Orbix 6.3.9

ORBA Programmer’s Reference:
NEVZ!

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/13/17

Contents

P e A . .. XiX

Introduction 1

Interface Repository QUICK REfErencCeoooviiiiiiiiii e 1

DIl and DSI QUICK REfEIENCE ..o i 2

Value Type QUICK REfEIreNCe ...ooeeiiiii e e aaee s 3

About Standard Functions for all Interfaces ..o 3

Y o T 1B ST =T o [T=T o = 5
CORBA OVEIVIEW ..ttt eaaas 7
CORBA::AbstractinterfaceDef Interfaceccoiiiiiinn... 21
CORBA::AliasDef INterfacecccooeiiiiiiiiiii e 23
CORBA: ANY ClaSS. ittt e anaanaas 25
CORBA::ArrayDef INterfaceccooveiiiiiiiiii e 33
CORBA::AttributeDef Interface..........cooiiii e 35
CORBA::ConstantDef INterfacecooiiiiiiiiiiiiii e 37
CORBA::ConstructionPolicy Interfacecccooooeiiiiiiiin... 39
CORBA::Contained INterfaceooiiiiiiiiiiiii i 41
CORBA::Container INterfaceccoooiiiiiiiiiiiii e 45
CORBA::CONEXTE Class .ooiiiiiiiii et et eeee e 61
CORBA::CONtEXTILIST ClasS ...t 65
CORBA::Current INterface ..o e 67
CORBA::CustomMarshal Value Typecccooiiiiiiiiiiiiiiiiiieaannn. 69
CORBA::DatalnputStream Value Typecccooviiiiiiiiiiiiiinnn.. 71
CORBA::DataOutputStream Value Type ... 83
CORBA::DomainManager Interface............ccccovviiiiiiiiinnnnn... 95

Orbix CORBA Programmer’s Reference: Java iii

CORBA::ENUMDET INterfacCe. e 97

CORBA:I:ENVIrONMENT ClasSS ..o 99
CORBA::EXCEPION ClasSS ...ttt et eeaaas 101
CORBA::ExceptionDef Interfacecccooiiiiiiiiiiiiiiiiiinnnnn... 103
CORBA::EXCeptioNLISt ClasS ...cciviiiiiii e e 105
CORBA::FixedDef INnterface........cccooiiiiiiiiiiii i 107

CORBA.InterfaceDefPackage.FulllnterfaceDescription Class109

CORBA: IDLType INterface......covviiiiii i 111
CORBA::InterfaceDef Interface..........ccooiiiiiiiiiiiiiiiiiaanns 113
CORBA::IRODbject INterface.....ccciiiiiiiiiiiiiiiiic e 117
CORBA::ModuleDef Interfacecooooiiiiiiiiiiiiiiiiieens 119
CORBA::NamedValue Classcccoiiiiiiiiiiiii i 121
CORBA::NativeDef Interface ..o 123
CORBA:IINVLIST ClasS ..ottt e 125
CORBA::ODJECt ClasS . ..o et 129
CORBA::OperationDef Interface..........cccoiiiiiiiiiiiiiiiiiinnnnn... 137
CORBA:I:ORB Class ...uiiiiiiii i e 141
CORBA::PoOlicy INterfaceccooviiiiiiiii e 163

Quality of Service FrameworkKoiiiiiii i e aaaes 163

[0 [0y Y01/ =3 e To - 165
CORBA::POlicyCUurreNt ClasScoviiiiiii e 167
CORBA::PolicyManager Classccooiiiiiiiiiiiiiiiiiicc e 169
CORBA::PrimitiveDef Interface ..., 171
CORBA::Repository Interface.........ccoooeviiiiiiiiiiiiiiiieiiiiias 173
CORBA::REQUEST Class ...iiiiiiiieeee ettt enaaanas 179

iv Orbix CORBA Programmer’s Reference: Java

CORBA::SequenceDef Interface........ccooiiiiiiiiiiiiiiiiiiiiiiiia.. 185

CORBA::ServerRequest ClassS.......ccioiiiiiiiiiiiiiii i 187
CORBA::String_Vvar Class ... 191
CORBA::StringDef INterface ..., 193
CORBA::StructDef Interfacec..oooiiiiiiiiiiiiiii i 195
CORBA::TypeCode Classcoiiiiiiiii e 197
CORBA::TypedefDef INnterface.........ccoiiiiiiiiiiiiiiiiiiiiiian, 205
CORBA::UnionDef INterfaceooooiiiiiiiiiiiiiii i 207
CORBA::ValueBase Classcccoiiiiiiiiiiii e 209
CORBA::ValueBoxDef Interfacecoooiiiiiiiiiiiiiiiieen. 211
CORBA::ValueDef INterfacecoooiiiiiii i 213
CORBA::VaAlUEFACTONY ... e 221

CORBA::ValUEFaCtOrY Ty P uieiiiiiit ettt ettt et et et e e e e eaaeeanns 221
CORBA::ValueMemberDef Interface.............cccooviiiiiiiin... 223
CORBA::WString_var Classcccoiiiiiiiiiii i 225
CORBA::WstringDef Interface..........ccoooiiiiiiiiiiiiiiiiiiiee 227
CosEventChannelAdmin Module.............cooiiiiiiiiiiiiiien. 229

CosEventChannelAdmin EXCEPHIONScceeeiiiaeeaeiiiiiiiiiiiieeieeeeeeeeaaaaaaaaenns 229
CosEventChannelAdmin::ConsumerAdmin Interface.......... 231
CosEventChannelAdmin::EventChannel Interface.............. 233
CosEventChannelAdmin::ProxyPullConsumer Interface..... 235
CosEventChannelAdmin::ProxyPullSupplier Interface 237

CosEventChannelAdmin:

CosEventChannelAdmin:

CosEventChannelAdmin:

:ProxyPushConsumer Interface...239
:ProxyPushSupplier Interface...... 241

:SupplierAdmin Interface 243

Orbix CORBA Programmer’s Reference: Java V

CosSEventComm ModUIe... ... e 245

COSEVeNtComMmMm EXCEPLIONS ... e 245
CosEventComm::PullConsumer Interface.......................... 247
CosEventComm::PullSupplier Interfaceccooiiiiis 249
CoskEventComm::PushConsumer Interface........................ 251
CosEventComm::PushSupplier Interface............c.....oooii. 253
CoOSNaMING OVEIVIEWt et eaaaaaaas 255
CosNaming::Bindinglterator Interface.............................. 259
CosNaming::NamingContext Interface..............ccoiiiieeaii. 261
CosNaming::NamingContextExt Interface......................... 271
CosNotification Module ..o 275

COSNOLIfICAtION Data TYPES .ttt 275

QoS and Administrative Constant Declarationsccccviiiiiiiiiiiiiennnn... 276

QOS and AdMIN Data TYPES cuutiiiitiii ettt e e et et e e e e e eaaneeaaanes 277

QOS and AdMIN EXCEPLIONS ..ottt et et e e e e aeeeeanees 279
CosNotification::AdminPropertiesAdmin Interface............ 281
CosNotification::QoSAdmin Interface............ccoiiiiiiinnaa... 283
CosNotifyChannelAdmin Module ..., 285

CosNotifyChannelAdmin Data TYPES ..uueeiiieieiiiiie e e eaaeeeaeeeaaaeeeeannes 285

CosNotifyChannelAdmin EXCEPLIONSoiineiiiiiiiii it eaees 288
CosNotifyChannelAdmin::ConsumerAdmin Interface 291
CosNotifyChannelAdmin::EventChannel Interface............. 297

CosNotifyChannelAdmin::EventChannelFactory Interface. 303
CosNotifyChannelAdmin::ProxyConsumer Interface 305
CosNotifyChannelAdmin::ProxyPullConsumer Interface ... 307
CosNotifyChannelAdmin::ProxyPullSupplier Interface 309
CosNotifyChannelAdmin::ProxyPushConsumer Interface.. 311

CosNotifyChannelAdmin::ProxyPushSupplier Interface 313

Vi Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

321

CosNotifyChannelAdmin:

323

CosNotifyChannelAdmin:
CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

331

CosNotifyChannelAdmin:

CosNotifyChannelAdmin:

335

CosNotifyChannelAdmin:

337

CosNotifyChannelAdmin::

CosNotifyComm Module
CosNotifyComm Exceptions

CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:

CosNotifyComm:

:ProxySupplier Interface

:SequenceProxyPullConsumer Interface

:SequenceProxyPushConsumer Interface

:SequenceProxyPullSupplier Interface325
:SequenceProxyPushSupplier Interface327

:StructuredProxyPullConsumer Interface

:StructuredProxyPullSupplier Interface333

:StructuredProxyPushConsumer Interface

:StructuredProxyPushSupplier Interface

SupplierAdmin Interface............ 341
... 347
... 347

:NotifyPublish Interface 349
:NotifySubscribe Interface....................... 351
:PullConsumer Interface.......................... 353
:PullSupplier Interfacec.coovvveeeea. .. 355
:PushConsumer Interface 357
:PushSupplier Interface........................... 359
:SequencePullConsumer Interface........... 361
:SequencePullSupplier Interface 363
:SequencePushConsumer Interface......... 365
:SequencePushSupplier Interface............ 367

Orbix CORBA Programmer’s Reference: Java Vii

CosNotifyComm::StructuredPullConsumer Interface 369

CosNotifyComm::StructuredPullSupplier Interface 371
CosNotifyComm::StructuredPushConsumer Interface....... 373
CosNotifyComm::StructuredPushSupplier Interface 375
CosNotifyFilter Module.........c.cooiiiiiii e 377

COSNOLITYFIItEr Data Ty PES tuuuiiiiiiiii et ettt et e e e eaaeeeaanes 377

COSNOTLITYFIter EXCEPTIONS ..ttt et e e e et e e aae e eaneeas 379
CosNotifyFilter::Filter Interface ..., 381
CosNotifyFilter::FilterAdmin Interface 387
CosNotifyFilter::FilterFactory Interfacecccccevviiiia.. 389
CosNotifyFilter::MappingFilter Interface........................... 391
CosTrading Module ... e 399

COoSTrading Data TYPES .ottt et 399

(@015 = To [T To [l S0t Ce7 =T o 1] o 1= 403
CosTrading::Admin Interface ... 407
CosTrading::ImportAttributes Interface 413
CosTrading::Link Interfacecoooiiii i 415

CosTrading: :LiNK EXCEPLIONS ...ttt et e eaanes 416
CosTrading::LinkAttributes Interface............cooocevviiiiiia.. 421
CosTrading::Lookup INnterface.........cccoiiiiiiiiiiiiiiiiiiiiiaaaaannn. 423
CosTrading::Offerldlterator Interfacecccoceevvvviiiina.. 429
CosTrading::Offerlterator Interface.............cooiiiiiiiiiia.. 431
CosTrading::Proxy Interfaceccooiiiiiiiiiiiiiiiiiiiieeeenn 433
CosTrading::Register Interface.......ccccovvviiiiiiiiiiiiiiiiiiaanns 437
CosTrading::SupportAttributes Interface..................co.o... 443
CosTrading::TraderComponents Interface 445
CosTrading::Dynamic Module..........ccooiiiiiiiiiiiiiiiii i, 447

viii Orbix CORBA Programmer’s Reference: Java

CosTradingDynamic::DynamicPropEval Interface.............. 449

CosTradingRepos Module.........ooii e 451
CosTradingRepos::ServiceTypeRepository Interface 453
CoOSTranNSaCtioONS OVEIVIEW. ...t iae e aieeeaaaaeenns 461

OVENVIEW Of ClasSSeS ...nnitiie et 461

General EXCEPTIONS ...t 462

General Data Ty PO -ttt e 464
CosTransactions::Control ClassS......ccccovviiiiiiiiiii i 469
CosTransactions::Coordinator Classccoovvviiiiiiiiiiiiiannn.. 471
CosTransactions::CUurreNt Classcooiiiiiiiiiiiii it 481
CosTransactions::RecoveryCoordinator Class 487
CosTransactions::Resource Class......ccoovviiiiiiiiiiiiiiiiciiiiaeas 489
CosTransactions::SubtransactionAwareResource Class..... 491
CosTransactions::Synchronization Class..............cccovviieee.. 493
CosTransactions::Terminator ClasS........ccovviiiiiiiiiiiiiiiiineann. 495
CosTransactions::TransactionalObject Class...................... 497
CosTransactions::TransactionFactory Class 499
CosTypedEventChannelAdmin Module ..., 501

CosTypedEventChannelAdmin EXCEPtiONScovieeiieiiiiiii i eeeeeeens 501

CosTypedEventChannelAdmin Data TYPES . .couuieiieiii i eaaeeae e 501

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface503
(O] TS18] o] o Yol f=To I @ o 1= o=\ o [] o 1N 504

CosTypedEventChannelAdmin::TypedEventChannel Interface505

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface

507
UNSupported OPeratioOnNScoieoreii i et e e e e eaeeans 507

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface509
Unsupported Operationst 510

CosTypedEventComm Modulecoooiiiiiiiiiiiiii i 511

Orbix CORBA Programmer’s Reference: Java iX

CosTypedEventComm::TypedPushConsumer Interface 513

CSI OVEIVIBW ..t e e aas 515
CSHIOP OVEINVIEW ..t eeas 519
DsEventLogAdmin Module...........ccoii i 523
DsEventLogAdmin::EventLog Interface.............ccoccvviiinen.. 525
DsEventLogAdmin::EventLogFactory Interface 527
DsLogAdmin Module 529

DSLOGAAMIN EXCEPLIONSuvvviiiiiiiiiiiiieeeaeeeeaeeaee e e e e e e eeeeeeeaeaaanns 529

DSLOGAAMIN CONSTANTS -...tvveviiiiiiiiieeeeeaeaaaeeaaaaasaeaaaaaaannensnssseeeeeeeeeaeaaens 531

DSLOGAAMIN DATALYPES -...vvvvveeeeiiiiireieeaaaaaaaaaaaasaeaaaaaaannnsnnssssseeeeeeeeeeaeaens 532
DsLogAdmin::BasicLog Interface ..., 539
DsLogAdmin::BasicLogFactory Interface 541
DsLogAdmin::Iterator Interfacecooiiiiiiiiiiiiiiinn.... 543
DsLogAdmin::Log INnterfaceccooooiiiiiiiiiiiiii i 545
DsLogAdmin::LogMgr Interface ..., 557
DsLogNotification Module 559
DsNotifyLogAdmin Module....... ... 563
DsNotifyLogAdmin::NotifyLog Interface ..., 565
DsNotifyLogAdmin::NotifyLogFactory Interface................ 567
Dynamic ModUIe ... 569
DyNamiCANY OVEINVIEWoiiiiiiiiiii e taaeeaaeaaeaeaaaaaaaann 571
DynamicAny::DYyNANY Class ..o 573
DynamicAny::DynAnyFactory Class........cccoeiiiiiiiiiiiiiinnn... 599
DynamicAny::DynArray ClasS......cccooiiiiiiiiiiiiiiiiiiiiiiae, 603
DynamicAny::DYyNENUM ClassS......ccceviiiiiiiiiiiiii e 607

X Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynFixed ClassS........ccoiiiiiiiiiiiiiiiiiiiiiieeeees 609

DynamicAny::DynSequence ClassSccovviiiiiiiiiiiiiiiiieanns 611
DynamicAny::DynNStruct Class.........c.ooiiiiiiiiii i 615
DynamicAny::DynUnNIioNn ClassScooiiiiiiiiiiiiiiiiiiiiiieaees 619
DynamicAny::DynValue Classccooiiiiiiiiiiii i 623
GSSUP OVEIVIEW e aeeee 627
The IT_Buffer Module........ooo e 629
[=10 1 (=]] o] = To [630
IT _Buffer:i:Segment.. ... e 632
1T _BUuffer: BU er. ... e 633
IT_Buffer::BufferManagercooeiiiiiiiiiiiii i 637
IT _Certificate OVEeIrVIEW. ... eeeaeaen 639
IT _Certificate::AVA INterfaceccoooiiiiiiiiiiiieeeeeenn 641
IT_Certificate::AVAList Interface...........cccooiiiiiiiiiiiiiinn. .. 643
IT_Certificate::Certificate Interfacecocoviiiiiiiiina... 647
IT_Certificate::Extension Interface ..., 649
IT_Certificate::ExtensionList Interface.............................. 651
IT_Certificate::X509Cert Interfaceccccvvviiiiiiiiiiinann.n. 655
IT_Certificate::X509CertificateFactory Interface............... 657
IT _CoNfig OVEINVIEW ...ttt eee e 659
IT_Config::Configuration Interface..............ccccoiiiiiiiian... 661
IT _Config::Listener Interfacecoovviiiiiiiiiiieeeeenn. 667
IT _CORBA OVEINVIEW ...ttt et aeaaeeeaen 671
IT_CORBA::RefCountedLocalObject Class............cc.coceennin. 673

Orbix CORBA Programmer’s Reference: Java Xi

IT_CORBA::RefCountedLocalObjectNC Class..........c.ccceee... 675

IT_CORBA::WellKnownAddressingPolicy Class 677
The IT_CORBASEC Module ... 679
IT_CORBASEC::ExtendedReceivedCredentials................... 682
IT_CosTransactions Moduleo 685
IT_CosTransactions::Current Classccooeiiiiiiiiiiiiiiiinnn... 687
TGS OVEIVIBW ... eeaaneaaeas 689
IT_CSI::AttributeServicePolicy Interface..............cc.oooee... 695
IT_CSIl::AuthenticateGSSUPCredentials Interface 699
IT_CSIl::AuthenticationServicePolicy Interface................. 703
IT_CSIl::CSICredentials Interfaceccooeeviiiiiiiiiiiinnn... 707
IT_CSI::CSICurrentInterface ...t 709
IT_CSI::CSICurrent2 Interface ... 711
IT_CSIl::CSIReceivedCredentials Interface 715
IT_EventChannelAdmin Module ... 719

IT_EventChannelAdmin Data TYPeS .uuuiiiii it eaaaes 719

IT_EventChannelAdmin EXCEPHIONSuuvvvurirerreiiiiiieeeaeaaaaaaaaaaaaaaeaaaaanns 719

IT_EventChannelAdmin::EventChannelFactory Interface.. 721

IT_ FPS MOAUIE ..o, 723
IT_FPS::InterdictionPolicy Interfacecccccovviiiiiiiina... 725
The IT_GIOP Module......cooi e 727
Interface IT_GIOP::ClientVersionConstraintsPolicy 728
Interface IT_GIOP::ClientCodeSetConstraintsPolicy 729
Interface IT_GIOP::CUIrreNt ... 730
Interface IT_GIOP::CUrrent2cooiiiiiiiiiiiiiiiieeees 733

Xii Orbix CORBA Programmer’s Reference: Java

IT _LoadBalancing OVerVIEWccoiiiiiiiiiii e eeeeaeaeaaeenn 737

IT_LoadBalancing::ObjectGroup Interface 741
IT_LoadBalancing::ObjectGroupFactory Interface............. 747
IT _LOgQiNg OVeIVIEW ...uuniiiiiiii e aeeeans 751
IT_Logging::EventLog Interface..........ccooiiiiiiiiiiiiiiiiiinanns 757
IT_Logging::LogStream Interfaceoooiiiiiiiiiiiiannn, 761
IT _MessagingAdmin Module...............oooiiiiii e 763
IT_MessagingAdmin::Manager Interface...................cooo.... 765
IT_MessagingBridge Module...... ... 767
IT _MessagingBridge::Endpoint Interface 771
IT_MessagingBridge::SinkEndpoint Interface.................... 773
IT_MessagingBridge::SourceEndpoint Interface................ 774
IT _MessagingBridge::EndpointAdmin Interface 775
IT_MessagingBridgeAdmin Module..............ccooiiiiiiiiiea.. .. 779
IT_MessagingBridgeAdmin::Bridge Interface.................... 781
IT _MessagingBridgeAdmin::BridgeAdmin Interface.......... 783
IT_NotifyBridge Module.........ccooiiiiiiiiiii e 785
IT_NotifyBridge::SinkEndpoint Interface........................... 786
The IT_NamedKey Module....... ..o 787
IT_NamedKey::NamedKeyRegistry......ccooevviviiiiiiiiiiiinnnnn... 788
IT_Naming Module ... e 793
IT_Naming::1T_NamingContextExt Interface 795
IT_NotifyChannelAdmin Module ..., 797

IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface799

Orbix CORBA Programmer’s Reference: Java Xiii

IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier
=] = Lo 801

IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier

INEerTacCe .. 803
IT_NotifyComm Module ... e 805
IT_NotifyComm::GroupNotifyPublish Interface 807
IT_NotifyComm::GroupPushConsumer Interface............... 809

IT_NotifyComm::GroupSequencePushConsumer Interface811

IT_NotifyComm::GroupStructuredPushConsumer Interface813

IT_NotifyLogAdmin Module ... 815
IT_NotifyLogAdmin::NotifyLog Interface.......................... 817
IT_NotifyLogAdmin::NotifyLogFactory Interface 819
The IT_PlainTextKey Module ... 821

N I = U1 T IS0 =Y/ 821

IT_PlainTextKey: tFOrwardero e aeeas 821
IT_PortableServer OVerVIEW........coviiiiiiiiiiiiii i 823

IT_PortableServer::DispatchWorkQueuePolicy Interface.. 825

IT_PortableServer::ObjectDeactivationPolicy Class........... 827
IT_PortableServer::PersistenceModePolicy Class 829
IT _TLS OVEIVIEW ..o eeennaneas 831
IT_TLS::CertValidator Interface............coooiiiiiiiiiiiiiiian... 835
IT_TLS API OVEIVIEW ..ot 837
IT_TLS_API::CertConstraintsPolicy Interface................... 841
IT_TLS_API::CertValidatorPolicy Interface....................... 843
IT_TLS API::MaxChainLengthPolicy Interface.................. 845
IT_TLS_API::SessionCachingPolicy Interface 847

Xiv Orbix CORBA Programmer’s Reference: Java

IT_TLS APIL:TLS INterface.....cooiiiiiiiiii e 849

IT_TLS _API::TLSCredentials Interfaceccccvee.... 851
IT_TLS_API::TLSReceivedCredentials Interface 853
IT_TLS API:.:TLSTargetCredentials Interface.................... 855
IT_TLS_API::TrustedCAListPolicy Interface 857
IT_TypedEventChannelAdmin Module ...l 859

IT_TypedEventChannelAdmin Data TYPES ...couiiiiiiiiiii i eaeea 859

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface
861

IT_WorkQueue Module........coo e 863
IT_WorkQueue::AutomaticWworkQueue Interface 865

IT_WorkQueue::AutomaticWorkQueueFactory Interface...867

IT_WorkQueue::ManualWorkQueue Interface................... 869
IT_WorkQueue::ManualWorkQueueFactory Interface 871
IT_WorkQueue::Workltem Interface...........ccoooiiiiiiiinn, 873
IT_WorkQueue::WorkQueue Interfacecccoevvveeea.... 875
IT_WorkQueue::WorkQueuePolicy Interface..................... 877
The IT_ZIOP ModUle...... e 879
N A 1O] @ g g1] (/=TT P 880
IT_ZIOP::COMPIreSSOIrFaCIOrY ... e e e aeee e 881
IT_ZIOP::ComMPresSSiONMEaNAJETcinuiiieie e r e e eanens 883
IT_ZIOP::CompressioNCOMPONENTo eeee e 885
IT_ZIOP::CompressionComponentFactorycooooiiiiiiiiiiiiiiiiiiaieaaee, 885
IT_ZIOP::CompressionEnablingPoliCyoooiiii e 885
IT_ZIOP::CompressorldPOlICY ... 886
MeSSAgING OVEINVIEW ... e e aaas 887
Messaging::ExceptionHolder Value Typeccovviiiiiiniinnn.. 891
Messaging::RebindPolicy Class.........ccoiiiiii e 895
Messaging::ReplyHandler Base Class...........cccooiiiiiiiienis 897

Orbix CORBA Programmer’s Reference: Java XV

Messaging::SyncScopePolicy Class
OrbixEventsAdmin Module
OrbixEventsAdmin::ChannelManagerccoooeeivviiiiiina..
Portablelnterceptor Module.........ccoiiiii i,
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:

Portablelnterceptor:

:ClientRequestiInfo Interface

:ClientRequestinterceptor Interface. 915

:Current Interface ..., 919
Interceptor Interface 921
IORINfo Interface...........cc.ooooiiinnet. 923
IORINnterceptor Interface 925
:ORBInitializer Interface 927
:ORBInitInfo Interface 929
:PolicyFactory Interface 935
:Requestinfo Interface..................... 937
:ServerRequestinfo Interface........... 943

:ServerRequestinterceptor Interface 947

SECUNITY OVEIVIEW. ...ttt ettt e aaaanas 951
SecurityLevell OVEerVIEWcooiiiiiiii i 959
SecurityLevell::Current Interface..............ccooiiiiiiiiiiiinnnn... 961
SecurityLevel2 OVErVIEWcoiiiiiiiii e e 963
SecurityLevel2::Credentials Interface.............cocoviiiiiiiis 965
SecurityLevel2::Current Interface..............cccooiiiiiiiiiiiinnnn... 969
SecurityLevel2::EstablishTrustPolicy Interface................. 971
SecurityLevel2::InvocationCredentialsPolicy Interface..... 973

XVi Orbix CORBA Programmer’s Reference: Java

SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:
SecuritylLevel2:

SecuritylLevel2:

:MechanismPolicy Interface 975

:PrincipalAuthenticator Interface.............. 977
:QOPPolicy Interfacec.ooooiiiiiiiiiiin... 981
:ReceivedCredentials Interface 983
:SecurityManager Interface....................... 985
:TargetCredentials Interface 989

... 995

Orbix CORBA Programmer’s Reference: Java Xvii

Xviii Orbix CORBA Programmer’s Reference: Java

Audience

Preface

Orbix is a software environment for building and integrating
distributed object-oriented applications. Orbix is a full
implementation of the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG).
Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some
additional features and Orbix-specific enhancements.

The reader is expected to understand the fundamentals of writing
a distributed application with Orbix. Familiarity with Java is
required.

Organization of this Reference

This reference presents core-product modules in alphabetical
order, disregarding IT_ prefixes in order to keep together related
OMG-compliant and Orbix-proprietary modules. For example,
modules corBa and IT CORBA are listed in sequence.

Modules that are specific to a service are also grouped together
under the service’s name—for example, modules
CosPersistentState, IT PSS, and IT PSS DB are listed under
Persistent State Service.

Related Documentation

This document is part of a set that comes with the Orbix product.
Other books in this set include:

* Application Server Platform Administrator’'s Guide
* CORBA Programmer’s Guide
* CORBA Code Generation Toolkit Guide

Document Conventions

This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, methods, variables, and
data structures. For example, text might refer to
the CORBA: :Object class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Orbix CORBA Programmer’s Reference: Java Xix

Italic

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

This guide may use the following keying conventions:

No prompt

%

[]

{}

xx Orbix CORBA Programmer’s Reference: Java

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root
privileges.

The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and
syntax descriptions.

Braces enclose a list from which you must choose
an item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:

* The WebSync service, where you can download fixes and
documentation updates.

* The Knowledge Base, a large collection of product tips and
workarounds.

* Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

* Your computer make and model.

®* Your operating system version number and details of any
networking software you are using.

* The amount of memory in your computer.
* The relevant page reference or section in the documentation.

®* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Orbix CORBA Programmer’s Reference: Java xxi

http://www.microfocus.com
http://www.microfocus.com

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

* https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsl etters/infocus/newsl etter-subscriptio
n.asp

xxii Orbix CORBA Programmer’s Reference: Java

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Introduction

This describes all of the standard programmer’s APl for CORBA
and Orbix. This introduction contains the following topics:

* “Interface Repository Quick Reference”
e “DIl and DSI Quick Reference”

* “Value Type Quick Reference”

* “About Sequences”

The rest of the CORBA Programmer’s Reference contains the fol-
lowing modules and appendix:

CORBA Portablelnterceptor
CosNaming PortableServer
CosTransactions “System Exceptions”
DynamicAny

IT Config

IT CORBA

IT Logging

IT PortableServer

Interface Repository Quick Reference

Table 1:

The interface repository (IFR) is the component of Orbix that pro-
vides persistent storage of IDL definitions. Programs use the fol-
lowing API to query the IFR at runtime to obtain information about

IDL definitions:

Interface Repository API

CORBA Structures

CORBA Enumerated Types

AttributeDescription
ConstantDescription
ExceptionDescription
Initializer
InterfaceDescription
ModuleDescription
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

AttributeMode
DefinitionKind
OperationMode
ParameterMode
PrimitiveKind
TCKind

Orbix CORBA Programmer’s Reference: Java 1

Table 1 Interface Repository API

CORBA Classes and Interfaces Typecode Methods in CORBA::ORB
AliasDef create abstract interface tc()
ArrayDef create alias tc()
AttributeDef create array tc()
ConstantDef create enum tc()
Contained create exception tc()
Container create fixed tc()
EnumDef create interface tc()
ExceptionDef create native tc()
Environment create recursive tc()
FixedDef create sequence tc()
IDLType create string tc()
InterfaceDef create struct tc()
IRObject create union tc()
ModuleDef create value box tc()
NativeDef create value tc()
OperationDef create wstring tc()
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueMemberDef
WstringDef

D11 and DSI Quick Reference

The client-side dynamic invocation interface (DII) provides for the
dynamic creation and invocation of requests for objects. The
server-side counterpart to the DIl is the dynamic Skeleton inter-
face (DSI) which dynamically handles object invocations. This
dynamic system uses the following data structures, interfaces,
and classes:

Table 2: DIl and DS API
D1l Classes DSI Classes
CORBA: : ExceptionList CORBA: : ServerRequest
CORBA: :Request PortableServer: :DynamicImplementation

CORBA: : TypeCode

Key Data Types DIlI1-Related Methods
CORBA: : Any CORBA: :Object:: create request ()
CORBA: :Flags CORBA: :ORB: :create list ()

CORBA: :NamedValue CORBA: :ORB: :create operation list ()
CORBA: :NVList CORBA: :ORB: :get default context ()

2 Orbix CORBA Programmer’s Reference: Java

Value Type Quick Reference

A value type is the mechanism by which objects can be passed by
value in CORBA operations. Value types use the following data
structures, methods, and value types from the CORBA module:

Types
ValueFactory

Value Types and Classes

CustomMarshal
DatalInputStream
DataOutputStream
ValueFactory
ValueDef

About Standard Functions for all Interfaces

Parameters

Note:

Parameters

Note:

Every IDL interface also has generated helper functions:

_duplicate()

inline static crass ptr duplicate(
CLASS ptr p

)i

This function returns a duplicate object reference and increments
the reference count of the object. Use this function to create a copy
of an object reference.

P The current object reference to duplicate.

This is a standard function generated for all interfaces.

_narrow()
static CLASS ptr narrow(
CORBA: :Object ptr obj
)i
This function returns a new object reference given an existing
reference. Use this function to narrow an object reference.

obj A reference to an object. The function returns a nil
object reference if this parameter is a nil object refer-
ence.

This is a standard function generated for all interfaces.

When you have IDL interfaces that inherit from each other, you
often need to convert a ref nerence of one type to a related type.
For example suppose you have the following interfaces:

// IDL
interface Base { ... };

Orbix CORBA Programmer’s Reference: Java 3

Exceptions

See Also

Note:

Parameters

Note:

See Also

interface Derived : Base { ... };

Now suppose you have a reference of type Base but it refers to an
object which is actually of type Derived. Converting the Base refer-
ence to a Derived reference is called narrowing because you are con-
verting from a more general type to a more specific, or narrow,
type. Conversely converting a Derived reference to a Base refer-
ence is called widening. Note that narrowed or widened references
still refer to the same object, they are simply different views of that
object.

Always check the results of narrow() with CORBA::is nil(). The
_narrow () function checks whether the reference actually refers to
an object of the type you are narrowing to. If not, narrow()
returns a nil reference. The _narrow() function does an implicit
duplicate, so you are responsible for releasing both the original
reference and the new reference returned. The easiest way to do
this is by assigning both to var variables.

The narrow() function can actually both narrow and widen refer-

ences. It takes a CORBA: :Object ptr parameter and tests whether

the requested interface is compatible with the actual most-derived
interface implemented by the object, regardless of the inheritance
relationships involved.

A standard system exception can be raised in some unusual cases
where a remote call occurs to the object being narrowed. However,
normally narrow() is a local function call and it can figure out the
conversion based on information in the IDL compiler generated stub
code.

unchecked narrow ()

_nil()
inline static crass ptr nil();

Returns a nil object reference to the object.

This is a standard function generated for all interfaces.

_unchecked_narrow()
static crLAss ptr unchecked narrow (

CORBA: :Object ptr obj
)i
Returns a new object reference to the object given an existing ref-
erence. However, unlike narrow (), this function does not verify
that the actual type of the parameter at runtime can be widened
to the requested interface’s type.

obj A reference to an object.

This is a standard function generated for all interfaces.

narrow ()

4 Orbix CORBA Programmer’s Reference: Java

About Sequences

An IDL sequence maps to a class of the same name. For example,
an IDL sequence named TypeSeqg Which is made up of a sequence of
Type IDL data types, has the class mypeSeq implemented.

// IDL
typedef sequence<Type> TypeSedq;

Orbix CORBA Programmer’s Reference: Java 5

6 Orbix CORBA Programmer’s Reference: Java

CORBA Overview

The CORBA namespace implements the IDL CORBA module. Addi-
tional introductory chapters describe the common methods and
definitions found in the scope of the CORBA namespace.

* “Common CORBA Data Types”

All classes or interfaces defined in the CORBA namespace are
described in the following alphabetically ordered chapters:

AliasDef

Any
ArrayDef
AttributeDef
ConstantDef
Contained
Container
Current
CustomMarshal
DataInputStream
DataOutputStream
DomainManager
EnumDef
Environment

ExceptionDef
ExceptionList

FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NamedValue
NativeDef
NVList

Object
OperationDef
ORB

Policy
PolicyCurrent
PolicyManager
PrimitiveDef

Repository
Request
SequenceDef
ServerRequest
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueFactory
ValueMemberDef
WstringDef

Some standard system exceptions are also defined in the CORBA
module. However, these exceptions are described in “System

Exceptions”.

Common CORBA Data Types

This chapter contains details of all common CORBA data types.
The following alphabetically ordered list contains a link to the
details of each data type:

AttributeDescription InvalidPolicies SetOverrideType
AttributeMode ModuleDescription StructMember
ConstantDescription OperationDescription TCKind
DefinitionKind OperationMode TypeDescription
ExceptionDescription ParameterDescription UnionMember
Initializer ParameterMode ValueDescription
InterfaceDescription PolicyError ValueMember

PolicyErrorCode

PolicyList

PolicyType

PrimitiveKind

RepositoryId

RepositoryIdSeg

Orbix CORBA Programmer’s Reference: Java 7

CORBA::AttributeDescription Structure

// IDL

struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode type;
AttributeMode mode;

}i

The description of an interface attribute in the interface repository.

name The name of the attribute.
id The identifier of the attribute.
defined in The identifier of the interface in which the attribute is
defined.
version The version of the attribute.
type The data type of the attribute.
mode The mode of the attribute.
See Also CORBA::AttributeDef

CORBA::AttributeMode Enumeration

// IDL
enum AttributeMode {ATTR NORMAL, ATTR READONLY};

The mode of an attribute in the interface repository.

ATTR NORMAL Mode is read and write.
ATTR READONLY Mode is read-only.

See Also CORBA::AttributeDef

CORBA::ConstantDescription Structure

// IDL

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode type;
any value;

}i

The description of a constant in the interface repository.

name The name of the constant.

id The identifier of the constant.

defined in The identifier of the interface in which the constant
is defined.

version The version of the constant.

8 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

type The data type of the constant.
value The value of the constant.

CORBA: : ConstantDef

CORBA::DefinitionKind Enumeration

// IDL
enum DefinitionKind {

dk none, dk all,

dk Attribute, dk Constant, dk Exception, dk Interface,
dk Module, dk Operation, dk Typedef,

dk Alias, dk Struct, dk Union, dk Enum,

dk Primitive, dk String, dk Sequence, dk Array,

dk Repository,

dk Wstring, dk Fixed,

dk Value, dk ValueBox, dk ValueMember,

dk Native

}i

Identifies the type of an interface repository object.

Each interface repository object has an attribute

(CORBA: : IRObject: :def kind) of the type DefinitionKind that
records the kind of the IFR object. For example, the def kind attri-
bute of an InterfaceDef object is dk_interface. The enumeration
constants dk_none and dk_all have special meanings when search-
ing for an object in a repository.

CORBA::IRObject:idef kind
CORBA: : Contained
CORBA: :Container

CORBA::ExceptionDescription

// Java

public ExceptionDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.TypeCode type

)

The description of an exception in the interface repository.

name The name of the exception.

id The identifier of the exception.

defined in The identifier of the interface in which the exception
is defined.

version The version of the exception.

type The data type of the exception.

Orbix CORBA Programmer’s Reference: Java 9

CORBA::Initializer Structure

// IDL
struct Initializer {
StructMemberSeq members;
Identifier name;
}i
// Java
package org.omg.CORBA;
public final class Initializer
implements org.omg.CORBA.portable.IDLEntity {
public org.omg.CORBA.StructMember [] members;
public Initializer() {}
public Initializer(org.omg.CORBA.StructMember[] members)
{ this.members = members; }

}

An initializer structure for a sequence in the interface repository.

members The sequence of structure members.

CORBA::InterfaceDescription Structure

// IDL

struct InterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
RepositoryIdSeq base interfaces;
boolean is abstract;

}i

// Java
package org.omg.CORBA;

public final class InterfaceDescription
implements org.omg.CORBA.portable.IDLEntity
{

public java.lang.String name;

public java.lang.String id;

public java.lang.String defined in;

public java.lang.String version;

public java.lang.String[] base interfaces;

public boolean is abstract;

public InterfaceDescription() {}

public InterfaceDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
java.lang.String[] base interfaces,
boolean is abstract)

A description of an interface in the interface repository. This
structure is returned by the inherited describe () method in the
InterfaceDef interface. The structure members consist of the fol-
lowing:

name The name of the interface.

10 Orbix CORBA Programmer’s Reference: Java

See Also

id The identifier of the interface.

defined in The identifier of where the interface is defined.
version The version of the interface.
base interfaces The sequence of base interfaces from which

this interface is derived.

is abstract A true value if the interface is an abstract one,
a false value otherwise.

CORBA: : InterfaceDef : :describe ()

CORBA::InvalidPolicies Exception

// IDL
exception InvalidPolicies {

sequence <unsigned short> indices;
}i

// Java

package org.omg.CORBA;

public final class InvalidPolicies
extends org.omg.CORBA.UserException

{
public short[] indices;
public InvalidPolicies()
{
super (InvalidPoliciesHelper.id()) ;
}
public InvalidPolicies(short[] indices)
{
super (InvalidPoliciesHelper.id()) ;
this.indices = indices;
}
public InvalidPolicies(String reason, short[] indices)
{
super (InvalidPoliciesHelper.id() + " " + reason);
this.indices = indices;
}
1

This exception is thrown by operations that are passed a bad policy.
The indicated policies, although valid in some circumstances, are
not valid in conjunction with other policies requested or already
overridden at this scope.

CORBA::ModuleDescription Structure

// IDL

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryIld defined in;
VersionSpec version;

}i

// Java

Orbix CORBA Programmer’s Reference: Java 11

package org.omg.CORBA;

public final

class ModuleDescription

implements org.omg.CORBA.portable.IDLEntity

{

public java.lang.String name;
public java.lang.String id;

public java.lang.String defined in;
public java.lang.String version;

public ModuleDescription() {}
public ModuleDescription (

java.
java.
java.
java.

this.
this.
this.
this.

}

lang.String name,
lang.String id,
lang.String defined in,
lang.String version

name = name;
id = id;

defined in = defined in;
version = version;

The description of an IDL module in the interface repository. The
structure members consist of the following:

name
id
defined in

version

The name of the module.

The identifier of the module.

The identifier of where the module is defined.
The version of the module.

See Also CORBA: :ModuleDef

CORBA::OperationDescription Structure

// IDL

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;

TypeCode

result;

OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

}i

This structure describes an IDL operation in the interface repository.
The structure members consist of the following:

name
id
defined in

version

12 Orbix CORBA Programmer’s Reference: Java

The name of the IDL operation.

The identifier of the IDL operation.

The identifier of where the IDL operation is defined.
The version of the IDL operation.

result The TypeCode of the result returned by the defined
IDL operation.

mode Specifies whether the IDL operation’s mode is nor-
mal (OP_NORMAL) or one-way (OP ONEWAY).

contexts The sequence of context identifiers specified in the
context clause of the IDL operation.

parameters The sequence of structures that give details of each
parameter of the IDL operation.

exceptions The sequence of structures containing details of
exceptions specified in the raises clause of the IDL
operation.

CORBA::OperationMode Enumeration

enum OperationMode {OP NORMAL, OP ONEWAY};

The mode of an IDL operation in the interface repository. An
operation’s mode indicates its invocation semantics.

OP_NORMAL The IDL operation’s invocation mode is normal.

OP_ONEWAY The IDL operation’s invocation mode is oneway which
means the operation is invoked only once with no
guarantee that the call is delivered.

CORBA::ORBIid Type

// IDL
typedef string ORBid;

The name that identifies an ORB. OrRBid strings uniquely identify
each ORB used within the same address space in a multi-ORB
application. orBid strings (except the empty string) are not man-
aged by the OMG but are allocated by ORB administrators who must
ensure that the names are unambiguous.

CORBA::ParameterDescription Structure

// IDL
struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type def;
ParameterMode mode;
}i
This structure describes an IDL operation’s parameter in the inter-
face repository. The structure members consist of the following:

name The name of the parameter.

type The TypeCode of the parameter.

type def Identifies the definition of the type for the parame-
ter.

Orbix CORBA Programmer’s Reference: Java 13

mode Specifies whether the parameter is an in input, out-
put, or input and output parameter.

CORBA::ParameterMode Enumeration

enum ParameterMode {PARAM IN, PARAM OUT, PARAM INOUT};
The mode of an IDL operation’s parameter in the interface reposi-

tory.

PARAM IN The parameter is passed as input only.

PARAM OUT The parameter is passed as output only.

PARAM INOUT The parameter is passed as both input and output.

CORBA::PolicyError Exception

// IDL
exception PolicyError {

PolicyErrorCode reason;
}i

The policyError exception is thrown to indicate problems with
parameter values passed to ORB: :create policy (). Possible reasons
are described in the pPolicyErrorCode.

See Also CORBA: :ORB: :create policy()
CORBA: : PolicyErrorCode

CORBA::PolicyErrorCode Type

typedef short PolicyErrorCode;

A value representing an error when creating a new policy. The
following constants are defined to represent the reasons a request
to create a policy might be invalid:

Table 3: PolicyErrorCode Constants

Constant Explanation

BAD POLICY The requested policy is not under-
stood by the ORB.

UNSUPPORTED POLICY The requested policy is understood
to be valid by the ORB, but is not
currently supported.

BAD POLICY TYPE The type of the value requested for
the policy is not valid for that
PolicyType.

BAD POLICY VALUE The value requested for the policy is

of a valid type but is not within the
valid range for that type.

14 Orbix CORBA Programmer’s Reference: Java

Table 3: PolicyErrorCode Constants

Constant Explanation

UNSUPPORTED POLICY VALUE The value requested for the policy is
of a valid type and within the valid
range for that type, but this valid
value is not currently supported.

See Also CORBA:I:ORB::create policy()

CORBA::PolicyList Sequence

A list of policy objects. Policies affect an ORB’s behavior.

See Also CORBA::Policy
CORBA: :Object: :set policy overrides()
PortableServer: :POA: : POA create POA()
“About Sequences”

CORBA::PolicyType Type
Defines the type of policy object.

The CORBA module defines the following constant PolicyType:

// IDL
const PolicyType SecConstruction = 11;

Other valid constant values for a PolicyType are described with the
definition of the corresponding policy object. There are standard
OMG values and Orbix-specific values.

See Also CORBA::Policy
CORBA: : PolicyTypeSeq
CORBA: :ORB: :create policy ()
CORBA: :Object:: get policy ()
CORBA: :DomainManager: :get domain policy ()
// IDL
typedef sequence<PolicyType> PolicyTypeSeq;

A sequence of PolicyType data types.

See Also CORBA::Object::get _policy overrides()
CORBA: : PolicyManager: :get policy overrides ()

CORBA::PrimitiveKind Enumeration

// IDL
enum PrimitiveKind {

pk null, pk void, pk short, pk long, pk ushort, pk ulong,
pk float, pk double, pk boolean, pk char, pk octet,
pk any, pk TypeCode, pk Principal, pk string, pk objref,
pk longlong, pk ulonglong, pk longdouble,
pk wchar, pk wstring, pk value base

}i

typedef PrimitiveKind& PrimitiveKind out;

Orbix CORBA Programmer’s Reference: Java 15

See Also

See Also

See Also

Indicates the kind of primitive type a PrimitiveDef Object represents
in the interface repository.

Most kinds are self explanatory with the exception of the follow-
ing:

®* There are no PrimitiveDef objects with the kind pk_null.

* The kind pk_string represents an unbounded string.

®* The kind pk_ocbjref represents the IDL type Object.

CORBA::PrimitiveDef
CORBA: : Repository

CORBA::Repositoryld Type

A string that uniquely identifies, in the interface repository, an IDL
module, interface, constant, typedef, exception, attribute, value
type, value member, value box, native type, or operation.

The format of rRepositoryId types is a short format name followed
by a colon followed by characters, as follows:

format name:string

The most common format encountered is the OMG IDL format. For
example:

IDL:Pre/B/C:5.3

This format contains three components separated by colons:

IDL The first component is the format name, 1DL.

pre/B/C The second component is a list of identifiers separated
by '/’ characters that uniquely identify a repository item
and its scope. These identifiers can contain other charac-
ters including underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version
numbers separated by a dot (.).

CORBA::Repository::ilookup id()

CORBA::RepositoryldSeq Sequence

A sequence of rRepositoryId strings in the interface repository.

CORBA: :RepositoryId
“About Sequences”

CORBA::SetOverrideType Enumeration

// IDL
enum SetOverrideType {SET OVERRIDE, ADD OVERRIDE};

The type of override to use in the set policy overrides() method
when setting new policies for an object reference. Possible types
consist of:

SET OVERRIDE Indicates that new policies are to be associated
with an object reference.

16 Orbix CORBA Programmer’s Reference: Java

See Also

ADD OVERRIDE Indicates that new policies are to be added to
the existing set of policies and overrides for an
object reference.

CORBA::StructMember()

// Java
public StructMember (

java.lang.String name,

org.omg.CORBA.TypeCode type,

org.omg.CORBA.IDLType type def
)

This describes an IDL structure member in the interface repository.
The structure members consist of the following:

name The name of the member.
type The TypeCode for the member.
type def Identifies the definition of the type for the member.

CORBA::TCKind Enumeration

// IDL
enum TCKind {

tk null, tk void,

tk short, tk long, tk ushort, tk ulong,

tk float, tk double, tk boolean, tk char,
tk octet, tk any, tk TypeCode, tk Principal, tk objref,
tk struct, tk union, tk enum, tk string,

tk sequence, tk array, tk alias, tk except,
tk longlong, tk ulonglong, tk longdouble,
tk wchar, tk wstring, tk fixed,

tk value, tk value box,

tk native,

tk abstract interface

i

A TCKind value indicates the kind of data type for a TypeCode. A
TypeCode iS a value that represent an invocation argument type or
attribute type, such as that found in the interface repository or with
a dynamic any type.

CORBA::TypeCode::kind ()

DynamicAny: : DynStruct: : current member kind ()
DynamicAny: : DynUnion: : discriminator kind()
DynamicAny: : DynUnion: :member kind ()
DynamicAny: : DynValue: : current member kind()

CORBA::TypeDescription Structure

// IDL

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;

Orbix CORBA Programmer’s Reference: Java 17

VersionSpec version;

TypeCode type;
}i
This structure describes an IDL data type in the interface repository.
The structure members consist of the following:

name The name of the data type.

id The identifier for the data type.

defined in The identifier of where the data type is defined.
version The version of the data type.

type The TypeCode of the data type.

CORBA::UnionMember Structure

// IDL
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type def;
}i
This structure describes an IDL union member in the interface
repository. The structure members consist of the following:

name The name of the union member.

label The label of the union member.

type The TypeCode of the union member.

type def The IDL data type of the union member.

CORBA::ValueDescription Structure

// IDL
struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is abstract;
boolean is custom;
RepositoryId defined in;
VersionSpec version;
RepositoryIldSeq supported interfaces;
RepositoryIdSeq abstract base values;
boolean is truncatable;
RepositoryId base value;

}i
The description of an IDL value type in the interface repository.

Value types enable the passing of objects by value rather than just
passing by reference. The structure members consist of the follow-

ing:
name The name of the value type.
id The identifier of the value type.

18 Orbix CORBA Programmer’s Reference: Java

See Also

is abstract True of the value type is abstract. False if
the value type is not abstract.

is custom True of the value type is custom. False if the
value type is not custom.

defined in The identifier of where the value type is
defined.

version The version of the value type.

supported interfaces
abstract base values
is truncatable

base value

CORBA::ValueDef: :describe ()

CORBA::ValueMember Structure

// IDL
struct ValueMember {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
TypeCode type;
IDLType type def;
Visibility access;
i
This structure describes an IDL value type member in the interface
repository. The structure members consist of the following:

name The name of the value type member.

id The identifier of the value type member.

defined in The identifier of where the value type member is
defined.

version The version of the value type member.

type The TypeCode of the value type member.

type def The type definition of the value type member.

access The accessibility of the value type member (public
or private).

Orbix CORBA Programmer’s Reference: Java 19

20 Orbix CORBA Programmer’s Reference: Java

CORBA::AbstractinterfaceDef
Interface

RbstractInterfaceDef describes an abstract IDL interface in the
interface repository. It inherits from the InterfaceDef interface.

// IDL
interface AbstractInterfaceDef : InterfaceDef

{
}i

Orbix CORBA Programmer’s Reference: Java 21

22 Orbix CORBA Programmer’s Reference: Java

CORBA::AliasDef Interface

See Also

See Also

See Also

The aliaspDef interface describes an IDL typedef that aliases
another definition in the interface repository. It is used to repre-
sent an IDL typedef.
// IDL in module CORBA.
interface AliasDef : TypedefDef {

attribute IDLType original type def;
i

// Java
package org.omg.CORBA;

public interface AliasDef
extends AliasDefOperations,
org.omg.CORBA. TypedefDef

The following items are described for this interface:
®* The describe () IDL operation
®* The original type def attribute

CORBA: :Contained
CORBA: :Container: :create alias ()

AliasDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which is inherited by TypedefDef). The
DefinitionKind for the kind member is dk_Alias. The value member
is an any whose TypeCode iS _tc AliasDescription and whose value
is a structure of type TypeDescription.

CORBA: : TypedefDef : :describe ()

AliasDef::original_type def Attribute

// IDL
attribute IDLType original type def;

// Java
org.omg.CORBA.IDLType original type def();

void original type def(org.omg.CORBA.IDLType val);

Identifies the type being aliased. Modifying the original type def
attribute will automatically update the type attribute (the type
attribute is inherited from TypedefDef which in turn inherits it from
IDLType). Both attributes contain the same information.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 23

24 Orbix CORBA Programmer’s Reference: Java

CORBA::Any Class

The class any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This
allows a program to handle values whose types are not known at
compile time. The IDL type any is most often used in code that
uses the interface repository or the dynamic invocation interface
(DI1) or with CORBA services in general.

Consider the following interface:

// IDL
interface Example {

void op(in any value) ;
}i

A client can construct an any to contain an arbitrary type of value
and then pass this in a call to op (). A process receiving an any
must determine what type of value it stores and then extract the
value (using the TypeCode). Refer to the CORBA Programmer’s
Guide for more details.

Methods are as follows:

create input stream() extract TypeCode () insert Object ()
create output stream() extract ulong() insert octet ()
equal () extract ulonglong () insert_short ()
extract any () extract ushort () insert_ Streamable ()
extract boolean() extract Value () insert string()
extract char() extract wchar () insert TypeCode ()
extract double () extract wstring() insert ulong()
extract fixed() insert _any () insert ulonglong ()
extract float() insert boolean () insert_ushort ()
extract long() insert_char () insert Value()
extract longlong() insert double () insert Value()
extract Object () insert fixed() insert wchar ()
extract octet () insert fixed() insert wstring()
extract short () insert float () read value (
extract Streamable () insert long() type ()

extract string() insert longlong() write value()

// Java

package org.omg.CORBA;

abstract public class Any implements
org.omg.CORBA.portable.IDLEntity {
abstract public boolean equal (org.omg.CORBA.Any a) ;

// type code accessors
abstract public org.omg.CORBA.TypeCode type() ;
abstract public void type (org.omg.CORBA.TypeCode t) ;

// read and write values to/from streams
// throw exception when typecode inconsistent with value
abstract public void read value (
org.omg.CORBA.portable. InputStream is,
org.omg.CORBA.TypeCode t) throws org.omg.CORBA.MARSHAL;
abstract public void
write value (org.omg.CORBA.portable.OutputStream os) ;
abstract public org.omg.CORBA.portable.OutputStream

Orbix CORBA Programmer’s Reference: Java 25

create output stream() ;
abstract public org.omg.CORBA.portable.InputStream
create input stream() ;
abstract public short extract short ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert short (short s);
abstract public int extract long()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert long(int i) ;
abstract public long extract longlong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert longlong(long 1) ;
abstract public short extract ushort ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ushort (short s);
abstract public int extract ulong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ulong(int i) ;
abstract public long extract ulonglong()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert ulonglong(long 1) ;
abstract public float extract float ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert_float (float f);
abstract public double extract double()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert double (double d);
abstract public boolean extract boolean ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert boolean(boolean b) ;
abstract public char extract char()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert char(char c)
throws org.omg.CORBA.DATA CONVERSION;
abstract public char extract wchar ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert wchar(char c);
abstract public byte extract octet ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert octet (byte b);
abstract public org.omg.CORBA.Any extract any ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert any(org.omg.CORBA.Any a) ;
abstract public org.omg.CORBA.Object extract Object ()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert Object (org.omg.CORBA.Object obj) ;
abstract public java.io.Serializable extract Value()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert Value(java.io.Serializable v);
abstract public void insert Value (
java.io.Serializable v,
org.omg.CORBA. TypeCode t)
throws org.omg.CORBA.MARSHAL;

// throw exception when typecode inconsistent with value
abstract public void insert Object (

org.omg.CORBA.Object obj,

org.omg.CORBA. TypeCode t)

throws org.omg.CORBA.BAD PARAM;
abstract public String extract string()

26 Orbix CORBA Programmer’s Reference: Java

Parameters

throws org.omg.CORBA.BAD OPERATION;
abstract public void insert string(String s)
throws org.omg.CORBA.DATA CONVERSION,
org.omg.CORBA.MARSHAL;
abstract public String extract wstring()
throws org.omg.CORBA.BAD OPERATION;
abstract public void insert wstring(String s)
throws org.omg.CORBA.MARSHAL;

// insert and extract typecode

abstract public org.omg.CORBA.TypeCode extract TypeCode ()
throws org.omg.CORBA.BAD OPERATION;

abstract public voidinsert TypeCode (org.omg.CORBA.TypeCode

t);

// insert and extract non-primitive IDL types
// BAD INV ORDER if any doesn’t hold a streamable
public org.omg.CORBA.portable.Streamable
extract Streamable ()
throws org.omg.CORBA.BAD INV ORDER {
}

public void insert Streamable (
org.omg.CORBA.portable.Streamable s) {

}

// insert and extract fixed
public java.math.BigDecimal extract fixed() {
throw org.omg.CORBA.NO IMPLEMENT () ;

}

public void insert fixed(java.math.BigDecimal value) {

}

public void insert fixed(
java.math.BigDecimal value,
org.omg.CORBA.TypeCode type)
throws org.omg.CORBA.BAD INV ORDER {

Any::create_input_stream()

abstract public org.omg.CORBA.portable.InputStream
create input stream() ;

This method creates an org.omg.CORBA.portable. InputStream Object
for this any, so that the data contained within the any can be accessed
through the read () methods defined on InputStream rather than the
extract () methods defined on 2any.

InputStream The InputStream representing the any.

Any:create_output_stream()

abstract public org.omg.CORBA.portable.OutputStream
create output stream() ;

Orbix CORBA Programmer’s Reference: Java 27

This method creates an org.omg.CORBA. portable .OutputStream Object
for this any. This object allows the any to be populated by calling the
write () methods declared on outputStream instead of using the
insert () methods of the any.

Parameters

OutputStream The outputStream representing the any

Any::equal()

abstract public boolean equal (org.omg.CORBA.Any a);

This method compares the type and value of this any with that of
the any passed in as a parameter and returns true if the anys are
equal.

Parameters

a The any to compare against.

Any::extract_type()

abstract public short extract short ()
throws org.omg.CORBA.BAD OPERATION;

abstract public int extract long()
throws org.omg.CORBA.BAD OPERATION;

abstract public long extract longlong/()
throws org.omg.CORBA.BAD OPERATION;

abstract public short extract ushort ()
throws org.omg.CORBA.BAD OPERATION;

abstract public int extract ulong()
throws org.omg.CORBA.BAD OPERATION;

abstract public long extract ulonglong()
throws org.omg.CORBA.BAD OPERATION;

abstract public float extract float ()
throws org.omg.CORBA.BAD OPERATION;

abstract public double extract double ()
throws org.omg.CORBA.BAD OPERATION;

abstract public boolean extract boolean ()
throws org.omg.CORBA.BAD OPERATION;

abstract public char extract_char()
throws org.omg.CORBA.BAD OPERATION;

abstract public char extract wchar ()
throws org.omg.CORBA.BAD OPERATION;

abstract public byte extract octet ()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.Any extract any()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.Object extract Object ()
throws org.omg.CORBA.BAD OPERATION;

abstract public java.io.Serializable extract Value()
throws org.omg.CORBA.BAD OPERATION;

28 Orbix CORBA Programmer’s Reference: Java

abstract public String extract string()
throws org.omg.CORBA.BAD OPERATION;

abstract public String extract wstring()
throws org.omg.CORBA.BAD OPERATION;

abstract public org.omg.CORBA.TypeCode extract TypeCode ()
throws org.omg.CORBA.BAD OPERATION;

public org.omg.CORBA.portable.Streamable extract Streamable ()
throws org.omg.CORBA.BAD INV ORDER {

throw new org.omg.CORBA.NO IMPLEMENT () ; }

public java.math.BigDecimal extract fixed() {
throw org.omg.CORBA.NO IMPLEMENT() ; }

Extracts the value of the indicated type from the any. You can
determine the type of the any using the org.omg.CORBA.Any. type ()
method. You can extract the value using the appropriate extraction
method. To extract a user defined type, you can also use the Helper
classes, for example:

org.omg.CORBA.AnNy a = // get the any from somewhere
// for example, through the DII,
// from one of the CORBA
services.
Object wval;
switch(a.type() .kind()) {
case org.omg.CORBA.TCKind. tc_short:
val = new Short (a.extract short()) ;
break;

//etc. for other basic types

default
if(a.type().equal(AStructHelper.type()){
val = AStructHelper.extract (a);
!

// else some other user defined types
break;

}i
You can also obtain the same kind of result by using the class
org.omg.CORBA.portable.InputStream.

Any::insert_type()

abstract public void insert short (short s);
abstract public void insert long(int i);
abstract public void insert longlong(long 1) ;
abstract public void insert ushort (short s);
abstract public void insert ulong(int i) ;
abstract public void insert ulonglong(long 1) ;
abstract public void insert float (float f);
abstract public void insert double (double d) ;
abstract public void insert boolean (boolean b) ;

abstract public void insert char(char c)
throws org.omg.CORBA.DATA CONVERSION;

Orbix CORBA Programmer’s Reference: Java 29

Parameters

abstract public void insert wchar (char c);
abstract public void insert octet (byte b);
abstract public void insert any (org.omg.CORBA.Any a) ;
abstract public void insert Object (org.omg.CORBA.Object obj) ;
abstract public void insert TypeCode (org.omg.CORBA.TypeCode t) ;
abstract public void insert Value(java.io.Serializable v);
abstract public void insert Value(

java.ilo.Serializable v,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

abstract public void insert Object (
org.omg.CORBA.Object obj,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.BAD PARAM;

abstract public void insert string(String s)
throws

org.omg.CORBA.DATA CONVERSION,
org.omg.CORBA.MARSHAL;

abstract public void insert wstring(String s)
throws org.omg.CORBA.MARSHAL;

public void insert fixed(java.math.BigDecimal value)
{ throw new org.omg.CORBA.NO IMPLEMENT(); }

public void insert fixed(
java.math.BigDecimal value,

org.omg.CORBA.TypeCode type

throws org.omg.CORBA.BAD INV ORDER {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}

public void insert Streamable (
org.omg.CORBA.portable.Streamable s) {

throw new org.omg.CORBA.NO IMPLEMENT(); }

Insert a value of the indicated type into the any. Previous values
held in the any are discarded and each insertion method takes a
copy of the value inserted.

first parameter The actual value to insert into the any.

tc The TypeCode of the value being
inserted.

You can use the nameHelper class to insert a user-defined type. For
example, given the following IDL:

//IDL

struct AStruct{
string str;
float number;

}i

Use the insert () method generated on the AstructHelper class:

//Java
org.omg.CORBA.Any a = new org.omg.CORBA.Any () ;

Astruct s = new Astruct (“String”,1.0f);

30 Orbix CORBA Programmer’s Reference: Java

try {
AstructHelper.insert(a,s);
}

catch (org.omg.CORBA. SystemException) {
//do something here
}

The same result can be achieved using the outputStream.

Any::read_value()

abstract public void read value(
org.omg.CORBA.portable. InputStream is,

org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

Reads an object from an InputStream for the current any.
Parameters

is The InputStream to read the data from.

t The TypeCode of the object to be read
from the stream.

Any::type()
abstract public org.omg.CORBA.TypeCode type () ;

Returns the Typecode of the object encapsulated within the any.

abstract public void type (org.omg.CORBA.TypeCode t) ;
Sets the Typecode of the Object encapsulated within the any.

Parameters

t The TypeCode of the object.

Any::write_value()

abstract public void write value(
org.omg.CORBA.portable.OutputStream os

)i

Writes the object contained within the any into the specified
OutputStream.

Parameters

os The outputStream to write the data to.

Orbix CORBA Programmer’s Reference: Java 31

32 Orbix CORBA Programmer’s Reference: Java

CORBA::ArrayDef Interface

See Also

See Also

See Also

The arrayDef interface represents a one-dimensional array in an
interface repository. A multi-dimensional array is represented by
an ArrayDef with an element type that is another array definition.
The final element type represents the type of element contained in
the array. An instance of interface ArrayDef can be created using
create array().

// IDL in module CORBA.

interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

CORBA: : IDLType
CORBA: :ArrayDef: :element type def
CORBA: :Repository: :create array()

ArrayDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

// Java
org.omg.CORBA.TypeCode element type();

Identifies the type of the element contained in the array. This
contains the same information as in the element type def attribute.

CORBA: :ArrayDef: :element type def

ArrayDef::element_type_ def Attribute

// IDL
attribute IDLType element type def;

// Java
org.omg.CORBA.IDLType element type def () ;

Describes the type of the element contained within the array. This
contains the same information as in the attribute element type
attribute.

The type of elements contained in the array can be changed by
changing this attribute. Changing this attribute also changes the
element type attribute.

CORBA: :ArrayDef: :element type

ArrayDef::length Attribute

// IDL
attribute unsigned long length;

Orbix CORBA Programmer’s Reference: Java 33

// Java
int length() ;

Returns the number of elements in the array.
void length(int wval);
Specifies the number of elements in the array.

34 Orbix CORBA Programmer’s Reference: Java

CORBA::AttributeDef Interface

See Also

See Also

The AttributeDef interface describes an attribute of an interface in
the interface repository.

// IDL in module CORBA.

interface AttributeDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute AttributeMode mode;

}i

The inherited describe () method is also described.

CORBA: : Contained
CORBA: : InterfaceDef: :create attribute ()

AttributeDef::describe()

// IDL

Description describe() ;

Inherited from Contained. The DefinitionKind for the kind member
of this structure is dk_Attribute. The value member is an any whose
TypeCode IS _tc AttributeDescription. The value is a structure of type
AttributeDescription.

CORBA: :Contained: :describe ()

AttributeDef::mode Attribute

// IDL
attribute AttributeMode mode;

// Java
org.omg.CORBA.AttributeMode mode () ;

Returns the mode of the attribute.

// Java
void mode (

org.omg.CORBA.AttributeMode val
)i

Specifies whether the attribute is read and write (ATTR NORMAL) Or
read-only (ATTR READONLY).

AttributeDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Orbix CORBA Programmer’s Reference: Java 35

Returns the type of this attribute. The same information is contained
in the type def attribute.

See Also CORBA: : TypeCode
CORBA: :AttributeDef: :type def

AttributeDef::type def Attribute

// IDL
attribute IDLType type def;

// Java
org.omg.CORBA.IDLType type def();

Returns the type of this attribute.

// Java

void type def(
org.omg.CORBA.IDLType val

)i

Describes the type for this attribute. The same information is
contained in the type attribute. Changing the type def attribute
automatically changes the type attribute.

See Also CORBA: : IDLType
CORBA: :AttributeDef: : type

36 Orbix CORBA Programmer’s Reference: Java

CORBA::ConstantDef Interface

See Also

See Also

See Also

Interface CconstantDef describes an IDL constant in the interface
repository. The name of the constant is inherited from Contained.

// IDL

// in module CORBA.

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute any value;

}i

// Java

public interface ConstantDef
extends ConstantDefOperations,
org.omg.CORBA.Contained

{
}

The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container: :create constant ()

ConstantDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The kind member is dk_Constant.

The value member is an any whose TypeCode is
_tc_ConstantDescription and whose value is a structure of type
ConstantDescription.

CORBA: :Contained: :describe ()

ConstantDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Identifies the type of this constant. The type must be a TypeCode for
one of the simple types (such as long, short, float, char, string,
double, boolean, unsigned long, and unsigned short). The same
information is contained in the type def attribute.

CORBA: :ConstantDef: :type def

Orbix CORBA Programmer’s Reference: Java 37

ConstantDef::type_ def Attribute

// IDL
attribute IDLType type def;

// Java
org.omg.CORBA.IDLType type def();

Returns the type of this constant.
void type def (org.omg.CORBA.IDLType val);

Identifies the type of the constant. The same information is con-
tained in the type attribute.

The type of a constant can be changed by changing its type def
attribute. This also changes its type attribute.

See Also CORBA: : ConstantDef : : type

ConstantDef::value Attribute

// IDL
attribute any value;

// Java
org.omg.CORBA.Any value() ;

Returns the value of this attribute.
void value (org.omg.CORBA.Any val);

Contains the value for this constant. When changing the value
attribute, the TypeCode of the any must be the same as the type
attribute.

See Also CORBA: : TypeCode

38 Orbix CORBA Programmer’s Reference: Java

CORBA::ConstructionPolicy

Interface

Parameters

See Also

When new object references are created, the ConstructionPolicy
object allows the caller to specify that the instance should be
automatically assigned membership in a newly created policy
domain. When a policy domain is created, it also has a
DomainManager Object associated with it. The ConstructionPolicy
object provides a single operation that makes the DomainManager
object.

// IDL in CORBA Module
interface ConstructionPolicy: Policy {
void make domain manager (
in CORBA::InterfaceDef object type,
in boolean constr policy

)i
}i

ConstructionPolicy::make_domain_manager()

// IDL
void make domain manager (

in CORBA::InterfaceDef object type,
in boolean constr policy

)i

// Java

void make domain manager (
org.omg.CORBA.InterfaceDef object type,
boolean constr policy

)i

This operation sets the construction policy that is to be in effect in
the policy domain for which this constructionPolicy object is asso-
ciated.

object type The type of the objects for which domain managers
will be created. If this is nil, the policy applies to all
objects in the policy domain.

constr policy A value of true indicates to the ORB that new object
references of the specified object type are to be asso-
ciated with their own separate policy domains (and
associated domain manager). Once such a construc-
tion policy is set, it can be reversed by invoking
make domain manager () again with the value of false.

A value of false indicates the construction policy is set
to associate the newly created object with the policy
domain of the creator or a default policy domain.

You can obtain a reference to the newly created domain manager
by calling get domain managers () on the newly created object ref-
erence.

CORBA::DomainManager

Orbix CORBA Programmer’s Reference: Java 39

CORBA: :Object:: get domain managers ()

40 Orbix CORBA Programmer’s Reference: Java

CORBA::Contained Interface

Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or
repository. It is a base interface for the following interfaces:

See Also

ModuleDef
InterfaceDef
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface
// IDL

// In module CORBA.
interface Contained :

is shown here:

IRObject {

// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute

readonly attribute

readonly attribute

struct Description
DefinitionKind
any value;

}i

Container defined in;
ScopedName absolute name;
Repository containing repository;

{

kind;

Description describe() ;

// write interface
void move (
in Container n
in Identifier
in VersionSpec

)i

CORBA: :Container
CORBA: : IRObject

ew_container,
new name,
new version

Contained::absolute _name Attribute

//1IDL

readonly attribute ScopedName absolute name;

// Java
java.lang.String absol

ute name () ;

Orbix CORBA Programmer’s Reference

: Java 41

Gives the absolute scoped name of an object.

Contained::containing_repository Attribute

// IDL
readonly attribute Repository containing repository;

// Java
org.omg.CORBA.Repository containing repository () ;

Gives the Repository within which the object is contained.

Contained::defined_in Attribute

// IDL
attribute Container defined in;

// Java
org.omg.CORBA.Container defined in();

Specifies the Container for the interface repository object in which
the object is contained.

An IFR object is said to be contained by the IFR object in which it
is defined. For example, an InterfaceDef Object is contained by the
ModuleDef in which it is defined.

A second notion of contained applies to objects of type
AttributeDef Or OperationDef. These objects may also be said to be
contained in an InterfaceDef object if they are inherited into that
interface. Note that inheritance of operations and attributes across
the boundaries of different modules is also allowed.

See Also CORBA: : Container: :contents ()

Contained::describe()

// IDL
Description describe() ;

// Java
org.omg.CORBA.ContainedPackage .Description describe () ;

Returns a structure of type Description.

The kind field of the Description structure contains the same value
as the def kind attribute that Contained inherits from IRObject.

See Also CORBA: :Container: :describe contents ()
CORBA: :DefinitionKind

Contained::Description Structure

// IDL
struct Description {

DefinitionKind kind;
any value;

}i

42 Orbix CORBA Programmer’s Reference: Java

This is a generic form of description which is used as a wrapper for
another structure stored in the value field.

Depending on the type of the Contained object, the value field will
contain a corresponding description structure:

ConstantDescription

ExceptionDescription

AttributeDescription

OperationDescription

ModuleDescription

InterfaceDescription

TypeDescription
The last of these, TypeDescription is used for objects of type
StructDef, UnionDef, EnumDef, and AliasDef (it is associated with
interface TypedefDef from which these four listed interfaces
inherit).

Contained::id Attribute

// IDL
attribute RepositoryId id;

// Java
java.lang.String id() ;

void id(java.lang.String val);
A RepositoryId provides an alternative method of naming an object.

In order to be CORBA compliant the naming conventions specified
for CORBA RepositoryIds should be followed. Changing the id
attribute changes the global identity of the contained object. It is
an error to change the id to a value that currently exists in the
contained object’s Repository.

Contained::move()

// IDL
void move (

in Container new container,
in Identifier new name,
in VersionSpec new version

)i

// Java

void move (
org.omg.CORBA.Container new container,
java.lang.String new name,
java.lang.String new version

)i

Removes this object from its container, and adds it to the container
specified by new container. The new container must:

* Be in the same repository.
* Be capable of containing an object of this type.

* Not contain an object of the same name (unless multiple ver-
sions are supported).

Orbix CORBA Programmer’s Reference: Java 43

See Also

See Also

The name attribute of the object being moved is changed to that
specified by the new name parameter. The version attribute is
changed to that specified by the new version parameter.

CORBA: :Container

Contained::name Attribute

// IDL
attribute Identifier name;

// Java
java.lang.String name() ;

void name (java.lang.String wval);

Return or set the name of the object within its scope. For example,
in the following definition:

// IDL

interface Example {
void op () ;

}i

the names are Example and op. A name must be unique within its
scope but is not necessarily unique within an interface repository.
The name attribute can be changed but it is an error to change it to
a value that is currently in use within the object’s Container.

CORBA: :Contained: :id

Contained::version Attribute

// IDL
attribute VersionSpec version;

// Java
java.lang.String version() ;

void version(java.lang.String val);

Return or set the version number for this object. Each interface
object is identified by a version which distinguishes it from other
versioned objects of the same name.

44 Orbix CORBA Programmer’s Reference: Java

CORBA::Container Interface

Interface container describes objects that can contain other
objects in the interface repository. A Container can contain any
number of objects derived from the Contained interface. Such
objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef
OperationDef
TypedefDef
ValueDef
ValueMemberDef

The interface is shown here:

//IDL
// In CORBA Module
interface Container : IRObject {
// read interface
Contained lookup (
in ScopedName search name) ;

ContainedSeq contents (
in DefinitionKind limit type,
in boolean exclude inherited

)i

ContainedSeq lookup name (
in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)i

DescriptionSeq describe contents (
in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs

)i

// write interface
ModuleDef create module (
in RepositoryId id,
in Identifier name,
in VersionSpec version

)i

ConstantDef create constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

Orbix CORBA Programmer’s Reference: Java 45

StructDef create struct(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members
)i

UnionDef create union(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members
)

EnumDef create enum/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

)

AliasDef create alias(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type
)i

InterfaceDef create interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base interfaces
in boolean is abstract

)i

ValueDef create value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeqg abstract base values,
in InterfaceDef supported interface,
in InitializerSeqg initializers

)i

ValueBoxDef create value box(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type def

)

ExceptionDef create exception (
in RepositoryId id,
in Identifier name,

46 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

See Also

in VersionSpec version,
in StructMemberSeq members

)i

NativeDef create native (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
)i

}; // End Interface Container

CORBA: : IRObject

Container::contents()

// IDL
ContainedSeq contents (

in DefinitionKind limit type,
in boolean exclude inherited

)i

// Java

org.omg.CORBA.Contained[] contents (
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited

)i

Returns a sequence of Contained objects that are directly contained
in (defined in or inherited into) the target object. This operation can
be used to navigate through the hierarchy of definitions—starting,
for example, at a Repository.

limit type If set to dk_all, all of the contained interface
repository objects are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

CORBA: :Container: :describe contents ()
CORBA: :DefinitionKind

Container::create_alias()

// IDL
AliasDef create alias(

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType original type

Orbix CORBA Programmer’s Reference: Java 47

// Java
org.omg.CORBA.AliasDef create alias(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. IDLType original type
)i

Creates a new AliasDef object within the target container. The
defined in attribute is set to the target container. The

containing repository attribute is set to the Repository in which the
new AliasDef object is defined.

Parameters

id The repository ID for the new AliasDef object. An
exception is raised if an interface repository object
with the same 1D already exists within the object’s
repository.

name The name for the new AliasDef object. It is an error
to specify a name that already exists within the
object’s container when multiple versions are not
supported.

version A version for the new AliasDef.
original type The original type that is being aliased.

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

See Also CORBA: :AliasDef

Container::create_constant()

// IDL
ConstantDef create_constant(

in RepositoryId id,

in Identifier name,

in VersionSpec version,
in IDLType type,

in any value

)i

// Java
org.omg.CORBA.ConstantDef create constant (

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
org.omg.CORBA.Any value

48 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

Creates a ConstantDef object within the target container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the Repository in which the
new ConstantDef oObject is defined.

id The repository ID of the new ConstantDef object. It is an
error to specify an ID that already exists within the object’s
repository.

name The name of the new ConstantDef object. It is an error to

specify a name that already exists within the object’s
Container when multiple versions are not supported.

version The version number of the new ConstantDef object.

type The type of the defined constant. This must be one of the
simple types (long, short, ulong, ushort, float, double, char,
string, boolean).

value The value of the defined constant.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ConstantDef

Container::create_enum()

// IDL
EnumDef create enum(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members
)i

// Java
org.omg.CORBA.EnumDef create enum(

java.lang.String id,
java.lang.String name,
java.lang.String version,
java.lang.String[] members

)

Creates a new EnumDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which the new Enumbef object is
defined.

id The repository ID of the new Enumbef object. It is an error
to specify an ID that already exists within the Repository.

Orbix CORBA Programmer’s Reference: Java 49

Exceptions

See Also

Parameters

name The name of the Enumbef object. It is an error to specify a
name that already exists within the object’s Container
when multiple versions are not supported.

version The version number of the new Enumbef object.

members A sequence of structures that describes the members of
the new Enumbef object.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : EnumDef

Container::create_exception()

// IDL
ExceptionDef create exception(

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

)i

// Java
org.omg.CORBA.ExceptionDef create exception(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. StructMember [] members
)i

Creates a new ExceptionDef Object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the Repository in which new ExceptionDef object
is defined.

id The repository ID of the new ExceptionDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ExceptionDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version number for the new ExceptionDef object.

members A sequence of StructMember structures that describes the
members of the new ExceptionDef Object.

50 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : ExceptionDef

Container::create_interface()

// IDL
InterfaceDef create interface(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base interfaces
in boolean is abstract
)i
// Java
org.omg.CORBA.InterfaceDef create interface(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. InterfaceDef [] base interfaces

)i

Creates a new empty InterfaceDef object within the target Contain-
er. The defined in attribute is set to Container. The

containing repository attribute is set to the Repository in which the
new InterfaceDef object is defined.

id The repository ID of the new InterfaceDef oObject.
It is an error to specify an ID that already exists
within the object’s repository.

name The name of the new InterfaceDef object. It is an
error to specify a name that already exists within
the object’s container when multiple versions are
not supported.

version A version for the new InterfaceDef object.

base interfaces A sequence of InterfaceDef objects from which
the new interface inherits.

is abstract If true the interface is abstract.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

Orbix CORBA Programmer’s Reference: Java 51

See Also

Parameters

Exceptions

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: : InterfaceDef

Container::create_module()

// IDL
ModuleDef create module (

in RepositoryId id,
in Identifier name,
in VersionSpec version

)i

// Java

org.omg.CORBA.ModuleDef create module (
java.lang.String id,
java.lang.String name,
java.lang.String version

)i

Creates an empty ModuleDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created ModuleDef
object is defined.

id The repository ID of the new ModuleDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ModuleDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the ModuleDef oObject to be created.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_native()

// IDL
NativeDef create native(

in RepositoryId id,
in Identifier name,
in VersionSpec version,

)i

52 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

// Java
org.omg.CORBA.NativeDef create native(

java.lang.String id,

java.lang.String name,

java.lang.String version
)i
Creates a NativeDef object within the target container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the newly created NativeDef
object is defined.

id The repository ID of the new NativeDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new NativeDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the NativeDef object to be created.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_struct()

// IDL
StructDef create struct (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

)i

// Java
org.omg.CORBA. StructDef create struct(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. StructMember [] members
)i

Creates a new StructDef object within the target Container. The
defined in attribute is set to Container. The containing repository
attribute is set to the repository in which the new structDef object
is defined.

Orbix CORBA Programmer’s Reference: Java 53

Parameters

id The repository ID of the new structDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new structDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new StructDef object.
members A sequence of StructMember structures that describes the
members of the new structDef object.
Exceptions

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

See Also CORBA: : StructDef

Container::create_union()

// IDL
UnionDef create union(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator type,
in UnionMemberSeq members
)i

// Java
org.omg.CORBA.UnionDef create union/(

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType discriminator type,
org.omg.CORBA.UnionMember [] members
)i
Creates a new UnionDef Object within the target Container. The
defined in attribute is set to the target Container. The

containing repository attribute is set to the repository in which the
new UnionDef object is defined.

Parameters

id The repository ID of the new UnionDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new UnionDef Object. It is an
error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

54 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

version A version for the new Unionbef object.
discriminator type The type of the union discriminator.

members A sequence of UnionMember structures that
describes the members of the new UnionbDef
object.

BAD PARAM, An object with the specified id already exists in the

minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

CORBA: :UnionDef

Container::create_value()

// IDL
ValueDef create value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is custom,
in boolean is abstract,
in ValueDef base value,
in boolean is truncatable,
in ValueDefSeqg abstract base values,
in InterfaceDef supported interfaces,
in InitializerSeq initializers

)i

// Java
org.omg.CORBA.ValueDef create value(

java.lang.String id,
java.lang.String name,
java.lang.String version,
boolean is custom,
boolean is abstract,
byte flags,
org.omg.CORBA.ValueDef base value,
boolean has safe base,
org.omg.CORBA.ValueDef [] abstract base values,
org.omg.CORBA. InterfaceDef supported interfaces,
org.omg.CORBA.Initializer[] initializers
)i
Creates a new empty valueDef object within the target container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new VvalueDef object is defined.

Orbix CORBA Programmer’s Reference: Java 55

Parameters

Exceptions

id The repository ID of the new valueDef oObject.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new valueDef object. It is an
error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueDef object.
is_custom If true the value type is custom.

is abstract If true the value type is abstract.
base value The base value for this value type.

is truncatable if true the value type is truncatable.

abstract_base values A sequence of valueDef structures that
describes the base values of the new valueDef

object.
supported interfaces The interface the value type supports.
initializers A sequence of initializers for the new valueDef
object.
BAD PARAM, An object with the specified id already exists in the

minor code 2 repository.

BAD PARAM, The specified name already exists within this Container
minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Container::create_value box()

// IDL
ValueBoxDef create value box (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original type def
)i
// Java
org.omg.CORBA.ValueBoxDef create value box (
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType original type def
)i

Creates a new empty valueBoxDef Object within the target Container.
The defined in attribute is set to Container. The

containing repository attribute is set to the repository in which the
new VvalueBoxDef Object is defined.

56 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

id The repository ID of the new valueBoxDef
object. It is an error to specify an ID that
already exists within the object’s repository.

name The name of the new valueBoxDef object. It is
an error to specify a name that already exists
within the object’s container when multiple
versions are not supported.

version A version for the new valueBoxDef Object.
original type def The IDL data type of the value box.

BAD PARAM, An object with the specified id already exists in the
minor code 2 repository.
BAD PARAM, The specified name already exists within this Container

minor code 3 and multiple versions are not supported.

BAD PARAM, The created object is not allowed by the Container.
minor code 4 Certain interfaces derived from container may restrict
the types of definitions that they may contain.

Container::describe_contents()

// IDL
DescriptionSeq describe contents (

in DefinitionKind limit type,
in boolean exclude inherited,
in long max returned objs
)i
// Java
org.omg.CORBA. ContainerPackage.Description[] describe contents(
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited,
int max returned objs

)i

Returns a sequence of structures of type Container: :Description.
describe contents() iS a combination of operations
Contained: :describe () and Container: :contents ()

limit type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

max returned objs The number of objects that can be returned in
the call. Setting a value of -1 means return all
contained objects.

Orbix CORBA Programmer’s Reference: Java 57

See Also

Parameters

See Also

Parameters

CORBA: :Container: :contents ()
CORBA: :Contained: :describe ()

Container::lookup()

// IDL
Contained lookup (

in ScopedName search name

)i

// Java

org.omg.CORBA. Contained lookup (
java.lang.String search name

)i

Locates an object name within the target container. The objects can
be directly or indirectly defined in or inherited into the target
container.

search name The name of the object to search for relative to the tar-
get container. If a relative name is given, the object
is looked up relative to the target container. If
search name is an absolute scoped name (prefixed by
‘::"), the object is located relative to the containing
Repository.

CORBA: :Container: :lookup name ()

Container::lookup_name()

// IDL
ContainedSeq lookup name (

in Identifier search name,
in long levels to search,
in DefinitionKind limit type,
in boolean exclude inherited

)i

// Java

org.omg.CORBA.Contained[] lookup name (
java.lang.String search name,
int levels to search,
org.omg.CORBA.DefinitionKind limit type,
boolean exclude inherited

)i

Locates an object or objects by name within the target container
and returns a sequence of contained objects. The named objects
can be directly or indirectly defined in or inherited into the target
container. (More than one object, having the same simple name

can exist within a nested scope structure.)

search name The simple name of the object to search for.

58 Orbix CORBA Programmer’s Reference: Java

levels to search Defines whether the search is confined to the
current object or should include all interface
repository objects contained by the object. If
set to -1, the current object and all contained
interface repository objects are searched. If set
to 1, only the current object is searched.

limit_type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

See Also CORBA: :DefinitionKind

Orbix CORBA Programmer’s Reference: Java 59

60 Orbix CORBA Programmer’s Reference: Java

CORBA::Context Class

Class CoreA: :Context implements the OMG pseudo-interface

Context. A context is intended to represent information about the
client that is inconvenient to pass via parameters. An IDL opera-
tion can specify that it is to be provided with the client’'s mapping
for particular identifiers (properties). It does this by listing these
identifiers following the operation declaration in a context clause.

A client can optionally maintain one or more CORBA Context
objects, that provide a mapping from identifiers (string names) to
string values. A context object contains a list of properties; each
property consists of a name and a string value associated with
that name and can be passed to a method that takes a Context
parameter.

You can arrange Context objects in a hierarchy by specifying par-
ent-child relationships among them. Then, a child passed to an
operation also includes the identifiers of its parent(s). The called
method can decide whether to use just the context actually
passed, or the hierarchy above it.

The context class is as follows:

// IDL
pseudo interface Context {
readonly attribute Identifier context name;
readonly attribute Context parent;
Context create child(in Identifier child ctx name) ;
void set one value(in Identifier propname, in any
propvalue) ;
void set values(in NVList values) ;
void delete values (in Identifier propname) ;
NVList get values(in Identifier start scope,
in Flags op flags,
in Identifier pattern);

bi

// Java
package org.omg.CORBA;
public abstract class Context {
public abstract String context name() ;
public abstract Context parent () ;
public abstract Context create child(
String child ctx name
)i
public abstract void set one value (
String propname,
Any propvalue
)i
public abstract void set values(
NVList values
)i
public abstract void delete values(
String propname
)i
public abstract NVList get values(
String start_ scpe,
int op flags,

Orbix CORBA Programmer’s Reference: Java 61

See Also

Parameters

See Also

Parameters

Exceptions

String pattern
)

Context::context _name()

// Java
abstract public java.lang.String context name() ;

Returns the name of the context object. Ownership of the returned
value is maintained by the context and must not be freed by the
caller.

CORBA::Context:.create child()

Context::create_child()

// Java
abstract public org.omg.CORBA.Context create child(

java.lang.String child ctx name

)i

Creates a child context of the current context. When a child context
is passed as a parameter to an operation, any searches (using
CORBA: : Context: :get values ()) look in parent contexts if necessary
to find matching property names.

child ctx name The newly created context.

CORBA::Context:iget values ()

Context::delete_values()

// Java
abstract public void delete values (

java.lang.String propname

)i

Deletes the specified property value(s) from the context. The search
scope is limited to the context object on which the invocation is
made.

propname The property name to be deleted. If prop name has a
trailing asterisk (*), all matching properties are
deleted.

An exception is raised if no matching property is found.

Context::get_values()

// Java
abstract public org.omg.CORBA.NVList get values(

java.lang.String start scope,
int op flags,

62 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

java.lang.String pattern

)
Retrieves the specified context property values.

start_scope The context in which the search for the values
requested should be started. The name of a direct or
indirect parent context may be specified to this
parameter. If O is passed in, the search begins in the
context which is the target of the call.

op_flags By default, searching of identifiers propagates
upwards to parent contexts; if the value
CORBA: : CTX_RESTRICT SCOPE is specified, then searching
is limited to the specified search scope or context
object.

values An NVList to contain the returned property values.

Context::parent()

// Java
abstract public org.omg.CORBA.Context parent () ;

Returns the parent of the context object. Ownership of the return
value is maintained by the context and must not be freed by the
caller.

CORBA::Context:icreate child()

Context::set_one_value()

// Java
abstract public void set one value(

java.lang.String propname,
org.omg.CORBA.Any propvalue
)i

Adds a property name and value to the context. Although the value
member is of type any, the type of the any must be a string.

propname The name of the property to add.
propvalue The value of the property to add.

