
Orbix 6.3.9

CORBA Programmer’s Reference:
Java

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

1/13/17

 Orbix CORBA Programmer’s Reference: Java i i i

Contents

Preface... xix

Introduction 1
Interface Repository Quick Reference ..1
DII and DSI Quick Reference ...2
Value Type Quick Reference ..3
About Standard Functions for all Interfaces ..3
About Sequences ...5

CORBA Overview ...7

CORBA::AbstractInterfaceDef Interface21

CORBA::AliasDef Interface ..23

CORBA::Any Class..25

CORBA::ArrayDef Interface ...33

CORBA::AttributeDef Interface..35

CORBA::ConstantDef Interface ..37

CORBA::ConstructionPolicy Interface39

CORBA::Contained Interface ...41

CORBA::Container Interface ..45

CORBA::Context Class ...61

CORBA::ContextList Class..65

CORBA::Current Interface ...67

CORBA::CustomMarshal Value Type69

CORBA::DataInputStream Value Type71

CORBA::DataOutputStream Value Type83

CORBA::DomainManager Interface......................................95

iv Orbix CORBA Programmer’s Reference: Java

CORBA::EnumDef Interface... 97

CORBA::Environment Class ... 99

CORBA::Exception Class.. 101

CORBA::ExceptionDef Interface .. 103

CORBA::ExceptionList Class .. 105

CORBA::FixedDef Interface... 107

CORBA.InterfaceDefPackage.FullInterfaceDescription Class109

CORBA::IDLType Interface.. 111

CORBA::InterfaceDef Interface... 113

CORBA::IRObject Interface... 117

CORBA::ModuleDef Interface .. 119

CORBA::NamedValue Class ... 121

CORBA::NativeDef Interface ... 123

CORBA::NVList Class... 125

CORBA::Object Class... 129

CORBA::OperationDef Interface.. 137

CORBA::ORB Class .. 141

CORBA::Policy Interface ... 163
Quality of Service Framework ...163
Policy Methods ...165

CORBA::PolicyCurrent Class.. 167

CORBA::PolicyManager Class .. 169

CORBA::PrimitiveDef Interface ... 171

CORBA::Repository Interface.. 173

CORBA::Request Class .. 179

Orbix CORBA Programmer’s Reference: Java v

CORBA::SequenceDef Interface ...185

CORBA::ServerRequest Class...187

CORBA::String_var Class ...191

CORBA::StringDef Interface ..193

CORBA::StructDef Interface ..195

CORBA::TypeCode Class ..197

CORBA::TypedefDef Interface..205

CORBA::UnionDef Interface...207

CORBA::ValueBase Class ...209

CORBA::ValueBoxDef Interface ...211

CORBA::ValueDef Interface ...213

CORBA::ValueFactory ..221
CORBA::ValueFactory Type ... 221

CORBA::ValueMemberDef Interface...................................223

CORBA::WString_var Class ..225

CORBA::WstringDef Interface..227

CosEventChannelAdmin Module...229
CosEventChannelAdmin Exceptions .. 229

CosEventChannelAdmin::ConsumerAdmin Interface..........231

CosEventChannelAdmin::EventChannel Interface..............233

CosEventChannelAdmin::ProxyPullConsumer Interface.....235

CosEventChannelAdmin::ProxyPullSupplier Interface237

CosEventChannelAdmin::ProxyPushConsumer Interface ...239

CosEventChannelAdmin::ProxyPushSupplier Interface......241

CosEventChannelAdmin::SupplierAdmin Interface243

vi Orbix CORBA Programmer’s Reference: Java

CosEventComm Module... 245
CosEventComm Exceptions ..245

CosEventComm::PullConsumer Interface.......................... 247

CosEventComm::PullSupplier Interface 249

CosEventComm::PushConsumer Interface 251

CosEventComm::PushSupplier Interface........................... 253

CosNaming Overview.. 255

CosNaming::BindingIterator Interface.............................. 259

CosNaming::NamingContext Interface.............................. 261

CosNaming::NamingContextExt Interface......................... 271

CosNotification Module ... 275
CosNotification Data Types ..275
QoS and Administrative Constant Declarations ...276
QoS and Admin Data Types ...277
QoS and Admin Exceptions ..279

CosNotification::AdminPropertiesAdmin Interface............ 281

CosNotification::QoSAdmin Interface................................ 283

CosNotifyChannelAdmin Module 285
CosNotifyChannelAdmin Data Types ..285
CosNotifyChannelAdmin Exceptions ...288

CosNotifyChannelAdmin::ConsumerAdmin Interface 291

CosNotifyChannelAdmin::EventChannel Interface............. 297

CosNotifyChannelAdmin::EventChannelFactory Interface . 303

CosNotifyChannelAdmin::ProxyConsumer Interface 305

CosNotifyChannelAdmin::ProxyPullConsumer Interface ... 307

CosNotifyChannelAdmin::ProxyPullSupplier Interface 309

CosNotifyChannelAdmin::ProxyPushConsumer Interface.. 311

CosNotifyChannelAdmin::ProxyPushSupplier Interface 313

Orbix CORBA Programmer’s Reference: Java vii

CosNotifyChannelAdmin::ProxySupplier Interface.............317

CosNotifyChannelAdmin::SequenceProxyPullConsumer Interface
321

CosNotifyChannelAdmin::SequenceProxyPushConsumer Interface
323

CosNotifyChannelAdmin::SequenceProxyPullSupplier Interface325

CosNotifyChannelAdmin::SequenceProxyPushSupplier Interface327

CosNotifyChannelAdmin::StructuredProxyPullConsumer Interface
331

CosNotifyChannelAdmin::StructuredProxyPullSupplier Interface333

CosNotifyChannelAdmin::StructuredProxyPushConsumer Interface
335

CosNotifyChannelAdmin::StructuredProxyPushSupplier Interface
337

CosNotifyChannelAdmin::SupplierAdmin Interface............341

CosNotifyComm Module...347
CosNotifyComm Exceptions ... 347

CosNotifyComm::NotifyPublish Interface349

CosNotifyComm::NotifySubscribe Interface.......................351

CosNotifyComm::PullConsumer Interface..........................353

CosNotifyComm::PullSupplier Interface355

CosNotifyComm::PushConsumer Interface357

CosNotifyComm::PushSupplier Interface...........................359

CosNotifyComm::SequencePullConsumer Interface...........361

CosNotifyComm::SequencePullSupplier Interface363

CosNotifyComm::SequencePushConsumer Interface365

CosNotifyComm::SequencePushSupplier Interface............367

viii Orbix CORBA Programmer’s Reference: Java

CosNotifyComm::StructuredPullConsumer Interface 369

CosNotifyComm::StructuredPullSupplier Interface 371

CosNotifyComm::StructuredPushConsumer Interface....... 373

CosNotifyComm::StructuredPushSupplier Interface 375

CosNotifyFilter Module.. 377
CosNotifyFilter Data Types ...377
CosNotifyFilter Exceptions ...379

CosNotifyFilter::Filter Interface .. 381

CosNotifyFilter::FilterAdmin Interface 387

CosNotifyFilter::FilterFactory Interface 389

CosNotifyFilter::MappingFilter Interface........................... 391

CosTrading Module ... 399
CosTrading Data Types ...399
CosTrading Exceptions ..403

CosTrading::Admin Interface .. 407

CosTrading::ImportAttributes Interface 413

CosTrading::Link Interface ... 415
CosTrading::Link Exceptions ..416

CosTrading::LinkAttributes Interface................................ 421

CosTrading::Lookup Interface... 423

CosTrading::OfferIdIterator Interface 429

CosTrading::OfferIterator Interface.................................. 431

CosTrading::Proxy Interface ... 433

CosTrading::Register Interface... 437

CosTrading::SupportAttributes Interface.......................... 443

CosTrading::TraderComponents Interface 445

CosTrading::Dynamic Module.. 447

Orbix CORBA Programmer’s Reference: Java ix

CosTradingDynamic::DynamicPropEval Interface449

CosTradingRepos Module...451

CosTradingRepos::ServiceTypeRepository Interface453

CosTransactions Overview...461
Overview of Classes ... 461
General Exceptions .. 462
General Data Types .. 464

CosTransactions::Control Class..469

CosTransactions::Coordinator Class471

CosTransactions::Current Class ...481

CosTransactions::RecoveryCoordinator Class487

CosTransactions::Resource Class.......................................489

CosTransactions::SubtransactionAwareResource Class491

CosTransactions::Synchronization Class............................493

CosTransactions::Terminator Class....................................495

CosTransactions::TransactionalObject Class......................497

CosTransactions::TransactionFactory Class499

CosTypedEventChannelAdmin Module501
CosTypedEventChannelAdmin Exceptions .. 501
CosTypedEventChannelAdmin Data Types ... 501

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface503
Unsupported Operations ... 504

CosTypedEventChannelAdmin::TypedEventChannel Interface505

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface
507

Unsupported Operations ... 507

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface509
Unsupported Operations ... 510

CosTypedEventComm Module ..511

x Orbix CORBA Programmer’s Reference: Java

CosTypedEventComm::TypedPushConsumer Interface 513

CSI Overview.. 515

CSIIOP Overview .. 519

DsEventLogAdmin Module... 523

DsEventLogAdmin::EventLog Interface............................. 525

DsEventLogAdmin::EventLogFactory Interface 527

DsLogAdmin Module ... 529
DsLogAdmin Exceptions ..529
DsLogAdmin Constants ...531
DsLogAdmin Datatypes ...532

DsLogAdmin::BasicLog Interface 539

DsLogAdmin::BasicLogFactory Interface 541

DsLogAdmin::Iterator Interface 543

DsLogAdmin::Log Interface .. 545

DsLogAdmin::LogMgr Interface .. 557

DsLogNotification Module ... 559

DsNotifyLogAdmin Module .. 563

DsNotifyLogAdmin::NotifyLog Interface 565

DsNotifyLogAdmin::NotifyLogFactory Interface................ 567

Dynamic Module ... 569

DynamicAny Overview .. 571

DynamicAny::DynAny Class .. 573

DynamicAny::DynAnyFactory Class................................... 599

DynamicAny::DynArray Class.. 603

DynamicAny::DynEnum Class.. 607

Orbix CORBA Programmer’s Reference: Java xi

DynamicAny::DynFixed Class...609

DynamicAny::DynSequence Class611

DynamicAny::DynStruct Class..615

DynamicAny::DynUnion Class ..619

DynamicAny::DynValue Class ..623

GSSUP Overview..627

The IT_Buffer Module..629

IT_Buffer::Storage ..630

IT_Buffer::Segment...632

IT_Buffer::Buffer...633

IT_Buffer::BufferManager ...637

IT_Certificate Overview...639

IT_Certificate::AVA Interface ..641

IT_Certificate::AVAList Interface.......................................643

IT_Certificate::Certificate Interface647

IT_Certificate::Extension Interface649

IT_Certificate::ExtensionList Interface..............................651

IT_Certificate::X509Cert Interface655

IT_Certificate::X509CertificateFactory Interface...............657

IT_Config Overview...659

IT_Config::Configuration Interface....................................661

IT_Config::Listener Interface ..667

IT_CORBA Overview..671

IT_CORBA::RefCountedLocalObject Class673

xii Orbix CORBA Programmer’s Reference: Java

IT_CORBA::RefCountedLocalObjectNC Class 675

IT_CORBA::WellKnownAddressingPolicy Class 677

The IT_CORBASEC Module .. 679

IT_CORBASEC::ExtendedReceivedCredentials................... 682

IT_CosTransactions Module .. 685

IT_CosTransactions::Current Class 687

IT_CSI Overview... 689

IT_CSI::AttributeServicePolicy Interface.......................... 695

IT_CSI::AuthenticateGSSUPCredentials Interface 699

IT_CSI::AuthenticationServicePolicy Interface................. 703

IT_CSI::CSICredentials Interface 707

IT_CSI::CSICurrent Interface ... 709

IT_CSI::CSICurrent2 Interface ... 711

IT_CSI::CSIReceivedCredentials Interface 715

IT_EventChannelAdmin Module .. 719
IT_EventChannelAdmin Data Types ...719
IT_EventChannelAdmin Exceptions ...719

IT_EventChannelAdmin::EventChannelFactory Interface.. 721

IT_FPS Module.. 723

IT_FPS::InterdictionPolicy Interface 725

The IT_GIOP Module... 727

Interface IT_GIOP::ClientVersionConstraintsPolicy 728

Interface IT_GIOP::ClientCodeSetConstraintsPolicy 729

Interface IT_GIOP::Current .. 730

Interface IT_GIOP::Current2 .. 733

Orbix CORBA Programmer’s Reference: Java xiii

IT_LoadBalancing Overview ..737

IT_LoadBalancing::ObjectGroup Interface741

IT_LoadBalancing::ObjectGroupFactory Interface.............747

IT_Logging Overview ..751

IT_Logging::EventLog Interface ..757

IT_Logging::LogStream Interface761

IT_MessagingAdmin Module..763

IT_MessagingAdmin::Manager Interface...........................765

IT_MessagingBridge Module..767

IT_MessagingBridge::Endpoint Interface771

IT_MessagingBridge::SinkEndpoint Interface....................773

IT_MessagingBridge::SourceEndpoint Interface................774

IT_MessagingBridge::EndpointAdmin Interface775

IT_MessagingBridgeAdmin Module....................................779

IT_MessagingBridgeAdmin::Bridge Interface781

IT_MessagingBridgeAdmin::BridgeAdmin Interface783

IT_NotifyBridge Module...785

IT_NotifyBridge::SinkEndpoint Interface...........................786

The IT_NamedKey Module...787

IT_NamedKey::NamedKeyRegistry....................................788

IT_Naming Module ..793

IT_Naming::IT_NamingContextExt Interface795

IT_NotifyChannelAdmin Module ..797

IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface799

xiv Orbix CORBA Programmer’s Reference: Java

IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier
Interface ... 801

IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier
Interface ... 803

IT_NotifyComm Module .. 805

IT_NotifyComm::GroupNotifyPublish Interface 807

IT_NotifyComm::GroupPushConsumer Interface 809

IT_NotifyComm::GroupSequencePushConsumer Interface811

IT_NotifyComm::GroupStructuredPushConsumer Interface813

IT_NotifyLogAdmin Module .. 815

IT_NotifyLogAdmin::NotifyLog Interface 817

IT_NotifyLogAdmin::NotifyLogFactory Interface 819

The IT_PlainTextKey Module .. 821
IT_PlainTextKey ...821
IT_PlainTextKey::Forwarder ...821

IT_PortableServer Overview... 823

IT_PortableServer::DispatchWorkQueuePolicy Interface.. 825

IT_PortableServer::ObjectDeactivationPolicy Class 827

IT_PortableServer::PersistenceModePolicy Class 829

IT_TLS Overview .. 831

IT_TLS::CertValidator Interface.. 835

IT_TLS_API Overview... 837

IT_TLS_API::CertConstraintsPolicy Interface 841

IT_TLS_API::CertValidatorPolicy Interface....................... 843

IT_TLS_API::MaxChainLengthPolicy Interface.................. 845

IT_TLS_API::SessionCachingPolicy Interface 847

Orbix CORBA Programmer’s Reference: Java xv

IT_TLS_API::TLS Interface..849

IT_TLS_API::TLSCredentials Interface851

IT_TLS_API::TLSReceivedCredentials Interface853

IT_TLS_API::TLSTargetCredentials Interface855

IT_TLS_API::TrustedCAListPolicy Interface857

IT_TypedEventChannelAdmin Module859
IT_TypedEventChannelAdmin Data Types .. 859

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface
861

IT_WorkQueue Module..863

IT_WorkQueue::AutomaticWorkQueue Interface865

IT_WorkQueue::AutomaticWorkQueueFactory Interface...867

IT_WorkQueue::ManualWorkQueue Interface869

IT_WorkQueue::ManualWorkQueueFactory Interface871

IT_WorkQueue::WorkItem Interface.................................873

IT_WorkQueue::WorkQueue Interface875

IT_WorkQueue::WorkQueuePolicy Interface877

The IT_ZIOP Module..879
IT_ZIOP::Compressor ... 880
IT_ZIOP::CompressorFactory .. 881
IT_ZIOP::CompressionManager ... 883
IT_ZIOP::CompressionComponent ... 885
IT_ZIOP::CompressionComponentFactory ... 885
IT_ZIOP::CompressionEnablingPolicy .. 885
IT_ZIOP::CompressorIdPolicy .. 886

Messaging Overview..887

Messaging::ExceptionHolder Value Type891

Messaging::RebindPolicy Class ..895

Messaging::ReplyHandler Base Class.................................897

xvi Orbix CORBA Programmer’s Reference: Java

Messaging::SyncScopePolicy Class 899

OrbixEventsAdmin Module .. 901

OrbixEventsAdmin::ChannelManager 903

PortableInterceptor Module.. 907

PortableInterceptor::ClientRequestInfo Interface 909

PortableInterceptor::ClientRequestInterceptor Interface. 915

PortableInterceptor::Current Interface 919

PortableInterceptor::Interceptor Interface 921

PortableInterceptor::IORInfo Interface............................ 923

PortableInterceptor::IORInterceptor Interface 925

PortableInterceptor::ORBInitializer Interface 927

PortableInterceptor::ORBInitInfo Interface 929

PortableInterceptor::PolicyFactory Interface 935

PortableInterceptor::RequestInfo Interface 937

PortableInterceptor::ServerRequestInfo Interface........... 943

PortableInterceptor::ServerRequestInterceptor Interface 947

Security Overview... 951

SecurityLevel1 Overview .. 959

SecurityLevel1::Current Interface..................................... 961

SecurityLevel2 Overview .. 963

SecurityLevel2::Credentials Interface............................... 965

SecurityLevel2::Current Interface..................................... 969

SecurityLevel2::EstablishTrustPolicy Interface................. 971

SecurityLevel2::InvocationCredentialsPolicy Interface..... 973

Orbix CORBA Programmer’s Reference: Java xvii

SecurityLevel2::MechanismPolicy Interface975

SecurityLevel2::PrincipalAuthenticator Interface977

SecurityLevel2::QOPPolicy Interface981

SecurityLevel2::ReceivedCredentials Interface983

SecurityLevel2::SecurityManager Interface.......................985

SecurityLevel2::TargetCredentials Interface989

Index...995

xviii Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java xix

Preface
Orbix is a software environment for building and integrating
distributed object-oriented applications. Orbix is a full
implementation of the Common Object Request Broker
Architecture (CORBA) from the Object Management Group (OMG).
Orbix fully supports CORBA version 2.3.
This document is based on the CORBA 2.3 standard with some
additional features and Orbix-specific enhancements.

Audience
The reader is expected to understand the fundamentals of writing
a distributed application with Orbix. Familiarity with Java is
required.

Organization of this Reference
This reference presents core-product modules in alphabetical
order, disregarding IT_ prefixes in order to keep together related
OMG-compliant and Orbix-proprietary modules. For example,
modules CORBA and IT_CORBA are listed in sequence.
Modules that are specific to a service are also grouped together
under the service’s name—for example, modules
CosPersistentState, IT_PSS, and IT_PSS_DB are listed under
Persistent State Service.

Related Documentation
This document is part of a set that comes with the Orbix product.
Other books in this set include:
• Application Server Platform Administrator’s Guide
• CORBA Programmer’s Guide
• CORBA Code Generation Toolkit Guide

Document Conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, methods, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:
#include <stdio.h>

 xx Orbix CORBA Programmer’s Reference: Java

This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis and
new terms.
Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:
% cd /users/your_name
Note: some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root
privileges.

> The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must choose
an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Orbix CORBA Programmer’s Reference: Java xxi

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

http://www.microfocus.com
http://www.microfocus.com

 xxii Orbix CORBA Programmer’s Reference: Java

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software

download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx. (documentation

updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

 Orbix CORBA Programmer’s Reference: Java 1

Introduction
This describes all of the standard programmer’s API for CORBA
and Orbix. This introduction contains the following topics:
• “Interface Repository Quick Reference”
• “DII and DSI Quick Reference”
• “Value Type Quick Reference”
• “About Sequences”
The rest of the CORBA Programmer’s Reference contains the fol-
lowing modules and appendix:

Interface Repository Quick Reference
The interface repository (IFR) is the component of Orbix that pro-
vides persistent storage of IDL definitions. Programs use the fol-
lowing API to query the IFR at runtime to obtain information about
IDL definitions:

CORBA
CosNaming
CosTransactions
DynamicAny
IT_Config
IT_CORBA
IT_Logging
IT_PortableServer

PortableInterceptor
PortableServer

“System Exceptions”

Table 1: Interface Repository API

CORBA Structures CORBA Enumerated Types

AttributeDescription
ConstantDescription
ExceptionDescription
Initializer
InterfaceDescription
ModuleDescription
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

AttributeMode
DefinitionKind
OperationMode
ParameterMode
PrimitiveKind
TCKind

 2 Orbix CORBA Programmer’s Reference: Java

DII and DSI Quick Reference
The client-side dynamic invocation interface (DII) provides for the
dynamic creation and invocation of requests for objects. The
server-side counterpart to the DII is the dynamic Skeleton inter-
face (DSI) which dynamically handles object invocations. This
dynamic system uses the following data structures, interfaces,
and classes:

CORBA Classes and Interfaces Typecode Methods in CORBA::ORB

AliasDef
ArrayDef
AttributeDef
ConstantDef
Contained
Container
EnumDef
ExceptionDef
Environment
FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NativeDef
OperationDef
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueMemberDef
WstringDef

create_abstract_interface_tc()
create_alias_tc()
create_array_tc()
create_enum_tc()
create_exception_tc()
create_fixed_tc()
create_interface_tc()
create_native_tc()
create_recursive_tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create_value_box_tc()
create_value_tc()
create_wstring_tc()

Table 1: Interface Repository API

Table 2: DII and DSI API

DII Classes DSI Classes

CORBA::ExceptionList
CORBA::Request
CORBA::TypeCode

CORBA::ServerRequest
PortableServer::DynamicImplementation

Key Data Types DII-Related Methods

CORBA::Any
CORBA::Flags
CORBA::NamedValue
CORBA::NVList

CORBA::Object::_create_request()
CORBA::ORB::create_list()
CORBA::ORB::create_operation_list()
CORBA::ORB::get_default_context()

Orbix CORBA Programmer’s Reference: Java 3

Value Type Quick Reference
A value type is the mechanism by which objects can be passed by
value in CORBA operations. Value types use the following data
structures, methods, and value types from the CORBA module:

Types
ValueFactory

Value Types and Classes
CustomMarshal
DataInputStream
DataOutputStream
ValueFactory
ValueDef

About Standard Functions for all Interfaces
Every IDL interface also has generated helper functions:

_duplicate()

inline static CLASS_ptr _duplicate(
 CLASS_ptr p
);

This function returns a duplicate object reference and increments
the reference count of the object. Use this function to create a copy
of an object reference.

Parameters

Note: This is a standard function generated for all interfaces.

_narrow()

static CLASS_ptr _narrow(
 CORBA::Object_ptr obj
);

This function returns a new object reference given an existing
reference. Use this function to narrow an object reference.

Parameters

Note: This is a standard function generated for all interfaces.
When you have IDL interfaces that inherit from each other, you
often need to convert a ref nerence of one type to a related type.
For example suppose you have the following interfaces:
// IDL
interface Base { ... };

p The current object reference to duplicate.

obj A reference to an object. The function returns a nil
object reference if this parameter is a nil object refer-
ence.

 4 Orbix CORBA Programmer’s Reference: Java

interface Derived : Base { ... };

Now suppose you have a reference of type Base but it refers to an
object which is actually of type Derived. Converting the Base refer-
ence to a Derived reference is called narrowing because you are con-
verting from a more general type to a more specific, or narrow,
type. Conversely converting a Derived reference to a Base refer-
ence is called widening. Note that narrowed or widened references
still refer to the same object, they are simply different views of that
object.
Always check the results of _narrow() with CORBA::is_nil(). The
_narrow() function checks whether the reference actually refers to
an object of the type you are narrowing to. If not, _narrow()
returns a nil reference. The _narrow() function does an implicit
duplicate, so you are responsible for releasing both the original
reference and the new reference returned. The easiest way to do
this is by assigning both to _var variables.
The _narrow() function can actually both narrow and widen refer-
ences. It takes a CORBA::Object_ptr parameter and tests whether
the requested interface is compatible with the actual most-derived
interface implemented by the object, regardless of the inheritance
relationships involved.

Exceptions A standard system exception can be raised in some unusual cases
where a remote call occurs to the object being narrowed. However,
normally _narrow() is a local function call and it can figure out the
conversion based on information in the IDL compiler generated stub
code.

See Also _unchecked_narrow()

_nil()

inline static CLASS_ptr _nil();

Returns a nil object reference to the object.

Note: This is a standard function generated for all interfaces.

_unchecked_narrow()

static CLASS_ptr _unchecked_narrow(
 CORBA::Object_ptr obj
);

Returns a new object reference to the object given an existing ref-
erence. However, unlike _narrow(), this function does not verify
that the actual type of the parameter at runtime can be widened
to the requested interface’s type.

Parameters

Note: This is a standard function generated for all interfaces.

See Also _narrow()

obj A reference to an object.

Orbix CORBA Programmer’s Reference: Java 5

About Sequences
An IDL sequence maps to a class of the same name. For example,
an IDL sequence named TypeSeq which is made up of a sequence of
Type IDL data types, has the class TypeSeq implemented.
// IDL
typedef sequence<Type> TypeSeq;

 6 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 7

CORBA Overview
The CORBA namespace implements the IDL CORBA module. Addi-
tional introductory chapters describe the common methods and
definitions found in the scope of the CORBA namespace.
• “Common CORBA Data Types”
All classes or interfaces defined in the CORBA namespace are
described in the following alphabetically ordered chapters:

Some standard system exceptions are also defined in the CORBA
module. However, these exceptions are described in “System
Exceptions”.

Common CORBA Data Types
This chapter contains details of all common CORBA data types.
The following alphabetically ordered list contains a link to the
details of each data type:

AliasDef
Any
ArrayDef
AttributeDef
ConstantDef
Contained
Container
Current
CustomMarshal
DataInputStream
DataOutputStream
DomainManager
EnumDef
Environment

ExceptionDef
ExceptionList
FixedDef
IDLType
InterfaceDef
IRObject
ModuleDef
NamedValue
NativeDef
NVList
Object
OperationDef
ORB
Policy
PolicyCurrent
PolicyManager
PrimitiveDef

Repository
Request
SequenceDef
ServerRequest
StringDef
StructDef
TypeCode
TypedefDef
UnionDef
ValueBoxDef
ValueDef
ValueFactory
ValueMemberDef
WstringDef

AttributeDescription
AttributeMode
ConstantDescription
DefinitionKind
ExceptionDescription
Initializer
InterfaceDescription

InvalidPolicies
ModuleDescription
OperationDescription
OperationMode
ParameterDescription
ParameterMode
PolicyError
PolicyErrorCode
PolicyList
PolicyType

PrimitiveKind
RepositoryId
RepositoryIdSeq

SetOverrideType
StructMember
TCKind
TypeDescription
UnionMember
ValueDescription
ValueMember

 8 Orbix CORBA Programmer’s Reference: Java

CORBA::AttributeDescription Structure
// IDL
struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
};

The description of an interface attribute in the interface repository.

See Also CORBA::AttributeDef

CORBA::AttributeMode Enumeration
// IDL
enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

The mode of an attribute in the interface repository.

See Also CORBA::AttributeDef

CORBA::ConstantDescription Structure
// IDL
struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
};

The description of a constant in the interface repository.

name The name of the attribute.
id The identifier of the attribute.
defined_in The identifier of the interface in which the attribute is

defined.
version The version of the attribute.
type The data type of the attribute.
mode The mode of the attribute.

ATTR_NORMAL Mode is read and write.
ATTR_READONLY Mode is read-only.

name The name of the constant.
id The identifier of the constant.
defined_in The identifier of the interface in which the constant

is defined.
version The version of the constant.

 Orbix CORBA Programmer’s Reference: Java 9

See Also CORBA::ConstantDef

CORBA::DefinitionKind Enumeration
// IDL
enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember,
 dk_Native
};

Identifies the type of an interface repository object.

Each interface repository object has an attribute
(CORBA::IRObject::def_kind) of the type DefinitionKind that
records the kind of the IFR object. For example, the def_kind attri-
bute of an InterfaceDef object is dk_interface. The enumeration
constants dk_none and dk_all have special meanings when search-
ing for an object in a repository.

See Also CORBA::IRObject::def_kind
CORBA::Contained
CORBA::Container

CORBA::ExceptionDescription
// Java
public ExceptionDescription(
 java.lang.String name,
 java.lang.String id,
 java.lang.String defined_in,
 java.lang.String version,
 org.omg.CORBA.TypeCode type
)

The description of an exception in the interface repository.

type The data type of the constant.
value The value of the constant.

name The name of the exception.
id The identifier of the exception.
defined_in The identifier of the interface in which the exception

is defined.
version The version of the exception.
type The data type of the exception.

 10 Orbix CORBA Programmer’s Reference: Java

CORBA::Initializer Structure
// IDL
struct Initializer {
 StructMemberSeq members;
 Identifier name;
};
// Java
package org.omg.CORBA;
public final class Initializer
 implements org.omg.CORBA.portable.IDLEntity {
 public org.omg.CORBA.StructMember[] members;
 public Initializer() {}
 public Initializer(org.omg.CORBA.StructMember[] members)
 { this.members = members; }
}

An initializer structure for a sequence in the interface repository.

CORBA::InterfaceDescription Structure
// IDL
struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
};

// Java
package org.omg.CORBA;
public final class InterfaceDescription
 implements org.omg.CORBA.portable.IDLEntity
{
 public java.lang.String name;
 public java.lang.String id;
 public java.lang.String defined_in;
 public java.lang.String version;
 public java.lang.String[] base_interfaces;
 public boolean is_abstract;
 public InterfaceDescription() {}
 public InterfaceDescription(
 java.lang.String name,
 java.lang.String id,
 java.lang.String defined_in,
 java.lang.String version,
 java.lang.String[] base_interfaces,
 boolean is_abstract)

A description of an interface in the interface repository. This
structure is returned by the inherited describe() method in the
InterfaceDef interface. The structure members consist of the fol-
lowing:

members The sequence of structure members.

name The name of the interface.

Orbix CORBA Programmer’s Reference: Java 11

See Also CORBA::InterfaceDef::describe()

CORBA::InvalidPolicies Exception
// IDL
exception InvalidPolicies {
 sequence <unsigned short> indices;
};

// Java
package org.omg.CORBA;
public final class InvalidPolicies
 extends org.omg.CORBA.UserException
{
 public short[] indices;
 public InvalidPolicies()
 {
 super(InvalidPoliciesHelper.id());
 }
 public InvalidPolicies(short[] indices)
 {
 super(InvalidPoliciesHelper.id());
 this.indices = indices;
 }
 public InvalidPolicies(String _reason, short[] indices)
 {
 super(InvalidPoliciesHelper.id() + " " + _reason);
 this.indices = indices;
 }
}

This exception is thrown by operations that are passed a bad policy.
The indicated policies, although valid in some circumstances, are
not valid in conjunction with other policies requested or already
overridden at this scope.

CORBA::ModuleDescription Structure
// IDL
struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
};

// Java

id The identifier of the interface.
defined_in The identifier of where the interface is defined.
version The version of the interface.
base_interfaces The sequence of base interfaces from which

this interface is derived.
is_abstract A true value if the interface is an abstract one,

a false value otherwise.

 12 Orbix CORBA Programmer’s Reference: Java

package org.omg.CORBA;
public final class ModuleDescription
 implements org.omg.CORBA.portable.IDLEntity
{
 public java.lang.String name;
 public java.lang.String id;
 public java.lang.String defined_in;
 public java.lang.String version;

 public ModuleDescription() {}
 public ModuleDescription(
 java.lang.String name,
 java.lang.String id,
 java.lang.String defined_in,
 java.lang.String version
)
 {
 this.name = name;
 this.id = id;
 this.defined_in = defined_in;
 this.version = version;
 }
}

The description of an IDL module in the interface repository. The
structure members consist of the following:

See Also CORBA::ModuleDef

CORBA::OperationDescription Structure
// IDL
struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

This structure describes an IDL operation in the interface repository.
The structure members consist of the following:

name The name of the module.
id The identifier of the module.
defined_in The identifier of where the module is defined.
version The version of the module.

name The name of the IDL operation.
id The identifier of the IDL operation.
defined_in The identifier of where the IDL operation is defined.
version The version of the IDL operation.

Orbix CORBA Programmer’s Reference: Java 13

CORBA::OperationMode Enumeration
enum OperationMode {OP_NORMAL, OP_ONEWAY};

The mode of an IDL operation in the interface repository. An
operation’s mode indicates its invocation semantics.

CORBA::ORBid Type
// IDL
typedef string ORBid;

The name that identifies an ORB. ORBid strings uniquely identify
each ORB used within the same address space in a multi-ORB
application. ORBid strings (except the empty string) are not man-
aged by the OMG but are allocated by ORB administrators who must
ensure that the names are unambiguous.

CORBA::ParameterDescription Structure
// IDL
struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
};

This structure describes an IDL operation’s parameter in the inter-
face repository. The structure members consist of the following:

result The TypeCode of the result returned by the defined
IDL operation.

mode Specifies whether the IDL operation’s mode is nor-
mal (OP_NORMAL) or one-way (OP_ONEWAY).

contexts The sequence of context identifiers specified in the
context clause of the IDL operation.

parameters The sequence of structures that give details of each
parameter of the IDL operation.

exceptions The sequence of structures containing details of
exceptions specified in the raises clause of the IDL
operation.

OP_NORMAL The IDL operation’s invocation mode is normal.
OP_ONEWAY The IDL operation’s invocation mode is oneway which

means the operation is invoked only once with no
guarantee that the call is delivered.

name The name of the parameter.
type The TypeCode of the parameter.
type_def Identifies the definition of the type for the parame-

ter.

 14 Orbix CORBA Programmer’s Reference: Java

CORBA::ParameterMode Enumeration
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

The mode of an IDL operation’s parameter in the interface reposi-
tory.

CORBA::PolicyError Exception
// IDL
exception PolicyError {
 PolicyErrorCode reason;
};

The PolicyError exception is thrown to indicate problems with
parameter values passed to ORB::create_policy(). Possible reasons
are described in the PolicyErrorCode.

See Also CORBA::ORB::create_policy()
CORBA::PolicyErrorCode

CORBA::PolicyErrorCode Type
typedef short PolicyErrorCode;

A value representing an error when creating a new Policy. The
following constants are defined to represent the reasons a request
to create a Policy might be invalid:

mode Specifies whether the parameter is an in input, out-
put, or input and output parameter.

PARAM_IN The parameter is passed as input only.
PARAM_OUT The parameter is passed as output only.
PARAM_INOUT The parameter is passed as both input and output.

Table 3: PolicyErrorCode Constants

Constant Explanation

BAD_POLICY The requested Policy is not under-
stood by the ORB.

UNSUPPORTED_POLICY The requested Policy is understood
to be valid by the ORB, but is not
currently supported.

BAD_POLICY_TYPE The type of the value requested for
the Policy is not valid for that
PolicyType.

BAD_POLICY_VALUE The value requested for the Policy is
of a valid type but is not within the
valid range for that type.

Orbix CORBA Programmer’s Reference: Java 15

See Also CORBA::ORB::create_policy()

CORBA::PolicyList Sequence
A list of Policy objects. Policies affect an ORB’s behavior.

See Also CORBA::Policy
CORBA::Object::set_policy_overrides()
PortableServer::POA::POA_create_POA()

“About Sequences”

CORBA::PolicyType Type
Defines the type of Policy object.

The CORBA module defines the following constant PolicyType:
// IDL
const PolicyType SecConstruction = 11;

Other valid constant values for a PolicyType are described with the
definition of the corresponding Policy object. There are standard
OMG values and Orbix-specific values.

See Also CORBA::Policy
CORBA::PolicyTypeSeq
CORBA::ORB::create_policy()
CORBA::Object::_get_policy()
CORBA::DomainManager::get_domain_policy()
// IDL
typedef sequence<PolicyType> PolicyTypeSeq;

A sequence of PolicyType data types.

See Also CORBA::Object::get_policy_overrides()
CORBA::PolicyManager::get_policy_overrides()

CORBA::PrimitiveKind Enumeration
// IDL
enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble,
 pk_wchar, pk_wstring, pk_value_base
};
typedef PrimitiveKind& PrimitiveKind_out;

UNSUPPORTED_POLICY_VALUE The value requested for the Policy is
of a valid type and within the valid
range for that type, but this valid
value is not currently supported.

Table 3: PolicyErrorCode Constants

Constant Explanation

 16 Orbix CORBA Programmer’s Reference: Java

Indicates the kind of primitive type a PrimitiveDef object represents
in the interface repository.

Most kinds are self explanatory with the exception of the follow-
ing:
• There are no PrimitiveDef objects with the kind pk_null.
• The kind pk_string represents an unbounded string.
• The kind pk_objref represents the IDL type Object.

See Also CORBA::PrimitiveDef
CORBA::Repository

CORBA::RepositoryId Type
A string that uniquely identifies, in the interface repository, an IDL
module, interface, constant, typedef, exception, attribute, value
type, value member, value box, native type, or operation.

The format of RepositoryId types is a short format name followed
by a colon followed by characters, as follows:
format_name:string

The most common format encountered is the OMG IDL format. For
example:
IDL:Pre/B/C:5.3

This format contains three components separated by colons:

See Also CORBA::Repository::lookup_id()

CORBA::RepositoryIdSeq Sequence
A sequence of RepositoryId strings in the interface repository.

See Also CORBA::RepositoryId

“About Sequences”

CORBA::SetOverrideType Enumeration
// IDL
enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

The type of override to use in the set_policy_overrides() method
when setting new policies for an object reference. Possible types
consist of:

IDL The first component is the format name, IDL.
Pre/B/C The second component is a list of identifiers separated

by ’/’ characters that uniquely identify a repository item
and its scope. These identifiers can contain other charac-
ters including underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version
numbers separated by a dot (.).

SET_OVERRIDE Indicates that new policies are to be associated
with an object reference.

 Orbix CORBA Programmer’s Reference: Java 17

CORBA::StructMember()
// Java
public StructMember(
 java.lang.String name,
 org.omg.CORBA.TypeCode type,
 org.omg.CORBA.IDLType type_def
)

This describes an IDL structure member in the interface repository.
The structure members consist of the following:

CORBA::TCKind Enumeration
// IDL
enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except,
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_wchar, tk_wstring, tk_fixed,
 tk_value, tk_value_box,
 tk_native,
 tk_abstract_interface
};

A TCKind value indicates the kind of data type for a TypeCode. A
TypeCode is a value that represent an invocation argument type or
attribute type, such as that found in the interface repository or with
a dynamic any type.

See Also CORBA::TypeCode::kind()
DynamicAny::DynStruct::current_member_kind()
DynamicAny::DynUnion::discriminator_kind()
DynamicAny::DynUnion::member_kind()
DynamicAny::DynValue::current_member_kind()

CORBA::TypeDescription Structure
// IDL
struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;

ADD_OVERRIDE Indicates that new policies are to be added to
the existing set of policies and overrides for an
object reference.

name The name of the member.
type The TypeCode for the member.
type_def Identifies the definition of the type for the member.

 18 Orbix CORBA Programmer’s Reference: Java

 VersionSpec version;
 TypeCode type;
};

This structure describes an IDL data type in the interface repository.
The structure members consist of the following:

CORBA::UnionMember Structure
// IDL
struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
};

This structure describes an IDL union member in the interface
repository. The structure members consist of the following:

CORBA::ValueDescription Structure
// IDL
struct ValueDescription {
 Identifier name;
 RepositoryId id;
 boolean is_abstract;
 boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 boolean is_truncatable;
 RepositoryId base_value;
};

The description of an IDL value type in the interface repository.
Value types enable the passing of objects by value rather than just
passing by reference. The structure members consist of the follow-
ing:

name The name of the data type.
id The identifier for the data type.
defined_in The identifier of where the data type is defined.
version The version of the data type.
type The TypeCode of the data type.

name The name of the union member.
label The label of the union member.
type The TypeCode of the union member.
type_def The IDL data type of the union member.

name The name of the value type.
id The identifier of the value type.

Orbix CORBA Programmer’s Reference: Java 19

See Also CORBA::ValueDef::describe()

CORBA::ValueMember Structure
// IDL
struct ValueMember {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 IDLType type_def;
 Visibility access;
};

This structure describes an IDL value type member in the interface
repository. The structure members consist of the following:

is_abstract True of the value type is abstract. False if
the value type is not abstract.

is_custom True of the value type is custom. False if the
value type is not custom.

defined_in The identifier of where the value type is
defined.

version The version of the value type.
supported_interfaces

abstract_base_values

is_truncatable

base_value

name The name of the value type member.
id The identifier of the value type member.
defined_in The identifier of where the value type member is

defined.
version The version of the value type member.
type The TypeCode of the value type member.
type_def The type definition of the value type member.
access The accessibility of the value type member (public

or private).

 20 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 21

CORBA::AbstractInterfaceDef
Interface

AbstractInterfaceDef describes an abstract IDL interface in the
interface repository. It inherits from the InterfaceDef interface.

// IDL
interface AbstractInterfaceDef : InterfaceDef
{
};

 22 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 23

CORBA::AliasDef Interface
The AliasDef interface describes an IDL typedef that aliases
another definition in the interface repository. It is used to repre-
sent an IDL typedef.
// IDL in module CORBA.
interface AliasDef : TypedefDef {
 attribute IDLType original_type_def;
};

// Java
package org.omg.CORBA;

public interface AliasDef
 extends AliasDefOperations,
 org.omg.CORBA.TypedefDef

The following items are described for this interface:
• The describe() IDL operation
• The original_type_def attribute

See Also CORBA::Contained
CORBA::Container::create_alias()

AliasDef::describe()
// IDL
Description describe();

Inherited from Contained (which is inherited by TypedefDef). The
DefinitionKind for the kind member is dk_Alias. The value member
is an any whose TypeCode is _tc_AliasDescription and whose value
is a structure of type TypeDescription.

See Also CORBA::TypedefDef::describe()

AliasDef::original_type_def Attribute
// IDL
attribute IDLType original_type_def;

// Java
org.omg.CORBA.IDLType original_type_def();
void original_type_def(org.omg.CORBA.IDLType _val);

Identifies the type being aliased. Modifying the original_type_def
attribute will automatically update the type attribute (the type
attribute is inherited from TypedefDef which in turn inherits it from
IDLType). Both attributes contain the same information.

See Also CORBA::IDLType::type

 24 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 25

CORBA::Any Class
The class Any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This
allows a program to handle values whose types are not known at
compile time. The IDL type any is most often used in code that
uses the interface repository or the dynamic invocation interface
(DII) or with CORBA services in general.
Consider the following interface:
// IDL
interface Example {
 void op(in any value);
};

A client can construct an any to contain an arbitrary type of value
and then pass this in a call to op(). A process receiving an any
must determine what type of value it stores and then extract the
value (using the TypeCode). Refer to the CORBA Programmer’s
Guide for more details.
Methods are as follows:

// Java
package org.omg.CORBA;

abstract public class Any implements
 org.omg.CORBA.portable.IDLEntity {
 abstract public boolean equal(org.omg.CORBA.Any a);

 // type code accessors
 abstract public org.omg.CORBA.TypeCode type();
 abstract public void type(org.omg.CORBA.TypeCode t);

 // read and write values to/from streams
 // throw exception when typecode inconsistent with value
 abstract public void read_value(
 org.omg.CORBA.portable.InputStream is,
 org.omg.CORBA.TypeCode t) throws org.omg.CORBA.MARSHAL;
 abstract public void
 write_value(org.omg.CORBA.portable.OutputStream os);
 abstract public org.omg.CORBA.portable.OutputStream

create_input_stream()
create_output_stream()
equal()
extract_any()
extract_boolean()
extract_char()
extract_double()
extract_fixed()
extract_float()
extract_long()
extract_longlong()
extract_Object()
extract_octet()
extract_short()
extract_Streamable()
extract_string()

extract_TypeCode()
extract_ulong()
extract_ulonglong()
extract_ushort()
extract_Value()
extract_wchar()
extract_wstring()
insert_any()
insert_boolean()
insert_char()
insert_double()
insert_fixed()
insert_fixed()
insert_float()
insert_long()
insert_longlong()

insert_Object()
insert_octet()
insert_short()
insert_Streamable()
insert_string()
insert_TypeCode()
insert_ulong()
insert_ulonglong()
insert_ushort()
insert_Value()
insert_Value()
insert_wchar()
insert_wstring()
read_value(
type()
write_value()

 26 Orbix CORBA Programmer’s Reference: Java

 create_output_stream();
 abstract public org.omg.CORBA.portable.InputStream
 create_input_stream();
 abstract public short extract_short()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_short(short s);
 abstract public int extract_long()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_long(int i);
 abstract public long extract_longlong()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_longlong(long l);
 abstract public short extract_ushort()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_ushort(short s);
 abstract public int extract_ulong()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_ulong(int i);
 abstract public long extract_ulonglong()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_ulonglong(long l);
 abstract public float extract_float()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_float(float f);
 abstract public double extract_double()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_double(double d);
 abstract public boolean extract_boolean()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_boolean(boolean b);
 abstract public char extract_char()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_char(char c)
 throws org.omg.CORBA.DATA_CONVERSION;
 abstract public char extract_wchar()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_wchar(char c);
 abstract public byte extract_octet()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_octet(byte b);
 abstract public org.omg.CORBA.Any extract_any()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_any(org.omg.CORBA.Any a);
 abstract public org.omg.CORBA.Object extract_Object()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_Object(org.omg.CORBA.Object obj);
 abstract public java.io.Serializable extract_Value()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_Value(java.io.Serializable v);
 abstract public void insert_Value(
 java.io.Serializable v,
 org.omg.CORBA.TypeCode t)
 throws org.omg.CORBA.MARSHAL;

 // throw exception when typecode inconsistent with value
 abstract public void insert_Object(
 org.omg.CORBA.Object obj,
 org.omg.CORBA.TypeCode t)
 throws org.omg.CORBA.BAD_PARAM;
 abstract public String extract_string()

Orbix CORBA Programmer’s Reference: Java 27

 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_string(String s)
 throws org.omg.CORBA.DATA_CONVERSION,
 org.omg.CORBA.MARSHAL;
 abstract public String extract_wstring()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public void insert_wstring(String s)
 throws org.omg.CORBA.MARSHAL;

 // insert and extract typecode
 abstract public org.omg.CORBA.TypeCode extract_TypeCode()
 throws org.omg.CORBA.BAD_OPERATION;
 abstract public voidinsert_TypeCode(org.omg.CORBA.TypeCode

t);

 // insert and extract non-primitive IDL types
 // BAD_INV_ORDER if any doesn’t hold a streamable
 public org.omg.CORBA.portable.Streamable

extract_Streamable()
 throws org.omg.CORBA.BAD_INV_ORDER {
 }
 public void insert_Streamable(
 org.omg.CORBA.portable.Streamable s) {
 }

 // insert and extract fixed
 public java.math.BigDecimal extract_fixed() {
 throw org.omg.CORBA.NO_IMPLEMENT();
 }
 public void insert_fixed(java.math.BigDecimal value) {
 }
 public void insert_fixed(
 java.math.BigDecimal value,
 org.omg.CORBA.TypeCode type)
 throws org.omg.CORBA.BAD_INV_ORDER {
 }
}

Any::create_input_stream()
abstract public org.omg.CORBA.portable.InputStream
 create_input_stream();

This method creates an org.omg.CORBA.portable.InputStream object
for this Any, so that the data contained within the Any can be accessed
through the read() methods defined on InputStream rather than the
extract() methods defined on Any.

Parameters

Any:create_output_stream()
abstract public org.omg.CORBA.portable.OutputStream
 create_output_stream();

InputStream The InputStream representing the Any.

 28 Orbix CORBA Programmer’s Reference: Java

This method creates an org.omg.CORBA.portable.OutputStream object
for this Any. This object allows the Any to be populated by calling the
write() methods declared on OutputStream instead of using the
insert() methods of the Any.

Parameters

Any::equal()
abstract public boolean equal(org.omg.CORBA.Any a);

This method compares the type and value of this Any with that of
the Any passed in as a parameter and returns true if the Anys are
equal.

Parameters

Any::extract_type()
abstract public short extract_short()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public int extract_long()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public long extract_longlong()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public short extract_ushort()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public int extract_ulong()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public long extract_ulonglong()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public float extract_float()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public double extract_double()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public boolean extract_boolean()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public char extract_char()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public char extract_wchar()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public byte extract_octet()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public org.omg.CORBA.Any extract_any()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public org.omg.CORBA.Object extract_Object()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public java.io.Serializable extract_Value()
 throws org.omg.CORBA.BAD_OPERATION;

OutputStream The OutputStream representing the Any

a The Any to compare against.

Orbix CORBA Programmer’s Reference: Java 29

abstract public String extract_string()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public String extract_wstring()
 throws org.omg.CORBA.BAD_OPERATION;

abstract public org.omg.CORBA.TypeCode extract_TypeCode()
 throws org.omg.CORBA.BAD_OPERATION;

public org.omg.CORBA.portable.Streamable extract_Streamable()
 throws org.omg.CORBA.BAD_INV_ORDER {
 throw new org.omg.CORBA.NO_IMPLEMENT(); }

public java.math.BigDecimal extract_fixed() {
 throw org.omg.CORBA.NO_IMPLEMENT(); }

Extracts the value of the indicated type from the Any. You can
determine the type of the Any using the org.omg.CORBA.Any.type()
method. You can extract the value using the appropriate extraction
method. To extract a user defined type, you can also use the Helper
classes, for example:

org.omg.CORBA.Any a = // get the any from somewhere
 // for example, through the DII,
 // from one of the CORBA

services.
Object val;
switch(a.type().kind()){
 case org.omg.CORBA.TCKind._tc_short:
 val = new Short(a.extract_short());
 break;

 //etc. for other basic types

 default :
 if(a.type().equal(AStructHelper.type()){
 val = AStructHelper.extract(a);
 }
 // else some other user defined types
 break;
};

You can also obtain the same kind of result by using the class
org.omg.CORBA.portable.InputStream.

Any::insert_type()
abstract public void insert_short(short s);

abstract public void insert_long(int i);

abstract public void insert_longlong(long l);

abstract public void insert_ushort(short s);

abstract public void insert_ulong(int i);

abstract public void insert_ulonglong(long l);

abstract public void insert_float(float f);

abstract public void insert_double(double d);

abstract public void insert_boolean(boolean b);

abstract public void insert_char(char c)
 throws org.omg.CORBA.DATA_CONVERSION;

 30 Orbix CORBA Programmer’s Reference: Java

abstract public void insert_wchar(char c);

abstract public void insert_octet(byte b);

abstract public void insert_any(org.omg.CORBA.Any a);

abstract public void insert_Object(org.omg.CORBA.Object obj);

abstract public void insert_TypeCode(org.omg.CORBA.TypeCode t);

abstract public void insert_Value(java.io.Serializable v);

abstract public void insert_Value(
 java.io.Serializable v,
 org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

abstract public void insert_Object(
 org.omg.CORBA.Object obj,
 org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.BAD_PARAM;

abstract public void insert_string(String s)
 throws
 org.omg.CORBA.DATA_CONVERSION,
 org.omg.CORBA.MARSHAL;

abstract public void insert_wstring(String s)
 throws org.omg.CORBA.MARSHAL;

public void insert_fixed(java.math.BigDecimal value)
{ throw new org.omg.CORBA.NO_IMPLEMENT(); }

public void insert_fixed(
 java.math.BigDecimal value,
 org.omg.CORBA.TypeCode type
)
 throws org.omg.CORBA.BAD_INV_ORDER {
 throw new org.omg.CORBA.NO_IMPLEMENT();
 }

public void insert_Streamable(
 org.omg.CORBA.portable.Streamable s) {
 throw new org.omg.CORBA.NO_IMPLEMENT(); }

Insert a value of the indicated type into the Any. Previous values
held in the Any are discarded and each insertion method takes a
copy of the value inserted.

Parameters

You can use the nameHelper class to insert a user-defined type. For
example, given the following IDL:
//IDL
struct AStruct{
 string str;
 float number;
};

Use the insert() method generated on the AStructHelper class:

//Java
org.omg.CORBA.Any a = new org.omg.CORBA.Any();

Astruct s = new Astruct(“String”,1.0f);

first parameter The actual value to insert into the Any.
tc The TypeCode of the value being

inserted.

Orbix CORBA Programmer’s Reference: Java 31

try {
 AstructHelper.insert(a,s);
}
catch(org.omg.CORBA.SystemException){
 //do something here
}

The same result can be achieved using the OutputStream.

Any::read_value()
abstract public void read_value(
 org.omg.CORBA.portable.InputStream is,
 org.omg.CORBA.TypeCode t
) throws org.omg.CORBA.MARSHAL;

Reads an object from an InputStream for the current Any.

Parameters

Any::type()
abstract public org.omg.CORBA.TypeCode type();

Returns the Typecode of the Object encapsulated within the Any.

abstract public void type(org.omg.CORBA.TypeCode t);

Sets the Typecode of the Object encapsulated within the Any.

Parameters

Any::write_value()
abstract public void write_value(
 org.omg.CORBA.portable.OutputStream os
);

Writes the object contained within the Any into the specified
OutputStream.

Parameters

is The InputStream to read the data from.
t The TypeCode of the object to be read

from the stream.

t The TypeCode of the object.

os The OutputStream to write the data to.

 32 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 33

CORBA::ArrayDef Interface
The ArrayDef interface represents a one-dimensional array in an
interface repository. A multi-dimensional array is represented by
an ArrayDef with an element type that is another array definition.
The final element type represents the type of element contained in
the array. An instance of interface ArrayDef can be created using
create_array().
// IDL in module CORBA.
interface ArrayDef : IDLType {
 attribute unsigned long length;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

See Also CORBA::IDLType
CORBA::ArrayDef::element_type_def
CORBA::Repository::create_array()

ArrayDef::element_type Attribute
// IDL
readonly attribute TypeCode element_type;

// Java
org.omg.CORBA.TypeCode element_type();

Identifies the type of the element contained in the array. This
contains the same information as in the element_type_def attribute.

See Also CORBA::ArrayDef::element_type_def

ArrayDef::element_type_def Attribute
// IDL
attribute IDLType element_type_def;

// Java
org.omg.CORBA.IDLType element_type_def();

Describes the type of the element contained within the array. This
contains the same information as in the attribute element_type
attribute.

The type of elements contained in the array can be changed by
changing this attribute. Changing this attribute also changes the
element_type attribute.

See Also CORBA::ArrayDef::element_type

ArrayDef::length Attribute
// IDL
attribute unsigned long length;

 34 Orbix CORBA Programmer’s Reference: Java

// Java
int length();

Returns the number of elements in the array.

void length(int _val);

Specifies the number of elements in the array.

 Orbix CORBA Programmer’s Reference: Java 35

CORBA::AttributeDef Interface
The AttributeDef interface describes an attribute of an interface in
the interface repository.
// IDL in module CORBA.
interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
};

The inherited describe() method is also described.
See Also CORBA::Contained

CORBA::InterfaceDef::create_attribute()

AttributeDef::describe()
// IDL
Description describe();

Inherited from Contained. The DefinitionKind for the kind member
of this structure is dk_Attribute. The value member is an any whose
TypeCode is _tc_AttributeDescription. The value is a structure of type
AttributeDescription.

See Also CORBA::Contained::describe()

AttributeDef::mode Attribute
// IDL
attribute AttributeMode mode;

// Java
org.omg.CORBA.AttributeMode mode();

Returns the mode of the attribute.

// Java
void mode(
 org.omg.CORBA.AttributeMode _val
);

Specifies whether the attribute is read and write (ATTR_NORMAL) or
read-only (ATTR_READONLY).

AttributeDef::type Attribute
// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA.TypeCode type();

 36 Orbix CORBA Programmer’s Reference: Java

Returns the type of this attribute. The same information is contained
in the type_def attribute.

See Also CORBA::TypeCode
CORBA::AttributeDef::type_def

AttributeDef::type_def Attribute
// IDL
attribute IDLType type_def;

// Java
org.omg.CORBA.IDLType type_def();

Returns the type of this attribute.

// Java
void type_def(
 org.omg.CORBA.IDLType _val
);

Describes the type for this attribute. The same information is
contained in the type attribute. Changing the type_def attribute
automatically changes the type attribute.

See Also CORBA::IDLType
CORBA::AttributeDef::type

 Orbix CORBA Programmer’s Reference: Java 37

CORBA::ConstantDef Interface
Interface ConstantDef describes an IDL constant in the interface
repository. The name of the constant is inherited from Contained.
// IDL
// in module CORBA.
interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute any value;
};

// Java
public interface ConstantDef
 extends ConstantDefOperations,
 org.omg.CORBA.Contained
{
}

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::Container::create_constant()

ConstantDef::describe()
// IDL
Description describe();

Inherited from Contained, describe() returns a structure of type
Contained::Description.

The kind member is dk_Constant.
The value member is an any whose TypeCode is
_tc_ConstantDescription and whose value is a structure of type
ConstantDescription.

See Also CORBA::Contained::describe()

ConstantDef::type Attribute
// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA.TypeCode type();

Identifies the type of this constant. The type must be a TypeCode for
one of the simple types (such as long, short, float, char, string,
double, boolean, unsigned long, and unsigned short). The same
information is contained in the type_def attribute.

See Also CORBA::ConstantDef::type_def

 38 Orbix CORBA Programmer’s Reference: Java

ConstantDef::type_def Attribute
// IDL
attribute IDLType type_def;

// Java
org.omg.CORBA.IDLType type_def();

Returns the type of this constant.

void type_def(org.omg.CORBA.IDLType _val);

Identifies the type of the constant. The same information is con-
tained in the type attribute.

The type of a constant can be changed by changing its type_def
attribute. This also changes its type attribute.

See Also CORBA::ConstantDef::type

ConstantDef::value Attribute
// IDL
attribute any value;

// Java
org.omg.CORBA.Any value();

Returns the value of this attribute.

void value(org.omg.CORBA.Any _val);

Contains the value for this constant. When changing the value
attribute, the TypeCode of the any must be the same as the type
attribute.

See Also CORBA::TypeCode

 Orbix CORBA Programmer’s Reference: Java 39

CORBA::ConstructionPolicy
Interface

When new object references are created, the ConstructionPolicy
object allows the caller to specify that the instance should be
automatically assigned membership in a newly created policy
domain. When a policy domain is created, it also has a
DomainManager object associated with it. The ConstructionPolicy
object provides a single operation that makes the DomainManager
object.
// IDL in CORBA Module
interface ConstructionPolicy: Policy {
 void make_domain_manager(
 in CORBA::InterfaceDef object_type,
 in boolean constr_policy
);
};

ConstructionPolicy::make_domain_manager()
// IDL
void make_domain_manager(
 in CORBA::InterfaceDef object_type,
 in boolean constr_policy
);
// Java
void make_domain_manager(
 org.omg.CORBA.InterfaceDef object_type,
 boolean constr_policy
);

This operation sets the construction policy that is to be in effect in
the policy domain for which this ConstructionPolicy object is asso-
ciated.

Parameters

You can obtain a reference to the newly created domain manager
by calling _get_domain_managers() on the newly created object ref-
erence.

See Also CORBA::DomainManager

object_type The type of the objects for which domain managers
will be created. If this is nil, the policy applies to all
objects in the policy domain.

constr_policy A value of true indicates to the ORB that new object
references of the specified object_type are to be asso-
ciated with their own separate policy domains (and
associated domain manager). Once such a construc-
tion policy is set, it can be reversed by invoking
make_domain_manager() again with the value of false.
A value of false indicates the construction policy is set
to associate the newly created object with the policy
domain of the creator or a default policy domain.

 40 Orbix CORBA Programmer’s Reference: Java

CORBA::Object::_get_domain_managers()

 Orbix CORBA Programmer’s Reference: Java 41

CORBA::Contained Interface
Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or
repository. It is a base interface for the following interfaces:

ModuleDef
InterfaceDef
ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface is shown here:
// IDL
// In module CORBA.
interface Contained : IRObject {

 // read/write interface
 attribute RepositoryId id;
 attribute Identifier name;
 attribute VersionSpec version;

 // read interface
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };
 Description describe();

 // write interface
 void move(
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);
};

See Also CORBA::Container
CORBA::IRObject

Contained::absolute_name Attribute
//IDL
readonly attribute ScopedName absolute_name;

// Java
java.lang.String absolute_name();

 42 Orbix CORBA Programmer’s Reference: Java

Gives the absolute scoped name of an object.

Contained::containing_repository Attribute
// IDL
readonly attribute Repository containing_repository;

// Java
org.omg.CORBA.Repository containing_repository();

Gives the Repository within which the object is contained.

Contained::defined_in Attribute
// IDL
attribute Container defined_in;

// Java
org.omg.CORBA.Container defined_in();

Specifies the Container for the interface repository object in which
the object is contained.

An IFR object is said to be contained by the IFR object in which it
is defined. For example, an InterfaceDef object is contained by the
ModuleDef in which it is defined.
A second notion of contained applies to objects of type
AttributeDef or OperationDef. These objects may also be said to be
contained in an InterfaceDef object if they are inherited into that
interface. Note that inheritance of operations and attributes across
the boundaries of different modules is also allowed.

See Also CORBA::Container::contents()

Contained::describe()
// IDL
Description describe();

// Java
org.omg.CORBA.ContainedPackage.Description describe();

Returns a structure of type Description.

The kind field of the Description structure contains the same value
as the def_kind attribute that Contained inherits from IRObject.

See Also CORBA::Container::describe_contents()
CORBA::DefinitionKind

Contained::Description Structure
// IDL
struct Description {
 DefinitionKind kind;
 any value;
};

Orbix CORBA Programmer’s Reference: Java 43

This is a generic form of description which is used as a wrapper for
another structure stored in the value field.

Depending on the type of the Contained object, the value field will
contain a corresponding description structure:

ConstantDescription
ExceptionDescription
AttributeDescription
OperationDescription
ModuleDescription
InterfaceDescription
TypeDescription

The last of these, TypeDescription is used for objects of type
StructDef, UnionDef, EnumDef, and AliasDef (it is associated with
interface TypedefDef from which these four listed interfaces
inherit).

Contained::id Attribute
// IDL
attribute RepositoryId id;

// Java
java.lang.String id();
void id(java.lang.String _val);

A RepositoryId provides an alternative method of naming an object.

In order to be CORBA compliant the naming conventions specified
for CORBA RepositoryIds should be followed. Changing the id
attribute changes the global identity of the contained object. It is
an error to change the id to a value that currently exists in the
contained object’s Repository.

Contained::move()
// IDL
void move(
 in Container new_container,
 in Identifier new_name,
 in VersionSpec new_version
);

// Java
void move(
 org.omg.CORBA.Container new_container,
 java.lang.String new_name,
 java.lang.String new_version
);

Removes this object from its container, and adds it to the container
specified by new_container. The new container must:

• Be in the same repository.
• Be capable of containing an object of this type.
• Not contain an object of the same name (unless multiple ver-

sions are supported).

 44 Orbix CORBA Programmer’s Reference: Java

The name attribute of the object being moved is changed to that
specified by the new_name parameter. The version attribute is
changed to that specified by the new_version parameter.

See Also CORBA::Container

Contained::name Attribute
// IDL
attribute Identifier name;

// Java
java.lang.String name();
void name(java.lang.String _val);

Return or set the name of the object within its scope. For example,
in the following definition:

// IDL
interface Example {
 void op();
};

the names are Example and op. A name must be unique within its
scope but is not necessarily unique within an interface repository.
The name attribute can be changed but it is an error to change it to
a value that is currently in use within the object’s Container.

See Also CORBA::Contained::id

Contained::version Attribute
// IDL
attribute VersionSpec version;

// Java
java.lang.String version();
void version(java.lang.String _val);

Return or set the version number for this object. Each interface
object is identified by a version which distinguishes it from other
versioned objects of the same name.

 Orbix CORBA Programmer’s Reference: Java 45

CORBA::Container Interface
Interface Container describes objects that can contain other
objects in the interface repository. A Container can contain any
number of objects derived from the Contained interface. Such
objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef
OperationDef
TypedefDef
ValueDef
ValueMemberDef

The interface is shown here:
//IDL
// In CORBA Module
interface Container : IRObject {
 // read interface
 Contained lookup(
 in ScopedName search_name);

 ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name(
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 DescriptionSeq describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

 // write interface
 ModuleDef create_module(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version
);

 ConstantDef create_constant(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

 46 Orbix CORBA Programmer’s Reference: Java

 StructDef create_struct(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

 UnionDef create_union(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
 in UnionMemberSeq members
);

 EnumDef create_enum(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

 AliasDef create_alias(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

 InterfaceDef create_interface(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in InterfaceDefSeq base_interfaces
 in boolean is_abstract
);

 ValueDef create_value(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in boolean is_custom,
 in boolean is_abstract,
 in ValueDef base_value,
 in boolean is_truncatable,
 in ValueDefSeq abstract_base_values,
 in InterfaceDef supported_interface,
 in InitializerSeq initializers
);

 ValueBoxDef create_value_box(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type_def
);

 ExceptionDef create_exception(
 in RepositoryId id,
 in Identifier name,

Orbix CORBA Programmer’s Reference: Java 47

 in VersionSpec version,
 in StructMemberSeq members
);

 NativeDef create_native(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
);
}; // End Interface Container

See Also CORBA::IRObject

Container::contents()
// IDL
ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

// Java
org.omg.CORBA.Contained[] contents(
 org.omg.CORBA.DefinitionKind limit_type,
 boolean exclude_inherited
);

Returns a sequence of Contained objects that are directly contained
in (defined in or inherited into) the target object. This operation can
be used to navigate through the hierarchy of definitions—starting,
for example, at a Repository.

Parameters

See Also CORBA::Container::describe_contents()
CORBA::DefinitionKind

Container::create_alias()
// IDL
AliasDef create_alias(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type
);

limit_type If set to dk_all, all of the contained interface
repository objects are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude_inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

 48 Orbix CORBA Programmer’s Reference: Java

// Java
org.omg.CORBA.AliasDef create_alias(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType original_type
);

Creates a new AliasDef object within the target Container. The
defined_in attribute is set to the target Container. The
containing_repository attribute is set to the Repository in which the
new AliasDef object is defined.

Parameters

Exceptions

See Also CORBA::AliasDef

Container::create_constant()
// IDL
ConstantDef create_constant(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in any value
);

// Java
org.omg.CORBA.ConstantDef create_constant(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType type,
 org.omg.CORBA.Any value
);

id The repository ID for the new AliasDef object. An
exception is raised if an interface repository object
with the same ID already exists within the object’s
repository.

name The name for the new AliasDef object. It is an error
to specify a name that already exists within the
object’s Container when multiple versions are not
supported.

version A version for the new AliasDef.
original_type The original type that is being aliased.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Orbix CORBA Programmer’s Reference: Java 49

Creates a ConstantDef object within the target Container. The
defined_in attribute is set to the target Container. The
containing_repository attribute is set to the Repository in which the
new ConstantDef object is defined.

Parameters

Exceptions

See Also CORBA::ConstantDef

Container::create_enum()
// IDL
EnumDef create_enum(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in EnumMemberSeq members
);

// Java
org.omg.CORBA.EnumDef create_enum(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 java.lang.String[] members
);

Creates a new EnumDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository
attribute is set to the Repository in which the new EnumDef object is
defined.

Parameters

id The repository ID of the new ConstantDef object. It is an
error to specify an ID that already exists within the object’s
repository.

name The name of the new ConstantDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version The version number of the new ConstantDef object.
type The type of the defined constant. This must be one of the

simple types (long, short, ulong, ushort, float, double, char,
string, boolean).

value The value of the defined constant.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

id The repository ID of the new EnumDef object. It is an error
to specify an ID that already exists within the Repository.

 50 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also CORBA::EnumDef

Container::create_exception()
// IDL
ExceptionDef create_exception(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

// Java
org.omg.CORBA.ExceptionDef create_exception(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.StructMember[] members
);

Creates a new ExceptionDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository
attribute is set to the Repository in which new ExceptionDef object
is defined.

Parameters

name The name of the EnumDef object. It is an error to specify a
name that already exists within the object’s Container
when multiple versions are not supported.

version The version number of the new EnumDef object.
members A sequence of structures that describes the members of

the new EnumDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

id The repository ID of the new ExceptionDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ExceptionDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version number for the new ExceptionDef object.
members A sequence of StructMember structures that describes the

members of the new ExceptionDef object.

Orbix CORBA Programmer’s Reference: Java 51

Exceptions

See Also CORBA::ExceptionDef

Container::create_interface()
// IDL
InterfaceDef create_interface(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in InterfaceDefSeq base_interfaces
 in boolean is_abstract
);

// Java
org.omg.CORBA.InterfaceDef create_interface(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.InterfaceDef[] base_interfaces
);

Creates a new empty InterfaceDef object within the target Contain-
er. The defined_in attribute is set to Container. The
containing_repository attribute is set to the Repository in which the
new InterfaceDef object is defined.

Parameters

Exceptions

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

id The repository ID of the new InterfaceDef object.
It is an error to specify an ID that already exists
within the object’s repository.

name The name of the new InterfaceDef object. It is an
error to specify a name that already exists within
the object’s Container when multiple versions are
not supported.

version A version for the new InterfaceDef object.
base_interfaces A sequence of InterfaceDef objects from which

the new interface inherits.
is_abstract If true the interface is abstract.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

 52 Orbix CORBA Programmer’s Reference: Java

See Also CORBA::InterfaceDef

Container::create_module()
// IDL
ModuleDef create_module (
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version
);

// Java
org.omg.CORBA.ModuleDef create_module(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version
);

Creates an empty ModuleDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository
attribute is set to the repository in which the newly created ModuleDef
object is defined.

Parameters

Exceptions

Container::create_native()
// IDL
NativeDef create_native(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
);

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

id The repository ID of the new ModuleDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new ModuleDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the ModuleDef object to be created.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Orbix CORBA Programmer’s Reference: Java 53

// Java
org.omg.CORBA.NativeDef create_native(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version
);

Creates a NativeDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository
attribute is set to the repository in which the newly created NativeDef
object is defined.

Parameters

Exceptions

Container::create_struct()
// IDL
StructDef create_struct(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in StructMemberSeq members
);

// Java
org.omg.CORBA.StructDef create_struct(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.StructMember[] members
);

Creates a new StructDef object within the target Container. The
defined_in attribute is set to Container. The containing_repository
attribute is set to the repository in which the new StructDef object
is defined.

id The repository ID of the new NativeDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new NativeDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the NativeDef object to be created.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

 54 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also CORBA::StructDef

Container::create_union()
// IDL
UnionDef create_union(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType discriminator_type,
 in UnionMemberSeq members
);

// Java
org.omg.CORBA.UnionDef create_union(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType discriminator_type,
 org.omg.CORBA.UnionMember[] members
);

Creates a new UnionDef object within the target Container. The
defined_in attribute is set to the target Container. The
containing_repository attribute is set to the repository in which the
new UnionDef object is defined.

Parameters

id The repository ID of the new StructDef object. It is an
error to specify an ID that already exists within the
object’s repository.

name The name of the new StructDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new StructDef object.
members A sequence of StructMember structures that describes the

members of the new StructDef object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

id The repository ID of the new UnionDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new UnionDef object. It is an
error to specify a name that already exists
within the object’s Container when multiple
versions are not supported.

Orbix CORBA Programmer’s Reference: Java 55

Exceptions

See Also CORBA::UnionDef

Container::create_value()
// IDL
ValueDef create_value(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in boolean is_custom,
 in boolean is_abstract,
 in ValueDef base_value,
 in boolean is_truncatable,
 in ValueDefSeq abstract_base_values,
 in InterfaceDef supported_interfaces,
 in InitializerSeq initializers
);

// Java
org.omg.CORBA.ValueDef create_value(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 boolean is_custom,
 boolean is_abstract,
 byte flags,
 org.omg.CORBA.ValueDef base_value,
 boolean has_safe_base,
 org.omg.CORBA.ValueDef[] abstract_base_values,
 org.omg.CORBA.InterfaceDef supported_interfaces,
 org.omg.CORBA.Initializer[] initializers
);

Creates a new empty ValueDef object within the target Container.
The defined_in attribute is set to Container. The
containing_repository attribute is set to the repository in which the
new ValueDef object is defined.

version A version for the new UnionDef object.
discriminator_type The type of the union discriminator.
members A sequence of UnionMember structures that

describes the members of the new UnionDef
object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

 56 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Container::create_value_box()
// IDL
ValueBoxDef create_value_box(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType original_type_def
);

// Java
org.omg.CORBA.ValueBoxDef create_value_box(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType original_type_def
);

Creates a new empty ValueBoxDef object within the target Container.
The defined_in attribute is set to Container. The
containing_repository attribute is set to the repository in which the
new ValueBoxDef object is defined.

id The repository ID of the new ValueDef object.
It is an error to specify an ID that already
exists within the object’s repository.

name The name of the new ValueDef object. It is an
error to specify a name that already exists
within the object’s Container when multiple
versions are not supported.

version A version for the new ValueDef object.
is_custom If true the value type is custom.
is_abstract If true the value type is abstract.
base_value The base value for this value type.
is_truncatable if true the value type is truncatable.
abstract_base_values A sequence of ValueDef structures that

describes the base values of the new ValueDef
object.

supported_interfaces The interface the value type supports.
initializers A sequence of initializers for the new ValueDef

object.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

Orbix CORBA Programmer’s Reference: Java 57

Parameters

Exceptions

Container::describe_contents()
// IDL
DescriptionSeq describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

// Java
org.omg.CORBA.ContainerPackage.Description[] describe_contents(
 org.omg.CORBA.DefinitionKind limit_type,
 boolean exclude_inherited,
 int max_returned_objs
);

Returns a sequence of structures of type Container::Description.
describe_contents() is a combination of operations
Contained::describe() and Container::contents().

Parameters

id The repository ID of the new ValueBoxDef
object. It is an error to specify an ID that
already exists within the object’s repository.

name The name of the new ValueBoxDef object. It is
an error to specify a name that already exists
within the object’s Container when multiple
versions are not supported.

version A version for the new ValueBoxDef object.
original_type_def The IDL data type of the value box.

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

The specified name already exists within this Container
and multiple versions are not supported.

BAD_PARAM,
minor code 4

The created object is not allowed by the Container.
Certain interfaces derived from Container may restrict
the types of definitions that they may contain.

limit_type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude_inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

max_returned_objs The number of objects that can be returned in
the call. Setting a value of -1 means return all
contained objects.

 58 Orbix CORBA Programmer’s Reference: Java

See Also CORBA::Container::contents()
CORBA::Contained::describe()

Container::lookup()
// IDL
Contained lookup(
 in ScopedName search_name
);

// Java
org.omg.CORBA.Contained lookup(
 java.lang.String search_name
);

Locates an object name within the target container. The objects can
be directly or indirectly defined in or inherited into the target
container.

Parameters

See Also CORBA::Container::lookup_name()

Container::lookup_name()
// IDL
ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

// Java
org.omg.CORBA.Contained[] lookup_name(
 java.lang.String search_name,
 int levels_to_search,
 org.omg.CORBA.DefinitionKind limit_type,
 boolean exclude_inherited
);

Locates an object or objects by name within the target container
and returns a sequence of contained objects. The named objects
can be directly or indirectly defined in or inherited into the target
container. (More than one object, having the same simple name
can exist within a nested scope structure.)

Parameters

search_name The name of the object to search for relative to the tar-
get container. If a relative name is given, the object
is looked up relative to the target container. If
search_name is an absolute scoped name (prefixed by
‘::’), the object is located relative to the containing
Repository.

search_name The simple name of the object to search for.

Orbix CORBA Programmer’s Reference: Java 59

See Also CORBA::DefinitionKind

levels_to_search Defines whether the search is confined to the
current object or should include all interface
repository objects contained by the object. If
set to -1, the current object and all contained
interface repository objects are searched. If set
to 1, only the current object is searched.

limit_type If this is set to dk_all, then all of the contained
interface repository objects are returned. If set
to the DefinitionKind for a particular interface
repository kind, it returns only objects of that
kind. For example, if set to dk_Operation, then it
returns contained operations only.

exclude_inherited Applies only to interfaces. If true, no inherited
objects are returned. If false, objects are
returned even if they are inherited.

 60 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 61

CORBA::Context Class
Class CORBA::Context implements the OMG pseudo-interface
Context. A context is intended to represent information about the
client that is inconvenient to pass via parameters. An IDL opera-
tion can specify that it is to be provided with the client’s mapping
for particular identifiers (properties). It does this by listing these
identifiers following the operation declaration in a context clause.
A client can optionally maintain one or more CORBA Context
objects, that provide a mapping from identifiers (string names) to
string values. A Context object contains a list of properties; each
property consists of a name and a string value associated with
that name and can be passed to a method that takes a Context
parameter.
You can arrange Context objects in a hierarchy by specifying par-
ent-child relationships among them. Then, a child passed to an
operation also includes the identifiers of its parent(s). The called
method can decide whether to use just the context actually
passed, or the hierarchy above it.
The Context class is as follows:

// IDL
pseudo interface Context {

readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child(in Identifier child_ctx_name);
void set_one_value(in Identifier propname, in any

propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
NVList get_values(in Identifier start_scope,

in Flags op_flags,
in Identifier pattern);

};

// Java
package org.omg.CORBA;
public abstract class Context {
 public abstract String context_name();
 public abstract Context parent();
 public abstract Context create_child(
 String child_ctx_name
);
 public abstract void set_one_value(
 String propname,
 Any propvalue
);
 public abstract void set_values(
 NVList values
);
 public abstract void delete_values(
 String propname
);
 public abstract NVList get_values(
 String start_scpe,
 int op_flags,

 62 Orbix CORBA Programmer’s Reference: Java

 String pattern
);
}

Context::context_name()
// Java
abstract public java.lang.String context_name();

Returns the name of the Context object. Ownership of the returned
value is maintained by the Context and must not be freed by the
caller.

See Also CORBA::Context::create_child()

Context::create_child()
// Java
abstract public org.omg.CORBA.Context create_child(
 java.lang.String child_ctx_name
);

Creates a child context of the current context. When a child context
is passed as a parameter to an operation, any searches (using
CORBA::Context::get_values()) look in parent contexts if necessary
to find matching property names.

Parameters

See Also CORBA::Context::get_values()

Context::delete_values()
// Java
abstract public void delete_values(
 java.lang.String propname
);

Deletes the specified property value(s) from the context. The search
scope is limited to the Context object on which the invocation is
made.

Parameters

Exceptions An exception is raised if no matching property is found.

Context::get_values()
// Java
abstract public org.omg.CORBA.NVList get_values(
 java.lang.String start_scope,
 int op_flags,

child_ctx_nameThe newly created context.

propname The property name to be deleted. If prop_name has a
trailing asterisk (*), all matching properties are
deleted.

Orbix CORBA Programmer’s Reference: Java 63

 java.lang.String pattern
);

Retrieves the specified context property values.

Parameters

Context::parent()
// Java
abstract public org.omg.CORBA.Context parent();

Returns the parent of the Context object. Ownership of the return
value is maintained by the Context and must not be freed by the
caller.

See Also CORBA::Context::create_child()

Context::set_one_value()
// Java
abstract public void set_one_value(
 java.lang.String propname,
 org.omg.CORBA.Any propvalue
);

Adds a property name and value to the Context. Although the value
member is of type Any, the type of the Any must be a string.

Parameters

See Also CORBA::Context::set_values()

Context::set_values()
// Java
abstract public void set_values(
 org.omg.CORBA.NVList values
);

Sets one or more property values in the Context. The previous value
of a property, if any, is discarded.

start_scope The context in which the search for the values
requested should be started. The name of a direct or
indirect parent context may be specified to this
parameter. If 0 is passed in, the search begins in the
context which is the target of the call.

op_flags By default, searching of identifiers propagates
upwards to parent contexts; if the value
CORBA::CTX_RESTRICT_SCOPE is specified, then searching
is limited to the specified search scope or context
object.

values An NVList to contain the returned property values.

propname The name of the property to add.
propvalue The value of the property to add.

 64 Orbix CORBA Programmer’s Reference: Java

Parameters

See Also CORBA::Context::set_one_value()

values An NVList containing the property_name:values to add
or change. In the NVList, the flags field must be set to
zero, and the TypeCode associated with an attribute
value must be CORBA:: _tc_string.

 Orbix CORBA Programmer’s Reference: Java 65

CORBA::ContextList Class
A ContextList allows an application to provide a list of Context
strings that must be supplied when a dynamic invocation Request
is invoked.
The Context is where the actual values are obtained by the ORB.
The ContextList supplies only the context strings whose values are
to be looked up and sent with the request invocation. The server-
less ContextList object allows the application to specify context
information in a way that avoids potentially expensive interface
repository lookups for the information by the ORB during a
request.
// IDL
pseudo interface ContextList {

readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

c

See Also CORBA::Object::_create_request()
CORBA::Request::contexts
CORBA::ORB::create_context_list()

ContextList::add()
// Java
abstract public void add(
 java.lang.String ctxt
);

Adds a context string to the context list.

Parameters

ContextList::count()
// Java
abstract public int count();

Returns the number of context strings in the context list.

ContextList::item()
// Java
abstract public java.lang.String item(
 int index
) throws org.omg.CORBA.Bounds;

ctx A string representing context information.

 66 Orbix CORBA Programmer’s Reference: Java

Returns the context item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ContextList.

Parameters

ContextList::remove()
// Java
abstract public void remove(
 int index
) throws org.omg.CORBA.Bounds;

Removes from the context list the context item at the indexed
location.

index The indexed location of the desired context item.

 Orbix CORBA Programmer’s Reference: Java 67

CORBA::Current Interface
The Current interface is the base interface for providing informa-
tion about the current thread of execution. Each ORB or CORBA
service that needs its own context derives an interface from
Current to provide information that is associated with the thread of
execution in which the ORB or CORBA service is running. Inter-
faces that derives from Current include:
PortableServer::Current

Your application can obtain an instance of the appropriate Current
interface by invoking resolve_initial_references().
Operations on interfaces derived from Current access the state
associated with the thread in which they are invoked, not the state
associated with the thread from which the Current was obtained.
The IDL interface follows:
//IDL
module CORBA {
// interface for the Current object
 interface Current {
 };
...
};

// Java
package org.omg.CORBA;
public interface Current extends org.omg.CORBA.Object {}

See Also PortableServer::Current

CORBA::ORB::resolve_initial_references()

 68 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 69

CORBA::CustomMarshal Value
Type

Custom value types can override the default marshaling/unmar-
shaling mechanism and provide their own way to encode/decode
their state. If an application’s value type is marked as custom, you
use custom marshaling to facilitate integration of such mecha-
nisms as existing class libraries and other legacy systems. Custom
marshaling is not to be used as the standard marshaling mecha-
nism.
CustomMarshal is an abstract value type that is meant to be imple-
mented by the application programmer and used by the ORB. For
example, if an application’s value type needs to use custom mar-
shaling, the IDL declares it explicitly as follows:
// Application-specific IDL
custom valuetype type {
 // optional state definition
 ...
};

When implementing a custom value type such as this, you must
provide a concrete implementation of the CustomMarshal operations
so that the ORB is able to marshal and unmarshal the value type.
Each custom marshaled value type needs its own implementation.
You can use the skeletons generated by the IDL compiler as the
basis for your implementation. These operations provide the
streams for marshaling. Your implemented CustomMarshal code
encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.
It is the responsibility of your implementation to marshal the value
type’s state of all of its base types (if it has any).
The implementation requirements of the streaming mechanism
require that the implementations must be local because local
memory addresses such as those for the marshal buffers have to
be manipulated by the ORB.
Semantically, CustomMarshal is treated as a custom value type’s
implicit base class, although the custom value type does not actu-
ally inherit it in IDL. While nothing prevents you from writing IDL
that inherits from CustomMarshal, doing so will not in itself make
the type custom, nor will it cause the ORB to treat it as a custom
value type. You must implement these CustomMarshal operations.
Implement the following IDL operations for a custom value type:
// IDL in module CORBA
abstract valuetype CustomMarshal {
 void marshal(
 in DataOutputStream os
);
 void unmarshal(
 in DataInputStream is
);
};

 70 Orbix CORBA Programmer’s Reference: Java

CustomMarshal::marshal()
void marshal(org.omg.CORBA.DataOutputStream os);

The operation you implement so that the ORB can marshal a custom
value type.

Parameters

Use the operations of the DataOutputStream in your implementation
to write the custom value type’s data to the stream as appropri-
ate.

See Also CORBA::DataOutputStream

CustomMarshal::unmarshal()
void unmarshal(org.omg.CORBA.DataInputStream is);

The operation you implement so that the ORB can unmarshal a
custom value type.

Parameters

Use the operations of the DataInputStream in your implementation
to read the custom value type’s data from the stream as appropri-
ate.

See Also CORBA::DataInputStream

os A handle to the output stream the ORB uses to mar-
shal the custom value type.

is A handle to the input stream the ORB uses to unmar-
shal the custom value type.

 Orbix CORBA Programmer’s Reference: Java 71

CORBA::DataInputStream Value
Type

The DataInputStream value type is a stream used by unmarshal() for
unmarshaling an application’s custom value type. You use the
DataInputStream operations in your implementation of unmarshal()
to read specific types of data from the stream, as defined in the
custom value type. The stream takes care of breaking the data
into chunks if necessary. The IDL code is as follows:
// IDL in module CORBA
abstract valuetype DataInputStream {
 any read_any();
 boolean read_boolean();
 char read_char();
 wchar read_wchar();
 octet read_octet();
 short read_short();
 unsigned short read_ushort();
 long read_long();
 unsigned long read_ulong();
 unsigned long long read_ulonglong();
 float read_float();
 double read_double();
 long double read_longdouble();
 string read_string();
 wstring read_wstring();
 Object read_Object();
 AbstractBase read_Abstract();
 ValueBase read_Value();
 TypeCode read_TypeCode();

 void read_any_array(
 inout AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_boolean_array(
 inout BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_char_array(
 inout CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_wchar_array(
 inout WcharSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_octet_array(
 inout OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);

 72 Orbix CORBA Programmer’s Reference: Java

 void read_short_array(
 inout ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ushort_array(
 inout UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_long_array(
 inout LongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ulong_array(
 inout ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_ulonglong_array(
 inout ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_longlong_array(
 inout LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_float_array(
 inout FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);
 void read_double_array(
 inout DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length
);
};

Exceptions

See Also CORBA::CustomMarshal
CORBA::DataOutputStream

DataInputStream::read_any()
// IDL
any read_any();

// Java
org.omg.CORBA.Any read_any();

Returns an any data type from the stream.

MARSHAL An inconsistency is detected for any operations.

Orbix CORBA Programmer’s Reference: Java 73

DataInputStream::read_any_array()
// IDL
void read_any_array(
 inout AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_any_array(
 org.omg.CORBA.AnySeqHolder seq,
 int offset,
 int length);

Reads an array of any data from the stream.

Parameters

DataInputStream::read_boolean()
// IDL
boolean read_boolean();

// Java
boolean read_boolean();

Returns a boolean data type from the stream.

DataInputStream::read_boolean_array()
// IDL
void read_boolean_array(
 inout BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_boolean_array(
 org.omg.CORBA.BooleanSeqHolder seq,
 int offset,
 int length);

Reads an array of boolean data from the stream.

Parameters

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

 74 Orbix CORBA Programmer’s Reference: Java

DataInputStream::read_char()
// IDL
char read_char();

// Java
char read_char();

Returns a char data type from the stream.

DataInputStream::read_char_array()
// IDL
void read_char_array(
 inout CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_char_array(
 org.omg.CORBA.CharSeqHolder seq,
 int offset,
 int length);

Reads an array of char data from the stream.

Parameters

DataInputStream::read_double()
// IDL
double read_double();

// Java
double read_double();

Returns a double data type from the stream.

DataInputStream::read_double_array()
// IDL
void read_double_array(
 inout DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_double_array(
 org.omg.CORBA.DoubleSeqHolder seq,
 int offset,
 int length);

Reads an array of double data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

Orbix CORBA Programmer’s Reference: Java 75

Parameters

DataInputStream::read_float()
// IDL
float read_float();

// Java
float read_float();

Returns a float data type from the stream.

DataInputStream::read_float_array()
// IDL
void read_float_array(
 inout FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_float_array(
 org.omg.CORBA.FloatSeqHolder seq,
 int offset,
 int length);

Reads an array of float data from the stream.

Parameters

DataInputStream::read_long()
// IDL
long read_long();

// Java
int read_long();

Returns a long data type from the stream.

DataInputStream::read_long_array()
// IDL
void read_long_array(
 inout LongSeq seq,

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

 76 Orbix CORBA Programmer’s Reference: Java

 in unsigned long offset,
 in unsigned long length
);

// Java
void read_long_array(
 org.omg.CORBA.LongSeqHolder seq,
 int offset,
 int length);

Reads an array of long data from the stream.

Parameters

DataInputStream::read_longdouble()
// IDL
long double read_longdouble();

// Java

Unsupported.

DataInputStream::read_longlong_array()
// IDL
void read_longlong_array(
 inout LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_longlong_array(
 org.omg.CORBA.LongLongSeqHolder seq,
 int offset,
 int length);

Reads an array of long long data from the stream.

Parameters

DataInputStream::read_Object()
// IDL
Object read_Object();

// Java
org.omg.CORBA.Object read_objref();

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

Orbix CORBA Programmer’s Reference: Java 77

Returns an Object (object reference) data type from the stream.

DataInputStream::read_octet()
// IDL
octet read_octet();

// Java
byte read_octet();

Returns an octet data type from the stream.

DataInputStream::read_octet_array()
// IDL
void read_octet_array(
 inout OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_octet_array(
 org.omg.CORBA.OctetSeqHolder seq,
 int offset,
 int length);

Reads an array of octet data from the stream.

Parameters

DataInputStream::read_short()
// IDL
short read_short();

// Java
short read_short();

Returns a short data type from the stream.

DataInputStream::read_short_array()
// IDL
void read_short_array(
 inout ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

 78 Orbix CORBA Programmer’s Reference: Java

// Java
void read_short_array(
 org.omg.CORBA.ShortSeqHolder seq,
 int offset,
 int length);

Reads an array of short data from the stream.

Parameters

DataInputStream::read_string()
// IDL
string read_string();

// Java
java.lang.String read_string();

Returns a string data type from the stream.

DataInputStream::read_TypeCode()
// IDL
TypeCode read_TypeCode();

// Java
org.omg.CORBA.TypeCode read_TypeCode();

Returns a TypeCode data type from the stream.

DataInputStream::read_ulong()
// IDL
unsigned long read_ulong();

// Java
int read_ulong();

Returns an unsigned long data type from the stream.

DataInputStream::read_ulong_array()
// IDL
void read_ulong_array(
 inout ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_ulong_array(
 org.omg.CORBA.ULongSeqHolder seq,
 int offset,
 int length);

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

Orbix CORBA Programmer’s Reference: Java 79

Reads an array of unsigned long data from the stream.

Parameters

DataInputStream::read_ulonglong()
// IDL
unsigned long long read_ulonglong();

// Java
long read_ulonglong();

Returns an unsigned long long data type from the stream.

DataInputStream::read_ulonglong_array()
// IDL
void read_ulonglong_array(
 inout ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_ulonglong_array(
 org.omg.CORBA.ULongLongSeqHolder seq,
 int offset,
 int length);

Reads an array of unsigned long long data from the stream.

Parameters

DataInputStream::read_ushort()
// IDL
unsigned short read_ushort();

// Java
short read_ushort();

Returns an unsigned short data type from the stream.

DataInputStream::read_ushort_array()
// IDL
void read_ushort_array(

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

 80 Orbix CORBA Programmer’s Reference: Java

 inout UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_ushort_array(
 org.omg.CORBA.UShortSeqHolder seq,
 int offset,
 int length);

Reads an array of unsigned short data from the stream.

Parameters

DataInputStream::read_Value()
// IDL
ValueBase read_Value();

// Java
java.io.Serializable read_value();

Returns a value type from the stream.

DataInputStream::read_wchar()
// IDL
wchar read_wchar();

// Java
char read_wchar();

Returns a wchar data type from the stream.

DataInputStream::read_wchar_array()
// IDL
void read_wchar_array(
 inout WCharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void read_wchar_array(
 org.omg.CORBA.WCharSeqHolder seq,
 int offset,
 int length);

Reads an array of wchar data from the stream.

Parameters

seq The sequence into which the data is placed.
offset The starting index from which to read from the

sequence.
length The number of items to read from the array.

seq The sequence into which the data is placed.

Orbix CORBA Programmer’s Reference: Java 81

DataInputStream::read_wstring()
// IDL
wstring read_wstring();

// Java
java.lang.String read_wstring();

Returns a wstring data type from the stream.

offset The starting index from which to read from the
sequence.

length The number of items to read from the array.

 82 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 83

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal() for
marshaling an application’s custom value type. You use the
DataOutputStream operations in your implementation of marshal()
to write specific types of data to the stream, as defined in the cus-
tom value type. The stream takes care of breaking the data into
chunks if necessary. The IDL code is as follows:
//IDL in module CORBA
abstract valuetype DataOutputStream {
 void write_any(in any value);
 void write_boolean(in boolean value);
 void write_char(in char value);
 void write_wchar(in wchar value);
 void write_octet(in octet value);
 void write_short(in short value);
 void write_ushort(in unsigned short value);
 void write_long(in long value);
 void write_ulong(in unsigned long value);
 void write_longlong(in long long value);
 void write_ulonglong(in unsigned long long value);
 void write_float(in float value);
 void write_double(in double value);
 void write_string(in string value);
 void write_wstring(in wstring value);
 void write_Object(in Object value);
 void write_Value(in ValueBase value);
 void write_TypeCode(in TypeCode value);
 void write_any_array(
 in AnySeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_boolean_array(
 in BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_char_array(
 in CharSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_wchar_array(
 in WcharSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_octet_array(
 in OctetSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_short_array(
 in ShortSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ushort_array(
 in UShortSeq seq,
 in unsigned long offset,

 84 Orbix CORBA Programmer’s Reference: Java

 in unsigned long length);
 void write_long_array(
 in LongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ulong_array(
 in ULongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_ulonglong_array(
 in ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_longlong_array(
 in LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_float_array(
 in FloatSeq seq,
 in unsigned long offset,
 in unsigned long length);
 void write_double_array(
 in DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length);
};

Exceptions

See Also CORBA::CustomMarshal
CORBA::DataInputStream

DataOutputStream::write_any()
// IDL
void write_any(
 in any value
);

// Java
void write_any(org.omg.CORBA.Any val);

Writes an any data type to the stream.

Parameters

DataOutputStream::write_any_array()
// IDL
void write_any_array(
 in AnySeq seq,
 in unsigned long offset,
 in unsigned long length
);

MARSHAL An inconsistency is detected for any operations.

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 85

// Java
void write_any_array(org.omg.CORBA.Any[] buf,
 int offset, int len);

Writes an array of any data to the stream.

Parameters

DataOutputStream::write_boolean()
// IDL
void write_boolean(
 in boolean value
);

// Java
void write_boolean(boolean val);

Writes a boolean data type to the stream.

Parameters

DataOutputStream::write_boolean_array()
// IDL
void write_boolean_array(
 in BooleanSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_boolean_array(boolean[] buf, int offset, int len);

Writes an array of boolean data to the stream.

Parameters

DataOutputStream::write_char()
// IDL
void write_char(
 in char value
);

// Java
void write_char(char val);

Writes a char data type to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

 86 Orbix CORBA Programmer’s Reference: Java

Parameters

DataOutputStream::write_char_array()
// IDL
void write_char_array(
 in CharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_char_array(char[] buf, int offset, int len);

Writes an array of char data to the stream.

Parameters

DataOutputStream::write_double()
// IDL
void write_double(
 in double value
);

// Java
void write_double(double val);

Writes a double data type to the stream.

Parameters

DataOutputStream::write_double_array()
// IDL
void write_double_array(
 in DoubleSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_double_array(double[] buf, int offset, int len);

Writes an array of double data to the stream.

Parameters

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

Orbix CORBA Programmer’s Reference: Java 87

DataOutputStream::write_float()
// IDL
void write_float(
 in float value
);

// Java
void write_float(float val);

Writes a float data type to the stream.

Parameters

DataOutputStream::write_float_array()
// IDL
void write_float_array(
 in FloatSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_float_array(float[] buf, int offset, int len);

Writes an array of float data to the stream.

Parameters

DataOutputStream::write_long()
// IDL
void write_long(
 in long value
);

// Java
void write_long(int val);

Writes a long data type to the stream.

Parameters

DataOutputStream::write_long_array()
// IDL
void write_long_array(
 in LongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

 88 Orbix CORBA Programmer’s Reference: Java

// Java
void write_long_array(int[] buf, int offset, int len);

Writes an array of long data to the stream.

Parameters

DataOutputStream::write_longlong()
// IDL
void write_longlong(
 in long long value
);

// Java
void write_longlong(long val);

Writes a long long data type to the stream.

Parameters

DataOutputStream::write_longlong_array()
// IDL
void write_longlong_array(
 in LongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_longlong_array(long[] buf, int offset, int len);

Writes an array of long long data to the stream.

Parameters

DataOutputStream::write_Object()
// IDL
void write_Object(
 in Object value
);

// Java
void write_objref(org.omg.CORBA.Object val);

Writes an Object data type (object reference) to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

Orbix CORBA Programmer’s Reference: Java 89

Parameters

DataOutputStream::write_octet()
// IDL
void write_octet(
 in octet value
);

// Java
void write_octet(byte val);

Writes an octet data type to the stream.

Parameters

DataOutputStream::write_octet_array()
// IDL
void write_octet_array(
 in OctetSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_octet_array(byte[] buf, int offset, int len);

Writes an array of octet data to the stream.

Parameters

DataOutputStream::write_short()
// IDL
void write_short(
 in short value
);

// Java
void write_short(short val);

Writes a short data type to the stream.

Parameters

value The value written to the stream.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

 90 Orbix CORBA Programmer’s Reference: Java

DataOutputStream::write_short_array()
// IDL
void write_short_array(
 in ShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_short_array(short[] buf, int offset, int len);

Writes an array of short data to the stream.

Parameters

DataOutputStream::write_string()
// IDL
void write_string(
 in string value
);

// Java
void write_string(java.lang.String val);

Writes a string data type to the stream.

Parameters

DataOutputStream::write_TypeCode()
// IDL
void write_TypeCode(
 in TypeCode value
);

// Java
void write_TypeCode(org.omg.CORBA.TypeCode val);

Writes a TypeCode data type to the stream.

Parameters

DataOutputStream::write_ulong()
// IDL
void write_ulong(
 in unsigned long value
);

// Java
void write_ulong(int val);

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 91

Writes an unsigned long data type to the stream.

Parameters

DataOutputStream::write_ulong_array()
// IDL
void write_ulong_array(
 in ULongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_ulong_array(int[] buf, int offset, int len);

Writes an array of unsigned long data to the stream.

Parameters

DataOutputStream::write_ulonglong()
// IDL
void write_ulonglong(
 in unsigned long long value
);

// Java
void write_ulonglong(long val);

Writes an unsigned long long data type to the stream.

Parameters

DataOutputStream::write_ulonglong_array()
// IDL
void write_ulonglong_array(
 in ULongLongSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_ulonglong_array(long[] buf, int offset, int len);

Writes an array of unsigned long long data to the stream.

Parameters

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.

 92 Orbix CORBA Programmer’s Reference: Java

DataOutputStream::write_ushort()
// IDL
void write_ushort(
 in unsigned short value
);

// Java
void write_ushort(short val);

Writes an unsigned short data type to the stream.

Parameters

DataOutputStream::write_ushort_array()
// IDL
void write_ushort_array(
 in UShortSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_ushort_array(short[] buf, int offset, int len);

Writes an array of unsigned short data to the stream.

Parameters

DataOutputStream::write_Value()
// IDL
void write_Value(
 in ValueBase value
);

// Java
void write_value(java.io.Serializable vb);

Writes a value type to the stream.

Parameters

DataOutputStream::write_wchar()
// IDL
void write_wchar(

length The number of data items to write.

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

Orbix CORBA Programmer’s Reference: Java 93

 in wchar value
);

// Java
void write_wchar(char val);

Writes a wchar data type to the stream.

Parameters

DataOutputStream::write_wchar_array()
// IDL
void write_wchar_array(
 in WCharSeq seq,
 in unsigned long offset,
 in unsigned long length
);

// Java
void write_wchar_array(char[] buf, int offset, int len);

Writes an array of wchar data to the stream.

Parameters

DataOutputStream::write_wstring()
// IDL
void write_wstring(
 in wstring value
);

// Java
void write_wstring(java.lang.String val);

Writes a wstring data type to the stream.

Parameters

value The value written to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

value The value written to the stream.

 94 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 95

CORBA::DomainManager
Interface

The DomainManager interface provides an operation to find the
Policy objects associated with a policy domain. Each policy
domain includes one policy domain manager object
(DomainManager). The DomainManager has associated with it the pol-
icy objects for that domain and it records the membership of the
domain.
// IDL in CORBA Module
interface DomainManager {
 Policy get_domain_policy(
 in PolicyType policy_type
);
};

A policy domain is a set of objects with an associated set of policies.
These objects are the policy domain members. The policies represent
the rules and criteria that constrain activities of the objects of the
policy domain. Policy domains provide a higher granularity for pol-
icy management than an individual object instance provides.
When a new object reference is created, the ORB implicitly associ-
ates the object reference (and hence the object that it is associ-
ated with) with one or more policy domains, thus defining all the
policies to which the object is subject. If an object is simultane-
ously a member of more than one policy domain, it is governed by
all policies of all of its domains.
The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies
are associated with domains. However, because a DomainManager is
a CORBA object, it has access to the CORBA::Object interface,
which is available to all CORBA objects. The Object interface
includes the following related operations:

_get_domain_managers() allows your applications to retrieve the
domain managers and hence the security and other policies applicable to
individual objects that are members of the policy domain.

You can also obtain an object’s policy using _get_policy().

DomainManager::get_domain_policy()
Policy get_domain_policy (
 in PolicyType policy_type
);

// Java
org.omg.CORBA.Policy get_domain_policy(
 int policy_type
);

Returns a reference to the policy object of the specified policy type
for objects in this policy domain.

 96 Orbix CORBA Programmer’s Reference: Java

Parameters

There may be several policies associated with a domain, with a
policy object for each. There is at most one policy of each type
associated with a policy domain. The policy objects are thus
shared between objects in the domain, rather than being associ-
ated with individual objects. Consequently, if an object needs to
have an individual policy, then it must be a singleton member of a
policy domain.

Exceptions

See Also CORBA::Policy
CORBA::Object::_get_domain_managers()
CORBA::Object::_get_policy()

policy_type The type of policy for objects in the domain which the
application wants to administer.

INV_POLICY The value of policy type is not valid either because the
specified type is not supported by this ORB or because
a policy object of that type is not associated with this
object.

 Orbix CORBA Programmer’s Reference: Java 97

CORBA::EnumDef Interface
Interface EnumDef describes an IDL enumeration definition in the
interface repository.
// IDL in module CORBA.
interface EnumDef : TypedefDef {
 attribute EnumMemberSeq members;
};

The inherited operation describe() is also described.

EnumDef::describe()
// IDL
Description describe();

Inherited from Contained (which TypedefDef inherits), describe()
returns a Description. The DefinitionKind for the description’s kind
member is dk_Enum. The value member is an any whose TypeCode is
_tc_TypeDescription and whose value is a structure of type
TypeDescription. The type field of the struct gives the TypeCode of
the defined enumeration.

See Also CORBA::TypedefDef::describe()

EnumDef::members Attribute
// IDL
attribute EnumMemberSeq members;

// Java
java.lang.String[] members();
void members(java.lang.String[] _val);

Returns or changes the enumeration’s list of identifiers (its set of
enumerated constants).

 98 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 99

CORBA::Environment Class
The Environment class provides a way to handle exceptions in situ-
ations where true exception-handling mechanisms are unavailable
or undesirable.
For example, in the DII exceptions raised by remote invocation
are stored in an Environment member variable in the Request object
after the invocation returns. DII clients should test the value of
this Environment variable by calling the env() method on the
Request object. If the returned java.lang.Exception is null, no
exception was raised. If it is not null, the returned exception
should be examined and acted on in an appropriate manner.
// IDL
pseudo interface Environment {
 attribute exception exception;
 void clear();
};
// Java
package org.omg.CORBA;
abstract public class Environment {
 abstract public void clear();
 public abstract void exception(
 java.lang.Exception except);
 public abstract java.lang.Exception exception();
}

See Also CORBA::ORB::create_environment()

Environment::clear()
//Java
abstract public void clear();

Deletes the Exception, if any, contained in the Environment. This is
equivalent to passing zero to exception(). It is not an error to call
clear() on an Environment that holds no exception.

See Also CORBA::Environment::exception()

Environment::exception()
// Java
public abstract java.lang.Exception exception();

Extracts the exception contained in the Environment object.

//Java
public abstract void exception(java.lang.Exception except);

Sets the exception member variable in the Environment object to except.

Parameters

except The Exception assigned to the Environment The
Environment does not copy the parameter but it
assumes ownership of it. The Exception must be
dynamically allocated.

 100 Orbix CORBA Programmer’s Reference: Java

See Also CORBA::Environment::clear()

 Orbix CORBA Programmer’s Reference: Java 101

CORBA::Exception Class
Details of this class can be found in the CORBA specification. The
C++ Language Mapping document provides the following explana-
tion of the CORBA::Exception class:
// C++
class Exception
{
 public:
 virtual ~Exception();
 virtual void _raise() const = 0;
 virtual const char * _name() const;
 virtual const char * _rep_id() const;
};

The Exception base class is abstract and may not be instantiated
except as part of an instance of a derived class. It supplies one
pure virtual function to the exception hierarchy: the _raise() func-
tion. This function can be used to tell an exception instance to
throw itself so that a catch clause can catch it by a more derived
type.
Each class derived from Exception implements _raise() as follows:
// C++
void SomeDerivedException::_raise() const
{
 throw *this;
}

For environments that do not support exception handling, please
refer to Section 1.42.2, "Without Exception Handling," on page
1-169 of the CORBA specification for information about the
_raise() function.
The _name() function returns the unqualified (unscoped) name of
the exception. The _rep_id() function returns the repository ID of
the exception.

 102 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 103

CORBA::ExceptionDef Interface
Interface ExceptionDef describes an IDL exception in the interface
repository. It inherits from interface Contained and Container.
// IDL in module CORBA.
interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 attribute StructMemberSeq members;
};

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::Container

ExceptionDef::describe()
// IDL
Description describe();

Inherited from Contained, describe() returns a Description.

The DefinitionKind for the kind member of this structure is
dk_Exception. The value member is an any whose TypeCode is
_tc_ExceptionDescription and whose value is a structure of type
ExceptionDescription.
The type field of the ExceptionDescription structure gives the
TypeCode of the defined exception.

See Also CORBA::Contained::describe()
CORBA::TypeCode

ExceptionDef::members Attribute
// IDL
attribute StructMemberSeq members;

// Java
org.omg.CORBA.StructMember[] members();
void members(org.omg.CORBA.StructMember[] _val);

In a sequence of StructMember structures, the members attribute
describes the exception’s members.

The members attribute can be modified to change the structure’s
members.

See Also CORBA::StructDef
CORBA::ExceptionDef::type

ExceptionDef::type Attribute
// IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA.TypeCode type();

 104 Orbix CORBA Programmer’s Reference: Java

The type of the exception (from which the definition of the exception
can be understood). The TypeCode kind for an exception is tk_except.

See Also CORBA::TypeCode
CORBA::ExceptionDef::members

 Orbix CORBA Programmer’s Reference: Java 105

CORBA::ExceptionList Class
An ExceptionList object allows an application to provide a list of
TypeCodes for all application-specific (user-defined) exceptions that
may result when a dynamic invocation Request is invoked. This
server-less ExceptionList object allows the ORB to avoid poten-
tially expensive interface repository lookups for the exception
information during a request.
// PIDL
pseudo interface ExceptionList {
 readonly attribute unsigned long count;
 void add(in TypeCode exc);
 TypeCode item(in unsigned long index) raises(Bounds);
 void remove(in unsigned long index) raises(Bounds);
};

See Also CORBA::Object::_create_request()
CORBA::Request::exceptions
CORBA::ORB::create_exception_list()

ExceptionList::add()
// Java
abstract public void add(org.omg.CORBA.TypeCode exc);

Adds a TypeCode to the exception list.

Parameters

ExceptionList::count()
// Java
abstract public int count();

Returns the number of items in the exception list.

ExceptionList::item()
// Java
abstract public org.omg.CORBA.TypeCode item(int index)
 throws org.omg.CORBA.Bounds;

Returns the exception item at the indexed location of the list. This
return value must not be released by the caller because ownership
of the return value is maintained by the ExceptionList.

