administration Guide
Appendix C: ANPR Supported Locations

Media Server (12.4) Page 389 of 399

Appendix D: Speech Analysis Supported Languages

The following table describes the languages that are supported by language identification and speech-
to-text. The "16kHz" columns refer to analysis for broadband audio and the "8kHz" columns refer to
telephony.

Language Language ID Speech To Text

Name Code 16kHz 8kHz 16kHz 8kHz

Arabic - Gulf Arabic ARGU Y

Arabic - Modern Standard Arabic ARMSA Y Y Y

Catalan CAES Y Y

Chinese - Mandarin ZHCN Y Y Y

Czech CSCZ Y Y

Danish DADK Y Y Y Y

Dutch NLNL Y Y Y Y

English - Australian ENAU Y Y Y

English - British ENUK Y Y Y Y

English - Canadian ENCA Y Y

English - Generic ENXX Y Y

English - Irish ENIE Y

English - Singaporean ENSG Y

English - South African ENZA Y

English - US ENUS Y Y Y Y

Flemish NLBE Y

Farsi FAIR Y Y Y

French FRFR Y Y Y Y

French - Canadian FRCA Y Y Y

German DEDE Y Y Y

Greek ELGR Y Y Y

Media Server (12.4) Page 390 of 399

Language Language ID Speech To Text

Name Code 16kHz 8kHz 16kHz 8kHz

Hebrew HBIL Y Y

Hindi HIIN Y Y

Hungarian HUHU Y Y

Italian ITIT Y Y Y Y

Japanese JAJP Y Y Y

Korean KOKR Y Y Y

Polish PLPL Y Y Y Y

Portuguese PTPT Y

Portuguese - Brazilian PTBR Y Y Y

Romanian RORO Y Y Y Y

Russian RURU Y Y Y Y

Slovak SKSK Y Y Y

Spanish ESES Y Y Y Y

Spanish - Latin American ESLA Y Y Y Y

Spanish - North American ESUS Y Y

Swedish SVSE Y Y Y Y

Turkish TRTR Y

Ukrainian UKUA Y Y

Welsh CYUK Y

Administration Guide
Appendix D: Speech Analysis Supported Languages

Media Server (12.4) Page 391 of 399

Appendix E: Pre-Trained Classifiers

Micro Focus may provide classifiers that you can use with Media Server to classify images.

The following classifiers are currently available, in the package MediaServerPretrainedModels_
<VERSION>_COMMON.zip. When you download this package, ensure that <VERSION> matches the
version of Media Server that you are using.

File name Description

ImageClassifier_
ImageNet.dat

A neural net (CNN) classifier that contains training for the Large Scale Visual
Recognition Challenge (ILSVRC) classes listed at http://image-
net.org/challenges/LSVRC/2012/browse-synsets.

ImageClassifier_
RoadScene.dat

A classifier for classifying road scenes. This classifier can classify images
into the classes "car", "person", and "van".

For information about how to import a classifier into your training database, see Import a Classifier, on
page 169

Media Server (12.4) Page 392 of 399

http://image-net.org/challenges/LSVRC/2012/browse-synsets
http://image-net.org/challenges/LSVRC/2012/browse-synsets

Appendix F: Pre-Trained Object Class Recognizers

Micro Focus may provide pre-trained recognizers that you can use with Media Server to recognize
objects belonging to generic categories in images and videos.

The following recognizers are currently available, in the package MediaServerPretrainedModels_
<VERSION>_COMMON.zip. When you download this package, ensure that <VERSION> matches the
version of Media Server that you are using.

 l ObjectClassRecognizer_CommonObjects.dat

Recognizes common objects. This recognizer contains twenty classes across four categories:

 o (Person) person

 o (Animal) bird, cat, cow, dog, horse, sheep

 o (Vehicle) aeroplane, bicycle, boat, bus, car, motorbike, train

 o (Indoor) bottle, chair, dining table, potted plant, sofa, tv/monitor

 l ObjectClassRecognizer_HeadAndShoulder.dat

Recognizes people, in order to count them. This recognizer differs from ObjectDetector_
Person.dat because it has been trained to detect only the head and shoulder region, which is
useful when you want to count people in a crowded area.

 l ObjectClassRecognizer_Person.dat

Recognizes people.

 l ObjectClassRecognizer_RoadScene.dat

Recognizes cars, vans and people.

 l ObjectClassRecognizer_Gen2_CommonObjects80.dat

Recognizes 80 different types of common object. This is a generation2 recognizer and is
expected to provide better accuracy than other types of recognizer, even more specialized
recognizers such as ObjectClassRecognizer_Gen3_PersonCar.dat.

 l ObjectClassRecognizer_Gen3_CommonObjects20.dat

Recognizes common objects. The classes are the same as for the recognizer
ObjectClassRecognizer_CommonObjects.dat, but this is a generation3 recognizer that
provides faster recognition than other types of recognizer.

 l ObjectClassRecognizer_Gen3_PersonCar.dat

Recognizes people and cars. This is a generation3 recognizer that provides faster recognition
than other types of recognizer.