CORBA::Context::set values()

Context::set_values()

// Java
abstract public void set values(

org.omg.CORBA.NVList values
)i

Sets one or more property values in the Context. The previous value
of a property, if any, is discarded.

Orbix CORBA Programmer’s Reference: Java 63

Parameters

values An NVList containing the property name:values to add
or change. In the nvList, the flags field must be set to

zero, and the TypeCode associated with an attribute
value must be CORBA:: tc string.

See Also CORBA::Context::set one value()

64 Orbix CORBA Programmer’s Reference: Java

CORBA::ContextList Class

See Also

Parameters

A contextList allows an application to provide a list of Context
strings that must be supplied when a dynamic invocation Request
is invoked.

The context is where the actual values are obtained by the ORB.
The contextList supplies only the context strings whose values are
to be looked up and sent with the request invocation. The server-
less contextList object allows the application to specify context
information in a way that avoids potentially expensive interface
repository lookups for the information by the ORB during a
request.

// IDL
pseudo interface ContextList {
readonly attribute unsigned long count;
void add(in string ctx) ;
string item(in unsigned long index) raises (CORBA: :Bounds) ;
void remove (in unsigned long index) raises (CORBA::Bounds) ;

}i

[¢]

CORBA:IObject:: create request ()
CORBA: :Request : :contexts
CORBA: :ORB: :create context list ()

ContextList::add()

// Java
abstract public void add(

java.lang.String ctxt

)i
Adds a context string to the context list.

ctx A string representing context information.

ContextList::count()

// Java
abstract public int count () ;

Returns the number of context strings in the context list.

ContextList::item()

// Java
abstract public java.lang.String item(

int index
) throws org.omg.CORBA.Bounds;

Orbix CORBA Programmer’s Reference: Java 65

Parameters

Returns the context item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ContextList.

index The indexed location of the desired context item.

ContextList::remove()

// Java
abstract public void remove (

int index
) throws org.omg.CORBA.Bounds;

Removes from the context list the context item at the indexed
location.

66 Orbix CORBA Programmer’s Reference: Java

CORBA::Current Interface

See Also

The current interface is the base interface for providing informa-
tion about the current thread of execution. Each ORB or CORBA
service that needs its own context derives an interface from
Current to provide information that is associated with the thread of
execution in which the ORB or CORBA service is running. Inter-
faces that derives from current include:

PortableServer: :Current

Your application can obtain an instance of the appropriate Current
interface by invoking resolve initial references().

Operations on interfaces derived from current access the state
associated with the thread in which they are invoked, not the state
associated with the thread from which the current was obtained.

The IDL interface follows:

//IDL

module CORBA {

// interface for the Current object
interface Current {

}i
}i
// Java

package org.omg.CORBA;
public interface Current extends org.omg.CORBA.Object {}

PortableServer: :Current

CORBA: :ORB: :resolve initial references ()

Orbix CORBA Programmer’s Reference: Java 67

68 Orbix CORBA Programmer’s Reference: Java

CORBA::CustomMarshal Value

Type

Custom value types can override the default marshaling/unmar-
shaling mechanism and provide their own way to encode/decode
their state. If an application’s value type is marked as custom, you
use custom marshaling to facilitate integration of such mecha-
nisms as existing class libraries and other legacy systems. Custom
marshaling is not to be used as the standard marshaling mecha-
nism.

CustomMarshal is an abstract value type that is meant to be imple-
mented by the application programmer and used by the ORB. For
example, if an application’s value type needs to use custom mar-
shaling, the IDL declares it explicitly as follows:

// RApplication-specific IDL
custom valuetype type {
// optional state definition

i

When implementing a custom value type such as this, you must
provide a concrete implementation of the CustomMarshal operations
so that the ORB is able to marshal and unmarshal the value type.
Each custom marshaled value type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the
basis for your implementation. These operations provide the
streams for marshaling. Your implemented CustomMarshal code
encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.
It is the responsibility of your implementation to marshal the value
type’s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism
require that the implementations must be local because local
memory addresses such as those for the marshal buffers have to
be manipulated by the ORB.

Semantically, customMarshal is treated as a custom value type’s
implicit base class, although the custom value type does not actu-
ally inherit it in IDL. While nothing prevents you from writing IDL
that inherits from CustomMarshal, doing so will not in itself make
the type custom, nor will it cause the ORB to treat it as a custom
value type. You must implement these CustomMarshal operations.

Implement the following IDL operations for a custom value type:

// IDL in module CORBA
abstract valuetype CustomMarshal {
void marshal (
in DataOutputStream os
)i
void unmarshal (
in DataInputStream is
) ;
}i

Orbix CORBA Programmer’s Reference: Java 69

Parameters

See Also

Parameters

See Also

CustomMarshal::marshal()

void marshal (org.omg.CORBA.DataOutputStream os) ;

The operation you implement so that the ORB can marshal a custom
value type.

os A handle to the output stream the ORB uses to mar-
shal the custom value type.

Use the operations of the DataOutputStream in your implementation
to write the custom value type’s data to the stream as appropri-
ate.

CORBA:DataOutputStream

CustomMarshal::unmarshal()

void unmarshal (org.omg.CORBA.DataInputStream is) ;

The operation you implement so that the ORB can unmarshal a
custom value type.

is A handle to the input stream the ORB uses to unmar-
shal the custom value type.

Use the operations of the DataInputStream in your implementation
to read the custom value type’s data from the stream as appropri-
ate.

CORBA::DataInputStream

70 Orbix CORBA Programmer’s Reference: Java

CORBA::DatalnputStream Value

Type

// IDL in module CORBA
abstract valuetype DatalnputStream {

any read any() ;
boolean read boolean() ;

char read char() ;

wchar read wchar () ;

octet read octet () ;

short read short () ;

unsigned short read ushort () ;
long read long() ;

unsigned long read ulong() ;
unsigned long long read ulonglong() ;
float read float () ;

double read double () ;

long double read longdouble () ;
string read string() ;

wstring read wstring() ;

Object read Object () ;
AbstractBase read Abstract () ;
ValueBase read Value() ;

TypeCode read TypeCode () ;

void read any array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
)
void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

)

void read char array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length

) ;

void read wchar array(
inout WcharSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read octet array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)i

Orbix CORBA Programmer’s Reference

The DataInputStream value type is a stream used by unmarshal () for
unmarshaling an application’s custom value type. You use the
DataInputStream operations in your implementation of unmarshal ()
to read specific types of data from the stream, as defined in the
custom value type. The stream takes care of breaking the data
into chunks if necessary. The IDL code is as follows:

s Java 71

void read short array (
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read ushort array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

);

void read long array (
inout LongSeq seq,
in unsigned long offset,
in unsigned long length

)

void read ulong array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read ulonglong array (
inout ULonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read longlong array (
inout LonglongSeq sedq,
in unsigned long offset,
in unsigned long length

)i

void read float array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

);

void read double array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

Exceptions
MARSHAL, An inconsistency is detected for any operations.

See Also CORBA::CustomMarshal
CORBA: :DataOutputStream

DatalnputStream::read_any()

// IDL
any read any() ;

// Java
org.omg.CORBA.Any read any () ;

Returns an any data type from the stream.

72 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

DatalnputStream::read_any_array()

// IDL

void read any array (
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java

void read any array (
org.omg.CORBA.AnySegHolder seq,
int offset,
int length);

Reads an array of any data from the stream.

seq

offset

length

The sequence into which the data is placed.

The starting index from which to read from the
sequence.

The number of items to read from the array.

DatalnputStream::read_boolean()

// IDL

boolean read boolean() ;

// Java

boolean read boolean() ;

Returns a boolean data type from the stream.

DatalnputStream::read_boolean_array()

// IDL

void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length

)

// Java

void read boolean array (
org.omg.CORBA.BooleanSegHolder seq,
int offset,
int length);

Reads an array of boolean data from the stream.

seq

offset

length

The sequence into which the data is placed.

The starting index from which to read from the
sequence.

The number of items to read from the array.

Orbix CORBA Programmer’s Reference: Java 73

DatalnputStream::read_char()

// IDL
char read char() ;

// Java
char read char() ;

Returns a char data type from the stream.

DatalnputStream::read_char_array()

// IDL
void read char array(

inout CharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read char array(

org.omg.CORBA.CharSegHolder seq,
int offset,
int length);

Reads an array of char data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_double()

// IDL
double read double() ;

// Java
double read double() ;

Returns a double data type from the stream.

DatalnputStream::read_double_array()

// IDL
void read double array(

inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read double array (

org.omg.CORBA.DoubleSegHolder seq,
int offset,
int length);

Reads an array of double data from the stream.

74 Orbix CORBA Programmer’s Reference: Java

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_float()

// IDL
float read float();

// Java
float read float();

Returns a float data type from the stream.

DatalnputStream::read_float_array()

// IDL
void read float array(

inout FloatSeq seq,

in unsigned long offset,

in unsigned long length
)

// Java
void read float array(

org.omg.CORBA.FloatSegHolder seq,
int offset,
int length);

Reads an array of float data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_long()

// IDL
long read long() ;

// Java
int read long() ;

Returns a long data type from the stream.

DatalnputStream::read_long_array()
// IDL

void read long array(
inout LongSeq seq,

Orbix CORBA Programmer’s Reference: Java 75

Parameters

Parameters

in unsigned long offset,
in unsigned long length

)i

// Java
void read long array (

org.omg.CORBA.LongSegHolder seq,
int offset,
int length);

Reads an array of long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_longdouble()

// IDL
long double read longdouble () ;

// Java
Unsupported.

DatalnputStream::read_longlong_array()

// IDL
void read longlong array(

inout LongLongSeq sed,
in unsigned long offset,
in unsigned long length

)i

// Java
void read longlong array(

org.omg.CORBA. LongLongSegHolder seq,
int offset,
int length);

Reads an array of long long data from the stream.

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Object()

// IDL
Object read Object () ;

// Java
org.omg.CORBA.Object read objref();

76 Orbix CORBA Programmer’s Reference: Java

Returns an object (object reference) data type from the stream.

DatalnputStream::read_octet()

// IDL
octet read octet () ;

// Java
byte read octet();

Returns an octet data type from the stream.

DatalnputStream::read_octet_array()

// IDL
void read octet array(

inout OctetSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void read octet array(

org.omg.CORBA.OctetSegHolder seq,
int offset,
int length);

Reads an array of octet data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_short()

// IDL
short read short () ;

// Java
short read short () ;

Returns a short data type from the stream.

DatalnputStream::read_short_array()

// IDL
void read short array(

inout ShortSeq seq,

in unsigned long offset,

in unsigned long length
)

Orbix CORBA Programmer’s Reference: Java 77

// Java
void read short array(

org.omg.CORBA. ShortSegHolder seq,
int offset,
int length);

Reads an array of short data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_string()

// IDL
string read string() ;

// Java
java.lang.String read string();

Returns a string data type from the stream.

DatalnputStream::read_TypeCode()

// IDL
TypeCode read TypeCode () ;

// Java
org.omg.CORBA.TypeCode read TypeCode() ;

Returns a TypeCode data type from the stream.

DatalnputStream::read_ulong()

// IDL
unsigned long read ulong() ;

// Java
int read ulong() ;

Returns an unsigned long data type from the stream.

DatalnputStream::read_ulong_array()

// IDL
void read ulong array (

inout ULongSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read ulong array (

org.omg.CORBA.ULongSegHolder seq,
int offset,
int length);

78 Orbix CORBA Programmer’s Reference: Java

Reads an array of unsigned long data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.
DatalnputStream::read_ulonglong()
// IDL
unsigned long long read ulonglong() ;
// Java
long read ulonglong() ;
Returns an unsigned long long data type from the stream.
DatalnputStream::read_ulonglong_array()
// IDL
void read ulonglong array(
inout ULonglongSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void read ulonglong array(
org.omg.CORBA.ULongLongSegHolder seq,
int offset,
int length);
Reads an array of unsigned long long data from the stream.
Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the
sequence.
length The number of items to read from the array.

DatalnputStream::read_ushort()

// IDL
unsigned short read ushort();

// Java
short read ushort () ;

Returns an unsigned short data type from the stream.

DatalnputStream::read_ushort_array()

// IDL
void read ushort array(

Orbix CORBA Programmer’s Reference: Java 79

inout UShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read ushort array(

org.omg.CORBA.UShortSegHolder seq,
int offset,
int length);

Reads an array of unsigned short data from the stream.

Parameters

seq The sequence into which the data is placed.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_Value()

// IDL
ValueBase read Value () ;

// Java
java.io.Serializable read value() ;

Returns a value type from the stream.

DatalnputStream::read_wchar()

// IDL
wchar read wchar () ;

// Java
char read wchar() ;

Returns a wchar data type from the stream.

DatalnputStream::read_wchar_array()

// IDL
void read wchar array (

inout WCharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void read wchar array (

org.omg.CORBA.WCharSegHolder seq,
int offset,
int length);

Reads an array of wchar data from the stream.

Parameters

seq The sequence into which the data is placed.

80 Orbix CORBA Programmer’s Reference: Java

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

DatalnputStream::read_wstring()

// IDL
wstring read wstring() ;

// Java
java.lang.String read wstring() ;

Returns a wstring data type from the stream.

Orbix CORBA Programmer’s Reference: Java 81

82 Orbix CORBA Programmer’s Reference: Java

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal () for
marshaling an application’s custom value type. You use the
DataOutputStream operations in your implementation of marshal ()
to write specific types of data to the stream, as defined in the cus-
tom value type. The stream takes care of breaking the data into
chunks if necessary. The IDL code is as follows:

//IDL in module CORBA
abstract valuetype DataOutputStream {

void write any(in any value);
void write boolean(in boolean value) ;
void write char(in char value);
void write wchar(in wchar value) ;
void write octet(in octet value);
void write short (in short value);
void write ushort(in unsigned short value);
void write long(in long value);
void write ulong(in unsigned long value) ;
void write longlong(in long long value) ;
void write ulonglong(in unsigned long long value) ;
void write float(in float value);
void write double(in double value) ;
void write string(in string value);
void write wstring(in wstring value) ;
void write Object(in Object value);
void write Value(in ValueBase value) ;
void write TypeCode(in TypeCode value) ;
void write any array(

in AnySeq seq,

in unsigned long offset,

in unsigned long length) ;
void write boolean array (

in BooleanSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write char array(

in CharSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write wchar array(

in WcharSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write octet array(

in OctetSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write short array(

in ShortSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ushort array(

in UShortSeq seq,

in unsigned long offset,

Orbix CORBA Programmer’s Reference: Java 83

in unsigned long length) ;
void write long array (

in LongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulong array (

in ULongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write ulonglong array (

in ULonglLongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write longlong array (

in LonglongSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write float array(

in FloatSeq seq,

in unsigned long offset,

in unsigned long length) ;
void write double array (

in DoubleSeq seq,

in unsigned long offset,

in unsigned long length) ;

Exceptions

MARSHAL An inconsistency is detected for any operations.

See Also CORBA: : CustomMarshal
CORBA: :DataInputStream

DataOutputStream::write_any()

// IDL
void write any(
in any value

)i

// Java
void write any(org.omg.CORBA.Any val);

Writes an any data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_any_array()

// IDL
void write any array(

in AnySeq seq,

in unsigned long offset,

in unsigned long length
)i

84 Orbix CORBA Programmer’s Reference: Java

// Java
void write any array(org.omg.CORBA.Any[] buf,

int offset, int len);

Writes an array of any data to the stream.

Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_boolean()
// IDL
void write boolean (
in boolean value
)i
// Java
void write boolean(boolean wval) ;
Writes a boolean data type to the stream.
Parameters
value The value written to the stream.
DataOutputStream::write_boolean_array()
// IDL
void write boolean array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write boolean array(boolean[] buf, int offset, int len);
Writes an array of boolean data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_char()

// IDL
void write char(

in char value

)i

// Java
void write char(char val);

Writes a char data type to the stream.

Orbix CORBA Programmer’s Reference: Java 85

Parameters

Parameters

Parameters

Parameters

value The value written to the stream.

DataOutputStream::write_char_array()

// IDL
void write char array(

in CharSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write char array(char[] buf, int offset, int len);

Writes an array of char data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_double()

// IDL
void write double (

in double value

)i

// Java
void write double(double val);

Writes a double data type to the stream.

value The value written to the stream.

DataOutputStream::write_double_array()

// IDL
void write double array(

in DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write double array(double[] buf, int offset, int len);

Writes an array of double data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

86 Orbix CORBA Programmer’s Reference: Java

DataOutputStream::write_float()

// IDL
void write float (

in float value

)i

// Java
void write float(float val);

Writes a float data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_float_array()
// IDL
void write float array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write float_array(float[] buf, int offset, int len);
Writes an array of float data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_long()
// IDL
void write_ long(
in long value
)i
// Java
void write long(int val);
Writes a long data type to the stream.
Parameters

value The value written to the stream.

DataOutputStream::write_long_array()

// IDL
void write long array (

in LongSeq sedq,

in unsigned long offset,

in unsigned long length
)i

Orbix CORBA Programmer’s Reference: Java 87

Parameters

Parameters

Parameters

// Java
void write long array(int[] buf, int offset, int len);

Writes an array of long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_longlong()

// IDL
void write longlong (

in long long value

)i

// Java
void write longlong(long val);

Writes a long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_longlong_array()

// IDL
void write longlong array (

in LonglLongSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write longlong array(long[] buf, int offset, int len);

Writes an array of long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Object()

// IDL
void write Object (

in Object value

)i

// Java
void write objref (org.omg.CORBA.Object val);

Writes an Object data type (object reference) to the stream.

88 Orbix CORBA Programmer’s Reference: Java

Parameters

value The value written to the stream.

DataOutputStream::write_octet()

// IDL
void write octet (

in octet value

)i

// Java
void write octet (byte val);

Writes an octet data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_octet_array()
// IDL
void write octet array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write octet array(byte[] buf, int offset, int len);
Writes an array of octet data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_short()
// IDL
void write_ short (
in short value
)i
// Java
void write short (short val);
Writes a short data type to the stream.
Parameters

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 89

DataOutputStream::write_short_array()

// IDL
void write short array(

in ShortSeq seq,
in unsigned long offset,
in unsigned long length

)i

// Java
void write short array(short[] buf, int offset, int len);

Writes an array of short data to the stream.
Parameters
seq The sequence of data to write to the stream.

offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_string()

// IDL
void write string(
in string value

)i

// Java
void write string(java.lang.String val);

Writes a string data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_TypeCode()

// IDL
void write TypeCode (

in TypeCode value
)i

// Java
void write TypeCode(org.omg.CORBA.TypeCode val);

Writes a TypeCode data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_ulong()

// IDL
void write ulong (

in unsigned long value

)i

// Java
void write ulong(int val);

90 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

Parameters

Parameters

Writes an unsigned long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulong_array()

// IDL
void write ulong array (

in ULongSeq seq,

in unsigned long offset,

in unsigned long length
)

// Java
void write ulong array(int[] buf, int offset, int len);

Writes an array of unsigned long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_ulonglong()

// IDL
void write ulonglong (

in unsigned long long value

)i

// Java
void write ulonglong(long val);

Writes an unsigned long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulonglong_array()

// IDL
void write ulonglong array (

in ULongLongSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void write ulonglong array(long[] buf, int offset, int len);

Writes an array of unsigned long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

Orbix CORBA Programmer’s Reference: Java 91

Parameters

Parameters

Parameters

length The number of data items to write.

DataOutputStream::write__ushort()

// IDL
void write ushort (

in unsigned short value

)i

// Java
void write ushort (short val);

Writes an unsigned short data type to the stream.

value The value written to the stream.

DataOutputStream::write_ushort_array()

// IDL
void write ushort array(

in UShortSeq seq,

in unsigned long offset,

in unsigned long length
)i

// Java
void write ushort array(short[] buf, int offset, int len);

Writes an array of unsigned short data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Value()

// IDL
void write Value(

in ValueBase value

)i

// Java
void write value(java.io.Serializable vb);

Writes a value type to the stream.

value The value written to the stream.

DataOutputStream::write_wchar()

// IDL
void write wchar (

92 Orbix CORBA Programmer’s Reference: Java

in wchar value

)

// Java
void write wchar(char val);

Writes a wchar data type to the stream.

Parameters
value The value written to the stream.
DataOutputStream::write_wchar_array()
// IDL
void write wchar array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
// Java
void write wchar array(char[] buf, int offset, int len);
Writes an array of wchar data to the stream.
Parameters
seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.
DataOutputStream::write_wstring()
// IDL
void write wstring(
in wstring value
)i
// Java
void write wstring(java.lang.String val);
Writes a wstring data type to the stream.
Parameters

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 93

94 Orbix CORBA Programmer’s Reference: Java

CORBA::DomainManager

Interface

The DomainManager interface provides an operation to find the
Policy objects associated with a policy domain. Each policy
domain includes one policy domain manager object
(DomainManager). The DomainManager has associated with it the pol-
icy objects for that domain and it records the membership of the
domain.

// IDL in CORBA Module
interface DomainManager {
Policy get domain policy(
in PolicyType policy type

)i
}i

A policy domain is a set of objects with an associated set of policies.
These objects are the policy domain members. The policies represent
the rules and criteria that constrain activities of the objects of the
policy domain. Policy domains provide a higher granularity for pol-
icy management than an individual object instance provides.

When a new object reference is created, the ORB implicitly associ-
ates the object reference (and hence the object that it is associ-
ated with) with one or more policy domains, thus defining all the
policies to which the object is subject. If an object is simultane-
ously a member of more than one policy domain, it is governed by
all policies of all of its domains.

The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies
are associated with domains. However, because a DomainManager iS
a CORBA object, it has access to the CORBA: :Object interface,
which is available to all CORBA objects. The object interface
includes the following related operations:

get domain managers () allowsyour applicationsto retrieve the
domain managers and hence the security and other policies applicable to
individual objects that are members of the policy domain.

Y ou can a'so obtain an object’spolicy using _get policy().

DomainManager::get_domain_policy()

Policy get domain policy (
in PolicyType policy type

)i

// Java

org.omg.CORBA.Policy get domain policy(
int policy type

)i

Returns a reference to the policy object of the specified policy type
for objects in this policy domain.

Orbix CORBA Programmer’s Reference: Java 95

Parameters

policy type The type of policy for objects in the domain which the
application wants to administer.

There may be several policies associated with a domain, with a
policy object for each. There is at most one policy of each type
associated with a policy domain. The policy objects are thus
shared between objects in the domain, rather than being associ-
ated with individual objects. Consequently, if an object needs to
have an individual policy, then it must be a singleton member of a
policy domain.

Exceptions

INV_POLICY The value of policy type is not valid either because the
specified type is not supported by this ORB or because
a policy object of that type is not associated with this
object.

See Also CORBA::Policy
CORBA: :Object:: get domain managers ()
CORBA: :Object:: get policy ()

96 Orbix CORBA Programmer’s Reference: Java

CORBA::EnumbDef Interface

See Also

Interface Enumbef describes an IDL enumeration definition in the
interface repository.

// IDL in module CORBA.

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

}i

The inherited operation describe () is also described.

EnumbDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a Description. The DefinitionKind for the description’s kind
member is dk_Enum. The value member is an any whose TypeCode is
_tc_TypeDescription and whose value is a structure of type
TypeDescription. The type field of the struct gives the TypeCode of
the defined enumeration.

CORBA: : TypedefDef : :describe ()

EnumbDef::members Attribute

// IDL
attribute EnumMemberSeq members;

// Java
java.lang.String[] members() ;

void members (java.lang.String[] val);

Returns or changes the enumeration’s list of identifiers (its set of
enumerated constants).

Orbix CORBA Programmer’s Reference: Java 97

98 Orbix CORBA Programmer’s Reference: Java

CORBA::Environment Class

The Environment class provides a way to handle exceptions in situ-
ations where true exception-handling mechanisms are unavailable
or undesirable.

For example, in the DIl exceptions raised by remote invocation
are stored in an Environment member variable in the Request oObject
after the invocation returns. DIl clients should test the value of
this Environment variable by calling the env() method on the
Request object. If the returned java.lang.Exception iS null, NO
exception was raised. If it is not null, the returned exception
should be examined and acted on in an appropriate manner.

// IDL

pseudo interface Environment {
attribute exception exception;
void clear() ;

}i

// Java

package org.omg.CORBA;

abstract public class Environment {
abstract public void clear() ;
public abstract void exception (

java.lang.Exception except) ;

public abstract java.lang.Exception exception() ;

}

See Also CORBA::ORB:.create environment ()

Environment::clear()

//Java
abstract public void clear();

Deletes the Exception, if any, contained in the Environment. This is
equivalent to passing zero to exception(). It is not an error to call
clear () on an Environment that holds no exception.

See Also CORBA::Environment::exception ()

Environment::exception()

// Java

public abstract java.lang.Exception exception() ;

Extracts the exception contained in the Environment object.

//Java
public abstract void exception(java.lang.Exception except) ;

Sets the exception member variable in the Environment object to except.

Parameters
except The Exception assigned to the Environment The
Environment does not copy the parameter but it

assumes ownership of it. The Exception must be
dynamically allocated.

Orbix CORBA Programmer’s Reference: Java 99

See Also CORBA::Environment::clear ()

100 Orbix CORBA Programmer’s Reference: Java

CORBA::Exception Class

Details of this class can be found in the CORBA specification. The
C++ Language Mapping document provides the following explana-
tion of the CORBA: :Exception class:

// C++
class Exception
{

public:

virtual ~Exception() ;

virtual void raise() const = 0;

virtual const char * name() const;

virtual const char * rep id() const;
i
The Exception base class is abstract and may not be instantiated
except as part of an instance of a derived class. It supplies one
pure virtual function to the exception hierarchy: the raise() func-
tion. This function can be used to tell an exception instance to
throw itself so that a catch clause can catch it by a more derived

type.
Each class derived from Exception implements raise() as follows:

// C++
void SomeDerivedException:: raise() const

{
}

For environments that do not support exception handling, please
refer to Section 1.42.2, "Without Exception Handling," on page
1-169 of the CORBA specification for information about the
_raise() function.

throw *this;

The name() function returns the unqualified (unscoped) name of
the exception. The rep id() function returns the repository ID of
the exception.

Orbix CORBA Programmer’s Reference: Java 101

102 Orbix CORBA Programmer’s Reference: Java

CORBA::ExceptionDef Interface

See Also

See Also

See Also

Interface ExceptionDef describes an IDL exception in the interface
repository. It inherits from interface Contained and Container.

// IDL in module CORBA.

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container

ExceptionDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

The DefinitionKind for the kind member of this structure is
dk_Exception. The value member is an any whose TypeCode is
_tc ExceptionDescription and whose value is a structure of type
ExceptionDescription.

The type field of the ExceptionDescription structure gives the
TypeCode of the defined exception.

CORBA: :Contained: :describe ()
CORBA: : TypeCode

ExceptionDef::members Attribute

// IDL
attribute StructMemberSeq members;

// Java
org.omg.CORBA. StructMember [] members () ;

void members (org.omg.CORBA.StructMember [] val);

In a sequence of structMember structures, the members attribute
describes the exception’s members.

The members attribute can be modified to change the structure’s
members.

CORBA: : StructDef
CORBA: : ExceptionDef: : type

ExceptionDef::type Attribute

// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type() ;

Orbix CORBA Programmer’s Reference: Java 103

The type of the exception (from which the definition of the exception
can be understood). The TypeCode kind for an exception is tk_except.

See Also CORBA: : TypeCode
CORBA: : ExceptionDef : :members

104 Orbix CORBA Programmer’s Reference: Java

CORBA::ExceptionList Class

See Also

Parameters

Parameters

An ExceptionList object allows an application to provide a list of
TypeCodes for all application-specific (user-defined) exceptions that
may result when a dynamic invocation Request is invoked. This
server-less ExceptionList object allows the ORB to avoid poten-
tially expensive interface repository lookups for the exception
information during a request.

// PIDL
pseudo interface ExceptionList {
readonly attribute unsigned long count;
void add(in TypeCode exc) ;
TypeCode item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;

bi

CORBA:IObject:: create request ()
CORBA: :Request : :exceptions
CORBA: :ORB: :create exception list ()

ExceptionList::add()

// Java
abstract public void add(org.omg.CORBA.TypeCode exc) ;

Adds a TypeCode to the exception list.

exc The TypeCode to be added to the list. Should be a Type-
Code for an exception.

ExceptionList::count()

// Java
abstract public int count () ;

Returns the number of items in the exception list.

ExceptionList::item()
// Java

abstract public org.omg.CORBA.TypeCode item(int index)
throws org.omg.CORBA.Bounds;

Returns the exception item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ExceptionList.

index The indexed location of the desired item.

Orbix CORBA Programmer’s Reference: Java 105

ExceptionList::remove()

// Java
abstract public void remove (int index)

throws org.omg.CORBA.Bounds;

Removes from the exception list the item at the indexed location.
Parameters

index The indexed location of the desired item.

106 Orbix CORBA Programmer’s Reference: Java

CORBA::FixedDef Interface

The FixedDef interface describes an IDL fixed-point type in the
interface repository. A fixed-point decimal literal consists of an
integer part, a decimal point, a fraction part, and a 4 or D.

// IDL in module CORBA.

interface FixedDef : IDLType {
attribute unsigned short digits;
attribute short scale;

i
The inherited IDLType attribute is a tk_fixed TypeCode, which
describes a fixed-point decimal number.

See Also CORBA::Repository::create fixed()

FixedDef::digits Attribute

// IDL
attribute unsigned short digits;

// Java
short digits();

void digits(short wval);

The digits attribute specifies the total number of decimal digits in
the fixed-point number, and must be in the range of 1 to 31,
inclusive.

FixedDef::scale Attribute

// IDL
attribute short scale;

// Java
short scale() ;

void scale(short wval);

The scale attribute specifies the position of the decimal point.

Orbix CORBA Programmer’s Reference: Java 107

108 Orbix CORBA Programmer’s Reference: Java

CORBA.InterfaceDefPackage.Fulll
NnterfaceDescription Class

See Also

InterfaceDefPackage.FulllnterfaceDescription.
FulllnterfaceDescription()

// IDL
struct FullInterfaceDescription {

Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;
TypeCode type;
boolean is abstract;

}i

// Java

public FullInterfaceDescription (
java.lang.String name,
java.lang.String id,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.OperationDescription[] operations,
org.omg.CORBA.AttributeDescription[] attributes,
java.lang.String[] base interfaces,
org.omg.CORBA.TypeCode type,
boolean is abstract

)
Describes an interface including its operations and attributes.

name The name of the interface.

id An identifier of the interface.

defined in The identifier where the interface is defined.

version The version of the interface.

operations A sequence of interface operations.

attributes A sequence of interface attributes.

base interfaces A sequence of base interfaces from which this
interface is derived.

type The type of the interface.

is abstract True if the interface is an abstract one, false
otherwise.

CORBA::InterfaceDef:.describe interface ()

Orbix CORBA Programmer’s Reference: Java 109

110 Orbix CORBA Programmer’s Reference: Java

CORBA: . IDLType Interface

See Also

See Also

The abstract base interface 1DLType describes interface repository
objects that represent IDL types. These types include interfaces,
type definitions, structures, unions, enumerations, and others.
Thus, the IDLType is a base interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef
WstringDef

The IDLType provides access to the TypeCode describing the type,
and is used in defining other interfaces wherever definitions of IDL
types must be referenced.

// IDL in module CORBA.

interface IDLType : IRObject {
readonly attribute TypeCode type;

}i

CORBA: : IRObject
CORBA: : TypeCode
CORBA: : TypedefDef

IDLType::type Attribute

//IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA. TypeCode type () ;

Encodes the type information of an interface repository object. Most
type information can also be extracted using operations and attri-
butes defined for derived types of the IDLType.

CORBA: : TypeCode

Orbix CORBA Programmer’s Reference: Java 111

112 Orbix CORBA Programmer’s Reference: Java

CORBA::InterfaceDef Interface

See Also

InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions,
operations, and attributes. it inherits from the interfaces
Container, Contained, and IDLType.

Calling get interface() on a reference to an object returns a ref-
erence to the InterfaceDef oObject that defines the CORBA object’s
interface.

// IDL in module CORBA.

interface InterfaceDef : Container, Contained, IDLType {
// read/write interface
attribute InterfaceDefSeq base interfaces;

// read interface
boolean is a(
in RepositoryId interface id

)i

struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base interfaces;

TypeCode type;

}i

FullInterfaceDescription describe interface() ;

// write interface
AttributeDef create attribute (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)i

OperationDef create operation/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

)i
}; // End interface InterfaceDef
The inherited operation describe () is also described.

CORBA: : Contained
CORBA: :Container

Orbix CORBA Programmer’s Reference: Java 113

Exceptions

See Also

Parameters

CORBA: :Object:: get interface()

InterfaceDef::base_interfaces Attribute

// IDL
attribute InterfaceDefSeq base interfaces;

// Java
void base interfaces (org.omg.CORBA.InterfaceDef[] val);

The base_interfaces attribute lists in a sequence of InterfaceDef
objects the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef Object can be
changed by changing its base interfaces attribute.

BAD PARAM, The name of any definition contained in the interface
minor code 5 conflicts with the name of a definition in any of the base
interfaces.

CORBA: :Object:: get interface()

InterfaceDef::create_attribute()

// IDL
AttributeDef create attribute(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode
)i
// Java
org.omg.CORBA.AttributeDef create attribute(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
org.omg.CORBA.AttributeMode mode
)i

Creates a new AttributeDef within the target InterfacebDef. The
defined in attribute of the new AttributeDef is set to the target
InterfaceDef.

id The identifier of the new attribute. It is an error to specify
an id that already exists within the target object’s reposi-
tory.

name The name of the attribute. It is an error to specify a name

that already exists within this InterfaceDef.
version A version for this attribute.
type The 1DLType for this attribute.

mode Specifies whether the attribute is read only
(ATTR READONLY) Or read/write (ATTR NORMAL).

114 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

See Also

BAD PARAM,
minor code 2
BAD PARAM,

minor code 3

An object with the specified id already exists in the
repository.

An object with the same name already exists in this
InterfaceDef

CORBA: :AttributeDef

InterfaceDef::create_operation()

// IDL

OperationDef create operation/(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

)i

// Java

org.omg.CORBA.OperationDef create operation(
java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType result,
org.omg.CORBA.OperationMode mode,
org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef [] exceptions,
java.lang.String[] contexts

)i

Creates a new OperationDef within the target InterfacebDef. The
defined in attribute of the new Operationbef is set to the target

InterfaceDef.

id

name

version
result

mode

params

exceptions

contexts

The identifier of the new attribute. It is an error to
specify an id that already exists within the target
object’s repository.

The name of the attribute. It is an error to specify a
name that already exists within this InterfaceDef.

A version number for this operation.
The return type for this operation.

Specifies whether this operation is normal (op_NORMAL)
or oneway (OP ONEWAY).

A sequence of ParameterDescription Structures that
describes the parameters to this operation.

A sequence of ExceptionDef objects that describes the
exceptions this operation can raise.

A sequence of context identifiers for this operation.

CORBA: :OperationDef

Orbix CORBA Programmer’s Reference: Java 115

CORBA: : ExceptionDef

InterfaceDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description. The
DefinitionKind for the kind member is dk_Interface. The value
member is an any whose TypeCode iS _tc_InterfaceDescription and
whose value is a structure of type InterfaceDescription.

See Also CORBA: : Contained: :describe ()

InterfaceDef::describe_interface()

// IDL
FullInterfaceDescription describe interface();

// Java
org.omg.CORBA. InterfaceDefPackage.FullInterfaceDescription

describe interface() ;

Returns a description of the interface, including its operations,
attributes, and base interfaces in a FullInterfaceDescription.

Details of exceptions and contexts can be determined via the
returned sequence of OperationDescription Structures.

See Also CORBA: : OperationDef: :describe ()
CORBA: :AttributeDef: :describe ()

InterfaceDef::FulllnterfaceDescription

See the “CORBA.InterfaceDefPackage.FullinterfaceDescription
Class”.

InterfaceDef::is_a()

// IDL
boolean is a(

in RepositoryId interface id

)i

// Java
boolean is a(java.lang.String interface id);

Returns TRUE if the interface is either identical to or inherits (directly
or indirectly) from the interface represented by interface id. Oth-
erwise the operation returns FALSE.

Parameters

interface id The repository ID of another InterfaceDef object.

116 Orbix CORBA Programmer’s Reference: Java

CORBA::IRODbject Interface

See Also

Exceptions

The interface IRObject is the base interface from which all inter-
face repository interfaces are derived.

// IDL in module CORBA.
interface IRObject {

readonly attribute DefinitionKind def kind;
void destroy () ;

}i

IRObject::def_kind Attribute

// IDL
readonly attribute DefinitionKind def kind;

// Java
org.omg.CORBA.DefinitionKind def kind() ;

Identifies the kind of an IFR object. For example, an OperationDef
object, describing an IDL operation, has the kind dk_Operation.

CORBA: :DefinitionKind

IRODbject::destroy()

// IDL
void destroy () ;

// Java
void destroy () ;

Deletes an IFR object. This also deletes any objects contained within
the target object.

BAD INV_ORDER With a minor value of:

2 destroy () is invoked on a Repository Or on a
PrimitiveDef Object

1 An attempt is made to destroy an object that would
leave the repository in an incoherent state.

Orbix CORBA Programmer’s Reference: Java 117

118 Orbix CORBA Programmer’s Reference: Java

CORBA::ModuleDef Interface

See Also

The interface ModuleDef describes an IDL module in the interface
repository. It inherits from the interfaces Container and Contained.

// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe () is also described.

ModuleDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

The kind member is dk_Module. The value member is an any whose
TypeCode IS _tc ModuleDescription and whose value is a structure of
type ModuleDescription.

CORBA: :Contained: :describe ()

Orbix CORBA Programmer’s Reference: Java 119

120 Orbix CORBA Programmer’s Reference: Java

CORBA::NamedValue Class

A Namedvalue object describes an argument to a request or a return
value, especially in the DII, and is used as an element of an NVList
object. A Namedvalue object maintains an any value, parame-
ter-passing mode flags, and an (optional) name.

// IDL

pseudo interface Namedvalue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

i
See Also CORBA::NVList
CORBA: :ORB: :create named value ()

CORBA: :Request: :result ()
CORBA: :Object:: create request ()

NamedValue::flags()

// Java
abstract public int flags() ;

Returns the flags associated with the Namedvalue. Flags identify the
parameter passing mode for arguments of an NVList.

NamedValue::name()

// Java
abstract public java.lang.String name() ;

Returns the (optional) name associated with the NamedValue. This
is the name of a parameter or argument to a request.

NamedValue::value()

// Java
abstract public org.omg.CORBA.Any value() ;

Returns a reference to the org.omg.CORBA.Any Object contained in
the Namedvalue.

Orbix CORBA Programmer’s Reference: Java 121

122 Orbix CORBA Programmer’s Reference: Java

CORBA::NativeDef Interface

See Also

The interface NativeDef describes an IDL native type in the inter-
face repository. It inherits from the interface TypedefDef. The
inherited type attribute is a tk native TypeCode that describes the
native type.

// IDL in module CORBA

interface NativeDef : TypedefDef {};

CORBA::Container::create native ()

Orbix CORBA Programmer’s Reference: Java 123

124 Orbix CORBA Programmer’s Reference: Java

CORBA::NVLiIst Class

See Also

Parameters

See Also

An NVList is a pseudo-object used for constructing parameter lists.
It is a list of Namedvalue elements where each Namedvalue describes
an argument to a request.

The Namedvalue and NVList types are used mostly in the DIl in the
request operations to describe arguments and return values. They
are also used in the context object routines to pass lists of prop-

erty names and values. The NvList is also used in the DSI opera-
tion ServerRequest: :arguments () .

The nvList class is partially opaque and may only be created by
using ORB: :create list (). The NvList class is as follows:

// IDL
pseudo interface NVList {
readonly attribute unsigned long count;
NamedValue add(in Flags flags) ;
NamedValue add item(in Identifier item name, in Flags flags);
NamedValue add value(in Identifier item name,
in any val, in Flags flags);
NamedValue item(in unsigned long index) raises (Bounds) ;
void remove (in unsigned long index) raises (Bounds) ;

}i

CORBA::NamedValue
CORBA: :ORB:create list()
CORBA: :Object:: create request ()

NVList::count()

abstract public int count () ;

Returns the number of elements in the list.

NVList::add()

// Java
abstract public org.omg.CORBA.NamedValue add(int flgs);

Creates an unnamed value, initializes only the flags, and adds it to
the list. The new Namedvalue is returned.

flags

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBAIINVList:ladd item()

CORBA: :NVList::add value()

Orbix CORBA Programmer’s Reference: Java 125

Parameters

See Also

Parameters

See Also

Parameters

NVList::add_item()

// Java
abstract public org.omg.CORBA.NamedValue add item(

java.lang.String item name, int flgs);

Creates and returns a Namedvalue with name and flags initialized,
and adds it to the list.

item name Name of item.
flgs
The reference count of the returned Namedvalue pseudo object is

not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBA::NVList::add()
CORBA: :NVList::add value()

NVList::add_value()

// Java
abstract public org.omg.CORBA.NamedValue add value (

java.lang.String item name,
org.omg.CORBA.Any val, int flgs);

Creates and returns a Namedvalue with name, value, and flags
initialized and adds it to the list.

item name Name of item.
value Value of item.
flags

The reference count of the returned Namedvalue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

CORBA:I:NVList::add ()
CORBA: :NVList::add item()

NVList::item()

// Java
abstract public org.omg.CORBA.NamedValue item(int index)

throws org.omg.CORBA.Bounds;

Returns the Namedvalue list item at the given index. The first item is
at index 0. This method can be used to access existing elements in
the list.

index Index of item.

126 Orbix CORBA Programmer’s Reference: Java

NVList::remove()
// Java

abstract public void remove (int index)
throws org.omg.CORBA.Bounds;

Removes the item at the given index. The first item is at index O.

Parameters

index Index of item

Orbix CORBA Programmer’s Reference: Java 127

128 Orbix CORBA Programmer’s Reference: Java

CORBA::ODbject Class

The object class is the base class for all normal CORBA objects.
This class has some common methods that operate on any CORBA
object. These operations are implemented directly by the ORB, not
passed on to your object’s implementation.

On the client side, the methods of this class are called on a proxy
(unless collocation is set). On the server side, they are called on
the real object.

Table 4 shows the methods provided by the CORBA: :Object class:

Table 4: Methods of the Object Class

Manage Object References Create Requests for the DII

duplicate () create request ()

hash () request ()

is a() - -

is equivalent () Access Information in the
non existent () IFR

release ()

get interface ()

Manage Policies and
Domains

get domain managers ()
get policy()

// IDL
interface Object {
boolean is nil();
Object duplicate() ;
void release();
ImplementationDef get implementation();
InterfaceDef get interface();
boolean is a(in string logical type id);
boolean non existent() ;
boolean is equivalent (in Object other object);
unsigned long hash (in unsigned long maximum) ;
void create request (
in Context ctx,
in Identifier operation,
in NVList arg list,
in NamedValue result,
out Request request,
in Flags req flags
)i
void create request2 (
in Context ctx,
in Identifier operation,
in NVList arg list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,

Orbix CORBA Programmer’s Reference: Java 129

out Request request,
in Flags req flags
)
Policy ptr get policy(in PolicyType policy type);
DomainManagerList get domain managers() ;
Object set policy overrides (
in PolicyList policies,
in SetOverrideType set or add
)

// IDL Additions from CORBA Messaging
Policy get policy(
in PolicyType type
)i
Policy get client policy(
in PolicyType type
) ;
Object set policy overrides (
in PolicyList policies,
in SetOverrideType set add

raises (InvalidPolicies) ;
Policylist get policy overrides (
in PolicyTypeSeq types
)i
boolean validate connection (
out PolicyList inconsistent policies
) ;
}i
// Java
package org.omg.CORBA;
public interface Object {
boolean is a(String Identifier);
boolean is equivalent (Object that) ;
boolean non existent();
int hash(int maximum) ;
org.omg.CORBA.Object duplicate();
void release();
org.omg.CORBA.Object get interface def();
Request request (String s);
Request create request (Context ctx,
String operation,
NVList arg list,
NamedValue result) ;
Request create request (Context ctx,
String operation,
NVList arg list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist);
Policy get policy(int policy type) ;
DomainManager[] get domain managers() ;
org.omg.CORBA.Object set policy override (
Policy[] policies,
SetOverrideType set add) ;

130 Orbix CORBA Programmer’s Reference: Java

Object::_create_request()

// Java
Request create request (Context ctx,

String operation,
NVList arg list,
NamedValue result) ;

Request create request (Context ctx,

String operation,

NVList arg list,

NamedValue result,

ExceptionList exclist,

ContextList ctxlist);
These construct a CORBA: :Request Object. These methods are part
of the DIl and create an ORB request on an object by constructing
one of the object’s operations.

See request () for a simpler alternative way to create a Request.

The only implicit object reference operations allowed with the
_create request () call include:

non existent ()
is al()
get interface ()

Exceptions

BAD PARAM The name of an implicit operation that is not allowed is
passed to create request ()—for example,
_is equivalent is passed tO0 create request () as the
operation parameter.

See Also CORBA::Object:: request ()
CORBA: :Request
CORBA: :Request : :arguments ()
CORBA: :Request: :ctx ()
CORBA: :NVList
CORBA: :NamedValue

Object:: _duplicate()

// Java
org.omg.CORBA.Object duplicate();

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

Object::_get_domain_managers()

DomainManager[] get domain managers() ;

Returns the list of immediately enclosing domain managers of this
object. At least one domain manager is always returned in the list
since by default each object is associated with at least one domain
manager at creation.

Orbix CORBA Programmer’s Reference: Java 131

See Also

See Also

Parameters

Exceptions

See Also

Parameters

The get domain managers() method allows applications such as
administration services to retrieve the domain managers and
hence the security and other policies applicable to individual
objects that are members of the domain.

CORBA: :DomainManager

Object:: _get_interface()

// Java
InterfaceDef get interface();

Returns a reference to an object in the interface repository that
describes this object’s interface.

CORBA..InterfaceDef

Object::_get_policy()

// Java
Policy get policy(int policy type);

Returns a reference to the policy object of the type specified by the
policy type parameter.

policy type The type of policy to get.

_get_policy() returns the effective policy which is the one that
would be used if a request were made. Note that the effective pol-
icy may change from invocation to invocation due to transparent
rebinding. Invoking non existent () on an object reference prior
to get policy() ensures the accuracy of the returned effective
policy.

Quality of Service (see “Quality of Service Framework™) is man-
aged on a per-object reference basis with _get policy().

INV_POLICY The value of policy type is not valid either because
the specified type is not supported by this ORB or
because a policy object of that type is not associated
with this object.

CORBA::Object:: non existent ()

Object::_hash()

// Java
int hash(int maximum) ;

Returns a hashed value for the object reference in the range
0...maximum.

maximum The maximum value that is to be returned from the
hash method.

132 Orbix CORBA Programmer’s Reference: Java

Use hash() to quickly guarantee that objects references refer to
different objects. For example, if _hash() returns the same hash
number for two object references, the objects might or might not
be the same, however, if the method returns different numbers for
object references, these object references are guaranteed to be
for different objects.

In order to efficiently manage large numbers of object references,
some applications need to support a notion of object reference
identity. Object references are associated with internal identifiers
that you can access indirectly by using hash(). The value of this
internal identifier does not change during the lifetime of the object
reference.

You can use hash() and is equivalent () to support efficient
maintenance and search of tables keyed by object references.
_hash() allows you to partition the space of object references into
sub-spaces of potentially equivalent object references. For exam-
ple, setting maximum to 7 partitions the object reference space into
a maximum of 8 sub-spaces (O - 7).

See Also CORBA::Object:: is equivalent ()

Object::_is_a()

// Java
boolean is a(String Identifier);

Returns 1 (true) if the target object is either an instance of the type
specified in logical type id or of a derived type of the type in
logical type id. If the target object is neither, it returns O (false).

Parameters

Identifier The fully scoped name of the IDL interface. This is
a string denoting a shared type identifier
(RepositoryId). Use an underscore (‘_’) rather than
a scope operator (::) to delimit the scope.

The ORB maintains type-safety for object references over the
scope of an ORB, but you can use this method to help maintaining
type-safety when working in environments that do not have com-
pile time type checking to explicitly maintain type safety.

Exceptions If _is a() cannot make a reliable determination of type compatibil-
ity due to failure, it raises an exception in the calling application
code. This enables the application to distinguish among the true,
false, and indeterminate cases.

See Also CORBA: :Object:: non existent ()

Object::_is_equivalent()

// Java
boolean is equivalent (Object that) ;

Returns 1 (true) if the object references definitely refer to the same
object. A return value of O (false) does not necessarily mean that
the object references are not equivalent, only that the ORB cannot
confirm that they reference the same object. Two objects are

Orbix CORBA Programmer’s Reference: Java 133

Parameters

See Also

Parameters

See Also

equivalent if they have the same object reference, or they both refer
to the same object.

other object An object reference of other object.

A typical application use of is equivalent () iS to match object ref-
erences in a hash table. Bridges could use the method to shorten
the lengths of chains of proxy object references. Externalization
services could use it to flatten graphs that represent cyclical rela-
tionships between objects.

CORBA: :Object:: is a()
CORBA: :Object:: hash()

Object:: _non_existent()

// Java
boolean non existent();

Returns 1 (true) if the object does not exist or returns O (false)
otherwise.

Normally you might invoke this method on a proxy to determine
whether the real object still exists. This method may be used to
test whether an object has been destroyed because the method
does not raise an exception if the object does not exist.

Applications that maintain state that includes object references,
(such as bridges, event channels, and base relationship services)
might use this method to sift through object tables for objects that
no longer exist, deleting them as they go, as a form of garbage
collection.

Object::_release()

// Java

void release();

Signals that the caller is done using this object reference, so internal
ORB resources associated with this object reference can be re-
leased. Note that the object implementation is not involved in this
operation, and other references to the same object are not affected.

Object:: _request()

Request _request (String operation) ;

Returns a reference to a constructed .Request on the target object.
This is the simpler form of create request ().

operation The name of the operation.

You can add arguments and contexts after construction using
Request : :arguments () and Request: :ctx().

CORBA: :Object:: create request ()
CORBA: :Request : :arguments ()

134 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

CORBA: :Request: :ctx ()

Returns true if the current effective policies for the object will allow
an invocation to be made. Returns false if the current effective
policies would cause an invocation to raise the system exception
INV_POLICY.

inconsistent policies If the current effective policies are incompat-
ible, This parameter contains those policies
causing the incompatibility. This returned list
of policies is not guaranteed to be exhaus-
tive.

If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the
binding is no longer valid, a rebind will be attempted regardless of
the setting of any rRebindpolicy override. This method is the only
way to force such a rebind when implicit rebinds are disallowed by
the current effective RebindPolicy.

The appropriate system exception is raised if the binding fails due
to some reason unrelated to policy overrides.

Orbix CORBA Programmer’s Reference: Java 135

136 Orbix CORBA Programmer’s Reference: Java

CORBA::OperationDef Interface

Interface operationDef describes an IDL operation that is defined
in an IDL interface stored in the interface repository.

One way you can use the OperationDef is to construct an NvList for
a specific operation for use in the Dynamic Invocation Interface.
For details see ORB: :create operation list().

// IDL in module CORBA.

interface OperationDef : Contained {
readonly attribute TypeCode result;
attribute IDLType result def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

i
The inherited operation describe () is also described.
See Also CORBA: : Contained

CORBA: :ORB: :create operation list ()
CORBA: : ExceptionDef

OperationDef::contexts Attribute

// IDL
attribute ContextIdSeq contexts;

// Java
java.lang.String[] contexts() ;

void contexts(java.lang.String[] wval);

The list of context identifiers specified in the context clause of the
operation.

OperationDef::exceptions Attribute

// IDL
attribute ExceptionDefSeq exceptions;

// Java
org.omg.CORBA.ExceptionDef [] exceptions() ;

void exceptions(org.omg.CORBA.ExceptionDef[] wval);
The list of exceptions that the operation can raise.

See Also CORBA: : ExceptionDef

OperationDef::describe()

// IDL
Description describe() ;

Inherited from Contained, describe () returns a Description.

Orbix CORBA Programmer’s Reference: Java 137

See Also

See Also

See Also

The DefinitionKind for the kind member of this structure is
dk_Operation. The value member is an any whose TypeCode is
_tc_OperationDescription and whose value is a structure of type
OperationDescription.

CORBA: : Contained: :describe ()
CORBA: : ExceptionDef

OperationDef::mode Attribute

// IDL
attribute OperationMode mode;

// Java
org.omg.CORBA.OperationMode mode () ;

void mode(org.omg.CORBA.OperationMode val);

Specifies whether the operation is normal (OpP_NORMAL) Or oneway
(OP_ONEWAY).

OperationDef::params Attribute

// IDL

attribute ParDescriptionSeq params;

// Java

org.omg.CORBA. ParameterDescription[] params () ;

void params(org.omg.CORBA.ParameterDescription([] val);

Specifies the parameters for this operation. It is a sequence of
structures of type parameterDescription.

The name member of the ParameterDescription structure provides
the name for the parameter. The type member identifies the
TypeCode for the parameter. The type def member identifies the
definition of the type for the parameter. The mode specifies
whether the parameter is an in (PARAM IN), an out (PARAM OUT) Or
an inout (PARAM INOUT) parameter. The order of the
ParameterDescriptions is significant.

CORBA: : TypeCode
CORBA: : IDLType

OperationDef::result Attribute

// IDL
readonly attribute TypeCode result;

// Java
org.omg.CORBA. TypeCode result () ;

The return type of this operation. The attribute result def contains
the same information.

CORBA: : TypeCode
CORBA: :OperationDef: :result def

138 Orbix CORBA Programmer’s Reference: Java

OperationDef::result_def Attribute

// IDL
attribute IDLType result def;

// Java
org.omg.CORBA.IDLType result def();

void result def(org.omg.CORBA.IDLType val);

Describes the return type for this operation. The attribute result
contains the same information.

Setting the result def attribute also updates the result attribute.

See Also CORBA: : IDLType
CORBA: :OperationDef: :result

Orbix CORBA Programmer’s Reference: Java 139

140 Orbix CORBA Programmer’s Reference: Java

CORBA::ORB Class

The ORB class provides a set of methods and data types that con-
trol the ORB from both the client and the server. See Table 5:

Table5: Methods and Types of the ORB Class

Object Reference Manipulation

ORB Operation and Threads

duplicate ()

list initial services()
nil ()

ObjectId type

ObjectIdList sequence
object to string()

resolve initial references ()

destroy ()
perform work ()
run ()
shutdown ()

work pending ()

ORB Policies and Services

string to object ()

create policy ()

Dynamic Invocation Interface

(DI

TypeCode Creation Methods

create abstract interface tc()
create alias tc()
create array tc()
create enum tc()
create exception tc()
create fixed tc()
create interface tc()
create native tc()
create recursive tc()
create sequence tc()
create string tc()
create struct tc()
create union tc()
create value box tc()
create value tc()
create wstring tc()

create environment ()

create exception list ()

create list()

create named value ()

create operation list ()

get next response ()

poll next response ()

send multiple requests deferred()
send multiple requests oneway ()

Value Type Factory Methods

lookup value factory()
register value factory()
unregister value factory()

There are also methods to manage dynamic any data types.
You initialize the ORB using ORB.init ().
The oRrB class is defined as follows:

//IDL

pseudo interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InconsistentTypeCode {};
exception InvalidName {};
string object to string (in Object obj);
Object string to object (in string str);

// Dynamic Invocation related operations
void create list (in long count, out NVList new list);
void create operation list (
in OperationDef oper,
out NVList new list);
void get default context (out Context ctx);

Orbix CORBA Programmer’s Reference: Java 141

void send multiple requests oneway (in RequestSeq req) ;
void send multiple requests deferred(in RequestSeq red);
boolean poll next response() ;

void get next response (out Request re();

// Service information operations
boolean get service information (

in ServiceType service type,

out ServiceInformation service information);
ObjectIdList list initial services ();

// Initial reference operation
Object resolve initial references (
in ObjectId identifier
) raises (InvalidName) ;

// Type code creation operations
TypeCode create struct tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members) ;
TypeCode create union tc (

in RepositoryId id,

in Identifier name,

in TypeCode discriminator type,

in UnionMemberSeq members) ;
TypeCode create enum tc (

in RepositorylId id,

in Identifier name,

in EnumMemberSeq members) ;
TypeCode create alias tc (

in RepositoryId id,

in Identifier name,

in TypeCode original type);
TypeCode create exception tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members) ;
TypeCode create interface tc (

in RepositoryId id,

in Identifier name) ;
TypeCode create string tc (in unsigned long bound) ;
TypeCode create wstring tc (in unsigned long bound) ;
TypeCode create fixed tc (

in unsigned short digits,

in short scale);
TypeCode create sequence tc (

in unsigned long bound,

in TypeCode element type) ;
TypeCode create recursive sequence tc (// deprecated

in unsigned long bound,

in unsigned long offset);
TypeCode create array tc (

in unsigned long length,

in TypeCode element type) ;
TypeCode create value tc (

in RepositoryId id,

in Identifier name,

in ValueModifier type modifier,

in TypeCode concrete base,

142 Orbix CORBA Programmer’s Reference: Java

in ValueMemberSeq members) ;
TypeCode create value box tc (

in RepositoryId id,

in Identifier name,

in TypeCode boxed type) ;
TypeCode create native tc (

in RepositoryId id,

in Identifier name);
TypeCode create recursive tc (

in RepositoryId id);
TypeCode create abstract interface tc (

in RepositoryId id,

in Identifier name);

// Thread related operations

boolean work pending() ;

void perform work () ;

void run() ;

void shutdown(in boolean wait for completion) ;
void destroy () ;

// Policy related operations
Policy create policy(
in PolicyType type,
in any val) raises (PolicyError) ;

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations
// Value factory operations
ValueFactory register value factory(

in RepositoryId id,

in ValueFactory factory) ;
void unregister value factory(in RepositoryId id);
ValueFactory lookup value factory(in RepositoryId id);

// Additional operations that only appear in the Java mapping
TypeCode get primitive tc(in TCKind tcKind) ;
ExceptionlList create exception list();
ContextList create context list();
Environment create environment () ;

Current get current () ;

Any create any() ;

OutputStream create output stream() ;

void connect (Object obj) ;

void disconnect (Object obj) ;

Object get value def (in String repid) ;

void (Object wrapper) ;

additional methods for ORB initialization go here, but only
appear in the mapped Java (seeSection 1.21.9, “ORB
Initialization) Java signatures

public static ORB init (Strings[] args, Properties props) ;
public static ORB init (Applet app, Properties props) ;
public static ORB init () ;

abstract protected void set parameters (String[] args,
java.util.Properties props) ;

abstract protected void set parameters(java.applet.Applet
app,

java.util.Properties props) ;

Orbix CORBA Programmer’s Reference: Java 143

// Java
package org.omg.CORBA;
public abstract class ORB
public abstract org.omg.CORBA.Object
string to object (String str);
public abstract String
object_to string(org.omg.CORBA.Object obj) ;

// Dynamic Invocation related operations
public abstract NVList create list(int count);

public NVList create operation list(
org.omg.CORBA.Object oper) ;

// oper must really be an OperationDef

public abstract NamedValue create named value (
String name, Any value, int flags);

public abstract ExceptionlList create exception list();

public abstract ContextList create context list();

public abstract Context get default context () ;

public abstract Environment create environment () ;

public abstract void send multiple requests oneway (
Request [] req) ;

public abstract void send multiple requests deferred(
Request [] req);

public abstract boolean poll next response() ;

public abstract Request get next response() throws
org.omg.CORBA.WrongTransaction;

// Service information operations

public boolean get service information (
short service type,
ServiceInformationHolder service info) {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

public abstract String[] list initial services();

// Initial reference operation

public abstract org.omg.CORBA.Object

resolve initial references (String object name)
throws org.omg.CORBA.ORBPackage.InvalidName;

// typecode creation
public abstract TypeCode create struct tc(
String id, String name, StructMember [] members) ;
public abstract TypeCode create union tc(
String id,
String name,
TypeCode discriminator type,
UnionMember [] members) ;
public abstract TypeCode create enum tc(
String id,
String name,
String[] members) ;
public abstract TypeCode create alias tc(
String id,
String name,
TypeCode original type);
public abstract TypeCode create exception tc(

144 Orbix CORBA Programmer’s Reference: Java

String id,

String name,

StructMember [] members) ;
public abstract TypeCode create interface tc(

String id, String name) ;
public abstract TypeCode create string tc(int bound) ;
public abstract TypeCode create wstring tc(int bound) ;
public TypeCode create fixed tc(

short digits,

short scale) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public abstract TypeCode create sequence tc(

int bound, TypeCode element type) ;

public abstract TypeCode create array tc(

int length, TypeCode element type);
public TypeCode create value tc(

String id,

String name,

short type modifier,

TypeCode concrete base,

ValueMember [] members) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create value box tc(

String id,

String name,

TypeCode boxed type) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create native tc(

String id,

String name) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create recursive tc(

String id) {

throw new org.omg.CORBA.NO IMPLEMENT(); }
public TypeCode create abstract interface tc(

String id,

String name) {

throw org.omg.CORBA.NO IMPLEMENT () ; }

// Thread related operations
public boolean work pending() {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}
public void perform work() {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void run()
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void shutdown (boolean wait for completion) {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void destroy() {
throw new org.omg.CORBA.NO IMPLEMENT () ; }

// Policy related operations

public Policy create policy(short policy type, Any val)
throws org.omg.CORBA.PolicyError {
throw new org.omg.CORBA.NO IMPLEMENT () ; }

// additional methods for IDL/Java mapping
public abstract TypeCode get primitive tc(TCKind tcKind) ;

Orbix CORBA Programmer’s Reference: Java 145

public abstract Any create any() ;
public abstract org.omg.CORBA.portable.OutputStream
create output stream() ;

// additional static methods for ORB initialization
public static ORB init(
Strings[] args,
Properties props) ;
public static ORB init (
Applet app,
Properties props) ;
public static ORB init () ;
abstract protected void set parameters(
String[] args,
java.util.Properties props) ;
abstract protected void set parameters(
java.applet.Applet app,
java.util.Properties props) ;

}

package org.omg.CORBA 2 3;
public abstract class ORB extends org.omg.CORBA.ORB {
// always return a ValueDef or throw BAD PARAM if
// repid not of a value
public org.omg.CORBA.Object get value def(
String repid)
throws org.omg.CORBA.BAD PARAM {
throw new org.omg.CORBA.NO IMPLEMENT(); }

// Value factory operations
public org.omg.CORBA.portable.ValueFactory
register value factory(

String id,
org.omg.CORBA.portable.ValueFactory factory) {
throw new org.omg.CORBA.NO IMPLEMENT(); }
public void unregister value factory(String id) {
throw new org.omg.CORBA.NO IMPLEMENT(); }

public org.omg.CORBA.portable.ValueFactory
lookup value factory(String id)
throw new org.omg.CORBA.NO IMPLEMENT(); }

public void set delegate(java.lang.Object wrapper) {
throw new org.omg.CORBA.NO IMPLEMENT () ;}

ORB::.create_abstract_interface_tc()

Returns a pointer to a new TypeCode Of Kind tk_abstract interface
representing an IDL abstract interface.

Parameters
id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within
its enclosing scope.
See Also CORBA. . TypeCode

146 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

CORBA. . TCKind

ORB::.create_alias_tc()

// Java
public abstract TypeCode create alias tc(

String id,

String name,

TypeCode original type
)i

Returns a pointer to a new TypeCode of kind tk _alias representing
an IDL alias.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

original type A pointer to the actual TypeCode object this alias rep-
resents.

CORBA..TypeCode
CORBA. . TCKind

ORB.create_any()

// Java
public abstract Any create any();

Creates a new empty Any.

ORB::.create_array_tc()

// Java
public abstract TypeCode create array tc(

int length,
TypeCode element type
)i

Returns a pointer to a new TypeCode of kind tk_array representing
an IDL array.

length The length of the array.
element_type The data type for the elements of the array.

CORBA..TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: Java 147

Parameters

See Also

Parameters

See Also

See Also

See Also

ORB::create_context_list()

void create context list (ContextList out list);
Creates an empty ContextList object for use with a DIl request. You

can add context strings to the list using ContextList::add () and then
pass the list as a parameter to Object:: create request ().

list A reference to the new ContextList.

CORBA::ContextList
CORBA: :Object:: create request ()

ORB::create_enum_tc()

// Java
public abstract TypeCode create enum tc(

String id,

String name,

EnumMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_enum representing an
IDL enumeration.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of enumeration members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_environment()

// Java
public abstract Environment create environment () ;

Gets a newly created Environment object.

CORBA: :Environment

ORB::create_exception_list()

// Java
public abstract ExceptionList create exception list();

Creates an empty ExceptionList object for use with a DIl request.
You can add user-defined exceptions to the list using
Exceptionlist::add() and then pass the list as a parameter to
Object:: create request ().

CORBA::ExceptionList
CORBA: :Object:: create request ()

148 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Parameters

See Also

ORB::create_exception_tc()

// Java
public abstract TypeCode create exception tc(

String id,

String name,

StructMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_except representing
an IDL exception.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_fixed_tc()

Returns a pointer to a new TypeCode of kind tk_fixed representing
an IDL fixed point type.

digits The number of digits for the fixed point type.
scale The scale of the fixed point type.

CORBA. . TypeCode
CORBA. . TCKind

ORB::create_interface_ tc()

// Java
public abstract TypeCode create interface tc(

String id, String name

)i
Returns a pointer to a new TypeCode representing an IDL interface.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

Orbix CORBA Programmer’s Reference: Java 149

Parameters

See Also

Parameters

See Also

Parameters

See Also

ORB::create_list()

// Java
public abstract NVList create list (int count) ;

Allocates space for an empty NvList of the size specified by count
to contain Namedvalue Objects. A list of Namedvalue Object can be used
to describe arguments to a request when using the Dynamic
Invocation Interface. You can add Namedvalue items to list using the
NVList::add item() routine.

count Number of elements anticipated for the new NvList.
This is a hint to help with storage allocation.

CORBAIINVList

CORBA. . NamedValue
CORBA..ORB..create operation list ()
CORBA. .Request ()

ORB::.create_named_value()

// Java

public abstract NamedValue create named value (
String name,
Any value,
int flags

)i

Creates Namedvalue Objects you can use as return value parameters
in the Object:. create request () method.

value A pointer to the Namedvalue oObject created. You must
release the reference when it is no longer needed, or
assign it to a Namedvalue var variable for automatic
management.

CORBA..NVList

CORBA. . NamedValue
CORBA!Any
CORBA..ORB..create list()

ORB::.create_native_tc()

Returns a pointer to a new TypeCode of kind tk native representing
an IDL native type.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.

CORBA. . TypeCode
CORBA. . TCKind

150 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

ORB::.create_operation_list()

// Java
public abstract NVList create operation list(

OperationDef operation

)i

Creates an NVList initialized with the argument descriptions for the
operation specified in operation.

operation A pointer to the interface repository object describing
the operation.

Each element in the list is of type Namedvalue whose value member
(of type CORBA: Any) has a valid type that denotes the type of the
argument. The value of the argument is not filled in.

Use of this method requires that the relevant IDL file be compiled
with the -r option.

CORBAINVList

CORBA. .NamedValue

CORBA: . Any
CORBA..ORB..create list ()

ORB::create_output_stream()

// Java
public abstract

org.omg.CORBA.portable.OutputStream create output stream() ;

Creates a new org.omg.CORBA.portable.OutputStream into which
IDL method parameters can be marshalled during method invoca-
tion.

ORB::create_policy()

Returns a reference to a newly created Policy object.

type The policyType of the Policy object to be created.
value The value for the initial state of the policy object cre-
ated.

CORBA::Policy
CORBA: : PolicyType
CORBA: : PolicyErrorCode

ORB::create_recursive_tc()

Returns a pointer to a recursive TypeCode, wWhich serves as a place
holder for a concrete TypeCode during the process of creating type
codes that contain recursion. After the recursive TypeCode has been
properly embedded in the enclosing TypeCode, which corresponds to
the specified repository id, it will act as a normal TypeCode.

Orbix CORBA Programmer’s Reference: Java 151

Parameters

id The repository ID of the enclosing type for which the
recursive TypeCode is serving as a place holder.

Invoking operations on the recursive TypeCode before it has been
embedded in the enclosing TypeCode will result in undefined behav-
ior.

Examples The following IDL type declarations contains TypeCode recursion:

// IDL

struct foo {
long value;
sequence<foo> chain;

bi

valuetype V {
public V member;
}i

See Also CORBA: . TypeCode

ORB::create_sequence_tc()

// Java
public abstract TypeCode create sequence tc(

int bound,
TypeCode element type
)i

Returns a pointer to a new TypeCode of kind tk_sequence representing
an IDL sequence.

Parameters
bound The upper bound of the sequence.

element_type The data type for the elements of the sequence.

See Also CORBA. . TypeCode
CORBA. . TCKind

ORB::create_string_tc()

// Java
public abstract TypeCode create string tc(int bound) ;

Returns a pointer to a new TypeCode of kind tk_string representing
an IDL string.

Parameters

bound The upper bound of the string.

See Also CORBA: . TypeCode
CORBA. . TCKind

152 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Parameters

ORB::create_struct_tc()

// Java
public abstract TypeCode create struct tc(

String id,

String name,

StructMember [] members
)i

Returns a pointer to a new TypeCode of kind tk_struct representing
an IDL structure.

id The repository ID that globally identifies the TypeCode
object.
name The simple name identifying the TypeCode object within

its enclosing scope.
members The sequence of structure members.

CORBA..TypeCode
CORBA. . TCKind

ORB::create_union_tc()

// Java
public abstract TypeCode create union tc(

String id,
String name,
TypeCode discriminator type,
UnionMember [] members
)i

Returns a pointer to a TypeCode of kind tk_union representing an IDL
union.

id The repository ID that globally identifies the
TypeCode Object.

name The simple name identifying the TypeCode
object within its enclosing scope.

discriminator type The union discriminator type.
members The sequence of union members.

CORBA. . TypeCode
CORBA. . TCKind

ORB::.create_value box_ tc()

Returns a pointer to a new TypeCode of kind tk_value box represent-
ing an IDL boxed value.

id The repository ID that globally identifies the TypeCode
object.

Orbix CORBA Programmer’s Reference: Java 153

name The simple name identifying the TypeCode object within
its enclosing scope.

original type A pointer to the original TypeCode object this boxed
value represents.

See Also CORBA.: . TypeCode
CORBA. : TCKind

ORB::.create_value_tc()

Returns a pointer to a TypeCode of kind tk_value representing an IDL

value type.
Parameters
id The repository ID that globally identifies the
TypeCode Object.
name The simple name identifying the TypeCode object
within its enclosing scope.
type modifier A value type modifier.
concrete base A TypeCode for the immediate concrete value type
base of the value type for which the TypeCode is
being created. If the value type does not have a
concrete base, use a nil TypeCode reference.
members The sequence of value type members.
See Also CORBA. . TypeCode
CORBA. . TCKind
ORB::.create_wstring_tc()
// Java
public abstract TypeCode create wstring tc(int bound) ;
Returns a pointer to a new TypeCode of kind tk_wstring representing
an IDL wide string.
Parameters
bound The upper bound of the string.
See Also CORBA. . TypeCode

CORBA: : TCKind

ORB::destroy()

void destroy () ;

This thread operation destroys the ORB so that its resources can be
reclaimed by the application.

154 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

See Also

If destroy () is called on an ORB that has not been shut down (see
shutdown ()) it will start the shut down process and block until the
ORB has shut down before it destroys the ORB. For maximum por-
tability and to avoid resource leaks, applications should always call
shutdown () and destroy() on all ORB instances before exiting.

After an ORB is destroyed, another call to orRB init () with the
same ORB ID will return a reference to a newly constructed ORB.

BAD INV ORDER, An application calls destroy() in a thread that is cur-
minor code 3 rently servicing an invocation because blocking would
result in a deadlock.

OBJECT NOT EXIAn operation is invoked on a destroyed ORB reference.
ST

The exception is raise if

CORBA::ORB::run ()
CORBA: :ORB: : shutdown ()

ORB::_duplicate()

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

ORB::get_default_context()

// Java
public abstract Context get default context();

Obtains a CORBA: : Context Object representing the default context of
the process.

context The default context of the process.

CORBA..Context
CORBA. .NVList

ORB::get_next _response()

// Java
public abstract Request get next response () ;

Gets the next response for a request that has been sent.

You can call get_next response () successively to determine the
outcomes of the individual requests from

send multiple requests deferred() calls. The order in which
responses are returned is not necessarily related to the order in
which the requests are completed.

Orbix CORBA Programmer’s Reference: Java 155

Exceptions

See Also

See Also

WrongTransaction The thread invoking this method has a non-null
transaction context that differs from that of the
request and the request has an associated trans-
action context.

CORBA..ORB..send multiple requests deferred ()
CORBA. .Request..get response ()

CORBA. .Request..send deferred ()
CORBA..ORB..poll next response ()

ORB::get_primitive_tc()

// Java

public abstract TypeCode get primitive tc(TCKind tcKind) ;
Retrieves the TypeCode object that represents the given primitive
IDL type.

ORB.init()

public static ORB init (Strings[] args, Properties props) ;
Creates a new ORB instance for a standalone application.

public static ORB init (Applet app, Properties props) ;
Creates a new ORB instance for an applet.

public static ORB init () ;
Returns the ORB singleton object.

ORB::list_initial_services()

public abstract String[] list initial services();

Returns a sequence of ObjectId strings, each of which names a
service provided by Orbix. This method allows your application to
determine which objects have references available. Before you can
use some services such as the naming service in your application
you have to first obtain an object reference to the service.

The ObjectIdList may include the following names:

DynAnyFactory
IT Configuration

InterfaceRepository
NameService
ORBPolicyManager
POACurrent

PSS

RootPOA
SecurityCurrent
TradingService
TransactionCurrent

CORBA::ORB:.:resolve initial references()

156 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

Note:

See Also

ORB::lookup_value_factory()

Returns a pointer to the factory method.

id A repository ID that identifies a value type factory
method.

Your application assumes ownership of the returned reference to
the factory. When you are done with the factory, invoke
ValueFactoryBase:: remove ref () once on that factory.

CORBA::ValueFactory
CORBA: :ORB: :register value factory()
CORBA: :ORB: :unregister value factory ()

ORB::object_to_string()

public abstract String object to string(
org.omg.CORBA.Object obj

)i

Returns a string representation of an object reference. An object
reference can be translated into a string by this method and the

resulting value stored or communicated in whatever ways strings
are manipulated.

obj Object reference to be translated to a string.

Use string to object () to translate the string back to the corre-
sponding object reference.

A string representation of an object reference has the prefix I0R:
followed by a series of hexadecimal octets. The hexadecimal
strings are generated by first turning an object reference into an
interoperable object reference (IOR), and then encapsulating the IOR
using the encoding rules of common data representation (CDR). The
content of the encapsulated IOR is then turned into hexadecimal
digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded
as a hexadecimal digit, then the low four bits are encoded.

Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for
storing references to objects in persistent storage or
communicating references by means other than invocation.

CORBA..ORB..string to object ()

ORB::perform_work()

void perform work () ;

A thread function that provides execution resources to your appli-
cation if called by the main thread. This function does nothing if
called by any other thread.

Orbix CORBA Programmer’s Reference: Java 157

Exceptions Y ou can use perform work () and work pending () for asimple polling loop
that multiplexesthe main thread among the ORB and other activities. Such aloop
would most likely be used in a single-threaded server. A multi-threaded server
would need a polling loop only if there were both ORB and other code that
required use of the main thread.

See Also CORBA:IORB::run()
CORBA: :ORB: :work pending ()

ORB::poll_next_response()

public abstract boolean poll next response() ;

Returns 1 (true) if any request has completed or returns O (false)
if none have completed. This method returns immediately, whether
any request has completed or not.

You can call this method successively to determine whether the
individual requests specified in a send multiple requests oneway ()
or send multiple requests deferred() call have completed success-
fully.

Alternatively you can call Request: :poll response () on the individ-
ual request objects in the sequence of requests passed to

send multiple requests oneway () Or

send multiple requests deferred().

See Also CORBAIIORB:Iget next response ()
CORBA: :ORB::send multiple requests oneway ()
CORBA: :ORB: :send multiple requests deferred()
CORBA: :Request: :poll response ()

ORB::register_value_factory()

Registers a value type factory method with the ORB for a particular
value type. The method returns a null pointer if no previous factory
was registered for the type. If a factory is already registered for the
value type, the method replaces the factory and returns a pointer
to the previous factory for which the caller assumes ownership.

Parameters

id A repository ID that identifies the factory.

factory The application-specific factory method that the ORB
calls whenever it needs to create the value type during
the unmarshaling of value instances.

When a value type factory is registered with the ORB, the ORB
invokes valueFactoryBase:: add ref () once on the factory before
returning from register value factory(). When the ORB is done
using that factory, the reference count is decremented once with
ValueFactoryBase:: remove ref (). This can occur in any of the fol-
lowing circumstances:

* If the factory is explicitly unregistered via
unregister value factory(), the ORB invokes
ValueFactoryBase:: remove ref () once on the factory.

158 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

See Also

See Also

* If the factory is implicitly unregistered due to a call to
shutdown (), the ORB invokes valueFactoryBase:: remove ref ()
once on each registered factory.

* If you replace a factory by calling this
register value factory() again, you should invoke
ValueFactoryBase:: remove ref () once on the previous factory.

CORBA::ValueFactory
CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :unregister value factory ()

ORB::resolve_initial _references()

public abstract org.omg.CORBA.Object
resolve initial references (String object name)

throws org.omg.CORBA.ORBPackage.InvalidName;

Returns an object reference for a desired service.

id The name of the desired service. Use
list initial services() to obtain the list of services
supported.

Applications require a portable means by which to obtain some ini-
tial object references such as the root POA, the interface reposi-
tory, and various object services instances. The functionality of
resolve initial references() and list initial services() is like a
simplified, local version of the naming service that has only a
small set of objects in a flattened single-level name space.

The object reference returned must be narrowed to the correct
object type. For example, the object reference returned from
resolving the id name InterfaceRepository must be narrowed to
the type CORBA: :Repository.

CORBA::ORB::list initial services()

ORB::run()

void run() ;

A thread method that enables the ORB to perform work using the
main thread. If called by any thread other than the main thread,
this method simply waits until the ORB has shut down.

This method provides execution resources to the ORB so that it
can perform its internal functions. Single threaded ORB implemen-
tations, and some multi-threaded ORB implementations need to
use the main thread. For maximum portability, your applications
should call either run() or perform work() on the main thread.

run() returns after the ORB has completed the shutdown process,
initiated when some thread calls shutdown ().

CORBA:IORB::perform work ()
CORBA: :ORB: :work pending ()
CORBA: :ORB: : shutdown ()
CORBA: :ORB: :destroy ()

Orbix CORBA Programmer’s Reference: Java 159

Parameters

See Also

Parameters

See Also

ORB::send_multiple_requests_deferred()

public abstract void send multiple requests deferred(
Request [] req

)i
Initiates a number of requests in parallel.

req A sequence of requests.

The method does not wait for the requests to finish before return-
ing to the caller. The caller can use get next response() Or
Request: :get response () to determine the outcome of the
requests. Memory leakage will result if one of these methods is
not called for a request issued with

send multiple requests oneway () Or Request::send deferred().

CORBA:IORB::send multiple requests oneway ()
CORBA: :Request: :get response ()

CORBA: :Request: :send deferred ()

CORBA: :ORB: :get next response ()

ORB::send_multiple_requests_oneway()

public abstract void send multiple requests oneway (Request []
req) ;

Initiates a number of requests in parallel. It does not wait for the
requests to finish before returning to the caller.

req A sequence of requests. The operations in this
sequence do not have to be IDL oneway operations.
The caller does not expect a response, nor does it
expect out or inout parameters to be updated.

CORBA::Request:isend oneway ()
CORBA: :ORB: :send multiple requests deferred()

ORB::shutdown()

void shutdown (
boolean wait for completion

)i

This thread method instructs the ORB to shut down in preparation
for ORB destruction.

160 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

See Also

Parameters

See Also

wait for completion Designates whether or not to wait for comple-
tion before continuing.

If the value is 1 (true), this method blocks until
all ORB processing has completed, including
request processing and object deactivation or
other methods associated with object adapters.

If the value is O (false), then shut down may
not have completed upon return of the
method.

While the ORB is in the process of shutting down, the ORB oper-

ates as normal, servicing incoming and outgoing requests until all
requests have been completed. Shutting down the ORB causes all
object adapters to be shut down because they cannot exist with-
out an ORB.

An application may also invoke ORB: :destroy () on the ORB itself.
Invoking any other method raises exception BAD INV ORDER System
with the OMG minor code 4.

BAD INV_ORDER, An application calls this method in a thread that is cur-
minor code rently servicing an invocation because blocking would
3 result in a deadlock.

CORBAIIORB::run()
CORBA: :ORB: :destroy ()

ORB::string_to_object()
public abstract org.omg.CORBA.Object string to object (String
str) ;

Returns an object reference by converting a string representation
of an object reference.

obj_ref string String representation of an object reference to be
converted.

To guarantee that an ORB will understand the string form of an
object reference, the string must have been produced by a call to
object to string().

CORBA..ORB..cbject to string()

ORB::unregister_value_factory()

Unregisters a value type factory method from the ORB.

id A repository ID that identifies a value type factory
method.

CORBA::ValueFactory

Orbix CORBA Programmer’s Reference: Java 161

CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :register value factory()

ORB::work_pending()

boolean work pending() ;

This thread method returns an indication of whether the ORB needs
the main thread to perform some work. A return value of 1 (true)
indicates that the ORB needs the main thread to perform some work
and a return value of O (false) indicates that the ORB does not need
the main thread.

Exceptions
BAD INV ORDER, The method is called after the ORB has shutdown.
minor code 4

See Also CORBAIIORB::Irun()

CORBA: :ORB: :perform work ()

162 Orbix CORBA Programmer’s Reference: Java

CORBA::Policy Interface

An ORB or CORBA service may choose to allow access to certain
choices that affect its operation. This information is accessed in a
structured manner using interfaces derived from the policy inter-
face defined in the CORBA module. A CORBA service is not
required to use this method of accessing operating options, but
may choose to do so.

This chapter is divided into the following sections:
* “Quality of Service Framework”
e “Policy Methods”

The following policies are available. These are classes that inherit
from the CORBA: :Policy class:

Table 6: Policies

Category Policy
CORBA and IT CORBA: :WellKnownAddressingPolicy
IT_CORBA
PortableServer PortableServer: : ThreadPolicy
and IT_Portable- | PortableServer: :LifespanPolicy
Server PortableServer: : IdUniquenessPolicy

PortableServer: : IdAssignmentPolicy
PortableServer: :ImplicitActivationPolicy
PortableServer: : ServantRetentionPolicy
PortableServer: :RequestProcessingPolicy

IT PortableServer: :ObjectDeactivationPolicy
IT PortableServer: :PersistenceModePolicy

You create instances of a policy by calling
CORBA: :ORB: :create policy ().

Quality of Service Framework

A policy is the key component for a standard Quality of Service
framework (QoS). In this framework, all qualities are defined as
interfaces derived from CORBA: : Policy. This framework is how all
service-specific qualities are defined. The components of the
framework include:

Policy This base interface from which all QoS objects
derive.

PolicyList A sequence of policy objects.

PolicyManager An interface with operations for querying and

overriding QoS policy settings.

Orbix CORBA Programmer’s Reference: Java 163

Policy Transport Mechanisms for transporting policy values as
Mechanisms part of interoperable object references and
within requests. These include:

® TAG POLICIES - A Profile Component con-
taining the sequence of QoS policies
exported with the object reference by an
object adapter.

L INVOCATION POLICIES - A Service Context
containing a sequence of QoS policies in
effect for the invocation.

Most policies are appropriate only for management at either the
server or client, but not both. Server-side policies are associated
with a POA. Client-side policies are divided into ORB-level,
thread-level, and object-level policies. At the thread and ORB lev-
els, use the policyManager interface to query the current set of pol-
icies and override these settings.

POA Policies for Servers

Server-side policy management is handled by associating QoS
Policy objects with a POA. Since all QoS are derived from interface
Policy, those that are applicable to server-side behavior can be
passed as arguments to POA: :create POA(). Any such policies that
affect the behavior of requests (and therefore must be accessible
by the ORB at the client side) are exported within the object refer-
ences that the POA creates. It is clearly noted in a POA policy defi-
nition when that policy is of interest to the client. For those
policies that can be exported within an object reference, the
absence of a value for that policy type implies that the target sup-
ports any legal value of that policyType.

ORB-level Policies for Clients

You obtained the ORB’s locality-constrained policyManager through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of ORBPolicyManager. This PolicyManager has
operations through which a set of policies can be applied and the
current overriding policy settings can be obtained. Policies applied
at the ORB level override any system defaults.

Thread-level Policies for Clients

You obtained a thread’s locality-constrained policyCurrent through
an invocation of CORBA: :ORB: :resolve initial references (), Speci-
fying an identifier of policycurrent. Policies applied at the
thread-level override any system defaults or values set at the ORB
level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a

SINGLE THREAD MODEL POA, the thread-level overrides are reset to
have no overridden values.

164 Orbix CORBA Programmer’s Reference: Java

Object-level Policies for Clients

Policy Methods

Operations are defined on the base object interface through which
a set of policies can be applied. Policies applied at the object level
override any system defaults or values set at the ORB or thread
levels. In addition, accessors are defined for querying the current
overriding policies set at the object level, and for obtaining the
current effective client-side policy of a given policyType. The effec-
tive client-side policy is the value of a pPolicyType that would be in
effect if a request were made. This is determined by checking for
overrides at the object level, then at the thread level, and finally
at the ORB level. If no overriding policies are set at any level, the
system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default val-
ues are not specified in most cases.

The policy interface is as follows:

// IDL in module CORBA

interface Policy {
readonly attribute PolicyType policy type;
Policy copy () ;

void destroy() ;

}i

Policy::policy_type Attribute

// IDL
readonly attribute PolicyType policy type;

// Java
public int policy type();

This read-only attribute returns the constant value of type
PolicyType that corresponds to the type of the policy object.

Policy::copy()

// IDL
Policy copy () ;

// Java
org.omg.CORBA.Policy copy () ;

This operation copies the policy object. The copy does not retain
any relationships that the original policy had with any domain, or
object.

Policy::destroy()

// IDL
void destroy () ;

// Java
public void destroy () ;

Orbix CORBA Programmer’s Reference: Java 165

This operation destroys the policy object. It is the responsibility of
the policy object to determine whether it can be destroyed.

Enhancement Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy (). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs.

Exceptions

NO_PERMISSION The policy object determines that it cannot be
destroyed.

166 Orbix CORBA Programmer’s Reference: Java

CORBA::PolicyCurrent Class

The policyCurrent interface allows access to policy settings at the
current programming context level. Within a client, you obtain a
PolicyCurrent Object reference to set the quality of service for all
invocations in the current thread. You obtain a reference to this
interface by invoking ORB: :resolve initial references|().

The policyCurrent interface is derived from the policyManager and
the current interfaces. The PolicyManager interface allows you to
change the policies for each invocation and the current interface
allows control from the current thread.

Policies applied at the thread level override any system defaults or
values set at the ORB level. When accessed from a newly spawned
thread, the policyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy Of ORB CONTROL MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a POA of
the SINGLE THREAD MODEL, the thread-level overrides are reset to
have no overridden values.

// Java

package org.omg.CORBA;

public interface PolicyCurrent extends
org.omg.CORBA. PolicyManager,
org.omg.CORBA.Current {}

Orbix CORBA Programmer’s Reference: Java 167

168 Orbix CORBA Programmer’s Reference: Java

CORBA::PolicyManager Class

Parameters

Parameters

See Also

Parameters

PolicyManager is an interface with operations for querying and
overriding QoS policy settings. It includes mechanisms for obtain-
ing policy override management operations at each relevant appli-
cation scope. You obtain the ORB’s PolicyManager by invoking
ORB: :resolve initial references () with the objectId
ORBPolicyManager.