Parameters

exc The TypeCode to be added to the list. Should be a Type-
Code for an exception.

index The indexed location of the desired item.

 106 Orbix CORBA Programmer’s Reference: Java

ExceptionList::remove()
// Java
abstract public void remove(int index)
 throws org.omg.CORBA.Bounds;

Removes from the exception list the item at the indexed location.

Parameters

index The indexed location of the desired item.

 Orbix CORBA Programmer’s Reference: Java 107

CORBA::FixedDef Interface
The FixedDef interface describes an IDL fixed-point type in the
interface repository. A fixed-point decimal literal consists of an
integer part, a decimal point, a fraction part, and a d or D.
// IDL in module CORBA.
interface FixedDef : IDLType {
 attribute unsigned short digits;
 attribute short scale;
};

The inherited IDLType attribute is a tk_fixed TypeCode, which
describes a fixed-point decimal number.

See Also CORBA::Repository::create_fixed()

FixedDef::digits Attribute
// IDL
attribute unsigned short digits;

// Java
short digits();
void digits(short _val);

The digits attribute specifies the total number of decimal digits in
the fixed-point number, and must be in the range of 1 to 31,
inclusive.

FixedDef::scale Attribute
// IDL
attribute short scale;

// Java
short scale();
void scale(short _val);

The scale attribute specifies the position of the decimal point.

 108 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 109

CORBA.InterfaceDefPackage.FullI
nterfaceDescription Class

InterfaceDefPackage.FullInterfaceDescription.
FullInterfaceDescription()
// IDL
struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 boolean is_abstract;
};
// Java
public FullInterfaceDescription(
 java.lang.String name,
 java.lang.String id,
 java.lang.String defined_in,
 java.lang.String version,
 org.omg.CORBA.OperationDescription[] operations,
 org.omg.CORBA.AttributeDescription[] attributes,
 java.lang.String[] base_interfaces,
 org.omg.CORBA.TypeCode type,
 boolean is_abstract
)

Describes an interface including its operations and attributes.

See Also CORBA::InterfaceDef::describe_interface()

name The name of the interface.
id An identifier of the interface.
defined_in The identifier where the interface is defined.
version The version of the interface.
operations A sequence of interface operations.
attributes A sequence of interface attributes.
base_interfaces A sequence of base interfaces from which this

interface is derived.
type The type of the interface.
is_abstract True if the interface is an abstract one, false

otherwise.

 110 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 111

CORBA::IDLType Interface
The abstract base interface IDLType describes interface repository
objects that represent IDL types. These types include interfaces,
type definitions, structures, unions, enumerations, and others.
Thus, the IDLType is a base interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef
WstringDef

The IDLType provides access to the TypeCode describing the type,
and is used in defining other interfaces wherever definitions of IDL
types must be referenced.
// IDL in module CORBA.
interface IDLType : IRObject {
 readonly attribute TypeCode type;
};

See Also CORBA::IRObject
CORBA::TypeCode
CORBA::TypedefDef

IDLType::type Attribute
//IDL
readonly attribute TypeCode type;

// Java
org.omg.CORBA.TypeCode type();

Encodes the type information of an interface repository object. Most
type information can also be extracted using operations and attri-
butes defined for derived types of the IDLType.

See Also CORBA::TypeCode

 112 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 113

CORBA::InterfaceDef Interface
InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions,
operations, and attributes. it inherits from the interfaces
Container, Contained, and IDLType.
Calling _get_interface() on a reference to an object returns a ref-
erence to the InterfaceDef object that defines the CORBA object’s
interface.
// IDL in module CORBA.
interface InterfaceDef : Container, Contained, IDLType {
 // read/write interface
 attribute InterfaceDefSeq base_interfaces;

 // read interface
 boolean is_a(
 in RepositoryId interface_id
);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

 FullInterfaceDescription describe_interface();

 // write interface
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);
}; // End interface InterfaceDef

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::Container

 114 Orbix CORBA Programmer’s Reference: Java

CORBA::Object::_get_interface()

InterfaceDef::base_interfaces Attribute
// IDL
attribute InterfaceDefSeq base_interfaces;

// Java
void base_interfaces(org.omg.CORBA.InterfaceDef[] _val);

The base_interfaces attribute lists in a sequence of InterfaceDef
objects the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef object can be
changed by changing its base_interfaces attribute.

Exceptions

See Also CORBA::Object::_get_interface()

InterfaceDef::create_attribute()
// IDL
AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);

// Java
org.omg.CORBA.AttributeDef create_attribute(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType type,
 org.omg.CORBA.AttributeMode mode
);

Creates a new AttributeDef within the target InterfaceDef. The
defined_in attribute of the new AttributeDef is set to the target
InterfaceDef.

Parameters

BAD_PARAM,
minor code 5

The name of any definition contained in the interface
conflicts with the name of a definition in any of the base
interfaces.

id The identifier of the new attribute. It is an error to specify
an id that already exists within the target object’s reposi-
tory.

name The name of the attribute. It is an error to specify a name
that already exists within this InterfaceDef.

version A version for this attribute.
type The IDLType for this attribute.
mode Specifies whether the attribute is read only

(ATTR_READONLY) or read/write (ATTR_NORMAL).

Orbix CORBA Programmer’s Reference: Java 115

Exceptions

See Also CORBA::AttributeDef

InterfaceDef::create_operation()
// IDL
OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);

// Java
org.omg.CORBA.OperationDef create_operation(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType result,
 org.omg.CORBA.OperationMode mode,
 org.omg.CORBA.ParameterDescription[] params,
 org.omg.CORBA.ExceptionDef[] exceptions,
 java.lang.String[] contexts
);

Creates a new OperationDef within the target InterfaceDef. The
defined_in attribute of the new OperationDef is set to the target
InterfaceDef.

Parameters

See Also CORBA::OperationDef

BAD_PARAM,
minor code 2

An object with the specified id already exists in the
repository.

BAD_PARAM,
minor code 3

An object with the same name already exists in this
InterfaceDef.

id The identifier of the new attribute. It is an error to
specify an id that already exists within the target
object’s repository.

name The name of the attribute. It is an error to specify a
name that already exists within this InterfaceDef.

version A version number for this operation.
result The return type for this operation.
mode Specifies whether this operation is normal (OP_NORMAL)

or oneway (OP_ONEWAY).
params A sequence of ParameterDescription structures that

describes the parameters to this operation.
exceptions A sequence of ExceptionDef objects that describes the

exceptions this operation can raise.
contexts A sequence of context identifiers for this operation.

 116 Orbix CORBA Programmer’s Reference: Java

CORBA::ExceptionDef

InterfaceDef::describe()
// IDL
Description describe();

Inherited from Contained, describe() returns a Description. The
DefinitionKind for the kind member is dk_Interface. The value
member is an any whose TypeCode is _tc_InterfaceDescription and
whose value is a structure of type InterfaceDescription.

See Also CORBA::Contained::describe()

InterfaceDef::describe_interface()
// IDL
FullInterfaceDescription describe_interface();

// Java
org.omg.CORBA.InterfaceDefPackage.FullInterfaceDescription

describe_interface();

Returns a description of the interface, including its operations,
attributes, and base interfaces in a FullInterfaceDescription.

Details of exceptions and contexts can be determined via the
returned sequence of OperationDescription structures.

See Also CORBA::OperationDef::describe()
CORBA::AttributeDef::describe()

InterfaceDef::FullInterfaceDescription
See the “CORBA.InterfaceDefPackage.FullInterfaceDescription
Class”.

InterfaceDef::is_a()
// IDL
boolean is_a(
 in RepositoryId interface_id
);

// Java
boolean is_a(java.lang.String interface_id);

Returns TRUE if the interface is either identical to or inherits (directly
or indirectly) from the interface represented by interface_id. Oth-
erwise the operation returns FALSE.

Parameters

interface_id The repository ID of another InterfaceDef object.

 Orbix CORBA Programmer’s Reference: Java 117

CORBA::IRObject Interface
The interface IRObject is the base interface from which all inter-
face repository interfaces are derived.
// IDL in module CORBA.

interface IRObject {
 readonly attribute DefinitionKind def_kind;
 void destroy();
};

IRObject::def_kind Attribute
// IDL
readonly attribute DefinitionKind def_kind;

// Java
org.omg.CORBA.DefinitionKind def_kind();

Identifies the kind of an IFR object. For example, an OperationDef
object, describing an IDL operation, has the kind dk_Operation.

See Also CORBA::DefinitionKind

IRObject::destroy()
// IDL
void destroy();

// Java
void destroy();

Deletes an IFR object. This also deletes any objects contained within
the target object.

Exceptions BAD_INV_ORDER with a minor value of:

2 destroy() is invoked on a Repository or on a
PrimitiveDef object.

1 An attempt is made to destroy an object that would
leave the repository in an incoherent state.

 118 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 119

CORBA::ModuleDef Interface
The interface ModuleDef describes an IDL module in the interface
repository. It inherits from the interfaces Container and Contained.
// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe() is also described.

ModuleDef::describe()
// IDL
Description describe();

Inherited from Contained, describe() returns a Description.

The kind member is dk_Module. The value member is an any whose
TypeCode is _tc_ModuleDescription and whose value is a structure of
type ModuleDescription.

See Also CORBA::Contained::describe()

 120 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 121

CORBA::NamedValue Class
A NamedValue object describes an argument to a request or a return
value, especially in the DII, and is used as an element of an NVList
object. A NamedValue object maintains an any value, parame-
ter-passing mode flags, and an (optional) name.
// IDL
pseudo interface NamedValue {
 readonly attribute Identifier name;
 readonly attribute any value;
 readonly attribute Flags flags;
};

See Also CORBA::NVList
CORBA::ORB::create_named_value()
CORBA::Request::result()
CORBA::Object::_create_request()

NamedValue::flags()
// Java
abstract public int flags();

Returns the flags associated with the NamedValue. Flags identify the
parameter passing mode for arguments of an NVList.

NamedValue::name()
// Java
abstract public java.lang.String name();

Returns the (optional) name associated with the NamedValue. This
is the name of a parameter or argument to a request.

NamedValue::value()
// Java
abstract public org.omg.CORBA.Any value();

Returns a reference to the org.omg.CORBA.Any object contained in
the NamedValue.

 122 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 123

CORBA::NativeDef Interface
The interface NativeDef describes an IDL native type in the inter-
face repository. It inherits from the interface TypedefDef. The
inherited type attribute is a tk_native TypeCode that describes the
native type.
// IDL in module CORBA
interface NativeDef : TypedefDef {};

See Also CORBA::Container::create_native()

 124 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 125

CORBA::NVList Class
An NVList is a pseudo-object used for constructing parameter lists.
It is a list of NamedValue elements where each NamedValue describes
an argument to a request.
The NamedValue and NVList types are used mostly in the DII in the
request operations to describe arguments and return values. They
are also used in the context object routines to pass lists of prop-
erty names and values. The NVList is also used in the DSI opera-
tion ServerRequest::arguments().
The NVList class is partially opaque and may only be created by
using ORB::create_list(). The NVList class is as follows:
// IDL
pseudo interface NVList {
 readonly attribute unsigned long count;
 NamedValue add(in Flags flags);
 NamedValue add_item(in Identifier item_name, in Flags flags);
 NamedValue add_value(in Identifier item_name,
 in any val, in Flags flags);
 NamedValue item(in unsigned long index) raises(Bounds);
 void remove(in unsigned long index) raises(Bounds);
};

See Also CORBA::NamedValue
CORBA::ORB:create_list()
CORBA::Object::_create_request()

NVList::count()
abstract public int count();

Returns the number of elements in the list.

NVList::add()
// Java
abstract public org.omg.CORBA.NamedValue add(int flgs);

Creates an unnamed value, initializes only the flags, and adds it to
the list. The new NamedValue is returned.

Parameters

The reference count of the returned NamedValue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

See Also CORBA::NVList::add_item()
CORBA::NVList::add_value()

flags

 126 Orbix CORBA Programmer’s Reference: Java

NVList::add_item()
// Java
abstract public org.omg.CORBA.NamedValue add_item(
 java.lang.String item_name, int flgs);

Creates and returns a NamedValue with name and flags initialized,
and adds it to the list.

Parameters

The reference count of the returned NamedValue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

See Also CORBA::NVList::add()
CORBA::NVList::add_value()

NVList::add_value()
// Java
abstract public org.omg.CORBA.NamedValue add_value(
 java.lang.String item_name,
 org.omg.CORBA.Any val, int flgs);

Creates and returns a NamedValue with name, value, and flags
initialized and adds it to the list.

Parameters

The reference count of the returned NamedValue pseudo object is
not incremented. Therefore, the caller should not release the
returned reference when no longer needed.

See Also CORBA::NVList::add()
CORBA::NVList::add_item()

NVList::item()
// Java
abstract public org.omg.CORBA.NamedValue item(int index)
 throws org.omg.CORBA.Bounds;

Returns the NamedValue list item at the given index. The first item is
at index 0. This method can be used to access existing elements in
the list.

Parameters

item_name Name of item.
flgs

item_name Name of item.
value Value of item.
flags

index Index of item.

Orbix CORBA Programmer’s Reference: Java 127

NVList::remove()
// Java
abstract public void remove(int index)
 throws org.omg.CORBA.Bounds;

Removes the item at the given index. The first item is at index 0.

Parameters

index Index of item

 128 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 129

CORBA::Object Class
The Object class is the base class for all normal CORBA objects.
This class has some common methods that operate on any CORBA
object. These operations are implemented directly by the ORB, not
passed on to your object’s implementation.
On the client side, the methods of this class are called on a proxy
(unless collocation is set). On the server side, they are called on
the real object.
Table 4 shows the methods provided by the CORBA::Object class:

// IDL
interface Object {
 boolean is_nil();
 Object duplicate();
 void release();
 ImplementationDef get_implementation();
 InterfaceDef get_interface();
 boolean is_a(in string logical_type_id);
 boolean non_existent();
 boolean is_equivalent(in Object other_object);
 unsigned long hash(in unsigned long maximum);
 void create_request(
 in Context ctx,
 in Identifier operation,
 in NVList arg_list,
 in NamedValue result,
 out Request request,
 in Flags req_flags
);
 void create_request2(
 in Context ctx,
 in Identifier operation,
 in NVList arg_list,
 in NamedValue result,
 in ExceptionList exclist,
 in ContextList ctxtlist,

Table 4: Methods of the Object Class

Manage Object References Create Requests for the DII

_duplicate()
_hash()
_is_a()
_is_equivalent()
_non_existent()
_release()

_create_request()
_request()

Access Information in the
IFR

_get_interface()

Manage Policies and
Domains

_get_domain_managers()
_get_policy()

 130 Orbix CORBA Programmer’s Reference: Java

 out Request request,
 in Flags req_flags
);
 Policy_ptr get_policy(in PolicyType policy_type);
 DomainManagerList get_domain_managers();
 Object set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_or_add
);

// IDL Additions from CORBA Messaging
 Policy get_policy(
 in PolicyType type
);
 Policy get_client_policy(
 in PolicyType type
);
 Object set_policy_overrides(
 in PolicyList policies,
 in SetOverrideType set_add
)
 raises (InvalidPolicies);
 PolicyList get_policy_overrides(
 in PolicyTypeSeq types
);
 boolean validate_connection(
 out PolicyList inconsistent_policies
);
};
// Java
package org.omg.CORBA;
 public interface Object {
 boolean _is_a(String Identifier);
 boolean _is_equivalent(Object that);
 boolean _non_existent();
 int _hash(int maximum);
 org.omg.CORBA.Object _duplicate();
 void _release();
 org.omg.CORBA.Object _get_interface_def();
 Request _request(String s);
 Request _create_request(Context ctx,
 String operation,
 NVList arg_list,
 NamedValue result);
 Request _create_request(Context ctx,
 String operation,
 NVList arg_list,
 NamedValue result,
 ExceptionList exclist,
 ContextList ctxlist);
 Policy _get_policy(int policy_type);
 DomainManager[] _get_domain_managers();
 org.omg.CORBA.Object _set_policy_override(
 Policy[] policies,
 SetOverrideType set_add);
}

Orbix CORBA Programmer’s Reference: Java 131

Object::_create_request()
// Java
Request _create_request(Context ctx,
 String operation,
 NVList arg_list,
 NamedValue result);

Request _create_request(Context ctx,
 String operation,
 NVList arg_list,
 NamedValue result,
 ExceptionList exclist,
 ContextList ctxlist);

These construct a CORBA::Request object. These methods are part
of the DII and create an ORB request on an object by constructing
one of the object’s operations.
See _request() for a simpler alternative way to create a Request.
The only implicit object reference operations allowed with the
_create_request() call include:
_non_existent()
_is_a()
_get_interface()

Exceptions

See Also CORBA::Object::_request()
CORBA::Request
CORBA::Request::arguments()
CORBA::Request::ctx()
CORBA::NVList
CORBA::NamedValue

Object::_duplicate()
// Java
org.omg.CORBA.Object _duplicate();

Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

Object::_get_domain_managers()
DomainManager[] _get_domain_managers();

Returns the list of immediately enclosing domain managers of this
object. At least one domain manager is always returned in the list
since by default each object is associated with at least one domain
manager at creation.

BAD_PARAM The name of an implicit operation that is not allowed is
passed to _create_request()—for example,
_is_equivalent is passed to _create_request() as the
operation parameter.

 132 Orbix CORBA Programmer’s Reference: Java

The _get_domain_managers() method allows applications such as
administration services to retrieve the domain managers and
hence the security and other policies applicable to individual
objects that are members of the domain.

See Also CORBA::DomainManager

Object::_get_interface()
// Java
InterfaceDef _get_interface();

Returns a reference to an object in the interface repository that
describes this object’s interface.

See Also CORBA::InterfaceDef

Object::_get_policy()
// Java
Policy _get_policy(int policy_type);

Returns a reference to the Policy object of the type specified by the
policy_type parameter.

Parameters

_get_policy() returns the effective policy which is the one that
would be used if a request were made. Note that the effective pol-
icy may change from invocation to invocation due to transparent
rebinding. Invoking _non_existent() on an object reference prior
to _get_policy() ensures the accuracy of the returned effective
policy.
Quality of Service (see “Quality of Service Framework”) is man-
aged on a per-object reference basis with _get_policy().

Exceptions

See Also CORBA::Object::_non_existent()

Object::_hash()
// Java
int _hash(int maximum);

Returns a hashed value for the object reference in the range
0...maximum.

Parameters

policy_type The type of policy to get.

INV_POLICY The value of policy_type is not valid either because
the specified type is not supported by this ORB or
because a policy object of that type is not associated
with this object.

maximum The maximum value that is to be returned from the
hash method.

Orbix CORBA Programmer’s Reference: Java 133

Use _hash() to quickly guarantee that objects references refer to
different objects. For example, if _hash() returns the same hash
number for two object references, the objects might or might not
be the same, however, if the method returns different numbers for
object references, these object references are guaranteed to be
for different objects.
In order to efficiently manage large numbers of object references,
some applications need to support a notion of object reference
identity. Object references are associated with internal identifiers
that you can access indirectly by using _hash(). The value of this
internal identifier does not change during the lifetime of the object
reference.
You can use _hash() and _is_equivalent() to support efficient
maintenance and search of tables keyed by object references.
_hash() allows you to partition the space of object references into
sub-spaces of potentially equivalent object references. For exam-
ple, setting maximum to 7 partitions the object reference space into
a maximum of 8 sub-spaces (0 - 7).

See Also CORBA::Object::_is_equivalent()

Object::_is_a()
// Java
boolean _is_a(String Identifier);

Returns 1 (true) if the target object is either an instance of the type
specified in logical_type_id or of a derived type of the type in
logical_type_id. If the target object is neither, it returns 0 (false).

Parameters

The ORB maintains type-safety for object references over the
scope of an ORB, but you can use this method to help maintaining
type-safety when working in environments that do not have com-
pile time type checking to explicitly maintain type safety.

Exceptions If _is_a() cannot make a reliable determination of type compatibil-
ity due to failure, it raises an exception in the calling application
code. This enables the application to distinguish among the true,
false, and indeterminate cases.

See Also CORBA::Object::_non_existent()

Object::_is_equivalent()
// Java
boolean _is_equivalent(Object that);

Returns 1 (true) if the object references definitely refer to the same
object. A return value of 0 (false) does not necessarily mean that
the object references are not equivalent, only that the ORB cannot
confirm that they reference the same object. Two objects are

Identifier The fully scoped name of the IDL interface. This is
a string denoting a shared type identifier
(RepositoryId). Use an underscore (‘_’) rather than
a scope operator (::) to delimit the scope.

 134 Orbix CORBA Programmer’s Reference: Java

equivalent if they have the same object reference, or they both refer
to the same object.

Parameters

A typical application use of _is_equivalent() is to match object ref-
erences in a hash table. Bridges could use the method to shorten
the lengths of chains of proxy object references. Externalization
services could use it to flatten graphs that represent cyclical rela-
tionships between objects.

See Also CORBA::Object::_is_a()
CORBA::Object::_hash()

Object::_non_existent()
// Java
boolean _non_existent();

Returns 1 (true) if the object does not exist or returns 0 (false)
otherwise.

Normally you might invoke this method on a proxy to determine
whether the real object still exists. This method may be used to
test whether an object has been destroyed because the method
does not raise an exception if the object does not exist.
Applications that maintain state that includes object references,
(such as bridges, event channels, and base relationship services)
might use this method to sift through object tables for objects that
no longer exist, deleting them as they go, as a form of garbage
collection.

Object::_release()
// Java
void _release();

Signals that the caller is done using this object reference, so internal
ORB resources associated with this object reference can be re-
leased. Note that the object implementation is not involved in this
operation, and other references to the same object are not affected.

Object::_request()
Request _request(String operation);

Returns a reference to a constructed .Request on the target object.
This is the simpler form of _create_request().

Parameters

You can add arguments and contexts after construction using
Request::arguments() and Request::ctx().

See Also CORBA::Object::_create_request()
CORBA::Request::arguments()

other_object An object reference of other object.

operation The name of the operation.

Orbix CORBA Programmer’s Reference: Java 135

CORBA::Request::ctx()

Returns true if the current effective policies for the object will allow
an invocation to be made. Returns false if the current effective
policies would cause an invocation to raise the system exception
INV_POLICY.

Parameters

If the object reference is not yet bound, a binding will occur as
part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the
binding is no longer valid, a rebind will be attempted regardless of
the setting of any RebindPolicy override. This method is the only
way to force such a rebind when implicit rebinds are disallowed by
the current effective RebindPolicy.

Exceptions The appropriate system exception is raised if the binding fails due
to some reason unrelated to policy overrides.

inconsistent_policies If the current effective policies are incompat-
ible, This parameter contains those policies
causing the incompatibility. This returned list
of policies is not guaranteed to be exhaus-
tive.

 136 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 137

CORBA::OperationDef Interface
Interface OperationDef describes an IDL operation that is defined
in an IDL interface stored in the interface repository.
One way you can use the OperationDef is to construct an NVList for
a specific operation for use in the Dynamic Invocation Interface.
For details see ORB::create_operation_list().
// IDL in module CORBA.
interface OperationDef : Contained {
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;
};

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::ORB::create_operation_list()
CORBA::ExceptionDef

OperationDef::contexts Attribute
// IDL
attribute ContextIdSeq contexts;

// Java
java.lang.String[] contexts();
void contexts(java.lang.String[] _val);

The list of context identifiers specified in the context clause of the
operation.

OperationDef::exceptions Attribute
// IDL
attribute ExceptionDefSeq exceptions;

// Java
org.omg.CORBA.ExceptionDef[] exceptions();
void exceptions(org.omg.CORBA.ExceptionDef[] _val);

The list of exceptions that the operation can raise.

See Also CORBA::ExceptionDef

OperationDef::describe()
// IDL
Description describe();

Inherited from Contained, describe() returns a Description.

 138 Orbix CORBA Programmer’s Reference: Java

The DefinitionKind for the kind member of this structure is
dk_Operation. The value member is an any whose TypeCode is
_tc_OperationDescription and whose value is a structure of type
OperationDescription.

See Also CORBA::Contained::describe()
CORBA::ExceptionDef

OperationDef::mode Attribute
// IDL
attribute OperationMode mode;

// Java
org.omg.CORBA.OperationMode mode();
void mode(org.omg.CORBA.OperationMode _val);

Specifies whether the operation is normal (OP_NORMAL) or oneway
(OP_ONEWAY).

OperationDef::params Attribute
// IDL
attribute ParDescriptionSeq params;

// Java
org.omg.CORBA.ParameterDescription[] params();
void params(org.omg.CORBA.ParameterDescription[] _val);

Specifies the parameters for this operation. It is a sequence of
structures of type ParameterDescription.

The name member of the ParameterDescription structure provides
the name for the parameter. The type member identifies the
TypeCode for the parameter. The type_def member identifies the
definition of the type for the parameter. The mode specifies
whether the parameter is an in (PARAM_IN), an out (PARAM_OUT) or
an inout (PARAM_INOUT) parameter. The order of the
ParameterDescriptions is significant.

See Also CORBA::TypeCode
CORBA::IDLType

OperationDef::result Attribute
// IDL
readonly attribute TypeCode result;

// Java
org.omg.CORBA.TypeCode result();

The return type of this operation. The attribute result_def contains
the same information.

See Also CORBA::TypeCode
CORBA::OperationDef::result_def

Orbix CORBA Programmer’s Reference: Java 139

OperationDef::result_def Attribute
// IDL
attribute IDLType result_def;

// Java
org.omg.CORBA.IDLType result_def();
void result_def(org.omg.CORBA.IDLType _val);

Describes the return type for this operation. The attribute result
contains the same information.

Setting the result_def attribute also updates the result attribute.
See Also CORBA::IDLType

CORBA::OperationDef::result

 140 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 141

CORBA::ORB Class
The ORB class provides a set of methods and data types that con-
trol the ORB from both the client and the server. See Table 5:

There are also methods to manage dynamic any data types.
You initialize the ORB using ORB.init().
The ORB class is defined as follows:
//IDL
pseudo interface ORB {

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InconsistentTypeCode {};
exception InvalidName {};
string object_to_string (in Object obj);
Object string_to_object (in string str);

// Dynamic Invocation related operations
void create_list (in long count, out NVList new_list);
void create_operation_list (

in OperationDef oper,
out NVList new_list);

void get_default_context (out Context ctx);

Table 5: Methods and Types of the ORB Class

Object Reference Manipulation ORB Operation and Threads

_duplicate()
list_initial_services()
_nil()
ObjectId type
ObjectIdList sequence
object_to_string()
resolve_initial_references()
string_to_object()

destroy()
perform_work()
run()
shutdown()
work_pending()

ORB Policies and Services

create_policy()

Dynamic Invocation Interface
(DII)

TypeCode Creation Methods

create_environment()
create_exception_list()
create_list()
create_named_value()
create_operation_list()
get_next_response()
poll_next_response()
send_multiple_requests_deferred()
send_multiple_requests_oneway()

create_abstract_interface_tc()
create_alias_tc()
create_array_tc()
create_enum_tc()
create_exception_tc()
create_fixed_tc()
create_interface_tc()
create_native_tc()
create_recursive_tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create_value_box_tc()
create_value_tc()
create_wstring_tc()

Value Type Factory Methods

lookup_value_factory()
register_value_factory()
unregister_value_factory()

 142 Orbix CORBA Programmer’s Reference: Java

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
void get_next_response(out Request req);

// Service information operations
boolean get_service_information (

in ServiceType service_type,
out ServiceInformation service_information);

ObjectIdList list_initial_services ();

// Initial reference operation
Object resolve_initial_references (

in ObjectId identifier
) raises (InvalidName);

// Type code creation operations
TypeCode create_struct_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name);

TypeCode create_string_tc (in unsigned long bound);
TypeCode create_wstring_tc (in unsigned long bound);
TypeCode create_fixed_tc (

in unsigned short digits,
in short scale);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type);

TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,

Orbix CORBA Programmer’s Reference: Java 143

in ValueMemberSeq members);
TypeCode create_value_box_tc (

in RepositoryId id,
in Identifier name,
in TypeCode boxed_type);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name);

TypeCode create_recursive_tc (
in RepositoryId id);

TypeCode create_abstract_interface_tc (
in RepositoryId id,
in Identifier name);

// Thread related operations
boolean work_pending();
void perform_work();
void run();
void shutdown(in boolean wait_for_completion);
void destroy();

// Policy related operations
Policy create_policy(

in PolicyType type,
in any val) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations
// Value factory operations
ValueFactory register_value_factory(

in RepositoryId id,
in ValueFactory factory);

void unregister_value_factory(in RepositoryId id);
ValueFactory lookup_value_factory(in RepositoryId id);

// Additional operations that only appear in the Java mapping
TypeCode get_primitive_tc(in TCKind tcKind);
ExceptionList create_exception_list();
ContextList create_context_list();
Environment create_environment();
Current get_current();
Any create_any();
OutputStream create_output_stream();
void connect(Object obj);
void disconnect(Object obj);
Object get_value_def(in String repid);
void (Object wrapper);

// additional methods for ORB initialization go here, but only
// appear in the mapped Java (seeSection 1.21.9, “ORB
// Initialization) Java signatures
// public static ORB init(Strings[] args, Properties props);
// public static ORB init(Applet app, Properties props);
// public static ORB init();
// abstract protected void set_parameters(String[] args,
// java.util.Properties props);
// abstract protected void set_parameters(java.applet.Applet

app,
// java.util.Properties props);
};

 144 Orbix CORBA Programmer’s Reference: Java

// Java
package org.omg.CORBA;
public abstract class ORB {

public abstract org.omg.CORBA.Object
string_to_object(String str);
public abstract String
object_to_string(org.omg.CORBA.Object obj);

// Dynamic Invocation related operations
public abstract NVList create_list(int count);

public NVList create_operation_list(
org.omg.CORBA.Object oper);

// oper must really be an OperationDef
public abstract NamedValue create_named_value(

String name, Any value, int flags);
public abstract ExceptionList create_exception_list();
public abstract ContextList create_context_list();
public abstract Context get_default_context();
public abstract Environment create_environment();
public abstract void send_multiple_requests_oneway(

Request[] req);
public abstract void send_multiple_requests_deferred(

Request[] req);
public abstract boolean poll_next_response();
public abstract Request get_next_response() throws

org.omg.CORBA.WrongTransaction;

// Service information operations
public boolean get_service_information(

short service_type,
ServiceInformationHolder service_info) {
throw new org.omg.CORBA.NO_IMPLEMENT();

}
public abstract String[] list_initial_services();

// Initial reference operation
public abstract org.omg.CORBA.Object
resolve_initial_references(String object_name)

throws org.omg.CORBA.ORBPackage.InvalidName;

// typecode creation
public abstract TypeCode create_struct_tc(

String id, String name, StructMember[] members);
public abstract TypeCode create_union_tc(

String id,
String name,
TypeCode discriminator_type,
UnionMember[] members);

public abstract TypeCode create_enum_tc(
String id,
String name,
String[] members);

public abstract TypeCode create_alias_tc(
String id,
String name,
TypeCode original_type);

public abstract TypeCode create_exception_tc(

Orbix CORBA Programmer’s Reference: Java 145

String id,
String name,
StructMember[] members);

public abstract TypeCode create_interface_tc(
String id, String name);

public abstract TypeCode create_string_tc(int bound);
public abstract TypeCode create_wstring_tc(int bound);
public TypeCode create_fixed_tc(

short digits,
short scale) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public abstract TypeCode create_sequence_tc(
int bound, TypeCode element_type);

public abstract TypeCode create_array_tc(
int length, TypeCode element_type);

public TypeCode create_value_tc(
String id,
String name,
short type_modifier,
TypeCode concrete_base,
ValueMember[] members) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public TypeCode create_value_box_tc(
String id,
String name,
TypeCode boxed_type) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public TypeCode create_native_tc(
String id,
String name) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public TypeCode create_recursive_tc(
String id) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public TypeCode create_abstract_interface_tc(
String id,
String name) {
throw org.omg.CORBA.NO_IMPLEMENT(); }

// Thread related operations
public boolean work_pending() {
throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void perform_work() {

throw new org.omg.CORBA.NO_IMPLEMENT(); }
public void run() {

throw new org.omg.CORBA.NO_IMPLEMENT(); }
public void shutdown(boolean wait_for_completion) {

throw new org.omg.CORBA.NO_IMPLEMENT(); }
public void destroy() {

throw new org.omg.CORBA.NO_IMPLEMENT(); }

// Policy related operations
public Policy create_policy(short policy_type, Any val)

throws org.omg.CORBA.PolicyError {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

// additional methods for IDL/Java mapping
public abstract TypeCode get_primitive_tc(TCKind tcKind);

 146 Orbix CORBA Programmer’s Reference: Java

public abstract Any create_any();
public abstract org.omg.CORBA.portable.OutputStream
create_output_stream();

// additional static methods for ORB initialization
public static ORB init(

Strings[] args,
Properties props);

public static ORB init(
Applet app,
Properties props);

public static ORB init();
abstract protected void set_parameters(

String[] args,
java.util.Properties props);

abstract protected void set_parameters(
java.applet.Applet app,
java.util.Properties props);

}

package org.omg.CORBA_2_3;
public abstract class ORB extends org.omg.CORBA.ORB {

// always return a ValueDef or throw BAD_PARAM if
// repid not of a value
public org.omg.CORBA.Object get_value_def(

String repid)
throws org.omg.CORBA.BAD_PARAM {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

// Value factory operations
public org.omg.CORBA.portable.ValueFactory

register_value_factory(
String id,
org.omg.CORBA.portable.ValueFactory factory){
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public void unregister_value_factory(String id) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public org.omg.CORBA.portable.ValueFactory
lookup_value_factory(String id) {
throw new org.omg.CORBA.NO_IMPLEMENT(); }

public void set_delegate(java.lang.Object wrapper) {
throw new org.omg.CORBA.NO_IMPLEMENT();}

}

ORB::create_abstract_interface_tc()
Returns a pointer to a new TypeCode of kind tk_abstract_interface
representing an IDL abstract interface.

Parameters

See Also CORBA::TypeCode

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

Orbix CORBA Programmer’s Reference: Java 147

CORBA::TCKind

ORB::create_alias_tc()
// Java
public abstract TypeCode create_alias_tc(

String id,
String name,
TypeCode original_type

);

Returns a pointer to a new TypeCode of kind tk_alias representing
an IDL alias.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB.create_any()
// Java
public abstract Any create_any();

Creates a new empty Any.

ORB::create_array_tc()
// Java
public abstract TypeCode create_array_tc(

int length,
TypeCode element_type

);

Returns a pointer to a new TypeCode of kind tk_array representing
an IDL array.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

original_type A pointer to the actual TypeCode object this alias rep-
resents.

length The length of the array.
element_type The data type for the elements of the array.

 148 Orbix CORBA Programmer’s Reference: Java

ORB::create_context_list()
void create_context_list(ContextList_out list);

Creates an empty ContextList object for use with a DII request. You
can add context strings to the list using ContextList::add() and then
pass the list as a parameter to Object::_create_request().

Parameters

See Also CORBA::ContextList
CORBA::Object::_create_request()

ORB::create_enum_tc()
// Java
public abstract TypeCode create_enum_tc(

String id,
String name,
EnumMember[] members

);

Returns a pointer to a new TypeCode of kind tk_enum representing an
IDL enumeration.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_environment()
// Java
public abstract Environment create_environment();

Gets a newly created Environment object.

See Also CORBA::Environment

ORB::create_exception_list()
// Java
public abstract ExceptionList create_exception_list();

Creates an empty ExceptionList object for use with a DII request.
You can add user-defined exceptions to the list using
ExceptionList::add() and then pass the list as a parameter to
Object::_create_request().

See Also CORBA::ExceptionList
CORBA::Object::_create_request()

list A reference to the new ContextList.

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

members The sequence of enumeration members.

Orbix CORBA Programmer’s Reference: Java 149

ORB::create_exception_tc()
// Java
public abstract TypeCode create_exception_tc(

String id,
String name,
StructMember[] members

);

Returns a pointer to a new TypeCode of kind tk_except representing
an IDL exception.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_fixed_tc()
Returns a pointer to a new TypeCode of kind tk_fixed representing
an IDL fixed point type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_interface_tc()
// Java
public abstract TypeCode create_interface_tc(

String id, String name
);

Returns a pointer to a new TypeCode representing an IDL interface.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

members The sequence of members.

digits The number of digits for the fixed point type.
scale The scale of the fixed point type.

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

 150 Orbix CORBA Programmer’s Reference: Java

ORB::create_list()
// Java
public abstract NVList create_list(int count);

Allocates space for an empty NVList of the size specified by count
to contain NamedValue objects. A list of NamedValue object can be used
to describe arguments to a request when using the Dynamic
Invocation Interface. You can add NamedValue items to list using the
NVList::add_item() routine.

Parameters

See Also CORBA::NVList
CORBA::NamedValue
CORBA::ORB::create_operation_list()
CORBA::Request()

ORB::create_named_value()
// Java
public abstract NamedValue create_named_value(

String name,
Any value,
int flags

);

Creates NamedValue objects you can use as return value parameters
in the Object::_create_request() method.

Parameters

See Also CORBA::NVList
CORBA::NamedValue
CORBA::Any
CORBA::ORB::create_list()

ORB::create_native_tc()
Returns a pointer to a new TypeCode of kind tk_native representing
an IDL native type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

count Number of elements anticipated for the new NVList.
This is a hint to help with storage allocation.

value A pointer to the NamedValue object created. You must
release the reference when it is no longer needed, or
assign it to a NamedValue_var variable for automatic
management.

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

Orbix CORBA Programmer’s Reference: Java 151

ORB::create_operation_list()
// Java
public abstract NVList create_operation_list(

OperationDef operation
);

Creates an NVList initialized with the argument descriptions for the
operation specified in operation.

Parameters

Each element in the list is of type NamedValue whose value member
(of type CORBA::Any) has a valid type that denotes the type of the
argument. The value of the argument is not filled in.
Use of this method requires that the relevant IDL file be compiled
with the -R option.

See Also CORBA::NVList
CORBA::NamedValue
CORBA::Any
CORBA::ORB::create_list()

ORB::create_output_stream()
// Java
public abstract

org.omg.CORBA.portable.OutputStream create_output_stream();

Creates a new org.omg.CORBA.portable.OutputStream into which
IDL method parameters can be marshalled during method invoca-
tion.

ORB::create_policy()
Returns a reference to a newly created Policy object.

Parameters

See Also CORBA::Policy
CORBA::PolicyType
CORBA::PolicyErrorCode

ORB::create_recursive_tc()
Returns a pointer to a recursive TypeCode, which serves as a place
holder for a concrete TypeCode during the process of creating type
codes that contain recursion. After the recursive TypeCode has been
properly embedded in the enclosing TypeCode, which corresponds to
the specified repository id, it will act as a normal TypeCode.

operation A pointer to the interface repository object describing
the operation.

type The PolicyType of the Policy object to be created.
value The value for the initial state of the Policy object cre-

ated.

 152 Orbix CORBA Programmer’s Reference: Java

Parameters

Invoking operations on the recursive TypeCode before it has been
embedded in the enclosing TypeCode will result in undefined behav-
ior.

Examples The following IDL type declarations contains TypeCode recursion:

// IDL
struct foo {

long value;
sequence<foo> chain;

};

valuetype V {
public V member;

};

See Also CORBA::TypeCode

ORB::create_sequence_tc()
// Java
public abstract TypeCode create_sequence_tc(

int bound,
TypeCode element_type

);

Returns a pointer to a new TypeCode of kind tk_sequence representing
an IDL sequence.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_string_tc()
// Java
public abstract TypeCode create_string_tc(int bound);

Returns a pointer to a new TypeCode of kind tk_string representing
an IDL string.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

id The repository ID of the enclosing type for which the
recursive TypeCode is serving as a place holder.

bound The upper bound of the sequence.
element_type The data type for the elements of the sequence.

bound The upper bound of the string.

Orbix CORBA Programmer’s Reference: Java 153

ORB::create_struct_tc()
// Java
public abstract TypeCode create_struct_tc(

String id,
String name,
StructMember[] members

);

Returns a pointer to a new TypeCode of kind tk_struct representing
an IDL structure.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_union_tc()
// Java
public abstract TypeCode create_union_tc(

String id,
String name,
TypeCode discriminator_type,
UnionMember[] members

);

Returns a pointer to a TypeCode of kind tk_union representing an IDL
union.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_value_box_tc()
Returns a pointer to a new TypeCode of kind tk_value_box represent-
ing an IDL boxed value.

Parameters

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within
its enclosing scope.

members The sequence of structure members.

id The repository ID that globally identifies the
TypeCode object.

name The simple name identifying the TypeCode
object within its enclosing scope.

discriminator_type The union discriminator type.
members The sequence of union members.

id The repository ID that globally identifies the TypeCode
object.

 154 Orbix CORBA Programmer’s Reference: Java

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_value_tc()
Returns a pointer to a TypeCode of kind tk_value representing an IDL
value type.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::create_wstring_tc()
// Java
public abstract TypeCode create_wstring_tc(int bound);

Returns a pointer to a new TypeCode of kind tk_wstring representing
an IDL wide string.

Parameters

See Also CORBA::TypeCode
CORBA::TCKind

ORB::destroy()
void destroy();

This thread operation destroys the ORB so that its resources can be
reclaimed by the application.

name The simple name identifying the TypeCode object within
its enclosing scope.

original_type A pointer to the original TypeCode object this boxed
value represents.

id The repository ID that globally identifies the
TypeCode object.

name The simple name identifying the TypeCode object
within its enclosing scope.

type_modifier A value type modifier.
concrete_base A TypeCode for the immediate concrete value type

base of the value type for which the TypeCode is
being created. If the value type does not have a
concrete base, use a nil TypeCode reference.

members The sequence of value type members.

bound The upper bound of the string.

Orbix CORBA Programmer’s Reference: Java 155

If destroy() is called on an ORB that has not been shut down (see
shutdown()) it will start the shut down process and block until the
ORB has shut down before it destroys the ORB. For maximum por-
tability and to avoid resource leaks, applications should always call
shutdown() and destroy() on all ORB instances before exiting.
After an ORB is destroyed, another call to ORB_init() with the
same ORB ID will return a reference to a newly constructed ORB.

Exceptions

The exception is raise if

See Also CORBA::ORB::run()
CORBA::ORB::shutdown()

ORB::_duplicate()
Returns a new reference to obj and increments the reference count
of the object. Because object references are opaque and ORB-de-
pendent, it is not possible for your application to allocate storage
for them. Therefore, if more than one copy of an object reference
is needed, use this method to create a duplicate.

ORB::get_default_context()
// Java
public abstract Context get_default_context();

Obtains a CORBA::Context object representing the default context of
the process.

Parameters

See Also CORBA::Context
CORBA::NVList

ORB::get_next_response()
// Java
public abstract Request get_next_response();

Gets the next response for a request that has been sent.

You can call get_next_response() successively to determine the
outcomes of the individual requests from
send_multiple_requests_deferred() calls. The order in which
responses are returned is not necessarily related to the order in
which the requests are completed.

BAD_INV_ORDER,
minor code 3

An application calls destroy() in a thread that is cur-
rently servicing an invocation because blocking would
result in a deadlock.

OBJECT_NOT_EXI
ST

An operation is invoked on a destroyed ORB reference.

context The default context of the process.

 156 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also CORBA::ORB::send_multiple_requests_deferred()
CORBA::Request::get_response()
CORBA::Request::send_deferred()
CORBA::ORB::poll_next_response()

ORB::get_primitive_tc()
// Java
public abstract TypeCode get_primitive_tc(TCKind tcKind);

Retrieves the TypeCode object that represents the given primitive
IDL type.

ORB.init()
public static ORB init(Strings[] args, Properties props);

Creates a new ORB instance for a standalone application.

public static ORB init(Applet app, Properties props);

Creates a new ORB instance for an applet.

public static ORB init();

Returns the ORB singleton object.

ORB::list_initial_services()
public abstract String[] list_initial_services();

Returns a sequence of ObjectId strings, each of which names a
service provided by Orbix. This method allows your application to
determine which objects have references available. Before you can
use some services such as the naming service in your application
you have to first obtain an object reference to the service.

The ObjectIdList may include the following names:
DynAnyFactory
IT_Configuration
InterfaceRepository
NameService
ORBPolicyManager
POACurrent
PSS
RootPOA
SecurityCurrent
TradingService
TransactionCurrent

See Also CORBA::ORB::resolve_initial_references()

WrongTransaction The thread invoking this method has a non-null
transaction context that differs from that of the
request and the request has an associated trans-
action context.

Orbix CORBA Programmer’s Reference: Java 157

ORB::lookup_value_factory()
Returns a pointer to the factory method.

Parameters

Your application assumes ownership of the returned reference to
the factory. When you are done with the factory, invoke
ValueFactoryBase::_remove_ref() once on that factory.

See Also CORBA::ValueFactory
CORBA::ORB::register_value_factory()
CORBA::ORB::unregister_value_factory()

ORB::object_to_string()
public abstract String object_to_string(

org.omg.CORBA.Object obj
);

Returns a string representation of an object reference. An object
reference can be translated into a string by this method and the
resulting value stored or communicated in whatever ways strings
are manipulated.

Parameters

Use string_to_object() to translate the string back to the corre-
sponding object reference.
A string representation of an object reference has the prefix IOR:
followed by a series of hexadecimal octets. The hexadecimal
strings are generated by first turning an object reference into an
interoperable object reference (IOR), and then encapsulating the IOR
using the encoding rules of common data representation (CDR). The
content of the encapsulated IOR is then turned into hexadecimal
digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded
as a hexadecimal digit, then the low four bits are encoded.

Note: Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for
storing references to objects in persistent storage or
communicating references by means other than invocation.

See Also CORBA::ORB::string_to_object()

ORB::perform_work()
void perform_work();

A thread function that provides execution resources to your appli-
cation if called by the main thread. This function does nothing if
called by any other thread.

id A repository ID that identifies a value type factory
method.

obj Object reference to be translated to a string.

 158 Orbix CORBA Programmer’s Reference: Java

Exceptions You can use perform_work() and work_pending() for a simple polling loop
that multiplexes the main thread among the ORB and other activities. Such a loop
would most likely be used in a single-threaded server. A multi-threaded server
would need a polling loop only if there were both ORB and other code that
required use of the main thread.

See Also CORBA::ORB::run()
CORBA::ORB::work_pending()

ORB::poll_next_response()
public abstract boolean poll_next_response();

Returns 1 (true) if any request has completed or returns 0 (false)
if none have completed. This method returns immediately, whether
any request has completed or not.

You can call this method successively to determine whether the
individual requests specified in a send_multiple_requests_oneway()
or send_multiple_requests_deferred() call have completed success-
fully.
Alternatively you can call Request::poll_response() on the individ-
ual Request objects in the sequence of requests passed to
send_multiple_requests_oneway() or
send_multiple_requests_deferred().

See Also CORBA::ORB::get_next_response()
CORBA::ORB::send_multiple_requests_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::Request::poll_response()

ORB::register_value_factory()
Registers a value type factory method with the ORB for a particular
value type. The method returns a null pointer if no previous factory
was registered for the type. If a factory is already registered for the
value type, the method replaces the factory and returns a pointer
to the previous factory for which the caller assumes ownership.

Parameters

When a value type factory is registered with the ORB, the ORB
invokes ValueFactoryBase::_add_ref() once on the factory before
returning from register_value_factory(). When the ORB is done
using that factory, the reference count is decremented once with
ValueFactoryBase::_remove_ref(). This can occur in any of the fol-
lowing circumstances:
• If the factory is explicitly unregistered via

unregister_value_factory(), the ORB invokes
ValueFactoryBase::_remove_ref() once on the factory.

id A repository ID that identifies the factory.
factory The application-specific factory method that the ORB

calls whenever it needs to create the value type during
the unmarshaling of value instances.

Orbix CORBA Programmer’s Reference: Java 159

• If the factory is implicitly unregistered due to a call to
shutdown(), the ORB invokes ValueFactoryBase::_remove_ref()
once on each registered factory.

• If you replace a factory by calling this
register_value_factory() again, you should invoke
ValueFactoryBase::_remove_ref() once on the previous factory.

See Also CORBA::ValueFactory
CORBA::ORB::lookup_value_factory()
CORBA::ORB::unregister_value_factory()

ORB::resolve_initial_references()
public abstract org.omg.CORBA.Object

resolve_initial_references(String object_name)
throws org.omg.CORBA.ORBPackage.InvalidName;

Returns an object reference for a desired service.

Parameters

Applications require a portable means by which to obtain some ini-
tial object references such as the root POA, the interface reposi-
tory, and various object services instances. The functionality of
resolve_initial_references() and list_initial_services() is like a
simplified, local version of the naming service that has only a
small set of objects in a flattened single-level name space.
The object reference returned must be narrowed to the correct
object type. For example, the object reference returned from
resolving the id name InterfaceRepository must be narrowed to
the type CORBA::Repository.

See Also CORBA::ORB::list_initial_services()

ORB::run()
void run();

A thread method that enables the ORB to perform work using the
main thread. If called by any thread other than the main thread,
this method simply waits until the ORB has shut down.

This method provides execution resources to the ORB so that it
can perform its internal functions. Single threaded ORB implemen-
tations, and some multi-threaded ORB implementations need to
use the main thread. For maximum portability, your applications
should call either run() or perform_work() on the main thread.
run() returns after the ORB has completed the shutdown process,
initiated when some thread calls shutdown().

See Also CORBA::ORB::perform_work()
CORBA::ORB::work_pending()
CORBA::ORB::shutdown()
CORBA::ORB::destroy()

id The name of the desired service. Use
list_initial_services() to obtain the list of services
supported.

 160 Orbix CORBA Programmer’s Reference: Java

ORB::send_multiple_requests_deferred()
public abstract void send_multiple_requests_deferred(

Request[] req
);

Initiates a number of requests in parallel.

Parameters

The method does not wait for the requests to finish before return-
ing to the caller. The caller can use get_next_response() or
Request::get_response() to determine the outcome of the
requests. Memory leakage will result if one of these methods is
not called for a request issued with
send_multiple_requests_oneway() or Request::send_deferred().

See Also CORBA::ORB::send_multiple_requests_oneway()
CORBA::Request::get_response()
CORBA::Request::send_deferred()
CORBA::ORB::get_next_response()

ORB::send_multiple_requests_oneway()
public abstract void send_multiple_requests_oneway(Request[]
req);

Initiates a number of requests in parallel. It does not wait for the
requests to finish before returning to the caller.

Parameters

See Also CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()

ORB::shutdown()
void shutdown(

boolean wait_for_completion
);

This thread method instructs the ORB to shut down in preparation
for ORB destruction.

req A sequence of requests.

req A sequence of requests. The operations in this
sequence do not have to be IDL oneway operations.
The caller does not expect a response, nor does it
expect out or inout parameters to be updated.

Orbix CORBA Programmer’s Reference: Java 161

Parameters

While the ORB is in the process of shutting down, the ORB oper-
ates as normal, servicing incoming and outgoing requests until all
requests have been completed. Shutting down the ORB causes all
object adapters to be shut down because they cannot exist with-
out an ORB.
An application may also invoke ORB::destroy() on the ORB itself.
Invoking any other method raises exception BAD_INV_ORDER system
with the OMG minor code 4.

Exceptions

See Also CORBA::ORB::run()
CORBA::ORB::destroy()

ORB::string_to_object()
public abstract org.omg.CORBA.Object string_to_object(String
str);

Returns an object reference by converting a string representation
of an object reference.

Parameters

To guarantee that an ORB will understand the string form of an
object reference, the string must have been produced by a call to
object_to_string().

See Also CORBA::ORB::object_to_string()

ORB::unregister_value_factory()
Unregisters a value type factory method from the ORB.

Parameters

See Also CORBA::ValueFactory

wait_for_completion Designates whether or not to wait for comple-
tion before continuing.
If the value is 1 (true), this method blocks until
all ORB processing has completed, including
request processing and object deactivation or
other methods associated with object adapters.
If the value is 0 (false), then shut down may
not have completed upon return of the
method.

BAD_INV_ORDER,
minor code
3

An application calls this method in a thread that is cur-
rently servicing an invocation because blocking would
result in a deadlock.

obj_ref_string String representation of an object reference to be
converted.

id A repository ID that identifies a value type factory
method.

 162 Orbix CORBA Programmer’s Reference: Java

CORBA::ORB::lookup_value_factory()
CORBA::ORB::register_value_factory()

ORB::work_pending()
boolean work_pending();

This thread method returns an indication of whether the ORB needs
the main thread to perform some work. A return value of 1 (true)
indicates that the ORB needs the main thread to perform some work
and a return value of 0 (false) indicates that the ORB does not need
the main thread.

Exceptions

See Also CORBA::ORB::run()
CORBA::ORB::perform_work()

BAD_INV_ORDER,
minor code 4

The method is called after the ORB has shutdown.

 Orbix CORBA Programmer’s Reference: Java 163

CORBA::Policy Interface
An ORB or CORBA service may choose to allow access to certain
choices that affect its operation. This information is accessed in a
structured manner using interfaces derived from the Policy inter-
face defined in the CORBA module. A CORBA service is not
required to use this method of accessing operating options, but
may choose to do so.
This chapter is divided into the following sections:
• “Quality of Service Framework”
• “Policy Methods”
The following policies are available. These are classes that inherit
from the CORBA::Policy class:

You create instances of a policy by calling
CORBA::ORB::create_policy().

Quality of Service Framework
A Policy is the key component for a standard Quality of Service
framework (QoS). In this framework, all qualities are defined as
interfaces derived from CORBA::Policy. This framework is how all
service-specific qualities are defined. The components of the
framework include:

Table 6: Policies

Category Policy

CORBA and
IT_CORBA

IT_CORBA::WellKnownAddressingPolicy

PortableServer
and IT_Portable-
Server

PortableServer::ThreadPolicy
PortableServer::LifespanPolicy
PortableServer::IdUniquenessPolicy
PortableServer::IdAssignmentPolicy
PortableServer::ImplicitActivationPolicy
PortableServer::ServantRetentionPolicy
PortableServer::RequestProcessingPolicy
IT_PortableServer::ObjectDeactivationPolicy
IT_PortableServer::PersistenceModePolicy

Policy This base interface from which all QoS objects
derive.

PolicyList A sequence of Policy objects.
PolicyManager An interface with operations for querying and

overriding QoS policy settings.

 164 Orbix CORBA Programmer’s Reference: Java

Most policies are appropriate only for management at either the
server or client, but not both. Server-side policies are associated
with a POA. Client-side policies are divided into ORB-level,
thread-level, and object-level policies. At the thread and ORB lev-
els, use the PolicyManager interface to query the current set of pol-
icies and override these settings.

POA Policies for Servers
Server-side policy management is handled by associating QoS
Policy objects with a POA. Since all QoS are derived from interface
Policy, those that are applicable to server-side behavior can be
passed as arguments to POA::create_POA(). Any such policies that
affect the behavior of requests (and therefore must be accessible
by the ORB at the client side) are exported within the object refer-
ences that the POA creates. It is clearly noted in a POA policy defi-
nition when that policy is of interest to the client. For those
policies that can be exported within an object reference, the
absence of a value for that policy type implies that the target sup-
ports any legal value of that PolicyType.

ORB-level Policies for Clients
You obtained the ORB’s locality-constrained PolicyManager through
an invocation of CORBA::ORB::resolve_initial_references(), speci-
fying an identifier of ORBPolicyManager. This PolicyManager has
operations through which a set of policies can be applied and the
current overriding policy settings can be obtained. Policies applied
at the ORB level override any system defaults.

Thread-level Policies for Clients
You obtained a thread’s locality-constrained PolicyCurrent through
an invocation of CORBA::ORB::resolve_initial_references(), speci-
fying an identifier of PolicyCurrent. Policies applied at the
thread-level override any system defaults or values set at the ORB
level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a
SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to
have no overridden values.

Policy Transport
Mechanisms

Mechanisms for transporting policy values as
part of interoperable object references and
within requests. These include:
• TAG POLICIES - A Profile Component con-

taining the sequence of QoS policies
exported with the object reference by an
object adapter.

• INVOCATION POLICIES - A Service Context
containing a sequence of QoS policies in
effect for the invocation.

Orbix CORBA Programmer’s Reference: Java 165

Object-level Policies for Clients
Operations are defined on the base Object interface through which
a set of policies can be applied. Policies applied at the object level
override any system defaults or values set at the ORB or thread
levels. In addition, accessors are defined for querying the current
overriding policies set at the object level, and for obtaining the
current effective client-side policy of a given PolicyType. The effec-
tive client-side policy is the value of a PolicyType that would be in
effect if a request were made. This is determined by checking for
overrides at the object level, then at the thread level, and finally
at the ORB level. If no overriding policies are set at any level, the
system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default val-
ues are not specified in most cases.

Policy Methods
The Policy interface is as follows:
// IDL in module CORBA
interface Policy {
 readonly attribute PolicyType policy_type;
 Policy copy();
 void destroy();
};

Policy::policy_type Attribute
// IDL
readonly attribute PolicyType policy_type;

// Java
public int policy_type();

This read-only attribute returns the constant value of type
PolicyType that corresponds to the type of the Policy object.

Policy::copy()
// IDL
Policy copy();

// Java
org.omg.CORBA.Policy copy();

This operation copies the Policy object. The copy does not retain
any relationships that the original policy had with any domain, or
object.

Policy::destroy()
// IDL
void destroy();

// Java
public void destroy();

 166 Orbix CORBA Programmer’s Reference: Java

This operation destroys the Policy object. It is the responsibility of
the Policy object to determine whether it can be destroyed.

Enhancement Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy(). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs.

Exceptions

NO_PERMISSION The policy object determines that it cannot be
destroyed.

 Orbix CORBA Programmer’s Reference: Java 167

CORBA::PolicyCurrent Class
The PolicyCurrent interface allows access to policy settings at the
current programming context level. Within a client, you obtain a
PolicyCurrent object reference to set the quality of service for all
invocations in the current thread. You obtain a reference to this
interface by invoking ORB::resolve_initial_references().
The PolicyCurrent interface is derived from the PolicyManager and
the Current interfaces. The PolicyManager interface allows you to
change the policies for each invocation and the Current interface
allows control from the current thread.
Policies applied at the thread level override any system defaults or
values set at the ORB level. When accessed from a newly spawned
thread, the PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with
ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a
servant. Each time an invocation is dispatched through a POA of
the SINGLE_THREAD_MODEL, the thread-level overrides are reset to
have no overridden values.
// Java
package org.omg.CORBA;
public interface PolicyCurrent extends
 org.omg.CORBA.PolicyManager,
 org.omg.CORBA.Current {}

 168 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 169

CORBA::PolicyManager Class
PolicyManager is an interface with operations for querying and
overriding QoS policy settings. It includes mechanisms for obtain-
ing policy override management operations at each relevant appli-
cation scope. You obtain the ORB’s PolicyManager by invoking
ORB::resolve_initial_references() with the ObjectId
ORBPolicyManager.
You use a CORBA::PolicyCurrent object, derived from
CORBA::Current, for managing the thread’s QoS policies. You obtain
a reference to this interface by invoking
ORB::resolve_initial_references() with the ObjectId
PolicyCurrent.
• Accessor operations on CORBA::Object allow querying and

overriding of QoS at the object reference scope.
• The application of QoS on a POA is done through the currently

existing mechanism of passing a PolicyList to
POA::create_POA().

PolicyManager::get_policy_overrides()
// Java
org.omg.CORBA.Policy[] get_policy_overrides(int[] ts);

Parameters Returns a list containing the overridden polices for the requested
policy types. This returns only those policy overrides that have been
set at the specific scope corresponding to the target PolicyManager
(no evaluation is done with respect to overrides at other scopes).
If none of the requested policy types are overridden at the target
PolicyManager, an empty sequence is returned.

Parameters

See Also CORBA::PolicyManager::set_policy_overrides()

PolicyManager::set_policy_overrides()
// Java
void set_policy_overrides(
 org.omg.CORBA.Policy[] policies,
 org.omg.CORBA.SetOverrideType set_add
) throws org.omg.CORBA.InvalidPolicies;

Modifies the current set of overrides with the requested list of policy
overrides.

Parameters

ts A sequence of policy types to get. If the specified
sequence is empty, the method returns all policy over-
rides at this scope.

policies A sequence of references to policy objects.

 170 Orbix CORBA Programmer’s Reference: Java

Invoking the method with an empty sequence of policies and a
mode of SET_OVERRIDE removes all overrides from a PolicyManager.
There is no evaluation of compatibility with policies set within
other policy managers.

Exceptions

set_add Indicates whether the policies in the policies parame-
ter should be added to existing overrides in the
PolicyManager or used to replace existing overrides:
• Use ADD_OVERRIDE to add policies onto any other

overrides that already exist in the PolicyManager.
• Use SET_OVERRIDE to create a clean PolicyManager

free of any other overrides.

NO_PERMISSION Only certain policies that pertain to the invocation
of an operation at the client end can be overridden
using this operation. This exception is raised if you
attempt to override any other policy.

InvalidPolicied The request would put the set of overriding poli-
cies for the target PolicyManager in an inconsistent
state. No policies are changed or added.

 Orbix CORBA Programmer’s Reference: Java 171

CORBA::PrimitiveDef Interface
Interface PrimitiveDef represents an IDL primitive type such as
short, long, and others. PrimitiveDef objects are anonymous
(unnamed) and owned by the interface repository.
Objects of type PrimitiveDef cannot be created directly. You can
obtain a reference to a PrimitiveDef by calling
Repository::get_primitive().
// IDL in module CORBA.
interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
};

See Also CORBA::PrimitiveKind
CORBA::IDLType
CORBA::Repository::get_primitive()

PrimitiveDef::kind Attribute
// IDL
readonly attribute PrimitiveKind kind;

// Java
org.omg.CORBA.PrimitiveKind kind();

Identifies which of the IDL primitive types is represented by this
PrimitiveDef.

A PrimitiveDef with a kind of type pk_string represents an
unbounded string, a bounded string is represented by the inter-
face StringDef. A PrimitiveDef with a kind of type pk_objref rep-
resents the IDL type Object.

See Also CORBA::IDLType
CORBA::Object
CORBA::StringDef

 172 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 173

CORBA::Repository Interface
The interface repository itself is a container for IDL type defini-
tions. Each interface repository is represented by a global root
Repository object.
The Repository interface describes the top-level object for a repos-
itory name space. It contains definitions of constants, typedefs,
exceptions, interfaces, value types, value boxes, native types, and
modules.
You can use the Repository operations to look up any IDL defini-
tion, by either name or identity, that is defined in the global name
space, in a module, or in an interface. You can also use other
Repository operations to create information for the interface
repository. See Table 7:

The five create_type operations create new interface repository
objects defining anonymous types. Each anonymous type defini-
tion must be used in defining exactly one other object. Because
the interfaces for these anonymous types are not derived from
Contained, it is your responsibility to invoke in your application
destroy() on the returned object if it is not successfully used in
creating a definition that is derived from Contained.
The Repository interface is as follows:
// IDL in module CORBA.
interface Repository : Container {
 Contained lookup_id(
 in RepositoryId search_id
);
 TypeCode get_canonical_typecode(
 in TypeCode tc
);
 PrimitiveDef get_primitive(
 in PrimitiveKind kind
);
 StringDef create_string(
 in unsigned long bound
);
 WstringDef create_wstring(
 in unsigned long bound
);
 SequenceDef create_sequence(
 in unsigned long bound,
 in IDLType element_type
);
 ArrayDef create_array(
 in unsigned long length,

Table 7: Operations of the Repository Interface

Read Operations Write Operations

get_canonical_typecode()
get_primitive()
lookup_id()

create_array()
create_fixed()
create_sequence()
create_string()
create_wstring()

 174 Orbix CORBA Programmer’s Reference: Java

 in IDLType element_type
);
 FixedDef create_fixed(
 in unsigned short digits,
 in short scale
);
};

Note that although a Repository does not have a RepositoryId
associated with it (because it derives only from Container and not
from Contained) you can assume that its default RepositoryId. is an
empty string. This allows a value to be assigned to the defined_in
field of each description structure for ModuleDef, InterfaceDef,
ValueDef, ValueBoxDef, TypedefDef, ExceptionDef and ConstantDef
that may be contained immediately within a Repository object.

See Also CORBA::Container

Repository::create_array()
// IDL
ArrayDef create_array(
 in unsigned long length,
 in IDLType element_type
);

// Java
org.omg.CORBA.ArrayDef create_array(
 int length,
 org.omg.CORBA.IDLType element_type
);

Returns a new array object defining an anonymous (unnamed) type.
The new array object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

Parameters

See Also CORBA::ArrayDef
CORBA::IRObject

Repository::create_fixed()
// IDL
FixedDef create_fixed (
 in unsigned short digits,
 in short scale
);

// Java
org.omg.CORBA.FixedDef create_fixed(
 short digits,
 short scale
);

length The number of elements in the array.
element_type The type of element that the array will contain.

Orbix CORBA Programmer’s Reference: Java 175

Returns a new fixed-point object defining an anonymous (unnamed)
type. The new object must be used in the definition of exactly one
other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

Parameters

Repository::create_sequence()
// IDL
SequenceDef create_sequence (
 in unsigned long bound,
 in IDLType element_type
);

// Java
org.omg.CORBA.SequenceDef create_sequence(
 int bound,
 org.omg.CORBA.IDLType element_type
);

Returns a new sequence object defining an anonymous (unnamed)
type. The new sequence object must be used in the definition of
exactly one other object. It is deleted when the object it is contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

Parameters

See Also CORBA::SequenceDef

Repository::create_string()
// IDL
StringDef create_string(
 in unsigned long bound
);

// Java
org.omg.CORBA.StringDef create_string(int bound);

Returns a new string object defining an anonymous (unnamed)
type. The new string object must be used in the definition of exactly
one other object. It is deleted when the object it is contained in is
deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

digits The number of digits in the fixed-point number. Valid
values must be between 1 and 31, inclusive.

scale The scale.

bound The number of elements in the sequence. A bound of
0 indicates an unbounded sequence.

element_type The type of element that the sequence will contain.

 176 Orbix CORBA Programmer’s Reference: Java

Parameters

Use get_primitive() to create unbounded strings.
See Also CORBA::StringDef

CORBA::Repository::get_primitive()

Repository::create_wstring()
// IDL
StringDef create_wstring (
 in unsigned long bound
);

// Java
org.omg.CORBA.WstringDef create_wstring(int bound);

Returns a new wide string object defining an anonymous (unnamed)
type. The new wide string object must be used in the definition of
exactly one other object. It is deleted when the object it is contained
in is deleted. If the created object is not successfully used in the
definition of a Contained object, it is your application’s responsibility
to delete it.

Parameters

Use get_primitive() to create unbounded strings.
See Also CORBA::WstringDef

CORBA::Repository::get_primitive()

Repository::get_canonical_typecode()
// IDL
TypeCode get_canonical_typecode(
 in TypeCode tc
);

// Java
org.omg.CORBA.TypeCode get_canonical_typecode(
 org.omg.CORBA.TypeCode tc
);

Returns a TypeCode that is equivalent to tc that also includes all
repository ids, names, and member names.

Parameters

If the top level TypeCode does not contain a RepositoryId (such as
array and sequence type codes or type codes from older ORBs) or
if it contains a RepositoryId that is not found in the target
Repository, then a new TypeCode is constructed by recursively call-
ing get_canonical_typecode() on each member TypeCode of the
original TypeCode.

bound The maximum number of characters in the string.
(This cannot be 0.)

bound The maximum number of characters in the string.
(This cannot be 0.)

tc The TypeCode to lookup.

Orbix CORBA Programmer’s Reference: Java 177

Repository::get_primitive()
// IDL
PrimitiveDef get_primitive(
 in PrimitiveKind kind
);

// Java
org.omg.CORBA.PrimitiveDef get_primitive(
 org.omg.CORBA.PrimitiveKind kind
);

Returns a reference to a PrimitiveDef of the specified PrimitiveKind.
All PrimitiveDef objects are owned by the Repository, one primitive
object per primitive type (for example, short, long, unsigned short,
unsigned long and so on).

Parameters

See Also CORBA::PrimitiveDef

Repository::lookup_id()
// IDL
Contained lookup_id(
 in RepositoryId search_id
);
// Java
org.omg.CORBA.Contained lookup_id(java.lang.String search_id);

Returns an object reference to a Contained object within the repos-
itory given its RepositoryId. If the repository does not contain a
definition for the given ID, a nil object reference is returned.

Parameters

See Also CORBA::Contained

kind The kind of primitive to get.

search_id The RepositoryId of the IDL definition to lookup.

 178 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 179

CORBA::Request Class
This class is the key support class for the Dynamic Invocation
Interface (DII), whereby an application may issue a request for
any interface, even if that interface was unknown at the time the
application was compiled.
Orbix allows invocations, that are instances of class Request, to be
constructed by specifying at runtime the target object reference,
the operation name and the parameters. Such calls are termed
dynamic because the IDL interfaces used by a program do not
have to be statically determined at the time the program is
designed and implemented.
You create a request using methods Object::_create_request() or
Object::_request().

See Also CORBA::Object::_request()
CORBA::Object::_create_request()

Request::add_in_arg()
// Java
public abstract Any add_in_arg();

Returns an any value for the input argument that is added.

See Also CORBA::Request::arguments()
CORBA::Request::add_inout_arg()
CORBA::Request::add_out_arg()

Request::add_inout_arg()
// Java
 public abstract Any add_inout_arg();

Returns an any value for the in/out argument that is added.

See Also CORBA::Request::arguments()
CORBA::Request::add_in_arg()
CORBA::Request::add_out_arg()

Request::add_named_in_arg()
// Java
public abstract Any add_named_in_arg(String name);

Request:add_named_inout_arg()
// Java
public abstract Any add_named_inout_arg(String name);

 180 Orbix CORBA Programmer’s Reference: Java

Request::add_named_out_arg()
// Java
public abstract Any add_named_out_arg(String name);

Request::add_out_arg()
// Java
public abstract Any add_out_arg();

Returns an any value for the output argument that is added.

See Also CORBA::Request::arguments()
CORBA::Request::add_in_arg()
CORBA::Request::add_inout_arg()

Request::arguments()
// Java
public abstract NVList arguments();

Returns the arguments to the requested operation in an NVList.
Ownership of the return value is maintained by the Request and must
not be freed by the caller. You can add additional arguments to the
request using the add_*_arg() helper methods.

See Also CORBA::NVList
CORBA::Request::add_in_arg()
CORBA::Request::add_inout_arg()
CORBA::Request::add_out_arg()

Request::contexts()
// Java
public abstract ContextList contexts();

Returns a pointer to a list of contexts for the request. Ownership of
the return value is maintained by the Request and must not be freed
by the caller.

Request::ctx()
// Java
public abstract Context ctx();

Returns the Context associated with a request. Ownership of the
return value is maintained by the Request and must not be freed by
the caller.

// Java
public abstract void ctx(Context c);

Inserts a Context into a request.

Parameters

c The context to insert with the request.

Orbix CORBA Programmer’s Reference: Java 181

Request::env()
// Java
public abstract Environment env();

Returns the Environment associated with the request from which
exceptions raised in DII calls can be accessed. Ownership of the
return value is maintained by the Request and must not be freed by
the caller.

See Also CORBA::Environment

Request::exceptions()
// Java
public abstract ExceptionList exceptions();

Returns a pointer to list of possible application-specific exceptions
for the request. Ownership of the return value is maintained by the
Request and must not be freed by the caller.

See Also CORBA::ExceptionList

Request::get_response()
// Java
public abstract void get_response();

Determines whether a request has completed successfully. It re-
turns only when the request, invoked previously using
send_deferred(), has completed.

See Also CORBA::Request::result()
CORBA::Request::send_deferred()

Request::invoke()
// Java
public abstract void invoke();

Instructs the ORB to make a request. The parameters to the request
must already be set up. The caller is blocked until the request has
been processed by the target object or an exception occurs.

To make a non-blocking request, see send_deferred() and
send_oneway().

See Also CORBA::Request::send_oneway()
CORBA::Request::send_deferred()
CORBA::Request::result()

Request::operation()
// Java
public abstract String operation();

Returns the operation name of the request. Ownership of the return
value is maintained by the Request and must not be freed by the
caller.

 182 Orbix CORBA Programmer’s Reference: Java

Request::poll_response()
// Java
public abstract boolean poll_response();

Returns 1 (true) if the operation has completed successfully and
indicates that the return value and out and inout parameters in the
request are valid. Returns 0 (false) otherwise. The method returns
immediately.

If your application makes an operation request using
send_deferred(), it can call poll_response() to determine whether
the operation has completed. If the operation has completed, you
can get the result by calling Request::result().

See Also CORBA::Request::send_deferred()
CORBA::Request::get_response()
CORBA::Request::result()

Request::result()
// Java
public abstract NamedValue result();

Returns the result of the operation request in a NamedValue. Owner-
ship of the return value is maintained by the Request and must not
be freed by the caller.

Request::return_value()
// Java
public abstract Any return_value();

Returns an any value for the returned value of the operation.

Request::send_deferred()
// Java
public abstract void send_deferred();

Instructs the ORB to make the request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

To make a blocking request, use invoke(). You can use
poll_response() to determine whether the operation completed.

See Also CORBA::Request::send_oneway()
CORBA::ORB::send_multiple_requests_deferred()
CORBA::Request::invoke()
CORBA::Request::poll_response()
CORBA::Request::get_response()

Request::send_oneway()
// Java
public abstract void send_oneway();

Orbix CORBA Programmer’s Reference: Java 183

Instructs Orbix to make the oneway request. The arguments to the
request must already be set up. The caller is not blocked, and thus
may continue in parallel with the processing of the call by the target
object.

You can use this method even if the operation has not been
defined to be oneway in its IDL definition, however, do not expect
any output or inout parameters to be updated.
To make a blocking request, use invoke().

See Also CORBA::Request::send_deferred()
CORBA::ORB::send_multiple_requests_oneway()
CORBA::Request::invoke()
CORBA::Request::poll_response()
CORBA::Request::get_response()

Request::set_return_type()
// Java
public abstract void set_return_type(TypeCode tc);

Sets the TypeCode associated with a Request object. When using the
DII with the Internet Inter-ORB Protocol (IIOP), you must set the
return type of a request before invoking the request.

Parameters

Request::target()
// Java
public abstract Object target();

Gets the target object of the Request. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

tc The TypeCode for the return type of the operation asso-
ciated with the Request object.

 184 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 185

CORBA::SequenceDef Interface
Interface SequenceDef represents an IDL sequence definition in the
interface repository. It inherits from the interface IDLType.
// IDL in module CORBA.
interface SequenceDef : IDLType {
 attribute unsigned long bound;
 readonly attribute TypeCode element_type;
 attribute IDLType element_type_def;
};

The inherited type attribute is also described.
See Also CORBA::IDLType

CORBA::Repository::create_sequence()

SequenceDef::bound Attribute
// IDL
attribute unsigned long bound;

// Java
int bound();
void bound(int _val);

The maximum number of elements in the sequence. A bound of 0
indicates an unbounded sequence.

Changing the bound attribute will also update the inherited type
attribute.

See Also CORBA::SequenceDef::type

SequenceDef::element_type Attribute
// IDL
readonly attribute TypeCode element_type;

// Java
org.omg.CORBA.TypeCode element_type();

The type of element contained within this sequence. The attribute
element_type_def contains the same information.

See Also CORBA::SequenceDef::element_type_def

SequenceDef::element_type_def Attribute
// IDL
attribute IDLType element_type_def;

// Java
org.omg.CORBA.IDLType element_type_def();
void element_type_def(org.omg.CORBA.IDLType _val);

Describes the type of element contained within this sequence. The
attribute element_type contains the same information. Setting the
element_type_def attribute also updates the element_type and
IDLType::type attributes.

 186 Orbix CORBA Programmer’s Reference: Java

See Also CORBA::SequenceDef::element_type
CORBA::IDLType::type

SequenceDef::type Attribute
// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_sequence TypeCode that describes the sequence. It is updated
automatically whenever the attributes bound or element_type_def are
changed.

See Also CORBA::SequenceDef::element_type_def
CORBA::SequenceDef::bound

 Orbix CORBA Programmer’s Reference: Java 187

CORBA::ServerRequest Class
The object adapter dispatches an invocation to a DSI-based object
implementation by calling invoke() on an object of the
DynamicImplentation class. The parameter passed to this method is
a ServerRequest object. This ServerRequest object contains the
state of an incoming invocation for the DSI. This can be compared
to how the Request class object is used in the DII approach for cli-
ents.
The following code is the complete class definition:

ServerRequest::arguments()
// Java
public void arguments(org.omg.CORBA.NVList args)

Allows a redefinition of the following method to specify the values
of incoming arguments:

PortableServer::DynamicImplementation::invoke()

Parameters

This method must be called exactly once in each execution of
invoke().

See Also CORBA::ServerRequest::params()
PortableServer::DynamicImplementation::invoke()

ServerRequest::ctx()
// Java
public abstract Context ctx();

Returns the Context associated with the call.

If no Context was sent then this method returns null.

ServerRequest::except()
public abstract void except(Any a);

The DIR may call except() at any time to return an exception to the
client.

Parameters

The Any value passed to except() must contain either a system
exception or one of the user exceptions specified in the raises
expression of the invoked operation’s IDL definition.

See Also “System Exceptions”
CORBA.Any

args Obtains output and input arguments.

a An Any containing the exception to be
returned to the client.

 188 Orbix CORBA Programmer’s Reference: Java

CORBA.SystemException

ServerRequest::operation()

// Java
public String operation()

Parameters Returns the name of the operation being invoked.

This method must be called at least once in each execution of the
dynamic implementation routine, that is, in each redefinition of
the method:
PortableServer::DynamicImplementation::invoke()

See Also CORBA::ServerRequest::op_name()
PortableServer::DynamicImplementation::invoke()

ServerRequest::op_name()
public abstract String op_name();

Returns the name of the operation being invoked.

ServerRequest::params()
public abstract void params(NVList parms);

This method marshals the parameters from the incoming Server-
Request into the supplied parms NVList.

Parameters

It is up to the programmer to ensure that the TypeCode and flags
(ARG_IN,ARG_OUT or ARG_INOUT) of each of the parameters are cor-
rect.
The Dynamic Implementation Routine (DIR) must call params with
parms containing TypeCodes and Flags describing the parameter
types expected for the method.
After invoking params() the programmer uses the unmarshaled
“in” and “inout” values as parameters to the method invocation.
When the invocation completes the programmer must insert the
values for any out and inout parameters into the parms NVList
before returning.
If the operation has a return value you must also call “result()” .
For example:
// import org.omg.CORBA.*;
//
// simulate the set operation on the grid interface with
// the DSI
public void invoke(ServerRequest _req) {

parms An NVList describing the parameter types for
the operation in the order in which they appear
in the IDL specification (left to right).

Orbix CORBA Programmer’s Reference: Java 189

 String _opName = _req.op_name() ;
 Any _ret = ORB.init().create_any();
 NVList _nvl = null;
 long [][]ma_a = // create new array;

 if(_opName.equals("set"))
 {
 _nvl = ORB.init().create_list(3);

 // create a new any
 Any row = ORB.init().create_any();

 // insert the TypeCode (tk_short) into the new Any
 row.type(ORB.init().get_primitive_tc(TCKind.tk_short)) ;

 // insert this Any into the NVList and set the Flag to in
 _nvl.add_value(null, row, ARG_IN.value);

 // create new Any,set TypeCode to short, insert into
NVList

 // with flag set to in
 Any col = ORB.init().create_any();
 col.type(ORB.init().get_primitive_tc(TCKind.tk_short));
 _nvl.add_value(null, col, ARG_IN.value);

 // create new Any,set TypeCode to long, insert into
NVList

 // with flag set to in
 Any data = ORB.init().create_any();
 data.type(ORB.init().get_primitive_tc(TCKind.tk_long));
 _nvl.add_value(null, data, ARG_IN.value);

 // get params() method to marshal data into _nvl
 _req.params(_nvl);

 // get the value of row,col from Any row,col
 // and set this element in the array to the value
 m_a[row.extract_short()][col.extract_short()] =
 data.extract_long() ;
 return;
 }
}

See Also CORBA.NVList class

ServerRequest.result()
public abstract void result(Any a);

Use the result() method to specify the return value for the call.

Parameters

res An Any containing the return value and
type for the operation.

 190 Orbix CORBA Programmer’s Reference: Java

If the operation has a void result type, result() should be set to
an Any whose type is _tc_void.

See Also CORBA.Any Class

ServerRequest::set_exception()
// Java
public void set_exception(Any any)

Allows (a redefinition of)
PortableServer::DynamicImplementation::invoke() to return an ex-
ception to the caller.

Parameters

See Also CORBA::Environment()
PortableServer::DynamicImplementation::invoke()

ServerRequest::set_result()
// Java
public void set_result(org.omg.CORBA.Any any)

Allows PortableServer::DynamicImplementation::invoke() to return
the result of an operation request in an Any.

Parameters

This method must be called once for operations with non-void
return types and not at all for operations with void return types. If
it is called, then set_exception() cannot be used.

See Also CORBA::ServerRequest::set_exception()

value A pointer to an Any, which holds the
exception returned to the caller.

value A pointer to a Any, which holds the result
returned to the caller.

 Orbix CORBA Programmer’s Reference: Java 191

CORBA::String_var Class
The class String_var implements the _var type for IDL strings
required by the standard C++ mapping. The String_var class con-
tains a char* value and ensures that this is properly freed when a
String_var object is deallocated, for example when exectution
goes out of scope.

String_var::char*()
Converts a String_var object to a char*.

See Also CORBA::String_var::operator=()

String_var::in()
Returns the proper string for use as an input parameter.

See Also CORBA::String_var::out()
CORBA::String_var::inout()
CORBA::String_var::_retn()

String_var::inout()
Returns the proper string for use as an inout parameter.

See Also CORBA::String_var::in()
CORBA::String_var::out()
CORBA::String_var::_retn()

String_var::operator=() Assignment Operators
Assignment operators allow you to assign values to a String_var
from a char* or from another String_var type.

Parameters

See Also CORBA::String_var::char*()

String_var::operator[]() Subscript Operators
Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

Parameters

p A character string to assign to the String_var.
s A String_var to assign to the String_var.

index The index location in the string.

 192 Orbix CORBA Programmer’s Reference: Java

String_var::out()
Returns the proper string for use as an output parameter.

See Also CORBA::String_var::in()
CORBA::String_var::inout()
CORBA::String_var::_retn()

String_var::String_var() Constructors
The default constructor.

Constructors that convert from a char* to a String_var.

The copy constructor.

Parameters

See Also CORBA::String_var::~String_var()

String_var::~String_var() Destructor
The destructor.

See Also CORBA::String_var::String_var()

String_var::_retn()
Returns the proper string for use as a method’s return value.

See Also CORBA::String_var::inout()
CORBA::String_var::in()
CORBA::String_var::out()

p The character string to convert to a String_var. The
String_var assumes ownership of the parameter.

s The original String_var that is copied.

 Orbix CORBA Programmer’s Reference: Java 193

CORBA::StringDef Interface
Interface StringDef represents an IDL bounded string type in the
interface repository. A StringDef object is anonymous, which
means it is unnamed.
Use Repository::create_string() to obtain a new StringDef. Use
Repository::get_primitive() for unbounded strings.
// IDL in module CORBA.
interface StringDef : IDLType {
 attribute unsigned long bound;
};

The inherited type attribute is also described.
See Also CORBA::IDLType

CORBA::Repository::create_string()

StringDef::bound Attribute
// IDL
attribute unsigned long bound;

// Java
int bound();
void bound(int _val);

Specifies the maximum number of characters in the string. This
cannot be zero.

StringDef::type Attribute
// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_string TypeCode that describes the string.

See Also CORBA::IDLType::type

 194 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 195

CORBA::StructDef Interface
Interface StructDef describes an IDL structure in the interface
repository.
// IDL in module CORBA.
interface StructDef : TypedefDef, Container {
 attribute StructMemberSeq members;
};

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::Container::create_struct()

StructDef::describe()
// IDL
Description describe();

describe(returns a Contained::Description structure. describe() is
inherited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct. The value
member is an any whose TypeCode is _tc_TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA::TypedefDef::describe()

StructDef::members Attribute
// Java
org.omg.CORBA.StructMember[] members();
void members(org.omg.CORBA.StructMember[] _val);

Describes the members of the structure.

You can modify this attribute to change the members of a struc-
ture. Only the name and type_def fields of each StructMember should
be set (the type field should be set to _tc_void and it will be set
automatically to the TypeCode of the type_def field).

See Also CORBA::TypedefDef

 196 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 197

CORBA::TypeCode Class
The class TypeCode is used to describe IDL type structures at run-
time. A TypeCode is a value that represents an IDL invocation argu-
ment type or an IDL attribute type. A TypeCode is typically used as
follows:
• In the dynamic invocation interface (DII) to indicate the type

of an actual argument.
• By the interface repository to represent the type specification

that is part of an OMG IDL declaration.
• To describe the data held by an any type.
A TypeCode consists of a kind that classifies the TypeCode as to
whether it is a basic type, a structure, a sequence and so on. See
the data type TCKind for all possible kinds of TypeCode objects.
A TypeCode may also include a sequence of parameters. The
parameters give the details of the type definition. For example,
the IDL type sequence<long, 20> has the kind tk_sequence and has
parameters long and 20.
You typically obtain a TypeCode from the interface repository or it
may be generated by the IDL compiler. You do not normally create
a TypeCode in your code so the class contains no constructors, only
methods to decompose the components of an existing TypeCode.
However, if your application does require that you create a
TypeCode, see the set of create_Type_tc() methods in the ORB class.
The class TypeCode contains the following methods:

See Also CORBA::TCKind

TypeCode::BadKind Exception
// Java
class CORBA.TypeCodePackage.BadKind

The BadKind exception is raised if a TypeCode member method is
invoked for a kind that is not appropriate.

TypeCode::Bounds Exception
// Java
class CORBA.TypeCodePackage.Bounds

The Bounds exception is raised if an attempt is made to use an index
for a type’s member that is greater than or equal to the number of
members for the type.

The type of IDL constructs that have members include enumera-
tions, structures, unions, value types, and exceptions. Some of
the TypeCode methods return information about specific members
of these IDL constructs. The first member has index value 0, the
second has index value 1, and so on up to n-1 where n is the count
of the total number of members.

 198 Orbix CORBA Programmer’s Reference: Java

The order in which members are presented in the interface repos-
itory is the same as the order in which they appeared in the IDL
specification.
This exception is not the same as the CORBA::Bounds exception.

See Also CORBA::TypeCode::member_count()
CORBA::TypeCode::member_label()
CORBA::TypeCode::member_name()
CORBA::TypeCode::member_type()
CORBA::TypeCode::member_visibility()

TypeCode::concrete_base_type()
// Java
public TypeCode concrete_base_type() throws BadKind {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Returns a TypeCode for the concrete base if the value type repre-
sented by this TypeCode has a concrete base value type. Otherwise
it returns a nil TypeCode reference. This method is valid to use only
if the kind of TypeCode has a TCKind value of tk_value.

Exceptions

TypeCode::content_type()
// Java
public abstract TypeCode content_type() throws BadKind

For sequences and arrays this method returns a reference to the
element type. For aliases it returns a reference to the original
type. For a boxed value type it returns a reference to the boxed
type. This method is valid to use if the kind of TypeCode is one of
the following TCKind values:
tk_alias
tk_array
tk_sequence
tk_value_box

Exceptions

TypeCode::default_index()
// Java
public abstract int default_index() throws BadKind;

Returns the index of the default union member, or -1 if there is no
default member. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk_union.

Exceptions

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

Orbix CORBA Programmer’s Reference: Java 199

See Also CORBA::TypeCode::member_label()

TypeCode::discriminator_type()
// Java
public abstract TypeCode discriminator_type() throws BadKind;

Returns a TypeCode for the union discriminator type. This method is
valid to use only if the kind of TypeCode has a TCKind value of tk_union.

Exceptions

See Also CORBA::TypeCode::default_index()
CORBA::TypeCode::member_label()

TypeCode::equal()
// Java
public abstract boolean equal(TypeCode tc);

Returns 1 (true) if this TypeCode and the tc parameter are equal.
Returns 0 (false) otherwise. Two type codes are equal if the set of
legal operations is the same and invoking an operation from one
set returns the same results as invoking the operation from the
other set.

Parameters

See Also CORBA::TypeCode::equivalent()

TypeCode::equivalent()
// Java
public boolean equivalent(TypeCode tc) {
 throw new org.omg.CORBA.NO_IMPLEMENT(); }

Returns 1 (true) if this TypeCode and the tc parameter are equivalent.
Returns 0 (false) otherwise.

Parameters

equivalent() is typically used by the ORB to determine type equiv-
alence for values stored in an IDL any. You can use equal() to
compare type codes in your application. equivalent() would return
true if used to compare a type and an alias of that type while
equal() would return false.

See Also CORBA::TypeCode::equal()

TypeCode::fixed_digits()
// Java
public short fixed_digits() throws BadKind {

BadKind The kind of TypeCode is not valid for this method.

tc The TypeCode to compare.

tc The TypeCode to compare.

 200 Orbix CORBA Programmer’s Reference: Java

 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Returns the number of digits in the fixed point type. This method
is valid to use only if the kind of TypeCode has a TCKind value of
tk_fixed.

Exceptions

See Also CORBA::TypeCode::fixed_scale()

TypeCode::fixed_scale()
// Java
public short fixed_scale() throws BadKind {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Returns the scale of the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk_fixed.

Exceptions

See Also CORBA::TypeCode::fixed_digits()

TypeCode::get_compact_typecode()
// Java
public TypeCode get_compact_typecode() {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Removes all optional name and member name fields from the
TypeCode and returns a reference to the compact TypeCode. This
method leaves all alias type codes intact.

TypeCode::id()
// Java
public abstract String id() throws BadKind;

Returns the RepositoryId that globally identifies the type.

Type codes that always have a RepositoryId. include object refer-
ences, value types, boxed value types, native, and exceptions.
Other type codes that also always have a RepositoryId and are
obtained from the interface repository or
ORB::create_operation_list() include structures, unions, enumera-
tions, and aliases. In other cases id() could return an empty
string.
The TypeCode object maintains the memory of the return value;
this return value must not be freed by the caller.
This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

Orbix CORBA Programmer’s Reference: Java 201

tk_abstract_interface
tk_alias
tk_enum
tk_except
tk_native
tk_objref
tk_struct
tk_union
tk_value
tk_value_box

Exceptions

TypeCode::kind()
// Java
public abstract TCKind kind();

Returns the kind of the TypeCode which is an enumerated value of
type TCKind. You can use kind() on any TypeCode to help determine
which other TypeCode methods can be invoked on the TypeCode.

See Also CORBA::TCKind

TypeCode::length()
// Java
public abstract int length() throws BadKind;

For strings, wide strings, and sequences, length() returns the
bound, with zero indicating an unbounded string or sequence. For
arrays, length() returns the number of elements in the array. This
method is valid to use if the kind of TypeCode has a TCKind value of
one of the following:

tk_array
tk_sequence
tk_string
tk_wstring

Exceptions

TypeCode::member_count()
// Java
public abstract int member_count() throws BadKind;

Returns the number of members in the type. This method is valid
to use if the kind of TypeCode has a TCKind value of one of the
following:

tk_enum
tk_except
tk_struct
tk_union

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

 202 Orbix CORBA Programmer’s Reference: Java

tk_value

Exceptions

TypeCode::member_label()
// Java
public abstract Any member_label(int index)
 throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the label of the union member. For the default member,
the label is the zero octet. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk_union.

Parameters

Exceptions

See Also CORBA::TypeCode::default_index()
CORBA::TypeCode::member_count()

TypeCode::member_name()
// Java
public abstract String member_name(int index)
 throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns the simple name of the member. Because names are local
to a repository, the name returned from a TypeCode may not match
the name of the member in any particular repository, and may even
be an empty string.

Parameters

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:
tk_enum
tk_except
tk_struct
tk_union
tk_value

The TypeCode object maintains the memory of the return value;
this return value must not be freed by the caller.

Exceptions

BadKind The kind of TypeCode is not valid for this method.

index The index indicating which union member you want.

BadKind The kind of TypeCode is not valid for this method.
 Bounds The index parameter is greater than or equal to the

number of members for the type.

index The index indicating which member to use.

BadKind The kind of TypeCode is not valid for this method.
 Bounds The index parameter is greater than or equal to the

number of members for the type.

Orbix CORBA Programmer’s Reference: Java 203

See Also CORBA::TypeCode::member_count()

TypeCode::member_type()
// Java
public abstract TypeCode member_type(int index)
 throws BadKind, org.omg.CORBA.TypeCodePackage.Bounds;

Returns a reference to the TypeCode of the member identified by
index.

Parameters

This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:
tk_except
tk_struct
tk_union
tk_value

Exceptions

See Also CORBA::TypeCode::member_count()

TypeCode::member_visibility()
// Java
public short member_visibility(int index) throws BadKind, Bounds

{
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Returns the visibility of a value type member. This method is valid
to use only if the kind of TypeCode has a TCKind value of tk_value.

Parameters

Exceptions

See Also CORBA::TypeCode::member_count()

TypeCode::name()
// Java
public abstract String name() throws BadKind;

index The index indicating which member you want.

BadKind The kind of TypeCode is not valid for this method.
 Bounds The index parameter is greater than or equal to the

number of members for the type.

index The index indicating which value type member you
want.

BadKind The kind of TypeCode is not valid for this method.
 Bounds The index parameter is greater than or equal to the

number of members for the type.

 204 Orbix CORBA Programmer’s Reference: Java

Returns the simple name identifying the type within its enclosing
scope. Because names are local to a repository, the name returned
from a TypeCode may not match the name of the type in any
particular repository, and may even be an empty string.

The TypeCode object maintains the memory of the return value;
this return value must not be freed by the caller.
This method is valid to use if the kind of TypeCode has a TCKind
value of one of the following:
tk_abstract_interface
tk_alias
tk_enum
tk_except
tk_native
tk_objref
tk_struct
tk_union
tk_value
tk_value_box

Exceptions

TypeCode::type_modifier()
// Java
public short type_modifier() throws BadKind {
 throw new org.omg.CORBA.NO_IMPLEMENT();
}

Returns the value modifier that applies to the value type represent-
ed by this TypeCode. This method is valid to use only if the kind of
TypeCode has a TCKind value of tk_value.

Exceptions

BadKind The kind of TypeCode is not valid for this method.

BadKind The kind of TypeCode is not valid for this method.

 Orbix CORBA Programmer’s Reference: Java 205

CORBA::TypedefDef Interface
The abstract interface TypedefDef is simply a base interface for
interface repository interfaces that define named types. Named
types are types for which a name must appear in their definition
such as structures, unions, and so on. Interfaces that inherit from
typedefDef include:
• AliasDef
• EnumDef
• NativeDef
• StructDef
• UnionDef
• ValueBoxDef
Anonymous types such as PrimitiveDef, StringDef, SequenceDef
and ArrayDef do not inherit from TypedefDef.
//IDL in module CORBA.
interface TypedefDef : Contained, IDLType {};

The inherited operation describe() is described here.

TypedefDef::describe()
//IDL
Description describe();

Inherited from Contained, describe() returns a structure of type
Contained::Description.

The DefinitionKind type for the kind member is dk_Typedef. The
value member is an any whose TypeCode is _tc_TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA::Contained::describe()
CORBA::Contained::Description
CORBA::TypeDescription

 206 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 207

CORBA::UnionDef Interface
Interface UnionDef represents an IDL union in the interface reposi-
tory.
// IDL in module CORBA.
interface UnionDef : TypedefDef {
 readonly attribute TypeCode discriminator_type;
 attribute IDLType discriminator_type_def;
 attribute UnionMemberSeq members;
};

The inherited operation describe() is also described.
See Also CORBA::Contained

CORBA::TypedefDef
CORBA::Container::create_union()

UnionDef::describe()
// IDL
Description describe();

Inherited from Contained (which TypedefDef inherits), describe()
returns a structure of type Contained::Description.

The DefinitionKind for the kind member is dk_Union. The value
member is an any whose TypeCode is _tc_TypeDescription and
whose value is a structure of type TypeDescription.

See Also CORBA::TypedefDef::describe()

UnionDef::discriminator_type Attribute
// IDL
readonly attribute TypeCode discriminator_type;

// Java
org.omg.CORBA.TypeCode discriminator_type();

Describes the discriminator type for this union. For example, if the
union currently contains a long, the discriminator_type is _tc_long.
The attribute discriminator_type_def contains the same informa-
tion.

See Also CORBA::TypeCode

UnionDef::discriminator_type_def Attribute
// IDL
attribute IDLType discriminator_type_def;

// Java
org.omg.CORBA.IDLType discriminator_type_def();
void discriminator_type_def(org.omg.CORBA.IDLType _val);

Describes the discriminator type for this union. The attribute
discriminator_type contains the same information.

 208 Orbix CORBA Programmer’s Reference: Java

Changing this attribute will automatically update the
discriminator_type attribute and the IDLType::type attribute.

See Also CORBA::IDLType::type
CORBA::UnionDef::discriminator_type

UnionDef::members Attribute
// Java
org.omg.CORBA.UnionMember[] members();
void members(org.omg.CORBA.UnionMember[] _val);

Contains a description of each union member: its name, label, and
type (type and type_def contain the same information).

The members attribute can be modified to change the union’s mem-
bers. Only the name, label and type_def fields of each UnionMember
should be set (the type field should be set to _tc_void, and it will
be set automatically to the TypeCode of the type_def field).

See Also CORBA::TypedefDef

 Orbix CORBA Programmer’s Reference: Java 209

CORBA::ValueBase Class
All value types have a conventional base type called ValueBase.
ValueBase serves a similar role for value types that the Object class
serves for interfaces. ValueBase serves as an abstract base class
for all value type classes. You must implement concrete value type
classes that inherit from ValueBase. ValueBase provides several
pure virtual reference counting methods inherited by all value type
classes.
The names of these methods begin with an underscore to keep
them from clashing with your application-specific methods in
derived value type classes.

See Also CORBA::ValueFactory

ValueBase::_add_ref()
Increments the reference count of a value type instance and returns
a pointer to this value type.

See Also CORBA::ValueBase::_remove_ref()

ValueBase::_copy_value()
Makes a deep copy of the value type instance and returns a pointer
to the copy. The copy has no connections with the original instance
and has a lifetime independent of that of the original.

Portable applications should not assume covariant return types
but should use downcasting to regain the most derived type of a
copied value type. A covariant return type means that a class
derived from ValueBase can override _copy_value() to return a
pointer to the derived class rather than the base class, ValueBase*.

See Also CORBA::ValueBase::_downcast()

ValueBase::_downcast()
Returns a pointer to the base type for a derived value type class.

Parameters

ValueBase::_refcount_value()
Returns the current value of the reference count for this value type
instance.

See Also CORBA::ValueBase::_add_ref()
CORBA::ValueBase::_remove_ref()

vt Pointer to the value type class to be downcast.

 210 Orbix CORBA Programmer’s Reference: Java

ValueBase::_remove_ref()
Decrements the reference count of a value type instance and deletes
the instance when the reference count drops to zero.

If you use delete() to destroy instances, you must use the new
operator to allocate all value type instances.

See Also CORBA::ValueBase::_add_ref()

ValueBase::~ValueBase() Destructor
The default destructor.

The destructor is protected to prevent direct deletion of instances
of classes derived from ValueBase.

See Also CORBA::ValueBase::ValueBase()

ValueBase::ValueBase() Constructors
The default constructor.

The copy constructor. Creates a new object that is a copy of vt.

The copy constructor is protected to disallow copy construction of
derived value type instances except from within derived class
methods.

Parameters

See Also CORBA::ValueBase::~ValueBase()

vt The original value type from which a copy is made.

 Orbix CORBA Programmer’s Reference: Java 211

CORBA::ValueBoxDef Interface
The ValueBoxDef interface describes an IDL value box type in the
interface repository. A value box is a value type with no inheri-
tance or operations and with a single state member. A value box is
a shorthand IDL notation used to simplify the use of value types
for simple containment. It behaves like an additional namespace
that contains only one name.
// IDL in module CORBA.
interface ValueBoxDef : IDLType {
 attribute IDLType original_type_def;
};

The inherited type attribute is also described.

See Also CORBA::Container::create_value_box()

ValueBoxDef::original_type_def Attribute
// IDL
attribute IDLType original_type_def;

// Java
org.omg.CORBA.IDLType original_type_def();
void original_type_def(org.omg.CORBA.IDLType _val);

Identifies the IDL type_def that is being “boxed”. Setting the
original_type_def attribute also updates the type attribute.

See Also CORBA::ValueBoxDef::type

ValueBoxDef::type Attribute
// IDL
readonly attribute TypeCode type;

Inherited from IDLType, this attribute is a tk_value_box TypeCode
describing the value box.

See Also CORBA::IDLType::type

 212 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 213

CORBA::ValueDef Interface
A ValueDef object represents an IDL value type definition in the
interface repository. It can contain constants, types, exceptions,
operations, and attributes.
A ValueDef used as a Container may only contain TypedefDef,
(including definitions derived from TypedefDef), ConstantDef, and
ExceptionDef definitions.
// IDL in module CORBA.
interface ValueDef : Container, Contained, IDLType {

 // read/write interface
 attribute InterfaceDef supported_interfaces;
 attribute InitializerSeq initializers;
 attribute ValueDef base_value;
 attribute ValueDefSeq abstract_base_values;
 attribute boolean is_abstract;
 attribute boolean is_custom;

 // read interface
 boolean is_a(
 in RepositoryId id
);
 struct FullValueDescription {
 Identifier name;
 RepositoryId id;
 boolean is_abstract;
 boolean is_custom;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 ValueMemberSeq members;
 InitializerSeq initializers;
 RepositoryIdSeq supported_interfaces;
 RepositoryIdSeq abstract_base_values;
 RepositoryId base_value;
 TypeCode type;
 };
 FullValueDescription describe_value();
 ValueMemberDef create_value_member(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in Visibility access
);
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in VersionSpec version,
 in IDLType type,
 in AttributeMode mode
);
 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,

 214 Orbix CORBA Programmer’s Reference: Java

 in VersionSpec version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);
}; // End ValueDef Interface

The inherited describe() and contents() operations are also
described.

See Also CORBA::Container::create_value()

ValueDef::abstract_base_values Attribute
// Java
org.omg.CORBA.ValueDef[] abstract_base_values();
void abstract_base_values(org.omg.CORBA.ValueDef[] _val);

The abstract_base_values attribute lists the abstract value types
from which this value inherits.

Exceptions

ValueDef::base_value Attribute
// Java
org.omg.CORBA.ValueDef base_value();
void base_value(org.omg.CORBA.ValueDef _val);

The base_value attribute describes the value type from which this
value inherits.

Parameters

ValueDef::contents()
// IDL
ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

Inherited from Container, contents() returns the list of constants,
types, and exceptions defined in this ValueDef and the list of
attributes, operations, and members either defined or inherited in
this ValueDef.

BAD_PARAM,
minor code 5

The name attribute of any object contained by this
ValueDef conflicts with the name attribute of any object
contained by any of the specified bases.

BAD_PARAM,
minor code 5

The name attribute of any object contained by the
minor code 5 is raised if the name attribute of any
object contained by this ValueDef conflicts with the
name attribute of any object contained by any of the
specified bases.

Orbix CORBA Programmer’s Reference: Java 215

Parameters

See Also CORBA::Container::contents()

ValueDef::create_attribute()
// Java
org.omg.CORBA.AttributeDef create_attribute(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType type,
 org.omg.CORBA.AttributeMode mode
);

Returns a new AttributeDef object contained in the ValueDef on
which it is invoked.

Parameters

The defined_in attribute (which the AttributeDef inherits from
Contained) is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::AttributeDef
CORBA::Contained

limit_type If set to dk_all, all of the contained objects in
the ValueDef are returned. If set to the
DefinitionKind for a specific interface type, it
returns only interfaces of that type. For exam-
ple, if set to, dk_Operation, then it returns con-
tained operations only.

exclude_inherited Applies only to interfaces. If true, only attri-
butes, operations and members defined within
this value type are returned. If false, all attri-
butes, operations and members are returned.

id The repository ID to use for the new AttributeDef. An
AttributeDef inherits the id attribute from Contained.

name The name to use for the new AttributeDef. An
AttributeDef inherits the name attribute from Contained.

version The version to use for the new AttributeDef. An
AttributeDef inherits the version attribute from
Contained.

type The IDL data type for the new AttributeDef. Both the
type_def and type attributes are set for AttributeDef.

mode The read or read/write mode to use for the new
AttributeDef.

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor
code 2 is raised if an object with the specified id
already exists in the repository.

BAD_PARAM,
minor code 3

An object with the same name already exists in this
ValueDef.

 216 Orbix CORBA Programmer’s Reference: Java

ValueDef::create_operation()
// Java
org.omg.CORBA.OperationDef create_operation(
 java.lang.String id,
 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType result,
 org.omg.CORBA.OperationMode mode,
 org.omg.CORBA.ParameterDescription[] params,
 org.omg.CORBA.ExceptionDef[] exceptions,
 java.lang.String[] contexts
);

Returns a new OperationDef object contained in the ValueDef on
which it is invoked.

Parameters

The defined_in attribute (which the OperationDef inherits from
Contained) is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::OperationDef
CORBA::Contained

ValueDef::create_value_member()
// Java
org.omg.CORBA.ValueMemberDef create_value_member(
 java.lang.String id,

id The repository ID to use for the new OperationDef. An
OperationDef inherits the id attribute from Contained.

name The name to use for the new OperationDef. An
OperationDef inherits the name attribute from Contained.

version The version to use for the new OperationDef. An
OperationDef inherits the version attribute from
Contained.

result The IDL data type of the return value for the new
OperationDef. Both the result_def and result attri-
butes are set for the OperationDef.

mode The mode to use for the new OperationDef. Specifies
whether the operation is normal (OP_NORMAL) or one-
way (OP_ONEWAY).

params The parameters for this OperationDef.
exceptions The list of exceptions to use for the OperationDef. These

are exceptions the operation can raise.
contexts The list of context identifiers to use for the OperationDef.

These represent the context clause of the operation.

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor
code 2 is raised if an object with the specified id
already exists in the repository.

BAD_PARAM,
minor code 3

An object with the same name already exists in this
ValueDef.

Orbix CORBA Programmer’s Reference: Java 217

 java.lang.String name,
 java.lang.String version,
 org.omg.CORBA.IDLType type,
 short access
);

Returns a new ValueMemberDef contained in the ValueDef on which it
is invoked.

Parameters

The defined_in attribute (which the ValueMemberDef inherits from
Contained) is initialized to identify the containing ValueDef.

Exceptions

See Also CORBA::ValueMemberDef
CORBA::Contained

ValueDef::describe()
// IDL
ValueDescription describe();

Inherited from Contained, describe() for a ValueDef returns a
ValueDescription object. Use describe_value() for a full description
of the value.

See Also CORBA::ValueDescription
CORBA::Contained::describe()
CORBA::ValueDef::describe_value()

id The repository ID to use for the new ValueMemberDef.
An ValueMemberDef inherits the id attribute from
Contained.

name The name to use for the new ValueMemberDef. An
ValueMemberDef inherits the name attribute from
Contained.

version The version to use for the new ValueMemberDef. An
ValueMemberDef inherits the version attribute from
Contained.

type The IDL data type for the new ValueMemberDef. Both
the type_def and type attributes are set for
ValueMemberDef.

access The visibility to use for the new ValueMemberDef. IDL
value types can have state members that are either
public or private.

BAD_PARAM,
minor code 5

The name attribute of any object contained by minor
code 2 is raised if an object with the specified id
already exists in the repository.

A BAD_PARAM,
minor code 3

An object with the same name already exists in this
ValueDef.

 218 Orbix CORBA Programmer’s Reference: Java

ValueDef::describe_value()
// Java
org.omg.CORBA.ValueDefPackage.FullValueDescription

describe_value();

Returns a FullValueDescription object describing the value, includ-
ing its operations and attributes.

See Also CORBA::FullValueDescription
CORBA::ValueDef::describe()

ValueDefPackage.FullValueDescription.FullVal
ueDescription()
// Java
public FullValueDescription(
 java.lang.String name,
 java.lang.String id,
 boolean is_abstract,
 boolean is_custom,
 byte flags,
 java.lang.String defined_in,
 java.lang.String version,
 org.omg.CORBA.OperationDescription[] operations,
 org.omg.CORBA.AttributeDescription[] attributes,
 org.omg.CORBA.ValueMember[] members,
 org.omg.CORBA.Initializer[] initializers,
 java.lang.String supported_interface,
 java.lang.String[] abstract_base_values,
 boolean has_safe_base,
 java.lang.String base_value,
 org.omg.CORBA.TypeCode type
)

A full description of a value type in the interface repository.

name The name of the value type.
id The repository ID of the value type.
is_abstract Has a value of 1 (true) if the value is an

abstract value type. A value of 0 is false.
is_custom Has a value of 1 (true) if the value uses cus-

tom marshalling. A value of 0 is false.
defined_in The repository ID that identifies where this

value type is defined.
version The version of the value type.
operations A list of operations that the value type sup-

ports.
attributes A list of attributes that the value type sup-

ports.
members A list of value type members.
initializers A list of initializer values for the value type.
supported_interfaces A list of interfaces this value type supports.
abstract_base_values A list of repository IDs that identify abstract

base values.