For information about the different types of recognizers, see Recognizer Types, on page 173. For
information about how to import a recognizer into your training database, see Import a Recognizer, on
page 175.

Media Server (12.4) Page 393 of 399

Appendix G: Encoding Profiles

This appendix describes the encoding profiles that are supplied with Media Server for use with the MPEG and Rolling Buffer encoders.

Video Profiles

The following profiles are MPEG4 profiles that use the H264 codec for encoding video. These are suitable for playback over the web, for example
if your users view video using the MMAP Media Player or the native player of a web browser that supports H264.

Name Codec Variable Bitrate
(kbps min-max)

Resolution Display size Notes

mpeg4video_h264_nvenc_hd H264 3000-8000 1920x1080 1920x1080 High-quality, high-definition, with
GPU acceleration enabled.

mpeg4video_h264_hd H264 3000-8000 1920x1080 1920x1080 High-quality, high-definition.

mpeg4video_h264_720p H264 800-3000 1280x720 1280x720 High-quality 1280x720.

mpeg4video_h264_360p H264 100-800 640x360 640x360 High-quality 640x360.

mpeg4video_h264_sd H264 800-3000 1024x576 1024x576 Use to encode video from a standard
definition broadcast source that had non-
square pixels.

The following profiles use the MPEG2 codec. Micro Focus recommends using the MPEG4 profiles (above) in most cases, but you can use these
profiles if you need to support a media player that cannot decode H264.

Name Codec Variable Bitrate
(kbps min-max)

Resolution Display size Notes

mpeg2video MPEG2 1000-8000 720x576 720x576 Standard 4:3 MPEG2 video.

Page 394 of 399Media Server (12.4)

mpeg2video_broadcast MPEG2 5000-13000 720x576 1024x576 Encodes with non-square pixels (the
display size is not the same as the
resolution), 16:9 aspect ratio, similar to
DVB broadcast quality.

Audio Profiles

Name Codec Bitrate (kbps) Sample rate
(kHz)

Channels Notes

mpeg4audio MPEG4 AAC 128 48 2 Use with MPEG4 video profiles.

mpeg2audio MPEG2 Audio 192 48 2 Use with MPEG2 video profiles.

Media Server (12.4) Page 395 of 399

Administration Guide
Appendix G: Encoding Profiles

Page 396 of 399Media Server (12.4)

Glossary

A

ACI (Autonomy Content Infrastructure)
A technology layer that automates
operations on unstructured information for
cross-enterprise applications. ACI enables
an automated and compatible business-to-
business, peer-to-peer infrastructure. The
ACI allows enterprise applications to
understand and process content that exists
in unstructured formats, such as email,
Web pages, Microsoft Office documents,
and IBM Notes.

ACI Server
A server component that runs on the
Autonomy Content Infrastructure (ACI).

ACL (access control list)
An ACL is metadata associated with a
document that defines which users and
groups are permitted to access the
document.

action
A request sent to an ACI server.

active directory
A domain controller for the Microsoft
Windows operating system, which uses
LDAP to authenticate users and computers
on a network.

ANPR
Automatic Number Plate Recognition,
which reads the number/license plate of a
vehicle.

C

Category component
The IDOL Server component that manages
categorization and clustering.

Community component
The IDOL Server component that manages
users and communities.

connector
An IDOL component (for example File
System Connector) that retrieves
information from a local or remote repository
(for example, a file system, database, or
Web site).

Connector Framework Server (CFS)
Connector Framework Server processes
the information that is retrieved by
connectors. Connector Framework Server
uses KeyView to extract document content
and metadata from over 1,000 different file
types. When the information has been
processed, it is sent to an IDOL Server or
Distributed Index Handler (DIH).

Content component
The IDOL Server component that manages
the data index and performs most of the
search and retrieval operations from the
index.