You use a CORBA: :PolicyCurrent Object, derived from

CORBA: :Current, for managing the thread’s QoS policies. You obtain
a reference to this interface by invoking

ORB: :resolve initial references() with the Objectld
PolicyCurrent.

®* Accessor operations on CORBA: :0Object allow querying and
overriding of QoS at the object reference scope.

* The application of QoS on a POA is done through the currently
existing mechanism of passing a PolicyList to
POA: :create POA().

PolicyManager::get_policy_ overrides()

// Java
org.omg.CORBA.Policy[] get policy overrides(int[] ts);

Returns a list containing the overridden polices for the requested
policy types. This returns only those policy overrides that have been
set at the specific scope corresponding to the target policyManager
(no evaluation is done with respect to overrides at other scopes).
If none of the requested policy types are overridden at the target
PolicyManager, an empty sequence is returned.

ts A sequence of policy types to get. If the specified
sequence is empty, the method returns all policy over-
rides at this scope.

CORBA::PolicyManager::set policy overrides ()

PolicyManager::set_policy_overrides()

// Java
void set_policy overrides (

org.omg.CORBA.Policy[] policies,
org.omg.CORBA.SetOverrideType set add
) throws org.omg.CORBA.InvalidPolicies;

Modifies the current set of overrides with the requested list of policy
overrides.

policies A sequence of references to policy objects.

Orbix CORBA Programmer’s Reference: Java 169

set_add Indicates whether the policies in the policies parame-
ter should be added to existing overrides in the
PolicyManager Or used to replace existing overrides:

®* Use ADD OVERRIDE to add policies onto any other
overrides that already exist in the PolicyManager.

i Use SET OVERRIDE to create a clean pPolicyManager
free of any other overrides.

Invoking the method with an empty sequence of policies and a
mode of SET OVERRIDE removes all overrides from a pPolicyManager.

There is no evaluation of compatibility with policies set within
other policy managers.

Exceptions

NO_PERMISSION Only certain policies that pertain to the invocation
of an operation at the client end can be overridden
using this operation. This exception is raised if you
attempt to override any other policy.

InvalidPolicied The request would put the set of overriding poli-
cies for the target policyManager in an inconsistent
state. No policies are changed or added.

170 Orbix CORBA Programmer’s Reference: Java

CORBA::PrimitiveDef Interface

Interface primitiveDef represents an IDL primitive type such as
short, long, and others. PrimitiveDef Objects are anonymous
(unnamed) and owned by the interface repository.

Objects of type primitiveDef cannot be created directly. You can
obtain a reference to a primitiveDef by calling
Repository::get primitive().

// IDL in module CORBA.
interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind;

See Also CORBA: : PrimitiveKind
CORBA: : IDLType

CORBA: :Repository: :get primitiwve ()

PrimitiveDef::kind Attribute

// IDL
readonly attribute PrimitiveKind kind;

// Java

org.omg.CORBA.PrimitiveKind kind() ;

Identifies which of the IDL primitive types is represented by this
PrimitiveDef.

A PrimitiveDef with a kind of type pk string represents an
unbounded string, a bounded string is represented by the inter-
face stringDef. A PrimitiveDef with a kind of type pk objref rep-
resents the IDL type Object.

See Also CORBA: : IDLType
CORBA: :Object
CORBA: : StringDef

Orbix CORBA Programmer’s Reference: Java 171

172 Orbix CORBA Programmer’s Reference: Java

CORBA::Repository Interface

The interface repository itself is a container for IDL type defini-
tions. Each interface repository is represented by a global root
Repository object.

The Repository interface describes the top-level object for a repos-
itory name space. It contains definitions of constants, typedefs,
exceptions, interfaces, value types, value boxes, native types, and
modules.

You can use the Repository operations to look up any IDL defini-
tion, by either name or identity, that is defined in the global name
space, in a module, or in an interface. You can also use other
Repository operations to create information for the interface
repository. See Table 7:

Table7: Operations of the Repository Interface
Read Operations Write Operations
get canonical typecode () create array ()
get primitiwve () create fixed()
lookup id() create sequence ()
create string()
create wstring()

The five create_type Operations create new interface repository
objects defining anonymous types. Each anonymous type defini-
tion must be used in defining exactly one other object. Because
the interfaces for these anonymous types are not derived from
Contained, it is your responsibility to invoke in your application
destroy () on the returned object if it is not successfully used in
creating a definition that is derived from Contained.

The RrRepository interface is as follows:

// IDL in module CORBA.
interface Repository : Container {
Contained lookup id(
in RepositoryId search id
);
TypeCode get canonical typecode (
in TypeCode tc

) ;

PrimitiveDef get primitive(
in PrimitiveKind kind

)

StringDef create string(
in unsigned long bound

)

WstringDef create wstring(
in unsigned long bound

)

SequenceDef create sequence (
in unsigned long bound,
in IDLType element type

)i
ArrayDef create array(
in unsigned long length,

Orbix CORBA Programmer’s Reference: Java 173

See Also

Parameters

See Also

in IDLType element type
) ;
FixedDef create fixed(
in unsigned short digits,
in short scale
)
}i
Note that although a Repository does not have a RepositoryId
associated with it (because it derives only from Container and not
from Contained) you can assume that its default RepositoryId. is an
empty string. This allows a value to be assigned to the defined in
field of each description structure for ModuleDef, InterfaceDef,
ValueDef, ValueBoxDef, TypedefDef, ExceptionDef and ConstantDef
that may be contained immediately within a Repository object.

CORBA: :Container

Repository::create_array()

// IDL
ArrayDef create array(

in unsigned long length,
in IDLType element type
)i

// Java
org.omg.CORBA.ArrayDef create array(
int length,

org.omg.CORBA.IDLType element type
)i

Returns a new array object defining an anonymous (unnamed) type.
The new array object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

length The number of elements in the array.
element_type The type of element that the array will contain.

CORBA: :ArrayDef
CORBA: : IRObject

Repository::create_fixed()

// IDL
FixedDef create fixed (

in unsigned short digits,
in short scale

)i

// Java
org.omg.CORBA.FixedDef create fixed(

short digits,
short scale

)i

174 Orbix CORBA Programmer’s Reference: Java

Returns a new fixed-point object defining an anonymous (unnamed)
type. The new object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility

to delete it.
Parameters
digits The number of digits in the fixed-point number. Valid
values must be between 1 and 31, inclusive.
scale The scale.
Repository::.create_sequence()
// IDL
SequenceDef create sequence (
in unsigned long bound,
in IDLType element type
)i
// Java
org.omg.CORBA. SequenceDef create sequence (
int bound,
org.omg.CORBA.IDLType element type
)
Returns a new sequence object defining an anonymous (unnamed)
type. The new sequence object must be used in the definition of
exactly one other object. Itis deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.
Parameters
bound The number of elements in the sequence. A bound of
0 indicates an unbounded sequence.
element_type The type of element that the sequence will contain.
See Also CORBA: : SequenceDef

Repository::create_string()

// IDL
StringDef create string(

in unsigned long bound
)i

// Java
org.omg.CORBA.StringDef create string(int bound) ;

Returns a new string object defining an anonymous (unnamed)
type. The new string object must be used in the definition of exactly
one other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility
to delete it.

Orbix CORBA Programmer’s Reference: Java 175

Parameters

See Also

Parameters

See Also

Parameters

bound The maximum number of characters in the string.
(This cannot be 0.)

Use get primitive() to create unbounded strings.

CORBA: : StringDef
CORBA: :Repository: :get primitive ()

Repository::create_wstring()

// IDL
StringDef create wstring (

in unsigned long bound
)i

// Java
org.omg.CORBA.WstringDef create wstring(int bound) ;

Returns a new wide string object defining an anonymous (unnamed)
type. The new wide string object must be used in the definition of
exactly one other object. It is deleted when the object itis contained
in is deleted. If the created object is not successfully used in the
definition of a contained object, it is your application’s responsibility
to delete it.

bound The maximum number of characters in the string.
(This cannot be 0.)

Use get primitive() to create unbounded strings.

CORBA: :WstringDef
CORBA: :Repository: :get primitiwve ()

Repository::get_canonical_typecode()

// IDL
TypeCode get canonical typecode (

in TypeCode tc

)i

// Java

org.omg.CORBA.TypeCode get canonical typecode (
org.omg.CORBA.TypeCode tc

)i

Returns a TypeCode that is equivalent to tc that also includes all
repository ids, names, and member names.

tc The TypeCode to lookup.

If the top level TypeCode does not contain a RepositoryId (such as
array and sequence type codes or type codes from older ORBS) or
if it contains a RepositoryId that is not found in the target
Repository, then a new TypeCode is constructed by recursively call-
iNng get canonical typecode() on each member TypeCode of the
original TypeCode.

176 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

See Also

Repository::get_primitive()

// IDL

PrimitiveDef get primitive(
in PrimitiveKind kind

)

// Java

org.omg.CORBA.PrimitiveDef get primitive (
org.omg.CORBA.PrimitiveKind kind

)

Returns a reference to a PrimitiveDef oOf the specified PrimitiveKind.
All primitiveDef Objects are owned by the rRepository, one primitive
object per primitive type (for example, short, long, unsigned short,
unsigned long and so on).

kind The kind of primitive to get.

CORBA: : PrimitiveDef

Repository::lookup_id()
// IDL
Contained lookup id(
in RepositoryId search id
)i
// Java
org.omg.CORBA.Contained lookup id(java.lang.String search id);

Returns an object reference to a Contained object within the repos-
itory given its RepositoryId. If the repository does not contain a
definition for the given ID, a nil object reference is returned.

search id The RepositoryId of the IDL definition to lookup.

CORBA: : Contained

Orbix CORBA Programmer’s Reference: Java 177

178 Orbix CORBA Programmer’s Reference: Java

CORBA::Request Class

See Also

See Also

See Also

This class is the key support class for the Dynamic Invocation
Interface (DII), whereby an application may issue a request for
any interface, even if that interface was unknown at the time the
application was compiled.

Orbix allows invocations, that are instances of class rRequest, to be
constructed by specifying at runtime the target object reference,
the operation name and the parameters. Such calls are termed
dynamic because the IDL interfaces used by a program do not
have to be statically determined at the time the program is
designed and implemented.

You create a request using methods Object:: create request() Or
Object:: request().

CORBA::Object:: request ()
CORBA: :Object:: create request ()

Request::add_in_arg()

// Java
public abstract Any add in arg() ;

Returns an any value for the input argument that is added.

CORBA::Request : :arguments ()
CORBA: :Request::add inout arg()
CORBA: :Request: :add out arg()

Request::add_inout_arg()

// Java
public abstract Any add inout arg();

Returns an any value for the in/out argument that is added.

CORBA:IRequest: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add out arg()

Request::add_named_in_arg()

// Java
public abstract Any add named in arg(String name) ;

Request:add_named_inout_arg()

// Java
public abstract Any add named inout arg(String name) ;

Orbix CORBA Programmer’s Reference: Java 179

See Also

See Also

Parameters

Request::add_named_out_arg()

// Java
public abstract Any add named out arg(String name) ;

Request::add_out_arg()

// Java
public abstract Any add out arg() ;

Returns an any value for the output argument that is added.

CORBA::Request: :arguments ()
CORBA: :Request::add in arg()
CORBA: :Request: :add inout arg()

Request::arguments()

// Java
public abstract NVList arguments() ;

Returns the arguments to the requested operation in an NVList.
Ownership of the return value is maintained by the Request and must
not be freed by the caller. You can add additional arguments to the
request using the add * arg() helper methods.

CORBA::NVList

CORBA: :Request::add in arg()
CORBA: :Request::add inout arg()
CORBA: :Request: :add out arg()

Request::contexts()

// Java
public abstract ContextList contexts();

Returns a pointer to a list of contexts for the request. Ownership of
the return value is maintained by the rRequest and must not be freed
by the caller.

Request::ctx()

// Java
public abstract Context ctx();

Returns the context associated with a request. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

// Java
public abstract void ctx(Context c);

Inserts a Context into a request.

c The context to insert with the request.

180 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

See Also

See Also

Request::env()

// Java
public abstract Environment env () ;

Returns the Environment associated with the request from which
exceptions raised in DIl calls can be accessed. Ownership of the
return value is maintained by the rRequest and must not be freed by
the caller.

CORBA::Environment

Request::exceptions()

// Java
public abstract ExceptionList exceptions() ;

Returns a pointer to list of possible application-specific exceptions
for the request. Ownership of the return value is maintained by the
Request and must not be freed by the caller.

CORBA::ExceptionList

Request::get_response()

// Java
public abstract void get response () ;

Determines whether a request has completed successfully. It re-
turns only when the request, invoked previously using
send deferred(), has completed.

CORBA::Request: :result ()
CORBA: :Request: :send deferred ()

Request::invoke()

// Java
public abstract void invoke () ;

Instructs the ORB to make a request. The parameters to the request
must already be set up. The caller is blocked until the request has
been processed by the target object or an exception occurs.

To make a non-blocking request, see send deferred() and
send oneway ().

CORBA:IRequest:isend oneway ()
CORBA: :Request: :send deferred()
CORBA: :Request: :result ()

Request::operation()

// Java
public abstract String operation() ;

Returns the operation name of the request. Ownership of the return
value is maintained by the rRequest and must not be freed by the
caller.

Orbix CORBA Programmer’s Reference: Java 181

See Also

See Also

Request::poll_response()

// Java
public abstract boolean poll response () ;

Returns 1 (true) if the operation has completed successfully and
indicates that the return value and out and inout parameters in the
request are valid. Returns O (false) otherwise. The method returns
immediately.

If your application makes an operation request using

send deferred(), it can call poll response() to determine whether
the operation has completed. If the operation has completed, you
can get the result by calling Request: :result ().

CORBA::Request:isend deferred ()
CORBA: :Request: :get response ()
CORBA: :Request: :result ()

Request::result()

// Java
public abstract NamedValue result () ;

Returns the result of the operation request in a Namedvalue. Owner-
ship of the return value is maintained by the rRequest and must not
be freed by the caller.

Request::return_value()

// Java
public abstract Any return value() ;

Returns an any value for the returned value of the operation.

Request::send_deferred()

// Java
public abstract void send deferred() ;

Instructs the ORB to make the request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

To make a blocking request, use invoke (). You can use
poll response () to determine whether the operation completed.

CORBA::Request:isend oneway ()

CORBA: :ORB::send multiple requests deferred()
CORBA: :Request : : invoke ()

CORBA: :Request: :poll response ()

CORBA: :Request: :get response ()

Request::send_oneway()

// Java
public abstract void send oneway () ;

182 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

Instructs Orbix to make the oneway request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

You can use this method even if the operation has not been
defined to be oneway in its IDL definition, however, do not expect
any output or inout parameters to be updated.

To make a blocking request, use invoke ().

CORBA:IRequest:isend deferred()

CORBA: :ORB: :send multiple requests oneway ()
CORBA: :Request : : invoke ()

CORBA: :Request: :poll response ()

CORBA: :Request: :get response ()

Request::set_return_type()

// Java
public abstract void set return type (TypeCode tc) ;

Sets the TypeCode associated with a Request object. When using the
DIl with the Internet Inter-ORB Protocol (110P), you must set the
return type of a request before invoking the request.

te The TypeCode for the return type of the operation asso-
ciated with the rRequest object.

Request::target()

// Java
public abstract Object target();

Gets the target object of the rRequest. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

Orbix CORBA Programmer’s Reference: Java 183

184 Orbix CORBA Programmer’s Reference: Java

CORBA::SequenceDef Interface

See Also

See Also

See Also

Interface sequenceDef represents an IDL sequence definition in the
interface repository. It inherits from the interface IDLType.

// IDL in module CORBA.

interface SequenceDef : IDLType {
attribute unsigned long bound;
readonly attribute TypeCode element type;
attribute IDLType element type def;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create sequence ()

SequenceDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int wval);

The maximum number of elements in the sequence. A bound of 0
indicates an unbounded sequence.

Changing the bound attribute will also update the inherited type
attribute.

CORBA: : SequenceDef: : type

SequenceDef::element_type Attribute

// IDL
readonly attribute TypeCode element type;

// Java
org.omg.CORBA. TypeCode element type() ;

The type of element contained within this sequence. The attribute
element type def contains the same information.

CORBA: : SequenceDef : :element type def

SequenceDef::element_type_ def Attribute

// IDL
attribute IDLType element type def;

// Java
org.omg.CORBA.IDLType element type def();

void element type def(org.omg.CORBA.IDLType val);

Describes the type of element contained within this sequence. The
attribute element type contains the same information. Setting the
element type def attribute also updates the element type and
IDLType: :type attributes.

Orbix CORBA Programmer’s Reference: Java 185

See Also CORBA: : SequenceDef : :element type
CORBA: : IDLType: : type

SequenceDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_sequence TypeCode that describes the sequence. It is updated
automatically whenever the attributes bound or element type def are
changed.

See Also CORBA: : SequenceDef : :element type def
CORBA: : SequenceDef : :bound

186 Orbix CORBA Programmer’s Reference: Java

CORBA::ServerRequest Class

Parameters

See Also

Parameters

See Also

The object adapter dispatches an invocation to a DSI-based object
implementation by calling invoke () on an object of the
DynamicImplentation class. The parameter passed to this method is
a ServerRequest Object. This serverRequest object contains the
state of an incoming invocation for the DSI. This can be compared
to how the rRequest class object is used in the DIl approach for cli-
ents.

The following code is the complete class definition:

ServerRequest::arguments()

// Java
public void arguments (org.omg.CORBA.NVList args)

Allows a redefinition of the following method to specify the values
of incoming arguments:

PortableServer: :DynamicImplementation: : invoke ()

args Obtains output and input arguments.

This method must be called exactly once in each execution of
invoke ().

CORBA::ServerRequest::params()

PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::ctx()

// Java
public abstract Context ctx();

Returns the context associated with the call.

If no Context was sent then this method returns null.

ServerRequest::except()

public abstract void except (Any a) ;

The DIrR may call except () at any time to return an exception to the
client.

a An any containing the exception to be
returned to the client.

The any value passed to except () must contain either a system
exception or one of the user exceptions specified in the raises
expression of the invoked operation’s IDL definition.

“System Exceptions”
CORBA.Any

Orbix CORBA Programmer’s Reference: Java 187

Parameters

See Also

Parameters

CORBA. SystemException

ServerRequest::operation()

// Java
public String operation ()

Returns the name of the operation being invoked.

This method must be called at least once in each execution of the
dynamic implementation routine, that is, in each redefinition of
the method:

PortableServer: :DynamicImplementation: : invoke ()

CORBA::ServerRequest: iop name ()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::op_name()

public abstract String op name() ;
Returns the name of the operation being invoked.

ServerRequest::params()

public abstract void params (NVList parms) ;

This method marshals the parameters from the incoming Server-
Request into the supplied parms NVList.

parms An NVList describing the parameter types for
the operation in the order in which they appear
in the IDL specification (left to right).

It is up to the programmer to ensure that the TypeCode and flags
(2RG_IN,ARG OUT or ARG INOUT) of each of the parameters are cor-
rect.

The Dynamic Implementation Routine (DIR) must call params with
parms containing TypeCodes and Flags describing the parameter
types expected for the method.

After invoking params () the programmer uses the unmarshaled
“in” and “inout” values as parameters to the method invocation.

When the invocation completes the programmer must insert the
values for any out and inout parameters into the parms NvList
before returning.

If the operation has a return value you must also call “result ()" .
For example:

// import org.omg.CORBA.*;

//

// simulate the set operation on the grid interface with
// the DSI
public void invoke (ServerRequest req) {

188 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

String opName = req.op name() ;
Any ret = ORB.init().create any();
NVList nvl = null;

long [][lma_a = // create new array;

if (_opName.equals("set"))

{

~nvl = ORB.init () .create list(3);

// create a new any
Any row = ORB.init().create any();

// insert the TypeCode (tk short) into the new Any
row.type (ORB.init () .get primitive tc(TCKind.tk short))

// insert this Any into the NVList and set the Flag to in
_nvl.add_value(null, row, ARG_IN.value);

// create new Any,set TypeCode to short, insert into
NVList

// with flag set to in

Any col = ORB.init() .create any();

col.type (ORB.init () .get primitive tc(TCKind.tk short)) ;

_nvl.add value(null, col, ARG IN.value);

// create new Any,set TypeCode to long, insert into
NVList

// with flag set to in

Any data = ORB.init () .create any() ;

data.type (ORB.init () .get_primitive tc(TCKind.tk long)) ;

~nvl.add value(null, data, ARG IN.value);

// get params() method to marshal data into nvl
_req.params (_nvl) ;

// get the value of row,col from Any row,col
// and set this element in the array to the value
m a[row.extract short ()] [col.extract short()] =
data.extract long() ;
return;

CORBA.NVList class

ServerRequest.result()

public abstract void result (Any a) ;
Use the result () method to specify the return value for the call.

res An any containing the return value and

type for the operation.

Orbix CORBA Programmer’s Reference: Java 189

See Also

Parameters

See Also

Parameters

See Also

If the operation has a void result type, result () should be set to
an any whose type is _tc void.

CORBA.Any Class

ServerRequest::set_exception()

// Java

public void set exception(Any any)

Allows (a redefinition of)

PortableServer: :DynamicImplementation: : invoke () to return an ex-
ception to the caller.

value A pointer to an any, which holds the
exception returned to the caller.

CORBA: :Environment()
PortableServer: :DynamicImplementation: : invoke ()

ServerRequest::set_result()

// Java
public void set result (org.omg.CORBA.Any any)

Allows PortableServer: :DynamicImplementation: : invoke () to return
the result of an operation request in an Any.

value A pointer to a any, which holds the result
returned to the caller.

This method must be called once for operations with non-void
return types and not at all for operations with void return types. If
it is called, then set exception() cannot be used.

CORBA::ServerRequest:iset exception ()

190 Orbix CORBA Programmer’s Reference: Java

CORBA::String_var Class

See Also

See Also

See Also

Parameters

See Also

Parameters

The class string var implements the var type for IDL strings
required by the standard C++ mapping. The string var class con-
tains a char* value and ensures that this is properly freed when a
String var object is deallocated, for example when exectution
goes out of scope.

String_var::char*()

Converts a String var object to a char*.

CORBA::String var::operator=()

String_var::in()
Returns the proper string for use as an input parameter.

CORBA::String var::out ()
CORBA: :String var::inout ()
CORBA: :String var:: retn()

String_var::inout()
Returns the proper string for use as an inout parameter.

CORBA::String var::in()
CORBA: :String var::out ()
CORBA: :String var:: retn()

String_var::operator=() Assignment Operators

Assignment operators allow you to assign values to a String var
from a char* or from another String var type.

p A character string to assign to the string var.
A string var to assign to the String var.

CORBA::String var::char* ()

String_var::operator[]() Subscript Operators

Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

index The index location in the string.

Orbix CORBA Programmer’s Reference: Java 191

See Also

Parameters

See Also

See Also

See Also

String_var::out()
Returns the proper string for use as an output parameter.

CORBA::String var::in()
CORBA: :String var::inout ()
CORBA: :String var:: retn()

String_var::String_var() Constructors
The default constructor.
Constructors that convert from a char* to a String var.

The copy constructor.

p The character string to convert to a String var. The
String var assumes ownership of the parameter.

s The original string var that is copied.

CORBA::String var:i~String var()

String_var::—String_var() Destructor

The destructor.

CORBA::String var::iString var ()

String_var::_retn()

Returns the proper string for use as a method’s return value.
CORBA::String var: :inout ()

CORBA: :String var::in()

CORBA: :String var::out ()

192 Orbix CORBA Programmer’s Reference: Java

CORBA::StringDef Interface

See Also

See Also

Interface stringDef represents an IDL bounded string type in the
interface repository. A stringDef object is anonymous, which
means it is unnamed.

Use Repository: :create string() to obtain a new sStringDef. Use
Repository: :get primitive() for unbounded strings.

// IDL in module CORBA.

interface StringDef : IDLType {
attribute unsigned long bound;

}i

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create string()

StringDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int val);

Specifies the maximum number of characters in the string. This
cannot be zero.

StringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_string TypeCode that describes the string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 193

194 Orbix CORBA Programmer’s Reference: Java

CORBA::StructDef Interface

Interface structDef describes an IDL structure in the interface
repository.

// IDL in module CORBA.

interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

}i

The inherited operation describe () is also described.

See Also CORBA: : Contained
CORBA: :Container: :create struct ()

StructDef::describe()

// IDL
Description describe() ;

describe (returns a Contained: :Description structure. describe () is
inherited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA: : TypedefDef : :describe ()

StructDef::members Attribute

// Java
org.omg.CORBA. StructMember [] members () ;

void members(org.omg.CORBA.StructMember[] val);
Describes the members of the structure.

You can modify this attribute to change the members of a struc-
ture. Only the name and type def fields of each structMember should
be set (the type field should be set to tc void and it will be set
automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

Orbix CORBA Programmer’s Reference: Java 195

196 Orbix CORBA Programmer’s Reference: Java

CORBA::TypeCode Class

The class TypeCode is used to describe IDL type structures at run-
time. A TypeCode is a value that represents an IDL invocation argu-
ment type or an IDL attribute type. A TypeCode is typically used as
follows:

* In the dynamic invocation interface (DIIl) to indicate the type
of an actual argument.

* By the interface repository to represent the type specification
that is part of an OMG IDL declaration.

* To describe the data held by an any type.

A TypeCode consists of a kind that classifies the TypeCode as to
whether it is a basic type, a structure, a sequence and so on. See
the data type Tckind for all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The
parameters give the details of the type definition. For example,
the IDL type sequence<long, 20> has the kind tk_sequence and has
parameters long and 20.

You typically obtain a TypeCode from the interface repository or it
may be generated by the IDL compiler. You do not normally create
a TypeCode in your code so the class contains no constructors, only
methods to decompose the components of an existing TypeCode.
However, if your application does require that you create a
TypeCode, see the set of create Type tc() methods in the ORB class.

The class TypeCode contains the following methods:
See Also CORBAI:TCKind_

TypeCode::BadKind Exception

// Java
class CORBA.TypeCodePackage .BadKind

The Badkind exception is raised if a TypeCode member method is
invoked for a kind that is not appropriate.

TypeCode::Bounds Exception

// Java
class CORBA.TypeCodePackage .Bounds

The Bounds exception is raised if an attempt is made to use an index
for a type’s member that is greater than or equal to the number of
members for the type.

The type of IDL constructs that have members include enumera-
tions, structures, unions, value types, and exceptions. Some of
the TypeCode methods return information about specific members
of these IDL constructs. The first member has index value O, the
second has index value 1, and so on up to »-1 where nis the count
of the total number of members.

Orbix CORBA Programmer’s Reference: Java 197

See Also

Exceptions

Exceptions

Exceptions

The order in which members are presented in the interface repos-
itory is the same as the order in which they appeared in the IDL
specification.

This exception is not the same as the CORBA: :Bounds exception.

CORBA: :TypeCode:member count ()_
CORBA: : TypeCode: :member label ()
CORBA: : TypeCode: :member name ()
CORBA: : TypeCode: :member type ()
CORBA: : TypeCode : :member visibility ()

TypeCode:.concrete_base_ type()

// Java

public TypeCode concrete base type() throws BadKind {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Returns a TypeCode for the concrete base if the value type repre-
sented by this TypeCode has a concrete base value type. Otherwise
it returns a nil TypeCode reference. This method is valid to use only
if the kind of TypeCode has a TCkind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

TypeCode::.content_type()

// Java

public abstract TypeCode content type() throws BadKind

For sequences and arrays this method returns a reference to the
element type. For aliases it returns a reference to the original
type. For a boxed value type it returns a reference to the boxed
type. This method is valid to use if the kind of TypeCode is one of
the following TCKind values:

tk alias

tk array

tk sequence
tk_value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::default_index()

// Java
public abstract int default index() throws BadKind;

Returns the index of the default union member, or -1 if there is no
default member. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk union.

BadKind The kind of TypeCode is not valid for this method.

198 Orbix CORBA Programmer’s Reference: Java

See Also

Exceptions

See Also

Parameters

See Also

Parameters

See Also

CORBA::TypeCode:imember label ()_

TypeCode::discriminator_type()

// Java
public abstract TypeCode discriminator type() throws BadKind;

Returns a TypeCode for the union discriminator type. This method is
valid to use only if the kind of TypeCode has a TCKind value of tk_union.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCodelidefault index()._
CORBA: : TypeCode: :member label ()

TypeCode::equal()

// Java
public abstract boolean equal (TypeCode tc) ;

Returns 1 (true) if this TypeCode and the tc parameter are equal.
Returns O (false) otherwise. Two type codes are equal if the set of
legal operations is the same and invoking an operation from one
set returns the same results as invoking the operation from the
other set.

te The TypeCode to compare.

CORBA::TypeCode::iequivalent ()_

TypeCode::equivalent()

// Java
public boolean equivalent (TypeCode tc) {
throw new org.omg.CORBA.NO IMPLEMENT(); }

Returns 1 (true) if this TypeCode and the tc parameter are equivalent.
Returns O (false) otherwise.

tc The TypeCode to compare.

equivalent () is typically used by the ORB to determine type equiv-
alence for values stored in an IDL any. You can use equal () to
compare type codes in your application. equivalent () would return
true if used to compare a type and an alias of that type while
equal () would return false.

CORBA::TypeCode:iequal () _

TypeCode::fixed_digits()

// Java
public short fixed digits() throws BadKind {

Orbix CORBA Programmer’s Reference: Java 199

Exceptions

See Also

Exceptions

See Also

throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Returns the number of digits in the fixed point type. This method
is valid to use only if the kind of TypeCode has a TCKind value of
tk fixed.

BadKind The Kkind of TypeCode is not valid for this method.

CORBA::TypeCode::ifixed scale()._

TypeCode::fixed_scale()

// Java
public short fixed scale() throws BadKind {

throw new org.omg.CORBA.NO IMPLEMENT () ;

Returns the scale of the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk fixed.

BadKind The kind of TypeCode is not valid for this method.

CORBA::TypeCode::fixed digits()_

TypeCode::get_compact_typecode()

// Java

public TypeCode get compact typecode () {
throw new org.omg.CORBA.NO IMPLEMENT () ;

}

Removes all optional name and member name fields from the
TypeCode and returns a reference to the compact TypeCode. This
method leaves all alias type codes intact.

TypeCode::id()

// Java
public abstract String id() throws BadKind;

Returns the rRepositoryId that globally identifies the type.

Type codes that always have a RepositoryId. include object refer-
ences, value types, boxed value types, native, and exceptions.
Other type codes that also always have a RepositoryId and are
obtained from the interface repository or

ORB::create operation list() include structures, unions, enumera-
tions, and aliases. In other cases id() could return an empty
string.

The TypeCode Object maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

200 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

tk _abstract_ interface
tk alias

tk enum

tk except

tk native

tk objref

tk struct

tk union

tk value

tk value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::kind()

// Java
public abstract TCKind kind() ;

Returns the kind of the TypeCode which is an enumerated value of
type TCKind. You can use kind() on any TypeCode to help determine
which other TypeCode methods can be invoked on the TypeCode.

CORBA:Z:TCKind

TypeCode::length()

// Java
public abstract int length() throws BadKind;

For strings, wide strings, and sequences, length() returns the
bound, with zero indicating an unbounded string or sequence. For
arrays, length() returns the number of elements in the array. This
method is valid to use if the kind of TypeCode has a TCKind value of
one of the following:

tk array
tk sequence
tk string
tk wstring

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_count()

// Java
public abstract int member count () throws BadKind;

Returns the number of members in the type. This method is valid
to use if the kind of TypeCode has a TCKind value of one of the
following:

tk enum

tk except
tk struct
tk union

Orbix CORBA Programmer’s Reference: Java 201

Exceptions

Parameters

Exceptions

See Also

Parameters

Exceptions

tk _value

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_label()

// Java
public abstract Any member label (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the label of the union member. For the default member,
the label is the zero octet. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk union.

index The index indicating which union member you want.
BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::TypeCodelidefault index()_
CORBA: : TypeCode : :member count ()

TypeCode::member_name()

// Java
public abstract String member name (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the simple name of the member. Because names are local
to a repository, the name returned from a TypeCode may not match
the name of the member in any particular repository, and may even
be an empty string.

index The index indicating which member to use.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk_enum

tk except

tk struct

tk union

tk value

The TypeCode oObject maintains the memory of the return value;
this return value must not be freed by the caller.

BadKind The Kkind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the
number of members for the type.

202 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

CORBA: :TypeCode:member count ()_

TypeCode::member_type()

// Java
public abstract TypeCode member type (int index)

throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns a reference to the TypeCode of the member identified by
index.

index The index indicating which member you want.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk except
tk struct
tk union
tk value

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the
number of members for the type.

CORBA: :TypeCode: imember count ()_

TypeCode::member_visibility()

// Java
public short member visibility(int index) throws BadKind, Bounds

{

throw new org.omg.CORBA.NO IMPLEMENT () ;

Returns the visibility of a value type member. This method is valid
to use only if the kind of TypeCode has a TCKind value of tk value.

index The index indicating which value type member you
want.

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the

number of members for the type.

CORBA::TypeCode::member count ()

TypeCode::name()

// Java
public abstract String name () throws BadKind;

Orbix CORBA Programmer’s Reference: Java 203

Exceptions

Exceptions

Returns the simple name identifying the type within its enclosing
scope. Because names are local to a repository, the name returned
from a TypeCode may not match the name of the type in any
particular repository, and may even be an empty string.

The TypeCode object maintains the memory of the return value;
this return value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

tk abstract interface
tk alias

tk_enum

tk except

tk native

tk objref

tk struct

tk union

tk value

tk value box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::type_ modifier()
// Java

public short type modifier () throws BadKind {
throw new org.omg.CORBA.NO IMPLEMENT () ;
}

Returns the value modifier that applies to the value type represent-
ed by this TypeCode. This method is valid to use only if the kind of
TypeCode has a Tckind value of tk value.

BadKind The kind of TypeCode is not valid for this method.

204 Orbix CORBA Programmer’s Reference: Java

CORBA:: TypedefDef Interface

See Also

The abstract interface TypedefDef is simply a base interface for
interface repository interfaces that define named types. Named
types are types for which a name must appear in their definition
such as structures, unions, and so on. Interfaces that inherit from
typedefDef include:

o AliasDef

® EnumDef

® NativeDef

® StructDef

° UnionDef

o ValueBoxDef

Anonymous types such as primitiveDef, StringDef, SequenceDef
and ArrayDef do not inherit from TypedefDef.

//IDL in module CORBA.
interface TypedefDef : Contained, IDLType {};

The inherited operation describe () is described here.

TypedefDef::describe()

//IDL
Description describe() ;

Inherited from Contained, describe () returns a structure of type
Contained: :Description.

The Definitionkind type for the kind member is dk_Typedef. The
value member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: :Contained: :describe ()
CORBA: :Contained: :Description
CORBA: : TypeDescription

Orbix CORBA Programmer’s Reference: Java 205

206 Orbix CORBA Programmer’s Reference: Java

CORBA::UnionDef Interface

See Also

See Also

See Also

Interface UnionDef represents an IDL union in the interface reposi-
tory.

// IDL in module CORBA.

interface UnionDef : TypedefDef {
readonly attribute TypeCode discriminator type;
attribute IDLType discriminator type def;
attribute UnionMemberSeq members;

i
The inherited operation describe () is also described.
CORBA: :Contained

CORBA: : TypedefDef
CORBA: :Container: :create union/()

UnionDef::describe()

// IDL
Description describe() ;

Inherited from Contained (which TypedefDef inherits), describe ()
returns a structure of type Contained: :Description.

The DefinitionKind for the kind member is dk_Union. The value
member is an any whose TypeCode iS _tc TypeDescription and
whose value is a structure of type TypeDescription.

CORBA: : TypedefDef : :describe ()

UnionDef::discriminator_type Attribute

// IDL
readonly attribute TypeCode discriminator type;

// Java

org.omg.CORBA.TypeCode discriminator type() ;

Describes the discriminator type for this union. For example, if the
union currently contains a long, the discriminator typeis tc long.
The attribute discriminator type def contains the same informa-
tion.

CORBA: : TypeCode

UnionDef::discriminator_type def Attribute

// IDL
attribute IDLType discriminator type def;

// Java
org.omg.CORBA. IDLType discriminator type def();

void discriminator type def (org.omg.CORBA.IDLType val);

Describes the discriminator type for this union. The attribute
discriminator type contains the same information.

Orbix CORBA Programmer’s Reference: Java 207

Changing this attribute will automatically update the
discriminator type attribute and the IDLType::type attribute.

See Also CORBA: : IDLType: : type
CORBA: :UnionDef: :discriminator type

UnionDef::members Attribute

// Java
org.omg.CORBA.UnionMember [] members () ;

void members(org.omg.CORBA.UnionMember[] val);

Contains a description of each union member: its name, label, and
type (type and type def contain the same information).

The members attribute can be modified to change the union’s mem-
bers. Only the name, label and type def fields of each UnionMember
should be set (the type field should be set to _tc void, and it will
be set automatically to the TypeCode of the type def field).

See Also CORBA: : TypedefDef

208 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueBase Class

See Also

See Also

See Also

Parameters

See Also

All value types have a conventional base type called valueBase.
ValueBase serves a similar role for value types that the object class
serves for interfaces. valueBase serves as an abstract base class
for all value type classes. You must implement concrete value type
classes that inherit from valueBase. ValueBase provides several
pure virtual reference counting methods inherited by all value type
classes.

The names of these methods begin with an underscore to keep
them from clashing with your application-specific methods in
derived value type classes.

CORBA:IValueFactory

ValueBase:: _add_ref()

Increments the reference count of a value type instance and returns
a pointer to this value type.

CORBA::ValueBase: : remove ref ()

ValueBase:: copy_value()

Makes a deep copy of the value type instance and returns a pointer
to the copy. The copy has no connections with the original instance
and has a lifetime independent of that of the original.

Portable applications should not assume covariant return types
but should use downcasting to regain the most derived type of a
copied value type. A covariant return type means that a class
derived from ValueBase can override copy value() to return a
pointer to the derived class rather than the base class, valueBase*.

CORBA::ValueBase:: downcast ()

ValueBase:: downcast()

Returns a pointer to the base type for a derived value type class.

vt Pointer to the value type class to be downcast.

ValueBase:: refcount_value()

Returns the current value of the reference count for this value type
instance.

CORBA::ValueBase:: add ref ()
CORBA: :ValueBase:: remove ref ()

Orbix CORBA Programmer’s Reference: Java 209

See Also

See Also

Parameters

See Also

ValueBase:: _remove_ref()

Decrements the reference count of a value type instance and deletes
the instance when the reference count drops to zero.

If you use delete() to destroy instances, you must use the new
operator to allocate all value type instances.

CORBA::ValueBase:: add ref ()

ValueBase::—ValueBase() Destructor

The default destructor.

The destructor is protected to prevent direct deletion of instances
of classes derived from valueBase.

CORBA::ValueBase::ValueBase ()

ValueBase::ValueBase() Constructors
The default constructor.
The copy constructor. Creates a new object that is a copy of vt.

The copy constructor is protected to disallow copy construction of
derived value type instances except from within derived class
methods.

vt The original value type from which a copy is made.

CORBA::ValueBase::~ValueBase ()

210 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueBoxDef Interface

The valueBoxDef interface describes an IDL value box type in the
interface repository. A value box is a value type with no inheri-
tance or operations and with a single state member. A value box is
a shorthand IDL notation used to simplify the use of value types
for simple containment. It behaves like an additional namespace
that contains only one name.

// IDL in module CORBA.

interface ValueBoxDef : IDLType {
attribute IDLType original type def;

}i

The inherited type attribute is also described.

See Also CORBA::Container::create value box()

ValueBoxDef::original _type_ def Attribute

// IDL
attribute IDLType original type def;

// Java
org.omg.CORBA.IDLType original type def();

void original type def(org.omg.CORBA.IDLType val);

Identifies the IDL type def that is being “boxed”. Setting the
original type def attribute also updates the type attribute.

See Also CORBA::ValueBoxDef : : type

ValueBoxDef::type Attribute

// IDL
readonly attribute TypeCode type;

Inherited from IDLType, this attribute is a tk value box TypeCode
describing the value box.

See Also CORBA::IDLType: : type

Orbix CORBA Programmer’s Reference: Java 211

212 Orbix CORBA Programmer’s Reference: Java

CORBA::VValueDef Interface

A valueDef object represents an IDL value type definition

in the

interface repository. It can contain constants, types, exceptions,

operations, and attributes.

A valueDef used as a Container may only contain TypedefDef,
(including definitions derived from TypedefDef), ConstantDef, and

ExceptionDef definitions.

// IDL in module CORBA.
interface ValueDef : Container, Contained, IDLType {

// read/write interface

attribute InterfaceDef supported interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base value;

attribute ValueDefSeq abstract base values;
attribute boolean is abstract;

attribute boolean is custom;

// read interface

boolean is a(
in RepositoryId id

)

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is abstract;
boolean is_ custom;
RepositoryId defined in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported interfaces;
RepositoryIdSeq abstract base values;
RepositoryId base value;
TypeCode type;

}i
FullValueDescription describe value() ;
ValueMemberDef create value member (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access
)i
AttributeDef create attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode
)i
OperationDef create operation(
in RepositoryId id,
in Identifier name,

Orbix CORBA Programmer’s Reference

: Java 213

in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts
)i
}; // End ValueDef Interface

The inherited describe () and contents () operations are also
described.

See Also CORBA::Container:.create value ()

ValueDef::abstract_base values Attribute

// Java
org.omg.CORBA.ValueDef [] abstract base values() ;

void abstract base values(org.omg.CORBA.ValueDef[] wval);

The abstract _base values attribute lists the abstract value types
from which this value inherits.

Exceptions

BAD PARAM, The name attribute of any object contained by this
minor code 5 valueDef conflicts with the name attribute of any object
contained by any of the specified bases.

ValueDef::base value Attribute

// Java
org.omg.CORBA.ValueDef base value() ;

void base value(org.omg.CORBA.ValueDef val);

The base_value attribute describes the value type from which this
value inherits.

Parameters

BAD PARAM, The name attribute of any object contained by the

minor code 5 minor code 5 is raised if the name attribute of any
object contained by this valuebDef conflicts with the
name attribute of any object contained by any of the
specified bases.

ValueDef::contents()

// IDL
ContainedSeq contents (

in DefinitionKind limit type,
in boolean exclude inherited

)i

Inherited from Container, contents() returns the list of constants,
types, and exceptions defined in this valueDef and the list of
attributes, operations, and members either defined or inherited in
this valueDef.

214 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also

Parameters

Exceptions

See Also

limit type If set to dk_all, all of the contained objects in
the valueDef are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude inherited Applies only to interfaces. If true, only attri-
butes, operations and members defined within
this value type are returned. If false, all attri-
butes, operations and members are returned.

CORBA::Container: :contents ()

ValueDef::create_attribute()

// Java
org.omg.CORBA.AttributeDef create attribute(

java.lang.String id,

java.lang.String name,

java.lang.String version,

org.omg.CORBA. IDLType type,

org.omg.CORBA.AttributeMode mode
)i

Returns a new AttributeDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new AttributeDef. An
AttributeDef inherits the id attribute from Contained.

name The name to use for the new AttributeDef. An
AttributeDef inherits the name attribute from Contained.

version The version to use for the new AttributebDef. An
AttributeDef inherits the version attribute from
Contained.

type The IDL data type for the new AttributeDef. Both the
type_def and type attributes are set for AttributeDef.

mode The read or read/write mode to use for the new
AttributeDef.

The defined in attribute (which the AttributeDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::AttributeDef
CORBA: :Contained

Orbix CORBA Programmer’s Reference: Java 215

Parameters

Exceptions

See Also

ValueDef::create_operation()

// Java
org.omg.CORBA.OperationDef create operation(

java.lang.String id,
java.lang.String name,
java.lang.String version,
org.omg.CORBA.IDLType result,
org.omg.CORBA.OperationMode mode,
org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef [] exceptions,
java.lang.String[] contexts

)i

Returns a new OperationDef Object contained in the valueDef on
which it is invoked.

id The repository ID to use for the new OperationDef. An
OperationDef inherits the id attribute from Contained.

name The name to use for the new OperationDef. An
OperationDef inherits the name attribute from Contained.

version The version to use for the new OperationDef. An
OperationDef inherits the version attribute from
Contained.

result The IDL data type of the return value for the new
OperationDef. Both the result def and result attri-
butes are set for the OperationbDef.

mode The mode to use for the new OperationDef. Specifies
whether the operation is normal (OP_NORMAL) Or one-
way (OP ONEWAY).

params The parameters for this OperationDef.

exceptions The list of exceptions to use for the Operationbef. These
are exceptions the operation can raise.

contexts The list of context identifiers to use for the OperationDef.
These represent the context clause of the operation.

The defined in attribute (which the Operationbef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::OperationDef
CORBA: : Contained

ValueDef::create_value _member()

// Java
org.omg.CORBA.ValueMemberDef create value_ member (

java.lang.String id,

216 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

See Also

java.lang.String name,
java.lang.String version,
org.omg.CORBA. IDLType type,
short access

)i

Returns a new valueMemberDef contained in the valueDef on which it
is invoked.

id The repository ID to use for the new valueMemberDef.
An ValueMemberDef inherits the id attribute from
Contained.

name The name to use for the new valueMemberDef. An
ValueMemberDef inherits the name attribute from
Contained.

version The version to use for the new valueMemberDef. An
ValueMemberDef inherits the version attribute from
Contained.

type The IDL data type for the new valueMemberDef. Both
the type def and type attributes are set for
ValueMemberDef.

access The visibility to use for the new valueMemberDef. IDL
value types can have state members that are either
public or private.

The defined in attribute (which the valueMemberDef inherits from
Contained) is initialized to identify the containing valueDef.

BAD PARAM, The name attribute of any object contained by minor
minor code 5 code 2 is raised if an object with the specified id
already exists in the repository.

A BAD PARAM, An object with the same name already exists in this
minor code 3 ValueDef.

CORBA::ValueMemberDef
CORBA: :Contained

ValueDef::describe()

// IDL
ValueDescription describe () ;

Inherited from Contained, describe () for a valueDef returns a
ValueDescription object. Use describe value () for a full description
of the value.

CORBA::ValueDescription
CORBA: :Contained: :describe ()
CORBA: :ValueDef : :describe value ()

Orbix CORBA Programmer’s Reference: Java 217

See Also

ValueDef::describe_value()

// Java
org.omg.CORBA.ValueDefPackage.FullValueDescription

describe value() ;

Returns a FullvalueDescription Object describing the value, includ-
ing its operations and attributes.

CORBA::FullValueDescription
CORBA: :ValueDef : :describe ()

ValueDefPackage.FullValueDescription.FullVval
ueDescription()

// Java
public FullValueDescription (

java.lang.String name,
java.lang.String id,
boolean is abstract,
boolean is custom,
byte flags,
java.lang.String defined in,
java.lang.String version,
org.omg.CORBA.OperationDescription([] operations,
org.omg.CORBA.AttributeDescription[] attributes,
org.omg.CORBA.ValueMember [] members,
org.omg.CORBA.Initializer[] initializers,
java.lang.String supported interface,
java.lang.String[] abstract base values,
boolean has safe base,
java.lang.String base value,
org.omg.CORBA.TypeCode type

)

A full description of a value type in the interface repository.

name The name of the value type.

id The repository ID of the value type.

is abstract Has a value of 1 (true) if the value is an
abstract value type. A value of O is false.

is custom Has a value of 1 (true) if the value uses cus-
tom marshalling. A value of O is false.

defined in The repository ID that identifies where this
value type is defined.

version The version of the value type.

operations A list of operations that the value type sup-
ports.

attributes A list of attributes that the value type sup-
ports.

members A list of value type members.

initializers A list of initializer values for the value type.

supported interfaces A list of interfaces this value type supports.

abstract base values A list of repository IDs that identify abstract
base values.

218 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

base value A repository ID that identifies a base value.
type The IDL type of the value type.

CORBA::ValueDef::describe value ()

ValueDef::initializers Attribute

// Java
org.omg.CORBA.Initializer[] initializers();
void initializers(org.omg.CORBA.Initializer[] wval);

Lists the initializers this value type supports.

ValueDef::is_a()

// Java
boolean is a(java.lang.String value id);

Returns 1 (true) if this value type is either identical to or inherits,
directly or indirectly, from the interface or value identified by the
id parameter. Otherwise it returns O (false).

id The repository ID of the value type or interface to
compare with this value type.

ValueDef::is_abstract Attribute

// Java
boolean is abstract() ;

void is abstract(boolean val);

Returns 1 (true) if this value type is an abstract value type.
Otherwise it returns O (false).

ValueDef::is_custom Attribute

// Java
boolean is custom() ;

void is custom(boolean val);

Returns 1 (true) if this value type uses custom marshalling. Other-
wise it returns O (false).

ValueDef::supported_interfaces Attribute

// IDL
attribute InterfaceDef supported interfaces;

Lists the interfaces that this value type supports.

// Java
org.omg.CORBA.InterfaceDef supported interface();

void supported interface(org.omg.CORBA.InterfaceDef wval);

Orbix CORBA Programmer’s Reference: Java 219

Exceptions

BAD PARAM,
minor code 5

220 Orbix CORBA Programmer’s Reference: Java

The name attribute of any object contained by the
minor code 5 is raised if the name attribute of any
object contained by this valueDef conflicts with the
name attribute of any object contained by any of the
specified bases.

CORBA::ValueFactory

This describes the mapping of the IDL native type

CORBA: :ValueFactory. For native IDL types, each language mapping
specifies how repository IDs are used to find the appropriate fac-
tory for an instance of a value type so that it may be created as it
is unmarshaled off the wire.

// IDL in module CORBA

native ValueFactory;

Recall that value types allow objects to be passed by value which
implies that the ORB must be able to create instances of your
value type classes during unmarshaling. However, because the
ORB cannot know about all potential value type classes, you must
implement factory classes for those types and register them with
the ORB so the ORB can create value instances when necessary.

If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type

CORBA: :ORB: : lookup value factory()
CORBA: :ORB: :register value factory()
CORBA: :ORB: :unregister value factory ()

Orbix CORBA Programmer’s Reference: Java 221

222 Orbix CORBA Programmer’s Reference: Java

CORBA::ValueMemberDef

Interface

See Also

See Also

The valueMemberDef interface provides the definition of a value type
member in the interface repository.
// IDL in module CORBA.
interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute IDLType type def;
attribute Visibility access;

}i

ValueMemberDef::access Attribute

// Java
short access() ;

void access(short val);

Contains an indicator of the visibility of an IDL value type state
member. IDL value types can have state members that are either
public or private.

ValueMemberDef::type Attribute

// Java
org.omg.CORBA. TypeCode type () ;

Describes the type of this valueMemberDef.

CORBA: :ValueMemberDef: :type def

ValueMemberDef::type def Attribute

// Java
org.omg.CORBA.IDLType type def();

void type def(org.omg.CORBA.IDLType val);

Identifies the object that defines the IDL type of this valueMemberDef.
The same information is contained in the type attribute.

You can change the type of a valueMemberDef by changing its
type def attribute. This also changes its type attribute.

CORBA: :ValueMemberDef : : type

Orbix CORBA Programmer’s Reference: Java 223

224 Orbix CORBA Programmer’s Reference: Java

CORBA::WString _var Class

See Also

See Also

See Also

Parameters

See Also

Parameters

The class wstring var implements the var type for IDL wide
strings required by the standard C++ mapping. The WString var
class contains a char* value and ensures that this is properly freed
when a wstring var object is deallocated, for example when exec-
tution goes out of scope.

WString_var::char*()

Converts a Wstring var object to a char*.

CORBA:IIWString var: :operator= ()

WString_var::in()
Returns the proper string for use as an input parameter.

CORBA:IIWString var: :out ()
CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::inout()

Returns the proper string for use as an inout parameter.

CORBA:I:IWString var::in()
CORBA: :WString var: :out ()
CORBA: :WString var:: retn()

WString_ var::operator=() Assignment
Operators

Assignment operators allow you to assign values to a WString var
from a char* or from another wstring var type.

p A character string to assign to the wWString var.
A WString var to assign to the WString var.

CORBA::WString var: :char* ()

WString_var::operator[]() Subscript Operators

Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

index The index location in the string.

Orbix CORBA Programmer’s Reference: Java 225

See Also

Parameters

See Also

See Also

See Also

WString_var::out()

Returns the proper string for use as an output parameter.

CORBA::WString var::in()
CORBA: :WString var: :inout ()
CORBA: :WString var:: retn()

WString_var::WString_var() Constructors
The default constructor.
Constructors that convert from a char* to a WString var.

The copy constructor.

p The character string to convert to a wString var. The
WString var assumes ownership of the parameter.

s The original wstring var that is copied.

CORBA:IIWString var::~WString var ()

WString_var::—WString_var() Destructor

The destructor.

CORBA:IWString var::WString var ()

WString_var::_retn()

Returns the proper string for use as a method’s return value.
CORBA:IIWString var: :inout ()

CORBA: :WString var::in()

CORBA: :WString var: :out ()

226 Orbix CORBA Programmer’s Reference: Java

CORBA::WstringDef Interface

See Also

See Also

Interface wstringDef represents a bounded IDL wide string type in
the interface repository. A WstringDef object is anonymous, which
means it is unnamed. Use Repository: :create wstring() to obtain
a new WstringDef object.

Unbounded strings are primitive types represented with the
PrimitiveDef interface. Use Repository::get primitive() to obtain
unbounded wide strings.

// IDL in module CORBA.
interface WstringDef : IDLType {
attribute unsigned long bound;

The inherited type attribute is also described.

CORBA: : IDLType
CORBA: :Repository: :create wstring()
CORBA: :PrimitiveDef
CORBA: : StringDef

WstringDef::bound Attribute

// IDL
attribute unsigned long bound;

// Java
int bound() ;

void bound(int wval);

Specifies the maximum number of characters in the wide string.
This cannot be zero.

WstringDef::type Attribute

// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_wstring TypeCode that describes the wide string.

CORBA: : IDLType: : type

Orbix CORBA Programmer’s Reference: Java 227

228 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin Module

The CosEventChannelAdmin module specifies the interfaces and
exceptions for connecting suppliers and consumers to an event
channel. It also provides the methods for managing these connec-
tions.

It contains the following interfaces:

* CosEventChannelAdmin::ProxyPushConsumer Interface
* CosEventChannelAdmin::ProxyPushSupplier Interface

®* CosEventChannelAdmin::ProxyPullConsumer Interface
* CosEventChannelAdmin::ProxyPullSupplier Interface

®* CosEventChannelAdmin::ConsumerAdmin Interface

®* CosEventChannelAdmin::SupplierAdmin Interface

®* CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};

An AlreadyConnected exception is raised when an attempt is made
to connect an object to the event channel when that objectis already
connected to the channel.

exception TypeError {};

The TypeError exception is raised when a proxy object trys to
connect an object that does not support the proper typed interface.

Orbix CORBA Programmer’s Reference: Java 229

230 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::Consum
erAdmin Interface

Once a consumer has obtained a reference to a ConsumerAdmin
object (by calling EventChannel: : for consumers ()), they can use
this interface to obtain a proxy supplier. This is necessary in order
to connect to the event channel.

interface ConsumerAdmin

{
ProxyPushSupplier obtain push supplier();
ProxyPullSupplier obtain pull supplier();

}i

ConsumerAdmin::obtain_push_supplier()

//IDL
ProxyPushSupplier obtain push supplier() ;

Returns a proxyPushSupplier object. The consumer can then use this
object to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()

//IDL
ProxyPushSupplier obtain pull supplier();

Returns a proxyPullSupplier Oobject. The consumer can then use this
object to connect to the event channel as a pull-style consumer.

Orbix CORBA Programmer’s Reference: Java 231

232 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::EventCh
annel Interface

The EventChannel interface lets consumers and suppliers establish
a logical connection to the event channel.

interface EventChannel

{
ConsumerAdmin for consumers() ;
SupplierAdmin for suppliers/()
void destroy () ;

7

}i

EventChannel::for_consumers()

//IDL
ConsumerAdmin for consumers() ;

Used by a consumer to obtain an object reference that supports the
ConsumerAdmin interface.

EventChannel::for_suppliers()

//IDL
SupplierAdmin for suppliers()

Used by a supplier to obtain an object reference that supports the
SupplierAdmin interface.

EventChannel::destroy()

//IDL
void destroy () ;

Destroys the event channel. All events that are not yet delivered,

as well as all administrative objects created by the channel, are also
destroyed. Connected pull consumers and push suppliers are noti-
fied when their channel is destroyed.

Orbix CORBA Programmer’s Reference: Java 233

234 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPul
IConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPullConsumer
interface to connect to the event channel.

interface ProxyPullConsumer : CosEventComm: :PushConsumer

{

void connect pull supplier (
in CosEventComm: :PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPullConsumer::connect_pull_supplier()

//IDL
void connect pull supplier(

in CosEventComm::PullSupplier pull supplier)
raises (AlreadyConnected, TypeError) ;

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSupplier,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is raised when supplier that is being connected does not support
the proper typed event structure.

pull supplier The supplier that is trying to connect to the event
channel.

Orbix CORBA Programmer’s Reference: Java 235

236 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPul
ISupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPullSupplier interface
to connect to the event channel.

interface ProxyPullSupplier : CosEventComm::PullSupplier

{

void connect pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

}i

ProxyPullSupplier::connect_pull_consumer()

//IDL
void connect pull consumer (

in CosEventComm: :PullConsumer pull consumer)
raises (AlreadyConnected) ;

This operation connects the consumer to the event channel. If the
consumer passes a nil object reference, the proxy pull supplier will
not notify the consumer when it is about to be disconnected.

If the proxy pull supplier is already connected to the pPullConsumer,
then the AlreadyConnected exception is raised.

pull consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 237

238 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPu
shConsumer Interface

Parameters

After a supplier has obtained a reference to a proxy consumer
using the supplierAdmin interface, they use the ProxyPushConsumer
interface to connect to the event channel.

// IDL
interface ProxyPushConsumer : CosEventComm: :PushConsumer
{
void connect push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (AlreadyConnected) ;

}i

ProxyPushConsumer::connect_push_supplier(
)

//IDL
void connect push supplier (

in CosEventComm: : PushSupplier push supplier)
raises (AlreadyConnected) ;

This operation connects the supplier to the event channel. If the
supplier passes a nil object reference, the proxy push consumer will
not notify the supplier when it is about to be disconnected.

If the proxy push consumer is already connected to the
pPushSupplier, then the AlreadyConnected exception is raised.

push supplier The supplier that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 239

240 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::ProxyPu
shSupplier Interface

Parameters

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the pProxyPushSupplier interface
to connect to the event channel.

interface ProxyPushSupplier : CosEventComm::PushSupplier
void connect push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

}i

ProxyPushSupplier::connect_push_consumer(
)

//IDL
void connect push consumer (

in CosEventComm: : PushConsumer push consumer)
raises (AlreadyConnected, TypeError) ;

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsumer,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is when the consumer that is being connected does not support
the proper typed event structure.

push_consumer The consumer that is trying to connect to the event
channel

Orbix CORBA Programmer’s Reference: Java 241

242 Orbix CORBA Programmer’s Reference: Java

CosEventChannelAdmin::Supplier
Admin Interface

Once a supplier has obtained a reference to a SupplierAdmin object
(by calling EventChannel::for suppliers()), they can use this inter-
face to obtain a proxy consumer. This is necessary in order to con-
nect to the event channel.

interface SupplierAdmin

{
ProxyPushConsumer obtain push consumer () ;
ProxyPullConsumer obtain pull_ consumer () ;

}i

SupplierAdmin::obtain_push_consumer()

//IDL
ProxyPushConsumer obtain push consumer () ;

Returns a ProxyPushConsumer object. The supplier can then use this
object to connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull _consumer()

//IDL
ProxyPushConsumer obtain pull consumer () ;

Returns a proxyPullConsumer object. The supplier can then use this
object to connect to the event channel as a pull-style supplier.

Orbix CORBA Programmer’s Reference: Java 243

244 Orbix CORBA Programmer’s Reference: Java

CosEventComm Module

The cosEventComm module specifies the interfaces which define the
event service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected

exception Disconnected {};
Disconnected is raised when an attempt is made to contact a proxy
that has not been connected to an event channel.

Orbix CORBA Programmer’s Reference: Java 245

246 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the pullConsumer interface.

interface PullConsumer

{
}i

void disconnect pull consumer() ;

PullConsumer::disconnect_pull _consumer()

//IDL
void disconnect pull consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pullConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 247

248 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PullSupplier

Interface

Parameters

A pull-style supplier supports the pullsupplier interface to trans-
mit event data. A consumer requests event data from the supplier
by invoking either the pull () operation or the try pull () opera-
tion.

interface PullSupplier

{

any pull() raises (Disconnected) ;
any try pull (out boolean has event) raises (Disconnected);
void disconnect pull supplier();

}i

PullSupplier::pull()

//IDL
any pull () raises (Disconnected);

The consumer requests event data by calling this operation. The
operation blocks until the event data is available, in which case it
returns the event data to the consumer. Otherwise an exception is
raised. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

PullSupplier::try_pull()

//IDL
any try pull (out boolean has event) raises (Disconnected) ;

Unlike the try operation, this operation does not block. If the event
data is available, it returns the event data and sets the has _event
parameter to true. If the event is not available, it sets the has event
parameter to false and the event data is returned with an undefined
value. If the event communication has already been disconnected,
the OBJECT NOT EXIST exception is raised.

has event Indicates whether event data is available to the
try pull operation

PullSupplier::disconnect_pull_supplier()

//IDL
void disconnect pull supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pullsupplier object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 249

250 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PushConsumer

Interface

Parameters

A push-style consumer supports the pushConsumer interface to
receive event data.

interface PushConsumer

{

void push(in any data) raises (Disconnected) ;
void disconnect push consumer() ;

}i

PushConsumer::push()

//IDL
void push(in any data) raises(Disconnected) ;

Used by a supplier to communicate event data to the consumer.
The supplier passes the event data as a parameter of type any. If
the event communication has already been disconnected, the
OBJECT NOT EXIST exception is raised.

data The event data, of type any.

PushConsumer::disconnect_push_consumer()

//IDL
void disconnect push consumer() ;

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The pushConsumer Object reference is discarded.

Orbix CORBA Programmer’s Reference: Java 251

252 Orbix CORBA Programmer’s Reference: Java

CosEventComm::PushSupplier

Interface

A push-style supplier supports the pushSupplier interface.
interface PushSupplier

{

void disconnect push supplier();

Vi

PushSupplier::disconnect_push_supplier()

//IDL
void disconnect push supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The pushSupplier oObject reference is discarded.

Orbix CORBA Programmer’s Reference: Java 253

254 Orbix CORBA Programmer’s Reference: Java

CosNaming Overview

See Also

See Also

The CcosNaming module contains all IDL definitions for the CORBA
naming service. The interfaces consist of:

* “CosNaming::Bindinglterator Interface”
®* “CosNaming::NamingContext Interface”
* “CosNaming::NamingContextExt Interface”

Use the NamingContext and BindingIterator interfaces to access
standard naming service functionality. Use the NamingContextExt
interface to use URLs and string representations of names.

The rest of this chapter describes data types common to the
CosNaming module that are defined directly within its scope.

CosNaming::Binding Structure

// IDL
struct Binding {

Name binding name;
BindingType binding type;

i
A Binding structure represents a single binding in a naming context.
A Binding structure indicates the name and type of the binding:

binding name The full compound name of the binding.

binding type The binding type, indicating whether the name is
bound to an application object or a naming con-
text.

When browsing a naming graph in the naming service, an applica-
tion can list the contents of a given naming context, and deter-
mine the name and type of each binding in it. To do this, the
application calls the NamingContext.list () method on the target
NamingContext object. This method returns a list of Binding struc-
tures.

CosNaming: :BindingList
CosNaming: :BindingType
NamingContext::1list ()

CosNaming::BindingList Sequence

// IDL

typedef sequence<Binding> BindinglList;

A sequence containing a set of Binding structures, each of which
represents a single name binding.

An application can list the bindings in a given naming context
using the NamingContext::list() method. An output parameter of
this method returns a value of type BindingList.

CosNaming: :Binding
CosNaming: :BindingType
NamingContext::1list ()

Orbix CORBA Programmer’s Reference: Java 255

“About Sequences”

CosNaming::BindingType Enumeration

// IDL
enum BindingType {nobject, ncontext};

The enumerated type BindingType represents these two forms of
name bindings:

nobject Describes a name bound to an application
object.
ncontext Describes a name bound to a naming context in

the naming service.

There are two types of name binding in the CORBA naming ser-
vice: names bound to application objects, and names bound to
naming contexts. Names bound to application objects cannot be
used in a compound name, except as the last element in that
name. Names bound to naming contexts can be used as any com-
ponent of a compound name and allow you to construct a naming
graph in the naming service.

Name bindings created using NamingContext: :bind () oOr
NamingContext: :rebind () are nobject bindings.

Name bindings created using the operations
NamingContext: :bind context () Or NamingContext::rebind context ()
are ncontext bindings.

See Also CosNaming: :Binding
CosNaming: :BindingList

CosNaming::Istring Data Type

// IDL
typedef string Istring;

Type Istringis a place holder for an internationalized string format.

CosNaming::Name Sequence

// IDL

typedef sequence<NameComponent> Name;

A Name represents the name of an object in the naming service. If
the object name is defined within the scope of one or more naming
contexts, the name is a compound name. For this reason, type Name
is defined as a sequence of name components.

Two names that differ only in the contents of the kind field of one
NameComponent Structure are considered to be different names.
Names with no components, that is sequences of length zero, are
illegal.

See Also CosNaming: : NameComponent
“About Sequences”

256 Orbix CORBA Programmer’s Reference: Java

See Also

CosNaming::NameComponent Structure

// IDL
struct NameComponent {

Istring id;

Istring kind;
i
A NameComponent Structure represents a single component of a name
that is associated with an object in the naming service. The
members consist of:

id The identifier that corresponds to the name of the
component.
kind The element that adds secondary type information to

the component name.

The id field is intended for use purely as an identifier. The seman-
tics of the kind field are application-specific and the naming ser-
vice makes no attempt to interpret this value.

A name component is uniquely identified by the combination of
both id and kind fields. Two name components that differ only in
the contents of the kind field are considered to be different com-
ponents.

CosNaming: :Name

Orbix CORBA Programmer’s Reference: Java 257

258 Orbix CORBA Programmer’s Reference: Java

CosNaming::Bindinglterator

Interface

See Also

Parameters

See Also

A CosNaming.BindingIterator object stores a list of name bindings
and allows application to access the elements of this list.

The NamingContext.list () method obtains a list of bindings in a
naming context. This method allows applications to specify a max-
imum number of bindings to be returned. To provide access to all
other bindings in the naming context, the method returns an
object of type CosNaming.BindingIterator.

// IDL
// In module CosNaming
interface BindingIterator {
boolean next one (
out Binding b
)i
boolean next n(
in unsigned long how many,
out BindingList bl
)i
void destroy () ;

Vi

CosNaming: :NamingContext: :1list ()

Bindinglterator::destroy()

// IDL
void destroy () ;

Deletes the CosNaming: :BindingIterator object on which it is called.

Bindinglterator::next_n()

// IDL
boolean next n(
in unsigned long how many,
out BindingList bl
)i
Gets the next how many elements in the list of bindings, subsequent
to the last element obtained by a call to next n() Or next one(). If
the number of elements in the list is less than the value of
how many, all the remaining elements are obtained.

Returns true if one or more bindings are obtained, but returns false
if no more bindings remain.

how_many The maximum number of bindings to be obtained in
parameter bl.

bl The list of name bindings.

CosNaming: :BindingTterator: :next one ()

Orbix CORBA Programmer’s Reference: Java 259

Parameters

See Also

CosNaming: :BindingList

Bindinglterator::next_one()

// IDL
boolean next one(

out Binding b
)i

Gets the next element in the list of bindings, subsequent to the last
element obtained by a call to next n() Or next one().

Returns true if a binding is obtained, but returns false if no more
bindings remain.

b The name binding.

CosNaming: :BindingTterator: :next n()
CosNaming: :Binding

260 Orbix CORBA Programmer’s Reference: Java

CosNaming::NamingContext
Interface

The interface CosNaming: :NamingContext provides operations to
access the main features of the CORBA naming service, such as
binding and resolving names. Name bindings are the associations
the naming service maintains between an object reference and a
useful name for that reference.

// IDL
// In module CosNaming
interface NamingContext {
enum NotFoundReason {missing node, not context, not object};

exception NotFound {
NotFoundReason why;
Name rest of name;
exception CannotProceed {
NamingContext cxt;
Name rest of name;
exception InvalidName {};
exception AlreadyBound {};

exception NotEmpty {};:
void bind(
in Name n,

in Object obj

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void rebind(

in Name n,

in Object obj

raises (NotFound, CannotProceed, InvalidName) ;
void bind context (

in Name n,

in NamingContext nc

raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void rebind context (
in Name n,
in NamingContext nc

raises (NotFound, CannotProceed, InvalidName) ;

Object resolve (
in Name n

raises (NotFound, CannotProceed, InvalidName) ;

Orbix CORBA Programmer’s Reference: Java 261

Parameters

void unbind (
in Name n

)
raises (NotFound, CannotProceed, InvalidName) ;

NamingContext new context () ;

NamingContext bind new context (
in Name n

)
raises (NotFound, CannotProceed, InvalidName,
AlreadyBound) ;

void destroy() raises (NotEmpty) ;

void list(
in unsigned long how many,
out BindingList bl,
out BindingIterator bi

)i

NamingContext::AlreadyBound Exception

// IDL

exception AlreadyBound {};

If an application calls a method that attempts to bind a name to an
object or naming context, but the specified name has already been
bound, the method throws an exception of type AlreadyBound.

The following methods can throw this exception:

bind ()
bind context ()
bind new context ()

NamingContext::bind()

// IDL
void bind(

in Name n,
in Object obj

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a name binding, relative to the target naming context,
between a name and an object.

n The name to be bound to the target object, relative to
the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

If the name passed to this method is a compound name with more
than one component, all except the last component are used to
find the sub-context in which to add the name binding.

262 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

See Also

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

The contexts associated with the components must already exist,
otherwise the method throws a NotFound exception.

CosNaming: :NamingContext : : rebind ()
CosNaming: :NamingContext : : resolve ()

NamingContext::bind_context()

// IDL
void bind context (

in Name n,
in NamingContext nc

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a binding, relative to the target naming context, between
a name and another, specified naming context.

n The name to be bound to the target naming context,
relative to the naming context on which the method is
called. All but the final naming context specified in
parameter n must already exist.

nc The NamingContext Object to be associated with the
specified name. This object must already exist. To cre-
ate a new NamingContext Object, call
NamingContext: :new context (). The entries in naming
context nc can be resolved using compound names.

This new binding can be used in any subsequent name resolutions.
The naming graph built using bind context () is not restricted to
being a tree: it can be a general naming graph in which any nam-
ing context can appear in any other naming context.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

CosNaming.NamingContext .bind new context ()

CosNaming.NamingContext .new context ()
CosNaming.NamingContext .rebind context ()
CosNaming.NamingContext .resolve ()

NamingContext::bind_new_context()

// IDL
NamingContext bind new context (

in Name n

Orbix CORBA Programmer’s Reference: Java 263

Parameters

Exceptions

See Also

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Creates a new NamingContext Object in the naming service and binds
the specified name to it, relative to the naming context on which
the method is called. The method returns a reference to the newly
created NamingContext object.

n The name to be bound to the newly created naming
context, relative to the naming context on which the
method is called. All but the final naming context
specified in parameter n must already exist.

This method has the same effect as a call to
NamingContext: :new context () followed by a call to
NamingContext: :bind context ().

The new name binding created by this method can be used in any
subsequent name resolutions: the entries in the returned naming
context can be resolved using compound names.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

CosNaming: :NamingContext: :bind context ()
CosNaming: :NamingContext : :new context ()

NamingContext::CannotProceed Exception

// IDL
exception CannotProceed {

NamingContext cxt;
Name rest of name;

}i
If a naming service method fails due to an internal error, the method
throws a CannotProceed exception.

A cannotProceed exception consists of two member fields:

coxt The NamingContext object associated with the
component at which the method failed.

rest of name The remainder of the compound name, after
the binding for the component at which the
method failed.

The application might be able to use the information returned in
this exception to complete the method later. For example, if you
use a naming service federated across several hosts and one of
these hosts is currently unavailable, a naming service method
might fail until that host is available again.

The following methods can throw this exception:
bind ()

264 Orbix CORBA Programmer’s Reference: Java

See Also

Exceptions

See Also

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

CosNaming: : Name
CosNaming: :NamingContext

NamingContext::destroy()

// IDL
void destroy ()

raises (NotEmpty) ;

Deletes the NamingContext object on which itis called. Before deleting
a NamingContext in this way, ensure that it contains no bindings.

To avoid leaving name bindings with no associated objects in the
naming service, call NamingContext .unbind () to unbind the context
name before calling destroy (). See resolve () for information about
the result of resolving names of context objects that no longer
exist.

NamingContext : destroy () is called on a NamingContext that contains
:NotEmpty existing bindings.

CosNaming: :NamingContext : : resolve ()
CosNaming: :NamingContext : :unbind ()

NamingContext::InvalidName Exception

// IDL
exception InvalidName {};

If a method receives an in parameter of type CosNaming.Name for
which the sequence length is zero, the method throws an
InvalidName exception.

The following methods can throw this exception:
bind ()

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

NamingContext::list()

// IDL
void list(

in unsigned long how many,

out BindingList bl,
out BindingIterator bi

Orbix CORBA Programmer’s Reference: Java 265

Parameters

See Also

See Also

)i

Gets a list of the name bindings in the naming context on which the
method is called.

how_many The maximum number of bindings to be obtained in
the BindingList parameter, bl.

bl The list of bindings contained in the naming context on
which the method is called.

bi A BindingIterator object that provides access to all
remaining bindings contained in the naming context
on which the method is called.

If the naming context contains more than the
requested number of bindings, the BindingIterator
contains the remaining bindings. If the naming con-
text does not contain any additional bindings, the
parameter bi is a nil object reference.

CosNaming: :BindingIterator
CosNaming: :BindingList

NamingContext::new_context()

// IDL
NamingContext new context () ;

Creates a new NamingContext Object in the naming service, without
binding a name to it. The method returns a reference to the newly
created NamingContext object.

After creating a naming context with this method, your application
can bind a name to it by calling NamingContext : :bind context ().
There is no relationship between this object and the NamingContext
object on which the application call the method.

CosNaming: :NamingContext: :bind context ()

CosNaming: :NamingContext: :bind new context ()

NamingContext::NotEmpty Exception

// IDL

exception NotEmpty {};

An application can call the NamingContext: :destroy () method to
delete a naming context object in the naming service. For this
method to succeed, the naming context must contain no bindings.
If bindings exist in the naming context, the method throws a
NotEmpty exception.

NamingContext::NotFound Exception

// IDL
exception NotFound {

NotFoundReason why;
Name rest of name;

266 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

}i

Several methods in the interface CosNaming: :NamingContext require
an existing name binding to be passed as an input parameter. If
such an method receives a name binding that it determines is
invalid, the method throws a NotFound exception. This exception
contains two member fields:

why The reason why the name binding is invalid.

rest_of name The remainder of the compound name following the
invalid portion of the name that the method deter-
mined to be invalid.

The following methods can throw this exception:

bind ()

bind context ()
bind new context ()
rebind ()

rebind context ()
resolve ()

unbind ()

CosNaming: :NamingContext : :NotFoundReason

NamingContext::NotFoundReason Enumeration

// IDL
enum NotFoundReason {missing node, not context, not object};

If an method throws a NotFound exception, a value of enumerated
type NotFoundReason indicates the reason why the exception was
thrown. The reasons consists of:

missing node The component of the name passed to the
method did not exist in the naming service.

not_context The method expected to receive a name that is
bound to a naming context, for example using
NamingContext: :bind context (), but the name
received did not satisfy this requirement.

not_object The method expected to receive a name that is
bound to an application object, for example
using NamingContext::bind (), but the name
received did not satisfy this requirement.

CosNaming: :NamingContext : : NotFound

NamingContext::rebind()

// IDL
void rebind (

in Name n,
in Object obj

raises (NotFound, CannotProceed, InvalidName) ;

Orbix CORBA Programmer’s Reference: Java 267

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

Creates a binding between an object and a name that is already
bound in the target naming context. The previous name is unbound
and the new binding is created in its place.

n The name to be bound to the specified object, relative
to the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

As is the case with NamingContext::bind (), all but the last compo-
nent of a compound name must exist, relative to the naming con-
text on which you call the method.

The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

CosNaming: :NamingContext: :bind ()
CosNaming: :NamingContext: : resolve ()

NamingContext::rebind_context()

// IDL
void rebind context (

in Name n,

in NamingContext nc

raises (NotFound, CannotProceed, InvalidName) ;

The rebind context () method creates a binding between a naming
context and a name that is already bound in the context on which
the method is called. The previous name is unbound and the new
binding is made in its place.

n The name to be bound to the specified naming con-
text, relative to the naming context on which the
method is called.

nc The naming context to be associated with the specified
name.

As is the case for NamingContext::bind context (), all but the last
component of a compound name must name an existing
NamingContext.

The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

CosNaming: :NamingContext: :bind context ()
CosNaming: :NamingContext: : resolve ()

268 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

Exceptions

NamingContext::resolve()

// IDL
Object resolve (

in Name n
)

raises (NotFound, CannotProceed, InvalidName) ;

Returns the object reference that is bound to the specified name,
relative to the naming context on which the method was called. The
first component of the specified name is resolved in the target
naming context.

n The name to be resolved, relative to the naming con-
text on which the method is called.

The method can throw these exceptions:

NotFound

CannotProceed

InvalidName

If the name n refers to a naming context, it is possible that the
corresponding NamingContext object no longer exists in the naming
service. For example, this could happen if you call

NamingContext: :destroy () to destroy a context without first unbind-
ing the context name. In this case, resolve () throws a CORBA sys-
tem exception.

CosNaming: :NamingContext : : CannotProceed
CosNaming: :NamingContext : : InvalidName
CosNaming: :NamingContext : : NotFound

NamingContext::unbind()

// IDL
void unbind (

in Name n
)

raises (NotFound, CannotProceed, InvalidName) ;

Removes the binding between a specified name and the object
associated with it.

n The name to be unbound in the naming service, rela-
tive to the naming context on which the method is
called.

Unbinding a name does not delete the application object or nam-
ing context object associated with the name. For example, if you
want to remove a naming context completely from the naming
service, you should first unbind the corresponding name, then
delete the NamingContext object by calling
NamingContext : :destroy () .

The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

Orbix CORBA Programmer’s Reference: Java 269

See Also CosNaming: :NamingContext : : Cannot Proceed
CosNaming: :NamingContext : :destroy ()
CosNaming: :NamingContext : : InvalidName
CosNaming: :NamingContext : : NotFound

270 Orbix CORBA Programmer’s Reference: Java

CosNaming::NamingContextExt

Interface

The

NamingContextExt interface, derived from NamingContext, pro-

vides the capability for applications to use strings and Uniform
Resource Locator (URL) strings to access names in the naming
service.

// IDL
// In module CosNaming
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;

typedef string URLString;

StringName to string(
in Name n

)

raises (InvalidName) ;

Name to name (
in StringName sn

raises (InvalidName) ;
exception InvalidAddress {};
URLString to url (

in Address addr,

in StringName sn

raises (InvalidAddress, InvalidName) ;
Object resolve str(

in StringName n

)

raises (NotFound, CannotProceed, InvalidName,

AlreadyBound) ;

}i

NameContextExt::Address Data Type

// IDL
typedef string Address;

A URL address component is a host name optionally followed by a
port number (delimited by a colon). Examples include the follow-

ing:

my_backup host.555xXyz.com:900
myhost .xyz.com
myhost . 555xyz . com

Orbix CORBA Programmer’s Reference: Java 271

NameContextExt::InvalidAddress Exception

// IDL
exception InvalidAddress {};

The to url () method throws an Invalidaddress exception when an
invalid URL address component is passed to it.

See Also CosNaming: :NamingContextExt::to url ()

NameContextExt::resolve_str()

// IDL
Object resolve str(

in StringName sn
)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound) ;

Resolves a naming service name to the object it represents in the
same manner as NamingContext: :resolve (). This method accepts a
string representation of a name as an argument instead of a Name
data type.

Parameters

sn String representation of a name to be resolved to an
object reference.
Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

AlreadyBound

NameContextExt::StringName Data Type

// IDL
typedef string StringName;

A string representation of an object’s name in the naming service.

See Also CosNaming: :Name

NameContextExt::to_name()

// IDL
Name to name (

in StringName sn
)

raises (InvalidName) ;
Returns a naming service Name given a string representation of it.

Parameters

sn String representation of a name in the naming service
to be converted to a Name data type.

272 Orbix CORBA Programmer’s Reference: Java

Exceptions

Parameters

Exceptions

Parameters

Exceptions

InvalidName The string name is syntactically malformed or violates
an implementation limit.

NameContextExt::to_string()

// IDL

StringName to string(
in Name n

)

raises (InvalidName) ;

Returns a string representation of a naming service Name data type.

n The naming service Name to be converted to a string.

InvalidName Name is invalid.

NameContextExt::to_url()

// IDL

URLString to url(
in Address addr,
in StringName sn

raises (InvalidAddress, InvalidName) ;

Returns a fully formed URL string, given a URL address component
and a string representation of a name. It adds the necessary escape
sequences to create a valid URLString.

addr The URL address component. An empty address
means the local host.

sn The string representation of a naming service name.
An empty string is allowed.
The method can throw these exceptions:

InvalidAddress
InvalidName

NameContextExt::URLString Data Type

// IDL
typedef string URLString;

A valid Uniform Resource Locator (URL) string. URL strings describe
the location of a resource that is accessible via the Internet.

Orbix CORBA Programmer’s Reference: Java 273

274 Orbix CORBA Programmer’s Reference: Java

CosNotification Module

CosNotification

The cosNotification module defines the structured event data
type, and a data type used for transmitting sequences of struc-
tured events. In addition, this module provides constant declara-
tions for each of the standard quality of service (QoS) and
administrative properties supported by the notification service.
Some properties also have associated constant declarations to
indicate their possible settings. Finally, administrative interfaces
are defined for managing sets of QoS and administrative proper-
ties.

Data Types

CosNotification::StructuredEvent Data
Structure

//IDL

struct EventType {
string domain name;
string type name;

}i

struct FixedEventHeader {
EventType event type;
string event name;

}i

struct EventHeader {
FixedEventHeader fixed header;
OptionalHeaderFields variable header;

struct StructuredEvent {

EventHeader header;

FilterableEventBody filterable data;

any remainder of body;
}; // StructuredEvent
The structuredivent data structure defines the fields which make
up a structured event. A detailed description of structured events
is provided in the CORBA Notification Service Guide.

CosNotification::EventTypeSeq Type

//IDL

struct EventType {
string domain name;
string type name;

}i

typedef sequence <EventType> EventTypeSeq

Orbix CORBA Programmer’s Reference: Java 275

CosNotification::EventBatch Type

The CosNotification module defines the EventBatch data type as a
sequence of structured events. The CosNotifyComm module defines
interfaces supporting the transmission and receipt the EventBatch
data type.

QoS and Administrative Constant Declarations

The cosNotification module declares several constants related to
QoS properties, and the administrative properties of event chan-
nels.

// IDL in CosNotification module

const string EventReliability = "EventReliability";
const short BestEffort = 0;

const short Persistent = 1;

const string ConnectionReliability = "ConnectionReliability";
// Can take on the same values as EventReliability

const string Priority = "Priority";
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = "StartTime";
// StartTime takes a value of type TimeBase: :UtcT

const string StopTime = "StopTime";
// StopTime takes a value of type TimeBase::UtcT

const string Timeout = "Timeout";
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = "OrderPolicy";
const short AnyOrder = O;
const short FifoOrder = 1;

const short PriorityOrder = 2;
const short DeadlineOrder = 3;
const string DiscardPolicy = "DiscardPolicy";

// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = "MaximumBatchSize";
// MaximumBatchSize takes on a value of type long

const string PacingInterval = "PacingInterval";
/ PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = "StartTimeSupported";
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = "StopTimeSupported";
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = "MaxEventsPerConsumer";
// MaxEventsPerConsumer takes on a value of type long

276 Orbix CORBA Programmer’s Reference: Java

QoS and Admin Data Types

Members

The cosNotification module defines several data types related to
QoS properties, and the administrative properties of event chan-
nels.

CosNotification::PropertyName Type

typedef string PropertyName;

PropertyName iS @ string holding the name of a QoS or an Admin
property.

CosNotification::PropertyValue Type

typedef any PropertyValue;

PropertyValue iS an any holding the setting of QoS or Admin prop-
erties.

CosNotification::PropertySeq Type

//IDL in CosNotification module
struct Property

{

PropertyName name;

PropertyValue value;

}i

typedef sequence <Property> PropertySeq;

PropertySeq is a set of name-value pairs that encapsulate QoS or
Admin properties and their values.

name A string identifying the QoS or Admin property.
value An Any containing the setting of the QoS or Admin
property.

CosNotification::QoSProperties Type
typedef PropertySeq QoSProperties;

QoSProperties is a name-value pair of PropertySeqg used to specify
QoS properties.

CosNotification::AdminProperties Type

typedef PropertySeq AdminProperties;

AdminProperties iS @ name-value pair of PropertySeq used to specify
Admin properties.

Orbix CORBA Programmer’s Reference: Java 277

CosNotification::QoSError_code Enum

enum QoSError code
{
UNSUPPORTED PROPERTY,
UNAVAILABLE PROPERTY,
UNSUPPORTED VALUE,
UNAVAILABLE VALUE,
BAD PROPERTY,
BAD TYPE,
BAD VALUE
}i
QoSError code specifies the error codes for Unsupportedgos and
UnsupportedAdmin exceptions. The return codes are:

UNSUPPORTED PROPERTYOrbix does not support the property for this
type of object

UNAVAILABLE PROPERTYThis property cannot be combined with existing
QoS properties.

UNSUPPORTED VALUE The value specified for this property is invalid
for the target object.

UNAVAILABLE VALUE The value specified for this property is invalid
in the context of other QoS properties currently

in force.

BAD PROPERTY The property name is unknown.

BAD TYPE The type supplied for the value of this property
is incorrect.

BAD VALUE The value specified for this property is illegal.

CosNotification::PropertyErrorSeq Type

// IDL from CosNotification module
struct PropertyRange
{
PropertyValue low val;
PropertyValue high val;

bi

struct PropertyError
QoSError code code;
PropertyName name;
PropertyRange available range;

typedef sequence <PropertyError> PropertyErrorSedq;

A PropertyErrorSeq is returned when UnsupportedQoS or
UnsupportedAdmin iS raised. It specifies a sequence containing the
reason for the exception, the property that caused it, and a range
of valid settings for the property.

278 Orbix CORBA Programmer’s Reference: Java

QoS and Admin

CosNotification::NamedPropertyRangeSeq
Type

struct NamedPropertyRange

PropertyName name;
PropertyRange range;

}i

typedef sequence <NamedPropertyRange> NamedPropertyRangeSeq;

Specifies a range of values for the named property.

Exceptions

The CosNotification module defines two exceptions related to QoS
properties, and the administrative properties of event channels.

CosNotification::UnsupprtedQoS

exception UnsupportedQoS { PropertyErrorSeq gos_err; };

Raised when setting QoS properties on notification channel objects,
or when validating QoS properties. It returns with a
PropertyErrorSeq specifying the reason for the exception, which
property was invalid, and a list of valid settings for the QoS property.

CosNotification::UnsupportedAdmin

exception UnsupportedAdmin { PropertyErrorSeq admin err; };

Raised when setting Admin properties on notification channels. It
returns with a PropertyErrorSeg specifying the reason for the excep-
tion, which property was invalid, and a list of valid settings for the

property.