Orbix CORBA Programmer’s Reference: Java 219

See Also CORBA::ValueDef::describe_value()

ValueDef::initializers Attribute
// Java
org.omg.CORBA.Initializer[] initializers();
void initializers(org.omg.CORBA.Initializer[] _val);

Lists the initializers this value type supports.

ValueDef::is_a()
// Java
boolean is_a(java.lang.String value_id);

Returns 1 (true) if this value type is either identical to or inherits,
directly or indirectly, from the interface or value identified by the
id parameter. Otherwise it returns 0 (false).

Parameters

ValueDef::is_abstract Attribute
// Java
boolean is_abstract();
void is_abstract(boolean _val);

Returns 1 (true) if this value type is an abstract value type.
Otherwise it returns 0 (false).

ValueDef::is_custom Attribute
// Java
boolean is_custom();
void is_custom(boolean _val);

Returns 1 (true) if this value type uses custom marshalling. Other-
wise it returns 0 (false).

ValueDef::supported_interfaces Attribute
// IDL
attribute InterfaceDef supported_interfaces;

Lists the interfaces that this value type supports.

// Java
org.omg.CORBA.InterfaceDef supported_interface();
void supported_interface(org.omg.CORBA.InterfaceDef _val);

base_value A repository ID that identifies a base value.
type The IDL type of the value type.

id The repository ID of the value type or interface to
compare with this value type.

 220 Orbix CORBA Programmer’s Reference: Java

Exceptions

BAD_PARAM,
minor code 5

The name attribute of any object contained by the
minor code 5 is raised if the name attribute of any
object contained by this ValueDef conflicts with the
name attribute of any object contained by any of the
specified bases.

 Orbix CORBA Programmer’s Reference: Java 221

CORBA::ValueFactory
This describes the mapping of the IDL native type
CORBA::ValueFactory. For native IDL types, each language mapping
specifies how repository IDs are used to find the appropriate fac-
tory for an instance of a value type so that it may be created as it
is unmarshaled off the wire.
// IDL in module CORBA
native ValueFactory;

Recall that value types allow objects to be passed by value which
implies that the ORB must be able to create instances of your
value type classes during unmarshaling. However, because the
ORB cannot know about all potential value type classes, you must
implement factory classes for those types and register them with
the ORB so the ORB can create value instances when necessary.
If the ORB is unable to locate and use the appropriate factory,
then a MARSHAL exception with a minor code is raised.

CORBA::ValueFactory Type
CORBA::ORB::lookup_value_factory()
CORBA::ORB::register_value_factory()
CORBA::ORB::unregister_value_factory()

 222 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 223

CORBA::ValueMemberDef
Interface

The ValueMemberDef interface provides the definition of a value type
member in the interface repository.
// IDL in module CORBA.
interface ValueMemberDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute Visibility access;
};

ValueMemberDef::access Attribute
// Java
short access();
void access(short _val);

Contains an indicator of the visibility of an IDL value type state
member. IDL value types can have state members that are either
public or private.

ValueMemberDef::type Attribute
// Java
org.omg.CORBA.TypeCode type();

Describes the type of this ValueMemberDef.

See Also CORBA::ValueMemberDef::type_def

ValueMemberDef::type_def Attribute
// Java
org.omg.CORBA.IDLType type_def();
void type_def(org.omg.CORBA.IDLType _val);

Identifies the object that defines the IDL type of this ValueMemberDef.
The same information is contained in the type attribute.

You can change the type of a ValueMemberDef by changing its
type_def attribute. This also changes its type attribute.

See Also CORBA::ValueMemberDef::type

 224 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 225

CORBA::WString_var Class
The class WString_var implements the _var type for IDL wide
strings required by the standard C++ mapping. The WString_var
class contains a char* value and ensures that this is properly freed
when a WString_var object is deallocated, for example when exec-
tution goes out of scope.

WString_var::char*()
Converts a WString_var object to a char*.

See Also CORBA::WString_var::operator=()

WString_var::in()
Returns the proper string for use as an input parameter.

See Also CORBA::WString_var::out()
CORBA::WString_var::inout()
CORBA::WString_var::_retn()

WString_var::inout()
Returns the proper string for use as an inout parameter.

See Also CORBA::WString_var::in()
CORBA::WString_var::out()
CORBA::WString_var::_retn()

WString_var::operator=() Assignment
Operators
Assignment operators allow you to assign values to a WString_var
from a char* or from another WString_var type.

Parameters

See Also CORBA::WString_var::char*()

WString_var::operator[]() Subscript Operators
Return the character at the given location of the string. Subscript
operators allow access to the individual characters in the string.

Parameters

p A character string to assign to the WString_var.
s A WString_var to assign to the WString_var.

index The index location in the string.

 226 Orbix CORBA Programmer’s Reference: Java

WString_var::out()
Returns the proper string for use as an output parameter.

See Also CORBA::WString_var::in()
CORBA::WString_var::inout()
CORBA::WString_var::_retn()

WString_var::WString_var() Constructors
The default constructor.

Constructors that convert from a char* to a WString_var.

The copy constructor.

Parameters

See Also CORBA::WString_var::~WString_var()

WString_var::~WString_var() Destructor
The destructor.

See Also CORBA::WString_var::WString_var()

WString_var::_retn()
Returns the proper string for use as a method’s return value.

See Also CORBA::WString_var::inout()
CORBA::WString_var::in()
CORBA::WString_var::out()

p The character string to convert to a WString_var. The
WString_var assumes ownership of the parameter.

s The original WString_var that is copied.

 Orbix CORBA Programmer’s Reference: Java 227

CORBA::WstringDef Interface
Interface WstringDef represents a bounded IDL wide string type in
the interface repository. A WstringDef object is anonymous, which
means it is unnamed. Use Repository::create_wstring() to obtain
a new WstringDef object.
Unbounded strings are primitive types represented with the
PrimitiveDef interface. Use Repository::get_primitive() to obtain
unbounded wide strings.
// IDL in module CORBA.
interface WstringDef : IDLType {
 attribute unsigned long bound;
};

The inherited type attribute is also described.
See Also CORBA::IDLType

CORBA::Repository::create_wstring()
CORBA::PrimitiveDef
CORBA::StringDef

WstringDef::bound Attribute
// IDL
attribute unsigned long bound;

// Java
int bound();
void bound(int _val);

Specifies the maximum number of characters in the wide string.
This cannot be zero.

WstringDef::type Attribute
// IDL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType. This attribute
is a tk_wstring TypeCode that describes the wide string.

See Also CORBA::IDLType::type

 228 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 229

CosEventChannelAdmin Module
The CosEventChannelAdmin module specifies the interfaces and
exceptions for connecting suppliers and consumers to an event
channel. It also provides the methods for managing these connec-
tions.
It contains the following interfaces:
• CosEventChannelAdmin::ProxyPushConsumer Interface
• CosEventChannelAdmin::ProxyPushSupplier Interface
• CosEventChannelAdmin::ProxyPullConsumer Interface
• CosEventChannelAdmin::ProxyPullSupplier Interface
• CosEventChannelAdmin::ConsumerAdmin Interface
• CosEventChannelAdmin::SupplierAdmin Interface
• CosEventChannelAdmin::EventChannel Interface

CosEventChannelAdmin Exceptions

exception AlreadyConnected {};
An AlreadyConnected exception is raised when an attempt is made
to connect an object to the event channel when that object is already
connected to the channel.

exception TypeError {};
The TypeError exception is raised when a proxy object trys to
connect an object that does not support the proper typed interface.

 230 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 231

CosEventChannelAdmin::Consum
erAdmin Interface

Once a consumer has obtained a reference to a ConsumerAdmin
object (by calling EventChannel::for_consumers()), they can use
this interface to obtain a proxy supplier. This is necessary in order
to connect to the event channel.
interface ConsumerAdmin
{
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
};

ConsumerAdmin::obtain_push_supplier()
//IDL
ProxyPushSupplier obtain_push_supplier();

Returns a ProxyPushSupplier object. The consumer can then use this
object to connect to the event channel as a push-style consumer.

ConsumerAdmin::obtain_pull_supplier()
//IDL
ProxyPushSupplier obtain_pull_supplier();

Returns a ProxyPullSupplier object. The consumer can then use this
object to connect to the event channel as a pull-style consumer.

 232 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 233

CosEventChannelAdmin::EventCh
annel Interface

The EventChannel interface lets consumers and suppliers establish
a logical connection to the event channel.
interface EventChannel
{
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
};

EventChannel::for_consumers()
//IDL
ConsumerAdmin for_consumers();

Used by a consumer to obtain an object reference that supports the
ConsumerAdmin interface.

EventChannel::for_suppliers()
//IDL
SupplierAdmin for_suppliers()

Used by a supplier to obtain an object reference that supports the
SupplierAdmin interface.

EventChannel::destroy()
//IDL
void destroy();

Destroys the event channel. All events that are not yet delivered,
as well as all administrative objects created by the channel, are also
destroyed. Connected pull consumers and push suppliers are noti-
fied when their channel is destroyed.

 234 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 235

CosEventChannelAdmin::ProxyPul
lConsumer Interface

After a supplier has obtained a reference to a proxy consumer
using the SupplierAdmin interface, they use the ProxyPullConsumer
interface to connect to the event channel.
interface ProxyPullConsumer : CosEventComm::PushConsumer
{
 void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
 raises (AlreadyConnected, TypeError);
};

ProxyPullConsumer::connect_pull_supplier()
//IDL
void connect_pull_supplier(
 in CosEventComm::PullSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

This operation connects the supplier to the event channel.

If the proxy pull consumer is already connected to a PushSupplier,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is raised when supplier that is being connected does not support
the proper typed event structure.

Parameters

pull_supplier The supplier that is trying to connect to the event
channel.

 236 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 237

CosEventChannelAdmin::ProxyPul
lSupplier Interface

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the ProxyPullSupplier interface
to connect to the event channel.
interface ProxyPullSupplier : CosEventComm::PullSupplier
{
 void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
 raises (AlreadyConnected);
};

ProxyPullSupplier::connect_pull_consumer()
//IDL
void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

This operation connects the consumer to the event channel. If the
consumer passes a nil object reference, the proxy pull supplier will
not notify the consumer when it is about to be disconnected.

If the proxy pull supplier is already connected to the PullConsumer,
then the AlreadyConnected exception is raised.

Parameters

pull_consumer The consumer that is trying to connect to the event
channel

 238 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 239

CosEventChannelAdmin::ProxyPu
shConsumer Interface

After a supplier has obtained a reference to a proxy consumer
using the SupplierAdmin interface, they use the ProxyPushConsumer
interface to connect to the event channel.
// IDL
interface ProxyPushConsumer : CosEventComm::PushConsumer
{
 void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
 raises (AlreadyConnected);
};

ProxyPushConsumer::connect_push_supplier(
)
//IDL
void connect_push_supplier(
 in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

This operation connects the supplier to the event channel. If the
supplier passes a nil object reference, the proxy push consumer will
not notify the supplier when it is about to be disconnected.

If the proxy push consumer is already connected to the
PushSupplier, then the AlreadyConnected exception is raised.

Parameters

push_supplier The supplier that is trying to connect to the event
channel

 240 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 241

CosEventChannelAdmin::ProxyPu
shSupplier Interface

After a consumer has obtained a proxy supplier using the
ConsumerAdmin interface, they use the ProxyPushSupplier interface
to connect to the event channel.
interface ProxyPushSupplier : CosEventComm::PushSupplier
{
 void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
 raises (AlreadyConnected, TypeError);
};

ProxyPushSupplier::connect_push_consumer(
)
//IDL
void connect_push_consumer(
 in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

This operation connects the consumer to the event channel.

If the proxy push supplier is already connected to the PushConsumer,
then the AlreadyConnected exception is raised. The TypeError excep-
tion is when the consumer that is being connected does not support
the proper typed event structure.

Parameters

push_consumer The consumer that is trying to connect to the event
channel

 242 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 243

CosEventChannelAdmin::Supplier
Admin Interface

Once a supplier has obtained a reference to a SupplierAdmin object
(by calling EventChannel::for_suppliers()), they can use this inter-
face to obtain a proxy consumer. This is necessary in order to con-
nect to the event channel.
interface SupplierAdmin
{
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
};

SupplierAdmin::obtain_push_consumer()
//IDL
ProxyPushConsumer obtain_push_consumer();

Returns a ProxyPushConsumer object. The supplier can then use this
object to connect to the event channel as a push-style supplier.

SupplierAdmin::obtain_pull_consumer()
//IDL
ProxyPushConsumer obtain_pull_consumer();

Returns a ProxyPullConsumer object. The supplier can then use this
object to connect to the event channel as a pull-style supplier.

 244 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 245

CosEventComm Module
The CosEventComm module specifies the interfaces which define the
event service consumers and suppliers.

CosEventComm Exceptions

CosEventComm::Disconnected
exception Disconnected {};
Disconnected is raised when an attempt is made to contact a proxy
that has not been connected to an event channel.

 246 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 247

CosEventComm::PullConsumer
Interface

A pull-style consumer supports the PullConsumer interface.
interface PullConsumer
{
 void disconnect_pull_consumer();
};

PullConsumer::disconnect_pull_consumer()
//IDL
void disconnect_pull_consumer();

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The PullConsumer object reference is discarded.

 248 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 249

CosEventComm::PullSupplier
Interface

A pull-style supplier supports the PullSupplier interface to trans-
mit event data. A consumer requests event data from the supplier
by invoking either the pull() operation or the try_pull() opera-
tion.
interface PullSupplier
{
 any pull() raises (Disconnected);
 any try_pull(out boolean has_event) raises (Disconnected);
 void disconnect_pull_supplier();
};

PullSupplier::pull()
//IDL
any pull() raises (Disconnected);

The consumer requests event data by calling this operation. The
operation blocks until the event data is available, in which case it
returns the event data to the consumer. Otherwise an exception is
raised. If the event communication has already been disconnected,
the OBJECT_NOT_EXIST exception is raised.

PullSupplier::try_pull()
//IDL
any try_pull(out boolean has_event) raises (Disconnected);

Unlike the try operation, this operation does not block. If the event
data is available, it returns the event data and sets the has_event
parameter to true. If the event is not available, it sets the has_event
parameter to false and the event data is returned with an undefined
value. If the event communication has already been disconnected,
the OBJECT_NOT_EXIST exception is raised.

Parameters

PullSupplier::disconnect_pull_supplier()
//IDL
void disconnect_pull_supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The PullSupplier object reference is discarded.

has_event Indicates whether event data is available to the
try_pull operation

 250 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 251

CosEventComm::PushConsumer
Interface

A push-style consumer supports the PushConsumer interface to
receive event data.
interface PushConsumer
{
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
};

PushConsumer::push()
//IDL
void push(in any data) raises(Disconnected);

Used by a supplier to communicate event data to the consumer.
The supplier passes the event data as a parameter of type any. If
the event communication has already been disconnected, the
OBJECT_NOT_EXIST exception is raised.

Parameters

PushConsumer::disconnect_push_consumer()
//IDL
void disconnect_push_consumer();

Lets the supplier terminate event communication. This operation
releases resources used at the consumer to support the event
communication. The PushConsumer object reference is discarded.

data The event data, of type any.

 252 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 253

CosEventComm::PushSupplier
Interface

A push-style supplier supports the PushSupplier interface.
interface PushSupplier
{
 void disconnect_push_supplier();
};

PushSupplier::disconnect_push_supplier()
//IDL
void disconnect_push_supplier();

Lets the consumer terminate event communication. This operation
releases resources used at the supplier to support the event
communication. The PushSupplier object reference is discarded.

 254 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 255

CosNaming Overview
The CosNaming module contains all IDL definitions for the CORBA
naming service. The interfaces consist of:
• “CosNaming::BindingIterator Interface”
• “CosNaming::NamingContext Interface”
• “CosNaming::NamingContextExt Interface”
Use the NamingContext and BindingIterator interfaces to access
standard naming service functionality. Use the NamingContextExt
interface to use URLs and string representations of names.
The rest of this chapter describes data types common to the
CosNaming module that are defined directly within its scope.

CosNaming::Binding Structure
// IDL
struct Binding {
 Name binding_name;
 BindingType binding_type;
};

A Binding structure represents a single binding in a naming context.
A Binding structure indicates the name and type of the binding:

When browsing a naming graph in the naming service, an applica-
tion can list the contents of a given naming context, and deter-
mine the name and type of each binding in it. To do this, the
application calls the NamingContext.list() method on the target
NamingContext object. This method returns a list of Binding struc-
tures.

See Also CosNaming::BindingList
CosNaming::BindingType
NamingContext::list()

CosNaming::BindingList Sequence
// IDL
typedef sequence<Binding> BindingList;

A sequence containing a set of Binding structures, each of which
represents a single name binding.

An application can list the bindings in a given naming context
using the NamingContext::list() method. An output parameter of
this method returns a value of type BindingList.

See Also CosNaming::Binding
CosNaming::BindingType
NamingContext::list()

binding_name The full compound name of the binding.
binding_type The binding type, indicating whether the name is

bound to an application object or a naming con-
text.

 256 Orbix CORBA Programmer’s Reference: Java

“About Sequences”

CosNaming::BindingType Enumeration
// IDL
enum BindingType {nobject, ncontext};

The enumerated type BindingType represents these two forms of
name bindings:

There are two types of name binding in the CORBA naming ser-
vice: names bound to application objects, and names bound to
naming contexts. Names bound to application objects cannot be
used in a compound name, except as the last element in that
name. Names bound to naming contexts can be used as any com-
ponent of a compound name and allow you to construct a naming
graph in the naming service.
Name bindings created using NamingContext::bind() or
NamingContext::rebind() are nobject bindings.
Name bindings created using the operations
NamingContext::bind_context() or NamingContext::rebind_context()
are ncontext bindings.

See Also CosNaming::Binding
CosNaming::BindingList

CosNaming::Istring Data Type
// IDL
typedef string Istring;

Type Istring is a place holder for an internationalized string format.

CosNaming::Name Sequence
// IDL
typedef sequence<NameComponent> Name;

A Name represents the name of an object in the naming service. If
the object name is defined within the scope of one or more naming
contexts, the name is a compound name. For this reason, type Name
is defined as a sequence of name components.

Two names that differ only in the contents of the kind field of one
NameComponent structure are considered to be different names.
Names with no components, that is sequences of length zero, are
illegal.

See Also CosNaming::NameComponent
“About Sequences”

nobject Describes a name bound to an application
object.

ncontext Describes a name bound to a naming context in
the naming service.

Orbix CORBA Programmer’s Reference: Java 257

CosNaming::NameComponent Structure
// IDL
struct NameComponent {
 Istring id;
 Istring kind;
};

A NameComponent structure represents a single component of a name
that is associated with an object in the naming service. The
members consist of:

The id field is intended for use purely as an identifier. The seman-
tics of the kind field are application-specific and the naming ser-
vice makes no attempt to interpret this value.
A name component is uniquely identified by the combination of
both id and kind fields. Two name components that differ only in
the contents of the kind field are considered to be different com-
ponents.

See Also CosNaming::Name

id The identifier that corresponds to the name of the
component.

kind The element that adds secondary type information to
the component name.

 258 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 259

CosNaming::BindingIterator
Interface

A CosNaming.BindingIterator object stores a list of name bindings
and allows application to access the elements of this list.
The NamingContext.list() method obtains a list of bindings in a
naming context. This method allows applications to specify a max-
imum number of bindings to be returned. To provide access to all
other bindings in the naming context, the method returns an
object of type CosNaming.BindingIterator.
// IDL
// In module CosNaming
interface BindingIterator {
 boolean next_one(
 out Binding b
);
 boolean next_n(
 in unsigned long how_many,
 out BindingList bl
);
 void destroy();
};

See Also CosNaming::NamingContext::list()

BindingIterator::destroy()
// IDL
void destroy();

Deletes the CosNaming::BindingIterator object on which it is called.

BindingIterator::next_n()
// IDL
boolean next_n(
 in unsigned long how_many,
 out BindingList bl
);

Gets the next how_many elements in the list of bindings, subsequent
to the last element obtained by a call to next_n() or next_one(). If
the number of elements in the list is less than the value of
how_many, all the remaining elements are obtained.

Returns true if one or more bindings are obtained, but returns false
if no more bindings remain.

Parameters

See Also CosNaming::BindingIterator::next_one()

how_many The maximum number of bindings to be obtained in
parameter bl.

bl The list of name bindings.

 260 Orbix CORBA Programmer’s Reference: Java

CosNaming::BindingList

BindingIterator::next_one()
// IDL
boolean next_one(
 out Binding b
);

Gets the next element in the list of bindings, subsequent to the last
element obtained by a call to next_n() or next_one().

Returns true if a binding is obtained, but returns false if no more
bindings remain.

Parameters

See Also CosNaming::BindingIterator::next_n()
CosNaming::Binding

b The name binding.

 Orbix CORBA Programmer’s Reference: Java 261

CosNaming::NamingContext
Interface

The interface CosNaming::NamingContext provides operations to
access the main features of the CORBA naming service, such as
binding and resolving names. Name bindings are the associations
the naming service maintains between an object reference and a
useful name for that reference.
// IDL
// In module CosNaming
interface NamingContext {
 enum NotFoundReason {missing_node, not_context, not_object};

 exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
 };
 exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
 };
 exception InvalidName {};
 exception AlreadyBound {};
 exception NotEmpty {};

 void bind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void rebind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName);

 void bind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void rebind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName);

 Object resolve(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

 262 Orbix CORBA Programmer’s Reference: Java

 void unbind(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

 NamingContext new_context();

 NamingContext bind_new_context(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName,

AlreadyBound);

 void destroy() raises (NotEmpty);

 void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi
);
};

NamingContext::AlreadyBound Exception
// IDL
exception AlreadyBound {};

If an application calls a method that attempts to bind a name to an
object or naming context, but the specified name has already been
bound, the method throws an exception of type AlreadyBound.

The following methods can throw this exception:
bind()
bind_context()
bind_new_context()

NamingContext::bind()
// IDL
void bind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a name binding, relative to the target naming context,
between a name and an object.

Parameters

If the name passed to this method is a compound name with more
than one component, all except the last component are used to
find the sub-context in which to add the name binding.

n The name to be bound to the target object, relative to
the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

Orbix CORBA Programmer’s Reference: Java 263

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

The contexts associated with the components must already exist,
otherwise the method throws a NotFound exception.

See Also CosNaming::NamingContext::rebind()
CosNaming::NamingContext::resolve()

NamingContext::bind_context()
// IDL
void bind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a binding, relative to the target naming context, between
a name and another, specified naming context.

Parameters

This new binding can be used in any subsequent name resolutions.
The naming graph built using bind_context() is not restricted to
being a tree: it can be a general naming graph in which any nam-
ing context can appear in any other naming context.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

See Also CosNaming.NamingContext.bind_new_context()
CosNaming.NamingContext.new_context()
CosNaming.NamingContext.rebind_context()
CosNaming.NamingContext.resolve()

NamingContext::bind_new_context()
// IDL
NamingContext bind_new_context(
 in Name n

n The name to be bound to the target naming context,
relative to the naming context on which the method is
called. All but the final naming context specified in
parameter n must already exist.

nc The NamingContext object to be associated with the
specified name. This object must already exist. To cre-
ate a new NamingContext object, call
NamingContext::new_context(). The entries in naming
context nc can be resolved using compound names.

 264 Orbix CORBA Programmer’s Reference: Java

)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Creates a new NamingContext object in the naming service and binds
the specified name to it, relative to the naming context on which
the method is called. The method returns a reference to the newly
created NamingContext object.

Parameters

This method has the same effect as a call to
NamingContext::new_context() followed by a call to
NamingContext::bind_context().
The new name binding created by this method can be used in any
subsequent name resolutions: the entries in the returned naming
context can be resolved using compound names.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

This method throws an AlreadyBound exception if the name speci-
fied by n is already in use.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::new_context()

NamingContext::CannotProceed Exception
// IDL
exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
};

If a naming service method fails due to an internal error, the method
throws a CannotProceed exception.

A CannotProceed exception consists of two member fields:

The application might be able to use the information returned in
this exception to complete the method later. For example, if you
use a naming service federated across several hosts and one of
these hosts is currently unavailable, a naming service method
might fail until that host is available again.
The following methods can throw this exception:

bind()

n The name to be bound to the newly created naming
context, relative to the naming context on which the
method is called. All but the final naming context
specified in parameter n must already exist.

cxt The NamingContext object associated with the
component at which the method failed.

rest_of_name The remainder of the compound name, after
the binding for the component at which the
method failed.

Orbix CORBA Programmer’s Reference: Java 265

bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

See Also CosNaming::Name
CosNaming::NamingContext

NamingContext::destroy()
// IDL
void destroy()
 raises (NotEmpty);

Deletes the NamingContext object on which it is called. Before deleting
a NamingContext in this way, ensure that it contains no bindings.

To avoid leaving name bindings with no associated objects in the
naming service, call NamingContext.unbind() to unbind the context
name before calling destroy(). See resolve() for information about
the result of resolving names of context objects that no longer
exist.

Exceptions

See Also CosNaming::NamingContext::resolve()
CosNaming::NamingContext::unbind()

NamingContext::InvalidName Exception
// IDL
exception InvalidName {};

If a method receives an in parameter of type CosNaming.Name for
which the sequence length is zero, the method throws an
InvalidName exception.

The following methods can throw this exception:
bind()
bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

NamingContext::list()
// IDL
void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi

NamingContext:
:NotEmpty

destroy() is called on a NamingContext that contains
existing bindings.

 266 Orbix CORBA Programmer’s Reference: Java

);

Gets a list of the name bindings in the naming context on which the
method is called.

Parameters

See Also CosNaming::BindingIterator
CosNaming::BindingList

NamingContext::new_context()
// IDL
NamingContext new_context();

Creates a new NamingContext object in the naming service, without
binding a name to it. The method returns a reference to the newly
created NamingContext object.

After creating a naming context with this method, your application
can bind a name to it by calling NamingContext::bind_context().
There is no relationship between this object and the NamingContext
object on which the application call the method.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

NamingContext::NotEmpty Exception
// IDL
exception NotEmpty {};

An application can call the NamingContext::destroy() method to
delete a naming context object in the naming service. For this
method to succeed, the naming context must contain no bindings.
If bindings exist in the naming context, the method throws a
NotEmpty exception.

NamingContext::NotFound Exception
// IDL
exception NotFound {
 NotFoundReason why;
 Name rest_of_name;

how_many The maximum number of bindings to be obtained in
the BindingList parameter, bl.

bl The list of bindings contained in the naming context on
which the method is called.

bi A BindingIterator object that provides access to all
remaining bindings contained in the naming context
on which the method is called.
If the naming context contains more than the
requested number of bindings, the BindingIterator
contains the remaining bindings. If the naming con-
text does not contain any additional bindings, the
parameter bi is a nil object reference.

Orbix CORBA Programmer’s Reference: Java 267

};

Several methods in the interface CosNaming::NamingContext require
an existing name binding to be passed as an input parameter. If
such an method receives a name binding that it determines is
invalid, the method throws a NotFound exception. This exception
contains two member fields:

The following methods can throw this exception:
bind()
bind_context()
bind_new_context()
rebind()
rebind_context()
resolve()
unbind()

See Also CosNaming::NamingContext::NotFoundReason

NamingContext::NotFoundReason Enumeration
// IDL
enum NotFoundReason {missing_node, not_context, not_object};

If an method throws a NotFound exception, a value of enumerated
type NotFoundReason indicates the reason why the exception was
thrown. The reasons consists of:

See Also CosNaming::NamingContext::NotFound

NamingContext::rebind()
// IDL
void rebind(
 in Name n,
 in Object obj
)
 raises (NotFound, CannotProceed, InvalidName);

why The reason why the name binding is invalid.
rest_of_name The remainder of the compound name following the

invalid portion of the name that the method deter-
mined to be invalid.

missing_node The component of the name passed to the
method did not exist in the naming service.

not_context The method expected to receive a name that is
bound to a naming context, for example using
NamingContext::bind_context(), but the name
received did not satisfy this requirement.

not_object The method expected to receive a name that is
bound to an application object, for example
using NamingContext::bind(), but the name
received did not satisfy this requirement.

 268 Orbix CORBA Programmer’s Reference: Java

Creates a binding between an object and a name that is already
bound in the target naming context. The previous name is unbound
and the new binding is created in its place.

Parameters

As is the case with NamingContext::bind(), all but the last compo-
nent of a compound name must exist, relative to the naming con-
text on which you call the method.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

See Also CosNaming::NamingContext::bind()
CosNaming::NamingContext::resolve()

NamingContext::rebind_context()
// IDL
void rebind_context(
 in Name n,
 in NamingContext nc
)
 raises (NotFound, CannotProceed, InvalidName);

The rebind_context() method creates a binding between a naming
context and a name that is already bound in the context on which
the method is called. The previous name is unbound and the new
binding is made in its place.

Parameters

As is the case for NamingContext::bind_context(), all but the last
component of a compound name must name an existing
NamingContext.

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::resolve()

n The name to be bound to the specified object, relative
to the naming context on which the method is called.

obj The application object to be associated with the speci-
fied name.

n The name to be bound to the specified naming con-
text, relative to the naming context on which the
method is called.

nc The naming context to be associated with the specified
name.

Orbix CORBA Programmer’s Reference: Java 269

NamingContext::resolve()
// IDL
Object resolve(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

Returns the object reference that is bound to the specified name,
relative to the naming context on which the method was called. The
first component of the specified name is resolved in the target
naming context.

Parameters

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

If the name n refers to a naming context, it is possible that the
corresponding NamingContext object no longer exists in the naming
service. For example, this could happen if you call
NamingContext::destroy() to destroy a context without first unbind-
ing the context name. In this case, resolve() throws a CORBA sys-
tem exception.

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

NamingContext::unbind()
// IDL
void unbind(
 in Name n
)
 raises (NotFound, CannotProceed, InvalidName);

Removes the binding between a specified name and the object
associated with it.

Parameters

Unbinding a name does not delete the application object or nam-
ing context object associated with the name. For example, if you
want to remove a naming context completely from the naming
service, you should first unbind the corresponding name, then
delete the NamingContext object by calling
NamingContext::destroy().

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName

n The name to be resolved, relative to the naming con-
text on which the method is called.

n The name to be unbound in the naming service, rela-
tive to the naming context on which the method is
called.

 270 Orbix CORBA Programmer’s Reference: Java

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::destroy()
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

 Orbix CORBA Programmer’s Reference: Java 271

CosNaming::NamingContextExt
Interface

The NamingContextExt interface, derived from NamingContext, pro-
vides the capability for applications to use strings and Uniform
Resource Locator (URL) strings to access names in the naming
service.
// IDL
// In module CosNaming
interface NamingContextExt: NamingContext {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;

 StringName to_string(
 in Name n
)
 raises(InvalidName);

 Name to_name(
 in StringName sn
)
 raises(InvalidName);

 exception InvalidAddress {};

 URLString to_url(
 in Address addr,
 in StringName sn
)
 raises(InvalidAddress, InvalidName);

 Object resolve_str(
 in StringName n
)
 raises(NotFound, CannotProceed, InvalidName,

AlreadyBound);
};

NameContextExt::Address Data Type
// IDL
typedef string Address;

A URL address component is a host name optionally followed by a
port number (delimited by a colon). Examples include the follow-
ing:
my_backup_host.555xyz.com:900
myhost.xyz.com
myhost.555xyz.com

 272 Orbix CORBA Programmer’s Reference: Java

NameContextExt::InvalidAddress Exception
// IDL
exception InvalidAddress {};

The to_url() method throws an InvalidAddress exception when an
invalid URL address component is passed to it.

See Also CosNaming::NamingContextExt::to_url()

NameContextExt::resolve_str()
// IDL
Object resolve_str(
 in StringName sn
)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

Resolves a naming service name to the object it represents in the
same manner as NamingContext::resolve(). This method accepts a
string representation of a name as an argument instead of a Name
data type.

Parameters

Exceptions The method can throw these exceptions:

NotFound
CannotProceed
InvalidName
AlreadyBound

NameContextExt::StringName Data Type
// IDL
typedef string StringName;

A string representation of an object’s name in the naming service.

See Also CosNaming::Name

NameContextExt::to_name()
// IDL
Name to_name(
 in StringName sn
)
 raises(InvalidName);

Returns a naming service Name given a string representation of it.

Parameters

sn String representation of a name to be resolved to an
object reference.

sn String representation of a name in the naming service
to be converted to a Name data type.

Orbix CORBA Programmer’s Reference: Java 273

Exceptions

NameContextExt::to_string()
// IDL
StringName to_string(
 in Name n
)
 raises(InvalidName);

Returns a string representation of a naming service Name data type.

Parameters

Exceptions

NameContextExt::to_url()
// IDL
URLString to_url(
 in Address addr,
 in StringName sn
)
 raises(InvalidAddress, InvalidName);

Returns a fully formed URL string, given a URL address component
and a string representation of a name. It adds the necessary escape
sequences to create a valid URLString.

Parameters

Exceptions The method can throw these exceptions:

InvalidAddress
InvalidName

NameContextExt::URLString Data Type
// IDL
typedef string URLString;

A valid Uniform Resource Locator (URL) string. URL strings describe
the location of a resource that is accessible via the Internet.

InvalidName The string name is syntactically malformed or violates
an implementation limit.

n The naming service Name to be converted to a string.

InvalidName Name is invalid.

addr The URL address component. An empty address
means the local host.

sn The string representation of a naming service name.
An empty string is allowed.

 274 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 275

CosNotification Module
The CosNotification module defines the structured event data
type, and a data type used for transmitting sequences of struc-
tured events. In addition, this module provides constant declara-
tions for each of the standard quality of service (QoS) and
administrative properties supported by the notification service.
Some properties also have associated constant declarations to
indicate their possible settings. Finally, administrative interfaces
are defined for managing sets of QoS and administrative proper-
ties.

CosNotification Data Types

CosNotification::StructuredEvent Data
Structure
//IDL
struct EventType {
 string domain_name;
 string type_name;
};

struct FixedEventHeader {
 EventType event_type;
 string event_name;
};

struct EventHeader {
 FixedEventHeader fixed_header;
 OptionalHeaderFields variable_header;
};

struct StructuredEvent {

 EventHeader header;
 FilterableEventBody filterable_data;
 any remainder_of_body;
}; // StructuredEvent

The StructuredEvent data structure defines the fields which make
up a structured event. A detailed description of structured events
is provided in the CORBA Notification Service Guide.

CosNotification::EventTypeSeq Type
//IDL
struct EventType {
 string domain_name;
 string type_name;
};
typedef sequence <EventType> EventTypeSeq

 276 Orbix CORBA Programmer’s Reference: Java

CosNotification::EventBatch Type
The CosNotification module defines the EventBatch data type as a
sequence of structured events. The CosNotifyComm module defines
interfaces supporting the transmission and receipt the EventBatch
data type.

QoS and Administrative Constant Declarations
The CosNotification module declares several constants related to
QoS properties, and the administrative properties of event chan-
nels.
// IDL in CosNotification module
const string EventReliability = "EventReliability";
const short BestEffort = 0;
const short Persistent = 1;

const string ConnectionReliability = "ConnectionReliability";
// Can take on the same values as EventReliability

const string Priority = "Priority";
const short LowestPriority = -32767;
const short HighestPriority = 32767;
const short DefaultPriority = 0;

const string StartTime = "StartTime";
// StartTime takes a value of type TimeBase::UtcT

const string StopTime = "StopTime";
// StopTime takes a value of type TimeBase::UtcT

const string Timeout = "Timeout";
// Timeout takes on a value of type TimeBase::TimeT

const string OrderPolicy = "OrderPolicy";
const short AnyOrder = 0;
const short FifoOrder = 1;
const short PriorityOrder = 2;
const short DeadlineOrder = 3;

const string DiscardPolicy = "DiscardPolicy";
// DiscardPolicy takes on the same values as OrderPolicy, plus
const short LifoOrder = 4;

const string MaximumBatchSize = "MaximumBatchSize";
// MaximumBatchSize takes on a value of type long

const string PacingInterval = "PacingInterval";
/ PacingInterval takes on a value of type TimeBase::TimeT

const string StartTimeSupported = "StartTimeSupported";
// StartTimeSupported takes on a boolean value

const string StopTimeSupported = "StopTimeSupported";
// StopTimeSupported takes on a boolean value

const string MaxEventsPerConsumer = "MaxEventsPerConsumer";
// MaxEventsPerConsumer takes on a value of type long

Orbix CORBA Programmer’s Reference: Java 277

QoS and Admin Data Types
The CosNotification module defines several data types related to
QoS properties, and the administrative properties of event chan-
nels.

CosNotification::PropertyName Type
typedef string PropertyName;

PropertyName is a string holding the name of a QoS or an Admin
property.

CosNotification::PropertyValue Type
typedef any PropertyValue;

PropertyValue is an any holding the setting of QoS or Admin prop-
erties.

CosNotification::PropertySeq Type
//IDL in CosNotification module
struct Property
 {
 PropertyName name;
 PropertyValue value;
 };
typedef sequence <Property> PropertySeq;

PropertySeq is a set of name-value pairs that encapsulate QoS or
Admin properties and their values.

Members

CosNotification::QoSProperties Type
typedef PropertySeq QoSProperties;

QoSProperties is a name-value pair of PropertySeq used to specify
QoS properties.

CosNotification::AdminProperties Type
typedef PropertySeq AdminProperties;

AdminProperties is a name-value pair of PropertySeq used to specify
Admin properties.

name A string identifying the QoS or Admin property.
value An Any containing the setting of the QoS or Admin

property.

 278 Orbix CORBA Programmer’s Reference: Java

CosNotification::QoSError_code Enum
enum QoSError_code
{
 UNSUPPORTED_PROPERTY,
 UNAVAILABLE_PROPERTY,
 UNSUPPORTED_VALUE,
 UNAVAILABLE_VALUE,
 BAD_PROPERTY,
 BAD_TYPE,
 BAD_VALUE
};

QoSError_code specifies the error codes for UnsupportedQoS and
UnsupportedAdmin exceptions. The return codes are:

CosNotification::PropertyErrorSeq Type
// IDL from CosNotification module
 struct PropertyRange
 {
 PropertyValue low_val;
 PropertyValue high_val;
 };

 struct PropertyError
 {
 QoSError_code code;
 PropertyName name;
 PropertyRange available_range;
 };
 typedef sequence <PropertyError> PropertyErrorSeq;

A PropertyErrorSeq is returned when UnsupportedQoS or
UnsupportedAdmin is raised. It specifies a sequence containing the
reason for the exception, the property that caused it, and a range
of valid settings for the property.

UNSUPPORTED_PROPERTYOrbix does not support the property for this
type of object

UNAVAILABLE_PROPERTYThis property cannot be combined with existing
QoS properties.

UNSUPPORTED_VALUE The value specified for this property is invalid
for the target object.

UNAVAILABLE_VALUE The value specified for this property is invalid
in the context of other QoS properties currently
in force.

BAD_PROPERTY The property name is unknown.
BAD_TYPE The type supplied for the value of this property

is incorrect.
BAD_VALUE The value specified for this property is illegal.

Orbix CORBA Programmer’s Reference: Java 279

CosNotification::NamedPropertyRangeSeq
Type
struct NamedPropertyRange
 {
 PropertyName name;
 PropertyRange range;
 };
typedef sequence <NamedPropertyRange> NamedPropertyRangeSeq;

Specifies a range of values for the named property.

QoS and Admin Exceptions
The CosNotification module defines two exceptions related to QoS
properties, and the administrative properties of event channels.

CosNotification::UnsupprtedQoS
exception UnsupportedQoS { PropertyErrorSeq qos_err; };

Raised when setting QoS properties on notification channel objects,
or when validating QoS properties. It returns with a
PropertyErrorSeq specifying the reason for the exception, which
property was invalid, and a list of valid settings for the QoS property.

CosNotification::UnsupportedAdmin
exception UnsupportedAdmin { PropertyErrorSeq admin_err; };

Raised when setting Admin properties on notification channels. It
returns with a PropertyErrorSeq specifying the reason for the excep-
tion, which property was invalid, and a list of valid settings for the
property.

 280 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 281

CosNotification::AdminProperties
Admin Interface

//IDL
interface AdminPropertiesAdmin {
 AdminProperites get_admin();
 void set_admin (in AdminProperites admin)
 raises (UnsupportedAdmin);
};

The AdminPropertiesAdmin interface defines operations enabling
clients to manage the values of administrative properties. This
interface is an abstract interface which is inherited by the Event
Channel interfaces defined in the CosNotifyChannelAdmin module.

AdminPropertiesAdmin::get_admin()
AdminProperites get_admin();

Returns a sequence of name-value pairs encapsulating the current
administrative settings for the target channel.

AdminPropertiesAdmin::set_admin()
void set_admin (in AdminProperites admin)
 raises (UnsupportedAdmin);

Sets the specified administrative properties on the target object.

Parameters

Exceptions

admin A sequence of name-value pairs
encapsulating administrative property
settings.

UnsupportedAdmin Raised if If any of the requested settings cannot
be satisfied by the target object.

 282 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 283

CosNotification::QoSAdmin
Interface

//IDL
interface QoSAdmin {
 QoSProperties get_qos();
 void set_qos (in QoSProperties qos)
 raises (UnsupportedQoS);
 void validate_qos (
 in QoSProperites required_qos,
 out NamedPropertyRangeSeq available_qos)
 raises (UnsupportedQoS);

The QoSAdmin interface defines operations enabling clients to man-
age the values of QoS properties. It also defines an operation to
verify whether or not a set of requested QoS property settings can
be satisfied, along with returning information about the range of
possible settings for additional QoS properties. QoSAdmin is an
abstract interface which is inherited by the proxy, admin, and
event channel interfaces defined in the CosNotifyChannelAdmin
module.

QoSAdmin::get_qos()
QoSProperites get_qos();

Returns a sequence of name-value pairs encapsulating the current
quality of service settings for the target object (which could be an
event channel, admin, or proxy object).

QoSAdmin::set_qos()
void set_qos (in QoSProperites qos)
 raises (UnsupportedQoS);

Sets the specified QoS properties on the target object (which
could be an event channel, admin, or proxy object).

Parameters

Exceptions

qos A sequence of name-value pairs
encapsulating quality of service prop-
erty settings

UnsupportedQoSThe implementation of the target object is incapable of
supporting some of the requested quality of service
settings, or one of the requested settings are in con-
flict with a QoS property defined at a higher level of
the object hierarchy.

 284 Orbix CORBA Programmer’s Reference: Java

QoSAdmin::validate_qos()
void validate_qos (
 in QoSProperites required_qos,
 out NamedPropertyRangeSeq available_qos)
 raises (UnsupportedQoS);

Enables a client to discover if the target object is capable of sup-
porting a set of QoS settings. If all requested QoS property value
settings can be satisfied by the target object, the operation
returns successfully (without actually setting the QoS properties
on the target object).

Parameters

Exceptions

required_qos A sequence of QoS property
name-value pairs specifying a set of
QoS settings.

available_qos An output parameter that contains a
sequence of NamedPropertyRange. Each
element in this sequence includes the
name of a an additional QoS property
supported by the target object which
could have been included on the input
list and resulted in a successful return
from the operation, along with the
range of values that would have been
acceptable for each such property.

UnsupportedQoSRaised if If any of the requested settings cannot be
satisfied by the target object.

 Orbix CORBA Programmer’s Reference: Java 285

CosNotifyChannelAdmin Module
The CosNotifyChannelAdmin module specifies the interfaces, excep-
tions, and data types for connecting suppliers and consumers to
an event channel. It also provides the methods for managing
these connections.

CosNotifyChannelAdmin Data Types
CosNotifyChannelAdmin specifies data types that facilitate the con-
nection of clients to an event channel. The data types specify the
proxy type used by a client, the type of events a client can send or
recieve, and how the clients recieve subscription information.
Several data types identify the client and the event channel objets
responsible for managing it.

CosNotifyChyyyyyannelAdmin::ProxyType
Enum
// IDL in CosNotifyChannelAdmin
enum ProxyType
{
 PUSH_ANY,
 PULL_ANY,
 PUSH_STRUCTURED,
 PULL_STRUCTURED,
 PUSH_SEQUENCE,
 PULL_SEQUENCE,
 PUSH_TYPED,
 PULL_TYPED
}

Specifies the type of proxy used by a client to connect to an event
channel. The type of proxy must match the type of client it connects
to the channel. For example, a structured push consumer must use
a PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::ObtainInfoMode
Enum
// IDL in CosNotifyChannelAdmin Module
enum ObtainInfoMode
{
 ALL_NOW_UPDATES_ON,
 ALL_NOW_UPDATES_OFF,
 NONE_NOW_UPDATES_ON,
 NONE_NOW_UPDATES_OFF
}

 286 Orbix CORBA Programmer’s Reference: Java

Specifies how the client wishes to be notified of changes in subscrip-
tion/publication information. The values have the following mean-
ings:

CosNotifyChannelAdmin::ProxyID Type
typedef long ProxyID;

Specifies the ID of a proxy in an event channel.

CosNotifyChannelAdmin::ProxyIDSeq Type
typedef sequence <ProxyID> ProxyIDSeq

Contains a list of ProxyID values.

CosNotifyChannelAdmin::ClientType Enum
// IDL in CosNotifyChannelAdmin
enum ClientType
{
 ANY_EVENT,
 STRUCTURED_EVENT,
 SEQUENCE_EVENT
}

Specifies the type of messages a client handles. The values have
the following meanings:

ALL_NOW_UPDATES_ON Returns the current subscription/publication
information and enables automatic updates.

ALL_NOW_UPDATES_OFFReturns the current subscription/publication
information and disables automatic updates.

NONE_NOW_UPDATES_ONEnables automatic updates of subscription/publi-
cation information without returning the current
information.

NON_NOW_UPDATES_OFFDisables automatic updates of subscription/pub-
lication information without returning the cur-
rent information.

ANY_EVENT The client sends or receives messages as an Any.
Consumers set with ANY_EVENT can receive struc-
tured messages, but the consumer is responsible
for decoding it.

STRUCTURED_EVENT The client sends or receives messages as a
CosNotification::StructuredEvent.

SEQUENCE_EVENT The client sends or receives messages as a
CosNotification::EventBatch.

Orbix CORBA Programmer’s Reference: Java 287

CosNotifyChannelAdmin::InterFilterGroupOper
ator Enum
// IDL in CosNotifyChannelAdmin
enum InterFilterGroupOperator
{
 AND_OP,
 OR_OP
}

Specifies the relationship between filters set on an admin object
and the filters set on its associated filter objects. The values have
the following meanings:

CosNotifyChannelAdmin::AdminID Type
typedef long AdminID;

Specifies the ID of an admin object in an event channel.

CosNotifyChannelAdmin::AdminIDSeq
typedef sequence <AdminID> AdminIDSeq;

Contains a list of IDs for admin objects in an event channel.

CosNotifyChannelAdmin::AdminLimit Type
//IDL in CosNotifyChannelAdmin
struct AdminLimit
{
 CosNotification::PropertyName name;
 CosNotification::PropertyValue value;
}

Specifies the administration property whose limit is exceeded and
the value of that property. It is returned by an
CosNotifyChannelAdmin::AdminLimitExceeded exception.

Members

CosNotifyChannelAdmin::ChannelID Type
typedef long ChannelID;

AND_OP Events must pass at least one filter in both the proxy
and the admin in order to be forwarded along the
delivery path.

OR_OP Events must pass at least one filter in either the proxy
or the admin in order to be forwarded along the deliv-
ery path.

name Name of the admin property that caused the excep-
tion.

value The current value of the property.

 288 Orbix CORBA Programmer’s Reference: Java

Specifies an event channel in the notification service.

CosNotifyChannelAdmin::ChannelIDSeq Type
typedef sequence <ChannelID> ChannelIDSeq;

Contains a list of IDs for event channels in the notification service.

CosNotifyChannelAdmin Exceptions
The CosNotifyChannelAdmin module defines exceptions to handle
errors generated while managing client connections to an event
channel.

CosNotifyChannelAdmin::ConnectionAlreadyAc
tive Exception
exception ConnectionAlreadyActive{};

Raised when attempting to resume an already active connection
between a client and an event channel.

CosNotifyChannelAdmin::ConnetionAlreadyIna
ctive Exception
exception ConnectionAlreadyInactive{};

Raised when attempting to suspend a connection between a client
and an event channel while it is suspended.

CosNotifyChannelAdmin::NotConnected
Exception
exception NotCennected{};

Raised when attempting to suspend or resume a connection be-
tween a client and an event channel when the client is not connected
to the channel.

CosNotifyChannelAdmin::AdminNotFound
Exception
exception AdminNotFound{};

Raised when the specified Admin ID cannot be resolved.

CosNotifyChannelAdmin::ProxyNotFound
Exception
exception ProxyNotFound{};

Orbix CORBA Programmer’s Reference: Java 289

Raised when the specified proxy ID cannot be resolved.

CosNotifyChannelAdmin::AdminLimitExceeded
Exception
exception AdminLimitExceeded{ AdminLimit admin_property_err };

Raised when an attempt to obtain a proxy and the new connection
will put the event channel over the limit set by its MaxConsumers or
MaxSuppliers setting.

The returned AdminLimit specifies which property caused the
exception and the current setting of the property.

CosNotifyChannelAdmin::ChannelNotFound
Exception
exception ChannelNotFound{};

Raised when the specified channel ID cannot be resolved.

 290 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 291

CosNotifyChannelAdmin::Consum
erAdmin Interface

//IDL
interface ConsumerAdmin :
 CosNotification::QoSAdmin,
 CosNotifyComm::NotifySubscribe,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::ConsumerAdmin
{
 readonly attribute AdminID MyID;
 readonly attribute EventChannel MyChannel;

 readonly attribute InterFilterGroupOperator MyOperator;

 attribute CosNotifyFilter::MappingFilter priority_filter;
 attribute CosNotifyFilter::MappingFilter lifetime_filter;

 readonly attribute ProxyIDSeq pull_suppliers;
 readonly attribute ProxyIDSeq push_suppliers;

 ProxySupplier get_proxy_supplier (in ProxyID proxy_id)
 raises (ProxyNotFound);

 ProxySupplier obtain_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxySupplier obtain_txn_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 void destroy();
};

The ConsumerAdmin interface defines the behavior of objects that
create and manage lists of proxy supplier objects within an event
channel. A event channel can have any number of ConsumerAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy supplier objects that share a
common set of QoS property settings, and a common set of filter
objects. This feature enables clients to group proxy suppliers
within a channel into groupings that each support a set of con-
sumers with a common set of QoS requirements and event sub-
scriptions.
The ConsumerAdmin interface inherits the QoSAdmin interface defined
within CosNotification, enabling each ConsumerAdmin to manage a
set of QoS property settings. These QoS property settings are
assigned as the default QoS property settings for any proxy sup-

 292 Orbix CORBA Programmer’s Reference: Java

plier object created by a ConsumerAdmin.The ConsumerAdmin interface
also inherits from the FilterAdmin interface defined within
CosNotifyFilter. This enables each ConsumerAdmin to maintain a list
of filters. These filters encapsulate subscriptions that apply to all
proxy supplier objects that have been created by a given Consum-
erAdmin.
The ConsumerAdmin interface also inherits from the NotifySubscribe
interface defined in CosNotifyComm. This inheritance enables a Con-
sumerAdmin to be registered as the callback object for notification of
subscription changes made on filters. This optimizes the notifica-
tion of a group of proxy suppliers that have been created by the
same ConsumerAdmin of changes to these shared filters.
The ConsumerAdmin interface also inherits from
CosEventChannelAdmin::ConsumerAdmin. This inheritance enables cli-
ents to use the ConsumerAdmin interface to create pure OMG event
service style proxy supplier objects. Proxy supplier objects created
in this manner do not support configuration of QoS properties, and
do not have associated filters. Proxy suppliers created through the
inherited CosEventChannelAdmin::ConsumerAdmin interface do not
have unique identifiers associated with them, whereas proxy sup-
pliers created by operations supported by the ConsumerAdmin inter-
face do have unique identifiers.
The ConsumerAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel instance that created it.
The ConsumerAdmin interface also supports a read-only attribute
that contains a unique numeric identifier which is assigned event
channel upon creation of a ConsumerAdmin instance. This identifier is
unique among all ConsumerAdmin instances created by a given chan-
nel.
As described above, a ConsumerAdmin can maintain a list of filters
that are applied to all proxy suppliers it creates. Each proxy sup-
plier can also support a list of filters that apply only to the proxy.
When combining these two lists during the evaluation of a given
event, either AND or OR semantics may be applied. The choice is
determined by an input flag when creating of the ConsumerAdmin,
and the operator that is used for this purpose by a given Consum-
erAdmin is maintained in a read-only attribute.
The ConsumerAdmin interface also supports attributes that maintain
references to priority and lifetime mapping filter objects. These
mapping filter objects are applied to all proxy supplier objects cre-
ated by a given ConsumerAdmin.
Each ConsumerAdmin assigns a unique numeric identifier to each
proxy supplier it maintains. The ConsumerAdmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push suppliers created by a
given ConsumerAdmin. The ConsumerAdmin interface also supports an
operation that, given the unique identifier of a proxy supplier,
returns the object reference of that proxy supplier. Finally, the
ConsumerAdmin interface supports operations that create the various
styles of proxy supplier objects supported by the event channel.

ConsumerAdmin::MyID
readonly attribute AdminID MyID;

Orbix CORBA Programmer’s Reference: Java 293

Maintains the unique identifier of the target ConsumerAdmin instance
that is assigned to it upon creation by the event channel.

ConsumerAdmin::MyChannel
readonly attribute EventChannel MyChannel

Maintains the object reference of the event channel that created a
given ConsumerAdmin instance.

ConsumerAdmin::MyOperator
readonly attribute InterFilterGroupOperator MyOperator;

Maintains the information regarding whether AND or OR semantics
are used during the evaluation of a given event when combining
the filter objects associated with the target ConsumerAdmin and those
defined locally on a given proxy supplier.

ConsumerAdmin::priority_filter
attribute CosNotifyFilter::MappingFilter priority_filter;

Maintains a reference to a mapping filter object that affects how
each proxy supplier created by the target ConsumerAdmin treats
events with respect to priority.

Each proxy supplier also has an associated attribute which main-
tains a reference to a mapping filter object for the priority prop-
erty. This local mapping filter object is only used by the proxy
supplier in the event that the priority_filter attribute of the Con-
sumerAdmin instance that created it is set to OBJECT_NIL.

ConsumerAdmin::lifetime_filter
attribute CosNotifyFilter::MappingFilter lifetime_filter;

Maintains a reference to a mapping filter that affects how each proxy
supplier created by the target ConsumerAdmin treats events with
respect to lifetime.

Each proxy supplier object also has an associated attribute that
maintains a reference to a mapping filter object for the lifetime
property. This local mapping filter object is only used by the proxy
supplier in the event that the lifetime_filter attribute of the Con-
sumerAdmin instance that created it is set to OBJECT_NIL.

ConsumerAdmin::pull_suppliers
readonly attribute ProxyIDSeq pull_suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each pull-style proxy supplier it has
created.

 294 Orbix CORBA Programmer’s Reference: Java

ConsumerAdmin::push_suppliers
readonly attribute ProxyIDSeq push_suppliers;

Contains the list of unique identifiers that have been assigned by a
ConsumerAdmin instance to each push-style proxy supplier it has
created.

ConsumerAdmin::get_proxy_supplier()
ProxySupplier get_proxy_supplier (in ProxyID proxy_id)
 raises (ProxyNotFound);

Returns an object reference to the proxy supplier whose unique id
was passed to the method.

Parameters

Exceptions

ConsumerAdmin::obtain_notification_pull_sup
plier()
ProxySupplier obtain_notification_pull_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates instances of the pull-style proxy suppliers defined in
CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of pull-style proxy suppliers are defined in this
module:
• The ProxyPullSupplier interface supports connections to pull

consumers that receive events as Anys.
• The StructuredProxyPullSupplier interface supports connec-

tions to pull consumers that receive structured events.
• The SequenceProxyPullSupplier interface support connections

to pull consumers that receive sequences of structured
events.

The input parameter flag indicates which type of pull style proxy
instance to create.
The target ConsumerAdmin creates the new pull-style proxy supplier
and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumerAdmin has created.

proxy_id A numeric identifier associated with one of the
proxy suppliers that created by the target
ConsumerAdmin.

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy supplier object created
by the target ConsumerAdmin.

Orbix CORBA Programmer’s Reference: Java 295

Parameters

Exceptions

ConsumerAdmin::obtain_notification_push_su
pplier()
ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates instances of the push-style proxy supplier objects defined
in CosNotifyChannelAdmin and returns an object reference to the new
proxy.

Three varieties of push-style proxy suppliers are defined in this
module:
• The ProxyPushSupplier interface supports connections to push

consumers that receive events as Anys.
• The StructuredProxyPushSupplier interface supports connec-

tions to push consumers that receive structured events.
• The SequenceProxyPushSupplier interface supports connections

to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.
The target ConsumerAdmin creates the new push-style proxy sup-
plier and assigns a numeric identifier to it that is unique among all
proxy suppliers the ConsumerAdmin has created.

Parameters

Exceptions

ctype A flag that indicates which style of pull-style proxy
supplier to create.

proxy_id The unique identifier of the new proxy supplier.

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

ctype A flag indicating which style of push-style proxy
supplier to create.

proxy_id The unique identifier of the new proxy supplier.

AdminLimitExceededThe number of consumers currently connected to
the channel with which the target ConsumerAdmin is
associated exceeds the value of the MaxConsumers
administrative property.

 296 Orbix CORBA Programmer’s Reference: Java

ConsumerAdmin::destroy()
void destroy();

Destroys all proxies under the administration of the target object,
and then destroys the target object itself. When destroying each
object, it frees any storage associated with the object in question,
and then invalidates the object's IOR.

 Orbix CORBA Programmer’s Reference: Java 297

CosNotifyChannelAdmin::EventCh
annel Interface

//IDL
interface EventChannel :
 CosNotification::QoSAdmin,
 CosNotification::AdminPropertiesAdmin,
 CosEventChannelAdmin::EventChannel
{
 readonly attribute EventChannelFactory MyFactory;
 readonly attribute ConsumerAdmin default_consumer_admin;
 readonly attribute SupplierAdmin default_supplier_admin;
 readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;

 ConsumerAdmin new_for_consumers(
 in InterFilterGroupOperator op,
 out AdminID id);

 SupplierAdmin new_for_suppliers(
 in InterFilterGroupOperator op,
 out AdminID id);

 ConsumerAdmin get_consumeradmin (in AdminID id)
 raises (AdminNotFound);

 SupplierAdmin get_supplieradmin (in AdminID id)
 raises (AdminNotFound);

 AdminIDSeq get_all_consumeradmins();
 AdminIDSeq get_all_supplieradmins();
};

The EventChannel interface defines the behavior of an event chan-
nel. This interface inherits from CosEventChannelAdmin::EventChan-
nel; this makes an instance of the notification service EventChannel
interface fully compatible with an OMG event service style untyped
event channel.
Inheritance of CosEventChannelAdmin::EventChannel enables an
instance of the EventChannel interface to create event service style
ConsumerAdmin and SupplierAdmin instances. These instances can
subsequently be used to create pure event service style proxies,
which support connections to pure event service style suppliers
and consumers.
While notification service style proxies and admin objects have
unique identifiers associated with them, enabling their references
to be obtained by invoking operations on the notification service
style admin and event channel interfaces, event service style
proxies and admin objects do not have associated unique identifi-
ers, and cannot be returned by invoking an operation on the noti-
fication service style admin or event channel interfaces.
The EventChannel interface also inherits from the QoSAdmin and the
AdminPropertiesAdmin interfaces defined in CosNotification. Inheri-
tance of these interfaces enables a notification service style event
channel to manage lists of QoS and administrative properties.

 298 Orbix CORBA Programmer’s Reference: Java

The EventChannel interface supports a read-only attribute that
maintains a reference to the EventChannelFactory that created it.
Each instance of the EventChannel interface has an associated
default ConsumerAdmin and an associated default SupplierAdmin,
both of which exist upon creation of the channel and that have the
unique identifier of zero. Admin object identifiers must only be
unique among a given type of admin, which means that the identi-
fiers assigned to ConsumerAdmin objects can overlap those assigned
to SupplierAdmin objects. The EventChannel interface supports
read-only attributes that maintain references to these default
admin objects.
The EventChannel interface supports operations that create new
ConsumerAdmin and SupplierAdmin instances. The EventChannel inter-
face also supports operations that, when provided with the unique
identifier of an admin object, can return references to the
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel. Finally, the EventChannel interface supports opera-
tions that return the sequence of unique identifiers of all
ConsumerAdmin and SupplierAdmin instances associated with a given
EventChannel.

EventChannel::MyFactory
readonly attribute EventChannelFactory MyFactory;

Maintains the object reference of the event channel factory that
created a given EventChannel.

EventChannel::default_consumer_admin
readonly attribute ConsumerAdmin default_consumer_admin;

Maintains a reference to the default ConsumerAdmin associated with
the target EventChannel. Each EventChannel instance has an associ-
ated default ConsumerAdmin, that exists upon creation of the channel
and is assigned the unique identifier of zero. Clients can create
additional event service style ConsumerAdmin by invoking the inher-
ited for_consumers operation, and additional notification service
style ConsumerAdmin by invoking the new_for_consumers operation
defined by the EventChannel interface.

EventChannel::default_supplier_admin
readonly attribute SupplierAdmin default_supplier_admin;

Maintains a reference to the default SupplierAdmin associated with
the target EventChannel. Each EventChannel has an associated default
SupplierAdmin, that exists upon creation of the channel and is
assigned the unique identifier of zero. Clients can create additional
event service style SupplierAdmin by invoking the inherited for_sup-
pliers operation, and additional notification service style
SupplierAdmin by invoking the new_for_suppliers operation defined
by the EventChannel interface.

Orbix CORBA Programmer’s Reference: Java 299

EventChannel::default_filter_factory
readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;

Maintains an object reference to the default factory to be used by
its associated EventChannel for creating filters. If the target channel
does not support a default filter factory, the attribute maintains the
value of OBJECT_NIL.

EventChannel::new_for_consumers()
ConsumerAdmin new_for_consumers(
 in InterFilterGroupOperator op,
 out AdminID id);

Creates a notification service style ConsumerAdmin. The new instance
is assigned a unique identifier by the target EventChannel that is
unique among all ConsumerAdmins currently associated with the
channel. Upon completion, the operation returns the reference to
the new ConsumerAdmin, and the unique identifier assigned to the
new ConsumerAdmin as the output parameter.

Parameters

EventChannel::new_for_suppliers()
SupplierAdmin new_for_suppliers(
 in InterFilterGroupOperator op,
 out AdminID id);

Creates a notification service style SupplierAdmin. The new
SupplierAdmin is assigned an identifier by the target EventChannel
that is unique among all SupplierAdmins currently associated with
the channel. Upon completion, the operation returns the reference
to the new SupplierAdmin, and the unique identifier assigned to the
new SupplierAdmin as the output parameter.

Parameters

op A boolean flag indicating whether to use AND or OR
semantics when the ConsumerAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the ConsumerAdmin creates.

id The unique identifier assigned to the new
ConsumerAdmin.

op A boolean flag indicating whether to use AND or OR
semantics when the SupplierAdmin’s filters are
combined with the filters associated with any sup-
plier proxies the SupplierAdmin creates.

id The unique identifier assigned to the new
SupplierAdmin.

 300 Orbix CORBA Programmer’s Reference: Java

EventChannel::get_consumeradmin()
ConsumerAdmin get_consumeradmin (in AdminID id)
 raises (AdminNotFound);

Returns a reference to one of the ConsumerAdmins associated with
the target EventChannel.

Note: While a notification service event channel can support both event
service and notification service style ConsumerAdmins, only
notification service style ConsumerAdmins have unique identifiers.

Parameters

Exceptions

EventChannel::get_supplieradmin()
SupplierAdmin get_supplieradmin (in AdminID id)
 raises (AdminNotFound);

Returns a reference to one of the SupplierAdmins associated with
the target EventChannel.

Note: While a notification service style event channel can support both
Event service and notification service style SupplierAdmins, only
notification service style SupplierAdmins have unique identifiers.

Parameters

Exceptions

EventChannel::get_all_consumeradmins()
AdminIDSeq get_all_consumeradmins();

Returns a sequence of unique identifiers assigned to all notifica-
tion service style ConsumerAdmins created by the target EventChan-
nel.

EventChannel::get_all_supplieradmins()
AdminIDSeq get_all_supplieradmins();

id A numeric value that is the unique identifier of one
of the ConsumerAdmins associated with the target
EventChannel.

AdminNotFound The id is not the identifier of one of the
ConsumerAdmins associated with the target EventChan-
nel.

id A numeric value that is the unique identifier of one
of the SupplierAdmins associated with the target
EventChannel.

AdminNotFound The id is not the unique identifier of one of the Sup-
plierAdmins associated with the target EventChannel.

Orbix CORBA Programmer’s Reference: Java 301

Returns a sequence of unique identifiers assigned to all notifica-
tion service style SupplierAdmins created by the target EventChan-
nel.

 302 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 303

CosNotifyChannelAdmin::EventCh
annelFactory Interface

//IDL
interface EventChannelFactory
{
 EventChannel create_channel (
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out ChannelID id)
 raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

 ChannelIDSeq get_all_channels();

 EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);
};

The EventChannelFactory interface defines operations for creating
and managing event channels. It supports a routine that creates
new instances of event channels and assigns unique numeric iden-
tifiers to them.
The EventChannelFactory interface supports a routine that returns
the unique identifiers assigned to all event channels created by a
given EventChannelFactory, and another routine that, given the
unique identifier of an event channel, returns the object reference
of that event channel.

EventChannelFactory::create_channel()
EventChannel create_channel (
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out ChannelID id)
 raises(CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates an instance of an event channel and returns an object
reference to the new channel.

Parameters

initial_qos A list of name-value pairs specifying the initial QoS
property settings for the new channel.

initial_admin A list of name-value pairs specifying the initial
administrative property settings for the new chan-
nel.

id A numeric identifier that is assigned to the new
event channel and which is unique among all event
channels created by the target object.

 304 Orbix CORBA Programmer’s Reference: Java

Exceptions

EventChannelFactory::get_all_channels()
ChannelIDSeq get_all_channels();

Returns a sequence containing all of the unique numeric identifiers
for the event channels which have been created by the target
object.

EventChannelFactory::get_event_channel()
EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);

Returns the object reference of the event channel corresponding to
the input identifier.

Parameters

Exceptions

UnsupportedQoS Raised if no implementation of the EventChannel
interface exists that can support all of the
requested QoS property settings. This exception
contains a sequence of data structures which iden-
tifies the name of a QoS property in the input list
whose requested setting could not be satisfied,
along with an error code and a range of settings for
the property that could be satisfied.

UnsupportedAdminRaised if no implementation of the EventChannel
interface exists that can support all of the
requested administrative property settings.This
exception contains a sequence of data structures
that identifies the name of an administrative prop-
erty in the input list whose requested setting could
not be satisfied, along with an error code and a
range of settings for the property that could be sat-
isfied.

id A numeric value that is the unique identifier of an
event channel that has been created by the target
object.

ChannelNotFound The id does not correspond to he unique identifier
of an event channel that has been created by the
target object.

 Orbix CORBA Programmer’s Reference: Java 305

CosNotifyChannelAdmin::ProxyCo
nsumer Interface

//IDL in CosNotifyChannelAdmin
interface ProxyConsumer:
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
{
 readonly attribute ProxyType MyType;
 readonly attribute SupplierAdmin MyAdmin;

 CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);

 void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq

available_qos)
 raises(CosNotification::UnsupportedQoS);
};

The ProxyConsumer interface is an abstract interface that is inher-
ited by the different proxy consumers that can be instantiated
within an event channel. It encapsulates the behaviors common to
all notification service proxy consumers. In particular, the
ProxyConsumer interface inherits the QoSAdmin interface defined
within the CosNotification module, and the FilterAdmin interface
defined within the CosNotifyFilter module. The former inheritance
enables proxy consumers to administer a list of associated QoS
properties. The latter inheritance enables proxy consumers to
administer a list of associated filter objects. Locally, the
ProxyConsumer interface defines a read-only attribute that contains
a reference to the SupplierAdmin object that created it. The
ProxyConsumer interface also defines an operation to return the list
of event types a given proxy consumer instance can forward, and
an operation to determine which QoS properties can be set on a
per-event basis.

ProxyConsumer::obtain_subscription_types()
CosNotification::EventTypeSeq obtain_subscription_types(
 in ObtainInfoMode mode);

Returns a list of event type names that consumers connected to
the channel are interested in receiving.

Parameters

ProxyConsumer::validate_event_qos()
void validate_event_qos (
 in CosNotification::QoSProperties required_qos,

mode Specifies whether to automatically notify the supplier
of changes to the subsrciption list.

 306 Orbix CORBA Programmer’s Reference: Java

 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises (CosNotification::UnsupportedQoS);

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

Parameters

Exceptions

Exceptions

required_qos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event.

Note: The QoS property
settings contained in the
optional header fields of
a structured event may
differ from those that
are configured on a
given proxy object.

available_qosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property
whose setting is supported by the target object on a
per-event basis. Each element also includes the range
of values that are acceptable for each property.

UnsupportedQoSRaised if any of the requested settings cannot be hon-
ored by the target object. This exception contains as
data a sequence of data structures identifying the
name of a QoS property in the input list whose
requested setting could not be satisfied, along with an
error code and a range of valid settings for the prop-
erty.

 Orbix CORBA Programmer’s Reference: Java 307

CosNotifyChannelAdmin::ProxyPu
llConsumer Interface

//IDL
interface ProxyPullConsumer :
 ProxyConsumer,
 CosEventComm::PullConsumer
{
 void connect_any_pull_supplier (
 in CosEventComm::PullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The ProxyPullConsumer interface supports connections to the chan-
nel by suppliers who make events, packaged as Anys, available to
the channel using the pull model.
The ProxyPullConsumer interface extends the OMG event service
pull-style suppliers of untyped events by supporting event filtering
and the configuration of QoS properties. This interface enables
OMG event service style untyped event suppliers to take advan-
tage of the features offered by the notification service.
Through inheritance of the ProxyConsumer interface, the ProxyPull-
Consumer interface supports administration of QoS properties,
administration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. In addition, this inheritance implies that a ProxyPullCon-
sumer instance supports an operation that returns the list of event
types that consumers connected to the same channel are inter-
ested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.
The ProxyPullConsumer interface also inherits from the PullConsumer
interface defined within CosEventComm. This interface supports the
operation to disconnect the ProxyPullConsumer from its associated
supplier. Finally, the ProxyPullConsumer interface defines the oper-
ation to establish the connection over which the pull supplier can
send events to the channel.

ProxyPullConsumer::connect_any_pull_suppli
er()
void connect_any_pull_supplier (
 in CosEventComm::PullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of events in
the form of Anys, and the event channel. Once the connection is
established, the proxy can proceed to receive events from the
supplier by invoking pull or try_pull on the supplier (whether the
proxy invokes pull or try_pull, and the frequency with which it
performs such invocations, is a detail that is specific to the imple-
mentation of the channel).

 308 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

pull_supplier A reference to an object supporting the
PullSupplier interface defined within CosEventComm.

AlreadyConnected Raised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the ProxyPullConsumer inter-
face may impose additional requirements on the
interface supported by a pull supplier (for example,
it may be designed to invoke some operation other
than pull or try_pull in order to receive events). If
the pull supplier being connected does not meet
those requirements, this operation raises the
TypeError exception.

 Orbix CORBA Programmer’s Reference: Java 309

CosNotifyChannelAdmin::ProxyPu
llSupplier Interface

//IDL
interface ProxyPullSupplier :
 ProxySupplier,
 CosEventComm::PullSupplier
{
 void connect_any_pull_consumer (
 in CosEventComm::PullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The ProxyPullSupplier interface supports connections to the chan-
nel by consumers that pull events from the channel as Anys.
The ProxyPullSupplier interface extends the OMG event service
pull-style consumers of untyped events by supporting event filter-
ing and the configuration of QoS properties. This interface enables
OMG event service style untyped event consumers to take advan-
tage of the features offered by the notification service.
Through inheritance of the ProxySupplier interface, the ProxyPull-
Supplier interface supports administration of QoS properties,
administration of a list of associated filter objects, mapping filters
for event priority and lifetime, and a read-only attribute containing
a reference to the ConsumerAdmin object that created it. This inheri-
tance also means that a ProxyPullSupplier instance supports an
operation that returns the list of event types that the proxy sup-
plier will potentially supply, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.
The ProxyPullSupplier interface also inherits from the PullSupplier
interface defined within the CosEventComm module of the OMG event
service. This interface supports the pull and try_pull operations
that the consumer connected to a ProxyPullSupplier instance
invokes to receive an event from the channel in the form of an
Any, and the operation to disconnect the ProxyPullSupplier from its
associated consumer.
Finally, the ProxyPullSupplier interface defines the operation to
establish a connection over which the pull consumer receives
events from the channel.

ProxyPullSupplier::connect_any_pull_consum
er()
void connect_any_pull_consumer (
 in CosEventComm::PullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull consumer of events in the
form of Anys and an event channel. Once established, the consumer
can receive events from the channel by invoking pull or try_pull
on its associated ProxyPullSupplier.

 310 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

pull_consumer A reference to an object supporting the
PullConsumer interface defined within the
CosEventComm module of the OMG event service.

AlreadyConnectedThe target object of this operation is already con-
nected to a pull consumer object.

 Orbix CORBA Programmer’s Reference: Java 311

CosNotifyChannelAdmin::ProxyPu
shConsumer Interface

//IDL
interface ProxyPushConsumer :
 ProxyConsumer,
 CosEventComm::PushConsumer
{
 void connect_any_push_supplier (
 in CosEventComm::PushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The ProxyPushConsumer interface supports connections to the chan-
nel by suppliers that push events to the channel as Anys.
The ProxyPushConsumer extends the OMG event service push con-
sumer interface by supporting event filtering and the configuration
of various QoS properties. This interface enables OMG event ser-
vice style untyped event suppliers to take advantage of these new
features offered by the notification service.
Through inheritance of the ProxyConsumer interface, the
ProxyPushConsumer interface supports administration of QoS prop-
erties, administration of a list of associated filter objects, and a
read-only attribute containing a reference to the SupplierAdmin
object that created it. In addition, this inheritance means that a
ProxyPushConsumer instance supports an operation that returns the
list of event types that consumers connected to the same channel
are interested in receiving, and an operation that returns informa-
tion about the instance’s ability to accept a QoS request.
The ProxyPushConsumer interface also inherits from the PushConsumer
interface defined within the CosEventComm module of the OMG event
service. This interface supports the push operation which the sup-
plier connected to a ProxyPushConsumer instance invokes to send an
event to the channel in the form of an Any, and the operation to
disconnect the ProxyPushConsumer from its associated supplier.
Finally, the ProxyPushConsumer interface defines the operation to
establish the connection over which the push supplier sends
events to the channel.

ProxyPushConsumer::connect_any_push_supp
lier()
void connect_any_push_supplier (
 in CosEventComm::PushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of events in
the form of an any and an event channel. Once established, the
supplier can send events to the channel by invoking the push
operation supported by the target ProxyPushConsumer instance.

 312 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Exceptions

push_supplierThe reference to an object supporting the PushSupplier
interface defined within the CosEventComm module.

AlreadyConnected The target object of this operation is already con-
nected to a push supplier object.

 Orbix CORBA Programmer’s Reference: Java 313

CosNotifyChannelAdmin::ProxyPu
shSupplier Interface

//IDL
interface ProxyPushSupplier :
 ProxySupplier,
 CosEventComm::PushSupplier
{
 void connect_any_push_consumer (
 in CosEventComm::PushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(CosEventChannel::ConnectionAlreadyInactive);

 void resume_connection()
 raises(CosEventChannelAdmin::ConnectionAlreadyActive);
};

The ProxyPushSupplier interface supports connections to the chan-
nel by consumers that receive events from the channel as untyped
Anys.
The ProxyPushSupplier interface extends the OMG event service
push-style consumers of untyped events by supporting event fil-
tering and the configuration of QoS properties. Thus, this interface
enables OMG event service push-style untyped event consumers
to take advantage of the features offered by the notification ser-
vice.
Through inheritance of ProxySupplier, the ProxyPushSupplier inter-
face supports administration of QoS properties, administration of
a list of associated filter objects, mapping filters for event priority
and lifetime, and a read-only attribute containing a reference to
the ConsumerAdmin that created it. This inheritance also implies that
a ProxyPushSupplier instance supports an operation that returns
the list of event types that the proxy supplier can supply, and an
operation that returns information about the instance’s ability to
accept a QoS request.
The ProxyPushSupplier interface also inherits from the PushSupplier
interface defined within CosEventComm. This interface supports the
operation to disconnect a ProxyPushSupplier from its associated
consumer.
The ProxyPushSupplier interface defines the operation to establish
the connection over which the push consumer can receive events
from the channel. The ProxyPushSupplier interface also defines a
pair of operations that can suspend and resume the connection
between a ProxyPushSupplier and its associated PushConsumer.
During the time a connection is suspended, the ProxyPushSupplier
accumulates events destined for the consumer but does not trans-
mit them until the connection is resumed.

 314 Orbix CORBA Programmer’s Reference: Java

ProxyPushSupplier::connect_any_push_consu
mer()
void connect_any_push_consumer (
 in CosEventComm::PushConsumer push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of events
in the form of Anys, and the event channel. Once the connection is
established, the ProxyPushSupplier sends events to its associated
consumer by invoking push on the consumer.

Parameters

Exceptions

ProxyPushSupplier::suspend_connection()
void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the ProxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The ProxyPushSupplier does
not forward events to its associated PushConsumer until
resume_connection() is invoked. During this time, the
ProxyPushSupplier continues to queue events destined for the
PushConsumer; however, events that time out prior to resumption of
the connection are discarded. Upon resumption of the connection,
all queued events are forwarded to the PushConsumer.

Exceptions The ConnectionAlreadyInactive exception is raised if the connection
is currently in a suspended state.

ProxyPushSupplier::resume_connection()
void resume_connection()
 raises(ConnectionAlreadyActive);

Causes the ProxyPushSupplier interface to resume sending events
to the PushConsumer instance connected to it, including those events
that have been queued while the connection was suspended and
have not yet timed out.

push_consumer A reference to an object supporting the
PushConsumer interface defined within CosEventComm

AlreadyConnected Raised if the proxy is already connected to a push
consumer.

TypeError An implementation of the ProxyPushSupplier inter-
face may impose additional requirements on the
interface supported by a push consumer (for exam-
ple, it may be designed to invoke some operation
other than push in order to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

Orbix CORBA Programmer’s Reference: Java 315

Exceptions

ConnectionAlreadyActiveThe connection is not in a suspended state.

 316 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 317

CosNotifyChannelAdmin::ProxySu
pplier Interface

//IDL
interface ProxySupplier :
 CosNotification::QoSAdmin,
 CosNotifyFilter::FilterAdmin
{
 readonly attribute ConsumerAdmin MyAdmin;
 readonly attribute ProxyType MyType;
 attribute CosNotifyFilter::MappingFilter priority_filter;
 attribute CosNotifyFilter::MappingFilter lifetime_filter;

 CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);

 void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq

available_qos)
 raises (CosNotification::UnsupportedQoS);
};

The ProxySupplier interface is an abstract interface that is inher-
ited by the different proxy suppliers that can be instantiated within
an event channel. It encapsulates the behaviors common to all
notification service proxy suppliers. In particular, the
ProxySupplier interface inherits the QoSAdmin interface defined
within the CosNotification module, and the FilterAdmin interface
defined within the CosNotifyFilter module. The former inheritance
enables proxy suppliers to administer a list of associated QoS
properties. The latter inheritance enables proxy suppliers to
administer a list of associated filter objects.
Locally, the ProxySupplier interface defines a read-only attribute
that contains a reference to the ConsumerAdmin object that created
it. In addition, the ProxySupplier interface defines attributes that
associate two mapping filter objects with each proxy supplier, one
for priority and one for lifetime. For more information on mapping
filters refer to the CORBA Notification Service Guide.
Lastly, the ProxySupplier interface defines an operation to return
the list of event types that a given proxy supplier can forward to
its associated consumer, and an operation to determine which
QoS properties can be set on a per-event basis.

ProxySupplier::priority_filter
attribute CosNotifyFilter::MappingFilter priority_filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible priority setting for the event.

 318 Orbix CORBA Programmer’s Reference: Java

Upon receipt of an event by a proxy supplier object whose
priority_filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then applies its encapsulated
constraints to the event.
If the match operation returns TRUE, the proxy supplier changes the
events priority to the value specified in the constraint-value pair
that matched the event.
If the match operation returns FALSE, the proxy supplier checks if
the events priority property is already set. If so, the filter does
nothing. If the priority property is not set, the filter sets the prior-
ity property to its default value.

ProxySupplier::lifetime_filter
attribute CosNotifyFilter::MappingFilter lifetime_filter;

Contains a reference to an object supporting the MappingFilter
interface defined in the CosNotifyFilter module. Such an object
encapsulates a list of constraint-value pairs, where each constraint
is a boolean expression based on the type and contents of an event,
and the value is a possible lifetime setting for the event.

Upon receipt of each event by a proxy supplier object whose
lifetime_filter attribute contains a non-zero reference, the proxy
supplier invokes the match operation supported by the mapping fil-
ter object. The mapping filter object then proceeds to apply its
encapsulated constraints to the event.
If the match operation returns TRUE, the proxy supplier changes the
events lifetime to the value specified in the constraint-value pair
that matched the event.
If the match operation returns FALSE, the proxy supplier checks if
the events lifetime property is already set. If so, the filter does
nothing. If the lifetime property is not set, the filter sets the life-
time property to its default value.

ProxySupplier::obtain_offered_types()
CosNotification::EventTypeSeq obtain_offered_types(
 in ObtainInfoMode mode);

Returns a list names of event types that the target proxy supplier
can forward to its associated consumer.

This mechanism relies on event suppliers keeping the channel
informed of the types of events they plan to supply by invoking
the offer_change operation on their associated proxy consumer
objects. The proxy consumers automatically share the information
about supplied event types with the proxy suppliers associated
with the channel. This enables consumers to discover the types of
events that can be supplied to them by the channel by invoking
the obtain_offered_types operation on their associated proxy sup-
plier.

Orbix CORBA Programmer’s Reference: Java 319

Parameters

ProxySupplier::validate_event_qos()
void validate_event_qos (
 in CosNotification::QoSProperties required_qos,
 out CosNotification::NamedPropertyRangeSeq available_qos)
 raises (CosNotification::UnsupportedQoS);

Checks whether the target proxy object will honor the setting of the
specified QoS properties on a per-event basis. If all requested QoS
property value settings can be satisfied by the target object, the
operation returns successfully with an output parameter that con-
tains a sequence of NamedPropertyRange data structures.

Parameters

Exceptions

mode Specifies how to notify consumers of changes to the
publication list.

required_qos A sequence of QoS property name-value pairs that
specify a set of QoS settings that a client is interested
in setting on an event
Note:
The QoS property settings contained in the optional
header fields of a structured event may differ from
those that are configured on a given proxy object.

available_qosA sequence of NamedPropertyRange. Each element
includes the name of a an additional QoS property
whose setting is supported by the target object on a
per-event basis. Each element also includes the range
of values that are acceptable for each such property.

UnsupportedQoSRaised if any of the requested settings cannot be
honored by the target object. This exception contains
as data a sequence of data structures, each of which
identifies the name of a QoS property in the input list
whose requested setting could not be satisfied, along
with an error code and a range of settings for the
property that could be satisfied.

 320 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 321

CosNotifyChannelAdmin::Sequenc
eProxyPullConsumer Interface

//IDL
interface SequenceProxyPullConsumer :
 ProxyConsumer,
 CosNotifyComm::SequencePullConsumer
{
 void connect_sequence_pull_supplier (
 in CosNotifyComm::SequencePullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The SequenceProxyPullConsumer interface supports connections to
the channel by suppliers who make sequences of structured
events available to the channel using the pull model.
Through inheritance of ProxyConsumer, the SequenceProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin that created
it. This inheritance also implies that a SequenceProxyPullConsumer
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.
The SequenceProxyPullConsumer interface also inherits from the
SequencePullConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation to close the connection
from the supplier to the SequenceProxyPullConsumer. Since the
SequencePullConsumer interface inherits from NotifyPublish, a sup-
plier can inform its associated SequenceProxyPullConsumer when-
ever the list of event types it plans to supply to the channel
changes.
The SequenceProxyPullConsumer interface also defines a method to
establish a connection between the supplier and an event channel.

SequenceProxyPullConsumer::connect_sequen
ce_pull_supplier()
void connect_sequence_pull_supplier (
 in CosNotifyComm::SequencePullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of sequences
of structured events and the event channel. Once the connection is
established, the proxy can receive events from the supplier by
invoking pull_structured_events or try_pull_structured_events on
the supplier (whether the proxy invokes pull_structured_events or
try_pull_structured_events, and the frequency with which it per-
forms such invocations, is a detail specific to the implementation of
the channel).

 322 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

pull_supplier A reference to an object supporting the
SequencePullSupplier interface defined within
CosNotifyComm.

AlreadyConnected Raised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
SequenceProxyPullConsumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull_structured_events or
try_pull_structured_events in order to receive
events). If the pull supplier being connected does
not meet those requirements, this operation raises
the TypeError exception.

 Orbix CORBA Programmer’s Reference: Java 323

CosNotifyChannelAdmin::Sequenc
eProxyPushConsumer Interface

//IDL
interface SequenceProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::SequencePushConsumer
{
 void connect_sequence_push_supplier (
 in CosNotifyComm::SequencePushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The SequenceProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as
sequences of structured events.
Through inheritance of the ProxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the SupplierAdmin object that created it. In addition,
this inheritance means that a SequenceProxyPushConsumer instance
supports an operation that returns the list of event types that con-
sumers connected to the same channel are interested in receiving,
and an operation that returns information about the instance’s
ability to accept a QoS request.
The SequenceProxyPushConsumer interface also inherits from the
SequencePushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of sequences of structured events to push them to a Sequen-
ceProxyPushConsumer, and also the operation to close down the con-
nection from the supplier to the SequenceProxyPushConsumer. Since
the SequencePushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform its associated SequenceProxyPush-
Consumer when the list of event types it supplies to the channel
changes.
Lastly, the SequenceProxyPushConsumer interface defines a method
to establish a connection between a supplier and an event chan-
nel.

SequenceProxyPushConsumer::connect_seque
nce_push_supplier()
void connect_sequence_push_supplier (
 in CosNotifyComm::SequencePushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of sequenc-
es of structured events and an event channel. Once the connection
is established, the supplier can send events to the channel by
invoking push_structured_events on its associated
SequenceProxyPushConsumer.

 324 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

push_supplier A reference to an object supporting the
SequencePushSupplier interface defined within the
CosNotifyComm module.

AlreadyConnectedThe proxy is already connected to a push supplier
object.

 Orbix CORBA Programmer’s Reference: Java 325

CosNotifyChannelAdmin::Sequenc
eProxyPullSupplier Interface

//IDL
interface SequenceProxyPullSupplier :
 ProxySupplier,
 CosNotifyComm::SequencePullSupplier
{
 void connect_sequence_pull_consumer (
 in CosNotifyComm::SequencePullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The SequenceProxyPullSupplier interface supports connections to
the channel by consumers who pull sequences of structured
events from an event channel.
Through inheritance of the ProxySupplier interface, the Sequen-
ceProxyPullSupplier interface supports administration of QoS
properties, administration of a list of associated filter objects, and
a read-only attribute containing a reference to the ConsumerAdmin
object that created it. In addition, this inheritance implies that a
SequenceProxyPullSupplier instance supports an operation that
returns the list of event types that the proxy supplier can supply,
and an operation that returns information about the instance’s
ability to accept a QoS request.
The SequenceProxyPullSupplier interface also inherits from the
SequencePullSupplier interface defined in CosNotifyComm. This inter-
face supports the operations enabling a consumer of sequences of
structured events to pull them from the SequenceProxyPullSup-
plier, and also the operation to close the connection from the
consumer to its associated SequenceProxyPullSupplier. Since the
SequencePullSupplier interface inherits from the NotifySubscribe
interface, a SequenceProxyPullSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.
The SequenceProxyPullSupplier interface also defines a method to
establish a connection between the consumer and an event chan-
nel.

SequenceProxyPullSupplier::
connect_sequence_pull_consumer()
void connect_sequence_pull_consumer (
 in CosNotifyComm::SequencePullConsumer pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull-style consumer of sequenc-
es of structured events and the event channel. Once the connection
is established, the consumer can proceed to receive events from
the channel by invoking pull_structured_events or
try_pull_structured_events on its associated
SequenceProxyPullSupplier.

 326 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

pull_consumer A reference to an object supporting the
SequencePullConsumer interface defined in
CosNotifyComm.

AlreadyConnectedThe proxy is already connected to a pull consumer.

 Orbix CORBA Programmer’s Reference: Java 327

CosNotifyChannelAdmin::Sequenc
eProxyPushSupplier Interface

//IDL
interface SequenceProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::SequencePushSupplier
{
 void connect_sequence_push_consumer (
 in CosNotifyComm::SequencePushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(ConnectionAlreadyInactive);

 void resume_connection()
 raises(ConnectionAlreadyActive);
};

The SequenceProxyPushSupplier interface supports connections to
the channel by consumers that receive sequences of structured
events from the channel.
Through inheritance of ProxySupplier, the SequenceProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a SequenceProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.
The SequenceProxyPushSupplier interface also inherits from the
SequencePushSupplier interface defined in CosNotifyComm. This inter-
face supports the operation to close the connection from the con-
sumer to the SequenceProxyPushSupplier. Since the
SequencePushSupplier interface inherits from the NotifySubscribe
interface, a SequenceProxyPushSupplier can be notified whenever
the list of event types that its associated consumer is interested in
receiving changes.
Lastly, the SequenceProxyPushSupplier interface defines the opera-
tion to establish the connection over which the push consumer
receives events from the channel. The SequenceProxyPushSupplier
interface also defines a pair of operations to suspend and resume
the connection between a SequenceProxyPushSupplier instance and
its associated SequencePushConsumer. While a connection is sus-
pended, the SequenceProxyPushSupplier accumulates events des-
tined for the consumer but does not transmit them until the
connection is resumed.

 328 Orbix CORBA Programmer’s Reference: Java

SequenceProxyPushSupplier::connect_sequen
ce_push_consumer()
void connect_sequence_push_consumer (
 in CosNotifyComm::SequencePushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of se-
quences of structured events and the event channel. Once the
connection is established, the SequenceProxyPushSupplier sends
events to its associated consumer by invoking push_struc-
tured_events.

Parameters

Exceptions

SequenceProxyPushSupplier::suspend_connec
tion()
void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the SequenceProxyPushSupplier to stop sending events to the
PushConsumer instance connected to it. The
StructuredProxyPushSupplier does not forward events to its
SequencePushConsumer until resume_connection() is invoked. During
this time, the SequenceProxyPushSupplier continues to queue events
destined for the SequencePushConsumer; however, events that time
out prior to resumption of the connection are discarded. Upon
resumption of the connection, all queued events are forwarded to
the SequencePushConsumer.

Exceptions

SequenceProxyPushSupplier::resume_connect
ion()
void resume_connection()
 raises(ConnectionAlreadyActive);

push_consumer A reference to a SequencePushConsumer.

AlreadyConnected Raised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
SequenceProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured_events in order to transmit
events). If the push consumer being connected
does not meet those requirements, this operation
raises the TypeError exception.

ConnectionAlreadyInactiveThe connection is already suspended.

Orbix CORBA Programmer’s Reference: Java 329

Causes the SequenceProxyPushSupplier to resume sending events to
the SequencePushConsumer instance connected to it, including those
that have been queued while the connection was suspended and
have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not suspended.

 330 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 331

CosNotifyChannelAdmin::Structur
edProxyPullConsumer Interface

//IDL
interface StructuredProxyPullConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPullConsumer
{
 void connect_structured_pull_supplier (
 in CosNotifyComm::StructuredPullSupplier

pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
};

The StructuredProxyPullConsumer interface supports connections to
the channel by suppliers that make structured events available to
the channel using the pull model.
Through inheritance of ProxyConsumer, the StructuredProxyPullCon-
sumer interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the SupplierAdmin object that
created it. This inheritance also implies that a StructuredProxy-
PullConsumer instance supports an operation that returns the list of
event types that consumers connected to the same channel are
interested in receiving, and an operation that returns information
about the instance’s ability to accept a QoS request.
The StructuredProxyPullConsumer interface also inherits from the
StructuredPullConsumer interface defined in CosNotifyComm. This
interface supports the operation to close the connection from the
supplier to the StructuredProxyPullConsumer. Since the
StructuredPullConsumer interface inherits from NotifyPublish, a
supplier can inform the StructuredProxyPullConsumer to which it is
connected whenever the list of event types it plans to supply to
the channel changes.
Lastly, the StructuredProxyPullConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPullConsumer::connect_struct
ured_pull_supplier()
void connect_structured_pull_supplier (
 in CosNotifyComm::StructuredPullSupplier pull_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a pull-style supplier of structured
events and the event channel. Once the connection is established,
the proxy can receive events from the supplier by invoking
pull_structured_event or try_pull_structured_event on the supplier
(whether the proxy invokes pull_structured_event or
try_pull_structured_event, and the frequency with which it per-

 332 Orbix CORBA Programmer’s Reference: Java

forms such invocations, is a detail specific to the implementation of
the channel).

Parameters

Exceptions

pull_supplier A reference to an object supporting the
StructuredPullSupplier interface defined within
CosNotifyComm.

AlreadyConnected Raised if the proxy is already connected to a pull
supplier.

TypeError An implementation of the
StructuredProxyPullConsumer interface may impose
additional requirements on the interface supported
by a pull supplier (for example, it may be designed
to invoke some operation other than
pull_structured_event or try_pull_structured_event
in order to receive events). If the pull supplier
being connected does not meet those require-
ments, this operation raises the TypeError excep-
tion.

 Orbix CORBA Programmer’s Reference: Java 333

CosNotifyChannelAdmin::Structur
edProxyPullSupplier Interface

//IDL
interface StructuredProxyPullSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPullSupplier
{
 void connect_structured_pull_consumer (
 in CosNotifyComm::StructuredPullConsumer

pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The StructuredProxyPullSupplier interface supports connections to
the channel by consumers that pull structured events from the
channel.
Through inheritance of ProxySupplier, the StructuredProxyPullSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin object that
created it. In addition, this inheritance means that a Structured-
ProxyPullSupplier instance supports an operation that returns the
list of event types that the proxy supplier can supply, and an oper-
ation that returns information about the instance’s ability to
accept a QoS request.
The StructuredProxyPullSupplier interface also inherits from the
StructuredPullSupplier interface defined in CosNotifyComm. This
interface supports the operations enabling a consumer of struc-
tured events to pull them from a StructuredProxyPullSupplier, and
the operation to close the connection from the consumer to the
StructuredProxyPullSupplier. Since the StructuredPullSupplier
interface inherits from NotifySubscribe, a StructuredProxyPullSup-
plier can be notified whenever the list of event types that its
associated consumer is interested in receiving changes.
Lastly, the StructuredProxyPullSupplier interface defines a method
to establish a connection between the consumer and an event
channel.

StructuredProxyPullSupplier::connect_structur
ed_pull_consumer()
void connect_structured_pull_consumer (
 in CosNotifyComm::StructuredPullSupplier

pull_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a pull consumer of structured
events and the event channel. Once established, the consumer can
receive events from the channel by invoking pull_structured_event
or try_pull_structured_event on its associated
StructuredProxyPullSupplier.

 334 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

pull_consumer A reference to an object supporting the
StructuredPullSupplier interface defined in
CosNotifyComm.

AlreadyConnectedThe proxy is already connected to a pull consumer.

 Orbix CORBA Programmer’s Reference: Java 335

CosNotifyChannelAdmin::Structur
edProxyPushConsumer Interface

//IDL
interface StructuredProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPushConsumer
{
 void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier

push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
};

The StructuredProxyPushConsumer interface supports connections to
the channel by suppliers that push events to the channel as struc-
tured events.
Through inheritance of the ProxyConsumer interface, the interface
supports administration of QoS properties, administration of a list
of associated filter objects, and a read-only attribute containing a
reference to the SupplierAdmin object that created it. In addition,
this inheritance means that a StructuredProxyPushConsumer
instance supports an operation that returns the list of event types
that consumers connected to the same channel are interested in
receiving, and an operation that returns information about the
instance’s ability to accept a QoS request.
The StructuredProxyPushConsumer interface also inherits from the
StructuredPushConsumer interface defined in the CosNotifyComm mod-
ule. This interface supports the operation that enables a supplier
of structured events to push them to the StructuredProxyPushConu-
mer, and also an operation to close down the connection from the
supplier to the StructuredProxyPushConsumer. Since the
StructuredPushConsumer interface inherits from the NotifyPublish
interface, a supplier can inform the StructuredProxyPushConsumer to
which it is connected whenever the list of event types it plans to
supply to the channel changes.
Lastly, the StructuredProxyPushConsumer interface defines a method
to establish a connection between the supplier and an event chan-
nel.

StructuredProxyPushConsumer::connect_struc
tured_push_supplier()
void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier

push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Establishes a connection between a push-style supplier of struc-
tured events and the event channel. Once the connection is estab-
lished, the supplier can send events to the channel by invoking
push_structured_event on its associated
StructuredProxyPushConsumer instance.

 336 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

push_supplierA reference to an object supporting the
StructuredPushSupplier interface defined within the
CosNotifyComm module.

AlreadyConnectedThe proxy object is already connected to a push
supplier object.

 Orbix CORBA Programmer’s Reference: Java 337

CosNotifyChannelAdmin::Structur
edProxyPushSupplier Interface

//IDL
interface StructuredProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPushSupplier
{

 void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer

push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

 void suspend_connection()
 raises(ConnectionAlreadyInactive);

 void resume_connection()
 raises(ConnectionAlreadyActive);
};

The StructuredProxyPushSupplier interface supports connections to
the channel by consumers that receive structured events from the
channel.
Through inheritance of ProxySupplier, the StructuredProxyPushSup-
plier interface supports administration of QoS properties, admin-
istration of a list of associated filter objects, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance also implies that a StructuredProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the instance’s ability to accept a QoS request.
The StructuredProxyPushSupplier interface also inherits from the
StructuredPushSupplier interface defined in CosNotifyComm. This
interface supports the operation that to close the connection from
the consumer to the StructuredProxyPushSupplier. Since
StructuredPushSupplier inherits from NotifySubscribe, a Struc-
turedProxyPushSupplier can be notified whenever the list of event
types that its associated consumer is interested in receiving
changes.
Lastly, the StructuredProxyPushSupplier interface defines the oper-
ation to establish the connection over which the push consumer
can receive events from the channel. The StructuredProxyPushSup-
plier interface also defines a pair of operations to suspend and
resume the connection between a StructuredProxyPushSupplier
and its associated StructuredPushConsumer. During the time such a
connection is suspended, the StructuredProxyPushSupplier accu-
mulates events destined for the consumer but does not transmit
them until the connection is resumed.

 338 Orbix CORBA Programmer’s Reference: Java

StructuredProxyPushSupplier::connect_struct
ured_push_consumer()
void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between a push-style consumer of struc-
tured events and the event channel. Once the connection is estab-
lished, the StructuredProxyPushSupplier sends events to the
consumer by invoking push_structured_event.

Parameters

Exceptions

StructuredProxyPushSupplier::suspend_conne
ction()
void suspend_connection()
 raises(ConnectionAlreadyInactive);

Causes the StructuredProxyPushSupplier to stop sending events to
the PushConsumer connected to it. The StructuredProxyPushSupplier
does not forward events to its StructuredPushConsumer until
resume_connection() is invoked. During this time, the
StructuredProxyPushSupplier queues events destined for the
StructuredPushConsumer; however, events that time out prior to
resumption of the connection are discarded. Upon resumption of
the connection, all queued events are forwarded to the
StructuredPushConsumer.

Exceptions

StructuredProxyPushSupplier::resume_connec
tion()
void resume_connection()

push_consumer A reference to an object supporting the
StructuredPushConsumer interface defined within
CosNotifyComm

AlreadyConnected Raised if the proxy is already connected to a push
consumer.

TypeError An implementation of the
StructuredProxyPushSupplier interface may impose
additional requirements on the interface supported
by a push consumer (for example, it may be
designed to invoke some operation other than
push_structured_event to transmit events). If the
push consumer being connected does not meet
those requirements, this operation raises the
TypeError exception.

ConnectionAlreadyInactiveThe connection is already suspended.

Orbix CORBA Programmer’s Reference: Java 339

 raises(ConnectionAlreadyActive);

Causes causes the StructuredProxyPushSupplier to resume sending
events to the StructuredPushConsumer connected to it, including
those that have been queued while the connection was suspended
and have not yet timed out.

Exceptions

ConnectionAlreadyActiveThe connection is not currently suspended.

 340 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 341

CosNotifyChannelAdmin::Supplier
Admin Interface

//IDL
interface SupplierAdmin :
 CosNotification::QoSAdmin,
 CosNotifyComm::NotifyPublish,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::SupplierAdmin
{
 readonly attribute AdminID MyID;
 readonly attribute EventChannel MyChannel;

 readonly attribute InterFilterGroupOperator MyOperator;

 readonly attribute ProxyIDSeq pull_consumers;
 readonly attribute ProxyIDSeq push_consumers;

 ProxyConsumer get_proxy_consumer(in ProxyID proxy_id)
 raises (ProxyNotFound);

 ProxyConsumer obtain_notification_pull_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

 ProxyConsumer obtain_txn_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

void destroy();
};

The SupplierAdmin interface defines the behavior of objects that
create and manage lists of proxy consumers within an event chan-
nel. A event channel can have any number of SupplierAdmin
instances associated with it. Each instance is responsible for creat-
ing and managing a list of proxy consumers that share a common
set of QoS property settings, and a common set of filters. This fea-
ture enables clients to group proxy consumer objects within a
channel into groupings that each support a set of suppliers with a
common set of QoS requirements, and that make event forward-
ing decisions using a common set of filters.
The SupplierAdmin interface inherits QoSAdmin. This enables each
SupplierAdmin to manage a set of QoS property settings. These
QoS property settings are assigned as the default QoS property
settings for any proxy consumer created by a SupplierAdmin.

 342 Orbix CORBA Programmer’s Reference: Java

The SupplierAdmin interface inherits from the FilterAdmin interface
defined in CosNotifyFilter, enabling each SupplierAdmin to main-
tain a list of filters. These filters encapsulate subscriptions that
apply to all proxy consumer objects that have been created by a
given SupplierAdmin instance.
The SupplierAdmin interface also inherits from the NotifyPublish
interface defined in CosNotifyComm. This inheritance enables a Sup-
plierAdmin to be the target of an offer_change request made by a
supplier, and for the change in event types being offered to be
shared by all proxy consumer that were created by the target Sup-
plierAdmin. This optimizes the notification of a group of proxy
consumers that have been created by the same SupplierAdmin of
changes to the types of events being offered by suppliers.
The SupplierAdmin interface also inherits from
CosEventChannelAdmin::SupplierAdmin. This inheritance enables cli-
ents to use the SupplierAdmin interface to create pure OMG event
service style proxy consumer objects. Proxy consumer objects
created in this manner do not support configuration of QoS prop-
erties, and do not have associated filters. Proxy consumer objects
created through the inherited CosEventChannelAdmin::SupplierAdmin
interface do not have unique identifiers associated with them,
whereas proxy consumers created by invoking the operations sup-
ported by the SupplierAdmin interface do.
The SupplierAdmin interface supports a read-only attribute that
maintains a reference to the EventChannel that created a given
SupplierAdmin. The SupplierAdmin interface also supports a
read-only attribute that contains a numeric identifier that is
assigned to a SupplierAdmin the event channel that creates it. This
identifier is unique among all SupplierAdmins created by a given
channel.
A SupplierAdmin maintains a list of filters that are applied to all
proxy consumers it creates. Each proxy consumer also supports a
list of filters that apply only that proxy. When combining these two
lists during the evaluation of an event, either AND or OR semantics
can be applied. The choice is determined by an input flag upon
creation of the SupplierAdmin, and the operator that is used for this
purpose by a given SupplierAdmin is maintained in a read-only
attribute.
Each SupplierAdmin assigns a unique numeric identifier to each
proxy consumer it maintains. The SupplierAdmin interface supports
attributes that maintain the list of these unique identifiers associ-
ated with the proxy pull and the proxy push consumers created by
a given SupplierAdmin. The SupplierAdmin interface also supports
an operation which, when provided with the unique identifier of a
proxy consumer, returns the object reference of that proxy con-
sumer object. Finally, the SupplierAdmin interface supports opera-
tions that can create the various styles of proxy consumers
supported by the event channel.

SupplierAdmin::MyID
readonly attribute AdminID MyID;

Maintains the unique identifier of the target SupplierAdmin. This ID
is assigned to it upon creation by the event channel.

Orbix CORBA Programmer’s Reference: Java 343

SupplierAdmin::MyChannel
readonly attribute EventChannel MyChannel;

Maintains an object reference to the event channel that created the
SupplierAdmin.

SupplierAdmin::MyOperator
readonly attribute InterFilterGroupOperator MyOperator;;

Maintains the information regarding whether AND or OR semantics
are used during the evaluation of events when combining the filters
associated with the target SupplierAdmin and those defined on a
given proxy consumer.

SupplierAdmin::pull_consumers
readonly attribute ProxyIDSeq pull_consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each pull-style proxy consumer it has created.

SupplierAdmin::push_consumers
readonly attribute ProxyIDSeq push_consumers;

Contains the list of unique identifiers assigned by a SupplierAdmin
to each push-style proxy consumer it has created.

SupplierAdmin::get_proxy_consumer()
ProxyConsumer get_proxy_consumer (in ProxyID proxy_id)
raises (ProxyNotFound);

Returns an object reference to the proxy consumer whose unique
identifier was specified.

Parameters

Exceptions

SupplierAdmin::obtain_notification_pull_cons
umer()
ProxyConsumer obtain_notification_pull_consumer (
 in ClientType ctype,

proxy_id The numeric identifier associated with one of the
proxy consumers created by the target
SupplierAdmin.

ProxyNotFound The input parameter does not correspond to the
unique identifier of a proxy consumer created by the
target SupplierAdmin.

 344 Orbix CORBA Programmer’s Reference: Java

 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates an instances of a pull-style proxy consumers and returns
an object reference to the new proxy.

Three varieties of pull-style proxy consumers are defined:
• The ProxyPullConsumer interface supports connections to pull

suppliers that send events as Anys.
• The StructuredProxyPullConsumer interface supports connec-

tions to pull suppliers that send structured events.
• The SequenceProxyPullConsumer interface supports connections

to pull suppliers that send sequences of structured events.
The input parameter flag indicates which type of pull style proxy
to create.
The target SupplierAdmin creates the new pull-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy consumers it has created.

Parameters

Exceptions

SupplierAdmin::obtain_notification_push_cons
umer()
ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Creates an instance of a push-style proxy supplier and returns an
object reference to the new proxy.

Three varieties of push-style proxy consumer are defined:
• The ProxyPushConsumer interface supports connections to push

consumers that receive events as Anys.
• The StructuredProxyPushConsumer interface supports connec-

tions to push consumers that receive structured events.
• The SequenceProxyPushConsumer interface supports connections

to push consumers that receive sequences of structured
events.

The input parameter flag indicates which type of push-style proxy
to create.

ctype A flag indicating which style of pull-style proxy con-
sumer to create.

proxy_id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

Orbix CORBA Programmer’s Reference: Java 345

The target SupplierAdmin creates the new push-style proxy con-
sumer and assigns it a numeric identifier that is unique among all
proxy suppliers it has created.

Parameters

Exceptions

SupplierAdmin::destroy()
void destroy();

Iteratively destroys each proxy under the administration of the
target object, and finally destroys the target object itself. When
destroying each object, it frees any storage associated with the
object, and then invalidates the object's IOR.

ctype A flag that indicates the type of push-style proxy
consumer to create.

proxy_id The unique identifier of the new proxy consumer.

AdminLimitExceededThe number of consumers currently connected to
the channel that the target SupplierAdmin is asso-
ciated with exceeds the value of the MaxSuppliers
administrative property.