D

DAH (Distributed Action Handler)
DAH distributes actions to multiple copies
of IDOL Server or a component. It allows
you to use failover, load balancing, or
distributed content.

DIH (Distributed Index Handler)
DIH allows you to efficiently split and index
extremely large quantities of data into
multiple copies of IDOL Server or the

Administration Guide
Glossary: IDOL - primary domain controller

Page 397 of 399Media Server (12.4)

Content component. DIH allows you to
create a scalable solution that delivers high
performance and high availability. It
provides a flexible way to batch, route, and
categorize the indexing of internal and
external content into IDOL Server.

I

IDOL
The Intelligent Data Operating Layer (IDOL)
Server, which integrates unstructured,
semi-structured and structured information
from multiple repositories through an
understanding of the content. It delivers a
real-time environment in which operations
across applications and content are
automated.

IDOL Proxy component
An IDOL Server component that accepts
incoming actions and distributes them to the
appropriate subcomponent. IDOL Proxy
also performs some maintenance
operations to make sure that the
subcomponents are running, and to start
and stop them when necessary.

integration
When Media Server finds the same object
(for example, the same number plate)
across multiple video frames, integration
aggregates the results to help filter out
occasional outliers (for example, if one of
the characters on the number plate is read
incorrectly in one of the frames).

Intellectual Asset Protection System (IAS)
An integrated security solution to protect
your data. At the front end, authentication
checks that users are allowed to access the
system that contains the result data. At the
back end, entitlement checking and
authentication combine to ensure that query
results contain only documents that the
user is allowed to see, from repositories that

the user has permission to access. For
more information, refer to the IDOL
Document Security Administration Guide.

K

KeyView
The IDOL component that extracts data,
including text, metadata, and subfiles from
over 1,000 different file types. KeyView can
also convert documents to HTML format for
viewing in a Web browser.

L

LDAP
Lightweight Directory Access Protocol.
Applications can use LDAP to retrieve
information from a server. LDAP is used for
directory services (such as corporate email
and telephone directories) and user
authentication. See also: active directory,
primary domain controller.

License Server
License Server enables you to license and
run multiple IDOL solutions. You must have
a License Server on a machine with a
known, static IP address.

O

OmniGroupServer (OGS)
A server that manages access permissions
for your users. It communicates with your
repositories and IDOL Server to apply
access permissions to documents.

P

primary domain controller
A server computer in a Microsoft Windows
domain that controls various computer

Administration Guide
Glossary: record - XML

Page 398 of 399Media Server (12.4)

resources. See also: active directory,
LDAP.

R

record
A single package of metadata in a track. A
record produced by an analysis task might
describe a recognized face, a word spoken
in the audio, or a number plate detected by
ANPR. A record can contain a significant
amount of information; for example a record
describing a number plate includes
timestamps describing when the number
plate was detected, the position of the
number plate in the video frame, the
characters read from the number plate, the
confidence score for recognition, and so on.

rolling buffer
A fixed-size storage area on disk where you
can save encoded video on a continuous
basis. When the rolling buffer is full, the
oldest content is discarded to make space
for the latest.

S

scene analysis
Scene analysis recognizes suspicious
activity in video and produces alarms to
alert security personnel. Scene analysis
can be trained to recognize many
suspicious events, including vehicles
driving through red lights, people entering
restricted areas, and abandoned bags and
vehicles.

T

track
A stream of data produced by a processing
task in Media Server. For example, when
you ingest video the ingest task produces

two tracks: one for video frames and the
other for audio packets. Other tasks use
these tracks. Analysis tasks read the data
and produce tracks that contain analysis
results; encoding tasks take the video and
audio data to write files to disk. See also
record.

V

View
An IDOL component that converts files in a
repository to HTML formats for viewing in a
Web browser.

W

Wildcard
A character that stands in for any character
or group of characters in a query.

X

XML
Extensible Markup Language. XML is a
language that defines the different attributes
of document content in a format that can be
read by humans and machines. In IDOL
Server, you can index documents in XML
format. IDOL Server also returns action
responses in XML format.