Orbix CORBA Programmer’s Reference: Java 279

280 Orbix CORBA Programmer’s Reference: Java

CosNotification::AdminProperties
Admin Interface

Parameters

Exceptions

//IDL
interface AdminPropertiesAdmin {
AdminProperites get admin() ;
void set admin (in AdminProperites admin)
raises (UnsupportedAdmin) ;

}i

The aAdminPropertiesAdmin interface defines operations enabling
clients to manage the values of administrative properties. This
interface is an abstract interface which is inherited by the Event
Channel interfaces defined in the CosNotifyChannelAdmin module.

AdminPropertiesAdmin::get_admin()

AdminProperites get admin() ;

Returns a sequence of name-value pairs encapsulating the current
administrative settings for the target channel.

AdminPropertiesAdmin::set_admin()

void set_admin (in AdminProperites admin)
raises (UnsupportedAdmin) ;

Sets the specified administrative properties on the target object.

admin A sequence of name-value pairs
encapsulating administrative property
settings.

UnsupportedAdmin Raised if If any of the requested settings cannot
be satisfied by the target object.

Orbix CORBA Programmer’s Reference: Java 281

282 Orbix CORBA Programmer’s Reference: Java

CosNotification::QoSAdmMiIn
Interface

//IDL
interface QoSAdmin {
QoSProperties get gos() ;
void set gos (in QoSProperties gos)
raises (UnsupportedQoS) ;
void validate gos (
in QoSProperites required gos,
out NamedPropertyRangeSeq available gos)
raises (UnsupportedQoS) ;
The Qosadmin interface defines operations enabling clients to man-
age the values of QoS properties. It also defines an operation to
verify whether or not a set of requested QoS property settings can
be satisfied, along with returning information about the range of
possible settings for additional QoS properties. QoSAdmin is an
abstract interface which is inherited by the proxy, admin, and
event channel interfaces defined in the CosNotifyChannelAdmin
module.

QoSAdmin::get_qgos()

QoSProperites get gos() ;

Returns a sequence of name-value pairs encapsulating the current
quality of service settings for the target object (which could be an
event channel, admin, or proxy object).

QoSAdmin::set_qgos()

void set _gos (in QoSProperites gos)

raises (UnsupportedQoS) ;
Sets the specified QoS properties on the target object (which
could be an event channel, admin, or proxy object).

Parameters

gos A sequence of name-value pairs
encapsulating quality of service prop-
erty settings

Exceptions

UnsupportedQos The implementation of the target object is incapable of
supporting some of the requested quality of service
settings, or one of the requested settings are in con-
flict with a QoS property defined at a higher level of
the object hierarchy.

Orbix CORBA Programmer’s Reference: Java 283

QoSAdmin::validate qgos()

void validate gos (

in QoSProperites required dos,

out NamedPropertyRangeSeq available gos)

raises (UnsupportedQoS) ;
Enables a client to discover if the target object is capable of sup-
porting a set of QoS settings. If all requested QoS property value
settings can be satisfied by the target object, the operation
returns successfully (without actually setting the QoS properties
on the target object).

Parameters

required gos A sequence of QoS property
name-value pairs specifying a set of
QoS settings.

available gos An output parameter that contains a
sequence of NamedPropertyRange. Each
element in this sequence includes the
name of a an additional QoS property
supported by the target object which
could have been included on the input
list and resulted in a successful return
from the operation, along with the
range of values that would have been
acceptable for each such property.

Exceptions

UnsupportedQos Raised if If any of the requested settings cannot be
satisfied by the target object.

284 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin Module

The CosNotifyChanneladmin module specifies the interfaces, excep-
tions, and data types for connecting suppliers and consumers to
an event channel. It also provides the methods for managing
these connections.

CosNotifyChannelAdmin Data Types

CosNotifyChannelAdmin specifies data types that facilitate the con-
nection of clients to an event channel. The data types specify the
proxy type used by a client, the type of events a client can send or
recieve, and how the clients recieve subscription information.
Several data types identify the client and the event channel objets
responsible for managing it.

CosNotifyChyyyyyannelAdmin::ProxyType
Enum

// IDL in CosNotifyChannelAdmin

enum ProxyType

{
PUSH_ANY,
PULL_ANY,
PUSH_STRUCTURED,
PULL STRUCTURED,
PUSH SEQUENCE,
PULL SEQUENCE,
PUSH_TYPED,
PULL TYPED

}

Specifies the type of proxy used by a client to connect to an event
channel. The type of proxy must match the type of client it connects
to the channel. For example, a structured push consumer must use
a PUSH_STRUCTURED Proxy.

CosNotifyChannelAdmin::ObtainlnfoMode
Enum

// IDL in CosNotifyChannelAdmin Module
enum ObtainInfoMode
{
ALL NOW UPDATES ON,
ALL NOW UPDATES OFF,
NONE_NOW_UPDATES_ON,
NONE NOW UPDATES OFF

Orbix CORBA Programmer’s Reference: Java 285

Specifies how the client wishes to be notified of changes in subscrip-
tion/publication information. The values have the following mean-
ings:

ALL NOW_UPDATES ON Returns the current subscription/publication
information and enables automatic updates.

ALL_NOW_UPDATES_OFFReturns the current subscription/publication
information and disables automatic updates.

NONE NOW_UPDATES_ONEnables automatic updates of subscription/publi-
cation information without returning the current
information.

NON_NOW_UPDATES_OFFDisables automatic updates of subscription/pub-
lication information without returning the cur-
rent information.

CosNotifyChannelAdmin::ProxyID Type

typedef long ProxyID;
Specifies the ID of a proxy in an event channel.

CosNotifyChannelAdmin::ProxylDSeq Type

typedef sequence <ProxyID> ProxyIDSeq

Contains a list of proxyID values.

CosNotifyChannelAdmin::ClientType Enum

// IDL in CosNotifyChannelAdmin
enum ClientType

{
ANY EVENT,
STRUCTURED EVENT,
SEQUENCE_EVENT

}

Specifies the type of messages a client handles. The values have
the following meanings:

ANY EVENT The client sends or receives messages as an Any.
Consumers set with ANY EVENT can receive struc-
tured messages, but the consumer is responsible
for decoding it.

STRUCTURED EVENT The client sends or receives messages as a
CosNotification::StructuredEvent.

SEQUENCE EVENT The client sends or receives messages as a
CosNotification::EventBatch.

286 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::InterFilterGroupOper
ator Enum

// IDL in CosNotifyChannelAdmin
enum InterFilterGroupOperator

{
AND OP,
OR_OP

}

Specifies the relationship between filters set on an admin object
and the filters set on its associated filter objects. The values have
the following meanings:

AND OP Events must pass at least one filter in both the proxy
and the admin in order to be forwarded along the
delivery path.

OR_OP Events must pass at least one filter in either the proxy
or the admin in order to be forwarded along the deliv-
ery path.

CosNotifyChannelAdmin::AdminlID Type

typedef long AdminID;

Specifies the ID of an admin object in an event channel.

CosNotifyChannelAdmin::AdminIDSeq

typedef sequence <AdminID> AdminIDSeq;

Contains a list of IDs for admin objects in an event channel.

CosNotifyChannelAdmin::AdminLimit Type

//IDL in CosNotifyChannelAdmin
struct AdminLimit

{

CosNotification: :PropertyName name;
CosNotification: :PropertyValue value;

}

Specifies the administration property whose limit is exceeded and
the value of that property. It is returned by an
CosNotifyChannelAdmin: :AdminLimitExceeded exception.

Members
name Name of the admin property that caused the excep-
tion.
value The current value of the property.

CosNotifyChannelAdmin::ChannellD Type

typedef long ChannellID;

Orbix CORBA Programmer’s Reference: Java 287

Specifies an event channel in the notification service.

CosNotifyChannelAdmin::ChannellDSeq Type

typedef sequence <ChannelID> ChannelIDSeq;

Contains a list of IDs for event channels in the notification service.

CosNotifyChannelAdmin Exceptions

The CosNotifyChannelAdmin module defines exceptions to handle
errors generated while managing client connections to an event
channel.

CosNotifyChannelAdmin::ConnectionAlreadyAc
tive Exception
exception ConnectionAlreadyActive{};

Raised when attempting to resume an already active connection
between a client and an event channel.

CosNotifyChannelAdmin::ConnetionAlreadylna
ctive Exception
exception ConnectionAlreadyInactive{};

Raised when attempting to suspend a connection between a client
and an event channel while it is suspended.

CosNotifyChannelAdmin::NotConnected
Exception

exception NotCennected{};

Raised when attempting to suspend or resume a connection be-
tween a client and an event channel when the client is not connected
to the channel.

CosNotifyChannelAdmin::AdminNotFound
Exception

exception AdminNotFound{};

Raised when the specified Admin ID cannot be resolved.

CosNotifyChannelAdmin::ProxyNotFound
Exception

exception ProxyNotFound{};

288 Orbix CORBA Programmer’s Reference: Java

Raised when the specified proxy ID cannot be resolved.

CosNotifyChannelAdmin::AdminLimitExceeded
Exception
exception AdminLimitExceeded{ AdminLimit admin property err };

Raised when an attempt to obtain a proxy and the new connection
will put the event channel over the limit set by its MaxConsumers oOr
MaxSuppliers setting.

The returned adminLimit specifies which property caused the
exception and the current setting of the property.

CosNotifyChannelAdmin::ChannelNotFound
Exception

exception ChannelNotFound{};

Raised when the specified channel ID cannot be resolved.

Orbix CORBA Programmer’s Reference: Java 289

290 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Consum
erAdmin Interface

//IDL

interface ConsumerAdmin :
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifySubscribe,
CosNotifyFilter: :FilterAdmin,
CosEventChannelAdmin: : ConsumerAdmin

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

attribute CosNotifyFilter::MappingFilter priority filter;
attribute CosNotifyFilter::MappingFilter lifetime filter;

readonly attribute ProxyIDSeq pull suppliers;
readonly attribute ProxyIDSeq push suppliers;

ProxySupplier get proxy supplier (in ProxyID proxy id)
raises (ProxyNotFound) ;

ProxySupplier obtain notification pull supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxySupplier obtain notification push supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxySupplier obtain txn notification pull supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

void destroy () ;
i
The consumerAdmin interface defines the behavior of objects that
create and manage lists of proxy supplier objects within an event
channel. A event channel can have any number of ConsumerAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy supplier objects that share a
common set of QoS property settings, and a common set of filter
objects. This feature enables clients to group proxy suppliers
within a channel into groupings that each support a set of con-
sumers with a common set of QoS requirements and event sub-
scriptions.

The ConsumeraAdmin interface inherits the Qosadmin interface defined
within CosNotification, enabling each ConsumerAdmin to manage a
set of QOS property settings. These Qo0S property settings are

assigned as the default QoS property settings for any proxy sup-

Orbix CORBA Programmer’s Reference: Java 291

plier object created by a ConsumerAdmin.The ConsumerAdmin interface
also inherits from the rFilterAdmin interface defined within
CosNotifyFilter. This enables each ConsumerAdmin to maintain a list
of filters. These filters encapsulate subscriptions that apply to all
proxy supplier objects that have been created by a given Consum-
erAdmin.

The ConsumerAdmin interface also inherits from the NotifySubscribe
interface defined in CosNotifyComm. This inheritance enables a con-
sumerAdmin to be registered as the callback object for notification of
subscription changes made on filters. This optimizes the notifica-
tion of a group of proxy suppliers that have been created by the
same ConsumerAdmin Of changes to these shared filters.

The ConsumerAdmin interface also inherits from
CosEventChannelAdmin: : ConsumerAdmin. This inheritance enables cli-
ents to use the ConsumerAdmin interface to create pure OMG event
service style proxy supplier objects. Proxy supplier objects created
in this manner do not support configuration of QoS properties, and
do not have associated filters. Proxy suppliers created through the
inherited CosEventChannelAdmin: : ConsumerAdmin interface do not
have unique identifiers associated with them, whereas proxy sup-
pliers created by operations supported by the ConsumerAdmin inter-
face do have unique identifiers.

The ConsumerAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel instance that created it.
The ConsumerAdmin interface also supports a read-only attribute
that contains a unique numeric identifier which is assigned event
channel upon creation of a Consumeradmin instance. This identifier is
unigue among all ConsumerAdmin instances created by a given chan-
nel.

As described above, a Consumeradmin can maintain a list of filters
that are applied to all proxy suppliers it creates. Each proxy sup-
plier can also support a list of filters that apply only to the proxy.
When combining these two lists during the evaluation of a given
event, either AND or orR semantics may be applied. The choice is
determined by an input flag when creating of the ConsumeraAdmin,
and the operator that is used for this purpose by a given Consum-
erAdmin iS maintained in a read-only attribute.

The ConsumerAdmin interface also supports attributes that maintain
references to priority and lifetime mapping filter objects. These
mapping filter objects are applied to all proxy supplier objects cre-
ated by a given ConsumerAdmin.

Each Consumeradmin assigns a unique numeric identifier to each
proxy supplier it maintains. The Consumeradmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push suppliers created by a
given ConsumerAdmin. The ConsumerAdmin interface also supports an
operation that, given the unique identifier of a proxy supplier,
returns the object reference of that proxy supplier. Finally, the
ConsumerAdmin interface supports operations that create the various
styles of proxy supplier objects supported by the event channel.

ConsumerAdmin::MyID

readonly attribute AdminID MyID;

292 Orbix CORBA Programmer’s Reference: Java

Maintains the unique identifier of the target ConsumerAdmin instance
that is assigned to it upon creation by the event channel.

ConsumerAdmin::MyChannel

readonly attribute EventChannel MyChannel

Maintains the object reference of the event channel that created a
given ConsumerAdmin instance.

ConsumerAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;

Maintains the information regarding whether aND or OrR semantics
are used during the evaluation of a given event when combining
the filter objects associated with the target Consumeradmin and those
defined locally on a given proxy supplier.

ConsumerAdmin::priority_filter

attribute CosNotifyFilter::MappingFilter priority filter;

Maintains a reference to a mapping filter object that affects how
each proxy supplier created by the target ConsumerAdmin treats
events with respect to priority.

Each proxy supplier also has an associated attribute which main-
tains a reference to a mapping filter object for the priority prop-
erty. This local mapping filter object is only used by the proxy
supplier in the event that the priority filter attribute of the con-
sumerAdmin instance that created it is set to OBJECT NIL.

ConsumerAdmin::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime filter;

Maintains a reference to a mapping filter that affects how each proxy
supplier created by the target ConsumerAdmin treats events with
respect to lifetime.

Each proxy supplier object also has an associated attribute that
maintains a reference to a mapping filter object for the lifetime
property. This local mapping filter object is only used by the proxy
supplier in the event that the lifetime filter attribute of the con-
sumerAdmin instance that created it is set to OBJECT NIL.

ConsumerAdmin::pull_suppliers

readonly attribute ProxyIDSeq pull suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each pull-style proxy supplier it has
created.

Orbix CORBA Programmer’s Reference: Java 293

Parameters

Exceptions

ConsumerAdmin::push_suppliers

readonly attribute ProxyIDSeq push suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each push-style proxy supplier it has
created.

ConsumerAdmin::get_proxy_supplier()

ProxySupplier get proxy supplier (in ProxyID proxy id)

raises (ProxyNotFound) ;
Returns an object reference to the proxy supplier whose unique id
was passed to the method.

proxy id A numeric identifier associated with one of the
proxy suppliers that created by the target
ConsumerAdmin.

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy supplier object created
by the target consumerAdmin.

ConsumerAdmin::obtain_notification_pull_sup
plier()
ProxySupplier obtain notification pull supplier (

in ClientType ctype,

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates instances of the pull-style proxy suppliers defined in
CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of pull-style proxy suppliers are defined in this
module:

®* The proxyPullSupplier interface supports connections to pull
consumers that receive events as Anys.

* The structuredProxyPullSupplier interface supports connec-
tions to pull consumers that receive structured events.

®* The SequenceProxyPullSupplier interface support connections
to pull consumers that receive sequences of structured
events.

The input parameter flag indicates which type of pull style proxy
instance to create.

The target ConsumerAdmin creates the new pull-style proxy supplier
and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumeraAdmin has created.

294 Orbix CORBA Programmer’s Reference: Java

Parameters

ctype A flag that indicates which style of pull-style proxy
supplier to create.

proxy id The unique identifier of the new proxy supplier.
Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

ConsumerAdmin::obtain_notification_push_su
pplier()

ProxySupplier obtain notification push supplier (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates instances of the push-style proxy supplier objects defined
in CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of push-style proxy suppliers are defined in this
module:

* The proxyPushSupplier interface supports connections to push
consumers that receive events as 2nys.

®* The structuredProxyPushSupplier interface supports connec-
tions to push consumers that receive structured events.

* The sequenceProxyPushSupplier interface supports connections
to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.

The target ConsumerAdmin creates the new push-style proxy sup-
plier and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumeraAdmin has created.

Parameters
ctype A flag indicating which style of push-style proxy
supplier to create.
proxy_ id The unique identifier of the new proxy supplier.

Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

Orbix CORBA Programmer’s Reference: Java 295

ConsumerAdmin::destroy()

void destroy () ;

Destroys all proxies under the administration of the target object,
and then destroys the target object itself. When destroying each
object, it frees any storage associated with the object in question,
and then invalidates the object's IOR.

296 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::EventCh
annel Interface

//IDL

interface EventChannel
CosNotification: :QoSAdmin,
CosNotification: :AdminPropertiesAdmin,
CosEventChannelAdmin: : EventChannel

readonly attribute EventChannelFactory MyFactory;
readonly attribute ConsumerAdmin default_ consumer admin;
readonly attribute SupplierAdmin default_ supplier admin;
readonly attribute CogNotifyFilter::FilterFactory
default filter factory;

ConsumerAdmin new for consumers (
in InterFilterGroupOperator op,
out AdminID id);

SupplierAdmin new for suppliers(
in InterFilterGroupOperator op,
out AdminID id);

ConsumerAdmin get consumeradmin (in AdminID id)
raises (AdminNotFound) ;

SupplierAdmin get supplieradmin (in AdminID id)
raises (AdminNotFound) ;

AdminIDSeq get all consumeradmins () ;

AdminIDSeq get all supplieradmins() ;
}i
The EventcChannel interface defines the behavior of an event chan-
nel. This interface inherits from CosEventChannelAdmin: : EventChan-
nel; this makes an instance of the notification service EventChannel
interface fully compatible with an OMG event service style untyped
event channel.

Inheritance of CosEventChannelAdmin: : EventChannel enables an
instance of the EventChannel interface to create event service style
ConsumerAdmin and SupplierAdmin instances. These instances can
subsequently be used to create pure event service style proxies,
which support connections to pure event service style suppliers
and consumers.

While notification service style proxies and admin objects have
unique identifiers associated with them, enabling their references
to be obtained by invoking operations on the notification service
style admin and event channel interfaces, event service style
proxies and admin objects do not have associated unique identifi-
ers, and cannot be returned by invoking an operation on the noti-
fication service style admin or event channel interfaces.

The EventChannel interface also inherits from the gosadmin and the
AdminPropertiesAdmin interfaces defined in CosNotification. Inheri-
tance of these interfaces enables a notification service style event
channel to manage lists of QoS and administrative properties.

Orbix CORBA Programmer’s Reference: Java 297

The EventChannel interface supports a read-only attribute that
maintains a reference to the EventChannelFactory that created it.
Each instance of the EventChannel interface has an associated
default ConsumerAdmin and an associated default SupplierAdmin,
both of which exist upon creation of the channel and that have the
unique identifier of zero. Admin object identifiers must only be
unique among a given type of admin, which means that the identi-
fiers assigned to ConsumerAdmin Objects can overlap those assigned
to SupplierAdmin objects. The EventChannel interface supports
read-only attributes that maintain references to these default
admin objects.

The EventChannel interface supports operations that create new
ConsumerAdmin and SupplierAdmin instances. The EventChannel inter-
face also supports operations that, when provided with the unique
identifier of an admin object, can return references to the
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel . Finally, the EventChannel interface supports opera-
tions that return the sequence of unique identifiers of all
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel.

EventChannel::MyFactory

readonly attribute EventChannelFactory MyFactory;

Maintains the object reference of the event channel factory that
created a given EventChannel.

EventChannel::default_consumer_admin

readonly attribute ConsumerAdmin default_ consumer admin;

Maintains a reference to the default ConsumerAdmin associated with
the target EventChannel. Each EventChannel instance has an associ-
ated default consumeradmin, that exists upon creation of the channel
and is assigned the unique identifier of zero. Clients can create
additional event service style Consumeradmin by invoking the inher-
ited for consumers operation, and additional notification service
style ConsumerAdmin by invoking the new for consumers operation
defined by the EventcChannel interface.

EventChannel::default_supplier_admin

readonly attribute SupplierAdmin default supplier admin;

Maintains a reference to the default Supplieradmin associated with
the target EventChannel. Each EventChannel has an associated default
SupplierAdmin, that exists upon creation of the channel and is
assigned the unique identifier of zero. Clients can create additional
event service style SupplierAdmin by invoking the inherited for sup-
pliers operation, and additional notification service style
SupplierAdmin by invoking the new for suppliers operation defined
by the EventChannel interface.

298 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

EventChannel::default_filter_factory

readonly attribute CosNotifyFilter::FilterFactory
default_filter factory;

Maintains an object reference to the default factory to be used by
its associated EventChannel for creating filters. If the target channel
does not support a default filter factory, the attribute maintains the
value of OBJECT NIL.

EventChannel::new_for_consumers()

ConsumerAdmin new for consumers (
in InterFilterGroupOperator op,
out AdminID id) ;

Creates a notification service style ConsumerAdmin. The new instance
is assigned a unique identifier by the target EventChannel that is
unique among all Consumeradmins currently associated with the
channel. Upon completion, the operation returns the reference to
the new ConsumerAdmin, and the unique identifier assigned to the
new ConsumerAdmin as the output parameter.

op A boolean flag indicating whether to use 2AND or OR
semantics when the ConsumerAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the ConsumerAdmin creates.

id The unique identifier assigned to the new
ConsumerAdmin.

EventChannel::new_for_suppliers()

SupplierAdmin new for suppliers(
in InterFilterGroupOperator op,
out AdminID id);

Creates a notification service style supplierAdmin. The new
SupplierAdmin is assigned an identifier by the target EventChannel
that is unique among all supplieradmins currently associated with
the channel. Upon completion, the operation returns the reference
to the new supplierAdmin, and the unique identifier assigned to the
new SupplierAdmin as the output parameter.

op A boolean flag indicating whether to use aND or OrR
semantics when the supplieraAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the SupplierAdmin creates.

id The unique identifier assigned to the new
SupplierAdmin.

Orbix CORBA Programmer’s Reference: Java 299

Note:

Parameters

Exceptions

Note:

Parameters

Exceptions

EventChannel::get_consumeradmin()

ConsumerAdmin get consumeradmin (in AdminID id)
raises (AdminNotFound) ;

Returns a reference to one of the ConsumerAdmins associated with
the target EventChannel.

While a notification service event channel can support both event
service and notification service style ConsumerAdmins, only
notification service style Consumeradmins have unique identifiers.

id A numeric value that is the unique identifier of one
of the ConsumerAdmins associated with the target
EventChannel.

AdminNotFound The id is not the identifier of one of the
ConsumerAdmins associated with the target EventChan-
nel.

EventChannel::get_supplieradmin()

SupplierAdmin get supplieradmin (in AdminID id)

raises (AdminNotFound) ;
Returns a reference to one of the SupplierAdmins associated with
the target EventChannel.

While a notification service style event channel can support both
Event service and notification service style SupplierAdmins, only
notification service style SupplierAdmins have unique identifiers.

id A numeric value that is the unique identifier of one
of the sSupplieradmins associated with the target
EventChannel.

AdminNotFound The id is not the unique identifier of one of the Sup-
plierAdmins associated with the target EventChannel.

EventChannel::get_all _consumeradmins()

AdminIDSeq get all consumeradmins() ;

Returns a sequence of unique identifiers assigned to all notifica-
tion service style ConsumerAdmins created by the target EventChan-
nel.

EventChannel::get_all_supplieradmins()

AdminIDSeq get all supplieradmins() ;

300 Orbix CORBA Programmer’s Reference: Java

Returns a sequence of unique identifiers assigned to all notifica-
tion service style SupplierAdmins created by the target EventChan-
nel.

Orbix CORBA Programmer’s Reference: Java 301

302 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::EventCh
annelFactory Interface

Parameters

//IDL

interface EventChannelFactory

{

EventChannel create channel (
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin,
out ChannelID id)
raises (CosNotification: :UnsupportedQoS,
CosNotification: :UnsupportedAdmin) ;

ChannelIDSeq get all channels() ;

EventChannel get event channel (in ChannelID id)
raises (ChannelNotFound) ;

i

The EventChannelFactory interface defines operations for creating
and managing event channels. It supports a routine that creates
new instances of event channels and assigns unique numeric iden
tifiers to them.

The EventChannelFactory interface supports a routine that returns
the unique identifiers assigned to all event channels created by a
given EventChannelFactory, and another routine that, given the
unique identifier of an event channel, returns the object reference
of that event channel.

EventChannelFactory::create_channel()

EventChannel create channel (
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin,
out ChannelID id)
raises (CosNotification: : UnsupportedQoS,
CosNotification: :UnsupportedAdmin) ;

Creates an instance of an event channel and returns an object
reference to the new channel.

initial gos A list of name-value pairs specifying the initial QoS
property settings for the new channel.

initial admin A list of name-value pairs specifying the initial
administrative property settings for the new chan-
nel.

id A numeric identifier that is assigned to the new
event channel and which is unique among all event
channels created by the target object.

Orbix CORBA Programmer’s Reference: Java 303

Exceptions

Parameters

Exceptions

UnsupportedQoS Raised if no implementation of the EventChannel
interface exists that can support all of the
requested QoS property settings. This exception
contains a sequence of data structures which iden-
tifies the name of a QoS property in the input list
whose requested setting could not be satisfied,
along with an error code and a range of settings for
the property that could be satisfied.

UnsupportedAdminRaised if no implementation of the EventChannel
interface exists that can support all of the
requested administrative property settings.This
exception contains a sequence of data structures
that identifies the name of an administrative prop-
erty in the input list whose requested setting could
not be satisfied, along with an error code and a
range of settings for the property that could be sat-
isfied.

EventChannelFactory::get_all _channels()

ChannelIDSeq get all channels() ;

Returns a sequence containing all of the unique numeric identifiers
for the event channels which have been created by the target
object.

EventChannelFactory::get_event_channel()

EventChannel get event channel (in ChannelID id)
raises (ChannelNotFound) ;

Returns the object reference of the event channel corresponding to
the input identifier.

id A numeric value that is the unique identifier of an
event channel that has been created by the target
object.

ChannelNotFound The id does not correspond to he unique identifier
of an event channel that has been created by the
target object.

304 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxyCo
nsumer Interface

//IDL in CosNotifyChannelAdmin

interface ProxyConsumer:
CosNotification: :QoSAdmin,
CosNotifyFilter: :FilterAdmin

readonly attribute ProxyType MyType;
readonly attribute SupplierAdmin MyAdmin;

CosNotification: :EventTypeSeq obtain subscription types(
in ObtainInfoMode mode) ;

void validate event gos (
in CosNotification::QoSProperties required gos,
out CosNotification::NamedPropertyRangeSeq
available gos)
raises (CosNotification: :UnsupportedQoS) ;

i

The ProxyConsumer interface is an abstract interface that is inher-
ited by the different proxy consumers that can be instantiated
within an event channel. It encapsulates the behaviors common to
all notification service proxy consumers. In particular, the
ProxyConsumer interface inherits the Qosadmin interface defined
within the CosNotification module, and the FilterAdmin interface
defined within the CosNotifyFilter module. The former inheritance
enables proxy consumers to administer a list of associated QoS
properties. The latter inheritance enables proxy consumers to
administer a list of associated filter objects. Locally, the
ProxyConsumer interface defines a read-only attribute that contains
a reference to the supplierAdmin object that created it. The
ProxyConsumer interface also defines an operation to return the list
of event types a given proxy consumer instance can forward, and
an operation to determine which QoS properties can be set on a
per-event basis.

ProxyConsumer::obtain_subscription_types()

CosNotification: :EventTypeSeq obtain subscription types(

in ObtainInfoMode mode) ;
Returns a list of event type names that consumers connected to
the channel are interested in receiving.

Parameters

mode Specifies whether to automatically notify the supplier
of changes to the subsrciption list.

ProxyConsumer::validate event_qgos()

void validate event gos (
in CosNotification::QoSProperties required dos,

Orbix CORBA Programmer’s Reference: Java 305

out CosNotification::NamedPropertyRangeSeq available gos)
raises (CosNotification::UnsupportedQoS) ;

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

Parameters

required gos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event.

Note: The QoS property
settings contained in the
optional header fields of
a structured event may
differ from those that
are configured on a
given proxy object.

available gosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property

whose setting is supported by the target object on a

per-event basis. Each element also includes the range

of values that are acceptable for each property.

Exceptions

UnsupportedQos Raised if any of the requested settings cannot be hon-
ored by the target object. This exception contains as
data a sequence of data structures identifying the
name of a QoS property in the input list whose
requested setting could not be satisfied, along with an
error code and a range of valid settings for the prop-
erty.

Exceptions

306 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxyPu
lIConsumer Interface

//IDL
interface ProxyPullConsumer :
ProxyConsumer,
CosEventComm: : PullConsumer

void connect any pull supplier (
in CosEventComm::PullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

i
The proxyPullConsumer interface supports connections to the chan-
nel by suppliers who make events, packaged as anys, available to
the channel using the pull model.

The proxyPullConsumer interface extends the OMG event service
pull-style suppliers of untyped events by supporting event filtering
and the configuration of QoS properties. This interface enables
OMG event service style untyped event suppliers to take advan-
tage of the features offered by the notification service.

Through inheritance of the ProxyConsumer interface, the proxyPull-
Consumer interface supports administration of QoS properties,
administration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. In addition, this inheritance implies that a proxyPullCon-
sumer instance supports an operation that returns the list of event
types that consumers connected to the same channel are inter-
ested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.

The proxyPullConsumer interface also inherits from the pullConsumer
interface defined within CosEventComm. This interface supports the

operation to disconnect the ProxyPullConsumer from its associated

supplier. Finally, the proxyPullcConsumer interface defines the oper-
ation to establish the connection over which the pull supplier can

send events to the channel.

ProxyPullConsumer::connect_any_ pull_suppli

er(Q

void connect any pull supplier (
in CosEventComm: :PullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of events in
the form of anys, and the event channel. Once the connection is
established, the proxy can proceed to receive events from the
supplier by invoking pull or try pull on the supplier (whether the
proxy invokes pull or try pull, and the frequency with which it
performs such invocations, is a detail that is specific to the imple-
mentation of the channel).

Orbix CORBA Programmer’s Reference: Java 307

Parameters

pull supplier A reference to an object supporting the
PullSupplier interface defined within CosEventComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the proxyPullConsumer inter-
face may impose additional requirements on the
interface supported by a pull supplier (for example,
it may be designed to invoke some operation other
than pull or try pull in order to receive events). If
the pull supplier being connected does not meet
those requirements, this operation raises the
TypeError exception.

308 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxyPu
lISupplier Interface

//IDL

interface ProxyPullSupplier :
ProxySupplier,
CosEventComm: : PullSupplier

void connect any pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
}i
The proxyPullSupplier interface supports connections to the chan-
nel by consumers that pull events from the channel as anys.

The proxyPullSupplier interface extends the OMG event service
pull-style consumers of untyped events by supporting event filter-
ing and the configuration of QoS properties. This interface enables
OMG event service style untyped event consumers to take advan-
tage of the features offered by the notification service.

Through inheritance of the proxySupplier interface, the proxypull-
Supplier interface supports administration of QoS properties,
administration of a list of associated filter objects, mapping filters
for event priority and lifetime, and a read-only attribute containing
a reference to the ConsumerAdmin object that created it. This inheri-
tance also means that a ProxyPullSupplier instance supports an
operation that returns the list of event types that the proxy sup-
plier will potentially supply, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.

The proxyPullSupplier interface also inherits from the pullSupplier
interface defined within the CosEventComm module of the OMG event
service. This interface supports the pull and try pull operations
that the consumer connected to a ProxyPullSupplier instance
invokes to receive an event from the channel in the form of an
Any, and the operation to disconnect the proxyPullSupplier from its
associated consumer.

Finally, the proxyPullSupplier interface defines the operation to
establish a connection over which the pull consumer receives
events from the channel.

ProxyPullSupplier::connect_any_ pull_consum

er()

void connect any pull consumer (
in CosEventComm: :PullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull consumer of events in the
form of anys and an event channel. Once established, the consumer
can receive events from the channel by invoking pull or try pull
on its associated proxyPullSupplier.

Orbix CORBA Programmer’s Reference: Java 309

Parameters

pull consumer A reference to an object supporting the
PullConsumer interface defined within the
CosEventComm module of the OMG event service.

Exceptions

AlreadyConnectedThe target object of this operation is already con-
nected to a pull consumer object.

310 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxyPu
shConsumer Interface

//IDL

interface ProxyPushConsumer :
ProxyConsumer,
CosEventComm: : PushConsumer

void connect any push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i
The proxyPushConsumer interface supports connections to the chan-
nel by suppliers that push events to the channel as anys.

The proxyPushConsumer extends the OMG event service push con-

sumer interface by supporting event filtering and the configuration
of various QoS properties. This interface enables OMG event ser-

vice style untyped event suppliers to take advantage of these new
features offered by the notification service.

Through inheritance of the proxyConsumer interface, the
ProxyPushConsumer interface supports administration of QoS prop-
erties, administration of a list of associated filter objects, and a
read-only attribute containing a reference to the SupplierAdmin
object that created it. In addition, this inheritance means that a
ProxyPushConsumer instance supports an operation that returns the
list of event types that consumers connected to the same channel
are interested in receiving, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.

The pProxyPushConsumer interface also inherits from the PushConsumer
interface defined within the CosEventComm module of the OMG event
service. This interface supports the push operation which the sup-
plier connected to a ProxyPushConsumer instance invokes to send an
event to the channel in the form of an any, and the operation to
disconnect the ProxyPushConsumer from its associated supplier.

Finally, the proxyPushConsumer interface defines the operation to
establish the connection over which the push supplier sends
events to the channel.

ProxyPushConsumer::connect_any_push_supp
lierQ)

void connect any push supplier (
in CosEventComm: :PushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of events in
the form of an any and an event channel. Once established, the
supplier can send events to the channel by invoking the push
operation supported by the target pProxyPushConsumer instance.

Orbix CORBA Programmer’s Reference: Java 311

Parameters

push supplierThe reference to an object supporting the PushSupplier
interface defined within the CosEventComm module.

Exceptions

AlreadyConnected The target object of this operation is already con-
nected to a push supplier object.

Exceptions

312 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxyPu
shSupplier Interface

//IDL

interface ProxyPushSupplier :
ProxySupplier,
CosEventComm: : PushSupplier

void connect any push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (CosEventChannel : : ConnectionAlreadyInactive) ;

void resume connection()

raises (CosEventChannelAdmin: : ConnectionAlreadyActive) ;
The proxyPushSupplier interface supports connections to the chan-
nel by consumers that receive events from the channel as untyped
Anys.

The proxyPushSupplier interface extends the OMG event service
push-style consumers of untyped events by supporting event fil-
tering and the configuration of QoS properties. Thus, this interface
enables OMG event service push-style untyped event consumers
to take advantage of the features offered by the notification ser-
vice.

Through inheritance of pProxySupplier, the ProxyPushSupplier inter-
face supports administration of QoS properties, administration of
a list of associated filter objects, mapping filters for event priority
and lifetime, and a read-only attribute containing a reference to
the consumerAdmin that created it. This inheritance also implies that
a ProxyPushSupplier instance supports an operation that returns
the list of event types that the proxy supplier can supply, and an
operation that returns information about the instance’s ability to
accept a QoS request.

The proxyPushSupplier interface also inherits from the pushSupplier
interface defined within CosEventComm. This interface supports the
operation to disconnect a proxyPushSupplier from its associated
consumer.

The proxyPushSupplier interface defines the operation to establish
the connection over which the push consumer can receive events
from the channel. The proxyPushSupplier interface also defines a
pair of operations that can suspend and resume the connection
between a pProxyPushSupplier and its associated PushConsumer.
During the time a connection is suspended, the ProxyPushSupplier
accumulates events destined for the consumer but does not trans-
mit them until the connection is resumed.

Orbix CORBA Programmer’s Reference: Java 313

Parameters

Exceptions

Exceptions

ProxyPushSupplier::connect_any_push_consu
mer()

void connect any push consumer (
in CosEventComm: : PushConsumer push consumer)
raises (CosEventChannelAdmin: : AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of events
in the form of anys, and the event channel. Once the connection is
established, the proxyPushSupplier sends events to its associated
consumer by invoking push on the consumer.

push consumer A reference to an object supporting the
PushConsumer interface defined within CosEventComm

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the proxyPushSupplier inter-
face may impose additional requirements on the
interface supported by a push consumer (for exam-
ple, it may be designed to invoke some operation
other than push in order to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

ProxyPushSupplier::suspend_connection()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the proxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The ProxyPushSupplier does
not forward events to its associated PushConsumer until

resume connection() is invoked. During this time, the
ProxyPushSupplier continues to queue events destined for the
PushConsumer; however, events that time out prior to resumption of
the connection are discarded. Upon resumption of the connection,
all queued events are forwarded to the PushConsumer.

The ConnectionAlreadyInactive exception is raised if the connection
is currently in a suspended state.

ProxyPushSupplier::resume_connection()

void resume connection ()
raises (ConnectionAlreadyActive) ;

Causes the proxyPushSupplier interface to resume sending events
to the pushConsumer instance connected to it, including those events
that have been queued while the connection was suspended and
have not yet timed out.

314 Orbix CORBA Programmer’s Reference: Java

Exceptions

ConnectionAlreadyActiveThe connection is not in a suspended state.

Orbix CORBA Programmer’s Reference: Java 315

316 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::ProxySu
pplier Interface

//IDL

interface ProxySupplier :
CosNotification: :QoSAdmin,
CosNotifyFilter: :FilterAdmin

readonly attribute ConsumerAdmin MyAdmin;

readonly attribute ProxyType MyType;

attribute CosNotifyFilter::MappingFilter priority filter;
attribute CosNotifyFilter::MappingFilter lifetime filter;

CosNotification: :EventTypeSeq obtain offered types(
in ObtainInfoMode mode) ;

void validate event gos (
in CosNotification::QoSProperties required gos,
out CosNotification::NamedPropertyRangeSeq
available gos)
raises (CosNotification: :UnsupportedQoS) ;

i

The proxySupplier interface is an abstract interface that is inher-
ited by the different proxy suppliers that can be instantiated within
an event channel. It encapsulates the behaviors common to all
notification service proxy suppliers. In particular, the
ProxySupplier interface inherits the gosadmin interface defined
within the CosNotification module, and the Filteradmin interface
defined within the cosNotifyFilter module. The former inheritance
enables proxy suppliers to administer a list of associated QoS
properties. The latter inheritance enables proxy suppliers to
administer a list of associated filter objects.

Locally, the proxySupplier interface defines a read-only attribute

that contains a reference to the Consumeradmin object that created
it. In addition, the proxysupplier interface defines attributes that
associate two mapping filter objects with each proxy supplier, one
for priority and one for lifetime. For more information on mapping
filters refer to the CORBA Notification Service Guide.

Lastly, the proxySupplier interface defines an operation to return
the list of event types that a given proxy supplier can forward to
its associated consumer, and an operation to determine which
QoS properties can be set on a per-event basis.

ProxySupplier::priority_filter

attribute CosNotifyFilter::MappingFilter priority filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible priority setting for the event.

Orbix CORBA Programmer’s Reference: Java 317

Upon receipt of an event by a proxy supplier object whose
priority filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then applies its encapsulated
constraints to the event.

If the match operation returns TRUE, the proxy supplier changes the
events priority to the value specified in the constraint-value pair
that matched the event.

If the match operation returns FALSE, the proxy supplier checks if
the events priority property is already set. If so, the filter does
nothing. If the priority property is not set, the filter sets the prior-
ity property to its default value.

ProxySupplier::lifetime_filter

attribute CosNotifyFilter::MappingFilter lifetime filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible lifetime setting for the event.

Upon receipt of each event by a proxy supplier object whose
lifetime filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then proceeds to apply its
encapsulated constraints to the event.

If the match operation returns TRUE, the proxy supplier changes the
events lifetime to the value specified in the constraint-value pair
that matched the event.

If the match operation returns FALSE, the proxy supplier checks if
the events lifetime property is already set. If so, the filter does
nothing. If the lifetime property is not set, the filter sets the life-
time property to its default value.

ProxySupplier::obtain_offered_types()

CosNotification: :EventTypeSeq obtain offered types (
in ObtainInfoMode mode) ;

Returns a list names of event types that the target proxy supplier
can forward to its associated consumer.

This mechanism relies on event suppliers keeping the channel
informed of the types of events they plan to supply by invoking
the offer change operation on their associated proxy consumer
objects. The proxy consumers automatically share the information
about supplied event types with the proxy suppliers associated
with the channel. This enables consumers to discover the types of
events that can be supplied to them by the channel by invoking
the obtain offered types operation on their associated proxy sup-
plier.

318 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

Exceptions

mode Specifies how to notify consumers of changes to the
publication list.

ProxySupplier::validate _event_qgos()

void validate event gos (
in CosNotification::QoSProperties required dos,
out CosNotification::NamedPropertyRangeSeq available gos)
raises (CosNotification: :UnsupportedQoS) ;

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

required gos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event

Note:

The QoS property settings contained in the optional
header fields of a structured event may differ from
those that are configured on a given proxy object.

available gosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property
whose setting is supported by the target object on a
per-event basis. Each element also includes the range
of values that are acceptable for each such property.

UnsupportedQos Raised if any of the requested settings cannot be
honored by the target object. This exception contains
as data a sequence of data structures, each of which
identifies the name of a QoS property in the input list
whose requested setting could not be satisfied, along
with an error code and a range of settings for the
property that could be satisfied.

Orbix CORBA Programmer’s Reference: Java 319

320 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Sequenc
eProxyPullConsumer Interface

//IDL

interface SequenceProxyPullConsumer :
ProxyConsumer,
CosNotifyComm: : SequencePullConsumer

void connect sequence pull supplier (
in CosNotifyComm: : SequencePullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

}i

The sequenceProxyPullConsumer interface supports connections to
the channel by suppliers who make sequences of structured
events available to the channel using the pull model.

Through inheritance of proxyConsumer, the SequenceProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin that created
it. This inheritance also implies that a SequenceProxyPullConsumer
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPullConsumer interface also inherits from the
SequencePul lConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation to close the connection
from the supplier to the SequenceProxyPullConsumer. Since the
SequencePullConsumer interface inherits from NotifyPublish, a sup-
plier can inform its associated SequenceProxyPullConsumer When-
ever the list of event types it plans to supply to the channel
changes.

The sequenceProxyPullConsumer interface also defines a method to
establish a connection between the supplier and an event channel.

SequenceProxyPullConsumer::connect_sequen
ce_pull_supplier()

void connect sequence pull supplier (
in CosNotifyComm: :SequencePullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of sequences
of structured events and the event channel. Once the connection is
established, the proxy can receive events from the supplier by
invoking pull structured events OF try pull structured events ON
the supplier (whether the proxy invokes pull structured events Or
try pull structured events, and the frequency with which it per-
forms such invocations, is a detail specific to the implementation of
the channel).

Orbix CORBA Programmer’s Reference: Java 321

Parameters

pull supplier A reference to an object supporting the
SequencePullSupplier interface defined within

CosNotifyComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
SequenceProxyPullConsumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull structured events Or
try pull structured events in order to receive
events). If the pull supplier being connected does
not meet those requirements, this operation raises
the TypeError exception.

322 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Sequenc
eProxyPushConsumer Interface

//IDL

interface SequenceProxyPushConsumer :
ProxyConsumer,
CosNotifyComm: : SequencePushConsumer

void connect sequence push supplier (
in CosNotifyComm: : SequencePushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i

The sequenceProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as
sequences of structured events.

Through inheritance of the proxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the supplierAdmin object that created it. In addition,
this inheritance means that a sequenceProxyPushConsumer instance
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of sequences of structured events to push them to a sequen-
ceProxyPushConsumer, and also the operation to close down the con-
nection from the supplier to the sequenceProxyPushConsumer. Since
the sequencePushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform its associated SequenceProxyPush-
consumer When the list of event types it supplies to the channel
changes.

Lastly, the sequenceProxyPushConsumer interface defines a method
to establish a connection between a supplier and an event chan-
nel.

SequenceProxyPushConsumer::connect_seque
nce_push_supplier()
void connect sequence push supplier (

in CosNotifyComm: : SequencePushSupplier push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of sequenc-
es of structured events and an event channel. Once the connection
is established, the supplier can send events to the channel by
invoking push_structured events On its associated
SequenceProxyPushConsumer.

Orbix CORBA Programmer’s Reference: Java 323

Parameters

push supplier A reference to an object supporting the
SequencePushSupplier interface defined within the

CosNotifyComm module.

Exceptions

AlreadyConnectedThe proxy is already connected to a push supplier
object.

324 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Sequenc
eProxyPullSupplier Interface

//IDL

interface SequenceProxyPullSupplier :
ProxySupplier,
CosNotifyComm: : SequencePullSupplier

void connect sequence pull consumer (
in CosNotifyComm: : SequencePullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

i

The sequenceProxyPullSupplier interface supports connections to
the channel by consumers who pull sequences of structured
events from an event channel.

Through inheritance of the ProxySupplier interface, the Sequen-
ceProxyPullSupplier interface supports administration of QoS
properties, administration of a list of associated filter objects, and
a read-only attribute containing a reference to the ConsumerAdmin
object that created it. In addition, this inheritance implies that a
SequenceProxyPullSupplier instance supports an operation that
returns the list of event types that the proxy supplier can supply,
and an operation that returns information about the instance’s
ability to accept a QoS request.

The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in CosNotifyComm. This inter-
face supports the operations enabling a consumer of sequences of
structured events to pull them from the SequenceProxyPullSup-
plier, and also the operation to close the connection from the
consumer to its associated SequenceProxyPullSupplier. Since the
SequencePullSupplier interface inherits from the NotifySubscribe
interface, a sequenceProxyPullSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.

The SequenceProxyPullSupplier interface also defines a method to
establish a connection between the consumer and an event chan-
nel.

SequenceProxyPullSupplier::
connect_sequence_pull_consumer()
void connect sequence pull consumer (

in CosNotifyComm: : SequencePullConsumer pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull-style consumer of sequenc-
es of structured events and the event channel. Once the connection
is established, the consumer can proceed to receive events from
the channel by invoking pull structured events Or

try pull structured events On its associated
SequenceProxyPullSupplier.

Orbix CORBA Programmer’s Reference: Java 325

Parameters

pull consumer A reference to an object supporting the
SequencePullConsumer interface defined in

CosNotifyComm.

Exceptions

AlreadyConnectedThe proxy is already connected to a pull consumer.

326 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Sequenc
eProxyPushSupplier Interface

//IDL

interface SequenceProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : SequencePushSupplier

{

void connect sequence push consumer (
in CosNotifyComm: : SequencePushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (ConnectionAlreadyInactive) ;

void resume connection()
raises (ConnectionAlreadyActive) ;

}i

The sequenceProxyPushSupplier interface supports connections to
the channel by consumers that receive sequences of structured
events from the channel.

Through inheritance of proxySupplier, the SequenceProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a SequenceProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.

The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in CosNotifyComm. This inter-
face supports the operation to close the connection from the con-
sumer to the SequenceProxyPushSupplier. Since the
SequencePushSupplier interface inherits from the NotifySubscribe
interface, a sequenceProxyPushSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.

Lastly, the sequenceProxyPushSupplier interface defines the opera-
tion to establish the connection over which the push consumer
receives events from the channel. The SequenceProxyPushSupplier
interface also defines a pair of operations to suspend and resume
the connection between a SequenceProxyPushSupplier instance and
its associated SequencePushConsumer. While a connection is sus-
pended, the SequenceProxyPushSupplier accumulates events des-
tined for the consumer but does not transmit them until the
connection is resumed.

Orbix CORBA Programmer’s Reference: Java 327

SequenceProxyPushSupplier::connect_sequen
ce_push_consumer()

void connect sequence push consumer (
in CosNotifyComm: : SequencePushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of se-
quences of structured events and the event channel. Once the
connection is established, the SequenceProxyPushSupplier sends
events to its associated consumer by invoking push struc-
tured events.

Parameters

push consumer A reference to a SequencePushConsumer.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
SequenceProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured events in order to transmit
events). If the push consumer being connected
does not meet those requirements, this operation
raises the TypeError exception.

SequenceProxyPushSupplier::suspend_connec
tion()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the sequenceProxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The
StructuredProxyPushSupplier does not forward events to its
SequencePushConsumer UNtil resume connection() is invoked. During
this time, the SequenceProxyPushSupplier continues to queue events
destined for the SequencePushConsumer; however, events that time
out prior to resumption of the connection are discarded. Upon
resumption of the connection, all queued events are forwarded to
the SequencePushConsumer.

Exceptions

ConnectionAlreadyInactiveThe connection is already suspended.

SequenceProxyPushSupplier::resume_connect
ion()

void resume connection ()
raises (ConnectionAlreadyActive) ;

328 Orbix CORBA Programmer’s Reference: Java

Causes the sequenceProxyPushSupplier to resume sending events to
the SequencePushConsumer instance connected to it, including those
that have been queued while the connection was suspended and
have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not suspended.

Orbix CORBA Programmer’s Reference: Java 329

330 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Structur
edProxyPullConsumer Interface

//IDL

interface StructuredProxyPullConsumer :
ProxyConsumer,
CosNotifyComm: : StructuredPullConsumer

void connect structured pull supplier (
in CosNotifyComm: : StructuredPullSupplier
pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

}i

The structuredProxyPullConsumer interface supports connections to
the channel by suppliers that make structured events available to
the channel using the pull model.

Through inheritance of proxyConsumer, the StructuredpProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. This inheritance also implies that a StructuredProxy-
PullConsumer instance supports an operation that returns the list of
event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.

The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in CosNotifyComm. This
interface supports the operation to close the connection from the
supplier to the structuredProxyPullConsumer. Since the
StructuredPullConsumer interface inherits from NotifyPublish, a
supplier can inform the StructuredProxyPullConsumer to which it is
connected whenever the list of event types it plans to supply to
the channel changes.

Lastly, the structuredProxyPullConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPullConsumer::connect_struct
ured_pull_supplier()

void connect structured pull supplier (
in CosNotifyComm: :StructuredPullSupplier pull supplier)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a pull-style supplier of structured
events and the event channel. Once the connection is established,
the proxy can receive events from the supplier by invoking

pull structured event Or try pull structured event on the supplier
(whether the proxy invokes pull structured event Or

try pull structured event, and the frequency with which it per-

Orbix CORBA Programmer’s Reference: Java 331

forms such invocations, is a detail specific to the implementation of
the channel).

Parameters
pull supplier A reference to an object supporting the

StructuredPullSupplier interface defined within
CosNotifyComm.

Exceptions

AlreadyConnectedRaised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
StructuredProxyPul 1Consumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull structured event Or try pull structured event
in order to receive events). If the pull supplier
being connected does not meet those require-
ments, this operation raises the TypeError excep-
tion.

332 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Structur
edProxyPullSupplier Interface

//IDL

interface StructuredProxyPullSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPullSupplier

void connect structured pull consumer (
in CosNotifyComm: : StructuredPullConsumer
pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;
}i
The structuredProxyPullSupplier interface supports connections to
the channel by consumers that pull structured events from the
channel.

Through inheritance of proxySupplier, the StructuredpProxyPullSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin object that
created it. In addition, this inheritance means that a Structured-
ProxyPullSupplier instance supports an operation that returns the
list of event types that the proxy supplier can supply, and an oper-
ation that returns information about the instance’s ability to
accept a QoS request.

The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in CosNotifyComm. This
interface supports the operations enabling a consumer of struc-
tured events to pull them from a StructuredProxyPullSupplier, and
the operation to close the connection from the consumer to the
StructuredProxyPullSupplier. Since the StructuredpPullSupplier
interface inherits from NotifySubscribe, a StructuredProxyPullSup-
plier can be notified whenever the list of event types that its
associated consumer is interested in receiving changes.

Lastly, the structuredProxyPullSupplier interface defines a method
to establish a connection between the consumer and an event
channel.

StructuredProxyPullSupplier::connect_structur
ed_pull_consumer()

void connect structured pull consumer (
in CosNotifyComm: : StructuredPullSupplier
pull consumer)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a pull consumer of structured
events and the event channel. Once established, the consumer can
receive events from the channel by invoking pull structured event
or try pull structured event On its associated
StructuredProxyPullSupplier.

Orbix CORBA Programmer’s Reference: Java 333

Parameters

pull consumer A reference to an object supporting the
StructuredpPullSupplier interface defined in

CosNotifyComm.

Exceptions

AlreadyConnectedThe proxy is already connected to a pull consumer.

334 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Structur
edProxyPushConsumer Interface

//IDL

interface StructuredProxyPushConsumer :
ProxyConsumer,
CosNotifyComm: : StructuredPushConsumer

void connect structured push supplier (
in CosNotifyComm: : StructuredPushSupplier
push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

}i

The structuredProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as struc-
tured events.

Through inheritance of the proxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the supplierAdmin object that created it. In addition,
this inheritance means that a structuredProxyPushConsumer
instance supports an operation that returns the list of event types
that consumers connected to the same channel are interested in
receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.

The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of structured events to push them to the structuredProxyPushConu-
mer, and also an operation to close down the connection from the
supplier to the structuredProxyPushConsumer. Since the
StructuredPushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform the StructuredProxyPushConsumer to
which it is connected whenever the list of event types it plans to
supply to the channel changes.

Lastly, the structuredProxyPushConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPushConsumer::connect_struc
tured_push_supplier()

void connect structured push supplier (
in CosNotifyComm: : StructuredPushSupplier
push supplier)
raises (CosEventChannelAdmin: :AlreadyConnected) ;

Establishes a connection between a push-style supplier of struc-
tured events and the event channel. Once the connection is estab-
lished, the supplier can send events to the channel by invoking
push_structured event On its associated
StructuredProxyPushConsumer instance.

Orbix CORBA Programmer’s Reference: Java 335

Parameters

push supplierA reference to an object supporting the
StructuredPushSupplier interface defined within the

CosNotifyComm module.

Exceptions

AlreadyConnectedThe proxy object is already connected to a push
supplier object.

336 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Structur
edProxyPushSupplier Interface

//IDL

interface StructuredProxyPushSupplier :
ProxySupplier,
CosNotifyComm: : StructuredPushSupplier

void connect structured push consumer (
in CosNotifyComm: : StructuredPushConsumer
push_consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

void suspend connection/()
raises (ConnectionAlreadyInactive) ;

void resume connection()
raises (ConnectionAlreadyActive) ;

}i

The structuredProxyPushSupplier interface supports connections to
the channel by consumers that receive structured events from the
channel.

Through inheritance of proxySupplier, the structuredpProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a StructuredProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.

The structuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in CosNotifyComm. This
interface supports the operation that to close the connection from
the consumer to the structuredProxyPushSupplier. Since
StructuredPushSupplier inherits from NotifySubscribe, a Struc-
turedProxyPushSupplier can be notified whenever the list of event
types that its associated consumer is interested in receiving
changes.

Lastly, the structuredProxyPushSupplier interface defines the oper-
ation to establish the connection over which the push consumer
can receive events from the channel. The structuredProxyPushSup-
plier interface also defines a pair of operations to suspend and
resume the connection between a structuredProxyPushSupplier
and its associated StructuredPushConsumer. During the time such a
connection is suspended, the structuredProxyPushSupplier accu-
mulates events destined for the consumer but does not transmit
them until the connection is resumed.

Orbix CORBA Programmer’s Reference: Java 337

Parameters

Exceptions

Exceptions

StructuredProxyPushSupplier::connect_struct
ured_push_consumer()

void connect structured push consumer (
in CosNotifyComm: : StructuredPushConsumer push consumer)
raises (CosEventChannelAdmin: :AlreadyConnected,
CosEventChannelAdmin: : TypeError) ;

Establishes a connection between a push-style consumer of struc-
tured events and the event channel. Once the connection is estab-
lished, the structuredProxyPushSupplier sends events to the
consumer by invoking push structured event.

push consumer A reference to an object supporting the
StructuredPushConsumer interface defined within
CosNotifyComm

AlreadyConnectedRaised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
StructuredProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured event to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

StructuredProxyPushSupplier::suspend_conne
ction()

void suspend connection()
raises (ConnectionAlreadyInactive) ;

Causes the structuredProxyPushSupplier to stop sending events to
the PushConsumer connected to it. The StructuredProxyPushSupplier
does not forward events to its StructuredPushConsumer until

resume connection() is invoked. During this time, the
StructuredProxyPushSupplier queues events destined for the
StructuredPushConsumer; however, events that time out prior to
resumption of the connection are discarded. Upon resumption of
the connection, all queued events are forwarded to the
StructuredPushConsumer.

ConnectionAlreadyInactiveThe connection is already suspended.

StructuredProxyPushSupplier::resume_connec
tion()

void resume connection ()

338 Orbix CORBA Programmer’s Reference: Java

raises (ConnectionAlreadyActive) ;

Causes causes the StructuredproxyPushSupplier to resume sending
events to the StructuredPushConsumer connected to it, including
those that have been queued while the connection was suspended
and have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not currently suspended.

Orbix CORBA Programmer’s Reference: Java 339

340 Orbix CORBA Programmer’s Reference: Java

CosNotifyChannelAdmin::Supplier
Admin Interface

//IDL

interface SupplierAdmin :
CosNotification: :QoSAdmin,
CosNotifyComm: :NotifyPublish,
CosNotifyFilter: :FilterAdmin,
CosEventChannelAdmin: : SupplierAdmin

readonly attribute AdminID MyID;
readonly attribute EventChannel MyChannel;

readonly attribute InterFilterGroupOperator MyOperator;

readonly attribute ProxyIDSeq pull consumers;
readonly attribute ProxyIDSeq push consumers;

ProxyConsumer get proxy consumer (in ProxyID proxy id)
raises (ProxyNotFound) ;

ProxyConsumer obtain notification pull consumer (
in ClientType ctype,

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxyConsumer obtain notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

ProxyConsumer obtain txn notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

void destroy () ;

i

The supplierAdmin interface defines the behavior of objects that
create and manage lists of proxy consumers within an event chan-
nel. A event channel can have any number of SupplierAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy consumers that share a common
set of QoS property settings, and a common set of filters. This fea-
ture enables clients to group proxy consumer objects within a
channel into groupings that each support a set of suppliers with a
common set of QoS requirements, and that make event forward-
ing decisions using a common set of filters.

The SupplierAdmin interface inherits Qosadmin. This enables each
SupplierAdmin to manage a set of QoS property settings. These
QoS property settings are assigned as the default QoS property
settings for any proxy consumer created by a SupplierAdmin.

Orbix CORBA Programmer’s Reference: Java 341

The SupplierAdmin interface inherits from the FilterAdmin interface
defined in CosNotifyFilter, enabling each SupplierAdmin to main-
tain a list of filters. These filters encapsulate subscriptions that
apply to all proxy consumer objects that have been created by a
given SupplierAdmin instance.

The SupplierAdmin interface also inherits from the NotifyPublish
interface defined in CosNotifyComm. This inheritance enables a sup-
plierAdmin to be the target of an offer change request made by a
supplier, and for the change in event types being offered to be
shared by all proxy consumer that were created by the target Sup-
plieradmin. This optimizes the notification of a group of proxy
consumers that have been created by the same SupplierAdmin of
changes to the types of events being offered by suppliers.

The SupplierAdmin interface also inherits from
CosEventChannelAdmin: : SupplierAdmin. This inheritance enables cli-
ents to use the supplierAdmin interface to create pure OMG event
service style proxy consumer objects. Proxy consumer objects
created in this manner do not support configuration of QoS prop-
erties, and do not have associated filters. Proxy consumer objects
created through the inherited CosEventChannelAdmin: : SupplierAdmin
interface do not have unique identifiers associated with them,
whereas proxy consumers created by invoking the operations sup-
ported by the supplierAdmin interface do.

The supplierAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel that created a given
SupplierAdmin. The SupplierAdmin interface also supports a
read-only attribute that contains a numeric identifier that is
assigned to a supplierAdmin the event channel that creates it. This
identifier is unique among all supplierAdmins created by a given
channel.

A supplierAdmin maintains a list of filters that are applied to all
proxy consumers it creates. Each proxy consumer also supports a
list of filters that apply only that proxy. When combining these two
lists during the evaluation of an event, either AND or OrR semantics
can be applied. The choice is determined by an input flag upon
creation of the supplieradmin, and the operator that is used for this
purpose by a given SupplierAdmin iS maintained in a read-only
attribute.

Each supplierAdmin assigns a unique numeric identifier to each
proxy consumer it maintains. The SupplierAdmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push consumers created by
a given SupplierAdmin. The SupplierAdmin interface also supports
an operation which, when provided with the unique identifier of a
proxy consumer, returns the object reference of that proxy con-
sumer object. Finally, the SupplierAdmin interface supports opera-
tions that can create the various styles of proxy consumers
supported by the event channel.

SupplierAdmin::MyID
readonly attribute AdminID MyID;

Maintains the unique identifier of the target SupplierAdmin. This ID
is assigned to it upon creation by the event channel.

342 Orbix CORBA Programmer’s Reference: Java

SupplierAdmin::MyChannel

readonly attribute EventChannel MyChannel;

Maintains an object reference to the event channel that created the
SupplierAdmin.

SupplierAdmin::MyOperator

readonly attribute InterFilterGroupOperator MyOperator;;

Maintains the information regarding whether AND or OrR Semantics
are used during the evaluation of events when combining the filters
associated with the target SupplierAadmin and those defined on a
given proxy consumer.

SupplierAdmin::pull_consumers

readonly attribute ProxyIDSeq pull consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each pull-style proxy consumer it has created.

SupplierAdmin::push_consumers

readonly attribute ProxyIDSeq push consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each push-style proxy consumer it has created.

SupplierAdmin::get_proxy_consumer()

ProxyConsumer get proxy consumer (in ProxyID proxy id)
raises (ProxyNotFound) ;

Returns an object reference to the proxy consumer whose unique
identifier was specified.

Parameters

proxy id The numeric identifier associated with one of the
proxy consumers created by the target
SupplierAdmin.

Exceptions

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy consumer created by the
target SupplierAdmin.

SupplierAdmin::obtain__notification_pull_cons
umer()

ProxyConsumer obtain notification pull consumer (
in ClientType ctype,

Orbix CORBA Programmer’s Reference: Java 343

out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates an instances of a pull-style proxy consumers and returns
an object reference to the new proxy.

Three varieties of pull-style proxy consumers are defined:

®* The proxyPullConsumer interface supports connections to pull
suppliers that send events as anys.

* The structuredProxyPullConsumer interface supports connec-
tions to pull suppliers that send structured events.

®* The SequenceProxyPullConsumer interface supports connections
to pull suppliers that send sequences of structured events.

The input parameter flag indicates which type of pull style proxy
to create.

The target SupplierAdmin creates the new pull-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy consumers it has created.

Parameters
ctype A flag indicating which style of pull-style proxy con-
sumer to create.
proxy id The unique identifier of the new proxy consumer.

Exceptions

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

SupplierAdmin::obtain_notification_push_cons
umer()

ProxyConsumer obtain notification push consumer (
in ClientType ctype,
out ProxyID proxy id)
raises (AdminLimitExceeded) ;

Creates an instance of a push-style proxy supplier and returns an
object reference to the new proxy.

Three varieties of push-style proxy consumer are defined:

®* The proxyPushConsumer interface supports connections to push
consumers that receive events as Anys.

* The structuredProxyPushConsumer interface supports connec-
tions to push consumers that receive structured events.

®* The SequenceProxyPushConsumer interface supports connections
to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.

344 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

The target supplierAdmin creates the new push-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy suppliers it has created.

ctype A flag that indicates the type of push-style proxy
consumer to create.

proxy_ id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

SupplierAdmin::destroy()
void destroy () ;

Iteratively destroys each proxy under the administration of the
target object, and finally destroys the target object itself. When
destroying each object, it frees any storage associated with the
object, and then invalidates the object's IOR.

Orbix CORBA Programmer’s Reference: Java 345

346 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm Module

CosNotifyComm specifies the following interfaces to instantiate noti-
fication service clients:

PushCongsumer PushSupplier
PullConsumer PullSupplier
StructuredPushConsumer StructuredPushSupplier
StructuredPullConsumer StructuredPullSupplier
SequencePushConsumer SequencePushSupplier
SequencePullConsumer SequencePullSupplier

The module also specifies the NotifyPublish and NotifySubscribe
interfaces to facilitate informing notification clients about subscrip-
tion and publication changes.

CosNotifyComm Exceptions

Note:

CosNotifyComm::InvalidEventType Exception

exception InvalidEventType{ CosNotification::EventType type };

Raised when the specified EventType is not syntactically correct. It
returns the name of the invalid event type.

The Orbix notification service does not throw this exception.

Orbix CORBA Programmer’s Reference: Java 347

348 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::NotifyPublish

Interface

Note:

Parameters

Exceptions

interface NotifyPublish {
void offer change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeqg removed)
raises (InvalidEventType) ;

}i

The NotifyPublish interface supports an operation that allows a
supplier to announce, or publish, the names of the event types it
supplies. It is an abstract interface which is inherited by all notifi-
cation service consumer interfaces, and it enables suppliers to
inform consumers supporting this interface of the types of events
they intend to supply.

NotifyPublish::offer_change()

void offer change (
in CosNotification: :EventTypeSeqg added,
in CosNotification: :EventTypeSeg removed)
raises (InvalidEventType) ;

Allows a supplier of notifications to announce, or publish, the names
of the types of events it supplies.

Each event type name consists of two components: the name of
the domain in which the event type has meaning, and the name of
the actual event type. Either component of a type name may
specify a complete domain/event type name, a domain/event type
name containing the wildcard ‘*’ character, or the special event
type name “%ALL".

added A sequence of event type names specifying those
event types which the event supplier plans to sup-
ply.

removed Sequence of event type names specifying those
event types which the client no longer plans to sup-
ply.

InvalidEventType One of the event type names supplied in either
input parameter is syntactically invalid. In this
case, the invalid name is returned in the type field
of the exception.

Orbix CORBA Programmer’s Reference: Java 349

350 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::NotifySubscribe

Interface

Note:

Parameters

Exceptions

interface NotifySubscribe {
void subscription change (
in CosNotification::EventTypeSeq added,
in CosNotification::EventTypeSeqg removed)
raises (InvalidEventType) ;

}i

The NotifySubscribe interface supports an operation allowing a
consumer to inform suppliers of the event types it wishes to
receive. It is an abstract interface that is inherited by all notifica-
tion service supplier interfaces. Its main purpose is to enable con-
sumers to inform suppliers of the event types they are interested
in, ultimately enabling the suppliers to avoid supplying events that
are not of interest to any consumer.

NotifySubscribe::subscription_change()

void subscription change (
in CosNotification: :EventTypeSeqg added,
in CosNotification: :EventTypeSeqg removed)
raises (InvalidEventType) ;

Allows a consumer to inform suppliers of the event types it wishes
to receive.

Each event type name is comprised of two components: the name
of the domain in which the event type has meaning, and the name
of the actual event type. Also note that either component of a type
name may specify a complete domain/event type name, a
domain/event type name containing the wildcard ‘*’ character, or
the special event type name “%ALL".

added A sequence of event type names specifying the
event types the consumer wants to add to its sub-
scription list.

removed A sequence of event type names specifying the
event types the consumer wants to remove from its
subscription list.

InvalidEventType One of the event type names supplied in either
input parameter is syntactically invalid. The
invalid name is returned in the type field of the
exception.

Orbix CORBA Programmer’s Reference: Java 351

352 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::PullConsumer

Interface

Note:

interface PullConsumer :

NotifyPublish,

CosEventComm: : PullConsumer

{

}i

The pullConsumer interface inherits all the operations of
CosEventComm: : PullConsumer. In addition, the PullConsumer interface
inherits the NotifyPublish interface described above, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

An object supporting pullConsumer can receive all events that were
supplied to its associated channel. How events supplied to the
channel in other forms are internally mapped for delivery to a
PullConsumer is summarized in the CORBA Notification Service
Guide.

Orbix CORBA Programmer’s Reference: Java 353

354 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::PullSupplier

Interface

Note:

interface PullSupplier :
NotifySubscribe,
CosEventComm: : PullSupplier

{

}i

The pullsupplier interface inherits all the operations of
CosEventComm: : PullSupplier. In addition, the pullSupplier interface
inherits the NotifySubscribe interface described above, which
enables a consumer to inform an instance supporting this inter-
face whenever there is a change to the types of events it wishes to
receive.

An object supporting the pullsupplier interface can transmit
events that can potentially be received by any consumer
connected to the channel. How events supplied to the channel in
other forms are translated is summarized in the CORBA
Notification Service Guide

Orbix CORBA Programmer’s Reference: Java 355

356 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::PushConsumer

Interface

Note:

interface PushConsumer :

NotifyPublish,

CosEventComm: : PushConsumer

{

}i

The pushConsumer interface inherits all the operations of
CosEventComm: : PushConsumer. In addition, the PushConsumer interface
inherits the NotifyPublish interface described above, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

An object supporting pushConsumer can receive all events that were
supplied to its associated channel. How events supplied to the
channel in other forms are internally mapped for delivery to a
PushConsumer is summarized in the CORBA Notification Service
Guide.

Orbix CORBA Programmer’s Reference: Java 357

358 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::PushSupplier

Interface

Note:

interface PushSupplier :
NotifySubscribe,
CosEventComm: : PushSupplier

{

}i

The pushsupplier interface inherits all the operations of
CosEventComm: : PushSupplier. In addition, the pushSupplier interface
inherits the NotifySubscribe interface described above, which
enables a consumer to inform an instance supporting this inter-
face whenever there is a change to the types of events it wishes to
receive.

An object supporting the pushSupplier interface can transmit
events that can potentially be received by any consumer
connected to the channel. How events supplied to the channel in
other forms are translated is summarized in the CORBA
Notification Service Guide

Orbix CORBA Programmer’s Reference: Java 359

360 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::SequencePullCo
nsumer Interface

Note:

interface SequencePullConsumer : NotifyPublish {
void disconnect sequence pull consumer () ;

i

The SequencePullConsumer interface defines an operation to discon-
nect the pull consumer from its associated supplier. The
SequencePul lConsumer interface inherits NotifyPublish, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

An object supporting the SequencePullConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a sequence of
structured events. How events supplied to the channel in other
forms are internally mapped into a sequence of structured events
for delivery to a SequencePullConsumer is summarized in the CORBA
Notification Service Guide.

SequencePullConsumer::disconnect_sequence
__pull_consumer()

void disconnect sequence pull consumer() ;

Terminates a connection between the target SequencepPullConsumer
and its associated supplier. The target SequencePullConsumer releas-
es all resources allocated to support the connection, and disposes
of its own object reference.

Orbix CORBA Programmer’s Reference: Java 361

362 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::SequencePullSu
pplier Interface

Note:

Parameters

interface SequencePullSupplier : NotifySubscribe

{

CosNotification: :EventBatch pull structured events (
in long max number)
raises (CosEventComm: :Disconnected) ;

CosNotification: :StructuredEvent try pull structured events (
in long max number,
out boolean has_event)
raises (CosEventComm: :Disconnected) ;

void disconnect sequence pull supplier () ;

i

The SequencePullsupplier interface supports operations that
enable suppliers to transmit sequences of structured events using
the pull model. It also defines an operation to disconnect the pull
supplier from its associated consumer. The SequencePullSupplier
interface inherits NotifySubscribe, which enables a consumer to
inform an instance supporting this interface whenever there is a
change to the types of events it is interested in receiving.

An object supporting the sequencePullSupplier interface can
transmit events that can be received by any consumer connected
to the channel, including those which consume events in a form
other than a sequence of structured events. How events supplied
to the channel in the form of a sequence of structured events are
internally mapped into different forms for delivery to consumers
that receive events in a form other than the a sequence of
structured events is summarized in the CORBA Notification Service
Guide.

SequencePullSupplier::pull_structured_events

0O

CosNotification: :EventBatch pull structured events (
in long max number)
raises (CosEventComm: :Disconnected) ;

Blocks until a sequence of structured events is available for trans-
mission, at which time it returns the sequence containing events to
be delivered to its connected consumer proxy.

The amount of time the supplier packs events into the sequence
before transmitting it, along with the maximum size of any
sequence it transmits (regardless of the input parameter), are
controlled by QoS property settings as described in the CORBA
Notification Service Guide.

max_number The maximum length of the sequence returned.

Orbix CORBA Programmer’s Reference: Java 363

Exceptions

Parameters

Exceptions

Disconnected The operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.

SequencePullSupplier::try_ pull _structured_ev
ents()

CosNotification: :StructuredEvent try pull structured events (
in long max number,
out boolean has event)
raises (CosEventComm: :Disconnected) ;

Returns a sequence of a structured events that contains events
being delivered to its connected consumer, if such a sequence is
available for delivery at the time the operation was invoked:

* If an event sequence is available for delivery and is returned
as the result, the output parameter has event iS set to TRUE.

* If no event sequence is available to return upon invocation,
the operation returns immediately with the value of the output
parameter set to FALSE. In this case, the return value does not
contain a valid event sequence.

max_number The maximum length of the sequence returned.

has event An output parameter of type boolean that indicates
whether or not the return value actually contains a
sequence of events.

Disconnected This operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.

SequencePullSupplier::disconnect_sequence_p
ull_supplier()

void disconnect sequence pull supplier();

Terminates a connection between the target sequencePullSupplier
and its associated consumer. The target SequencePullSupplier re-
leases all resources allocated to support the connection, and dis-
poses of its own object reference.

364 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::SequencePushC
onsumer Interface

Note:

Parameters

interface SequencePushConsumer : NotifyPublish {
void push structured events(
in CosNotification::EventBatch notifications)
raises (CosEventComm: :Disconnected) ;
void disconnect sequence push consumer () ;

}i

The SequencePushConsumer interface supports an operation that
enables consumers to receive sequences of structured events
using the push model. It also defines an operation to disconnect
the push consumer from its associated supplier. The
SequencePushConsumer interface inherits NotifyPublish, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

An object supporting the sequencePushConsumer interface can
receive all events which are supplied to its associated channel,
including events supplied in a form other than a sequence of
structured events. How events supplied to the channel in other
forms are internally mapped into a sequence of structured events
for delivery to a SequencePushConsumer is summarized in the CORBA
Notification Service Guide.

SequencePushConsumer::push_structured_ev
ents()

void push structured events (
in CosNotification::EventBatch notifications)
raises (CosEventComm: :Disconnected) ;

Enables consumers to receive sequences of structured events by
the push model.

The maximum number of events that are transmitted within a sin-
gle invocation of this operation, along with the amount of time a
supplier of sequences of structured events packs individual events
into the sequence before invoking this operation, are controlled by
QoS property settings as described in the CORBA Notification Ser-
vice Guide.

notifications A parameter of type EventBatch as defined in the
CosNotification module. Upon invocation, this
parameter contains a sequence of structured
events being delivered to the consumer by its asso-
ciated supplier proxy.

Orbix CORBA Programmer’s Reference: Java 365

Exceptions

Disconnected The operation was invoked on a SequencePushConsumer
instance that is not currently connected to a supplier

proxy.

SequencePushConsumer::disconnect_sequenc
e_push_consumer()

void disconnect sequence push consumer() ;

Terminates a connection between the target sequencePushConsumer
and its associated supplier proxy. The target SequencePushConsumer
releases all resources allocated to support the connection, and
disposes of its own object reference.

366 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::SequencePushS
upplier Interface

Note:

interface SequencePushSupplier : NotifySubscribe

{
}i

The sequencePushSupplier interface defines an operation that to
disconnect the push supplier from its associated consumer proxy.
In addition, the SequencePushSupplier interface inherits
NotifySubscribe, which enables a consumer to inform an instance
supporting this interface whenever there is a change to the types
of events it is interested in receiving.

void disconnect sequence push supplier() ;

An object supporting the sSequencePushSupplier interface can
transmit events that can be received by any consumer connected
to the channel, including those which consume events in a form
other than a sequence of structured events. How events supplied
to the channel in the form of a sequence of structured events are
internally mapped into different forms for delivery to consumers
which receive events in a form other than a sequence of
structured events is summarized in the CORBA Notification Service
Guide.

SequencePushSupplier::disconnect_sequence__
push_supplier()
void disconnect sequence push supplier();

Terminates a connection between the target sequencePushSupplier
and its associated consumer. The target SequencePushSupplier re-
leases all resources allocated to support the connection, and dis-
poses of its own object reference.

Orbix CORBA Programmer’s Reference: Java 367

368 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::StructuredPullC
onsumer Interface

Note:

interface StructuredPullConsumer : NotifyPublish

{
}i

The structuredpPullConsumer defines an operation that can be
invoked to disconnect the pull consumer from its associated sup-
plier. In addition, the structuredpPullConsumer interface inherits the
NotifyPublish interface, which enables a supplier to inform an
instance supporting this interface whenever there is a change to
the types of events it intends to produce.

void disconnect structured pull consumer () ;

An object supporting the structuredpullConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a structured event.
How events supplied to the channel in other forms are internally
mapped into a structured event for delivery to a
StructuredPullConsumer iS summarized in the CORBA Notification
Service Guide.

StructuredPullConsumer::disconnect_structur
ed_pull_consumer()

void disconnect structured pull consumer () ;

Terminates a connection between the target
StructuredPullConsumer, and its associated supplier proxy. The tar-
get structuredPullConsumer releases all resources allocated to sup-
port the connection, and disposes of its own object reference.

Orbix CORBA Programmer’s Reference: Java 369

370 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::StructuredPullS
upplier Interface

Note:

Exceptions

interface StructuredPullSupplier : NotifySubscribe

{

CosNotification: :StructuredEvent pull structured event ()
raises (CosEventComm: : Disconnected) ;

CosNotification: :StructuredEvent try pull structured event (
out boolean has event)
raises (CosEventComm: :Disconnected) ;

void disconnect structured pull supplier() ;

}i

The structuredpullSupplier interface supports operations that
enable suppliers to transmit structured events by the pull model.
It also defines an operation to disconnect the pull supplier from its
associated consumer proxy. In addition, the
StructuredPullSupplier interface inherits the NotifySubscribe
interface, which enables a consumer to inform an instance sup-
porting this interface whenever there is a change to the types of
events it is interested in receiving.

An object supporting the structuredpullSupplier interface can
transmit events that can potentially be received by any consumer
connected to the channel, including those which consume events
in a form other than a structured event. How events supplied to
the channel in other forms are translated is summarized in the
CORBA Notification Service Guide

StructuredPullSupplier::pull_structured_event

0O

CosNotification: :StructuredEvent pull structured event ()
raises (CosEventComm: :Disconnected) ;

Blocks until an event is available for transmission, at which time it
returns an instance of a structured event containing the event being
delivered to its connected consumer proxy.

Disconnected The operation was invoked on a
StructuredPullSupplier that is not currently con-
nected to a consumer proxy.

StructuredPullSupplier::try_ pull_structured_e
vent()

CosNotification: :StructuredEvent try pull structured event (
out boolean has event)
raises (CosEventComm: : Disconnected) ;

Orbix CORBA Programmer’s Reference: Java 371

If an event is available for delivery at the time the operation was
invoked, the method returns a structured event that contains the
event being delivered to its connected consumer and the output
parameter of the operation is set to TRUE. If no event is available to
return upon invocation, the operation returns immediately with the
value of the output parameter set to FALSE. In this case, the return
value does not contain a valid event.

Parameters
has_event An output parameter of type boolean that indicates

whether or not the return value actually contains
an event.

Exceptions

Disconnected The operation was invoked on a
StructuredPullSupplier that is not currently con-
nected to a consumer proxy.

StructuredPullSupplier::disconnect_structured
__pull_supplier()
void disconnect structured pull supplier();

Terminates a connection between the target structuredpPullSupplier
and its associated consumer. The target structuredPullSupplier
releases all resources allocated to support the connection, and
disposes of its own object reference.

372 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::StructuredPush
Consumer Interface

interface StructuredPushConsumer : NotifyPublish {
void push structured event (
in CosNotification::StructuredEvent notification)
raises (CosEventComm: :Disconnected) ;
void disconnect structured push consumer () ;

}i

The structuredPushConsumer interface supports an operation
enabling consumers to receive structured events by the push
model. It also defines an operation to disconnect the push con-
sumer from its associated proxy supplier. In addition, the
StructuredPushConsumer interface inherits the NotifyPublish inter-
face described above, which enables a supplier to inform an
instance supporting this interface whenever there is a change to
the types of events it intends to produce.

Note: An object supporting the structuredPushConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a structured event.
How events supplied to the channel in other forms are internally
mapped into a structured event for delivery to a
StructuredPushConsumer is summarized in the CORBA Notification
Service Guide.

StructuredPushConsumer::push_structured_e
vent()

void push structured event (
in CosgNotification::StructuredEvent notification)
raises (CosEventComm: :Disconnected) ;

Enables consumers to receive structured events by the push model.
Parameters

notification A parameter of type Structuredivent as defined in
the CosNotification module. When the method
returns this parameter contains a structured event
being delivered to the consumer by its proxy sup-
plier.

Exceptions

Disconnected This operation was invoked on a
StructuredPushConsumer instance that is not currently
connected to a proxy supplier.

StructuredPushConsumer::disconnect_structur
ed_push_consumer()

void disconnect structured push consumer () ;

Orbix CORBA Programmer’s Reference: Java 373

Terminates a connection between the target structuredPushConsumer
and its associated proxy supplier. That the target
StructuredPushConsumer releases all resources allocated to support
the connection, and disposes of its own object reference.

374 Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::StructuredPush
Supplier Interface

Note:

interface StructuredPushSupplier : NotifySubscribe {
void disconnect structured push supplier() ;
}i

The structuredpPushSupplier interface supports the behavior of
objects that transmit structured events using push-style commu-
nication. It defines an operation that can be invoked to disconnect
the push supplier from its associated consumer proxy. In addition,
the structuredpPushSupplier interface inherits NotifySubscribe,
which enables a consumer to inform an instance supporting this
interface whenever there is a change to the types of events it is
interested in receiving.

An object supporting the structuredPushSupplier interface can
transmit events which can potentially be received by any
consumer connected to the channel, including those which
consume events in a form other than a structured event. How
events supplied to the channel are translated is summarized in the
CORBA Notification Service Guide.

StructuredPushSupplier::disconnect_structure
d_push_supplier()

void disconnect structured push supplier();

Terminates a connection between the target
StructuredPushSupplier, and its associated consumer. The target
StructuredPushSupplier releases all resources allocated to support
the connection, and disposes of its own object reference.

Orbix CORBA Programmer’s Reference: Java 375

376 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter Module

The cosNotifyFilterModule specifies the following interfaces to
support event filtering:

Filter

FilterFactory

MappingFilter

FilterAdmin

In addition to these interfaces the module specifies several data
types and exceptions related to event filtering.

CosNotifyFilter Data Types

CosNotifyFilter::ConstraintlD Data Type
typedef long ConstraintID;
Identifies a constraint.

CosNotifyFilter::ConstraintExp Data Structure

struct ConstraintExp

{

CosNotification: :EventTypeSeq event types;

string constraint expr;
}i
Contains a constraint expression and a list of events to check
against. The constraint expr member is a string that conforms to
the Trader constraint grammar. For more information on the con-
straint grammar, see the CORBA Notification Service Guide.

CosNotifyFilter::ContsraintiDSeq Data Type
typedef <ConstraintID> ConstraintIDSeq;

Contains a list of constraint ID.

CosNotifyFilter::ConstraintExpSeq Data Type
typedef sequence<ConstraintExp> ContsraintExpSeq;

Contains a list of constraint expressions.

CosNotifyFilter::Constraintinfo Data Structure

struct ConstraintInfo

{

ConstraintExp constraint expression;
ConstraintID constraint id;

}

Orbix CORBA Programmer’s Reference: Java 377

Specifies an instantiated constraint.

CosNotifyFilter::ConstraintinfoSeq Data Type

typedef sequence<ConstraintInfo> ConstraintInfoSeq;

Contains a list of instantiated constraints.

CosNotifyFilter::Filterl1D Data Type

typedef long FilterID;

Identifies an instantiated filter. It is unique to the object to which
it is attached.

CosNotifyFilter::FilterIDSeq Data Type

typedef sequence<FilterID> FilterIDSeq;
Contains a list of Filterlds.

CosNotifyFilter::MappingConstraintPair Data
Structure

struct MappingConstraintPair

{

ConstraintExp constraint expression;
any result to set;

}

Specifies a constraint expression and the value to set if the event
matches the constraint expression.

CosNotifyFilter::MappingConstraintPairSeq
Data Type

typedef sequence<MappingConstraintPair> MappingConstraintPairSeq

Contains a list of mapping filter constraint/value pairs.

CosNotifyFilter::MappingConstraintinfo Data
Structure

struct MappingConstraintInfo

{

ConstraintExp constraint expression;
ConstraintID constraint id;
any value;

}

Specifies a mapping constraint that has been instantiated.

378 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::MappingConstraintinfoSeq
Data Types

typedef sequence<MappingConstraintInfos>
MappingConstraintInfoSeq;

Contains a list of instantiated mapping filter constraint/value pairs.

CosNotifyFilter::CallbacklD Data Type

typedef long CallbackID;
Holds an identifier for a callback registered with attach callback.

CosNotifyFilter::CallbacklDSeq Data Type

typedef sequence<CallbackID> CallbackIDSeq;
Contains a list of callback IDs.

CosNotifyFilter Exceptions

Note:

CosNotifyFilter::UnsupportedFilterableData
Exception

exception UnsupportedFilterableData {};

Raised if the input parameter contains data that the match operation
is not designed to handle. For example, the filterable data contains
a field whose name corresponds to a standard event field that has
a numeric value, but the actual value associated with this field name
within the event is a string.

CosNotifyFilter::InvalidGrammar Exception

exception InvalidGrammar {};

Raised when creating a filter. If the string passed to the filter factory
specifies a grammar that is not supported, the factory will throw
InvalidGrammar.

Orbix notification service supports the EXTENDED TCL grammar.

CosNotifyFilter::InvalidConstraint Exception

exception InvalidConstraint {ConstraintExp constr};

Raised during the creation of constraints. If the string specifying
the constraintis syntactically incorrect, InvalidConstraint is thrown.
It returns the invalid constraint.

Orbix CORBA Programmer’s Reference: Java 379

CosNotifyFilter::ConstraintNotFound Exception

exception ConstraintNotFound {ConstraintID id};

Raised when a specified constraint ID cannot be resolved to a
constraint attached to the target filter object. It returns the ID that
cannot be resolved.

CosNotifyFilterFilter::CallbackNotFound
Exception
exception CallbackNotFound {};

Raised when the specified callback ID cannot be resolved to a
callback object attached to the target filter object.

CosNotifyFilter::InvalidValue Exception

exception Invalidvalue {ConstraintExp constr; any value};

Raised when the type code of the value associated with the mapping
filter constraint does not match the value type of the target mapping
filter object.

CosNotifyFilter::FilterNotFound Exception

exception FilterNotFound {};

Raised if the specified filter ID cannot be resolved to a filter
associated with the target object.

380 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::Filter Interface

interface Filter

{

readonly attribute string constraint grammar;

ConstraintInfoSeq add constraints(
in ConstraintExpSeq constraint list)
raises (InvalidConstraint) ;

void modify constraints (
in ConstraintIDSeq del list,
in ConstraintInfoSeq modify list)
raises (InvalidConstraint, ConstraintNotFound) ;

ConstraintInfoSeq get constraints (
in ConstraintIDSeq id list)
raises (ConstraintNotFound) ;

ConstraintInfoSeq get all constraints();

void remove all constraints() ;

void destroy() ;

boolean match(in any filterable data)
raises (UnsupportedFilterableData) ;

boolean match structured(
in CosNotification::StructuredEvent filterable data)
raises (UnsupportedFilterableData) ;

boolean match typed (
in CosTrading::PropertySeq filterable data)
raises (UnsupportedFilterableData) ;

CallbackID attach callback (
in CosNotifyComm: :NotifySubscribe callback) ;

void detach callback (in CallbackID callback)
raises (CallbackNotFound) ;

CallbackIDSeq get callbacks() ;
}; // Filter
The rilter interface defines the behaviors supported by filter
objects. These objects encapsulate constraints that are used by
the proxies and admins associated with an event channel. The
proxies and admins use the constraint definitions to determine
which events are forwarded, and which are discarded.