 346 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 347

CosNotifyComm Module
CosNotifyComm specifies the following interfaces to instantiate noti-
fication service clients:

The module also specifies the NotifyPublish and NotifySubscribe
interfaces to facilitate informing notification clients about subscrip-
tion and publication changes.

CosNotifyComm Exceptions

CosNotifyComm::InvalidEventType Exception
exception InvalidEventType{ CosNotification::EventType type };

Raised when the specified EventType is not syntactically correct. It
returns the name of the invalid event type.

Note: The Orbix notification service does not throw this exception.

PushConsumer PushSupplier

PullConsumer PullSupplier

StructuredPushConsumer StructuredPushSupplier

StructuredPullConsumer StructuredPullSupplier

SequencePushConsumer SequencePushSupplier

SequencePullConsumer SequencePullSupplier

 348 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 349

CosNotifyComm::NotifyPublish
Interface

interface NotifyPublish {
 void offer_change (
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
};

The NotifyPublish interface supports an operation that allows a
supplier to announce, or publish, the names of the event types it
supplies. It is an abstract interface which is inherited by all notifi-
cation service consumer interfaces, and it enables suppliers to
inform consumers supporting this interface of the types of events
they intend to supply.

NotifyPublish::offer_change()
void offer_change (
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

Allows a supplier of notifications to announce, or publish, the names
of the types of events it supplies.

Note: Each event type name consists of two components: the name of
the domain in which the event type has meaning, and the name of
the actual event type. Either component of a type name may
specify a complete domain/event type name, a domain/event type
name containing the wildcard ‘*’ character, or the special event
type name “%ALL”.

Parameters

Exceptions

added A sequence of event type names specifying those
event types which the event supplier plans to sup-
ply.

removed Sequence of event type names specifying those
event types which the client no longer plans to sup-
ply.

InvalidEventType One of the event type names supplied in either
input parameter is syntactically invalid. In this
case, the invalid name is returned in the type field
of the exception.

 350 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 351

CosNotifyComm::NotifySubscribe
Interface

interface NotifySubscribe {
 void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
};

The NotifySubscribe interface supports an operation allowing a
consumer to inform suppliers of the event types it wishes to
receive. It is an abstract interface that is inherited by all notifica-
tion service supplier interfaces. Its main purpose is to enable con-
sumers to inform suppliers of the event types they are interested
in, ultimately enabling the suppliers to avoid supplying events that
are not of interest to any consumer.

NotifySubscribe::subscription_change()
void subscription_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

Allows a consumer to inform suppliers of the event types it wishes
to receive.

Note: Each event type name is comprised of two components: the name
of the domain in which the event type has meaning, and the name
of the actual event type. Also note that either component of a type
name may specify a complete domain/event type name, a
domain/event type name containing the wildcard ‘*’ character, or
the special event type name “%ALL”.

Parameters

Exceptions

added A sequence of event type names specifying the
event types the consumer wants to add to its sub-
scription list.

removed A sequence of event type names specifying the
event types the consumer wants to remove from its
subscription list.

InvalidEventType One of the event type names supplied in either
input parameter is syntactically invalid. The
invalid name is returned in the type field of the
exception.

 352 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 353

CosNotifyComm::PullConsumer
Interface

interface PullConsumer :
 NotifyPublish,
 CosEventComm::PullConsumer
{
};

The PullConsumer interface inherits all the operations of
CosEventComm::PullConsumer. In addition, the PullConsumer interface
inherits the NotifyPublish interface described above, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

Note: An object supporting PullConsumer can receive all events that were
supplied to its associated channel. How events supplied to the
channel in other forms are internally mapped for delivery to a
PullConsumer is summarized in the CORBA Notification Service
Guide.

 354 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 355

CosNotifyComm::PullSupplier
Interface

interface PullSupplier :
 NotifySubscribe,
 CosEventComm::PullSupplier
{
};

The PullSupplier interface inherits all the operations of
CosEventComm::PullSupplier. In addition, the PullSupplier interface
inherits the NotifySubscribe interface described above, which
enables a consumer to inform an instance supporting this inter-
face whenever there is a change to the types of events it wishes to
receive.

Note: An object supporting the PullSupplier interface can transmit
events that can potentially be received by any consumer
connected to the channel. How events supplied to the channel in
other forms are translated is summarized in the CORBA
Notification Service Guide

 356 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 357

CosNotifyComm::PushConsumer
Interface

interface PushConsumer :
 NotifyPublish,
 CosEventComm::PushConsumer
{
};

The PushConsumer interface inherits all the operations of
CosEventComm::PushConsumer. In addition, the PushConsumer interface
inherits the NotifyPublish interface described above, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

Note: An object supporting PushConsumer can receive all events that were
supplied to its associated channel. How events supplied to the
channel in other forms are internally mapped for delivery to a
PushConsumer is summarized in the CORBA Notification Service
Guide.

 358 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 359

CosNotifyComm::PushSupplier
Interface

interface PushSupplier :
 NotifySubscribe,
 CosEventComm::PushSupplier
{
};

The PushSupplier interface inherits all the operations of
CosEventComm::PushSupplier. In addition, the PushSupplier interface
inherits the NotifySubscribe interface described above, which
enables a consumer to inform an instance supporting this inter-
face whenever there is a change to the types of events it wishes to
receive.

Note: An object supporting the PushSupplier interface can transmit
events that can potentially be received by any consumer
connected to the channel. How events supplied to the channel in
other forms are translated is summarized in the CORBA
Notification Service Guide

 360 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 361

CosNotifyComm::SequencePullCo
nsumer Interface

interface SequencePullConsumer : NotifyPublish {
 void disconnect_sequence_pull_consumer();
};

The SequencePullConsumer interface defines an operation to discon-
nect the pull consumer from its associated supplier. The
SequencePullConsumer interface inherits NotifyPublish, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

Note: An object supporting the SequencePullConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a sequence of
structured events. How events supplied to the channel in other
forms are internally mapped into a sequence of structured events
for delivery to a SequencePullConsumer is summarized in the CORBA
Notification Service Guide.

SequencePullConsumer::disconnect_sequence
_pull_consumer()
void disconnect_sequence_pull_consumer();

Terminates a connection between the target SequencePullConsumer
and its associated supplier. The target SequencePullConsumer releas-
es all resources allocated to support the connection, and disposes
of its own object reference.

 362 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 363

CosNotifyComm::SequencePullSu
pplier Interface

interface SequencePullSupplier : NotifySubscribe
{
 CosNotification::EventBatch pull_structured_events(
 in long max_number)
 raises(CosEventComm::Disconnected);

 CosNotification::StructuredEvent try_pull_structured_events(
 in long max_number,
 out boolean has_event)
 raises(CosEventComm::Disconnected);

 void disconnect_sequence_pull_supplier();
};

The SequencePullSupplier interface supports operations that
enable suppliers to transmit sequences of structured events using
the pull model. It also defines an operation to disconnect the pull
supplier from its associated consumer. The SequencePullSupplier
interface inherits NotifySubscribe, which enables a consumer to
inform an instance supporting this interface whenever there is a
change to the types of events it is interested in receiving.

Note: An object supporting the SequencePullSupplier interface can
transmit events that can be received by any consumer connected
to the channel, including those which consume events in a form
other than a sequence of structured events. How events supplied
to the channel in the form of a sequence of structured events are
internally mapped into different forms for delivery to consumers
that receive events in a form other than the a sequence of
structured events is summarized in the CORBA Notification Service
Guide.

SequencePullSupplier::pull_structured_events
()
CosNotification::EventBatch pull_structured_events(
 in long max_number)
 raises(CosEventComm::Disconnected);

Blocks until a sequence of structured events is available for trans-
mission, at which time it returns the sequence containing events to
be delivered to its connected consumer proxy.

The amount of time the supplier packs events into the sequence
before transmitting it, along with the maximum size of any
sequence it transmits (regardless of the input parameter), are
controlled by QoS property settings as described in the CORBA
Notification Service Guide.

Parameters

max_number The maximum length of the sequence returned.

 364 Orbix CORBA Programmer’s Reference: Java

Exceptions

SequencePullSupplier::try_pull_structured_ev
ents()
CosNotification::StructuredEvent try_pull_structured_events(
 in long max_number,
 out boolean has_event)
 raises(CosEventComm::Disconnected);

Returns a sequence of a structured events that contains events
being delivered to its connected consumer, if such a sequence is
available for delivery at the time the operation was invoked:

• If an event sequence is available for delivery and is returned
as the result, the output parameter has_event is set to TRUE.

• If no event sequence is available to return upon invocation,
the operation returns immediately with the value of the output
parameter set to FALSE. In this case, the return value does not
contain a valid event sequence.

Parameters

Exceptions

SequencePullSupplier::disconnect_sequence_p
ull_supplier()
void disconnect_sequence_pull_supplier();

Terminates a connection between the target SequencePullSupplier
and its associated consumer. The target SequencePullSupplier re-
leases all resources allocated to support the connection, and dis-
poses of its own object reference.

Disconnected The operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.

max_number The maximum length of the sequence returned.
has_event An output parameter of type boolean that indicates

whether or not the return value actually contains a
sequence of events.

Disconnected This operation was invoked on a SequencePullSupplier
that is not currently connected to a consumer proxy.

 Orbix CORBA Programmer’s Reference: Java 365

CosNotifyComm::SequencePushC
onsumer Interface

interface SequencePushConsumer : NotifyPublish {
 void push_structured_events(
 in CosNotification::EventBatch notifications)
 raises(CosEventComm::Disconnected);
 void disconnect_sequence_push_consumer();
};

The SequencePushConsumer interface supports an operation that
enables consumers to receive sequences of structured events
using the push model. It also defines an operation to disconnect
the push consumer from its associated supplier. The
SequencePushConsumer interface inherits NotifyPublish, which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

Note: An object supporting the SequencePushConsumer interface can
receive all events which are supplied to its associated channel,
including events supplied in a form other than a sequence of
structured events. How events supplied to the channel in other
forms are internally mapped into a sequence of structured events
for delivery to a SequencePushConsumer is summarized in the CORBA
Notification Service Guide.

SequencePushConsumer::push_structured_ev
ents()
void push_structured_events(
 in CosNotification::EventBatch notifications)
 raises(CosEventComm::Disconnected);

Enables consumers to receive sequences of structured events by
the push model.

The maximum number of events that are transmitted within a sin-
gle invocation of this operation, along with the amount of time a
supplier of sequences of structured events packs individual events
into the sequence before invoking this operation, are controlled by
QoS property settings as described in the CORBA Notification Ser-
vice Guide.

Parameters

notifications A parameter of type EventBatch as defined in the
CosNotification module. Upon invocation, this
parameter contains a sequence of structured
events being delivered to the consumer by its asso-
ciated supplier proxy.

 366 Orbix CORBA Programmer’s Reference: Java

Exceptions

SequencePushConsumer::disconnect_sequenc
e_push_consumer()
void disconnect_sequence_push_consumer();

Terminates a connection between the target SequencePushConsumer
and its associated supplier proxy. The target SequencePushConsumer
releases all resources allocated to support the connection, and
disposes of its own object reference.

Disconnected The operation was invoked on a SequencePushConsumer
instance that is not currently connected to a supplier
proxy.

 Orbix CORBA Programmer’s Reference: Java 367

CosNotifyComm::SequencePushS
upplier Interface

interface SequencePushSupplier : NotifySubscribe
{
 void disconnect_sequence_push_supplier();
};

The SequencePushSupplier interface defines an operation that to
disconnect the push supplier from its associated consumer proxy.
In addition, the SequencePushSupplier interface inherits
NotifySubscribe, which enables a consumer to inform an instance
supporting this interface whenever there is a change to the types
of events it is interested in receiving.

Note: An object supporting the SequencePushSupplier interface can
transmit events that can be received by any consumer connected
to the channel, including those which consume events in a form
other than a sequence of structured events. How events supplied
to the channel in the form of a sequence of structured events are
internally mapped into different forms for delivery to consumers
which receive events in a form other than a sequence of
structured events is summarized in the CORBA Notification Service
Guide.

SequencePushSupplier::disconnect_sequence_
push_supplier()
void disconnect_sequence_push_supplier();

Terminates a connection between the target SequencePushSupplier
and its associated consumer. The target SequencePushSupplier re-
leases all resources allocated to support the connection, and dis-
poses of its own object reference.

 368 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 369

CosNotifyComm::StructuredPullC
onsumer Interface

interface StructuredPullConsumer : NotifyPublish
{
 void disconnect_structured_pull_consumer();
};

The StructuredPullConsumer defines an operation that can be
invoked to disconnect the pull consumer from its associated sup-
plier. In addition, the StructuredPullConsumer interface inherits the
NotifyPublish interface, which enables a supplier to inform an
instance supporting this interface whenever there is a change to
the types of events it intends to produce.

Note: An object supporting the StructuredPullConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a structured event.
How events supplied to the channel in other forms are internally
mapped into a structured event for delivery to a
StructuredPullConsumer is summarized in the CORBA Notification
Service Guide.

StructuredPullConsumer::disconnect_structur
ed_pull_consumer()
void disconnect_structured_pull_consumer();

Terminates a connection between the target
StructuredPullConsumer, and its associated supplier proxy. The tar-
get StructuredPullConsumer releases all resources allocated to sup-
port the connection, and disposes of its own object reference.

 370 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 371

CosNotifyComm::StructuredPullS
upplier Interface

interface StructuredPullSupplier : NotifySubscribe
{
 CosNotification::StructuredEvent pull_structured_event()
 raises(CosEventComm::Disconnected);

 CosNotification::StructuredEvent try_pull_structured_event(
 out boolean has_event)
 raises(CosEventComm::Disconnected);

 void disconnect_structured_pull_supplier();
};

The StructuredPullSupplier interface supports operations that
enable suppliers to transmit structured events by the pull model.
It also defines an operation to disconnect the pull supplier from its
associated consumer proxy. In addition, the
StructuredPullSupplier interface inherits the NotifySubscribe
interface, which enables a consumer to inform an instance sup-
porting this interface whenever there is a change to the types of
events it is interested in receiving.

Note: An object supporting the StructuredPullSupplier interface can
transmit events that can potentially be received by any consumer
connected to the channel, including those which consume events
in a form other than a structured event. How events supplied to
the channel in other forms are translated is summarized in the
CORBA Notification Service Guide

StructuredPullSupplier::pull_structured_event
()
CosNotification::StructuredEvent pull_structured_event()
 raises(CosEventComm::Disconnected);

Blocks until an event is available for transmission, at which time it
returns an instance of a structured event containing the event being
delivered to its connected consumer proxy.

Exceptions

StructuredPullSupplier::try_pull_structured_e
vent()
CosNotification::StructuredEvent try_pull_structured_event(
 out boolean has_event)
 raises(CosEventComm::Disconnected);

Disconnected The operation was invoked on a
StructuredPullSupplier that is not currently con-
nected to a consumer proxy.

 372 Orbix CORBA Programmer’s Reference: Java

If an event is available for delivery at the time the operation was
invoked, the method returns a structured event that contains the
event being delivered to its connected consumer and the output
parameter of the operation is set to TRUE. If no event is available to
return upon invocation, the operation returns immediately with the
value of the output parameter set to FALSE. In this case, the return
value does not contain a valid event.

Parameters

Exceptions

StructuredPullSupplier::disconnect_structured
_pull_supplier()
void disconnect_structured_pull_supplier();

Terminates a connection between the target StructuredPullSupplier
and its associated consumer. The target StructuredPullSupplier
releases all resources allocated to support the connection, and
disposes of its own object reference.

has_event An output parameter of type boolean that indicates
whether or not the return value actually contains
an event.

Disconnected The operation was invoked on a
StructuredPullSupplier that is not currently con-
nected to a consumer proxy.

 Orbix CORBA Programmer’s Reference: Java 373

CosNotifyComm::StructuredPush
Consumer Interface

interface StructuredPushConsumer : NotifyPublish {
 void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);
 void disconnect_structured_push_consumer();
};

The StructuredPushConsumer interface supports an operation
enabling consumers to receive structured events by the push
model. It also defines an operation to disconnect the push con-
sumer from its associated proxy supplier. In addition, the
StructuredPushConsumer interface inherits the NotifyPublish inter-
face described above, which enables a supplier to inform an
instance supporting this interface whenever there is a change to
the types of events it intends to produce.

Note: An object supporting the StructuredPushConsumer interface can
receive all events that were supplied to its associated channel,
including events supplied in a form other than a structured event.
How events supplied to the channel in other forms are internally
mapped into a structured event for delivery to a
StructuredPushConsumer is summarized in the CORBA Notification
Service Guide.

StructuredPushConsumer::push_structured_e
vent()
void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);

Enables consumers to receive structured events by the push model.

Parameters

Exceptions

StructuredPushConsumer::disconnect_structur
ed_push_consumer()
void disconnect_structured_push_consumer();

notification A parameter of type StructuredEvent as defined in
the CosNotification module. When the method
returns this parameter contains a structured event
being delivered to the consumer by its proxy sup-
plier.

Disconnected This operation was invoked on a
StructuredPushConsumer instance that is not currently
connected to a proxy supplier.

 374 Orbix CORBA Programmer’s Reference: Java

Terminates a connection between the target StructuredPushConsumer
and its associated proxy supplier. That the target
StructuredPushConsumer releases all resources allocated to support
the connection, and disposes of its own object reference.

 Orbix CORBA Programmer’s Reference: Java 375

CosNotifyComm::StructuredPush
Supplier Interface

interface StructuredPushSupplier : NotifySubscribe {
 void disconnect_structured_push_supplier();
};

The StructuredPushSupplier interface supports the behavior of
objects that transmit structured events using push-style commu-
nication. It defines an operation that can be invoked to disconnect
the push supplier from its associated consumer proxy. In addition,
the StructuredPushSupplier interface inherits NotifySubscribe,
which enables a consumer to inform an instance supporting this
interface whenever there is a change to the types of events it is
interested in receiving.

Note: An object supporting the StructuredPushSupplier interface can
transmit events which can potentially be received by any
consumer connected to the channel, including those which
consume events in a form other than a structured event. How
events supplied to the channel are translated is summarized in the
CORBA Notification Service Guide.

StructuredPushSupplier::disconnect_structure
d_push_supplier()
void disconnect_structured_push_supplier();

Terminates a connection between the target
StructuredPushSupplier, and its associated consumer. The target
StructuredPushSupplier releases all resources allocated to support
the connection, and disposes of its own object reference.

 376 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 377

CosNotifyFilter Module
The CosNotifyFilterModule specifies the following interfaces to
support event filtering:
Filter
FilterFactory
MappingFilter
FilterAdmin

In addition to these interfaces the module specifies several data
types and exceptions related to event filtering.

CosNotifyFilter Data Types

CosNotifyFilter::ConstraintID Data Type
typedef long ConstraintID;

Identifies a constraint.

CosNotifyFilter::ConstraintExp Data Structure
struct ConstraintExp
{
 CosNotification::EventTypeSeq event_types;
 string constraint_expr;
};

Contains a constraint expression and a list of events to check
against. The constraint_expr member is a string that conforms to
the Trader constraint grammar. For more information on the con-
straint grammar, see the CORBA Notification Service Guide.

CosNotifyFilter::ContsraintIDSeq Data Type
typedef <ConstraintID> ConstraintIDSeq;

Contains a list of constraint ID.

CosNotifyFilter::ConstraintExpSeq Data Type
typedef sequence<ConstraintExp> ContsraintExpSeq;

Contains a list of constraint expressions.

CosNotifyFilter::ConstraintInfo Data Structure
struct ConstraintInfo
{
 ConstraintExp constraint_expression;
 ConstraintID constraint_id;
}

 378 Orbix CORBA Programmer’s Reference: Java

Specifies an instantiated constraint.

CosNotifyFilter::ConstraintInfoSeq Data Type
typedef sequence<ConstraintInfo> ConstraintInfoSeq;

Contains a list of instantiated constraints.

CosNotifyFilter::FilterID Data Type
typedef long FilterID;

Identifies an instantiated filter. It is unique to the object to which
it is attached.

CosNotifyFilter::FilterIDSeq Data Type
typedef sequence<FilterID> FilterIDSeq;

Contains a list of FilterIds.

CosNotifyFilter::MappingConstraintPair Data
Structure
struct MappingConstraintPair
{
 ConstraintExp constraint_expression;
 any result_to_set;
}

Specifies a constraint expression and the value to set if the event
matches the constraint expression.

CosNotifyFilter::MappingConstraintPairSeq
Data Type
typedef sequence<MappingConstraintPair> MappingConstraintPairSeq

Contains a list of mapping filter constraint/value pairs.

CosNotifyFilter::MappingConstraintInfo Data
Structure
struct MappingConstraintInfo
{
 ConstraintExp constraint_expression;
 ConstraintID constraint_id;
 any value;
}

Specifies a mapping constraint that has been instantiated.

Orbix CORBA Programmer’s Reference: Java 379

CosNotifyFilter::MappingConstraintInfoSeq
Data Types
typedef sequence<MappingConstraintInfo>

MappingConstraintInfoSeq;

Contains a list of instantiated mapping filter constraint/value pairs.

CosNotifyFilter::CallbackID Data Type
typedef long CallbackID;

Holds an identifier for a callback registered with attach_callback.

CosNotifyFilter::CallbackIDSeq Data Type
typedef sequence<CallbackID> CallbackIDSeq;

Contains a list of callback IDs.

CosNotifyFilter Exceptions

CosNotifyFilter::UnsupportedFilterableData
Exception
exception UnsupportedFilterableData {};

Raised if the input parameter contains data that the match operation
is not designed to handle. For example, the filterable data contains
a field whose name corresponds to a standard event field that has
a numeric value, but the actual value associated with this field name
within the event is a string.

CosNotifyFilter::InvalidGrammar Exception
exception InvalidGrammar {};

Raised when creating a filter. If the string passed to the filter factory
specifies a grammar that is not supported, the factory will throw
InvalidGrammar.

Note: Orbix notification service supports the EXTENDED_TCL grammar.

CosNotifyFilter::InvalidConstraint Exception
exception InvalidConstraint {ConstraintExp constr};

Raised during the creation of constraints. If the string specifying
the constraint is syntactically incorrect, InvalidConstraint is thrown.
It returns the invalid constraint.

 380 Orbix CORBA Programmer’s Reference: Java

CosNotifyFilter::ConstraintNotFound Exception
exception ConstraintNotFound {ConstraintID id};

Raised when a specified constraint ID cannot be resolved to a
constraint attached to the target filter object. It returns the ID that
cannot be resolved.

CosNotifyFilterFilter::CallbackNotFound
Exception
exception CallbackNotFound {};

Raised when the specified callback ID cannot be resolved to a
callback object attached to the target filter object.

CosNotifyFilter::InvalidValue Exception
exception InvalidValue {ConstraintExp constr; any value};

Raised when the type_code of the value associated with the mapping
filter constraint does not match the value_type of the target mapping
filter object.

CosNotifyFilter::FilterNotFound Exception
exception FilterNotFound {};

Raised if the specified filter ID cannot be resolved to a filter
associated with the target object.

 Orbix CORBA Programmer’s Reference: Java 381

CosNotifyFilter::Filter Interface
interface Filter
{
 readonly attribute string constraint_grammar;

 ConstraintInfoSeq add_constraints(
 in ConstraintExpSeq constraint_list)
 raises (InvalidConstraint);

 void modify_constraints(
 in ConstraintIDSeq del_list,
 in ConstraintInfoSeq modify_list)
 raises (InvalidConstraint, ConstraintNotFound);

 ConstraintInfoSeq get_constraints(
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

 ConstraintInfoSeq get_all_constraints();

 void remove_all_constraints();

 void destroy();

 boolean match(in any filterable_data)
 raises (UnsupportedFilterableData);

 boolean match_structured(
 in CosNotification::StructuredEvent filterable_data)
 raises (UnsupportedFilterableData);

 boolean match_typed (
 in CosTrading::PropertySeq filterable_data)
 raises (UnsupportedFilterableData);

 CallbackID attach_callback (
 in CosNotifyComm::NotifySubscribe callback);

 void detach_callback (in CallbackID callback)
 raises (CallbackNotFound);

 CallbackIDSeq get_callbacks();
}; // Filter

The Filter interface defines the behaviors supported by filter
objects. These objects encapsulate constraints that are used by
the proxies and admins associated with an event channel. The
proxies and admins use the constraint definitions to determine
which events are forwarded, and which are discarded.
For more information on filters and the constraint language, see
the CORBA Notification Service Guide.
The Filter interface supports operations to manage the con-
straints associated with a Filter instance, along with a read-only
attribute to identify the constraint grammar used to evaluate the
constraints associated with the instance. In addition, the Filter
interface supports three variants of the match operation which are

 382 Orbix CORBA Programmer’s Reference: Java

invoked by a proxy object upon receipt of an event—the specific
variant selected depends upon whether the event is received as an
Any or a structured event—to evaluate the object using the con-
straints associated with the filter object.
The Filter interface also supports operations enabling a client to
associate any number of callbacks with the target filter object. The
callbacks are notified each time there is a change to the list of
event types the filer forwards through the event channel. Opera-
tions are also defined to support administration of this callback list
by unique identifier.

Filter::constraint_grammar
readonly attribute string constraint_grammar;

constraint_grammar is a readonly attribute specifiying the particular
grammar used to parse the constraint expressions encapsulated by
the target filter. The value of this attribute is set upon creation of
a filter object.

A filter’s constraints must be expressed using a particular con-
straint grammar because its member match operations must be
able to parse the constraints to determine whether or not a partic-
ular event satisfies one of them.
Orbix supports an implementation of the Filter interface which
supports the default constraint grammar described in the CORBA
Notification Service Guide. The constraint_grammar attribute is set
to the value EXTENDED_TCL when the target filter object supports
this default grammar.
Other implementations can provide additional implementations of
the Filter interface that support different constraint grammars,
and thus the constraint_grammar attribute must be set to a differ-
ent value upon creation of such a filter object.

Filter::add_constraints()
ConstraintInfoSeq add_constraints(
 in ConstraintExpSeq constraint_list)
 raises (InvalidConstraint);

Associates one or more new constraints with the target filter object.
Upon successful processing of all input constraint expressions,
add_constraints() returns a ConstraintInfoSeq containing all of the
constraints and the identifiers assigned to them by the filter.

If one or more of the constraints passed into add_constraints() is
invalid, none of the constraints are added to the target filter.

Note: Once add_constraints() is invoked by a client, the target filter is
temporarily disabled from usage by any proxy or admin it may be
associated with. Upon completion of the operation, the target filter
is re-enabled and can once again be used by associated proxies
and admins to make event forwarding decisions.

Orbix CORBA Programmer’s Reference: Java 383

Parameters

Exceptions If any of the constraints in the input sequence is not a valid
expression within the supported constraint grammar, the
InvalidConstraint exception is raised. This exception contains as
data the specific constraint expression that was determined to be
invalid.

Filter::modify_constraints()
void modify_constraints (
 in ConstraintIDSeq del_list,
 in ConstraintInfoSeq modify_list)
 raises (InvalidConstraint, ConstraintNotFound);

Modifies the constraints associated with the target filter object. This
operation can be used both to remove constraints currently associ-
ated with the target filter, and to modify the constraint expressions
of constraints currently associated with the filter.

If an exception is raised during the operation, no changes are made
to the filter’s constraints.

Note: Once modify_constraints is invoked by a client, the target filter is
temporarily disabled from use by any proxy or admin. Upon
completion of the operation, the target filter is re-enabled and can
once again be used by associated proxies and admins to make
event forwarding decisions.

Parameters

Exceptions

constraint_list A sequence of constraint data struc-
tures using the constraint grammar
supported by the target object.

del_list A sequence of numeric identifiers each of which
should be associated with one of the constraints
currently encapsulated by the target filter object.

modify_list A sequence containing constraint structures and an
associated numeric value. The numeric value in
each element of the sequence is the unique identi-
fier of one of the constraints encapsulated by the
target filter.

ConstraintNotFound Raised if any of the numeric values in either
input sequences does not correspond to the
unique identifier associated with any constraint
encapsulated by the target filter. This exception
contains the specific identifier that did not corre-
spond to the identifier of some constraint encap-
sulated by the target filter.

 384 Orbix CORBA Programmer’s Reference: Java

Filter::get_constraints()
ConstraintInfoSeq get_constraints(in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

Returns a sequence of data structures containing the input identi-
fiers along with their associated constraint.

Parameters

Exceptions

Filter::get_all_constraints()
ConstraintInfoSeq get_all_constraints();

Returns all of the constraints currently encapsulated by the target
filter object.

Filter::remove_all_constraints()
void remove_all_constraints();

Removes all of the constraints currently encapsulated by the target
filter. Upon completion, the target filter still exists but no constraints
are associated with it.

Filter::destroy()
void destroy();

Destroys the target filter and invalidates its object reference.

Filter::match()
boolean match (in any filterable_data)
 raises (UnsupportedFilterableData);

InvalidConstraint Raised if any of the constraint expressions sup-
plied in the second input sequence is not a valid
expression in terms of the constraint grammar
supported by the target object. This exception
contains the specific constraint that was deter-
mined to be invalid.

id_list A sequence of numeric values corresponding to the
unique identifiers of constraints encapsulated by
the target object.

ConstraintNotFoundOne of the input values does not correspond to
the identifier of some encapsulated constraint.
The exception contains that input value.

Orbix CORBA Programmer’s Reference: Java 385

Evaluates the filter constraints associated with the target filter
against an event supplied to the channel in the form of a
CORBA::Any. The operation returns TRUE if the input event satisfies
one of the filter constraints, and FALSE otherwise.
The act of determining whether or not a given event passes a
given filter constraint is specific to the type of grammar in which
the filter constraint is specified.

Parameters

Exceptions

Filter::match_structured()
boolean match_structured(
 in CosNotification::StructuredEvent filterable_data)
 raises (UnsupportedFilterableData);

Evaluates the filter constraints associated with the target filter
against a structured event. The operation returns TRUE if the input
event satisfies one of the filter constraints, and FALSE otherwise.

The act of determining whether or not a given event passes a given
filter constraint is specific to the type of grammar in which the filter
constraint is specified.

Parameters

Exceptions

Filter::attach_callback()
CallbackID attach_callback (
 in CosNotifyComm::NotifySubscribe callback);

Associates an object supporting the
CosNotifyComm::NotifySubscribe interface with the target filter. This
operation returns a numeric value assigned to this callback that is
unique to all such callbacks currently associated with the target fil-
ter.
After this operation has been successfully invoked on a filter, the
filter invokes the subscription_change() method of all its associ-
ated callbacks each time the set of constraints associated with the
filter is modified. This process informs suppliers in the filter’s call-

filterable_data A CORBA::Any which contains an event to be evalu-
ated.

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to han-
dle.

filterable_data A CosNotification::StructuredEvent containing an
event to be evaluated,

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to
handle.

 386 Orbix CORBA Programmer’s Reference: Java

back list of the change in the set of event types to which the fil-
ter’s clients subscribe. With this information, suppliers can make
intelligent decisions about which event types to produce.

Parameters

Filter::detach_callback()
void detach_callback(in CallbackID callback)
raises (CallbackNotFound);

Removes a callback object from the filter’s callback list. Subsequent
changes to the event type subscription list encapsulated by the
target filter are no longer propagated to that callback object.

Parameters

Exceptions

Filter::get_callbacks()
CallbackIDSeq get_callbacks();

Returns all the unique identifiers for the callback objects attached
to the target filter.

callback The reference to an object supporting the
CosNotifyComm::NotifySubscribe interface.

callback A unique identifiers associated with one of the call-
back objects attached to the target filter.

CallbackNotFound The input value does not correspond to the unique
identifier of a callback object currently attached to
the target filter object.

 Orbix CORBA Programmer’s Reference: Java 387

CosNotifyFilter::FilterAdmin
Interface

interface FilterAdmin {
 FilterID add_filter (in Filter new_filter);

 void remove_filter (in FilterID filter)
 raises (FilterNotFound);

 Filter get_filter (in FilterID filter)
 raises (FilterNotFound);

 FilterIDSeq get_all_filters();

 void remove_all_filters();
};

The FilterAdmin interface defines operations enabling an object
supporting this interface to manage a list of filters, each of which
supports the Filter interface. This interface is an abstract inter-
face which is inherited by all of the proxy and admin interfaces
defined by the notification service.

FilterAdmin::add_filter()
FilterID add_filter(in Filter new_filter);

Appends a filter to the list of filters associated with the target object
upon which the operation was invoked and returns an identifier for
the filter.

Parameters

FilterAdmin::remove_filter()
void remove_filter(in FilterID filter)
 raises (FilterNotFound);

Removes the specified filter from the target object’s list of filters.

Parameters

Exceptions

new_filter A reference to an object supporting the Filter
interface.

filter A numeric value identifying a filter associated with
the target object

FilterNotFoundThe identifier does not correspond to a filter associ-
ated with the target object.

 388 Orbix CORBA Programmer’s Reference: Java

FilterAdmin::get_filter()
Filter get_filter (in FilterID filter)
 raises (FilterNotFound);

Returns the object reference to the specified filter.

Parameters

Exceptions

FilterAdmin::get_all_filters()
FilterIDSeq get_all_filters();

Returns the list of unique identifiers corresponding to all of the filters
associated with the target object.

FilterAdmin::remove_all_filters()
void remove_all_filters();

Removes all filters from the filter list of the target object.

filter A numeric value identifying a filter associated with
the target object

FilterNotFoundThe identifier does not correspond to a filter associ-
ated with the target object.

 Orbix CORBA Programmer’s Reference: Java 389

CosNotifyFilter::FilterFactory
Interface

interface FilterFactory {
 Filter create_filter (
 in string constraint_grammar)
 raises (InvalidGrammar);

 MappingFilter create_mapping_filter (
 in string constraint_grammar,
 in any default_value)
 raises(InvalidGrammar);
};

The FilterFactory interface defines operations for creating filter.

FilterFactory::create_filter()
Filter create_filter (in string constraint_grammar)
 raises (InvalidGrammar);

Creates a forwarding filter object and returns a reference to the new
filter.

Parameters

Exceptions

FilterFactory::create_mapping_filter()
MappingFilter create_mapping_filter (
 in string constraint_grammar,
 in any default_value)
 raises(InvalidGrammar);

Creates a mapping filter object and returns a reference to the new
mapping filter.

Parameters

constraint_grammarA string identifying the grammar used to parse
constraints associated with this filter.

InvalidGrammarThe client invoking this operation supplied the name
of a grammar that is not supported by any forward-
ing filter implementation this factory is capable of
creating.

constraint_grammarA string parameter identifying the grammar used
to parse constraints associated with this filter.

default_value An Any specifying the default_value of the new
mapping filter.

 390 Orbix CORBA Programmer’s Reference: Java

Exceptions

InvalidGrammarThe client invoking this operation supplied the name
of a grammar that is not supported by any mapping
filter implementation this factory is capable of creat-
ing.

 Orbix CORBA Programmer’s Reference: Java 391

CosNotifyFilter::MappingFilter
Interface

interface MappingFilter
{
 readonly attribute string constraint_grammar;
 readonly attribute CORBA::TypeCode value_type;
 readonly attribute any default_value;

 MappingConstraintInfoSeq add_mapping_constraints (
 in MappingConstraintPairSeq pair_list)
 raises (InvalidConstraint, InvalidValue);

 void modify_mapping_constraints (
 in ConstraintIDSeq del_list,
 in MappingConstraintInfoSeq modify_list)
 raises (InvalidConstraint, InvalidValue, ConstraintNotFound);

 MappingConstraintInfoSeq get_mapping_constraints (
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

 MappingConstraintInfoSeq get_all_mapping_constraints();

 void remove_all_mapping_constraints();

 void destroy();

 boolean match (in any filterable_data, out any result_to_set)
 raises (UnsupportedFilterableData);

 boolean match_structured (
 in CosNotification::StructuredEvent filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);

 boolean match_typed (
 in CosTrading::PropertySeq filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);
}; // MappingFilter

The MappingFilter interface defines the behaviors of objects that
encapsulate a sequence of constraint-value pairs (see the descrip-
tion of the Default Filter Constraint Language in the CORBA Notifi-
cation Service Guide). These constraint-value pairs are used to
evaluate events and adjust their lifetime/priority values according
to the result. An object supporting the MappingFilter interface can
effect either an events lifetime property or its priority property,
but not both.
The MappingFilter interface supports the operations required to
manage the constraint-value pairs associated with an object
instance supporting the interface. In addition, the MappingFilter
interface supports a read-only attribute that identifies the con-
straint grammar used to parse the constraints encapsulated by
this object. The MappingFilter interface supports a read-only attri-

 392 Orbix CORBA Programmer’s Reference: Java

bute that identifies the typecode associated with the datatype of
the specific property value it is intended to affect. It also supports
another read-only attribute which holds the default value which is
returned as the result of a match operation in cases when the
event in question is found to satisfy none of the constraints encap-
sulated by the mapping filter. Lastly, the MappingFilter interface
supports three variants of the operation which are invoked by an
associated proxy object upon receipt of an event, to determine
how the property of the event which the target mapping filter
object was designed to affect should be modified.

MappingFilter::constraint_grammar
readonly attribute string constraint_grammar;

Identifies the grammar used to parse the constraint expressions
encapsulated by the target mapping filter. The value of this attribute
is set upon creation of a mapping filter.

A filter object’s constraints must be expressed using a particular
constraint grammar because its member match operations must be
able to parse the constraints to determine whether or not a partic-
ular event satisfies one of them.
Orbix supports an implementation of the MappingFilter object
which supports the default constraint grammar described in the
CORBA Notification Service Guide. constraint_grammar is set to the
value EXTENDED_TCL when the target mapping filter supports this
default grammar.
Users may provide additional implementations of the
MappingFilter interface which support different constraint gram-
mars, and thus set the constraint_grammar attribute to a different
value when creating such a mapping filter.

MappingFilter::value_type
readonly attribute CORBA::TypeCode value_type;

Identifies the datatype of the property value that the target mapping
filter is designed to affect. Note that the factory creation operation
for mapping filters accepts as an input parameter the default_value
to associate with the mapping filter instance. This default_value is
a CORBA::Any. Upon creation of a mapping filter, the typecode
associated with the default_value is abstracted from the CORBA::Any,
and its value is assigned to this attribute.

MappingFilter::default_value
readonly attribute any default_value;

The value returned as the result of any match operation during which
the input event does not satisfy any of the constraints encapsulated
by the mapping filter. The value of this attribute is set upon creation
of a mapping filter object instance.

Orbix CORBA Programmer’s Reference: Java 393

MappingFilter::add_mapping_constraints()
MappingConstraintInfoSeq add_mapping_constraints (
 in MappingConstraintPairSeq pair_list)
 raises (InvalidConstraint, InvalidValue);

Returns a sequence of structures which contain one of the input
constraint expressions, its corresponding value, and the unique
identifier assigned to this constraint-value pair by the target filter.

If one or more of the constraints passed into
add_mapping_constraints() is invalid, none of the constraints are
added to the target mapping filter.

Note: Once add_mapping_constraints is invoked by a client, the target
filter is temporarily disabled from use by any proxy it may be
associated with. Upon completion of the operation, the target filter
is re-enabled and can once again be used by associated proxies to
make event property mapping decisions.

Parameters

Exceptions

MappingFilter::modify_mapping_constraints()
void modify_mapping_constraints (
 in ConstraintIDSeq del_list,
 in MappingConstraintInfoSeq modify_list)
 raises(InvalidConstraint,
 InvalidValue,
 ConstraintNotFound);

Modifies the constraint-value pairs associated with the target map-
ping filter. This operation can remove constraint-value pairs cur-
rently associated with the target mapping filter, and to modify the
constraints and/or values of constraint-value pairs currently asso-
ciated with the target mapping filter.

If an exception is raised during the operation, no changes are made
to the filter’s constraints.

pair_list A sequence of constraint-value pairs. Each con-
straint in this sequence must be expressed in the
constraint grammar supported by the target object,
and each associated value must be of the data type
indicated by the value_type attribute of the target
object.

InvalidConstraintRaised if any of the constraint expressions in the
input sequence is not a valid expression. This
exception contains the constraint that was deter-
mined to be invalid.

InvalidValue Raised if any of the values supplied in the input
sequence are not of the same datatype as that
indicated by the target object’s value_type attri-
bute. This exception contains the invalid value and
its corresponding constraint.

 394 Orbix CORBA Programmer’s Reference: Java

Note: Once modify_mapping_constraints() is invoked by a client, the
target mapping filter is temporarily disabled from use by any
proxy it may be associated with. Upon completion of the
operation, the target mapping filter is re-enabled and can be used
by associated proxies to make event property mapping decisions.

Parameters

Exceptions

MappingFilter::get_mapping_constraints()
MappingConstraintInfoSeq get_mapping_constraints (
 in ConstraintIDSeq id_list)
 raises (ConstraintNotFound);

Returns a sequence of constraint-value pairs associated with the
target mapping filter.

del_list A sequence of unique identifiers associated with
one of the constraint-value pairs currently encap-
sulated by the target mapping filter. If all input val-
ues are valid, the specific constraint-value pairs
identified by the values contained in this parameter
are deleted from the mapping filter’s list of con-
straint-value-pairs.

modify_list A sequence of structures containing a constraint
structure, an Any value, and a numeric identifier.
The numeric identifier of each element is the
unique identifier associated with one of the con-
straint-value pairs currently encapsulated by the
target filter object. The constraint-value pairs iden-
tified are modified to the values specified in the
input list.

ConstraintNotFoundRaised if any of the identifiers in either of the
input sequences does not correspond to the
unique identifier associated with a con-
straint-value pair encapsulated by the target
mapping filter. This exception contains the identi-
fier which did not correspond to a con-
straint-value pair encapsulated by the target
object.

InvalidConstraint Raised if any of the constraint expressions sup-
plied in an element of the second input sequence
is not valid. This exception contains the constraint
that was determined to be invalid.

InvalidValue Raised if any of the values in the second input
sequence is not of the same datatype as that
indicated by the mapping filter’s value_type attri-
bute. This exception contains the invalid value
and its corresponding constraint expression.

Orbix CORBA Programmer’s Reference: Java 395

Parameters

Exceptions

MappingFilter::get_all_mapping_constraints()
MappingConstraintInfoSeq get_all_mapping_constraints();

Returns all of the constraint-value pairs encapsulated by the target
mapping filter.

MappingFilter::remove_all_mapping_constrain
ts
void remove_all_mapping_constraints();

Removes all of the constraint-value pairs currently encapsulated by
the target mapping filter. Upon completion, the target mapping filter
still exists but has no constraint-value pairs associated with it.

MappingFilter::destroy()
void destroy();

Destroys the target mapping filter, and invalidates its object refer-
ence.

MappingFilter::match()
boolean match(in any filterable_data, out any result_to_set)
 raises (UnsupportedFilterableData);

Determines how to modify some property value of an event in the
form of a CORBA::Any.

The target mapping filter begins applying the its constraints
according to each constraint’s associated value, starting with the
constraint with the best associated value for the specific property
the mapping filter is designed to affect (for example, the highest
priority, the longest lifetime, and so on), and ending with the con-
straint with the worst associated value.
Upon encountering a constraint which the event matches, the
operation sets result_to_set to the value associated with the
matched constraint, and returns with a value of TRUE. If the event

id_list A sequence of unique identifiers for con-
straint-value pairs encapsulated by the target
object.

ConstraintNotFoundOne of the input values does not correspond to
the identifier of an encapsulated constraint-value
pair. The exception contains the identifier that
did not correspond to a constraint-value pair.

 396 Orbix CORBA Programmer’s Reference: Java

does not satisfy any of the target mapping filter’s constraints, the
operation sets result_to_set to the value of the target mapping fil-
ter’s default_value attribute and returns with a value of FALSE.
The act of determining whether or not a given event passes a
given filter constraint is specific to the grammar used to parse the
filter constraints.

Parameters

Exceptions

MappingFilter::match_structured()
boolean match_structured (
 in CosNotification::StructuredEvent filterable_data,
 out any result_to_set)
 raises (UnsupportedFilterableData);

Determines how to modify some property value of a structured
event.

The target mapping filter begins applying the its constraints
according to each constraints associated value, starting with the
constraint with the best associated value for the specific property
the mapping filter is designed to affect (for example, the highest
priority, the longest lifetime, and so on), and ending with the con-
straint with the worst associated value.
Upon encountering a constraint which the event matches, the
operation sets result_to_set to the value associated with the
matched constraint, and returns with a value of TRUE. If the event
does not satisfy any of the target mapping filter’s constraints, the
operation sets result_to_set to the value of the target mapping fil-
ter’s default_value attribute and returns with a value of FALSE.
The act of determining whether or not a given event passes a
given filter constraint is specific to the grammar used to parse the
filter constraints.

Parameters

Exceptions

filterable_data An Any containing the event being evaluated
result_to_set An Any containing the value and the property name

to set when an event evaluates to TRUE.

UnsupportedFilterableDataThe input parameter contains data that
the match operation is not designed to
handle.

filterable_data A CosNotification::StructuredEvent containing the
event being evaluated.

result_to_set An Any containing the value and the property name
to set when an event evaluates to TRUE.

UnsupportedFilterableDatThe input parameter contains data that
match_structured() is not designed to han-
dle.

Orbix CORBA Programmer’s Reference: Java 397

 398 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 399

CosTrading Module
Contains the major functional interfaces of a trading service.

CosTrading Data Types

CosTrading::Constraint Data Type
typedef Istring Constraint;

A query constraint expression. The constraint is used to filter
offers during a query, and must evaluate to a boolean expression.
The constraint language consists of the following elements:
• comparative functions: ==, !=, >, >=,
• boolean connectives: and, or, not
• property existence: exist
• property names
• numeric, boolean and string constants
• mathematical operators: +, -, *, /
• grouping operators: (,)
The following property value types can be manipulated using the
constraint language:
• boolean, short, unsigned short, long, unsigned long, float,

double, char, Ichar, string, Istring
• sequences of the above types
Only the exist operator can be used on properties of other types.

Note: The constraint language keywords are case-sensitive
Literal strings should be enclosed in single quotes
The boolean literals are TRUE and FALSE

CosTrading::Istring Data Type
typedef string Istring;

When internationalized strings are widely supported, this defini-
tion will be changed.

CosTrading::LinkName Data Type
typedef Istring LinkName;

The name of a unidirectional link from one trader to another. The
only restriction on the format of a link name is it cannot be an
empty string.

 400 Orbix CORBA Programmer’s Reference: Java

CosTrading::LinkNameSeq Data Type
typedef sequence<LinkName> LinkNameSeq;

CosTrading::OfferId Data Type
typedef string OfferId;

An offer identifier is an opaque string whose format is determined
entirely by the trading service from which the offer identifier was
obtained, and can only be used with that trading service.

CosTrading::OfferIdSeq Data Type
typedef sequence<OfferId> OfferIdSeq;

CosTrading::OfferSeq Data Type
typedef sequence<Offer> OfferSeq;

CosTrading::PolicyName Data Type
typedef string PolicyName;

The name of a policy used to control the trader's behavior. The
only restriction on the format of a policy name is it cannot be an
empty string.

CosTrading::PolicyNameSeq Data Type
typedef sequence<PolicyName> PolicyNameSeq;

CosTrading::PolicySeq Data Type
typedef sequence<Policy> PolicySeq;

CosTrading::PolicyValue Data Type
typedef any PolicyValue;

CosTrading::PropertyName Data Type
typedef Istring PropertyName;

Although not explicitly defined in the specification, a property
name should start with a letter, may contain digits and under-
scores, and should not contain spaces.

Orbix CORBA Programmer’s Reference: Java 401

CosTrading::PropertyNameSeq DataType
typedef sequence<PropertyName> PropertyNameSeq;

CosTrading::PropertySeq Data Type
typedef sequence<Property> PropertySeq;

CosTrading::PropertyValue Data Type
typedef any PropertyValue;

A CORBA::Any containing the value of the property. Orbix Trader
allows arbitrarily complex user-defined types to be used as prop-
erty values.

CosTrading::ServiceTypeName Data Type
typedef Istring ServiceTypeName;

A service type name can have one of two formats, both represent-
ing formats that appear in the Interface Repository.
• Scoped Name - A scoped name has the form ::One::Two.

Other supported variations are Three::Four and Five.
• Interface Repository Identifier - An interface repository

identifier has the form IDL:[prefix/][module/]name:X.Y. For
example, IDL:omg.org/CosTrading/Lookup:1.0 is a valid inter-
face repository identifier, and you can use the same format
for your service type names.

Note: Although a service type name can appear similar to names used in
the interface repository, the trading service never uses
servicetype names to look up information in the interface
repository.

CosTrader::TraderName Data Type
typedef LinkNameSeq TraderName;

A TraderName represents a path from one trader to the desired
trader by following a sequence of links. The starting_trader
importer policy, if specified for a query operation, should contain a
value of this type.

Cos:Trading::TypeRepository Data Type
typedef Object TypeRepository;

TypeRepository represents an object reference for a
CosTradingRepos::ServiceTypeRepository object. You will need to
narrow this reference before you can interact with the service type
repository.

 402 Orbix CORBA Programmer’s Reference: Java

CosTrading::FollowOption Enum
enum FollowOption
{
 local_only,
 if_no_local,
 always
};

Determines the follow behavior for linked traders.
The member values are defined as follows:

CosTrading::Offer Struct
struct Offer
{
 Object reference;
 PropertySeq properties;
};

The description of a service offer. The data members contains the
following data:

CosTrading::Policy Struct
struct Policy
{
 PolicyName name;
 PolicyValue value;
};

CosTrading::Property Struct
struct Property
{
 PropertyName name;
 PropertyValue value;
};

A name-value pair associated with a service offer or proxy offer. If
the property name matches the name of a property in the offer's
service type, then the TypeCode of the value must match the prop-
erty definition in the service type.

local_only The trader will not follow a link.
if_no_local The trader will only follow a link if no

offers were found locally.
always The trader will always follow a link.

reference The object reference associated with this
offer. Depending on the configuration of
the server, this reference may be nil.

properties A sequence of properties associated with
this offer.

Orbix CORBA Programmer’s Reference: Java 403

Note: Orbix Trader allows properties to be associated with an offer even
if the property name does not match any property in the service
type. These properties can also be used in query constraint and
preference expressions.

CosTrading Exceptions

CosTrading::DuplicatePolicyName
exception DuplicatePolicyName {PolicyName name};

More than one value was supplied for a policy. The policy name
that caused the exception is returned.

CosTrading::DuplicatePropertyName
exception DuplicatePropertyName {PropertyName name};

The property name has already appeared once. The duplicated
property name is returned.

CosTrading::IllegalConstraint
exception IllegalConstraint{Constraint constr};

An error occurred while parsing the constraint expression. The
invalid constraint is passed back.

CosTrading::IllegalOfferId
exception IllegalOfferId {OfferId id};

The offer identifier is empty or malformed. The invalid id is
returned.

CosTrading::IllegalPropertyName
exception IllegalPropertyName {PropertyName name};

The property name is empty or does not conform the format sup-
ported by the trader. The property name that caused the excep-
tion is returned.

CosTrading::IllegalServiceType
exception IllegalServiceType {ServiceTypeName type};

A service type name does not conform to the formats supported
by the trader. The name that caused the exception is returned.

 404 Orbix CORBA Programmer’s Reference: Java

CosTrading::InvalidLookupRef
exception InvalidLookupRef {Lookup target};

The Lookup object reference cannot be nil.

CosTrading::MissingMandatoryProperty
exception MissingMandatoryProperty
{
 ServiceTypeName type;
 PropertyName name;
};

No value was supplied for a property defined as mandatory by the
service type.

CosTrading::NotImplemented
exception NotImplemented {};

The requested operation is not supported by this trading service.

CosTrading::PropertyTypeMismatch
exception PropertyTypeMismatch
{
 ServiceTypeName type;
 Property prop;
};

The property value type conflicts with the property's definition in
the service type.

CosTrading::ReadonlyDynamicProperty
exception ReadonlyDynamicProperty
{
 ServiceTypeName type;
 PropertyName name;
};

A property that is defined as read-only by the service type cannot
have a dynamic value.

CosTrading::UnknownMaxLeft
exception UnknownMaxLeft {};

The iterator does not know how many items are left.

CosTrading::UnknownOfferId
exception UnknownOfferId {OfferId id};

Orbix CORBA Programmer’s Reference: Java 405

The trader does not contain an offer with the given identifier. The
unresolved ID is returned.

CosTrading::UnknownServiceType
exception UnknownServiceType {ServiceTypeName type};

The service type repository used by the trader does not have the
requested service type. The unresolved name is returned.

 406 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 407

CosTrading::Admin Interface
// IDL in CosTrading
interface Admin :
 TraderComponents, SupportAttributes,
 ImportAttributes, LinkAttributes
{
 typedef sequence OctetSeq;

 readonly attribute OctetSeq request_id_stem;

 unsigned long set_def_search_card (in unsigned long value);

 unsigned long set_max_search_card (in unsigned long value);

 unsigned long set_def_match_card (in unsigned long value);

 unsigned long set_max_match_card (in unsigned long value);

 unsigned long set_def_return_card (in unsigned long value);

 unsigned long set_max_return_card (in unsigned long value);

 unsigned long set_max_list (in unsigned long value);

 boolean set_supports_modifiable_properties (in boolean value);

 boolean set_supports_dynamic_properties (in boolean value);

 boolean set_supports_proxy_offers (in boolean value);

 unsigned long set_def_hop_count (in unsigned long value);

 unsigned long set_max_hop_count (in unsigned long value);

 FollowOption set_def_follow_policy (in FollowOption policy);

 FollowOption set_max_follow_policy (in FollowOption policy);

 FollowOption set_max_link_follow_policy (
 in FollowOption policy);

 TypeRepository set_type_repos (in TypeRepository repository);

 OctetSeq set_request_id_stem (in OctetSeq stem);

 void list_offers(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
 raises (NotImplemented);

 void list_proxies(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
 raises (NotImplemented);
};

Interface Admin provides attributes and operations for administra-
tive control of the trading service.

 408 Orbix CORBA Programmer’s Reference: Java

Admin::request_id_stem Attribute
readonly attribute OctetSeq request_id_stem;

The request identifier “stem” is a sequence of octets that comprise
the prefix for a request identifier. The trader will append additional
octets to ensure the uniqueness of each request identifier it gener-
ates.

Admin::list_offers()
void list_offers(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
raises(NotImplemented);

Obtains the identifiers for the service offers in this trader.

Parameters

Admin::list_proxies()
void list_proxies(in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr)
raises(NotImplemented);

Obtains the identifiers for the proxy offers in this trader.

Parameters

Admin::set_def_follow_policy()
FollowOption set_def_follow_policy(in FollowOption policy);

Changes the value of the default link follow attribute and returns
the previous value.

how_namy Indicates how many identifiers to return in ids.
ids Contains at most how_many identifiers. If the number of

identifiers exceeds how_many, the id_itr parameter will
hold a reference to an iterator object through which
the remaining identifiers can be obtained.

id_itr Will hold nil if no identifiers were found or if all of the
identifiers were returned in ids. Otherwise, holds a ref-
erence to an iterator object through which the remain-
ing identifiers can be obtained.

how_many Indicates how many identifiers to return in ids.
ids Contains at most how_many identifiers. If the number of

identifiers exceeds how_many, the id_itr parameter will
hold a reference to an iterator object through which
the remaining identifiers can be obtained.

id_itr Will hold nil if no identifiers were found or if all of the
identifiers were returned in ids. Otherwise, holds a ref-
erence to an iterator object through which the remain-
ing identifiers can be obtained.

Orbix CORBA Programmer’s Reference: Java 409

Parameters

Admin::set_def_hop_count()
unsigned long set_def_hop_count(in unsigned long value);

Changes the value of the default hop count attribute and returns
the previous value.

Parameters

Admin::set_def_match_card()
unsigned long set_def_match_card(in unsigned long value);

Changes the value of the default match cardinality attribute and
returns the previous value.

Parameters

Admin::set_def_return_card()
unsigned long set_def_return_card(in unsigned long value);

Changes the value of the default return cardinality attribute and
returns the previous value.

Parameters

Admin::set_def_search_card()
unsigned long set_def_search_card(in unsigned long value);

Changes the value of the default search cardinality attribute and
returns the previous value.

Parameters

See Also CosTrading::ImportAttributes

Admin::set_max_follow_policy()
FollowOption set_max_follow_policy(in FollowOption policy);

Changes the value of the maximum link follow attribute and
returns the previous value.

policy The new value

value The new value

value The new value

value The new value

value The new value

 410 Orbix CORBA Programmer’s Reference: Java

Parameters

Admin::set_max_hop_count()
unsigned long set_max_hop_count(in unsigned long value);

Changes the value of the maximum hop count attribute and
returns the previous value.

Parameters

Admin::set_max_link_follow_policy()
FollowOption set_max_link_follow_policy(in FollowOption policy);

Changes the value of the maximum link follow policy and returns
the previous value.

Parameters

Admin::set_max_list()
unsigned long set_max_list(in unsigned long value);

Changes the value of the maximum list attributes and returns the
previous value.

Parameters

Admin::set_max_match_card()
unsigned long set_max_match_card(in unsigned long value);

Changes the value of the maximum match cardinality attribute
and returns the previous value.

Parameters

Admin::set_max_return_card()
unsigned long set_max_return_card(in unsigned long value);

Changes the value of the maximum return cardinality attribute
and returns the previous value.

Parameters

policy The new value

value The new value

policy The new value

value The new value

value The new value

value The new value

Orbix CORBA Programmer’s Reference: Java 411

Admin::set_max_search_card()
unsigned long set_max_search_card(in unsigned long value);

Changes the value of the maximum search cardinality attribute
and returns the previous value.

Parameters

Admin::set_request_id_stem()
OctetSeq set_request_id_stem(in OctetSeq stem);

Changes the value of the request identifier stem and returns the
previous value.

Parameters

Admin::set_supports_dynamic_properties()
boolean set_supports_dynamic_properties(in boolean value);

Establishes whether the trader considers offers with dynamic
properties during a query and returns the previous setting.

Parameters

Admin::set_supports_modifiable_properties()
boolean set_supports_modifiable_properties(in boolean value);

Establishes whether the trader supports property modification and
returns the previous setting.

Parameters

Admin::set_supports_proxy_offers()
boolean set_supports_proxy_offers(in boolean value);

Establishes whether the trader supports proxy offers and returns
the previous setting.

Parameters

value The new value

stem The new value

value The new value

value • TRUE activates property modification support.
• FALSE deactives property modification support.

value • TRUE turns on proxy support.
• FALSE turns off proxy support.

 412 Orbix CORBA Programmer’s Reference: Java

Admin:set_type_repos()
TypeRepository set_type_repos(in TypeRepository repository);

Establishes the service type repository to be used by the trader
and returns a reference to the previous type repository.

Parameters

repository A reference to a type repository.

 Orbix CORBA Programmer’s Reference: Java 413

CosTrading::ImportAttributes
Interface

The read-only attributes of this interface provide the default and
maximum values for policies that govern query operations.

Note: Performing a query is also known as importing service offers,
therefore these attributes are called import attributes.

ImportAttributes::def_follow_policy Attribute
readonly attribute FollowOption def_follow_policy;

The default value for the follow_policy policy if it is not supplied.

ImportAttributes::def_hop_count Attribute
readonly attribute unsigned long def_hop_count;

The default value for the hop_count policy if it is not supplied.

ImportAttributes::def_match_card Attribute
readonly attribute unsigned long def_match_card;

The default value for the match_card policy if it is not supplied.

ImportAttributes::def_return_card Attribute
readonly attribute unsigned long def_return_card;

The default value for the return_card policy if it is not supplied.

ImportAttributes::def_search_card Attribute
readonly attribute unsigned long def_search_card;

The default value for the search_card policy if it is not supplied.

ImportAttributes::max_follow_policy Attribute
readonly attribute FollowOption max_follow_policy;

The maximum value for the follow_policy policy, which may over-
ride the value supplied by an importer.

ImportAttributes::max_hop_count Attribute
readonly attribute unsigned long max_hop_count;

 414 Orbix CORBA Programmer’s Reference: Java

The maximum value for the hop_count policy, which may override
the value supplied by an importer.

ImportAttributes::max_list Attribute
readonly attribute unsigned long max_list;

The maximum size of any list returned by the trader. This may
override the value supplied by a client to operations such as query
and next_n.

ImportAttributes::max_match_card Attribute
readonly attribute unsigned long max_match_card;

The maximum value for the match_card policy, which may override
the value supplied by an importer.

ImportAttributes::max_return_card Attribute
readonly attribute unsigned long max_return_card;

The maximum value for the return_card policy, which may over-
ride the value supplied by an importer.

ImportAttributes::max_search_card Attribute
readonly attribute unsigned long max_search_card;

The maximum value for the search_card policy, which may over-
ride the value supplied by an importer.

 Orbix CORBA Programmer’s Reference: Java 415

CosTrading::Link Interface
interface Link :
 TraderComponents, SupportAttributes, LinkAttributes
{
 struct LinkInfo
 {
 Lookup target;
 Register target_reg;
 FollowOption def_pass_on_follow_rule;
 FollowOption limiting_follow_rule;
 };

 exception IllegalLinkName { LinkName name; };
 exception UnknownLinkName { LinkName name; };
 exception DuplicateLinkName { LinkName name; };

 exception DefaultFollowTooPermissive {
 FollowOption default_follow_rule;
 FollowOption limiting_follow_rule; };
 exception LimitingFollowTooPermissive {
 FollowOption limiting_follow_rule;
 FollowOption max_link_follow_policy; };

 void add_link(in LinkName name, in Lookup target,
 in FollowOption default_follow_rule,
 in FollowOption limiting_follow_rule)
 raises (IllegalLinkName, DuplicateLinkName, InvalidLookupRef,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

 void remove_link(in LinkName name)
 raises (IllegalLinkName, UnknownLinkName);

 LinkInfo describe_link(in LinkName name)
 raises (IllegalLinkName, UnknownLinkName);

 LinkNameSeq list_links();

 void modify_link(in LinkName name,
 in FollowOption default_follow_rule,
 in FollowOption limiting_follow_rule)
 raises (IllegalLinkName, UnknownLinkName,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);
};

Provides structures, exceptions, and operations for managing links
between traders.

Link::LinkInfo Data Structure
struct LinkInfo
{
 Lookup target;
 Register target_reg;
 FollowOption def_pass_on_follow_rule;

 416 Orbix CORBA Programmer’s Reference: Java

 FollowOption limiting_follow_rule;
};

A complete description of a link. The members hold the following
information:

CosTrading::Link Exceptions

Link::DefaultFollowTooPermissive Exception
exception DefaultFollowTooPermissive
{
 FollowOption def_pass_on_follow_rule;
 FollowOption limiting_follow_rule;
};

Raised when the value for def_pass_on_follow_rule exceeds the
value for limiting_follow_rule. Both values are passed back to the
caller.

Link::DuplicateLinkName Exception
exception DuplicateLinkName {LinkName name};

Raised when a link already exists with the given name. The dupli-
cated link name is passed back to the caller.

Link::IllegalLinkName Exception
exception IllegalLinkName {LinkName name};

Raised when the link name is empty or does not conform the for-
mat supported by the trader. The invalid link name is passed back
to the caller.

Link::LimitingFollowTooPermissive Exception
exception LimitingFollowTooPermissive
{
 FollowOption limiting_follow_rule;
 FollowOption max_link_follow_policy;
};

The value for limiting_follow_rule exceeds the trader's
max_link_follow_policy attribute.

target Lookup interface if link target
target_reg Register interface of link
def_pass_on_follow_ruleDefault link behavior for the link if no

link-follow policy is specified by an importer
durring a query

limiting_follow_rule Most permisive link-follow behavior that the
link is willing to tolerate

Orbix CORBA Programmer’s Reference: Java 417

Link::UnknownLinkName Exception
exception UnknownLinkName {LinkName name};

Raised when trader does not have a link with the given name. The
invalid name is returned.

Link::add_link()
void add_link(in LinkName name, in Lookup target,
 in FollowOption def_pass_on_follow_rule,
 in FollowOption limiting_follow_rule)
raises(IllegalLinkName,
 DuplicateLinkName,
 InvalidLookupRef,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

Adds a new, unidirectional link from this trader to another trader.

Parameters

Exceptions

Link::describe_link()
LinkInfo describe_link(in LinkName name)
raises(IllegalLinkName, UnknownLinkName);

Obtains a description of a link and returns it in a LinkInfo object.

Parameters

name Specifies the name of the new link.
target Holds a reference to the Lookup interface of

the target trader
def_pass_on_follow_ruleSpecifies the default link behavior for the

link if not link-follow policy is specified by an
importer durring a query.

limiting_follow_rule Specifies the most permisive link-follow
behavior the the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid
format.

DuplicateLinkName Another link exists with the same
name.

InvalidLookupRef Targer object reference in nil.
DefaultFollowTooPermisive The value for def_pass_on_follow_rule

exceeds the value for
limiting_follow_rule.

LimitingFollowTooPermissive The value for limiting_follow_rule
exceeds the trader’s
max_link_follow_policy.

name Name of the link of interest

 418 Orbix CORBA Programmer’s Reference: Java

Exceptions

Link::list_links()
LinkNameSeq list_links();

Reurns the names of all trading links within the trader.

Link::modify_link()
void modify_link(in LinkName name,
 in FollowOption def_pass_on_follow_rule,
 in FollowOption limiting_follow_rule)
raises(IllegalLinkName,
 UnknownLinkName,
 DefaultFollowTooPermissive,
 LimitingFollowTooPermissive);

Modifies the follow behavior of an existing link.

Parameters

Exceptions

Link::remove_link()
void remove_link(in LinkName name)
 raises(IllegalLinkName, UnknownLinkName);

Removes an existing link.

Parameters

IllegalLinkName The link name is empty or has an invalid format.
UnknownLinkName No link with the specified name exists.

name Specifies the name of the link to be modi-
fied.

def_pass_on_follow_ruleSpecifies the default link behavior for the
link if no link-follow policy is specifed by an
importer durring a query.

limiting_follow_rule Describes the most permisive link-follow
behavior that the link is willing to follow.

IllegalLinkName Link name is empty of has an invalid
format.

UnknownLinkName The specified link name does not
exist.

DefaultFollowTooPermisive The value for def_pass_on_follow_rule
exceeds the value for
limiting_follow_rule.

LimitingFollowTooPermissive The value for limiting_follow_rule
exceeds the trader’s
max_link_follow_policy.

name Name of the link to be removed

Orbix CORBA Programmer’s Reference: Java 419

Exceptions

IllegalLinkName The link name is empty or has an invalid format.
UnknownLinkName No link exists witht the specified name.

 420 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 421

CosTrading::LinkAttributes
Interface

LinkAttributes::max_link_follow_policy
Attribute
readonly attribute FollowOption max_link_follow_policy;

Determines the most permissive behavior that will be allowed for
any link.

 422 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 423

CosTrading::Lookup Interface
interface Lookup :
 TraderComponents, SupportAttributes, ImportAttributes
{
 typedef Istring Preference;

 enum HowManyProps
 {
 none,
 some,
 all
 };

 union SpecifiedProps switch (HowManyProps)
 {
 case some: PropertyNameSeq prop_names;
 };

 exception IllegalPreference {Preference pref};
 exception IllegalPolicyName {PolicyName name};
 exception PolicyTypeMismatch {Policy the_policy};
 exception InvalidPolicyValue {Policy the_policy};

 void query(in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,
 out PolicyNameSeq limits_applied)
 raises (IllegalServiceType, UnknownServiceType,
 IllegalConstraint, IllegalPreference,
 IllegalPolicyName, PolicyTypeMismatch,
 InvalidPolicyValue, IllegalPropertyName,
 DuplicatePropertyName, DuplicatePolicyName);
};

Provides a single operation, query, for use by importers.

Lookup::Preference DataType
typedef Istring Preference;

A query preference expression. The preference is used to order
the offers found by a query. The valid forms of a preference
expression are:

min numeric-expression orders the offers in ascending order
based on the numeric expression. Offers for which the expression
cannot be evaluated (for example, if the offer does not contain a
property that is used in the expression) are placed at the end of
the sequence.

 424 Orbix CORBA Programmer’s Reference: Java

max numeric-expression orders the offers in descending order
based on the numeric expression. Offers for which the expression
cannot be evaluated (for example, if the offer does not contain a
property that is used in the expression) are placed at the end of
the sequence.

with boolean-expression orders the offers such that those for
which the boolean expression are TRUE are included before any of
those for which the expression is false, which are placed before
any of those that cannot be evaluated.

random orders the offers in random order.

first orders the offers as they are encountered by the server.
If an empty preference expression is supplied, it is equivalent to a
preference of first.

Lookup::HowManyProps Enum
enum HowManyProps
{
 none,
 some,
 all
};

The choices for indicating how many properties are returned with
each offer. The members are defined as follows:

Lookup::SpecifiedProps Union
union SpecifiedProps switch(HowManyProps)
{
case some: PropertyNameSeq prop_names;
};

Determines which properties are to be returned for each matching
offer found by the query operation. The union's discriminator can
meaningfully be set to the other enumerated values none and all.
If set to none, you are indicating that no properties should be
returned. If set to all, then all properties will be returned. Set the
value for some with a sequence of property names indicating which
properties should be returned

Lookup::IllegalPolicyName Exception
exception IllegalPolicyName {PolicyName name};

The policy name is empty or does not conform the format sup-
ported by the trader. The invalid name is returned.

none No properties should be returned.
some Some properties should be returned.
all All properties should be returned.

Orbix CORBA Programmer’s Reference: Java 425

Lookup::IllegalPreference Exception
exception IllegalPreference {Preference pref};

An error occurred while parsing the preference expression. The
invalid preference is returned.

Lookup::InvalidPolicyValue Exception
exception InvalidPolicyValue {Policy the_policy};

The policy has an invalid value.

Lookup::PolicyTypeMismatch Exception
exception PolicyTypeMismatch {Policy the_policy};

The policy value type specified does not match the type expected
by the trader. The type expected by the trader is returned.

Lookup::query()
void query(in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_itr,
 out PolicyNameSeq limits_applied)
raises(IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 IllegalPreference,
 IllegalPolicyName,
 PolicyTypeMismatch,
 InvalidPolicyValue,
 IllegalPropertyName,
 DuplicatePropertyName,
 DuplicatePolicyName);

Allows an importer to obtain references to objects that provide
services meeting its requirements.
The importer can control the behavior of the search by supplying
values for certain policies. The trader may override some or all of
the values supplied by the importer. The following policies are
known by the trader:

exact_type_match (boolean) if TRUE, only offers of exactly the
service type specified by the importer are considered; if FALSE,
offers of any service type that conforms to the importer's service
type are considered

hop_count (unsigned long) indicates maximum number of
hops across federation links that should be tolerated in the
resolution of this query

 426 Orbix CORBA Programmer’s Reference: Java

link_follow_rule (FollowOption) indicates how the client
wishes links to be followed in the resolution of this query

match_card (unsigned long) indicates the maximum number
of matching offers to which the preference specification should be
applied

return_card (unsigned long) indicates the maximum number
of matching offers to return as a result of this query

search_card (unsigned long) indicates the maximum number
of offers to be considered when looking for type conformance and
constraint expression match

starting_trader (TraderName) specifies the remote trader at
which the query starts

use_dynamic_properties (boolean) specifies whether to
consider offers with dynamic properties

use_modifiable_properties (boolean) specifies whether to
consider offers with modifiable properties

use_proxy_offers (boolean) specifies whether to consider
proxy offers

Parameters

type Specifies the service type that interests the importer.
The service type limits the scope of the search to
only those offers exported for this type, and option-
ally any subtype of this type.

constr Limits the search to only those offers for which this
expresion is TRUE. The simplest constraint expression
is "TRUE", which matches any offer.

pref Specifies how the matched offers are t be ordered.
policies Specifies the policies that govern the behavior of the

query.
desired_props Determines the properties that are to be included

with each offer returned by the query. This parame-
ter does not affect whether or not a service offer is
returned. To exclude an offer that does not contain a
desired property, include "exist property-name" in the
constraint.

how_many Indicates how many offers are to be returned in the
offers parameter.

offers Holds at most how_many offers. If the number of
matching offers exceeds how_many, the offer_itr
parameter will hold a reference to an iterator object
through which the remaining offers can be obtained.

offer_itr Will hold nil if no matching offers were found or if all
of the matching offers were returned in offers; oth-
erwise, holds a reference to an iterator. The object's
destroy operation should be invoked when the
object is no longer needed.

Orbix CORBA Programmer’s Reference: Java 427

Exceptions

limits_appliedHolds the names of any policies that were overridden
by the trader's maximum allowable settings.

IllegalServiceType Service type name is empty or has an invalid
format

UnknownServiceType Service type was not found in service type
repository

IllegalConstraint An error occurred while parsing the constraint
expression

IllegalPreference An error occurred while parsing the prefer-
ence expression

IllegalPolicyName A policy name is empty or has an invalid for-
mat

PolicyTypeMismatch A policy value type did not match the type
expected by the trader

InvalidPolicyValue A policy has an invalid value
IllegalPropertyName A property name is empty or has an invalid

format
DuplicatePropertyNameA property name appeared more than once in

the list of desired properties
DuplicatePolicyName A policy name appeared more than once in

the list of policies

 428 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 429

CosTrading::OfferIdIterator
Interface

interface OfferIdIterator
{
 unsigned long max_left()
 raises (UnknownMaxLeft);

 boolean next_n(in unsigned long n, out OfferIdSeq ids);

 void destroy();
};

Specifies methods to iterate through a list of offer identifiers.

OfferIdInterator::destroy()
void destroy();

Destroys the iterator object.

OfferIdIterator::max_left()
unsigned long max_left()
raises(UnknownMaxLeft);

Returns the number of offer identifiers remaining in the iterator.

Exceptions

OfferIdIterator::next_n()
boolean next_n(in unsigned long n,
 out OfferIdSeq ids);

Returns TRUE if ids contains more offer identifiers, and returns
FALSE if ids is nil.

Parameters

UnknownMaxLeftCannot determine the number of remaining offer iden-
tifiers

n Number of offer identifiers to return
ids List of offer identifiers containing at most n elements

 430 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 431

CosTrading::OfferIterator
Interface

interface OfferIterator
{
 unsigned long max_left()
 raises (UnknownMaxLeft);

 boolean next_n(in unsigned long n, out OfferSeq offers);

 void destroy();
};

Specifies methods to iterate through a list of offers.

OfferIterator::destroy()
void destroy();

Destroys the iterator object.

OfferInterator::max_left()
unsigned long max_left()
raises(UnknownMaxLeft);

Returns the number of offers remaining in the iterator.

Exceptions

OfferIterator::next_n()
boolean next_n(in unsigned long n,
 out OfferSeq offers);

Returns TRUE if offers contains more offer identifiers, and returns
FALSE if offers is nil.

Parameters

UnknownMaxLeftcannot determine the number of remaining offers

n Number of offers to return
ids List of offers containing at most n elements

 432 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 433

CosTrading::Proxy Interface
interface Proxy :
 TraderComponents,
 SupportAttributes
{
 typedef Istring ConstraintRecipe;

 struct ProxyInfo
 {
 ServiceTypeName type;
 Lookup target;
 PropertySeq properties;
 boolean if_match_all;
 ConstraintRecipe recipe;
 PolicySeq policies_to_pass_on;
};

 exception IllegalRecipe {ConstraintRecipe recipe};
 exception NotProxyOfferId {OfferId id};

 OfferId export_proxy(in Lookup target, in ServiceTypeName type,
 in PropertySeq properties,
 in boolean if_match_all,
 in ConstraintRecipe recipe,
 in PolicySeq policies_to_pass_on)
 raises (IllegalServiceType, UnknownServiceType,
 InvalidLookupRef, IllegalPropertyName,
 PropertyTypeMismatch, ReadonlyDynamicProperty,
 MissingMandatoryProperty, IllegalRecipe,
 DuplicatePropertyName, DuplicatePolicyName);

 void withdraw_proxy(in OfferId id)
 raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId);

 ProxyInfo describe_proxy(in OfferId id)
 raises (IllegalOfferId, UnknownOfferId, NotProxyOfferId);
};

Provides datatypes, exceptions and methods for managing proxy
offers.

Proxy::ConstraintRecipe Data Type
typedef Istring ConstraintRecipe;

A constraint recipe specifies how the trader should rewrite a con-
straint before invoking the query operation of the proxy offer's
Lookup interface. Using a constraint recipe, the exporter can have
the trader rewrite a constraint into a completely different con-
straint language (one that is understood by the proxy offer's
Lookup target).
The constraint recipe can include the value of properties using the
expression "$(property-name)". The recipe can also include the entire
text of the original constraint using the special syntax "$*".

 434 Orbix CORBA Programmer’s Reference: Java

For example, assume the property name has the value "Joe", and
the property age has the value 33. The constraint recipe "Name ==
$(name) and Age" would be rewritten as "Name == 'Joe'
and Age".

Proxy::ProxyInfo Data Structure
struct ProxyInfo
{
 ServiceTypeName type;
 Lookup target;
 PropertySeq properties;
 boolean if_match_all;
 ConstraintRecipe recipe;
 PolicySeq policies_to_pass_on;
};

A complete description of a proxy offer which contains the follow-
ing members:

Proxy::IllegalRecipe Exception
exception IllegalRecipe{ConstraintRecipe recipe};

An error occurred while parsing the recipe.

Proxy::NotProxyOfferId Exception
exception NotProxyOfferId{OfferId id};

The offer identifier does not refer to a proxy offer.

Proxy::describe_proxy()
ProxyInfo describe_proxy(in OfferId id)
raises(IllegalOfferId,
 UnknownOfferId,
 NotProxyOfferId);

Obtains the description of a proxy offer.

type The service type for which tis offer was
exported.

target The target Lookup object.
properties A sequence of properties associated with this

offer.
if_match_all If TRUE, type conformance is all that is necessary

for this offer to match. If FALSE, the offer must
also match the constraint expression.

recipe The recipe for rewriting the constraint
policies_to_pass_onPolicies to be appended to the importer’s policies

and passed along to the target.

Orbix CORBA Programmer’s Reference: Java 435

Parameters

Exceptions

Proxy::export_proxy()
OfferId export_proxy(in Lookup target,
 in ServiceTypeName type,
 in PropertySeq properties,
 in boolean if_match_all,
 in ConstraintRecipe recipe,
 in PolicySeq policies_to_pass_on)
raises(IllegalServiceType,
 UnknownServiceType,
 InvalidLookupRef,
 IllegalPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 IllegalRecipe,
 DuplicatePropertyName,
 DuplicatePolicyName);

Creates a new proxy offer.

Parameters

Exceptions

id Identifier of the proxy offer of interest

IllegalOfferId Offer Identifier is empty or has an invalid format.
UnknownOfferId No offer was found with the given identifier
NotProxyOfferIdOffer identifier does not refer to a proxy offer

target The target Lookup interface
type The service type for which this offer was

exported
properties A sequence of properties associated with this

offer.
if_match_all If TRUE, type conformance is all that is necessary

for this offer to match. If FALSE, the offer must
also match the constraint expression.

recipe The recipe for rewriting the constraint.
policies_to_pass_onPolicies to be appended to teh importer’s policies

and passed along to the target.

IllegalServiceType Service type name is empty or has invalid
format.

UnknownServiceType Service type was not found in the service
type repository.

InvalidLookupRef Target object reference is nil.
IllegalPropertyName Property name is empty or has an invalid

format.

 436 Orbix CORBA Programmer’s Reference: Java

Proxy::withdraw_proxy()
void withdraw_proxy(in OfferId id)
 raises(IllegalOfferId,
 UnknownOfferId,
 NotProxyOfferId);

Removes a proxy offer.

Parameters

Exceptions

PropertyTypeMismatch Property value type does not match the
property definition of the service type.

ReadonlyDynamicProperty Read-only properties cannot have dynamic
values.

MissingMandatoryPropertyNo value was given for a mandatory prop-
erty.

IllegalRecipe An error occurred while parsing the con-
straint recipe.

DuplicatePropertyname A property name appeared more than once
in the list of properties.

DuplicatePolicyName A policy name appeared more than once in
the list of policies to pass on.

id Identifier of the proxy offer to be withdrawn

IllegalOfferId Offer identifier is empty or has an invalid format
UnknownOfferId No offer was found with the given identifier.
NotProxyOfferIdOffer identifier does not refer to a proxy offer

 Orbix CORBA Programmer’s Reference: Java 437

CosTrading::Register Interface
interface Register
inherits from CosTrading::TraderComponents,

CosTrading::SupportAttributes

Provides operations for managing service offers.

Register::OfferInfo Structure
struct OfferInfo
{
 Object reference;
 ServiceTypeName type;
 PropertySeq properties;
};

A complete description of a service offer.

Register::IllegalTraderName Exception
exception IllegalTraderName
{
 TraderName name;
};

The trader name was empty, or a component of the name was not
a valid link name.

Register::InterfaceTypeMismatch Exception
exception InterfaceTypeMismatch
{
 ServiceTypeName type;
 Object reference;
};

If the trader is configured to use the interface repository, then it
will attempt to confirm that the interface of the object reference
conforms to the interface of the service type. If the trader is able
to determine that there is a mismatch, this exception is thrown.

Register::InvalidObjectRef Exception
exception InvalidObjectRef
{

reference The object reference associated with this
offer. Depending on the configuration of
the server, this reference may be nil.

type The service type for which this offer was
exported

properties A sequence of properties associated with
this offer.

 438 Orbix CORBA Programmer’s Reference: Java

 Object ref;
};

The object reference is nil, and the trader is is configured to
reject offers with nil references.

Register::MandatoryProperty Exception
exception MandatoryProperty
{
 ServiceTypeName type;
 PropertyName name;
};

A mandatory property cannot be removed.

Register::NoMatchingOffers Exception
exception NoMatchingOffers
{
 Constraint constr;
};

No matching offers were found matching the constraint expres-
sion.

Register::ProxyOfferId Exception
exception ProxyOfferId
{
 OfferId id;
};

The offer identifier actually refers to a proxy offer.

Register::ReadonlyProperty Exception
exception ReadonlyProperty
{
 ServiceTypeName type;
 PropertyName name;
};

A read-only property cannot be modified.

Register::RegisterNotSupported Exception
exception RegisterNotSupported
{
 TraderName name;
};

The resolve operation is not supported by this trader.

Orbix CORBA Programmer’s Reference: Java 439

Register::UnknownPropertyName Exception
exception UnknownPropertyName
{
 PropertyName name;
};

A property was identified for removal that does not exist in the
offer.

Register::UnknownTraderName Exception
exception UnknownTraderName
{
 TraderName name;
};

The trader name could not be correctly resolved to a trader.

Register::describe()
OfferInfo describe(in OfferId id)
 raises(IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId);

Obtains the description of a service offer and and returns it in an
OfferInfo structure.

Parameters

Exceptions

Register::export()
OfferId export(in Object reference,
 in ServiceTypeName type,
 in PropertySeq properties)
 raises(InvalidObjectRef,
 IllegalServiceType,
 UnknownServiceType,
 InterfaceTypeMismatch,
 IllegalPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 DuplicatePropertyName);

Creates a new service offer and returns an identifer object for the
new service. A client wishing to advertise a new offer is called an
exporter.

id Identifier of the offer of interest

IllegalOfferIdOffer identifier is empty or has an invalid format
UnknownOfferIdNo offer was found with the given identifier
ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers

must be described using the Proxy interface.

 440 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

Register::modify()
void modify(in OfferId id,
 in PropertyNameSeq del_list,
 in PropertySeq modify_list)
 raises(NotImplemented,
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId,
 IllegalPropertyName,
 UnknownPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MandatoryProperty,
 ReadonlyProperty,
 DuplicatePropertyName);

Modifies an existing service offer to add new properties, and
change or delete existing properties.

Parameters

reference Reference to an object that enables a client to interact
with a remote server.

type Identifies the service type for which this offer is adver-
tised.

properties List of named values that describe the service being
offered.

InvalidObjectRef Object reference is nil and the trader has
been configured to reject nil references

IllegalServiceType Service type name is empty or has an
invalid format

UnknownServiceType Service type was not found in service type
repository

InterfaceTypeMismatch Trader was able to determine that the
interface of the object reference does not
conform to the the interface of the service
type

IllegalPropertyName Property name is empty or has an invalid
format

PropertyTypeMismatch Property value type does not match the
property definition of the service type

ReadonlyDynamicProperty Read-only properties cannot have dynamic
values

MissingMandatoryPropertyNo value was supplied for a mandatory
property

DuplicatePropertyName Property name appeared more than once in
list of properties

id Identifier of the offer to be modified

Orbix CORBA Programmer’s Reference: Java 441

Exceptions

Register::resolve()
Register resolve(in TraderName name)
 raises(IllegalTraderName,
 UnknownTraderName,
 RegisterNotSupported);

Resolves a context-relative name for another trader and returns a
Register object for the resolved trader.

Parameters

Exceptions

Register::withdraw()
void withdraw(in OfferId id)
 raises(IllegalOfferId,

del_list Names of properties to be removed
modify_list Properties to be added or modified

NotImplemented Trader does not support modification of
properties

IllegalOfferId Offer identifier is empty or has an invalid
format

UnknownOfferId No offer was found with the given identifier
ProxyOfferId Offer identifier refers to a proxy offer. Proxy

offers must be described using the Proxy
interface.

IllegalPropertyName Property name is empty or has an invalid
format

UnknownPropertyName Property to be removed does not exist in
offer

PropertyTypeMismatch Property value type does not match the
property definition of the service type

ReadonlyDynamicPropertyRead-only properties cannot have dynamic
values

MandatoryProperty Mandatory properties cannot be removed
ReadonlyProperty Read-only properties cannot be modified
DuplicatePropertyName Property name appeared more than once in

list of properties

name Identifies the trader to be resolved

IllegalTraderName Trader name was empty, or a component of
the name was not a valid link name

UnknownTraderName Trader name could not be correctly resolved to
a trader

RegisterNotSupportedTrader does not support this operation

 442 Orbix CORBA Programmer’s Reference: Java

 UnknownOfferId,
 ProxyOfferId);

Removes a service offer.

Parameters

Exceptions

Register::withdraw_using_constraint()
void withdraw_using_constraint(in ServiceTypeName type,
 in Constraint constr)
 raises(IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 NoMatchingOffers);

Withdraws all offers for a particular service type that match a con-
straint expression. Only offers that exactly match the given ser-
vice type are considered. Proxy offers are not considered, and
links are not followed.

Parameters

Exceptions

id Identifier of the offer to be withdrawn

IllegalOfferIdOffer identifier is empty or has an invalid format
UnknownOfferIdNo offer was found with the given identifier
ProxyOfferId Offer identifier refers to a proxy offer. Proxy offers

must be removed using the Proxy interface.

type Identifies the service type for which offers are to be
removed.

constr Limits the search to only those offers for which this
expression is true. The simplest constraint expres-
sion is TRUE, which matches any offer and is an effi-
cient way to withdraw all offers for a service type.

IllegalServiceTypeService type name is empty or has an invalid
format

UnknownServiceTypeService type was not found in service type
repository

IllegalConstraint An error occurred while parsing the constraint
expression

NoMatchingOffers No matching offers were found

 Orbix CORBA Programmer’s Reference: Java 443

CosTrading::SupportAttributes
Interface

interface SupportAttributes

The read-only attributes in this interface determine what addi-
tional functionality a trader supports, and also provide access to
the service type repository used by the trader.

SupportAttributes::supports_dynamic_propert
ies Attribute
readonly attribute boolean supports_dynamic_properties;

If FALSE, offers with dynamic properties will not be considered
during a query.

SupportAttributes::supports_modifiable_prope
rties Attribute
readonly attribute boolean supports_modifiable_properties;

If FALSE, the modify operation of the Register interface will raise
NotImplemented.

SupportAttributes::supports_proxy_offers
Attribute
readonly attribute boolean supports_proxy_offers;

If FALSE, the proxy_if attribute of the TraderComponents interface
will return nil, and proxy offers will not be considered during a
query.

SupportAttributes::type_repos Attribute
readonly attribute TypeRepository type_repos;

Returns the object reference of the service type repository used
by the trader.

 444 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 445

CosTrading::TraderComponents
Interface

interface TraderComponents

Each of the five major interfaces of the CosTrading module inherit
from this interface. By doing so, any of the trader components can
be obtained using a reference to any of the other components.
A nil value will be returned by an attribute if the trader does not
support that interface.

TraderComponents::admin_if Attribute
readonly attribute Admin admin_if;

TraderComponents::link_if Attribute
readonly attribute Link link_if;

TraderComponents::lookup_if Attribute
readonly attribute Lookup lookup_if;

TraderComponents::proxy_if Attribute
readonly attribute Proxy proxy_if;

TraderComponents::register_if Attribute
readonly attribute Register register_if;

 446 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 447

CosTrading::Dynamic Module
Defines interfaces and types necessary to support dynamic prop-
erties. Dynamic properties allow an exporter to delegate a prop-
erty's value to a third party. For example, rather than exporting
an offer with a value of 54 for the property weight, you can provide
a reference to an object that will dynamically compute the value
for weight.
Naturally, there are performance issues when using dynamic prop-
erties, and therefore an importer may elect to exclude any offers
containing dynamic properties.
To export an offer (or a proxy offer) with a dynamic property, you
need to do the following:
• Define an object that implements the DynamicPropEval inter-

face.
• Create an instance of the DynamicProp struct and insert that

into the property's CORBA::Any value.
• Ensure that the lifetime of the DynamicPropEval object is such

that it will be available whenever dynamic property evaluation
is necessary.

CosTradingDynamic::DynamicProp Struct
struct DynamicProp
{
 DynamicPropEval eval_if;
 TypeCode returned_type;
 any extra_info;
};

Describes a dynamic property. This struct is inserted into a prop-
erty's CORBA::Any value and provides all of the information neces-
sary for the trader to accomplish dynamic property evaluation.

CosTradingDynamic::DPEvalFailure Exception
exception DPEvalFailure
{
 CosTrading::PropertyName name;
 TypeCode returned_type;
 any extra_info;
};

eval_if Object reference for evaluation interface
returned_type Value type expected for the property.

The value of returned_type must match
the value type of the property as defined
by the service type.

extra_info Additional information used for property
evaluation. Orbix Trader supports primi-
tive and user-defined types as values for
extra_info.

 448 Orbix CORBA Programmer’s Reference: Java

Evaluation of a dynamic property failed.

name Name of the property to be evaluated
returned_type Value type expected for the property
extra_info Additional information used for property

evaluation

 Orbix CORBA Programmer’s Reference: Java 449

CosTradingDynamic::DynamicPro
pEval Interface

interface DynamicPropEval

Defines a single operation for evaluating a dynamic property.

DynamicPropEval::evalDP()
any evalDP(in CosTrading::PropertyName name,
 in TypeCode returned_type,
 in any extra_info)
 raises(DPEvalFailure);

Evaluates a dynamic property and returns the objects properties.

Parameters

Exceptions

name Name of the property to be evaluated
returned_type Value type expected for the property
extra_info Additional information used for property evaluation

DPEvalFailure Evaluation of the property failed

 450 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 451

CosTradingRepos Module
Contains the ServiceTypeRepository interface, which manages
information about service types for the trading service.
A service type represents the information needed to describe a
service, including an interface type defining the computational sig-
nature of the service, and zero or more properties that augment
the interface. Each traded service, or service offer, is associated
with a service type.
There are several components of a service type:

Interface: The interface repository identifier for an interface
determines the computational signature of a service. If the trading
service is configured to use the interface repository, and this
identifier resolves to an InterfaceDef object in the interface
repository, then the trading service will ensure that an object in an
exported offer conforms to this interface.

Properties: Any number of properties can be defined for a
service type. Properties typically represent behavioral,
non-functional and non-computational aspects of the service.

Super types: Service types can be related in a hierarchy that
reflects interface type inheritance and property type aggregation.
This hierarchy provides the basis for deciding if a service of one
type may be substituted for a service of another type.
When a new service type is added that has one or more super
types, the service type repository performs a number of consis-
tency checks. First, the repository ensures (if possible) that the
interface of the new type conforms to the interface of the super
type. Second, the repository checks for any property that has
been redefined in the new service type to ensure that it has the
same type as that of the super type, and that its mode is at least
as strong as its mode in the super type.

 452 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 453

CosTradingRepos::ServiceTypeRe
pository Interface

interface ServiceTypeRepository

Contains types and operations for managing the repository.

ServiceTypeRepository::Identifier Alias
typedef CosTrading::Istring Identifier;

The interface repository identifier of an interface. For example, the
identifier of this interface is
IDL:omg.org/CosTradingRepos/ServiceTypeRepository:1.0.

ServiceTypeRepository::PropStructSeq
Sequence
typedef sequence<PropStruct> PropStructSeq;

ServiceTypeRepository::ServiceTypeNameSeq
Sequence
typedef sequence<CosTrading::ServiceTypeName>

ServiceTypeNameSeq;

ServiceTypeRepository::ListOption Enum
enum ListOption
{
 all,
 since
};

Indicates which service types are of interest.

ServiceTypeRepository::PropertyMode Enum
enum PropertyMode
{
 PROP_NORMAL,
 PROP_READONLY,
 PROP_MANDATORY,
 PROP_MANDATORY_READONLY
};

all All service types
since All service types since a particular incar-

nation

 454 Orbix CORBA Programmer’s Reference: Java

Each property has a mode associated with it. The property mode
places restrictions on an exporter when exporting and modifying
service offers.

ServiceType:Repository::IncarnationNumber
Structure
struct IncarnationNumber
{
 unsigned long high;
 unsigned long low;
};

Represents a unique, 64-bit identifier that is assigned to each ser-
vice type. This will be replaced by long long when that type is
widely supported.

ServiceTypeRepository::PropStruct Structure
struct PropStruct
{
 CosTrading::PropertyName name;
 TypeCode value_type;
 PropertyMode mode;
};

A complete description of a property.

ServiceTypeRepository::TypeStruct Structure
struct TypeStruct
{
 Identifier if_name;
 PropStructSeq props;
 ServiceTypeNameSeq super_types;
 boolean masked;
 IncarnationNumber incarnation;

PROP_NORMAL Property is optional
PROP_READONLY Property is optional, but once a value

has been supplied, it cannot be changed
PROP_MANDATORY A value for this property must be sup-

plied when the offer is exported, but can
also be changed at some later time

PROP_MANDATORY_READONLYA value for this property must be sup-
plied when the offer is exported, and
cannot be changed

name Name of the property
value_type CORBA::TypeCode describing the type of

values allowed for the property
mode Determines whether a property is man-

datory, and whether the property can be
modified

Orbix CORBA Programmer’s Reference: Java 455

};

A complete description of a service type.

ServiceTypeRepository::SpecifiedServiceTypes
Union
union SpecifiedServiceTypes switch(ListOption)
{
case since: IncarnationNumber incarnation;
};

Provides two ways of retrieving the names of the service types
managed by the repository. The union's discriminator can be set
to all if you want to obtain all of the service type names.

ServiceTypeRepository::AlreadyMasked
Exception
exception AlreadyMasked {CosTrading::ServiceTypeName name};

The service type cannot be masked if it is already masked.

ServiceTypeRepository::DuplicateServiceType
Name Exception
exception DuplicateServiceTypeName
{
CosTrading::ServiceTypeName name;
};

The same service type appeared more than once in the list of
super types.

if_name Interface repository identifier for an
interface

props Defines the properties associated with
this type

super_types Service types from which this type
inherits property definitions

masked If TRUE, no new offers can be exported
for this type

incarnation Unique, 64-bit identifier for this type

since Set this value with an incarnation num-
ber; only the names of those types
whose incarnation numbers are greater
than or equal to this value will be
returned

 456 Orbix CORBA Programmer’s Reference: Java

ServiceTypeRepository::HasSubTypes
Exception
exception HasSubTypes
{
 CosTrading::ServiceTypeName the_type;
 CosTrading::ServiceTypeName sub_type;
};

A service type cannot be removed if it is the super type of any
other type.

ServiceTypeRepository::InterfaceTypeMismatc
h Exception
exception InterfaceTypeMismatch
{
 CosTrading::ServiceTypeName base_service;
 Identifier base_if;
 CosTrading::ServiceTypeName derived_service;
 Identifier derived_if;
};

The interface of the new (derived) service type does not conform
to the interface of a super type (base service).

ServiceTypeRepository::NotMasked Exception
exception NotMasked {CosTrading::ServiceTypeName name};

The service type cannot be unmasked if it is not currently masked.

ServiceTypeRepository::ServiceTypeExists
Exception
exception ServiceTypeExists {CosTrading::ServiceTypeName name};

Another service type exists with the given name.

ServiceTypeRepository::ValueTypeRedefinition
Exception
exception ValueTypeRedefinition
{
 CosTrading::ServiceTypeName type_1;
 PropStruct definition_1;
 CosTrading::ServiceTypeName type_2;
 PropStruct definition_2;
};

The definition of a property in the new service type (type_1) con-
flicts with the definition in a super type (type_2). This error can
result if the value_type members do not match, or if the mode of
the property is weaker than in the super type.

Orbix CORBA Programmer’s Reference: Java 457

ServiceTypeRepository::incarnation Attribute
readonly attribute IncarnationNumber incarnation;

Determines the next incarnation number that will be assigned to a
new service type. This could be used to synchronize two or more
service type repositories, for example.

ServiceTypeRepository::add_type()
IncarnationNumber add_type(in CosTrading::ServiceTypeName name,
 in Identifier if_name,
 in PropStructSeq props,
 in ServiceTypeNameSeq super_types)
raises(CosTrading::IllegalServiceType,
 ServiceTypeExists,
 InterfaceTypeMismatch,
 CosTrading::IllegalPropertyName,
 CosTrading::DuplicatePropertyName,
 ValueTypeRedefinition,
 CosTrading::UnknownServiceType,
 DuplicateServiceTypeName);

Adds a new service type and returns a unique identifier for the
new type.

Parameters

Exceptions

name Name to be used for the new type
if_name Interface repository identifier for an interface
props Properties defined for this interface interface
super_types Zero or more super types from which this type will

inherit interface and property definitions

CosTrading::
IllegalServiceType

Service type name is empty or has an
invalid format

ServiceTypeExists Service type already exists with the same
name

InterfaceTypeMismatch Interface of the new type does not conform
to the interface of a super type

CosTrading::
IllegalPropertyName

Property name is empty or has an invalid
format

CosTrading::
DuplicatePropertyName

Same property name appears more than
once in props

ValueTypeRedefinition Property definition in props conflicts with a
definition in a super type

CosTrading::
UnknownServiceType

Super type does not exist

DuplicateServiceTypeNameSame super type name appears more than
once in super_types

 458 Orbix CORBA Programmer’s Reference: Java

ServiceTypeRepository::describe_type()
TypeStruct describe_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType);

Gets the description of a service type and returns a TypeStruct
with the description.

Parameters

Exceptions

ServiceTypeRepository::fully_describe_type()
TypeStruct fully_describe_type(in CosTrading::ServiceTypeName
 name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType);

Obtains the full description of a service type. The super_types
member of a full description contains the names of the types in
the transitive closure of the super type relation. The props mem-
ber includes all properties inherited from the transitive closure of
the super types. A TypeStruct containing the full description is
returned.

Parameters

Exceptions

ServiceTypeRepository::list_types()
ServiceTypeNameSeq list_types(in SpecifiedServiceTypes
 which_types);

Lists the names of some or all of the service types in the reposi-
tory.

Parameters

name Name of the type of interest

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid
format

CosTrading::
UnknownServiceType

Service type does not exist

name Name of the type of interest

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid
format

CosTrading::
UnknownServiceType

Service type does not exist

which_types Specifies which types are of interest

Orbix CORBA Programmer’s Reference: Java 459

ServiceTypeRepository::mask_type()
void mask_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 AlreadyMasked);

Masks a service type so that offers can no longer be exported for
it. Masking a service type is useful when the type is considered
deprecated; in other words, no new offers should be allowed, but
existing offers are still supported.

Parameters

Exceptions

ServiceTypeRepository::remove_type()
void remove_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 HasSubTypes);

Removes an existing service type.

Parameters

Exceptions

ServiceTypeRepository::unmask_type()
void unmask_type(in CosTrading::ServiceTypeName name)
raises(CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 NotMasked);

Unmasks a masked service type so that offers can be exported for
it.

Parameters

name Name of the type to be masked

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid
format

CosTrading::
UnknownServiceType

Service type does not exist

AlreadyMasked Service type is already masked

name Name of the type to be removed

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid for-
mat

CosTrading::
UnknownServiceType

Service type does not exist

HasSubTypes Service type cannot be removed if it is the super
type of any other type

name Name of the type to be unmasked

 460 Orbix CORBA Programmer’s Reference: Java

Exceptions

CosTrading::
IllegalServiceType

Service type name is empty or has an invalid
format

CosTrading::
UnknownServiceType

Service type does not exist

NotMasked Service type is not currently masked

 Orbix CORBA Programmer’s Reference: Java 461

CosTransactions Overview
The Object Management Group’s (OMG) object transaction service
(OTS) defines interfaces that integrate transactions into the dis-
tributed object paradigm. The OTS interface enables developers to
manage transactions under two different models of transaction
propagation, implicit and explicit:
• In the implicit model, the transaction context is associated

with the client thread; when client requests are made on
transactional objects, the transaction context associated with
the thread is propagated to the object implicitly.

• In the explicit model, the transaction context must be passed
explicitly when client requests are made on transactional
objects in order to propagate the transaction context to the
object.

Keep the following in mind:
• The CosTransactions Java classes are part of the package

org.omg.CosTransactions.
• All of the OTS class methods can throw the

CORBA::SystemException exception if an object request broker
(ORB) error occurs.

Overview of Classes
The OTS classes provide the following functionality:
• Managing transactions under the implicit model:

Current

• Managing transactions under the explicit model:
TransactionFactory
Control
Coordinator
Terminator

• Managing resources in the CORBA environment:
RecoveryCoordinator
Resource
SubtransactionAwareResource
Synchronization

• Defining transactional interfaces in the CORBA environment:
TransactionalObject

• Reporting system errors:
HeuristicCommit
HeuristicHazard
HeuristicMixed
HeuristicRollback
Inactive
InvalidControl
INVALID_TRANSACTION
NoTransaction
NotPrepared
NotSubtransaction
SubtransactionsUnavailable
TRANSACTION_MODE

 462 Orbix CORBA Programmer’s Reference: Java

TRANSACTION_REQUIRED
TRANSACTION_ROLLEDBACK
TRANSACTION_UNAVAILABLE
Unavailable

General Exceptions
Errors are handled in OTS by using exceptions. Exceptions provide
a way of returning error information back through multiple levels
of procedure or method calls, propagating this information until a
method or procedure is reached that can respond appropriately to
the error.
Each of the following exceptions are implemented as classes. The
exceptions are shown here in two tables: one for the OTS excep-
tions and another for the system exceptions.

Table 8: OTS Exceptions

Exception Description

HeuristicCommit This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that all updates have been com-
mitted. See Also:
Resource class

HeuristicHazard This exception is thrown to report that a heuristic
decision has possibly been made by one or more
participants in a transaction and the outcome of all
participants in the transaction is unknown. See
Also:
Current::commit()
Resource class
Terminator::commit()

HeuristicMixed This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that some updates have been
committed and others rolled back. See Also:
Current::commit()
Resource class
Terminator::commit()

HeuristicRollback This exception is thrown to report that a heuristic
decision was made by one or more participants in
a transaction and that all updates have been rolled
back. See Also:
Resource class

Inactive This exception is thrown when a transactional
operation is requested for a transaction, but that
transaction is already prepared. See Also:
Coordinator::create_subtransaction()
Coordinator::register_resource()
Coordinator::register_subtran_aware()
Coordinator::rollback_only()

Orbix CORBA Programmer’s Reference: Java 463

The following table shows the system exceptions that can be
thrown:

InvalidControl This exception is thrown when an invalid Control
object is used in an attempt to resume a sus-
pended transaction. See Also:
Control class
Current::resume()

NotPrepared This exception is thrown when an operation (such
as a commit()) is requested for a resource, but that
resource is not prepared. See Also:
RecoveryCoordinator::replay_completion()
Resource class

NoTransaction This exception is thrown when an operation is
requested for the current transaction, but no
transaction is associated with the client thread.
See Also:
Current::commit()
Current::rollback()
Current::rollback_only()

NotSubtransaction This exception is thrown when an operation that
requires a subtransaction is requested for a trans-
action that is not a subtransaction. See Also:
Coordinator::register_subtran_aware()

SubtransactionsUnavailable This exception is thrown when an attempt is made
to create a subtransaction. See Also:
Coordinator::create_subtransaction()
Current::begin()

Unavailable This exception is thrown when a Terminator or
Coordinator object cannot be provided by a Control
object due to environment restrictions. See Also:
Control::get_coordinator()
Control::get_terminator()

Table 8: OTS Exceptions

Exception Description

Table 9: System Exceptions

Exception Description

INVALID_TRANSACTION This exception is raised when the transaction con-
text is invalid for a request.

TRANSACTION_MODE This exception is raised when there is a mismatch
between the transaction policy in the target
object's IOR and the current transaction mode
(see Table 1).

TRANSACTION_REQUIRED This exception is raised when an invocation on an
object expecting a transaction is performed with
no transaction (see Table 1).

 464 Orbix CORBA Programmer’s Reference: Java

General Data Types
OTS defines enumerated data types to represent the status of a
transaction object during its lifetime and to indicate a participant’s
vote on the outcome of a transaction.

Status Enumeration Type
enum Status{

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction,
StatusPreparing,
StatusCommitting,
StatusRollingBack

};

The Status enumerated type defines values that are used to indi-
cate the status of a transaction. Status values are used in both the
implicit and explicit models of transaction demarcation defined by
OTS. The Current:: get_status() operation can be called to return
the transaction status if the implicit model is used. The
Coordinator:: get_status() operation can be called to return the
transaction status if the explicit model is used.
The Status values indicate the following:

TRANSACTION_ROLLEDBACK This exception is raised when a transactional
operation (such as commit()) is requested for a
transaction that has been rolled back or marked
for rollback. See Also:
Current::commit()
Terminator::commit()

TRANSACTION_UNAVAILABLE This exception is raised when a transaction invo-
cation is requested but the transaction service is
not available.

Table 9: System Exceptions

Exception Description

StatusActive Processing of a transaction is still in
progress.

StatusMarkedRollback A transaction is marked to be rolled
back.

StatusPrepared A transaction has been prepared
but not completed.

StatusCommitted A transaction has been committed
and the effects of the transaction
have been made permanent.

StatusRolledBack A transaction has been rolled back.

Orbix CORBA Programmer’s Reference: Java 465

See Also CosTransactions::Coordinator::get_status()
CosTransactions::Current::get_status()

Vote Enumeration Type
enum Vote{

VoteCommit,
VoteRollback,
VoteReadOnly

};

The Vote enumerated type defines values for the voting status of
transaction participants. The participants in a transaction each vote
on the outcome of a transaction during the two-phase commit
process. In the prepare phase, a Resource object can vote whether
to commit or abort a transaction. If a Resource has not modified any
data as part of the transaction, it can vote VoteReadOnly to indicate
that its participation does not affect the outcome of the transaction.
The Vote values specify the following:

See Also CosTransactions::Resource

OTSPolicyValue Data Type
typedef unsigned short OTSPolicyValue;
const OTSPolicyValue REQUIRES = 1;
const OTSPolicyValue FORBIDS = 2;
const OTSPolicyValue ADAPTS = 3;
const CORBA::PolicyType OTS_POLICY_TYPE = 56;

The OTSPolicyValue data type is used to create POA policy objects
that define behavior of objects during invocations, both with and
without a current transaction.

StatusUnknown The status of a transaction is
unknown.

StatusNoTransaction A transaction does not exist in the
current transaction context.

StatusPreparing A transaction is preparing to com-
mit.

StatusCommitting A transaction is in the process of
committing.

StatusRollingBack A transaction is in the process of
rolling back.

StatusActive Processing of a transaction is still in
progress.

VoteCommit The value used to indicate a vote to commit a
transaction.

VoteRollback The value used to indicate a vote to abort (roll-
back) a transaction.

VoteReadOnly The value used to indicate no vote on the out-
come of a transaction.

 466 Orbix CORBA Programmer’s Reference: Java

The CORBA::ORB::create_policy() operation is used to create the
policy objects (passing in the appropriate OTSPolicyValue value).
The policy object is passed in the list of policy objects passed to
PortableServer::POA::create_POA().
The OTSPolicyValue values indicate the following:

You cannot create a POA that mixes the OTSPolicyValue FORBIDS or
ADAPTS values with the InvocationPolicyValue EITHER or UNSHARED
values. Attempting to do so raises PortableServer::InvalidPolicy
exception.