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Administration Guide (Micro Focus Media Server 12.4)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

Media Server (12.4) Page 399 of 399

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Media Server 12.4)

	Part I: Getting Started
	Chapter 1: Introduction
	Media Server
	Ingest Media
	Analyze Media
	Encode Media
	Event Stream Processing
	Output Information
	OEM Certification

	Media Server Architecture
	The IDOL Platform
	Related Documentation

	Chapter 2: Install Media Server
	System Requirements
	Memory Requirements
	Software Dependencies

	Install Media Server on Windows
	Install Media Server on UNIX
	Install Media Server from the ZIP Package
	Install an IDOL Component as a Service on Windows
	Install an IDOL Component as a Service on Linux
	Install a Component as a Service for a systemd Boot System
	Install a Component as a Service for a System V Boot System

	Upgrade Media Server
	Licenses
	Display License Information
	Configure the License Server Host and Port
	Revoke a Client License
	Troubleshoot License Errors

	Install Speech-to-Text Language Packs
	Distribute Media Server Operations

	Chapter 3: Set up a Training Database
	Introduction
	Use the Internal Database
	Use an External Database
	Supported External Databases
	Set Up a PostgreSQL Database on Windows
	Set Up a PostgreSQL Database on Linux
	Create a PostgreSQL DSN on Windows
	Create a PostgreSQL DSN on Linux
	Set Up a MySQL Database
	Create a MySQL DSN on Windows
	Create a MySQL DSN on Linux
	Configure Media Server

	Upgrade the Database Schema

	Chapter 4: Configure Media Server
	The Media Server Configuration File
	Modify Configuration Parameter Values
	Include an External Configuration File
	Include the Whole External Configuration File
	Include Sections of an External Configuration File
	Include Parameters from an External Configuration File
	Merge a Section from an External Configuration File

	Encrypt Passwords
	Create a Key File
	Encrypt a Password
	Decrypt a Password

	Configure Client Authorization
	Specify Modules to Enable
	Customize Logging
	Validate the Configuration File

	Chapter 5: Start and Stop Media Server
	Start Media Server
	Stop Media Server
	Verify that Media Server is Running
	GetStatus
	GetLicenseInfo

	Access IDOL Admin
	Display Online Help

	Chapter 6: Send Actions to Media Server
	Synchronous and Asynchronous Actions
	Send Actions to Media Server
	Send Actions by Using a GET Method
	Send Data by Using a POST Method
	Application/x-www-form-urlencoded
	Multipart/form-data

	Override Configuration Parameters
	Use Asynchronous Actions
	Monitor Asynchronous Actions using Event Handlers
	Configure an Event Handler
	Write a Lua Script to Handle Events

	Process Multiple Requests Simultaneously
	Process Asynchronous Requests Simultaneously
	Process Synchronous Requests Simultaneously

	Store Action Queues in an External Database
	Prerequisites
	Configure Media Server

	Store Action Queues in Memory
	Use XSL Templates to Transform Action Responses

	Chapter 7: Start Processing Media
	Configuration Overview
	Tasks
	Tracks
	Records
	Analysis Task Output Tracks

	Create a Session Configuration
	Ingestion
	Analysis
	Transform
	Encoding
	Output

	Example Configuration
	Example Configuration - Advanced
	Validate a Task Configuration File
	Image and Video Processing
	Determine whether Media Server can Ingest Media
	Start Processing
	Verify Media Server is Processing
	Monitor Progress
	Stop Processing
	Synchronize with the Latest Training
	Optimize Analysis Performance with Parallel Processing
	Optimize Performance when Processing Images

	Part II: Ingest Media
	Chapter 8: Video Files and Streams
	Supported Audio and Video Codecs and Formats
	Choose the Rate of Ingestion
	Ingest Video from a File
	Ingest Video from a Stream

	Chapter 9: Images and Documents
	Introduction
	Supported Image and Document File Formats
	Ingest Images and Documents
	Output Records

	Chapter 10: Cameras and Third-Party Systems
	Ingest MJPEG Video streamed over HTTP
	Ingest MxPEG Video from a File or Stream
	Ingest Video from a DirectShow Device
	Obtain a List of Device Names

	Ingest Video from Milestone XProtect
	Ingest Video from Genetec Security Center
	Ingest Video from VMS

	Part III: Analyze Media
	Chapter 11: Face Detection, Recognition, and Demographics
	Introduction
	Detect Faces
	Train Media Server to Recognize Faces
	Select Images for Training
	Create a Database to Contain Faces
	Add a Face to a Database
	Add a Face to a Database (Using Separate Steps)
	Add a Face to a Database (Using a Single Action)