For more information on filters and the constraint language, see
the CORBA Notification Service Guide.

The rFilter interface supports operations to manage the con-
straints associated with a Filter instance, along with a read-only
attribute to identify the constraint grammar used to evaluate the
constraints associated with the instance. In addition, the Filter
interface supports three variants of the match operation which are

Orbix CORBA Programmer’s Reference: Java 381

Note:

invoked by a proxy object upon receipt of an event—the specific
variant selected depends upon whether the event is received as an
Any or a structured event—to evaluate the object using the con-
straints associated with the filter object.

The Filter interface also supports operations enabling a client to
associate any number of callbacks with the target filter object. The
callbacks are notified each time there is a change to the list of
event types the filer forwards through the event channel. Opera-
tions are also defined to support administration of this callback list
by unique identifier.

Filter::constraint_grammar
readonly attribute string constraint grammar;

constraint grammar is a readonly attribute specifiying the particular
grammar used to parse the constraint expressions encapsulated by
the target filter. The value of this attribute is set upon creation of
a filter object.

A filter’s constraints must be expressed using a particular con-
straint grammar because its member match operations must be
able to parse the constraints to determine whether or not a partic-
ular event satisfies one of them.

Orbix supports an implementation of the Filter interface which
supports the default constraint grammar described in the CORBA
Notification Service Guide. The constraint grammar attribute is set
to the value EXTENDED TCL when the target filter object supports
this default grammar.

Other implementations can provide additional implementations of
the Filter interface that support different constraint grammars,
and thus the constraint grammar attribute must be set to a differ-
ent value upon creation of such a filter object.

Filter::add_constraints()

ConstraintInfoSeq add constraints (
in ConstraintExpSeq constraint list)
raises (InvalidConstraint) ;

Associates one or more new constraints with the target filter object.
Upon successful processing of all input constraint expressions,
add constraints() returns a ConstraintInfoSeq containing all of the
constraints and the identifiers assigned to them by the filter.

If one or more of the constraints passed into add constraints() is
invalid, none of the constraints are added to the target filter.

Once add constraints() is invoked by a client, the target filter is
temporarily disabled from usage by any proxy or admin it may be
associated with. Upon completion of the operation, the target filter
is re-enabled and can once again be used by associated proxies
and admins to make event forwarding decisions.

382 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Note:

Parameters

Exceptions

constraint list A sequence of constraint data struc-
tures using the constraint grammar
supported by the target object.

If any of the constraints in the input sequence is not a valid
expression within the supported constraint grammar, the
InvalidConstraint exception is raised. This exception contains as
data the specific constraint expression that was determined to be
invalid.

Filter::modify_constraints()

void modify constraints (
in ConstraintIDSeq del list,
in ConstraintInfoSeq modify list)
raises (InvalidConstraint, ConstraintNotFound) ;

Modifies the constraints associated with the target filter object. This
operation can be used both to remove constraints currently associ-
ated with the target filter, and to modify the constraint expressions
of constraints currently associated with the filter.

If an exception is raised during the operation, no changes are made
to the filter’s constraints.

Once modify constraints is invoked by a client, the target filter is
temporarily disabled from use by any proxy or admin. Upon
completion of the operation, the target filter is re-enabled and can
once again be used by associated proxies and admins to make
event forwarding decisions.

del list A sequence of numeric identifiers each of which
should be associated with one of the constraints
currently encapsulated by the target filter object.

modify list A sequence containing constraint structures and an
associated numeric value. The numeric value in
each element of the sequence is the unique identi-
fier of one of the constraints encapsulated by the
target filter.

ConstraintNotFound Raised if any of the numeric values in either
input sequences does not correspond to the
unique identifier associated with any constraint
encapsulated by the target filter. This exception
contains the specific identifier that did not corre-
spond to the identifier of some constraint encap-
sulated by the target filter.

Orbix CORBA Programmer’s Reference: Java 383

Parameters

Exceptions

InvalidConstraint Raised if any of the constraint expressions sup-
plied in the second input sequence is not a valid
expression in terms of the constraint grammar
supported by the target object. This exception
contains the specific constraint that was deter-
mined to be invalid.

Filter::get_constraints()

ConstraintInfoSeq get constraints(in ConstraintIDSeq id list)
raises (ConstraintNotFound) ;

Returns a sequence of data structures containing the input identi-
fiers along with their associated constraint.

id list A sequence of numeric values corresponding to the
unique identifiers of constraints encapsulated by
the target object.

ConstraintNotFoundOne of the input values does not correspond to
the identifier of some encapsulated constraint.
The exception contains that input value.

Filter::get_all_constraints()

ConstraintInfoSeq get all constraints() ;

Returns all of the constraints currently encapsulated by the target
filter object.

Filter::remove_all _constraints()

void remove all constraints();

Removes all of the constraints currently encapsulated by the target
filter. Upon completion, the target filter still exists but no constraints
are associated with it.

Filter::destroy()

void destroy () ;

Destroys the target filter and invalidates its object reference.

Filter::match()

boolean match (in any filterable data)
raises (UnsupportedFilterableData) ;

384 Orbix CORBA Programmer’s Reference: Java

Evaluates the filter constraints associated with the target filter
against an event supplied to the channel in the form of a

CORBA: :Any. The operation returns TRUE if the input event satisfies
one of the filter constraints, and FALSE otherwise.

The act of determining whether or not a given event passes a
given filter constraint is specific to the type of grammar in which
the filter constraint is specified.

Parameters

filterable data A CORBA::Any Which contains an event to be evalu-
ated.

Exceptions

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to han-
dle.

Filter::match_structured()

boolean match structured(
in CosNotification::StructuredEvent filterable data)
raises (UnsupportedFilterableData) ;
Evaluates the filter constraints associated with the target filter
against a structured event. The operation returns TRUE if the input
event satisfies one of the filter constraints, and FALSE otherwise.

The act of determining whether or not a given event passes a given
filter constraint is specific to the type of grammar in which the filter
constraint is specified.

Parameters

filterable data A CosNotification::StructuredEvent containing an
event to be evaluated,

Exceptions

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to
handle.

Filter::attach_callback()

CallbackID attach callback (

in CosNotifyComm: :NotifySubscribe callback) ;
Associates an object supporting the
CosNotifyComm: :NotifySubscribe interface with the target filter. This
operation returns a numeric value assigned to this callback that is
unique to all such callbacks currently associated with the target fil-
ter.

After this operation has been successfully invoked on a filter, the
filter invokes the subscription change () method of all its associ-

ated callbacks each time the set of constraints associated with the
filter is modified. This process informs suppliers in the filter’s call-

Orbix CORBA Programmer’s Reference: Java 385

Parameters

Parameters

Exceptions

back list of the change in the set of event types to which the fil-
ter’s clients subscribe. With this information, suppliers can make
intelligent decisions about which event types to produce.

callback The reference to an object supporting the
CosNotifyComm: : NotifySubscribe interface.

Filter::detach_callback()

void detach callback(in CallbackID callback)
raises (CallbackNotFound) ;

Removes a callback object from the filter’s callback list. Subsequent
changes to the event type subscription list encapsulated by the
target filter are no longer propagated to that callback object.

callback A unique identifiers associated with one of the call-
back objects attached to the target filter.

CallbackNotFound The input value does not correspond to the unique
identifier of a callback object currently attached to
the target filter object.

Filter::get_callbacks()

CallbackIDSeq get callbacks() ;

Returns all the unique identifiers for the callback objects attached
to the target filter.

386 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::FilterAdmin

Interface

Parameters

Parameters

Exceptions

interface FilterAdmin {
FilterID add filter (in Filter new filter);

void remove filter (in FilterID filter)
raises (FilterNotFound) ;

Filter get filter (in FilterID filter)
raises (FilterNotFound) ;

FilterIDSeqg get all filters();

void remove all filters();

i

The FilterAdmin interface defines operations enabling an object
supporting this interface to manage a list of filters, each of which
supports the Filter interface. This interface is an abstract inter-
face which is inherited by all of the proxy and admin interfaces
defined by the notification service.

FilterAdmin::add_filter()

FilterID add filter(in Filter new filter);

Appends a filter to the list of filters associated with the target object
upon which the operation was invoked and returns an identifier for
the filter.

new filter A reference to an object supporting the Filter
interface.

FilterAdmin::remove_filter()

void remove filter(in FilterID filter)
raises (FilterNotFound) ;

Removes the specified filter from the target object’s list of filters.

filter A numeric value identifying a filter associated with
the target object

FilterNotFound The identifier does not correspond to a filter associ-
ated with the target object.

Orbix CORBA Programmer’s Reference: Java 387

Parameters

Exceptions

FilterAdmin::get_filter()

Filter get filter (in FilterID filter)
raises (FilterNotFound) ;

Returns the object reference to the specified filter.

filter A numeric value identifying a filter associated with
the target object

FilterNotFound The identifier does not correspond to a filter associ-
ated with the target object.

FilterAdmin::get_all_filters()

FilterIDSeq get all filters();

Returns the list of unique identifiers corresponding to all of the filters
associated with the target object.

FilterAdmin::remove_all_filters()

void remove all filters();

Removes all filters from the filter list of the target object.

388 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::FilterFactory

Interface

Parameters

Exceptions

Parameters

interface FilterFactory
Filter create filter (
in string constraint grammar)
raises (InvalidGrammar) ;

MappingFilter create mapping filter (
in string constraint grammar,
in any default value)

raises (InvalidGrammar) ;

}i

The FilterFactory interface defines operations for creating filter.

FilterFactory::create_filter()

Filter create filter (in string constraint grammar)
raises (InvalidGrammar) ;

Creates a forwarding filter object and returns a reference to the new
filter.

constraint grammar A string identifying the grammar used to parse
constraints associated with this filter.

InvalidGrammar The client invoking this operation supplied the name
of a grammar that is not supported by any forward-
ing filter implementation this factory is capable of
creating.

FilterFactory::.create_mapping_filter()

MappingFilter create mapping filter (
in string constraint grammar,
in any default value)

raises (InvalidGrammar) ;

Creates a mapping filter object and returns a reference to the new
mapping filter.

constraint grammar A string parameter identifying the grammar used
to parse constraints associated with this filter.

default value An any specifying the default value of the new
mapping filter.

Orbix CORBA Programmer’s Reference: Java 389

Exceptions

InvalidGrammar The client invoking this operation supplied the name
of a grammar that is not supported by any mapping
filter implementation this factory is capable of creat-

ing.

390 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::MappingFilter
Interface

interface MappingFilter

{
readonly attribute string constraint grammar;
readonly attribute CORBA::TypeCode value type;
readonly attribute any default value;

MappingConstraintInfoSeqg add mapping constraints (
in MappingConstraintPairSeq pair list)
raises (InvalidConstraint, Invalidvalue) ;

void modify mapping constraints (
in ConstraintIDSeq del list,
in MappingConstraintInfoSeq modify list)
raises (InvalidConstraint, InvalidValue, ConstraintNotFound) ;

MappingConstraintInfoSeqg get mapping constraints (
in ConstraintIDSeq id list)
raises (ConstraintNotFound) ;

MappingConstraintInfoSeq get all mapping constraints() ;

void remove all mapping constraints() ;

void destroy () ;

boolean match (in any filterable data, out any result to set)
raises (UnsupportedFilterableData) ;

boolean match structured (
in CosNotification::StructuredEvent filterable data,
out any result to set)

raises (UnsupportedFilterableData) ;

boolean match typed (
in CosTrading::PropertySeq filterable data,
out any result to set)
raises (UnsupportedFilterableData) ;
}; // MappingFilter
The MappingFilter interface defines the behaviors of objects that
encapsulate a sequence of constraint-value pairs (see the descrip-
tion of the Default Filter Constraint Language in the CORBA Notifi-
cation Service Guide). These constraint-value pairs are used to
evaluate events and adjust their lifetime/priority values according
to the result. An object supporting the MappingFilter interface can
effect either an events lifetime property or its priority property,
but not both.

The MappingFilter interface supports the operations required to
manage the constraint-value pairs associated with an object
instance supporting the interface. In addition, the MappingFilter
interface supports a read-only attribute that identifies the con-
straint grammar used to parse the constraints encapsulated by
this object. The MappingFilter interface supports a read-only attri-

Orbix CORBA Programmer’s Reference: Java 391

bute that identifies the typecode associated with the datatype of
the specific property value it is intended to affect. It also supports
another read-only attribute which holds the default value which is
returned as the result of a match operation in cases when the
event in question is found to satisfy none of the constraints encap-
sulated by the mapping filter. Lastly, the MappingFilter interface
supports three variants of the operation which are invoked by an
associated proxy object upon receipt of an event, to determine
how the property of the event which the target mapping filter
object was designed to affect should be modified.

MappingFilter::constraint_grammar

readonly attribute string constraint grammar;

Identifies the grammar used to parse the constraint expressions
encapsulated by the target mapping filter. The value of this attribute
is set upon creation of a mapping filter.

A filter object’s constraints must be expressed using a particular
constraint grammar because its member match operations must be
able to parse the constraints to determine whether or not a partic-
ular event satisfies one of them.

Orbix supports an implementation of the MappingFilter object
which supports the default constraint grammar described in the
CORBA Notification Service Guide. constraint grammar is set to the
value EXTENDED TCL when the target mapping filter supports this
default grammar.

Users may provide additional implementations of the
MappingFilter interface which support different constraint gram-
mars, and thus set the constraint grammar attribute to a different
value when creating such a mapping filter.

MappingFilter::value_type
readonly attribute CORBA::TypeCode value type;

Identifies the datatype of the property value that the target mapping
filter is designed to affect. Note that the factory creation operation
for mapping filters accepts as an input parameter the default value
to associate with the mapping filter instance. This default value iS
a CORBA: :Any. Upon creation of a mapping filter, the typecode
associated with the default value is abstracted from the CORBA: : Any,
and its value is assigned to this attribute.

MappingFilter::default_value

readonly attribute any default value;

The value returned as the result of any match operation during which
the input event does not satisfy any of the constraints encapsulated
by the mapping filter. The value of this attribute is set upon creation
of a mapping filter object instance.

392 Orbix CORBA Programmer’s Reference: Java

Note:

Parameters

Exceptions

MappingFilter::add_mapping_constraints()

MappingConstraintInfoSeq add mapping constraints (
in MappingConstraintPairSeq pair list)
raises (InvalidConstraint, InvalidvValue) ;
Returns a sequence of structures which contain one of the input
constraint expressions, its corresponding value, and the unique
identifier assigned to this constraint-value pair by the target filter.

If one or more of the constraints passed into
add mapping constraints() is invalid, none of the constraints are
added to the target mapping filter.

Once add mapping constraints is invoked by a client, the target
filter is temporarily disabled from use by any proxy it may be
associated with. Upon completion of the operation, the target filter
is re-enabled and can once again be used by associated proxies to
make event property mapping decisions.

pair list A sequence of constraint-value pairs. Each con-
straint in this sequence must be expressed in the
constraint grammar supported by the target object,
and each associated value must be of the data type
indicated by the value type attribute of the target
object.

InvalidConstraint Raised if any of the constraint expressions in the
input sequence is not a valid expression. This
exception contains the constraint that was deter-
mined to be invalid.

Invalidvalue Raised if any of the values supplied in the input
sequence are not of the same datatype as that
indicated by the target object’s value type attri-
bute. This exception contains the invalid value and
its corresponding constraint.

MappingFilter::modify_mapping_constraints()

void modify mapping constraints (
in ConstraintIDSeq del list,
in MappingConstraintInfoSeq modify list)
raises (InvalidConstraint,
Invalidvalue,
ConstraintNotFound) ;

Modifies the constraint-value pairs associated with the target map-
ping filter. This operation can remove constraint-value pairs cur-
rently associated with the target mapping filter, and to modify the
constraints and/or values of constraint-value pairs currently asso-
ciated with the target mapping filter.

If an exception is raised during the operation, no changes are made
to the filter’s constraints.

Orbix CORBA Programmer’s Reference: Java 393

Note:

Parameters

Exceptions

Once modify mapping constraints() is invoked by a client, the
target mapping filter is temporarily disabled from use by any
proxy it may be associated with. Upon completion of the
operation, the target mapping filter is re-enabled and can be used
by associated proxies to make event property mapping decisions.

del list A sequence of unique identifiers associated with
one of the constraint-value pairs currently encap-
sulated by the target mapping filter. If all input val-
ues are valid, the specific constraint-value pairs
identified by the values contained in this parameter
are deleted from the mapping filter’s list of con-
straint-value-pairs.

modify list A sequence of structures containing a constraint
structure, an aAny value, and a numeric identifier.
The numeric identifier of each element is the
unique identifier associated with one of the con-
straint-value pairs currently encapsulated by the
target filter object. The constraint-value pairs iden-
tified are modified to the values specified in the
input list.

ConstraintNotFoundRaised if any of the identifiers in either of the
input sequences does not correspond to the
unique identifier associated with a con-
straint-value pair encapsulated by the target
mapping filter. This exception contains the identi-
fier which did not correspond to a con-
straint-value pair encapsulated by the target
object.

InvalidConstraint Raised if any of the constraint expressions sup-
plied in an element of the second input sequence
is not valid. This exception contains the constraint
that was determined to be invalid.

InvalidvValue Raised if any of the values in the second input
sequence is not of the same datatype as that
indicated by the mapping filter’s value type attri-
bute. This exception contains the invalid value
and its corresponding constraint expression.

MappingFilter::get_mapping_constraints()

MappingConstraintInfoSeq get mapping constraints (
in ConstraintIDSeq id list)
raises (ConstraintNotFound) ;

Returns a sequence of constraint-value pairs associated with the
target mapping filter.

394 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

id list A sequence of unique identifiers for con-
straint-value pairs encapsulated by the target
object.

ConstraintNotFoundOne of the input values does not correspond to
the identifier of an encapsulated constraint-value
pair. The exception contains the identifier that
did not correspond to a constraint-value pair.

MappingFilter::get_all_mapping_constraints()

MappingConstraintInfoSeq get all mapping constraints() ;

Returns all of the constraint-value pairs encapsulated by the target
mapping filter.

MappingFilter::remove_all _mapping_constrain
ts
void remove all mapping constraints();

Removes all of the constraint-value pairs currently encapsulated by
the target mapping filter. Upon completion, the target mapping filter
still exists but has no constraint-value pairs associated with it.

MappingFilter::destroy()
void destroy() ;

Destroys the target mapping filter, and invalidates its object refer-
ence.

MappingFilter::match()

boolean match(in any filterable data, out any result to set)
raises (UnsupportedFilterableData) ;

Determines how to modify some property value of an event in the
form of a CORBA: :Any.

The target mapping filter begins applying the its constraints
according to each constraint’s associated value, starting with the
constraint with the best associated value for the specific property
the mapping filter is designed to affect (for example, the highest
priority, the longest lifetime, and so on), and ending with the con-
straint with the worst associated value.

Upon encountering a constraint which the event matches, the
operation sets result _to set to the value associated with the
matched constraint, and returns with a value of TrRUE. If the event

Orbix CORBA Programmer’s Reference: Java 395

Parameters

Exceptions

Parameters

Exceptions

does not satisfy any of the target mapping filter’s constraints, the
operation sets result_to_set to the value of the target mapping fil-
ter’s default value attribute and returns with a value of FALSE.

The act of determining whether or not a given event passes a
given filter constraint is specific to the grammar used to parse the
filter constraints.

filterable data An Any containing the event being evaluated

result to set An Any containing the value and the property name
to set when an event evaluates to TRUE.

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to
handle.

MappingFilter::match_structured()

boolean match structured (
in CosNotification::StructuredEvent filterable data,
out any result to set)
raises (UnsupportedFilterableData) ;

Determines how to modify some property value of a structured
event.

The target mapping filter begins applying the its constraints
according to each constraints associated value, starting with the
constraint with the best associated value for the specific property
the mapping filter is designed to affect (for example, the highest
priority, the longest lifetime, and so on), and ending with the con-
straint with the worst associated value.

Upon encountering a constraint which the event matches, the
operation sets result to set to the value associated with the
matched constraint, and returns with a value of TRUE. If the event
does not satisfy any of the target mapping filter’s constraints, the
operation sets result _to set to the value of the target mapping fil-
ter’s default value attribute and returns with a value of FALSE.

The act of determining whether or not a given event passes a
given filter constraint is specific to the grammar used to parse the
filter constraints.

filterable data A CosNotification::StructuredEvent containing the
event being evaluated.

result to set An Any containing the value and the property name
to set when an event evaluates to TRUE.

UnsupportedFilterableDatThe input parameter contains data that
match structured() is not designed to han-
dle.

396 Orbix CORBA Programmer’s Reference: Java

Orbix CORBA Programmer’s Reference: Java 397

398 Orbix CORBA Programmer’s Reference: Java

CosTrading Module

Contains the major functional interfaces of a trading service.

CosTrading Data Types

Note:

CosTrading::Constraint Data Type

typedef Istring Constraint;

A query constraint expression. The constraint is used to filter
offers during a query, and must evaluate to a boolean expression.

The constraint language consists of the following elements:
* comparative functions: ==, 1=, >, >=,

* boolean connectives: and, or, not

* property existence: exist

* property names

* numeric, boolean and string constants

° mathematical operators: +, -, *, /

®* grouping operators: (,)

The following property value types can be manipulated using the
constraint language:

* boolean, short, unsigned short, long, unsigned long, float,
double, char, Ichar, string, Istring

* sequences of the above types

Only the exist operator can be used on properties of other types.
The constraint language keywords are case-sensitive

Literal strings should be enclosed in single quotes

The boolean literals are TRUE and FALSE

CosTrading::Istring Data Type

typedef string Istring;

When internationalized strings are widely supported, this defini-
tion will be changed.

CosTrading::LinkName Data Type

typedef Istring LinkName;

The name of a unidirectional link from one trader to another. The
only restriction on the format of a link name is it cannot be an
empty string.

Orbix CORBA Programmer’s Reference: Java 399

CosTrading::LinkNameSeq Data Type

typedef sequence<LinkName> LinkNameSeq;

CosTrading::Offerld Data Type

typedef string Offerld;

An offer identifier is an opaque string whose format is determined
entirely by the trading service from which the offer identifier was
obtained, and can only be used with that trading service.

CosTrading::OfferldSeq Data Type

typedef sequence<OfferIds> OfferIdSeq;

CosTrading::OfferSeq Data Type

typedef sequence<Offer> OfferSeq;

CosTrading::PolicyName Data Type

typedef string PolicyName;

The name of a policy used to control the trader's behavior. The
only restriction on the format of a policy name is it cannot be an
empty string.

CosTrading::PolicyNameSeq Data Type

typedef sequence<PolicyName> PolicyNameSedq;

CosTrading::PolicySeq Data Type

typedef sequence<Policys> PolicySeq;

CosTrading::PolicyValue Data Type

typedef any PolicyValue;

CosTrading::PropertyName Data Type

typedef Istring PropertyName;

Although not explicitly defined in the specification, a property
name should start with a letter, may contain digits and under-
scores, and should not contain spaces.

400 Orbix CORBA Programmer’s Reference: Java

Note:

CosTrading::PropertyNameSeq DataType

typedef sequence<PropertyName> PropertyNameSedq;

CosTrading::PropertySeq Data Type

typedef sequence<Propertys> PropertySeq;

CosTrading::PropertyValue Data Type

typedef any PropertyValue;

A CORBA: :Any containing the value of the property. Orbix Trader
allows arbitrarily complex user-defined types to be used as prop-
erty values.

CosTrading::ServiceTypeName Data Type

typedef Istring ServiceTypeName;

A service type name can have one of two formats, both represent-
ing formats that appear in the Interface Repository.

* Scoped Name - A scoped name has the form ::0ne: : Two.
Other supported variations are Three: :Four and Five.

. Interface Repository Identifier - An interface repository
identifier has the form 1IDL: [prefix/] [module/]lname:X.Y. FOr
example, IDL:omg.org/CosTrading/Lookup:1.0 is a valid inter-
face repository identifier, and you can use the same format
for your service type names.

Although a service type name can appear similar to names used in
the interface repository, the trading service never uses
servicetype names to look up information in the interface
repository.

CosTrader::TraderName Data Type

typedef LinkNameSeq TraderName;

A TraderName represents a path from one trader to the desired
trader by following a sequence of links. The starting trader
importer policy, if specified for a query operation, should contain a
value of this type.

Cos:Trading::TypeRepository Data Type

typedef Object TypeRepository;

TypeRepository represents an object reference for a
CosTradingRepos: : ServiceTypeRepository object. You will need to
narrow this reference before you can interact with the service type
repository.

Orbix CORBA Programmer’s Reference: Java 401

CosTrading::FollowOption Enum

enum FollowOption

{

local only,
if no local,
always

}i

Determines the follow behavior for linked traders.
The member values are defined as follows:

local only The trader will not follow a link.

if no local The trader will only follow a link if no
offers were found locally.

always The trader will always follow a link.

CosTrading::Offer Struct

struct Offer

{

Object reference;

PropertySeq properties;
Vi
The description of a service offer. The data members contains the
following data:

reference The object reference associated with this
offer. Depending on the configuration of
the server, this reference may be nil.

properties A sequence of properties associated with
this offer.

CosTrading::Policy Struct

struct Policy

{

PolicyName name;

PolicyValue value;
}i

CosTrading::Property Struct

struct Property

{

PropertyName name;

PropertyValue value;
}i
A name-value pair associated with a service offer or proxy offer. If
the property name matches the name of a property in the offer's
service type, then the TypeCode of the value must match the prop-
erty definition in the service type.

402 Orbix CORBA Programmer’s Reference: Java

Note:

Orbix Trader allows properties to be associated with an offer even
if the property name does not match any property in the service
type. These properties can also be used in query constraint and
preference expressions.

CosTrading Exceptions

CosTrading::DuplicatePolicyName

exception DuplicatePolicyName {PolicyName name};

More than one value was supplied for a policy. The policy name
that caused the exception is returned.

CosTrading::DuplicatePropertyName

exception DuplicatePropertyName {Properthame name} H

The property name has already appeared once. The duplicated
property name is returned.

CosTrading::lllegalConstraint

exception IllegalConstraint{Constraint constr};

An error occurred while parsing the constraint expression. The
invalid constraint is passed back.

CosTrading::lllegalOfferlid

exception IllegalOfferId {OfferId id};

The offer identifier is empty or malformed. The invalid id is
returned.

CosTrading::lllegalPropertyName

exception IllegalPropertyName {PropertyName name};

The property name is empty or does not conform the format sup-
ported by the trader. The property name that caused the excep-
tion is returned.

CosTrading::lllegalServiceType

exception IllegalServiceType {ServiceTypeName type};

A service type name does not conform to the formats supported
by the trader. The name that caused the exception is returned.

Orbix CORBA Programmer’s Reference: Java 403

CosTrading::InvalidLookupRef

exception InvalidLookupRef {Lookup target};
The Lookup object reference cannot be nil.

CosTrading::MissingMandatoryProperty

exception MissingMandatoryProperty

{

ServiceTypeName type;
PropertyName name;

i
No value was supplied for a property defined as mandatory by the
service type.

CosTrading::Notlmplemented

exception NotImplemented {};
The requested operation is not supported by this trading service.

CosTrading::PropertyTypeMismatch

exception PropertyTypeMismatch

{

ServiceTypeName type;
Property prop;

i
The property value type conflicts with the property's definition in
the service type.

CosTrading::ReadonlyDynamicProperty

exception ReadonlyDynamicProperty

ServiceTypeName type;
PropertyName name;

}i
A property that is defined as read-only by the service type cannot
have a dynamic value.

CosTrading::UnknownMaxLeft

exception UnknownMaxLeft {};
The iterator does not know how many items are left.

CosTrading::UnknownOfferld

exception UnknownOfferId {OfferId id};

404 Orbix CORBA Programmer’s Reference: Java

The trader does not contain an offer with the given identifier. The
unresolved ID is returned.

CosTrading::UnknownServiceType

exception UnknownServiceType {ServiceTypeName type};

The service type repository used by the trader does not have the
requested service type. The unresolved name is returned.

Orbix CORBA Programmer’s Reference: Java 405

406 Orbix CORBA Programmer’s Reference: Java

CosTrading::Admin Interface

// IDL in CosTrading

interface Admin :
TraderComponents, SupportAttributes,
ImportAttributes, LinkAttributes

{

typedef sequence OctetSeq;

readonly attribute OctetSeq request id stem;

unsigned long set def search card (in unsigned long value) ;

unsigned long set max search card (in unsigned long value) ;

unsigned long set def match card (in unsigned long value) ;

unsigned long set max match card (in unsigned long value) ;

unsigned long set def return card (in unsigned long value) ;

unsigned long set max return card (in unsigned long value) ;

unsigned long set max list (in unsigned long value) ;

boolean set supports modifiable properties (in boolean value) ;

boolean set supports dynamic properties (in boolean value) ;

boolean set supports proxy offers (in boolean value) ;

unsigned long set def hop count (in unsigned long value) ;

unsigned long set max hop count (in unsigned long value) ;

FollowOption set def follow policy (in FollowOption policy) ;

FollowOption set max follow policy (in FollowOption policy) ;

FollowOption set max link follow policy (
in FollowOption policy) ;

TypeRepository set type repos (in TypeRepository repository) ;

OctetSeq set request id stem (in OctetSeq stem) ;

void list offers(in unsigned long how many,
out OfferIdSeqg ids,
out OfferIdIterator id itr)
raises (NotImplemented) ;

void list proxies(in unsigned long how many,
out OfferIdSeqg ids,
out OfferIdIterator id itr)
raises (NotImplemented) ;
}i
Interface Admin provides attributes and operations for administra-
tive control of the trading service.

Orbix CORBA Programmer’s Reference: Java 407

Parameters

Parameters

Admin::request_id_stem Attribute

readonly attribute OctetSeq request id stem;

The request identifier “stem” is a sequence of octets that comprise
the prefix for a request identifier. The trader will append additional
octets to ensure the uniqueness of each request identifier it gener-
ates.

Admin::list_offers()

void list offers(in unsigned long how many,
out OfferIdSeqg ids,
out OfferIdIterator id_itr)
raises (NotImplemented) ;

Obtains the identifiers for the service offers in this trader.

how namy Indicates how many identifiers to return in ids.

ids Contains at most how many identifiers. If the number of
identifiers exceeds how many, the id_itr parameter will
hold a reference to an iterator object through which
the remaining identifiers can be obtained.

id itr Will hold nil if no identifiers were found or if all of the
identifiers were returned in ids. Otherwise, holds a ref-
erence to an iterator object through which the remain-
ing identifiers can be obtained.

Admin::list_proxies()

void list proxies(in unsigned long how many,
out OfferIdSeq ids,
out OfferIdIterator id itr)
raises (NotImplemented) ;

Obtains the identifiers for the proxy offers in this trader.

how many Indicates how many identifiers to return in ids.

ids Contains at most how many identifiers. If the number of
identifiers exceeds how many, the id_itr parameter will
hold a reference to an iterator object through which
the remaining identifiers can be obtained.

id itr Will hold nil if no identifiers were found or if all of the
identifiers were returned in ids. Otherwise, holds a ref-
erence to an iterator object through which the remain-
ing identifiers can be obtained.

Admin::set_def_ follow_policy()

FollowOption set def follow policy(in FollowOption policy) ;

Changes the value of the default link follow attribute and returns
the previous value.

408 Orbix CORBA Programmer’s Reference: Java

Parameters

policy The new value

Admin::set_def hop_count()

unsigned long set def hop count (in unsigned long value) ;

Changes the value of the default hop count attribute and returns
the previous value.

Parameters
value The new value
Admin::set_def match_card()
unsigned long set def match card(in unsigned long value) ;
Changes the value of the default match cardinality attribute and
returns the previous value.

Parameters
value The new value
Admin::set_def _return_card()
unsigned long set_def return card(in unsigned long value) ;
Changes the value of the default return cardinality attribute and
returns the previous value.

Parameters
value The new value
Admin::set_def_search_card()
unsigned long set def search card(in unsigned long value) ;
Changes the value of the default search cardinality attribute and
returns the previous value.

Parameters
value The new value

See Also CosTrading: : ImportAttributes

Admin::set_max_follow_policy()

FollowOption set max follow policy(in FollowOption policy) ;
Changes the value of the maximum link follow attribute and
returns the previous value.

Orbix CORBA Programmer’s Reference: Java 409

Parameters

policy The new value

Admin::set_max_hop_count()

unsigned long set max hop count (in unsigned long value) ;

Changes the value of the maximum hop count attribute and
returns the previous value.

Parameters
value The new value
Admin::set_max_link_follow_policy()
FollowOption set max link follow policy(in FollowOption policy) ;
Changes the value of the maximum link follow policy and returns
the previous value.

Parameters
policy The new value
Admin::set_max_list()
unsigned long set max list (in unsigned long value) ;
Changes the value of the maximum list attributes and returns the
previous value.

Parameters
value The new value
Admin::set_max_match_card()
unsigned long set max match card(in unsigned long value) ;
Changes the value of the maximum match cardinality attribute
and returns the previous value.

Parameters
value The new value
Admin::set_max_return_card()
unsigned long set max return card(in unsigned long value) ;
Changes the value of the maximum return cardinality attribute
and returns the previous value.

Parameters

value The new value

410 Orbix CORBA Programmer’s Reference: Java

Parameters

Parameters

Parameters

Parameters

Parameters

Admin::set_max_search_card()

unsigned long set max search card(in unsigned long value) ;

Changes the value of the maximum search cardinality attribute
and returns the previous value.

value The new value

Admin::set_request_id_stem()

OctetSeq set request id stem(in OctetSeqg stem) ;

Changes the value of the request identifier stem and returns the
previous value.

stem The new value

Admin::set_supports_dynamic_properties()

boolean set supports dynamic properties(in boolean value) ;

Establishes whether the trader considers offers with dynamic
properties during a query and returns the previous setting.

value The new value

Admin::set_supports_modifiable properties()

boolean set supports modifiable properties(in boolean value) ;

Establishes whether the trader supports property modification and
returns the previous setting.

value * TRUE activates property modification support.
* raLSE deactives property modification support.

Admin::set_supports_proxy_offers()

boolean set supports proxy offers(in boolean value) ;

Establishes whether the trader supports proxy offers and returns
the previous setting.

value * TRUE turns on proxy support.
* FALSE turns off proxy support.

Orbix CORBA Programmer’s Reference: Java 411

Admin:set_type_ repos()

TypeRepository set type repos(in TypeRepository repository) ;
Establishes the service type repository to be used by the trader
and returns a reference to the previous type repository.

Parameters

repository A reference to a type repository.

412 Orbix CORBA Programmer’s Reference: Java

CosTrading::ImportAttributes

Interface

Note:

The read-only attributes of this interface provide the default and
maximum values for policies that govern query operations.

Performing a query is also known as importing service offers,
therefore these attributes are called import attributes.

ImportAttributes::def_follow_policy Attribute

readonly attribute FollowOption def follow policy;
The default value for the follow policy policy if it is not supplied.

ImportAttributes::def _hop_count Attribute

readonly attribute unsigned long def hop count;
The default value for the hop count policy if it is not supplied.

ImportAttributes::def _match_card Attribute

readonly attribute unsigned long def match card;
The default value for the match card policy if it is not supplied.

ImportAttributes::def_return_card Attribute

readonly attribute unsigned long def return card;
The default value for the return card policy if it is not supplied.

ImportAttributes::def search_card Attribute

readonly attribute unsigned long def search card;
The default value for the search card policy if it is not supplied.

ImportAttributes::max_follow_policy Attribute

readonly attribute FollowOption max follow policy;

The maximum value for the follow policy policy, which may over-
ride the value supplied by an importer.

ImportAttributes::max_hop_count Attribute

readonly attribute unsigned long max hop count;

Orbix CORBA Programmer’s Reference: Java 413

The maximum value for the hop count policy, which may override
the value supplied by an importer.

ImportAttributes::max_ list Attribute

readonly attribute unsigned long max list;

The maximum size of any list returned by the trader. This may
override the value supplied by a client to operations such as query
and next n.

ImportAttributes::max_match_card Attribute

readonly attribute unsigned long max match card;
The maximum value for the match card policy, which may override
the value supplied by an importer.

ImportAttributes::max_return_card Attribute

readonly attribute unsigned long max return card;

The maximum value for the return card policy, which may over-
ride the value supplied by an importer.

ImportAttributes::max_search_card Attribute

readonly attribute unsigned long max search card;

The maximum value for the search card policy, which may over-
ride the value supplied by an importer.

414 Orbix CORBA Programmer’s Reference: Java

CosTrading::Link Interface

interface Link :
TraderComponents, SupportAttributes, LinkAttributes

struct LinkInfo
Lookup target;
Register target reg;
FollowOption def pass on follow rule;
FollowOption limiting follow rule;

Vi

exception IllegallinkName { LinkName name; };
exception UnknownLinkName { LinkName name; };
exception DuplicateLinkName { LinkName name; };

exception DefaultFollowTooPermissive {
FollowOption default follow rule;
FollowOption limiting follow rule; };

exception LimitingFollowTooPermissive {
FollowOption limiting follow rule;
FollowOption max link follow policy; };

void add link(in LinkName name, in Lookup target,
in FollowOption default follow rule,
in FollowOption limiting follow rule)
raises (IllegallLinkName, DuplicateLinkName, InvalidLookupRef,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive) ;

void remove link(in LinkName name)
raises (IllegallinkName, UnknownLinkName) ;

LinkInfo describe link(in LinkName name)
raises (IllegalLinkName, UnknownLinkName) ;

LinkNameSeq list links();

void modify link(in LinkName name,
in FollowOption default follow rule,
in FollowOption limiting follow rule)
raises (IllegallLinkName, UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive) ;

i
Provides structures, exceptions, and operations for managing links
between traders.

Link::LinkInfo Data Structure

struct LinkInfo

{

Lookup target;
Register target reg;
FollowOption def pass on follow rule;

Orbix CORBA Programmer’s Reference: Java 415

FollowOption limiting follow rule;
}i

A complete description of a link. The members hold the following

information:
target Lookup interface if link target
target reg Register interface of link

def_pass on follow_ ruleDefault link behavior for the link if no
link-follow policy is specified by an importer
durring a query

limiting follow rule Most permisive link-follow behavior that the
link is willing to tolerate

CosTrading::Link Exceptions

Link::DefaultFollowTooPermissive Exception

exception DefaultFollowTooPermissive

{

FollowOption def pass on follow rule;

FollowOption limiting follow rule;
}i
Raised when the value for def pass on follow rule exceeds the
value for limiting follow rule. Both values are passed back to the
caller.

Link::DuplicateLinkName Exception

exception DuplicateLinkName {LinkName name} ;
Raised when a link already exists with the given name. The dupli-
cated link name is passed back to the caller.

Link::lllegalLinkName Exception

exception IllegallinkName {LinkName name};

Raised when the link name is empty or does not conform the for-
mat supported by the trader. The invalid link name is passed back
to the caller.

Link::LimitingFollowTooPermissive Exception

exception LimitingFollowTooPermissive

{

FollowOption limiting follow rule;

FollowOption max link follow policy;
}i
The value for limiting follow rule exceeds the trader's
max link follow policy attribute.

416 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Link::UnknownLinkName Exception

exception UnknownLinkName {LinkName name};

Raised when trader does not have a link with the given name. The
invalid name is returned.

Link::add_link()

void add link(in LinkName name, in Lookup target,
in FollowOption def pass on follow rule,
in FollowOption limiting follow rule)
raises (IllegalLinkName,
DuplicateLinkName,
InvalidLookupRef,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive) ;

Adds a new, unidirectional link from this trader to another trader.

name Specifies the name of the new link.

target Holds a reference to the Lookup interface of
the target trader

def_pass_on follow_ruleSpecifies the default link behavior for the
link if not link-follow policy is specified by an
importer durring a query.

limiting follow rule Specifies the most permisive link-follow
behavior the the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid
format.

DuplicatelinkName Another link exists with the same
name.

InvalidLookupRef Targer object reference in nil.

DefaultFollowTooPermisive The value for def pass on follow rule
exceeds the value for
limiting follow rule.

LimitingFollowTooPermissive The value for limiting follow rule
exceeds the trader’s
max link follow policy.

Link::describe_link()

LinkInfo describe link (in LinkName name)
raises (IllegallLinkName, UnknownLinkName) ;

Obtains a description of a link and returns it in a LinkInfo object.

name Name of the link of interest

Orbix CORBA Programmer’s Reference: Java 417

Exceptions

Parameters

Exceptions

Parameters

IllegallinkName The link name is empty or has an invalid format.
UnknownLinkName No link with the specified name exists.

Link::list_links()

LinkNameSeqg list links();
Reurns the names of all trading links within the trader.

Link::modify_link()

void modify link(in LinkName name,
in FollowOption def pass on follow rule,
in FollowOption limiting follow rule)
raises (IllegallLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive) ;

Modifies the follow behavior of an existing link.

name Specifies the name of the link to be modi-
fied.

def pass on follow ruleSpecifies the default link behavior for the
link if no link-follow policy is specifed by an
importer durring a query.

limiting follow rule Describes the most permisive link-follow
behavior that the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid
format.

UnknownLinkName The specified link name does not
exist.

DefaultFollowTooPermisive The value for def pass on follow rule
exceeds the value for
limiting follow rule.

LimitingFollowTooPermissive The value for limiting follow rule
exceeds the trader’s
max link follow policy.

Link::remove_link()

void remove link(in LinkName name)
raises (IllegalLinkName, UnknownLinkName) ;

Removes an existing link.

name Name of the link to be removed

418 Orbix CORBA Programmer’s Reference: Java

Exceptions

IllegallLinkName The link name is empty or has an invalid format.
UnknownLinkName No link exists witht the specified name.

Orbix CORBA Programmer’s Reference: Java 419

420 Orbix CORBA Programmer’s Reference: Java

CosTrading::LinkAttributes
Interface

LinkAttributes::max_link_follow_policy
Attribute

readonly attribute FollowOption max link follow policy;
Determines the most permissive behavior that will be allowed for
any link.

Orbix CORBA Programmer’s Reference: Java 421

422 Orbix CORBA Programmer’s Reference: Java

CosTrading::Lookup Interface

interface Lookup
TraderComponents, SupportAttributes, ImportAttributes

typedef Istring Preference;

enum HowManyProps
none,
some,
all

Vi

union SpecifiedProps switch (HowManyProps)
{

case some: PropertyNameSeqg prop names;

}i

exception IllegalPreference {Preference pref};
exception IllegalPolicyName {PolicyName name};
exception PolicyTypeMismatch {Policy the policy};
exception InvalidPolicyValue {Policy the policy};

void query(in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeg policies,
in SpecifiedProps desired props,
in unsigned long how many,
out OfferSeq offers,
out OfferIterator offer itr,
out PolicyNameSeq limits applied)
raises (IllegalServiceType, UnknownServiceType,
IllegalConstraint, IllegalPreference,
IllegalPolicyName, PolicyTypeMismatch,
InvalidPolicyValue, IllegalPropertyName,
DuplicatePropertyName, DuplicatePolicyName) ;

bi

Provides a single operation, query, for use by importers.

Lookup::Preference DataType

typedef Istring Preference;

A query preference expression. The preference is used to order
the offers found by a query. The valid forms of a preference
expression are:

min numeric-expression orders the offers in ascending order
based on the numeric expression. Offers for which the expression
cannot be evaluated (for example, if the offer does not contain a
property that is used in the expression) are placed at the end of
the sequence.

Orbix CORBA Programmer’s Reference: Java 423

max Numeric-expression orders the offers in descending order
based on the numeric expression. Offers for which the expression
cannot be evaluated (for example, if the offer does not contain a
property that is used in the expression) are placed at the end of
the sequence.

with boolean-expression orders the offers such that those for
which the boolean expression are TRUE are included before any of
those for which the expression is false, which are placed before
any of those that cannot be evaluated.

random orders the offers in random order.

first orders the offers as they are encountered by the server.

If an empty preference expression is supplied, it is equivalent to a
preference of first.

Lookup::HowManyProps Enum

enum HowManyProps
{
none,
some,
all
}i
The choices for indicating how many properties are returned with
each offer. The members are defined as follows:

none No properties should be returned.
some Some properties should be returned.
all All properties should be returned.

Lookup::SpecifiedProps Union

union SpecifiedProps switch (HowManyProps)

{

case some: PropertyNameSeq prop names;

i

Determines which properties are to be returned for each matching
offer found by the query operation. The union’s discriminator can
meaningfully be set to the other enumerated values none and all.
If set to none, you are indicating that no properties should be
returned. If set to all, then all properties will be returned. Set the
value for some with a sequence of property names indicating which
properties should be returned

Lookup::lllegalPolicyName Exception

exception IllegalPolicyName {PolicyName name};

The policy name is empty or does not conform the format sup-
ported by the trader. The invalid name is returned.

424 Orbix CORBA Programmer’s Reference: Java

Lookup::lllegalPreference Exception

exception IllegalPreference {Preference pref};

An error occurred while parsing the preference expression. The
invalid preference is returned.

Lookup::InvalidPolicyValue Exception

exception InvalidPolicyValue {Policy the policy};
The policy has an invalid value.

Lookup::PolicyTypeMismatch Exception

exception PolicyTypeMismatch {Policy the policy};
The policy value type specified does not match the type expected
by the trader. The type expected by the trader is returned.

Lookup::query()

void query(in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired props,
in unsigned long how many,
out OfferSeq offers,
out OfferIterator offer itr,
out PolicyNameSeq limits applied)
raises (IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName) ;
Allows an importer to obtain references to objects that provide
services meeting its requirements.

The importer can control the behavior of the search by supplying
values for certain policies. The trader may override some or all of
the values supplied by the importer. The following policies are
known by the trader:

exact_type_match (boolean) if TrRUE, only offers of exactly the
service type specified by the importer are considered; if FALSE,
offers of any service type that conforms to the importer's service
type are considered

hop_count (unsigned long) indicates maximum number of

hops across federation links that should be tolerated in the
resolution of this query

Orbix CORBA Programmer’s Reference: Java 425

Parameters

link_follow_rule (FollowOption) indicates how the client
wishes links to be followed in the resolution of this query

match_card (unsigned long) indicates the maximum number
of matching offers to which the preference specification should be
applied

return_card (unsigned long) indicates the maximum number
of matching offers to return as a result of this query

search_card (unsigned long) indicates the maximum number
of offers to be considered when looking for type conformance and
constraint expression match

starting_trader (TraderName) specifies the remote trader at
which the query starts

use_dynamic_properties (boolean) specifies whether to
consider offers with dynamic properties

use_modifiable_properties (boolean) specifies whether to
consider offers with modifiable properties

use_proxy_offers (boolean) specifies whether to consider
proxy offers

type Specifies the service type that interests the importer.
The service type limits the scope of the search to
only those offers exported for this type, and option-
ally any subtype of this type.

constr Limits the search to only those offers for which this
expresion is TRUE. The simplest constraint expression
is "TRUE", which matches any offer.

pref Specifies how the matched offers are t be ordered.
policies Specifies the policies that govern the behavior of the
query.

desired props Determines the properties that are to be included
with each offer returned by the query. This parame-
ter does not affect whether or not a service offer is
returned. To exclude an offer that does not contain a
desired property, include "exist property-name" in the
constraint.

how many Indicates how many offers are to be returned in the
offers parameter.

offers Holds at most how many offers. If the number of
matching offers exceeds how many, the offer itr
parameter will hold a reference to an iterator object
through which the remaining offers can be obtained.

offer itr Will hold nil if no matching offers were found or if all
of the matching offers were returned in offers; oth-
erwise, holds a reference to an iterator. The object's
destroy operation should be invoked when the
object is no longer needed.

426 Orbix CORBA Programmer’s Reference: Java

Exceptions

limits appliedHolds the names of any policies that were overridden
by the trader's maximum allowable settings.

IllegalServiceType

UnknownServiceType

IllegalConstraint

IllegalPreference

IllegalPolicyName

PolicyTypeMismatch

InvalidPolicyValue

IllegalPropertyName

Service type name is empty or has an invalid
format

Service type was not found in service type
repository

An error occurred while parsing the constraint
expression

An error occurred while parsing the prefer-
ence expression

A policy name is empty or has an invalid for-
mat

A policy value type did not match the type
expected by the trader

A policy has an invalid value

A property name is empty or has an invalid
format

DuplicatePropertyNameA property name appeared more than once in

DuplicatePolicyName

the list of desired properties

A policy name appeared more than once in
the list of policies

Orbix CORBA Programmer’s Reference: Java 427

428 Orbix CORBA Programmer’s Reference: Java

CosTrading::Offerldlterator
Interface

interface OfferIdIterator

{

unsigned long max left ()
raises (UnknownMaxLeft) ;

boolean next n(in unsigned long n, out OfferIdSeq ids);

void destroy() ;
}i

Specifies methods to iterate through a list of offer identifiers.

OfferldInterator::destroy()

void destroy() ;
Destroys the iterator object.

Offerldlterator::max_left()

unsigned long max left ()
raises (UnknownMaxLeft) ;

Returns the number of offer identifiers remaining in the iterator.
Exceptions

UnknownMaxLeft Cannot determine the number of remaining offer iden-
tifiers

Offerldlterator::next_n()

boolean next n(in unsigned long n,
out OfferIdSeq ids) ;

Returns TRUE if ids contains more offer identifiers, and returns
FALSE if ids is nil.

Parameters

n Number of offer identifiers to return
ids List of offer identifiers containing at most n elements

Orbix CORBA Programmer’s Reference: Java 429

430 Orbix CORBA Programmer’s Reference: Java

CosTrading::Offerlterator

Interface

Exceptions

Parameters

interface OfferIterator

{

unsigned long max left ()
raises (UnknownMaxLeft) ;

boolean next n(in unsigned long n, out OfferSeq offers);

void destroy() ;
}i

Specifies methods to iterate through a list of offers.

Offerlterator::destroy()

void destroy() ;
Destroys the iterator object.

OfferInterator::max_left()

unsigned long max left ()
raises (UnknownMaxLeft) ;

Returns the number of offers remaining in the iterator.

UnknownMaxLeft cannot determine the number of remaining offers

Offerlterator::next_n()

boolean next n(in unsigned long n,
out OfferSeq offers);

Returns TRUE if offers contains more offer identifiers, and returns
FALSE if offers is nil.

n Number of offers to return
ids List of offers containing at most n elements

Orbix CORBA Programmer’s Reference: Java 431

432 Orbix CORBA Programmer’s Reference: Java

CosTrading::Proxy Interface

interface Proxy :
TraderComponents,
SupportAttributes

{

typedef Istring ConstraintRecipe;

struct ProxyInfo

{
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if match all;
ConstraintRecipe recipe;
PolicySeq policies to pass on;

}i

exception IllegalRecipe {ConstraintRecipe recipe};
exception NotProxyOfferId {OfferId id};

OfferId export proxy(in Lookup target, in ServiceTypeName type,
in PropertySeqg properties,
in boolean if match all,
in ConstraintRecipe recipe,
in PolicySeq policies to pass_on)
raises (IllegalServiceType, UnknownServiceType,
InvalidLookupRef, IllegalPropertyName,
PropertyTypeMismatch, ReadonlyDynamicProperty,
MissingMandatoryProperty, IllegalRecipe,
DuplicatePropertyName, DuplicatePolicyName) ;

void withdraw proxy(in OfferId id)
raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId) ;

ProxyInfo describe proxy(in OfferId id)
raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId);

}i
Provides datatypes, exceptions and methods for managing proxy
offers.

Proxy::ConstraintRecipe Data Type

typedef Istring ConstraintRecipe;

A constraint recipe specifies how the trader should rewrite a con-
straint before invoking the query operation of the proxy offer's
Lookup interface. Using a constraint recipe, the exporter can have
the trader rewrite a constraint into a completely different con-
straint language (one that is understood by the proxy offer's
Lookup target).

The constraint recipe can include the value of properties using the
expression "¢ (property-name)". The recipe can also include the entire
text of the original constraint using the special syntax "$*".

Orbix CORBA Programmer’s Reference: Java 433

For example, assume the property name has the value "Joe", and
the property age has the value 33. The constraint recipe "Name ==
S (name) and Age" would be rewritten as "Name == 'Joe'
and Age".

Proxy::Proxylnfo Data Structure

struct ProxyInfo

{
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if match all;
ConstraintRecipe recipe;
PolicySeq policies to pass on;

}i
A complete description of a proxy offer which contains the follow-
ing members:

type The service type for which tis offer was
exported.

target The target Lookup object.

properties A sequence of properties associated with this
offer.

if match all If TRUE, type conformance is all that is necessary

for this offer to match. If FaLSE, the offer must
also match the constraint expression.

recipe The recipe for rewriting the constraint

policies_to_pass_onPolicies to be appended to the importer’s policies
and passed along to the target.

Proxy::lllegalRecipe Exception

exception IllegalRecipe{ConstraintRecipe recipe};
An error occurred while parsing the recipe.

Proxy::NotProxyOfferld Exception

exception NotProxyOfferId{OfferId id};
The offer identifier does not refer to a proxy offer.

Proxy::describe_proxy()

ProxyInfo describe proxy (in OfferId id)
raises (IllegalOfferId,
UnknownOfferId,
NotProxyOfferld) ;

Obtains the description of a proxy offer.

434 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Exceptions

id Identifier of the proxy offer of interest

IllegalofferId Offer Identifier is empty or has an invalid format.
UnknownOfferId No offer was found with the given identifier
NotProxyOfferId Offer identifier does not refer to a proxy offer

Proxy::export_proxy()

OfferId export proxy(in Lookup target,
in ServiceTypeName type,
in PropertySeqg properties,
in boolean if match all,
in ConstraintRecipe recipe,
in PolicySeq policies to pass on)
raises (IllegalServiceType,
UnknownServiceType,
InvalidLookupRef,
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
IllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName) ;

Creates a new proxy offer.

target The target Lookup interface

type The service type for which this offer was
exported

properties A sequence of properties associated with this
offer.

if match all If TRUE, type conformance is all that is necessary

for this offer to match. If FALSE, the offer must
also match the constraint expression.

recipe The recipe for rewriting the constraint.

policies_to_pass_onPolicies to be appended to teh importer’s policies
and passed along to the target.

IllegalServiceType Service type name is empty or has invalid
format.

UnknownServiceType Service type was not found in the service
type repository.

InvalidLookupRef Target object reference is nil.

IllegalPropertyName Property name is empty or has an invalid
format.

Orbix CORBA Programmer’s Reference: Java 435

PropertyTypeMismatch Property value type does not match the
property definition of the service type.

ReadonlyDynamicProperty Read-only properties cannot have dynamic

values.

MissingMandatoryPropertyNo value was given for a mandatory prop-
erty.

IllegalRecipe An error occurred while parsing the con-

straint recipe.

DuplicatePropertyname A property name appeared more than once
in the list of properties.

DuplicatePolicyName A policy name appeared more than once in
the list of policies to pass on.

Proxy::withdraw_proxy()

void withdraw proxy (in OfferId id)
raises(IllegalOfferId,
UnknownOf ferId,
NotProxyOfferId) ;

Removes a proxy offer.

Parameters
id Identifier of the proxy offer to be withdrawn
Exceptions

IllegalOfferIid Offer identifier is empty or has an invalid format
UnknownOfferId No offer was found with the given identifier.
NotProxyOfferId Offer identifier does not refer to a proxy offer

436 Orbix CORBA Programmer’s Reference: Java

CosTrading::Register Interface

interface Register
inherits from CosTrading: :TraderComponents,
CosTrading: : SupportAttributes

Provides operations for managing service offers.

Register::OfferInfo Structure

struct OfferInfo
Object reference;
ServiceTypeName type;
PropertySeq properties;

}i

A complete description of a service offer.

reference The object reference associated with this
offer. Depending on the configuration of
the server, this reference may be nil.

type The service type for which this offer was
exported

properties A sequence of properties associated with
this offer.

Register::lllegalTraderName Exception

exception IllegalTraderName

{
}i

The trader name was empty, or a component of the name was not
a valid link name.

TraderName name;

Register::InterfaceTypeMismatch Exception

exception InterfaceTypeMismatch

{
ServiceTypeName type;
Object reference;

}i

If the trader is configured to use the interface repository, then it
will attempt to confirm that the interface of the object reference

conforms to the interface of the service type. If the trader is able
to determine that there is a mismatch, this exception is thrown.

Register::InvalidObjectRef Exception

exception InvalidObjectRef

{

Orbix CORBA Programmer’s Reference: Java 437

Object ref;
}i
The object reference is nil, and the trader is is configured to
reject offers with nil references.

Register::MandatoryProperty Exception

exception MandatoryProperty

{

ServiceTypeName type;
PropertyName name;

}i

A mandatory property cannot be removed.

Register::NoMatchingOffers Exception

exception NoMatchingOffers

{
}i

No matching offers were found matching the constraint expres-
sion.

Constraint constr;

Register::ProxyOfferld Exception

exception ProxyOfferId

{
}i

The offer identifier actually refers to a proxy offer.

OfferId id;

Register::ReadonlyProperty Exception

exception ReadonlyProperty

{

ServiceTypeName type;
PropertyName name;

}i

A read-only property cannot be modified.

Register::RegisterNotSupported Exception

exception RegisterNotSupported

{
}i

The resolve operation is not supported by this trader.

TraderName name;

438 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Register::UnknownPropertyName Exception

exception UnknownPropertyName

{
}i

A property was identified for removal that does not exist in the
offer.

PropertyName name;

Register::UnknownTraderName Exception

exception UnknownTraderName

{
}i

The trader name could not be correctly resolved to a trader.

TraderName name;

Register::describe()

OfferInfo describe (in OfferId id)
raises(IllegalOfferId,
UnknownOfferId,
ProxyOfferId) ;
Obtains the description of a service offer and and returns it in an
OfferInfo structure.

id Identifier of the offer of interest

IllegalOfferIid Offer identifier is empty or has an invalid format
UnknownOfferId No offer was found with the given identifier

pProxyOfferid Offer identifier refers to a proxy offer. Proxy offers
must be described using the proxy interface.

Register::export()

OfferId export (in Object reference,
in ServiceTypeName type,
in PropertySeq properties)
raises (InvalidObjectRef,
IllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName) ;
Creates a new service offer and returns an identifer object for the
new service. A client wishing to advertise a new offer is called an
exporter.

Orbix CORBA Programmer’s Reference: Java 439

Parameters

reference Reference to an object that enables a client to interact
with a remote server.
type Identifies the service type for which this offer is adver-
tised.
properties List of named values that describe the service being
offered.
Exceptions
InvalidObjectRef Object reference is nil and the trader has
been configured to reject nil references
IllegalServiceType Service type name is empty or has an
invalid format
UnknownServiceType Service type was not found in service type

InterfaceTypeMismatch

IllegalPropertyName

PropertyTypeMismatch

ReadonlyDynamicProperty

repository

Trader was able to determine that the
interface of the object reference does not
conform to the the interface of the service
type

Property name is empty or has an invalid
format

Property value type does not match the
property definition of the service type

Read-only properties cannot have dynamic
values

MissingMandatoryPropertyNo value was supplied for a mandatory

DuplicatePropertyName

property
Property name appeared more than once in
list of properties

Register::modify()

void modify (in OfferId id,
in PropertyNameSeq del list,

in PropertySeq modify list)
raises (NotImplemented,
IllegalOfferid,
UnknownOfferId,

ProxyOfferId,

IllegalPropertyName,

UnknownPropertyName,

PropertyTypeMismatch,

ReadonlyDynamicProperty,

MandatoryProperty,

ReadonlyProperty,

DuplicatePropertyName) ;

Modifies an existing service offer to add new properties, and
change or delete existing properties.

Parameters

id Identifier of the offer to be modified

440 Orbix CORBA Programmer’s Reference: Java

Exceptions

Parameters

Exceptions

del list Names of properties to be removed

modify list Properties to be added or modified

NotImplemented

IllegalOfferId

UnknownOfferId

ProxyOfferId

IllegalPropertyName

UnknownPropertyName

PropertyTypeMismatch

Trader does not support modification of
properties

Offer identifier is empty or has an invalid
format
No offer was found with the given identifier

Offer identifier refers to a proxy offer. Proxy
offers must be described using the proxy
interface.

Property name is empty or has an invalid
format

Property to be removed does not exist in
offer

Property value type does not match the
property definition of the service type

ReadonlyDynamicPropertyRead-only properties cannot have dynamic

MandatoryProperty
ReadonlyProperty
DuplicatePropertyName

values
Mandatory properties cannot be removed
Read-only properties cannot be modified

Property name appeared more than once in
list of properties

Register::resolve()

Register resolve (in TraderName name)
raises (IllegalTraderName,

UnknownTraderName,

RegisterNotSupported) ;

Resolves a context-relative name for another trader and returns a
Register Object for the resolved trader.

name Identifies the trader to be resolved

IllegalTraderName Trader name was empty, or a component of
the name was not a valid link name

UnknownTraderName Trader name could not be correctly resolved to
a trader

RegisterNotSupportedTrader does not support this operation

Register::withdraw()

void withdraw(in OfferId id)
raises(IllegalOfferId,

Orbix CORBA Programmer’s Reference: Java 441

Parameters

Exceptions

Parameters

Exceptions

UnknownOf ferId,
ProxyOfferId) ;

Removes a service offer.

id Identifier of the offer to be withdrawn

IllegalOfferId Offer identifier is empty or has an invalid format
UnknownOfferId No offer was found with the given identifier

ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers
must be removed using the proxy interface.

Register::withdraw_using_constraint()

void withdraw using constraint (in ServiceTypeName type,
in Constraint constr)
raises (IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

NoMatchingOffers) ;
Withdraws all offers for a particular service type that match a con-
straint expression. Only offers that exactly match the given ser-
vice type are considered. Proxy offers are not considered, and
links are not followed.

type Identifies the service type for which offers are to be
removed.
constr Limits the search to only those offers for which this

expression is true. The simplest constraint expres-
sion is TRUE, which matches any offer and is an effi-
cient way to withdraw all offers for a service type.

IllegalServiceTypeService type name is empty or has an invalid
format

UnknownServiceTypeService type was not found in service type
repository

IllegalConstraint An error occurred while parsing the constraint
expression

NoMatchingOffers No matching offers were found

442 Orbix CORBA Programmer’s Reference: Java

CosTrading::SupportAttributes
Interface

interface SupportAttributes

The read-only attributes in this interface determine what addi-
tional functionality a trader supports, and also provide access to
the service type repository used by the trader.

SupportAttributes::supports_dynamic_propert
ies Attribute

readonly attribute boolean supports dynamic properties;

If FALSE, offers with dynamic properties will not be considered
during a query.

SupportAttributes::supports_modifiable prope
rties Attribute

readonly attribute boolean supports modifiable properties;

If FALSE, the modify operation of the Register interface will raise
NotImplemented.

SupportAttributes::supports_proxy_offers
Attribute

readonly attribute boolean supports proxy offers;

If FALSE, the proxy if attribute of the TraderComponents interface
will return nil, and proxy offers will not be considered during a
query.

SupportAttributes::type_repos Attribute

readonly attribute TypeRepository type repos;

Returns the object reference of the service type repository used
by the trader.

Orbix CORBA Programmer’s Reference: Java 443

444 Orbix CORBA Programmer’s Reference: Java

CosTrading::TraderComponents
Interface

interface TraderComponents

Each of the five major interfaces of the CosTrading module inherit
from this interface. By doing so, any of the trader components can
be obtained using a reference to any of the other components.

A nil value will be returned by an attribute if the trader does not
support that interface.

TraderComponents::admin_if Attribute

readonly attribute Admin admin if;

TraderComponents::link__if Attribute

readonly attribute Link link if;

TraderComponents::lookup_if Attribute

readonly attribute Lookup lookup if;

TraderComponents::proxy_if Attribute

readonly attribute Proxy proxy if;

TraderComponents::register_if Attribute

readonly attribute Register register if;

Orbix CORBA Programmer’s Reference: Java 445

446 Orbix CORBA Programmer’s Reference: Java

CosTrading::Dynamic Module

Defines interfaces and types necessary to support dynamic prop-
erties. Dynamic properties allow an exporter to delegate a prop-
erty's value to a third party. For example, rather than exporting
an offer with a value of 54 for the property weight, you can provide
a reference to an object that will dynamically compute the value
for weight.

Naturally, there are performance issues when using dynamic prop-
erties, and therefore an importer may elect to exclude any offers
containing dynamic properties.

To export an offer (or a proxy offer) with a dynamic property, you
need to do the following:

* Define an object that implements the DynamicPropEval inter-
face.

* Create an instance of the bDynamicProp struct and insert that
into the property's COrBA: :Any value.

* Ensure that the lifetime of the DynamicPropEval object is such
that it will be available whenever dynamic property evaluation
is necessary.

CosTradingDynamic::DynamicProp Struct

struct DynamicProp
DynamicPropEval eval if;
TypeCode returned type;
any extra_info;

}i

Describes a dynamic property. This struct is inserted into a prop-
erty's CORBA: :Any value and provides all of the information neces-
sary for the trader to accomplish dynamic property evaluation.

eval if Object reference for evaluation interface

returned type Value type expected for the property.
The value of returned type must match
the value type of the property as defined
by the service type.

extra info Additional information used for property
evaluation. Orbix Trader supports primi-
tive and user-defined types as values for
extra_info.

CosTradingDynamic::DPEvalFailure Exception

exception DPEvalFailure
CosTrading: : PropertyName name;
TypeCode returned type;
any extra info;

bi

Orbix CORBA Programmer’s Reference: Java 447

Evaluation of a dynamic property failed.

name Name of the property to be evaluated

returned type Value type expected for the property

extra_info Additional information used for property
evaluation

448 Orbix CORBA Programmer’s Reference: Java

CosTradingDynamic::DynamicPro
pEval Interface

interface DynamicPropEval
Defines a single operation for evaluating a dynamic property.

DynamicPropEval::evalDP()

any evalDP(in CosTrading: :PropertyName name,
in TypeCode returned type,
in any extra info)
raises (DPEvalFailure) ;

Evaluates a dynamic property and returns the objects properties.

Parameters

name Name of the property to be evaluated
returned type Value type expected for the property
extra info Additional information used for property evaluation

Exceptions

DPEvalFailure Evaluation of the property failed

Orbix CORBA Programmer’s Reference: Java 449

450 Orbix CORBA Programmer’s Reference: Java

CosTradingRepos Module

Contains the serviceTypeRepository interface, which manages
information about service types for the trading service.

A service type represents the information needed to describe a
service, including an interface type defining the computational sig-
nature of the service, and zero or more properties that augment
the interface. Each traded service, or service offer, is associated
with a service type.

There are several components of a service type:

Interface: The interface repository identifier for an interface
determines the computational signature of a service. If the trading
service is configured to use the interface repository, and this
identifier resolves to an InterfaceDef Object in the interface
repository, then the trading service will ensure that an object in an
exported offer conforms to this interface.

Properties: Any number of properties can be defined for a
service type. Properties typically represent behavioral,
non-functional and non-computational aspects of the service.

Super types: Service types can be related in a hierarchy that
reflects interface type inheritance and property type aggregation.
This hierarchy provides the basis for deciding if a service of one
type may be substituted for a service of another type.

When a new service type is added that has one or more super
types, the service type repository performs a number of consis-
tency checks. First, the repository ensures (if possible) that the
interface of the new type conforms to the interface of the super
type. Second, the repository checks for any property that has
been redefined in the new service type to ensure that it has the
same type as that of the super type, and that its mode is at least
as strong as its mode in the super type.

Orbix CORBA Programmer’s Reference: Java 451

452 Orbix CORBA Programmer’s Reference: Java

CosTradingRepos::ServiceTypeRe
pository Interface

interface ServiceTypeRepository
Contains types and operations for managing the repository.

ServiceTypeRepository::ldentifier Alias

typedef CosTrading::Istring Identifier;

The interface repository identifier of an interface. For example, the
identifier of this interface is
IDL:omg.org/CosTradingRepos/ServiceTypeRepository:1.0.

ServiceTypeRepository::PropStructSeq
Sequence

typedef sequence<PropStruct> PropStructSeq;

ServiceTypeRepository::ServiceTypeNameSeq
Sequence

typedef sequence<CosTrading: :ServiceTypeName>
ServiceTypeNameSeq;

ServiceTypeRepository::ListOption Enum

enum ListOption

{

all,
since

}i

Indicates which service types are of interest.

all All service types
since All service types since a particular incar-
nation

ServiceTypeRepository::PropertyMode Enum

enum PropertyMode
PROP_NORMAL,
PROP_READONLY,
PROP_MANDATORY,
PROP_MANDATORY READONLY

Orbix CORBA Programmer’s Reference: Java 453

Each property has a mode associated with it. The property mode
places restrictions on an exporter when exporting and modifying
service offers.

PROP_NORMAL Property is optional

PROP_READONLY Property is optional, but once a value
has been supplied, it cannot be changed

PROP_MANDATORY A value for this property must be sup-
plied when the offer is exported, but can
also be changed at some later time

PROP_MANDATORY READONLYA value for this property must be sup-
plied when the offer is exported, and
cannot be changed

ServiceType:Repository::IncarnationNumber
Structure

struct IncarnationNumber

{

unsigned long high;

unsigned long low;
}i
Represents a unique, 64-bit identifier that is assigned to each ser-
vice type. This will be replaced by long long when that type is
widely supported.

ServiceTypeRepository::PropStruct Structure

struct PropStruct
CosTrading: : PropertyName name;
TypeCode value type;
PropertyMode mode;

}i

A complete description of a property.

name Name of the property

value type CORBA: : TypeCode describing the type of
values allowed for the property

mode Determines whether a property is man-
datory, and whether the property can be
modified

ServiceTypeRepository::TypeStruct Structure

struct TypeStruct

{
Identifier if name;
PropStructSeqg props;
ServiceTypeNameSeq super types;
boolean masked;
IncarnationNumber incarnation;

454 Orbix CORBA Programmer’s Reference: Java

}i

A complete description of a service type.

if name Interface repository identifier for an
interface

props Defines the properties associated with
this type

super types Service types from which this type

inherits property definitions
masked If TRUE, no new offers can be exported
for this type

incarnation Unique, 64-bit identifier for this type

ServiceTypeRepository::SpecifiedServiceTypes
Union

union SpecifiedServiceTypes switch (ListOption)

{

case since: IncarnationNumber incarnation;

}i

Provides two ways of retrieving the names of the service types
managed by the repository. The union's discriminator can be set
to all if you want to obtain all of the service type names.

since Set this value with an incarnation num-
ber; only the names of those types
whose incarnation numbers are greater
than or equal to this value will be
returned

ServiceTypeRepository::AlreadyMasked
Exception

exception AlreadyMasked {CosTrading::ServiceTypeName name};
The service type cannot be masked if it is already masked.

ServiceTypeRepository::DuplicateServiceType
Name Exception

exception DuplicateServiceTypeName

{

CosTrading: : ServiceTypeName name;

}i

The same service type appeared more than once in the list of
super types.

Orbix CORBA Programmer’s Reference: Java 455

ServiceTypeRepository::HasSubTypes
Exception

exception HasSubTypes

{

CosTrading: :ServiceTypeName the type;
CosTrading: : ServiceTypeName sub type;

}i
A service type cannot be removed if it is the super type of any
other type.

ServiceTypeRepository::InterfaceTypeMismatc
h Exception

exception InterfaceTypeMismatch

{
CosTrading: : ServiceTypeName base service;
Identifier base if;
CosTrading: : ServiceTypeName derived service;
Identifier derived if;

}i
The interface of the new (derived) service type does not conform
to the interface of a super type (base service).

ServiceTypeRepository::NotMasked Exception

exception NotMasked {CosTrading::ServiceTypeName name};
The service type cannot be unmasked if it is not currently masked.

ServiceTypeRepository::ServiceTypeEXxists
Exception

exception ServiceTypeExists {CosTrading::ServiceTypeName name};
Another service type exists with the given name.

ServiceTypeRepository::ValueTypeRedefinition
Exception

exception ValueTypeRedefinition

{
CosTrading: :ServiceTypeName type 1;
PropStruct definition 1;
CosTrading: :ServiceTypeName type 2;
PropStruct definition 2;

}i

The definition of a property in the new service type (type_1) con-
flicts with the definition in a super type (type_2). This error can
result if the value type members do not match, or if the mode of
the property is weaker than in the super type.

456 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

ServiceTypeRepository::incarnation Attribute

readonly attribute IncarnationNumber incarnation;

Determines the next incarnation number that will be assigned to a
new service type. This could be used to synchronize two or more
service type repositories, for example.

ServiceTypeRepository::add_type()

IncarnationNumber add type (in CosTrading::ServiceTypeName name,

in Identifier if name,

in PropStructSeq props,
in ServiceTypeNameSeq super types)

raisges (CosTrading: :IllegalServiceType,

ServiceTypeExists,

InterfaceTypeMismatch,

CosTrading: : I1legalPropertyName,

CosTrading: :DuplicatePropertyName,

ValueTypeRedefinition,

CosTrading: :UnknownServiceType,

DuplicateServiceTypeName) ;

Adds a new service type and returns a unique identifier for the

new type.

name Name to be used for the new type

if name Interface repository identifier for an interface
props Properties defined for this interface interface

super types Zero or more super types from which this type will
inherit interface and property definitions

CosTrading: :
IllegalServiceType

ServiceTypeExists

InterfaceTypeMismatch

CosTrading: :
IllegalPropertyName

CosTrading: :
DuplicatePropertyName

ValueTypeRedefinition

CosTrading: :
UnknownServiceType

Service type name is empty or has an
invalid format

Service type already exists with the same
name

Interface of the new type does not conform
to the interface of a super type

Property name is empty or has an invalid
format

Same property name appears more than
once in props

Property definition in props conflicts with a
definition in a super type

Super type does not exist

DuplicateServiceTypeNameSame super type name appears more than

once in super_ types

Orbix CORBA Programmer’s Reference: Java 457

Parameters

Exceptions

Parameters

Exceptions

Parameters

ServiceTypeRepository::describe_type()

TypeStruct describe type (in CosTrading: :ServiceTypeName name)
raises (CosTrading: :IllegalServiceType,

CosTrading: : UnknownServiceType) ;
Gets the description of a service type and returns a TypeStruct
with the description.

name Name of the type of interest

CosTrading: : Service type name is empty or has an invalid
IllegalServiceTypeformat

CosTrading: : Service type does not exist
UnknownServiceType

ServiceTypeRepository::fully _describe_ type()

TypeStruct fully describe type (in CosTrading::ServiceTypeName
name)

raises (CosTrading: :IllegalServiceType,

CosTrading: : UnknownServiceType) ;
Obtains the full description of a service type. The super types
member of a full description contains the names of the types in
the transitive closure of the super type relation. The props mem-
ber includes all properties inherited from the transitive closure of
the super types. A TypeStruct containing the full description is
returned.

name Name of the type of interest

CosTrading: : Service type name is empty or has an invalid
IllegalServiceTypeformat

CosTrading: : Service type does not exist
UnknownServiceType

ServiceTypeRepository::list_types()
ServiceTypeNameSeq list types(in SpecifiedServiceTypes

which types) ;
Lists the names of some or all of the service types in the reposi-
tory.

which types Specifies which types are of interest

458 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Exceptions

Parameters

ServiceTypeRepository::mask_type()

void mask type (in CosTrading::ServiceTypeName name)
raises (CosTrading: :IllegalServiceType,
CosTrading: : UnknownServiceType,
AlreadyMasked) ;
Masks a service type so that offers can no longer be exported for
it. Masking a service type is useful when the type is considered
deprecated; in other words, no new offers should be allowed, but
existing offers are still supported.

name Name of the type to be masked

CosTrading: : Service type name is empty or has an invalid
IllegalServiceTypeformat

CosTrading: : Service type does not exist
UnknownServiceType

AlreadyMasked Service type is already masked

ServiceTypeRepository::remove_type()

void remove type(in CosTrading::ServiceTypeName name)
raises (CosTrading: :IllegalServiceType,
CosTrading: : UnknownServiceType,

HasSubTypes) ;
Removes an existing service type.

name Name of the type to be removed

CosTrading: : Service type name is empty or has an invalid for-
IllegalServiceTypemat

CosTrading: : Service type does not exist

UnknownServiceType

HasSubTypes Service type cannot be removed if it is the super

type of any other type

ServiceTypeRepository::unmask_type()

void unmask type (in CosTrading::ServiceTypeName name)
raises (CosTrading: :IllegalServiceType,
CosTrading: : UnknownServiceType,
NotMasked) ;

Unmasks a masked service type so that offers can be exported for
it.

name Name of the type to be unmasked

Orbix CORBA Programmer’s Reference: Java 459

Exceptions

CosTrading: : Service type name is empty or has an invalid
IllegalServiceTypeformat

CosTrading: : Service type does not exist
UnknownServiceType

NotMasked Service type is not currently masked

460 Orbix CORBA Programmer’s Reference: Java

CosTransactions Overview

The Object Management Group’s (OMG) object transaction service
(OTS) defines interfaces that integrate transactions into the dis-
tributed object paradigm. The OTS interface enables developers to
manage transactions under two different models of transaction
propagation, implicit and explicit:

* In the implicit model, the transaction context is associated
with the client thread; when client requests are made on
transactional objects, the transaction context associated with
the thread is propagated to the object implicitly.

* In the explicit model, the transaction context must be passed
explicitly when client requests are made on transactional
objects in order to propagate the transaction context to the
object.

Keep the following in mind:

* The cosTransactions Java classes are part of the package
org.omg.CosTransactions.

* All of the OTS class methods can throw the

CORBA: : SystemException exception if an object request broker
(ORB) error occurs.

Overview of Classes

The OTS classes provide the following functionality:

* Managing transactions under the implicit model:
Current

®* Managing transactions under the explicit model:
TransactionFactory
Control

Coordinator
Terminator

®* Managing resources in the CORBA environment:

RecoveryCoordinator
Resource
SubtransactionAwareResource
Synchronization

* Defining transactional interfaces in the CORBA environment:

TransactionalObject
* Reporting system errors:

HeuristicCommit
HeuristicHazard
HeuristicMixed
HeuristicRollback
Inactive
InvalidControl
INVALID TRANSACTION
NoTransaction
NotPrepared
NotSubtransaction
SubtransactionsUnavailable
TRANSACTION MODE

Orbix CORBA Programmer’s Reference: Java 461

TRANSACTION REQUIRED
TRANSACTION ROLLEDBACK
TRANSACTION UNAVAILABLE
Unavailable

General Exceptions

Errors are handled in OTS by using exceptions. Exceptions provide
a way of returning error information back through multiple levels
of procedure or method calls, propagating this information until a
method or procedure is reached that can respond appropriately to
the error.

Each of the following exceptions are implemented as classes. The
exceptions are shown here in two tables: one for the OTS excep-
tions and another for the system exceptions.

Table 8: OTSExceptions
Exception Description

HeuristicCommit This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that all updates have been com-
mitted. See Also:
Resource class

HeuristicHazard This exception is thrown to report that a heuristic
decision has possibly been made by one or more
participants in a transaction and the outcome of all
participants in the transaction is unknown. See
Also:
Current: :commit ()
Resource class
Terminator: :commit ()

HeuristicMixed This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that some updates have been
committed and others rolled back. See Also:
Current: :commit ()
Resource class
Terminator: :commit ()

HeuristicRollback This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that all updates have been rolled
back. See Also:
Resource class

Inactive This exception is thrown when a transactional
operation is requested for a transaction, but that
transaction is already prepared. See Also:
Coordinator: :create subtransaction()
Coordinator: :register resource ()
Coordinator: :register subtran aware ()
Coordinator: :rollback only ()

462 Orbix CORBA Programmer’s Reference: Java

Table8: OTS Exceptions

Exception

Description

InvalidControl

This exception is thrown when an invalid Control
object is used in an attempt to resume a sus-
pended transaction. See Also:

Control class
Current: :resume ()

NotPrepared

This exception is thrown when an operation (such
as a commit ()) is requested for a resource, but that
resource is not prepared. See Also:

RecoveryCoordinator: :replay completion ()
Resource class

NoTransaction

This exception is thrown when an operation is
requested for the current transaction, but no
transaction is associated with the client thread.
See Also:

Current: :commit ()
Current: :rollback ()
Current: :rollback only ()

NotSubtransaction

This exception is thrown when an operation that
requires a subtransaction is requested for a trans-
action that is not a subtransaction. See Also:

Coordinator: :register subtran aware ()

SubtransactionsUnavailable

This exception is thrown when an attempt is made
to create a subtransaction. See Also:

Coordinator: :create subtransaction()
Current: :begin ()

Unavailable This exception is thrown when a Terminator or
Coordinator object cannot be provided by a control
object due to environment restrictions. See Also:
Control: :get coordinator ()
Control: :get terminator ()
The following table shows the system exceptions that can be
thrown:
Table9: System Exceptions
Exception Description

INVALID TRANSACTION

This exception is raised when the transaction con-
text is invalid for a request.

TRANSACTION MODE

This exception is raised when there is a mismatch
between the transaction policy in the target
object’'s IOR and the current transaction mode
(see Table 1).

TRANSACTION REQUIRED

This exception is raised when an invocation on an
object expecting a transaction is performed with
no transaction (see Table 1).

Orbix CORBA Programmer’s Reference: Java 463

Table 9:

System Exceptions

Exception

Description

TRANSACTION ROLLEDBACK This exception is raised when a transactional

operation (such as commit ()) is requested for a
transaction that has been rolled back or marked
for rollback. See Also:

Current: :commit ()
Terminator: :commit ()

TRANSACTION UNAVAILABLE This exception is raised when a transaction invo-

cation is requested but the transaction service is
not available.

General Data Types

OTS defines enumerated data types to represent the status of a
transaction object during its lifetime and to indicate a participant’s
vote on the outcome of a transaction.

Status Enumeration Type

enum Status{

StatusActive,

StatusMarkedRollback,

StatusPrepared,

StatusCommitted,

StatusRolledBack,

StatusUnknown,

StatusNoTransaction,

StatusPreparing,

StatusCommitting,

StatusRollingBack
}i
The status enumerated type defines values that are used to indi-
cate the status of a transaction. Status values are used in both the
implicit and explicit models of transaction demarcation defined by
OTS. The Current:: get status() operation can be called to return
the transaction status if the implicit model is used. The
Coordinator:: get status() operation can be called to return the
transaction status if the explicit model is used.

The status values indicate the following:

StatusActive Processing of a transaction is still in
progress.

StatusMarkedRollback A transaction is marked to be rolled
back.

StatusPrepared A transaction has been prepared

but not completed.

StatusCommitted A transaction has been committed
and the effects of the transaction
have been made permanent.

StatusRolledBack A transaction has been rolled back.

464 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

StatusActive Processing of a transaction is still in

progress.

StatusUnknown The status of a transaction is
unknown.

StatusNoTransaction A transaction does not exist in the
current transaction context.

StatusPreparing A transaction is preparing to com-
mit.

StatusCommitting A transaction is in the process of
committing.

StatusRollingBack A transaction is in the process of
rolling back.

CosTransactions: : Coordinator: :get status ()
CosTransactions: :Current: :get status()

Vote Enumeration Type

enum Vote(

VoteCommit,

VoteRollback,

VoteReadOnly
}i
The vote enumerated type defines values for the voting status of
transaction participants. The participants in a transaction each vote
on the outcome of a transaction during the two-phase commit
process. In the prepare phase, a Resource object can vote whether
to commit or abort a transaction. If a Resource has not modified any
data as part of the transaction, it can vote voteReadOnly to indicate
that its participation does not affect the outcome of the transaction.
The vote values specify the following:

VoteCommit The value used to indicate a vote to commit a
transaction.

VoteRollback The value used to indicate a vote to abort (roll-
back) a transaction.

VoteReadOnly The value used to indicate no vote on the out-
come of a transaction.

CosTransactions: :Resource

OTSPolicyValue Data Type

typedef unsigned short OTSPolicyValue;

const OTSPolicyValue REQUIRES = 1;

const OTSPolicyValue FORBIDS = 2;

const OTSPolicyValue ADAPTS = 3;

const CORBA::PolicyType OTS POLICY TYPE = 56;

The oTspolicyValue data type is used to create POA policy objects
that define behavior of objects during invocations, both with and
without a current transaction.

Orbix CORBA Programmer’s Reference: Java 465

Examples

See Also

The CORBA: :0RB: :create policy() operation is used to create the
policy objects (passing in the appropriate 0TSPolicyvalue value).
The policy object is passed in the list of policy objects passed to
PortableServer: :POA: :create POA().

The oTspolicyvalue values indicate the following:

REQUIRES The target object depends on the presence of a
transaction. If there is no current transaction, a
TRANSACTION REQUIRED system exception is raised.

FORBIDS The target object depends on the absence of a
transaction. If there is a current transaction, the
INVALID TRANSACTION system exception is raised.
When there is no current transaction, the behavior
of the FORBIDS policy is also affected by the
NonTxTargetPolicy.

ADAPTS The target object is invoked within the current
transaction, whether there is one or not.

You cannot create a POA that mixes the 0TSPolicyValue FORBIDS Or
ADAPTS values with the InvocationPolicyValue EITHER Or UNSHARED
values. Attempting to do so raises PortableServer: : InvalidPolicy
exception.

The following example shows the rpaPTS value:

//Java
ORB orb = .
Any policy val = orb.create any();
OTSPolicyValueHelper.insert (policy val, ADAPTS.value);
Policy tx policy =
orb.create policy(OTS POLICY TYPE.value,
policy val) ;

CosTransactions: :NonTxTargetPolicyValue
CosTransactions: : TransactionalObject

InvocationPolicyValue Data Type

typedef unsigned short InvocationPolicyValue;

const InvocationPolicyValue EITHER = 0;

const InvocationPolicyValue SHARED = 1;

const InvocationPolicyValue UNSHARED = 2;

const CORBA::PolicyType INVOCATION POLICY TYPE = 55;

The InvocationPolicyValue data type is used to create POA policy
objects that define the behavior of objects with respect to the
shared and unshared transaction models.

The shared transaction model represents a standard end-to-end
transaction that is shared between the client and the target
object. The unshared transaction model uses asynchronous mes-
saging where separate transactions are used along the invocation
path. Hence, the client and the target object do not share the
same transaction.

The CORBA: :0RB: :create policy() operation is used to create the
policy objects (passing in the appropriate InvocationPolicyValue).
The policy object is passed in the list of policy objects passed to
PortableServer: :POA: :create POA().

466 Orbix CORBA Programmer’s Reference: Java

Note:

Examples

See Also

The InvocationPolicyValue data type values indicate the following:

EITHER The target object supports both shared and
unshared invocations.

SHARED The target object supports synchronous invoca-
tions and asynchronous includes that do not
involve a routing element.

UNSHARED The target object.

You cannot create a POA that mixes the InvocationPolicyValue
EITHER Or UNSHARED Values with the 0TSPolicyValue FORBIDS Or ADAPTS
values. Attempting to do this raises a

PortableServer: : InvalidPolicy exception.

If N0 InvocationPolicy oObject is passed to create POA(), the
InvocationPolicy defaults to SHARED.

The unshared transaction model is not supported in this release.
The following example shows the sHARED value:

//Java
ORB orb =
Any policy val = orb.create any();
InvocationPolicyValueHelper. insert (policy val, SHARED.value) ;
Policy tx policy =
orb.create policy (INVOCATION POLICY TYPE.value,
policy val) ;

CosTransactions: :OTSPolicyValue_
CosTransactions: :NonTxTargetPolicyValue

NonTxTargetPolicyValue Data Type

typedef unsigned short NonTxTargetPolicyValue;

const NonTxTargetPolicyValue PREVENT = 0;

const NonTxTargetPolicyValue PERMIT = 1;

const CORBA::PolicyType NON TX TARGET POLICY TYPE = 57;

The NonTxTargetPolicyValue data type is used to create policy
objects used by clients to affect the behavior of invocations on
objects with an 0Tspolicy of FORBIDS.