Examples The following example shows the ADAPTS value:

//Java
ORB orb = ...
Any policy_val = orb.create_any();
OTSPolicyValueHelper.insert(policy_val, ADAPTS.value);
Policy tx_policy =
 orb.create_policy(OTS_POLICY_TYPE.value,
 policy_val);

See Also CosTransactions::NonTxTargetPolicyValue
CosTransactions::TransactionalObject

InvocationPolicyValue Data Type
typedef unsigned short InvocationPolicyValue;
const InvocationPolicyValue EITHER = 0;
const InvocationPolicyValue SHARED = 1;
const InvocationPolicyValue UNSHARED = 2;
const CORBA::PolicyType INVOCATION_POLICY_TYPE = 55;

The InvocationPolicyValue data type is used to create POA policy
objects that define the behavior of objects with respect to the
shared and unshared transaction models.
The shared transaction model represents a standard end-to-end
transaction that is shared between the client and the target
object. The unshared transaction model uses asynchronous mes-
saging where separate transactions are used along the invocation
path. Hence, the client and the target object do not share the
same transaction.
The CORBA::ORB::create_policy() operation is used to create the
policy objects (passing in the appropriate InvocationPolicyValue).
The policy object is passed in the list of policy objects passed to
PortableServer::POA::create_POA().

REQUIRES The target object depends on the presence of a
transaction. If there is no current transaction, a
TRANSACTION_REQUIRED system exception is raised.

FORBIDS The target object depends on the absence of a
transaction. If there is a current transaction, the
INVALID_TRANSACTION system exception is raised.
When there is no current transaction, the behavior
of the FORBIDS policy is also affected by the
NonTxTargetPolicy.

ADAPTS The target object is invoked within the current
transaction, whether there is one or not.

Orbix CORBA Programmer’s Reference: Java 467

The InvocationPolicyValue data type values indicate the following:

You cannot create a POA that mixes the InvocationPolicyValue
EITHER or UNSHARED values with the OTSPolicyValue FORBIDS or ADAPTS
values. Attempting to do this raises a
PortableServer::InvalidPolicy exception.
If no InvocationPolicy object is passed to create_POA(), the
InvocationPolicy defaults to SHARED.

Note: The unshared transaction model is not supported in this release.

Examples The following example shows the SHARED value:

//Java
ORB orb = ...
Any policy_val = orb.create_any();
InvocationPolicyValueHelper.insert(policy_val, SHARED.value);
Policy tx_policy =
 orb.create_policy(INVOCATION_POLICY_TYPE.value,
 policy_val);

See Also CosTransactions::OTSPolicyValue
CosTransactions::NonTxTargetPolicyValue

NonTxTargetPolicyValue Data Type
typedef unsigned short NonTxTargetPolicyValue;
const NonTxTargetPolicyValue PREVENT = 0;
const NonTxTargetPolicyValue PERMIT = 1;
const CORBA::PolicyType NON_TX_TARGET_POLICY_TYPE = 57;

The NonTxTargetPolicyValue data type is used to create policy
objects used by clients to affect the behavior of invocations on
objects with an OTSPolicy of FORBIDS.
The CORBA::ORB::create_policy() operation creates the policy
objects (passing the appropriate NonTxTargetPolicyValue). The pol-
icy object is passed in the list of policy objects passed to
CORBA::PolicyManager::set_policy_overrides() and
CORBA::PolicyCurrent::set_policy_overrides().
See the CORBA::PolicyCurrent and CORBA::PolicyManager classes for
more details on setting policies.
The behavior of the NonTxTargetPolicy values apply to invocations
where there is a current transaction and the target object has the
OTSPolicyValue of FORBIDS. The NonTxTargetPolicy values indicate
the following:

EITHER The target object supports both shared and
unshared invocations.

SHARED The target object supports synchronous invoca-
tions and asynchronous includes that do not
involve a routing element.

UNSHARED The target object.

PREVENT The invocation is prevented from proceeding and
the system exception INVALID_TRANSACTION is
raised.

 468 Orbix CORBA Programmer’s Reference: Java

The default NonTxTargetPolicy is PREVENT.

Examples The following example shows the PERMIT value:

//Java
ORB orb = ...
Any policy_val = orb.create_any();
NonTxTargetPolicyValueHelper.insert(policy_val, PERMIT.value);
Policy tx_policy =
 orb.create_policy(NON_TX_TARGET_POLICY_TYPE.value,
 policy_val);

See Also CosTransactions::OTSPolicyValue
CosTransactions::InvocationPolicyValue

TransactionPolicyValue Data Type
typedef unsigned short TransactionPolicyValue;
const TransactionPolicyValue Allows_shared = 0;
const TransactionPolicyValue Allows_none = 1;
const TransactionPolicyValue Requires_shared = 2;
const TransactionPolicyValue Allows_unshared = 3;
const TransactionPolicyValue Allows_either = 4;
const TransactionPolicyValue Requires_unshared = 5;
const TransactionPolicyValue Requires_either = 6;
const CORBA::PolicyType TRANSACTION_POLICY_TYPE = 36;

The TransactionalPolicyValue data type has been deprecated and
replaced with the OTSPolicyValue and InvocationPolicyValue types.
The TransactionalPolicyValue data type has been retained in this
release for backward compatibility. See the CORBA Programmer’s
Guide for details of interoperability with previous Orbix releases.

PERMIT The invocation proceeds but not in the context of
the current transaction.

 Orbix CORBA Programmer’s Reference: Java 469

CosTransactions::Control Class
The Control class enables explicit control of a factory-created
transaction; the factory creates a transaction and returns a
Control instance associated with the transaction. The Control
object provides access to the Coordinator and Terminator objects
used to manage and complete the transaction.
A Control object can be used to propagate a transaction context
explicitly. By passing a Control object as an argument in a
request, the transaction context can be propagated.
TransactionFactory::create() can be used to create a transaction
and return the Control object associated with it.

// Java
public interface Control
 extends ControlOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The Control class extends ControlOperations:
public interface ControlOperations

{
 org.omg.CosTransactions.Terminator get_terminator() throws

org.omg.CosTransactions.Unavailable;

 org.omg.CosTransactions.Coordinator get_coordinator() throws
org.omg.CosTransactions.Unavailable;

}

See Also CosTransactions::Coordinator
CosTransactions::Current::get_control()
CosTransactions::Coordinator::get_status()
CosTransactions::Terminator
CosTransactions::TransactionFactory::create()
NoTransaction
NotSubtransaction

Control::get_coordinator()
// Java
org.omg.CosTransactions.Coordinator get_coordinator() throws

org.omg.CosTransactions.Unavailable;

get_coordinator() returns the Coordinator object for the transaction
with which the Control object is associated. The returned
Coordinator object can be used to determine the status of the
transaction, the relationship between the associated transaction
and other transactions, to create subtransactions, and so on.

Exceptions

See Also CosTransactions::Coordinator

Unavailable The Coordinator associated with the Control object is
not available.

 470 Orbix CORBA Programmer’s Reference: Java

Control::get_terminator()
// Java
org.omg.CosTransactions.Terminator get_terminator() throws

org.omg.CosTransactions.Unavailable;

get_terminator() returns the Terminator object for the transaction
with which the Control object is associated. The returned Terminator
object can be used to either commit or roll back the transaction.

Exceptions

See Also CosTransactions::Terminator

Unavailable The Terminator associated with the Control object is
not available.

 Orbix CORBA Programmer’s Reference: Java 471

CosTransactions::Coordinator
Class

The Coordinator class enables explicit control of a factory-created
transaction; the factory creates a transaction and returns a
Control instance associated with the transaction.
Control::get_coordinator() returns the Coordinator object used to
manage the transaction.
The operations defined by the Coordinator class can be used by
the participants in a transaction to determine the status of the
transaction, determine the relationship of the transaction to other
transactions, mark the transaction for rollback, and create sub-
transactions.
The Coordinator class also defines operations for registering
resources as participants in a transaction and registering sub-
transaction-aware resources with a subtransaction.

// Java
package org.omg.CosTransactions;

public interface Coordinator
 extends CoordinatorOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The Coordinator class extends CoordinatorOperations:
public interface CoordinatorOperations

{
 org.omg.CosTransactions.Status get_status();

 org.omg.CosTransactions.Status get_parent_status();

 org.omg.CosTransactions.Status get_top_level_status();

 boolean is_same_transaction(
 org.omg.CosTransactions.Coordinator tc
);

 boolean is_related_transaction(
 org.omg.CosTransactions.Coordinator tc
);

 boolean is_ancestor_transaction(
 org.omg.CosTransactions.Coordinator tc
);

 boolean is_descendant_transaction(
 org.omg.CosTransactions.Coordinator tc
);

 boolean is_top_level_transaction();

 int hash_transaction();

 472 Orbix CORBA Programmer’s Reference: Java

 int hash_top_level_tran();

 org.omg.CosTransactions.RecoveryCoordinator
register_resource(

 org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.Inactive;

 void register_synchronization(
 org.omg.CosTransactions.Synchronization sync
) throws org.omg.CosTransactions.Inactive,

org.omg.CosTransactions.SynchronizationUnavailable;

 void register_subtran_aware(
 org.omg.CosTransactions.SubtransactionAwareResource r
) throws org.omg.CosTransactions.Inactive,

org.omg.CosTransactions.NotSubtransaction;

 void rollback_only() throws
org.omg.CosTransactions.Inactive;

 java.lang.String get_transaction_name();

 org.omg.CosTransactions.Control create_subtransaction()
throws org.omg.CosTransactions.SubtransactionsUnavailable,
org.omg.CosTransactions.Inactive;

 org.omg.CosTransactions.PropagationContext get_txcontext()
throws org.omg.CosTransactions.Unavailable;

}

See Also CosTransactions::Control
CosTransactions::Control::get_coordinator()
CosTransactions::Terminator

Coordinator::create_subtransaction()
// Java
org.omg.CosTransactions.Control create_subtransaction() throws

org.omg.CosTransactions.SubtransactionsUnavailable,
org.omg.CosTransactions.Inactive;

create_subtransaction() returns the Control object associated with
the new subtransaction.

create_subtransaction() creates a new subtransaction for the
transaction associated with the Coordinator object. A subtransac-
tion is one that is embedded within another transaction; the trans-
action within which the subtransaction is embedded is referred to
as its parent. A transaction that has no parent is a top-level trans-
action. A subtransaction executes within the scope of its parent
transaction and can be used to isolate failures; if a subtransaction
fails, only the subtransaction is rolled back. If a subtransaction
commits, the effects of the commit are not permanent until the
parent transaction commits. If the parent transaction rolls back,
the subtransaction is also rolled back.

Orbix CORBA Programmer’s Reference: Java 473

Exceptions

See Also CosTransactions::Control

Coordinator::get_parent_status()
// Java
org.omg.CosTransactions.Status get_parent_status();

get_parent_status() returns the status of the parent of the transac-
tion associated with the Coordinator object. For more information,
see create_subtransaction().

The status returned indicates which phase of processing the trans-
action is in. See the reference page for the Status type for infor-
mation about the possible status values. If the transaction
associated with the Coordinator object is a subtransaction, the sta-
tus of its parent transaction is returned. If there is no parent
transaction, the status of the transaction associated with the
Coordinator object itself is returned.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::get_status()
CosTransactions::Coordinator::get_top_level_status()
CosTransactions::Status

Coordinator::get_status()
// Java
org.omg.CosTransactions.Status get_status();

get_status() returns the status of the transaction associated with
the Coordinator object. The status returned indicates which phase
of processing the transaction is in. See the reference page for the
Status type for information about the possible status values.

See Also CosTransactions::Coordinator::get_parent_status()
CosTransactions::Coordinator::get_top_level_status()
CosTransactions::Status

Coordinator::get_top_level_status()
// Java
org.omg.CosTransactions.Status get_top_level_status();

get_top_level_status() returns the status of the top-level ancestor
of the transaction associated with the Coordinator object. See
Coordinator::create_subtransaction() for more information.

Subtransaction
sUnavailabl
e

Subtransactions are not supported.

Inactive The transaction is already prepared.

 474 Orbix CORBA Programmer’s Reference: Java

The status returned indicates which phase of processing the trans-
action is in. See the reference page for the Status type for infor-
mation about the possible status values. If the transaction
associated with the Coordinator object is the top-level transaction,
its status is returned.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::get_status()
CosTransactions::Coordinator::get_parent_status()
CosTransactions::Status

Coordinator::get_transaction_name()
// Java
java.lang.String get_transaction_name();

get_transaction_name() returns the name of the transaction associ-
ated with the Coordinator object.

Coordinator::get_txcontext()
// Java
org.omg.CosTransactions.PropagationContext get_txcontext()

throws org.omg.CosTransactions.Unavailable;

Returns the propagation context object which is used to export the
current transaction to a new transaction service domain.

Exceptions

See Also CosTransactions::TransactionFactory::recreate()

Coordinator::hash_top_level_tran()
// Java
int hash_top_level_tran();

hash_top_level_tran() returns a hash code for the top-level ancestor
of the transaction associated with the Coordinator object. If the
transaction associated with the Coordinator object is the top-level
transaction, its hash code is returned. See create_subtransaction()
for more information. The returned hash code is typically used as
an index into a table of Coordinator objects. The low-order bits of
the hash code can be used to hash into a table with a size that is a
power of two.

See Also CosTransactions::Coordinator::create_subtransaction()
CosTransactions::Coordinator::hash_transaction()

Coordinator::hash_transaction()
// Java
int hash_transaction();

hash_transaction() returns a hash code for the transaction associ-
ated with the Coordinator object.

Unavailable The propagation context is unavailable.

Orbix CORBA Programmer’s Reference: Java 475

See Also CosTransactions::Coordinator::hash_top_level_tran()

Coordinator::is_ancestor_transaction()
// Java
boolean is_ancestor_transaction(
 org.omg.CosTransactions.Coordinator tc
);

is_ancestor_transaction() returns true if the transaction is an
ancestor or if the two transactions are the same; otherwise, the
method returns false.

Parameters

is_ancestor_transaction() determines whether the transaction
associated with the Coordinator object is an ancestor of the trans-
action associated with the coordinator specified in the tc parame-
ter. See create_subtransaction() for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_descendant_transaction()
// Java
boolean is_descendant_transaction(
 org.omg.CosTransactions.Coordinator tc
);

is_descendant_transaction() returns true if the transaction is a
descendant or if the two transactions are the same; otherwise, the
method returns false.

Parameters

is_descendant_transaction() determines whether the transaction
associated with the Coordinator object is a descendant of the
transaction associated with the coordinator specified in the tc
parameter. See Coordinator::create_subtransaction() for more
information.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_top_level_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_related_transaction()
// Java
boolean is_related_transaction(

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

 476 Orbix CORBA Programmer’s Reference: Java

 org.omg.CosTransactions.Coordinator tc
);

is_related_transaction() returns true if both transactions are de-
scendants of the same transaction; otherwise, the method returns
false.

Parameters

is_related_transaction() determines whether the transaction
associated with the Coordinator object and the transaction associ-
ated with the coordinator specified in the tc parameter have a
common ancestor. See create_subtransaction() for more informa-
tion.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_top_level_transaction()
CosTransactions::Coordinator::create_subtransaction()

Coordinator::is_same_transaction()
// Java
boolean is_same_transaction(
 org.omg.CosTransactions.Coordinator tc
);

is_same_transaction() returns true if the transactions associated
with the two Coordinator objects are the same transaction; other-
wise, the method returns false.

Parameters

is_same_transaction() determines whether the transaction associ-
ated with the Coordinator object and the transaction associated
with the coordinator specified in the tc parameter are the same
transaction.

See Also CosTransactions::Coordinator::is_descendant_transaction()
CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::is_top_level_transaction()

is_top_level_transaction()
// Java
boolean is_top_level_transaction();

is_top_level_transaction() returns true if the transaction is a
top-level transaction; otherwise, the method returns false.
is_top_level_transaction() determines whether the transaction as-
sociated with a Coordinator object is a top-level transaction. See
create_subtransaction() for more information.

See Also CosTransactions::Coordinator::is_descendant_transaction()

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

tc Specifies the coordinator of another transaction to
compare with the Coordinator object.

Orbix CORBA Programmer’s Reference: Java 477

CosTransactions::Coordinator::is_related_transaction()
CosTransactions::Coordinator::is_same_transaction()
CosTransactions::Coordinator::is_ancestor_transaction()
CosTransactions::Coordinator::create_subtransaction()

register_resource()
// Java
org.omg.CosTransactions.RecoveryCoordinator register_resource(
 org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.Inactive;

register_resource() registers a specified resource as a participant
in the transaction associated with a Coordinator object. When the
transaction ends, the registered resource must commit or roll back
changes made as part of the transaction. Only server applications
can register resources. See Resource class for more information.
register_resource() returns a RecoveryCoordinator object that the
registered Resource object can use during recovery.

Parameters

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::Resource

register_subtran_aware()
// Java
void register_subtran_aware(
 org.omg.CosTransactions.SubtransactionAwareResource r
) throws org.omg.CosTransactions.Inactive,

org.omg.CosTransactions.NotSubtransaction;

register_subtran_aware() registers a specified resource with the
subtransaction associated with a Coordinator object. The resource
is registered with the subtransaction only, not as a participant in
the top-level transaction. (register_resource() can be used to
register the resource as a participant in the top-level transaction.)
Only server applications can register resources.

Parameters

When the transaction ends, the registered resource must commit
or roll back changes made as part of the subtransaction. See the
reference page for the SubtransactionAwareResource class for more
information.

resource The resource to register as a participant.

CORBA::TRANSAC
TION_ROLLED
BACK

The transaction is marked for rollback only.

resource The resource to register.

 478 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::SubtransactionAwareResource

register_synchronization()
// Java
void register_synchronization(
 org.omg.CosTransactions.Synchronization sync
) throws org.omg.CosTransactions.Inactive,

org.omg.CosTransactions.SynchronizationUnavailable;

register_synchronization() registers a specified synchronization
object for the transaction associated with a Coordinator object. See
the reference page for the Synchronization class for more informa-
tion.

Parameters

Exceptions

See Also CosTransactions::RecoveryCoordinator
CosTransactions::Synchronization

rollback_only()
// Java
void rollback_only() throws org.omg.CosTransactions.Inactive;

rollback_only() marks the transaction associated with the
Coordinator object so that the only possible outcome for the trans-
action is to roll back. The transaction is not rolled back until the
participant that created the transaction either commits or aborts
the transaction.

OTS allows Terminator::rollback() to be called instead of
rollback_only(). Calling Terminator::rollback() rolls back the
transaction immediately, preventing unnecessary work from being
done between the time the transaction is marked for rollback and
the time the transaction is actually rolled back.

NotSubtransact
ion

The transaction associated with the Coordinator object
is not a subtransaction

Inactive The subtransaction or any ancestor of the subtransac-
tion has ended.

CORBA::TRANSAC
TION_ROLLED
BACK

The transaction is marked for rollback only.

sync The synchronization object to register.

Inactive The transaction is already prepared.
CORBA::TRANSAC

TION_ROLLED
BACK

The transaction is marked for rollback only.

Orbix CORBA Programmer’s Reference: Java 479

Exceptions

See Also CosTransactions::Terminator::rollback()

Inactive The transaction is already prepared.

 480 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 481

CosTransactions::Current Class
The Current class represents a transaction that is associated with
the calling thread; the thread defines the transaction context. The
transaction context is propagated implicitly when the client issues
requests.
This class defines member methods for beginning, committing,
and aborting a transaction using the implicit model of transaction
control. It also defines member methods for suspending and
resuming a transaction and retrieving information about a trans-
action.

// Java
package org.omg.CosTransactions;

public interface Current extends
 org.omg.CORBA.Current
{
 void begin() throws

org.omg.CosTransactions.SubtransactionsUnavailable;

 void commit(
 boolean report_heuristics
) throws org.omg.CosTransactions.NoTransaction,

org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

 void rollback() throws org.omg.CosTransactions.NoTransaction;

 void rollback_only() throws
org.omg.CosTransactions.NoTransaction;

 org.omg.CosTransactions.Status get_status();

 java.lang.String get_transaction_name();

 void set_timeout(
 int seconds);

 int get_timeout();

 org.omg.CosTransactions.Control get_control();

 org.omg.CosTransactions.Control suspend();

 void resume(
 org.omg.CosTransactions.Control which
) throws org.omg.CosTransactions.InvalidControl;

}

See Also CosTransactions::Control
CosTransactions::Status

 482 Orbix CORBA Programmer’s Reference: Java

Current::begin()
// Java
void begin() throws

org.omg.CosTransactions.SubtransactionsUnavailable;

begin() creates a new transaction and modifies the transaction
context of the calling thread to associate the thread with the new
transaction. If subtransactions are not available, an attempt to
create a nested transaction throws the SubtransactionsUnavailable
exception.

See Also CosTransactions::Current::commit()
CosTransactions::Current::rollback()
CosTransactions::Current::rollback_only()

Current::commit()
// Java
void commit(
 boolean report_heuristics
) throws org.omg.CosTransactions.NoTransaction,

org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

commit() attempts to commit the transaction associated with the
calling thread.

Parameters

Exceptions

See Also CosTransactions::Current::begin()
CosTransactions::Current::rollback()
CosTransactions::Current::rollback_only()

Current::get_control()
// Java
org.omg.CosTransactions.Control get_control();

get_control() returns the Control object for the transaction associ-
ated with the calling thread. If no transaction is associated with the
calling thread, a null object reference is returned.

See Also CosTransactions::Current::resume()

report_heurist
ics

specifies whether to report heuristic decisions for the
transaction associated with the calling thread.

NoTransaction
exception

No transaction is associated with the calling thread.

HeuristicMixed The report_heuristics parameter is true and a heuris-
tic decision causes inconsistent outcomes

HeuristicHazar
d

The report_heuristics parameter is true and a heuris-
tic decision might have caused inconsistent outcomes.

TRANSACTION_RO
LLEDBACK

Not all the transaction participants commit.

Orbix CORBA Programmer’s Reference: Java 483

Current::get_status()
// Java
org.omg.CosTransactions.Status get_status();

get_status() returns the status of the transaction associated with
the calling thread. If no transaction is associated with the calling
thread, the StatusNoTransaction value is returned.

The status returned indicates the processing phase of the transac-
tion. See the Status type for information about the possible status
values.

See Also CosTransactions::Status Enumeration Type

Current::get_timeout()

// Java
int get_timeout()

Returns the timeout in seconds for transactions created using the
begin() operation.

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::set_timeout()

Current::get_transaction_name()
// Java
java.lang.String get_transaction_name();

get_transaction_name() returns the name of the transaction associ-
ated with the calling thread. If no transaction is associated with the
calling thread, a null string is returned.

See Also CosTransactions::Current

Current::resume()
// Java
void resume(
 org.omg.CosTransactions.Control which
) throws org.omg.CosTransactions.InvalidControl;

resume() resumes the suspended transaction identified by the which
parameter and associated with the calling thread. If the value of
the which parameter is a null object reference, the calling thread
disassociates from the transaction. If the control object is invalid,
the InvalidControl exception is thrown.

Parameters

See Also CosTransactions::Current
CosTransactions::Current::get_control()
CosTransactions::Current::suspend()

which Specifies a Control object that represents the transac-
tion context associated with the calling thread.

 484 Orbix CORBA Programmer’s Reference: Java

Current::rollback()
// Java
void rollback() throws org.omg.CosTransactions.NoTransaction;

rollback() rolls back the transaction associated with the calling
thread. If the transaction was started with begin(), the transaction
context for the thread is restored to its state before the transaction
was started; otherwise, the transaction context is set to null.

Exceptions

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::rollback_only()

Current::rollback_only()
// Java
void rollback_only() throws

org.omg.CosTransactions.NoTransaction;

rollback_only() marks the transaction associated with the calling
thread for rollback. The transaction is modified so that the only
possible outcome is to roll back the transaction. Any participant in
the transaction can mark the transaction for rollback. The transac-
tion is not rolled back until the participant that created the trans-
action either commits or aborts the transaction.

OTS allows Current::rollback() to be called instead of
rollback_only(). Calling Current::rollback() rolls back the trans-
action immediately, preventing unnecessary work from being
done between the time the transaction is marked for rollback and
the time the transaction is actually rolled back.

Exceptions

See Also CosTransactions::Current
CosTransactions::Current::rollback()

Current::set_timeout()
// Java
void set_timeout(
 int seconds
);

set_timeout() sets a timeout period for the transaction associated
with the calling thread. The timeout affects only those transac-
tions begun with begin() after the timeout is set. The seconds
parameter sets the number of seconds from the time the transac-
tion is begun that it waits for completion before being rolled back;
if the seconds parameter is zero, no timeout is set for the transac-
tion.

NoTransaction No transaction is associated with the calling thread.

NoTransaction No transaction is associated with the calling thread.

Orbix CORBA Programmer’s Reference: Java 485

Parameters

See Also CosTransactions::Current
CosTransactions::Current::begin()
CosTransactions::Current::get_timeout()

Current::suspend()
// Java
org.omg.CosTransactions.Control suspend();

suspend() suspends the transaction associated with the calling
thread. An identifier for the suspended transaction is returned by
the method. This identifier can be passed to resume() to resume the
suspended transaction.

See Also CosTransactions::Current
CosTransactions::Current::resume()

seconds The number of seconds that the transaction waits for
completion before rolling back.

 486 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 487

CosTransactions::RecoveryCoordi
nator Class

The RecoveryCoordinator class enables a recoverable object to con-
trol the recovery process for an associated resource. A
RecoveryCoordinator object can be obtained for a recoverable
object via the Coordinator object associated with the recoverable
object. Coordinator::register_resource() returns a
RecoveryCoordinator object.

// Java
package org.omg.CosTransactions;

public interface RecoveryCoordinator
 extends RecoveryCoordinatorOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{

}

The RecoveryCoordinator class extends
RecoveryCoordinatorOperations:
public interface RecoveryCoordinatorOperations

{
 org.omg.CosTransactions.Status replay_completion(
 org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.NotPrepared;

}

See Also CosTransactions::Resource

RecoveryCoordinator::replay_completion()
// Java
org.omg.CosTransactions.Status replay_completion(
 org.omg.CosTransactions.Resource r
) throws org.omg.CosTransactions.NotPrepared;

replay_completion() notifies the recovery coordinator that the
commit() or rollback() operations have not been performed for the
associated resource. Notifying the coordinator that the resource
has not completed causes completion to be retried, which is useful
in certain failure cases. The method returns the current status of
the transaction.

Parameters

Exceptions

See Also CosTransactions::Resource
CosTransactions::Status

resource The resource associated with the recovery coordina-
tor.

NotPrepared The resource is not in the prepared state.

 488 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 489

CosTransactions::Resource Class
The Resource class represents a recoverable resource, that is, a
transaction participant that manages data subject to change
within a transaction. The Resource class specifies the protocol that
must be defined for a recoverable resource. Interfaces that inherit
from this class must implement each of the member methods to
manage the data appropriately for the recoverable object based
on the outcome of the transaction. These methods are invoked by
the Transaction Service to execute two-phase commit; the
requirements of these methods are described in the following sec-
tions.
To become a participant in a transaction, a Resource object must
be registered with that transaction.
Coordinator::register_resource() can be used to register a
resource for the transaction associated with the Coordinator
object.
The full name for the class is CosTransactions::Resource.

// Java
package org.omg.CosTransactions;

public interface Resource
 extends ResourceOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The Resource class extends ResourceOperations:
public interface ResourceOperations

{
 org.omg.CosTransactions.Vote prepare() throws

org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

 void rollback() throws
org.omg.CosTransactions.HeuristicCommit,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

 void commit() throws org.omg.CosTransactions.NotPrepared,
org.omg.CosTransactions.HeuristicRollback,
org.omg.CosTransactions.HeuristicMixed,
org.omg.CosTransactions.HeuristicHazard;

 void commit_one_phase() throws
org.omg.CosTransactions.HeuristicHazard;

 void forget();

}

See Also CosTransactions::Synchronization
CosTransactions::RecoveryCoordinator
CosTransactions::Vote

 490 Orbix CORBA Programmer’s Reference: Java

Two-phase Commit
The two-phase commit requires methods prepare() and commit().
prepare() must be defined to vote on the outcome of the transac-
tion with which the resource is registered. The transaction service
invokes this method as the first phase of a two-phase commit; the
return value controls the second phase:
• Returns VoteReadOnly if the resource’s data is not modified by

the transaction. The transaction service does not invoke any
other methods on the resource, and the resource can forget
all knowledge of the transaction.

• Returns VoteCommit if the resource’s data is written to stable
storage by the transaction and the transaction is prepared.
Based on the outcome of other participants in the transaction,
the transaction service calls either commit() or rollback() for
the resource. The resource should store a reference to the
RecoveryCoordinator object in stable storage to support recov-
ery of the resource.

• Returns VoteRollback for all other situations. The transaction
service calls rollback() for the resource, and the resource can
forget all knowledge of the transaction.

commit() must be defined to commit all changes made to the
resource as part of the transaction. If forget() has already been
called, no changes need to be committed. If the resource has not
been prepared, the NotPrepared exception must be thrown.
Use the heuristic outcome exceptions to report heuristic decisions
related to the resource. The resource must remember heuristic
outcomes until forget() is called, so that the same outcome can
be returned if the transaction service calls commit() again.

One-phase Commit
commit_one_phase() must be defined to commit all changes made
to the resource as part of the transaction. The transaction service
may invoke this method if the resource is the only participant in
the transaction. Unlike commit(), commit_one_phase() does not
require that the resource be prepared first. Use the heuristic out-
come exceptions to report heuristic decisions related to the
resource. The resource must remember heuristic outcomes until
forget() is called, so that the same outcome can be returned if the
transaction service calls commit_one_phase() again.

Rollback Transaction
rollback() must be defined to undo all changes made to the
resource as part of the transaction. If forget() has been called, no
changes need to be undone. Use the heuristic outcome exceptions
to report heuristic decisions related to the resource. The resource
must remember heuristic outcomes until forget() is called, so that
the same outcome can be returned if the transaction service calls
rollback() again.

Forget Transaction
forget() must be defined to cause the resource to forget all knowl-
edge of the transaction. The transaction service invokes this
method if the resource throws a heuristic outcome exception in
response to commit() or rollback().

 Orbix CORBA Programmer’s Reference: Java 491

CosTransactions::Subtransaction
AwareResource Class
Note: This class is not supported in this release of OTS for Orbix. The

information in this section therefore does not apply to this release.
The SubtransactionAwareResource class represents a recoverable
resource that makes use of nested transactions. This specialized
resource object allows the resource to be notified when a sub-
transaction for which it is registered either commits or rolls back.
The SubtransactionAwareResource class specifies the protocol that
must be defined for this type of recoverable resource. Interfaces
that inherit from this class must implement each of the member
methods to manage the recoverable object’s data appropriately
based on the outcome of the subtransaction. These methods are
invoked by the transaction service; the requirements of these
methods are described below.
Coordinator::register_subtran_aware() can be used to register a
resource with the subtransaction associated with the Coordinator
object. The resource can also register with the top-level transac-
tion by using Coordinator::register_resource() as well. In this
case, the protocol for the Resource class must be defined in addi-
tion to the protocol for SubtransactionAwareResource. See the refer-
ence page for the Resource class for more information.

// Java
package org.omg.CosTransactions;

public interface SubtransactionAwareResource
 extends SubtransactionAwareResourceOperations,
 org.omg.CosTransactions.Resource
{
}

The SubtransactionAwareResource class extends
SubtransactionAwareResourceOperations:
package org.omg.CosTransactions;

public interface SubtransactionAwareResourceOperations
extends
 org.omg.CosTransactions.ResourceOperations
{
 void commit_subtransaction(
 org.omg.CosTransactions.Coordinator parent
);

 void rollback_subtransaction();

}

See Also CosTransactions::Coordinator
CosTransactions::Resource
CosTransactions::Status

 492 Orbix CORBA Programmer’s Reference: Java

Commit Subtransaction
commit_subtransaction() must be defined to commit all changes
made to the resource as part of the subtransaction. If an ancestor
transaction rolls back, the subtransaction’s changes are rolled
back. The transaction service invokes this method if the resource
is registered with a subtransaction and it is committed.
The method must be defined to take a Coordinator object as its
only argument. When the transaction service invokes this method,
it passes the Coordinator object associated with the parent trans-
action.

Rollback Subtransaction
rollback_subtransaction() must be defined to undo all changes
made to the resource as part of the subtransaction. The transac-
tion service invokes this method if the resource is registered with
a subtransaction and it is rolled back.

 Orbix CORBA Programmer’s Reference: Java 493

CosTransactions::Synchronization
Class

The Synchronization class represents a non-recoverable object
that maintains transient state data and is dependent on a recover-
able object to ensure that the data is persistent. To make data
persistent, a synchronization object moves its data to one or more
resources before the transaction completes.
The Synchronization class specifies a protocol that must be defined
for this type of object. A synchronization object must be imple-
mented as a class derived from the Synchronization class. The
derived class must implement each of the member methods to
ensure that the data maintained by the nonrecoverable object is
made recoverable. The transaction service invokes these methods
before and after the registered resources commit; the specific
requirements of these methods are described in the following sec-
tions.
Coordinator::register_synchronization() can be used to register a
synchronization object with the transaction associated with the
Coordinator object.

// Java
package org.omg.CosTransactions;

public interface Synchronization
 extends SynchronizationOperations,
 org.omg.CosTransactions.TransactionalObject
{
}

The Synchronization class extends SynchronizationOperations:
public interface SynchronizationOperations
extends
 org.omg.CosTransactions.TransactionalObjectOperations
{
 void before_completion();

 void after_completion(
 org.omg.CosTransactions.Status s
);

}

Before Completion
before_completion() must be defined to move the synchronization
object’s data to a recoverable object. The transaction service
invokes this method prior to the prepare phase of the transaction.
The method is invoked only if the synchronization object is regis-
tered with a transaction and the transaction attempts to commit.
The only exceptions this method can throw are
CORBA::SystemException exceptions. Throwing other exceptions can
cause the transaction to be marked for rollback only.

 494 Orbix CORBA Programmer’s Reference: Java

After Completion
after_completion() must be defined to do any necessary process-
ing required by the synchronization object; for example, the
method could be used to release locks held by the transaction.
The transaction service invokes this method after the outcome of
the transaction is complete. The method is invoked only if the syn-
chronization object is registered with a transaction and the trans-
action has either committed or rolled back.
The method must be defined to take a Status value as its only
argument. When the transaction service invokes this method, it
passes the status of the transaction with which the synchroniza-
tion object is registered.
The only exceptions this method can throw are
CORBA::SystemException exceptions. Any exceptions that are
thrown have no effect on the commitment of the transaction.

See Also CosTransactions::Coordinator
CosTransactions::Coordinator::register_synchronization()
CosTransactions::Resource
CosTransactions::Status

 Orbix CORBA Programmer’s Reference: Java 495

CosTransactions::Terminator
Class

The Terminator class enables explicit termination of a factory-created
transaction. The transaction with which the Terminator object is associated can
be either committed or rolled back. Control::get_terminator() can be used
to return the Terminator object associated with a transaction// Java
package org.omg.CosTransactions;

public interface Terminator
 extends TerminatorOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The Terminator class extends TerminatorOperations:
public interface TerminatorOperations

{
 void commit(
 boolean report_heuristics
) throws org.omg.CosTransactions.HeuristicMixed,

org.omg.CosTransactions.HeuristicHazard;

 void rollback();

}

See Also CosTransactions::Coordinator
CosTransactions::Control::get_terminator()
CosTransactions::Control
CosTransactions::Status

Terminator::commit()
// Java
void commit(
 boolean report_heuristics
) throws org.omg.CosTransactions.HeuristicMixed,

org.omg.CosTransactions.HeuristicHazard;

commit() attempts to commit the transaction associated with the
Terminator object. If the report_heuristics parameter is true, the
HeuristicHazard exception is thrown when the participants report
that a heuristic decision has possibly been made.

Parameters

report_heurist
ics

Specifies whether to report heuristic decisions for the
commit.

 496 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also CosTransactions::Coordinator
CosTransactions::Terminator
CosTransactions::Terminator::rollback()
CosTransactions::Control

Terminator::rollback()
// Java
void rollback();

rollback() rolls back the transaction associated with the Terminator
object.

See Also CosTransactions::Coordinator
CosTransactions::Terminator
CosTransactions::Terminator::commit()

HeuristicMixedThe transaction has been marked as rollback-only, or
all participants in the transaction do not agree to com-
mit.

 Orbix CORBA Programmer’s Reference: Java 497

CosTransactions::TransactionalO
bject Class

The TransactionalObject interface has been deprecated and
replaced with transactional policies (see “OTSPolicyValue Data
Type” on page 466). Backward compatibility with existing OTS
implementations is provided for outbound requests only and only
if the target object does not have a transactional policy in its IOR.
See the CORBA Programmer’s Guide for details of interoperability
with existing OTS implementations.

// Java
package org.omg.CosTransactions;

public interface TransactionalObject
 extends TransactionalObjectOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The TransactionalObject class extends
TransactionalObjectOperations:
public interface TransactionalObjectOperations

{
}

 498 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 499

CosTransactions::TransactionFact
ory Class

The TransactionFactory class represents a transaction factory that
allows the originator of transactions to begin a new transaction for
use with the explicit model of transaction demarcation. Servers
provide a default instance of this class. Clients can bind to the
default instance by using the standard binding mechanism for the
object request broker.

// Java
package org.omg.CosTransactions;

public interface TransactionFactory
 extends TransactionFactoryOperations,
 org.omg.CORBA.Object,
 org.omg.CORBA.portable.IDLEntity
{
}

The TransactionFactory class extends
TransactionFactoryOperations:
public interface TransactionFactoryOperations

{
 org.omg.CosTransactions.Control create(
 int time_out
);

 org.omg.CosTransactions.Control recreate(
 org.omg.CosTransactions.PropagationContext ctx
);

}

See Also CosTransactions::Control

TransactionFactory::create()
// Java
org.omg.CosTransactions.Control create(
 int time_out
);

create() creates a new top-level transaction for use with the explicit
model of transaction demarcation. A Control object is returned for
the transaction. The Control object can be used to propagate the
transaction context. See the reference page for the Control class
for more information.

Parameters

timeout Specifies the number of seconds that the transaction
waits to complete before rolling back. If the timeout
parameter is zero, no timeout is set for the transac-
tion.

 500 Orbix CORBA Programmer’s Reference: Java

See Also CosTransactions::TransactionFactory
CosTransactions::Control

TransactionFactory::recreate()
// Java
org.omg.CosTransactions.Control recreate(
 org.omg.CosTransactions.PropagationContext ctx
);

Creates a new representation for an existing transaction defined in
the propagation context ctx. This is used to import a transaction
from another domain. The method returns a control object for the
new transaction representation.

See Also CosTransactions::Coordinator::get_txcontext()

 Orbix CORBA Programmer’s Reference: Java 501

CosTypedEventChannelAdmin
Module

The CosTypedEventChannelAdmin module defines the interfaces for
making connections between suppliers and consumers that use
either generic or typed communication. Its interfaces are special-
izations of the corresponding interfaces in the CosEventChannel
module.

Note: Orbix’s implementation of typed events only supports the typed
push style of event communication. The TypedProxyPullSupplier
interface, the TypedSupplierAdmin::obtain_typed_pull_consumer()
operation, and the
TypedConsumerAdmin::obtain_typed_pull_supplier() operation are
not implemented.

CosTypedEventChannelAdmin Exceptions

CosTypedEventChannelAdmin::InterfaceNotSu
pported
exception InterfaceNotSupported {};
InterfaceNotSupported is raised when an an attempt to obtain a
TypedProxyPushConsumer fails to find an implementation that sup-
ports the strongly typed interface required by the client.

CosTypedEventChannelAdmin::NoSuchImplem
entation
exception NoSuchImplementation {};
NoSuchImplementation is raised when an attempt to obtain a
ProxyPushSupplier fails to find an implementation that supports the
strongly typed interface required by the client.

CosTypedEventChannelAdmin Data Types

CostTypedEventChannelAdmin::Key Type
typedef string Key;
A string that holds the interface repository ID of the strongly
typed interface used by a typed event client.

 502 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 503

CosTypedEventChannelAdmin::Ty
pedConsumerAdmin Interface

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin

{
 TypedProxyPullSupplier obtain_typed_pull_supplier(
 in Key supported_interface)
 raises (InterfaceNotSupported);

 CosEventChannelAdmin::ProxyPushSupplier
 obtain_typed_push_supplier(in Key uses_interface)
 raises (NoSuchImplementation);
};

The TypedConsumerAdmin interface extends the functionality of the
generic ConsumerAdmin to support connecting consumer to a typed
event channel.

TypedConsumerAdmin::obtain_typed_pull_sup
plier()
TypedProxyPullSupplier obtain_typed_pull_supplier(
 in Key supported_interface)
raises (InterfaceNotSupported);

The obtain_typed_pull_supplier() operation returns a
TypedProxyPullSupplier that supports the interface
Pull<supported_interface>.

Parameters

Exceptions

TypedConsumberAdmin::obtain_typed_push_s
upplier()
CosEventChannelAdmin::ProxyPushSupplier
 obtain_typed_push_supplier(in Key uses_interface)
raises (NoSuchImplementation);

The obtain_typed_push_supplier() operation returns a
ProxyPushSupplier that makes calls on interface uses_interface.

Parameters

supported_interfaceSpecifies the interface which the returned
TypedProxyPullSuplier must support.

InterfaceNotSupportedRaised if TypedProxyPullSupplier implementa-
tion supporting the specified interface is avail-
able.

uses_interfaceSpecifies the interface on which the returned
ProxyPushSuppler must make calls.

 504 Orbix CORBA Programmer’s Reference: Java

Exceptions

Unsupported Operations
The Application Server Platform does not support the typed pull
model or the connection of generic consumers to a typed event
channel. Therefore, a TypedConsumerAdmin object will throw
NO_IMPLEMENT for the following operations:
• obtain_typed_pull_supplier()

• obtain_push_supplier()

• obtain_pull_supplier()

NoSuchImplementationRaised if no ProxyPushConsumer can be found
that supports the specified interface.

 Orbix CORBA Programmer’s Reference: Java 505

CosTypedEventChannelAdmin::Ty
pedEventChannel Interface

interface TypedEventChannel
{
 TypedConsumerAdmin for_consumers();

 TypedSupplierAdmin for_suppliers();

 void destroy();

};

This interface is the equivalent of
CosEventChannelAdmin::EventChannel for typed events. It provides a
factory for TypedConsumerAdmin objects and TypedSuppleriAdmin
objects. Both of which are capable of providing proxies for typed
communication.

 506 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 507

CosTypedEventChannelAdmin::Ty
pedProxyPushConsumer
Interface

interface TypedProxyPushConsumer :
 CosEventChannelAdmin::ProxyPushConsumer,
 CosTypedEventComm::TypedPushConsumer
{
};

The TypedProxyPushConsumer interface extends the functionality of
the ProxyPushConsumer to support connecting push suppliers to a
typed event channel.
By inheriting from CosEventChannelAdmin::ProxyPushConsumer, this
interface supports:
• connection and disconnection of push suppliers.
• generic push operation.
By inheriting from CosTypedEventComm::TypedPushConsumer, it
extends the functionality of the generic ProxyPushConsumer to
enable its associated supplier to use typed push communication.
When a reference to a TypedProxyPushConsumer is returned by
get_typed_consumer(), it has the interface identified by the Key.

Unsupported Operations
The TypedProxyPushConsumer reference will throw NO_IMPLEMENT for
the push() operation. A supplier should instead call push() on the
reference it obtains from the get_typed_consumer() operation.

 508 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 509

CosTypedEventChannelAdmin::Ty
pedSupplierAdmin Interface

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin

{
 TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)
 raises (InterfaceNotSupported);

 CosEventChannelAdmin::ProxyPullConsumer
obtain_typed_pull_consumer(in Key uses_interface)

 raises (NoSuchImplementation);
};

The TypedSupplierAdmin interface extends the functionality of the
generic SupplierAdmin to support connecting suppliers to a typed
event channel.

TypedSupplierAdmin::obtain_typed_push_con
sumer()
TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)
raises (InterfaceNotSupported);

The obtain_typed_push_consumer() operation returns a
TypedProxyPushConsumer that supports the specified interface.

Parameters

Exceptions

TypedSupplierAdmin::obtain_typed_pull_cons
umer()
CosEventChannelAdmin::ProxyPullConsumer
 obtain_typed_pull_consumer(in Key uses_interface)
raises (NoSuchImplementation);

The obtain_typed_pull_consumer() operation returns a
ProxyPullConsumer that calls operations in the interface
Pull<uses_interface>.

Parameters

supported_interfaceSpecifies the interface that the returned
TypedProxyPushConsumer must support.

InterfaceNotSupportedRaised if no consumer implementation sup-
porting the specified interface is available.

uses_interfaceSpecifies the interface which the returned
ProxyPullConsumer must support.

 510 Orbix CORBA Programmer’s Reference: Java

Exceptions

Unsupported Operations
The Application Server Platform does not support the typed pull
model or the connection of generic suppliers to a typed event
channel. Therefore, the TypedSupplierAdmin reference will throw
NO_IMPLEMENT for the following operations:
• obtain_typed_pull_consumer()

• obtain_push_consumer()

• obtail_pull_consumer()

NoSuchImplementationRaised if no ProxyPullConsumer can be found
that supports the specified interface.

 Orbix CORBA Programmer’s Reference: Java 511

CosTypedEventComm Module
This module specifies two interfaces used to support typed event
communication. TypedPushConsumer supports push style typed
event communication. Typed event clients retain the capability to
use generic event communication.

Note: Orbix’s implementation of typed events only supports typed push
style events. The TypedPullSupplier interface is not implemented.

 512 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 513

CosTypedEventComm::TypedPush
Consumer Interface

interface TypedPushConsumer : CosEventComm::PushConsumer
{
 Object get_typed_consumer();
};

The TypedPushConsumer interface is used to implement push-style
consumers that wish to participate in typed event communication.
By inheriting from the generic PushConsumer interface, this interface
retains the ability to participate in generic push-style event com-
munication. This inheritance also requires that TypedPushConsumer
objects implement the generic push() operation. However, if the
consumer will be used solely for typed event communication, the
push() implementation can simply raise the standard CORBA
exception NO_IMPLEMENT.

TypedPushConsumer::get_typed_consumer()
Object get_typed_consumer();

get_typed_consumer() returns a reference to a typed push consumer.
This reference is returned as a reference to type Object and must
be narrowed to the appropriate interface. If the push supplier and
the typed push consumer do not support the same interface, the
narrow() will fail.

 514 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 515

CSI Overview
The CSI module defines the basic data types needed for the OMG
Common Secure Interoperability (CSIv2) specification. This refer-
ence page is a partial extract from the CSI module that includes
only the data types needed for the IT_CSI module.

CSI::OID Sequence
typedef sequence <octet> OID;
 // ASN.1 Encoding of an OBJECT IDENTIFIER

The type that represents an ASN.1 object identifier in binary for-
mat.

CSI::OIDList Sequence
typedef sequence <OID> OIDList;

The type that represents a list of ASN.1 object identifiers.

CSI::GSS_NT_ExportedName
typedef sequence <octet> GSS_NT_ExportedName;

An encoding of a GSS Mechanism-Independent Exported Name
Object as defined in [IETF RFC 2743] Section 3.2, "GSS Mecha-
nism-Independent Exported Name Object Format," p. 84. See
http://www.ietf.org/rfc/rfc2743.txt.

See Also IT_CSI::AuthenticationServicePolicy::target_name

CSI::IdentityTokenType
typedef unsigned long IdentityTokenType;

The type of a CSIv2 identity token.

See Also CSI::IdentityToken

CSI::ITTAbsent
const IdentityTokenType ITTAbsent = 0;

The identity token is absent. This indicates that the invocation is
not being made on behalf of another principal.

See Also CSI::IdentityToken

CSI::ITTAnonymous
const IdentityTokenType ITTAnonymous = 1;

 516 Orbix CORBA Programmer’s Reference: Java

Indicates that the invocation is being made on behalf of an
unidentified and unauthenticated principal.

See Also CSI::IdentityToken

CSI::ITTPrincipalName
const IdentityTokenType ITTPrincipalName = 2;

Indicates that the invocation is being made on behalf of an identi-
fiable and authenticated principal.

See Also CSI::IdentityToken

CSI::ITTX509CertChain
const IdentityTokenType ITTX509CertChain = 4;

Not used in the current implementation of CSIv2.

See Also CSI::IdentityToken

CSI::ITTDistinguishedName
const IdentityTokenType ITTDistinguishedName = 8;

Not used in the current implementation of CSIv2.

See Also CSI::IdentityToken

CSI::IdentityExtension
typedef sequence <octet> IdentityExtension;

A data type that enables the range of identity tokens to be
extended. The OMG reserves this type for future extensions.

See Also CSI::IdentityToken

CSI::IdentityToken Union
union IdentityToken switch (IdentityTokenType) {
 case ITTAbsent: boolean absent;
 case ITTAnonymous: boolean anonymous;
 case ITTPrincipalName: GSS_NT_ExportedName principal_name;
 case ITTX509CertChain: X509CertificateChain

certificate_chain;
 case ITTDistinguishedName: X501DistinguishedName dn;
 default: IdentityExtension id;
};

The type that is used to represent an identity token. Only the fol-
lowing identity token types are currently used by Orbix:
• ITTAbsent
• ITTAnonymous
• ITTPrincipalName

Orbix CORBA Programmer’s Reference: Java 517

CSI::StringOID
typedef string StringOID;

This type is the string representation of an ASN.1 OBJECT IDENTI-
FIER (OID). OIDs are represented by the string oid: followed by
the integer base-10 representation of the OID separated by dots.
For example, the OID corresponding to the OMG is represented
as: "oid:2.23.130"

CSI::GSS_NT_Export_Name_OID
const StringOID GSS_NT_Export_Name_OID = "oid:1.3.6.1.5.6.4";

The GSS Object Identifier for name objects of the Mecha-
nism-Independent Exported Name Object type is:
{ iso(1) org(3) dod(6) internet(1) security(5) nametypes(6)

gss-api-exported-name(4) }

 518 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 519

CSIIOP Overview
The CSI inter-ORB protocol (CSIIOP) IDL module defines the data
types that are used for encoding the CSIv2 service contexts and
IOR components . This reference page is a partial extract from the
CSIIOP module that includes only the data types needed for the
IT_CSI module.

CSIIOP::AssociationOptions
typedef unsigned short AssociationOptions;

The type used to define association option flags.

CSIIOP::NoProtection
const AssociationOptions NoProtection = 1;

Not needed in the current implementation of CSIv2.

CSIIOP::Integrity
const AssociationOptions Integrity = 2;

Not needed in the current implementation of CSIv2.

CSIIOP::Confidentiality
const AssociationOptions Confidentiality = 4;

Not needed in the current implementation of CSIv2.

CSIIOP::DetectReplay
const AssociationOptions DetectReplay = 8;

Not needed in the current implementation of CSIv2.

CSIIOP::DetectMisordering
const AssociationOptions DetectMisordering = 16;

Not needed in the current implementation of CSIv2.

CSIIOP::EstablishTrustInTarget
const AssociationOptions EstablishTrustInTarget = 32;

Not needed in the current implementation of CSIv2.

 520 Orbix CORBA Programmer’s Reference: Java

CSIIOP::EstablishTrustInClient
const AssociationOptions EstablishTrustInClient = 64;

The EstablishTrustInClient association option can be specified in
the support attribute or in the target_requires attribute of the
IT_CSI::AuthenticationServicePolicy policy. This policy enables
you to specify that a client or server can require and support client
authentication over the transport using CSIv2.

See Also IT_CSI::AuthenticationService
IT_CSI::AuthenticationServicePolicy

CSIIOP::NoDelegation
const AssociationOptions NoDelegation = 128;

Not supported in the current implementation of CSIv2.

CSIIOP::SimpleDelegation
const AssociationOptions SimpleDelegation = 256;

Not supported in the current implementation of CSIv2.

CSIIOP::CompositeDelegation
const AssociationOptions CompositeDelegation = 512;

Not supported in the current implementation of CSIv2.

CSIIOP::IdentityAssertion
const AssociationOptions IdentityAssertion = 1024;

The IdentityAssertion association option can be specified in the
support attribute of the IT_CSI::AttributeServicePolicy policy. This
policy enables you to specify that a client or server supports iden-
tity assertion (principal propagation) using CSIv2.

See Also IT_CSI::AttributeService
IT_CSI::AttributeServicePolicy

CSIIOP::DelegationByClient
const AssociationOptions DelegationByClient = 2048;

Not supported in the current implementation of CSIv2.

CSIIOP::ServiceConfigurationSyntax Type
typedef unsigned long ServiceConfigurationSyntax;

The type used to identify a syntax for specifying privilege author-
ity names.

Orbix CORBA Programmer’s Reference: Java 521

The high order 20-bits of each ServiceConfigurationSyntax con-
stant shall contain the Vendor Minor Codeset ID (VMCID) of the
organization that defined the syntax. The low order 12 bits shall
contain the organization-scoped syntax identifier. The high-order
20 bits of all syntaxes defined by the OMG shall contain the VMCID
allocated to the OMG (that is, 0x4F4D0).

See Also CSIIOP::ServiceConfiguration

CSIIOP::SCS_GeneralNames
const ServiceConfigurationSyntax SCS_GeneralNames =

CSI::OMGVMCID | 0;

Identifies the GeneralNames syntax (as defined in [IETF RFC 2459])
for specifying privilege authority names.

CSIIOP::SCS_GSSExportedName
const ServiceConfigurationSyntax SCS_GSSExportedName =

CSI::OMGVMCID | 1;

Identifies the GSS exported name syntax (as defined in [IETF RFC
2743] Section 3.2) for specifying privilege authority names.

CSIIOP::ServiceSpecificName
typedef sequence <octet> ServiceSpecificName;

A type that contains a privilege authority name, encoded using
either the CSIIOP::SCS_GeneralNames or the
CSIIOP::SCS_GSSExportedName syntax.

See Also CSIIOP::ServiceConfiguration

CSIIOP::ServiceConfiguration Structure
struct ServiceConfiguration {
 ServiceConfigurationSyntax syntax;
 ServiceSpecificName name;
};

Not used in the current implementation of CSIv2.

CSIIOP::ServiceConfigurationList Sequence
typedef sequence <ServiceConfiguration>

ServiceConfigurationList;

A list of ServiceConfiguration structures.
Not used in the current implementation of CSIv2.

 522 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 523

DsEventLogAdmin Module
The DsEventLogAdmin module defines the EventLog interface which
provides logging capabilities for event service clients. This module
also defines the EventLogFactory interface which is used to instan-
tiate EventLog objects.

 524 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 525

DsEventLogAdmin::EventLog
Interface

interface EventLog : DsLogAdmin::Log,
 CosEventChannelAdmin::EventChannel
{
};

The EventLog interface extends the functionality of the Log inter-
face by also inheriting from CosEventChannelAdmin::EventChannel.
This inheritence provides EventLog objects the ability to log events
as they are passed through an event channel. The EventLog inter-
face does not define any operations.

 526 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 527

DsEventLogAdmin::EventLogFact
ory Interface

The EventLogFactory interface defines two operations for instatiat-
ing EventLog objects.

EventLogFactory::create()
EventLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList

thresholds,
 out LogId id);
 raises (InvalidLogFullAction
 InvalidThreshold);

Returns an instantiated EventLog object. The LogId returned is
assigned by the service and can be used to access the returned
EventLog object.

Parameters

Exceptions

EventLogFactory::create_with_id()
EventLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 in DsLogAdmin::CapacityAlarmThresholdList

thresholds)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold);

Returns an instantiated EventLog object with a user supplied id.

Parameters

full_action Specifies what the log object will do when it fills up.
max_size Specifies the maximum amount of data, in bytes, the

log can hold.
thresholds Specifies , as a percentage of max log size, the

points at which an ThresholdAlarm event will be gen-
erated.

id The LogId assigned to the EventLog object by the ser-
vice.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

InvalidThreshold One of the thresholds specified is invalid.

id Specifies the LogId to assign the EventLog.
full_action Specifies what the log object will do when it fills up.

 528 Orbix CORBA Programmer’s Reference: Java

Exceptions

max_size Specifies the maximum amount of data, in bytes, the
log can hold.

thresholds Specifies , as a percentage of max log size, the
points at which an ThresholdAlarm event will be gen-
erated.

LogIdAlreadyExists A log with the specified id already exists.
InvalidLogFullActionThe specified full_action is not a valid

LogFullActionType.
InvalidThreshold One of the thresholds specified is invalid.

 Orbix CORBA Programmer’s Reference: Java 529

DsLogAdmin Module
DsLogAdmin specifies the Log interfaces which forms the basis for
the BasicLog interface, EventLog interface, and the NotifyLog inter-
face. DsLogAdmin also specifies the BasicLog and BasicLogFactory to
support the basic logging service. In addtion, this module specifys
the Iterator interface to support the iterators returned when
retrieving records from a log.
This module also specifies all of the exceptions and major data-
types used by the telecom logging service.

DsLogAdmin Exceptions

DsLogAdmin::InvalidParam Exception
exception InvalidParam {string details;};

Raised when an illegal value is used to set a log’s properties. It
contains the name of the property being set and the illegal value.

DsLogAdmin::InvalidThreshold Exception
exception InvalidThreshold {};

Raised when an attempt is made to set a threshold alarm at a value
outside the range of 0%-99%.

DsLogAdmin::InvalidTime Exception
exception InvalidTime{};

Raised by set_week_mask() when one of the values specified for a
start or stop time is not within the valid range.

DsLogAdmin::InvalidTimeInterval Exception
exception InvalidTimeInterval{};

Raised by set_week_mask() when one of the time intervals used to
set a log’s schedule is improperly formed. For example, the stop
time is before the start. Also raised if the intervals overlap.

DsLogAdmin::InvalidMask Exception
exception InvalidMask{};

Raised by set_week_mask() when the days parameter used in setting
a log’s schedule is malformed.

 530 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::LogIdAlreadyExists Exception
exception LogIdAlreadyExists{};

Raised by create_with_id() if an attempt is made to create a log
with an id that is already in use.

DsLogAdmin::InvalidGrammar Exception
exception InvalidGrammar{};

Raised by query() and delete_records() if an unsupported constraint
grammar is specified. The grammar implemented in Orbix’s telecom
logging service is EXTENDED_TCL.

DsLogAdmin::InvalidConstraint Exception
exception InvalidConstraint{};

Raised by query() and delete_records() if a constraint expression
is not syntactically correct according to the specified grammar.

DsLogAdmin::LogFull Exception
exception LogFull{short n_records_written;};

Raised when an attempt is made to log records in a log that is full
and has its full_action set to halt. It returns the number of records
that were successfully written to the log.

DsLogAdmin::LogOffDuty Exception
exception LogOffDuty{};

Raised when an attempt is made to log records in a log whose
availability status is off duty.

DsLogAdmin::LogLocked Exception
exception LogLocked{};

Raised when an attempt is made to log records in a log whose
administrative state is locked.

DsLogAdmin::LogDisabled Exception
exception LogDisabled{};

Raised when an attempt is made to log records in a log whose
operational state is disabled.

Orbix CORBA Programmer’s Reference: Java 531

DsLogAdmin::InvalidRecordId Exception
exception InvalidRecordId{};

Raised when the record id specified does not exist in the log.

DsLogAdmin::InvalidAttribute Exception
exception InvalidAttribute{string attr_name; any value;};

Raised when one of the attributes set on a record is invalid. It returns
the name of the invalid attribute and the value specified for it.

DsLogAdmin::InvalidLogFullAction Exception
exception InvalidLogFullAction{};

Raised if an attempt is made to set a log’s full_action to a value
other than wrap or halt.

DsLogAdmin::UnsupportedQoS Exception
exception UnsupportedQoS{QoSList denied};

DsLogAdmin Constants
DsLogAdmin defines the majority of the constant values used when
developing a telecom logging service application.

Querying Constants
DsLogAdmin defines one constant to support queries:
const string default_grammar = "EXTENDED_TCL";

Full Action Constants
Two constants are defined to support a log’s full_action:
const LogFullActionType wrap = 0;
const LogFullActionType halt = 1;

Scheduling Constants
DsLogAdmin defines the following constants to support log schedul-
ing:
const unsigned short Sunday = 1;
const unsigned short Monday = 2;
const unsigned short Tuesday = 4;
const unsigned short Wednesday = 8;
const unsigned short Thursday = 16;
const unsigned short Friday = 32;
const unsigned short Saturday = 64;

 532 Orbix CORBA Programmer’s Reference: Java

QoS Constants
DsLogAdmin defines the following constants to support log QoS
properties:
const QoSType QoSNone = 0;
const QoSType QoSFlush = 1;
const QoSType QoSReliable = 2;

DsLogAdmin Datatypes

DsLogAdmin::LogId Type
typedef unsigned long LogId;

Specifies a log’s unique id. The id is used by several methods for
specifying which log to use or to locate a specific log.

DsLogAdmin::RecordId Type
typedef unsigned long long RecordId;

Specifies a record’s id. A record’s id is unique within the log storing
it.

DsLogAdmin::RecordIdList Sequence
typedef sequence<RecordId> RecordIdList;

Specifies a list of record ids. The list does not need to be in any
particular order.

DsLogAdmin::Constraint Type
typedef string Constraint;

Specifies the constraints used for querying a log’s records.

DsLogAdmin::TimeT Type
typedef TimeBase::TimeT TimeT;

Used to record logging times and for setting a log’s duration.

DsLogAdmin::NVPair Structure
struct NVPair
 {
 string name;
 any value;
 };

Specifies a name/value pair used to construct attributes for records.

Orbix CORBA Programmer’s Reference: Java 533

Members

DsLogAdmin::NVList Sequence
typedef sequence<NVPair> NVList;

A list of name/value record attributes.

DsLogAdmin::TimeInterval Structure
struct TimeInterval
{
 TimeT start;
 TimeT stop;
};

Specifies the start and stop times for a logging session.

Members

DsLogAdmin::LogRecord Structure
struct LogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;
 any info;
};

The data stored when a new record is logged.
Members

DsLogAdmin::RecordList Sequence
typedef sequence<LogRecord> RecordList;

A list of records.

name The name of the attribute. The value can be any
string.

value An any containing the setting for the attribute.

start The start time for the current logging session.
stop The end time for the current logging session.

id The unique identifier for the record
time The time at which the record was logged.
attr_list An optional list of attributes specified by the client
info The data contained in the record.

 534 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::Anys Sequence
typedef sequence<any> Anys;

A sequence of data stored in individual any packages.

DsLogAdmin::AvailabilityStatus Structure
struct AvailabilityStatus
{
 boolean off_duty;
 boolean log_full;
};

Represents the availability of a log.

Members

DsLogAdmin::LogFullActionType Type
typedef unsigned short LogFullActionType;

Specifies a log’s full_action. It can either be halt or wrap.

DsLogAdmin::Time24 Structure
struct Time24
{
 unsigned short hour; // 0-23
 unsigned short minute; // 0-59
};

Specifies the fine grained times for a log’s schedule

Members

DsLogAdmin::Time24Interval Structure
struct Time24Interval
{
 Time24 start;
 Time24 stop;
};

A fine grained interval during which a log is scheduled to log new
records.

off_duty true means the log is not scheduled to accept new
events. false means it is schedualed to recieve new
events.

log_full If the log is full this member will be true.

hour An hour specified in 24 hour format
minute The minute within an hour. Can be a value from

0-59.

Orbix CORBA Programmer’s Reference: Java 535

Members

DsLogAdmin::IntervalsOfDay Sequence
typedef sequence<Time24Interval> IntervalsOfDay;

A list of fine grained logging intervals.

DsLogAdmin::DaysOfWeek Type
typedef unsigned short DaysOfWeek;

A bit mask specifying the days of the week a fine grained logging
interval is valid. It is constructed using the scheduling constants
listed in “Scheduling Constants” on page 531.

DsLogAdmin::WeekMaskItem Structure
struct WeekMaskItem
{
 DaysOfWeek days;
 IntervalsOfDay intervals;
};

Specifies a fined grain log schedule.

Members

DsLogAdmin::WeekMask Sequence
typedef sequence<WeekMaskItem> WeekMask;

Specifies a log’s fine grained logging schedule.

DsLogAdmin::Threshold Type
typedef unsigned short Threshold;

Specifies a threshold point, in terms of a percentage of how full a
log is, at which to generate an alarm. Valid values are from 0-100.

start The time at which a log will begin logging new
records.

stop The time at which a log will stop logging new records.

days A bitmask specifying the days of the week for which
the specified intervals are valid.

intervals The fine grained logging intervals.

 536 Orbix CORBA Programmer’s Reference: Java

DsLogAdmin::CapacityAlarmThresholdList
Sequence
typedef sequence<Threshold> CapacityAlarmThresholdList;

A list of thresholds at which alarms are generated.

DsLogAdmin::OperationalState Enum
enum OperationalState {disabled, enabled};

Specifies if a log is ready to log new records.

DsLogAdmin::AdministrativeState Enum
enum AdministrativeState {locked, unlocked};

Specifies if a log can accept new records.

DsLogAdmin::ForwardingState Enum
enum ForwardingState {on, off}

Specifies if a log will forward events or not.

DsLogAdmin::LogList Sequence
typedef sequence<Log> LogList;

A sequence of log object references.

DsLogAdmin::LogIdList Sequence
typedef sequence<LogId> LogIdList;

A sequence of log ids.

Table 10: Log operational states

Operation
al State

Reason

enabled The log is healthy and its full functionality is
available for use.

disabled The log has encountered a runtime error and
is unavailable. The log will not accept any
new records and it may not be able to
retrieve valid records. The log will still
attempt to forward events if its
ForwardingState is set to on.

Orbix CORBA Programmer’s Reference: Java 537

DsLogAdmin::QoSType Type
typedef unsigned short QoSType;

Specifies the log’s QoS level. Valid values are QoSNone, QoSFlush, and
QoSReliable.

DsLogAdmin::QoSList Sequence
typedef sequence<QoSType> QoSList;

A list of QoSType.

 538 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 539

DsLogAdmin::BasicLog Interface
The BasicLog interface extend the Log interface to support the log-
gging by event-unaware CORBA objects. It defines only one
method, destroy(), which is used to destroy a BasicLog object.
interface BasicLog : Log
{
 void destroy();
};

 540 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 541

DsLogAdmin::BasicLogFactory
Interface

The BasicLogFactory interface provides the functionality to instan-
tiate a BasicLog object.
interface BasicLogFactory : LogMgr
{
 BasicLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 out LogId id)
 raises (InvalidLogFullAction);

 BasicLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 raises (LogIdAlreadyExists, InvalidLogFullAction);
};

BasicLogFactory::create()
BasicLog create(in LogFullActionType full_action,
 in unsigned long long max_size,
 out LogId id);
 raises (InvalidLogFullAction);

Returns an instantiated BasicLog object. The LogId returned is
assigned by the service and can be used to access the returned
BasicLog object.

Parameters

Exceptions

BasicLogFactory::create_with_id()
BasicLog create_with_id(in LogId id,
 in LogFullActionType full_action,
 in unsigned long long max_size)
 raises (LogIdAlreadyExists, InvalidLogFullAction);

Returns an instantiated BasicLog object with a user supplied id.

Parameters

full_action Specifies what the log object will do when it fills up.
max_size Specifies the maximum amount of data, in bytes, the

log can hold.
id The LogId assigned to the BasicLog object by the ser-

vice.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

id Specifies the LogId to assign the BasicLog.

 542 Orbix CORBA Programmer’s Reference: Java

Exceptions

full_action Specifies what the log object will do when it fills up.
max_size Specifies the maximum amount of data, in bytes, the

log can hold.

InvalidLogFullActionThe specified full_action is not a valid
LogFullActionType.

LogIdAlreadyExists A log with the specified id already exists.

 Orbix CORBA Programmer’s Reference: Java 543

DsLogAdmin::Iterator Interface
The Iterator interface provides the methods for accessing records
returned by the iterator when querying a log. It also provides the
method used to release the resources consumed by the returned
iterator.
interface Iterator
{
 RecordList get(in unsigned long position,
 in unsigned long how_many)
 raises(InvalidParam);

 void destroy();
};

Iterator::get()
 RecordList get(in unsigned long position,
 in unsigned long how_many)
 raises(InvalidParam);

Retrieves the specified number of records from the iterator object
and returns them as a RecordList.

Parameters

Exceptions

Iterator::destroy()
void destroy();

Releases the resources used by the iterator object. If an iterator
object is returned, you must explicitly destroy it.

position The number of the record from which to start retriev-
ing records.

how_many The number of records to return.

InvalidParam Raised if the position is negative or past the end of
the list.

 544 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 545

DsLogAdmin::Log Interface
The Log interface provides all of the basic functionality for log
objects. All other log interfaces inherit from this interface. The Log
interface provides the methods for managing a log’s functional
properties including its full_action and maximum size. It also
defines the methods for querying the log for records, retrieving
records from the log, and deleting records from the log. In addi-
tion, it defines the flush() method and two methods for copying
logs.
interface Log
{
 LogMgr my_factory();
 LogId id();

 unsigned long get_max_record_life();
 void set_max_record_life(in unsigned long life);

 unsigned long long get_max_size();
 void set_max_size(in unsigned long long size)
 raises (InvalidParam);
 unsigned long long get_current_size();
 unsigned long long get_n_records();

 LogFullActionType get_log_full_action();
 void set_log_full_action(in LogFullActionType action)
 raises(InvalidLogFullAction);

 AdministrativeState get_administrative_state();
 void set_administrative_state(in AdministrativeState state);

 ForwardingState get_forwarding_state();
 void set_forwarding_state(in ForwardingState state);

 OperationalState get_operational_state();
 AvailabilityStatus get_availability_status();

 TimeInterval get_interval();
 void set_interval(in TimeInterval interval)
 raises (InvalidTime, InvalidTimeInterval);

 CapacityAlarmThresholdList get_capacity_alarm_thresholds();
 void set_capacity_alarm_thresholds(in

CapacityAlarmThresholdList threshs)
 raises (InvalidThreshold);

 WeekMask get_week_mask();
 void set_week_mask(in WeekMask masks)
 raises (InvalidTime, InvalidTimeInterval, InvalidMask);

 QoSList get_log_qos();
 void set_log_qos(in QoSList qos) raises (UnsupportedQoS)

 RecordList query(in string grammar, in Constraint c,
 out Iterator i)
 raises(InvalidGrammar, InvalidConstraint);

 546 Orbix CORBA Programmer’s Reference: Java

 RecordList retrieve(in TimeT from_time, in long how_many,
 out Iterator i);

 unsigned long match(in string grammar, in Constraint c)
 raises(InvalidGrammar, InvalidConstraint);

 unsigned long delete_records(in string grammar, in Constraint
c)

 raises(InvalidGrammar, InvalidConstraint);
 unsigned long delete_records_by_id(in RecordIdList ids);

 void write_records(in Anys records)
 raises(LogFull, LogOffDuty, LogLocked, LogDisabled);
 void write_recordlist(in RecordList list)
 raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

 void set_record_attribute(in RecordId id, in NVList attr_list)
 raises(InvalidRecordId, InvalidAttribute);
 unsigned long set_records_attribute(in string grammar,
 in Constraint c,
 in NVList attr_list)
 raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

 NVList get_record_attribute(in RecordId id)
 raises(InvalidRecordId);

 Log copy(out LogId id);
 Log copy_with_id(in LogId id) raises(LogIdAlreadyExists);

 void flush() raises(UnsupportedQoS);
};

Log::my_factory()
LogMgr my_factory();

Returns an object reference to the log object’s log factory.

Log::id()
LogId id();

Returns the id of the log.

Log::get_max_record_life()
unsigned long get_max_record_life();

Returns the maximum amount of time, in seconds, that a record
stays valid in the log.

Orbix CORBA Programmer’s Reference: Java 547

Log::set_max_record_life()
void set_max_record_life(in unsigned long life);

Sets the maximum amount of time, in seconds, that a record stays
valid in the log. After a record has become stale, it will automatically
be removed from the log.

Parameters

Log::get_max_size()
unsigned long long get_max_size();

Returns the maximum size, in bytes, of the log.

Log::set_max_size()
void set_max_size(in unsigned long long size)
 raises(InvalidParam);

Set the maximum size, in bytes, of the log.

Parameters

Exceptions

Log::get_current_size()
unsigned long long get_current_size();

Returns the current size of the log in octets.

Log::get_n_records()
unsigned long long get_n_records();

Returns the current number of records in the log.

Log::get_log_full_action()
LogFullActionType get_log_full_action();

Returns the log’s full_action setting.

life The number of seconds for which records will remain
valid. Zero specifies an infinite life span.

size The maximum size of the log object in bytes.

InvalidParam The size specified is smaller than the current size of
the log.

 548 Orbix CORBA Programmer’s Reference: Java

Log::set_log_full_action()
void set_log_full_action(in LogFullActionType action)
raises(InvalidLogFullAction);

Sets the log’s full_action.

Parameters

Exceptions

Log::get_administrative_state()
AdministrativeState get_administrative_state();

Returns the log’s administrative state.

Log::set_administrative_state()
void set_administrative_state(in AdministrativeState state);

Sets the log’s administrative state.

Parameters

Log::get_forwarding_state()
ForwardingState get_forwarding_state();

Returns the log’s forwarding state. If the log’s forwarding state is
on, the log will forward events.

Log::set_forwarding_state()
void set_forwarding_state(in ForwardingState state);

Changes the log’s forwarding state.

Parameters

Log::get_operational_state()
OperationalState get_operational_state();

Returns the log’s operational state. The log can either be enabled or
disabled.

action The log’s full_action. Valid values are wrap and halt.

InvalidLogFullActionThe full_action specified is not a supported.

state The new administrative state for the log. Valid states
are locked and unlocked.

state The new forwarding state. The valid values are:
on—specifies that the log will forward events.
off—specifies that the log will not forward events.

Orbix CORBA Programmer’s Reference: Java 549

Log::get_interval()
TimeInterval get_interval();

Returns the log’s coarse grained logging interval.

Log::set_interval()
void set_interval(in TimeInterval interval)
raises (InvalidTime, InvalidTimeInterval);

Changes the log’s coarse grained logging interval.

Parameters

Exceptions

Log::get_availability_status()
AvailabilityStatus get_availability_status();

Returns the log’s availability. The log can be on duty, off duty, full,
or both off duty and full.

Log::get_capacity_alarm_thresholds()
CapacityAlarmThresholdList get_capacity_alarm_thresholds();

Returns a list of the log’s alarm thresholds.

Log::set_capacity_alarm_thresholds()
void set_capacity_alarm_thresholds(in CapacityAlarmThresholdList
threshs)
raises (InvalidThreshold);

Sets threshold alarms in the log.

Parameters

Exceptions

interval The log’s new coarse grained logging interval. Zero
sets the log to an infinite duration.

InvalidTime One of the times specified is not a legal time.
InvalidTimeIntervalThe start time of the interval is after the stop

time. Also, the stop time is prior to the current
time.

threshs A sequence of Threshold specifying at what points
threshold alarm events are to be generated.

InvalidThresholdRaised if one of the thresholds is not in the valid
range.

 550 Orbix CORBA Programmer’s Reference: Java

Log::get_week_mask()
WeekMask get_week_mask();

Returns the log’s weekly schedule.

Log::set_week_mask()
void set_week_mask(in WeekMask masks)
raises (InvalidTime, InvalidTimeInterval, InvalidMask);

Changes the log’s weekly schedule.

Parameters

Exceptions

Log::get_log_qos()
QoSList get_log_qos();

Returns the log’s QoS settings.

Log::set_log_qos()
void set_log_qos(in QoSList qos) raises (UnsupportedQoS);

Sets the log’s QoS type. Valid settings are QoSNone, QoSFlush, and
QosReliable.

Parameters

Exceptions

Log::query()
RecordList query(in string grammar, in Constraint c, out Iterator
i)
raises(InvalidGrammar, InvalidConstraint);

Retreives records from the log based on a constraint.

masks The new schedule to set on the log.

InvalidTime One of the times set on the log is not a valid
time.

InvalidTimeIntervalOne of the stop times specified is before its
associated start time. Also, one of the time
intervals overlaps another time interval.

InvalidMask The WeekMask is malformed.

qos The QoS properties to set on the log.

UnsupportedQoSOne of the QoS properties specified for the log is
invalid. The invalid setting is returned.

Orbix CORBA Programmer’s Reference: Java 551

Parameters

Exceptions

Log::retrieve()
RecordList retrieve(in TimeT from_time, in long how_many,
 out Iterator i);

Returns the specified number of records starting at the specified
time. If the number of records is larger than can be stored in the
return parameter, the remaining records are accessible through the
Iterator.

Parameters

Log::match()
unsigned long match(in string grammar, in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

Returns the number of records that match the specified constraint.

Parameters

Exceptions

grammar The grammar used to consruct the contraint. The
telecom logging service support the EXTENDED_TCL
grammar

c The contraint string against which records are
matched.

i Used when a large number of records are retreived.
If it not used it will be nil.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraintThe constraint does not conform to the specified
grammar.

from_time The time at which the first record to retrieve was
logged.

how_many The number of records to retrieve. A negative value
causes the method to retireve records prior to the
specified time.

i The Iterator object reference.

grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED_TCL
grammar.

c The constraint string.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraintThe constraint does not conform to the specified
grammar.

 552 Orbix CORBA Programmer’s Reference: Java

Log::delete_records()
unsigned long delete_records(in string grammar, in Constraint c)
raises(InvalidGrammar, InvalidConstraint);

Deletes all of the records that match the specified constraint and
returns the number of records deleted.

Parameters

Exceptions

Log::delete_records_by_id()
unsigned long delete_records_by_id(in RecordIdList ids);

Deletes the specified records and returns the number of deleted
records.

Parameters

Log::write_records()
void write_records(in Anys records)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Writes a series of records to a log. The you cannot specifiy any
optional attributes and cannot discover the records id.

Parameters

Exceptions

grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED_TCL
grammar.

c The constraint string.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraintThe constraint does not conform to the specified
grammar.

ids A sequence of record ids specifying the records to
delete.

records A sequence of any that contains the data for a group
of records.

LogFull The log is full and its full_action is set to halt.
LogOffDuty The log is not currently scheduled to accept new

records.
LogLocked The log’s administrative state is set to not accept

new records.
LogDisabled The log has encountered a processing error and is

unable to accept new records.

Orbix CORBA Programmer’s Reference: Java 553

Log::write_recordlist()
void write_recordlist(in RecordList list)
raises(LogFull, LogOffDuty, LogLocked, LogDisabled);

Writes a series of records to the log. You can construct records that
include an optional attribute list and each record in the list will be
updated to include the time it was logged and its record id.

Parameters

Exceptions

Log::set_record_attribute()
void set_record_attribute(in RecordId id, in NVList attr_list)
raises(InvalidRecordId, InvalidAttribute);

Sets attributes for a single record which is specified by its record id.

Parameters

Exceptions

Log::set_records_attribute()
unsigned long set_records_attribute(in string grammar,
 in Constraint c,
 in NVList attr_list)
raises(InvalidGrammar, InvalidConstraint, InvalidAttribute);

Sets attributes for all records that match the constraint. It returns
the numbers of records whose attributes were changed.

Parameters

list A sequence of LogRecord that contains the data for a
group of records.

LogFull The log is full and its full_action is set to halt.
LogOffDuty The log is not currently scheduled to accept new

records.
LogLocked The log’s administrative state is set to not accept

new records.
LogDisabled The log has encountered a processing error and is

unable to accept new records.

id The id of the record on which you wish to set attri-
butes.

attr_list The list of attributes that you want to set on the
record.

InvalidRecordId The record specified dose not exist.
InvalidAttributeOne of the attributes is illegal.

grammar The grammar used to specify the constraint. The
telecom logging service supports the EXTENDED_TCL
grammar.

 554 Orbix CORBA Programmer’s Reference: Java

Exceptions

Log::get_record_attribute()
NVList get_record_attribute(in RecordId id)
raises(InvalidRecordId);

Returns the list of attributes that are set on the specified record.

Parameters

Exceptions

Log::copy()
Log copy(out LogId id);

Copies the log object and returns a reference to the new log object.

Parameters

Log::copy_with_id()
Log copy_with_id(in LogId id)
raises (LogIdAlreadyExists);

Copies the log and returns a reference to the newly created log.
This method allows you to specifiy the logs id.

Parameters

Exceptions

c The constraint string.
attr_list The list of attributes that you want to set on the

record.

InvalidGrammar The telecom logging service does not support the
specified grammar.

InvalidConstraintThe constraint does not conform to the specified
grammar.

InvalidAttribute One of the attributes is illegal.

id The id of the record whose attributes you want to
retrieve.

InvalidRecordId The record specified does not exist.

id The id assigned to the newly created log.

id The new log’s id.

LogIdAlreadyExistsThe user assigned id is already in use.

Orbix CORBA Programmer’s Reference: Java 555

Log::flush()
void flush()
raises(UnsupportedQoS);

Cuases the log to flush its memory buffer to its associated perma-
nent store.

Exceptions

UnsupportedQoSThe log does not support QoSFlush.

 556 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 557

DsLogAdmin::LogMgr Interface
The LogMgr interface is inherited by all the log factory interfaces. It
defines three methods of discovering deployed log objects.
interface LogMgr
{
 LogList list_logs();
 Log find_log(in LogId id);
 LogIdList list_logs_by_id();
};

LogMgr::list_logs()
LogList list_logs();

Returns a list of object references, one for each log object associated
with the factroy.

LogMgr::find_log()
Log find_log(in LogId id);

Returns an object reference to the specified log. If the log does not
exist, it returns a nil reference.

LogMgr::list_logs_by_id()
LogIdList list_logs_by_id();

Returns a list containing the ids of all logs associated with the
factory.

 558 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 559

DsLogNotification Module
The DsLogNotification module defines the data types used to
transmit log generated events to logging clients.

DsLogNotification::PerceivedSeverityType
Type
typedef unsigned short PerceivedSeverityType;
const PerceivedSeverityType critical = 0;
const PerceivedSeverityType minor = 1;
const PerceivedSeverityType cleared = 2;

Defines the severity of a threshold alarm. A threshold alarm’s
severity is considered minor unless the log is full.

DsLogNotification::ThresholdAlarm Structure
struct ThresholdAlarm
{
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
};

The data type passed in a threshold alarm event.

Members

DsLogNotification::ObjectCreation Structure
struct ObjectCreation
{
 LogId id;
 TimeT time;
};

The data type passed in an object creation event.

logref An object reference to the log object which
caused the event.

id The id of the log object which caused the event.
time The time the event was generated.
crossed_value The capacity threshold which was passed to trig-

ger the event.
observed_value The actual percentage of the log that is full.
perceived_severityThe severity of the alarm. If the severity is critical

then the log object is full.

 560 Orbix CORBA Programmer’s Reference: Java

Members

DsLogNotification::ObjectDeletion Structure
struct ObjectDeletion
{
 LogId id;
 TimeT time;
};

The data type passed in an object deletion event.

Members

DsLogNotification::AttributeType Type
typedef unsigned short AttributeType;
const AttributeType capacityAlarmThreshold = 0;
const AttributeType logFullAction = 1;
const AttributeType maxLogSize = 2;
const AttributeType startTime = 3;
const AttributeType stopTime = 4;
const AttributeType weekMask = 5;
const AttributeType filter = 6;
const AttributeType maxRecordLife = 7;
const AttributeType qualityOfService = 8;

The data type and constants used to represent the type of attribute
changed in an attribute change event.

DsLogNotification::AttributeValueChange
Structure
struct AttributeValueChange

{
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 any old_value;
 any new_value;
};

Members

id The id of the newly created log object.
time The time the log object was generated.

id The id of the deleted log object.
time The time the log object was deleted.

logref An object reference to the log object which caused the
event.

id The id of the log object which caused the event.

Orbix CORBA Programmer’s Reference: Java 561

DsLogNotification::StateType Type
typedef unsigned short StateType;
const StateType administrativeState = 0;
const StateType operationalState = 1;
const StateType forwardingState = 2;

The data type and constants used to represent which type of state
was changed in a state change event.

DsLogNotification::StateChange Structure
struct StateChange
{
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 any new_value;
};

The data type passed in a state change event.

Members

DsLogNotification::ProcessingErrorAlarm
Structure
struct ProcessingErrorAlarm
{
 long error_num;
 string error_string;
};

The data type passed when a processing error event occurs.

Members

time The time the event was generated.
type The attribute that was changed.
old_valueThe previous value of the attribute.
new_valueThe attribute’s new value.

logref An object reference to the log object which caused the
event.

id The id of the log object which caused the event.
time The time the event was generated.
type The type of state that was changed.
new_valueThe new state.

error_num The error number.
error_string A string explaining the error.

 562 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 563

DsNotifyLogAdmin Module
The DsNotifyLogAdmin module extends the functionality of the
interfaces specified in the DsLogAdmin module to support notifica-
tion style push and pull communication and forwarding of struc-
tured and sequenced events. The extended functionality also
includes notification style event filtering and subscription/publica-
tion functionality.

 564 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 565

DsNotifyLogAdmin::NotifyLog
Interface

The NotifyLog interface extends the functionality of the Log inter-
face to support notification style filters. It inherits from the
EventChannel interface of module CosNotifyChannelAdmin.
interface NotifyLog : DsEventLogAdmin::EventLog,
 CosNotifyChannelAdmin::EventChannel
{
 CosNotifyFilter::Filter get_filter();
 void set_filter(in CosNotifyFilter::Filter filter);
};

NotifyLog::get_filter()
CosNotifyFilter::Filter get_filter();

Returns a reference to the filter object associated with the log.

NotifyLog::set_filter()
void set_filter(in CosNotifyFilter::Filter filter);

Associates a filter with the log. The filter will determine which events
will be logged.

Parameters

filter The filter you want to set on the log.

 566 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 567

DsNotifyLogAdmin::NotifyLogFact
ory Interface

The NotifyLogFactory extends the functionality of the LogMgr inter-
face to support the creation of NotifyLog objects. It also inherits
from the CosNotifyChannelAdmin::ConsumerAdmin interface. This
inheritance allows it to forward events to the clients of its associ-
ated NotifyLog objects.

NotifyLogFactory::create()
NotifyLog create(in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList

thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin,
 out DsLogAdmin::LogId id)
 raises(DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates a new NotifyLog object, assigns the new log a unique id,
and returns a reference to the newly instantiated log object.

Parameters

Exceptions

full_action The log’s behavior when it reaches its maximum size.
Valid values are wrap and halt.

max_size The maximum size of the log in bytes.
thresholds The thresholds when alarm events will be generated.

Specified as a percentage of the log’s size.
initial_qos The initial notification style QoS properties to set on

the log object’s associated notification channel.
initial_admin The initial administrative properties to set on the log

object’s associated notification channel.
id Returns the log object’s factory assigned id.

InvalidLogFullActionThe value for the log’s full_action was not a
valid full_action.

InvalidThreshold One of the threshold alarm values was not
within the valid range

UnsupportedQoS One of the QoS properties is invalid or does not
support the value you are trying to set for it.

UnsupportedAdmin One of the administrative properties is invalid
or does not support the value you are trying to
set for it.

 568 Orbix CORBA Programmer’s Reference: Java

NotifyLogFactory::create_with_id()
NotifyLog create_with_id(in DsLogAdmin::LogId id,
 in DsLogAdmin::LogFullActionType full_action,
 in unsigned long long max_size,
 in DsLogAdmin::CapacityAlarmThresholdList

thresholds,
 in CosNotification::QoSProperties initial_qos,
 in CosNotification::AdminProperties initial_admin)
 raises(DsLogAdmin::LogIdAlreadyExists,
 DsLogAdmin::InvalidLogFullAction,
 DsLogAdmin::InvalidThreshold,
 CosNotification::UnsupportedQoS,
 CosNotification::UnsupportedAdmin);

Creates a new NotifyLog object using a user assigned id and returns
a reference to the newly instantiated log object.

Parameters

Exceptions

id The log object’s id.
full_action The log’s behavior when it reaches its maximum size.

Valid values are wrap and halt.
max_size The maximum size of the log in bytes.
thresholds The thresholds when alarm events will be generated.

Specified as a percentage of the log’s size.
initial_qos The initial notification style QoS properties to set on

the log object’s associated notification channel.
initial_admin The initial administrative properties to set on the log

object’s associated notification channel.

LogIdAlreadyExists A log already exists with the specified id.
InvalidLogFullActionThe value for the log’s full_action was not a

valid full_action.
InvalidThreshold One of the threshold alarm values was not

within the valid range
UnsupportedQoS One of the QoS properties is invalid or does not

support the value you are trying to set for it.
UnsupportedAdmin One of the administrative properties is invalid

or does not support the value you are trying to
set for it.

 Orbix CORBA Programmer’s Reference: Java 569

Dynamic Module
The Dynamic module is used by the PortableInterceptor module
and contains the following data types:
• ContextList type
• ExceptionList sequence
• Parameter structure
• ParameterList sequence
• RequestContext type

Dynamic::ContextList
// IDL
typedef CORBA::StringSeq ContextList;

Dynamic::ExceptionList
// IDL
typedef sequence<CORBA::TypeCode> ExceptionList;

Dynamic::Parameter
// IDL
struct Parameter {
 any argument;
 CORBA::ParameterMode mode;
};

Dynamic::ParameterList
// IDL
typedef sequence<Parameter> ParameterList;

Dynamic::RequestContext
// IDL
typedef CORBA::StringSeq RequestContext;

 570 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 571

DynamicAny Overview
The DynamicAny namespace implements the IDL DynamicAny module
which includes the following classes:
DynAny
DynAnyFactory
DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

The common data types in the scope of the DynamicAny module
include the following:
NameDynAnyPair
NameValuePair

For most IDL data types there is a straight-forward language map-
ping that an object implementation uses to interpret data. How-
ever, an any data type can be passed to a program that may not
have any static information about how to interpret the type of
data in the any value. The DynamicAny module provides a runtime
mechanism for constructing any values, traversing them, and
extracting the data from any values. This mechanism is especially
helpful for writing generic clients and servers such as bridges,
browsers, debuggers, and user interface tools.
Applications dynamically construct and interpret any values using
DynAny objects. For complex any types a DynAny object is an ordered
collection of other component DynAny objects.
A DynAny object can be created as follows:
• Invoking a method on a DynAnyFactory object.
• Invoking a method on an existing DynAny object.

A constructed DynAny object supports methods that enable the
creation of new DynAny objects that encapsulate access to the
value of some constituent of the DynAny object. DynAny objects
also support a copy method for creating new DynAny objects.

There is a different interface associated with each kind of con-
structed IDL type that inherits from the DynAny interface. The
interfaces that inherit the DynAny interface include:
DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

Exceptions are represented by the DynStruct interface and value
types are represented by the DynValue interface.

A sequence of CORBA::Any values.

See Also DynamicAny::DynSequence
DynamicAny::DynArray

 572 Orbix CORBA Programmer’s Reference: Java

DynamicAny::NameDynAnyPair Structure
// IDL
struct NameDynAnyPair {
 FieldName id;
 DynAny value;
};

// Java
public final class NameDynAnyPair
 implements org.omg.CORBA.portable.IDLEntity
{
 public java.lang.String id;
 public org.omg.DynamicAny.DynAny value;

 public NameDynAnyPair() {}
 public NameDynAnyPair(
 java.lang.String id,
 org.omg.DynamicAny.DynAny value
)
 {
 this.id = id;
 this.value = value;
 }
}

A structure containing the name and value of a field or member.

DynamicAny::NameValuePair Structure
// Java
public final class NameValuePair
 implements org.omg.CORBA.portable.IDLEntity
{
 public java.lang.String id;
 public org.omg.CORBA.Any value;

 public NameValuePair() {}
 public NameValuePair(
 java.lang.String id,
 org.omg.CORBA.Any value
)
 {
 this.id = id;
 this.value = value;
 }
}

A structure containing the name and value of a field or member.

 Orbix CORBA Programmer’s Reference: Java 573

DynamicAny::DynAny Class
Your application can dynamically construct and interpreted Any
values using DynAny objects. A DynAny object is associated with a
data value which corresponds to a copy of the value inserted into
an any. Portable programs should use the DynAny interface to
access and modify the contents of an Any in those cases where
basic insertion and extraction operators are not sufficient.
DynAny methods can be organized as follows:

The following exceptions are also defined in the DynAny class:
InvalidValue
TypeMismatch

The DynAny class is the base for the following classes:
DynArray
DynEnum
DynFixed
DynSequence
DynStruct
DynUnion
DynValue

Because the values of Any types can be quite complex, it is helpful
to think of a DynAny object as an ordered collection of other compo-
nent DynAny objects. For simpler DynAny objects that represent a
basic type, the ordered collection of components is empty. For
example, a long or a type without components (such as an empty
exception) has empty components.
The DynAny interface allows a client to iterate through the compo-
nents of the values pointed to by these objects. Each DynAny object
maintains the notion of a current position into its collection of compo-
nent DynAny objects. The current position is identified by an index

Table 11: DynAny Methods

General Methods Insert Methods Get Methods

assign()
component_count()
copy()
current_component()
destroy()
equal()
from_any()
next()
rewind()
seek()
to_any()
type()

insert_any()
insert_boolean()
insert_char()
insert_double()
insert_dyn_any()
insert_float()
insert_long()
insert_longlong()
insert_octet()
insert_reference()
insert_short()
insert_string()
insert_typecode()
insert_ulong()
insert_ulonglong()
insert_ushort()
insert_val()
insert_wchar()
insert_wstring()

get_any()
get_boolean()
get_char()
get_double()
get_dyn_any()
get_float()
get_long()
get_longlong()
get_octet()
get_reference()
get_short()
get_string()
get_typecode()
get_ulong()
get_ulonglong()
get_ushort()
get_val()
get_wchar()
get_wstring()

 574 Orbix CORBA Programmer’s Reference: Java

value that runs from 0 to n-1, where n is the number of compo-
nents. Methods are available that allow you to recursively examine
DynAny contents. For example, you can determine the current posi-
tion using current_component(), and component_count() returns the
number of components in the DynAny object. You can also use
rewind(), seek(), and next() to change the current position. If a
DynAny is initialized with a value that has components, the index is
initialized to 0. The special index value of -1 indicates a current
position that points nowhere. For example, some values (such as
an empty exception) cannot have a current position. In these
cases the index value is fixed at -1.
You can use the iteration operations, together with
current_component(), to dynamically compose an Any value. After
creating a dynamic any, such as a DynStruct, you can use
current_component() and next() to initialize all the components of
the value. Once the dynamic value is completely initialized,
to_any() creates the corresponding Any value.
You use the insert_type() and get_type() methods to not only han-
dle basic DynAny objects but they are also helpful in handling con-
structed DynAny objects. when you insert a basic data type value
into a constructed DynAny object, it initializes the current compo-
nent of the constructed data value associated with the DynAny
object.
For example, invoking insert_boolean() on a DynStruct object
implies inserting a boolean data value at the current position of
the associated structure data value. In addition, you can use the
insert_type() and get_type() methods to traverse Any values asso-
ciated with sequences of basic data types without the need to gen-
erate a DynAny object for each element in the sequence.
The DynAny object has a destroy() method that you can use to
destroy a top-level DynAny object and any component DynAny
objects obtained from it.

Exceptions TypeMismatch is raised if you call methods insert_type() or
get_type() on a DynAny whose current component itself has compo-
nents.

MARSHAL is raised if you attempt to export DynAny objects to other
processes or externalize one with CORBA::ORB::object_to_string().
This is because DynAny objects are intended to be local to the pro-
cess in which they are created and used.
NO_IMPLEMENT might be raised if you attempt the following:
• Invoke operations exported through the CORBA::Object inter-

face even though DynAny objects export operations defined in
this standard interface.

• Use a DynAny object with the DII.
The following code is the complete class:

package org.omg.DynamicAny;

public interface DynAny extends org.omg.CORBA.Object
{
 org.omg.CORBA.TypeCode type();

 void assign(

Orbix CORBA Programmer’s Reference: Java 575

 org.omg.DynamicAny.DynAny dyn_any
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 void from_any(
 org.omg.CORBA.Any value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.CORBA.Any to_any();

 boolean equal(
 org.omg.DynamicAny.DynAny dyn_any
);

 void destroy();

 org.omg.DynamicAny.DynAny copy();

 void insert_boolean(
 boolean value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_octet(
 byte value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_char(
 char value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_short(
 short value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_ushort(
 short value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_long(
 int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_ulong(
 int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_float(
 float value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_double(
 double value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_string(
 java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_reference(
 org.omg.CORBA.Object value

 576 Orbix CORBA Programmer’s Reference: Java

) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_typecode(
 org.omg.CORBA.TypeCode value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_longlong(
 long value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_ulonglong(
 long value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_wchar(
 char value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_wstring(
 java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_any(
 org.omg.CORBA.Any value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_dyn_any(
 org.omg.DynamicAny.DynAny value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 void insert_val(
 java.io.Serializable value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 boolean get_boolean() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 byte get_octet() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 char get_char() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 short get_short() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 short get_ushort() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 int get_long() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 int get_ulong() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 float get_float() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 double get_double() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Orbix CORBA Programmer’s Reference: Java 577

 java.lang.String get_string() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.CORBA.Object get_reference() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.CORBA.TypeCode get_typecode() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 long get_longlong() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 long get_ulonglong() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 char get_wchar() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 java.lang.String get_wstring() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.CORBA.Any get_any() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.DynamicAny.DynAny get_dyn_any() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 java.io.Serializable get_val() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 boolean seek(
 int index
);

 void rewind();

 boolean next();

 int component_count() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.DynamicAny.DynAny current_component() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

}

DynAny::assign()
// Java
void assign(
 org.omg.DynamicAny.DynAny dyn_any
)

Initializes the value associated with a DynAny object with the value
associated with another DynAny object.

 578 Orbix CORBA Programmer’s Reference: Java

Parameters

The current position of the target DynAny is set to zero for values
that have components and to -1 for values that do not have
components.

Exceptions

DynAny::component_count()
int component_count()

Returns the number of components of a DynAny. For a DynAny without
components, it returns zero.

The operation only counts the components at the top level. For
example, if you invoke component_count() on a DynStruct with a
single member, the return value is 1, irrespective of the type of
the member.

Exceptions

See Also DynamicAny::DynAny::current_component()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::copy()
org.omg.DynamicAny.DynAny copy();

Returns a new DynAny object whose value is a deep copy of the DynAny
on which it is invoked.

dyn_any The DynAny object to initialize to.

TypeMismatch The type of the passed DynAny is not equivalent to the
type of the target DynAny.

Table 12: Return Values for DynAny::component_count()

Type Return Value

DynSequence The current number of elements.

DynStruct
DynValue

The number of members.

DynArray The number of elements.

DynUnion 2 if the discriminator indicates that a
named member is active.
1 Otherwise.

DynFixed
DynEnum

zero

TypeMismatch The method is called on a DynAny that cannot have
components, such as a DynEnum or an empty exception.

Orbix CORBA Programmer’s Reference: Java 579

The operation is polymorphic, that is, invoking it on one of the
types derived from DynAny, such as DynStruct, creates the derived
type but returns its reference as the DynAny base type.

DynAny::current_component()
// Java
org.omg.DynamicAny.DynAny current_component()

Returns the DynAny for the component at the current position. It
does not advance the current position, so repeated calls without an
intervening call to rewind(), next(), or seek() return the same
component. If the current position current position is -1, the method
returns a nil reference.

The returned DynAny object reference can be used to get or set the
value of the current component. If the current component rep-
resents a complex type, the returned reference can be narrowed
based on the TypeCode to get the interface corresponding to the
complex type.

Exceptions

See Also DynamicAny::DynAny::component_count()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::destroy()
// Java
void destroy();

Destroys a DynAny object. This operation frees any resources used
to represent the data value associated with a DynAny object.

Destroying a top-level DynAny object (one that was not obtained as
a component of another DynAny) also destroys any component
DynAny objects obtained from it. Destroying a non-top level (com-
ponent) DynAny object does nothing.
You can manipulate a component of a DynAny object beyond the life
time of its top-level DynAny by making a copy of the component
with copy() before destroying the top-level DynAny object.

Enhancement Orbix guarantees to always destroy all local objects it creates when
the last reference to them is released so you do not have to call
destroy(). However, code that relies on this feature is not strictly
CORBA compliant and may leak resources with other ORBs.

Exceptions

See Also DynamicAny::DynAny::copy()
IT_CORBA::RefCountedLocalObject

TypeMismatch The method is called on a DynAny that cannot have
components, such as a DynEnum or an empty exception.

OBJECT_NOT_EXI
ST

A destroyed DynAny object or any of its components is
referenced.

 580 Orbix CORBA Programmer’s Reference: Java

DynAny::equal()
boolean equal(
 org.omg.DynamicAny.DynAny dyn_any
);

Compares two DynAny values for equality and returns true of the
values are equal, false otherwise. Two DynAny values are equal if
their type codes are equivalent and, recursively, all respective
component DynAny values are equal. The current position of the two
DynAny values being compared has no effect on the result of equal().

Parameters

DynAny::from_any()
// Java
void from_any(
 org.omg.CORBA.Any value
);

Initializes the value associated with a DynAny object with the value
contained in an Any type.

The current position of the target DynAny is set to zero for values
that have components and to -1 for values that do not have com-
ponents.

Parameters

Exceptions

See Also DynamicAny::DynAny::to_any()

DynAny::get_any()
org.omg.CORBA.Any get_any();

Returns an Any value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_any (an Any TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_any. The current position is unchanged
after the call.

Exceptions

dyn_any The DynAny value to compare.

value An Any value to initialize the DynAny object to.

TypeMismatch The type of the passed Any is not equivalent to the
type of the target DynAny.

InvalidValue The passed Any does not contain a legal value (such as
a null string).

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

Orbix CORBA Programmer’s Reference: Java 581

See Also DynamicAny::DynAny::insert_any()

DynAny::get_boolean()
boolean get_boolean();

Returns a boolean value from the DynAny object.
It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_boolean (a boolean TypeCode), or, if
the TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_boolean. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_boolean()

DynAny::get_char()
char get_char();

Returns a char value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_char (a char TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_char. The current position is unchanged
after the call.

Exceptions

See Also DynamicAny::DynAny::insert_char()

DynAny::get_double()
double get_double();

Returns a double value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_double (a double TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_double. The current position is
unchanged after the call.

Exceptions

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

 582 Orbix CORBA Programmer’s Reference: Java

See Also DynamicAny::DynAny::insert_double()

DynAny::get_dyn_any()
org.omg.DynamicAny.DynAny get_dyn_any();

Returns a DynAny reference value from the DynAny object.
get_dyn_any() is provided to deal with Any values that contain
another any.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to the TypeCode of a DynAny or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent the TypeCode of a DynAny. The current position
is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_dyn_any()

DynAny::get_float()
float get_float();

Returns a float value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_float (a float TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_float. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_float()

DynAny::get_long()
int get_long();Returns a int value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_long (a long TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_long. The current position is unchanged
after the call.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

Orbix CORBA Programmer’s Reference: Java 583

Exceptions

See Also DynamicAny::DynAny::insert_long()

DynAny::get_longlong()
long get_longlong();

Returns a long value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_longlong (a long long TypeCode), or,
if the TypeCode at the current position (a DynAny objects with com-
ponents) is equivalent to _tc_longlong. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_longlong()

DynAny::get_octet()
byte get_octet();

Returns an byte value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_octet (an octet TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_octet. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_octet()

DynAny::get_reference()
org.omg.CORBA.Object get_reference();

Returns an Object reference from the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

 584 Orbix CORBA Programmer’s Reference: Java

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_Object (an object reference
TypeCode), or, if the TypeCode at the current position (a DynAny
objects with components) is equivalent to _tc_Object. The current
position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_reference()

DynAny::get_short()
short get_short();

Returns a short value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_short (a short TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_short. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_short()

DynAny::get_string()
java.lang.String get_string();

Returns a string value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_string (a string TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_string. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_string()

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

Orbix CORBA Programmer’s Reference: Java 585

DynAny::get_typecode()
org.omg.CORBA.TypeCode get_typecode();

Returns a TypeCode value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_TypeCode (a TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_TypeCode. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_typecode()

DynAny::get_ulong()
int get_ulong();

Returns a int value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ulong (an unsigned long TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_ulong. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_ulong()

DynAny::get_ulonglong()
long get_ulonglong();

Returns a long value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ulonglong (an unsigned long long
TypeCode), or, if the TypeCode at the current position (a DynAny
objects with components) is equivalent to _tc_ulonglong. The cur-
rent position is unchanged after the call.

Exceptions

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

 586 Orbix CORBA Programmer’s Reference: Java

See Also DynamicAny::DynAny::insert_ulonglong()

DynAny::get_ushort()
short get_ushort();

Returns a short value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ushort (an unsigned short TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_ushort. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_ushort()

DynAny::get_val()
java.io.Serializable get_val();

Returns a value type value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to a value type TypeCode, or, if the TypeCode
at the current position (a DynAny objects with components) is
equivalent to a value type TypeCode. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_val()

DynAny::get_wchar()
char get_wchar();

Returns a char value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_wchar (a wchar TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_wchar. The current position is
unchanged after the call.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

Orbix CORBA Programmer’s Reference: Java 587

Exceptions

See Also DynamicAny::DynAny::insert_wchar()

DynAny::get_wstring()
java.lang.String get_wstring();

Returns a wide string value from the DynAny object.

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_wstring (a wide string TypeCode), or,
if the TypeCode at the current position (a DynAny objects with com-
ponents) is equivalent to _tc_wstring. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::insert_wstring()

DynAny::insert_any()
// Java
void insert_any(
 org.omg.CORBA.Any value
);

Inserts an Any value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_any (an Any TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_any. The current position is unchanged
after the call.

Exceptions

See Also DynamicAny::DynAny::get_any()

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

 588 Orbix CORBA Programmer’s Reference: Java

DynAny::insert_boolean()
// Java
void insert_boolean(
 boolean value
);

Inserts a boolean value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_boolean (a boolean TypeCode), or, if
the TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_boolean. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_boolean()

DynAny::insert_char()
// Java
void insert_char(
 char value
);

Inserts a char value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_char (a char TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_char. The current position is unchanged
after the call.

Exceptions

See Also DynamicAny::DynAny::get_char()

DynAny::insert_double()
// Java
void insert_double(double value);

Inserts a double value into the DynAny object.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

Orbix CORBA Programmer’s Reference: Java 589

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_double (a double TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_double. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_double()

DynAny::insert_dyn_any()
// Java
void insert_dyn_any(
 org.omg.DynamicAny.DynAny value
);

Inserts a DynAny value into the DynAny object. insert_dyn_any() is
provided to deal with Any values that contain another any.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to the TypeCode of a DynAny or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent the TypeCode of a DynAny. The current position
is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_dyn_any()

DynAny::insert_float()
// Java
void insert_float(float value);

Inserts a float value into the DynAny object.

Parameters

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

value The value to insert into the DynAny object.

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

value The value to insert into the DynAny object.

 590 Orbix CORBA Programmer’s Reference: Java

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_float (a float TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_float. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_float()

DynAny::insert_long()
// Java
void insert_long(
 int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Inserts a long value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_long (a long TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_long. The current position is unchanged
after the call.

Exceptions

See Also DynamicAny::DynAny::get_long()

DynAny::insert_long long()
// Java
void insert_longlong(
 long value
);

Inserts a long value into the DynAny object.

Parameters

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

Orbix CORBA Programmer’s Reference: Java 591

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_longlong (a long long TypeCode), or,
if the TypeCode at the current position (a DynAny objects with com-
ponents) is equivalent to _tc_longlong. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_longlong()

DynAny::insert_octet()
// Java
void insert_octet(
 byte value
);

Inserts an byte value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_octet (an octet TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_octet. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_octet()

DynAny::insert_reference()
// Java
void insert_reference(
 org.omg.CORBA.Object value
);

Inserts an Object reference into the DynAny object.

Parameters

InvalidValue The DynAny has components and the current position is
-1.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

 592 Orbix CORBA Programmer’s Reference: Java

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_Object (an object reference
TypeCode), or, if the TypeCode at the current position (a DynAny
objects with components) is equivalent to _tc_Object. The current
position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_reference()

DynAny::insert_short()
// Java
void insert_short(
 short value
);

Inserts a short value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_short (a short TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_short. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_short()

DynAny::insert_string()
// Java
void insert_string(
 java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Inserts a string into the DynAny object.

Parameters

You can insert both bounded and unbounded strings using
insert_string().

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

Orbix CORBA Programmer’s Reference: Java 593

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_string (a string TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_string. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_string()

DynAny::insert_typecode()
// Java
void insert_typecode(
 org.omg.CORBA.TypeCode value
);

Inserts a TypeCode value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_TypeCode (a TypeCode), or, if the
TypeCode at the current position (a DynAny objects with compo-
nents) is equivalent to _tc_TypeCode. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_typecode()

DynAny::insert_ulong()
// Java
void insert_ulong(
 int value
);

Inserts a int value into the DynAny object.

Parameters

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

InvalidValue • The DynAny has components and the current posi-
tion is -1.