	List the Faces in a Database
	Update or Remove Faces and Databases

	Recognize Faces
	Obtain Demographic Information
	Analyze Facial Expression
	Face Detection Results
	Face Recognition Results
	Face Demographics Results
	Face Expression Analysis Results
	Automatically Enroll Unrecognized Faces
	Face Enrollment Results
	Optimize Face Analysis Performance

	Chapter 12: Optical Character Recognition
	Introduction
	Set up an OCR Analysis Task
	OCR Results
	Results by Line
	Results by Word

	Improve OCR

	Chapter 13: Image Classification
	Train Media Server to Classify Images
	Training Requirements
	Create a Classifier
	Classifier Training Options
	Add Classes to a Classifier
	List Classifiers and Classes
	Update or Remove Classes and Classifiers

	Import a Classifier
	Classify Images
	Classification Results

	Chapter 14: Object Class Recognition
	Introduction
	Train Media Server to Recognize Objects
	Recognizer Types
	Create and Train a Recognizer
	Import a Recognizer

	Recognize Objects
	Object Class Recognition Results

	Chapter 15: Object Recognition
	Introduction
	2D Object Recognition

	Train Media Server to Recognize Objects
	Select Images for Training
	Create a Database to Contain Objects
	Add an Object to a Database
	Add an Object to a Database (Using Separate Steps)
	Add an Object to a Database (Using a Single Action)

	Object Training Options
	List the Objects in a Database
	Update or Remove Objects and Databases

	Recognize Objects
	Object Recognition Results
	Optimize Object Recognition Performance

	Chapter 16: Text Detection
	Introduction
	Set up Text Detection
	Text Detection Results
	Example Configuration

	Chapter 17: Number Plate Recognition
	Requirements for ANPR
	Detect and Read Number Plates

	Chapter 18: Vehicle Make and Model Recognition
	Introduction
	Train Media Server to Recognize Vehicle Models
	Obtain Images for Training
	List the Supported Vehicle Makes
	Create a Database to Contain Vehicle Models
	Add a Vehicle Model to a Database
	Add a Vehicle Model to a Database (Using Separate Steps)
	Add a Vehicle Model to a Database (Using a Single Action)

	List the Vehicle Models in a Database
	Update or Remove Vehicle Models and Databases

	Recognize Vehicles (Make and Model)
	Vehicle Make and Model Recognition Results
	Identify Vehicle Colors

	Chapter 19: Clothing Color Analysis
	Introduction
	Find Clothing
	Clothing Analysis Results

	Chapter 20: Scene Analysis
	Introduction to Scene Analysis
	Train Scene Analysis
	Run Scene Analysis

	Chapter 21: Extract Keyframes
	Configure Keyframe Extraction

	Chapter 22: Image Comparison
	Introduction
	Train Media Server to Compare Images
	Select Images for Training
	Create an Image Comparison Database
	Add a Reference to a Database
	List the References in a Database
	Update or Remove References and Databases

	Compare Images
	Image Comparison Results

	Chapter 23: Color Clustering
	Perform Color Analysis
	Color Dictionaries
	Color Analysis Results

	Chapter 24: Barcode Recognition
	Supported Barcode Types
	Read Barcodes
	Example Barcode Task Configuration
	Barcode Analysis Results

	Chapter 25: Generate Image Hashes
	Introduction
	Train Media Server to Identify Duplicate Images
	Create an Image Hash Database
	Add an Image Hash to a Database
	List the Image Hashes in a Database
	Update or Remove Image Hashes and Databases

	Identify Duplicate Images
	Example Configuration
	Image Hash Results

	Chapter 26: Audio Categorization
	Categorize Audio
	Audio Categorization Results

	Chapter 27: Language Identification
	Identify the Language of Speech

	Chapter 28: Speaker Identification
	Train Speaker Identification
	Create a Speaker Database
	Add Speakers to a Database
	Generate Speaker Thresholds
	Optimize Speaker Thresholds
	List the Speakers in a Database

	Identify Speakers

	Chapter 29: Speech-to-Text
	Introduction
	Custom Language Models
	Select Text for Training
	Prepare Text for Training
	Train a Custom Language Model

	Assess Language Models
	Custom Word Databases
	Transcribe Speech
	Pre-Load Language Resources
	Speech-to-Text Results
	Redact Words in the Audio

	Chapter 30: Audio Matching
	Train Audio Matching
	Create a Database to Contain Audio Clips
	Add a Clip to the Database
	List the Clips in a Database
	Manage Audio Clips and Databases