The CORBA::0RB::create policy() operation creates the policy
objects (passing the appropriate NonTxTargetPolicyValue). The pol-
icy object is passed in the list of policy objects passed to

CORBA: :PolicyManager: :set policy overrides() and

CORBA: :PolicyCurrent::set policy overrides().

See the CORBA: :PolicyCurrent and CORBA: : PolicyManager classes for
more details on setting policies.

The behavior of the NonTxTargetPolicy values apply to invocations
where there is a current transaction and the target object has the
OTSPolicyValue of FORBIDS. The NonTxTargetPolicy values indicate
the following:

PREVENT The invocation is prevented from proceeding and
the system exception INVALID TRANSACTION iS
raised.

Orbix CORBA Programmer’s Reference: Java 467

PERMIT The invocation proceeds but not in the context of
the current transaction.

The default NonTxTargetPolicy iS PREVENT.
Examples The following example shows the pERMIT value:

//Java
ORB orb =
Any policy val = orb.create any();
NonTxTargetPolicyValueHelper. insert (policy val, PERMIT.value);
Policy tx policy =
orb.create_policy (NON_TX TARGET POLICY TYPE.value,
policy val) ;

See Also CosTransactions: :0TSPolicyValue_
CosTransactions: : InvocationPolicyValue

TransactionPolicyValue Data Type

typedef unsigned short TransactionPolicyValue;
const TransactionPolicyValue Allows shared = 0;
const TransactionPolicyValue Allows none = 1;
const TransactionPolicyValue Requires shared =
const TransactionPolicyValue Allows unshared =
const TransactionPolicyValue Allows either = 4;

const TransactionPolicyValue Requires unshared = 5;
const TransactionPolicyValue Requires either = 6;
const CORBA::PolicyType TRANSACTION POLICY TYPE = 36;

The TransactionalPolicyValue data type has been deprecated and
replaced with the 0TSPolicyValue and InvocationPolicyValue types.

2;
3;

The TransactionalPolicyValue data type has been retained in this
release for backward compatibility. See the CORBA Programmer’s
Guide for details of interoperability with previous Orbix releases.

468 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Control Class

The control class enables explicit control of a factory-created
transaction; the factory creates a transaction and returns a
Control instance associated with the transaction. The Control
object provides access to the Coordinator and Terminator objects
used to manage and complete the transaction.

A Control object can be used to propagate a transaction context
explicitly. By passing a Control object as an argument in a
request, the transaction context can be propagated.
TransactionFactory: :create () can be used to create a transaction
and return the control object associated with it.

// Java
public interface Control

extends ControlOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{
}

The control class extends ControlOperations:

public interface ControlOperations

{

org.omg.CosTransactions.Terminator get terminator() throws
org.omg.CosTransactions.Unavailable;

org.omg.CosTransactions.Coordinator get coordinator () throws
org.omg.CosTransactions.Unavailable;

}

See Also CosTransactions: : Coordinator
CosTransactions: :Current: :get control ()
CosTransactions: :Coordinator: :get status()
CosTransactions: : Terminator
CosTransactions: : TransactionFactory: :create ()
NoTransaction
NotSubtransaction

Control::get_coordinator()

// Java
org.omg.CosTransactions.Coordinator get coordinator () throws

org.omg.CosTransactions.Unavailable;

get_coordinator () returns the Coordinator object for the transaction
with which the control object is associated. The returned
Coordinator object can be used to determine the status of the
transaction, the relationship between the associated transaction
and other transactions, to create subtransactions, and so on.

Exceptions

Unavailable The Coordinator associated with the control object is
not available.

See Also CosTransactions: : Coordinator

Orbix CORBA Programmer’s Reference: Java 469

Control::get_terminator()

// Java
org.omg.CosTransactions.Terminator get terminator() throws

org.omg.CosTransactions.Unavailable;

get_terminator() returns the Terminator object for the transaction
with which the control object is associated. The returned Terminator
object can be used to either commit or roll back the transaction.

Exceptions

Unavailable The Terminator associated with the Control object is
not available.

See Also CosTransactions: : Terminator

470 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Coordinator
Class

The coordinator class enables explicit control of a factory-created
transaction; the factory creates a transaction and returns a
Control instance associated with the transaction.

Control::get coordinator () returns the Coordinator object used to
manage the transaction.

The operations defined by the Coordinator class can be used by
the participants in a transaction to determine the status of the
transaction, determine the relationship of the transaction to other
transactions, mark the transaction for rollback, and create sub-
transactions.

The Coordinator class also defines operations for registering
resources as participants in a transaction and registering sub-
transaction-aware resources with a subtransaction.

// Java
package org.omg.CosTransactions;

public interface Coordinator
extends CoordinatorOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{
}

The Coordinator class extends CoordinatorOperations:

public interface CoordinatorOperations

{

org.omg.CosTransactions.Status get status();
org.omg.CosTransactions.Status get parent status();
org.omg.CosTransactions.Status get top level status();

boolean is same transaction (
org.omg.CosTransactions.Coordinator tc

)i

boolean is related transaction/(
org.omg.CosTransactions.Coordinator tc

)i

boolean is_ ancestor transaction(
org.omg.CosTransactions.Coordinator tc

)i

boolean is descendant transaction(
org.omg.CosTransactions.Coordinator tc

)i

boolean is top level transaction();

int hash transaction() ;

Orbix CORBA Programmer’s Reference: Java 471

See Also

int hash top level tran();

org.omg.CosTransactions.RecoveryCoordinator
register resource (
org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.Inactive;

void register synchronization(
org.omg.CosTransactions.Synchronization sync
) throws org.omg.CosTransactions.Inactive,
org.omg.CosTransactions.SynchronizationUnavailable;

void register subtran aware (
org.omg.CosTransactions.SubtransactionAwareResource r
) throws org.omg.CosTransactions.Inactive,
org.omg.CosTransactions.NotSubtransaction;

void rollback only() throws
org.omg.CosTransactions. Inactive;

java.lang.String get transaction name() ;

org.omg.CosTransactions.Control create subtransaction()
throws org.omg.CosTransactions.SubtransactionsUnavailable,
org.omg.CosTransactions. Inactive;

org.omg.CosTransactions.PropagationContext get txcontext ()
throws org.omg.CosTransactions.Unavailable;

}

CosTransactions: : Control
CosTransactions: :Control: :get coordinator ()
CosTransactions: : Terminator

Coordinator::create_subtransaction()

// Java
org.omg.CosTransactions.Control create subtransaction() throws

org.omg.CosTransactions.SubtransactionsUnavailable,
org.omg.CosTransactions. Inactive;

create subtransaction() returns the Control object associated with
the new subtransaction.

create subtransaction() creates a new subtransaction for the
transaction associated with the Coordinator object. A subtransac-
tion is one that is embedded within another transaction; the trans-
action within which the subtransaction is embedded is referred to
as its parent. A transaction that has no parent is a top-level trans-
action. A subtransaction executes within the scope of its parent
transaction and can be used to isolate failures; if a subtransaction
fails, only the subtransaction is rolled back. If a subtransaction
commits, the effects of the commit are not permanent until the
parent transaction commits. If the parent transaction rolls back,
the subtransaction is also rolled back.

472 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

See Also

See Also

Subtransaction Subtransactions are not supported.
sUnavailabl
e

Inactive The transaction is already prepared.

CosTransactions: : Control

Coordinator::get_parent_status()

// Java

org.omg.CosTransactions.Status get parent status();

get parent status() returns the status of the parent of the transac-
tion associated with the Coordinator object. For more information,
See create subtransaction ()

The status returned indicates which phase of processing the trans-
action is in. See the reference page for the status type for infor-
mation about the possible status values. If the transaction
associated with the coordinator object is a subtransaction, the sta-
tus of its parent transaction is returned. If there is no parent
transaction, the status of the transaction associated with the
Coordinator object itself is returned.

CosTransactions::Coordinator: :create subtransaction ()
CosTransactions: :Coordinator: :get status()
CosTransactions: :Coordinator: :get top level status()
CosTransactions: :Status

Coordinator::get_status()

// Java
org.omg.CosTransactions.Status get status();

get_status () returns the status of the transaction associated with
the Coordinator object. The status returned indicates which phase
of processing the transaction is in. See the reference page for the
Status type for information about the possible status values.

CosTransactions::Coordinator:iiget parent status()

CosTransactions: :Coordinator: :get top level status()
CosTransactions: :Status

Coordinator::get_top_level_status()

// Java
org.omg.CosTransactions.Status get top level status();

get_top level status() returns the status of the top-level ancestor
of the transaction associated with the coordinator object. See
Coordinator: :create subtransaction() for more information.

Orbix CORBA Programmer’s Reference: Java 473

See Also

Exceptions

See Also

See Also

The status returned indicates which phase of processing the trans-
action is in. See the reference page for the status type for infor-
mation about the possible status values. If the transaction
associated with the coordinator object is the top-level transaction,
its status is returned.

CosTransactions::Coordinator: :create subtransaction()
CosTransactions: :Coordinator: :get status()
CosTransactions: :Coordinator: :get parent status ()
CosTransactions: : Status

Coordinator::get_transaction_name()

// Java
java.lang.String get transaction name() ;

get transaction name () returns the name of the transaction associ-
ated with the Coordinator object.

Coordinator::get_txcontext()

// Java
org.omg.CosTransactions.PropagationContext get txcontext ()

throws org.omg.CosTransactions.Unavailable;

Returns the propagation context object which is used to export the
current transaction to a new transaction service domain.

Unavailable The propagation context is unavailable.

CosTransactions::TransactionFactory::recreate ()

Coordinator::hash_top_level tran()

// Java
int hash top level tran();

hash top level tran() returnsahash code for the top-level ancestor
of the transaction associated with the Coordinator object. If the
transaction associated with the Coordinator object is the top-level
transaction, its hash code is returned. See create subtransaction ()
for more information. The returned hash code is typically used as
an index into a table of coordinator objects. The low-order bits of
the hash code can be used to hash into a table with a size that is a
power of two.

CosTransactions::Coordinator: :create subtransaction ()
CosTransactions: :Coordinator: :hash transaction ()

Coordinator::hash_transaction()

// Java
int hash transaction();

hash transaction() returns a hash code for the transaction associ-
ated with the Coordinator object.

474 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

See Also

Parameters

See Also

CosTransactions::Coordinator::ihash top level tran()

Coordinator::is_ancestor_transaction()

// Java
boolean is ancestor transaction(

org.omg.CosTransactions.Coordinator tc

)i

is ancestor transaction() returns true if the transaction is an
ancestor or if the two transactions are the same; otherwise, the
method returns false.

te Specifies the coordinator of another transaction to
compare with the Coordinator object.

is ancestor transaction() determines whether the transaction
associated with the coordinator object is an ancestor of the trans-
action associated with the coordinator specified in the tc parame-
ter. See create subtransaction() for more information.

CosTransactions::Coordinator::is descendant transaction/()
CosTransactions: :Coordinator: :is related transaction()
CosTransactions: :Coordinator: :is same transaction ()
CosTransactions: :Coordinator: :create subtransaction()

Coordinator::is_descendant_transaction()

// Java
boolean is descendant transaction(

org.omg.CosTransactions.Coordinator tc
);
is descendant transaction() returns true if the transaction is a
descendant or if the two transactions are the same; otherwise, the
method returns false.

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

is descendant transaction() determines whether the transaction
associated with the coordinator object is a descendant of the
transaction associated with the coordinator specified in the tc
parameter. See Coordinator: :create subtransaction() for more
information.

CosTransactions::Coordinator::is descendant transaction/()
CosTransactions: :Coordinator: :is related transaction()
CosTransactions: :Coordinator: :is same transaction ()
CosTransactions: :Coordinator: :is top level transaction ()
CosTransactions: :Coordinator: :create subtransaction()

Coordinator::is_related_transaction()

// Java
boolean is related transaction(

Orbix CORBA Programmer’s Reference: Java 475

Parameters

See Also

Parameters

See Also

See Also

org.omg.CosTransactions.Coordinator tc

);

is related transaction() returns true if both transactions are de-
scendants of the same transaction; otherwise, the method returns
false.

te Specifies the coordinator of another transaction to
compare with the Coordinator object.

is related transaction() determines whether the transaction
associated with the coordinator object and the transaction associ-
ated with the coordinator specified in the tc parameter have a
common ancestor. See create subtransaction() for more informa-
tion.

CosTransactions::Coordinator::is descendant transaction()

CosTransactions: :Coordinator: :is ancestor transaction/()
CosTransactions: :Coordinator: :is same transaction ()
CosTransactions: :Coordinator::is top level transaction ()
CosTransactions: :Coordinator: :create subtransaction()

Coordinator::is_same_transaction()

// Java
boolean is same transaction (

org.omg.CosTransactions.Coordinator tc

)i

is same transaction() returns true if the transactions associated
with the two Coordinator objects are the same transaction; other-
wise, the method returns false.

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

is same transaction() determines whether the transaction associ-
ated with the coordinator object and the transaction associated
with the coordinator specified in the tc parameter are the same
transaction.

CosTransactions::Coordinator::is descendant transaction/()
CosTransactions: :Coordinator: :is related transaction/()
CosTransactions: :Coordinator: :is ancestor transaction()
CosTransactions: :Coordinator::is top level transaction ()

is_top_level transaction()

// Java
boolean is top level transaction();

is top level transaction() returns true if the transaction is a
top-level transaction; otherwise, the method returns false.

is top level transaction() determines whether the transaction as-
sociated with a coordinator object is a top-level transaction. See
create subtransaction() for more information.

CosTransactions::Coordinator::is descendant transaction()

476 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

CosTransactions: :Coordinator: :is related transaction()
CosTransactions: :Coordinator: :1is same transaction()
CosTransactions: :Coordinator: :is ancestor transaction()
CosTransactions: :Coordinator: :create subtransaction()

register_resource()

// Java
org.omg.CosTransactions.RecoveryCoordinator register resource (

org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.Inactive;

register resource () registers a specified resource as a participant
in the transaction associated with a coordinator object. When the
transaction ends, the registered resource must commit or roll back
changes made as part of the transaction. Only server applications
can register resources. See Resource class for more information.
register resource() returns a RecoveryCoordinator object that the
registered Resource object can use during recovery.

resource The resource to register as a participant.

CORBA: : TRANSAC The transaction is marked for rollback only.
TION ROLLED
BACK

CosTransactions: :RecoveryCoordinator
CosTransactions: :Resource

register_subtran_aware()

// Java
void register subtran aware (

org.omg.CosTransactions. SubtransactionAwareResource r
) throws org.omg.CosTransactions.Inactive,
org.omg.CosTransactions.NotSubtransaction;

register subtran aware () registers a specified resource with the
subtransaction associated with a Coordinator object. The resource
is registered with the subtransaction only, not as a participant in
the top-level transaction. (register resource() can be used to
register the resource as a participant in the top-level transaction.)
Only server applications can register resources.

resource The resource to register.

When the transaction ends, the registered resource must commit
or roll back changes made as part of the subtransaction. See the
reference page for the SubtransactionAwareResource class for more
information.

Orbix CORBA Programmer’s Reference: Java 477

Exceptions

NotSubtransact The transaction associated with the Coordinator object
ion is not a subtransaction

Inactive The subtransaction or any ancestor of the subtransac-
tion has ended.

CORBA: : TRANSAC The transaction is marked for rollback only.
TION ROLLED
BACK

See Also CosTransactions: :RecoveryCoordinator
CosTransactions: : SubtransactionAwareResource

register_synchronization()

// Java
void register synchronization(

org.omg.CosTransactions.Synchronization sync
) throws org.omg.CosTransactions.Inactive,
org.omg.CosTransactions.SynchronizationUnavailable;

register synchronization() registers a specified synchronization
object for the transaction associated with a Coordinator object. See
the reference page for the Ssynchronization class for more informa-

tion.
Parameters

sync The synchronization object to register.
Exceptions

Inactive The transaction is already prepared.

CORBA: : TRANSAC The transaction is marked for rollback only.
TION ROLLED
BACK

See Also CosTransactions: :RecoveryCoordinator
CosTransactions: : Synchronization

rollback _only()

// Java
void rollback only() throws org.omg.CosTransactions.Inactive;

rollback only() marks the transaction associated with the
Coordinator object so that the only possible outcome for the trans-
action is to roll back. The transaction is not rolled back until the
participant that created the transaction either commits or aborts
the transaction.

OTS allows Terminator: :rollback () to be called instead of
rollback only(). Calling Terminator::rollback() rolls back the
transaction immediately, preventing unnecessary work from being
done between the time the transaction is marked for rollback and
the time the transaction is actually rolled back.

478 Orbix CORBA Programmer’s Reference: Java

Exceptions

Inactive The transaction is already prepared.

See Also CosTransactions::Terminator::rollback ()

Orbix CORBA Programmer’s Reference: Java 479

480 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Current Class

The current class represents a transaction that is associated with
the calling thread; the thread defines the transaction context. The
transaction context is propagated implicitly when the client issues
requests.

This class defines member methods for beginning, committing,
and aborting a transaction using the implicit model of transaction
control. It also defines member methods for suspending and
resuming a transaction and retrieving information about a trans-
action.

// Java
package org.omg.CosTransactions;

public interface Current extends
org.omg.CORBA. Current

void begin() throws
org.omg.CosTransactions.SubtransactionsUnavailable;

void commit (
boolean report heuristics
) throws org.omg.CosTransactions.NoTransaction,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

void rollback() throws org.omg.CosTransactions.NoTransaction;

void rollback only() throws
org.omg.CosTransactions.NoTransaction;

org.omg.CosTransactions.Status get status();
java.lang.String get transaction name () ;

void set timeout (
int seconds) ;

int get timeout () ;
org.omg.CosTransactions.Control get control() ;
org.omg.CosTransactions.Control suspend() ;
void resume (

org.omg.CosTransactions.Control which
) throws org.omg.CosTransactions.InvalidControl;

}

See Also CosTransactions: :Control
CosTransactions: :Status

Orbix CORBA Programmer’s Reference: Java 481

Current::begin()

// Java
void begin() throws

org.omg.CosTransactions.SubtransactionsUnavailable;

begin() creates a new transaction and modifies the transaction
context of the calling thread to associate the thread with the new
transaction. If subtransactions are not available, an attempt to
create a nested transaction throws the SubtransactionsUnavailable
exception.

See Also CosTransactions::Current::commit ()
CosTransactions: :Current: :rollback ()
CosTransactions: :Current: :rollback only ()

Current::commit()

// Java
void commit (

boolean report heuristics
) throws org.omg.CosTransactions.NoTransaction,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

commit () attempts to commit the transaction associated with the
calling thread.

Parameters

report_heurist specifies whether to report heuristic decisions for the
ics transaction associated with the calling thread.

Exceptions

NoTransaction NO transaction is associated with the calling thread.
exception

HeuristicMixed The report heuristics parameter is true and a heuris-
tic decision causes inconsistent outcomes

HeuristicHazar The report heuristics parameter is true and a heuris-
d tic decision might have caused inconsistent outcomes.

TRANSACTION RONot all the transaction participants commit.
LLEDBACK

See Also CosTransactions::Current::begin ()
CosTransactions: :Current: :rollback ()
CosTransactions: :Current: :rollback only ()

Current::get_control()

// Java
org.omg.CosTransactions.Control get control() ;

get _control() returns the control object for the transaction associ-
ated with the calling thread. If no transaction is associated with the
calling thread, a null object reference is returned.

See Also CosTransactions::Current::resume ()

482 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

See Also

Parameters

See Also

Current::get_status()

// Java
org.omg.CosTransactions.Status get status();

get_status () returns the status of the transaction associated with
the calling thread. If no transaction is associated with the calling
thread, the StatusNoTransaction value is returned.

The status returned indicates the processing phase of the transac-
tion. See the status type for information about the possible status
values.

CosTransactions: :Status Enumeration Type

Current::get_timeout()

// Java

int get timeout ()

Returns the timeout in seconds for transactions created using the
begin () operation.

CosTransactions: :Current

CosTransactions: :Current: :begin ()
CosTransactions: :Current: :set timeout ()

Current::get_transaction_name()

// Java
java.lang.String get transaction name() ;

get_transaction name() returns the name of the transaction associ-
ated with the calling thread. If no transaction is associated with the
calling thread, a null string is returned.

CosTransactions::Current

Current::resume()

// Java
void resume (

org.omg.CosTransactions.Control which
) throws org.omg.CosTransactions.InvalidControl;

resume () resumes the suspended transaction identified by the which
parameter and associated with the calling thread. If the value of

the which parameter is a null object reference, the calling thread

disassociates from the transaction. If the control object is invalid,
the InvalidControl exception is thrown.

which Specifies a control object that represents the transac-
tion context associated with the calling thread.

CosTransactions::Current
CosTransactions: :Current: :get control ()
CosTransactions: :Current: : suspend ()

Orbix CORBA Programmer’s Reference: Java 483

Exceptions

See Also

Exceptions

See Also

Current::rollback()

// Java
void rollback() throws org.omg.CosTransactions.NoTransaction;

rollback () rolls back the transaction associated with the calling
thread. If the transaction was started with begin (), the transaction
context for the thread is restored to its state before the transaction
was started; otherwise, the transaction context is set to nuill.

NoTransaction NO transaction is associated with the calling thread.

CosTransactions::Current
CosTransactions: :Current: :begin ()
CosTransactions: :Current: :rollback only ()

Current::rollback only()

// Java
void rollback only() throws

org.omg.CosTransactions.NoTransaction;

rollback only() marks the transaction associated with the calling
thread for rollback. The transaction is modified so that the only
possible outcome is to roll back the transaction. Any participant in
the transaction can mark the transaction for rollback. The transac-
tion is not rolled back until the participant that created the trans-
action either commits or aborts the transaction.

OTS allows Current::rollback() to be called instead of

rollback only(). Calling Current::rollback() rolls back the trans-
action immediately, preventing unnecessary work from being
done between the time the transaction is marked for rollback and
the time the transaction is actually rolled back.

NoTransaction NO transaction is associated with the calling thread.

CosTransactions::Current
CosTransactions: :Current: :rollback ()

Current::set_timeout()

// Java
void set timeout (

int seconds

);
set timeout () sets a timeout period for the transaction associated
with the calling thread. The timeout affects only those transac-
tions begun with begin () after the timeout is set. The seconds
parameter sets the number of seconds from the time the transac-
tion is begun that it waits for completion before being rolled back;
if the seconds parameter is zero, no timeout is set for the transac-
tion.

484 Orbix CORBA Programmer’s Reference: Java

Parameters

seconds The number of seconds that the transaction waits for
completion before rolling back.

See Also CosTransactions::Current
CosTransactions: :Current: :begin ()
CosTransactions: :Current: :get timeout ()

Current::suspend()

// Java
org.omg.CosTransactions.Control suspend() ;

suspend () suspends the transaction associated with the calling
thread. An identifier for the suspended transaction is returned by
the method. This identifier can be passed to resume () to resume the
suspended transaction.

See Also CosTransactions::Current
CosTransactions: :Current: : resume ()

Orbix CORBA Programmer’s Reference: Java 485

486 Orbix CORBA Programmer’s Reference: Java

CosTransactions::RecoveryCoordi
nator Class

See Also

Parameters

Exceptions

See Also

The RecoveryCoordinator class enables a recoverable object to con-
trol the recovery process for an associated resource. A
RecoveryCoordinator Object can be obtained for a recoverable
object via the coordinator object associated with the recoverable
object. Coordinator::register resource() returns a
RecoveryCoordinator Object

// Java
package org.omg.CosTransactions;

public interface RecoveryCoordinator
extends RecoveryCoordinatorOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{
}

The RecoveryCoordinator class extends
RecoveryCoordinatorOperations:

public interface RecoveryCoordinatorOperations

{

org.omg.CosTransactions.Status replay completion(
org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.NotPrepared;

}

CosTransactions: :Resource

RecoveryCoordinator::replay_completion()

// Java
org.omg.CosTransactions.Status replay completion (

org.omg.CosTransactions.Resource r

) throws org.omg.CosTransactions.NotPrepared;
replay completion() notifies the recovery coordinator that the
commit () Or rollback () operations have not been performed for the
associated resource. Notifying the coordinator that the resource
has not completed causes completion to be retried, which is useful
in certain failure cases. The method returns the current status of
the transaction.

resource The resource associated with the recovery coordina-
tor.

NotPrepared The resource is not in the prepared state.

CosTransactions: :Resource

CosTransactions: :Status

Orbix CORBA Programmer’s Reference: Java 487

488 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Resource Class

See Also

The Resource class represents a recoverable resource, that is, a
transaction participant that manages data subject to change
within a transaction. The Resource class specifies the protocol that
must be defined for a recoverable resource. Interfaces that inherit
from this class must implement each of the member methods to
manage the data appropriately for the recoverable object based
on the outcome of the transaction. These methods are invoked by
the Transaction Service to execute two-phase commit; the
requirements of these methods are described in the following sec-
tions.

To become a participant in a transaction, a Resource object must
be registered with that transaction.

Coordinator: :register resource() can be used to register a
resource for the transaction associated with the Coordinator
object.

The full name for the class is CosTransactions: :Resource.

// Java
package org.omg.CosTransactions;

public interface Resource
extends ResourceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{

}

The Resource class extends ResourceOperations:

public interface ResourceOperations

{

org.omg.CosTransactions.Vote prepare () throws
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

void rollback() throws
org.omg.CosTransactions.HeuristicCommit,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

void commit () throws org.omg.CosTransactions.NotPrepared,
org.omg.CosTransactions.HeuristicRollback,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

void commit one phase() throws
org.omg.CosTransactions.HeuristicHazard;

void forget () ;

}

CosTransactions::Synchronization

CosTransactions: :RecoveryCoordinator

CosTransactions: :Vote

Orbix CORBA Programmer’s Reference: Java 489

Two-phase Commit
The two-phase commit requires methods prepare () and commit ().

prepare () must be defined to vote on the outcome of the transac-
tion with which the resource is registered. The transaction service
invokes this method as the first phase of a two-phase commit; the
return value controls the second phase:

®* Returns voteReadOnly if the resource’s data is not modified by
the transaction. The transaction service does not invoke any
other methods on the resource, and the resource can forget
all knowledge of the transaction.

®* Returns voteCommit if the resource’s data is written to stable
storage by the transaction and the transaction is prepared.
Based on the outcome of other participants in the transaction,
the transaction service calls either commit () or rollback() for
the resource. The resource should store a reference to the
RecoveryCoordinator object in stable storage to support recov-
ery of the resource.

. Returns voteRollback for all other situations. The transaction
service calls rollback () for the resource, and the resource can
forget all knowledge of the transaction.

commit () must be defined to commit all changes made to the
resource as part of the transaction. If forget () has already been
called, no changes need to be committed. If the resource has not
been prepared, the NotPrepared exception must be thrown.

Use the heuristic outcome exceptions to report heuristic decisions
related to the resource. The resource must remember heuristic
outcomes until forget () is called, so that the same outcome can
be returned if the transaction service calls commit () again.

One-phase Commit

commit_one phase () must be defined to commit all changes made
to the resource as part of the transaction. The transaction service
may invoke this method if the resource is the only participant in
the transaction. Unlike commit (), commit one phase () does not
require that the resource be prepared first. Use the heuristic out-
come exceptions to report heuristic decisions related to the
resource. The resource must remember heuristic outcomes until
forget () is called, so that the same outcome can be returned if the
transaction service calls commit one phase () again.

Rollback Transaction

rollback () must be defined to undo all changes made to the
resource as part of the transaction. If forget () has been called, no
changes need to be undone. Use the heuristic outcome exceptions
to report heuristic decisions related to the resource. The resource
must remember heuristic outcomes until forget () is called, so that
the same outcome can be returned if the transaction service calls
rollback () again.

Forget Transaction

forget () must be defined to cause the resource to forget all knowl-
edge of the transaction. The transaction service invokes this
method if the resource throws a heuristic outcome exception in
response to commit () Or rollback().

490 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Subtransaction
AwareResource Class

Note:

See Also

This class is not supported in this release of OTS for Orbix. The
information in this section therefore does not apply to this release.

The subtransactionAwareResource class represents a recoverable
resource that makes use of nested transactions. This specialized
resource object allows the resource to be notified when a sub-
transaction for which it is registered either commits or rolls back.

The SubtransactionAwareResource class specifies the protocol that
must be defined for this type of recoverable resource. Interfaces
that inherit from this class must implement each of the member
methods to manage the recoverable object’'s data appropriately
based on the outcome of the subtransaction. These methods are
invoked by the transaction service; the requirements of these
methods are described below.

Coordinator: :register subtran aware() can be used to register a
resource with the subtransaction associated with the Coordinator
object. The resource can also register with the top-level transac-
tion by using Coordinator: :register resource() as well. In this
case, the protocol for the Resource class must be defined in addi-
tion to the protocol for subtransactionAwareResource. See the refer-
ence page for the rResource class for more information.

// Java
package org.omg.CosTransactions;

public interface SubtransactionAwareResource
extends SubtransactionAwareResourceOperations,
org.omg.CosTransactions.Resource

{
}

The subtransactionAwareResource class extends
SubtransactionAwareResourceOperations:

package org.omg.CosTransactions;

public interface SubtransactionAwareResourceOperations
extends
org.omg.CosTransactions.ResourceOperations

void commit subtransaction(
org.omg.CosTransactions.Coordinator parent

)i
void rollback subtransaction();

}

CosTransactions: : Coordinator
CosTransactions: :Resource
CosTransactions: :Status

Orbix CORBA Programmer’s Reference: Java 491

Commit Subtransaction

commit subtransaction() must be defined to commit all changes
made to the resource as part of the subtransaction. If an ancestor
transaction rolls back, the subtransaction’s changes are rolled
back. The transaction service invokes this method if the resource
is registered with a subtransaction and it is committed.

The method must be defined to take a Coordinator object as its
only argument. When the transaction service invokes this method,
it passes the Coordinator object associated with the parent trans-
action.

Rollback Subtransaction

rollback subtransaction() must be defined to undo all changes
made to the resource as part of the subtransaction. The transac-
tion service invokes this method if the resource is registered with
a subtransaction and it is rolled back.

492 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Synchronization

Class

The synchronization class represents a non-recoverable object
that maintains transient state data and is dependent on a recover-
able object to ensure that the data is persistent. To make data
persistent, a synchronization object moves its data to one or more
resources before the transaction completes.

The synchronization class specifies a protocol that must be defined
for this type of object. A synchronization object must be imple-
mented as a class derived from the Synchronization class. The
derived class must implement each of the member methods to
ensure that the data maintained by the nonrecoverable object is
made recoverable. The transaction service invokes these methods
before and after the registered resources commit; the specific
requirements of these methods are described in the following sec-
tions.

Coordinator: :register synchronization() can be used to register a
synchronization object with the transaction associated with the
Coordinator object

// Java
package org.omg.CosTransactions;

public interface Synchronization
extends SynchronizationOperations,
org.omg.CosTransactions.TransactionalObject

{
}

The Synchronization class extends SynchronizationOperations:

public interface SynchronizationOperations
extends
org.omg.CosTransactions.TransactionalObjectOperations

void before completion() ;

void after completion (
org.omg.CosTransactions.Status s

)i

}

Before Completion

before completion() must be defined to move the synchronization
object’s data to a recoverable object. The transaction service

invokes this method prior to the prepare phase of the transaction.
The method is invoked only if the synchronization object is regis-
tered with a transaction and the transaction attempts to commit.

The only exceptions this method can throw are
CORBA: : SystemException exceptions. Throwing other exceptions can
cause the transaction to be marked for rollback only.

Orbix CORBA Programmer’s Reference: Java 493

See Also

After Completion

after completion() must be defined to do any necessary process-
ing required by the synchronization object; for example, the
method could be used to release locks held by the transaction.
The transaction service invokes this method after the outcome of
the transaction is complete. The method is invoked only if the syn-
chronization object is registered with a transaction and the trans-
action has either committed or rolled back.

The method must be defined to take a status value as its only
argument. When the transaction service invokes this method, it
passes the status of the transaction with which the synchroniza-
tion object is registered.

The only exceptions this method can throw are
CORBA: : SystemException exceptions. Any exceptions that are
thrown have no effect on the commitment of the transaction.

CosTransactions: :Coordinator

CosTransactions: :Coordinator: :register synchronization ()
CosTransactions: :Resource

CosTransactions: :Status

494 Orbix CORBA Programmer’s Reference: Java

CosTransactions::Terminator
Class

The Terminator class enables explicit termination of afactory-created
transaction. The transaction with which the Terminator object isassociated can
be either committed or rolled back. control: :get terminator () can be used
to return the Terminator object associated with atransaction// Java
package org.omg.CosTransactions;

public interface Terminator
extends TerminatorOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{
}

The Terminator class extends TerminatorOperations:

public interface TerminatorOperations

{

void commit (
boolean report heuristics
) throws org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

void rollback() ;

See Also CosTransactions: : Coordinator
CosTransactions: :Control: :get terminator ()
CosTransactions: :Control
CosTransactions: :Status

Terminator::commit()

// Java
void commit (

boolean report heuristics
) throws org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

commit () attempts to commit the transaction associated with the
Terminator object. If the report heuristics parameter is true, the
HeuristicHazard exception is thrown when the participants report
that a heuristic decision has possibly been made.

Parameters

report heurist Specifies whether to report heuristic decisions for the
ics commit.

Orbix CORBA Programmer’s Reference: Java 495

Exceptions

HeuristicMixed The transaction has been marked as rollback-only, or
all participants in the transaction do not agree to com-
mit.

See Also CosTransactions: :Coordinator

CosTransactions: :Terminator
CosTransactions: :Terminator: :rollback ()
CosTransactions: :Control

Terminator::rollback()

// Java
void rollback() ;

rollback () rolls back the transaction associated with the Terminator
object.

See Also CosTransactions: : Coordinator
CosTransactions: : Terminator
CosTransactions: :Terminator: :commit ()

496 Orbix CORBA Programmer’s Reference: Java

CosTransactions::TransactionalO
bject Class

The TransactionalObject interface has been deprecated and
replaced with transactional policies (see “OTSPolicyValue Data
Type” on page 466). Backward compatibility with existing OTS
implementations is provided for outbound requests only and only
if the target object does not have a transactional policy in its IOR.

See the CORBA Programmer’s Guide for details of interoperability
with existing OTS implementations.

// Java
package org.omg.CosTransactions;

public interface TransactionalObject
extends TransactionalObjectOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{
}

The TransactionalObject class extends
TransactionalObjectOperations:

public interface TransactionalObjectOperations

{
}

Orbix CORBA Programmer’s Reference: Java 497

498 Orbix CORBA Programmer’s Reference: Java

CosTransactions::TransactionFact
ory Class

The TransactionFactory class represents a transaction factory that
allows the originator of transactions to begin a new transaction for
use with the explicit model of transaction demarcation. Servers
provide a default instance of this class. Clients can bind to the
default instance by using the standard binding mechanism for the
object request broker.

// Java
package org.omg.CosTransactions;

public interface TransactionFactory
extends TransactionFactoryOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity

{

}

The TransactionFactory class extends

TransactionFactoryOperations:

public interface TransactionFactoryOperations

{

org.omg.CosTransactions.Control create (
int time out

)i

org.omg.CosTransactions.Control recreate (
org.omg.CosTransactions.PropagationContext ctx

)i

}

See Also CosTransactions: :Control

TransactionFactory::create()

// Java
org.omg.CosTransactions.Control create (

int time out

)i

create () creates a new top-level transaction for use with the explicit
model of transaction demarcation. A Control object is returned for
the transaction. The control object can be used to propagate the
transaction context. See the reference page for the control class
for more information.

Parameters

timeout Specifies the number of seconds that the transaction
waits to complete before rolling back. If the timeout
parameter is zero, no timeout is set for the transac-
tion.

Orbix CORBA Programmer’s Reference: Java 499

See Also

See Also

CosTransactions::TransactionFactory

CosTransactions: :Control

TransactionFactory::recreate()

// Java
org.omg.CosTransactions.Control recreate (

org.omg.CosTransactions.PropagationContext ctx

)

Creates a new representation for an existing transaction defined in
the propagation context ctx. This is used to import a transaction
from another domain. The method returns a control object for the
new transaction representation.

CosTransactions::Coordinator: :get txcontext ()

500 Orbix CORBA Programmer’s Reference: Java

CosTypedEventChannelAdmin

Module

Note:

The CosTypedEventChanneladmin module defines the interfaces for
making connections between suppliers and consumers that use
either generic or typed communication. Its interfaces are special-
izations of the corresponding interfaces in the CosEventChannel
module.

Orbix’s implementation of typed events only supports the typed
push style of event communication. The TypedProxyPullSupplier
interface, the TypedSupplierAdmin::obtain typed pull consumer ()
operation, and the
TypedConsumerAdmin: :obtain typed pull supplier () operation are
not implemented.

CosTypedEventChannelAdmin Exceptions

CosTypedEventChannelAdmin::InterfaceNotSu
pported

exception InterfaceNotSupported {};

InterfaceNotSupported is raised when an an attempt to obtain a
TypedProxyPushConsumer fails to find an implementation that sup-
ports the strongly typed interface required by the client.

CosTypedEventChannelAdmin::NoSuchImplem
entation

exception NoSuchImplementation {};

NoSuchImplementation is raised when an attempt to obtain a
ProxyPushSupplier fails to find an implementation that supports the
strongly typed interface required by the client.

CosTypedEventChannelAdmin Data Types

CostTypedEventChannelAdmin::Key Type

typedef string Key;
A string that holds the interface repository ID of the strongly
typed interface used by a typed event client.

Orbix CORBA Programmer’s Reference: Java 501

502 Orbix CORBA Programmer’s Reference: Java

CosTypedEventChannelAdmin:: Ty
pedConsumerAdmin Interface

Parameters

Exceptions

Parameters

interface TypedConsumerAdmin :
CosEventChannelAdmin: : ConsumerAdmin

TypedProxyPullSupplier obtain typed pull supplier (
in Key supported interface)
raises (InterfaceNotSupported) ;

CosEventChannelAdmin: : ProxyPushSupplier
obtain typed push supplier (in Key uses_interface)
raises (NoSuchImplementation) ;
}i
The TypedConsumerAdmin interface extends the functionality of the
generic ConsumerAdmin to support connecting consumer to a typed
event channel.

TypedConsumerAdmin::obtain_typed_pull_sup
plier()
TypedProxyPullSupplier obtain typed pull supplier(
in Key supported interface)
raises (InterfaceNotSupported) ;
The obtain typed pull supplier() operation returns a

TypedProxyPullSupplier that supports the interface
Pull<supported interfaces.

supported interfaceSpecifies the interface which the returned
TypedProxyPullSuplier must support.

InterfaceNotSupportedRaised if TypedProxyPullSupplier implementa-
tion supporting the specified interface is avail-
able.

TypedConsumberAdmin::obtain_typed_push_s
upplier()

CosEventChannelAdmin: : ProxyPushSupplier
obtain typed push supplier (in Key uses_interface)
raises (NoSuchImplementation) ;
The obtain typed push supplier () operation returns a
ProxyPushSupplier that makes calls on interface uses interface.

uses_interface Specifies the interface on which the returned
ProxyPushSuppler must make calls.

Orbix CORBA Programmer’s Reference: Java 503

Exceptions

NoSuchImplementationRaised if N0 ProxyPushConsumer can be found
that supports the specified interface.

Unsupported Operations

The Application Server Platform does not support the typed pull
model or the connection of generic consumers to a typed event
channel. Therefore, a TypedConsumerAdmin object will throw
NO_IMPLEMENT for the following operations:

° obtain typed pull supplier ()
° obtain push supplier()
° obtain pull supplier()

504 Orbix CORBA Programmer’s Reference: Java

CosTypedEventChannelAdmin:: Ty
pedEventChannel Interface

interface TypedEventChannel

{

TypedConsumerAdmin for consumers() ;
TypedSupplierAdmin for suppliers();

void destroy () ;

i
This interface is the equivalent of
CosEventChannelAdmin: : EventChannel for typed events. It provides a

factory for TypedConsumerAdmin objects and TypedSuppleriAdmin
objects. Both of which are capable of providing proxies for typed

communication.

Orbix CORBA Programmer’s Reference: Java 505

506 Orbix CORBA Programmer’s Reference: Java

CosTypedEventChannelAdmin:: Ty
pedProxyPushConsumer
Interface

interface TypedProxyPushConsumer :
CosEventChannelAdmin: : ProxyPushConsumer,
CosTypedEventComm: : TypedPushConsumer

{

i

The TypedProxyPushConsumer interface extends the functionality of
the proxyPushConsumer tOo support connecting push suppliers to a
typed event channel.

By inheriting from CosEventChannelAdmin: : ProxyPushConsumer, this
interface supports:

* connection and disconnection of push suppliers.

* generic push operation.

By inheriting from CosTypedEventComm: : TypedPushConsumer, it
extends the functionality of the generic ProxyPushConsumer to
enable its associated supplier to use typed push communication.
When a reference to a TypedProxyPushConsumer is returned by
get_typed consumer (), it has the interface identified by the key.

Unsupported Operations

The TypedProxyPushConsumer reference will throw NO IMPLEMENT for
the push () operation. A supplier should instead call push() on the
reference it obtains from the get typed consumer () operation.

Orbix CORBA Programmer’s Reference: Java 507

508 Orbix CORBA Programmer’s Reference: Java

CosTypedEventChannelAdmin:: Ty
pedSupplierAdmin Interface

Parameters

Exceptions

Parameters

interface TypedSupplierAdmin :
CosEventChannelAdmin: : SupplierAdmin
{

TypedProxyPushConsumer obtain typed push consumer (
in Key supported interface)
raises (InterfaceNotSupported) ;

CosEventChannelAdmin: : ProxyPullConsumer
obtain typed pull consumer (in Key uses_interface)
raises (NoSuchImplementation) ;
}i
The TypedSupplierAdmin interface extends the functionality of the
generic SupplierAdmin to support connecting suppliers to a typed
event channel.

TypedSupplierAdmin::obtain_typed_push_con
sumer()

TypedProxyPushConsumer obtain typed push consumer (

in Key supported interface)
raises (InterfaceNotSupported) ;
The obtain typed push consumer () operation returns a
TypedProxyPushConsumer that supports the specified interface.

supported interfaceSpecifies the interface that the returned
TypedProxyPushConsumer must support.

InterfaceNotSupportedRaised if no consumer implementation sup-
porting the specified interface is available.

TypedSupplierAdmin::obtain_typed_pull_cons
umer()

CosEventChannelAdmin: : ProxyPullConsumer

obtain typed pull consumer (in Key uses_interface)
raises (NoSuchImplementation) ;
The obtain typed pull consumer () operation returns a
ProxyPullConsumer that calls operations in the interface
Pull<uses interfaces.

uses_interface Specifies the interface which the returned
ProxyPullConsumer must support.

Orbix CORBA Programmer’s Reference: Java 509

Exceptions

NoSuchImplementationRaised if N0 ProxyPullConsumer can be found
that supports the specified interface.

Unsupported Operations

The Application Server Platform does not support the typed pull
model or the connection of generic suppliers to a typed event
channel. Therefore, the TypedsupplierAdmin reference will throw
No 1MPLEMENT for the following operations:

* obtain typed pull consumer ()
° obtain push consumer ()
® obtail pull consumer ()

510 Orbix CORBA Programmer’s Reference: Java

CosTypedEventComm Module

This module specifies two interfaces used to support typed event
communication. TypedPushConsumer supports push style typed
event communication. Typed event clients retain the capability to
use generic event communication.

Note: Orbix’s implementation of typed events only supports typed push
style events. The TypedpPullSupplier interface is not implemented.

Orbix CORBA Programmer’s Reference: Java 511

512 Orbix CORBA Programmer’s Reference: Java

CosTypedEventComm::TypedPush
Consumer Interface

interface TypedPushConsumer : CosEventComm: :PushConsumer

{

Object get typed consumer() ;
}i
The TypedpPushConsumer interface is used to implement push-style
consumers that wish to participate in typed event communication.
By inheriting from the generic pushConsumer interface, this interface
retains the ability to participate in generic push-style event com-
munication. This inheritance also requires that TypedPushConsumer
objects implement the generic push () operation. However, if the
consumer will be used solely for typed event communication, the
push () implementation can simply raise the standard CORBA
exception NO IMPLEMENT.

TypedPushConsumer::get_typed_consumer()

Object get typed consumer () ;

get_typed consumer () returns a reference to a typed push consumer.
This reference is returned as a reference to type Object and must
be narrowed to the appropriate interface. If the push supplier and
the typed push consumer do not support the same interface, the
narrow () will fail.

Orbix CORBA Programmer’s Reference: Java 513

514 Orbix CORBA Programmer’s Reference: Java

CSI Overview

See Also

See Also

See Also

The CSI module defines the basic data types needed for the OMG
Common Secure Interoperability (CSIv2) specification. This refer-
ence page is a partial extract from the CSI module that includes
only the data types needed for the 1T cs1 module.

CSI1::0ID Sequence

typedef sequence <octet> OID;
// ASN.1l Encoding of an OBJECT IDENTIFIER

The type that represents an ASN.1 object identifier in binary for-
mat.

CSI1::0OIDList Sequence

typedef sequence <OID> OIDList;
The type that represents a list of ASN.1 object identifiers.

CSI::GSS_NT_ExportedName

typedef sequence <octet> GSS NT ExportedName;

An encoding of a GSS Mechanism-Independent Exported Name
Object as defined in [IETF RFC 2743] Section 3.2, "GSS Mecha-
nism-Independent Exported Name Object Format," p. 84. See
http://www.ietf.org/rfc/rfc2743.txt.

IT_CSI::AuthenticationServicePolicy: :target_name

CSl::ldentityTokenType

typedef unsigned long IdentityTokenType;
The type of a CSIv2 identity token.

CSI::ldentityToken

CSI::ITTAbsent

const IdentityTokenType ITTAbsent = 0;

The identity token is absent. This indicates that the invocation is
not being made on behalf of another principal.

CSlI::ldentityToken

CSI::ITTAnonymous

const IdentityTokenType ITTAnonymous = 1;

Orbix CORBA Programmer’s Reference: Java 515

See Also

See Also

See Also

See Also

See Also

Indicates that the invocation is being made on behalf of an
unidentified and unauthenticated principal.

CSl::ldentityToken

CSI::ITTPrincipalName

const IdentityTokenType ITTPrincipalName = 2;
Indicates that the invocation is being made on behalf of an identi-
fiable and authenticated principal.

CSl::ldentityToken

CSI::ITTX509CertChain

const IdentityTokenType ITTX509CertChain = 4;
Not used in the current implementation of CSIv2.

CSI::ldentityToken

CSI:: ITTDistinguishedName

const IdentityTokenType ITTDistinguishedName = 8§;
Not used in the current implementation of CSIv2.

CSI::ldentityToken

CSI::ldentityExtension

typedef sequence <octet> IdentityExtension;

A data type that enables the range of identity tokens to be
extended. The OMG reserves this type for future extensions.

CSI::ldentityToken

CSl::ldentityToken Union

union IdentityToken switch (IdentityTokenType) {
case ITTAbsent: boolean absent;
case ITTAnonymous: boolean anonymous;
case ITTPrincipalName: GSS NT ExportedName principal name;
case ITTX509CertChain: X509CertificateChain
certificate chain;
case ITTDistinguishedName: X501DistinguishedName dn;
default: IdentityExtension id;
}i
The type that is used to represent an identity token. Only the fol-
lowing identity token types are currently used by Orbix:

b ITTAbsent
M ITTAnonymous

o ITTPrincipalName

516 Orbix CORBA Programmer’s Reference: Java

CSI1::StringOID

typedef string StringOID;

This type is the string representation of an ASN.1 OBJECT IDENTI-
FIER (OID). OIDs are represented by the string oid: followed by
the integer base-10 representation of the OID separated by dots.
For example, the OID corresponding to the OMG is represented
as: "oid:2.23.130"

CSI::GSS_NT_Export_Name_OID

const StringOID GSS NT Export Name OID = "oid:1.3.6.1.5.6.4";

The GSS Object Identifier for name objects of the Mecha-
nism-Independent Exported Name Object type is:

{ iso(1) org(3) dod(6) intermet(l) security(5) nametypes (6)
gss-api-exported-name (4) }

Orbix CORBA Programmer’s Reference: Java 517

518 Orbix CORBA Programmer’s Reference: Java

CSIIOP Overview

The CSI inter-ORB protocol (CSIIOP) IDL module defines the data
types that are used for encoding the CSIv2 service contexts and
IOR components . This reference page is a partial extract from the
CSIIOP module that includes only the data types needed for the
IT CsI module.

CSIIOP::AssociationOptions

typedef unsigned short AssociationOptions;
The type used to define association option flags.

CSIIOP::NoProtection

const AssociationOptions NoProtection = 1;
Not needed in the current implementation of CSIv2.

CSIIOP:: Integrity

const AssociationOptions Integrity = 2;
Not needed in the current implementation of CSIv2.

CSI10P::Confidentiality

const AssociationOptions Confidentiality = 4;
Not needed in the current implementation of CSIv2.

CSI110P::DetectReplay

const AssociationOptions DetectReplay = 8;
Not needed in the current implementation of CSIv2.

CSI10P::DetectMisordering

const AssociationOptions DetectMisordering = 16;
Not needed in the current implementation of CSlv2.

CSIIOP::EstablishTrustlnTarget

const AssociationOptions EstablishTrustInTarget = 32;
Not needed in the current implementation of CSIv2.

Orbix CORBA Programmer’s Reference: Java 519

See Also

See Also

CSIIOP::EstablishTrustInClient

const AssociationOptions EstablishTrustInClient = 64;

The EstablishTrustInClient association option can be specified in
the support attribute or in the target requires attribute of the

IT CSI::AuthenticationServicePolicy policy. This policy enables
you to specify that a client or server can require and support client
authentication over the transport using CSIv2.

IT_CSI::AuthenticationService
IT CSI::AuthenticationServicePolicy

CSI110P::NoDelegation

const AssociationOptions NoDelegation = 128;
Not supported in the current implementation of CSlv2.

CSIIOP::SimpleDelegation

const AssociationOptions SimpleDelegation = 256;
Not supported in the current implementation of CSIv2.

CSI110P::CompositeDelegation

const AssociationOptions CompositeDelegation = 512;
Not supported in the current implementation of CSlv2.

CSI10P:: IdentityAssertion

const AssociationOptions IdentityAssertion = 1024;

The 1dentityAssertion association option can be specified in the
support attribute of the IT CSI::AttributeServicePolicy policy. This
policy enables you to specify that a client or server supports iden-
tity assertion (principal propagation) using CSlv2.

IT_CSl::AttributeService
IT CSI::AttributeServicePolicy

CSI110P::DelegationByClient

const AssociationOptions DelegationByClient = 2048;
Not supported in the current implementation of CSlIv2.

CSIIOP::ServiceConfigurationSyntax Type

typedef unsigned long ServiceConfigurationSyntax;

The type used to identify a syntax for specifying privilege author-
ity names.

520 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

The high order 20-bits of each ServiceConfigurationSyntax con-
stant shall contain the Vendor Minor Codeset ID (VMCID) of the
organization that defined the syntax. The low order 12 bits shall
contain the organization-scoped syntax identifier. The high-order
20 bits of all syntaxes defined by the OMG shall contain the VMCID
allocated to the OMG (that is, 0x4F4D0).

CSIIOP::ServiceConfiguration

CSIIOP::SCS_GeneralNames

const ServiceConfigurationSyntax SCS GeneralNames =
CSI::OMGVMCID | 0;

Identifies the GeneralNames syntax (as defined in [IETF RFC 2459])
for specifying privilege authority names.

CSIIOP::SCS_GSSExportedName

const ServiceConfigurationSyntax SCS GSSExportedName =
CSI::OMGVMCID | 1;

Identifies the GSS exported name syntax (as defined in [IETF RFC
2743] Section 3.2) for specifying privilege authority names.

CSI110P::ServiceSpecificName

typedef sequence <octet> ServiceSpecificName;

A type that contains a privilege authority name, encoded using
either the CSIIOP::SCS GeneralNames Or the
CSIIOP: :SCS GSSExportedName Syntax.

CSIIOP::ServiceConfiguration

CSIIOP::ServiceConfiguration Structure

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

}i

Not used in the current implementation of CSIv2.

CSIIOP::ServiceConfigurationList Sequence

typedef sequence <ServiceConfigurations>
ServiceConfigurationlList;

A list of serviceConfiguration Structures.
Not used in the current implementation of CSIv2.

Orbix CORBA Programmer’s Reference: Java 521

522 Orbix CORBA Programmer’s Reference: Java

DsEventLogAdmin Module

The DsEventLogAdmin module defines the EventLog interface which
provides logging capabilities for event service clients. This module
also defines the EventLogFactory interface which is used to instan-
tiate EventlLog Objects.

Orbix CORBA Programmer’s Reference: Java 523

524 Orbix CORBA Programmer’s Reference: Java

DsEventLogAdmin::EventlLog
Interface

interface EventLog : DsLogAdmin::Log,
CosEventChannelAdmin: : EventChannel
{

}i

The EventLog interface extends the functionality of the Log inter-
face by also inheriting from CosEventChannelAdmin: :EventChannel.
This inheritence provides EventLog objects the ability to log events
as they are passed through an event channel. The EventLog inter-
face does not define any operations.

Orbix CORBA Programmer’s Reference: Java 525

526 Orbix CORBA Programmer’s Reference: Java

DsEventLogAdmin::EventLogFact
ory Interface

Parameters

Exceptions

Parameters

The EventLogFactory interface defines two operations for instatiat-
ing EventLog Objects.

EventLogFactory::create()

EventLog create (in LogFullActionType full action,
in unsigned long long max size,
in DsLogAdmin: :CapacityAlarmThresholdList

thresholds,
out LogId id) ;
raises (InvalidLogFullAction
InvalidThreshold) ;

Returns an instantiated EventLog object. The LogId returned is
assigned by the service and can be used to access the returned
EventLog oObject.

full action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the
log can hold.

thresholds Specifies , as a percentage of max log size, the
points at which an Thresholdalarm event will be gen-
erated.

id The LogId assigned to the EventLog object by the ser-
vice.

InvalidLogFullActionThe specified full action is not a valid
LogFullActionType.

InvalidThreshold One of the thresholds specified is invalid.

EventLogFactory::create_with_id()

EventLog create with id(in LogId id,
in LogFullActionType full action,

in unsigned long long max size)
in DsLogAdmin: :CapacityAlarmThresholdList

thresholds)

raises (DsLogAdmin: :LogIdAlreadyExists,
DsLogAdmin: : InvalidLogFullAction,
DsLogAdmin: : InvalidThreshold) ;

Returns an instantiated EventLog Object with a user supplied id.

id Specifies the LogId to assign the EventLog.
full action Specifies what the log object will do when it fills up.

Orbix CORBA Programmer’s Reference: Java 527

max size Specifies the maximum amount of data, in bytes, the
log can hold.

thresholds Specifies , as a percentage of max log size, the
points at which an Thresholdalarm event will be gen-
erated.

Exceptions

LogIdAlreadyExists A log with the specified id already exists.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

InvalidThreshold One of the thresholds specified is invalid.

528 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin Module

DsLogAdmin specifies the Log interfaces which forms the basis for
the Basiclog interface, EventLog interface, and the NotifylLog inter-
face. DsLogAdmin also specifies the BasiclLog and BasiclogFactory to
support the basic logging service. In addtion, this module specifys
the Iterator interface to support the iterators returned when
retrieving records from a log.

This module also specifies all of the exceptions and major data-
types used by the telecom logging service.

DsLogAdmin Exceptions

DsLogAdmin::InvalidParam Exception

exception InvalidParam {string details;};

Raised when an illegal value is used to set a log’s properties. It
contains the name of the property being set and the illegal value.

DsLogAdmin::InvalidThreshold Exception

exception InvalidThreshold {};

Raised when an attempt is made to set a threshold alarm at a value
outside the range of 0%-99%.

DsLogAdmin::InvalidTime Exception

exception InvalidTime({};

Raised by set week mask() when one of the values specified for a
start or stop time is not within the valid range.

DsLogAdmin::InvalidTimelnterval Exception

exception InvalidTimeInterval{};

Raised by set week mask() when one of the time intervals used to
set a log’s schedule is improperly formed. For example, the stop
time is before the start. Also raised if the intervals overlap.

DsLogAdmin::InvalidMask Exception

exception InvalidMask{};

Raised by set week mask () when the days parameter used in setting
a log’s schedule is malformed.

Orbix CORBA Programmer’s Reference: Java 529

DsLogAdmin::LogldAlreadyExists Exception

exception LogIdAlreadyExists{};

Raised by create with id() if an attempt is made to create a log
with an id that is already in use.

DsLogAdmin::InvalidGrammar Exception

exception InvalidGrammar({};

Raised by query () and delete records () if an unsupported constraint
grammar is specified. The grammar implemented in Orbix’s telecom
logging service iS EXTENDED TCL.

DsLogAdmin::InvalidConstraint Exception

exception InvalidConstraint{};

Raised by query() and delete records() if a constraint expression
is not syntactically correct according to the specified grammar.

DsLogAdmin::LogFull Exception

exception LogFull{short n records written;};

Raised when an attempt is made to log records in a log that is full
and has its full action Set to halt. It returns the number of records
that were successfully written to the log.

DsLogAdmin::LogOffDuty Exception

exception LogOffDuty{};

Raised when an attempt is made to log records in a log whose
availability status is off duty.

DsLogAdmin::LoglLocked Exception

exception LogLocked({};

Raised when an attempt is made to log records in a log whose
administrative state is locked.

DsLogAdmin::LogDisabled Exception

exception LogDisabled{};

Raised when an attempt is made to log records in a log whose
operational state is disabled.

530 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::InvalidRecordld Exception

exception InvalidRecordId{};

Raised when the record id specified does not exist in the log.

DsLogAdmin::InvalidAttribute Exception

exception InvalidAttribute{string attr name; any value;};

Raised when one of the attributes set on arecord is invalid. It returns
the name of the invalid attribute and the value specified for it.

DsLogAdmin::InvalidLogFullAction Exception

exception InvalidLogFullAction{};

Raised if an attempt is made to set a log’s full action to a value
other than wrap or halt.

DsLogAdmin::UnsupportedQoS Exception

exception UnsupportedQoS{QoSList denied};

DsLogAdmin Constants

DsLogAdmin defines the majority of the constant values used when
developing a telecom logging service application.

Querying Constants
DsLogAdmin defines one constant to support queries:
const string default grammar = "EXTENDED TCL";
Full Action Constants

Two constants are defined to support a log’s full action:

const LogFullActionType wrap = 0;
const LogFullActionType halt 1;

Scheduling Constants

DsLogAdmin defines the following constants to support log schedul-
ing:

const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;

const unsigned short Friday = 32;
const unsigned short Saturday 64;

Orbix CORBA Programmer’s Reference: Java 531

QoS Constants

DsLogAdmin defines the following constants to support log QoS
properties:

const QoSType QoSNone = 0;
const QoSType QoSFlush = 1;
const QoSType QoSReliable = 2;

DsLogAdmin Datatypes

DsLogAdmin::Logld Type

typedef unsigned long LogId;

Specifies a log’s unique id. The id is used by several methods for
specifying which log to use or to locate a specific log.

DsLogAdmin::Recordld Type

typedef unsigned long long RecordId;

Specifies a record’s id. A record’s id is uniqgue within the log storing
it.

DsLogAdmin::RecordldList Sequence

typedef sequence<RecordId> RecordIdList;

Specifies a list of record ids. The list does not need to be in any
particular order.

DsLogAdmin::Constraint Type

typedef string Constraint;
Specifies the constraints used for querying a log’s records.

DsLogAdmin::TimeT Type

typedef TimeBase: :TimeT TimeT;
Used to record logging times and for setting a log’s duration.

DsLogAdmin::NVPair Structure

struct NVPair

string name;
any value;

bi

Specifies a name/value pair used to construct attributes for records.

532 Orbix CORBA Programmer’s Reference: Java

Members

Members

Members

name The name of the attribute. The value can be any
string.
value An any containing the setting for the attribute.

DsLogAdmin::NVList Sequence

typedef sequence<NVPairs> NVList;
A list of name/value record attributes.

DsLogAdmin::Timelnterval Structure

struct TimeInterval

TimeT start;
TimeT stop;

}i

Specifies the start and stop times for a logging session.

start The start time for the current logging session.
stop The end time for the current logging session.

DsLogAdmin::LogRecord Structure

struct LogRecord

RecordId id;

TimeT time;
NVList attr list;
any info;

}i

The data stored when a new record is logged.

id The unique identifier for the record

time The time at which the record was logged.

attr list An optional list of attributes specified by the client
info The data contained in the record.

DsLogAdmin::RecordList Sequence

typedef sequence<LogRecord> RecordList;
A list of records.

Orbix CORBA Programmer’s Reference: Java 533

DsLogAdmin::Anys Sequence

typedef sequence<any> Anys;
A sequence of data stored in individual any packages.

DsLogAdmin::AvailabilityStatus Structure

struct AvailabilityStatus

boolean off duty;
boolean log full;

}i
Represents the availability of a log.
Members

off duty true means the log is not scheduled to accept new
events. false means it is schedualed to recieve new
events.

log full If the log is full this member will be true.

DsLogAdmin::LogFullActionType Type

typedef unsigned short LogFullActionType;
Specifies a log’s full action. It can either be halt or wrap.

DsLogAdmin::Time24 Structure

struct Time24

unsigned short hour; // 0-23
unsigned short minute; // 0-59

}i

Specifies the fine grained times for a log’s schedule
Members

hour An hour specified in 24 hour format

minute The minute within an hour. Can be a value from
0-59.

DsLogAdmin::Time24Interval Structure

struct Time24Interval

Time24 start;
Time24 stop;

}i
A fine grained interval during which a log is scheduled to log new
records.

534 Orbix CORBA Programmer’s Reference: Java

Members

Members

start The time at which a log will begin logging new
records.
stop The time at which a log will stop logging new records.

DsLogAdmin::IntervalsOfDay Sequence

typedef sequence<Time24Interval> IntervalsOfDay;
A list of fine grained logging intervals.

DsLogAdmin::DaysOfWeek Type

typedef unsigned short DaysOfWeek;

A bit mask specifying the days of the week a fine grained logging
interval is valid. It is constructed using the scheduling constants
listed in “Scheduling Constants” on page 531.

DsLogAdmin::WeekMaskltem Structure

struct WeekMaskItem

DaysOfWeek days;
IntervalsOfDay intervals;

Vi

Specifies a fined grain log schedule.

days A bitmask specifying the days of the week for which
the specified intervals are valid.

intervals The fine grained logging intervals.

DsLogAdmin::WeekMask Sequence

typedef sequence<WeekMaskItem> WeekMask;
Specifies a log’s fine grained logging schedule.

DsLogAdmin::Threshold Type

typedef unsigned short Threshold;

Specifies a threshold point, in terms of a percentage of how full a
log is, at which to generate an alarm. Valid values are from 0-100.

Orbix CORBA Programmer’s Reference: Java 535

DsLogAdmin::
Sequence

CapacityAlarmThresholdList

typedef sequence<Threshold> CapacityAlarmThresholdList;
A list of thresholds at which alarms are generated.

DsLogAdmin::

OperationalState Enum

enum OperationalState {disabled, enabled};
Specifies if a log is ready to log new records.

Table 10: Log operational states

Operation
al State

Reason

enabled

The log is healthy and its full functionality is
available for use.

disabled

The log has encountered a runtime error and
is unavailable. The log will not accept any
new records and it may not be able to
retrieve valid records. The log will still
attempt to forward events if its
ForwardingState is set to on.

DsLogAdmin::

AdministrativeState Enum

enum AdministrativeState {locked, unlocked};

Specifies if a log can accept new records.

DsLogAdmin::

ForwardingState Enum

enum ForwardingState {on, off}

Specifies if a log will forward events or not.

DsLogAdmin::

LogList Sequence

typedef sequence<Log> LogList;
A sequence of log object references.

DsLogAdmin::

LogldList Sequence

typedef sequence<Logld> LogIdList;

A sequence of log ids.

536 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::QoSType Type

typedef unsigned short QoSType;
Specifies the log’s QoS level. Valid values are QoSNone, QoSFlush, and
QoSReliable.

DsLogAdmin::QoSList Sequence

typedef sequence<QoSType> QoSList;
A list of QoSType.

Orbix CORBA Programmer’s Reference: Java 537

538 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::BasicLog Interface

The BasicLog interface extend the Log interface to support the log-
gging by event-unaware CORBA objects. It defines only one
method, destroy (), which is used to destroy a BasicLog object.

interface BasiclLog : Log

{

void destroy () ;

Vi

Orbix CORBA Programmer’s Reference: Java 539

540 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::BasicLogFactory

Interface

Parameters

Exceptions

Parameters

The BasiclLogFactory interface provides the functionality to instan-
tiate a BasicLog object.

interface BasicLogFactory : LogMgr
{
Basiclog create (in LogFullActionType full action,
in unsigned long long max size,
out LogId id)
raises (InvalidLogFullAction) ;

Basiclog create with id(in LogId id,
in LogFullActionType full action,
in unsigned long long max size)
raises (LogIdAlreadyExists, InvalidLogFullAction) ;

}i

BasicLogFactory::create()

BasicLog create (in LogFullActionType full action,
in unsigned long long max size,
out LogId id) ;

raises (InvalidLogFullAction) ;

Returns an instantiated BasicLog object. The LogId returned is
assigned by the service and can be used to access the returned
BasicLog Object.

full action Specifies what the log object will do when it fills up.

max size Specifies the maximum amount of data, in bytes, the
log can hold.

id The Logld assigned to the BasicLog object by the ser-
vice.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

BasicLogFactory::create_with_id()

BasicLog create with id(in LogId id,
in LogFullActionType full action,
in unsigned long long max size)
raises (LogIdAlreadyExists, InvalidLogFullAction) ;

Returns an instantiated BasicLog object with a user supplied id.

id Specifies the Logld to assign the BasiclLog.

Orbix CORBA Programmer’s Reference: Java 541

full action Specifies what the log object will do when it fills up.

max_size Specifies the maximum amount of data, in bytes, the
log can hold.

Exceptions

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

LogIdAlreadyExists A log with the specified id already exists.

542 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::Iterator Interface

Parameters

Exceptions

The 1terator interface provides the methods for accessing records
returned by the iterator when querying a log. It also provides the
method used to release the resources consumed by the returned
iterator.

interface Iterator

{

RecordList get (in unsigned long position,
in unsigned long how many)
raises (InvalidParam) ;

void destroy () ;

bi

Iterator::get()

RecordList get (in unsigned long position,
in unsigned long how many)

raises (InvalidParam) ;

Retrieves the specified number of records from the iterator object
and returns them as a RecordList.

position The number of the record from which to start retriev-
ing records.
how_many The number of records to return.

InvalidParam Raised if the position is negative or past the end of
the list.

Iterator::destroy()

void destroy () ;

Releases the resources used by the iterator object. If an iterator
object is returned, you must explicitly destroy it.

Orbix CORBA Programmer’s Reference: Java 543

544 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::Log Interface

The Log interface provides all of the basic functionality for log

objects. All other log interfaces inherit from this interface. The Log

interface provides the methods for managing a log’s functional
properties including its full action and maximum size. It also

defines the methods for querying the log for records, retrieving
records from the log, and deleting records from the log. In addi-
tion, it defines the flush() method and two methods for copying
logs.

interface Log

{

LogMgr my factory() ;
LogId id();

unsigned long get max record life();
void set max record life(in unsigned long life);

unsigned long long get max size();
void set max size(in unsigned long long size)

raises (InvalidParam);
unsigned long long get current size();
unsigned long long get n records() ;

LogFullActionType get log full action();
void set log full action(in LogFullActionType action)
raises (InvalidlLogFullAction) ;

AdministrativeState get administrative state();
void set administrative state(in AdministrativeState state);

ForwardingState get forwarding state() ;
void set forwarding state(in ForwardingState state);

OperationalState get operational state();
AvailabilityStatus get availability status() ;

TimeInterval get interval () ;
void set interval (in TimeInterval interval)
raises (InvalidTime, InvalidTimeInterval) ;

CapacityAlarmThresholdList get capacity alarm thresholds() ;
void set capacity alarm thresholds(in
CapacityAlarmThresholdList threshs)

raises (InvalidThreshold) ;

WeekMask get week mask() ;
void set week mask (in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask) ;

QoSList get log gos();
void set log gos(in QoSList gos) raises (UnsupportedQoS)

RecordList query(in string grammar, in Constraint c,
out Iterator i)
raises (InvalidGrammar, InvalidConstraint) ;

Orbix CORBA Programmer’s Reference: Java 545

RecordList retrieve(in TimeT from time, in long how many,
out Iterator 1i);

unsigned long match(in string grammar, in Constraint c)
raises (InvalidGrammar, InvalidConstraint) ;

unsigned long delete records(in string grammar, in Constraint
c)

raises (InvalidGrammar, InvalidConstraint) ;
unsigned long delete records by id(in RecordIdList ids) ;

void write records (in Anys records)

raises (LogFull, LogOffDuty, LogLocked, LogDisabled) ;
void write recordlist (in RecordList list)

raises (LogFull, LogOffDuty, LogLocked, LogDisabled) ;

void set record attribute(in RecordId id, in NVList attr list)
raises (InvalidRecordId, InvalidAttribute) ;
unsigned long set records attribute(in string grammar,
in Constraint c,
in NVList attr list)
raises (InvalidGrammar, InvalidConstraint, InvalidAttribute) ;

NVList get record attribute(in RecordId id)
raises (InvalidRecordId) ;

Log copy (out LogId id);
Log copy with id(in LogId id) raises(LogIdAlreadyExists) ;

void flush() raises (UnsupportedQoS) ;

Log::my_factory()

LogMgr my factory () ;
Returns an object reference to the log object’s log factory.

Log::id()
LogId id() ;
Returns the id of the log.

Log::get_max_record_life()

unsigned long get max record life();

Returns the maximum amount of time, in seconds, that a record
stays valid in the log.

546 Orbix CORBA Programmer’s Reference: Java

Log::set_max_record_life()

void set max record life(in unsigned long life);

Sets the maximum amount of time, in seconds, that a record stays
valid in the log. After a record has become stale, it will automatically
be removed from the log.

Parameters

life The number of seconds for which records will remain

valid. Zero specifies an infinite life span.

Log::get_max_size()

unsigned long long get max size() ;

Returns the maximum size, in bytes, of the log.

Log::set_max_size()

void set max size(in unsigned long long size)

raises (InvalidParam) ;

Set the maximum size, in bytes, of the log.

Parameters

size The maximum size of the log object in bytes.

Exceptions

InvalidParam The size specified is smaller than the current size of
the log.

Log::get_current_size()

unsigned long long get current size();

Returns the current size of the log in octets.

Log::get_n_records()

unsigned long long get n records() ;

Returns the current number of records in the log.

Log::get_log_full_action()

LogFullActionType get log full action();

Returns the log’s full action setting.

Orbix CORBA Programmer’s Reference: Java 547

Log::set_log_full _action()

void set log full action(in LogFullActionType action)
raises (InvalidLogFullAction) ;

Sets the log’s full action.
Parameters

action The log’s full action. Valid values are wrap and halt.

Exceptions

InvalidLogFullActionThe full action specified is not a supported.

Log::get_administrative_state()
AdministrativeState get administrative state();

Returns the log’s administrative state.

Log::set_administrative_state()

void set administrative state(in AdministrativeState state);

Sets the log’s administrative state.

Parameters

state The new administrative state for the log. Valid states
are locked and unlocked.

Log::get_forwarding_state()

ForwardingState get forwarding state() ;

Returns the log’s forwarding state. If the log’s forwarding state is
on, the log will forward events.

Log::set_forwarding_state()

void set forwarding state(in ForwardingState state);

Changes the log’s forwarding state.

Parameters

state The new forwarding state. The valid values are:
on—specifies that the log will forward events.
off—specifies that the log will not forward events.

Log::get_operational_state()

OperationalState get operational state();

Returns the log’s operational state. The log can either be enabled or
disabled.

548 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Exceptions

Log::get_interval()

TimeInterval get interval();

Returns the log’s coarse grained logging interval.

Log::set_interval()

void set interval (in TimeInterval interval)
raises (InvalidTime, InvalidTimeInterval) ;

Changes the log’s coarse grained logging interval.

interval The log’s new coarse grained logging interval. Zero
sets the log to an infinite duration.

InvalidTime One of the times specified is not a legal time.

InvalidTimeIntervalThe start time of the interval is after the stop
time. Also, the stop time is prior to the current
time.

Log::get_availability status()

AvailabilityStatus get availability status();

Returns the log’s availability. The log can be on duty, off duty, full,
or both off duty and full.

Log::get_capacity_alarm_thresholds()

CapacityAlarmThresholdList get capacity alarm thresholds() ;
Returns a list of the log’s alarm thresholds.

Log::set_capacity alarm_thresholds()

void set capacity alarm thresholds (in CapacityAlarmThresholdList
threshs)
raises (InvalidThreshold) ;

Sets threshold alarms in the log.

threshs A sequence of Threshold specifying at what points
threshold alarm events are to be generated.

InvalidThresholdRaised if one of the thresholds is not in the valid
range.

Orbix CORBA Programmer’s Reference: Java 549

Parameters

Exceptions

Parameters

Exceptions

Log::get_week_mask()

WeekMask get week mask() ;
Returns the log’s weekly schedule.

Log::set_week mask()

void set week mask (in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask) ;

Changes the log’s weekly schedule.

masks The new schedule to set on the log.
InvalidTime One of the times set on the log is not a valid
time.

InvalidTimeIntervalOne of the stop times specified is before its
associated start time. Also, one of the time
intervals overlaps another time interval.

InvalidMask The weekMask is malformed.

Log::get_log_qgos()
QoSList get log gos() ;
Returns the log’s QoS settings.

Log::set_log gos()

void set log gos(in QoSList gos) raises (UnsupportedQoS) ;

Sets the log’s QoS type. Valid settings are QoSNone, QoSFlush, and
QosReliable.

gos The QoS properties to set on the log.

UnsupportedQoS One of the QoS properties specified for the log is
invalid. The invalid setting is returned.

Log::query()

RecordList query(in string grammar, in Constraint c, out Iterator
i)

raises (InvalidGrammar, InvalidConstraint) ;

Retreives records from the log based on a constraint.

550 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Parameters

Exceptions

grammar The grammar used to consruct the contraint. The
telecom logging service support the EXTENDED TCL
grammar

c The contraint string against which records are
matched.

i Used when a large number of records are retreived.

If it not used it will be nil.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraint The constraint does not conform to the specified
grammar.

Log::retrieve()

RecordList retrieve(in TimeT from time, in long how many,
out Iterator 1i);

Returns the specified number of records starting at the specified
time. If the number of records is larger than can be stored in the
return parameter, the remaining records are accessible through the
Iterator.

from time The time at which the first record to retrieve was
logged.
how many The number of records to retrieve. A negative value

causes the method to retireve records prior to the
specified time.

i The 1terator object reference.

Log::match()

unsigned long match(in string grammar, in Constraint c)
raises (InvalidGrammar, InvalidConstraint) ;

Returns the number of records that match the specified constraint.

grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED TCL
grammar.

c The constraint string.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraint The constraint does not conform to the specified

grammar.

Orbix CORBA Programmer’s Reference: Java 551

Log::delete_records()

unsigned long delete records(in string grammar, in Constraint c)
raises (InvalidGrammar, InvalidConstraint) ;

Deletes all of the records that match the specified constraint and
returns the number of records deleted.

Parameters
grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED TCL
grammar.
c The constraint string.

Exceptions

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraint The constraint does not conform to the specified
grammar.

Log::delete_records_ by id()

unsigned long delete records by id(in RecordIdList ids);

Deletes the specified records and returns the number of deleted

records.
Parameters
ids A sequence of record ids specifying the records to
delete.
Log::write_records()
void write records (in Anys records)
raises (LogFull, LogOffDuty, LogLocked, LogDisabled) ;
Writes a series of records to a log. The you cannot specifiy any
optional attributes and cannot discover the records id.
Parameters
records A sequence of any that contains the data for a group
of records.
Exceptions
LogFull The log is full and its full action is set to halt.
LogOffDuty The log is not currently scheduled to accept new
records.
LogLocked The log’s administrative state is set to not accept

new records.

LogDisabled The log has encountered a processing error and is
unable to accept new records.

552 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Parameters

Exceptions

Parameters

Log::write_recordlist()

void write recordlist (in RecordList list)
raises (LogFull, LogOffDuty, LogLocked, LogDisabled) ;

Writes a series of records to the log. You can construct records that
include an optional attribute list and each record in the list will be
updated to include the time it was logged and its record id.

list A sequence of Logrecord that contains the data for a
group of records.

LogFull The log is full and its full action is set to halt.

LogOffDuty The log is not currently scheduled to accept new
records.

LogLocked The log’s administrative state is set to not accept

new records.

LogDisabled The log has encountered a processing error and is
unable to accept new records.

Log::set_record_attribute()

void set_record attribute(in RecordId id, in NVList attr list)
raises (InvalidRecordId, InvalidAttribute) ;

Sets attributes for a single record which is specified by its record id.

id The id of the record on which you wish to set attri-
butes.

attr list The list of attributes that you want to set on the
record.

InvalidRecordId The record specified dose not exist.

InvalidattributeOne of the attributes is illegal.

Log::set_records_attribute()

unsigned long set records_attribute(in string grammar,
in Constraint c,
in NVList attr list)

raises (InvalidGrammar, InvalidConstraint, InvalidAttribute) ;

Sets attributes for all records that match the constraint. It returns
the numbers of records whose attributes were changed.

grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED TCL
grammar.

Orbix CORBA Programmer’s Reference: Java 553

Exceptions

Parameters

Exceptions

Parameters

Parameters

Exceptions

c The constraint string.

attr list The list of attributes that you want to set on the
record.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraint The constraint does not conform to the specified
grammar.

Invalidattribute One of the attributes is illegal.

Log::get_record_attribute()

NVList get record attribute(in RecordId id)
raises (InvalidRecordId) ;

Returns the list of attributes that are set on the specified record.

id The id of the record whose attributes you want to
retrieve.

InvalidRecordId The record specified does not exist.

Log::copy(
Log copy (out LogId id) ;
Copies the log object and returns a reference to the new log object.

id The id assigned to the newly created log.

Log::copy_with_id()

Log copy with id(in LogId id)
raises (LogIdAlreadyExists);

Copies the log and returns a reference to the newly created log.
This method allows you to specifiy the logs id.

id The new log’s id.

LogIdAlreadyExistsThe user assigned id is already in use.

554 Orbix CORBA Programmer’s Reference: Java

Log::flush()

void flush()
raises (UnsupportedQos) ;

Cuases the log to flush its memory buffer to its associated perma-
nent store.

Exceptions

UnsupportedQoS The log does not support QoSFlush.

Orbix CORBA Programmer’s Reference: Java 555

556 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::LogMgr Interface

The LogMgr interface is inherited by all the log factory interfaces. It
defines three methods of discovering deployed log objects.

interface LogMgr

{
LogList list logs();
Log find log(in LogId id) ;
LogIdList list logs by id();

}i

LogMgr::list_logs()

LogList list logs() ;
Returns a list of object references, one for each log object associated
with the factroy.

LogMgr::find_log()
Log find log(in LogId id) ;

Returns an object reference to the specified log. If the log does not
exist, it returns a nil reference.

LogMgr::list_logs by id()

LogIdList list logs by id();
Returns a list containing the ids of all logs associated with the
factory.

Orbix CORBA Programmer’s Reference: Java 557

558 Orbix CORBA Programmer’s Reference: Java

DsLogNotification Module

Members

The DsLogNotification module defines the data types used to
transmit log generated events to logging clients.

DsLogNotification::PerceivedSeverityType
Type

typedef unsigned short PerceivedSeverityType;
const PerceivedSeverityType critical = 0;

const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;

Defines the severity of a threshold alarm. A threshold alarm’s
severity is considered minor unless the log is full.

DsLogNotification::ThresholdAlarm Structure

struct ThresholdAlarm

Log logref;
LogId id;
TimeT time;

Threshold crossed value;
Threshold observed value;
PerceivedSeverityType perceived severity;

}i

The data type passed in a threshold alarm event.

logref An object reference to the log object which
caused the event.

id The id of the log object which caused the event.

time The time the event was generated.

crossed value The capacity threshold which was passed to trig-

ger the event.
observed value The actual percentage of the log that is full.

perceived severityThe severity of the alarm. If the severity is critical
then the log object is full.

DsLogNotification::ObjectCreation Structure

struct ObjectCreation

Logld id;
TimeT time;

Vi

The data type passed in an object creation event.

Orbix CORBA Programmer’s Reference: Java 559

Members

id The id of the newly created log object.
time The time the log object was generated.

DsLogNotification::ObjectDeletion Structure

struct ObjectDeletion

LogId id;
TimeT time;
}i

The data type passed in an object deletion event.

Members

id The id of the deleted log object.
time The time the log object was deleted.

DsLogNotification::AttributeType Type

typedef unsigned short AttributeType;
const AttributeType capacityAlarmThreshold =

const AttributeType logFullAction =
const AttributeType maxLogSize =
const AttributeType startTime =
const AttributeType stopTime =
const AttributeType weekMask =
const AttributeType filter =
const AttributeType maxRecordLife =
const AttributeType qualityOfService =

<N oUW NP o

[ee]

The data type and constants used to represent the type of attribute
changed in an attribute change event.

DsLogNotification::AttributeValueChange
Structure
struct AttributeValueChange
{
Log logref;
LogId id;
TimeT time;

AttributeType type;

any old value;
any new value;

Members

logref An object reference to the log object which caused the
event.

id The id of the log object which caused the event.

560 Orbix CORBA Programmer’s Reference: Java

Members

Members

time The time the event was generated.
type The attribute that was changed.
old _valueThe previous value of the attribute.
new_valueThe attribute’s new value.

DsLogNotification::StateType Type

typedef unsigned short StateType;
const StateType administrativeState =

0
const StateType operationalState =1;
const StateType forwardingState =2

The data type and constants used to represent which type of state
was changed in a state change event.

DsLogNotification::StateChange Structure

struct StateChange

Log logref;

LogId id;
TimeT time;

StateType type;
any new value;

}i

The data type passed in a state change event.

logref An object reference to the log object which caused the

event.
id The id of the log object which caused the event.
time The time the event was generated.
type The type of state that was changed.

new_valueThe new state.

DsLogNotification::ProcessingErrorAlarm
Structure

struct ProcessingErrorAlarm

long error num;
string error string;

}i

The data type passed when a processing error event occurs.

error num The error number.
error_string A string explaining the error.

Orbix CORBA Programmer’s Reference: Java 561

562 Orbix CORBA Programmer’s Reference: Java

DsNotifyLogAdmin Module

The DsNotifyLogAdmin module extends the functionality of the
interfaces specified in the DsLogadmin module to support notifica-
tion style push and pull communication and forwarding of struc-
tured and sequenced events. The extended functionality also

includes notification style event filtering and subscription/publica-
tion functionality.

Orbix CORBA Programmer’s Reference: Java 563

564 Orbix CORBA Programmer’s Reference: Java

DsNotifyLogAdmin::NotifyLog

Interface

Parameters

The Notifylog interface extends the functionality of the Log inter-
face to support notification style filters. It inherits from the
EventChannel interface of module CosNotifyChannelAdmin.

interface NotifylLog : DsEventLogAdmin: :EventLog,
CosNotifyChannelAdmin: : EventChannel

CosNotifyFilter::Filter get filter();
void set filter(in CosNotifyFilter::Filter filter);

}i

NotifyLog::get_filter()

CosNotifyFilter::Filter get filter();

Returns a reference to the filter object associated with the log.

NotifyLog::set_filter()

void set filter(in CosNotifyFilter::Filter filter);

Associates a filter with the log. The filter will determine which events
will be logged.

filter The filter you want to set on the log.

Orbix CORBA Programmer’s Reference: Java 565

566 Orbix CORBA Programmer’s Reference: Java

DsNotifyLogAdmin::NotifyLogFact
ory Interface

Parameters

Exceptions

The NotifylLogFactory extends the functionality of the LogMgr inter-
face to support the creation of NotifylLog objects. It also inherits
from the CosNotifyChannelAdmin::ConsumerAdmin interface. This
inheritance allows it to forward events to the clients of its associ-
ated NotifyLog Objects.

NotifyLogFactory::create()

NotifyLog create(in DsLogAdmin::LogFullActionType full action,
in unsigned long long max size,
in DsLogAdmin: :CapacityAlarmThresholdList
thresholds,
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin,
out DsLogAdmin::LogId id)
raises (DsLogAdmin: : InvalidLogFullAction,
DsLogAdmin: : InvalidThreshold,
CosNotification: :UnsupportedQosS,
CosNotification: :UnsupportedAdmin) ;

Creates a new NotifyLog object, assigns the new log a unique id,
and returns a reference to the newly instantiated log object.

full action The log’s behavior when it reaches its maximum size.
Valid values are wrap and halt.

max size The maximum size of the log in bytes.

thresholds The thresholds when alarm events will be generated.
Specified as a percentage of the log’s size.

initial gos The initial notification style QoS properties to set on
the log object’s associated notification channel.

initial admin The initial administrative properties to set on the log
object’s associated notification channel.

id Returns the log object’s factory assigned id.

InvalidlLogFullActionThe value for the log’s full action was not a
valid full action.

InvalidThreshold One of the threshold alarm values was not
within the valid range

UnsupportedQoS One of the QoS properties is invalid or does not
support the value you are trying to set for it.

UnsupportedAdmin One of the administrative properties is invalid
or does not support the value you are trying to
set for it.

Orbix CORBA Programmer’s Reference: Java 567

NotifyLogFactory::create_with_id()

NotifyLog create with id(in DsLogAdmin::LogId id,
in DsLogAdmin::LogFullActionType full action,
in unsigned long long max size,
in DsLogAdmin: :CapacityAlarmThresholdList
thresholds,
in CosNotification::QoSProperties initial gos,
in CosNotification::AdminProperties initial admin)
raises (DsLogAdmin: :LogIdAlreadyExists,
DsLogAdmin: : InvalidLogFullAction,
DsLogAdmin: : InvalidThreshold,
CosNotification: :UnsupportedQoS,
CosNotification: :UnsupportedAdmin) ;

Creates a new NotifyLog Object using a user assigned id and returns
a reference to the newly instantiated log object.

Parameters

id The log object’s id.

full _action The log’s behavior when it reaches its maximum size.
Valid values are wrap and halt.

max size The maximum size of the log in bytes.

thresholds The thresholds when alarm events will be generated.
Specified as a percentage of the log’s size.

initial gos The initial notification style QoS properties to set on
the log object’s associated notification channel.

initial admin The initial administrative properties to set on the log
object’s associated notification channel.

Exceptions

LogIdAlreadyExists A log already exists with the specified id.

InvalidLogFullActionThe value for the log’s full action was not a
valid full action.

InvalidThreshold One of the threshold alarm values was not
within the valid range

UnsupportedQoS One of the QoS properties is invalid or does not
support the value you are trying to set for it.

UnsupportedAdmin One of the administrative properties is invalid
or does not support the value you are trying to
set for it.

568 Orbix CORBA Programmer’s Reference: Java

Dynamic Module

The Dynamic module is used by the PortableInterceptor module

and contains the following data types:
° ContextList type

° ExceptionLiSt sequence
o Parameter structure

* ParameterList sequence
. RequestContext type

Dynamic::ContextList

// IDL
typedef CORBA::StringSeq ContextList;

Dynamic::ExceptionList

// IDL
typedef sequence<CORBA: :TypeCode> Exceptionlist;

Dynamic::Parameter

// IDL
struct Parameter {

any argument;
CORBA: : ParameterMode mode;

}i

Dynamic::ParameterList

// IDL
typedef sequence<Parameter> ParameterList;

Dynamic::RequestContext

// IDL
typedef CORBA: :StringSeq RequestContext;

Orbix CORBA Programmer’s Reference: Java 569

570 Orbix CORBA Programmer’s Reference: Java

DynamicAny Overview

See Also

The DynamicaAny namespace implements the IDL DynamicaAny module
which includes the following classes:

DynaAny

DynAnyFactory
DynArray

DynEnum

DynFixed

DynSequence
DynStruct

DynUnion

DynValue

The common data types in the scope of the Dynamicany module
include the following:

NameDynAnyPair

NameValuePair

For most IDL data types there is a straight-forward language map-
ping that an object implementation uses to interpret data. How-
ever, an any data type can be passed to a program that may not
have any static information about how to interpret the type of
data in the any value. The DynamicAny module provides a runtime
mechanism for constructing any values, traversing them, and
extracting the data from any values. This mechanism is especially
helpful for writing generic clients and servers such as bridges,
browsers, debuggers, and user interface tools.