• The string inserted is longer than the bound of a
bounded string.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

 594 Orbix CORBA Programmer’s Reference: Java

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ulong (an unsigned long TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_ulong. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_ulong()

DynAny::insert_ulonglong()
// Java
void insert_ulonglong(
 long value
);

Inserts a long value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ulonglong (an unsigned long long
TypeCode), or, if the TypeCode at the current position (a DynAny
objects with components) is equivalent to _tc_ulonglong. The cur-
rent position is unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_ulonglong()

DynAny::insert_ushort()
// Java
void insert_ushort(
 short value
);

Inserts a short value into the DynAny object.

Parameters

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

Orbix CORBA Programmer’s Reference: Java 595

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_ushort (an unsigned short TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_ushort. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_ushort()

DynAny::insert_val()
// Java
void insert_val(
 java.io.Serializable value
);

Inserts a value type value into the DynAny object.

Parameters

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to a value type TypeCode, or, if the TypeCode
at the current position (a DynAny objects with components) is
equivalent to a value type TypeCode. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_val()

DynAny::insert_wchar()
// Java
void insert_wchar(
 char value
);

Inserts a char value into the DynAny object.

Parameters

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

 596 Orbix CORBA Programmer’s Reference: Java

It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_wchar (a wide character TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_wchar. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_wchar()

DynAny::insert_wstring()
// Java
void insert_wstring(
 java.lang.String value
);

Inserts a wide string into the DynAny object.

Parameters

You can insert both bounded and unbounded strings using
insert_wstring().
It is valid for you to use this method if the TypeCode contained in
the DynAny is equivalent to _tc_wstring (a wide string TypeCode),
or, if the TypeCode at the current position (a DynAny objects with
components) is equivalent to _tc_wstring. The current position is
unchanged after the call.

Exceptions

See Also DynamicAny::DynAny::get_wstring()

DynAny::InvalidValue User Exception
// Java
package org.omg.DynamicAny.DynAnyPackage;
public final class InvalidValue
 extends org.omg.CORBA.UserException
{

 public InvalidValue() {
 super(InvalidValueHelper.id());
 }

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the requested type.

InvalidValue The DynAny has components and the current position is
-1.

value The value to insert into the DynAny object.

TypeMismatch The accessed component in the DynAny is of a type that
is not equivalent to the inserted type.

InvalidValue • The DynAny has components and the current posi-
tion is -1.

• The string inserted is longer than the bound of a
bounded string.

Orbix CORBA Programmer’s Reference: Java 597

}

A user exception meaning that an invalid value has been used as a
parameter.

See Also DynamicAny::DynAny::TypeMismatch

DynAny::next()
// Java
boolean next();

Advances the current position to the next component of the DynAny
object. Returns true if the resulting current position indicates a
component, false otherwise. Invoking next() on a DynAny that has
no components returns false. A false return value always sets the
current position to -1.

See Also DynamicAny::DynAny::component_count()
DynamicAny::DynAny::current_component()
DynamicAny::DynAny::seek()
DynamicAny::DynAny::rewind()

DynAny::rewind()
// Java
void rewind();

Sets the current position to the first component of the DynAny object.
This is equivalent to calling seek(0).

See Also DynamicAny::DynAny::seek()

DynAny::seek()
// Java
boolean seek(
 int index
);

Sets the current position to a component of the DynAny object. The
method returns true if the resulting current position indicates a
component of the DynAny object and false if the position does not
correspond to a component.

Parameters

See Also DynamicAny::DynAny::component_count()

index The new index to set the current position to. An index
can range from 0 to n-1. An index of zero corresponds
to the first component.
Calling seek with a negative index is legal and sets the
current position to -1 to indicate no component. The
method returns false in this case.
Passing a non-negative index value for a DynAny that
does not have a component at the corresponding posi-
tion sets the current position to - 1 and returns false.

 598 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynAny::current_component()
DynamicAny::DynAny::rewind()
DynamicAny::DynAny::next()

DynAny::to_any()
// Java
org.omg.CORBA.Any to_any();

Returns an Any value created from a DynAny object. A copy of the
TypeCode associated with the DynAny object is assigned to the
resulting any. The value associated with the DynAny object is copied
into the Any value.

See Also DynamicAny::DynAny::from_any()

DynAny::type()
// Java
org.omg.CORBA.TypeCode type();

Returns the TypeCode associated with a DynAny object.

A DynAny object is created with a TypeCode value assigned to it. This
value determines the type of the value handled through the DynAny
object. type() returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized
at the time the DynAny is created and cannot be changed during the
lifetime of the DynAny object.

DynAny::TypeMismatch User Exception
// Java
package org.omg.DynamicAny.DynAnyPackage;
public final class TypeMismatch
 extends org.omg.CORBA.UserException
{

 public TypeMismatch() {
 super(TypeMismatchHelper.id());
 }
}

A user exception meaning that the type of a parameter does not
match the type of the target.

This exception is also raised when attempts are made to access
DynAny components illegally. For example:
• If an attempt is made to access an object’s component but the

type of object does not have components.
• If an attempt is made to call an insert_type() or get_type()

method on a DynAny object whose current component itself has
components.

See Also DynamicAny::DynAny::InvalidValue

 Orbix CORBA Programmer’s Reference: Java 599

DynamicAny::DynAnyFactory
Class

You can create DynAny objects by invoking operations on the
DynAnyFactory object. You obtain a reference to the DynAnyFactory
object by calling CORBA.ORB.resolve_initial_references() with the
identifier parameter set to "DynAnyFactory".
A typical first step in dynamic interpretation of an Any involves cre-
ating a DynAny object using create_dyn_any() or
create_dyn_any_from_type_code(). Then, depending on the type of
the Any, you narrow the resulting DynAny object reference to one of
the following complex types of object references:
DynFixed
DynStruct
DynSequence
DynArray
DynUnion
DynEnum
DynValue

Finally, you can use DynAny.to_any() (which each of these classes
inherits from the DynAny class) to create an Any value from the con-
structed DynAny.

Exceptions MARSHAL: an attempt is made to exported references to DynAnyFactory
objects to other processes or if an attempt is made to externalized
them with ORB.object_to_string(). DynAnyFactory objects are intend-
ed to be local to the process in which they are created and used.

package org.omg.DynamicAny;

public interface DynAnyFactory extends org.omg.CORBA.Object
{
 org.omg.DynamicAny.DynAny create_dyn_any(
 org.omg.CORBA.Any value
) throws

org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode;

 org.omg.DynamicAny.DynAny create_dyn_any_from_type_code(
 org.omg.CORBA.TypeCode type
) throws

org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode;

}

DynAnyFactory::create_dyn_any()
// Java
org.omg.DynamicAny.DynAny create_dyn_any(
 org.omg.CORBA.Any value
);

Returns a new DynAny object from an Any value.

 600 Orbix CORBA Programmer’s Reference: Java

Parameters

A copy of the TypeCode associated with the any value is assigned to
the resulting DynAny object. The value associated with the DynAny
object is a copy of the value in the original Any. The current posi-
tion of the created DynAny object is set to zero if the passed value
has components; otherwise, the current position is set to -1.

Exceptions InconsistentTypeCode: the value has a TypeCode with a TCKind of
tk_Principal, tk_native, or tk_abstract_interface.

See Also DynamicAny.DynAnyFactory.create_dyn_any_from_type_code()

DynAnyFactory::create_dyn_any_from_type_c
ode()
// Java
org.omg.DynamicAny.DynAny create_dyn_any_from_type_code(
 org.omg.CORBA.TypeCode type
);

Returns a new DynAny object from a TypeCode value. Depending on
the TypeCode, the created object may be of type DynAny, or one of
its derived types, such as DynStruct. The returned reference can be
narrowed to the derived type.

Parameters

Table 13 shows the initial default values set depending on the type
created:

value An Any value to use to set the DynAny object.

type A TypeCode value to use to set the DynAny object.

Table 13: Default Values When Using create_dyn_any_from_type_code()

Type Default Value

Any values An Any containing a TypeCode with a TCKind value
of tk_null and no value.

boolean FALSE

char zero

DynArray The operation sets the current position to zero
and recursively initializes elements to their
default value.

DynEnum The operation sets the current position to -1 and
sets the value of the enumerator to the first
enumerator value indicated by the TypeCode.

DynFixed Operations set the current position to -1 and
sets the value to zero.

DynSequence The operation sets the current position to -1 and
creates an empty sequence.

Orbix CORBA Programmer’s Reference: Java 601

Exceptions InconsistentTypeCode: the TypeCode has a TCKind of tk_Principal,
tk_native, or tk_abstract_interface.

See Also DynamicAny.DynAnyFactory.create_dyn_any()

DynAnyFactory::InconsistentTypeCode User
Exception Class
// Java
package org.omg.DynamicAny.DynAnyFactoryPackage;
public final class InconsistentTypeCode
 extends org.omg.CORBA.UserException
{

 public InconsistentTypeCode() {
 super(InconsistentTypeCodeHelper.id());
 }
}

A user exception meaning that a parameter has an inconsistent
TypeCode compared to the object.

DynStruct The operation sets the current position to -1 for
empty exceptions and to zero for all other
TypeCode values. The members (if any) are recur-
sively initialized to their default values.

DynUnion The operation sets the current position to zero.
The discriminator value is set to a value consis-
tent with the first named member of the union.
That member is activated and recursively initial-
ized to its default value.

DynValue The members are initialized as for a DynStruct.

numeric types zero

object refer-
ences

nil

octet zero

string the empty string

TypeCode A TypeCode with a TCKind value of tk_null

wchar zero

wstring the empty string

Table 13: Default Values When Using create_dyn_any_from_type_code()

Type Default Value

 602 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 603

DynamicAny::DynArray Class
DynArray objects let you dynamically manipulate Any values as
arrays. The following methods let you get and set array elements:
get_elements()
set_elements()
get_elements_as_dyn_any()
set_elements_as_dyn_any()

This class inherits from the DynAny class. Use component_count() to
get the dimension of the array. Use the iteration methods such as
seek() to access portions of the array.
// Java
package org.omg.DynamicAny;

public interface DynArray extends
 org.omg.DynamicAny.DynAny
{
 org.omg.CORBA.Any[] get_elements();

 void set_elements(
 org.omg.CORBA.Any[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.DynamicAny.DynAny[] get_elements_as_dyn_any();

 void set_elements_as_dyn_any(
 org.omg.DynamicAny.DynAny[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

DynArray::get_elements()
// Java
org.omg.CORBA.Any[] get_elements();

Returns a sequence of Any values containing the elements of the
array.

See Also DynamicAny::DynArray::set_elements()
DynamicAny::DynArray::get_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::get_elements_as_dyn_any()
// Java
org.omg.DynamicAny.DynAny[] get_elements_as_dyn_any();

Returns a sequence of DynAny objects that describes each member
in the array.

 604 Orbix CORBA Programmer’s Reference: Java

Use this method instead of get_elements() if you want to avoid
converting DynAny objects to Any objects when your application
needs to handle DynArray objects extensively.

See Also DynamicAny::DynArray::get_elements()
DynamicAny::DynArray::set_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::set_elements()
// Java
void set_elements(
 org.omg.CORBA.Any[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Sets the array values with a sequence of Any values.

Parameters

This method sets the current position to -1 if the sequence has a
zero length and it sets it to 0 otherwise.

Exceptions TypeMismatch is raised if an inconsistent value is passed in the
sequence.

InvalidValue is raised if the sequence length does not match the
array length.

See Also DynamicAny::DynArray::get_elements()
DynamicAny::DynArray::set_elements_as_dyn_any()
DynamicAny::DynAny::component_count()

DynArray::set_elements_as_dyn_any()
// Java
void set_elements_as_dyn_any(
 org.omg.DynamicAny.DynAny[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the array data associated with a DynArray object from a
sequence of DynAny objects. Use this method instead of
set_elements() if you want to avoid converting DynAny objects to Any
objects when your application needs to handle DynArray objects
extensively.

Parameters

This method sets the current position to -1 if the sequence has a
zero length and it sets it to 0 otherwise.

Exceptions TypeMismatch is raised if an inconsistent value is passed in the
sequence.

value A sequence of Any values containing the elements for
the array.

value A sequence of DynAny objects representing the array
elements.

Orbix CORBA Programmer’s Reference: Java 605

InvalidValue is raised if the sequence length does not match the
array length.

See Also DynamicAny::DynArray::get_elements_as_dyn_any()
DynamicAny::DynArray::set_elements()
DynamicAny::DynAny::component_count()

 606 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 607

DynamicAny::DynEnum Class
A DynEnum object lets you dynamically manipulate an Any value as
an enumerated value. The key methods allow you to get and set a
value as an IDL identifier string or you can manipulate the number
that the enumerated value represents:
get_as_string()
set_as_string()
get_as_ulong()
set_as_ulong()

This class inherits from the DynAny class. The current position of a
DynEnum is always -1 because it can only be one value at a given
time.
// Java
package org.omg.DynamicAny;

public interface DynEnum extends
 org.omg.DynamicAny.DynAny
{
 java.lang.String value_as_string();

 void set_value_as_string(
 java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 int get_as_ulong();

 void set_as_ulong(
 int value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

DynEnum::value_as_string()
// Java
java.lang.String value_as_string();

Returns a string for the DynEnum that represents the IDL enumeration
identifier.

See Also DynamicAny::DynEnum::set_as_string()
DynamicAny::DynEnum::get_as_ulong()

DynEnum::get_as_ulong()
// Java
int get_as_ulong();

Returns a number for the DynEnum that represents the enumerated
ordinal value. Enumerators have ordinal values of 0 to n-1, as they
appear from left to right in the corresponding IDL definition.

See Also DynamicAny::DynEnum::set_as_ulong()

 608 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynEnum::value_as_string()

DynEnum::set_as_string()
// Java
void set_value_as_string(
 java.lang.String value
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Sets the enumerated identifier string value for the DynEnum.

Parameters

Exceptions

See Also DynamicAny::DynEnum::value_as_string()
DynamicAny::DynEnum::set_as_ulong()

DynEnum::set_as_ulong()
Sets the numerical value for the DynEnum that represents the enu-
merated ordinal value.

Parameters

Exceptions

See Also DynamicAny::DynEnum::get_as_ulong()
DynamicAny::DynEnum::set_as_string()

value The identifier string to set the enumerated value to.

InvalidValue The value string is not a valid IDL identifier for the cor-
responding IDL enumerated type.

value The number to set the enumerated value to.

InvalidValue The value is outside the range of ordinal values for the
corresponding IDL enumerated type.

 Orbix CORBA Programmer’s Reference: Java 609

DynamicAny::DynFixed Class
A DynFixed object lets you dynamically manipulate an Any value as
a fixed point value. This class inherits from the DynAny class. The
key methods include get_value() and set_value().
These methods use strings to represent fixed-point values. A
fixed-point format consists of an integer part of digits, a decimal
point, a fraction part of digits, and a d or D. Examples include:
1.2d
35.98D
456.32
.467

Either the integer part or the fraction part (but not both) may be
missing. The decimal point is not required for whole numbers. The
d or D are optional. leading or trailing white space is allowed.
// Java
package org.omg.DynamicAny;

public interface DynFixed extends
 org.omg.DynamicAny.DynAny
{
 java.lang.String get_value();

 boolean set_value(
 java.lang.String val
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

DynFixed::get_value()
// Java
java.lang.String get_value();

Returns a string representing the fixed value of the DynFixed object.

See Also DynamicAny::DynFixed::set_value()

DynFixed::set_value()
// Java
boolean set_value(
 java.lang.String val
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Sets the value of the DynFixed. The method returns true if val can
be represented as the DynFixed without loss of precision. If val has
more fractional digits than can be represented in the DynFixed, the
fractional digits are truncated and the method returns false.

 610 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also DynamicAny::DynFixed::get_value()

val A string containing the fixed point value to be set in
the DynFixed. The string must contain a fixed string
constant in the same format as would be used for IDL
fixed-point literals. However, the trailing d or D is
optional.

InvalidValue val contains a value whose scale exceeds that of the
DynFixed or is not initialized.

TypeMismatch val does not contain a valid fixed-point literal or con-
tains extraneous characters other than leading or
trailing white space.

 Orbix CORBA Programmer’s Reference: Java 611

DynamicAny::DynSequence Class
DynSequence objects let you dynamically manipulate Any values as
sequences. The key methods allow you to manage the sequence
length and get and set sequence elements:
get_length()
set_length()
get_elements()
set_elements()
get_elements_as_dyn_any()
set_elements_as_dyn_any()

This class inherits from the DynAny class.
// Java
package org.omg.DynamicAny;

public interface DynSequence extends
 org.omg.DynamicAny.DynAny
{
 int length();

 void set_length(
 int len
) throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.CORBA.Any[] get_elements();

 void set_elements(
 org.omg.CORBA.Any[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.DynamicAny.DynAny[] get_elements_as_dyn_any();

 void set_elements_as_dyn_any(
 org.omg.DynamicAny.DynAny[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

DynSequence::get_elements()
org.omg.CORBA.Any[] get_elements();

Returns a sequence of Any values containing the elements of the
sequence.

See Also DynamicAny::DynSequence::set_elements()
DynamicAny::DynSequence::get_elements_as_dyn_any()

 612 Orbix CORBA Programmer’s Reference: Java

DynSequence::get_elements_as_dyn_any()
org.omg.DynamicAny.DynAny[] get_elements_as_dyn_any();

Returns a sequence of DynAny objects that describes each member
in the sequence.

Use this method instead of get_elements() if you want to avoid
converting DynAny objects to Any objects when your application
needs to handle DynSequence objects extensively.

See Also DynamicAny::DynSequence::get_elements()
DynamicAny::DynSequence::get_elements_as_dyn_any()

DynSequence::length()
int length();

Returns the number of elements in the sequence.

See Also DynamicAny::DynSequence::set_length()
DynamicAny::DynSequence::get_elements()

DynSequence::set_elements()
void set_elements(
 org.omg.CORBA.Any[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Sets the sequence values.

Parameters

This method sets the current position to -1 if the sequence has a
zero length and it sets it to 0 otherwise.

Exceptions

See Also DynamicAny::DynSequence::get_elements()
DynamicAny::DynSequence::set_elements_as_dyn_any()
DynamicAny::DynSequence::length()
DynamicAny::DynSequence::set_length()

value A sequence of Any values containing the elements for
the sequence.

Invalidvalue The parameter’s length is greater than the DynSequence
length.

TypeMismatch an inconsistent value is passed in. This can happen if:
• The element type codes between the DynSequence

and the parameter do not agree.
• The DynSequence is a bounded sequence and the

number of elements in the parameter are greater
than the bound allows.

Orbix CORBA Programmer’s Reference: Java 613

DynSequence::set_elements_as_dyn_any()
void set_elements_as_dyn_any(
 org.omg.DynamicAny.DynAny[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the sequence data associated with a DynSequence object
from a sequence of DynAny objects. Use this method instead of
set_elements() if you want to avoid converting DynAny objects to Any
objects when your application needs to handle DynSequence objects
extensively.

Parameters

This method sets the current position to -1 if the sequence has a
zero length and it sets it to 0 otherwise.

Exceptions

See Also DynamicAny::DynSequence::get_elements_as_dyn_any()
DynamicAny::DynSequence::set_elements()
DynamicAny::DynSequence::length()
DynamicAny::DynSequence::set_length()

DynSequence::set_length()
Sets the length of the sequence.

Parameters

Increasing the length adds new (default-initialized) elements to
the end of the sequence without affecting existing elements in the
sequence. The new current position is set to the first new element
if the previous current position was -1. The new current position
remains the same as the old one if the previous current position
indicates a valid element (was anything but -1).
Decreasing the length removes elements from the end of the
sequence without affecting the rest of the elements. The new cur-
rent position is as follows:
• If the previous current position indicates a valid element and

that element is not removed, the new current position
remains the same.

• If the previous current position indicates a valid element and
that element is removed, the new current position is set to -1.

value A sequence of DynAny objects to represent the ele-
ments of the DynSequence.

Invalidvalue The parameter’s length is greater than the DynSequence
length.

TypeMismatch An inconsistent value is passed in. This can happen if:
• The element type codes between the DynSequence

and the parameter do not agree.
• The DynSequence is a bounded sequence and the

number of elements in the parameter are greater
than the bound allows.

len The length desired for the sequence.

 614 Orbix CORBA Programmer’s Reference: Java

• If the sequence length is set to 0, the new current position is
set to -1.

• If the previous current position was -1, the new current posi-
tion remains -1.

Exceptions

See Also DynamicAny::DynSequence::length()
DynamicAny::DynSequence::set_elements()

InvalidValue An attempt is made to increase the length of a
bounded sequence to a value greater than the bound.

 Orbix CORBA Programmer’s Reference: Java 615

DynamicAny::DynStruct Class
You use DynStruct objects for dynamically handling structures and
exceptions in Any values. This class inherits from the DynAny class.
Key methods allow you to set and get the structure (or exception)
as a sequence of name-value pairs:
get_members()
set_members()
get_members_as_dyn_any()
set_members_as_dyn_any()

Use the DynAny iteration methods such as seek() to set the current
position to a member of the structure. You can also obtain the
name and kind of TypeCode for a member at the current position:
current_member_name()
current_member_kind()

// Java
package org.omg.DynamicAny;

public interface DynStruct extends
 org.omg.DynamicAny.DynAny
{
 java.lang.String current_member_name() throws

org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 org.omg.DynamicAny.NameValuePair[] get_members();

 void set_members(
 org.omg.DynamicAny.NameValuePair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.DynamicAny.NameDynAnyPair[]
get_members_as_dyn_any();

 void set_members_as_dyn_any(
 org.omg.DynamicAny.NameDynAnyPair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

DynStruct::current_member_kind()
org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Returns the kind of TypeCode associated with the current position.

 616 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynStruct::current_member_name()

DynStruct::current_member_name()
java.lang.String current_member_name() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Returns the name of the member at the current position. This
method can return an empty value since the TypeCode of the value
being manipulated may not contain the names of members.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynStruct::current_member_kind()

DynStruct::get_members()
org.omg.DynamicAny.NameValuePair[] get_members();

Returns a sequence of members that describes the name and the
value of each member in the structure (or exception) associated
with a DynStruct object.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the DynStruct. The current
position is not affected. The member names in the returned
sequence will be empty strings if the TypeCode of the DynStruct
does not contain member names.

See Also DynamicAny::DynStruct::set_members()
DynamicAny::DynStruct::get_members_as_dyn_any()

DynStruct::get_members_as_dyn_any()
org.omg.DynamicAny.NameDynAnyPair[] get_members_as_dyn_any();

Returns a sequence of name-DynAny pairs that describes each
member in the structure (or exception) associated with a DynStruct
object. Use this method instead of get_members() if you want to avoid
converting DynAny objects to any objects when your application needs
to handle DynStruct objects extensively.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the DynStruct. The current
position is not affected. The member names in the returned
sequence will be empty strings if the TypeCode of the DynStruct
does not contain member names.

See Also DynamicAny::DynStruct::set_members_as_dyn_any()

TypeMismatch The DynStruct object represents an empty exception.
InvalidValue The current position does not indicate a member.

TypeMismatch DynStruct object represents an empty exception.
InvalidValue The current position does not indicate a member.

Orbix CORBA Programmer’s Reference: Java 617

DynamicAny::DynStruct::get_members()

DynStruct::set_members()
void set_members(
 org.omg.DynamicAny.NameValuePair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the structure data associated with a DynStruct object from
a sequence of name-value pairs.

Parameters

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.
Members in the sequence must follow these rules:
• Members must be in the order in which they appear in the IDL

specification of the structure.
• If member names are supplied in the sequence, they must

either match the corresponding member name in the TypeCode
of the DynStruct or they must be empty strings.

• Members must be supplied in the same order as indicated by
the TypeCode of the DynStruct. The method does not reassign
member values based on member names.

Exceptions

See Also DynamicAny::DynStruct::get_members()
DynamicAny::DynStruct::set_members_as_dyn_any()

DynStruct::set_members_as_dyn_any()
void set_members_as_dyn_any(
 org.omg.DynamicAny.NameDynAnyPair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the structure data associated with a DynStruct object from
a sequence of name-DynAny pairs. Use this method instead of
set_members() if you want to avoid converting DynAny objects to any

value A sequence of name-value pairs representing member
names and the values of the members.

InvalidValue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynStruct.

TypeMismatch Raised if:
• One or more sequence elements have a type that

is not equivalent to the TypeCode of the corre-
sponding member.

• The member names do not match the correspond-
ing member name in the TypeCode of the DynStruct.

 618 Orbix CORBA Programmer’s Reference: Java

objects when your application needs to handle DynStruct objects
extensively.

Parameters

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.
Members in the sequence must follow these rules:
• Members must be in the order in which they appear in the IDL

specification of the structure.
• If member names are supplied in the sequence, they must

either match the corresponding member name in the TypeCode
of the DynStruct or they must be empty strings.

• Members must be supplied in the same order as indicated by
the TypeCode of the DynStruct. The method does not reassign
DynAny values based on member names.

Exceptions

See Also DynamicAny::DynStruct::get_members_as_dyn_any()
DynamicAny::DynStruct::set_members()

value A sequence of name-DynAny pairs representing mem-
ber names and the values of the members as DynAny
objects.

InvalidValue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynStruct.

TypeMismatch Raised if:
• One or more sequence elements have a type that

is not equivalent to the TypeCode of the corre-
sponding member.

• The member names do not match the correspond-
ing member name in the TypeCode of the DynStruct.

 Orbix CORBA Programmer’s Reference: Java 619

DynamicAny::DynUnion Class
The DynUnion class lets you dynamically manage an Any value as a
union value. This class inherits from the DynAny class. Key methods
to manipulate a union include:
has_no_active_member()
member()
member_kind()
member_name()

Other methods are available to manipulate a union’s discrimina-
tor:
discriminator_kind()
discriminator()
set_discriminator()
set_to_default_member()
set_to_no_active_member()

A union can have only two valid current positions: Zero denotes
the discriminator and 1 denotes the active member.
The value returned by DynAny::component_count() for a union
depends on the current discriminator: it is 2 for a union whose dis-
criminator indicates a named member, and 1 otherwise.
// Java
package org.omg.DynamicAny;

public interface DynUnion extends
 org.omg.DynamicAny.DynAny
{
 org.omg.DynamicAny.DynAny discriminator();

 void set_discriminator(
 org.omg.DynamicAny.DynAny d
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 void set_to_default_member() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 void set_to_no_active_member() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

 boolean has_no_active_member();

 org.omg.CORBA.TCKind discriminator_kind();

 org.omg.DynamicAny.DynAny member() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 java.lang.String member_name() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.CORBA.TCKind member_kind() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

 620 Orbix CORBA Programmer’s Reference: Java

DynUnion::discriminator_kind()
org.omg.CORBA.TCKind discriminator_kind();

Returns the kind of TypeCode of the union’s discriminator.

See Also DynamicAny::DynUnion::discriminator()
DynamicAny::DynUnion::set_discriminator()

DynUnion::discriminator()
org.omg.DynamicAny.DynAny discriminator();

Returns the current discriminator value of the DynUnion.

See Also DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::discriminator_kind()

DynUnion::has_no_active_member()
boolean has_no_active_member();

Returns true if the union has no active member (that is, the union’s
value consists solely of its discriminator because the discriminator
has a value that is not listed as an explicit case label). The method
returns false if:

• The IDL union has a default case.
• The IDL union’s explicit case labels use the entire range of dis-

criminator values.

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::set_to_default_member()
DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::member()
org.omg.DynamicAny.DynAny member() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the currently active member. Note that the returned
reference remains valid only for as long as the currently active
member does not change.

Parameters

See Also DynamicAny::DynUnion::member_kind()
DynamicAny::DynUnion::member_name()
DynamicAny::DynUnion::has_no_active_member()

DynUnion::member_kind()
org.omg.CORBA.TCKind member_kind() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the kind of TypeCode of the currently active member.

InvalidValue The union has no active member.

Orbix CORBA Programmer’s Reference: Java 621

Exceptions

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::member_name()

DynUnion::member_name()
java.lang.String member_name() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the name of the currently active member. The method
returns an empty string if the union’s TypeCode does not contain a
member name for the currently active member.

Exceptions

See Also DynamicAny::DynUnion::member()
DynamicAny::DynUnion::member_kind()

DynUnion::set_discriminator()
void set_discriminator(
 org.omg.DynamicAny.DynAny d
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the discriminator of the DynUnion.

Parameters

Setting the discriminator of a union sets the current position to 0 if
the discriminator value indicates a non-existent union member
(The method has_no_active_member() would return true in this
case). Otherwise, if the discriminator value indicates a named
union member, the current position is set to 1,
has_no_active_member() would return false, and component_count()
would return 2 in this case.

Exceptions

See Also DynamicAny::DynUnion::discriminator()
DynamicAny::DynUnion::has_no_active_member()
DynamicAny::DynUnion::set_to_default_member()

InvalidValue The method is called on a union without an active
member.

InvalidValue The method is called on a union without an active
member.

d The value to set the discriminator to. Setting the dis-
criminator to a value that is consistent with the cur-
rently active union member does not affect the
currently active member. Setting the discriminator to
a value that is inconsistent with the currently active
member deactivates the member and activates the
member that is consistent with the new discriminator
value (if there is a member for that value) by initializ-
ing the member to its default value.

TypeMismatch The TypeCode of the parameter is not equivalent to the
TypeCode of the union’s discriminator.

 622 Orbix CORBA Programmer’s Reference: Java

DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::set_to_default_member()
void set_to_default_member() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the discriminator to a value that is consistent with the value
of the default case of a union.

This method sets the current position to zero and causes
component_count() to return 2.

Exceptions

See Also DynamicAny::DynUnion::has_no_active_member()
DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::set_to_no_active_member()
DynamicAny::DynUnion::set_to_no_active_member()

DynUnion::set_to_no_active_member()
void set_to_no_active_member() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the discriminator to a value that does not correspond to any
of the union’s case labels.

This method sets the current position to zero and causes
DynAny::component_count() to return 1.

Exceptions

See Also DynamicAny::DynUnion::has_no_active_member()
DynamicAny::DynUnion::set_discriminator()
DynamicAny::DynUnion::set_to_default_member()

TypeMismatch The method is called on a union without an explicit
default case.

TypeMismatch Raised if this method is called on a union that:
• Does not have an explicit default case.
• Uses the entire range of discriminator values for

explicit case labels.

 Orbix CORBA Programmer’s Reference: Java 623

DynamicAny::DynValue Class
You use DynValue objects for dynamically handling value types in
Any values. Value types are used for objects-by-value. This class
inherits from the DynAny class. Key methods allow you to set and
get the value type as a sequence of name-value pairs:
get_members()
set_members()
get_members_as_dyn_any()
set_members_as_dyn_any()

Use the DynAny iteration methods such as seek() to set the current
position to a member of the value type. You can also obtain the
name and kind of TypeCode for a member at the current position:
current_member_name()
current_member_kind()

The class is as follows:
// Java
package org.omg.DynamicAny;

public interface DynValue extends
 org.omg.DynamicAny.DynAny
{
 java.lang.String current_member_name() throws

org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.DynamicAny.NameValuePair[] get_members();

 void set_members(
 org.omg.DynamicAny.NameValuePair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

 org.omg.DynamicAny.NameDynAnyPair[]
get_members_as_dyn_any();

 void set_members_as_dyn_any(
 org.omg.DynamicAny.NameDynAnyPair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

}

See Also DynamicAny::DynAny

 624 Orbix CORBA Programmer’s Reference: Java

DynValue::current_member_kind()
org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the kind of TypeCode associated with the current position.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynValue::current_member_name()

DynValue::current_member_name()
java.lang.String current_member_name() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the name of the member at the current position. This
method can return an empty value since the TypeCode of the value
being manipulated may not contain the names of members.

Exceptions

See Also DynamicAny::DynAny::seek()
DynamicAny::DynValue::current_member_kind()

DynValue::get_members()
org.omg.DynamicAny.NameValuePair[] get_members();

Returns a sequence of members that describes the name and the
value of each member in the DynValue object.

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the DynValue. The current posi-
tion is not affected. The member names in the returned sequence
will be empty strings if the TypeCode of the DynValue does not con-
tain member names.

See Also DynamicAny::DynValue::set_members()
DynamicAny::DynValue::get_members_as_dyn_any()

DynValue::get_members_as_dyn_any()
org.omg.DynamicAny.NameDynAnyPair[] get_members_as_dyn_any();

Returns a sequence of name-DynAny pairs that describes each
member in the value type associated with a DynValue object. Use
this method instead of get_members() if you want to avoid converting
DynAny objects to Any objects when your application needs to handle
DynValue objects extensively.

TypeMismatch The DynValue object represents an empty value type.
InvalidValue The current position does not indicate a member.

TypeMismatch The DynValue object represents an empty value type.
InvalidValue The current position does not indicate a member.

Orbix CORBA Programmer’s Reference: Java 625

The sequence order is the same as the declaration order of mem-
bers as indicated by the TypeCode of the DynValue. The current posi-
tion is not affected. The member names in the returned sequence
will be empty strings if the TypeCode of the DynValue does not con-
tain member names.

See Also DynamicAny::DynValue::set_members_as_dyn_any()
DynamicAny::DynValue::get_members()

DynValue::set_members()
void set_members(
 org.omg.DynamicAny.NameValuePair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the data value associated with a DynValue object from a
sequence of name-value pairs.

Parameters

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.
Members in the sequence must follow these rules:
• Members must be in the order in which they appear in the IDL

specification.
• If member names are supplied in the sequence, they must

either match the corresponding member name in the TypeCode
of the DynValue or they must be empty strings.

• Members must be supplied in the same order as indicated by
the TypeCode of the DynValue. The method does not reassign
member values based on member names.

Exceptions

See Also DynamicAny::DynValue::get_members()
DynamicAny::DynValue::set_members_as_dyn_any()
DynamicAny::NameValuePair

values A sequence of name-value pairs representing member
names and the values of the members.

InvalidValue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynValue.

TypeMismatch Raised if:
• One or more sequence elements have a type that

is not equivalent to the TypeCode of the corre-
sponding member.

• The member names do not match the correspond-
ing member name in the TypeCode of the DynValue.

 626 Orbix CORBA Programmer’s Reference: Java

DynValue::set_members_as_dyn_any()
void set_members_as_dyn_any(
 org.omg.DynamicAny.NameDynAnyPair[] value
) throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch,

org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Initializes the data value associated with a DynValue object from a
sequence of name-DynAny pairs. Use this method instead of
set_members() if you want to avoid converting DynAny objects to any
objects when your application needs to handle DynValue objects
extensively.

Parameters

The current position is set to zero if the sequence passed in has a
non-zero length. The current position is set to -1 if an empty
sequence is passed in.
Members in the sequence must follow these rules:
• Members must be in the order in which they appear in the IDL

specification of the structure.
• If member names are supplied in the sequence, they must

either match the corresponding member name in the TypeCode
of the DynValue or they must be empty strings.

• Members must be supplied in the same order as indicated by
the TypeCode of the DynValue. The method does not reassign
DynAny values based on member names.

Exceptions

See Also DynamicAny::DynValue::get_members_as_dyn_any()
DynamicAny::DynValue::set_members()
DynamicAny::NameDynAnyPair

value A sequence of name-DynAny pairs representing mem-
ber names and the values of the members as DynAny
objects.

InvalidValue The sequence has a number of elements that dis-
agrees with the number of members as indicated by
the TypeCode of the DynValue.

TypeMismatch Raised if:
• One or more sequence elements have a type that

is not equivalent to the TypeCode of the corre-
sponding member.

• The member names do not match the correspond-
ing member name in the TypeCode of the DynValue.

 Orbix CORBA Programmer’s Reference: Java 627

GSSUP Overview
The Generic Security Service username/password (GSSUP) IDL
module defines the data types needed for the GSSUP mechanism.
This reference page is an extract from the GSSUP module that
includes only the data types needed for the IT_CSI module.

GSSUP::GSSUPMechOID
const CSI::StringOID GSSUPMechOID = "oid:2.23.130.1.1.1";

The GSS Object Identifier allocated for the username/password
mechanism, which is defined as follows:
{ iso-itu-t (2) international-organization (23) omg (130)

security (1) authentication (1) gssup-mechanism (1) }

See Also IT_CSI::AuthenticationService::client_authentication_mech
IT_CSI::AuthenticationServicePolicy::client_authentication

_mech

GSSUP::ErrorCode
typedef unsigned long ErrorCode;

The error code type returned by GSSUP operations.

See Also IT_CSI::AuthenticateGSSUPCredentials::authenticate()

GSSUP::GSS_UP_S_G_UNSPECIFIED
const ErrorCode GSS_UP_S_G_UNSPECIFIED = 1;

An error code indicating that the context validator has chosen not
to reveal the GSSUPspecific cause of the failure.

See Also IT_CSI::AuthenticateGSSUPCredentials::authenticate()

GSSUP::GSS_UP_S_G_NOUSER
const ErrorCode GSS_UP_S_G_NOUSER = 2;

An error code indicating that the user is unknown to the target.

See Also IT_CSI::AuthenticateGSSUPCredentials::authenticate()

GSSUP::GSS_UP_S_G_BAD_PASSWORD
const ErrorCode GSS_UP_S_G_BAD_PASSWORD = 3;

An error code indicating that the supplied password was incorrect.

See Also IT_CSI::AuthenticateGSSUPCredentials::authenticate()

 628 Orbix CORBA Programmer’s Reference: Java

GSSUP::GSS_UP_S_G_BAD_TARGET
const ErrorCode GSS_UP_S_G_BAD_TARGET = 4;

An error code indicating that the target name, by which is meant a
security policy domain (CSIv2 authentication domain), does not
match a security policy domain in the target.

See Also IT_CSI::AuthenticateGSSUPCredentials::authenticate()

 Orbix CORBA Programmer’s Reference: Java 629

The IT_Buffer Module
A proprietary implementation of a segmented buffer, for use in ART-based
applications.

Description ART Buffers are not expected to maintain storage in a contiguous
region of memory. Instead Buffers are made up of Segments and,
where appropriate, are optimized for bulk access to these
Segments. Segments, in turn, each represent a subrange of the
data contained in a Storage instance. Storage instances can be
shared by multiple Buffer instances, allowing messages to be
parsed without copying.

IT_Buffer::RawData

An IDL native type providing efficient access to a Buffer's data.

Description The RawData type provides access to a contiguous subset of the
bytes contained in a Buffer. It is an IDL native type that maps to
the language specific type that provides the most efficient access
for marshaling and demarshaling individual primitives as well as
for accessing bulk data.

Java implementation In Java, RawData maps to byte[] by default. If you are using
JDK1.4 and you have enabled Orbix to use Java’s new I/O (NIO),
the RawData type maps to java.nio.ByteBuffer instead.

IT_Buffer::StorageSeq

A sequence of local IT_Buffer::Storage objects.

 630 Orbix CORBA Programmer’s Reference: Java

IT_Buffer::Storage
A contiguous region of bytes of which subranges can be contained
in Buffers.

Description The ART core provides a heap-based Storage
implementation. Plug-ins may provide special purpose
Storage implementations—for example, referencing shared
memory.
Instances of Storage must be safe to access concurrently,
because they might be contained as Segments in multiple
Buffers.

Java implementation Because Storage instances potentially occupy significant
amounts of scarce resources, Java garbage collection cannot
be relied upon to reclaim instances that are no longer
needed in a timely manner. Instead, reference() and
unreference() operations are provided to explicitly maintain
a count of how many Buffer Segments reference a Storage
instance.

IT_Buffer::Storage::data

Provides access to the bytes in the Storage object.

IT_Buffer::Storage::length

The number of bytes in IT_Buffer::Storage::data.

IT_Buffer::Storage::another()

Obtain another Storage instance of the same implementation type,
and sharing any other relevant traits.

Returns An otherwise unused Storage instance.

Orbix CORBA Programmer’s Reference: Java 631

Parameters expiry

Latest time at which to give up. The Storage implementation is free to impose a stricter
expiry, for example for resource managment when more one call to another() is in
progress.

Exceptions CORBA::TIMEOUT

Raised if an appropriate Storage instance cannot be obtained before expiry.

CORBA::NO_RESOURCES

Raised if the operation gives up before the specified expiry time.

IT_Buffer::Storage::reference()

Increments the Storage instance's reference count.

Java implementation This method should be called whenever you assign the Storage
instance to a new Java reference.

IT_Buffer::Storage::unreference()

Decrement the Storage instance's reference count.

Java implementation This method should be called whenever a particular Java reference
is finished using the Storage instance. When the reference count
becomes zero, the Storage instance becomes available for re-use.

 632 Orbix CORBA Programmer’s Reference: Java

IT_Buffer::Segment
A contiguous subset of the data contained in a Buffer.

Description A Segment represents a contiguous subset of the bytes contained
in a Buffer. Segments are implemented by the ART core. Segment
instances belong to a specific Buffer instance and are not
reference counted in C++. Segment instances must be protected
from concurrent access. The data attribute may expose bytes that
belong to other Segments, which must not be examined or
modified via this Segment.

IT_Buffer::Segment::data

A reference to the block of raw memory where this segment is stored.

Java implementation In Java, the native RawData type maps to byte[] by default. If you
are using JDK1.4 and you have enabled Orbix to use Java’s new
I/O (NIO), the RawData type maps to java.nio.ByteBuffer instead.

IT_Buffer::Segment::offset

The offset in IT_Buffer::Segment::data at which this Segment's bytes
begin.

Description In other words, the first byte in this Segment is given by
Segment::data + Segment::offset.

IT_Buffer::Segment::length

The number of bytes in IT_Buffer::Segment::data that belong to this
Segment.

Description The value of length is always greater than zero.
For example, the index after the last byte in the segment is given
by Segment::data + Segment::offset + Segment::length.

IT_Buffer::Segment::underlying_storage

Returns the underlying storage as an IT_Buffer::Storage object.

Orbix CORBA Programmer’s Reference: Java 633

IT_Buffer::Buffer
A randomly accessible linear finite sequence of bytes.

Description A Buffer is made up of an ordered set of Segments, each providing
access to a contiguous subrange of the Buffer's data. Buffers are
implemented by the ART core, and instances must be protected
from concurrent access.

Java implementation Because Buffers potentially occupy significant amounts of scarce
resources, Java garbage collection cannot be relied upon to
reclaim Buffers that are no longer needed in a timely manner.
Instead, the recycle() operation must be called when a Buffer is
no longer needed. Note that many operations to which Buffers are
passed implicitly take responsibility for recycling those Buffers.

IT_Buffer::Buffer::length

The number of bytes within the Buffer currently available for use.

IT_Buffer::Buffer::original_length

The number of bytes originally allocated to the Buffer.

IT_Buffer::Buffer::storage_size

The allocation unit size of the Buffer's underlying Storage
implementation.

IT_Buffer::Buffer::segment_count

The number of segments currently available for use.

IT_Buffer::Buffer::rewind()

Ensures that a subsequent call to next_segment() will return the first
segment of the Buffer, or NULL if the length is zero.

IT_Buffer::Buffer::next_segment()

Gets the next Segment of the Buffer.

Description The first call to next_segment() after a Buffer has been allocated or
rewind() has been called returns the first Segment of the Buffer. A
subsequent call returns the Segment following the Segment that was
previously returned.

Returns The next segment, or NULL if the Buffer contains no additional segments.

 634 Orbix CORBA Programmer’s Reference: Java

IT_Buffer::Buffer::grow()

Attempts to increase the length of the Buffer.

Description On sucessful return, the Buffer's length will have increased by at
least increment bytes. It may be larger, if adding an integral
number of Storage instances results in more than the requested
number of bytes. If the most recent call to next_segment() had
returned NULL, a call subsequent to a successful grow() by a
non-zero increment will return the first newly added Segment.

Parameters increment

The minimum by which to increase the length.

expiry

Latest time at which to give up. The Buffer implementation is free to impose a stricter
expiry time.

Exceptions CORBA::TIMEOUT

Raised if the Buffer cannot be grown to at least new_length bytes before expiry.

CORBA::NO_RESOURCES

Raised if the operation gives up before the specified expiry time.

IT_Buffer::Buffer::trim()

Reduce the length, unreferencing any unneeded Storage instances.

Description Trim always rewinds the Buffer.

Parameters from

The index of the first byte to be included in the trimmed Buffer.

to

The index after the last byte to be included in the trimmed Buffer.

Exceptions CORBA::BAD_PARAM

Raised if an invalid subrange is specified.

IT_Buffer::Buffer::eclipse()

Hides or exposes an initial subrange of the Buffer data.

Description Nested eclipsing is allowed. The Buffer is always rewound by this
operation.

Parameters delta

Specifies the offset from the current Buffer start index to hide (when positive) or
expose (when negative)

Exceptions CORBA::BAD_PARAM

Raised if delta is outside the uneclipsed buffer.

Orbix CORBA Programmer’s Reference: Java 635

IT_Buffer::Buffer::recycle()

Returns the Buffer to the BufferManager's pool of unallocated Buffers,
unreferencing any Storage instances it contains.

Exceptions CORBA::BAD_INV_ORDER

Raised if the buffer is already recycled.

IT_Buffer::Buffer::prepend()

Concatenates another Buffer with this Buffer.

Description The contents of the head is inserted prior to the current first byte
of this Buffer. The head Buffer is implicitly recycled.

Parameters head

The other Buffer.

IT_Buffer::Buffer::append()

Concatenates this Buffer with another Buffer.

Description The contents of the tail is inserted after the current last byte of
this Buffer. The tail Buffer is implicitly recycled. If the most recent
call to next_segment() had returned NULL, a call subsequent to the
append() of a non-empty buffer returns the first appended
segment.

Parameters tail

The other Buffer.

IT_Buffer::Buffer::extract()

Extracts the specified range of bytes from this Buffer.

Description The specified range of bytes are returned as a new Buffer. This
Buffer is left containing the concatenation of the bytes before and
after the specified range. Both this Buffer and the result are
rewound.

Returns A new Buffer containing the exracted bytes.

Parameters from

The index of the first byte to extract.

to

The index after the last byte to extract.

Exceptions CORBA::BAD_PARAM

Raised if an invalid subrange is specified.

IT_Buffer::Buffer::copy_octets()

Copy a sub-range of the Buffer into an octet sequence.

 636 Orbix CORBA Programmer’s Reference: Java

Parameters buffer_offset

The offset into the Buffer to copy from.

dest

The destination octet sequence. The octets in the given sequence object can be modified,
but the implementation should not return a different sequence.

dest_offset

The offset into the destination to copy into.

length

The number of bytes to copy.

Exceptions CORBA::BAD_PARAM

Raised if an invalid sub-range of the Buffer is specified.

Orbix CORBA Programmer’s Reference: Java 637

IT_Buffer::BufferManager
A per-ORB singleton object for managing Buffers.

Description An instance of BufferManager is provided by the ART core, and is
obtained by resolving the IT_BufferManager initial reference string.

IT_Buffer::BufferManager::get_buffer()

Allocate a Buffer containing a single Segment that references the specified
range of the specified Storage instance.

Returns The newly allocated Buffer.

Parameters initial_segment_storage

The Storage object backing the initial segment.

initial_segment_offset

The offset in initial_segment_storage at which the initial segment begins.

initial_segment_length

The number of bytes in initial_segment_storage belonging to the initial segment.

IT_Buffer::BufferManager::get_segmented_buffer()

Allocates a Buffer containing a sequence of Segments, each backed by the
corresponding member of the provided sequence of Storages, bounded by
the relevant members of the offsets and lengths sequences.

Description Typically used by a wrapping Buffer implementation.

Returns The newly allocated Buffer.

Parameters storages

The sequence of Storage objects.

offsets

The sequence of offsets.

lengths

The sequence of lengths.

IT_Buffer::BufferManager::get_heap_buffer()

Allocate a Buffer containing the specified amount of heap-allocated
Storage.

Returns The newly allocated Buffer.

Parameters length

The number of bytes required; or zero, indicating a single Segment of the heap's
preferred size.

 638 Orbix CORBA Programmer’s Reference: Java

IT_Buffer::BufferManager::get_octets_buffer()

Allocate a Buffer referencing an octet sequence's data.

Returns The newly allocated Buffer.

Parameters octets

The octet sequence

offset

The offset into the octet sequence.

length

The number of octets to use.

 Orbix CORBA Programmer’s Reference: Java 639

IT_Certificate Overview
The IT_Certificate module provides data types and interfaces that
are used to manage and describe X.509 certificates. The following
interfaces are provided in this module:
• Certificate
• X509Cert
• X509CertificateFactory

IT_Certificate::CertError Exception
// IDL
exception CertError
{
 Error e;
};

A certificate-related error.

IT_Certificate::DERData Sequence
typedef sequence<octet> DERData;

Holds data in distinguished encoding rules (DER) format.

IT_Certificate::Error Structure
struct Error
{
 Error_code err_code;
 string error_message;
};

Holds certificate-related error information.

IT_Certificate::Error_code Type
typedef short Error_code;

Holds the certificate-related error codes.

Values This type can have one of the following integer constant values:
IT_TLS_FAILURE
IT_TLS_UNSUPPORTED_FORMAT
IT_TLS_BAD_CERTIFICATE_DATA
IT_TLS_ERROR_READING_DATA

IT_Certificate::X509CertChain Sequence
typedef sequence<X509Cert> X509CertChain;

A list of X509Cert object references.

 640 Orbix CORBA Programmer’s Reference: Java

IT_Certificate::X509CertList Sequence
typedef sequence<X509Cert> X509CertList;

A list of X509Cert object references.

 Orbix CORBA Programmer’s Reference: Java 641

IT_Certificate::AVA Interface
IDL // IDL in module IT_Certificate

interface AVA
{
 readonly attribute UShort set;
 readonly attribute ASN_OID oid;

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Individual AVA objects represent an element of the distinguished
name such as the common name field (CN) or organization unit
(OU). You can retrieve a desired AVA object can using the AVAList
class.
AVA objects can be converted to a number of different forms such
as string format or DER format.

AVA::convert()
// IDL
Bytes convert(in Format f) raises(CertError);

Description This operation returns the contents of the AVA object in the
requested data format.

Parameters This operation takes the following parameter

Exceptions

AVA::oid
// IDL
readonly attribute ASN_OID oid;

f The format of the required conversion. The following Format
values are supported:
IT_FMT_DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications
that require special processing of the DER data.
IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.
IT_FMT_HEX_STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

 CertError with
error code
IT_TLS_UNSUPPO
RTED_FORMAT

An unknown format is specified.

 642 Orbix CORBA Programmer’s Reference: Java

Description Return the ASN.1 OID tag for this AVA object, in the form of an
ASN_OID structure.

AVA::set
// IDL
readonly attribute UShort set;

Description A number that identifies the set to which the AVA belongs.
Because a set normally contains just a single AVA, the number
returned by the set attribute is usually distinct for each AVA.
Theoretically, more than one AVA could belong to the same set, in
which case two or more AVAs could share the same set number.
In practice, this rarely ever happens.

 Orbix CORBA Programmer’s Reference: Java 643

IT_Certificate::AVAList Interface
IDL // IDL in module IT_Certificate

interface AVAList
{
 typedef sequence<AVA> ListOfAVAs;
 readonly attribute ListOfAVAs ava_list;

 UShort get_num_avas();

 // Returns SUCCESSFUL or AVA_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_ava_by_oid_tag(
 in OIDTag t,
 out AVA a
) raises(CertError);

 // Returns SUCCESSFUL or AVA_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_ava_by_oid(
 in ASN_OID seq,
 in UShort n,
 out AVA a
) raises(CertError);

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(
 in Format f
) raises(CertError);
};

Description An AVAList is an abstraction of a distinguished name from a certif-
icate. An AVAList consists of a number of AVA objects.
Individual AVA objects represent an element of the distinguished
name such as the common name field (CN) or organization unit
(OU). You can retrieve a desired AVA object using the AVAList.
AVA objects can be converted to a number of different forms such
as string format or DER format.

AVAList::ava_list
IDL readonly attribute ListOfAVAs ava_list;

Description Returns the AVA list as a sequence of AVA object references.

AVAList::convert()
IDL Bytes convert(in Format f) raises (CertError);

Description This operation converts the AVAList to a specified format.

 644 Orbix CORBA Programmer’s Reference: Java

Parameters This operation takes the following parameter:

Exceptions

AVAList::get_ava_by_oid_tag()
IDL // Returns SUCCESSFUL or AVA_NOT_PRESENT

IT_Certificate::ReplyStatus
get_ava_by_oid_tag(
 in OIDTag t,
 out AVA a
) raises(CertError);

Description This operation retrieves an AVA object from an AVAList according to
its OID tag.

Parameters

AVAList::get_ava_by_oid()
IDL // Returns SUCCESSFUL or AVA_NOT_PRESENT

IT_Certificate::ReplyStatus
get_ava_by_oid(
 in ASN_OID seq,
 in UShort n,
 out AVA a
) raises(CertError);

Description This operation retrieves an AVA object from an AVAList, selected by
the specified ASN_OID structure.

Parameters

f The format of the required conversion. The following Format
values are supported:
IT_FMT_DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications that
require special processing of the DER data.
IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.
IT_FMT_HEX_STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

 CertError,
error code
IT_TLS_UNSUPPO
RTED_FORMAT

An unknown format is specified.

t An OID tag
a The returned AVA object reference.

seq An ASN OID.
n

Orbix CORBA Programmer’s Reference: Java 645

AVAList::get_num_avas()
IDL UShort get_num_avas()

Description This operation retrieves the number of AVA objects in a AVAList.

a The returned AVA object reference.

 646 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 647

IT_Certificate::Certificate
Interface
IDL // IDL in module IT_Certificate

interface Certificate
{
 readonly attribute DERData encoded_form;
};

Description This is the base interface for security certificate objects.

Certificate::encoded_form
IDL readonly attribute DERData encoded_form;

Description This attribute returns the certificate data encoded in DER format.

 648 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 649

IT_Certificate::Extension
Interface
IDL // IDL in module IT_Certificate

interface Extension
{
 readonly attribute UShort critical;
 readonly attribute ASN_OID oid;

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Description The Extension interface provides the developer with an interface to
any X.509 version 3.0 extensions that an X.509 certificate can
contain.
The Extension interface enables you to access the data for one
particular extension. Using the Extension::convert() operations,
the data can be converted into a number of representations.

Extension::convert()
IDL Bytes convert(in Format f) raises(CertError);

Description This operation returns data that corresponds to the contents of
the Extension object converted to the requested format. The data
is converted to the requested format and returned as an array of
bytes.

Parameters This operation takes the following parameter:

Extension::critical
IDL readonly attribute UShort critical;

Description This attribute returns a non-zero value if the extension is critical;
zero if the extension is not critical. A critical extension is an exten-
sion that should not be ignored by the authentication code.

f The format of the required conversion. The following
Format values are supported:
IT_FMT_DER. This format corresponds to the DER encod-
ing of the extension. This option is usually only used by
applications that require special processing of the DER
data.
IT_FMT_STRING. This format corresponds to a null termi-
nated sequence of characters containing the actual data
contained in the extension. This data has not been mod-
ified in any way, and may include non printable charac-
ters if present in the actual extension data. This is a
regular 'C' string for printable string fields.
IT_FMT_HEX_STRING. This format contains a formatted
hexadecimal dump of the DER data of the extension.

 650 Orbix CORBA Programmer’s Reference: Java

Extension::oid
IDL readonly attribute ASN_OID oid;

Description This attribute returns the ASN.1 OID for the extension. Extensions
are identified by an ASN.1 OID, just like regular AVAs.

 Orbix CORBA Programmer’s Reference: Java 651

IT_Certificate::ExtensionList
Interface
IDL // IDL in module IT_Certificate

interface ExtensionList
{
 typedef sequence<Extension> ListOfExtensions;
 readonly attribute ListOfExtensions ext_list;

 UShort get_num_extensions();

 // Returns SUCCESSFUL or EXTENSION_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_extension_by_oid_tag(
 in OIDTag t,
 out Extension e
) raises(CertError);

 // Returns SUCCESSFUL or EXTENSION_NOT_PRESENT
 IT_Certificate::ReplyStatus
 get_extension_by_oid(
 in ASN_OID seq,
 in UShort n,
 out Extension e
) raises(CertError);

 // raises minor code IT_TLS_UNSUPPORTED_FORMAT
 Bytes convert(in Format f) raises(CertError);
};

Description The Extension and ExtensionList interfaces provide you with
access to any X.509 version three extensions.
The Extension interface provides an interface to accessing the data
for one particular extension.

ExtensionList::convert()
IDL Bytes convert(in Format f) raises(CertError);

Description convert() returns data in the requested format corresponding to
the contents of the ExtensionList object. The operation returns
this data as an array of bytes, or NULL if the the required conver-
sion is not supported.

Note: Generally convert() is called on the individual extensions. This
operation is not commonly used.

 652 Orbix CORBA Programmer’s Reference: Java

Parameters This operation takes the following parameter:

Exceptions

ExtensionList::ext_list
IDL readonly attribute ListOfExtensions ext_list;

Description This attribute returns the complete list of extensions as a
sequence of Extension objects.

ExtensionList::get_extension_by_oid()
IDL IT_Certificate::ReplyStatus

get_extension_by_oid(
 in ASN_OID seq,
 in UShort n,
 out Extension e
) raises(CertError);

Description Obtains the Extension element of the ExtensionList that has the
requested object identifier, seq.
f the extension is found, a SUCCESSFUL reply status is returned; oth-
erwise an EXTENSION_NOT_PRESENT reply status is returned.

Parameters This operation takes the following parameters

ExtensionList::get_extension_by_oid_tag()
IDL IT_Certificate::ReplyStatus

get_extension_by_oid_tag(
 in OIDTag t,
 out Extension e

f The format of the required conversion. The following Format
value is supported:
IT_FMT_DER. This format corresponds to the DER encoding of
the AVA. This option is usually only used by applications that
require special processing of the DER data.
IT_FMT_STRING. This format corresponds to a null-terminated
sequence of characters containing the actual data of the
AVA. The data is not modified in any way, and can include
non-printable characters if present in the actual AVA data.
This is a string for normal printable string fields.
IT_FMT_HEX_STRING. This format corresponds to a formatted
hexadecimal dump of the DER data of the AVA.

 CertError, error code
IT_TLS_UNSUPPORTED_FORMAT

An unknown format is specified.

seq An array of integers representing the ASN.1 object iden-
tifier.

n The number of elements in the array.
e The returned Extension object.

Orbix CORBA Programmer’s Reference: Java 653

) raises(CertError);

Description Obtains the Extension element of the ExtensionList that corre-
sponds to the supplied OIDTag value, t.
If the extension is found, a SUCCESSFUL reply status is returned;
otherwise an EXTENSION_NOT_PRESENT reply status is returned.

Parameters

ExtensionList::get_num_extensions();
IDL UShort get_num_extensions();

Description This operation returns the number of extensions in the list.

t The OIDTag variable that identifies the extension to retrieve.
e The returned Extension object.

 654 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 655

IT_Certificate::X509Cert
Interface
IDL // IDL in module IT_Certificate

interface X509Cert : IT_Certificate::Certificate
{
 // The only X509Cert definition supported in
 // Java is the inherited
 // IT_Certificate::Certificate::encoded_form attribute.
};

Description The IT_Certificate::X509Cert is the type of object returned by cer-
tain operations and attributes in the IT_TLS_API module. The only
operation or attribute supported by the X509Cert interface is the
encoded_form attribute, which is inherited from
IT_Certificate::Certificate.
To access the information in a Java X.509 certificate, it is recom-
mended that you perform the following steps:
1. Extract the DER data from the certificate using the

IT_Certificate::Certificate::encoded_form attribute.

2. Pass the DER data to the
com.iona.corba.tls.cert.CertHelper.bytearray_to_cert()
method to obtain a java.security.cert.Certificate object.

3. Use the java.security.cert package to examine the certificate.

 656 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 657

IT_Certificate::X509CertificateFa
ctory Interface
IDL // IDL in module IT_Certificate

interface X509CertificateFactory
{
 // Following function creates x509Cert from DER data.
 // where DERData is a sequence of octets
 //
 // raises minor code IT_TLS_BAD_CERTIFICATE_DATA
 //
 X509Cert
 create_x509_certificate_from_der(
 in DERData der
) raises(CertError);

 //
 // Read CertList from a file.
 // raises minor code IT_TLS_BAD_CERTIFICATE_DATA.
 // raises minor code IT_TLS_ERROR_READING_DATA.
 //
 X509CertList
 load_x509_cert_list(
 in string location
) raises(CertError);
};

Description This interface is a factory that generates X.509 certificates of
IT_Certificate::X509Cert type.
This interface contains one operation, create_x509_cert(), that
generates an X.509 certificate on receiving data in the form of
DER.

X509CertificateFactory::create_x509_certifica
te_from_der()

IDL X509Cert
create_x509_certificate_from_der(
 in DERData der
) raises(CertError);

Description Generates an X.509 certificate based on a parameter supplied in
DER format, der.

Parameters This operation takes the following parameter:

Exceptions

der The certificate data in DER format (of DERData type).

 CertError,
error code
IT_TLS_BAD_CER
TIFICATE_DATA

The der parameter is inconsistent or incorrectly for-
matted

 658 Orbix CORBA Programmer’s Reference: Java

X509CertificateFactory::load_x509_cert_list()
IDL X509CertList

load_x509_cert_list(in string location) raises(CertError);

Description Generates a list of X.509 certificates based on data read from the
file specified by location. The file must contain a chain of certifi-
cates in PEM format.

Parameters This operation takes the following parameter:

Exceptions

location The absolute path name of the file containing the PEM
certificate chain.

CertError,
error code
IT_TLS_ERRO
R_READING_D
ATA

Orbix cannot read the specified certificate file

CertError,
error code
IT_TLS_BAD_
CERTIFICATE
_DATA

The content of the certificate file is inconsistent or
incorrectly formatted.

 Orbix CORBA Programmer’s Reference: Java 659

IT_Config Overview
Every ORB is associated with a configuration domain that provides
it with configuration information. The configuration mechanism
enables Orbix to get its configuration information from virtually
any source including files or configuration repositories. The
IT_Config module contains the API to both get configuration set-
tings and receive notifications when a particular configuration
value changes. The module contains the following interfaces:
• Configuration
• Listener
The IT_Config module does not give you a mechanism for chang-
ing configurations. Administrators typically setup and manage a
configuration domain using various tools described in the Applica-
tion Server Platform Administrator’s Guide.
A single configuration domain can hold configuration information for
multiple ORBs – each ORB uses its ORB name as a “key” to locate
its particular configuration within the domain. Often, an adminis-
trator will want to use a default configuration domain for a group
of applications, overriding only certain configuration variables for
individual applications or ORBs. This might be useful within a hier-
archical organization, or where different development groups or
applications need slightly different configurations.
A configuration domain can be organized into a hierarchy of
nested configuration scopes to enable a high degree of flexibility.
Each scope within a domain must be uniquely named relative to its
containing scope. Scope names consist of any combinations of
alphanumeric characters and underscores. Scopes are usually
identified by their fully qualified name, which contains the scope
name and the names of all parent scopes, separated by a dot (.).
Within each configuration scope, variables are organized into con-
figuration contexts. A configuration context is simply a collection of
related configuration variables. A context may also contain
sub-contexts. You can consider the configuration scope as the root
context. Contained in the root context are a number of sub-con-
texts. For example, there is a plug-ins context and an initial-refer-
ences context. The initial-references context contains a list of
initial-references for the services available to the system. The
plug-ins context contains a sub-context for each plug-in, in which
it holds its configuration information. This context will have the
same name as the plug-in, and will hold information such as the
name of the plug-in library and any dependencies the plug-in has,
as well as other plug-in-specific settings.
You as a programmer need not worry about this configuration
hierarchy set up by your administrator. You simply request config-
uration values via the Configuration interface. See the Application
Server Platform Administrator’s Guide for more on configuration.

IT_Config::ConfigList Sequence
// IDL
typedef sequence<string> ConfigList;

 660 Orbix CORBA Programmer’s Reference: Java

A list of configuration settings as strings.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::get_list()
IT_Config::Listener::list_changed()

IT_Config::ListenerTargetRange Enumeration
// IDL
enum ListenerTargetRange {
 OBJECT_ONLY,
 ONELEVEL,
 SUBTREE
};

A target scope refers to the extent of a configuration hierarchy that
a Listener object monitors.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::add_listener()

OBJECT_SCOPE The Listener is only interested in changes to the
specific target variable. For example, a Listener
with a target variable of
initial_references:Naming:reference and a tar-
get scope of OBJECT_SCOPE is informed if that vari-
able changes.

ONELEVEL_SCOPE The Listener is interested in changes to variables
contained in the target, a configuration context,
but not the target itself. For example, if the tar-
get is plugins:iiop, the Listener is informed of
any changes to variable in the plugins:iiop con-
figuration context.

SUBTREE_SCOPE The Listener is interested in changes to the tar-
get and any variables or namespaces in the sub-
tree of the target. For example, if the target is
initial_references, the Listener is informed of
any changes to anything under the
initial_references namespace, including the
namespace itself.

 Orbix CORBA Programmer’s Reference: Java 661

IT_Config::Configuration
Interface

This interface provides access to configuration information. You
get a reference to a Configuration implementation by calling
ORB::resolve_initial_references() with the string argument
IT_Configuration.
In a configuration domain, the ORB name acts as the configuration
scope in which to start looking for configuration information. The
ORB supplies this information when querying the configuration
system for a configuration variable. If the variable cannot be
found within that scope or the scope does not exist, the system
recursively searches the containing scope. For example, if an ORB
with an ORB name of IONA.ProdDev.TestSuite.TestMgr requests a
variable, the system will first look in the
IONA.ProdDev.TestSuite.TestMgr scope, then
IONA.ProdDev.TestSuite, and so on, until it finally looks in the root
scope. This allows administrators to place default configuration
information at the highest level scope, then override this informa-
tion in descendant scopes to produce a specific, tailored configura-
tion.
Although there are specific operations such as get_boolean() and
get_double() to retrieve certain types of configuration information,
the Configuration interface is not strictly typed. This means that
when a certain type of variable is requested, an effort is made to
convert the retrieved value to the requested type. For example, if
you call get_long(), and the domain has a string such as "1234",
an attempt is made to convert the string to a long. In this case, it
can successfully return 1234 as a long. If, however, the value for
the requested variable were words such as "A String Value", then
it cannot be converted to a long and a TypeMismatch exception is
thrown.

// IDL in module IT_Config

interface Configuration {

 exception TypeMismatch {};

 boolean get_string(
 in string name,
 out string value
) raises (TypeMismatch);

 boolean get_list(
 in string name,
 out ConfigList value
) raises (TypeMismatch);

 boolean get_boolean(
 in string name,
 out boolean value
) raises (TypeMismatch);

 boolean get_long(
 in string name,

 662 Orbix CORBA Programmer’s Reference: Java

 out long value
) raises (TypeMismatch);

 boolean get_double(
 in string name,
 out double value
) raises (TypeMismatch);

 void reigster_listener(
 in string target,
 in ListnerTargetRange target_scope,
 in Listener l
);

 void remove_listener(
 in Listener l
);

 // INTERNAL USE ONLY
 //
 void shutdown();
};

Configuration::register_listener()
// IDL
void register_listener(
 in string target,
 in ListenerTargetRange target_scope,
 in Listener l
);

Adds a Listener object so your application can be notified of certain
configuration changes.

Parameters

Not all types of configuration domains support change notification.

Enhancement This is an Orbix enhancement.

See Also IT_Config::ListenerTargetRange
IT_Config::Configuration::remove_listener()

Configuration::get_boolean()
// IDL
boolean get_boolean(
 in string name,
 out boolean value
) raises (TypeMismatch);

Returns true if the boolean value is successfully retrieved and false
if the variable could not be found.

target The target configuration value for the Listener.
target_scope The scope parameter determines the extent of change

that the Listener is told about.
l The Listener object.

Orbix CORBA Programmer’s Reference: Java 663

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::get_double()
// IDL
boolean get_double(
 in string name,
 out double value
) raises (TypeMismatch);

Returns true if the double value is successfully retrieved and false
if the variable could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::get_list()
// IDL
boolean get_list(
 in string name,
 out ConfigList value
) raises (TypeMismatch);

Returns true if the list of configuration settings is successfully
retrieved and false if the list could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

name Name of the variable to retrieve.
value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this
operation.

name Name of the variable to retrieve.
value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this
operation.

name Name of the configuration list to retrieve.
value The values returned.

TypeMismatch The variable exists but is of the wrong type for this
operation.

 664 Orbix CORBA Programmer’s Reference: Java

Configuration::get_long()
// IDL
boolean get_long(
 in string name,
 out long value
) raises (TypeMismatch);

Returns true if the long value is successfully retrieved and false if
the variable could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::get_string()
// IDL
boolean get_string(
 in string name,
 out string value
) raises (TypeMismatch);

Returns true if the string value is successfully retrieved and false if
the variable could not be found.

Parameters

Enhancement This is an Orbix enhancement.

Exceptions

Configuration::remove_listener()
// IDL
void remove_listener(
 in Listener l
);

Removes a Listener object.

Enhancement This is an Orbix enhancement.

See Also IT_Config::Configuration::add_listener()

name Name of the variable to retrieve.
value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this
operation.

name Name of the variable to retrieve.
value The value of the variable returned.

TypeMismatch The variable exists but is of the wrong type for this
operation.

Orbix CORBA Programmer’s Reference: Java 665

Configuration::shutdown()
// IDL
void shutdown();

Note: For internal use only

Configuration::TypeMismatch Exception
// IDL
exception TypeMismatch {};

The type of the configuration variable named in the operation does
not match the type required for the operation.

Enhancement This is an Orbix enhancement.

 666 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 667

IT_Config::Listener Interface
You can add a Listener object to your application that will be noti-
fied of configuration changes that occur. Use add_listener() and
remove_listener() of the Configuration interface to manage a
Listener object.

// IDL in module IT_Config
interface VariableListener : Listener {
 void variable_added(
 in string name
);

 void variable_removed(
 in string name
);

 void string_changed(
 in string name,
 in string new_value,
 in string old_value
);

 void list_changed(
 in string name,
 in ConfigList new_value,
 in ConfigList old_value
);

 void boolean_changed(
 in string name,
 in boolean new_value,
 in boolean old_value
);

 void long_changed(
 in string name,
 in long new_value,
 in long old_value
);

 void double_changed(
 in string name,
 in double new_value,
 in double old_value
);
};

Listener::variable_added()
void variable_added(
 in string name;
)

The application is notified in a variable is added to the configuration.

 668 Orbix CORBA Programmer’s Reference: Java

Parameters

Enhancement This is an Orbix enhancement.

Listener::variable_removed()
void variable_removed(
 in string name;
)

The application is notified in a variable is removed from the
configuration.

Parameters

Enhancement This is an Orbix enhancement.

Listener::boolean_changed()
// IDL
void boolean_changed(
 in string name,
 in boolean new_value,
 in boolean old_value
);

The application is notified if the boolean value changes.

Parameters

Enhancement This is an Orbix enhancement.

Listener::double_changed()
// IDL
void double_changed(
 in string name,
 in double new_value,
 in double old_value
);

The application is notified if the double value changes.

Parameters

name The name of the variable added.

name The name of the variable removed.

name The name of the variable.
new_value The value of the variable after the change occurred. If

a variable is deleted this value will be NULL.
old_value The previous value of the variable before the change

occurred. If a variable is added this value will be NULL.

name The name of the variable.
new_value The value of the variable after the change occurred. If

a variable is deleted this value will be NULL.

Orbix CORBA Programmer’s Reference: Java 669

Enhancement This is an Orbix enhancement.

Listener::list_changed()
// IDL
void list_changed(
 in string name,
 in ConfigList new_value,
 in ConfigList old_value
);

The application is notified if the configuration list changes.

Parameters

Enhancement This is an Orbix enhancement.

Listener::long_changed()
// IDL
void long_changed(
 in string name,
 in long new_value,
 in long old_value
);

The application is notified if the long value changes.

Parameters

Enhancement This is an Orbix enhancement.

Listener::string_changed()
// IDL
void string_changed(
 in string name,
 in string new_value,
 in string old_value
);

The application is notified if the string value changes.

old_value The previous value of the variable before the change
occurred. If a variable is added this value will be NULL.

name The name of the variable.
new_value The value of the variable after the change occurred. If

a variable is deleted this value will be NULL.
old_value The previous value of the variable before the change

occurred. If a variable is added this value will be NULL.

name The name of the variable.
new_value The value of the variable after the change occurred. If

a variable is deleted this value will be NULL.
old_value The previous value of the variable before the change

occurred. If a variable is added this value will be NULL.

 670 Orbix CORBA Programmer’s Reference: Java

Parameters

Enhancement This is an Orbix enhancement.

name The name of the variable.
new_value The value of the variable after the change occurred. If

a variable is deleted this value will be NULL.
old_value The previous value of the variable before the change

occurred. If a variable is added this value will be NULL.

 Orbix CORBA Programmer’s Reference: Java 671

IT_CORBA Overview
This module contains Orbix enhancements to the CORBA module.
The key additional feature is the policy WellKnownAddressingPolicy.
The classes include:
• WellKnownAddressingPolicy
The IDL code is as follows:

IT_CORBA::WELL_KNOWN_ADDRESSING_POL
ICY_ID Constant
// IDL in module IT_CORBA
const CORBA::PolicyType WELL_KNOWN_ADDRESSING_POLICY_ID =
0x49545F00 + 2;

Defines a policy ID for well-known addressing.

Enhancement This is an Orbix enhancement to CORBA.

See Also CORBA::PolicyType

 672 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 673

IT_CORBA::RefCountedLocalObje
ct Class

RefCountedLocalObject is an implementation of a CORBA local object
that automatically handles reference counting in a thread safe
manner.

See Also IT_CORBA::RefCountedLocalObjectNC

RefCountedLocalObject::_add_ref()
Increments the reference count.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObject::_destroy_this()
Destroys the local object.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObject::RefCountedLocalObje
ct() Constructor
The constructor.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObject::_remove_ref()
Decrements the reference count.

Enhancement This is an Orbix enhancement to CORBA.

 674 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 675

IT_CORBA::RefCountedLocalObje
ctNC Class

RefCountedLocalObjectNC is an implementation of a CORBA local
object that automatically handles reference counting but not in a
thread-safe manner as the RefCountedLocalObject class does. A
RefCountedLocalObjectNC object does not protect its reference
count with a mutex, making it suitable for lightweight objects such
as CORBA::Request.

See Also IT_CORBA::RefCountedLocalObject

RefCountedLocalObjectNC::_add_ref()
Increments the reference count.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::_destroy_this()
Destroys the local object.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::RefCountedLocalO
bjectNC() Constructor
The constructor.

Enhancement This is an Orbix enhancement to CORBA.

RefCountedLocalObjectNC::_remove_ref()
Decrements the reference count.

Enhancement This is an Orbix enhancement to CORBA.

 676 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 677

IT_CORBA::WellKnownAddressin
gPolicy Class

This is an interface for a local policy object derived from
CORBA::Policy. You create instances of WellKnownAddressingPolicy
by calling CORBA::ORB::create_policy().

WellKnownAddressingPolicy::config_scope()
// Java
public java.lang.String config_scope()

Returns the configuration scope.

Enhancement This is an Orbix enhancement to CORBA.

 678 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 679

The IT_CORBASEC
Module
A module that gives you read/write access to extended received
credentials.

Description In particular, the IT_CORBASEC::ExtendedReceivedCredentials interface
gives you access to the received SSO tokens.

IT_CORBASEC::EXT_ATTR_ERR_ATTR_NOT_PRESENT

Raised by get_extended_attribute(), if the requested attribute is not
present.

Description If this exception is raised, it implies that the requested attribute is
neither present in the incoming request’s service contexts nor has
the requested attribute been set by a call to
IT_CORBASEC::ExtendedReceivedCredentials::set_extended_attribute().

IT_CORBASEC::EXT_ATTR_ERR_FAILURE_PROCESSING_ATTR

Not used.

IT_CORBASEC::EXT_ATTR_ERR_READ_ONLY_ATTRIBUTE

Raised by set_extended_attribute(), if the requested attribute is
intended to be read-only.

Description Specifically, this error is raised if you attempt to set the
IT_CORBASEC::EXT_ATTR_CURRENT_SSO_TOKEN attribute directly.

IT_CORBASEC::ExtendedAttributeError

Exception raised by operations from the
IT_CORBASEC::ExtendedReceivedCredentials interface.

See Also IT_CORBASEC::EXT_ATTR_ERR_ATTR_NOT_PRESENT
IT_CORBASEC::EXT_ATTR_ERR_READ_ONLY_ATTRIBUTE

IT_CORBASEC::SSOTokenString

Type of an SSO token.

Description An SSOTokenString can be extracted from the any returned from a
call to
IT_CORBASEC::ExtendedReceivedCredentials::get_extended_attribute(), if
the requested attribute is an SSO token.

 680 Orbix CORBA Programmer’s Reference: Java

An SSOTokenString can be inserted into an any and passed in
a call to
IT_CORBASEC::ExtendedReceivedCredentials::set_extended_attribute(

) to set an SSO token attribute.

See also IT_CORBASEC::EXT_ATTR_CURRENT_SSO_TOKEN
IT_CORBASEC::EXT_ATTR_DELEGATED_SSO_TOKEN
IT_CORBASEC::EXT_ATTR_PEER_SSO_TOKEN

IT_CORBASEC::EXT_ATTR_CURRENT_SSO_TOKEN

The attribute type for the current SSO token, which can be either a
delegated token or a peer token.

Description The current SSO token is the token that would be used when
making access control decisions for the incoming invocation.
The value returned for the current SSO token can be one of
the following (in order of priority):
• Delegated SSO token, if it is present, otherwise
• Peer SSO token, if it is present, otherwise
• No value.

See also IT_CORBASEC::EXT_ATTR_DELEGATED_SSO_TOKEN
IT_CORBASEC::EXT_ATTR_PEER_SSO_TOKEN

IT_CORBASEC::EXT_ATTR_DELEGATED_SSO_TOKEN

The attribute type for a delegated SSO token.

Description In a multi-tier system (consisting of at least three tiers), a
delegated SSO token represents a credential that originated
at least two steps back in the invocation chain.
Currently, the only security mechanism in Orbix that
supports delegation is CSI Identity Assertion.
The delegated token originates from a previous application
in the invocation chain and is always copied into the
effective credentials for the current execution context.

Orbix CORBA Programmer’s Reference: Java 681

Hence, in a multi-tiered system, the delegated SSO token received
from the preceding application would automatically be used as the
delegated credentials for the next invocation in the chain.

IT_CORBASEC::EXT_ATTR_PEER_SSO_TOKEN

The attribute type for a peer SSO token.

Description A peer SSO token represents a credential that originates from the
preceding application in the invocation chain and is received
through the CSI authentication over transport mechanism.
A peer SSO token is available from an incoming request message
on the server side, if the following conditions hold:
• Server is configured to use CSI authentication over transport.
• Client is configured to use CSI authentiation over transport.
• Client is configured to use either username/password-based

SSO or X.509 certificate-based SSO.
If there are no delegated credentials in the received credentials,
the peer SSO token is used as the delegated credential in the
current execution context. Hence, in the absence of received
delegated credentials, the peer SSO token received from the
preceding application is used as the delegated credentials for the
next invocation in the chain.

 682 Orbix CORBA Programmer’s Reference: Java

IT_CORBASEC::ExtendedReceived
Credentials

A Micro Focus-specific interface that allows access to additional Micro
Focus-specific logical attributes of a received credentials object.

Description An instance of a received credentials object is obtained by
narrowing the received credentials object obtained from security
current.
The attribute IDs passed as arguments to the
get_extended_attribute() and set_extended_attribute() operations
are assigned by Micro Focus. The range below 10000 is reserved
for Micro Focus use. These numbers are unique across all security
mechanisms.

See also SecurityLevel2::Current
SecurityLevel2::ReceivedCredentials

IT_CORBASEC::ExtendedReceivedCredentials::get_extended_attribute()

Returns the value of a received credentials’ extended attribute.

Description There are two possible origins of an extended attribute:
• From parsing a service context in the incoming request

message.
• From a previous call to set_extended_attribute(), which set

the attribute value on the received credentials object.

Returns The value of an extended attribute contained in an any.

Parameters req_attribute

An integer attribute ID, which identifies a particular extended attribute.

Exceptions ExtendedAttributeError

Raised with an error_reason of EXT_ATTR_ERR_ATTR_NOT_PRESENT if the
requested attribute is not set.

IT_CORBASEC::ExtendedReceivedCredentials::set_extended_attribute()

Sets the value of a received credentials’ extended attribute.

Description The main purpose of setting an extended attribute is to influence
subsequent remote CORBA invocations within the current
execution context. The received credentials can affect subsequent
invocations, because Orbix takes received credentials into account
when creating the effective credentials for a new invocation.
For example, if a delegated SSO token attribute is set in the
received credentials, it would automatically be copied into the
effective credentials for a new invocation (by the GSP plug-in).

Parameters attribute_type

An integer attribute ID, which identifies a particular extended attribute.

Orbix CORBA Programmer’s Reference: Java 683

any_val

The value of an extended attribute contained in an any.

Exceptions ExtendedAttributeError

Raised with an error_reason of EXT_ATTR_ERR_READ_ONLY_ATTRIBUTE if the
requested attribute is not intended to be settable.

 684 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 685

IT_CosTransactions Module
The IT_CosTransactions module contains Orbix 2000 enhancements
to the standard OTS CosTransactions module. The
IT_CosTransactions module includes additional values for the
OTSPolicyValue data type and proprietary extensions to the standard
CosTransactions::Current class.

Additional OTSPolicyValues
const OTSPolicyValue AUTOMATIC = 4;
const OTSPolicyValue SERVER_SIDE = 5;

These additional OTSPolicyValues indicate the following:

You cannot create a POA that mixes the AUTOMATIC or SERVER_SIDE
OTSPolicyValue with the EITHER or UNSHARED InvocationPolicyValue.
Attempting to do this results in the PortableServer::InvalidPolicy
exception being raised.

See Also CosTransactions::OTSPolicyValue

AUTOMATIC The target object depends on the presence of a
transaction. If there is no current transaction, a
transaction is created for the duration of the invoca-
tion.

SERVER_SIDE The target object is invoked within the current
transaction whether there is a transaction or not.
This policy depends on just-in-time transaction cre-
ation.
You can enable just-in-time transactions by setting
the following configuration variable to true:
plugins:ots:jit_transactions

If a transaction has begun but is not fully created,
the transaction is created before the target object
is invoked.

 686 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 687

IT_CosTransactions::Current
Class

This class extends the standard OTS CosTransactions::Current class
with proprietary operations:

// Java
package com.iona.IT_CosTransactions;
public interface Current
 extends org.omg.CosTransactions.Current {

 public void commit_on_completion_of_next_call()
 throws org.omg.CosTransactions.NoTransaction
}

See Also CosTransactions::Current

Current::commit_on_completion_of_next_call
()
This operation is used in conjunction with just-in-time transaction
creation and the SERVER_SIDE OTSPolicyValue. This operation at-
tempts to commit the current transaction immediately after the next
invocation.

Using commit_on_completion_of_next_call() is logically equivalent
to calling Current::commit() immediately after the next invocation,
except that the transaction is committed in the context of the tar-
get object. If there is no current transaction, a NoTransaction
exception is raised.

Note: You should use this operation with caution.

See Also CosTransactions::Current
CosTransactions::Current::commit()
IT_CosTransactions::SERVER_SIDE

 688 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 689

IT_CSI Overview
The IT_CSI module defines Orbix-specific policy interfaces that
enable you to set CSIv2 policies programmatically. An
IT_CSI::IT_CSI_AUTH_METHOD_USERNAME_PASSWORD constant is defined
that enables you to create credentials on the client side using the
SecurityLevel2::PrincipalAuthenticator. The module also defines
proprietary credentials interfaces (giving you access to
CSIv2-related credentials on the server side) and an
AuthenticateGSSUPCredentials interface that enables you to imple-
ment a custom authentication service.
The module contains the following IDL interfaces:
• IT_CSI::AuthenticateGSSUPCredentials Interface
• IT_CSI::AuthenticationServicePolicy Interface
• IT_CSI::AttributeServicePolicy Interface
• IT_CSI::CSICredentials Interface
• IT_CSI::CSIReceivedCredentials Interface
• IT_CSI::CSICurrent Interface
Associated with the CSIv2 policies, the IT_CSI module defines the
following policy type constants (of CORBA::PolicyType type):
IT_CSI::CSI_CLIENT_AS_POLICY
IT_CSI::CSI_SERVER_AS_POLICY
IT_CSI::CSI_CLIENT_SAS_POLICY
IT_CSI::CSI_SERVER_SAS_POLICY

IT_CSI::IT_CSI_AUTH_METH_USERNAME_PAS
SWORD
const Security::AuthenticationMethod

IT_CSI_AUTH_METH_USERNAME_PASSWORD = 6;

This constant identifies CSIv2 username/password authorization
method. When calling the
SecurityLevel2::PrincipalAuthenticator::authenticate() opera-
tion, the IT_CSI_AUTH_METH_USERNAME_PASSWORD constant can be
passed as the method parameter.
In Java, to create a CSIv2 credentials object call the principal
authenticator’s authenticate() operation with its parameters set
as follows:
//Java
...
authentication_result = principal_authenticator.authenticate(
 com.iona.IT_CSI.IT_CSI_AUTH_METH_USERNAME_PASSWORD.value,
 "", // NOT USED
 "<user_name>", // GSSUP user name
 auth_data_any, // an any containing an
 // IT_CSI::GSSUPAuthData structure
 privileges, // NOT USED
 credentials, // returns the CSIv2 user credentials
 continuation_data, // NOT USED
 auth_specific_data // NOT USED
);

 690 Orbix CORBA Programmer’s Reference: Java

See Also SecurityLevel2::PrincipalAuthenticator
IT_CSI::GSSUPAuthData

IT_CSI::GSSUPAuthData Structure
struct GSSUPAuthData
{
 string password;
 string domain;
};

This structure is used to pass the GSSUP password and authentica-
tion domain name to the
SecurityLevel2::PrincipalAuthenticator::authenticate() opera-
tion. It is used in combination with the
IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD authentication method
identifier.

In Java, an IT_CSI::GSSUPAuthData structure must be inserted into
an any before being passed as the auth_data parameter of the
SecurityLevel2::PrincipalAuthenticator::authenticate() opera-
tion. The IT_CSI::GSSUPAuthData structure can be inserted into an
any as follows:
//Java
org.omg.CORBA.Any auth_data_any =

org.omg.CORBA.ORB.init().create_any();
com.iona.IT_CSI.GSSUPAuthData auth_data =
 new com.iona.IT_CSI.GSSUPAuthData("<password>", "<domain>");

// Insert the GSSUPAuthData struct into the any.
com.iona.IT_CSI.GSSUPAuthDataHelper.insert(
 auth_data_any,
 auth_data
);

This structure contains the following fields:

See Also IT_CSI::IT_CSI_AUTH_METH_USERNAME_PASSWORD

IT_CSI::CSI_POLICY_BASE
const unsigned long CSI_POLICY_BASE =

IT_PolicyBase::IONA_POLICY_ID + 11;

The base for a range of CSIv2 policy constants.

See Also IT_CSI::CSI_CLIENT_AS_POLICY
IT_CSI::CSI_SERVER_AS_POLICY
IT_CSI::CSI_CLIENT_SAS_POLICY
IT_CSI::CSI_SERVER_SAS_POLICY

IT_CSI::CSI_CLIENT_AS_POLICY
const CORBA::PolicyType CSI_CLIENT_AS_POLICY = CSI_POLICY_BASE;

password The GSSUP password for this login.
domain The CSIv2 authentication domain for this login.

Orbix CORBA Programmer’s Reference: Java 691

The flag identifying the client-side authentication service policy.

See Also IT_CSI::CSI_SERVER_AS_POLICY
IT_CSI::AuthenticationServicePolicy

IT_CSI::CSI_SERVER_AS_POLICY
const CORBA::PolicyType CSI_SERVER_AS_POLICY =

CSI_POLICY_BASE+1;

The flag identifying the server-side authentication service policy.

See Also IT_CSI::CSI_CLIENT_AS_POLICY
IT_CSI::AuthenticationServicePolicy

IT_CSI::CSI_CLIENT_SAS_POLICY
const CORBA::PolicyType CSI_CLIENT_SAS_POLICY =

CSI_POLICY_BASE+2;

The flag identifying the client-side attribute service policy.

See Also IT_CSI::CSI_SERVER_SAS_POLICY
IT_CSI::AttributeServicePolicy

IT_CSI::CSI_SERVER_SAS_POLICY
const CORBA::PolicyType CSI_SERVER_SAS_POLICY =

CSI_POLICY_BASE+3;

The flag identifying the server-side attribute service policy.

See Also IT_CSI::CSI_CLIENT_SAS_POLICY
IT_CSI::AttributeServicePolicy

IT_CSI::AuthenticationService Structure
struct AuthenticationService
{
 // Client and server side.
 CSIIOP::AssociationOptions support;

 // Server side only.
 CSIIOP::AssociationOptions requires;
 string client_authentication_mech;
 string target_name;
 AuthenticateGSSUPCredentials as_object;
};

This structure, in conjunction with the
IT_CSI::AuthenticationServicePolicy interface, provides a pro-
grammatic approach to enabling the CSIv2 authentication service
policy. This structure has a dual purpose, because it can be used
to set both a client-side policy, IT_CSI::CSI_CLIENT_AS_POLICY, and
a server-side policy, IT_CSI::CSI_SERVER_AS_POLICY.

 692 Orbix CORBA Programmer’s Reference: Java

This structure contains the following fields:

See Also IT_CSI::AuthenticationServicePolicy
IT_CSI::CSI_CLIENT_AS_POLICY
IT_CSI::CSI_SERVER_AS_POLICY

IT_CSI::SupportedNamingMechanisms
Sequence
typedef sequence<string> SupportedNamingMechanisms;

The list of naming mechanisms supported by CSIv2. Currently, the
only supported naming mechanism is CSI::GSS_NT_Export_Name_OID.

See Also CSI::GSS_NT_Export_Name_OID
IT_CSI::AttributeService

IT_CSI::AttributeService Structure
struct AttributeService
{
 CSIIOP::AssociationOptions support;
 SupportedNamingMechanisms supported_naming_mechs;
 CSI::IdentityTokenType supported_identity_types;
};

This structure, in conjunction with the
IT_CSI::AttributeServicePolicy interface, provides a program-
matic approach to enabling the CSIv2 attribute service policy. This

support (Client and server) The list of associa-
tion options supported by the authenti-
cation service policy. Currently, only the
CSIIOP::EstablishTrustInClient associa-
tion option can be included in this list.

requires (Server only) The list of association
options required by the authentication
service policy on the server side. Cur-
rently, only the
CSIIOP::EstablishTrustInClient associa-
tion option can be included in this list.

client_authentication_mech (Server only) The authentication mech-
anism OID, which identifies the mecha-
nism used by CSIv2 authentication. For
example, GSSUP::GSSUPMechOID is a valid
setting.

target_name (Server only) The name of the security
policy domain (CSIv2 authentication
domain) for this authentication service.

as_object (Server only) A reference to the GSSUP
authentication service object that will
be used to authenticate GSS user-
name/password combinations on the
server side.

Orbix CORBA Programmer’s Reference: Java 693

structure has a dual purpose, because it can be used to set both a
client-side policy, IT_CSI::CSI_CLIENT_SAS_POLICY, and a
server-side policy, IT_CSI::CSI_SERVER_SAS_POLICY.
This structure contains the following fields:

See Also IT_CSI::AttributeServicePolicy
CSI::GSS_NT_Export_Name_OID
IT_CSI::CSI_CLIENT_SAS_POLICY
IT_CSI::CSI_SERVER_SAS_POLICY

IT_CSI::CSICredentialsType Enumeration
enum CSICredentialsType {
 GSSUPCredentials,
 PropagatedCredentials,
 TransportCredentials
};

An enumeration to identify the type of credentials contained in a
CSIv2 credentials object. The credentials can be one of the follow-
ing types:
• GSSUPCredentials—a set of GSS username/password creden-

tials (authenticated on the server side), received through the
CSIv2 authorization over transport mechanism.

• PropagatedCredentials—a set of propagated credentials (not
authenticated on the server side), received through the CSIv2
identity assertion mechanism.

• TransportCredentials—a set of SSL/TLS credentials (typically
containing an X.509 certificate chain), received through the
transport layer.

See Also IT_CSI::CSICredentials
IT_CSI::CSIReceivedCredentials

support (Client and server) The list of associa-
tion options supported by the attribute
service policy. Currently, only the
CSIIOP::IdentityAssertion association
option can be included in this list.

supported_naming_mechs (Server only) A list of GSS naming
mechanism OIDs, which identify the
formats that may be used in the
CSI::ITTPrincipalName identity token.
For example,
CSI::GSS_NT_Export_Name_OID is a valid
naming mechanism string.

supported_identity_types (Server only) The bitmapped represen-
tation of the set of identity token types
supported by the target. In the current
implementation of Orbix, the value of
this attribute should be 0x03 (which
represents a combination of the
ITTAnonymous flag and the
ITTPrincipalName flag)..

 694 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 695

IT_CSI::AttributeServicePolicy
Interface

// IDL in module IT_CSI
local interface AttributeServicePolicy : CORBA::Policy
{
 // The following attribute, supports, is for client and

server
 // side
 readonly attribute CSIIOP::AssociationOptions support;

 // Server specific attributes used in IOR generation
 readonly attribute CSI::OIDList supported_naming_mechanisms;
 readonly attribute CSI::IdentityTokenType
 supported_identity_types;
 readonly attribute boolean backward_trust_enabled;
 readonly attribute CSIIOP::ServiceConfigurationList
 privilege_authorities;
};

The policy type for the CSIv2 attribute service policy, which is
used to enable the CSIv2 identity assertion mechanism. This
interface, in conjunction with the IT_CSI::AttributeService struct,
provides a programmatic approach to enabling the CSIv2 attribute
service policy. The functionality provided is equivalent to that
which is available by setting the following configuration variables:
policies:csi:attribute_service:client_supports
policies:csi:attribute_service:target_supports
policies:csi:attribute_service:backward_trust:enabled

This AttributeServicePolicy interface has a dual purpose. It can
represent either a client-side policy,
IT_CSI::CSI_CLIENT_SAS_POLICY, or a server-side policy,
IT_CSI::CSI_SERVER_SAS_POLICY.

See Also IT_CSI::CSI_CLIENT_SAS_POLICY
IT_CSI::CSI_SERVER_SAS_POLICY
IT_CSI::AttributeService
IT_CSI::AuthenticationServicePolicy

AttributeServicePolicy::support
readonly attribute CSIIOP::AssociationOptions support;

The list of association options supported by the attribute service
policy. Currently, only the CSIIOP::IdentityAssertion association
option can be included in this list.
The effect of including the CSIIOP::IdentityAssertion assocation
option in the list depends on whether the AttributeServicePolicy is
set as a client-side policy (IT_CSI::CSI_CLIENT_SAS_POLICY) or as a
server-side policy (IT_CSI::CSI_SERVER_SAS_POLICY), as follows:
• Client side—supports the propagation of an identity to the

server using the CSIv2 identity assertion mechanism. This is
equivalent to the
policies:csi:attribute_service:client_supports configuration
variable.

 696 Orbix CORBA Programmer’s Reference: Java

• Server side—supports the receipt of an identity (which is pre-
sumed to have been already authenticated) from the client
using the CSIv2 identity assertion mechanism. This is equiva-
lent to the policies:csi:attribute_service:target_supports
configuration variable.

See Also CSIIOP::IdentityAssertion

AttributeServicePolicy::supported_naming_me
chanisms
readonly attribute CSI::OIDList supported_naming_mechanisms;

A list of GSS naming mechanism OIDs, which identify the formats
that may be used in the CSI::ITTPrincipalName identity token. In
the current implementation of Orbix, the
supported_naming_mechanisms list would normally include a binary
representation of the CSI::GSS_NT_Export_Name_OID naming mecha-
nism OID.

See Also CSI::ITTPrincipalName
CSI::GSS_NT_Export_Name_OID

AttributeServicePolicy::supported_identity_ty
pes
readonly attribute CSI::IdentityTokenType

supported_identity_types;

The bitmapped representation of the set of identity token types
supported by the target. In the current implementation of Orbix,
the value of this attribute would be 0x00000003, which represents a
combination of the ITTAnonymous flag (0x01) and the
ITTPrincipalName flag (0x02). The ITTAbsent identity token is always
supported.
The ITTX509CertChain identity token and the ITTDistinguishedName
identity token are not supported in the current implementation.
Hence, the corresponding flags for these identity tokens cannot be
set.

See Also CSI::ITTAbsent
CSI::ITTAnonymous
CSI::ITTPrincipalName

AttributeServicePolicy::backward_trust_enabl
ed
readonly attribute boolean backward_trust_enabled;

Not used in the current implementation.

AttributeServicePolicy::privilege_authorities
readonly attribute CSIIOP::ServiceConfigurationList

privilege_authorities;

Orbix CORBA Programmer’s Reference: Java 697

A list of authorization tokens. This feature is currently not sup-
ported by Orbix (that is, it returns an empty list).

 698 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 699

IT_CSI::AuthenticateGSSUPCrede
ntials Interface

// IDL in module IT_CSI
interface AuthenticateGSSUPCredentials
{
 readonly attribute string authentication_service;

 boolean authenticate (
 in string username,
 in string password,
 in string target_name,
 in string request_name,
 in string object_name,
 out GSSUP::ErrorCode error_code);
};

A callback interface that you can optionally implement to provide a
custom authentication service for a CSIv2 server. When using the
CSIv2 authentication over transport mechanism (enabled by the
CSIv2 authentication service policy), the
AuthenticateGSSUPCredentials::authenticate() operation is invoked
for every incoming request from a client. This gives you the
opportunity to accept or reject every incoming invocation based
on the authentication data provided by the client.
Note that this stateless mode of operation (calling authenticate()
for every invocation) is the only kind of session semantics cur-
rently supported by Orbix. The stateful mode of operation (calling
authenticate() once at the beginning of a session) is currently not
supported.
You can install an implementation of AuthenticateGSSUPCredentials
in either of the following ways:
• By configuration—you can specify the

AuthenticateGSSUPCredentials implementation class by setting
the following configuration variable:
policies:csi:auth_over_transport:authentication_service

The named class is then loaded and instantiated by the CSIv2
plug-in.

• By programming—you can register an instance of the
AuthenticateGSSUPCredentials implementation class by setting
the as_object field of the IT_CSI::AuthenticationServicePolicy.

Examples The following Java example defines the AuthenticateGSSUPImpl class,
which is a sample implementation of the
AuthenticateGSSUPCredentials object. This sample implementation
rejects all requests except for those from username user, with
password password, belonging to PC-DOMAIN security policy domain,
and invoking the call_me() operation.

// Java
package demos.csiv2.auth_service;

import com.iona.corba.IT_CSI.*;
import org.omg.CORBA.IntHolder;

 700 Orbix CORBA Programmer’s Reference: Java

public class AuthenticateGSSUPImpl
extends org.omg.CORBA.LocalObject
implements AuthenticateGSSUPCredentials
{
 public String authentication_service()
 {
 return "Demo Authentication Service";
 }

 public boolean authenticate(String username,
 String password,
 String target_name,
 String request_name,
 String object_name,
 org.omg.CORBA.IntHolder

error_code)
 {
 boolean authentication_result = false;

 System.out.println("Username received " + username);
 System.out.println("password received " + password);
 System.out.println("target_name received " + target_name);
 System.out.println("request_name received " +

request_name);
 System.out.println("object_name received " + object_name);

 if (username.equals("username"))
 {
 if (password.equals("password"))
 {
 if (target_name.equals("PC-DOMAIN"))
 {
 if (request_name.equals("call_me"))
 {
 System.out.println("Accepting request " +

request_name + " for above");
 authentication_result = true;
 }
 else
 {
 error_code.value =

org.omg.GSSUP.GSS_UP_S_G_UNSPECIFIED.value;
 }
 }
 else
 {
 error_code.value =

org.omg.GSSUP.GSS_UP_S_G_BAD_TARGET.value;
 }
 }
 else
 {
 error_code.value =

org.omg.GSSUP.GSS_UP_S_G_BAD_PASSWORD.value;
 }
 }
 else
 {
 error_code.value =

org.omg.GSSUP.GSS_UP_S_G_NOUSER.value;

Orbix CORBA Programmer’s Reference: Java 701

 }

 return authentication_result;
 }
}

See Also IT_CSI::AuthenticationServicePolicy

AuthenticateGSSUPCredentials::authentication
_service Attribute
readonly attribute string authentication_service;

The name of the authentication service implementation. There are
no particular conditions imposed on the value of this attribute; it is
just a short descriptive string.

AuthenticateGSSUPCredentials::authenticate()
boolean authenticate (
 in string username,
 in string password,
 in string target_name,
 in string request_name,
 in string object_name,
 out GSSUP::ErrorCode error_code);

A callback operation that performs authentication on a GSSUP
username/password combination. When CSIv2 authentication over
transport is enabled, the authenticate() operation is called for every
incoming request on the server side. If the return value is TRUE,
the request is allowed to proceed; if the return value is FALSE, the
request is rejected.

Parameters The authenticate() operation takes the following parameters:

username The username received from the client through the
CSIv2 authentication over transport mechanism.

password The password received from the client through the
CSIv2 authentication over transport mechanism.

target_name The security policy domain name (CSIv2 authentica-
tion domain) received from the client through the
CSIv2 authentication over transport mechanism.

request_name The name of the operation (or attribute accessor/mod-
ifier) to be invoked by this request. The format of this
argument is the same as the operation name in a
GIOP request header. See, for example, the descrip-
tion of GIOP::RequestHeader_1_2::operation in section
15.4.2 of the CORBA 2.4.2 core specification.

object_name The type identifier for the target of this invocation,
expressed as a CORBA repository ID. For example, the
CosNaming::NamingContext type would be identified by
the IDL:omg.org/CosNaming/NamingContext:1.0 reposi-
tory ID string.

error_code The returned GSSUP error code (long integer). A
non-zero value indicates that an error occurred.

 702 Orbix CORBA Programmer’s Reference: Java

See Also IT_CSI::AuthenticationServicePolicy

 Orbix CORBA Programmer’s Reference: Java 703

IT_CSI::AuthenticationServicePol
icy Interface

// IDL in module IT_CSI
local interface AuthenticationServicePolicy : CORBA::Policy
{
 // The following attribute, supports, is for client and

server
 // side
 readonly attribute CSIIOP::AssociationOptions support;

 // Server specific attributes used in IOR generation
 readonly attribute CSIIOP::AssociationOptions

target_requires;
 readonly attribute CSI::OID client_authentication_mech;
 readonly attribute CSI::GSS_NT_ExportedName target_name;
 readonly attribute AuthenticateGSSUPCredentials as_object;
};

The policy type for the CSIv2 authentication service policy, which
is used to enable the CSIv2 authentication over transport mecha-
nism. This interface, in conjunction with the
IT_CSI::AuthenticationService struct, provides a programmatic
approach to enabling the CSIv2 authentication service policy. The
functionality provided is equivalent to that which is available by
setting the following configuration variables:
policies:csi:auth_over_transport:client_supports
policies:csi:auth_over_transport:target_supports
policies:csi:auth_over_transport:target_requires
policies:csi:auth_over_transport:server_domain_name
policies:csi:auth_over_transport:authentication_service

This AuthenticationServicePolicy interface has a dual purpose. It
can represent either a client-side authentication policy,
IT_CSI::CSI_CLIENT_AS_POLICY, or a server-side authentication pol-
icy, IT_CSI::CSI_SERVER_AS_POLICY.

Examples The following Java example shows how to set the authentication
service policy at the ORB level:

// Java
import java.io.*;
import org.omg.CORBA.*;
import org.omg.CSIIOP.EstablishTrustInClient;
import org.omg.GSSUP.GSSUPMechOID;

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

import com.iona.corba.IT_CSI.CSI_SERVER_AS_POLICY;
...
try
{
 // Note the following:
 //
 // m_orb - an ORB instance, already initialized.
 //
 // AuthenticateGSSUPImpl - an implementation of

 704 Orbix CORBA Programmer’s Reference: Java

 // org.omg.corba.IT_CSI.AuthenticateGSSUPCredentials
 //
 AuthenticateGSSUPImpl as_obj = new AuthenticateGSSUPImpl();

 com.iona.corba.IT_CSI.AuthenticationService as =
 new com.iona.corba.IT_CSI.AuthenticationService(
 EstablishTrustInClient.value,
 EstablishTrustInClient.value,
 GSSUPMechOID.value,
 "PCGROUP", // an authentication domain
 as_obj
);

 Any any = m_orb.create_any();
 com.iona.corba.IT_CSI.AuthenticationServiceHelper.insert(
 any,
 as
);

 PolicyManager pol_manager=
 (PolicyManager)m_orb.resolve_initial_references(
 "ORBPolicyManager"
);
 Policy[] policies = new Policy[1];
 policies[0] = m_orb.create_policy(
 CSI_SERVER_AS_POLICY.value,
 any
);
 pol_manager.set_policy_overrides(
 policies,
 SetOverrideType.SET_OVERRIDE
);
}
catch (java.lang.Exception ex) { /* Handle exceptions */ }

AuthenticationServicePolicy::support Attribute
readonly attribute CSIIOP::AssociationOptions support;

The list of association options supported by the authentication ser-
vice policy. Currently, only the CSIIOP::EstablishTrustInClient
association option can be included in this list.
The CSIIOP::EstablishTrustInClient assocation option can be set
either as a client-side policy (IT_CSI::CSI_CLIENT_AS_POLICY) or as
a server-side policy (IT_CSI::CSI_SERVER_AS_POLICY), as follows:
• Client side—supports the propagation of a GSSUP username

and password using the CSIv2 authentication mechanism.
This is equivalent to the
policies:csi:auth_over_transport:client_supports configura-
tion variable.

• Server side—supports the authentication of a client’s user-
name and password using the CSIv2 authentication mecha-
nism. This is equivalent to the
policies:csi:auth_over_transport:target_supports configura-
tion variable.

Orbix CORBA Programmer’s Reference: Java 705

AuthenticationServicePolicy::target_requires
Attribute
readonly attribute CSIIOP::AssociationOptions target_requires;

The list of association options required by the authentication ser-
vice policy on the server side. Currently, only the
CSIIOP::EstablishTrustInClient association option can be included
in this list.

AuthenticationServicePolicy::client_authentica
tion_mech Attribute
readonly attribute CSI::OID client_authentication_mech;

The authentication mechanism OID, which identifies the mecha-
nism used by CSIv2 authentication on the server side. In the cur-
rent implementation of Orbix, the only available mechanism is the
Generic Security Service username/password (GSSUP) mecha-
nism, represented by GSSUP::GSSUPMechOID.

See Also GSSUP::GSSUPMechOID
CSI::StringOID

AuthenticationServicePolicy::target_name
Attribute
readonly attribute CSI::GSS_NT_ExportedName target_name;

The name of the security policy domain (CSIv2 authentication
domain) for this authentication service on the server side. In this
implementation, a given CSIv2 server can belong to a single secu-
rity policy domain only. If an incoming client request does not
match the server’s security policy domain, the client request will
be rejected.

AuthenticationServicePolicy::as_object
Attribute
readonly attribute AuthenticateGSSUPCredentials as_object;
A reference to the GSSUP authentication service object that will be
used to authenticate GSS username/password combinations on
the server side.

 706 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 707

IT_CSI::CSICredentials Interface
local interface CSICredentials : SecurityLevel2::Credentials
{
 readonly attribute CSICredentialsType csi_credentials_type;
};

Micro Focus-specific CSICredentials interface that is used as a
base interface for CSIv2 credentials. Server implementations may
use this interface to determine the clients credentials type—for
example, a propagated identity from an intermediatory or a user-
name/password.

CSICredentials::csi_credentials_type Attribute
readonly attribute CSICredentialsType csi_credentials_type;

A flag that indicates what type of credentials is returned by the
SecurityLevel2::Current::received_credentials() operation.

See Also IT_CSI::CSIReceivedCredentials

 708 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 709

IT_CSI::CSICurrent Interface
// IDL in module IT_CSI
local interface CSICurrent : CORBA::Current
{
 boolean set_received_gssup_credentials(in string access_id);
};

The operations in this interface are now deprecated. Use the
IT_CSI::CSICurrent2 interface instead.

CSICurrent::set_received_gssup_credentials()
boolean set_received_gssup_credentials(in string access_id);

Deprecated. Use
IT_CSI::CSICurrent2::set_received_gssup_credentials_access_id()
instead.

Parameters This operation takes the following parameters:

See Also SecurityLevel2::ReceivedCredentials
SecurityLevel2::Credentials
Security::SecAttribute

access_id Either the GSSUP username in string format or the
common name from an X.509 certificate’s subject DN.
From the target server, the access ID is made accessi-
ble from a Security::SecAttribute::value in the form
of an AccessId encoded as a sequence of octets.