	Recognize Audio Clips

	Chapter 31: Transcript Alignment
	Introduction
	Run Transcript Alignment

	Chapter 32: Segment Video into News Stories
	Introduction
	Prerequisites
	Configure News Segmentation
	Example Configuration
	News Segmentation Results

	Part IV: Encode Media
	Chapter 33: Encode Video to a File or UDP Stream
	Introduction
	Encode Video to MPEG Files
	Encode Video to a UDP Stream

	Chapter 34: Encode Video to a Rolling Buffer
	Store Video in a Rolling Buffer
	Calculate Storage Requirements
	Set Up Rolling Buffers
	Pre-Allocate Storage for a Rolling Buffer
	Write Video to a Rolling Buffer
	Write Video to an Evidential Rolling Buffer
	View the Rolling Buffer Contents
	Retrieve an HLS Playlist
	Create a Clip from a Rolling Buffer
	Create an Image from a Rolling Buffer
	Use Multiple Media Servers

	Chapter 35: Encode Images to Disk
	Introduction
	Encode Images

	Part V: Event Stream Processing
	Chapter 36: Event Stream Processing
	Introduction to Event Stream Processing
	Event Stream Processing with Documents
	Filter a Track
	Deduplicate Records in a Track
	Combine Tracks
	Identify Time-Related Events in Two Tracks–And Engine
	Identify Time-Related Events in Two Tracks–AndThen Engine
	Identify Isolated Events–AndNot Engine
	Identify Isolated Events–AndNotThen Engine
	Identify and Combine Time-Related Events
	Write a Lua Script for an ESP Engine

	Part VI: Transform Data
	Chapter 37: Crop Images
	Crop Images

	Chapter 38: Blur Regions of Images
	Blur Images
	Example Configuration

	Chapter 39: Draw Regions
	Introduction
	Draw Regions
	Configure Drawing with a Lua Script

	Chapter 40: Create Overlays
	Create an Overlay
	Create an Overlay with a Lua Script

	Chapter 41: Rotate Images
	Introduction
	Rotate Images

	Chapter 42: Resize Images
	Resize Images

	Chapter 43: Change the Format of Images
	Change the Format of Images

	Part VII: Output Data
	Chapter 44: Introduction
	Process Data
	Select Input Records
	Combine Records into Documents
	XSL Transformation
	Send the Data to the External System

	Choose How to Output Data
	Single Record Mode
	Time Mode
	Event Mode
	Bounded Event Mode
	At End Mode
	Page Mode

	Chapter 45: ACI Response
	Introduction
	Output Data to the Process Action Response

	Chapter 46: Files on Disk
	Output Data to Files

	Chapter 47: Connector Framework Server
	Introduction
	Send Documents to Connector Framework Server

	Chapter 48: IDOL Server
	Set up an IDOL Output Task

	Chapter 49: Vertica Database
	Insert Data into a Vertica Database

	Chapter 50: ODBC Database
	Insert Records into a Database
	Before You Begin
	Configure the Output Task
	Example Configuration
	Insert Image Data into a Database
	Troubleshooting

	Chapter 51: HTTP POST
	Send Information over HTTP

	Chapter 52: Milestone XProtect
	Introduction
	Before You Begin
	Configure Media Server
	Configure Milestone

	Part VIII: Advanced Configuration
	Chapter 53: Enable GPU Acceleration
	Introduction
	GPU Requirements
	Configure Media Server
	Use a GPU to Ingest and Encode Video
	Use a GPU for Analysis

	Optimize Analysis Performance with a GPU

	Chapter 54: Chain Media Servers
	Introduction
	Configure One-Way Chaining
	Configure the Upstream Media Server
	Configure the Downstream Media Server
	Example Configurations
	Start and Stop Processing
	Configure the Maximum Number of Sessions

	Configure Feedback Chaining
	Enable Feedback Chaining
	Configure the Upstream Media Server
	Configure the Remote Media Server
	Example Configurations

	Chapter 55: Schedule Actions in Media Server
	Use IDOL Site Admin to Schedule Media Server Actions
	Set Up IDOL Site Admin to Monitor Media Server
	Schedule Actions

	Appendixes
	Appendix A: OCR Supported Languages
	Appendix B: OCR Supported Specialized Fonts
	Appendix C: ANPR Supported Locations
	Appendix D: Speech Analysis Supported Languages
	Appendix E: Pre-Trained Classifiers
	Appendix F: Pre-Trained Object Class Recognizers
	Appendix G: Encoding Profiles

	Glossary
	Send documentation feedback