Applications dynamically construct and interpret any values using
DynAny Objects. For complex any types a bynAny object is an ordered
collection of other component Dynany objects.

A DynAny object can be created as follows:
o Invoking a method on a Dyn&nyFactory object.
* Invoking a method on an existing bynAny object.

A constructed Dynany object supports methods that enable the
creation of new Dynany objects that encapsulate access to the
value of some constituent of the Dynany object. Dynany objects
also support a copy method for creating new Dynany objects.

There is a different interface associated with each kind of con-
structed IDL type that inherits from the Dynany interface. The
interfaces that inherit the Dynany interface include:

DynArray

DynEnum

DynFixed

DynSequence

DynStruct

DynUnion

DynValue

Exceptions are represented by the Dynstruct interface and value
types are represented by the Dynvalue interface.

A sequence of CORBA: :Any values.

DynamicAny:DynSequence
DynamicAny: : DynArray

Orbix CORBA Programmer’s Reference: Java 571

DynamicAny::NameDynAnyPair Structure

// IDL
struct NameDynAnyPair {
FieldName id;
DynAny value;
}i
// Java
public final class NameDynAnyPair
implements org.omg.CORBA.portable.IDLEntity
{

public java.lang.String id;
public org.omg.DynamicAny.DynAny value;

public NameDynAnyPair() {}

public NameDynAnyPair (
java.lang.String id,
org.omg.DynamicAny.DynAny value

this.id = id;
this.value = value;

}

A structure containing the name and value of a field or member.

DynamicAny::NameValuePair Structure

// Java
public final class NameValuePair

implements org.omg.CORBA.portable.IDLEntity
{

public java.lang.String id;
public org.omg.CORBA.Any value;

public NameValuePair() {}

public NameValuePair (
java.lang.String id,
org.omg.CORBA.Any value

this.id = id;
this.value = value;

}

A structure containing the name and value of a field or member.

572 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynAny Class

Your application can dynamically construct and interpreted any
values using Dynany objects. A Dynany object is associated with a
data value which corresponds to a copy of the value inserted into

an any. Portable programs should use the pynany interface to
access and modify the contents of an any in those cases where
basic insertion and extraction operators are not sufficient.

DynAny methods can be organized as follows:

Table 11: DynAny Methods
General Methods Insert Methods Get Methods
assign() insert any () get any ()
component count () insert boolean () get boolean ()
copy () insert char() get char ()
current component () insert double () get double ()
destroy () insert dyn any () get dyn any ()
equal () insert float () get float ()
from any () insert long() get long()
next () insert longlong() get longlong()
rewind () insert octet () get octet ()
seek () insert reference () get reference ()
to any () insert short () get short ()
type () insert string() get string()
insert typecode () get typecode ()
insert ulong() get ulong()
insert ulonglong () get ulonglong ()
insert ushort () get ushort ()
insert wval () get val ()
insert wchar () get wchar ()
insert wstring() get wstring()

The following exceptions are

Invalidvalue

TypeMismatch

also defined in the pynany class:

The Dynany class is the base for the following classes:

DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

Because the values of any types can be quite complex, it is helpful
to think of a Dynany object as an ordered collection of other compo-
nent DynaAny objects. For simpler bynany objects that represent a
basic type, the ordered collection of components is empty. For
example, a long or a type without components (such as an empty
exception) has empty components.

The Dynany interface allows a client to iterate through the compo-
nents of the values pointed to by these objects. Each pynany object
maintains the notion of a current position into its collection of compo-
nent DynaAny objects. The current position is identified by an index

Orbix CORBA Programmer’s Reference: Java 573

Exceptions

value that runs from O to »n-1, where n is the number of compo-
nents. Methods are available that allow you to recursively examine
DynAny contents. For example, you can determine the current posi-
tion using current component (), and component count () returns the
number of components in the bynany object. You can also use
rewind (), seek (), and next () to change the current position. If a
DynAny is initialized with a value that has components, the index is
initialized to 0. The special index value of -1 indicates a current
position that points nowhere. For example, some values (such as
an empty exception) cannot have a current position. In these
cases the index value is fixed at -1.

You can use the iteration operations, together with

current component (), to dynamically compose an any value. After
creating a dynamic any, such as a bynStruct, you can use
current component () and next () to initialize all the components of
the value. Once the dynamic value is completely initialized,

to any() creates the corresponding any value.

You use the insert type() and get_type() methods to not only han-
dle basic Dynany objects but they are also helpful in handling con-
structed DynaAny objects. when you insert a basic data type value
into a constructed Dynany object, it initializes the current compo-
nent of the constructed data value associated with the Dynany
object.

For example, invoking insert boolean() On a DynStruct object
implies inserting a boolean data value at the current position of
the associated structure data value. In addition, you can use the
insert type() and get_type() methods to traverse any values asso-
ciated with sequences of basic data types without the need to gen-
erate a DynaAny object for each element in the sequence.

The Dynany object has a destroy () method that you can use to
destroy a top-level pynany object and any component Dynany
objects obtained from it.

TypeMismatch is raised if you call methods insert type() or
get_type() on a DynAny whose current component itself has compo-
nents.

MARSHAL is raised if you attempt to export bynany objects to other
processes or externalize one with CORBA: :ORB: :object to string().
This is because pDynany objects are intended to be local to the pro-
cess in which they are created and used.

NO_IMPLEMENT might be raised if you attempt the following:

* Invoke operations exported through the COrBA: :Object inter-
face even though Dynany objects export operations defined in
this standard interface.

* Use a Dynany object with the DII.
The following code is the complete class:

package org.omg.DynamicAny;
public interface DynAny extends org.omg.CORBA.Object
{

org.omg.CORBA. TypeCode type () ;

void assign/(

574 Orbix CORBA Programmer’s Reference: Java

org.omg.DynamicAny.DynAny dyn any
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

void from any (
org.omg.CORBA.Any value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.CORBA.Any to any() ;

boolean equal (
org.omg.DynamicAny.DynAny dyn any
)i

void destroy () ;

org.omg.DynamicAny.DynAny copy () ;

void insert boolean(
boolean value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

void insert octet (
byte value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

void insert char(
char value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

void insert short (
short value
) throws org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

void insert ushort (
short value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

void insert long(
int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

void insert ulong(
int value
) throws org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

void insert float (
float value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

void insert double (
double value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

void insert string(
java.lang.String value

) throws org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

void insert reference (
org.omg.CORBA.Object value

Orbix CORBA Programmer’s Reference: Java 575

) throws org.omg.DynamicAny.DynAnyPackage.

void insert typecode (
org.omg.CORBA. TypeCode value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert longlong (
long value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert ulonglong (
long value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert wchar (
char value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert wstring(
java.lang.String value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert any(
org.omg.CORBA.Any value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert dyn any(
org.omg.DynamicAny.DynAny value

) throws org.omg.DynamicAny.DynAnyPackage.

void insert val(
java.io.Serializable value

) throws org.omg.DynamicAny.DynAnyPackage.

boolean get boolean() throws
org.omg.DynamicAny.DynAnyPackage

byte get octet() throws
org.omg.DynamicAny.DynAnyPackage.

char get char() throws
org.omg.DynamicAny.DynAnyPackage.

short get_short () throws
org.omg.DynamicAny.DynAnyPackage.

short get ushort () throws
org.omg.DynamicAny.DynAnyPackage.

int get_long() throws
org.omg.DynamicAny.DynAnyPackage.

int get ulong() throws
org.omg.DynamicAny.DynAnyPackage.

float get float () throws
org.omg.DynamicAny.DynAnyPackage.

double get double() throws
org.omg.DynamicAny.DynAnyPackage.

576 Orbix CORBA Programmer’s Reference: Java

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

Invalidvalue;

.TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

TypeMismatch;

java.lang.String get string() throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

org.omg.CORBA.Object get reference() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

org.omg.CORBA.TypeCode get typecode() throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

long get longlong() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

long get ulonglong() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

char get wchar() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

java.lang.String get wstring() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

org.omg.CORBA.Any get any() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

org.omg.DynamicAny.DynAny get dyn any() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

java.io.Serializable get val() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

boolean seek (
int index

)i
void rewind() ;
boolean next () ;

int component count () throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

org.omg.DynamicAny.DynAny current component () throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

DynAny::assign()

// Java
void assign(
org.omg.DynamicAny.DynAny dyn any
)
Initializes the value associated with a bynany object with the value
associated with another pynany object.

Orbix CORBA Programmer’s Reference: Java 577

Parameters

Exceptions

Exceptions

See Also

dyn_any The DynAny object to initialize to.

The current position of the target Dynany is set to zero for values
that have components and to -1 for values that do not have
components.

TypeMismatch The type of the passed Dynany is not equivalent to the
type of the target Dynany.

DynAny::component_count()
int component count ()

Returns the number of components of a DynaAny. For a Dynany without
components, it returns zero.

The operation only counts the components at the top level. For
example, if you invoke component count () On a DynStruct with a

single member, the return value is 1, irrespective of the type of
the member.

Table 12: Return Values for DynAny:: component_count()

Type Return Value
DynSequence The current number of elements.
DynStruct The number of members.

Dynvalue

DynArray The number of elements.

DynUnion 2 if the discriminator indicates that a
named member is active.
1 Otherwise.

DynFixed zero

oynEnum

TypeMismatch The method is called on a bynany that cannot have
components, such as a bynEnum or an empty exception.

DynamicAny::DynAny::current_component()
DynamicAny: :DynAny: : seek ()

DynamicAny: :DynAny: : rewind ()

DynamicAny: :DynAny: :next ()

DynAny::copy(

org.omg.DynamicAny.DynAny copy () ;
Returns a new DynAny object whose value is a deep copy of the Dynany
on which it is invoked.

578 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Enhancement

Exceptions

See Also

The operation is polymorphic, that is, invoking it on one of the
types derived from DynAny, such as DynStruct, creates the derived
type but returns its reference as the DynaAny base type.

DynAny::current_component()

// Java
org.omg.DynamicAny.DynAny current component ()

Returns the Dynany for the component at the current position. It
does not advance the current position, so repeated calls without an
intervening call to rewind (), next (), or seek() return the same
component. If the current position current position is -1, the method
returns a nil reference.

The returned Dynany object reference can be used to get or set the
value of the current component. If the current component rep-
resents a complex type, the returned reference can be narrowed
based on the TypeCode to get the interface corresponding to the
complex type.

TypeMismatch The method is called on a bynany that cannot have
components, such as a bynEnum or an empty exception.

DynamicAny: :DynAny::component_count()
DynamicAny: :DynAny: : seek ()

DynamicAny: :DynAny: : rewind ()
DynamicAny: :DynAny: :next ()

DynAny::destroy()

// Java
void destroy () ;

Destroys a Dynany object. This operation frees any resources used
to represent the data value associated with a Dynany object.

Destroying a top-level bynany object (one that was not obtained as
a component of another bynany) also destroys any component
DynAny objects obtained from it. Destroying a non-top level (com-
ponent) DynaAny object does nothing.

You can manipulate a component of a bynany object beyond the life
time of its top-level bynany by making a copy of the component
with copy () before destroying the top-level bynany object.

Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy (). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs.

OBJECT NOT EXI A destroyed Dynany object or any of its components is
ST referenced.

DynamicAny: DynAny::copy ()
IT CORBA: :RefCountedLocalObject

Orbix CORBA Programmer’s Reference: Java 579

Parameters

Parameters

Exceptions

See Also

Exceptions

DynAny::equal()

boolean equal (
org.omg.DynamicAny.DynAny dyn any

) ;
Compares two Dynany values for equality and returns true of the
values are equal, false otherwise. Two Dynany values are equal if
their type codes are equivalent and, recursively, all respective
component Dynany values are equal. The current position of the two
DynAny vValues being compared has no effect on the result of equal ().

dyn_any The Dynany value to compare.

DynAny::from_any()

// Java
void from any (
org.omg.CORBA.Any value
);
Initializes the value associated with a bynany object with the value
contained in an any type.

The current position of the target Dynany is set to zero for values
that have components and to -1 for values that do not have com-
ponents.

value An 2ny value to initialize the Dynany object to.

TypeMismatch The type of the passed any is not equivalent to the
type of the target Dynany.

Invalidvalue The passed any does not contain a legal value (such as
a null string).

DynamicAny::DynAny::to any ()

DynAny::get_any()

org.omg.CORBA.Any get any() ;
Returns an any value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_any (an Any TypeCode), or, if the
TypeCode at the current position (a bynaAny objects with compo-
nents) is equivalent to tc_any. The current position is unchanged
after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

580 Orbix CORBA Programmer’s Reference: Java

See Also

Exceptions

See Also

Exceptions

See Also

Exceptions

DynamicAny::DynAny::insert any ()

DynAny::get_boolean()
boolean get boolean() ;

Returns a boolean value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to tc boolean (& boolean TypeCode), ofr, if
the TypeCode at the current position (a Dynany objects with compo-
nents) is equivalent to _tc boolean. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert boolean ()

DynAny::get_char()

char get char();

Returns a char value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc char (a char TypeCode), or, if the
TypeCode at the current position (a bynaAny objects with compo-

nents) is equivalent to _tc char. The current position is unchanged
after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert char ()

DynAny::get_double()

double get double() ;
Returns a double value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_double (a double TypeCode), ofr, if the
TypeCode at the current position (a Dynany objects with compo-
nents) is equivalent to _tc double. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Orbix CORBA Programmer’s Reference: Java 581

See Also

Exceptions

See Also

Exceptions

See Also

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert double ()

DynAny::get_dyn_any()

org.omg.DynamicAny.DynAny get dyn any() ;

Returns a pynAny reference value from the pynany object.

get dyn any () is provided to deal with any values that contain
another any.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to the TypeCode of a Dynany or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent the TypeCode Of a Dynany. The current position
is unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert dyn any ()

DynAny::get_float()

float get float();

Returns a float value from the pynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc float (@ float TypeCode), of, if the
TypeCode at the current position (a bynaAny objects with compo-

nents) is equivalent to _tc float. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert float ()

DynAny::get_long()

int get long() ;Returns a int value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc long (a long TypeCode), or, if the
TypeCode at the current position (a bynaAny objects with compo-
nents) is equivalent to _tc long. The current position is unchanged
after the call.

582 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

See Also

Exceptions

See Also

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert long()

DynAny::get_longlong()

long get longlong() ;
Returns a long value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc longlong (@ long long TypeCode), Of,
if the TypeCode at the current position (a bynaAny objects with com-
ponents) is equivalent to tc longlong. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert longlong()

DynAny::get_octet()

byte get octet () ;
Returns an byte value from the pynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_octet (an octet TypeCode), ofr, if the
TypeCode at the current position (a Dynany objects with compo-
nents) is equivalent to _tc_octet. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert octet ()

DynAny::get_reference()

org.omg.CORBA.Object get reference() ;
Returns an object reference from the Dynany object.

Orbix CORBA Programmer’s Reference: Java 583

Exceptions

See Also

Exceptions

See Also

Exceptions

See Also

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc Object (an object reference
TypeCode), Of, if the TypeCode at the current position (a Dynany
objects with components) is equivalent to _tc Object. The current
position is unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert reference ()

DynAny::get_short()

short get short () ;

Returns a short value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc short (@ short TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-

nents) is equivalent to _tc short. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert short ()

DynAny::get_string()

java.lang.String get string();

Returns a string value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_string (a string TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-

nents) is equivalent to _tc_string. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert string()

584 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

See Also

Exceptions

DynAny::get_typecode()

org.omg.CORBA. TypeCode get typecode () ;
Returns a TypeCode value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc TypeCode (@ TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc TypeCode. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert typecode ()

DynAny::get_ulong()

int get ulong() ;
Returns a int value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc ulong (an unsigned long TypeCode),
or, if the TypeCode at the current position (a Dynany objects with
components) is equivalent to _tc ulong. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert ulong()

DynAny::get_ulonglong()

long get ulonglong() ;
Returns a long value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc ulonglong (an unsigned long long
TypeCode), or, if the TypeCode at the current position (a bynany
objects with components) is equivalent to tc ulonglong. The cur-
rent position is unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

Orbix CORBA Programmer’s Reference: Java 585

See Also

Exceptions

See Also

Exceptions

See Also

DynamicAny::DynAny::insert ulonglong ()

DynAny::get_ushort()

short get ushort() ;

Returns a short value from the pynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc ushort (an unsigned short TypeCode),
or, if the TypeCode at the current position (a Dynany objects with

components) is equivalent to _tc ushort. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert ushort ()

DynAny::get_val()

java.io.Serializable get val();

Returns a value type value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the pynany is equivalent to a value type TypeCode, or, if the TypeCode
at the current position (a Dynany objects with components) is

equivalent to a value type TypeCode. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::insert val ()

DynAny::get_wchar()

char get wchar() ;

Returns a char value from the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc wchar (@ wchar TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc wchar. The current position is
unchanged after the call.

586 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

See Also

Parameters

Exceptions

See Also

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert wchar ()

DynAny::get_wstring()

java.lang.String get wstring() ;

Returns a wide string value from the pynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc wstring (a wide string TypeCode), OF,
if the TypeCode at the current position (a bynaAny objects with com-

ponents) is equivalent to _tc wstring. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::insert wstring()

DynAny::insert_any()
// Java
void insert any (

org.omg.CORBA.Any value
)i

Inserts an any value into the Dynany object.

value The value to insert into the bDynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_any (an any TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc_any. The current position is unchanged
after the call.

Invalidvalue The Dynany has components and the current position is
-1.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get any ()

Orbix CORBA Programmer’s Reference: Java 587

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

DynAny::insert_boolean()

// Java
void insert boolean (

boolean value

)i
Inserts a boolean value into the Dynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc boolean (& boolean TypeCode), Of, if
the TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc boolean. The current position is
unchanged after the call.

Invalidvalue The DynaAny has components and the current position is
-1.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get boolean ()

DynAny::insert_char()
// Java
void insert char(

char value

)
Inserts a char value into the bynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc char (a char TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc char. The current position is unchanged
after the call.

Invalidvalue The DynaAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynaAny is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get char ()

DynAny::insert_double()

// Java
void insert double (double value);

Inserts a double value into the DynAny object.

588 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc_double (& double TypeCode), ofr, if the
TypeCode at the current position (a bynaAny objects with compo-
nents) is equivalent to _tc double. The current position is
unchanged after the call.

Invalidvalue The Dynany has components and the current position is
-1.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get double ()

DynAny::insert_dyn_any()

// Java
void insert dyn any(
org.omg.DynamicAny.DynAny value
)
Inserts a DynAny value into the Dynany object. insert dyn any() is
provided to deal with any values that contain another any.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to the TypeCode of a Dynany or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent the TypeCode Of a Dynany. The current position
is unchanged after the call.

Invalidvalue The Dynany has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get dyn any ()

DynAny::insert_float()

// Java
void insert float (float value) ;

Inserts a float value into the Dynany object.

value The value to insert into the Dynany object.

Orbix CORBA Programmer’s Reference: Java 589

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc float (& float TypeCode), of, if the
TypeCode at the current position (a DynaAny objects with compo-
nents) is equivalent to tc float. The current position is
unchanged after the call.

Invalidvalue The Dynany has components and the current position is
-1.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get float ()

DynAny::insert_long()

// Java
void insert long(

int value
) throws org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Inserts a long value into the pynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc long (a long TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc long. The current position is unchanged
after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get long ()

DynAny::insert_long long()

// Java
void insert longlong (

long value

)
Inserts a long value into the pDynany object.

value The value to insert into the Dynany object.

590 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc longlong (& long long TypeCode), Of,
if the TypeCode at the current position (a Dynany objects with com-
ponents) is equivalent to tc longlong. The current position is
unchanged after the call.

Invalidvalue The Dynany has components and the current position is
-1.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

DynamicAny::DynAny::get longlong ()

DynAny::insert_octet()

// Java
void insert octet (

byte value
)i

Inserts an byte value into the bynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc octet (an octet TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc_octet. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::get octet ()

DynAny::insert_reference()

// Java
void insert reference (

org.omg.CORBA.Object value
)i

Inserts an object reference into the bDynany object.

value The value to insert into the bynany object.

Orbix CORBA Programmer’s Reference: Java 591

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc Object (an object reference
TypeCode), Of, if the TypeCode at the current position (a Dynany
objects with components) is equivalent to _tc Object. The current
position is unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get reference ()

DynAny::insert_short()
// Java
void insert short (

short value

);
Inserts a short value into the Dynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc short (@ short TypeCode), or, if the
TypeCode at the current position (a bynany objects with compo-
nents) is equivalent to _tc_short. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get short ()

DynAny::insert_string()

// Java
void insert string(

java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

Inserts a string into the bynany object.

value The value to insert into the Dynany object.

You can insert both bounded and unbounded strings using
insert string().

592 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_string (a string TypeCode), or, if the
TypeCode at the current position (a Dynany objects with compo-
nents) is equivalent to _tc string. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

Invalidvalue ¢ The DynAny has components and the current posi-
tion is -1.

* The string inserted is longer than the bound of a
bounded string.

DynamicAny::DynAny::get string()

DynAny::insert_typecode()

// Java
void insert typecode (

org.omg.CORBA.TypeCode value
)i

Inserts a TypeCode value into the Dynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc TypeCode (@ TypeCode), ofr, if the
TypeCode at the current position (a Dynany objects with compo-
nents) is equivalent to tc TypeCode. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::get typecode ()

DynAny::insert_ulong()

// Java
void insert ulong(

int value

)i
Inserts a int value into the Dynany object.

value The value to insert into the Dynany object.

Orbix CORBA Programmer’s Reference: Java 593

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc ulong (an unsigned long TypeCode),
or, if the TypeCode at the current position (a DynaAny objects with
components) is equivalent to _tc ulong. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get ulong()

DynAny::insert_ulonglong()
// Java
void insert ulonglong (

long value

) ;
Inserts a long value into the pynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc ulonglong (an unsigned long long
TypeCode), or, if the TypeCode at the current position (a DynaAny
objects with components) is equivalent to _tc ulonglong. The cur-
rent position is unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get ulonglong ()

DynAny::insert_ushort()

// Java
void insert ushort (

short value

)i
Inserts a short value into the Dynany object.

value The value to insert into the Dynany object.

594 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynaAny is equivalent to _tc ushort (an unsigned short TypeCode),
or, if the TypeCode at the current position (a DynaAny objects with
components) is equivalent to _tc ushort. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::get ushort ()

DynAny::insert_val()
// Java
void insert val(

java.io.Serializable value

)i
Inserts a value type value into the Dynany object.

value The value to insert into the Dynany object.

It is valid for you to use this method if the TypeCode contained in
the pynany is equivalent to a value type TypeCode, or, if the TypeCode
at the current position (a Dynany objects with components) is
equivalent to a value type TypeCode. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the requested type.

Invalidvalue The Dynany has components and the current position is
-1.

DynamicAny::DynAny::get val ()

DynAny::insert_wchar()

// Java
void insert wchar (

char value

)i
Inserts a char value into the pDynany object.

value The value to insert into the bynany object.

Orbix CORBA Programmer’s Reference: Java 595

Exceptions

See Also

Parameters

Exceptions

See Also

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc wchar (a wide character TypeCode),
or, if the TypeCode at the current position (a DynaAny objects with
components) is equivalent to _tc wchar. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynaAny is of a type that
is not equivalent to the requested type.

Invalidvalue The DynaAny has components and the current position is
-1.

DynamicAny::DynAny::get wchar ()

DynAny::insert_wstring()

// Java
void insert wstring(

java.lang.String value

);
Inserts a wide string into the pynany object.

value The value to insert into the Dynany object.

You can insert both bounded and unbounded strings using
insert wstring().

It is valid for you to use this method if the TypeCode contained in
the Dynany is equivalent to _tc wstring (a wide string TypeCode),
or, if the TypeCode at the current position (a DynaAny objects with
components) is equivalent to _tc wstring. The current position is
unchanged after the call.

TypeMismatch The accessed component in the Dynany is of a type that
is not equivalent to the inserted type.

Invalidvalue ® The Dynany has components and the current posi-
tion is -1.

* The string inserted is longer than the bound of a
bounded string.

DynamicAny::DynAny::get wstring()

DynAny::InvalidValue User Exception

// Java
package org.omg.DynamicAny.DynAnyPackage;
public final class InvalidValue
extends org.omg.CORBA.UserException
{

public Invalidvalue() {
super (InvalidValueHelper.id()) ;
}

596 Orbix CORBA Programmer’s Reference: Java

}

A user exception meaning that an invalid value has been used as a
parameter.

See Also DynamicAny::DynAny::TypeMismatch

DynAny::next()

// Java
boolean next () ;

Advances the current position to the next component of the Dynany
object. Returns true if the resulting current position indicates a
component, false otherwise. Invoking next () on a DynaAny that has
no components returns false. A false return value always sets the
current position to -1.

See Also DynamicAny::DynAny::component count ()
DynamicAny: :DynAny: :current component ()
DynamicAny: :DynAny: : seek ()
DynamicAny: :DynAny: : rewind ()

DynAny::rewind()

// Java
void rewind() ;

Sets the current position to the first component of the bynany object.
This is equivalent to calling seek (0).

See Also DynamicAny::DynAny::seek ()

DynAny::seek()
// Java
boolean seek (

int index

)i

Sets the current position to a component of the Dynany object. The
method returns true if the resulting current position indicates a
component of the bynany object and false if the position does not
correspond to a component.

Parameters

index The new index to set the current position to. An index
can range from O to »~1. An index of zero corresponds
to the first component.

Calling seek with a negative index is legal and sets the
current position to -1 to indicate no component. The
method returns false in this case.

Passing a non-negative index value for a Dynany that
does not have a component at the corresponding posi-
tion sets the current position to - 1 and returns false.

See Also DynamicAny::DynAny::component count ()

Orbix CORBA Programmer’s Reference: Java 597

See Also

See Also

DynamicAny: :DynAny: :current component ()
DynamicAny: :DynAny: : rewind ()
DynamicAny: :DynAny: :next ()

DynAny::to_any()

// Java
org.omg.CORBA.Any to any() ;

Returns an any value created from a Dynany object. A copy of the
TypeCode associated with the Dynany object is assigned to the
resulting any. The value associated with the Dynany object is copied
into the any value.

DynamicAny::DynAny::from any ()

DynAny::type()

// Java
org.omg.CORBA. TypeCode type () ;

Returns the TypeCode associated with a Dynany object.

A DynaAny object is created with a TypeCode value assigned to it. This
value determines the type of the value handled through the Dynany
object. type () returns the TypeCode associated with a Dynany object.

Note that the TypeCode associated with a Dynany object is initialized
at the time the bynany is created and cannot be changed during the
lifetime of the bynany object.

DynAny::TypeMismatch User Exception

// Java
package org.omg.DynamicAny.DynAnyPackage;
public final class TypeMismatch
extends org.omg.CORBA.UserException
{

public TypeMismatch() {
super (TypeMismatchHelper.id()) ;
}

}

A user exception meaning that the type of a parameter does not
match the type of the target.

This exception is also raised when attempts are made to access
DynAny components illegally. For example:

* If an attempt is made to access an object’s component but the
type of object does not have components.

* If an attempt is made to call an insert type() Or get type()
method on a Dynany object whose current component itself has
components.

DynamicAny::DynAny::Invalidvalue

598 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynAnyFactory

Class

Exceptions

You can create DynAny objects by invoking operations on the
DynAnyFactory object. You obtain a reference to the DynAnyFactory
object by calling CORBA.ORB.resolve initial references() with the
identifier parameter set to "DynAnyFactory".

A typical first step in dynamic interpretation of an any involves cre-
ating a DynaAny object using create dyn any() or

create dyn any from type code (). Then, depending on the type of
the any, you narrow the resulting bynany object reference to one of
the following complex types of object references:

DynFixed

DynStruct

DynSequence

DynArray

DynUnion

DynEnum

DynValue

Finally, you can use DynaAny.to any() (which each of these classes
inherits from the Dynany class) to create an any value from the con-
structed Dynany.

MARSHAL: an attempt is made to exported references to DynaAnyFactory
objects to other processes or if an attempt is made to externalized
them with ORB.object to string().DynAnyFactory Objects are intend-
ed to be local to the process in which they are created and used.

package org.omg.DynamicAny;

public interface DynAnyFactory extends org.omg.CORBA.Object
{
org.omg.DynamicAny.DynAny create dyn any (
org.omg.CORBA.Any value
) throws
org.omg.DynamicAny.DynAnyFactoryPackage . InconsistentTypeCode;

org.omg.DynamicAny.DynAny create dyn any from type code (
org.omg.CORBA. TypeCode type
) throws
org.omg.DynamicAny.DynAnyFactoryPackage . InconsistentTypeCode;

DynAnyFactory::create_dyn_any()

// Java
org.omg.DynamicAny.DynAny create dyn any (
org.omg.CORBA.Any value
)i

Returns a new DynaAny object from an any value.

Orbix CORBA Programmer’s Reference: Java 599

Parameters

Exceptions

See Also

Parameters

value An any value to use to set the Dynany object.

A copy of the TypeCode associated with the any value is assigned to
the resulting Dynany object. The value associated with the Dynany
object is a copy of the value in the original any. The current posi-
tion of the created DynAny object is set to zero if the passed value
has components; otherwise, the current position is set to -1.

InconsistentTypeCode: the value has a TypeCode with a TCKind of
tk Principal, tk native, Or tk abstract interface.

DynamicAny.DynAnyFactory.create dyn any from type code ()

DynAnyFactory::create_dyn_any_ from_type c
ode()

// Java
org.omg.DynamicAny.DynAny create dyn any from type code (
org.omg.CORBA.TypeCode type
) ;

Returns a new DynaAny object from a TypeCode value. Depending on
the TypeCode, the created object may be of type Dynany, or one of
its derived types, such as Dynstruct. The returned reference can be
narrowed to the derived type.

type A TypeCode value to use to set the Dynany object.

Table 13 shows the initial default values set depending on the type
created:

Table 13: Default Values When Using create_dyn_any_from_type _code()

Type Default Value

any values An 2any containing a TypeCode with a TCKind value
of tk null and no value.

boolean FALSE
char Zero
DynArray The operation sets the current position to zero

and recursively initializes elements to their
default value.

DynEnum The operation sets the current position to -1 and
sets the value of the enumerator to the first
enumerator value indicated by the TypeCode.

DynFixed Operations set the current position to -1 and
sets the value to zero.

DynSequence The operation sets the current position to -1 and
creates an empty sequence.

600 Orbix CORBA Programmer’s Reference: Java

Table 13: Default Values When Using create_dyn_any_from_type code()

Type Default Value
DynStruct The operation sets the current position to -1 for

empty exceptions and to zero for all other
TypeCode values. The members (if any) are recur-
sively initialized to their default values.

DynUnion The operation sets the current position to zero.
The discriminator value is set to a value consis-
tent with the first named member of the union.
That member is activated and recursively initial-
ized to its default value.

DynValue The members are initialized as for a bynStruct.

numeric types | zero

object refer- nil
ences
octet zero
string the empty string
TypeCode A TypeCode with a TCKind value of tk null
wchar zero
wstring the empty string
Exceptions InconsistentTypeCode: the TypeCode has a TCKind of tk Principal,

tk native, Or tk abstract interface.

See Also DynamicAny.DynAnyFactory.create dyn any ()

DynAnyFactory::InconsistentTypeCode User
Exception Class
// Java
package org.omg.DynamicAny.DynAnyFactoryPackage;
public final class InconsistentTypeCode
extends org.omg.CORBA.UserException
{

public InconsistentTypeCode() {
super (InconsistentTypeCodeHelper.id()) ;
}

}

A user exception meaning that a parameter has an inconsistent
TypeCode compared to the object.

Orbix CORBA Programmer’s Reference: Java 601

602 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynArray Class

DynArray objects let you dynamically manipulate any values as
arrays. The following methods let you get and set array elements:

get elements ()
set elements()

get elements as dyn any ()

set elements as dyn any ()

This class inherits from the Dynany class. Use component count () to
get the dimension of the array. Use the iteration methods such as
seek () to access portions of the array.

// Java
package org.omg.DynamicAny;

public interface DynArray extends
org.omg.DynamicAny . DynAny
{

org.omg.CORBA.Any[] get elements() ;

void set elements (
org.omg.CORBA.Any [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.DynamicAny.DynAny [] get elements as dyn any() ;

void set elements as dyn any(
org.omg.DynamicAny.DynAny [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

}

See Also DynamicAny: :DynAny

DynArray::get_elements()

// Java
org.omg.CORBA.Any[] get elements();

Returns a sequence of any values containing the elements of the
array.

See Also DynamicAny::DynArray::set elements ()
DynamicAny: :DynArray: :get elements as dyn any ()
DynamicAny: : DynAny: : component count ()

DynArray::get_elements_as dyn_any()

// Java
org.omg.DynamicAny.DynAny [] get elements as dyn any() ;

Returns a sequence of Dynany objects that describes each member
in the array.

Orbix CORBA Programmer’s Reference: Java 603

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

Use this method instead of get elements () if you want to avoid
converting DynaAny objects to Any objects when your application
needs to handle Dynarray objects extensively.

DynamicAny::DynArray:iget elements ()

DynamicAny: :DynArray: :set elements as dyn any ()
DynamicAny: : DynAny: : component count ()

DynArray::set_elements()

// Java
void set elements (

org.omg.CORBA.Any[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Sets the array values with a sequence of any values.

value A sequence of any values containing the elements for
the array.

This method sets the current position to -1 if the sequence has a
zero length and it sets it to O otherwise.

TypeMismatch is raised if an inconsistent value is passed in the
sequence.

Invalidvalue is raised if the sequence length does not match the
array length.

DynamicAny::DynArray:iget elements ()
DynamicAny: :DynArray: :set elements as dyn any ()
DynamicAny: : DynAny: : component count ()

DynArray::set_elements_as_dyn_any()

// Java
void set elements as dyn any(

org.omg.DynamicAny.DynAny [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Initializes the array data associated with a bDynArray object from a
sequence of bynany objects. Use this method instead of

set elements () if you want to avoid converting Dynany objects to Any
objects when your application needs to handle pynaArray objects
extensively.

value A sequence of Dynany objects representing the array
elements.

This method sets the current position to -1 if the sequence has a
zero length and it sets it to O otherwise.

TypeMismatch is raised if an inconsistent value is passed in the
sequence.

604 Orbix CORBA Programmer’s Reference: Java

Invalidvalue is raised if the sequence length does not match the
array length.
See Also DynamicAny::DynArray:iget elements as dyn any()
DynamicAny: :DynArray: :set elements ()
DynamicAny: : DynAny: : component count ()

Orbix CORBA Programmer’s Reference: Java 605

606 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynEnum Class

See Also

See Also

See Also

A DynEnum Object lets you dynamically manipulate an any value as
an enumerated value. The key methods allow you to get and set a
value as an IDL identifier string or you can manipulate the number
that the enumerated value represents:

get as string()

set as string()

get as ulong()

set as ulong()

This class inherits from the pynany class. The current position of a
DynEnum is always -1 because it can only be one value at a given
time.

// Java
package org.omg.DynamicAny;

public interface DynEnum extends
org.omg.DynamicAny . DynAny
{

java.lang.String value as string() ;

void set value as_ string(
java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

int get_as ulong() ;
void set _as ulong(

int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

DynamicAny::DynAny

DynEnum::value_as_string()

// Java
java.lang.String value as string() ;

Returns a string for the bynEnum that represents the IDL enumeration
identifier.

DynamicAny::DynEnum::set as string()

DynamicAny: :DynEnum: :get as ulong()

DynEnum::get_as_ulong()

// Java
int get as ulong() ;

Returns a number for the DynkEnum that represents the enumerated
ordinal value. Enumerators have ordinal values of O to »n-1, as they
appear from left to right in the corresponding IDL definition.

DynamicAny::DynEnum:iset as ulong()

Orbix CORBA Programmer’s Reference: Java 607

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

DynamicAny: :DynEnum: :value as string()

DynEnum::set_as_string()

// Java
void set value as_string(

java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

Sets the enumerated identifier string value for the DynEnum.

value The identifier string to set the enumerated value to.

Invalidvalue The value string is not a valid IDL identifier for the cor-
responding IDL enumerated type.

DynamicAny::DynEnum::value as string()
DynamicAny: :DynEnum: :set as ulong()

DynEnum::set_as_ulong()

Sets the numerical value for the DynkEnum that represents the enu-
merated ordinal value.

value The number to set the enumerated value to.

Invalidvalue The value is outside the range of ordinal values for the
corresponding IDL enumerated type.

DynamicAny::DynEnum:iget as ulong ()
DynamicAny: :DynEnum: :set as string()

608 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynFixed Class

See Also

See Also

A DynFixed object lets you dynamically manipulate an any value as
a fixed point value. This class inherits from the Dynany class. The
key methods include get value() and set value().

These methods use strings to represent fixed-point values. A
fixed-point format consists of an integer part of digits, a decimal
point, a fraction part of digits, and a d or D. Examples include:
1.2d

35.98D

456.32

.467

Either the integer part or the fraction part (but not both) may be
missing. The decimal point is not required for whole numbers. The
d or D are optional. leading or trailing white space is allowed.

// Java
package org.omg.DynamicAny;

public interface DynFixed extends
org.omg.DynamicAny . DynAny
{

java.lang.String get value() ;

boolean set value (
java.lang.String val
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage . Invalidvalue;

}

DynamicAny::DynAny

DynFixed::get_value()
// Java

java.lang.String get value() ;

Returns a string representing the fixed value of the DynFixed object.

DynamicAny::DynFixed:Iset value ()

DynFixed::set_value()

// Java
boolean set value (

java.lang.String val
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage . Invalidvalue;

Sets the value of the DynFixed. The method returns true if val can
be represented as the DynFixed without loss of precision. If val has
more fractional digits than can be represented in the DynFixed, the
fractional digits are truncated and the method returns false.

Orbix CORBA Programmer’s Reference: Java 609

Parameters

val A string containing the fixed point value to be set in
the DynFixed. The string must contain a fixed string
constant in the same format as would be used for IDL
fixed-point literals. However, the trailing d or D is
optional.

Exceptions

Invalidvalue val contains a value whose scale exceeds that of the
DynFixed or is not initialized.

TypeMismatch val does not contain a valid fixed-point literal or con-
tains extraneous characters other than leading or
trailing white space.

See Also DynamicAny::DynFixed::get value ()

610 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynSequence Class

DynSequence oObjects let you dynamically manipulate any values as
sequences. The key methods allow you to manage the sequence
length and get and set sequence elements:

get length()

set length()

get elements ()

set elements ()

get elements as dyn any ()
set elements as dyn any ()

This class inherits from the Dynany class.

// Java
package org.omg.DynamicAny;

public interface DynSequence extends
org.omg.DynamicAny . DynAny
{

int length() ;

void set length(
int len
) throws org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

org.omg.CORBA.Any [] get elements() ;

void set elements (
org.omg.CORBA.Any [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.DynamicAny.DynAny[] get elements as dyn any();

void set elements as dyn any(

org.omg.DynamicAny.DynAny [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

}

See Also DynamicAny::DynAny

DynSequence::get_elements()

org.omg.CORBA.Any [] get elements() ;
Returns a sequence of any values containing the elements of the
sequence.

See Also DynamicAny::DynSequence::set elements ()
DynamicAny: : DynSequence: :get elements as dyn any ()

Orbix CORBA Programmer’s Reference: Java 611

DynSequence::get_elements_as_dyn_any()

org.omg.DynamicAny.DynAny [] get elements as dyn any() ;

Returns a sequence of Dynany objects that describes each member
in the sequence.

Use this method instead of get elements () if you want to avoid
converting Dynany objects to any objects when your application
needs to handle DynSequence objects extensively.

See Also DynamicAny::DynSequence::get elements ()
DynamicAny: : DynSequence: :get elements as dyn any ()

DynSequence::length()
int length() ;
Returns the number of elements in the sequence.

See Also DynamicAny::DynSequence::set length ()
DynamicAny: : DynSequence: :get elements ()

DynSequence::set_elements()

void set_elements (
org.omg.CORBA.Any [] value

) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Sets the sequence values.

Parameters

value A sequence of any values containing the elements for
the sequence.

This method sets the current position to -1 if the sequence has a
zero length and it sets it to O otherwise.

Exceptions

Invalidvalue The parameter’s length is greater than the DynSequence
length.

TypeMismatch an inconsistent value is passed in. This can happen if:

* The element type codes between the DynSequence
and the parameter do not agree.

* The DynSequence is a bounded sequence and the
number of elements in the parameter are greater
than the bound allows.

See Also DynamicAny::DynSequence::get elements ()
DynamicAny: : DynSequence: : set elements as dyn any ()
DynamicAny: : DynSequence: : length ()
DynamicAny: : DynSequence: : set length ()

612 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

Parameters

DynSequence::set_elements_as_dyn_any()

void set elements as dyn any(
org.omg.DynamicAny.DynAny [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage . InvalidvValue;

Initializes the sequence data associated with a DynSequence object
from a sequence of Dynany objects. Use this method instead of
set elements () if you want to avoid converting DynAny objects to Any
objects when your application needs to handle DynSequence objects
extensively.

value A sequence of bynany objects to represent the ele-
ments of the DynSequence.

This method sets the current position to -1 if the sequence has a
zero length and it sets it to O otherwise.

Invalidvalue The parameter’s length is greater than the DynSequence
length.

TypeMismatch An inconsistent value is passed in. This can happen if:

* The element type codes between the DynSequence
and the parameter do not agree.

®* The DynSequence is a bounded sequence and the
number of elements in the parameter are greater
than the bound allows.

DynamicAny::DynSequence:iget elements as dyn any ()
DynamicAny: : DynSequence: : set elements ()
DynamicAny: : DynSequence: : length ()

DynamicAny: : DynSequence: : set length ()

DynSequence::set_length()

Sets the length of the sequence.

len The length desired for the sequence.

Increasing the length adds new (default-initialized) elements to
the end of the sequence without affecting existing elements in the
sequence. The new current position is set to the first new element
if the previous current position was -1. The new current position
remains the same as the old one if the previous current position
indicates a valid element (was anything but -1).

Decreasing the length removes elements from the end of the
sequence without affecting the rest of the elements. The new cur-
rent position is as follows:

e If the previous current position indicates a valid element and
that element is not removed, the new current position
remains the same.

* If the previous current position indicates a valid element and
that element is removed, the new current position is set to -1.

Orbix CORBA Programmer’s Reference: Java 613

* If the sequence length is set to O, the new current position is
set to -1.

e If the previous current position was -1, the new current posi-
tion remains -1.
Exceptions

Invalidvalue An attempt is made to increase the length of a
bounded sequence to a value greater than the bound.

See Also DynamicAny::DynSequence::length ()
DynamicAny: : DynSequence: : set elements ()

614 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynStruct Class

You use DynStruct objects for dynamically handling structures and
exceptions in any values. This class inherits from the pynany class.
Key methods allow you to set and get the structure (or exception)
as a sequence of name-value pairs:

get members ()
set members ()
get members as dyn any ()
set members as dyn any ()

Use the pynany iteration methods such as seek () to set the current
position to a member of the structure. You can also obtain the
name and kind of TypeCode for a member at the current position:

current member name ()
current member kind ()

// Java
package org.omg.DynamicAny;

public interface DynStruct extends
org.omg.DynamicAny . DynAny
{

java.lang.String current member name () throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

org.omg.CORBA.TCKind current member kind() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

org.omg.DynamicAny.NameValuePair [] get members () ;

void set members (
org.omg.DynamicAny.NameValuePair [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

org.omg.DynamicAny . NameDynAnyPair []
get members as dyn any() ;

void set members as dyn any(
org.omg.DynamicAny.NameDynAnyPair [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

}

See Also DynamicAny: :DynAny

DynStruct::current_member_kind()

org.omg.CORBA.TCKind current member kind() throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

Returns the kind of TypeCode associated with the current position.

Orbix CORBA Programmer’s Reference: Java 615

Exceptions

See Also

Exceptions

See Also

See Also

See Also

TypeMismatch The DynStruct object represents an empty exception.
Invalidvalue The current position does not indicate a member.

DynamicAny: :DynAny::seek ()
DynamicAny: : DynStruct: : current member name ()

DynStruct::current_member_name()

java.lang.String current member name () throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

Returns the name of the member at the current position. This
method can return an empty value since the TypeCode of the value
being manipulated may not contain the names of members.

TypeMismatch DynStruct object represents an empty exception.
Invalidvalue The current position does not indicate a member.

DynamicAny::DynAny::seek ()
DynamicAny: : DynStruct: : current member kind()

DynStruct::get_members()

org.omg.DynamicAny.NameValuePair [] get members () ;

Returns a sequence of members that describes the name and the
value of each member in the structure (or exception) associated
with a bynStruct object.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the Dynstruct. The current
position is not affected. The member names in the returned
sequence will be empty strings if the TypeCode of the DynStruct
does not contain member names.

DynamicAny::DynStruct:iset members ()
DynamicAny: : DynStruct: :get members as dyn any ()

DynStruct::get_members_as_dyn_any()

org.omg.DynamicAny.NameDynAnyPair [] get members as dyn any() ;

Returns a sequence of name-Dynany pairs that describes each
member in the structure (or exception) associated with a bynStruct
object. Use this method instead of get members () if you want to avoid
converting DynaAny objects to any objects when your application needs
to handle pynstruct objects extensively.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the DynStruct. The current
position is not affected. The member names in the returned
sequence will be empty strings if the TypeCode of the DynStruct
does not contain member names.

DynamicAny::DynStruct:iset members as dyn any ()

616 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also

DynamicAny: : DynStruct: :get members ()

DynStruct::set_members()

void set members (
org.omg.DynamicAny.NameValuePair[] value

) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Initializes the structure data associated with a Dbynstruct object from
a sequence of name-value pairs.

value A sequence of name-value pairs representing member
names and the values of the members.

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.

Members in the sequence must follow these rules:

* Members must be in the order in which they appear in the IDL
specification of the structure.

* If member names are supplied in the sequence, they must
either match the corresponding member name in the TypeCode
of the Dynstruct or they must be empty strings.

* Members must be supplied in the same order as indicated by
the TypeCode of the DynStruct. The method does not reassign
member values based on member names.

Invalidvalue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynStruct.

TypeMismatch Raised if:

* One or more sequence elements have a type that
is not equivalent to the TypeCode of the corre-
sponding member.

* The member names do not match the correspond-
ing member name in the TypeCode of the DynStruct.

DynamicAny::DynStruct:iget members ()
DynamicAny: :DynStruct: : set members as dyn any ()

DynStruct::set_members_as_dyn_any()

void set members as dyn any (
org.omg.DynamicAny.NameDynAnyPair [] value

) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

Initializes the structure data associated with a Dbynstruct object from
a sequence of name-Dynany pairs. Use this method instead of
set members () if you want to avoid converting DynAny objects to any

Orbix CORBA Programmer’s Reference: Java 617

Parameters

Exceptions

See Also

objects when your application needs to handle pynStruct objects
extensively.

value A sequence of name-Dynany pairs representing mem-
ber names and the values of the members as Dynany
objects.

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.

Members in the sequence must follow these rules:

* Members must be in the order in which they appear in the IDL
specification of the structure.

* If member names are supplied in the sequence, they must
either match the corresponding member name in the TypeCode
of the Dynstruct or they must be empty strings.

* Members must be supplied in the same order as indicated by
the TypeCode of the DynStruct. The method does not reassign
Dynany values based on member names.

Invalidvalue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynStruct.

TypeMismatch Raised if:

* One or more sequence elements have a type that
is not equivalent to the TypeCode of the corre-
sponding member.

* The member names do not match the correspond-
ing member name in the TypeCode of the DynStruct.

DynamicAny::DynStruct:iget members as dyn any ()
DynamicAny: : DynStruct: : set members ()

618 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynUnion Class

The DynUnion class lets you dynamically manage an any value as a
union value. This class inherits from the Dynany class. Key methods
to manipulate a union include:

has no active member ()

member ()

member kind ()

member name ()

Other methods are available to manipulate a union’s discrimina-
tor:

discriminator kind()
discriminator ()

set discriminator ()

set to default member ()
set to no active member ()

A union can have only two valid current positions: Zero denotes
the discriminator and 1 denotes the active member.

The value returned by Dynany: : component count () for a union
depends on the current discriminator: it is 2 for a union whose dis-
criminator indicates a named member, and 1 otherwise.

// Java
package org.omg.DynamicAny;

public interface DynUnion extends
org.omg.DynamicAny . DynAny
{

org.omg.DynamicAny.DynAny discriminator () ;
void set_discriminator (
org.omg.DynamicAny.DynAny d
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

void set to default member() throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch;

void set _to no active member () throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

boolean has no active member () ;
org.omg.CORBA.TCKind discriminator kind() ;

org.omg.DynamicAny.DynAny member () throws
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

java.lang.String member name () throws
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.CORBA.TCKind member kind() throws
org.omg.DynamicAny.DynAnyPackage.InvalidvValue;

}

See Also DynamicAny::DynAny

Orbix CORBA Programmer’s Reference: Java 619

See Also

See Also

See Also

Parameters

See Also

DynUnion::discriminator_kind()
org.omg.CORBA.TCKind discriminator kind() ;
Returns the kind of TypeCode of the union’s discriminator.

DynamicAny::DynUnion::discriminator ()
DynamicAny: : DynUnion: : set discriminator ()

DynUnion::discriminator()
org.omg.DynamicAny.DynAny discriminator () ;
Returns the current discriminator value of the Dynunion.

DynamicAny::DynUnion::set discriminator ()
DynamicAny: : DynUnion: :discriminator kind()

DynUnion::has_no_active_member()

boolean has no active member () ;

Returns true if the union has no active member (that is, the union’s
value consists solely of its discriminator because the discriminator
has a value that is not listed as an explicit case label). The method
returns false if:

* The IDL union has a default case.

* The IDL union’s explicit case labels use the entire range of dis-
criminator values.

DynamicAny::DynUnion:member ()
DynamicAny: :DynUnion: : set to default member ()
DynamicAny: : DynUnion: : set to no active member ()

DynUnion::member()

org.omg.DynamicAny.DynAny member () throws
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Returns the currently active member. Note that the returned
reference remains valid only for as long as the currently active
member does not change.

Invalidvalue The union has no active member.

DynamicAny::DynUnion:member kind ()
DynamicAny: : DynUnion: : member name ()
DynamicAny: : DynUnion: :has no active member ()

DynUnion::member_kind()

org.omg.CORBA.TCKind member kind() throws
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Returns the kind of TypeCode of the currently active member.

620 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also

Exceptions

See Also

Parameters

Exceptions

See Also

Invalidvalue The method is called on a union without an active
member.

DynamicAny::DynUnion:member ()
DynamicAny: : DynUnion: : member name ()

DynUnion::member_name()

java.lang.String member name () throws
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Returns the name of the currently active member. The method
returns an empty string if the union’s TypeCode does not contain a
member name for the currently active member.

Invalidvalue The method is called on a union without an active
member.

DynamicAny::DynUnion:member ()
DynamicAny: : DynUnion: :member kind ()

DynUnion::set_discriminator()

void set discriminator (
org.omg.DynamicAny.DynAny d
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the discriminator of the Dynunion.

d The value to set the discriminator to. Setting the dis-
criminator to a value that is consistent with the cur-
rently active union member does not affect the
currently active member. Setting the discriminator to
a value that is inconsistent with the currently active
member deactivates the member and activates the
member that is consistent with the new discriminator
value (if there is a member for that value) by initializ-
ing the member to its default value.

Setting the discriminator of a union sets the current position to O if
the discriminator value indicates a non-existent union member
(The method has no active member () would return true in this
case). Otherwise, if the discriminator value indicates a named
union member, the current position is set to 1,

has no active member () would return false, and component count ()
would return 2 in this case.

TypeMismatch The TypeCode of the parameter is not equivalent to the
TypeCode Of the union’s discriminator.

DynamicAny::DynUnion::discriminator ()
DynamicAny: : DynUnion: :has no active member ()
DynamicAny: :DynUnion: : set to default member ()

Orbix CORBA Programmer’s Reference: Java 621

Exceptions

See Also

Exceptions

See Also

DynamicAny: : DynUnion: : set to no active member ()

DynUnion::set_to_default_member()

void set to default member() throws

org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

Sets the discriminator to a value that is consistent with the value
of the default case of a union.

This method sets the current position to zero and causes
component count () to return 2.

TypeMismatch The method is called on a union without an explicit
default case.

DynamicAny::DynUnion::has no active member ()
DynamicAny: : DynUnion: : set discriminator ()
DynamicAny: : DynUnion: : set to no active member ()
DynamicAny: : DynUnion: : set to no active member ()

DynUnion::set_to_no_active_member()

void set to no active member () throws

org.omg.DynamicAny .DynAnyPackage . TypeMismatch;

Sets the discriminator to a value that does not correspond to any
of the union’s case labels.

This method sets the current position to zero and causes
DynAny: : component count () to return 1.

TypeMismatch Raised if this method is called on a union that:
* Does not have an explicit default case.
* Uses the entire range of discriminator values for
explicit case labels.

DynamicAny::DynUnion:has no active member ()
DynamicAny: : DynUnion: : set discriminator ()
DynamicAny: : DynUnion: : set to default member ()

622 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynValue Class

See Also

You use Dynvalue objects for dynamically handling value types in
any values. Value types are used for objects-by-value. This class
inherits from the bynany class. Key methods allow you to set and
get the value type as a sequence of name-value pairs:

get members ()
set members ()
get members as dyn any ()
set members as dyn any ()

Use the pynany iteration methods such as seek () to set the current
position to a member of the value type. You can also obtain the
name and kind of TypeCode for a member at the current position:

current member name ()
current member kind ()

The class is as follows:

// Java
package org.omg.DynamicAny;

public interface DynValue extends
org.omg.DynamicAny . DynAny
{

java.lang.String current member name() throws
org.omg.DynamicAny . DynAnyPackage . TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.CORBA.TCKind current member kind() throws
org.omg.DynamicAny .DynAnyPackage . TypeMismatch,
org.omg.DynamicAny.DynAnyPackage . Invalidvalue;

org.omg.DynamicAny.NameValuePair [] get members () ;

void set members (
org.omg.DynamicAny.NameValuePair [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

org.omg.DynamicAny . NameDynAnyPair []
get members as dyn any() ;

void set members as dyn any(
org.omg.DynamicAny.NameDynAnyPair [] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

}

DynamicAny::DynAny

Orbix CORBA Programmer’s Reference: Java 623

DynValue::current_member_kind()

org.omg.CORBA.TCKind current member kind() throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Returns the kind of TypeCode associated with the current position.
Exceptions
TypeMismatch The Dynvalue object represents an empty value type.

Invalidvalue The current position does not indicate a member.

See Also DynamicAny::DynAny::seek ()
DynamicAny: :DynValue: : current member name ()

DynValue::current_member_name()

java.lang.String current member name () throws
org.omg.DynamicAny.DynAnyPackage . TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Returns the name of the member at the current position. This
method can return an empty value since the TypeCode of the value
being manipulated may not contain the names of members.

Exceptions
TypeMismatch The Dynvalue object represents an empty value type.

Invalidvalue The current position does not indicate a member.

See Also DynamicAny::DynAny::seek ()
DynamicAny: :DynValue: : current member kind ()

DynValue::get_members()

org.omg.DynamicAny.NameValuePair [] get members () ;

Returns a sequence of members that describes the name and the
value of each member in the Dynvalue object.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the Dynvalue. The current posi-
tion is not affected. The member names in the returned sequence
will be empty strings if the TypeCode of the Dynvalue does not con-
tain member names.

See Also DynamicAny::DynValue::set members ()
DynamicAny: :DynValue: :get members as dyn any ()

DynValue::get_members_as_dyn_any()

org.omg.DynamicAny .NameDynAnyPair [] get members as dyn any() ;
Returns a sequence of name-Dynany pairs that describes each
member in the value type associated with a Dynvalue object. Use
this method instead of get members () if you want to avoid converting
Dynany objects to Any objects when your application needs to handle
DynValue Objects extensively.

624 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

Exceptions

See Also

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the Dynvalue. The current posi-
tion is not affected. The member names in the returned sequence
will be empty strings if the TypeCode of the Dynvalue does not con-
tain member names.

DynamicAny::DynValue:iset members as dyn any ()
DynamicAny: : DynValue: :get members ()

DynValue::set_members()

void set members (
org.omg.DynamicAny.NameValuePair [] value

) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage . Invalidvalue;

Initializes the data value associated with a bynvalue object from a
sequence of name-value pairs.

values A sequence of name-value pairs representing member
names and the values of the members.

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.

Members in the sequence must follow these rules:

* Members must be in the order in which they appear in the IDL
specification.

* If member names are supplied in the sequence, they must
either match the corresponding member name in the TypeCode
of the Dynvalue or they must be empty strings.

* Members must be supplied in the same order as indicated by
the TypeCode of the Dynvalue. The method does not reassign
member values based on member names.

Invalidvalue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the Dynvalue.

ypeMismatch Raised if:

* One or more sequence elements have a type that
is not equivalent to the TypeCode of the corre-
sponding member.

* The member names do not match the correspond-
ing member name in the TypeCode of the Dynvalue.

DynamicAny::Dynvalue::get_members()
DynamicAny: :DynValue: : set members as dyn any ()
DynamicAny: : NameValuePair

Orbix CORBA Programmer’s Reference: Java 625

Parameters

Exceptions

See Also

DynValue::set_members_as dyn_any()

void set members as dyn any(
org.omg.DynamicAny .NameDynAnyPair [] value

) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.Invalidvalue;

Initializes the data value associated with a bynvalue object from a
sequence of name-Dynany pairs. Use this method instead of

set members () if you want to avoid converting DynAny objects to any
objects when your application needs to handle pynvalue objects
extensively.

value A sequence of name-Dynany pairs representing mem-
ber names and the values of the members as Dynany
objects.

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.

Members in the sequence must follow these rules:

* Members must be in the order in which they appear in the IDL
specification of the structure.

* If member names are supplied in the sequence, they must
either match the corresponding member name in the TypeCode
of the Dynvalue or they must be empty strings.

* Members must be supplied in the same order as indicated by
the TypeCode of the Dynvalue. The method does not reassign
DynAny values based on member names.

Invalidvalue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the Dynvalue.

TypeMismatch Raised if:

* One or more sequence elements have a type that
is not equivalent to the TypeCode of the corre-
sponding member.

* The member names do not match the correspond-
ing member name in the TypeCode of the Dynvalue.

DynamicAny::DynValue:iget members as dyn any ()
DynamicAny: : DynValue: : set members ()
DynamicAny: : NameDynAnyPair

626 Orbix CORBA Programmer’s Reference: Java

GSSUP Overview

See Also

See Also

See Also

See Also

See Also

The Generic Security Service username/password (GSSUP) IDL
module defines the data types needed for the GSSUP mechanism.
This reference page is an extract from the GSSUP module that
includes only the data types needed for the 1T csI module.

GSSUP::GSSUPMechOID

const CSI::StringOID GSSUPMechOID = "0id:2.23.130.1.1.1";

The GSS Object Identifier allocated for the username/password
mechanism, which is defined as follows:

{ iso-itu-t (2) international-organization (23) omg (130)
security (1) authentication (1) gssup-mechanism (1) }

IT_CSI::AuthenticationService: :client_authentication_mech
IT CSI::AuthenticationServicePolicy::client authentication
mech

GSSUP::ErrorCode

typedef unsigned long ErrorCode;
The error code type returned by GSSUP operations.

IT_CSI::AuthenticateGSSUPCredentials: :authenticate()

GSSUP::GSS_UP_S_G_UNSPECIFIED

const ErrorCode GSS UP_S G UNSPECIFIED = 1;

An error code indicating that the context validator has chosen not
to reveal the GSSUPspecific cause of the failure.

IT_CSI::AuthenticateGSSUPCredentials: :authenticate()

GSSUP::GSS_UP_S_G_NOUSER

const ErrorCode GSS UP S G NOUSER = 2;
An error code indicating that the user is unknown to the target.

IT_CSI::AuthenticateGSSUPCredentials: :authenticate()

GSSUP::GSS _UP_S G_BAD_PASSWORD

const ErrorCode GSS UP S G BAD PASSWORD = 3;
An error code indicating that the supplied password was incorrect.

IT_CSI::AuthenticateGSSUPCredentials: :authenticate()

Orbix CORBA Programmer’s Reference: Java 627

GSSUP::GSS_UP_S_G_BAD_TARGET

const ErrorCode GSS UP S G BAD TARGET = 4;

An error code indicating that the target name, by which is meant a
security policy domain (CSIv2 authentication domain), does not
match a security policy domain in the target.

See Also IT_CSI::AuthenticateGSSUPCredentials: :authenticate()

628 Orbix CORBA Programmer’s Reference: Java

Description

I T_Buffer::RawData

Description

Java implementation

| T_Buffer::StorageSeq

The IT_Buffer Module

Aproprietary implementation of a segmented buffer, for usein ART-based
applications.

ART Buffers are not expected to maintain storage in a contiguous
region of memory. Instead Buffers are made up of Segments and,
where appropriate, are optimized for bulk access to these
Segments. Segments, in turn, each represent a subrange of the
data contained in a Storage instance. Storage instances can be
shared by multiple Buffer instances, allowing messages to be
parsed without copying.

An IDL native type providing efficient access to a Buffer's data.

The rawData type provides access to a contiguous subset of the
bytes contained in a Buffer. It is an IDL native type that maps to
the language specific type that provides the most efficient access
for marshaling and demarshaling individual primitives as well as
for accessing bulk data.

In Java, RawData maps to byte[] by default. If you are using
JDK1.4 and you have enabled Orbix to use Java’s new 1/0 (NIO),
the RawData type maps to java.nio.ByteBuffer instead.

A sequence of local 1T Buffer: : Storage Objects.

Orbix CORBA Programmer’s Reference: Java 629

IT Buffer:

Description

Java implementation

IT_Buffer::Storage::data

I T_Buffer::Storage::length

:Storage

A contiguous region of bytes of which subranges can be contained
in Buffers.

The ART core provides a heap-based Storage
implementation. Plug-ins may provide special purpose
Storage implementations—for example, referencing shared
memory.

Instances of storage must be safe to access concurrently,
because they might be contained as Segments in multiple
Buffers.

Because storage instances potentially occupy significant
amounts of scarce resources, Java garbage collection cannot
be relied upon to reclaim instances that are no longer
needed in a timely manner. Instead, reference () and
unreference () operations are provided to explicitly maintain
a count of how many Buffer Segments reference a Storage
instance.

Provides access to the bytes in the storage object.

The number of bytesin IT_Buffer:: Storage:: data.

| T_Buffer::Storage::another ()

Returns

Obtain another storage instance of the sameimplementation type,
and sharing any other relevant traits.

An otherwise unused Storage instance.

630 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

expiry

Latest time at which to give up. The Storage implementation isfreeto impose astricter
expiry, for example for resource managment when more one call to another () isin
progress.

CORBA: : TIMEOUT
Raised if an appropriate Storage instance cannot be obtained before expiry.

CORBA: :NO_RESOURCES
Raised if the operation gives up before the specified expiry time.

IT_Buffer::Storage::reference()

Java implementation

I ncrements the storage instance's r eference count.

This method should be called whenever you assign the storage
instance to a new Java reference.

IT_Buffer::Storage::unreference()

Java implementation

Decrement the storage instance's reference count.

This method should be called whenever a particular Java reference
is finished using the storage instance. When the reference count
becomes zero, the storage instance becomes available for re-use.

Orbix CORBA Programmer’s Reference: Java 631

IT Buffer:

Description

| T_Buffer::Segment::data

Java implementation

I T_Buffer::Segment::offset

Description

:Segment

A contiguous subset of the data contained in a Buffer.

A Segment represents a contiguous subset of the bytes contained
in a Buffer. Segments are implemented by the ART core. Segment
instances belong to a specific Buffer instance and are not
reference counted in C++. Segment instances must be protected
from concurrent access. The data attribute may expose bytes that
belong to other Segments, which must not be examined or
modified via this Segment.

A reference to the block of raw memory where this segment is stored.

In Java, the native RawData type maps to byte[] by default. If you
are using JDK1.4 and you have enabled Orbix to use Java’s new
1/0 (NIO), the rRawData type maps to java.nio.ByteBuffer instead.

The offset in 1T Buffer: :Segment : :data at which this segment's bytes
begin.

In other words, the first byte in this segment is given by
Segment::data + Segment::offset.

| T_Buffer::Segment::length

Description

The number of bytesin 1T Buffer: : Segment : :data that belong to this
Segment.
The value of length is always greater than zero.

For example, the index after the last byte in the segment is given
by Segment::data + Segment::offset + Segment::length.

| T_Buffer::Segment::underlying_storage

Returns the underlying storage as an 1T_Buffer: : Storage Object.

632 Orbix CORBA Programmer’s Reference: Java

IT Buffer::Buffer

Description

A randomly accessible linear finite sequence of bytes.

A Buffer is made up of an ordered set of segments, each providing
access to a contiguous subrange of the Buffer's data. Buffers are
implemented by the ART core, and instances must be protected
from concurrent access.

Java implementation Because Buffers potentially occupy significant amounts of scarce

I T_Buffer::

I T_Buffer::

IT_Buffer::

IT_Buffer::

IT_Buffer::

I T_Buffer:

Description

Returns

Buffer::

Buffer:

Buffer:

Buffer:

Buffer:

:Buffer::

resources, Java garbage collection cannot be relied upon to
reclaim Buffers that are no longer needed in a timely manner.
Instead, the recycle() operation must be called when a Buffer is
no longer needed. Note that many operations to which Buffers are
passed implicitly take responsibility for recycling those Buffers.

length

The number of bytes within the sutfer currently available for use.

:original_length

The number of bytes originally allocated to the Buffer.

:storage size

The allocation unit size of the Buffer's underlying storage
implementation.

:segment_count

The number of segments currently available for use.

:rewind()

Ensures that a subsequent call to next_segment () Will return the first
segment of the Buffer, or NULL if the length is zero.

next_segment()

Gets the next segment of the Butfer.

The first call to next segment () after a Buffer has been allocated or
rewind () has been called returns the first Segment of the Buffer. A
subsequent call returns the segment following the Segment that was
previously returned.

The next segment, or NULL if the Buf fer contains no additional segments.

Orbix CORBA Programmer’s Reference: Java 633

I T_Buffer::Buffer::grow()

Description

Parameters

Exceptions

IT_Buffer::Buffer::trim()

Description

Parameters

Exceptions

Attempts to increase the length of the Buffer.

On sucessful return, the Buffer's length will have increased by at
least increment bytes. It may be larger, if adding an integral
number of storage instances results in more than the requested
number of bytes. If the most recent call to next segment () had
returned NULL, a call subsequent to a successful grow() by a
non-zero increment will return the first newly added Segment.

increment

The minimum by which to increase the length.

expiry

Latest time at which to give up. The Buffer implementation is free to impose a stricter
expiry time.

CORBA: : TIMEOUT

Raised if the Buf fer cannot be grown to at least new_length bytes before expiry.
CORBA: :NO_RESOURCES

Raised if the operation gives up before the specified expiry time.

Reduce the length, unreferencing any unneeded storage instances.

Trim always rewinds the Buffer.
from
The index of thefirst byte to be included in the trimmed Buf fer.

to
The index after the last byte to be included in the trimmed Buf fer.

CORBA: :BAD PARAM
Raised if an invalid subrangeis specified.

| T_Buffer::Buffer::eclipse()

Description

Parameters

Exceptions

Hides or exposes an initial subrange of the Butfer data.

Nested eclipsing is allowed. The Buffer is always rewound by this
operation.

delta

Specifies the offset from the current Buf fer start index to hide (when positive) or
expose (when negative)

CORBA: :BAD PARAM

Raised if delta isoutside the uneclipsed buffer.

634 Orbix CORBA Programmer’s Reference: Java

I T_Buffer::Buffer::recycle()

Exceptions

Returnsthe Buffer to the Buf ferManager's pool of unallocated Buffers,
unreferencing any storage instancesit contains.

CORBA: :BAD INV_ORDER
Raised if the buffer is already recycled.

| T_Buffer::Buffer::prepend()

Description

Parameters

Concatenates another sutfer with this Buffer.

The contents of the head is inserted prior to the current first byte
of this Buffer. The head Buffer is implicitly recycled.

head
The other Buffer.

| T_Buffer::Buffer::append()

Description

Parameters

Concatenates this Burfer with another Buffer.

The contents of the tail is inserted after the current last byte of
this Buffer. The tail Buffer is implicitly recycled. If the most recent
call to next segment () had returned NULL, a call subsequent to the
append () of a non-empty buffer returns the first appended
segment.

tail
The other Buffer.

| T_Buffer::Buffer::extract()

Description

Returns

Parameters

Exceptions

Extracts the specified range of bytes from this sutfer.

The specified range of bytes are returned as a new Buffer. This
Buffer is left containing the concatenation of the bytes before and
after the specified range. Both this Buffer and the result are
rewound.

A new Buffer containing the exracted bytes.

from

The index of the first byte to extract.
to

The index after the last byte to extract.

CORBA: :BAD PARAM
Raised if an invalid subrange is specified.

| T_Buffer::Buffer::copy_octets()

Copy a sub-range of the Buffer into an octet sequence.

Orbix CORBA Programmer’s Reference: Java 635

Parameters buffer offset
The offset into the Buffer to copy from.
dest

The destination octet sequence. The octetsin the given sequence object can be modified,
but the implementation should not return a different sequence.

dest_offset

The offset into the destination to copy into.
length

The number of bytesto copy.

Exceptions CORBA: :BAD PARAM
Raised if an invalid sub-range of the Buf fer is specified.

636 Orbix CORBA Programmer’s Reference: Java

IT Buffer:.BufferManager

Description

A per-ORB singleton object for managing Buffers.

An instance of BufferManager is provided by the ART core, and is
obtained by resolving the IT BufferManager initial reference string.

| T_Buffer::BufferManager::get_buffer()

Returns

Parameters

AllocateaBuffer containing a singlesegment that referencesthe specified
range of the specified storage instance.

The newly allocated Buffer.

initial segment storage

The storage object backing the initial segment.

initial segment_ offset

Theoffsetin initial segment storage at which theinitial ssgment begins.
initial segment length

The number of bytesin initial segment storage belonging to theinitial sesgment.

I T_Buffer::BufferManager::get_segmented_buffer()

Description
Returns

Parameters

Allocates a Buf fer containing a sequence of segments, each backed by the
corresponding member of the provided sequence of storages, bounded by
the relevant member s of the offsets and lengths sequences.

Typically used by a wrapping Buffer implementation.
The newly alocated Buffer.

storages

The sequence of Storage objects.
offsets

The seguence of offsets.

lengths

The sequence of lengths.

| T_Buffer::BufferManager::get_heap_buffer()

Returns

Parameters

Allocate a suffer containing the specified amount of heap-allocated
Sorage.

The newly alocated Buffer.

length

The number of bytes required; or zero, indicating asingle Segment of the heap's
preferred size.

Orbix CORBA Programmer’s Reference: Java 637

IT_Buffer::BufferManager::get_octets buffer()

Allocate a Buffer referencing an octet sequence's data.

Returns The newly allocated Buffer.
Parameters octets

The octet sequence

offset

The offset into the octet sequence.
length
The number of octets to use.

638 Orbix CORBA Programmer’s Reference: Java

IT Certificate Overview

The IT certificate module provides data types and interfaces that
are used to manage and describe X.509 certificates. The following
interfaces are provided in this module:

o Certificate
b X509Cert

o X509CertificateFactory

IT_Certificate::CertError Exception

// IDL
exception CertError

{
}i

A certificate-related error.

Error e;

IT_Certificate::DERData Sequence

typedef sequence<octet> DERData;
Holds data in distinguished encoding rules (DER) format.

IT_Certificate::Error Structure

struct Error

Error code err code;
string error message;

}i

Holds certificate-related error information.

IT_Certificate::Error_code Type
typedef short Error_ code;
Holds the certificate-related error codes.
Values This type can have one of the following integer constant values:

IT TLS_FAILURE

IT TLS_UNSUPPORTED FORMAT
IT TLS BAD CERTIFICATE DATA
IT TLS ERROR READING DATA

IT_Certificate::X509CertChain Sequence

typedef sequence<X509Cert> X509CertChain;
A list of x509cert object references.

Orbix CORBA Programmer’s Reference: Java 639

IT_Certificate::X509CertList Sequence

typedef sequence<X509Cert> X509CertList;
A list of x509cert object references.

640 Orbix CORBA Programmer’s Reference: Java

IT Certificate::AVA Interface

IDL

Description

Parameters

Exceptions

// IDL in module IT Certificate
interface AVA
readonly attribute UShort set;
readonly attribute ASN OID oid;

// raises minor code IT TLS UNSUPPORTED FORMAT
Bytes convert (in Format f) raises(CertError) ;

}i

Individual AvA objects represent an element of the distinguished
name such as the common name field (CN) or organization unit
(OU). You can retrieve a desired Ava object can using the AvAList
class.

AVA objects can be converted to a number of different forms such
as string format or DER format.

AVA::convert()

// IDL
Bytes convert (in Format f) raises(CertError) ;

This operation returns the contents of the ava object in the
requested data format.

This operation takes the following parameter

£ The format of the required conversion. The following Format
values are supported:

IT FMT DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications
that require special processing of the DER data.

IT FMT STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.

IT FMT HEX STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

CertError with An unknown format is specified.
error code

IT TLS UNSUPPO

RTED FORMAT

AVA::oid

// IDL
readonly attribute ASN OID oid;

Orbix CORBA Programmer’s Reference: Java 641

Description

Description

Return the ASN.1 OID tag for this AVA object, in the form of an
ASN OID structure.

AVA::set

// IDL
readonly attribute UShort set;

A number that identifies the set to which the AVA belongs.
Because a set normally contains just a single AVA, the number
returned by the set attribute is usually distinct for each AVA.

Theoretically, more than one AVA could belong to the same set, in
which case two or more AVAs could share the same set number.
In practice, this rarely ever happens.

642 Orbix CORBA Programmer’s Reference: Java

IT Certificate::AVALIst Interface

IDL

Description

IDL
Description

IDL
Description

// IDL in module IT Certificate

interface AVAList
typedef sequence<AVA> ListOfAVAs;
readonly attribute ListOfAVAs ava list;

UShort get num avas() ;

// Returns SUCCESSFUL or AVA NOT PRESENT
IT Certificate::ReplyStatus
get ava by oid tag(
in OIDTag t,
out AVA a
) raises (CertError) ;

// Returns SUCCESSFUL or AVA NOT PRESENT
IT Certificate::ReplyStatus
get_ava by oid(

in ASN OID seq,

in UShort n,

out AVA a
) raises (CertError) ;

// raises minor code IT TLS UNSUPPORTED FORMAT
Bytes convert (
in Format f
) raises(CertError) ;
}i
An AvVAList is an abstraction of a distinguished name from a certif-
icate. An AVAList consists of a number of ava objects.

Individual rva objects represent an element of the distinguished
name such as the common name field (CN) or organization unit
(OU). You can retrieve a desired AVA object using the AvAList.

AVA objects can be converted to a number of different forms such
as string format or DER format.

AVAList::ava_list

readonly attribute ListOfAVAs ava list;
Returns the AVA list as a sequence of avaA object references.

AVAList::convert()

Bytes convert (in Format f) raises (CertError) ;

This operation converts the AVAList to a specified format.

Orbix CORBA Programmer’s Reference: Java 643

Parameters

Exceptions

IDL

Description

Parameters

IDL

Description

Parameters

This operation takes the following parameter:

f The format of the required conversion. The following Format
values are supported:

IT FMT DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications that
require special processing of the DER data.

IT FMT STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.

IT FMT HEX STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

CertError, An unknown format is specified.
error code

IT TLS UNSUPPO

RTED FORMAT

AVAList::get_ava_ by oid_tag()

// Returns SUCCESSFUL or AVA NOT PRESENT
IT Certificate::ReplyStatus
get _ava by oid tag(
in OIDTag t,
out AVA a
) raises(CertError) ;

This operation retrieves an aAva object from an avavList according to
its OID tag.

t An OID tag
a The returned AVA object reference.

AVAList::get_ava_ by oid()

// Returns SUCCESSFUL or AVA NOT PRESENT
IT Certificate::ReplyStatus
get ava by oid(
in ASN OID seq,
in UShort n,
out AVA a
) raises(CertError) ;

This operation retrieves an ava object from an avaList, selected by
the specified AsN 01D structure.

seq An ASN OID.

644 Orbix CORBA Programmer’s Reference: Java

a The returned AVA object reference.

AVAList::get_num_avas()

IDL UShort get num avas ()
Description This operation retrieves the number of Ava objects in a AVAList.

Orbix CORBA Programmer’s Reference: Java 645

646 Orbix CORBA Programmer’s Reference: Java

IT Certificate::Certificate
Interface

I1DL // IDL in module IT Certificate
interface Certificate

{
}i

Description This is the base interface for security certificate objects.

readonly attribute DERData encoded form;

Certificate::encoded_form

IDL readonly attribute DERData encoded form;

Description This attribute returns the certificate data encoded in DER format.

Orbix CORBA Programmer’s Reference: Java 647

648 Orbix CORBA Programmer’s Reference: Java

IT Certificate::Extension

Interface

IDL

Description

IDL
Description

Parameters

IDL
Description

// IDL in module IT Certificate
interface Extension
readonly attribute UShort critical;
readonly attribute ASN OID oid;

// raises minor code IT TLS UNSUPPORTED FORMAT

Bytes convert (in Format f) raises(CertError) ;
}i
The Extension interface provides the developer with an interface to
any X.509 version 3.0 extensions that an X.509 certificate can
contain.

The Extension interface enables you to access the data for one
particular extension. Using the Extension: :convert () operations,
the data can be converted into a number of representations.

Extension::convert()

Bytes convert (in Format f) raises (CertError) ;

This operation returns data that corresponds to the contents of
the Extension object converted to the requested format. The data
is converted to the requested format and returned as an array of
bytes.

This operation takes the following parameter:

£ The format of the required conversion. The following
Format values are supported:

IT FMT DER. This format corresponds to the DER encod-
ing of the extension. This option is usually only used by
applications that require special processing of the DER

data.

IT FMT STRING. This format corresponds to a null termi-
nated sequence of characters containing the actual data
contained in the extension. This data has not been mod-
ified in any way, and may include non printable charac-
ters if present in the actual extension data. This is a
regular 'C' string for printable string fields.

IT FMT HEX STRING. This format contains a formatted
hexadecimal dump of the DER data of the extension.

Extension::critical

readonly attribute UShort critical;

This attribute returns a non-zero value if the extension is critical;
zero if the extension is not critical. A critical extension is an exten-
sion that should not be ignored by the authentication code.

Orbix CORBA Programmer’s Reference: Java 649

Extension::oid

I1DL readonly attribute ASN OID oid;

This attribute returns the ASN.1 OID for the extension. Extensions

Description
are identified by an ASN.1 OID, just like regular AVAs.

650 Orbix CORBA Programmer’s Reference: Java

IT Certificate::ExtensionList

Interface

IDL

Description

IDL
Description

Note:

// IDL in module IT Certificate

interface ExtensionList
typedef sequence<Extension> ListOfExtensions;
readonly attribute ListOfExtensions ext list;

UShort get num extensions() ;

// Returns SUCCESSFUL or EXTENSION NOT PRESENT
IT Certificate::ReplyStatus
get extension by oid tag(
in OIDTag t,
out Extension e
) raises(CertError) ;

// Returns SUCCESSFUL or EXTENSION NOT PRESENT
IT Certificate::ReplyStatus
get_extension by oid(

in ASN OID seq,

in UShort n,

out Extension e
) raises (CertError) ;

// raises minor code IT TLS UNSUPPORTED FORMAT
Bytes convert (in Format f) raises(CertError) ;

}i
The Extension and ExtensionList interfaces provide you with
access to any X.509 version three extensions.

The Extension interface provides an interface to accessing the data
for one particular extension.

ExtensionList::convert()

Bytes convert (in Format f) raises(CertError) ;

convert () returns data in the requested format corresponding to
the contents of the ExtensionList object. The operation returns
this data as an array of bytes, or NULL if the the required conver-
sion is not supported.

Generally convert () is called on the individual extensions. This
operation is not commonly used.

Orbix CORBA Programmer’s Reference: Java 651

Parameters

Exceptions

IDL
Description

IDL

Description

Parameters

IDL

This operation takes the following parameter:

f The format of the required conversion. The following Format
value is supported:

IT FMT DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications that
require special processing of the DER data.

IT FMT STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.

IT FMT HEX STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

CertError, error code An unknown format is specified.
IT TLS UNSUPPORTED FORMAT

ExtensionList::ext_list

readonly attribute ListOfExtensions ext list;

This attribute returns the complete list of extensions as a
sequence of Extension objects.

ExtensionList::get_extension_by oid()

IT Certificate::ReplyStatus
get_extension by oid(

in ASN OID seq,

in UShort n,

out Extension e
) raises (CertError) ;

Obtains the Extension element of the ExtensionList that has the
requested object identifier, seq.

f the extension is found, a SUCCESSFUL reply status is returned; oth-
erwise an EXTENSION NOT PRESENT reply status is returned.

This operation takes the following parameters

seq An array of integers representing the ASN.1 object iden-
tifier.

n The number of elements in the array.

e The returned Extension oObject.

ExtensionList::get_extension_by oid_tag()

IT Certificate::ReplyStatus
get extension by oid tag(

in OIDTag t,
out Extension e

652 Orbix CORBA Programmer’s Reference: Java

Description

Parameters

IDL
Description

) raises(CertError) ;

Obtains the Extension element of the ExtensionList that corre-
sponds to the supplied o1DTag value, t.

If the extension is found, a SUCCESSFUL reply status is returned;
otherwise an EXTENSION NOT PRESENT reply status is returned.

t The o1DTag variable that identifies the extension to retrieve.

e The returned Extension object.

ExtensionList::get_num_extensions();

UShort get num extensions() ;

This operation returns the number of extensions in the list.

Orbix CORBA Programmer’s Reference: Java 653

654 Orbix CORBA Programmer’s Reference: Java

IT Certificate:: X509Cert
Interface

I1DL // IDL in module IT Certificate
interface X509Cert : IT Certificate::Certificate

// The only X509Cert definition supported in

// Java is the inherited

// IT Certificate::Certificate::encoded form attribute.
i

Description The IT certificate::X509Cert is the type of object returned by cer-

tain operations and attributes in the 1T TLS ApPI module. The only
operation or attribute supported by the x509cert interface is the
encoded_form attribute, which is inherited from
IT Certificate::Certificate.

To access the information in a Java X.509 certificate, it is recom-
mended that you perform the following steps:

1. Extract the DER datafrom the certificate using the
IT Certificate::Certificate::encoded form attribute.

2. Passthe DER datato the

com.iona.corba.tls.cert.CertHelper.bytearray to cert ()
method to obtain ajava.security.cert.Certificate oObject.

3. Usethe java.security.cert package to examine the certificate.

Orbix CORBA Programmer’s Reference: Java 655

656 Orbix CORBA Programmer’s Reference: Java

IT Certificate:: X509CertificateFa
ctory Interface

IDL

Description

IDL

Description

Parameters

Exceptions

// IDL in module IT Certificate
interface X509CertificateFactory
{
// Following function creates x509Cert from DER data.
// where DERData is a sequence of octets
//
// raises minor code IT TLS BAD CERTIFICATE DATA
//
X509Cert
create x509 certificate from der(
in DERData der
) raises (CertError) ;

//
// Read CertlList from a file.
// raises minor code IT TLS BAD CERTIFICATE DATA.
// raises minor code IT TLS ERROR READING DATA.
//
X509CertList
load x509 cert list(
in string location
) raises (CertError) ;

i
This interface is a factory that generates X.509 certificates of
IT Certificate::X509Cert type.

This interface contains one operation, create x509 cert (), that
generates an X.509 certificate on receiving data in the form of
DER.

X509CertificateFactory::create_x509 certifica
te_from_der()

X509Cert

create x509 certificate from der(
in DERData der

) raises (CertError) ;

Generates an X.509 certificate based on a parameter supplied in
DER format, der.

This operation takes the following parameter:

der The certificate data in DER format (of DERData type).
CertError, The der parameter is inconsistent or incorrectly for-
error code matted

IT TLS BAD CER
TIFICATE DATA

Orbix CORBA Programmer’s Reference: Java 657

IDL

Description

Parameters

Exceptions

X509CertificateFactory::load_x509 cert_list()

X509CertList
load x509 cert list(in string location) raises(CertError) ;

Generates a list of X.509 certificates based on data read from the
file specified by location. The file must contain a chain of certifi-
cates in PEM format.

This operation takes the following parameter:

location The absolute path name of the file containing the PEM
certificate chain.

CertError, Orbix cannot read the specified certificate file
error code
IT TLS ERRO
R_READING D
ATA

CertError, The content of the certificate file is inconsistent or
error code incorrectly formatted.
IT TLS BAD
CERTIFICATE
_DATA

658 Orbix CORBA Programmer’s Reference: Java

IT Config Overview

Every ORB is associated with a configuration domain that provides
it with configuration information. The configuration mechanism
enables Orbix to get its configuration information from virtually
any source including files or configuration repositories. The

IT Config module contains the API to both get configuration set-
tings and receive notifications when a particular configuration
value changes. The module contains the following interfaces:

b Configuration

o Listener

The IT config module does not give you a mechanism for chang-
ing configurations. Administrators typically setup and manage a
configuration domain using various tools described in the Applica-
tion Server Platform Administrator’s Guide.

A single configuration domain can hold configuration information for
multiple ORBs — each ORB uses its ORB name as a “key” to locate
its particular configuration within the domain. Often, an adminis-
trator will want to use a default configuration domain for a group
of applications, overriding only certain configuration variables for
individual applications or ORBs. This might be useful within a hier-
archical organization, or where different development groups or
applications need slightly different configurations.

A configuration domain can be organized into a hierarchy of
nested configuration scopes to enable a high degree of flexibility.
Each scope within a domain must be uniquely named relative to its
containing scope. Scope names consist of any combinations of
alphanumeric characters and underscores. Scopes are usually
identified by their fully qualified name, which contains the scope
name and the names of all parent scopes, separated by a dot (.).

Within each configuration scope, variables are organized into con-
figuration contexts. A configuration context is simply a collection of
related configuration variables. A context may also contain
sub-contexts. You can consider the configuration scope as the root
context. Contained in the root context are a number of sub-con-
texts. For example, there is a plug-ins context and an initial-refer-
ences context. The initial-references context contains a list of
initial-references for the services available to the system. The
plug-ins context contains a sub-context for each plug-in, in which
it holds its configuration information. This context will have the
same name as the plug-in, and will hold information such as the
name of the plug-in library and any dependencies the plug-in has,
as well as other plug-in-specific settings.

You as a programmer need not worry about this configuration
hierarchy set up by your administrator. You simply request config-
uration values via the Configuration interface. See the Application
Server Platform Administrator’'s Guide for more on configuration.

IT_Config::ConfigList Sequence

// IDL
typedef sequence<strings> Configlist;

Orbix CORBA Programmer’s Reference: Java 659

Enhancement

See Also

Enhancement

See Also

A list of configuration settings as strings.
This is an Orbix enhancement.

IT Config:iConfiguration:iget list ()
IT Config::Listener::list changed()

IT_Config::ListenerTargetRange Enumeration

// IDL
enum ListenerTargetRange {

OBJECT ONLY,
ONELEVEL,
SUBTREE

}i

A target scope refers to the extent of a configuration hierarchy that
a Listener object monitors.

OBJECT SCOPE The Listener is only interested in changes to the
specific target variable. For example, a Listener
with a target variable of
initial references:Naming:reference and a tar-
get scope of OBJECT ScoOpE is informed if that vari-
able changes.