 710 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 711

IT_CSI::CSICurrent2 Interface
// IDL in module IT_CSI
local interface CSICurrent2 : CSICurrent
{
 CSIReceivedCredentials
 set_received_gssup_credentials_access_id(
 in string peer_identity
);

 CSIReceivedCredentials
 set_received_itt_principal_name_identity_token(
 in string asserted_identity
);

 // RESERVED FOR FUTURE USE
 boolean
 set_csi_received_credentials(
 in CSIReceivedCredentials rec_creds
);
};

Interface used to set the value of the CSI received credentials in
the current execution context. By calling the operations in this
interface, you can simulate the successfully processed receipt of a
CSIv2 asserted identity message and/or the receipt and successful
processing of a CSIv2 GSSUP authentication request. These oper-
ations should be used only when you do not actually have a CSIv2
execution context; for example, if you were building a bridge
between the SOAP protocol and the CORBA GIOP protocol.

WARNING: It is critically important to understand that it is your
responsibility to vet the user identities passed to the CSICurrent2
operations. If you pass the identity of an unauthorized user into
the CSI received credentials object, you could potentially
undermine the security of your system completely.

A typical CSIv2 identity assertion scenario involves a client, an
intermediate server, and a target server. The client invokes an
operation on the intermediate server, with CSIv2 authentication
over transport enabled, and the intermediate server invokes an
operation on the target server, with CSIv2 identity assertion
enabled.
Default values of the CSI received credentials are set automati-
cally by parsing the appropriate GIOP service contexts from the
incoming request message. In this case, it is recommended that
you do not modify the CSI received credentials. The CSICurrent2
interface is meant to be used only to simulate CSI received cre-
dentials in a bridging application, not to replace existing creden-
tials.
A programmer can access an IT_CSI::CSICurrent2 object from
within an operation context using the following code:
// Java
com.iona.corba.IT_CSI.CSICurrent2 it_csi_current = null;
try {

 712 Orbix CORBA Programmer’s Reference: Java

 org.omg.CORBA.Object objref =
orb.resolve_initial_references("SecurityCurrent");

 it_csi_current =
com.iona.corba.IT_CSI.CSICurrent2Helper.narrow(objref);

}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
 // Error: resolve_initial_references() call failed...
}
catch (org.omg.CORBA.BAD_PARAM ex) {
 // Error: narrow() call failed...
}

CSICurrent2::set_received_gssup_credentials
_access_id()
CSIReceivedCredentials
set_received_gssup_credentials_access_id(
 in string peer_identity
);

Sets the GSSUP username attribute (or access ID, in the terminol-
ogy of the OMG CORBASEC specification) for the peer identity in
the CSI received credentials object, replacing whatever value was
previously stored.
The main reason for calling this operation is to simulate the
receipt of GSSUP credentials when bridging from a protocol that
does not support the CSI authentication over transport mecha-
nism. The next time the application invokes a remote operation
within the current execution context, the CSI asserted identity
used for the invocation is one of the following:
• The received identity token (set by the

set_received_itt_principal_name_identity_token() operation),
if present, otherwise

• The received GSSUP username (set by the
set_received_gssup_credentials_access_id() operation), if
present.

This operation replaces the deprecated
IT_CSI::CSICurrent::set_received_gssup_credentials() operation.
Returns a reference to the created or updated CSI received cre-
dentials object if the operation is successful; otherwise, returns a
nil object reference.

Note: There is no option to set the password and domain name along
with the GSSUP username. This is because the received GSSUP
credentials are created after the GSSUP username has been
authenticated. Hence, the password and domain name are not
needed at this point and they are not stored in the received
credentials.

Parameters This operation takes the following parameters:

peer_identity A GSSUP username to set or replace the value stored
in the CSI received credentials. If present, the origi-
nal stored value would have been parsed from the
incoming request message.

Orbix CORBA Programmer’s Reference: Java 713

See Also SecurityLevel2::ReceivedCredentials
SecurityLevel2::Credentials
Security::SecAttribute

CSICurrent2::set_received_itt_principal_name
_identity_token()
CSIReceivedCredentials
set_received_itt_principal_name_identity_token(
 in string asserted_identity
);

Sets the CSI asserted identity in the CSI received credentials
object, replacing whatever value was previously stored and implic-
itly setting the identity token type to be ITTPrincipalName.
The main reason for calling this operation is to simulate the
receipt of a CSI identity token when bridging from a protocol that
does not support the CSI identity assertion mechanism. The next
time the application invokes a remote operation within the current
execution context, the CSI identity assertion mechanism uses the
identity token set by this operation.
Returns a reference to the created or updated CSI received cre-
dentials object if the operation is successful; otherwise, returns a
nil object reference.

Parameters This operation takes the following parameters:

CSICurrent2::set_csi_received_credentials()
boolean
set_csi_received_credentials(
 in CSIReceivedCredentials rec_creds
);

Reserved for future use.
This operation is reserved for future use and potentially provides
performance gains by reusing already established
CSIReceivedCredentials objects. The supplied
CSIReceivedCredentials would be those that were previously estab-
lished by the set_csi_xxx operations above and these could poten-
tially be stored by the calling code (this would help avoid heap
fragmentation).

asserted_ident
ity

An asserted identity to set or replace the value
stored in the CSI received credentials. If present, the
original stored value would have been parsed from
the incoming request message.

 714 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 715

IT_CSI::CSIReceivedCredentials
Interface

local interface CSIReceivedCredentials :
IT_TLS_API::TLSReceivedCredentials, CSICredentials

{
 readonly attribute CSICredentials gssup_credentials;
 readonly attribute CSICredentials

propagated_identity_credentials;
 readonly attribute SecurityLevel2::Credentials

transport_credentials;
};

The CSIReceivedCredentials interface, which inherits from
IT_TLS_API::TLSReceivedCredentials and
SecurityLevel2::ReceivedCredentials. The OMG
SecurityLevel2::Current::received_credentials() operation
returns a single SecurityLevel2::ReceivedCredentials object. How-
ever a CSIv2 server may received as many as three credentials
from a CSI client:
• Transport TLS credentials
• Propagated identity credentials
• Authenticated credentials over the transport.
The CSIReceivedCredentials interface provides access to all three
credentials.
The SecurityLevel2::Current::received_credentials() operation
returns the following credentials type
• Propagated identity credentials, if present
• Authenticated credentials over the transport, if present and

propagated identity credentials are not.
• Transport TLS credentials, if present and the above two are

not.

Examples The following Java example shows how to access the GSSUP
credentials received through the CSIv2 authentication over trans-
port mechanism:

// Java
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.Security.AttributeType;
import org.omg.Security.SecAttribute;
import org.omg.SecurityLevel2.Current;
import org.omg.SecurityLevel2.ReceivedCredentials;

import org.omg.Security.*;
import org.omg.SecurityLevel2.*;

import com.iona.corba.tls.cert.*;
import com.iona.corba.IT_CSI.CSIReceivedCredentials;
import com.iona.corba.IT_CSI.CSIReceivedCredentialsHelper;
import com.iona.corba.IT_CSI.CSICredentialsType;
...
//---

 716 Orbix CORBA Programmer’s Reference: Java

// Access GSSUP Received Credentials -
// this code can be used in the invocation context of a
// secure operation, to access the GSSUP identity received
// via the CSIv2 ’authentication over transport’ mechanism.
//
org.omg.SecurityLevel2.Current current = null;

try {
 current = (org.omg.SecurityLevel2.Current)

m_orb.resolve_initial_references("SecurityCurrent");
}
catch(org.omg.CORBA.ORBPackage.InvalidName e) {
 ... // Error: SecurityCurrent initial reference not

available.
}

ReceivedCredentials rec_creds = current.received_credentials();
if(rec_creds==null) {
 ... // Error: Received credentials are null."
}

Credentials gssup_credentials_rec
 = csi_rec_creds.gssup_credentials();
SecAttribute[] gssup_attribute
 = gssup_credentials_rec.get_attributes(attributes_types);

if ((gssup_attribute==null) || (gssup_attribute.length==0)) {
 ... // Error: Operation called by user with no GSSUP creds
}

// The GSSUP access ID string is just the authenticated username.
String gssup_access_id = new String(
 gssup_attribute[0].value, 0, gssup_attribute[0].value.length
);

CSIReceivedCredentials::gssup_credentials
Attribute
readonly attribute CSICredentials gssup_credentials;

A reference to the GSSUP credentials received using the CSIv2
authorization over transport mechanism; or a nil object reference
if no credentials of this type were received. To access the creden-
tials’ attributes, use the inherited
SecurityLevel2::Credentials::get_attributes() operation.

See Also Security::SecAttribute
IT_CSI::CSICredentialsType

CSIReceivedCredentials::propagated_identity_
credentials Attribute
readonly attribute CSICredentials

propagated_identity_credentials;

Orbix CORBA Programmer’s Reference: Java 717

A reference to the GSSUP credentials received using the CSIv2
identity assertion (principal propagation) mechanism; or a nil
object reference if no credentials of this type were received. To
access the credentials’ attributes, use the inherited
SecurityLevel2::Credentials::get_attributes() operation.

See Also Security::SecAttribute
IT_CSI::CSICredentialsType

CSIReceivedCredentials::transport_credentials
Attibute
readonly attribute SecurityLevel2::Credentials

transport_credentials;

A reference to the credentials received through the SSL/TLS trans-
port layer; or a nil object reference if no credentials of this type
were received. These credentials normally take the form of an
X.509 certificate chain. To access the credentials’ attributes, use
the SecurityLevel2::Credentials::get_attributes() operation.

See Also Security::SecAttribute
IT_CSI::CSICredentialsType
IT_Certificate::X509CertChain

 718 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 719

IT_EventChannelAdmin Module
Module IT_EventChannelAdmin describes extensions to the module
CosEventChannelAdmin. It defines an interface, EventChannelFactory,
for creating or discovering EventChannel objects.

IT_EventChannelAdmin Data Types

IT_EventChannelAdmin::ChannelID Type
typedef long ChannelID;

The ChannelID is used by the event service to track event channels.
This number is assigned by the service when a new event channel
is created.

IT_EventChannelAdmin::EventChannelInfo
Structure
struct EventChannelInfo
 {
 string name;
 ChannelID id;
 CosEventChannelAdmin::EventChannel reference;
 };

The EventChannelInfo is the unit of information managed by the
EventChannelFactory for a given EventChannel instance. name is
used for administrative purposes.

IT_EventChannelAdmin::EventChannelInfoList
Sequence
typedef sequence<EventChannelInfo> EventChannelInfoList;

The EventChannelInfoList contains a sequence of EventChannelInfo
and is the unit returned by EventChannelFactory::list_channels().

IT_EventChannelAdmin Exceptions

IT_EventChannelAdmin::ChannelAlreadyExists
exception ChannelAlreadyExists {string name;};

ChannelAlreadyExists is raised when an attempt is made to create
an event channel with a name that is already in use. It returns with
the name of the channel.

 720 Orbix CORBA Programmer’s Reference: Java

IT_EventChannelAdmin::ChannelNotFound
exception ChannelNotFound {string name;};

ChannelNotFound is raised when a call to either
EventChannelFactory::find_channel() or
EventChannelFactory::find_channel_by_id() cannot find the speci-
fied channel. It returns with the name of the specified channel.

 Orbix CORBA Programmer’s Reference: Java 721

IT_EventChannelAdmin::EventCh
annelFactory Interface

interface EventChannelFactory : IT_MessagingAdmin::Manager
{
 CosEventChannelAdmin::EventChannel create_channel(
 in string name,
 out ChannelID id)
 raises (ChannelAlreadyExists);

 CosEventChannelAdmin::EventChannel find_channel(
 in string name,
 out ChannelID id)
 raises (ChannelNotFound);

 CosEventChannelAdmin::EventChannel find_channel_by_id(
 in ChannelID id,
 out string name)
 raises (ChannelNotFound);

 EventChannelInfoList list_channels();
};

The EventChannelFactory interface defines operations for creating
and managing untyped event channels. By inheriting from the
Manager interface, it also has the ability to gracefully shut down the
event service.

EventChannelFactory::create_channel()
//IDL
CosEventChannelAdmin::EventChannel create_channel(
 in string name,
 out ChannelID id)
raises (ChannelAlreadyExists);

Creates a new instance of the event service style event channel

Parameters

EventChannelFactory::find_channel()
//IDL
CosEventChannelAdmin::EventChannel find_channel(
 in string name,
 out ChannelID id)
raises (ChannelNotFound);

Returns an EventChannel instance specified by the provided name.

Parameters

name The name of the channel to be created
id The id of the created channel

name The name of the channel

 722 Orbix CORBA Programmer’s Reference: Java

EventChannelFactory::find_channel_by_id()
//IDL
CosEventChannelAdmin::EventChannel find_channel_by_id(
 in ChannelID id,
 out string name)
raises (ChannelNotFound);

Returns an EventChannel instance specified by the provided id.

Parameters

EventChannelFactory::list_channels()
//IDL
EventChannelInfoList list_channels();

Return a list of the EventChannel instances associated with the event
service.

id The channel id as returned from create_channel()

id The channel id as returned from create_channel()
name The name of the channel

 Orbix CORBA Programmer’s Reference: Java 723

IT_FPS Module
The IT_FPS module defines the constants and interface for the
InterdictionPolicy.
const unsigned long FPS_POLICY_BASE =

IT_PolicyBase::IONA_POLICY_ID + 40;

const CORBA::PolicyType INTERDICTION_POLICY_ID =
FPS_POLICY_BASE;

enum InterdictionPolicyValue
 {
 DISABLE,
 ENABLE
 };

local interface InterdictionPolicy : CORBA::Policy
 {
 readonly attribute InterdictionPolicyValue value;
 };

FPS_POLICY_BASE Constant
const unsigned long FPS_POLICY_BASE =

IT_PolicyBase::IONA_POLICY_ID + 40;

Specifies the offset used to identify the InterdictionPolicy.

INTERDICTION_POLICY_ID Constant
const CORBA::PolicyType INTERDICTION_POLICY_ID =

FPS_POLICY_BASE;

Specifies the ID passed to create_policy() when creating an
InterdictionPolicy.

InterdictionPolicyValue Enum
enum InterdictionPolicyValue
 {
 DISABLE,
 ENABLE
 };

Specifies the possible values for the InterdictionPolicy. The val-
ues are defined as follows:

ENABLE This is the default behavior of the firewall proxy
service plug-in. A POA with its InterdictionPolicy set
to ENABLE will be proxified.

 724 Orbix CORBA Programmer’s Reference: Java

DISABLE This setting tells the firewall proxy service plug-in
to not proxify the POA. A POA with its
InterdictionPolicy set to DISABLE will not use the
firewall proxy service and requests made on
objects under its control will come directly from the
requesting clients.

 Orbix CORBA Programmer’s Reference: Java 725

IT_FPS::InterdictionPolicy
Interface

This is an interface for a local policy object derived from
CORBA::Policy. You create instances of InterdictionPolicy by call-
ing CORBA::ORB::create_policy(). It is used to specify if a POA is to
be proxified by the firewall proxy service.
local interface InterdictionPolicy : CORBA::Policy
 {
 readonly attribute InterdictionPolicyValue value;
 };

 726 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 727

The IT_GIOP Module
A Micro Focus proprietary IDL module that is used to describe the
properties of GIOP connections.

IT_GIOP::CLIENT_VERSION_CONSTRAINTS_POLICY_ID

Identifies the IT_GIOP::ClientVersionConstraintsPolicy policy.

Description You can pass this policy ID to the CORBA::ORB::create_policy()
operation to create an IT_GIOP::ClientVersionConstraintsPolicy policy
instance.

IT_GIOP::CLIENT_CODESET_CONSTRAINTS_POLICY_ID

Identifies the IT_GIOP::ClientCodeSetConstraintsPolicy policy.

Description You can pass this policy ID to the CORBA::ORB::create_policy()
operation to create an IT_GIOP::ClientCodeSetConstraintsPolicy policy
instance.

IT_GIOP::VersionSeq

A list of GIOP version numbers.

IT_GIOP::ClientCodeSetConstraintsPolicyValue

A collection of narrow and wide character codesets which the client is
restricted to use when opening a new connection.

Description Micro Focus internal use only.

 728 Orbix CORBA Programmer’s Reference: Java

Interface
IT_GIOP::ClientVersionConstrai
ntsPolicy

A policy that limits the GIOP versions a client can use when
opening a new connection.

Description Micro Focus internal use only.
Instead of specifying the client’s GIOP version by
programming, you can set the relevant configuration
variable. To specify the GIOP version, use one of the
following configuration variables (iiop for insecure IIOP and
iiop_tls for secure IIOP):
plugins:iiop:client_version_policy
plugins:iiop_tls:client_version_policy

IT_GIOP::ClientVersionConstraintsPolicy::allowed_versions

Returns the list of GIOP versions that the client is constrained to
use by this policy.

Description Micro Focus internal use only.

Orbix CORBA Programmer’s Reference: Java 729

Interface
IT_GIOP::ClientCodeSetConstrain
tsPolicy

A policy that limits the character codesets a client can use when opening
a new connection.

Description Micro Focus internal use only.
Instead of specifying the client’s codesets by programming, you
can set the relevant configuration variables. To specify the native
codeset (ncs) or conversion codeset (ccs) for narrow characters
(char) or wide characters (wchar), use the following configuration
variables:
plugins:codeset:char:ncs
plugins:codeset:char:ccs
plugins:codeset:wchar:ncs
plugins:codeset:wchar:ccs

IT_GIOP::ClientCodeSetConstraintsPolicy::value

Returns the character code sets that the client is constrained to use by
this policy.

Description Micro Focus internal use only.

 730 Orbix CORBA Programmer’s Reference: Java

Interface IT_GIOP::Current
An object that provides access to miscellaneous attributes of a GIOP
connection.

Description On the client side, the IT_GIOP::Current object is used to set
attributes that affect all of the outgoing connections opened in the
current thread.
On the server side, the IT_GIOP::Current object is used to access
the attributes of the incoming GIOP connection (the attributes are
only accessible in an invocation context).
An instance of IT_GIOP::Current can be obtained by passing the
string, IT_GIOPCurrent, to
CORBA::ORB::resolve_initial_references().

Java implementation To obtain a reference to an IT_GIOP::Current object in Java, use
the following code:
// Java
com.iona.corba.IT_GIOP.Current giop_current = null;
try {
 org.omg.CORBA.Object objref =

orb.resolve_initial_references("IT_GIOPCurrent");

 giop_current =
com.iona.corba.IT_GIOP.CurrentHelper.narrow(objref);

}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
 // Error: resolve_initial_references() call failed...
}
catch (org.omg.CORBA.BAD_PARAM ex) {
 // Error: narrow() call failed...
}

IT_GIOP::Current::negotiated_version

Returns the negotiated GIOP version used by the current connection.

Description Available on the server side only. This property is negotiated
per-connection.

IT_GIOP::Current::negotiated_char_codeset

Returns the negotiated narrow character codeset ID used by the current
connection.

Description Available on the server side only. This property is negotiated
per-connection.

IT_GIOP::Current::negotiated_wchar_codeset

Returns the negotiated wide character codeset ID used by the current
connection.

Orbix CORBA Programmer’s Reference: Java 731

Description Available on the server side only. This property is negotiated
per-connection. In Orbix, it is possible for this property to be
undefined (for example, if an Orbix client is connected and the
client has not yet sent any wide characters).

IT_GIOP::Current::local_principal

Sets the CORBA Principal for sending in client requests in an octet
sequence format.

Description The local principal can be set only on the client side (per-thread).
It affects only the client invocations made from the current thread,
overriding the default value (Orbix uses the operating system user
ID for the Principal by default).
The local principal setting has no effect unless the client is
configured to use CORBA Principals (that is,
policies:giop:interop_policy:send_principal must be true).

See also IT_GIOP::Current::local_principal_as_string

IT_GIOP::Current::local_principal_as_string

Sets the CORBA Principal for sending in client requests in a string format.

Description The local_principal_as_string attribute accesses or modifies the
local principal value in a string format. When you set this
attribute, it is implicitly converted to an octet sequence format
(which is also accessible through the local_principal attribute).

Java implementation The Principal string is returned in UTF-8 format.

See also IT_GIOP::Current::local_principal

IT_GIOP::Current::received_principal

Accesses the CORBA Principal received with a client request in an octet
sequence format.

Description The received principal can be accessed only on the server side.

Java implementation If the client did not include a Principal in the request message, this
attribute returns null.

See also IT_GIOP::Current::received_principal_as_string

IT_GIOP::Current::received_principal_as_string

Accesses the CORBA Principal received with a client request in a string
format.

Description The received_principal_as_string attribute accesses the received
principal value in a string format. When you access this attribute,
it is implicitly converted from an octet sequence format (which is
also accessible through the received_principal attribute).

 732 Orbix CORBA Programmer’s Reference: Java

Java implementation The Principal string is returned in UTF-8 format.

See also IT_GIOP::Current::received_principal

IT_GIOP::Current::received_request_length

Returns the length of the current received request.

Description The request length returned by this attribute is equal to the sum
of the all the message fragment lengths (the 12-byte GIOP
message header is not considered to be part of the message
length). For example, if the request consists of just one message
(that is, no fragmentation), the returned length is equal to the
message body length.
Available on the server side only. You can access this attribute in
the servant implementation, assuming there is an invocation
context.

Java implementation Not implemented.

IT_GIOP::Current::sent_reply_length

Returns the length of the current sent reply.

Description Micro Focus internal use only. Available on the server side only.

Java implementation Not implemented.

Orbix CORBA Programmer’s Reference: Java 733

Interface IT_GIOP::Current2
An object that provides access to miscellaneous attributes of a GIOP
connection.

Description On the client side, the IT_GIOP::Current2 object is used to set
attributes that affect all of the outgoing connections opened in the
current thread.
On the server side, the IT_GIOP::Current2 object is used to access
the attributes of the incoming GIOP connection (the attributes are
only accessible in an invocation context).
An instance of IT_GIOP::Current2 can be obtained by passing the
string, IT_GIOPCurrent, to
CORBA::ORB::resolve_initial_references().
In a future release, the attributes defined in this interface are
likely to be either folded into the base interface, or moved to a
more general interface.

Java implementation To obtain a reference to an IT_GIOP::Current2 object in Java, use
the following code:
// Java
com.iona.corba.IT_GIOP.Current2 giop_current2 = null;
try {
 org.omg.CORBA.Object objref =

orb.resolve_initial_references("IT_GIOPCurrent");
 giop_current2 =

com.iona.corba.IT_GIOP.Current2Helper.narrow(objref);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex) {
 // Error: resolve_initial_references() call failed...
}
catch (org.omg.CORBA.BAD_PARAM ex) {
 // Error: narrow() call failed...
}

IT_GIOP::Current2::protocol_name

Returns the name of the transport protocol underlying GIOP over which
the current request was received.

Description Server side only. This readonly attribute can return one of the
following string values:

Table 14: Return Values for the Transport Protocol Name

Protocol C++ Return Value Java Return Value

IIOP IIOP iiop

IIOP/TLS IIOP_TLS iiop

EGMIOP EGMIOP egmiop

SHMIOP SHMIOP N/A

 734 Orbix CORBA Programmer’s Reference: Java

IT_GIOP::Current2::local_address_literal

Returns the local address, in string format, of the GIOP connection over
which a request was received.

Description Server side only. The format of the returned string depends on the
specific protocol being used. For IIOP or IIOP/TLS, it consists of
the node address, in IPv4 dotted decimal or IPv6 colon-separated
hex notation, followed by a dot and then the decimal port number.
For example, an IPv4 address with host, 127.0.0.1, and IP port,
1234, would be returned as the following string:
127.0.0.1.1234

An IPv6 address with MAC address, FB:00:5B:97:E5:7D, and IP
port, 1234, would be returned as the following string:
FB:00:5B:97:E5:7D.1234

See also IT_GIOP::Current2::remote_address_literal

IT_GIOP::Current2::remote_address_literal

Returns the remote address, in string format, of the GIOP connection over
which a request was received.

Description Server side only. The format of the returned string depends on the
specific protocol being used. For IIOP or IIOP/TLS, it consists of
the node address, in IPv4 dotted decimal or IPv6 colon-separated
hex notation, followed by a dot and then the decimal port number.
For example, an IPv4 address with host, 127.0.0.1, and IP port,
1234, would be returned as the following string:
127.0.0.1.1234

An IPv6 address with MAC address, FB:00:5B:97:E5:7D, and IP
port, 1234, would be returned as the following string:
FB:00:5B:97:E5:7D.1234

See also IT_GIOP::Current2::local_address_literal

IT_GIOP::Current2::local_address

Returns the local address, in the form of an object, of the GIOP connection
over which a request was received.

Description Micro Focus internal use only.
Server side only. The type of the returned Object depends on the
specific protocol implementation being used, as follows:
• IIOP protocol—object type is IT_ATLI2_IP::IPAddress.
• IIOP/TLS protocol—object type is IT_ATLI2_IP::IPAddress.
• SHMIOP protocol—object type is IT_ATLI2_SHM::SHMAddress.
• EGMIOP protocol—not implemented.

Orbix CORBA Programmer’s Reference: Java 735

IT_GIOP::Current2::remote_address

Returns the remote address, in the form of an object, of the GIOP
connection over which a request was received.

Description Micro Focus internal use only.
Server side only. The type of the returned Object depends on the
specific protocol implementation being used, as follows:
• IIOP protocol—object type is IT_ATLI2_IP::IPAddress.
• IIOP/TLS protocol—object type is IT_ATLI2_IP::IPAddress.
• SHMIOP protocol—object type is IT_ATLI2_SHM::SHMAddress.
• EGMIOP protocol—not implemented.

 736 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 737

IT_LoadBalancing Overview
The IT_LoadBalancing module provides operations that allow you to
organize object references in the naming service into object
groups. Object groups provide a means of controlling object load
balancing by distributing work across a pool of objects.
• The ObjectGroup interface provides operations to update object

group members.
• The ObjectGroupFactory interface provides operations to create

or locate object groups.
The IT_LoadBalancing module also uses the following common data
types and exceptions.

IT_LoadBalancing::MemberId Data Type
//IDL
typedef string MemberId;

An identifying string representing an object group member.

When adding a member to an object group, you must specify a
string representing the object. The format of the string is left to the
developer. Orbix does not interpret them. The only restriction is
that member ids must be unique within each object group.

IT_LoadBalancing::MemberIdList Data Type
//IDL
typedef sequence<MemberId> MemberIdList;

A list of member ids that belong to an object group.

IT_LoadBalancing::SelectionMethod Data Type
//IDL
enum SelectionMethod { ROUND_ROBIN_METHOD, RANDOM_METHOD,

ACTIVE_METHOD };

Specifies the algorithm for mapping a name to a member of an
object group.

Table 15: IT_LoadBalancing Common Data Types and Exceptions

Common Data Types Exceptions

MemberId
MemberIdList
SelectionMethod
Member
GroupId
GroupList

NoSuchMember
DuplicateMember
DuplicateGroup
NoSuchGroup

ROUND_ROBIN_METHODSequentially selects objects from the object group
to resolve client requests.

 738 Orbix CORBA Programmer’s Reference: Java

IT_LoadBalancing::Member Data Type
//IDL
struct Member
{
 Object obj;
 MemberId id;
};

Specifies an object group member.

IT_LoadBalancing::GroupId Data Type
// IDL
typedef string GroupId;

A string representing an object group.

When creating an object group, you must specify a string repre-
senting the object. The format of the string is left to the developer.
Orbix does not interpret them. The only restriction is that group ids
must be unique among object groups.

IT_LoadBalancing::GroupList Data Type
//IDL
typedef sequence<GroupId> GroupList;

A list of object group ids.

IT_LoadBalancing::NoSuchMember Exception
// IDL
exception NoSuchMember{};

Raised when the member id passed to an operation does not specify
a member in the current object group.

IT_LoadBalancing::DuplicateMember Exception
// IDL
exception DupliccateMember{};

Raised by IT_LoadBalancing::ObjectGroup::add_member when the
member id identifies a member that is already part of the group.

RANDOM_METHOD Randomly selects objects from the object group
to resolve client requests.

ACTIVE_METHOD Uses load information supplied by the server or
the system administrator to select the object with
the lightest load from the object group to resolve
client requests.

Orbix CORBA Programmer’s Reference: Java 739

IT_LoadBalancing::DuplicateGroup Exception
Raised by
IT_LoadBalancing::ObjectGroupFactory::create_round_robin,
IT_LoadBalancing::ObjectGroupFactory::create_random, and
IT_LoadBalancing::ObjectGroupFactory::create_active when the
group id identifies a preexisting group.

IT_LoadBalancing::NoSuchGroup Exception
Raised when the specified group id does not match any registered
group.

 740 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 741

IT_LoadBalancing::ObjectGroup
Interface

Object groups are controlled by the ObjectGroup interface, which
defines the operations for manipulating the members of the object
group. An ObjectGroup is obtained from an ObjectGroupFactory.
The ObjectGroup interface has the following attributes:
• id contains the group’s id string specified when the group is

created.
• selection_method specifies which algorithm is used to resolve

client requests
The ObjectGroup interface has the following operations:
• pick is called by the naming service to map a client request to

an active object.
• add_member() adds an object’s reference to an object group.
• remove_member() removes an object’s reference from the object

group.
• get_member() returns the object by its member id.
• members() returns a list of all members in the object group.
• update_member_load() updates the object’s load status.
• get_member_load() returns an object’s load status.
• set_member_timeout() specifies the amount of time between

load updates for a specific member. After this time the object
will be removed from the group’s pool of available objects.

• get_member_timeout() returns the member’s timeout value.
• destroy() removes the object group from the naming service.
The complete ObjectGroup interface is as follows:
interface ObjectGroup {
 readonly attribute string id;
 attribute SelectionMethod selection_method;
 Object pick();
 void add_member (in Member mem)
 raises (DuplicateMember);
 void remove_member (in MemberId id)
 raises (NoSuchMember);
 Object get_member (in MemberId id)
 raises (NoSuchMember);
 MemberIdList members();
 void update_member_load(in MemberIdList ids, in double

curr_load)
 raises (NoSuchMember);
 double get_member_load(in MemberId id)
 raises (NoSuchMember);
 void set_member_timeout(in MemberIdList ids, in long

timeout_sec)
 raises (NoSuchMember);
 long get_member_timeout(in MemberId id)
 raises (NoSuchMember);
 void destroy();

 742 Orbix CORBA Programmer’s Reference: Java

};

ObjectGroup::pick()
// IDL
Object pick();

Returns an object from the group using the selection algorithm
specified when the group was created.

See Also IT_LoadBalancing::SelectionMethod,
IT_LoadBalancing::ObjectGroupFactory::create_round_robin(),
IT_LoadBalancing::ObjectGroupFactory::create_random(),
IT_LoadBalancing::ObjectGroupFactory::create_active()

ObjectGroup::add_member()
// IDL
void add_member(in Member mem)
raises (DuplicateMember);

Adds a reference to an object to the object group and makes it
available for picking.

Parameters

Exceptions

ObjectGroup::remove_member()
// IDL
void remove_member(in MemberId id)
 raises (NoSuchMember);

Removes the specified object’s reference from the object group. It
does not effect any other references to the object stored in the
naming service.

Parameters

Exceptions

mem Specifies the object to be added to the object group. It
is made up of a CORBA::Object and a MemberId.

IT_LoadBalanci
ng::Duplica
teMember

A member with the same MemberId is already associ-
ated with the object group.

id A string that identifies the object within the object
group

IT_LoadBalanci
ng::
NoSuchMembe
r

The specified member does not exist in the object
group.

Orbix CORBA Programmer’s Reference: Java 743

ObjectGroup::get_member()
// IDL
Object get_member(in MemberId id)

Returns the object specified by id.

Parameters

Exceptions

ObjectGroup::members()
// IDL
MemberIdList members();

Returns a list containing the ids of all members in the object group.

ObjectGroup::update_member_load()
// IDL
 void update_member_load(in MemberIdList ids, in double

curr_load)
 raises (NoSuchMember);

Specifies the load value used in the ACTIVE_METHOD selection algo-
rithm.

Parameters

Exceptions

See Also IT_LoadBalancing::SelectionMethod,
IT_LoadBalancing::ObjectGroupFactory::create_active(),
IT_LoadBalancing::ObjectGroup::set_member_timeout()

ObjectGroup::get_member_load()
// IDL
double get_member_load(in MemberId id)
raises (NoSuchMember);

Returns the load value for a specified object.

id A string that identifies the object within the object
group

IT_LoadBalancing:
: NoSuchMember

The specified member does not exist in the
object group.

ids A sequence of MemberId values that specify the objects
whose load value is being updated.

curr_load A double that specifies the load on the specified
objects. The higher the value, the higher the load.
Using the ACTIVE_METHOD members of the group with
the lowest load values are picked first.

IT_LoadBalancing:
: NoSuchMember

One or more of the specified members do not
exist in the object group.

 744 Orbix CORBA Programmer’s Reference: Java

Parameters

Exceptions

See Also IT_LoadBalancing::ObjectGroup::update_member_load()

ObjectGroup::set_member_timeout()
void set_member_timeout(in MemberIdList ids, in long

timeout_sec)
raises (NoSuchMember);

Specifies the amount of time, in seconds, that a member has
between updates of its load value before it is removed from the list
of available objects.

Parameters

Exceptions

See Also IT_LoadBalancing::ObjectGroup::update_member_load()

ObjectGroup::get_member_timeout()
\\ IDL
long get_member_timeout(in MemberId id)
raises (NoSuchMember);

Returns the timeout value for the specified object group member.

Parameters

Exceptions

See Also IT_LoadBalancing::ObjectGroup::set_member_timeout()

id A string that identifies the object within the object
group

IT_LoadBalancing:
: NoSuchMember

The specified member does not exist in the
object group.

ids A sequence of MemberIds that specify the members
whose timeout values are being set.

timeout_sec A long specifying the number of seconds that an object
has between load value updates. After this amount of
time has expired the object will be taken off the object
groups list of available objects.

IT_LoadBalancing:
: NoSuchMember

One or more of the specified members do not
exist in the object group.

id A string that identifies the object within the object
group

IT_LoadBalancing:
: NoSuchMember

One or more of the specified members do not
exist in the object group.

Orbix CORBA Programmer’s Reference: Java 745

ObjectGroup::destroy()
// IDL
void destroy()

Removes the object group from the naming service. Before calling
destroy() on an object group, you must first unbind it.

Exceptions

See Also CosNaming::NamingContext::unbind()

CosNamimg::NamingCon
text::NotEmpty

The object group is not unbound from the
naming service.

 746 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 747

IT_LoadBalancing::ObjectGroupF
actory Interface

The ObjectGroupFactory interface provides methods for creating
and locating object groups in the naming service.
The ObjectGroupFactory interface has the following methods to cre-
ate object groups:
• create_round_robin() creates an object group that uses the

ROUND_ROBIN_METHOD selection algorithm for picking objects.
• create_random() creates an object group that uses the

RANDOM_METHOD selection algorithm for picking objects.
• create_active() creates an object group that uses the

ACTIVE_METHOD selection algorithm for picking objects.
The ObjectGroupFactory interface has the following methods for
locating object groups in the naming service:
• find_group returns a specific object group.
• rr_groups returns a list of all object groups using the

ROUND_ROBIN_METHOD selection algorithm.
• random_groups returns a list of all object groups using the

RANDOM_METHOD selection algorithm.
• active_groups returns a list of all object groups using the

ACTIVE_METHOD selection algorithm.
The complete ObjectGroupFactory interface is as follows:
interface ObjectGroupFactory {
 ObjectGroup create_round_robin (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_random (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup create_active (in GroupId id)
 raises (DuplicateGroup);
 ObjectGroup find_group (in GroupId id)
 raises (NoSuchGroup);
 GroupList rr_groups();
 GroupList random_groups();
 GroupList active_groups();
};

ObjectGroupFactory::create_round_robin()
// IDL
ObjectGroup create_round_robin (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses
the ROUND_ROBIN_METHOD selection algorithm for picking objects.

Parameters

id A string identifying the object group. The string must
be unique among object groups.

 748 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also IT_LoadBalancing::ROUND_ROBIN_METHOD

ObjectGroupFactory::create_random()
ObjectGroup create_random (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses
the RANDOM_METHOD selection algorithm for picking objects.

Parameters

Exceptions

See Also IT_LoadBalancing::RANDOM_METHOD

ObjectGroupFactory::create_active()
ObjectGroup create_active (in GroupId id)
 raises (DuplicateGroup);

Creates an object group in the naming service. The new group uses
the ACTIVE_METHOD selection algorithm for picking objects.

Parameters

Exceptions

See Also IT_LoadBalancing::ACTIVE_METHOD

ObjectGroupFactory::find_group()
//IDL
ObjectGroup find_group (in GroupId id)
 raises (NoSuchGroup);

Returns the specified object group.

Parameters

IT_LoadBalancing::
DuplicateGroup

The id specified is already in use by another
object group.

id A string identifying the object group. The string must
be unique among object groups.

IT_LoadBalancing::Du
plicateGroup

The id specified is already in use by another
object group.

id A string identifying the object group. The string must
be unique among object groups.

IT_LoadBalancing::
DuplicateGroup

The id specified is already in use by another
object group.

id A string identifying the object group. The string must
be unique among object groups.

Orbix CORBA Programmer’s Reference: Java 749

Exceptions

ObjectGroupFactory::rr_groups()
// IDL
GroupList rr_groups();

Returns a sequence of GroupId that identify all objects groups in the
naming service that use ROUND_ROBIN_METHOD.

ObjectGroupFactory::random_groups()
// IDL
GroupList random_groups();

Returns a sequence of GroupId that identify all objects groups in the
naming service that use RANDOM_METHOD.

ObjectGroupFactory::active_groups()
// IDL
GroupList random_groups();

Returns a sequence of GroupId that identify all objects groups in the
naming service that use ACTIVE_METHOD.

IT_LoadBalancing:
:NoSuchGroup

The group specified does not exist.

 750 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 751

IT_Logging Overview
The IT_Logging module is the centralized point for controlling all
logging methods.
• The EventLog interface controls the reporting of log events.
• The LogStream interface controls how and where events are

received.
The IT_Logging module also uses the following common data
types, static method, and macros.

IT_Logging::ApplicationId Data Type
//IDL
typedef string ApplicationId;

An identifying string representing the application that logged the
event.

For example, a Unix and Windows ApplicationId contains the host
name and process ID (PID) of the reporting process. Because this
value can differ from platform to platform, streams should only
use it as informational text, and should not attempt to interpret it.

Enhancement Orbix enhancement to CORBA.

IT_Logging::EventId Data Type
//IDL
typedef unsigned long EventId;

An identifier for the particular event.

Enhancement Orbix enhancement to CORBA.

IT_Logging::EventParameters Data Type
//IDL
typedef CORBA::AnySeq EventParameters;

A sequence of locale-independent parameters encoded as a se-
quence of Any values.

Enhancement Orbix enhancement to CORBA.

Table 16: IT_Logging Common Data Types, Methods, and Macros

Common Data Types Methods and Macros

ApplicationId
EventId
EventParameters
EventPriority
SubsystemId
Timestamp

format_message()

IT_LOG_MESSAGE()
IT_LOG_MESSAGE_1()
IT_LOG_MESSAGE_2()
IT_LOG_MESSAGE_3()
IT_LOG_MESSAGE_4()
IT_LOG_MESSAGE_5()

 752 Orbix CORBA Programmer’s Reference: Java

See Also IT_Logging::format_message()

IT_Logging::EventPriority Data Type
//IDL
typedef unsigned short EventPriority;

Specifies the priority of a logged event. These can be divided into
the following categories of priority.

The possible values for an EventPriority consist of the following:
LOG_NO_EVENTS
LOG_ALL_EVENTS
LOG_INFO_LOW
LOG_INFO_MED
LOG_INFO_HIGH
LOG_INFO (LOG_INFO_LOW)
LOG_ALL_INFO

LOG_WARNING
LOG_ERROR
LOG_FATAL_ERROR

A single value is used for EventLog operations that report events or
LogStream operations that receive events. In filtering operations
such as set_filter(), these values can be combined as a filter
mask to control which events are logged at runtime.

Enhancement Orbix enhancement to CORBA.

IT_Logging::format_message()
Returns a formatted message based on a format description and a
sequence of parameters.

Information A significant non-error event has occurred.
Examples include server startup/shutdown,
object creation/deletion, and information about
administrative actions. Informational messages
provide a history of events that can be invalu-
able in diagnosing problems.

Warning The subsystem has encountered an anomalous
condition, but can ignore it and continue func-
tioning. Examples include encountering an
invalid parameter, but ignoring it in favor of a
default value.

Error An error has occurred. The subsystem will
attempt to recover, but may abandon the task
at hand. Examples include finding a resource
(such as memory) temporarily unavailable, or
being unable to process a particular request
due to errors in the request.

Fatal Error An unrecoverable error has occurred. The sub-
system or process will terminate.

Orbix CORBA Programmer’s Reference: Java 753

Parameters Messages are reported in two pieces for internationalization:

format_message() copies the description into an output string,
interprets each event parameter, and inserts the event parame-
ters into the output string where appropriate. Event parameters
that are primitive and SystemException parameters are converted
to strings before insertion. For all other types, question marks (?)
are inserted.

Enhancement Orbix enhancement to CORBA.

IT_Logging::SubsystemId Data Type
//IDL
typedef string SubsystemId;

An identifying string representing the subsystem from which the
event originated. The constant _DEFAULT may be used to enable all
subsystems.

Enhancement Orbix enhancement to CORBA.

IT_Logging::Timestamp Data Type
//IDL
typedef unsigned long Timestamp;

The time of the logged event in seconds since January 1, 1970.

Enhancement Orbix enhancement to CORBA.

IT_LOG_MESSAGE() Macro
A macro to use for reporting a log message.

Parameters

Enhancement Orbix enhancement to CORBA.

Examples Here is a simple example of usage:

...
IT_LOG_MESSAGE(
 event_log,
 IT_IIOP_Logging::SUBSYSTEM,
 IT_IIOP_Logging::SOCKET_CREATE_FAILED,

description A locale-dependent string that describes of how to use
the sequence of parameters in params.

params A sequence of locale-dependent parameters.

event_log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.

 754 Orbix CORBA Programmer’s Reference: Java

 IT_Logging::LOG_ERROR,
 SOCKET_CREATE_FAILED_MSG
);

IT_LOG_MESSAGE_1() Macro
A macro to use for reporting a log message with one event
parameter.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_2() Macro
A macro to use for reporting a log message with two event
parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_3() Macro
A macro to use for reporting a log message with three event
parameters.

Parameters

event_log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.
param0 A single parameter for an EventParameters sequence.

event_log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.
param0 The first parameter for an EventParameters sequence.
param1 The second parameter for an EventParameters

sequence.

event_log The log (EventLog) where the message is to be
reported.

Orbix CORBA Programmer’s Reference: Java 755

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_4() Macro
A macro to use for reporting a log message with four event
parameters.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

IT_LOG_MESSAGE_5() Macro
A macro to use for reporting a log message with five event
parameters.

Parameters

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.
param0 The first parameter for an EventParameters sequence.
param1 The second parameter for an EventParameters

sequence.
param2 The third parameter for an EventParameters sequence.

event_log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.
param0 The first parameter for an EventParameters sequence.
param1 The second parameter for an EventParameters

sequence.
param2 The third parameter for an EventParameters sequence.
param3 The forth parameter for an EventParameters sequence.

event_log The log (EventLog) where the message is to be
reported.

subsystem The SubsystemId.
id The EventId.
severity The EventPriority.
desc A string description of the event.
param0 The first parameter for an EventParameters sequence.

 756 Orbix CORBA Programmer’s Reference: Java

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::IT_LOG_MESSAGE()

param1 The second parameter for an EventParameters
sequence.

param2 The third parameter for an EventParameters sequence.
param3 The forth parameter for an EventParameters sequence.
param4 The fifth parameter for an EventParameters sequence.

 Orbix CORBA Programmer’s Reference: Java 757

IT_Logging::EventLog Interface
Logging is controlled with the EventLog interface, which defines
operations to register interfaces for receiving notification of logged
events, report logged events, and filter logged events. Each ORB
maintains its own EventLog instance, which applications obtain by
calling resolve_initial_references() with the string argument
IT_EventLog.
The EventLog interface has the following operations:
• register_stream() registers the receivers of log events.

report_event() reports log events and report_message()
reports messages to receivers.

• get_filter(), set_filter(), expand_filter(), and
clear_filter() set filters for which log events are reported.

An EventLog has several operations for controlling which events
are logged at runtime. A filter has an EventPriority that describes
the types of events that are reported. Every subsystem is associ-
ated with a filter that controls which events are allowed for that
subsystem. A default filter is also associated with the entire
EventLog.
The complete EventLog interface is as follows:
// IDL in module IT_Logging
interface EventLog {
 void register_stream(
 in LogStream the_stream
);

 void report_event(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in any event_data
);

 void report_message(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in string description,
 in EventParameters parameters
);

 EventPriority get_filter(
 in SubsystemId subsystem
);

 void set_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

 void expand_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

 758 Orbix CORBA Programmer’s Reference: Java

 void clear_filter(
 in SubsystemId subsystem
);
...
};

EventLog::clear_filter()
// IDL
void clear_filter(
 in SubsystemId subsystem
);

Removes an explicitly configured subsystem filter, causing the
subsystem to revert to using the default filter.

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::get_filter()

EventLog::expand_filter()
// IDL
void expand_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

Adds to a subsystem filter by combining the new filter mask with
the existing subsystem filter.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::set_filter()
IT_Logging::EventLog::clear_filter()

EventLog::get_filter()
// IDL
EventPriority get_filter(
 in SubsystemId subsystem
);

Returns a sub-system’s filter priorities.

Parameters

Enhancement Orbix enhancement to CORBA.

subsystem The name of the subsystem for which the filter
applies.

filter_mask A value representing the types of events to be
reported.

subsystem The name of the subsystem for which the filter
applies.

Orbix CORBA Programmer’s Reference: Java 759

See Also IT_Logging::EventLog::get_filter()

EventLog::register_stream()
// IDL
void register_stream(
 in LogStream the_stream
);

Explicitly registers a LogStream.

Parameters

Log events “flow” to receivers on streams, thus streams must be
registered with the EventLog. Once registered, the stream will
receive notification of logged events.
An EventLog can have multiple streams registered at one time, and
it can have a single stream registered more than once.

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::LogStream

EventLog::report_event()
// IDL
void report_event(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in any event_data
);

Reports an event and its event-specific data.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_message()

EventLog::report_message()
// IDL
void report_message(
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in string description,
 in EventParameters parameters
);

the_stream The stream to register.

subsystem The name of the subsystem reporting the event.
event The unique ID defining the event.
priority The event priority.
event_data Event-specific data.

 760 Orbix CORBA Programmer’s Reference: Java

Reports an event and message.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_event()

EventLog::set_filter()
// IDL
void set_filter(
 in SubsystemId subsystem,
 in EventPriority filter_mask
);

Sets a filter for a given subsystem. This operation overrides the
subsystem’s existing filter.

Parameters

A subsystem will use the default filter if its filter has not been
explicitly configured by a call to set_filter().

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::get_filter()

subsystem The name of the subsystem reporting the event.
event The unique ID defining the event.
priority The event priority.
description A string describing the format of parameters.
parameters A sequence of parameters for the log.

subsystem The name of the subsystem for which the filter
applies.

filter_mask A value representing the types of events to be
reported.

 Orbix CORBA Programmer’s Reference: Java 761

IT_Logging::LogStream Interface
The LogStream interface allows an application to intercept events
and write them to some concrete location via a stream.
IT_Logging::EventLog objects maintain a list of LogStream objects.
You register a LogStream object from an EventLog using
register_stream(). The complete LogStream interface is as follows:
// IDL in module IT_Logging
interface LogStream {
 void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

 void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);
};

These operations are described in detail as follows:

LogStream::report_event()
// IDL
void report_event(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in any event_data
);

// Java
public void report_event(java.lang.String application,
 java.lang.String subsystem,
 int event,
 short priority,
 int event_time,
 Any event_data)

Reports an event and its event-specific data to the log stream.

Parameters

application An ID representing the reporting application.
subsystem The name of the subsystem reporting the event.
event A unique ID defining the event.

 762 Orbix CORBA Programmer’s Reference: Java

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_event()
IT_Logging::LogStream::report_message()

LogStream::report_message()
// IDL
void report_message(
 in ApplicationId application,
 in SubsystemId subsystem,
 in EventId event,
 in EventPriority priority,
 in Timestamp event_time,
 in string description,
 in EventParameters parameters
);

// Java
public void report_message(java.lang.String application,
 java.lang.String subsystem,
 int event,
 short priority,
 int event_time,
 java.lang.String description,
 Any[] parameters)

Reports an event and message to the log stream.

Parameters

Enhancement Orbix enhancement to CORBA.

See Also IT_Logging::EventLog::report_message()
IT_Logging::LogStream::report_event()

priority The event priority.
event_time The time when the event occurred.
event_data Event-specific data.

application An ID representing the reporting application.
subsystem The name of the subsystem reporting the event.
event The unique ID defining the event.
priority The event priority.
event_time The time when the event occurred.
description A string describing the format of parameters.
parameters A sequence of parameters for the log.

 Orbix CORBA Programmer’s Reference: Java 763

IT_MessagingAdmin Module
Module IT_MessagingAdmin describes the administrative interface
for the Event service.

 764 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 765

IT_MessagingAdmin::Manager
Interface

The Manager interface provides administrative operations on an
event service.
//IDL
 interface Manager
 {
 readonly attribute string name;
 readonly attribute string host;
 void shutdown();
 };
};

Manager::shutdown()
//IDL
void shutdown();

Shuts down an event service.

 766 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 767

IT_MessagingBridge Module
IT_MessagingBridge defines the data types, exceptions, and inter-
faces used to establish and manage the endpoints of a bridge. The
following interfaces are defined in IT_MessagingBridge:
• IT_MessagingBridge::Endpoint Interface
• IT_MessagingBridge::SinkEndpoint Interface
• IT_MessagingBridge::SourceEndpoint Interface
• IT_MessagingBridge::EndpointAdmin Interface

IT_MessagingBridge Data Types

IT_MessagingBridge::BridgeName
typedef string BridgeName;

BridgeName specifies the unique identifier of a bridge.

IT_MessagingBridge::BridgeNameSeq
typedef sequence<BridgeName> BridgeNameSeq;

BridgeNameSeq contains a list of bridge names and is the type
returned by
IT_MessagingBridgeAdmin::BridgeAdmin::list_all_bridges().

IT_MessagingBridge::EndpointName
typedef string EndpointName;

EndpointName uniquely identifies the name of the messaging object
with which the endpoint is associated. For example, the EndpointName
could be the name of a notification channel, a JMS topis, or a JMS
queue.

IT_MessagingBridge::EndpointType
typedef short EndpointType;

const EndpointType JMS_TOPIC = 1;
const EndpointType JMS_QUEUE = 2;
const EndpointType NOTIFY_CHANNEL = 3;

 768 Orbix CORBA Programmer’s Reference: Java

EndpointType specifys what type of messaging object to which the
endpoint is going to connect. It can take one of three constant
values:

IT_MessagingBridge::EndpointTypeSeq
typedef sequeunce<EndpointType> EndpointTypeSeq;

EndpointTypeSeq specifies a list of endpoint types.

IT_MessagingBridge::EndpointAdminName
typedef string EndpointAdminName;

EndpointAdminName specifies the unique identifier assigned to an
endpoint admin object.

IT_MessagingBridge::InvalidEndpointCode
typedef short InvalidEndpointCode;

const InvalidEndpointCode INVALID_TYPE = 1;
const InvalidEndpointCode INVALID_NAME = 2;
const InvalidEndpointCode UNSUPPORTED_TYPE = 3;
const InvalidEndpointCode INCOMPATIBLE_TYPE = 4;
const InvalidEndpointCode SAME_AS_PEER = 5;
const InvalidEndpointCode DOES_NOT_EXIST = 6;

InvalidEndpointCode specifies the return code of the InvalidEndpoint
exception.

Table 17: EndpointTypes and the associated messaging objects

EndpointType Messaging Object

JMS_TOPIC JMS Topic

JMS_QUEUE JMS Queue

NOTIFY_CHANNEL Notification Channel

Orbix CORBA Programmer’s Reference: Java 769

IT_MessagingBridge Exceptions

IT_MessaingBridge::InvalidEndpoint
exception InvalidEndpoint {InvalidEndpointCode code;};

InvalidEndpoint is raised when an endpoint is incorrectly specified.
Its return code specifies the reason the endpoint is invalid. The
return code will be one of the following:

IT_MessagingBridge::EndpointAlreadyConnect
ed
exception EndpointAlreadyConnected {};

EndpointAlreadyConnected is raised when an attempt is made to
connect an endpoint that is already connected to a peer.

IT_MessagingBridge::BridgeNameNotFound
exception BridgeNameNotFound {};

BridgeNameNotFound is raised when the bridge with the specified
name is not found.

Table 18: InvalidEndpoint return codes and their explanation

InvalidEndpointC
ode

Explanation

INVALID_TYPE The EndpointType was not recognized.

INVALID_NAME The EndpointName is not valid for the speci-
fied EndpointType.

UNSUPPORYED_TYPE The EndpointAdmin does not support the
specified type of endpoint.

INCOMPATIBLE_TYPE The EndpointType of the endpoints being
connected are incompatible. For example a
JMS_TOPIC cannot be connected to a
JMS_QUEUE.

SAME_AS_PEER The EndpointType of the endpoint being con-
nected to is the same as the current end-
point.

DOES_NOT_EXIST The endpoint specified by EndpointName does
not exist.

 770 Orbix CORBA Programmer’s Reference: Java

IT_MessagingBridge::BridgeNameAlreadyExist
s
exception BridgeNameAlreadyExists {};

BridgeNameAlreadyExists is raised when an attempt to create a
bridge with a name already in use is made.

Orbix CORBA Programmer’s Reference: Java 771

IT_MessagingBridge::Endpoint
Interface

interface Endpoint
{
 readonly attribute BridgeName bridge_name;
 readonly attribute EndpointType type;
 readonly attribute EndpointName name;
 readonly attribute EndpointAdmin admin;
 readonly attribute Endpoint peer;
 readonly attribute boolean connected;

 void connect(in Endpoint peer)
 raises (InvalidEndpoint, EndpointAlreadyConnected);

 void destroy();
};

Endpoint is a generic interface used to specify a bridge endpoint.
This is recomended interface for developers to use when working
with bridge endpoints. Defines the attributes used to specify the
type of endpoint, the bridge is is associated with, and if the end-
point is actively in use by a bridge. The interface also specifies an
operation for connecting an endpoint to a peer endpoint and an
operation for releasing the resources used by an endpoint. In gen-
eral, the connection of endpoints to peers and the destructions of
specific endpoints is handled by the bridge service when a bridge
is created or detoryed.

Endpoint::bridge_name
readonly attribute BridgeName bridge_name;

bridge_name specifies the name of the bridge with which the bridge
is associated.

Endpoint::type
readonly attribute EndpointType type;

type specifies the type of messaging object to which the endpoint
is connected.

Endpoint::name
readonly attribute EndpointName name;

name specifies the unique identifier of the endpoint.

 772 Orbix CORBA Programmer’s Reference: Java

Endpoint::admin
readonly attribute EndpointAdmin admin;

admin is a reference to the EndpointAdmin associated with the
endpoint.

Endpoint::peer
readonly attribute Endpoint peer;

peer is a reference to the endpoint on the other end of the bridge.
If the endpoint is not connected to a peer, this reference is nul.

Endpoint::connected
readonly attribute boolean connected;

connected specifies if the endpoint is actively connected to a peer
endpoint.

Endpoint::connect()
void connect(in Endpoint peer)
raises (InvalidEndpoint, EndpointAlreadyConnected);

connect() creates a connection between the current endpoint and
the endpoint passed into the operation. This operation is called by
the bridge service when a bridge is create.

Parameters

Exceptions

Endpoint::destroy()
void destroy();

Destroys the endpoint and releases all resources used to support it.

peer Specifies the endpoint that is being connected to.

InvalidEndpoint The specified endpoint is invalid. The
return code provides the details explain-
ing the reason.

EndpointAlreadyConnected One of the endpoints is already con-
nected to a peer endpoint.

Orbix CORBA Programmer’s Reference: Java 773

IT_MessagingBridge::SinkEndpoi
nt Interface

interface SinkEndpoint : Endpoint
{
};

SinkEndpoint is a specialization of the generic
IT_MessagingBridge::Endpoint interface. Ii is used to specify an
endpoint that recieves messages from the bridge and foward the
messages onto the recieving service. It defines no specific opera-
tions.

 774 Orbix CORBA Programmer’s Reference: Java

IT_MessagingBridge::SourceEndp
oint Interface

interface SourceEndpoint : Endpoint
{
 void start();

 void suspend();

 void stop();
};

SourceEndpoint is a specialization of the generic
IT_MessagingBridge::Endpoint interface. It is used to specify an
endpoint that takes messages from the forwarding service and
passes the messages into the bridge. It defines three operations
for controling the flow of messages through the endpoint.

SourceEndpoint::start()
void start();

start() begins the flow of messages to the bridge.

SourceEndpoint::suspend()
void suspend();

susspend() stops the flow of messages to the bridge, but causes the
endpoint to queue any incomming messages for delivery. Once the
flow of messages is restarted, the queued messages will be pass to
the bridge.

SourceEndpoint::stop()
void stop();

stop() completely stops the flow of messages to the bridge.

Orbix CORBA Programmer’s Reference: Java 775

IT_MessagingBridge::EndpointAd
min Interface

interface EndpointAdmin
{
 readonly attribute EndpointAdminName name;
 readonly attribute EndpointTypeSeq supported_types;

 SinkEndpoint create_sink_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
 raises (InvalidEndpoint, BridgeNameAlreadyExists);

 SourceEndpoint create_source_endpoint(in BridgeName
bridge_name,

 in EndpointType type,
 in EndpointName name)
 raises (InvalidEndpoint, BridgeNameAlreadyExists);

 SinkEndpoint get_sink_endpoint(in BridgeName bridge_name)
 raises (BridgeNameNotFound);

 SourceEndpoint get_source_endpoint(in BridgeName bridge_name)
 raises (BridgeNameNotFound);

 BridgeNameSeq get_all_sink_endpoints();

 BridgeNameSeq get_all_source_endpoints();
};

EndpointAdmin defines the factory operations to create and dis-
cover endpoints. There is one EndpointAdmin object for each mes-
saging service that can participate in bridging.

EndpointAdmin::name
readonly attribute EndpointAdminName name;

name specifies the unique identifier of the endpoint admin object.

EndpointAdmin::supported_types
readonly attribute EndpointTypeSeq supported_types;

supported_types specifies the types of endpoint that the admin
object can support. For example, the EndpointAdmin for JMS can
support endpoints of type JMS_TOPIC and JMS_QUEUE.

EndpointAdmin::create_sink_endpoint()
SinkEndpoint create_sink_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
raises (InvalidEndpoint, BridgeNameAlreadyExists);

 776 Orbix CORBA Programmer’s Reference: Java

create_sink_endpoint() creates a new SinkEndpoint of the specified
type and associates it with the specified bridge name.

Parameters

Exceptions

EndpointAdmin::create_source_endpoint()
SourceEndpoint create_source_endpoint(in BridgeName bridge_name,
 in EndpointType type,
 in EndpointName name)
raises (InvalidEndpoint, BridgeNameAlreadyExists);

create_source_endpoint() creates a new SourceEndpoint of the spec-
ified type and associates it with the specified bridge name.

Parameters

Exceptions

EndpointAdmin::get_sink_endpoint()
SinkEndpoint get_sink_endpoint(in BridgeName bridge_name)
raises (BridgeNameNotFound);

get_sink_endpoint() returns a reference to the sink endpoint of the
specified bridge.

Parameters

Exceptions

bridge_name The name of the bridge with which to associate the
endpoint.

type The EndpointType of the new endpoint.
name The unique identifier to use for the endpoint.

InvalidEndpoint The type or the name specified are incor-
rect. The return code will contain the
details.

BridgeNameAlreadyExists

bridge_name The name of the bridge with which to associate the
endpoint.

type The EndpointType of the new endpoint.
name The unique identifier to use for the endpoint.

InvalidEndpoint The type or the name specified are incor-
rect. The return code will contain the
details.

BridgeNameAlreadyExists

bridge_name The name of the bridge from which to get the sink
endpoint.

BridgeNameNotFound No bridges with the specified name exist.

Orbix CORBA Programmer’s Reference: Java 777

EndpointAdmin::get_source_endpoint()
SourceEndpoint get_source_endpoint(in BridgeName bridge_name)
raises (BridgeNameNotFound);

get_source_endpoint() returns a reference to the source endpoint of
the specified bridge.

Parameters

Exceptions

EndpointAdmin::get_all_sink_endpoints()
BridgeNameSeq get_all_sink_endpoints();

get_all_sink_endpoints() returns a list of the names of all bridges
that have sink endpoints associated with them.

EndpointAdmin::get_all_source_endpoints()
BridgeNameSeq get_all_source_endpoints();

get_all_source_endpoints() returns a list of the names of all the
bridges that have source endpoints associated with them.

bridge_name The name of the bridge from which to get the source
endpoint.

BridgeNameNotFound No bridges with the specified name exist.

 778 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 779

IT_MessagingBridgeAdmin
Module

IT_MessagingBridgeAdmin defines the data, exceptions, and inter-
faces to create and manage bridges. It defines the following inter-
faces:
• IT_MessagingBridgeAdmin::Bridge Interface
• IT_MessagingBridgeAdmin::BridgeAdmin Interface

IT_MessagingBridgeAdmin Data Types

IT_MessagingBridgeAdmin::BridgeName
typedef IT_MessagingBridge::BridgeName BridgeName;

BridgeName specifiys the uniqe identifier for a bridge object.

IT_MessagingBridgeAdmin::BridgeNameSeq
typedef IT_MessagingBridge::BridgeNameSeq BridgeNameSeq;

BridgeNameSeq contains a list of BridgeName. It is returned by
IT_MessagingBridgeAdmin::BridgeAdmin::get_all_bridges().

IT_MessagingBridgeAdmin::InvalidEndpoitCod
e
typedef IT_MessagingBridge::InvalidEndpointCode
InvalidEndpointCode;

InvalidEndpointCode specifies the reason for an InvalidEndpoint
exception.

IT_MessagingBridgeAdmin::EndpointInfo
struct EndpointInfo
{
 IT_MessagingBridge::EndpointAdmin admin;
 IT_MessagingBridge::EndpointType type;
 IT_MessagingBridge::EndpointName name;
};

EndpointInfo encapsulated the information needed to specify and
endpoint to a bridge. It has the following fields:

admin A reference to the EndpointAdmin associated with the end-
point. For more information, see “IT_MessagingBridge::End-
pointAdmin Interface” on page 775.

 780 Orbix CORBA Programmer’s Reference: Java

IT_MessagingBridgeAdmin Exceptions

IT_MessagingBridgeAdmin::CannotCreateBrid
ge
exception CannotCreateBridge {};

CannotCreateBridge is raised when there is an error creating a bridge.

IT_MessagingBridgeAdmin::BridgeNotFound
exception BridgeNotFound {};

BridgeNotFound is raised when the bridge specified in either
get_bridge() or find_bridge() does not exist.

IT_MessagingBridgeAdmin::BridgeAlreadyExis
ts
exception BridgeAlreadyExists {BridgeName bridge_name;};

BridgeAlreadyExists if the endpoints specified in create_bridge() are
already connected to form a bridge. It returns the name of the
bridge connecting the endpoints.

IT_MessagingBridgeAdmin::BridgeNameAlread
yExists
exception BridgeNameAlreadyExists {};

BridgeNameAlreadyExists is raised when the bridge name specified
in create_bridge() is already in use.

IT_MessagingBridgeAdmin::InvalidEndpoint
exception InvalidEndpoint
{
 EndpointInfo endpoint;
 InvalidEndpointCode code;
};

InvalidEndpoint is raised when one of the endpoints specified in
create_bridge() is invalid. The first return value is a reference to
the invalid endpoint and the second return value specifies why the
endpoint is invalid.

type Specifies the endpoint’s type. This correlates to the messag-
ing service to which the endpoint is attached. For more infor-
mation, see “IT_MessagingBridge::EndpointType” on
page 767.

name Specifies the unique identifier of the endpoint.

Orbix CORBA Programmer’s Reference: Java 781

IT_MessagingBridgeAdmin::Bridg
e Interface

interface Bridge
{
 readonly attribute BridgeName name;
 readonly attribute EndpointInfo source;
 readonly attribute EndpointInfo sink;

 void start();
 void suspend();
 void stop();
 void destroy();
};

Bridge specifies the attributes and operations of a uni-directional
bridge between two endpoints. The bridge maintains a reference
for each of its endpoints and provides the operations that control
the flow of messages accross the bridge. It is recomended that
developers use the operation defined on the bridge object as
opposed to the operations specified by the IT_Messaging-
Bridge::SourceEndpoint Interface.

Bridge::name
readonly attribute BridgeName name;

name specifies the identifyer for the bridge.

Bridge::source
readonly attribute EndpointInfo source;

source specifies the endpoint from which the bridge recieves mes-
sages.

Bridge::sink
readonly attribute EndpointInfo sink;

sink specifies the endpoint to which the bridge forwards messages.

Bridge::start()
void start();

start() signals the source endpoint to begin delivering messages
to the bridge. Once the bridge begins recieving messages it fowards
them the the sink endpoint.

 782 Orbix CORBA Programmer’s Reference: Java

Bridge::suspend()
void suspend();

suspend() signals the source endpoint to suspend the flow of
messages. The bridge will not forward any messages while it is
suspended, but the source endpoint will continue to queue messag-
es for delievery to the bridge. Once start() has been called, the
queued messages are forwarded.

Bridge::stop()
void stop();

stop() signals the source endpoint to completly halt the delivery of
messages. No messages are queued for later delivery.

Bridge::destory()
void destroy();

destroy() destroys the bridge and cleans up all the resources
associated with it, including the bridges endpoints.

Orbix CORBA Programmer’s Reference: Java 783

IT_MessagingBridgeAdmin::Bridg
eAdmin Interface

interface BridgeAdmin
{
 Bridge create_bridge(in BridgeName bridge_name,
 in EndpointInfo source,
 in EndpointInfo sink)
 raises (InvalidEndpoint, BridgeAlreadyExists,
 BridgeNameAlreadyExists, CannotCreateBridge);

 Bridge get_bridge(in BridgeName bridge_name)
 raises (BridgeNotFound);

 Bridge find_bridge(in EndpointInfo source,
 in EndpointInfo sink,
 out BridgeName bridge_name)
 raises (BridgeNotFound);

 BridgeNameSeq get_all_bridges();
};

BridgeAdmin defines the factory operation for Bridge objects. It also
defines two operations to discover active bridges and one opera-
tion to list the bridges in the service. Developers get a reference
to the BridgeAdmin by using the initial reference key
"IT_Messaging".

BridgeAdmin::create_bridge()
Bridge create_bridge(in BridgeName bridge_name,
 in EndpointInfo source,
 in EndpointInfo sink)
raises (InvalidEndpoint, BridgeAlreadyExists,
 BridgeNameAlreadyExists, CannotCreateBridge);

create_bridge() creates a new uni-directional bridge between two
endpoints and returns a reference to the bridge.

Parameters

Exceptions

bridge_name Specifies the unique identifier for the bridge.
source Specifies the endpoint from which the bridge will

receive messages.
sink Specifies the endpoint to which the bridge will for-

ward messages.

InvalidEndpoint One of the specified endpoints is not a
valid endpoint for the new bridge.

BridgeAlreadyExists A bridge connecting the two endpoints
already exists.

BridgeNameAlreadyExists The name specified for the bridge is
already in use.

 784 Orbix CORBA Programmer’s Reference: Java

BridgeAdmin::get_bridge()
Bridge get_bridge(in BridgeName bridge_name)
raises (BridgeNotFound);

get_bridge() returns a reference to the specified bridge.

Parameters

Exceptions

BridgeAdmin::find_bridge()
Bridge find_bridge(in EndpointInfo source,
 in EndpointInfo sink,
 out BridgeName bridge_name)
raises (BridgeNotFound);

find_bridge() returns a reference to the bridge linking the specified
endpoints. The name of the bridge is returned as a parameter to
the operation.

Parameters

Exceptions

BridgeAdmin::get_all_bridges()
BridgeNameSeq get_all_bridges();

get_all_bridges() returns a list containing the names of all existing
bridges.

CannotCreateBridge An unspecified error occurred while creat-
ing the bridge.

bridge_name Specifies the name of the bridge to get.

BridgeNotFound The specified bridge does not exist.

source Specifies the endpoint from which the bridge receives
messages.

sink Specifies the endpoint to which the bridge forwards
messages.

bridge_name Specifies the name of the returned bridge.

BridgeNotFound The specified bridge does not exist.

 Orbix CORBA Programmer’s Reference: Java 785

IT_NotifyBridge Module
IT_NotifyBridge defines an extenstion of
IT_MessagingBridge::SinkEndpoint. This extension provides the
method used by a bridge to forward notification events.

IT_NotifyBridge Exceptions

IT_NotifyBridge::MappingFailure
exception MappingFailure {};

MappingFailure is raised when the bridge is unable to properly map
messages to a notification event.

IT_NotifyBridge::EndpointNotConnected
exception EndpointNotConnected {};

EndpointNotConnected is raised when an attempt to recieve messages
through a SinkEndpoint that is not connected to a SourceEndpoint is
made.

 786 Orbix CORBA Programmer’s Reference: Java

IT_NotifyBridge::SinkEndpoint
Interface

interface SinkEndpoint : IT_MessagingBridge::SinkEndpoint
{
 void send_events(in CosNotification::EventBatch events)
 raises (MappingFailure, EndpointNotConnected);
};

IT_NotifyBridge::SinkEndPoint extends the functionality of
IT_MessagingBridge::SinkEndpoint to include the ability to recieve
notification style events. Due to the inheritance from
IT_MessagingBridge::SinkEndpoint, it retains all of the functionality
of a generic endpoint. IT_NotifyBridge::SinkEndpoint recieves a
batch of notification events using the CosNotificaiton::EventBatch
structure.

SinkEndpoint::send_events()
void send_events(in CosNotification::EventBatch events)
raises (MappingFailure, EndpointNotConnected);

send_events() revieves a batch of notification events from a bridge
and passes them into the recieving messaging service.

Parameters

Exceptions

events A group of notification events packaged into a
CosNotification::EventBatch.

MappingFailure The bridge encountered an error mapping
the JMS messages to notification events.

EndpointNotConnected The SinkEndpoint is not connected to a
SourceEndpoint.

 Orbix CORBA Programmer’s Reference: Java 787

The IT_NamedKey
Module
Defines interfaces related to managing named keys (which appear as
object identifiers in corbaloc: URLs).

Description The named key registry is implemented by the Orbix locator
service. Servers register key/object reference associations in the
named key registry and clients use these keys to retrieve the
associated object references. In practice, this module is intended
to facilitate defining corbaloc: URLs that are human-readable.

See also IT_PlainTextKey

IT_NamedKey::NamedKeyList

A list of named key strings.

Description This type is used for the return value of the
IT_NamedKey::NamedKeyRegistry::list_text_keys() operation.

IT_NamedKey::NAMED_KEY_REGISTRY

A string used by the locator to identify the named key registry service.

See also IT_Location::Locator::resolve_service()

 788 Orbix CORBA Programmer’s Reference: Java

IT_NamedKey::NamedKeyRegis
try

Defines operations to register, de-register, and lookup named keys
in the named key registry.

Description Named keys are used in conjunction with corbaloc: URLs to
provide a simple way for clients to access CORBA services. A
typical corbaloc: URL has the following format:
corbaloc:iiop:GIOPVersion@Host:Port/Key

This format can be explained as follows:
• GIOPVersion—the version of GIOP used on the connection.

Can be either 1.0, 1.1, or 1.2.
• Host:Port—the hostname, Host, and IP port, Port, of the

Orbix locator service (indirect persistence).
• Key—a key string previously registered either with the

named key registry or with the plain_text_key plug-in.
To register an object reference with the named key registry,
the server must first obtain an IT_Location::Locator instance
by passing the string, IT_Locator, to
CORBA::ORB::resolve_initial_references(). Call the operation,
IT_Location::Locator::resolve_service(), passing the argument,
IT_NamedKey::NAMED_KEY_REGISTRY, to obtain an
IT_NamedKey::NamedKeyRegistry instance. The server can then
register one or more named keys by calling the
add_text_key() operation on IT_NamedKey::NamedKeyRegistry.
Note: The named key string format used in this interface
does not support URL escape sequences (the % character
followed by two hexadecimal digits).

Java implementation The following Java code example shows how to obtain a
reference to the named key registry and invoke some
operations on the registry.
// Java
...
// Get the Locator

Orbix CORBA Programmer’s Reference: Java 789

org.omg.CORBA.Object objref =
 orb.resolve_initial_references("IT_Locator");
com.iona.corba.IT_Location.Locator locator =
 com.iona.corba.IT_Location.LocatorHelper.narrow(objref);

// Get the Named Key registry
objref = locator.resolve_service(
 com.iona.corba.IT_NamedKey.NAMED_KEY_REGISTRY
);
com.iona.corba.IT_NamedKey.NamedKeyRegistry registry =

com.iona.corba.IT_NamedKey.NamedKeyRegistryHelper.narrow(
 objref
);

// Invoke some operations on the registry
try
{
 registry.add_text_key("MyNamedKey", MyCORBAObjectRef);
 objref = registry.find_text_key("MyNamedKey");
 registry.remove_text_key("MyNamedKey");
}
catch

(com.iona.corba.IT_NamedKey.NamedKeyRegistryPackage.EntryAlre
adyExists ex)

{
 // Error: ...
}
catch

(com.iona.corba.IT_NamedKey.NamedKeyRegistryPackage.EntryNotF
ound ex)

{
 // Error: ...
}

See also IT_PlainTextKey::Forwarder

IT_NamedKey::NamedKeyRegistry::EntryAlreadyExists

Raised if you attempt to add a named key that clashes with an existing
named key in the registry.

Description The exception’s name element contains the string value of the
existing named key in the registry.

See also IT_NamedKey::NamedKeyRegistry::add_text_key()

IT_NamedKey::NamedKeyRegistry::EntryNotFound

Raised if a named key could not be found in the registry.

Description The exception’s name element contains the string value of the
named key that you were attempting to find.

See also IT_NamedKey::NamedKeyRegistry::remove_text_key()

 790 Orbix CORBA Programmer’s Reference: Java

IT_NamedKey::NamedKeyRegistry::add_text_key()

Adds a new entry to the named key registry.

Description The specified object reference, the_object, is keyed by the named
key parameter, name.
Internally, the named key registry converts the named key string
into an octet sequence and stores the value as an octet sequence
(as required by the GIOP specification).

Parameters name

A named key in string format (URL escape sequences not supported).

the_object

The object reference associated with the named key.

Exceptions EntryAlreadyExists

Raised if the registry already contains an entry with the given name.

IT_NamedKey::NamedKeyRegistry::remove_text_key()

Removes a named key from the registry.

Parameters name

A named key in string format (URL escape sequences not supported).

Exceptions EntryNotFound

Raised if the specified key, name, does not exist in the registry.

IT_NamedKey::NamedKeyRegistry::find_text_key()

Finds the registry entry for a particular named key (in string format).

Returns Returns the object reference associated with the specified key.

Parameters name

A named key in string format (URL escape sequences not supported).

IT_NamedKey::NamedKeyRegistry::find_octets_key()

Finds the registry entry for a particular named key (in octets format).

Description According to the CORBA specification, the native format of a
named key is a sequence of octets (binary 8-bit format). This
operation enables you look up the registry by specifying the
named key in this native format.

Returns Returns the object reference associated with the specified key.

Parameters octets

A named key in octets format.

Orbix CORBA Programmer’s Reference: Java 791

IT_NamedKey::NamedKeyRegistry::list_text_keys()

Lists all of the keys currently stored in the named key registry.

Returns A sequence of strings containing all of the named keys currently in the registry.

 792 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 793

IT_Naming Module
The IT_Naming module contains a single interface,
IT_NamingContextExt, which provides the method used to bind an
object group into the naming service.
IT_NamingContextExt extends CosNaming::NamingContextExt and pro-
vides the method bind_object_group which binds an object group
to a Micro Focus proprietary naming service.

 794 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 795

IT_Naming::IT_NamingContextEx
t Interface

The complete IT_NamingContextExt is as follows:

// IDL in Module IT_Naming
Interface IT_NamingContextExt : CosNaming::NamingContextExt
{
 readonly attribute IT_LoadBalancing::ObjectGroupFactory

og_factory;
 readonly attribute IT_NamingAdmin::NamingAdmin admin;

 void bind_object_group(
 in CosNaming::Name n,
 in IT_LoadBalancing::ObjectGroup obj_gp)
 raises (CosNaming::NamingContext::NotFound,
 CosNaming::NamingContext::CannotProceed,
 CosNaming::NamingContext::InvalidName,
 CosNaming::NamingContext::AlreadyBound);
};

IT_Naming::IT_NamingContextExt::bind_obje
ct_group() Method
Binds an object group to an entry in the naming service.

Parameters

Enhancement Orbix enhancement to CORBA.

Exceptions

n A CosNaming::Name specifying the naming service node
to bind the object group to.

obj_gp The object group to bind into the naming service.

NamingContext::NotFound n did not point to a valid entry in the
naming service.

NamingContext::CannotProceedThe call failed due an internal error.
NamingContext::InvalidName n has a sequence length of zero.
NamingContext::AlreadyBound obj_gp is already bound into the naming

service

 796 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 797

IT_NotifyChannelAdmin Module
Micro Focus proprietary versions of some of the interfaces from
CosNotifyChannelAdmin.

 798 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 799

IT_NotifyChannelAdmin::GroupPr
oxyPushSupplier Interface

interface GroupProxyPushSupplier :
 CosNotifyChannelAdmin::ProxyPushSupplier
 {
 void connect_group_any_push_consumer(
 in IT_NotifyComm::GroupPushConsumer group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupProxyPushSupplier interface supports connections to the
channel by endpoint groups receiving events from the channel as
untyped Anys. Note that such endpoint groups are functionally
similar to OMG Event Service push-style consumers of untyped
events. The GroupProxyPushSupplier interface defined here, how-
ever, supports event filtering and configuration of QoS properties
in addition to taking advantage of the IP/Multicast message trans-
port.
Through inheritance of the ProxyPushSupplier interface, the
GroupProxyPushSupplier interface supports administration of QoS
properties, administration of a list of associated filter, mapping fil-
ters for event priority and lifetime, and a read-only attribute con-
taining a reference to the ConsumerAdmin that created it. This
inheritance implies that a GroupProxyPushSupplier instance sup-
ports an operation that returns the list of event types that the
proxy supplier can supply, and an operation that returns informa-
tion about the group’s ability to accept a QoS request. The
GroupProxyPushSupplier interface also inherits a pair of operations
that suspend and resume the connection between a
GroupProxyPushSupplier instance and its associated endpoint
group. During the time a connection is suspended, the
GroupProxyPushSupplier accumulates events destined for the end-
point group but does not transmit them until the connection is
resumed.
The GroupProxyPushSupplier interface inherits the NotifySubscribe
interface defined in CosNotifyComm, enabling it to be notified when-
ever its associated endpoint group changes the list of event types
it is interested in receiving.
The GroupProxyPushSupplier interface also inherits from the
PushSupplier interface defined in CosEventComm. This interface sup-
ports the operation to disconnect the GroupProxyPushSupplier from
its associated endpoint group.
The GroupProxyPushSupplier interface defines the operation to
establish the connection over which the consumer’s endpoint
group receives events from the channel.

GroupProxyPushSupplier::connect_group_any
_push_consumer()
void connect_group_any_push_consumer(

 800 Orbix CORBA Programmer’s Reference: Java

 in IT_NotifyComm::GroupPushConsumer group_push_consumer)
raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers
expecting events in the form of Anys, and an event. Once the
connection is established, the GroupProxyPushSupplier sends events
to the endpoint group by invoking push() on the connected consum-
er.

Parameters

Exceptions

group_push_consumer The reference to an object supporting the
GroupPushConsumer interface defined in
IT_NotifyComm. This reference is that of a con-
sumer connecting to the channel for the mem-
bers of an endpoint group.

AlreadyConnected Raised if the target object of this operation is
already connected to a push consumer object.

TypeError An implementation of the
GroupProxyPushSupplier interface may impose
additional requirements on the interface sup-
ported by the push consumers in a group (for
example, it may be designed to invoke some
operation other than push in order to transmit
events). If the consumers in the group being
connected do not meet those requirements,
this operation raises the TypeError exception.

 Orbix CORBA Programmer’s Reference: Java 801

IT_NotifyChannelAdmin:GroupSe
quenceProxyPushSupplier
Interface

interface GroupSequenceProxyPushSupplier :
 CosNotifyChannelAdmin::SequenceProxyPushSupplier
 {
 void connect_group_sequence_push_consumer(
 in IT_NotifyComm::GroupSequencePushConsumer
 group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupSequenceProxyPushSupplier interface supports connections
to the channel by endpoint groups that receive sequences of
structured events from the channel.
Through inheritance of SequenceProxyPushSupplier, the
GroupSequenceProxyPushSupplier interface supports administration
of QoS properties, administration of a list of associated filter
objects, and a read-only attribute containing a reference to the
ConsumerAdmin that created it. This inheritance also implies that a
GroupSequenceProxyPushSupplier instance supports an operation
that returns the list of event types that the proxy supplier can
supply, and an operation that returns information about the end-
point group’s ability to accept a QoS request. The
GroupSequenceProxyPushSupplier interface also inherits a pair of
operations which suspend and resume the connection between a
GroupSequenceProxyPushSupplier instance and its associated end-
point group. During the time a connection is suspended, the
GroupSequenceProxyPushSupplier accumulates events destined for
the endpoint group but does not transmit them until the connec-
tion is resumed.
The GroupSequenceProxyPushSupplier interface also inherits from
the SequencePushSupplier interface defined in CosNotifyComm. This
interface supports the operation to close the connection from the
endpoint group to the GroupSequenceProxyPushSupplier. Since the
SequencePushSupplier interface inherits from NotifySubscribe, a
GroupSequenceProxyPushSupplier can be notified whenever the list
of event types that its associated endpoint group is interested in
receiving changes.
The GroupSequenceProxyPushSupplier interface defines the operation
to establish the connection over which the endpoint group
receives events from the channel.

GroupSequenceProxyPushSupplier::connect_g
roup_sequence_push_consumer()
void connect_group_sequence_push_consumer(
 in IT_NotifyComm::GroupSequencePushConsumer
 group_push_consumer)

 802 Orbix CORBA Programmer’s Reference: Java

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers
expecting sequences of structured events and an event channel.
Once the connection is established, the
GroupSequenceProxyPushSupplier sends events to its endpoint group
by invoking push_structured_events() on the connected consumer.

Parameters

Exceptions

group_push_consumer A reference to an object supporting the
GroupSequencePushConsumer interface defined in
IT_NotifyComm. This reference is that of a con-
sumer connecting to the channel for the mem-
bers of an endpoint group.

AlreadyConnected Raised if the target object of this operation is
already connected to a push consumer.

TypeError An implementation of the
GroupSequenceProxyPushSupplier interface may
impose additional requirements on the inter-
face supported by an endpoint group (for
example, it may be designed to invoke some
operation other than push_structured_events in
order to transmit events). If the members of
the endpoint group being connected do not
meet those requirements, this operation raises
the TypeError exception.

 Orbix CORBA Programmer’s Reference: Java 803

IT_NotifyChannelAdmin::GroupSt
ructuredProxyPushSupplier
Interface

interface GroupStructuredProxyPushSupplier :
 CosNotifyChannelAdmin::StructuredProxyPushSupplier
 {
 void connect_group_structured_push_consumer(
 in IT_NotifyComm::GroupStructuredPushConsumer
 group_push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };

The GroupStructuredProxyPushSupplier interface supports connec-
tions to the channel by endpoint groups that receive structured
events from the channel.
Through inheritance of StructuredProxyPushSupplier, the
GroupStructuredProxyPushSupplier interface supports administra-
tion of QoS properties, administration of a list of associated filters,
mapping filters for event priority and lifetime, and a read-only
attribute containing a reference to the ConsumerAdmin that created
it. This inheritance implies that a GroupStructuredProxyPushSupplier
instance supports an operation that returns the list of event types
that the proxy supplier can supply, and an operation that returns
information about the group’s ability to accept a QoS request. The
GroupStructuredProxyPushSupplier interface also inherits a pair of
operations to suspend and resume the connection between a
GroupStructuredProxyPushSupplier instance and its associated end-
point group. During the time a connection is suspended, the
GroupStructuredProxyPushSupplier accumulates events destined for
the endpoint group but does not transmit them until the connec-
tion is resumed.
The GroupStructuredProxyPushSupplier interface also inherits from
the StructuredPushSupplier interface defined in CosNotifyComm. This
interface defines the operation to disconnect the
GroupStructuredProxyPushSupplier from its associated endpoint
group. In addition, the GroupStructuredProxySupplier interface
inherits from NotifySubscribe, enabling it to be notified whenever
its associated endpoint group changes the list of event types it is
interested in receiving.
The GroupStructuredProxyPushSupplier interface defines the opera-
tion to establish the connection over which the consumer’s end-
point group receives events from the channel.

GroupStructuredProxyPushSupplier::connect_
group_structured_push_consumer()
void connect_group_group_structured_push_consumer(
 in IT_NotifyComm::GroupStructuredPushConsumer
 group_push_consumer)

 804 Orbix CORBA Programmer’s Reference: Java

raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Establishes a connection between an endpoint group of consumers
expecting structured events and an event channel. Once the con-
nection is established, the GroupStructuredProxyPushSupplier sends
events to the endpoint group invoking push_structured_event() on
the connected consumer.

Parameters

Exceptions

group_push_consumer A reference to an object supporting the
GroupStructuredPushConsumer interface defined
in IT_NotifyComm. This reference is that of a
consumer connecting to the channel for the
members of an endpoint group.

AlreadyConnected Raised if the target object of this operation is
already connected to a push consumer.

TypeError An implementation of the
GroupStructuredProxyPushSupplier interface may
impose additional requirements on the inter-
face supported by an endpoint group (for
example, it may be designed to invoke some
operation other than push_structured_event to
transmit events). If the members of the end-
point group being connected do not meet those
requirements, this operation raises the
TypeError exception.

 Orbix CORBA Programmer’s Reference: Java 805

IT_NotifyComm Module
A module that defines Micro Focus proprietary versions of some interfaces
from CosNotifyComm.

 806 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 807

IT_NotifyComm::GroupNotifyPubl
ish Interface

interface GroupNotifyPublish
 {
 oneway void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed);
 };

The GroupNotifyPublish interface supports an operation allowing a
supplier to announce, or publish, the names of the types of events
it supplies. It is an abstract interface which is inherited by all
group consumer interfaces, and enables suppliers to inform con-
sumers supporting this interface of the types of events they intend
to supply.
When implemented by a group consumer, it allows the consumer
to modify its subscription list accordingly.

GroupNotifyPublish::offer_change()
oneway void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed);

Allows a supplier of notifications to announce, or publish, the names
of the types of events it supplies to consumers using IP/Multicast.

Note: Each event type name consists of two components: the name of
the domain in which the event type has meaning, and the name of
the actual event type. Either component of a type name may
specify a complete domain/event type name, a domain/event type
name containing the wildcard ‘*’ character, or the special event
type name “%ALL”.

Parameters

added Sequence of event type names specifying the event
types the supplier is adding to the list of event
types it plans to supply.

removed Sequence of event type names specifying the event
types which the supplier no longer plans to supply.

 808 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 809

IT_NotifyComm::GroupPushCons
umer Interface

interface GroupPushConsumer : GroupNotifyPublish
 {
 oneway void push(in any data);
 oneway void disconnect_push_consumer();
 };

The GroupPushConsumer interface supports an operation enabling
group consumers to receive unstructured events by the push
model. It also defines an operation to disconnect the consumer’s
endpoint group from its associated proxy supplier. In addition, the
GroupPushConsumer interface inherits GroupNotifyPublish which
enables a supplier to inform an instance supporting this interface
whenever there is a change to the types of events it intends to
produce.

Note: An object supporting the GroupPushConsumer interface can receive
all events that are supplied to its associated channel. How events
supplied to the channel in other forms are internally mapped into
an unstructured event for delivery to a GroupPushConsumer is
summarized in the CORBA Notification Service Guide.

GroupPushConsumer::push()
oneway void push(in any data);

Receives unstructured events by the push model. The implementa-
tion of push() is application specific, and is supplied by application
developers.

Parameters

GroupPushConsumer::disconnect_push_consu
mer()
oneway void disconnect_push_consumer();

Terminates a connection between the target GroupPushConsumer and
its associated group proxy supplier. The result of this operation is
that the target GroupPushConsumer releases all resources allocated to
support the connection and disposes of the groups object reference.
It also disconnects all other members of the target
GroupPushConsumer’s endpoint group.

data A parameter of type CORBA::Any. Upon invocation,
this parameter contains an unstructured event
being delivered to the group.

 810 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 811

IT_NotifyComm::GroupSequence
PushConsumer Interface

interface GroupSequencePushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_events(
 in CosNotification::EventBatch notifications);

 oneway void disconnect_sequence_push_consumer();
 };

The GroupSequencePushConsumer interface supports an operation
enabling group consumers to receive sequences of structured
events using the push model. It also defines an operation to dis-
connect the consumer’s endpoint group from its associated proxy
supplier. The GroupSequencePushConsumer interface inherits
GroupNotifyPublish which enabling a supplier to inform an instance
supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting the GroupSequencePushConsumer interface can
receive all events which were supplied to its associated channel,
including events supplied in a form other than a sequence of
structured events. How events supplied to the channel in other
forms are internally mapped into a sequence of structured events
for delivery to a GroupSequencePushConsumer is summarized in the
CORBA Notification Service Guide.

GroupSequencePushConsumer::push_structur
ed_events()
oneway void push_structured_events(
 in CosNotification::EventBatch notifications);

Receive sequences of structured events by the push model. The
implementation of push_structured_events is application specific,
and is supplied by application developers.

The maximum number of events that are transmitted within a sin-
gle invocation of this operation, along with the amount of time a
supplier of a sequence of structured events accumulates individual
events into the sequence before invoking this operation are con-
trolled by QoS property settings as described in the CORBA Notifi-
cation Service Guide.

Parameters

notifications A parameter of type EventBatch as defined in
CosNotification. Upon invocation, this parameter
contains a sequence of structured events being
delivered to the group.

 812 Orbix CORBA Programmer’s Reference: Java

GroupSequencePushConsumer::disconnect_se
quence_push_consumer()
oneway void disconnect_sequence_push_consumer();

Terminates a connection between the target
GroupSequencePushConsumer and its associated group proxy supplier.
The result of this operation is that the target
GroupSequencePushConsumer releases all resources allocated to sup-
port the connection and disposes of the groups object reference.
This also disconnects all other members of the target
GroupSequencesPushConsumer’s endpoint group.

 Orbix CORBA Programmer’s Reference: Java 813

IT_NotifyComm::GroupStructured
PushConsumer Interface

interface GroupStructuredPushConsumer : GroupNotifyPublish
 {
 oneway void push_structured_event(
 in CosNotification::StructuredEvent notification);
 oneway void disconnect_structured_push_consumer();
 };

The GroupStructuredPushConsumer interface supports an operation
enabling group consumers to receive structured events by the
push model. It also defines an operation to disconnect the push
consumer’s endpoint group from its associated proxy supplier. In
addition, the GroupStructuredPushConsumer interface inherits
GroupNotifyPublish which enables a supplier to inform an instance
supporting this interface whenever there is a change to the types
of events it intends to produce.

Note: An object supporting the GroupStructuredPushConsumer interface
can receive all events that were supplied to its associated channel,
including events supplied in a form other than a structured event.
How events supplied to the channel in other forms are internally
mapped into a structured event for delivery to a
GroupStructuredPushConsumer is summarized in the CORBA
Notification Service Guide.

GroupStructuredPushConsumer::push_structu
red_event();
oneway void push_structured_event(
 in CosNotification::StructuredEvent notification);

Receives structured events by the push model. The implementation
of push_structured_event() is application specific, and is supplied by
application developers.

Parameters

GroupStructuredPushConsumer::disconnect_st
ructured_push_consumer()
oneway void disconnect_structured_push_consumer();

Terminates a connection between the target
GroupStructuredPushConsumer and its associated group proxy suppli-
er. The result of this operation is that the target
GroupStructuredPushConsumer releases all resources allocated to sup-
port the connection and disposes of the groups object reference.

notification A parameter of type StructuredEvent as defined in
CosNotification. Upon invocation, this parameter
contains a structured event being delivered to the
group.

 814 Orbix CORBA Programmer’s Reference: Java

This also disconnects all other members of the target
GroupStructuredPushConsumer’s endpoint group.

 Orbix CORBA Programmer’s Reference: Java 815

IT_NotifyLogAdmin Module
This module extends the OMG specified NotifyLog and
NotifyLogFactory interfaces to support event subscription and pub-
lication. Also provides access to a default filter factory.

 816 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 817

IT_NotifyLogAdmin::NotifyLog
Interface

This interface provides Micro Focus specific extensions to
DsNotifyLogAdmin::NotifyLog to support notification style event
publication and subscription.
interface NotifyLog :DsNotifyLogAdmin::NotifyLog
 {
 CosNotification::EventTypeSeq obtain_offered_types();
 CosNotification::EventTypeSeq obtain_subscribed_types();
 };

NotifyLog::obtain_offered_types()
CosNotification::EventTypeSeq obtain_offered_types();

Allows event consumers to ascertain what events are being adver-
tised by event suppliers.

NotifyLog::obtain_subscribed_types()
CosNotification::EventTypeSeq obtain_subscribed_types();

Allows event suppliers to ascertain which events the event consum-
ers in the channel are interested in receiving.

 818 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 819

IT_NotifyLogAdmin::NotifyLogFac
tory Interface

Extends DsNotifyLogAdmin::NotifyLogFactory to include a link to
the notification channel’s default filter factory and a link to the
telecom logging service’s manager.
interface NotifyLogFactory :DsNotifyLogAdmin::NotifyLogFactory
 {
 readonly attribute CosNotifyFilter::FilterFactory

default_filter_factory;
 readonly attribute IT_LogAdmin::Manager manager;
 };

NotifyLogFactory::default_filter_factory
Attribute
readonly attribute CosNotifyFilter::FilterFactory
default_filter_factory;

Provides a reference to the notification channel’s default filter
factory, which is used to create new filter objects for NotifyLog
objects.

NotifyLogFactory::manager Attribute
readonly attribute IT_LogAdmin::Manager manager;

Provides a link to the telecom logging service’s manager.

 820 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 821

The IT_PlainTextKey
Module

IT_PlainTextKey
Defines the interface that accesses the plain_text_key plug-in.

Description This module is intended to facilitate defining corbaloc URLs that
are human-readable. The plain_text_key plug-in (part of the
it_art library) stores a transient list of key/object reference
associations and makes this list accessible through the
IT_PlainTextKey::Forwarder interface.
The plain_text_key plug-in is intended to be used in conjunction
with direct persistence (that is, a server that embeds its own
address details into an IOR, so that client connections are made
directly to the server, bypassing the locator). By registering a key
with the plain_text_key plug-in, you can alias a GIOP object ID
with a human-readable key. The key can then be used to
construct a human-readable corbaloc URL.

See also IT_NamedKey

IT_PlainTextKey::Forwarder
Defines an operation to register a key/object reference entry with the
plain_text_key plug-in.

Description Plain text keys (or named keys) are used in conjunction with
corbaloc: URLs to provide a simple way for clients to access
CORBA services. A typical corbaloc: URL has the following format:
corbaloc:iiop:GIOPVersion@Host:Port/Key

This format can be explained as follows:
• GIOPVersion—the version of GIOP used on the connection. Can

be either 1.0, 1.1, or 1.2.
• Host:Port—the hostname, Host, and IP port, Port, of the CORBA

service (direct persistence).
• Key—a key string previously registered either with the

plain_text_key plug-in or with the named key registry.
To register an object reference with the plain_text_key plug-in,
the server must obtain an IT_PlainTextKey::Forwarder instance by
passing the string, IT_PlainTextKeyForwarder, to
CORBA::ORB::resolve_initial_references(). The server can then register
one or more named keys by calling the add_plain_text_key()
operation on the IT_PlainTextKey::Forwarder instance.
Note: The key string format used in this interface does not support
URL escape sequences (the % character followed by two
hexadecimal digits).
Note: The plain_text_key plug-in is intended for use with direct
persistence (that is, a server that embeds its own address details
into an IOR, so that client connections are made directly to the
server, bypassing the locator).

 822 Orbix CORBA Programmer’s Reference: Java

Java implementation The following Java code shows how to obtain a reference to
a plain text key forwarder object and add a new entry.
// Java
org.omg.CORBA.Object objref =

the_orb.resolve_initial_references(
 "IT_PlainTextKeyForwarder"
);
com.iona.corba.IT_PlainTextKey.Forwarder forwarder =

com.iona.corba.IT_PlainTextKey.ForwarderHelper.narrow(o
bjref);

forwarder.add_plain_text_key(
 "MyPlainTextKey",
 MyCORBAObjectReference
);

See also IT_NamedKey::NamedKeyRegistry

IT_PlainTextKey::Forwarder::add_plain_text_key()

Adds a key/object reference association to a list maintained by the
plain_text_key plug-in.

Description The specified object reference, the_object, is keyed by the
key parameter, object_name.
Internally, the plain_text_key plug-in converts the named
key string into an octet sequence and stores the value as an
octet sequence (as required by the GIOP specification).

Parameters object_name

A key in string format (URL escape sequences not supported).

the_object

The object reference associated with the key.

See also IT_NamedKey::NamedKeyRegistry::add_text_key()

 Orbix CORBA Programmer’s Reference: Java 823

IT_PortableServer Overview
This module contains Orbix policy enhancements to the
PortableServer module. The IT_PortableServer policies are:
• ObjectDeactivationPolicy
• PersistenceModePolicy
• DispatchWorkQueuePolicy

The IT_PortableServer module also contains the following common
data structures and constants related to the policies:
• OBJECT_DEACTIVATION_POLICY_ID
• ObjectDeactivationPolicyValue
• PERSISTENCE_MODE_POLICY_ID
• PersistenceModePolicyValue
• DISPATCH_WORKQUEUE_POLICY_ID

IT_PortableServer::OBJECT_DEACTIVATION_P
OLICY_ID Constant
// IDL
const CORBA::PolicyType OBJECT_DEACTIVATION_POLICY_ID =

0x49545F00 + 1;

// Java
public abstract interface OBJECT_DEACTIVATION_POLICY_ID
public static final int value

Defines a policy ID for object deactivation.

Enhancement This is an Orbix enhancement.

IT_PortableServer::ObjectDeactivationPolicyV
alue Enumeration
// IDL
enum ObjectDeactivationPolicyValue {
 DISCARD,
 DELIVER,
 HOLD
};

// C++

An object deactivation policy value. Valid values consist of:

DISCARD
DELIVER
HOLD

Enhancement This is an Orbix enhancement.

See Also IT_PortableServer::ObjectDeactivationPolicy

 824 Orbix CORBA Programmer’s Reference: Java

IT_PortableServer::PERSISTENCE_MODE_POLI
CY_ID Constant
// IDL
const CORBA::PolicyType PERSISTENCE_MODE_POLICY_ID = 0x49545F00

+ 3;

Defines a policy ID for the mode of object persistence.

Enhancement This is an Orbix enhancement.

IT_PortableServer::PersistenceModePolicyVal
ue Enumeration
// IDL
enum PersistenceModePolicyValue {
 DIRECT_PERSISTENCE,
 INDIRECT_PERSISTENCE
};

A persistence mode policy value. Valid values consist of:

DIRECT_PERSISTENCE
INDIRECT_PERSISTENCE

Enhancement This is an Orbix enhancement.

See Also IT_PortableServer::PersistenceModePolicy

IT_PortableServer::DISPATCH_WORKQUEUE_
POLICY_ID Constant
const CORBA::PolicyType DISPATCH_WORKQUEUE_POLICY_ID =
IT_PolicyBase::IONA_POLICY_ID + 42;

// Java
public abstract interface DISPATCH_WORKQUEUE_POLICY_ID
public static final int value

Defines the policy ID for using WorkQueues to process ORB re-
quests.

Enhancement This is an Orbix enhancement.

 Orbix CORBA Programmer’s Reference: Java 825

IT_PortableServer::DispatchWork
QueuePolicy Interface

This is policy used to specify a WorkQueue to process ORB requests.
It is derived from CORBA::Policy. You create instances of the policy
by calling CORBA::ORB::create_policy().
//IDL
local interface DispatchWorkQueuePolicy : CORBA::Policy
{
 readonly attribute IT_WorkQueue::WorkQueue workqueue;
}

 826 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 827

IT_PortableServer::ObjectDeactiv
ationPolicy Class

This is an interface for a local policy object derived from
CORBA::Policy. You create instances of ObjectDeactivationPolicy by
calling CORBA::ORB::create_policy().
// IDL
interface ObjectDeactivationPolicy : CORBA::Policy {
 readonly attribute ObjectDeactivationPolicyValue value;
};

ObjectDeactivationPolicy::value()
// Java
public ObjectDeactivationPolicyValue value()

Returns the value of this object deactivation policy.

Enhancement This is an Orbix enhancement.

 828 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 829

IT_PortableServer::PersistenceM
odePolicy Class

This is an interface for a local policy object derived from
CORBA::Policy. You create instances of PersistenceModePolicy by
calling CORBA::ORB::create_policy().
// IDL
interface PersistenceModePolicy : CORBA::Policy {
 readonly attribute PersistenceModePolicyValue value;
};

PersistenceModePolicy::value()
// Java
public PersistenceModePolicyValue value()

Returns the value of this persistent mode policy.

Enhancement This is an Orbix enhancement.

 830 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 831

IT_TLS Overview
The IT_TLS module defines a single IDL interface, as follows:
• IT_TLS::CertValidator
The following data types are defined in the scope of IT_TLS to
describe certificate validation errors:
• IT_TLS::CertChainErrorCode enumeration
• IT_TLS::CertChainErrorInfo structure.

IT_TLS::CACHE_NONE Constant
const SessionCachingMode CACHE_NONE = 0;

A flag that specifies no caching.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CACHE_SERVER Constant
const SessionCachingMode CACHE_SERVER = 0x01;

A flag that specifies server-side caching only.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CACHE_CLIENT Constant
const SessionCachingMode CACHE_CLIENT = 0x02;

A flag that specifies client-side caching only.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CACHE_SERVER_AND_CLIENT
Constant
const SessionCachingMode CACHE_SERVER_AND_CLIENT = 0x04;

A flag that specifies both server-side and client-side caching.

See Also IT_TLS_API::SessionCachingPolicy

IT_TLS::CertChainErrorCode Enumeration
//IDL
enum CertChainErrorCode
{
 CERTIFICATE_UNKNOWN,
 CERTIFICATE_DECODE_ERROR,
 CERTIFICATE_SIGNED_BY_UNKNOWN_CA,
 UNSUPPORTED_CERTIFICATE,
 CERTIFICATE_EXPIRED,
 CERTIFICATE_NOT_YET_VALID,

 832 Orbix CORBA Programmer’s Reference: Java

 CERTIFICATE_REVOKED,
 BAD_CERTIFICATE,
 CERTIFICATE_SIGNED_BY_NON_CA_CERTIFICATE,
 CERTIFICATE_CHAIN_TOO_LONG,
 CERTIFICATE_FAILED_CONSTRAINTS_VALIDATION,
 CERTIFICATE_FAILED_APPLICATION_VALIDATION,
 CERTIFICATE_SUBJECT_ISSUER_MISMATCH
};

An Orbix-specific error code that gives the reason why a certificate
failed to validate.

IT_TLS::CertChainErrorInfo Structure
//IDL
struct CertChainErrorInfo
{
 short error_depth;
 string error_message;

 CertChainErrorCode error_reason;

 // If this field is true then the two subsequent field may be
 // examined to get more detail from the underlying toolkit if
 // required. These are non portable values and are only ever
 // likely to be used for diagnostic purposes.
 boolean external_error_set;
 short external_error_depth;
 long external_error;
 string external_error_string;
};

This structure is initialized with error information if a certificate
chain fails the validation checks made by Orbix. Two different levels
of error information are generated by the Orbix runtime:

• Error information generated by Orbix—provided by the
error_depth, error_message, and error_reason members.

• Error information generated by an underlying third-party tool-
kit—provided by the external_error_depth, external_error, and
external_error_string members.

The structure contains the following elements:

error_depth A positive integer that indexes the chain
depth of the certificate causing the error.
Zero indicates the peer certificate.

error_message A descriptive error string (possibly from the
lower level toolkit).

error_reason An Orbix-specific error code.
external_error_set If TRUE, external error details are provided by

the underlying toolkit in the member vari-
ables following this one.

external_error_depth The index of the certificate that caused the
error, as counted by the underlying toolkit.

external_error The error code from the underlying toolkit.

Orbix CORBA Programmer’s Reference: Java 833

IT_TLS::CipherSuite Type
typedef unsigned long CipherSuite;

A type that identifies a cipher suite.

Values The following constants of IT_TLS::CipherSuite type are defined in
IT_TLS:
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_IDEA_CBC_SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_DSS_WITH_DES_CBC_SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_ANON_EXPORT_WITH_RC4_40_MD5
TLS_DH_ANON_WITH_RC4_128_MD5
TLS_DH_ANON_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_ANON_WITH_DES_CBC_SHA
TLS_DH_ANON_WITH_3DES_EDE_CBC_SHA
TLS_FORTEZZA_DMS_WITH_NULL_SHA
TLS_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA

IT_TLS::CipherSuiteList Sequence
typedef sequence<CipherSuite> CipherSuiteList;

A list of cipher suites.

IT_TLS::SessionCachingMode Type
typedef unsigned short SessionCachingMode;

A type that holds a session caching mode flag.

See Also IT_TLS_API::SessionCachingPolicy

external_error_string A descriptive error string from the underlying
toolkit.

 834 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 835

IT_TLS::CertValidator Interface
IDL // IDL in module IT_TLS

interface CertValidator
{
 boolean
 validate_cert_chain(
 in boolean chain_is_valid,
 in IT_Certificate::X509CertChain cert_chain,
 in CertChainErrorInfo error_info
);
};

Description The CertValidator interface is a callback interface that can be used
to check the validity of a certificate chain. A developer can provide
custom validation for secure associations by implementing the
CertValidator interface, defining the validate_cert_chain() opera-
tion to do the checking. The developer then creates an instance of
the custom CertValidator and registers the callback by setting an
IT_TLS_API::TLS_CERT_VALIDATOR_POLICY policy.

CertValidator::validate_cert_chain()
IDL boolean

validate_cert_chain(
 in boolean chain_is_valid,
 in IT_Certificate::X509CertChain cert_chain,
 in CertChainErrorInfo error_info
);

Description Returns TRUE if the implementation of validate_cert_chain() con-
siders the certificate chain to be valid; otherwise returns FALSE.

Parameters

chain_is_valid TRUE if the certificate chain has passed the validity
checks made automatically by the Orbix toolkit;
otherwise FALSE.

cert_chain The X.509 certificate chain to be checked.
error_info If the certificate chain has failed the validity checks

made by Orbix, this parameter provides details of
the error in the certificate chain.

 836 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 837

IT_TLS_API Overview
The IT_TLS_API module defines Orbix-specific security policies and
an interface, TLS, that acts as a factory for certain kinds of security
policy. This module contains the following IDL interfaces:
• CertConstraintsPolicy Interface
• CertValidatorPolicy Interface
• MaxChainLengthPolicy Interface
• SessionCachingPolicy Interface
• TrustedCAListPolicy Interface
• TLS Interface
• TLSCredentials Interface
• TLSReceivedCredentials Interface
• TLSTargetCredentials Interface
Associated with each of the security policies, the IT_TLS_API mod-
ule defines the following policy type constants (of
CORBA::PolicyType type):
IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY
IT_TLS_API::TLS_CERT_VALIDATOR_POLICY
IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY
IT_TLS_API::TLS_SESSION_CACHING_POLICY
IT_TLS_API::TLS_TRUSTED_CA_LIST_POLICY

The IT_TLS_API module also defines IDL structures that are used to
supply authentication information to the
PrincipalAuthenticator::authenticate() operation, depending on
the authentication method used. The following structures are
defined:
• PasswordAuthData
• PEMCertChainFileAuthData
• PKCS12DERAuthData
• PKCS12FileAuthData
• X509CertChainAuthData
• PKCS11AuthData
Associated with each of the authentication structures, the
IT_TLS_API module defines the following authentication method
constants (of Security::AuthenticationMethod type):

Table 19: Authentication Method Constants and Authentication Structures

Authentication Method
Constant

Authentication Structure

IT_TLS_AUTH_METH_PASSWORD PasswordAuthData

IT_TLS_AUTH_METH_CERT_CHAIN_FILE PEMCertChainFileAuthData

IT_TLS_AUTH_METH_PKCS12_DER PKCS12DERAuthData

IT_TLS_AUTH_METH_PKCS12_FILE PKCS12FileAuthData

IT_TLS_AUTH_METH_CERT_CHAIN X509CertChainAuthData

 838 Orbix CORBA Programmer’s Reference: Java

IT_TLS_API::CertConstraints Sequence
typedef sequence<string> CertConstraints;

Holds a list of certificate constraints for a certificate constraints
policy.