ONELEVEL SCOPE The Listener is interested in changes to variables
contained in the target, a configuration context,
but not the target itself. For example, if the tar-
get is plugins:iiop, the Listener is informed of
any changes to variable in the plugins:iiop con-
figuration context.

SUBTREE SCOPE The Listener is interested in changes to the tar-
get and any variables or namespaces in the sub-
tree of the target. For example, if the target is
initial references, the Listener is informed of
any changes to anything under the
initial references namespace, including the
namespace itself.

This is an Orbix enhancement.

IT Config::Configuration:iadd listener ()

660 Orbix CORBA Programmer’s Reference: Java

IT Config::Configuration

Interface

This interface provides access to configuration information. You
get a reference to a Configuration implementation by calling
ORB::resolve initial references() with the string argument

IT Configuration.

In a configuration domain, the ORB name acts as the configuration
scope in which to start looking for configuration information. The
ORB supplies this information when querying the configuration
system for a configuration variable. If the variable cannot be
found within that scope or the scope does not exist, the system
recursively searches the containing scope. For example, if an ORB
with an ORB name of IONA.ProdDev.TestSuite.TestMgr requests a
variable, the system will first look in the
IONA.ProdDev.TestSuite.TestMgr scope, then
IONA.ProdDev.TestSuite, and so on, until it finally looks in the root
scope. This allows administrators to place default configuration
information at the highest level scope, then override this informa-
tion in descendant scopes to produce a specific, tailored configura-
tion.

Although there are specific operations such as get boolean() and
get double () to retrieve certain types of configuration information,
the configuration interface is not strictly typed. This means that
when a certain type of variable is requested, an effort is made to
convert the retrieved value to the requested type. For example, if
you call get long(), and the domain has a string such as "1234",
an attempt is made to convert the string to a long. In this case, it
can successfully return 1234 as a long. If, however, the value for
the requested variable were words such as "A String Value", then
it cannot be converted to a long and a TypeMismatch exception is
thrown.

// IDL in module IT Config

interface Configuration {

exception TypeMismatch {};

boolean get string(
in string name,
out string value
) raises (TypeMismatch) ;

boolean get list(
in string name,
out ConfigList value
) raises (TypeMismatch) ;

boolean get boolean (

in string name,
out boolean value
) raises (TypeMismatch) ;

boolean get long(
in string name,

Orbix CORBA Programmer’s Reference: Java 661

Parameters

Enhancement

See Also

out long value
) raises (TypeMismatch) ;

boolean get double (
in string name,
out double value
) raises (TypeMismatch) ;

void reigster listener(
in string target,
in ListnerTargetRange target scope,
in Listener 1

)

void remove listener (
in Listener 1

)i

// INTERNAL USE ONLY
//

void shutdown () ;

Configuration::register_listener()

// IDL
void register listener(

in string target,
in ListenerTargetRange target scope,
in Listener 1

)i

Adds a Listener object so your application can be notified of certain
configuration changes.

target The target configuration value for the Listener.

target _scope The scope parameter determines the extent of change
that the Listener is told about.

1 The Listener object.
Not all types of configuration domains support change notification.
This is an Orbix enhancement.

IT Config::ListenerTargetRange
IT Config::Configuration::remove listener ()

Configuration::get_boolean()

// IDL
boolean get boolean (

in string name,
out boolean value
) raises (TypeMismatch) ;

Returns true if the boolean value is successfully retrieved and false
if the variable could not be found.

662 Orbix CORBA Programmer’s Reference: Java

Parameters

Enhancement

Exceptions

Parameters

Enhancement

Exceptions

Parameters

Enhancement

Exceptions

name Name of the variable to retrieve.
value The value of the variable returned.

This is an Orbix enhancement.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Configuration::get_double()

// IDL
boolean get double (

in string name,
out double value
) raises (TypeMismatch) ;

Returns true if the double value is successfully retrieved and false
if the variable could not be found.

name Name of the variable to retrieve.
value The value of the variable returned.

This is an Orbix enhancement.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Configuration::get_list()

// IDL
boolean get list(

in string name,
out ConfigList value
) raises (TypeMismatch) ;

Returns true if the list of configuration settings is successfully
retrieved and false if the list could not be found.

name Name of the configuration list to retrieve.
value The values returned.

This is an Orbix enhancement.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Orbix CORBA Programmer’s Reference: Java 663

Parameters

Enhancement

Exceptions

Parameters

Enhancement

Exceptions

Enhancement

See Also

Configuration::get_long()

// IDL
boolean get long(

in string name,
out long value
) raises (TypeMismatch) ;

Returns true if the long value is successfully retrieved and false if
the variable could not be found.

name Name of the variable to retrieve.
value The value of the variable returned.

This is an Orbix enhancement.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Configuration::get_string()

// IDL
boolean get string/(

in string name,
out string value

) raises (TypeMismatch) ;

Returns true if the string value is successfully retrieved and false if
the variable could not be found.

name Name of the variable to retrieve.
value The value of the variable returned.

This is an Orbix enhancement.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Configuration::remove_ listener()

// IDL
void remove listener (

in Listener 1

)i
Removes a Listener object.
This is an Orbix enhancement.

IT Config::Configuration:iadd listener ()

664 Orbix CORBA Programmer’s Reference: Java

Configuration::shutdown()

// IDL
void shutdown () ;

Note: For internal use only

Configuration::TypeMismatch Exception

// IDL
exception TypeMismatch {};

The type of the configuration variable named in the operation does
not match the type required for the operation.

Enhancement This is an Orbix enhancement.

Orbix CORBA Programmer’s Reference: Java 665

666 Orbix CORBA Programmer’s Reference: Java

IT Config::Listener Interface

You can add a Listener object to your application that will be noti-
fied of configuration changes that occur. Use add listener() and
remove listener () of the Configuration interface to manage a

Listener object.

// IDL in module IT Config

interface VariableListener :

Listener {
void variable added(
in string name

)i

void variable removed (
in string name

)i

void string changed (

in string name,
in string new value,
in string old value

)i

void list changed(
in string
in ConfigList new value,
in ConfigList old value

name,

)i

void boolean changed (
in string name,
in boolean new value,
in boolean old value

)i

void long changed (
in string name,
in long new value,
in long old value

)i

void double changed (
in string name,
in double new value,
in double old value
) ;

Listener::variable _added()

void variable added(

)

in string name;

The application is notified in a variable is added to the configuration.

Orbix CORBA Programmer’s Reference: Java 667

Parameters

Enhancement

Parameters

Enhancement

Parameters

Enhancement

Parameters

name The name of the variable added.

This is an Orbix enhancement.

Listener::variable _removed()

void variable removed (
in string name;

)

The application is notified in a variable is removed from the
configuration.

name The name of the variable removed.

This is an Orbix enhancement.

Listener::boolean_changed()

// IDL
void boolean changed (

in string name,
in boolean new value,
in boolean old value

)i
The application is notified if the boolean value changes.

name The name of the variable.

new_value The value of the variable after the change occurred. If
a variable is deleted this value will be NULL.

old value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

This is an Orbix enhancement.

Listener::double_changed()

// IDL
void double changed (

in string name,

in double new value,

in double old value
)

The application is notified if the double value changes.

name The name of the variable.

new_value The value of the variable after the change occurred. If
a variable is deleted this value will be NULL.

668 Orbix CORBA Programmer’s Reference: Java

Enhancement

Parameters

Enhancement

Parameters

Enhancement

old value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

This is an Orbix enhancement.

Listener::list_changed()

// IDL
void list changed (

in string name,
in ConfigList new value,
in ConfigList old value

)i
The application is notified if the configuration list changes.

name The name of the variable.

new_value The value of the variable after the change occurred. If
a variable is deleted this value will be NULL.

old value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

This is an Orbix enhancement.

Listener::long_changed()

// IDL
void long changed (

in string name,
in long new value,
in long old value

)i
The application is notified if the long value changes.

name The name of the variable.

new_value The value of the variable after the change occurred. If
a variable is deleted this value will be NULL.

old value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

This is an Orbix enhancement.

Listener::string_changed()

// IDL
void string changed (

in string name,
in string new value,
in string old value

)i
The application is notified if the string value changes.

Orbix CORBA Programmer’s Reference: Java 669

Parameters

name The name of the variable.

new_value The value of the variable after the change occurred. If
a variable is deleted this value will be NULL.

old value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

Enhancement This is an Orbix enhancement.

670 Orbix CORBA Programmer’s Reference: Java

IT CORBA Overview

Enhancement

See Also

This module contains Orbix enhancements to the corea module.
The key additional feature is the policy WellKnownAddressingPolicy.
The classes include:

o WellKnownAddressingPolicy

The IDL code is as follows:

IT_CORBA::WELL_KNOWN_ADDRESSING_POL
ICY_ID Constant

// IDL in module IT CORBA
const CORBA::PolicyType WELL KNOWN ADDRESSING POLICY ID =

0x49545F00 + 2;

Defines a policy ID for well-known addressing.
This is an Orbix enhancement to CORBA.

CORBA: : PolicyType

Orbix CORBA Programmer’s Reference: Java 671

672 Orbix CORBA Programmer’s Reference: Java

IT CORBA::RefCountedLocalObje

ct Class

See Also

Enhancement

Enhancement

Enhancement

Enhancement

RefCountedLocalObject is an implementation of a corea local object
that automatically handles reference counting in a thread safe
manner.

IT CORBA::RefCountedLocalObjectNC

RefCountedLocalObject::_add_ref()

Increments the reference count.

This is an Orbix enhancement to CORBA.

RefCountedLocalObject:: destroy_this()

Destroys the local object.

This is an Orbix enhancement to CORBA.

RefCountedLocalObject::RefCountedLocalObje
ct() Constructor

The constructor.

This is an Orbix enhancement to CORBA.

RefCountedLocalObject:: _remove_ref()

Decrements the reference count.

This is an Orbix enhancement to CORBA.

Orbix CORBA Programmer’s Reference: Java 673

674 Orbix CORBA Programmer’s Reference: Java

IT CORBA::RefCountedLocalObje

CtNC Class

See Also

Enhancement

Enhancement

Enhancement

Enhancement

RefCountedLocalObjectNC is an implementation of a corea local
object that automatically handles reference counting but not in a
thread-safe manner as the RefCountedlLocalObject class does. A
RefCountedLocalObjectNC object does not protect its reference
count with a mutex, making it suitable for lightweight objects such
asS CORBA: :Request.

IT CORBA::RefCountedLocalObject

RefCountedLocalObjectNC::_add_ref()

Increments the reference count.

This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC:: _destroy_this()

Destroys the local object.

This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::RefCountedLocalO
bjectNC() Constructor

The constructor.

This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC:: _remove_ref()

Decrements the reference count.

This is an Orbix enhancement to CORBA.

Orbix CORBA Programmer’s Reference: Java 675

676 Orbix CORBA Programmer’s Reference: Java

IT CORBA::WellKnownAddressin
gPolicy Class

This is an interface for a local policy object derived from
CORBA: :Policy. You create instances of WellKnownAddressingPolicy
by calling CORBA: :ORB: :create policy().

WellKnownAddressingPolicy::config_scope()

// Java
public java.lang.String config scope ()

Returns the configuration scope.
Enhancement This is an Orbix enhancement to CORBA.

Orbix CORBA Programmer’s Reference: Java 677

678 Orbix CORBA Programmer’s Reference: Java

Description

The IT _CORBASEC
Module

A module that gives you read/write access to extended received
credentials.

In particular, the 1T CORBASEC: :ExtendedReceivedCredentials interface
gives you access to the received SSO tokens.

IT_CORBASEC::EXT ATTR_ERR_ATTR_NOT_PRESENT

Description

Raised by get _extended attribute (), if the requested attribute is not
present.

If this exception is raised, it implies that the requested attribute is
neither present in the incoming request’s service contexts nor has
the requested attribute been set by a call to

IT CORBASEC: :ExtendedReceivedCredentials: :set_extended attribute().

IT_CORBASEC::EXT_ATTR_ERR_FAILURE_PROCESSING_ATTR

Not used.

IT_CORBASEC::EXT_ATTR_ERR_READ ONLY_ATTRIBUTE

Description

Raised by set_extended attribute (), if the requested attribute is
intended to be read-only.

Specifically, this error is raised if you attempt to set the
IT_CORBASEC: :EXT ATTR_CURRENT SSO TOKEN attribute directly.

IT_CORBASEC::ExtendedAttributeError

See Also

Exception raised by operations fromthe
IT CORBASEC: :ExtendedReceivedCredentials interface.

IT CORBASEC: :EXT ATTR ERR ATTR NOT PRESENT
IT CORBASEC: :EXT ATTR ERR READ ONLY ATTRIBUTE

IT_ CORBASEC::SSOTokenString

Description

Type of an SO token.

An sSSOTokenString can be extracted from the any returned from a
call to

IT CORBASEC: :ExtendedReceivedCredentials::get extended attribute(), if
the requested attribute is an SSO token.

Orbix CORBA Programmer’s Reference: Java 679

See also

An sSSOTokenString can be inserted into an any and passed in
a call to

IT CORBASEC: :ExtendedReceivedCredentials::set_ extended attribute (
) to set an SSO token attribute.

IT CORBASEC::EXT ATTR CURRENT SSO TOKEN
IT CORBASEC: :EXT ATTR DELEGATED SSO TOKEN
IT CORBASEC::EXT ATTR PEER SSO TOKEN

IT_CORBASEC::EXT_ATTR_CURRENT_SSO_TOKEN

Description

See also

The attribute type for the current SSO token, which can be either a
delegated token or a peer token.

The current SSO token is the token that would be used when
making access control decisions for the incoming invocation.
The value returned for the current SSO token can be one of
the following (in order of priority):

* Delegated SSO token, if it is present, otherwise
* Peer SSO token, if it is present, otherwise
* No value.

IT CORBASEC: :EXT ATTR DELEGATED SSO TOKEN
IT CORBASEC::EXT ATTR PEER SSO TOKEN

IT_CORBASEC::EXT_ATTR_DELEGATED_SSO_TOKEN

Description

The attribute type for a delegated SO token.

In a multi-tier system (consisting of at least three tiers), a
delegated SSO token represents a credential that originated
at least two steps back in the invocation chain.

Currently, the only security mechanism in Orbix that
supports delegation is CSI Identity Assertion.

The delegated token originates from a previous application
in the invocation chain and is always copied into the
effective credentials for the current execution context.

680 Orbix CORBA Programmer’s Reference: Java

Hence, in a multi-tiered system, the delegated SSO token received
from the preceding application would automatically be used as the
delegated credentials for the next invocation in the chain.

IT_CORBASEC::EXT_ATTR_PEER_SSO_TOKEN

Description

The attribute type for a peer SSO token.

A peer SSO token represents a credential that originates from the
preceding application in the invocation chain and is received
through the CSI authentication over transport mechanism.

A peer SSO token is available from an incoming request message
on the server side, if the following conditions hold:

* Server is configured to use CSI authentication over transport.
* Client is configured to use CSI authentiation over transport.

* Client is configured to use either username/password-based
SSO or X.509 certificate-based SSO.

If there are no delegated credentials in the received credentials,
the peer SSO token is used as the delegated credential in the
current execution context. Hence, in the absence of received
delegated credentials, the peer SSO token received from the
preceding application is used as the delegated credentials for the
next invocation in the chain.

Orbix CORBA Programmer’s Reference: Java 681

IT CORBASEC::ExtendedReceived
Credentials

A Micro Focus-specific interface that allows access to additional Micro
Focus-specific logical attributes of a received credential s object.

Description An instance of a received credentials object is obtained by
narrowing the received credentials object obtained from security
current.

The attribute IDs passed as arguments to the

get_extended attribute() and set extended attribute() operations
are assigned by Micro Focus. The range below 10000 is reserved
for Micro Focus use. These numbers are unique across all security
mechanisms.

See also SecurityLevel2: :Current

SecurityLevel2: :ReceivedCredentials

IT_CORBASEC::ExtendedReceivedCredentials::get_extended_attribute()

Returns the value of a received credentials extended attribute.

Description There are two possible origins of an extended attribute:

* From parsing a service context in the incoming request
message.

* From a previous call to set_extended attribute (), which set
the attribute value on the received credentials object.

Returns The value of an extended attribute contained in an any.

Parameters req attribute
An integer attribute 1D, which identifies a particular extended attribute.

Exceptions ExtendedAttributeError

Raised with an error reason of EXT ATTR ERR ATTR NOT PRESENT if the
requested attribute is not set.

IT_ CORBASEC::ExtendedReceivedCredentials::set_extended_attribute()

Sets the value of a received credentials' extended attribute.

Description The main purpose of setting an extended attribute is to influence
subsequent remote CORBA invocations within the current
execution context. The received credentials can affect subsequent
invocations, because Orbix takes received credentials into account
when creating the effective credentials for a new invocation.

For example, if a delegated SSO token attribute is set in the
received credentials, it would automatically be copied into the
effective credentials for a new invocation (by the GSP plug-in).

Parameters attribute type
An integer attribute 1D, which identifies a particular extended attribute.

682 Orbix CORBA Programmer’s Reference: Java

any val

The value of an extended attribute contained in an any.

Exceptions ExtendedAttributeError

Raised with an error reason of EXT ATTR ERR READ ONLY ATTRIBUTE if the
requested attribute is not intended to be settable.

Orbix CORBA Programmer’s Reference: Java 683

684 Orbix CORBA Programmer’s Reference: Java

IT CosTransactions Module

See Also

The IT CosTransactions module contains Orbix 2000 enhancements
to the standard OTS CosTransactions module. The

IT CosTransactions module includes additional values for the
OTSPolicyValue data type and proprietary extensions to the standard
CosTransactions: :Current class.

Additional OTSPolicyValues

const OTSPolicyValue AUTOMATIC = 4;
const OTSPolicyValue SERVER SIDE = 5;

These additional oTspolicyvalues indicate the following:

AUTOMATIC

SERVER SIDE

The target object depends on the presence of a
transaction. If there is no current transaction, a
transaction is created for the duration of the invoca-
tion.

The target object is invoked within the current
transaction whether there is a transaction or not.
This policy depends on just-in-time transaction cre-
ation.

You can enable just-in-time transactions by setting
the following configuration variable to true:
plugins:ots:jit transactions

If a transaction has begun but is not fully created,
the transaction is created before the target object
is invoked.

You cannot create a POA that mixes the AUTOMATIC Or SERVER SIDE

OTSPolicyValue with the EITHER Or UNSHARED InvocationPolicyValue.

Attempting to do this results in the portableServer::InvalidPolicy
exception being raised.

CosTransactions::0TSPolicyValue

Orbix CORBA Programmer’s Reference: Java 685

686 Orbix CORBA Programmer’s Reference: Java

IT CosTransactions::Current

Class

See Also

Note:

See Also

This class extends the standard OTS CosTransactions: : Current class
with proprietary operations:

// Java
package com.iona.IT CosTransactions;
public interface Current
extends org.omg.CosTransactions.Current {

public void commit_on completion of next call()
throws org.omg.CosTransactions.NoTransaction

}

CosTransactions: :Current

Current::commit_on_completion_of next_call

O

This operation is used in conjunction with just-in-time transaction
creation and the SERVER SIDE OTSPolicyValue. This operation at-
tempts to commit the current transaction immediately after the next
invocation.

Using commit on completion of next call() is logically equivalent
to calling Current: :commit () immediately after the next invocation,
except that the transaction is committed in the context of the tar-
get object. If there is no current transaction, a NoTransaction
exception is raised.

You should use this operation with caution.

CosTransactions: :Current
CosTransactions: :Current: :commit ()
IT CosTransactions::SERVER SIDE

Orbix CORBA Programmer’s Reference: Java 687

688 Orbix CORBA Programmer’s Reference: Java

IT _CSI Overview

The 1T _cs1 module defines Orbix-specific policy interfaces that
enable you to set CSIv2 policies programmatically. An

IT CSI::IT CSI AUTH METHOD USERNAME PASSWORD constant is defined
that enables you to create credentials on the client side using the
SecurityLevel2: :PrincipalBAuthenticator. The module also defines
proprietary credentials interfaces (giving you access to
CSlv2-related credentials on the server side) and an
AuthenticateGSSUPCredentials interface that enables you to imple-
ment a custom authentication service.

The module contains the following IDL interfaces:
* IT CSI::AuthenticateGSSUPCredentials Interface
° IT CSI::AuthenticationServicePolicy Interface
® IT CSI::AttributeServicePolicy Interface

® IT CSI::CSICredentials Interface

® IT CSI::CSIReceivedCredentials Interface

®* IT CSI::CSICurrent Interface

Associated with the CSIlv2 policies, the 1T cst module defines the
following policy type constants (of CORBA: : PolicyType type):

IT CSI::CSI CLIENT AS POLICY
IT CSI::CSI SERVER AS POLICY
IT CSI::CSI_CLIENT SAS POLICY
IT CSI::CSI_SERVER SAS POLICY

IT_CSI::IT_CSI_AUTH_METH_USERNAME_PAS
SWORD

const Security::AuthenticationMethod

IT CSI AUTH METH USERNAME PASSWORD = 6;
This constant identifies CSIv2 username/password authorization
method. When calling the
SecurityLevel2: :PrincipalAuthenticator: :authenticate () opera-
tion, the IT CSI AUTH METH USERNAME PASSWORD constant can be
passed as the method parameter.

In Java, to create a CSIv2 credentials object call the principal
authenticator’s authenticate () operation with its parameters set
as follows:

//Java

authentication result = principal authenticator.authenticate (
com.iona.IT CSI.IT CSI AUTH METH USERNAME PASSWORD.value,

nn // NOT USED
"<user names", // GSSUP user name
auth data any, // an any containing an
// IT CSI::GSSUPAuthData structure
privileges, // NOT USED
credentials, // returns the CSIv2 user credentials

continuation data, // NOT USED
auth specific data // NOT USED

Orbix CORBA Programmer’s Reference: Java 689

See Also

See Also

See Also

SecuritylLevel2: :PrincipalAuthenticator
IT CSI::GSSUPAuthData

IT_CSI::GSSUPAuthData Structure

struct GSSUPAuthData
string password;
string domain;

}i

This structure is used to pass the GSSUP password and authentica-
tion domain name to the

SecurityLevel2: :PrincipalAuthenticator: :authenticate () opera-
tion. It is used in combination with the

IT CSI::IT CSI AUTH METH USERNAME PASSWORD authentication method
identifier.

In Java, an IT CSI::GSSUPAuthData Structure must be inserted into
an any before being passed as the auth data parameter of the
SecurityLevel2: :PrincipalAuthenticator: :authenticate () opera-
tion. The IT cSI::GssupAuthData structure can be inserted into an
any as follows:

//Java

org.omg.CORBA.Any auth data any =
org.omg.CORBA.ORB.1init () .create any() ;

com.iona.IT CSI.GSSUPAuthData auth data =
new com.iona.IT CSI.GSSUPAuthData ("<password>", "<domain>");

// Insert the GSSUPAuthData struct into the any.
com.iona.IT CSI.GSSUPAuthDataHelper.insert (
auth data any,
auth data
)i
This structure contains the following fields:

password The GSSUP password for this login.
domain The CSIv2 authentication domain for this login.

IT CSI::IT CSI AUTH METH USERNAME PASSWORD

IT_CSI::CSI_POLICY_BASE
const unsigned long CSI_POLICY BASE =
IT PolicyBase::IONA POLICY ID + 11;
The base for a range of CSlv2 policy constants.
IT_CSI::CSI_CLIENT_AS_POLICY
IT CSI::CSI_SERVER AS POLICY

IT CSI::CSI_CLIENT SAS POLICY
IT CSI::CSI_SERVER SAS POLICY

IT_CSI::CSI_CLIENT_AS_POLICY

const CORBA::PolicyType CSI CLIENT AS POLICY = CSI_POLICY BASE;

690 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

See Also

See Also

The flag identifying the client-side authentication service policy.

IT_CSI::CSI_SERVER_AS_POLICY
IT CSI::AuthenticationServicePolicy

IT_CSI::CSI_SERVER_AS_POLICY

const CORBA::PolicyType CSI_SERVER AS POLICY =
CSI _POLICY BASE+1;

The flag identifying the server-side authentication service policy.

IT_CSI::CSI_CLIENT_AS_POLICY
IT CSI::AuthenticationServicePolicy

IT_CSI::CSI_CLIENT_SAS_POLICY

const CORBA::PolicyType CSI CLIENT SAS POLICY =
CSI _POLICY BASE+2;

The flag identifying the client-side attribute service policy.

IT_CSI::CSI_SERVER_SAS_POLICY
IT CSI::AttributeServicePolicy

IT_CSI::CSI_SERVER_SAS_POLICY

const CORBA::PolicyType CSI SERVER SAS POLICY =
CSI _POLICY BASE+3;

The flag identifying the server-side attribute service policy.

IT_CSI::CSI_CLIENT_SAS_POLICY
IT CSI::AttributeServicePolicy

IT_CSl::AuthenticationService Structure

struct AuthenticationService
// Client and server side.
CSIIOP: :AssociationOptions support;

// Server side only.

CSIIOP: :AssociationOptions requires;

string client authentication mech;

string target name;

AuthenticateGSSUPCredentials as object;
}i
This structure, in conjunction with the
IT CSI::AuthenticationServicePolicy interface, provides a pro-
grammatic approach to enabling the CSIlv2 authentication service
policy. This structure has a dual purpose, because it can be used
to set both a client-side policy, IT CSI::CSI_CLIENT AS POLICY, and
a server-side policy, IT CSI::CSI_SERVER AS POLICY.

Orbix CORBA Programmer’s Reference: Java 691

See Also

See Also

This structure contains the following fields:

support (Client and server) The list of associa-

tion options supported by the authenti-
cation service policy. Currently, only the
CSIIOP: :EstablishTrustInClient associa-
tion option can be included in this list.

requires (Server only) The list of association

options required by the authentication
service policy on the server side. Cur-
rently, only the

CSIIOP: :EstablishTrustInClient associa-
tion option can be included in this list.

client_authentication mech (Server only) The authentication mech-

anism OID, which identifies the mecha-
nism used by CSlv2 authentication. For
example, GSSUP: : GSSUPMechOID is a valid
setting.

target name (Server only) The name of the security

policy domain (CSIv2 authentication
domain) for this authentication service.

as object (Server only) A reference to the GSSUP

authentication service object that will
be used to authenticate GSS user-
name/password combinations on the
server side.

IT_CSI::AuthenticationServicePolicy
IT CSI::CSI CLIENT AS POLICY
IT CSI::CSI SERVER AS POLICY

IT_CSI::SupportedNamingMechanisms
Sequence

typedef sequence<strings> SupportedNamingMechanisms;

The list of naming mechanisms supported by CSIv2. Currently, the
only supported naming mechanism is CSI::GSS NT Export Name OID.

CSI::GSS_NT_Export_Name_OID
IT CSI::AttributeService

IT_CSI::AttributeService Structure

struct AttributeService

{
CSIIOP: :AssociationOptions support;
SupportedNamingMechanisms supported naming mechs;
CSI::IdentityTokenType supported identity types;

i

This structure, in conjunction with the

IT CSI::AttributeServicePolicy interface, provides a program-

matic approach to enabling the CSlv2 attribute service policy. This

692 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

structure has a dual purpose, because it can be used to set both a
client-side policy, IT CSI::CSI_CLIENT SAS POLICY, and a
server-side policy, IT CSI::CSI_SERVER SAS POLICY.

This structure contains the following fields:

support (Client and server) The list of associa-
tion options supported by the attribute
service policy. Currently, only the
CSIIOP: :IdentityAssertion association
option can be included in this list.

supported naming mechs (Server only) A list of GSS naming
mechanism OIDs, which identify the
formats that may be used in the
CSI::ITTPrincipalName identity token.
For example,
CSI::GSS NT Export Name OID is a valid
naming mechanism string.

supported identity types (Server only) The bitmapped represen-
tation of the set of identity token types
supported by the target. In the current
implementation of Orbix, the value of
this attribute should be 0x03 (which
represents a combination of the
ITTAnonymous flag and the
ITTPrincipalName flag)..

IT_CSI::AttributeServicePolicy
CSI::GSS NT Export Name OID
IT CSI::CSI_CLIENT SAS POLICY
IT CSI::CSI_SERVER SAS POLICY

IT_CSI::CSICredentialsType Enumeration

enum CSICredentialsType {
GSSUPCredentials,
PropagatedCredentials,
TransportCredentials
}i
An enumeration to identify the type of credentials contained in a
CSIlv2 credentials object. The credentials can be one of the follow-
ing types:
® (GSSUPCredentials—a set of GSS username/password creden-
tials (authenticated on the server side), received through the
CSIlv2 authorization over transport mechanism.

* PpropagatedCredentials—a set of propagated credentials (not
authenticated on the server side), received through the CSIv2
identity assertion mechanism.

®* TransportCredentials—a set of SSL/TLS credentials (typically
containing an X.509 certificate chain), received through the
transport layer.

IT_CSI::CSlCredentials
IT CSI::CSIReceivedCredentials

Orbix CORBA Programmer’s Reference: Java 693

694 Orbix CORBA Programmer’s Reference: Java

IT CSIl::AttributeServicePolicy

Interface

See Also

// IDL in module IT CSI
local interface AttributeServicePolicy : CORBA::Policy
{
// The following attribute, supports, is for client and
server
// side
readonly attribute CSIIOP::AssociationOptions support;

// Server specific attributes used in IOR generation
readonly attribute CSI::0IDList supported naming mechanisms;
readonly attribute CSI::IdentityTokenType
supported identity types;
readonly attribute boolean backward trust enabled;
readonly attribute CSIIOP::ServiceConfigurationList
privilege authorities;
}i
The policy type for the CSIv2 attribute service policy, which is
used to enable the CSIv2 identity assertion mechanism. This
interface, in conjunction with the IT CSI::AttributeService struct,
provides a programmatic approach to enabling the CSIv2 attribute
service policy. The functionality provided is equivalent to that
which is available by setting the following configuration variables:

policies:csi:attribute service:client supports
policies:csi:attribute service:target supports
policies:csi:attribute service:backward trust:enabled

This AttributeServicePolicy interface has a dual purpose. It can
represent either a client-side policy,

IT CSI::CSI_CLIENT SAS POLICY, Or a server-side policy,

IT CSI::CSI_SERVER SAS POLICY.

IT_CSI::CSI_CLIENT_SAS_POLICY

IT CSI::CSI_SERVER SAS POLICY

IT CSI::AttributeService

IT CSI::AuthenticationServicePolicy

AttributeServicePolicy::support

readonly attribute CSIIOP::AssociationOptions support;

The list of association options supported by the attribute service
policy. Currently, only the CSIIOP::IdentityAssertion association
option can be included in this list.

The effect of including the CSIIOP::IdentityAssertion assocation
option in the list depends on whether the AttributeServicebPolicy iS
set as a client-side policy (IT CSI::CSI_CLIENT SAS POLICY) Or as a
server-side policy (IT CSI::CSI_SERVER SAS POLICY), as follows:

* Client side—supports the propagation of an identity to the
server using the CSIv2 identity assertion mechanism. This is
equivalent to the
policies:csi:attribute service:client supports configuration
variable.

Orbix CORBA Programmer’s Reference: Java 695

See Also

See Also

See Also

* Server side—supports the receipt of an identity (which is pre-
sumed to have been already authenticated) from the client
using the CSIv2 identity assertion mechanism. This is equiva-
lent to the policies:csi:attribute service:target supports
configuration variable.

CSIIOP:: IdentityAssertion

AttributeServicePolicy::supported _naming_me
chanisms

readonly attribute CSI::O0IDList supported naming mechanisms;

A list of GSS naming mechanism OIDs, which identify the formats
that may be used in the CSI::ITTPrincipalName identity token. In
the current implementation of Orbix, the
supported naming mechanisms list would normally include a binary
representation of the CSI::GSS NT Export Name OID naming mecha-
nism OID.

CSI::ITTPrincipalName
CSI::GSS NT Export Name OID

AttributeServicePolicy::supported_identity ty
pes

readonly attribute CSI::IdentityTokenType

supported identity types;
The bitmapped representation of the set of identity token types
supported by the target. In the current implementation of Orbix,
the value of this attribute would be 0x00000003, which represents a
combination of the ITTAnonymous flag (0x01) and the
ITTPrincipalName flag (0x02). The ITTAbsent identity token is always
supported.

The ITTX509CertChain identity token and the ITTDistinguishedName
identity token are not supported in the current implementation.
Hence, the corresponding flags for these identity tokens cannot be
set.

CSI::ITTAbsent
CSI: : ITTAnonymous
CSI::ITTPrincipalName

AttributeServicePolicy::backward_trust_enabl
ed

readonly attribute boolean backward trust enabled;
Not used in the current implementation.

AttributeServicePolicy::privilege authorities

readonly attribute CSIIOP::ServiceConfigurationList
privilege authorities;

696 Orbix CORBA Programmer’s Reference: Java

A list of authorization tokens. This feature is currently not sup-
ported by Orbix (that is, it returns an empty list).

Orbix CORBA Programmer’s Reference: Java 697

698 Orbix CORBA Programmer’s Reference: Java

IT _CSl::AuthenticateGSSUPCrede
Nntials Interface

Examples

// IDL in module IT CSI
interface AuthenticateGSSUPCredentials

{

readonly attribute string authentication service;

boolean authenticate (

in string username,

in string password,

in string target name,

in string request name,

in string object name,

out GSSUP::ErrorCode error code) ;
}i
A callback interface that you can optionally implement to provide a
custom authentication service for a CSIv2 server. When using the
CSIlv2 authentication over transport mechanism (enabled by the
CSlv2 authentication service policy), the
AuthenticateGSSUPCredentials: :authenticate () operation is invoked
for every incoming request from a client. This gives you the
opportunity to accept or reject every incoming invocation based
on the authentication data provided by the client.

Note that this stateless mode of operation (calling authenticate ()
for every invocation) is the only kind of session semantics cur-
rently supported by Orbix. The stateful mode of operation (calling
authenticate () once at the beginning of a session) is currently not
supported.

You can install an implementation of AuthenticateGSSUPCredentials
in either of the following ways:

* By configuration—you can specify the
AuthenticateGSSUPCredentials implementation class by setting
the following configuration variable:

policies:csi:auth over transport:authentication service
The named class is then loaded and instantiated by the CSlv2
plug-in.

* By programming—you can register an instance of the
AuthenticateGSSUPCredentials implementation class by setting
the as object field of the IT CSI::AuthenticationServicePolicy.

The following Java example defines the AuthenticateGSSUPImpl class,
which is a sample implementation of the
AuthenticateGSSUPCredentials object. This sample implementation
rejects all requests except for those from username user, with
password password, belonging to PC-DOMAIN security policy domain,
and invoking the call me() operation.

// Java
package demos.csiv2.auth service;

import com.iona.corba.IT CSI.*;
import org.omg.CORBA.IntHolder;

Orbix CORBA Programmer’s Reference: Java 699

public class AuthenticateGSSUPImpl
extends org.omg.CORBA.LocalObject
implements AuthenticateGSSUPCredentials

{

public String authentication service()

{
}

return "Demo Authentication Service";

public boolean authenticate (String username,
String password,
String target name,
String request name,
String object name,
org.omg.CORBA. IntHolder
error code)

{

boolean authentication result = false;

System.out.println ("Username received " + username) ;
System.out.println("password received " + password) ;
System.out.println("target name received " + target name) ;
System.out.println("request name received " +

request name) ;
System.out.println("object name received " + object name) ;

if (username.equals ("username"))

{

if (password.equals ("password"))

{

if (target name.equals ("PC-DOMAIN"))

{

if (request name.equals("call me"))
{
System.out.println ("Accepting request " +
request name + " for above");
authentication result = true;

}

else
{
error code.value =
org.omg.GSSUP.GSS UP_S G UNSPECIFIED.value;
}
}
else
{
error code.value =
org.omg.GSSUP.GSS UP_S G BAD TARGET.value;
}
}

else

{

error code.value =
org.omg.GSSUP.GSS UP_S G BAD PASSWORD.value;

}
}
else

{

error code.value =
org.omg.GSSUP.GSS UP_S G NOUSER.value;

700 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

}

return authentication result;

}
}

IT_CSI::AuthenticationServicePolicy

AuthenticateGSSUPCredentials::authentication
__service Attribute

readonly attribute string authentication service;

The name of the authentication service implementation. There are
no particular conditions imposed on the value of this attribute; it is
just a short descriptive string.

AuthenticateGSSUPCredentials::authenticate()

boolean authenticate (
in string username,
in string password,
in string target name,
in string request name,
in string object name,
out GSSUP::ErrorCode error code) ;

A callback operation that performs authentication on a GSSUP
username/password combination. When CSIv2 authentication over
transport is enabled, the authenticate () operation is called for every
incoming request on the server side. If the return value is TRUE,
the request is allowed to proceed; if the return value is FALSE, the
request is rejected.

The authenticate () operation takes the following parameters:
username The username received from the client through the
CSlv2 authentication over transport mechanism.

password The password received from the client through the
CSlv2 authentication over transport mechanism.

target name The security policy domain name (CSIv2 authentica-
tion domain) received from the client through the
CSlv2 authentication over transport mechanism.

request name The name of the operation (or attribute accessor/mod-

ifier) to be invoked by this request. The format of this
argument is the same as the operation name in a
GIOP request header. See, for example, the descrip-
tion of GIOP: :RequestHeader 1 2::operation in section
15.4.2 of the CORBA 2.4.2 core specification.

object name The type identifier for the target of this invocation,

expressed as a CORBA repository ID. For example, the

CosNaming: :NamingContext type would be identified by
the IDL:omg.org/CosNaming/NamingContext:1.0 reposi-
tory ID string.

error code The returned GSSUP error code (long integer). A
non-zero value indicates that an error occurred.

Orbix CORBA Programmer’s Reference: Java 701

See Also IT_CSI::AuthenticationServicePolicy

702 Orbix CORBA Programmer’s Reference: Java

IT CSl::AuthenticationServicePol
icy Interface

Examples

// IDL in module IT CSI
local interface AuthenticationServicePolicy : CORBA::Policy
{
// The following attribute, supports, is for client and
server
// side
readonly attribute CSIIOP::AssociationOptions support;

// Server specific attributes used in IOR generation
readonly attribute CSIIOP::AssociationOptions
target requires;

readonly attribute CSI::0ID client authentication mech;

readonly attribute CSI::GSS NT ExportedName target name;

readonly attribute AuthenticateGSSUPCredentials as object;
}i
The policy type for the CSlv2 authentication service policy, which
is used to enable the CSIv2 authentication over transport mecha-
nism. This interface, in conjunction with the
IT CSI::AuthenticationService Struct, provides a programmatic
approach to enabling the CSIv2 authentication service policy. The
functionality provided is equivalent to that which is available by
setting the following configuration variables:

policies:csi:auth over transport:client supports
policies:csi:auth over transport:target supports
policies:csi:auth over transport:target requires
policies:csi:auth over transport:server domain name
policies:csi:auth over transport:authentication service

This authenticationServicePolicy interface has a dual purpose. It
can represent either a client-side authentication policy,

IT CSI::CSI_CLIENT AS POLICY, Or a server-side authentication pol-
icy, IT CSI::CSI_SERVER AS POLICY.

The following Java example shows how to set the authentication
service policy at the ORB level:

// Java

import java.io.*;

import org.omg.CORBA.*;

import org.omg.CSIIOP.EstablishTrustInClient;
import org.omg.GSSUP.GSSUPMechOID;

import org.omg.Security.*;
import org.omg.Securitylevell.*;

import com.iona.corba.IT CSI.CSI SERVER AS POLICY;
try
{

// Note the following:

// m_orb - an ORB instance, already initialized.

// AuthenticateGSSUPImpl - an implementation of

Orbix CORBA Programmer’s Reference: Java 703

// org.omg.corba.IT CSI.AuthenticateGSSUPCredentials
//
AuthenticateGSSUPImpl as obj = new AuthenticateGSSUPImpl () ;

com.iona.corba.IT CSI.AuthenticationService as =
new com.iona.corba.IT CSI.AuthenticationService (
EstablishTrustInClient.value,
EstablishTrustInClient.value,
GSSUPMechOID.value,
"PCGROUP", // an authentication domain
as_obj

)i

Any any = m orb.create any() ;

com.iona.corba.IT CSI.AuthenticationServiceHelper.insert (
any,
as

)i

PolicyManager pol manager=
(PolicyManager)m orb.resolve initial references (
"ORBPolicyManager"
)i
Policy[] policies = new Policy[1];
policies[0] = m orb.create policy(
CSI_SERVER AS POLICY.value,
any
)i
pol manager.set policy overrides (
policies,
SetOverrideType.SET OVERRIDE
)i
}

catch (java.lang.Exception ex) { /* Handle exceptions */ }

AuthenticationServicePolicy::support Attribute

readonly attribute CSIIOP::AssociationOptions support;

The list of association options supported by the authentication ser-
vice policy. Currently, only the CSIIOP::EstablishTrustInClient
association option can be included in this list.

The CSIIOP: :EstablishTrustInClient assocation option can be set
either as a client-side policy (IT CSI::CSI_CLIENT AS POLICY) Or as
a server-side policy (IT CSI::CSI_SERVER AS POLICY), as follows:

* Client side—supports the propagation of a GSSUP username
and password using the CSIv2 authentication mechanism.
This is equivalent to the
policies:csi:auth over transport:client supports configura-
tion variable.

* Server side—supports the authentication of a client’s user-
name and password using the CSIv2 authentication mecha-
nism. This is equivalent to the
policies:csi:auth over transport:target supports configura-
tion variable.

704 Orbix CORBA Programmer’s Reference: Java

See Also

AuthenticationServicePolicy::target_requires
Attribute

readonly attribute CSIIOP::AssociationOptions target requires;
The list of association options required by the authentication ser-
vice policy on the server side. Currently, only the

CSIIOP: :EstablishTrustInClient association option can be included
in this list.

AuthenticationServicePolicy::client_authentica
tion_mech Attribute

readonly attribute CSI::0ID client_authentication mech;

The authentication mechanism OID, which identifies the mecha-
nism used by CSlv2 authentication on the server side. In the cur-
rent implementation of Orbix, the only available mechanism is the
Generic Security Service username/password (GSSUP) mecha-
nism, represented by GSSUP: : GSSUPMechO1ID.

GSSUP::GSSUPMechOID
CSI::StringOID

AuthenticationServicePolicy::target _name
Attribute

readonly attribute CSI::GSS NT ExportedName target name;

The name of the security policy domain (CSlv2 authentication
domain) for this authentication service on the server side. In this
implementation, a given CSIv2 server can belong to a single secu-
rity policy domain only. If an incoming client request does not
match the server’s security policy domain, the client request will
be rejected.

AuthenticationServicePolicy::as_object
Attribute

readonly attribute AuthenticateGSSUPCredentials as object;

A reference to the GSSUP authentication service object that will be

used to authenticate GSS username/password combinations on
the server side.

Orbix CORBA Programmer’s Reference: Java 705

706 Orbix CORBA Programmer’s Reference: Java

IT _CSI::CSICredentials Interface

See Also

local interface CSICredentials : Securitylevel2::Credentials

{
}i

Micro Focus-specific csICredentials interface that is used as a
base interface for CSlv2 credentials. Server implementations may
use this interface to determine the clients credentials type—for
example, a propagated identity from an intermediatory or a user-
name/password.

readonly attribute CSICredentialsType csi credentials type;

CSICredentials::csi_credentials_type Attribute

readonly attribute CSICredentialsType csi credentials type;

A flag that indicates what type of credentials is returned by the
SecurityLevel2: :Current: :received credentials() operation.

IT_CSI::CSIReceivedCredentials

Orbix CORBA Programmer’s Reference: Java 707

708 Orbix CORBA Programmer’s Reference: Java

IT CSI::CSICurrent Interface

Parameters

See Also

// IDL in module IT CSI
local interface CSICurrent : CORBA::Current

{
}i

The operations in this interface are now deprecated. Use the
IT CSI::CSICurrent2 interface instead.

boolean set received gssup credentials(in string access id);

CSICurrent::set_received_gssup_credentials()

boolean set received gssup credentials(in string access id);
Deprecated. Use

IT CSI::CSICurrent2::set received gssup credentials access_ id()
instead.

This operation takes the following parameters:

access id Either the GSSUP username in string format or the

common name from an X.509 certificate’s subject DN.
From the target server, the access ID is made accessi-
ble from a security::SecAttribute: :value in the form
of an AccessId encoded as a sequence of octets.

SecuritylLevel2::ReceivedCredentials

SecurityLevel2: :Credentials
Security: :SecAttribute

Orbix CORBA Programmer’s Reference: Java 709

710 Orbix CORBA Programmer’s Reference: Java

IT CSI::CSICurrent2 Interface

// IDL in module IT CSI
local interface CSICurrent2 : CSICurrent
CSIReceivedCredentials
set received gssup credentials access id(
in string peer identity

)i

CSIReceivedCredentials
set_received itt_principal name_ identity token(
in string asserted identity

)i

// RESERVED FOR FUTURE USE

boolean

set csi received credentials(

in CSIReceivedCredentials rec_creds

)i
}i
Interface used to set the value of the CSI received credentials in
the current execution context. By calling the operations in this
interface, you can simulate the successfully processed receipt of a
CSlv2 asserted identity message and/or the receipt and successful
processing of a CSlv2 GSSUP authentication request. These oper-
ations should be used only when you do not actually have a CSlv2
execution context; for example, if you were building a bridge
between the SOAP protocol and the CORBA GIOP protocol.

WARNING: It is critically important to understand that it is your
responsibility to vet the user identities passed to the csiCcurrent2
operations. If you pass the identity of an unauthorized user into
the CSI received credentials object, you could potentially
undermine the security of your system completely.

A typical CSlv2 identity assertion scenario involves a client, an
intermediate server, and a target server. The client invokes an
operation on the intermediate server, with CSIv2 authentication
over transport enabled, and the intermediate server invokes an
operation on the target server, with CSIv2 identity assertion
enabled.

Default values of the CSI received credentials are set automati-
cally by parsing the appropriate GIOP service contexts from the
incoming request message. In this case, it is recommended that
you do not modify the CSI received credentials. The csICurrent2
interface is meant to be used only to simulate CSI received cre-
dentials in a bridging application, not to replace existing creden-
tials.

A programmer can access an IT CSI::CSICurrent2 object from
within an operation context using the following code:

// Java
com.iona.corba.IT CSI.CSICurrent2 it csi current = null;

try {

Orbix CORBA Programmer’s Reference: Java 711

Note:

Parameters

org.omg.CORBA.Object objref =
orb.resolve initial references ("SecurityCurrent") ;

it csi current =
com.iona.corba.IT CSI.CSICurrent2Helper.narrow (objref) ;

}

catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
// Error: resolve initial references() call failed...
!

catch (org.omg.CORBA.BAD PARAM ex) {
// Error: narrow() call failed...
1

CSICurrent2::set_received_gssup_credentials
_access_id()

CSIReceivedCredentials
set received gssup credentials access id(

in string peer identity
)i
Sets the GSSUP username attribute (or access ID, in the terminol-
ogy of the OMG CORBASEC specification) for the peer identity in
the CSI received credentials object, replacing whatever value was
previously stored.

The main reason for calling this operation is to simulate the
receipt of GSSUP credentials when bridging from a protocol that
does not support the CSI authentication over transport mecha-
nism. The next time the application invokes a remote operation
within the current execution context, the CSI asserted identity
used for the invocation is one of the following:

* The received identity token (set by the
set_received itt principal name identity token() operation),
if present, otherwise

* The received GSSUP username (set by the

set received gssup credentials access_id() operation), if
present.

This operation replaces the deprecated
IT CSI::CSICurrent::set received gssup credentials() operation.

Returns a reference to the created or updated CSI received cre-

dentials object if the operation is successful; otherwise, returns a
nil object reference.

There is no option to set the password and domain name along
with the GSSUP username. This is because the received GSSUP
credentials are created after the GSSUP username has been
authenticated. Hence, the password and domain name are not
needed at this point and they are not stored in the received
credentials.

This operation takes the following parameters:

peer_identity A GSSUP username to set or replace the value stored
in the CSI received credentials. If present, the origi-
nal stored value would have been parsed from the
incoming request message.

712 Orbix CORBA Programmer’s Reference: Java

See Also

Parameters

SecuritylLevel2::ReceivedCredentials
SecurityLevel2: :Credentials
Security: :SecAttribute

CSICurrent2::set_received_itt_principal_name
_identity_token()

CSIReceivedCredentials
set received itt principal name identity token(

in string asserted identity
)i
Sets the CSI asserted identity in the CSI received credentials
object, replacing whatever value was previously stored and implic-
itly setting the identity token type to be ITTPrincipalName.

The main reason for calling this operation is to simulate the
receipt of a CSI identity token when bridging from a protocol that
does not support the CSI identity assertion mechanism. The next
time the application invokes a remote operation within the current
execution context, the CSI identity assertion mechanism uses the
identity token set by this operation.

Returns a reference to the created or updated CSI received cre-
dentials object if the operation is successful; otherwise, returns a
nil object reference.

This operation takes the following parameters:

asserted ident An asserted identity to set or replace the value
ity stored in the CSI received credentials. If present, the
original stored value would have been parsed from
the incoming request message.

CSICurrent2::set_csi_received_credentials()

boolean
set csi received credentials(
in CSIReceivedCredentials rec_creds
);
Reserved for future use.

This operation is reserved for future use and potentially provides
performance gains by reusing already established
CSIReceivedCredentials Objects. The supplied
CSIReceivedCredentials would be those that were previously estab-
lished by the set csi xxx operations above and these could poten-
tially be stored by the calling code (this would help avoid heap
fragmentation).

Orbix CORBA Programmer’s Reference: Java 713

714 Orbix CORBA Programmer’s Reference: Java

IT CSI::CSIReceivedCredentials

Interface

Examples

local interface CSIReceivedCredentials
IT TLS API::TLSReceivedCredentials, CSICredentials

readonly attribute CSICredentials gssup credentials;
readonly attribute CSICredentials
propagated identity credentials;
readonly attribute Securitylevel2::Credentials
transport credentials;
}i
The csSIReceivedCredentials interface, which inherits from
IT TLS API::TLSReceivedCredentials and
SecurityLevel2: :ReceivedCredentials. The OMG
Securitylevel2::Current: :received credentials() operation
returns a single SecurityLevel2: :ReceivedCredentials Object. How-
ever a CSIv2 server may received as many as three credentials
from a CSI client:

* Transport TLS credentials
* Propagated identity credentials
* Authenticated credentials over the transport.

The CSIrReceivedCredentials interface provides access to all three
credentials.

The Securitylevel2::Current::received credentials() operation
returns the following credentials type

* Propagated identity credentials, if present

* Authenticated credentials over the transport, if present and
propagated identity credentials are not.

* Transport TLS credentials, if present and the above two are
not.

The following Java example shows how to access the GSSUP
credentials received through the CSlv2 authentication over trans-
port mechanism:

// Java

import org.omg.CORBA.*;

import org.omg.PortableServer.*;

import org.omg.Security.AttributeType;

import org.omg.Security.SecAttribute;

import org.omg.SecuritylLevel2.Current;

import org.omg.Securitylevel2.ReceivedCredentials;

import org.omg.Security.*;
import org.omg.Securitylevell.*;

import com.iona.corba.tls.cert.*;

import com.iona.corba.IT CSI.CSIReceivedCredentials;
import com.iona.corba.IT CSI.CSIReceivedCredentialsHelper;
import com.iona.corba.IT CSI.CSICredentialsType;

Orbix CORBA Programmer’s Reference: Java 715

See Also

// Access GSSUP Received Credentials -

// this code can be used in the invocation context of a

// secure operation, to access the GSSUP identity received
// via the CSIv2 ’authentication over transport’ mechanism.

//

org.omg.SecuritylLevel2.Current current = null;

try {
current = (org.omg.SecuritylLevel2.Current)

m orb.resolve initial references("SecurityCurrent") ;

}

catch (org.omg.CORBA.ORBPackage. InvalidName e) {
... // Error: SecurityCurrent initial reference not
available.

}

ReceivedCredentials rec_creds = current.received credentials();
if (rec_creds==null) ({
... // Error: Received credentials are null."

Credentials gssup credentials rec
= csi rec creds.gssup credentials() ;
SecAttribute[] gssup attribute
= gssup credentials rec.get attributes(attributes types) ;

if ((gssup attribute==null) || (gssup attribute.length==0)) ({
... // Error: Operation called by user with no GSSUP creds
}

// The GSSUP access ID string is just the authenticated username.
String gssup access id = new String(
gssup_ attribute[0] .value, 0, gssup attribute[0].value.length
);

CSIReceivedCredentials::gssup_credentials
Attribute

readonly attribute CSICredentials gssup credentials;

A reference to the GSSUP credentials received using the CSlv2
authorization over transport mechanism; or a nil object reference
if no credentials of this type were received. To access the creden-
tials’ attributes, use the inherited
Securitylevel2::Credentials: :get attributes() operation.

Security: :SecAttribute
IT CSI::CSICredentialsType

CSIReceivedCredentials::propagated_identity
credentials Attribute

readonly attribute CSICredentials
propagated identity credentials;

716 Orbix CORBA Programmer’s Reference: Java

See Also

See Also

A reference to the GSSUP credentials received using the CSlv2
identity assertion (principal propagation) mechanism; or a nil
object reference if no credentials of this type were received. To
access the credentials’ attributes, use the inherited
Securitylevel2::Credentials::get attributes() operation.

Security: :SecAttribute
IT CSI::CSICredentialsType

CSIReceivedCredentials::transport_credentials
Attibute

readonly attribute SecuritylLevel2::Credentials

transport credentials;
A reference to the credentials received through the SSL/TLS trans-
port layer; or a nil object reference if no credentials of this type
were received. These credentials normally take the form of an
X.509 certificate chain. To access the credentials’ attributes, use
the Securitylevel2::Credentials::get attributes() operation.

Security: :SecAttribute
IT CSI::CSICredentialsType
IT Certificate::X509CertChain

Orbix CORBA Programmer’s Reference: Java 717

718 Orbix CORBA Programmer’s Reference: Java

IT EventChannelAdmin Module

Module IT EventChannelAdmin describes extensions to the module
CosEventChannelAdmin. It defines an interface, EventChannelFactory,
for creating or discovering EventChannel objects.

IT _EventChannelAdmin Data Types

IT_EventChannelAdmin::ChannellD Type

typedef long ChannellD;

The channellID is used by the event service to track event channels.
This number is assigned by the service when a new event channel
is created.

IT_EventChannelAdmin::EventChannellnfo
Structure

struct EventChannelInfo

{

string name;
ChannelID id;
CosEventChannelAdmin: : EventChannel reference;

bi
The EventChannellInfo is the unit of information managed by the
EventChannelFactory for a given EventChannel instance. name is
used for administrative purposes.

IT_EventChannelAdmin::EventChannellnfoList
Sequence

typedef sequence<EventChannelInfo> EventChannelInfolist;

The EventChannelInfoList contains a sequence of EventChannelInfo
and is the unit returned by EventChannelFactory::1list channels().

IT EventChannelAdmin Exceptions

IT_EventChannelAdmin::ChannelAlreadyExists

exception ChannelAlreadyExists {string name; };

ChannelAlreadyExists is raised when an attempt is made to create
an event channel with a name that is already in use. It returns with
the name of the channel.

Orbix CORBA Programmer’s Reference: Java 719

IT_EventChannelAdmin::ChannelNotFound

exception ChannelNotFound {string name;};
ChannelNotFound is raised when a call to either

EventChannelFactory::find channel () Or
EventChannelFactory: :find channel by id() cannot find the speci-

fied channel. It returns with the name of the specified channel.

720 Orbix CORBA Programmer’s Reference: Java

IT EventChannelAdmin::EventCh
annelFactory Interface

interface EventChannelFactory : IT MessagingAdmin::Manager
{
CosEventChannelAdmin: :EventChannel create channel (
in string name,
out ChannelID id)
raises (ChannelAlreadyExists);

CosEventChannelAdmin: :EventChannel find channel (
in string name,
out ChannellID id)
raises (ChannelNotFound) ;

CosEventChannelAdmin: :EventChannel find channel by id(
in ChannellID id,
out string name)
raises (ChannelNotFound) ;

EventChannelInfolist list channels();
i
The EventChannelFactory interface defines operations for creating
and managing untyped event channels. By inheriting from the
Manager interface, it also has the ability to gracefully shut down the
event service.

EventChannelFactory::create_channel()

//IDL
CosEventChannelAdmin: : EventChannel create_ channel (

in string name,
out ChannelID id)
raises (ChannelAlreadyExists);

Creates a new instance of the event service style event channel

Parameters
name The name of the channel to be created
id The id of the created channel
EventChannelFactory::find_channel()
//IDL
CosEventChannelAdmin: :EventChannel find channel (
in string name,
out ChannelID id)
raises (ChannelNotFound) ;
Returns an EventChannel instance specified by the provided name.
Parameters

name The name of the channel

Orbix CORBA Programmer’s Reference: Java 721

Parameters

id The channel id as returned from create channel ()

EventChannelFactory::find_channel_by id()

//IDL
CosEventChannelAdmin: :EventChannel find channel by id(

in ChannelID id,
out string name)
raises (ChannelNotFound) ;

Returns an EventChannel instance specified by the provided id.

id The channel id as returned from create channel ()
name The name of the channel

EventChannelFactory::list_channels()

//IDL
EventChannelInfolist list channels();

Return a list of the EventChannel instances associated with the event
service.

722 Orbix CORBA Programmer’s Reference: Java

IT FPS Module

The 1T FPS module defines the constants and interface for the
InterdictionPolicy.

const unsigned long FPS POLICY BASE =
IT PolicyBase::IONA POLICY ID + 40;

const CORBA::PolicyType INTERDICTION POLICY ID =
FPS_POLICY BASE;

enum InterdictionPolicyValue

{

DISABLE,
ENABLE

}i

local interface InterdictionPolicy : CORBA::Policy

{

readonly attribute InterdictionPolicyValue value;

bi

FPS_POLICY_BASE Constant

const unsigned long FPS POLICY BASE =
IT PolicyBase::IONA POLICY ID + 40;

Specifies the offset used to identify the InterdictionPolicy.

INTERDICTION_POLICY_ID Constant

const CORBA: :PolicyType INTERDICTION POLICY ID =
FPS_POLICY BASE;

Specifies the ID passed to create policy() when creating an

InterdictionPolicy.

InterdictionPolicyValue Enum

enum InterdictionPolicyValue

{
DISABLE,
ENABLE
}i
Specifies the possible values for the InterdictionPolicy. The val-
ues are defined as follows:

ENABLE This is the default behavior of the firewall proxy
service plug-in. A POA with its InterdictionpPolicy set
to exaBLE Will be proxified.

Orbix CORBA Programmer’s Reference: Java 723

DISABLE This setting tells the firewall proxy service plug-in
to not proxify the POA. A POA with its
InterdictionpPolicy Set to prsaBrLE will not use the
firewall proxy service and requests made on
objects under its control will come directly from the
requesting clients.

724 Orbix CORBA Programmer’s Reference: Java

IT FPS::InterdictionPolicy
Interface

This is an interface for a local policy object derived from

CORBA: :Policy. You create instances of InterdictionPolicy by call-
iNg CORBA: :ORB: :create policy (). It is used to specify if a POA is to
be proxified by the firewall proxy service.

local interface InterdictionPolicy : CORBA::Policy

readonly attribute InterdictionPolicyValue value;

}i

Orbix CORBA Programmer’s Reference: Java 725

726 Orbix CORBA Programmer’s Reference: Java

The IT_GIOP Module

A Micro Focus proprietary IDL module that is used to describe the
properties of GIOP connections.

IT_GIOP::CLIENT_VERSION_CONSTRAINTS _POLICY_ID

Identifiesthe 1T_crop: :ClientvVersionConstraintsPolicy pOllcy

Description You can pass this policy ID to the corea: :0RB: :create policy()
operation to create an IT GIOP::ClientVersionConstraintsPolicy policy
instance.

IT_GIOP::CLIENT_CODESET_CONSTRAINTS POLICY_ID

|dentifies the IT GIOP::ClientCodeSetConstraintsPolicy p0|lcy

Description You can pass this policy ID to the corea: :0RB: :create policy ()
operation to create an 1T _GIop: :ClientCodeSetConstraintsPolicy policy
instance.

IT_GIOP::VersionSeq

A list of GIOP version numbers.

IT_GIOP::ClientCodeSetConstraintsPolicyValue

A collection of narrow and wide character codesets which the client is
restricted to use when opening a new connection.

Description Micro Focus internal use only.

Orbix CORBA Programmer’s Reference: Java 727

Interface
IT GIOP::ClientVersionConstrai

ntsPolicy

A policy that limits the GIOP versions a client can use when
opening a hew connection.

Description Micro Focus internal use only.

Instead of specifying the client’s GIOP version by
programming, you can set the relevant configuration
variable. To specify the GIOP version, use one of the
following configuration variables (iiop for insecure I1OP and
iiop tls for secure IIOP):

plugins:iiop:client version policy

plugins:iiop tls:client version policy

IT_GIOP::ClientVersonConstraintsPolicy::allowed_versions

Returnsthe list of GIOP versions that the client is constrained to
use by this policy.

Description Micro Focus internal use only.

728 Orbix CORBA Programmer’s Reference: Java

Interface
IT GIOP::ClientCodeSetConstrain
tsPolicy

A policy that limits the character codesets a client can use when opening
a new connection.

Description Micro Focus internal use only.

Instead of specifying the client’s codesets by programming, you
can set the relevant configuration variables. To specify the native
codeset (ncs) or conversion codeset (ccs) for narrow characters
(char) or wide characters (wchar), use the following configuration
variables:

plugins:codeset:char:ncs
plugins:codeset:char:ccs
plugins:codeset :wchar:ncs
plugins:codeset :wchar:ccs

IT_GIOP::ClientCodeSetConstraintsPolicy::value

Returns the character code sets that the client is constrained to use by
this policy.

Description Micro Focus internal use only.

Orbix CORBA Programmer’s Reference: Java 729

Interface IT_GIOP::.Current

An object that provides access to miscellaneous attributes of a GIOP
connection.

Description On the client side, the IT GIOP::Current Object is used to set
attributes that affect all of the outgoing connections opened in the
current thread.

On the server side, the IT GIOP::Current Object is used to access
the attributes of the incoming GIOP connection (the attributes are
only accessible in an invocation context).

An instance of IT GIOP::Current can be obtained by passing the
string, IT GIOPCurrent, tO
CORBA: :ORB: :resolve initial references().

Java implementation To obtain a reference to an IT GIOP::Current Object in Java, use
the following code:
// Java
com.iona.corba.IT GIOP.Current giop current = null;
try {

org.omg.CORBA.Object objref =
orb.resolve initial references ("IT GIOPCurrent");

giop current =
com.iona.corba.IT GIOP.CurrentHelper.narrow (objref) ;
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
// Error: resolve initial references() call failed...
}

catch (org.omg.CORBA.BAD PARAM ex) {
// Error: narrow() call failed...
}

IT_GIOP::Current::negotiated_version

Returns the negotiated GIOP version used by the current connection.

Description Available on the server side only. This property is negotiated
per-connection.

IT_GIOP::Current::negotiated_char_codeset

Returns the negotiated narrow character codeset ID used by the current
connection.

Description Available on the server side only. This property is negotiated
per-connection.

IT_GIOP::Current::negotiated_wchar_codeset

Returns the negotiated wide character codeset 1D used by the current
connection.

730 Orbix CORBA Programmer’s Reference: Java

Description

Available on the server side only. This property is negotiated
per-connection. In Orbix, it is possible for this property to be
undefined (for example, if an Orbix client is connected and the
client has not yet sent any wide characters).

IT_GIOP::Current::local_principal

Description

See also

Sets the CORBA Principal for sending in client requestsin an octet
sequence format.

The local principal can be set only on the client side (per-thread).
It affects only the client invocations made from the current thread,
overriding the default value (Orbix uses the operating system user
ID for the Principal by default).

The local principal setting has no effect unless the client is
configured to use CORBA Principals (that is,
policies:giop:interop policy:send principal must be true).

IT GIOP::Current::local principal as string

IT_GIOP::Current::local_principal_as string

Description

Java implementation

See also

Setsthe CORBA Principal for sendingin client requestsinastring format.

The local principal as string attribute accesses or modifies the
local principal value in a string format. When you set this
attribute, it is implicitly converted to an octet sequence format
(which is also accessible through the local principal attribute).

The Principal string is returned in UTF-8 format.

IT GIOP::Current::local principal

IT_GIOP::Current::received_principal

Description

Java implementation

See also

Accesses the CORBA Principal received with a client request in an octet
sequence format.

The received principal can be accessed only on the server side.

If the client did not include a Principal in the request message, this
attribute returns null.

IT GIOP::Current::received principal as_string

IT_GIOP::Current::received_principal_as string

Description

Accesses the CORBA Principal received with a client request in a string
format.

The received principal as string attribute accesses the received
principal value in a string format. When you access this attribute,
it is implicitly converted from an octet sequence format (which is
also accessible through the received principal attribute).

Orbix CORBA Programmer’s Reference: Java 731

Java implementation

See also

The Principal string is returned in UTF-8 format.

IT GIOP::Current::received principal

IT_GIOP::Current::recelved_request_length

Description

Java implementation

Returns the length of the current received request.

The request length returned by this attribute is equal to the sum
of the all the message fragment lengths (the 12-byte GIOP
message header is not considered to be part of the message
length). For example, if the request consists of just one message
(that is, no fragmentation), the returned length is equal to the
message body length.

Available on the server side only. You can access this attribute in
the servant implementation, assuming there is an invocation
context.

Not implemented.

IT_GIOP::Current::sent_reply length

Description

Java implementation

Returns the length of the current sent reply.

Micro Focus internal use only. Available on the server side only.

Not implemented.

732 Orbix CORBA Programmer’s Reference: Java

Interface IT_GIOP::Current2

Description

Java implementation

An object that provides access to miscellaneous attributes of a GIOP
connection.

On the client side, the IT GIOP::Current2 oObject is used to set
attributes that affect all of the outgoing connections opened in the
current thread.

On the server side, the IT GIOP::Current2 Object is used to access
the attributes of the incoming GIOP connection (the attributes are
only accessible in an invocation context).

An instance of IT GIOP::Current2 can be obtained by passing the
string, IT GIOPCurrent, tO
CORBA: :ORB: :resolve initial references().

In a future release, the attributes defined in this interface are
likely to be either folded into the base interface, or moved to a
more general interface.

To obtain a reference to an IT GIOP::Current2 Object in Java, use
the following code:

// Java
com.iona.corba.IT GIOP.Current2 giop current2 = null;
try {

org.omg.CORBA.Object objref =

orb.resolve initial references("IT GIOPCurrent");

giop current2 =

com. iona.corba.IT GIOP.Current2Helper.narrow (objref) ;
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {

// Error: resolve initial references() call failed...

}

catch (org.omg.CORBA.BAD PARAM ex) {
// Error: narrow() call failed...
!

IT_GIOP::Current2::protocol_name

Description

Returns the name of the transport protocol underlying GIOP over which
the current request was received.

Server side only. This readonly attribute can return one of the
following string values:

Table 14: Return Values for the Transport Protocol Name

Protocol C++ Return Value | Java Return Value
1HOP II0P iiop
IHOP/TLS IIOP TLS iiop
EGMIOP EGMIOP egmiop
SHMIOP SHMIOP N/A

Orbix CORBA Programmer’s Reference: Java 733

IT_GIOP::Current2::local_address literal

Description

See also

Returnsthelocal address, in string format, of the GIOP connection over
which a request was received.

Server side only. The format of the returned string depends on the
specific protocol being used. For 11OP or IIOP/TLS, it consists of

the node address, in IPv4 dotted decimal or IPv6 colon-separated
hex notation, followed by a dot and then the decimal port number.

For example, an IPv4 address with host, 127.0.0.1, and IP port,
1234, would be returned as the following string:

127.0.0.1.1234

An IPv6 address with MAC address, FB:00:5B:97:E5:7D, and IP
port, 1234, would be returned as the following string:

FB:00:5B:97:E5:7D.1234

IT GIOP::Current2::remote address_literal

IT_GIOP::Current2::remote_address literal

Description

See also

Returnstheremoteaddress, in string format, of the GIOP connection over
which a request was received.

Server side only. The format of the returned string depends on the
specific protocol being used. For 11OP or IIOP/TLS, it consists of

the node address, in IPv4 dotted decimal or IPv6 colon-separated
hex notation, followed by a dot and then the decimal port number.

For example, an IPv4 address with host, 127.0.0.1, and IP port,
1234, would be returned as the following string:

127.0.0.1.1234

An IPv6 address with MAC address, FB:00:5B:97:E5:7D, and IP
port, 1234, would be returned as the following string:

FB:00:5B:97:E5:7D.1234

IT GIOP::Current2::local address literal

IT_GIOP::Current2::local_address

Description

Returnsthelocal address, intheformof an object, of the GIOP connection
over which a request was received.

Micro Focus internal use only.

Server side only. The type of the returned ocbject depends on the
specific protocol implementation being used, as follows:

* |IOP protocol—object type is IT ATLI2 IP::IPAddress.

* |IOP/TLS protocol—object type is IT ATLI2 IP::IPAddress.
* SHMIOP protocol—object type is IT ATLI2 SHM: :SHMAddress.
* EGMIOP protocol—not implemented.

734 Orbix CORBA Programmer’s Reference: Java

IT_GIOP::Current2::remote_address

Description

Returns the remote address, in the form of an object, of the GIOP
connection over which a request was received.

Micro Focus internal use only.

Server side only. The type of the returned object depends on the
specific protocol implementation being used, as follows:

I1OP protocol—object type is IT ATLI2 IP::IPAddress.
IIOP/TLS protocol—object type is IT ATLI2 IP::IPAddress.
SHMIOP protocol—object type iS IT ATLI2 SHM::SHMAddress.
EGMIOP protocol—not implemented.

Orbix CORBA Programmer’s Reference: Java 735

736 Orbix CORBA Programmer’s Reference: Java

IT LoadBalancing Overview

The IT LoadBalancing module provides operations that allow you to
organize object references in the naming service into object
groups. Object groups provide a means of controlling object load
balancing by distributing work across a pool of objects.

* The objectGroup interface provides operations to update object
group members.

* The objectGroupFactory interface provides operations to create
or locate object groups.

The IT LoadBalancing module also uses the following common data
types and exceptions.

Table 15: IT_LoadBalancing Common Data Types and Exceptions
Common Data Types Exceptions

MemberId NoSuchMember
MemberIdlList DuplicateMember
SelectionMethod DuplicateGroup
Member NoSuchGroup
GroupId
GroupList

IT_LoadBalancing::Memberld Data Type

//IDL
typedef string MemberId;

An identifying string representing an object group member.

When adding a member to an object group, you must specify a
string representing the object. The format of the string is left to the
developer. Orbix does not interpret them. The only restriction is
that member ids must be unique within each object group.

IT_LoadBalancing::MemberldList Data Type

//IDL
typedef sequence<MemberId> MemberIdList;

A list of member ids that belong to an object group.

IT _LoadBalancing::SelectionMethod Data Type

//IDL
enum SelectionMethod { ROUND ROBIN METHOD, RANDOM METHOD,

ACTIVE METHOD };

Specifies the algorithm for mapping a name to a member of an
object group.

ROUND_ROBIN METHODSequentially selects objects from the object group
to resolve client requests.

Orbix CORBA Programmer’s Reference: Java 737

RANDOM METHOD Randomly selects objects from the object group
to resolve client requests.

ACTIVE METHOD Uses load information supplied by the server or
the system administrator to select the object with
the lightest load from the object group to resolve
client requests.

IT _LoadBalancing::Member Data Type

//IDL
struct Member

{
Object obj;
MemberId id;

}i

Specifies an object group member.

IT_LoadBalancing::Groupld Data Type

// IDL
typedef string Groupld;

A string representing an object group.

When creating an object group, you must specify a string repre-
senting the object. The format of the string is left to the developer.
Orbix does not interpret them. The only restriction is that group ids
must be unique among object groups.

IT_LoadBalancing::GroupList Data Type

//IDL
typedef sequence<GroupIlds> GroupList;

A list of object group ids.

IT _LoadBalancing::NoSuchMember Exception

// IDL
exception NoSuchMember{};

Raised when the member id passed to an operation does not specify
a member in the current object group.

IT _LoadBalancing::DuplicateMember Exception

// IDL
exception DupliccateMember({};

Raised by IT LoadBalancing: :0ObjectGroup: :add member When the
member id identifies a member that is already part of the group.

738 Orbix CORBA Programmer’s Reference: Java

IT_LoadBalancing::DuplicateGroup Exception

Raised by

IT LoadBalancing: :0ObjectGroupFactory: :create round robin,

IT LoadBalancing::0ObjectGroupFactory: :create random, and

IT LoadBalancing: :0ObjectGroupFactory: :create active when the

group id identifies a preexisting group.

IT_LoadBalancing::NoSuchGroup Exception

Raised when the specified group id does not match any registered
group.

Orbix CORBA Programmer’s Reference: Java 739

740 Orbix CORBA Programmer’s Reference: Java

IT LoadBalancing::ObjectGroup

Interface

Object groups are controlled by the objectGroup interface, which

defines the operations for manipulating the members of the object

group. An ObjectGroup is obtained from an ObjectGroupFactory.

The objectGroup interface has the following attributes:

* id contains the group’s id string specified when the group is
created.

®* selection method specifies which algorithm is used to resolve
client requests

The objectGroup interface has the following operations:

* pickis called by the naming service to map a client request to

an active object.
®* add member () adds an object’s reference to an object group.

* remove member () removes an object’s reference from the object

group.
®* get member () returns the object by its member id.
* members() returns a list of all members in the object group.
®* update member load() updates the object’s load status.

®* get member load() returns an object’s load status.

®* set member timeout () specifies the amount of time between

load updates for a specific member. After this time the object

will be removed from the group’s pool of available objects.
® get member timeout () returns the member’s timeout value.

* destroy() removes the object group from the naming service.

The complete objectGroup interface is as follows:

interface ObjectGroup {

readonly attribute string id;

attribute SelectionMethod selection method;

Object pick() ;

void add member (in Member mem)

raises (DuplicateMember) ;

void remove member (in MemberId id)

raises (NoSuchMember) ;

Object get member (in MemberId id)

raises (NoSuchMember) ;

MemberIdList members () ;

void update member load(in MemberIdList ids, in double
curr load)

raises (NoSuchMember) ;

double get member load(in MemberId id)

raises (NoSuchMember) ;

void set member timeout (in MemberIdList ids, in long
timeout sec)

raises (NoSuchMember) ;

long get member timeout (in MemberId id)

raises (NoSuchMember) ;

void destroy () ;

Orbix CORBA Programmer’s Reference: Java 741

ObjectGroup::pick()

// IDL
Object pick() ;

Returns an object from the group using the selection algorithm
specified when the group was created.

See Also IT LoadBalancing: :SelectionMethod,
IT LoadBalancing: :0ObjectGroupFactory: :create round robin(),
IT LoadBalancing: :0ObjectGroupFactory: :create random(),
IT LoadBalancing: :0ObjectGroupFactory: :create active ()

ObjectGroup::add_member()

// IDL
void add member (in Member mem)
raises (DuplicateMember) ;

Adds a reference to an object to the object group and makes it
available for picking.

Parameters

mem Specifies the object to be added to the object group. It
is made up of a CORBA: :Object and a MemberId.

Exceptions

IT LoadBalanci A member with the same Memberid is already associ-
ng: :Duplica ated with the object group.
teMember

ObjectGroup::remove_member()

// IDL
void remove member (in MemberId id)
raises (NoSuchMember) ;

Removes the specified object’s reference from the object group. It
does not effect any other references to the object stored in the
naming service.

Parameters

id A string that identifies the object within the object
group

Exceptions

IT LoadBalanci The specified member does not exist in the object
ng:: group.
NoSuchMembe
r

742 Orbix CORBA Programmer’s Reference: Java

ObjectGroup::get_member()

// IDL
Object get member(in MemberId id)

Returns the object specified by id.

Parameters

id A string that identifies the object within the object
group

Exceptions

IT LoadBalancing: The specified member does not exist in the
: NoSuchMember object group.

ObjectGroup::members()

// IDL
MemberIdList members () ;

Returns a list containing the ids of all members in the object group.

ObjectGroup::update_member_load()

// IDL
void update member load(in MemberIdList ids, in double

curr load)
raises (NoSuchMember) ;

Specifies the load value used in the ACTIVE METHOD selection algo-
rithm.

Parameters
ids A sequence of Memberid values that specify the objects
whose load value is being updated.

curr load A double that specifies the load on the specified
objects. The higher the value, the higher the load.
Using the ACTIVE METHOD members of the group with
the lowest load values are picked first.

Exceptions

IT LoadBalancing: One or more of the specified members do not
: NosuchMember exist in the object group.

See Also IT LoadBalancing::SelectionMethod,
IT LoadBalancing: :0ObjectGroupFactory: :create active(),
IT LoadBalancing: :0ObjectGroup: :set member timeout ()

ObjectGroup::get_member_load()

// IDL
double get member load(in MemberId id)
raises (NoSuchMember) ;

Returns the load value for a specified object.

Orbix CORBA Programmer’s Reference: Java 743

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

id A string that identifies the object within the object
group

IT LoadBalancing: The specified member does not exist in the
: NoSuchMember object group.

IT LoadBalancing::ObjectGroup::update member load ()

ObjectGroup::set_member_timeout()

void set member timeout (in MemberIdList ids, in long
timeout sec)
raises (NoSuchMember) ;

Specifies the amount of time, in seconds, that a member has
between updates of its load value before it is removed from the list
of available objects.

ids A sequence of MemberIds that specify the members
whose timeout values are being set.

timeout sec A long specifying the number of seconds that an object
has between load value updates. After this amount of
time has expired the object will be taken off the object
groups list of available objects.

IT LoadBalancing: One or more of the specified members do not
: NosuchMember exist in the object group.

IT LoadBalancing::ObjectGroup::update member load ()

ObjectGroup::get_member_timeout()

\\ IDL
long get member timeout (in MemberId id)
raises (NoSuchMember) ;

Returns the timeout value for the specified object group member.

id A string that identifies the object within the object
group

IT LoadBalancing: One or more of the specified members do not
: NoSuchMember exist in the object group.

IT LoadBalancing::ObjectGroup::set member timeout ()

744 Orbix CORBA Programmer’s Reference: Java

ObjectGroup::destroy()

// IDL
void destroy ()

Removes the object group from the naming service. Before calling
destroy() on an object group, you must first unbind it.

Exceptions

CosNamimg: :NamingConThe object group is not unbound from the
text::NotEmpty = naming service.

See Also CosNaming: :NamingContext : :unbind ()

Orbix CORBA Programmer’s Reference: Java 745

746 Orbix CORBA Programmer’s Reference: Java

IT LoadBalancing::ObjectGroupF
actory Interface

Parameters

The ObjectGroupFactory interface provides methods for creating
and locating object groups in the naming service.

The ObjectGroupFactory interface has the following methods to cre-
ate object groups:

®* create round robin() creates an object group that uses the
ROUND ROBIN METHOD selection algorithm for picking objects.

®* create random() creates an object group that uses the
RANDOM METHOD selection algorithm for picking objects.

®* create active() creates an object group that uses the
ACTIVE METHOD selection algorithm for picking objects.

The ObjectGroupFactory interface has the following methods for
locating object groups in the naming service:

* find group returns a specific object group.

* rr groups returns a list of all object groups using the
ROUND ROBIN METHOD selection algorithm.

* random groups returns a list of all object groups using the
RANDOM METHOD selection algorithm.

®* active groups returns a list of all object groups using the
ACTIVE METHOD selection algorithm.

The complete ObjectGroupFactory interface is as follows:

interface ObjectGroupFactory {

ObjectGroup create round robin (in GroupId id)
raises (DuplicateGroup) ;

ObjectGroup create random (in GroupId id)
raises (DuplicateGroup) ;

ObjectGroup create active (in GroupId id)
raises (DuplicateGroup) ;

ObjectGroup find group (in GroupId id)
raises (NoSuchGroup) ;

GroupList rr groups() ;

GroupList random groups () ;

GroupList active groups() ;

ObjectGroupFactory::create_round_robin()

// IDL
ObjectGroup create round robin (in GroupId id)
raises (DuplicateGroup) ;

Creates an object group in the naming service. The new group uses
the ROUND ROBIN METHOD selection algorithm for picking objects.

id A string identifying the object group. The string must
be unique among object groups.

Orbix CORBA Programmer’s Reference: Java 747

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

Exceptions

See Also

Parameters

IT LoadBalancing:: The id specified is already in use by another
DuplicateGroup object group.

IT LoadBalancing::ROUND ROBIN METHOD

ObjectGroupFactory::.create_random()

ObjectGroup create random (in GroupId id)
raises (DuplicateGroup) ;

Creates an object group in the naming service. The new group uses
the rRaNDOM METHOD selection algorithm for picking objects.

id A string identifying the object group. The string must
be unique among object groups.

IT LoadBalancing::DuThe id specified is already in use by another
plicateGroup object group.

IT LoadBalancing::RANDOM METHOD

ObjectGroupFactory::create_active()

ObjectGroup create active (in GroupId id)
raises (DuplicateGroup) ;

Creates an object group in the naming service. The new group uses
the ACTIVE METHOD selection algorithm for picking objects.

id A string identifying the object group. The string must
be unique among object groups.

IT LoadBalancing:: The id specified is already in use by another
DuplicateGroup object group.

IT LoadBalancing::ACTIVE METHOD

ObjectGroupFactory::find_group()

//IDL

ObjectGroup find group (in GroupId id)
raises (NoSuchGroup) ;

Returns the specified object group.

id A string identifying the object group. The string must
be unique among object groups.

748 Orbix CORBA Programmer’s Reference: Java

Exceptions

IT LoadBalancing: The group specified does not exist.
:NoSuchGroup

ObjectGroupFactory::rr_groups()

// IDL
GroupList rr groups() ;

Returns a sequence of Groupid that identify all objects groups in the
naming service that use ROUND ROBIN METHOD.

ObjectGroupFactory::random_groups()

// IDL
GroupList random groups() ;

Returns a sequence of GroupId that identify all objects groups in the
naming service that use RANDOM METHOD.

ObjectGroupFactory::active_groups()

// IDL
GroupList random groups() ;

Returns a sequence of Group1d that identify all objects groups in the
naming service that use ACTIVE METHOD.

Orbix CORBA Programmer’s Reference: Java 749

750 Orbix CORBA Programmer’s Reference: Java

IT Logging Overview

The IT Logging module is the centralized point for controlling all
logging methods.

* The EventLog interface controls the reporting of log events.

®* The LogStream interface controls how and where events are
received.

The IT Logging module also uses the following common data
types, static method, and macros.

Table 16: IT_Logging Common Data Types, Methods, and Macros
Common Data Types Methods and Macros
ApplicationId format message ()
EventId
EventParameters IT LOG MESSAGE ()
EventPriority IT LOG MESSAGE 1 ()
SubsystemId IT LOG MESSAGE 2 ()
Timestamp IT LOG MESSAGE 3 ()
IT LOG MESSAGE 4 ()
IT LOG MESSAGE 5 ()

IT_Logging::Applicationld Data Type

//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the
event.

For example, a Unix and Windows ApplicationId contains the host
name and process ID (PID) of the reporting process. Because this
value can differ from platform to platform, streams should only

use it as informational text, and should not attempt to interpret it.

Enhancement Orbix enhancement to CORBA.

IT_Logging::Eventld Data Type

//IDL
typedef unsigned long EventId;

An identifier for the particular event.

Enhancement Orbix enhancement to CORBA.

IT_Logging::EventParameters Data Type

//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a se-
quence of any values.

Enhancement Orbix enhancement to CORBA.

Orbix CORBA Programmer’s Reference: Java 751

See Also IT Logging::format message ()

IT_Logging::EventPriority Data Type

//IDL

typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into
the following categories of priority.

Information

Warning

A significant non-error event has occurred.
Examples include server startup/shutdown,
object creation/deletion, and information about
administrative actions. Informational messages
provide a history of events that can be invalu-
able in diagnosing problems.

The subsystem has encountered an anomalous
condition, but can ignore it and continue func-
tioning. Examples include encountering an

invalid parameter, but ignoring it in favor of a

Enhancement

default value.

Error An error has occurred. The subsystem will
attempt to recover, but may abandon the task
at hand. Examples include finding a resource
(such as memory) temporarily unavailable, or
being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The sub-

system or process will terminate.

The possible values for an EventPriority consist of the following:

LOG_NO_EVENTS
LOG_ALI, EVENTS

LOG_INFO LOW

L.OG_INFO MED

L.OG_INFO HIGH

LOG_INFO (LOG_INFO LOW)
LOG_ALIL_INFO

LOG_WARNING

LOG_ERROR

LOG_FATAL, ERROR

A single value is used for EventLog operations that report events or
LogStream operations that receive events. In filtering operations
such as set filter(), these values can be combined as a filter
mask to control which events are logged at runtime.

Orbix enhancement to CORBA.

IT_Logging::format_message()

Returns a formatted message based on a format description and a
sequence of parameters.

752 Orbix CORBA Programmer’s Reference: Java

Parameters Messages are reported in two pieces for internationalization:

description A locale-dependent string that describes of how to use
the sequence of parameters in params.

params A sequence of locale-dependent parameters.

format message () copies the description into an output string,
interprets each event parameter, and inserts the event parame-
ters into the output string where appropriate. Event parameters
that are primitive and SystemException parameters are converted
to strings before insertion. For all other types, question marks (?)
are inserted.

Enhancement Orbix enhancement to CORBA.

IT_Logging::Subsystemld Data Type

//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the
event originated. The constant DEFAULT may be used to enable all
subsystems.

Enhancement Orbix enhancement to CORBA.

IT_Logging::Timestamp Data Type

//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.

Enhancement Orbix enhancement to CORBA.

IT_LOG_MESSAGE(Q) Macro

A macro to use for reporting a log message.

Parameters

event log The log (EventLog) where the message is to be

reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.
Enhancement Orbix enhancement to CORBA.
Examples Here is a simple example of usage:

IT LOG MESSAGE (
event log,
IT IIOP Logging::SUBSYSTEM,
IT IIOP Logging::SOCKET CREATE FAILED,

Orbix CORBA Programmer’s Reference: Java 753

Parameters

Enhancement

See Also

Parameters

Enhancement

See Also

Parameters

IT Logging: :LOG ERROR,
SOCKET CREATE FAILED MSG
)i

IT LOG_MESSAGE_ 1() Macro

A macro to use for reporting a log message with one event
parameter.

event log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 A single parameter for an EventParameters Sequence.

Orbix enhancement to CORBA.

IT Logging::IT LOG MESSAGE ()

IT LOG_MESSAGE_ 2() Macro

A macro to use for reporting a log message with two event
parameters.

event log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

paraml The second parameter for an EventParameters
sequence.

Orbix enhancement to CORBA.

IT Logging::IT LOG MESSAGE ()

IT_LOG_MESSAGE_3() Macro

A macro to use for reporting a log message with three event
parameters.

event log The log (EventLog) where the message is to be
reported.

754 Orbix CORBA Programmer’s Reference: Java

Enhancement

See Also

Parameters

Enhancement

See Also

Parameters

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

paraml The second parameter for an EventParameters
seguence.

param2 The third parameter for an EventParameters Sequence.

Orbix enhancement to CORBA.

IT Logging::IT LOG MESSAGE ()

IT_LOG_MESSAGE_4() Macro

A macro to use for reporting a log message with four event
parameters.

event log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

param0 The first parameter for an EventParameters sequence.

paraml The second parameter for an EventParameters
seqguence.

param2 The third parameter for an EventParameters Ssequence.

param3 The forth parameter for an EventParameters sequence.

Orbix enhancement to CORBA.

IT Logging::IT LOG MESSAGE ()

IT_LOG_MESSAGE_5() Macro

A macro to use for reporting a log message with five event
parameters.

event log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.

id The EventId.

severity The EventPriority.

desc A string description of the event.

paramo The first parameter for an EventbParameters sequence.

Orbix CORBA Programmer’s Reference: Java 755

paraml The second parameter for an