See Also IT_TLS_API::CertConstraintsPolicy

IT_TLS_API::PasswordAuthData
struct PasswordAuthData {
 string password;
};

Supplies only a password as authentication data.

Note: Reserved for future use.

IT_TLS_API::PEMCertChainFileAuthData
struct PEMCertChainFileAuthData {
 string password;
 string filename;
};

Supplies a password and the file name of a privacy-enhanced mail
(PEM) encrypted X.509 certificate chain.

Note: Reserved for future use.

IT_TLS_API::PKCS12DERAuthData
struct PKCS12DERAuthData {
 string password;
 IT_Certificate::DERData cert_chain;
};

Supplies a password and a certificate chain in DER format.

Note: Reserved for future use.

IT_TLS_AUTH_METH_PKCS11 PKCS11AuthData

Table 19: Authentication Method Constants and Authentication Structures

Authentication Method
Constant

Authentication Structure

Orbix CORBA Programmer’s Reference: Java 839

IT_TLS_API::PKCS12FileAuthData
struct PKCS12FileAuthData {
 string password;
 string filename;
};

Supplies a password and the file name of a PKCS#12 encrypted
X.509 certificate chain. The file name should be an absolute path
name.

IT_TLS_API::X509CertChainAuthData
struct X509CertChainAuthData {
 IT_Certificate::DERData private_key;
 IT_Certificate::X509CertChain cert_chain;
};

Supplies an asymmetric private key and an X.509 certificate
chain.

IT_TLS_API::PKCS11AuthData
struct PKCS11AuthData {
 string provider;
 string slot;
 string pin;
};

Supplies the provider name, slot number, and PIN for a smart card
that is accessed through a PKCS #11 interface. In this case, the
user’s private key and certificate chain are stored on the smart
card. The PIN is used to gain access to the smart card.

 840 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 841

IT_TLS_API::CertConstraintsPolic
y Interface

// IDL in module IT_TLS_API
local interface CertConstraintsPolicy : CORBA::Policy
{
 readonly attribute CertConstraints cert_constraints;
};

This policy defines a list of constraints to be applied to certificates.
This policy type is identified by the
IT_TLS_API::TLS_CERT_CONSTRAINTS_POLICY policy type constant.

CertConstraintsPolicy::cert_constraints
Attribute
readonly attribute CertConstraints cert_constraints;

Holds the list of certificate constraints as a sequence of strings, of
IT_TLS_API::CertConstraints type.

 842 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 843

IT_TLS_API::CertValidatorPolicy
Interface

// IDL in module IT_TLS_API
local interface CertValidatorPolicy : CORBA::Policy
{
 readonly attribute IT_TLS::CertValidator cert_validator;
};

This policy can be used to register a customized certificate call-
back object, of IT_TLS::CertValidator type. This policy type is
identified by the IT_TLS_API::TLS_CERT_VALIDATOR_POLICY policy type
constant.

CertValidatorPolicy::cert_validator Attribute
readonly attribute IT_TLS::CertValidator cert_validator;

Holds the customized certificate callback object, of
IT_TLS::CertValidator type

 844 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 845

IT_TLS_API::MaxChainLengthPoli
cy Interface

// IDL in module IT_TLS_API
local interface MaxChainLengthPolicy : CORBA::Policy
{
 readonly attribute unsigned short max_chain_length;
};

This is a simple integer-based policy that controls the maximum
certificate chain length permitted. The policy is applicable to serv-
ers and clients. This policy type is identified by the
IT_TLS_API::TLS_MAX_CHAIN_LENGTH_POLICY policy type constant.

Note: Default is 2.

MaxChainLengthPolicy::max_chain_length
Attribute
readonly attribute unsigned short max_chain_length;

Holds the maximum chain length value.

 846 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 847

IT_TLS_API::SessionCachingPolic
y Interface

// IDL in module IT_TLS_API
local interface SessionCachingPolicy : CORBA::Policy{
 readonly attribute unsigned short cache_mode;
};

An Orbix-specific policy to specify the caching mode. This policy
applies to clients and servers. This policy type is identified by the
IT_TLS_API::TLS_SESSION_CACHING_POLICY policy type constant.
Session caching is an Orbix-specific feature that enables secure
associations (for example, over TCP/IP connections) to be
re-established more quickly after being closed.
To enable session caching for a client-server connection, the client
must support client-side caching (CACHE_CLIENT or
CACHE_SERVER_AND_CLIENT policy) and the server must support
server-side caching (CACHE_SERVER or CACHE_SERVER_AND_CLIENT pol-
icy). The first time a secure association is established between the
client and the server, session information is cached at both ends
of the association. If the association is subsequently closed and
re-established (as can happen when Automatic Connection Man-
agement is enabled), the reconnection occurs more rapidly
because some of the steps in the security handshake can be
skipped.
The caching optimization is effective only if both client and server
are running continuously between the closing and the re-estab-
lishment of the connection. Session caching data is not stored per-
sistently and is, therefore, not available to restarted applications.
Each TLS listener uses a separate session cache. For example, if
you have two POAs with different InvocationCredentialsPolicy val-
ues, Orbix creates a TLS listener and session cache for each POA.
A client will not offer a cached session for reuse to a server if the
session was initially created with different effective security poli-
cies.

SessionCachingPolicy::cache_mode Attribute
readonly attribute unsigned short cache_mode;

Holds the client caching mode. The default value is
IT_TLS::CACHE_NONE.
The values for this policy are as follows:

IT_TLS::CACHE_NONE No caching.
IT_TLS::CACHE_SERVER Perform server-side caching only.
IT_TLS::CACHE_CLIENT Perform client-side caching only.
IT_TLS::CACHE_SERVER_AND_CLIENT Perform both server-side and cli-

ent-side caching.

 848 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 849

IT_TLS_API::TLS Interface
// IDL in module IT_TLS_API
local interface TLS {
 SecurityLevel2::MechanismPolicy
 create_mechanism_policy(
 in IT_TLS::CipherSuiteList ciphersuite_list
);
};

This interface provides helper operations for the TSL module.

TLS::create_mechanism_policy()
SecurityLevel2::MechanismPolicy
create_mechanism_policy(
 in IT_TLS::CipherSuiteList ciphersuite_list
);

Creates a SecurityLevel2::MechanismPolicy object from a list of
ciphersuites, ciphersuite_list.

See Also IT_TLS::CipherSuite

 850 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 851

IT_TLS_API::TLSCredentials
Interface

// IDL
local interface TLSCredentials : SecurityLevel2::Credentials
{
 IT_Certificate::X509Cert get_x509_cert();

 IT_Certificate::X509CertChain get_x509_cert_chain();
};

This interface is the base interface for the
IT_TLS_API::TLSReceivedCredentials and the
IT_TLS_API::TLSTargetCredentials interfaces. The interface defines
operations to retrieve an X.509 certificate chain from the creden-
tials.

TLSCredentials::get_x509_cert()
// IDL
IT_Certificate::X509Cert get_x509_cert();

Returns a reference to the X.509 peer certificate (first certificate
in the chain) contained in the credentials.

TLSCredentials::get_x509_cert_chain()
// IDL
IT_Certificate::X509CertChain get_x509_cert_chain();

Returns a copy of the X.509 certificate chain contained in the cre-
dentials.

 852 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 853

IT_TLS_API::TLSReceivedCredent
ials Interface

local interface TLSReceivedCredentials :
 TLSCredentials,
 SecurityLevel2::ReceivedCredentials
{
};

The interface of an Orbix-specific received credentials object,
which inherits from the standard
SecurityLevel2::ReceivedCredentials interface.
TLSReceivedCredentials provides extra operations (inherited from
IT_TLS_API::TLSCredentials) to extract the X.509 certificate chain
from the credentials.
An instance of a TLSReceivedCredentials object can be obtained by
narrowing the SecurityLevel2::ReceivedCredentials object refer-
ence obtained from the
SecurityLevel2::Current::received_credentials attribute.

 854 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 855

IT_TLS_API::TLSTargetCredential
s Interface

local interface TLSTargetCredentials :
 TLSCredentials,
 SecurityLevel2::TargetCredentials
{
};

The interface of an Orbix-specific target credentials object, which
inherits from the standard SecurityLevel2::TargetCredentials
interface. TLSTargetCredentials provides extra operations (inher-
ited from IT_TLS_API::TLSCredentials) to extract the X.509 certifi-
cate chain from the credentials.
An instance of a TLSTargetCredentials object can be obtained by
narrowing the SecurityLevel2::TargetCredentials object reference
returned from the
SecurityLevel2::SecurityManager::get_target_credentials() opera-
tion.

 856 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 857

IT_TLS_API::TrustedCAListPolicy
Interface

local interface TrustedCAListPolicy : CORBA::Policy
{
 readonly attribute IT_Certificate::X509CertList
 trusted_ca_list;
};

This policy specifies a list of trusted CA certificates. The policy is
applicable to both servers and clients. This policy type is identified
by the IT_TLS_API::TLS_TRUSTED_CA_LIST_POLICY policy type constant.

TrustedCAListPolicy::trusted_ca_list Attribute
readonly attribute IT_Certificate::X509CertList trusted_ca_list;

Holds the list of trusted CA certificates.

 858 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 859

IT_TypedEventChannelAdmin
Module

Module IT_TypedEventChannelAdmin describes extensions to the
module CosTypedEventChannelAdmin. It defines an interface,
TypedEventChannelFactory, for creating or discovering
TypedEventChannel objects.

IT_TypedEventChannelAdmin Data Types

IT_TypedEventChannelAdmin::TypedEventCha
nnelInfo Structure
struct TypedEventChannelInfo
 {
 string name;
 IT_EventChannelAdmin::ChannelID id;
 string interface_id;
 CosTypedEventChannelAdmin::TypedEventChannel reference;
 };

The TypedEventChannelInfo is the unit of information managed by
the TypedEventChannelFactory for a given TypedEventChannel
instance.

IT_TypedEventChannelAdmin::TypedEventCha
nnelInfoList Sequence
typedef sequence<TypedEventChannelInfo>
TypedEventChannelInfoList;

The TypedEventChannelInfoList contains a sequence of
TypedEventChannelInfo and is the unit returned by
TypedEventChannelFactory::list_typed_channels().

 860 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 861

IT_TypedEventChannelAdmin::Ty
pedEventChannelFactory
Interface

interface TypedEventChannelFactory : IT_MessagingAdmin::Manager
{
 CosTypedEventChannelAdmin::TypedEventChannel
 create_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises (IT_EventChannelAddmin::ChannelAlreadyExists);

 CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)
 raises (IT_EventChannelAdmin::ChannelNotFound);

 CosTypeEventChannelAdmin::TypedEventChannel
 find_typed_channel_by_id(in IT_EventChannelAdmin::ChannelID

id,
 out string name)
 raises (IT_EventChannelAdmin::ChannelNotFound);

 TypedEventChannelInfoList list_typed_channels();
};

The TypedEventChannelFactory interface defines operations for cre-
ating and managing typed event channels. By inheriting from the
IT_MessagingAdmin::Manager interface, it also has the ability to
gracefully shut down the event service.

TypedEventChannelFactory::create_typed_cha
nnel()
//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 create_typed_channel(in string name,
 out ITEventChannelAdmin::ChannelID id)
raises (IT_EventChannelAdmin::ChannelAlreadyExists);

Creates a new instance of a typed event channel

Parameters

TypedEventChannelFactory::find_typed_chann
el()
//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 find_type_channel(in string name,
 out IT_EventChannelAdmin::ChannelID id)

name The name of the channel to be created
id The id of the created channel

 862 Orbix CORBA Programmer’s Reference: Java

raises (IT_EventChannelAdmin::ChannelNotFound);

Returns n TypedEventChannel instance specified by the provided name.

Parameters

TypedEventChannelFactory::find_typed_chann
el_by_id()
//IDL
CosTypedEventChannelAdmin::TypedEventChannel
 find_typed_channel_by_id(in IT_EventChannelAdmin::ChannelID

id,
 out string name)
raises (IT_EventChannelAdmin::ChannelNotFound);

Returns an TypedEventChannel instance specified by the provided id.

Parameters

TypedEventChannelFactory::list_typed_chann
els()
//IDL
TypedEventChannelInfoList list_typed_channels();

Return a list of the TypedEventChannel instances associated with the
event service.

name The name of the channel
id The channel id as returned from

create_typed_channel()

id The channel id as returned from
create_typed_channel()

name The name of the channel

 Orbix CORBA Programmer’s Reference: Java 863

IT_WorkQueue Module
The IT_WorkQueue module defines the interfaces needed to create
and manage user defined work queues.

 864 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 865

IT_WorkQueue::AutomaticWorkQ
ueue Interface

// IDL
interface AutomaticWorkQueue : WorkQueue
 {
 readonly attribute unsigned long threads_total;
 readonly attribute unsigned long threads_working;

 attribute long high_water_mark;
 attribute long low_water_mark;

 void shutdown(in boolean process_remaining_jobs);
 };

The AutomaticWorkQueue interface specifies the method used to
shutdown an automatic work queue. It also specifies the attributes
that limit the size of the queue’s thread pool and monitor thread
usage.

threads_total Attribute
readonly attribute unsigned long threads_total;

The total number of threads in the AutomaticWorkqueue which can
process work items. This will indicate how many threads the
workqueue currently has if it has been configured to dynamically
create and destroy threads as the workload changes.

threads_working Attribute
readonly attribute unsigned long threads_working;

Indicates the total number of threads that are busy processing work
items at that point in time. This value will vary as the workload of
the server changes.

high_water_mark Attribute
attribute long high_water_mark;

Specifies the maximum number of threads an AutomaticWorkQueue
instance can have in its active thread pool.

low_water_mark Attribute
attribute long low_water_mark;

Specifies the minimum number of threads available to an
AutomaticWorkQueue instance.

 866 Orbix CORBA Programmer’s Reference: Java

AutomaticWorkQueue::shutdown()
void shutdown(in boolean process_remaining_jobs);

Deactivates the queue and releases all resources associated with it.

Parameters

process_remainig_jobsTRUE specifies that any items in the queue
should be processed before shutting down the
queue.
FALSE specifies that any items in the queue
should be flushed.

 Orbix CORBA Programmer’s Reference: Java 867

IT_WorkQueue::AutomaticWorkQ
ueueFactory Interface

// IDL
local interface AutomaticWorkQueueFactory
 {
 AutomaticWorkQueue create_work_queue(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark);

 AutomaticWorkQueue create_work_queue_with_thread_stack_size(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark,
 in long thread_stack_size);
 };

The AutomaticWorkQueueFactory interface specifies two methods for
obtaining an AutomaticWorkQueue. The AutomaticWorkQueueFactory is
obtained by calling
resolve_initial_references("IT_AutomaticWorkQueueFactory").

AutomaticWorkQueueFactory::create_work_q
ueue()
AutomaticWorkQueue create_work_queue(
 in long max_size,
 in unsigned long initial_thread_count,
 in long high_water_mark,
 in long low_water_mark);

Creates an AutomaticWorkQueue.

Parameters

AutomaticWorkQueueFactory::create_work_q
ueue_with_thread_stack_size()
AutomaticWorkQueue create_work_queue_with_thread_stack_size(
 in long max_size,
 in unsigned long initial_thread_count,

max_size The maximum number of items the queue can
hold.

initial_thread_countThe initial number of threads the queue has
available for processing work items.

high_water_mark The maximum number of threads the queue
can generate to process work items.

low_water_mark The minimum number of threads the queue
can have available to process work items.

 868 Orbix CORBA Programmer’s Reference: Java

 in long high_water_mark,
 in long low_water_mark,
 in long thread_stack_size);

Creates an AutomaticWorkQueue and specify the size of the thread
stack.

Parameters

max_size The maximum number of items the queue can
hold.

initial_thread_countThe initial number of threads the queue has
available for processing work items.

high_water_mark The maximum number of threads the queue
can generate to process work items.

low_water_mark The minimum number of threads the queue
can have available to process work items.

thread_stack_size The size, in bytes, of the thread stack used by
the queue.

 Orbix CORBA Programmer’s Reference: Java 869

IT_WorkQueue::ManualWorkQue
ue Interface

// IDL
interface ManualWorkQueue : WorkQueue
 {
 boolean dequeue(out WorkItem work, in long timeout);
 boolean do_work(in long number_of_jobs, in long timeout);
 void shutdown(in boolean process_remaining_jobs);
 };

The ManualWorkQueue interface specifies the methods for managing
a manual work queue.

ManualWorkQueue::dequeue()
boolean dequeue(out WorkItem work, in long timeout);

Removes a single WorkItem from the head of the queue. You must
explicitly call execute() on the WorkItem to process the request using
this method.

Parameters

ManualWorkQueue::do_work()
boolean do_work(in long number_of_jobs, in long timeout);

Removes the specified number of requests from the queue and
processes them. If there are less than the specified number of items
on the queue, do_work() will block for a specified amount of time to
wait for items to be queued.

Parameters

ManualWorkQueue::shutdown()
void shutdown(in boolean process_remaining_jobs);

Deactivates the queue and releases all resources associated with it.

work The WorkItem returned by dequeue(). If the call is
unsucessfull, work will be NULL.

timeout The maximum amount of time the call will block
before returning NULL.

number_of_jobsThe maximum number of items to process.
timeout The maximum amount of time the call will block

before returning.

 870 Orbix CORBA Programmer’s Reference: Java

Parameters

process_remainig_jobsTRUE specifies that any items in the queue
should be processed before shutting down the
queue.
FALSE specifies that any items in the queue
should be flushed.

 Orbix CORBA Programmer’s Reference: Java 871

IT_WorkQueue::ManualWorkQue
ueFactory Interface

// IDL
local interface ManualWorkQueueFactory
 {
 ManualWorkQueue create_work_queue(in long max_size);
 };

Defines the method used to obtain a ManualWorkQueue. The
ManualWorkQueueFactory is obtained by calling
resolve_initial_references("IT_ManualWorkQueueFactory").

ManualWorkQueueFactory::create_work_queu
e()
ManualWorkQueue create_work_queue(in long max_size);

Creates a ManualWorkQueue object.

Parameters

max_size Specifies the maximum number of work items the
queue can hold.

 872 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 873

IT_WorkQueue::WorkItem
Interface

// IDL
enum WorkItemStatus
 {
 STOP_WORKING,
 CONTINUE_WORKING
 };

interface WorkItem
 {
 WorkItemStatus execute();
 void destroy();
 };

The WorkItem interface defines requests placed on the work queue.
For most purposes, you do not need to implement this interface.
The ORB will place requests on the queue and execute them under
the covers. You can implement this interface if you want to have
additional processing done by the work queues thread pool.

WorkItem::execute()
WorkItemStatus execute();

Processes the request encapsulated in the WorkItem object. The only
times you need to call this method, is when using a ManualWorkQueue
and removing items from the queue using dequeue(). Also, if you
have made a custom WorkItem, you will need to implement this
method.

WorkItem::Destroy
void destroy();

Releases the resources for the current WorkItem object.

 874 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 875

IT_WorkQueue::WorkQueue
Interface

// IDL
interface WorkQueue
 {
 readonly attribute long max_size;
 readonly attribute unsigned long count;

 boolean enqueue(in WorkItem work, in long timeout);
 boolean enqueue_immediate(in WorkItem work);
 boolean is_full();
 boolean is_empty();
 boolean activate();
 boolean deactivate();
 void flush();
 boolean owns_current_thread();
 };

The WorkQueue interface defines the base functionality for the
ManualWorkQueue interface and the AutomaticWorkQueue interface.

max_size attribute
readonly attribute long max_size;

Specifies the maximum number of WorkItems a queue can hold
before it is full.

WorkQueue::enqueue()
boolean enqueue(in WorkItem work, in long timeout);

Places work items into the queue for processing. For CORBA
requests, the ORB takes care of placing items into the queue. For
custom work items that you wish to handle in the queue, you must
explicitly place them on the queue.

Parameters

WorkQueue::enqueue_immediate()
boolean enqueue_immediate()

Returns TRUE and places the work item onto the queue for processing
if the work queue is not full and the number of threads is below the
high water mark. Effectively, this causes the work item to be
processed immediately with out waiting for any current thread to
complete. Returns FALSE if the work item cannot immediately placed
on the work queue.

work The WorkItem to be placed into the queue.
timeout The time in seconds that the item will be valid on the

queue.

 876 Orbix CORBA Programmer’s Reference: Java

Parameters

WorkQueue::is_full()
boolean is_full();

Returns TRUE if the WorkQueue has reached max_size. Returns FALSE
otherwise.

WorkQueue::is_empty()
boolean is_empty();

Returns TRUE if the WorkQueue is empty. Returns FALSE otherwise.

WorkQueue::activate()
boolean activate();

Puts the queue into a state where it is ready to receive and process
work requests.

WorkQueue::deactivate()
boolean deactivate();

Puts the queue into a state where it will no longer process work
requests.

WorkQueue::owns_current_thread()
boolean owns_current_thread();

Returns TRUE if the thread making the call is managed by the work
queue.

WorkQueue::flush()
void flush();

Removes all of the items from the queue without processing them.

work The WorkItem to be placed into the queue.

 Orbix CORBA Programmer’s Reference: Java 877

IT_WorkQueue::WorkQueuePolic
y Interface

// IDL
local interface WorkQueuePolicy : CORBA::Policy
 {
 readonly attribute WorkQueue work_queue;
 };

The WorkPolicy interface is the object you pass to create_policy()
when associating you WorkQueue with a POA.

 878 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 879

The IT_ZIOP Module
Defines interfaces, exceptions, types and values for the Micro Focus ZIOP
Compression plug-in.

Description This plug-in provides optional compression of all types of GIOP
messages through a message-level interceptor that is installed
between the GIOP interceptor and the transport interceptor (that
is, IIOP, IIOP_TLS, etc). This module defines the plug-in interfaces
that register compression algorithms, define the ZIOP IOR
Component, and define the Policies associated with compression.

IT_ZIOP::CompressionException

Thrown when an error occurs during a compress or decompress
operation.

Fields reason

Exception details.

IT_ZIOP::FactoryAlreadyRegistered

Thrown if a CompressorFactory with the same CompressorId is already
registered with the CompressionManager.

IT_ZIOP::UnknownCompressorId

Thrown if a CompressorId is not known.

IT_ZIOP::CompressorId

Defines the CompressorId type.

Description The CompressorId is a unique ID that identifies a particular
compression algorithm. Three compression algorithms are defined
by the standard ZIOP plug-in:
• gzip—for which ID = 1.
• pkzip—for which ID = 2.
• bzip2—for which ID = 3.

IT_ZIOP::CompressorFactorySeq

A list of CompressorFactory objects.

IT_ZIOP::TAG_IONA_ZIOP_COMPONENT

The ZIOP IOR component tag.

Description Identifies the ZIOP IOR component, which contains a ComponentId.

 880 Orbix CORBA Programmer’s Reference: Java

IT_ZIOP::COMPRESSION_ENABLING_POLICY_ID

The policy ID for the IT_ZIOP::CompressionEnablingPolicy policy.

Description This constant can be passed as the first argument to the
CORBA::ORB::create_policy() operation to create a
CompressionEnablingPolicy instance.

IT_ZIOP::COMPRESSOR_ID_POLICY_ID

The policy ID for the IT_ZIOP::CompressorIdPolicy policy.

Description This constant can be passed as the first argument to the
CORBA::ORB::create_policy() operation to create a
CompressorIdPolicy instance.

IT_ZIOP::Compressor
Implements a compression algorithm.

Description The key operations of the Compressor interface are the
compress() and decompress() operations. Implementing these
operations is somewhat complicated by the use of
segmented buffers (of IT_Buffer::Buffer type).
To give you some idea of how to manipulate a segmented
buffer, here is an outline of the steps you would perform to
iterate over the bytes in a pre-existing buffer:
• Call IT_Buffer::Buffer::rewind() to reset the buffer to the

first segment.
• Call IT_Buffer::Buffer::next_segment() to get a reference to

the first segment in the buffer (of IT_Buffer::Segment
type).

• Iterate over each byte in the segment (bytes within a
segment are contiguous). The first byte of the segment
is given by IT_Buffer::Segment::data +
IT_Buffer::Segment::offset. The last byte of the segment is
given by IT_Buffer::Segment::data +
IT_Buffer::Segment::offset + IT_Buffer::Segment::length - 1.

Orbix CORBA Programmer’s Reference: Java 881

• Move on to the next segment by calling
IT_Buffer::Buffer::next_segment().

• When the last segment is reached, next_segment() returns a
null pointer.

The Compressor object simply performs
compression/decompression unconditionally. The logic that
determines whether or not it is appropriate to
compress/decompress a particular message (based on the
effective compression policies) is already built-in to the ZIOP
plug-in.

IT_ZIOP::Compressor::compressor_factory

The IT_ZIOP::CompressorFactory associated with this Compressor.

IT_ZIOP::Compressor::compression_level

The implementation- and algorithm-specific compression level
associated with this Compressor.

IT_ZIOP::Compressor::compress()

Compresses data from the source Buffer into the target Buffer.

Parameters source

An IT_Buffer::Buffer object, which contains the data to compress.

target

A non-nil IT_Buffer::Buffer object, which should be empty.

Exceptions IT_ZIOP::CompressionException

Raised if an error occurs during compression.

IT_ZIOP::Compressor::decompress()

Operation that decompresses data from the source Buffer into the target
Buffer.

Parameters source

An IT_Buffer::Buffer object, which contains the data to decompress.

target

A non-nil IT_Buffer::Buffer object, which should be empty.

Exceptions IT_ZIOP::CompressionException

Raised if an error occurs during decompression.

IT_ZIOP::CompressorFactory
A factory for Compressor instances with a particular implementation- and
algorithm-specific compression level.

Description

 882 Orbix CORBA Programmer’s Reference: Java

IT_ZIOP::CompressorFactory::compressor_id

The CompressorId associated with this CompressorFactory.

Description The compressor ID is a unique identifier for a particular
compression algorithm.

IT_ZIOP::CompressorFactory::compressed_bytes

The total number of compressed bytes read and written by
IT_ZIOP::Compressor instances created by this CompressorFactory.

Description That is, this value represents the sum of the lengths of all the
target arguments of IT_ZIOP::Compressor::compress() and all of the
source arguments of IT_ZIOP::Compressor::decompress().

IT_ZIOP::CompressorFactory::uncompressed_bytes

The total number of uncompressed bytes read and written by
IT_ZIOP::Compressor instances created by this CompressorFactory.

Description That is, this value represents the sum of the lengths of all the
source arguments of IT_ZIOP::Compressor::compress() and all of the
target arguments of IT_ZIOP::Compressor::decompress().

IT_ZIOP::CompressorFactory::average_compression

The average compression ratio achieved by the IT_ZIOP::Compressors
instances created by this CompressorFactory.

Description The compression ratio is defined as the number of compressed
bytes divided by the number of uncompressed bytes (usually a
value between 0 and 1).

IT_ZIOP::CompressorFactory::get_compressor()

Creates a new Compressor instance or else returns a reference to a
pre-existing Compressor instance with the given compression level.

Returns A new or pre-existing Compressor instance that has the same compressor ID as the
CompressorFactory and a compression level specified by the compression_level
parameter.

Parameters compression_level

An arbitrary parameter that affects the compression algorithm. The interpretation of the
compression_level parameter is specific to each Compressor. In some cases, it
might be ignored.

Orbix CORBA Programmer’s Reference: Java 883

IT_ZIOP::CompressorFactory::add_sample()

Add a sample of compressed and uncompressed bytes.

Description Called internally to record the volumes of compressed data and
uncompressed data passing through the Compressor.

Parameters compressed_bytes

The length of the compressed data from the most recently compressed/decompressed
message.

uncompressed_bytes

The length of the uncompressed data from the most recently compressed/decompressed
message.

IT_ZIOP::CompressionManager
Per-ORB interface to register and unregister IT_ZIOP::CompressorFactory
objects.

Description To obtain a reference to the CompressionManager instance, call the
CORBA::ORB::resolve_initial_references() operation with the
IT_CompressionManager initial reference string as its argument.

IT_ZIOP::CompressionManager::register_factory()

Register a new CompressorFactory instance.

Java implementation For example, in Java you can register a compressor factory as
follows:
// Java
package ziop_compression;

import org.omg.CORBA.Any;
import org.omg.CORBA.ORB;
...
import com.iona.corba.IT_ZIOP.CompressionManager;
import com.iona.corba.IT_ZIOP.CompressionManagerHelper;
...
import java.io.*;

// Setup and Configure the CompressionManager
CompressionManager compression_manager;
org.omg.CORBA.Object ref =

orb.resolve_initial_references("IT_CompressionManager");
compression_manager = CompressionManagerHelper.narrow(ref);
if(compression_manager == null)
{
 Exception ex = new Exception("Unable to retrieve

IT_CompressionManager reference");
 ex.printStackTrace();
 throw ex;
}
System.out.println("Registering DemoCompressorFactory with

Compression Manager");
compression_manager.register_factory(new

DemoCompressorFactory(100));

 884 Orbix CORBA Programmer’s Reference: Java

Parameters compressor_factory

The compressor factory to register.

Exceptions IT_ZIOP::FactoryAlreadyRegistered

Raised if a factory with the same compressor ID has already been registered with this
CompressionManager.

IT_ZIOP::CompressionManager::unregister_factory()

Unregister a IT_ZIOP::CompressorFactory with the given CompressorId from
the CompressionManager.

Parameters compressor_id

The compressor ID that identifies the factory to unregister.

Exceptions IT_ZIOP::UnknownCompressorId

Raised if no factory with the specified compressor ID is registered with the
CompressionManager.

IT_ZIOP::CompressionManager::get_factory()

Retrieve an IT_ZIOP::CompressorFactory with the given CompressorId from
the CompressionManager.

Returns A reference to the CompressorFactory instance with the specified compressor ID.

Parameters compressor_id

The compressor ID that identifies the factory to retrieve.

Exceptions IT_ZIOP::UnknownCompressorId

Raised if no factory with the specified compressor ID is registered with the
CompressionManager.

IT_ZIOP::CompressionManager::get_compressor()

Creates a new, or returns a pre-existing, IT_ZIOP::Compressor instance.

Returns A Compressor instance with the specified compressor ID and compression level.

Parameters compressor_id

The compressor ID of the Compressor instance to retrieve.

compression_level

The compressor level of the Compressor instance to retrieve.

Exceptions IT_ZIOP::UnknownCompressorId

Raised if no factory with the specified compressor ID is registered with the
CompressionManager.

IT_ZIOP::CompressionManager::get_factories()

Returns a list of all the registered CompressorFactory instances.

Returns A sequence of IT_ZIOP::CompressorFactory object references.

Orbix CORBA Programmer’s Reference: Java 885

IT_ZIOP::CompressionComponent
The ZIOP IOR Component. Has a CompressorId attribute that indicates
the compression algorithm supported by the server side.

IT_ZIOP::CompressionComponent::compressor_id

The compressor ID value from the ZIOP IOR component.

IT_ZIOP::CompressionComponentFactory
The factory for ZIOP IOR components.

IT_ZIOP::CompressionComponentFactory::get_compression_component()

Creates ZIOP IOR components for inclusion in server-generated IORs.

Returns A new (or flyweighted) IT_ZIOP::CompressionComponent object.

Parameters compressor_id

The compressor ID to embed in the ZIOP IOR component.

IT_ZIOP::CompressionEnablingPolicy
Policy to enable compression using the ZIOP plug-in.

Description This policy has a single boolean attribute, indicating if
compression is enabled or not.
When the compression enabling policy is set on the server side,
the server embeds a ZIOP component in the IORs it generates.
The presence of a ZIOP component in the IOR indicates to clients
that the server is capable of receiving compressed messages. You
can set server-side policies at any of the following levels:
• ORB.
• POA.
When the compression enabling policy is set on the client side, the
client checks IORs for the presence of a ZIOP component. If a
ZIOP component is present, the client will attempt to send
compressed messages to the server. You can set client-side
policies at any of the following levels:
• ORB.
• Thread.
• Object (client proxy).

IT_ZIOP::CompressionEnablingPolicy::compression_enabled

Indicates whether this policy enables (true) or disables (false)
compression.

 886 Orbix CORBA Programmer’s Reference: Java

IT_ZIOP::CompressorIdPolicy
Policy to specify the compressor ID.

Description The compressor ID indicates which compression algorithm to use
(internally, the compressor ID selects a particular implementation
of the IT_ZIOP::Compressor interface).
The compressor ID policy can only be set on the server side. The
server embeds the compressor ID in a ZIOP component in the
IORs that it generates. You can set server-side policies at any of
the following levels:
• ORB.
• POA.

IT_ZIOP::CompressorIdPolicy::compressor_id

Returns the value of the compressor ID represented by this policy
instance.

 Orbix CORBA Programmer’s Reference: Java 887

Messaging Overview
CORBA provides synchronous and deferred synchronous modes of
invocations. The Messaging module provides the additional asyn-
chronous mode, also known here as Asynchronous Method Invo-
cation (AMI). The Messaging module includes the following base
classes, value types, policy classes, common data structures, and
constants:

With synchronous invocations, the client program, or thread,
blocks when a remote invocation is made and waits until the
results arrive. With deferred synchronous invocations, the client
thread continues processing, subsequently polling to see if results
are available. Within the CORBA module, the deferred synchro-
nous model is only available when using the Dynamic Invocation
Interface.
Many applications require some way of managing remote requests
within an asynchronous, event-driven environment in which call-
backs are invoked to handle events. Sophisticated applications
often need to manage several activities simultaneously, making
overlapping remote requests to many objects. This can be
achieved using a separate thread for each invocation, but the use
of threads considerably raises the application’s complexity and the
probability of programming errors. The use of threads also creates
a resource and synchronization problem in addition to the memory
management problem inherent in asynchronous communications.
Messaging provides the callback model in which the client passed
a callback object reference as part of the invocation. When the
reply is available, that callback object is invoked with the data of
the reply. The callback model uses a ReplyHandler, which is a
CORBA object, implemented by the client application. The
ReplyHandler is passed to an asynchronous method invocation. The
ReplyHandler is invoked when the reply to that request is available.
The Messaging module also provides a QoS property to help obtain
asynchronous behavior. The Messaging QoS includes some
CORBA::Policy derived interfaces for client-side policies to control
the behavior of requests and replies. Note however that QoS for
method invocations applies to both asynchronous and synchro-
nous invocations. See also the discussion “Quality of Service
Framework”.
The following constants and types are available for messaging.

Table 20: The Messaging Module

Base Classes and
Value Types

Common
Structures and

Constants

QoS Policy
Classes

ExceptionHolder
ReplyHandler

INVOCATION_POLICIES
RebindMode
RoutingType
RoutingTypeRange
SyncScope
TAG_POLICIES

RebindPolicy
SyncScopePolicy

 888 Orbix CORBA Programmer’s Reference: Java

Messaging::INVOCATION_POLICIES Constant
A service context containing a sequence of quality of service policies
in effect for the invocation. The quality of service framework
abstract model includes this mechanism for transporting Policy
values as part of interoperable object references and within re-
quests.

Messaging::RebindMode Type
This describes the level of transparent rebinding that may occur
during the course of an invocation on an object. Values of type
RebindMode are used in conjunction with a RebindPolicy. All non-neg-
ative values are reserved for use in OMG specifications and include
the following constants:

Any negative value for a RebindMode is considered a vendor exten-
sion.

See Also Messaging::RebindPolicy

Messaging::RoutingType Type
Describes the type of routing to be used for invocations on an object
reference. RoutingType values are used in conjunction with a
RoutingPolicy. All non-negative values are reserved for use in OMG
specifications and include the following constants:

TRANSPARENT Allows the ORB to silently handle object-forward-
ing and necessary reconnection during the course
of making a remote request.

NO_REBIND Allows the ORB to silently handle reopening of
closed connections while making a remote request,
but prevents any transparent object-forwarding
that would cause a change in client-visible effec-
tive QoS policies. When the RebindPolicy has this
mode in effect, only explicit rebinding is allowed by
calling CORBA::Object::_validate_connection().

NO_RECONNECT Prevents the ORB from silently handling object-for-
wards or the reopening of closed connections.
When the RebindPolicy has this mode in effect,
only explicit rebinding is allowed by calling
CORBA::Object::_validate_connection().

ROUTE_NONE Synchronous or deferred synchronous
delivery is used. No routers will be used to
aid in the delivery of the request.

ROUTE_FORWARD Asynchronous delivery is used. The request
is made through the use of a router and
not delivered directly to the target by the
client ORB.

Orbix CORBA Programmer’s Reference: Java 889

Any negative value for a RoutingType is considered a vendor exten-
sion.

See Also Messaging::RoutingTypeRange

Messaging::RoutingTypeRange Structure
This structure describes a range of routing types. It is invalid for
the minimum RoutingType to be greater than the maximum
RoutingType.

Messaging::SyncScope Type
Describes the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a
SyncScopePolicy to control the behavior of one way operations. All
non-negative values are reserved for use in OMG specifications. Any
negative value of SyncScope is considered a vendor extension. Valid
values include:

ROUTE_STORE_AND_FORWARD Asynchronous TII is used. The request is
made through the use of a router that per-
sistently stores the request before
attempting delivery.

SYNC_NONE This is equivalent to one allowable interpreta-
tion of CORBA 2.2 oneway operations. The
ORB returns control to the client (that is,
returns from the method invocation) before
passing the request message to the transport
protocol. The client is guaranteed not to block.
You cannot do location-forwarding with this
level of synchronization because no reply is
returned from the server.

SYNC_WITH_TRANSPORT This is equivalent to one allowable interpreta-
tion of CORBA 2.2 oneway operations. The
ORB returns control to the client only after the
transport has accepted the request message.
This gives no guarantee that the request will
be delivered, but in conjunction with knowl-
edge of the transport it may provide the client
with enough assurance.
For example, for a direct message over TCP,
SYNC_WITH_TRANSPORT is not a stronger guaran-
tee than SYNC_NONE. However, for a store and
forward transport, this QoS provides a high
level of reliability. You cannot do location-for-
warding with this level of synchronization
because no reply is returned from the server.

 890 Orbix CORBA Programmer’s Reference: Java

See Also Messaging::SyncScopePolicy

SYNC_WITH_SERVER The server-side ORB shall send a reply before
invoking the target implementation. If a reply
of NO_EXCEPTION is sent, any necessary
location-forwarding has already occurred.
Upon receipt of this reply, the client-side ORB
returns control to the client application. This
form of guarantee is useful where the reliabil-
ity of the network is substantially lower than
that of the server. The client blocks until all
location-forwarding has been completed. For a
server using a POA, the reply would be sent
after invoking any ServantManager, but before
delivering the request to the target Servant.

SYNC_WITH_TARGET Equivalent to a synchronous, non-oneway
operation in CORBA 2.2. The server-side ORB
shall only send the reply message after the
target has completed the invoked operation.
Note that any LOCATION_FORWARD reply will
already have been sent prior to invoking the
target and that a SYSTEM_EXCEPTION reply
may be sent at anytime (depending on the
semantics of the exception). Even though it
was declared oneway, the operation actually
has the behavior of a synchronous operation.
This form of synchronization guarantees that
the client knows that the target has seen and
acted upon a request. the OTS can only be
used with this highest level of synchroniza-
tion. Any operations invoked with lesser syn-
chronization precludes the target from
participating in the client’s current transac-
tion.

 Orbix CORBA Programmer’s Reference: Java 891

Messaging::ExceptionHolder
Value Type

The messaging callback model uses an ExceptionHolder to deliver
exceptions. Because the ReplyHandler implements an IDL inter-
face, all arguments passed to its operations must be defined in
IDL also. However, exceptions cannot be passed as arguments to
operations, but are only raised as part of a reply. An
ExceptionHolder value is created to encapsulate the identity and
contents of the exception that might be raised. An instance of this
ExceptionHolder is passed as the argument to the ReplyHandler
operation that indicates an exception was raised by the target. In
addition to its exception state, the ExceptionHolder also has opera-
tions that raise the returned exception, so the ReplyHandler imple-
mentation can have the returned exception re-raised within its
own context.
AMI operations do not raise user exceptions. Rather, user excep-
tions are passed to the implemented type specific ReplyHandler. If
an AMI operation raises a system exception with a completion sta-
tus of COMPLETED_NO, the request has not been made. This clearly
distinguishes exceptions raised by the server (which are returned
via the ReplyHandler) from the local exceptions that caused the
AMI to fail.
The ExceptionHolder value class implementation is provided by the
ORB. For each interface, a type specific ExceptionHolder value is
generated by the IDL compiler. This ExceptionHolder is imple-
mented by the ORB and passed to an application using the call-
back model when exception replies are returned from the target.
See the CORBA Programmer’s Guide for more on the generated
value types and operations.
The code is as follows:

Enhancement The ExceptionHolder class is not compliant with the CORBA Messag-
ing specification.

ExceptionHolder::byte_order()
Returns the byte order for the exception.

Sets the byte order for the exception.

ExceptionHolder::_downcast()
Returns a pointer to the ExceptionHolder type for a derived class.
Each value type class provides _downcast() as a portable way for
applications to cast down the C++ inheritance hierarchy.

 892 Orbix CORBA Programmer’s Reference: Java

Parameters

This is especially required after an invocation of _copy_value().

Enhancement Orbix enhancement.

See Also CORBA::ValueBase::_copy_value()

ExceptionHolder::ExceptionHolder()
Constructors
Constructors for the ExceptionHolder.

Enhancement Orbix enhancement.

ExceptionHolder::~ExceptionHolder()
Destructor
The destructor for the ExceptionHolder.

Enhancement Orbix enhancement.

ExceptionHolder::get_exception()
Returns the exception.

See Also Messaging::ExceptionHolder::get_exception_with_list()

Enhancement Orbix enhancement.

ExceptionHolder::get_exception_with_list()
Returns a list of exceptions.

Enhancement Orbix enhancement.

See Also Messaging::ExceptionHolder::get_exception()

ExceptionHolder::is_system_exception()

_val Pointer to the value type class to be downcast.
• If the value type instance pointed to by the argu-

ment is an instance of the value type class being
downcast to, a pointer to the downcast-to class
type is returned.

• If the value type instance pointed to by the argu-
ment is not an instance of the value type class
being downcast to, a null pointer is returned.

• If a null pointer is passed to _downcast(), it returns
a null pointer.

Orbix CORBA Programmer’s Reference: Java 893

ExceptionHolder::_it_demarshal_value()
Note: For internal use only.

ExceptionHolder::_it_get_fw_type_id()
Note: For internal use only.

ExceptionHolder::_it_get_safe_bases()
Note: For internal use only.

ExceptionHolder::_it_marshal_value()
Note: For internal use only.

ExceptionHolder::_it_type()
Note: For internal use only.

ExceptionHolder::_local_narrow()
Note: For internal use only.

ExceptionHolder::marshaled_exception()

Enhancement Orbix enhancement.

ExceptionHolder::marshaled_exception_seq
Sequence

Enhancement Orbix enhancement.

 894 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 895

Messaging::RebindPolicy Class
The RebindPolicy is a client-side QoS policy that specifies whether
or not the ORB is allowed to transparently relocate the target cor-
responding to an object reference. The default RebindPolicy sup-
ports this transparent rebind.
Rebinding means changing the client-visible QoS as a result of
replacing the IOR profile used by a client’s object reference with a
new IOR profile. Transparent rebinding is when this happens with-
out notice to the client application.
If your application has rigorous QoS requirements, transparent
rebinding can cause problems. For instance, unexpected errors
may occur if your application sets its QoS policies appropriately for
an object reference, and then the ORB transparently changes the
application’s assumptions about that reference by obtaining a new
IOR. Your applications can prevent the ORB from silently changing
the IOR Profile and therefore the server-side QoS that you have
assumed. A more rigorous value of this policy even precludes the
ORB from silently closing and opening connections such as when
IIOP is being used.
RebindPolicy is a local object derived from CORBA::Policy.
 ...See page 5 for descriptions of the standard helper methods:
• _duplicate()
• _narrow()
• _nil()
• _unchecked_narrow()

RebindPolicy::_local_narrow()
Note: For internal use only.

RebindPolicy::rebind_mode()
Returns the effective rebind policy mode. The effective policies of
other types for this object reference may change from invocation
to invocation.

For GIOP-based protocols an object reference is considered bound
once it is in a state where a locate-request message would result
in a locate-reply message with status indicating where the object
is. If rebind_mode() returns an effective policy value of TRANSPARENT,
the ORB will silently forward any subsequent messages.
Regardless of the rebind policy in effect, you can always explicitly
requested rebind or reconnection by calling
Object::_validate_connection(). When instances of RebindPolicy
are created, a value of type RebindMode is passed to
ORB::create_policy().

 896 Orbix CORBA Programmer’s Reference: Java

Exceptions

See Also Messaging::RebindMode
CORBA::ORB::create_policy()
CORBA::Object::_validate_connection()

RebindPolicy::~RebindPolicy() Destructor
The destructor for the object.

REBIND Raised if:
• The effective policy value is NO_REBIND and if any

rebind handling would cause a client-visible
change in policies.

• The effective policy value is NO_RECONNECT and if
any rebind handling would cause a client-visible
change in policies, or if a new connection must be
opened.

 Orbix CORBA Programmer’s Reference: Java 897

Messaging::ReplyHandler Base
Class

This is the base class for the messaging callback model. A
ReplyHandler is a CORBA object, implemented by the client appli-
cation, which encapsulates the functionality for handling an asyn-
chronous reply. The ReplyHandler is used with an asynchronous
method invocation (AMI). The ReplyHandler is passed to an AMI
and it is invoked when the reply to that request is available.
In the callback model, the client passes a reference to a reply han-
dler (a client side CORBA object implementation that handles the
reply for a client request), in addition to the normal parameters
needed by the request. The reply handler interface defines opera-
tions to receive the results of that request (including inout and out
values and possible exceptions). The ReplyHandler is a normal
CORBA object that is implemented by the programmer as with any
object implementation.
You must write the implementation for a type-specific
ReplyHandler. A client obtains an object reference for this
ReplyHandler and passes it as part of the AMI. When the server
completes the request, its reply is delivered as an invocation on
the ReplyHandler object. This invocation is made on the
ReplyHandler using the normal POA techniques of servant and
object activation. As a result, the callback operation may be han-
dled in a different programming context than that in which the
original request was made.
Exceptions can only be raised as part of a reply in the callback
model. You use an ExceptionHolder to handle these exception
replies. You create an ExceptionHolder value to encapsulate the
identity and contents of an exception that might be raised, and an
instance of this ExceptionHolder is passed as the argument to the
ReplyHandler operation to indicate if an exception was raised by
the target.
For each operation in an interface, corresponding callback asyn-
chronous method signatures are generated by the IDL compiler.
See the CORBA Programmer’s Guide for generated methods and
how to write your asynchronous callback implementations.
See page 5 for descriptions of the standard helper methods:
• _duplicate()
• _narrow()
• _nil()
• _unchecked_narrow()

ReplyHandler::_local_narrow()
Note: For internal use only.

 898 Orbix CORBA Programmer’s Reference: Java

ReplyHandler::~ReplyHandler() Destructor
The destructor for the object.

 Orbix CORBA Programmer’s Reference: Java 899

Messaging::SyncScopePolicy
Class

The SyncScopePolicy is an ORB-level QoS policy that modifies the
behavior of oneway operations. (Operations are specified in IDL
with the oneway keyword.) This policy is only applicable as a cli-
ent-side override. It is applied to oneway operations to indicate
the synchronization scope with respect to the target of that opera-
tion request. It is ignored when any non-oneway operation is
invoked. This policy is also applied when the DII is used with a flag
of INV_NO_RESPONSE because the DII is not required to consult an
interface definition to determine if an operation is declared one-
way. The default value of this policy is not defined.
SyncScopePolicy is a local object derived from CORBA::Policy. You
create instances of SyncScopePolicy by passing a value of type
Messaging::SyncScope to CORBA::ORB::create_policy(). The client’s
SyncScopePolicy is propagated within a request in the request
header’s response flags. Your applications must explicitly set a
SyncScopePolicy to ensure portability across ORB implementations.
See “About Standard Functions for all Interfaces” for descriptions
of the standard helper methods:
• _duplicate()
• _narrow()
• _nil()
• _unchecked_narrow()

SyncScopePolicy::_local_narrow()
Note: For internal use only.

SyncScopePolicy::synchronization()
Returns the level of synchronization.

See Also Messaging::SyncScope

SyncScopePolicy::~SyncScopePolicy()
Destructor
The destructor for the object.

 900 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 901

OrbixEventsAdmin Module
The previous Orbix implementation of the CORBA event service,
OrbixEvents, provided the event channel administration interface,
ChannelManager, defined in the module OrbixEventsAdmin, to allow
Orbix 3.x clients to create and manipulate multiple event channels
within an OrbixEvents server.
Orbix defines the ChannelManager interface for backwards compati-
bility with OrbixEvents users. This interface is defined in the file
orbixevents.idl in the include/idl directory.

WARNING: The orbixevents.idl file is deprecated. All new clients
using the event service should be using the interfaces provided in
the IT_EventChannelAdmin module (defined in
event_channel_admin.idl).

Existing clients can contact the event service by calling
resolve_initial_references("EventService") and narrowing the
reference from OrbixEventsAdmin::ChannelManager.

 902 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 903

OrbixEventsAdmin::ChannelMana
ger

The previous Orbix implementation of the CORBA event service,
OrbixEvents, provided the event channel administration interface,
ChannelManager, defined in the module OrbixEventsAdmin, to allow
Orbix 3.x clients to create and manipulate multiple event channels
within an OrbixEvents server.
Orbix defines the ChannelManager interface for backwards compati-
bility with OrbixEvents users. This interface is defined in the file
orbixevents.idl in the include/idl directory.

WARNING: The orbixevents.idl file is deprecated. All new clients
using the event service should be using the interfaces provided in
the IT_EventChannelAdmin module (defined in
event_channel_admin.idl).

Existing clients can contact the event service by calling
resolve_initial_references("EventService") and narrowing the
reference from OrbixEventsAdmin::ChannelManager.

ChannelManager::create()
CosEventChannelAdmin::EventChannel create(in string channel_id)
raises(duplicateChannel);

Creates an event channel.

Parameters

ChannelManager::find()
CosEventChannelAdmin::EventChannel find(in string channel_id)
raises (noSuchChannel);

Finds the event channel associated with the channel identifier
channel_id.

channel_id The channel identifier for the event channel.
The exception duplicateChannel is raised if the
channel identifier specified in channel_id
names an existing channel.
“Assigning Identifiers to Event Channels” on
page 87 describes the format of channel iden-
tifiers.

 904 Orbix CORBA Programmer’s Reference: Java

Parameters

ChannelManager::findByRef()
string findByRef(
 in CosEventChannelAdmin::EventChannel channel_ref)
raises (noSuchChannel);

Finds the channel identifier of the event channel specified in
channel_ref.

Parameters

ChannelManager::list()
stringSeq list ();

Lists the generic event channels contained within the channel
manager’s event server.

ChannelManager::createTyped()
CosTypedEventChannelAdmin::TypedEventChannel createTyped(in

string channel_id)
raises(duplicateChannel);

Creates a typed event channel.

Parameters

ChannelManager::findTyped()
CosTypedEventChannelAdmin::TypedEventChannel findTyped(in string

channel_id)
raises (noSuchChannel);

channel_id The channel identifier for the event channel.
The exception noSuchChannel is raised if the
channel identifier specified in channel_id does
not exist.
“Assigning Identifiers to Event Channels” on
page 87 describes the format of channel iden-
tifiers.

channel_ref The object reference for the event channel. If
channel_ref does not exist within the event
server, findByRef() raises the exception
noSuchChannel.

channel_id The channel identifier for the typed event
channel. The exception duplicateChannel is
raised if the channel identifier specified in
channel_id names an existing typed event
channel.

Orbix CORBA Programmer’s Reference: Java 905

Finds the typed event channel associated with the channel identifier
channel_id.

Parameters

ChannelManager::findTypedByRef()
string findTypedByRef(in

CosTypedEventChannelAdmin::TypedEventChannel channel_ref)
raises (noSuchChannel);

Finds the channel identifier of the typed event channel specified in
channel_ref.

Parameters

ChannelManager::listTyped()
stringSeq listTyped();

Lists the typed event channels contained within the channel man-
ager’s event server.

Unsupported Operations
The Application Server Platform event service does not support
finding channels by reference. Therefore the ChannelManager refer-
ence will throw NO_IMPLEMENT for the following operations:
• findByRef()

• findByTypedRef()

channel_id The channel identifier for the typed event
channel. The exception noSuchChannel is raised
if the channel identifier specified in channel_id
does not exist.

channel_ref The object reference for the typed event
channel. If channel_ref does not exist within
the event server, findByRef() raises the
exception noSuchChannel.

 906 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 907

PortableInterceptor Module
The PortableInterceptor module consists of these interfaces:
ClientRequestInfo
ClientRequestInterceptor
Current
Interceptor
IORInfo
IORInterceptor
ORBInitializer
ORBInitInfo
PolicyFactory
RequestInfo
ServerRequestInfo
ServerRequestInterceptor

The PortableInterceptor module also has the following exceptions
and data types:
• InvalidSlot exception
• ForwardRequest exception
• ReplyStatus type
• SlotId type

PortableInterceptor::ForwardRequest
Exception
// IDL
exception ForwardRequest {
 Object forward;
 boolean permanent;
};

The ForwardRequest exception allows an Interceptor to indicate to
the ORB that a retry of the request should occur with the new
object given in the exception. The permanent flag indicates
whether the forward object is to become permanent or used only
on the forwarded request.
If an Interceptor raises a ForwardRequest exception, no other
Interceptors are called for that interception point. The remaining
Interceptors in the Flow Stack have their appropriate ending inter-
ception point called: receive_other on the client, or send_other on
the server. The reply_status in the receive_other or send_other
would be LOCATION_FORWARD or LOCATION_FORWARD_PERMANENT, depend-
ing on the value of the permanent element of ForwardRequest.

PortableInterceptor::InvalidSlot Exception
// IDL
exception InvalidSlot {};

Raised when a slot ID does not match an allocated slot.

 908 Orbix CORBA Programmer’s Reference: Java

PortableInterceptor::ReplyStatus Type
// IDL
typedef short ReplyStatus;
// Valid reply_status values:
const ReplyStatus SUCCESSFUL = 0;
const ReplyStatus SYSTEM_EXCEPTION = 1;
const ReplyStatus USER_EXCEPTION = 2;
const ReplyStatus LOCATION_FORWARD = 3;
const ReplyStatus LOCATION_FORWARD_PERMANENT = 4;
const ReplyStatus TRANSPORT_RETRY = 5;

This type is used to define an attribute describing the state of the
result of an operation invocation.

See Also RequestInfo::reply_status

PortableInterceptor::SlotId Type
// IDL
typedef unsigned long SlotId;

This type is used to define a slot ID, identifying a slot within its table.

 Orbix CORBA Programmer’s Reference: Java 909

PortableInterceptor::ClientReque
stInfo Interface

This is a locally constrained interface.

// IDL
local interface ClientRequestInfo : RequestInfo {
 readonly attribute Object target;
 readonly attribute Object effective_target;
 readonly attribute IOP::TaggedProfile effective_profile;
 readonly attribute any received_exception;
 readonly attribute CORBA::RepositoryId

received_exception_id;

 IOP::TaggedComponent get_effective_component(
 in IOP::ComponentId id
);
 IOP_N::TaggedComponentSeq get_effective_components(
 in IOP::ComponentId id
);
 CORBA::Policy get_request_policy(
 in CORBA::PolicyType type
);
 void add_request_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);
};

ClientRequestInfo is an object through which the client-side Inter-
ceptor can access request information. It is passed to the cli-
ent-side interception points, just as ServerRequestInfo is passed to
server-side interception points. As there is information that is
common to both, they both inherit from a common interface–
RequestInfo.
Some attributes and operations on ClientRequestInfo are not valid
at all interception points. Table 21 shows the validity of each attri-
bute or operation. If it is not valid, attempting to access it will
result in a BAD_INV_ORDER being raised with a standard minor code
of 10.

Table 21: ClientRequestInfo Validity

send_requ
est

send_po
ll

receive_re
ply

receive_
exceptio

n

receive_ot
her

request_id Yes Yes Yes Yes Yes

operation Yes Yes Yes Yes Yes

arguments Yes (note 1) No Yes No No

exceptions Yes No Yes Yes Yes

 910 Orbix CORBA Programmer’s Reference: Java

Note: 1. When ClientRequestInfo is passed to send_request, there is an
entry in the list for every argument, whether in, inout, or out. But
only the in and inout arguments are available.
2. If the reply_status attribute is not LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT, accessing this attribute raises
BAD_INV_ORDER with a standard minor code of 10.

contexts Yes No Yes Yes Yes

operation_
context

Yes No Yes Yes Yes

result No No Yes No No

response_
expected

Yes Yes Yes Yes Yes

sync_scope Yes No Yes Yes Yes

reply_status No No Yes Yes Yes

forward_refer
ence

No No No No Yes (note 2)

get_slot Yes Yes Yes Yes Yes

get_request_s
ervice_
context

Yes No Yes Yes Yes

get_reply_
service_
context

No No Yes Yes Yes

target Yes Yes Yes Yes Yes

effective_
target

Yes Yes Yes Yes Yes

effective_
profile

Yes Yes Yes Yes Yes

received_
exception

No No No Yes No

received_
exception_id

No No No Yes No

get_effective
_component

Yes No Yes Yes Yes

get_effective
_components

Yes No Yes Yes Yes

get_request_p
olicy

Yes No Yes Yes Yes

add_request_s
ervice_
context

Yes No No No No

Table 21: ClientRequestInfo Validity

send_requ
est

send_po
ll

receive_re
ply

receive_
exceptio

n

receive_ot
her

Orbix CORBA Programmer’s Reference: Java 911

See Also ServerRequestInfo : RequestInfo; RequestInfo

ClientRequestInfo::add_request_service_cont
ext()
// IDL
void add_request_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);

This operation allows Interceptors to add service contexts to a
request for information. There is no declaration of the order of the
service contexts. They may or may not appear in the order that
they are added.

Parameters

ClientRequestInfo::effective_profile Attribute
// IDL
readonly attribute IOP::TaggedProfile effective_profile;

This attribute is the profile that is used to send a request for infor-
mation. If a location forward has occurred for this operation’s
object and that object’s profile changed accordingly, then this pro-
file is that located profile.

ClientRequestInfo::effective_target Attribute
// IDL
readonly attribute Object effective_target;

This attribute is the actual object on which a request for informa-
tion is invoked. If the reply_status is LOCATION_FORWARD, then on
subsequent requests, effective_target contains the forwarded
IOR while target remains unchanged. If the reply_status is
LOCATION_FORWARD_PERMANENT, then on subsequent requests, both
effective_target and target contains the forwarded IOR.

ClientRequestInfo::get_effective_component()
// IDL
IOP::TaggedComponent get_effective_component(
 in IOP::ComponentId id
);

service_context The IOP::ServiceContext to be added to the
request.

replace Indicates the behavior of this operation when a
service context already exists with the given ID:
• true: the existing service context is replaced

by the new one.
• false: BAD_INV_ORDER with minor code of 11 is

raised.

 912 Orbix CORBA Programmer’s Reference: Java

This operation returns the IOP::TaggedComponent with the given ID
from the profile selected for this request. If there is more than one
component for a given component ID, it is undefined which com-
ponent this operation returns.
If there is more than one component for a given component ID,
call get_effective_components instead.

Parameters

Exceptions

ClientRequestInfo::get_effective_components
()
// IDL
IOP_N::TaggedComponentSeq get_effective_components(
 in IOP::ComponentId id
);

This operation returns all the tagged components with the given
ID from the profile elected for this request. This sequence is in the
form of an IOP::TaggedComponentSeq.

Parameters

Exceptions

ClientRequestInfo::get_request_policy()
// IDL
CORBA::Policy get_request_policy(
 in CORBA::PolicyType type
);

This operation returns the given policy in effect for the current
request for information.

Parameters

Exceptions

id The IOP::ComponentId of the component that is to be
returned.

BAD_PARAM,
minor code 25

No component exists for the given component ID.

id The IOP::ComponentId of the components which are to
be returned.

BAD_PARAM,
minor code 25

No component exists for the given component ID.

type The CORBA::PolicyType that specifies the policy to be
returned.

INV_POLICY,
minor code 1

The policy type is not valid either because the speci-
fied type is not supported by this ORB or because a
policy object of that type is not associated with this
Object.

Orbix CORBA Programmer’s Reference: Java 913

ClientRequestInfo::received_exception
Attribute
// IDL
readonly attribute any received_exception;

This attribute is an any that contains the exception to be returned
to the client.

If the exception is a user exception which cannot be inserted into
an any (for example, it is unknown or the bindings do not provide
the TypeCode, this attribute will be an any containing the system
exception UNKNOWN with a standard minor code of 1.

However, the RepositoryId of the exception is available in the
received_exception_id attribute.

ClientRequestInfo::received_exception_id
Attribute
// IDL
readonly attribute CORBA::RepositoryId received_exception_id;

This attribute is the CORBA::RepositoryId of the exception to be
returned to the client.

ClientRequestInfo::target Attribute
// IDL
readonly attribute Object target;

This attribute is the object that the client called to perform the
operation.

 914 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 915

PortableInterceptor::ClientReque
stInterceptor Interface

This is a locally constrained interface.

// IDL
local interface ClientRequestInterceptor : Interceptor {
 void send_request(
 in ClientRequestInfo ri
) raises (ForwardRequest);
 void send_poll(
 in ClientRequestInfo ri
);
 void receive_reply(
 in ClientRequestInfo ri
);
 void receive_exception(
 in ClientRequestInfo ri
) raises (ForwardRequest);
 void receive_other(
 in ClientRequestInfo ri
) raises (ForwardRequest);
};

A request Interceptor is designed to intercept the flow of a
request/reply sequence through the ORB at specific points so that
services can query the request information and manipulate the
service contexts which are propagated between clients and serv-
ers.
The primary use of request Interceptors is to enable ORB services
to transfer context information between clients and servers.
ClientRequestInterceptor provides the client-side request inter-
ceptor.

See Also Interceptor

ClientRequestInterceptor::receive_exception()
// IDL
 void receive_exception(
 in ClientRequestInfo ri
) raises (ForwardRequest);

This interception point is called when an exception occurs. It
allows an Interceptor to query the exception’s information before
it is raised to the client. This interception point can raise a system
exception. This has the effect of changing the exception that suc-
cessive Interceptors popped from the Flow Stack receive on their
calls to receive_exception. The exception raised to the client is the
last exception raised by an Interceptor, or the original exception if
no Interceptor changes the exception.

 916 Orbix CORBA Programmer’s Reference: Java

This interception point can also raise a ForwardRequest exception
(see “PortableInterceptor::ForwardRequest Exception” on
page 907 for details on this exception). If an Interceptor raises
this exception, no other Interceptors’ receive_exception opera-
tions are called. The remaining Interceptors in the Flow Stack are
popped and have their receive_other interception point called.
If the completion_status of the exception is not COMPLETED_NO, then
it is inappropriate for this interception point to raise a
ForwardRequest exception. The request’s at-most-once semantics
would be lost.
Compliant Interceptors that follow completion_status semantics
raise a system exception from this interception point. If the origi-
nal exception is a system exception, the completion_status of the
new exception is the same as the original. If the original exception
is a user exception, then the completion_status of the new excep-
tion is COMPLETED_YES.
Under some conditions, depending on what policies are in effect,
an exception (such as COMM_FAILURE) can result in a retry of the
request. While this retry is a new request with respect to Intercep-
tors, there is one point of correlation between the original request
and the retry: because control has not returned to the client, the
PortableInterceptor::Current for both the original request and the
retrying request is the same.

ClientRequestInterceptor::receive_other()
// IDL
 void receive_other(
 in ClientRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query the informa-
tion available when a request results in something other than a
normal reply or an exception.
For example, a request could result in a retry (for example, a
GIOP Reply with a LOCATION_FORWARD status was received); or on
asynchronous calls, the reply does not immediately follow the
request, but control returns to the client and an ending intercep-
tion point is called.
For retries, depending on the policies in effect, a new request may
or may not follow when a retry has been indicated. If a new
request does follow there is one point of correlation between the
original request and the retry, with respect to Interceptors, and
for as long as this request is a new request. This is because con-
trol has not returned to the client, and so the request scoped
PortableInterceptor::Current for both the original request and the
retrying request is the same.
This interception point can raise a system exception. If it does, no
other Interceptors’ receive_other operations are called. The
remaining Interceptors in the Flow Stack are popped and have
their receive_exception interception point called.
This interception point can also raise a ForwardRequest exception
(see “PortableInterceptor::ForwardRequest Exception” on
page 907 for details on this exception). If an Interceptor raises

Orbix CORBA Programmer’s Reference: Java 917

this exception, successive Interceptors’ receive_other operations
are called with the new information provided by the ForwardRequest
exception.
Compliant Interceptors properly follow completion_status seman-
tics if they raise a system exception from this interception point.
The completion_status must be COMPLETED_NO. If the target invoca-
tion had completed, this interception point would not be called.

ClientRequestInterceptor::receive_reply()
// IDL
 void receive_reply(
 in ClientRequestInfo ri
);

This interception point allows an Interceptor to query the informa-
tion on a reply, after it is returned from the server, and before
control is returned to the client. This interception point can raise a
system exception. If it does, no other Interceptors’ receive_reply
operations are called. The remaining Interceptors in the Flow
Stack have their receive_exception interception point called.
Compliant Interceptors properly follow completion_status seman-
tics if they raise a system exception from this interception point.
The completion_status is COMPLETED_YES.

ClientRequestInterceptor::send_poll()
// IDL
 void send_poll(
 in ClientRequestInfo ri
);

This interception point allows an Interceptor to query information
during a Time-Independent Invocation (TII) polling get reply
sequence. With TII, an application can poll for a response to a
request sent previously by the polling client or some other client.
This poll is reported to Interceptors through the send_poll inter-
ception point and the response is returned through the
receive_reply or receive_exception interception points. If the
response is not available before the poll time-out expires, the sys-
tem exception TIMEOUT is raised and receive_exception is called
with this exception.
This interception point can raise a system exception. If it does, no
other Interceptors’ send_poll operations are called. Those Inter-
ceptors on the Flow Stack are popped and their receive_exception
interception points are called. Compliant Interceptors properly fol-
low completion_status semantics if they raise a system exception
from this interception point. The completion_status is COMPLETED_NO.

ClientRequestInterceptor::send_request()
// IDL
 void send_request(
 in ClientRequestInfo ri
) raises (ForwardRequest);

 918 Orbix CORBA Programmer’s Reference: Java

This interception point allows an Interceptor to query request
information and modify the service context before the request is
sent to the server. This interception point can raise a system
exception. If it does, no other Interceptors’ send_request opera-
tions are called. Those Interceptors on the Flow Stack are popped
and their receive_exception interception points are called.
This interception point may also raise a ForwardRequest exception
(see “PortableInterceptor::ForwardRequest Exception” on
page 907 for details of this exception). If an Interceptor raises this
exception, no other Interceptors’ send_request operations are
called. Those Interceptors on the Flow Stack are popped and their
receive_other interception points are called.
Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status is COMPLETED_NO.

 Orbix CORBA Programmer’s Reference: Java 919

PortableInterceptor::Current
Interface

This is a locally constrained interface.

// IDL
local interface Current : CORBA::Current {
 any get_slot(
 in SlotId id
) raises (InvalidSlot);
 void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);
};

The PortableInterceptor::Current object (referred to as PICurrent)
is a Current object that is used specifically by portable Interceptors
to transfer thread context information to a request context. Porta-
ble Interceptors are not required to use PICurrent. But if informa-
tion from a client’s thread context is required at an Interceptor’s
interception points, then PICurrent can be used to propagate that
information. PICurrent allows portable service code to be written
regardless of an ORB’s threading model.
On the client side, this information includes, but is not limited to,
thread context information that is propagated to the server
through a service context.
On the server side, this information includes, but is not limited to,
service context information received from the client which is prop-
agated to the target’s thread context.

Current::get_slot()
// IDL
any get_slot(
 in SlotId id
) raises (InvalidSlot);

A service can get the slot data it set in PICurrent with get_slot().
The return value is the data, in the form of an any, of the given
slot identifier.
If the given slot has not been set, an any containing a type code
with a TCKind value of tk_null and no value is returned.

Parameters

Exceptions

id The SlotId of the slot from which the data will be
returned.

InvalidSlot get_slot() is called on a slot that has not been allo-
cated.

 920 Orbix CORBA Programmer’s Reference: Java

Current::set_slot()
// IDL
void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);

A service sets data in a slot with set_slot(). The data is in the
form of an any. If data already exists in that slot, it is overwritten.

Parameters

Exceptions

id The SlotId of the slot to which the data is set.
data The data, in the form of an any, which will be set to the

identified slot.

InvalidSlot set_slot() is called on a slot that has not been allo-
cated.

 Orbix CORBA Programmer’s Reference: Java 921

PortableInterceptor::Interceptor
Interface

This is a locally constrained interface.

// IDL
local interface Interceptor {
 readonly attribute string name;
};

Portable Interceptor interfaces and related type definitions reside
in the module PortableInterceptor. All portable Interceptors inherit
from the local interface Interceptor.

Interceptor::name Attribute
// IDL
readonly attribute string name;

Each Interceptor can have a name that is used to order the lists of
Interceptors. Only one Interceptor of a given name can be regis-
tered with the ORB for each Interceptor type. An Interceptor can
be anonymous, that is, have an empty string as the name attri-
bute. Any number of anonymous Interceptors can be registered
with the ORB.

 922 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 923

PortableInterceptor::IORInfo
Interface

This is a locally constrained interface.

// IDL
local interface IORInfo {
 CORBA::Policy get_effective_policy(
 in CORBA::PolicyType type
);
 void add_ior_component(
 in IOP::TaggedComponent a_component
);
 void add_ior_component_to_profile(
 in IOP::TaggedComponent a_component,
 in IOP::ProfileId profile_id
);
};

In some cases, a portable ORB service implementation has to add
information describing the server’s or object’s ORB service capabil-
ities to object references. This permits the ORB service implemen-
tation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces.
The IOR Interceptor is used to establish tagged components in the
profiles within an IOR.

IORInfo::add_ior_component()
// IDL
void add_ior_component(
 in IOP::TaggedComponent a_component
);

A portable ORB service implementation can call add_ior_component
from its implementation of establish_components to add a tagged
component to the set that is included when constructing IORs. The
components in this set is included in all profiles.
Any number of components can exist with the same component
ID.

Parameters

IORInfo::add_ior_component_to_profile()
// IDL
void add_ior_component_to_profile(
 in IOP::TaggedComponent a_component,
 in IOP::ProfileId profile_id
);

a_component The IOP::TaggedComponent to add.

 924 Orbix CORBA Programmer’s Reference: Java

A portable ORB service can call add_ior_component_to_profile from
its implementation of establish_components to add a tagged com-
ponent to the set that is included when constructing IORs. The
components in this set included in the specified profile.
Any number of components can exist with the same component
ID.

Exceptions

Parameters

.IORInfo::get_effective_policy()
// IDL
CORBA::Policy get_effective_policy(
 in CORBA::PolicyType type
);

An ORB service implementation can determine what server side
policy of a particular type is in effect for an IOR being constructed
by calling get_effective_policy(). The returned CORBA::Policy
object can only be a policy whose type was registered with
ORBInitInfo::register_policy_factory (see “ORBInitInfo::regis-
ter_policy_factory()” on page 932).
The return value is the effective CORBA::Policy object of the
requested type.

Parameters

Exceptions

BAD_PARAM,
minor code 26

The given profile ID does not define a known profile or
it is impossible to add components to that profile.

a_component The IOP::TaggedComponent to add.
profile_id The IOP::ProfileId of the profile to which this compo-

nent is to be added.

type The CORBA::PolicyType specifying the type of policy to
return.

INV_POLICY,
minor code 2

A policy for the given type was not registered with
register_policy_factory().

 Orbix CORBA Programmer’s Reference: Java 925

PortableInterceptor::IORIntercep
tor Interface

This is a locally constrained interface.
// IDL
local interface IORInterceptor : Interceptor {
 void establish_components(
 in IORInfo info
);
};

In some cases, a portable ORB service implementation has to add
information describing the server’s or object’s ORB service capabil-
ities to object references. This permits the ORB service implemen-
tation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces.
The IOR Interceptor is used to establish tagged components in the
profiles within an IOR.

IORInterceptor::establish_components()
// IDL
void establish_components(
 in IORInfo info
);

A server side ORB calls establish_components() on all registered
IORInterceptor instances when it is assembling the list of compo-
nents that to be included in the profile or profiles of an object ref-
erence.
This operation is not necessarily called for each individual object
reference. For example, the POA specifies policies at POA granu-
larity and therefore, this operation might be called once per POA
rather than once per object. In any case, establish_components is
guaranteed to be called at least once for each distinct set of server
policies.
An implementation of establish_components must not throw excep-
tions. If it does, the ORB ignores the exception and proceeds to
call the next IOR Interceptor’s establish_components() operation.

Parameters

info The IORInfo instance used by the ORB service to query
applicable policies and add components to be included
in the generated IORs.

 926 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 927

PortableInterceptor::ORBInitializ
er Interface

This is a locally constrained interface.

// IDL
local interface ORBInitializer {
 void pre_init(
 in ORBInitInfo info
);
 void post_init(
 in ORBInitInfo info
);
};

Interceptors are a means by which ORB services gain access to ORB
processing, effectively becoming part of the ORB. Since Interceptors
are part of the ORB, when ORB_init returns an ORB, the Interceptors
have been registered.

Interceptors cannot be registered on an ORB after it has been
returned by a call to ORB_init.

An Interceptor is registered by registering an associated
ORBInitializer object that implements the ORBInitializer interface.
When an ORB initializes, it calls each registered ORBInitializer,
passing it an ORBInitInfo object that is used to register its Intercep-
tor.

ORBInitializer::post_init()
// IDL
 void post_init(
 in ORBInitInfo info
);

This operation is called during ORB initialization. If a service must
resolve initial references as part of its initialization, it can assume
that all initial references are available at this point.

Parameters

ORBInitializer::pre_init()
// IDL
 void pre_init(
 in ORBInitInfo info
);

This operation is called during ORB initialization. All calls to
ORBInitInfo::register_initial_reference must be made at this
point so that the list of initial references is complete for the
post_init point.

info This object provides initialization attributes and opera-
tions by which Interceptors can be registered.

 928 Orbix CORBA Programmer’s Reference: Java

Parameters

info This object provides initialization attributes and opera-
tions by which Interceptors can be registered.

 Orbix CORBA Programmer’s Reference: Java 929

PortableInterceptor::ORBInitInfo
Interface

This is a locally constrained interface.

// IDL
local interface ORBInitInfo {
 typedef string ObjectId;
 exception DuplicateName {
 string name;
 };
 exception InvalidName {};
 readonly attribute CORBA::StringSeq arguments;
 readonly attribute string orb_id;
 readonly attribute IOP_N::CodecFactory codec_factory;

 void register_initial_reference(
 in ObjectId id,
 in Object obj
) raises (InvalidName);
 void resolve_initial_references(
 in ObjectId id
) raises (InvalidName);
 void add_client_request_interceptor(
 in ClientRequestInterceptor interceptor
) raises (DuplicateName);
 void add_server_request_interceptor(
 in ServerRequestInterceptor interceptor
) raises (DuplicateName);
 void add_ior_interceptor(
 in IORInterceptor interceptor
) raises (DuplicateName);
 SlotId allocate_slot_id();
 void register_policy_factory(
 in CORBA::PolicyType type,
 in PolicyFactory policy_factory
);
};

Interceptors are a means by which ORB services gain access to ORB
processing, effectively becoming part of the ORB. Since Interceptors
are part of the ORB, when ORB_init returns an ORB, the Interceptors
have been registered.

Interceptors cannot be registered on an ORB after it has been
returned by a call to ORB_init.

An Interceptor is registered by registering an associated
ORBInitializer object that implements the ORBInitializer interface.
When an ORB initializes, it calls each registered ORBInitializer,
passing it an ORBInitInfo object that is used to register its Intercep-
tor.

 930 Orbix CORBA Programmer’s Reference: Java

ORBInitInfo::add_client_request_interceptor(
)
// IDL
void add_client_request_interceptor(
 in ClientRequestInterceptor interceptor
) raises (DuplicateName);

This operation is used to add a client-side request Interceptor to
the list of client-side request Interceptors.

Parameters

Exceptions

ORBInitInfo::add_ior_interceptor()
// IDL
void add_ior_interceptor(
 in IORInterceptor interceptor
) raises (DuplicateName);

This operation is used to add an IOR Interceptor to the list of IOR
Interceptors.

Parameters

Exceptions

ORBInitInfo:add_server_request_interceptor(
)
// IDL
void add_server_request_interceptor(
 in ServerRequestInterceptor interceptor
) raises (DuplicateName);

This operation is used to add a server-side request Interceptor to
the list of server-side request Interceptors.
If a server-side request Interceptor has already been registered
with this Interceptor’s name, DuplicateName is raised.

Parameters

ORBInitInfo::allocate_slot_id()
// IDL
SlotId allocate_slot_id();

interceptor The ClientRequestInterceptor to be added.

DuplicateName A client-side request Interceptor has already been
registered with this Interceptor’s name.

interceptor The IORInterceptor to be added.

DuplicateName An IOR Interceptor has already been registered with
this Interceptor’s name.

interceptor The ServerRequestInterceptor to be added.

Orbix CORBA Programmer’s Reference: Java 931

A service calls allocate_slot_id to allocate a slot on
PortableInterceptor::Current.
The return value is the allocated slot index.

ORBInitInfo::arguments Attribute
// IDL
readonly attribute CORBA::StringSeq arguments;

This attribute contains the arguments passed to ORB_init. They
may or may not contain the ORB’s arguments.

ORBInitInfo::codec_factory Attribute
// IDL
readonly attribute IOP_N::CodecFactory codec_factory;

This attribute is the IOP::CodecFactory. The CodecFactory is nor-
mally obtained with a call to ORB::resolve_initial_references
(“CodecFactory”), but as the ORB is not yet available and Intercep-
tors, particularly when processing service contexts, require a
Codec, a means of obtaining a Codec is necessary during ORB ini-
tialization.

ORBInitInfo::DuplicateName Exception
// IDL
exception DuplicateName {
 string name;
};

Only one Interceptor of a given name can be registered with the
ORB for each Interceptor type. If an attempt is made to register a
second Interceptor with the same name, DuplicateName is raised.
An Interceptor can be anonymous, that is, have an empty string
as the name attribute.
Any number of anonymous Interceptors may be registered with
the ORB so, if the Interceptor being registered is anonymous, the
registration operation will not raise DuplicateName.

ORBInitInfo::InvalidName Exception
// IDL
exception InvalidName {};

This exception is raised by register_initial_reference and
resolve_initial_references.
register_initial_reference raises InvalidName if this operation is
called with an empty string id; or this operation is called with an id
that is already registered, including the default names defined by
OMG.
resolve_initial_references raises InvalidName if the name to be
resolved is invalid.

 932 Orbix CORBA Programmer’s Reference: Java

ORBInitInfo::ObjectId Type
// IDL
typedef string ObjectId;

See Also ORBInitInfo::register_initial_reference()

ORBInitInfo::orb_id Attribute
// IDL
readonly attribute string orb_id;

This attribute is the ID of the ORB being initialized.

ORBInitInfo::register_initial_reference()
// IDL
void register_initial_reference(
 in ObjectId id,
 in Object obj
) raises (InvalidName);

If this operation is called with an id, “Y”, and an object, YY, then a
subsequent call to ORB::resolve_initial_references (“Y”) will
return object YY.

Parameters

Exceptions

Note: This method is identical to an operation is available in the ORB
interface. This same functionality exists here because the ORB, not
yet fully initialized, is not yet available but initial references may
need to be registered as part of Interceptor registration. The only
difference is that the version of this operation on the ORB uses PIDL
(CORBA::ORB::ObjectId and CORBA::ORB::InvalidName) whereas the
version in this interface uses IDL defined in this interface; the
semantics are identical.

ORBInitInfo::register_policy_factory()
// IDL
void register_policy_factory(
 in CORBA::PolicyType type,
 in PolicyFactory policy_factory
);

id The ID by which the initial reference will be known.
obj The initial reference itself.

BAD_PARAM,
minor code 24

The Object parameter is null.

InvalidName Raised if this operation is called with:
• an empty string id.
• an id that is already registered, including the

default names defined by OMG.

Orbix CORBA Programmer’s Reference: Java 933

Register a PolicyFactory for the given PolicyType.

Parameters

Exceptions

ORBInitInfo::resolve_initial_references()
// IDL
void resolve_initial_references(
 in ObjectId id
) raises (InvalidName);

This operation is only valid during post_init. It is identical to
ORB::resolve_initial_references. This same functionality exists
here because the ORB, not yet fully initialized, is not yet available
but initial references can be required from the ORB as part of
Interceptor registration. The only difference is that the version of
this operation on the ORB uses PIDL (CORBA::ORB::ObjectId and
CORBA::ORB::InvalidName) whereas the version in this interface
uses IDL defined in this interface; the semantics are identical.

type The CORBA::PolicyType that the given PolicyFactory
serves.

policy_factory The factory for the given CORBA::PolicyType.

BAD_INV_ORDER
with minor
code 12

A PolicyFactory already exists for the given
PolicyType.

 934 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 935

PortableInterceptor::PolicyFactor
y Interface

This is a locally constrained interface.

// IDL
local interface PolicyFactory {
 CORBA::Policy create_policy(
 in CORBA::PolicyType type,
 in any value
) raises (CORBA::PolicyError);
};

A portable ORB service implementation registers an instance of the
PolicyFactory interface during ORB initialization in order to enable
its policy types to be constructed using CORBA::ORB::create_policy.
The POA is required to preserve any policy which is registered with
ORBInitInfo in this manner.

PolicyFactory::create_policy()
// IDL
CORBA::Policy create_policy(
 in CORBA::PolicyType type,
 in any value
) raises (CORBA::PolicyError);

The ORB calls create_policy on a registered PolicyFactory
instance when CORBA::ORB::create_policy is called for the
PolicyType under which the PolicyFactory has been registered.
create_policy returns an instance of the appropriate interface
derived from CORBA::Policy whose value corresponds to the speci-
fied any. If it cannot, it raises an exception as described for
CORBA::ORB::create_policy.

Parameters

type A CORBA::PolicyType specifying the type of policy being
created.

value An any containing data with which to construct the
CORBA::Policy.

 936 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 937

PortableInterceptor::RequestInfo
Interface

This is a locally constrained interface.

// IDL
local interface RequestInfo {
 readonly attribute unsigned long request_id;
 readonly attribute string operation;
 readonly attribute Dynamic::ParameterList arguments;
 readonly attribute Dynamic::ExceptionList exceptions;
 readonly attribute Dynamic::ContextList contexts;
 readonly attribute Dynamic::RequestContext

operation_context;
 readonly attribute any result;
 readonly attribute boolean response_expected;
 readonly attribute Messaging::SyncScope sync_scope;
 readonly attribute ReplyStatus reply_status;
 readonly attribute Object forward_reference;
 any get_slot(
 in SlotId id
) raises (InvalidSlot);
 IOP::ServiceContext get_request_service_context(
 in IOP::ServiceId id
);
 IOP::ServiceContext get_reply_service_context(
 in IOP::ServiceId id
);
};

Each interception point is given an object through which the
Interceptor can access request information. Client-side and serv-
er-side interception points are concerned with different information,
so there are two information objects. ClientRequestInfo is passed
to the client-side interception points and ServerRequestInfo is passed
to the server-side interception points. But as there is information
that is common to both, so they both inherit from a common
interface: RequestInfo.

See Also ClientRequestInfo; ServerRequestInfo

RequestInfo::arguments Attribute
// IDL
readonly attribute Dynamic::ParameterList arguments;

This attribute is a Dynamic::ParameterList containing the arguments
on the operation being invoked. If there are no arguments, this
attribute is a zero length sequence.

Exceptions

NO_RESOURCES,
minor code 1

The environment does not provide access to the argu-
ments—for example, in the case of Java portable bind-
ings.

 938 Orbix CORBA Programmer’s Reference: Java

RequestInfo::contexts Attribute
// IDL
readonly attribute Dynamic::ContextList contexts;

This attribute is a Dynamic::ContextList describing the contexts that
can be passed on this operation invocation. If there are no contexts,
this attribute is a zero length sequence.

Exceptions

RequestInfo::exceptions Attribute
// IDL
readonly attribute Dynamic::ExceptionList exceptions;

This attribute is a Dynamic::ExceptionList describing the TypeCodes
of the user exceptions that this operation invocation can raise. If
there are no user exceptions, this attribute is a zero length se-
quence.

Exceptions

RequestInfo::forward_reference Attribute
// IDL
readonly attribute Object forward_reference;

If the reply_status attribute is LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT, then this attribute contains the object
to which the request is to be forwarded. It is indeterminate whether
a forwarded request actually occurs.

RequestInfo::get_reply_service_context()
// IDL
IOP::ServiceContext get_reply_service_context(
 in IOP::ServiceId id
);

This operation returns a copy of the service context with the given
ID that is associated with the reply.

The return value is the IOP::ServiceContext obtained with the given
identifier.

Parameters

NO_RESOURCES,
minor code 1

The environment does not provide access to the con-
text list—for example, in the case of Java portable
bindings.

NO_RESOURCES,
minor code 1

The environment does not provide access to the
exception list—for example, in the case of Java porta-
ble bindings.

id The IOP::ServiceId of the service context which is to
be returned.

Orbix CORBA Programmer’s Reference: Java 939

Exceptions

RequestInfo::get_request_service_context()
// IDL
IOP::ServiceContext get_request_service_context(
 in IOP::ServiceId id
);

This operation returns a copy of the service context with the given
ID that is associated with the request.

The return value is the IOP::ServiceContext obtained with the given
identifier.

Parameters

Exceptions

RequestInfo::get_slot()
// IDL
any get_slot(
 in SlotId id
) raises (InvalidSlot);

This operation returns the data from the given slot of the
PortableInterceptor::Current that is in the scope of the request. If
the given slot has not been set, then an any containing a type code
with a TCKind value of tk_null is returned.

The return value is the slot data, in the form of an any, obtained
with the given identifier.

Parameters

Exceptions

RequestInfo::operation Attribute
// IDL
readonly attribute string operation;

This attribute is the name of the operation being invoked.

BAD_PARAM with
minor code 23

The request’s service context does not contain an
entry for the specified ID.

id The IOP::ServiceId of the service context which is to
be returned.

BAD_PARAM with
minor code 23

The request’s service context does not contain an
entry for the specified ID.

id The SlotId of the slot that is to be returned.

InvalidSlot The ID does not define an allocated slot.

 940 Orbix CORBA Programmer’s Reference: Java

RequestInfo::operation_context Attribute
// IDL
readonly attribute Dynamic::RequestContext operation_context;

This attribute is a Dynamic::RequestContext containing the contexts
being sent on the request

Exceptions

RequestInfo::reply_status Attribute
// IDL
readonly attribute ReplyStatus reply_status;

This attribute describes the state of the result of the operation
invocation. Its value can be one of the following:
PortableInterceptor::SUCCESSFUL
PortableInterceptor::SYSTEM_EXCEPTION
PortableInterceptor::USER_EXCEPTION
PortableInterceptor::LOCATION_FORWARD
PortableInterceptor::LOCATION_FORWARD_PERMANENT
PortableInterceptor::TRANSPORT_RETRY

On the client:
• Within the receive_reply interception point, this attribute is

only SUCCESSFUL.
• Within the receive_exception interception point, this attribute

is either SYSTEM_EXCEPTION or USER_EXCEPTION.
• Within the receive_other interception point, this attribute is

any of SUCCESSFUL, LOCATION_FORWARD,
LOCATION_FORWARD_PERMANENT, or TRANSPORT_RETRY.

SUCCESSFUL means an asynchronous request returned successfully.
LOCATION_FORWARD and LOCATION_FORWARD_PERMANENT mean that a
reply came back with one of these as its status.
TRANSPORT_RETRY means that the transport mechanism indicated a
retry: a GIOP reply with a status of NEEDS_ADDRESSING_MODE, for
instance.
On the server:
• Within the send_reply interception point, this attribute is only

SUCCESSFUL.
• Within the send_exception interception point, this attribute is

either SYSTEM_EXCEPTION or USER_EXCEPTION.
• Within the send_other interception point, this attribute is any

of: SUCCESSFUL, LOCATION_FORWARD, or
LOCATION_FORWARD_PERMANENT. SUCCESSFUL means an asynchro-
nous request returned successfully. LOCATION_FORWARD and
LOCATION_FORWARD_PERMANENT mean that a reply came back with
one of these as its status.

NO_RESOURCES,
minor code 1

The environment does not provide access to the con-
text—for example, in the case of Java portable bind-
ings.

Orbix CORBA Programmer’s Reference: Java 941

RequestInfo::request_id Attribute
// IDL
readonly attribute unsigned long request_id;

This ID uniquely identifies an active request/reply sequence. Once
a request/reply sequence is concluded this ID may be reused.
Note that this id is not the same as the GIOP request_id. If GIOP is
the transport mechanism used, then these IDs may very well be
the same, but this is not guaranteed nor required.

RequestInfo::response_expected Attribute
// IDL
readonly attribute boolean response_expected;

This boolean attribute indicates whether a response is expected.
On the client:
• A reply is not returned when response_expected is false, so

receive_reply cannot be called.
• If an exception occurs, receive_exception is called.
• Otherwise receive_other is called.
On the client, within send_poll, this attribute is true.

RequestInfo::result Attribute
// IDL
readonly attribute any result;

This attribute is an any containing the result of the operation invo-
cation.
If the operation return type is void, this attribute is an any con-
taining a type code with a TCKind value of tk_void and no value.

Exceptions

RequestInfo::sync_scope Attribute
// IDL
readonly attribute Messaging::SyncScope sync_scope;

This attribute, defined in the Messaging specification, is pertinent
only when response_expected is false. If response_expected is true,
the value of sync_scope is undefined. It defines how far the
request progresses before control is returned to the client. This
attribute may have one of the following values:
Messaging::SYNC_NONE
Messaging::SYNC_WITH_TRANSPORT
Messaging::SYNC_WITH_SERVER
Messaging::SYNC_WITH_TARGET

NO_RESOURCES,
minor code 1

The environment does not provide access to the
result—for example, in the case of Java portable bind-
ings.

 942 Orbix CORBA Programmer’s Reference: Java

On the server, for all scopes, a reply is created from the return of
the target operation call, but the reply does not return to the cli-
ent. Although it does not return to the client, it does occur, so the
normal server-side interception points are followed (that is,
receive_request_service_contexts, receive_request, send_reply or
send_exception). For SYNC_WITH_SERVER and SYNC_WITH_TARGET, the
server does send an empty reply back to the client before the tar-
get is invoked. This reply is not intercepted by server-side Inter-
ceptors.

 Orbix CORBA Programmer’s Reference: Java 943

PortableInterceptor::ServerRequ
estInfo Interface

This is a locally constrained interface.

// IDL
local interface ServerRequestInfo : RequestInfo {
 readonly attribute any sending_exception;
 readonly attribute CORBA::OctetSeq object_id;
 readonly attribute CORBA::OctetSeq adapter_id;
 readonly attribute
 CORBA::RepositoryId target_most_derived_interface;
 CORBA::Policy get_server_policy(
 in CORBA::PolicyType type
);
 void set_slot(
 in SlotId id,
 in any data
) raises (InvalidSlot);
 boolean target_is_a(
 in CORBA::RepositoryId id
);
 void add_reply_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);
};

ServerRequestInfo is an object through which the server-side Inter-
ceptor can access request information. It is passed to the
server-side interception points, just as ClientRequestInfo is passed
to client-side interception points. As there is information that is
common to both, they both inherit from a common interface–
RequestInfo.

ServerRequestInfo::adapter_id Attribute
// IDL
readonly attribute CORBA::OctetSeq adapter_id;

This attribute is the opaque identifier for the object adapter.

ServerRequestInfo::add_reply_service_contex
t()
// IDL
void add_reply_service_context(
 in IOP::ServiceContext service_context,
 in boolean replace
);

This operation allows Interceptors to add service contexts to the
request. There is no declaration of the order of the service contexts.
They may or may not appear in the order that they are added.

 944 Orbix CORBA Programmer’s Reference: Java

Parameters

ServerRequestInfo::get_server_policy()
// IDL
CORBA::Policy get_server_policy(
 in CORBA::PolicyType type
);

This operation returns the policy in effect for this operation for the
given policy type. The returned CORBA::Policy object is a policy
whose type was registered using register_policy_factory

Parameters

Exceptions

ServerRequestInfo::object_id Attribute
// IDL
readonly attribute CORBA::OctetSeq object_id;

This attribute is the opaque object_id describing the target of the
operationinvocation.

ServerRequestInfo::sending_exception
Attribute
// IDL
readonly attribute any sending_exception;

This attribute is an any that contains the exception to be returned
to the client.

If the exception is a user exception which cannot be inserted into
an any (that is, it is unknown or the bindings do not provide the
TypeCode), this attribute is an any containing the system exception
UNKNOWN with a standard minor code of 1.

ServerRequestInfo::set_slot()
// IDL
void set_slot(

service_context The IOP::ServiceContext to add to the reply.
replace Indicates the behavior of this operation when a service

context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 11 is
raised. If true, then the existing service context is
replaced by the new one.

type The CORBA::PolicyType which specifies the policy to be
returned.

INV_POLICY,
minor code 2

A policy for the given type was not registered using
register_policy_factory().

Orbix CORBA Programmer’s Reference: Java 945

 in SlotId id,
 in any data
) raises (InvalidSlot);

This operation allows an Interceptor to set a slot in the
PortableInterceptor::Current that is in the scope of the request. If
data already exists in that slot, it is overwritten.

Parameters

Exceptions

ServerRequestInfo::target_is_a()
// IDL
boolean target_is_a(
 in CORBA::RepositoryId id
);

This operation returns true if the servant is the given
RepositoryId, and false if it is not.

Parameters

ServerRequestInfo::target_most_derived_inte
rface Attribute
// IDL
readonly attribute
 CORBA::RepositoryId target_most_derived_interface;

This attribute is the RepositoryID for the most derived interface of
the servant.

id The SlotId of the slot.
data The data, in the form of an any, to store in that slot.

InvalidSlot The ID does not define an allocated slot.

id The caller wants to know if the servant is this
CORBA::RepositoryId.

 946 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 947

PortableInterceptor::ServerRequ
estInterceptor Interface

This is a locally constrained interface.

// IDL
local interface ServerRequestInterceptor : Interceptor {
 void receive_request_service_contexts(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void receive_request(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void send_reply(
 in ServerRequestInfo ri
);
 void send_exception(
 in ServerRequestInfo ri
) raises (ForwardRequest);
 void send_other(
 in ServerRequestInfo ri
) raises (ForwardRequest);
};

A request Interceptor is designed to intercept the flow of a
request/reply sequence through the ORB at specific points so that
services can query the request information and manipulate the
service contexts which are propagated between clients and serv-
ers.
The primary use of request Interceptors is to enable ORB services
to transfer context information between clients and servers.
ServerRequestInterceptor provides the server-side request inter-
ceptor.

ServerRequestInterceptor::receive_request()
// IDL
void receive_request(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query request
information after all the information, including operation parame-
ters, is available. This interception point may or may not execute
in the same thread as the target invocation.
In the DSI model, as the parameters are first available when the
user code calls arguments, receive_request is called from within
arguments. It is possible that arguments is not called in the DSI
model. The target can call set_exception before calling arguments.
The ORB guarantees that receive_request is called once, either
through arguments or through set_exception. If it is called through
set_exception, requesting the arguments results in NO_RESOURCES
being raised with a standard minor code of 1.This interception
point can raise a system exception. If it does, no other Intercep-

 948 Orbix CORBA Programmer’s Reference: Java

tors’ receive_request operations are called. Those Interceptors on
the Flow Stack are popped and their send_exception interception
points are called.

This interception point can also raise a ForwardRequest exception If
an Interceptor raises this exception, no other Interceptors’
receive_request operations are called. Those Interceptors on the
Flow Stack are popped and their send_other interception points are
called.

Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status shall be COMPLETED_NO.

ServerRequestInterceptor::receive_request_s
ervice_contexts()
// IDL
void receive_request_service_contexts(
 in ServerRequestInfo ri
) raises (ForwardRequest);

At this interception point, Interceptors must get their service con-
text information from the incoming request transfer it to
PortableInterceptor::Current slots This interception point is called
before the servant manager is called. Operation parameters are
not yet available at this point. This interception point may or may
not execute in the same thread as the target invocation.
This interception point can raise a system exception. If it does, no
other Interceptors’ receive_request_service_contexts operations
are called. Those Interceptors on the Flow Stack are popped and
their send_exception interception points are called.
This interception point can also raise a ForwardRequest exception
(see “PortableInterceptor::ForwardRequest Exception” on
page 907). If an Interceptor raises this exception, no other Inter-
ceptors’ receive_request_service_contexts operations are called.
Those Interceptors on the Flow Stack are popped and their
send_other interception points are called.
Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status is COMPLETED_NO.

ServerRequestInterceptor::send_exception()
// IDL
void send_exception(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point is called when an exception occurs. It
allows an Interceptor to query the exception information and mod-
ify the reply service context before the exception is raised to the
client.
This interception point can raise a system exception. This has the
effect of changing the exception that successive Interceptors
popped from the Flow Stack receive on their calls to

Orbix CORBA Programmer’s Reference: Java 949

send_exception. The exception raised to the client is the last
exception raised by an Interceptor, or the original exception if no
Interceptor changes the exception.
This interception point also raises a ForwardRequest exception (see
“PortableInterceptor::ForwardRequest Exception” on page 907). If
an Interceptor raises this exception, no other Interceptors’
send_exception operations are called. The remaining Interceptors
in the Flow Stack have their send_other interception points called.
If the completion_status of the exception is not COMPLETED_NO, then
it is inappropriate for this interception point to raise a
ForwardRequest exception. The request’s at-most-once semantics
would be lost.
Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. If the origi-
nal exception is a system exception, the completion_status of the
new exception is the same as on the original. If the original excep-
tion is a user exception, then the completion_status of the new
exception shall be COMPLETED_YES.

ServerRequestInterceptor::send_other()
// IDL
void send_other(
 in ServerRequestInfo ri
) raises (ForwardRequest);

This interception point allows an Interceptor to query the informa-
tion available when a request results in something other than a
normal reply or an exception. For example, a request could result
in a retry (for example, a GIOP Reply with a LOCATION_FORWARD sta-
tus was received).
This interception point can raise a system exception. If it does, no
other Interceptors’ send_other operations are called. The remain-
ing Interceptors in the Flow Stack have their send_exception inter-
ception points called.
This interception point can also raise a ForwardRequest exception
(see “PortableInterceptor::ForwardRequest Exception” on
page 907). If an Interceptor raises this exception, successive
Interceptors’ operations are called with the new information pro-
vided by the ForwardRequest exception.
Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status is COMPLETED_NO.

ServerRequestInterceptor::send_reply()
// IDL
void send_reply(
 in ServerRequestInfo ri
);

This interception point allows an Interceptor to query reply infor-
mation and modify the reply service context after the target oper-
ation has been invoked and before the reply is returned to the
client.

 950 Orbix CORBA Programmer’s Reference: Java

This interception point can raise a system exception. If it does, no
other Interceptors’ send_reply operations are called. The remain-
ing Interceptors in the Flow Stack have their send_exception inter-
ception point called.
Compliant Interceptors follow completion_status semantics if they
raise a system exception from this interception point. The
completion_status is COMPLETED_YES.

 Orbix CORBA Programmer’s Reference: Java 951

Security Overview
The standard Security module defines data types and constants
that are used throughout the CORBA security specification. This
section documents only the definitions relevant to Orbix.
There is also a reference in Javadoc format.

Security::AssociationOptions Type
// IDL
typedef unsigned short AssociationOptions;

A data type that holds a set of association options in its bit fields.

See Also Security::NoProtection
Security::Integrity
Security::Confidentiality
Security::DetectReplay
Security::DetectMisordering
Security::EstablishTrustInTarget
Security::EstablishTrustInClient
Security::NoDelegation
Security::SimpleDelegation
Security::CompositeDelegation

Security::AttributeList Sequence
// IDL
typedef sequence <SecAttribute> AttributeList;

Security::AuthenticationMethod Type
// IDL
typedef unsigned long AuthenticationMethod;

Constants of this type are used by the
SecurityLevel2::PrincipalAuthenticator::authenticate() operation
to identify an authentication method. Orbix defines a range of
AuthenticationMethod constants in the IT_TLS_API module—for ex-
ample, IT_TLS_API::IT_TLS_AUTH_METH_PKSC12_FILE.

Security::AuthenticationMethodList Sequence
// IDL
typedef sequence<AuthenticationMethod> AuthenticationMethodList;

A list of authentication methods.

../../tls/javadoc/index.html

 952 Orbix CORBA Programmer’s Reference: Java

Security::AuthenticationStatus Enumeration
// IDL
enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
};

Used by the
SecurityLevel2::PrincipalAuthenticator::authenticate() operation
to give the status of the returned credentials.

Values The status of a newly-generated Credentials object, creds, is indi-
cated as follows:

Security::CommunicationDirection
Enumeration
// IDL
enum CommunicationDirection {
 SecDirectionBoth,
 SecDirectionRequest,
 SecDirectionReply
};

Indicates a particular communication direction along a secure
association.

See Also SecurityLevel2::Credentials::get_security_feature()

Security::CompositeDelegation Constant
// IDL
const AssociationOptions CompositeDelegation = 512;

Not supported in Orbix.

SecAuthSuccess A valid Credentials object is available in the
creds parameter.

SecAuthFailure Authentication was in some way inconsistent or
erroneous. Credentials have therefore not been
created.

SecAuthContinue The authentication procedure uses a challenge
and response mechanism. The creds parameter
references a partially initialized Credentials
object and the continuation_data indicates
details of the challenge.
Not supported by Orbix.

SecAuthExpired The authentication data, auth_data, has expired.
Credentials have therefore not been created.

Orbix CORBA Programmer’s Reference: Java 953

Security::Confidentiality Constant
// IDL
const AssociationOptions Confidentiality = 4;

Specifies that an object supports or requires confidentiality-protect-
ed invocations.

Security::DetectMisordering Constant
// IDL
const AssociationOptions DetectMisordering = 16;

Specifies that an object supports or requires error detection on
fragments of invocation messages. In Orbix this option can be set
only through configuration.

Security::DetectReplay Constant
// IDL
const AssociationOptions DetectReplay = 8;

Specifies that an object supports or requires replay detection on
invocation messages. In Orbix this option can be set only through
configuration.

Security::EstablishTrust Structure
// IDL
struct EstablishTrust {
 boolean trust_in_client;
 boolean trust_in_target;
};

Parameters This structure is used to hold the data associated with the
SecurityLevel2::EstablishTrustPolicy.

The elements of the structure are, as follows:

Security::EstablishTrustInClient Constant
// IDL
const AssociationOptions EstablishTrustInClient = 64;

Specifies that a client supports or requires that the target authen-
ticate its identity to the client.

See Also SecurityLevel2::EstablishTrustPolicy

trust_in_client Specifies whether or not an invocation must
select credentials and a mechanism that allow
the client to be authenticated to the target.
(Some mechanisms might not support client
authentication).

trust_in_target Specifies whether or not an invocation must
establish trust in the target.

 954 Orbix CORBA Programmer’s Reference: Java

Security::EstablishTrustInTarget Constant
// IDL
const AssociationOptions EstablishTrustInTarget = 32;

Specifies that a target object requires the client to authenticate its
privileges to the target.

See Also SecurityLevel2::EstablishTrustPolicy

Security::Integrity Constant
// IDL
const AssociationOptions Integrity = 2;

Specifies that an object supports integrity-protected invocations.

Security::InvocationCredentialsType
Enumeration
// IDL
enum InvocationCredentialsType {
 SecOwnCredentials,
 SecReceivedCredentials,
 SecTargetCredentials
};

Identifies the underlying type of a SecurityLevel2::Credentials
object, as follows:

Security::MechanismType Type
// IDL
typedef string MechanismType;

Identifies a security mechanism.

See Also SecurityLevel2::MechanismPolicy

Security::MechanismTypeList Sequence
// IDL
typedef sequence<MechanismType> MechanismTypeList;

A list of security mechanisms.

See Also SecurityLevel2::MechanismPolicy

SecOwnCredentials The underlying type is
SecurityLevel2::Credentials.

SecReceivedCredentials The underlying type is
SecurityLevel2::ReceivedCredentials.

SecTargetCredentials The underlying type is
SecurityLevel2::TargetCredentials.

Orbix CORBA Programmer’s Reference: Java 955

Security::NoDelegation Constant
// IDL
const AssociationOptions NoDelegation = 128;

Not supported in Orbix.

Security::NoProtection Constant
// IDL
const AssociationOptions NoProtection = 1;

When used with the target secure invocation policy, indicates that
the target can accept insecure connections.

When used with the client secure invocation policy, indicates that
the client can open insecure connections.

Security::Opaque Type
// IDL
typedef sequence <octet> Opaque;

A general purpose type that is used to hold binary data.

Security::QOP Enumeration
// IDL
enum QOP {
 SecQOPNoProtection,
 SecQOPIntegrity,
 SecQOPConfidentiality,
 SecQOPIntegrityAndConfidentiality
};

Identifies the range of security features that can be associated with
an individual object reference (quality of protection).

Values

Security::SecApplicationAccess Constant
// IDL
const CORBA::PolicyType SecApplicationAccess = 3;

Not supported in Orbix.

SecQOPNoProtection The Security::NoProtection asso-
ciation option.

SecQOPIntegrity The Security::Integrity associa-
tion option.

SecQOPConfidentiality The Security::Confidentiality
association option.

SecQOPIntegrityAndConfidentialityBoth the Security::Integrity and
Security::Confidentiality associ-
ation options.

 956 Orbix CORBA Programmer’s Reference: Java

Security::SecAttribute Structure
// IDL
struct SecAttribute {
 AttributeType attribute_type;
 OID defining_authority;
 Opaque value;
};

Security::SecClientInvocationAccess Constant
// IDL
const CORBA::PolicyType SecClientInvocationAccess = 1;

Not supported in Orbix.

Security::SecClientSecureInvocation Constant
// IDL
const CORBA::PolicyType SecClientSecureInvocation = 8;

Defines one of the policy types for the
SecurityAdmin::SecureInvocationPolicy interface. This policy can
only be set through configuration.

Security::SecEstablishTrustPolicy Constant
// IDL
const CORBA::PolicyType SecEstablishTrustPolicy = 39;

Defines the policy type for the
SecurityLevel2::EstablishTrustPolicy interface.

Security::SecInvocationCredentialsPolicy
Constant
// IDL
const CORBA::PolicyType SecInvocationCredentialsPolicy = 13;

Defines the policy type for the
SecurityLevel2::InvocationCredentialsPolicy interface.

Security::SecMechanismsPolicy Constant
// IDL
const CORBA::PolicyType SecMechanismsPolicy = 12;

Defines the policy type for the SecurityLevel2::MechanismsPolicy
interface.

See Also IT_TLS_API::TLS::create_mechanism_policy()

Orbix CORBA Programmer’s Reference: Java 957

Security::SecQOPPolicy Constant
// IDL
const CORBA::PolicyType SecQOPPolicy = 15;

Defines the policy type for the SecurityLevel2::QOPPolicy interface.

Security::SecTargetInvocationAccess Constant
// IDL
const CORBA::PolicyType SecTargetInvocationAccess = 2;

Not supported in Orbix.

Security::SecTargetSecureInvocation Constant
// IDL
const CORBA::PolicyType SecTargetSecureInvocation = 9;

Defines one of the policy types for the
SecurityAdmin::SecureInvocationPolicy interface. This policy can
only be set through configuration.

Security::SecurityFeature Enumeration
// IDL
enum SecurityFeature {
 SecNoDelegation,
 SecSimpleDelegation,
 SecCompositeDelegation,
 SecNoProtection,
 SecIntegrity,
 SecConfidentiality,
 SecIntegrityAndConfidentiality,
 SecDetectReplay,
 SecDetectMisordering,
 SecEstablishTrustInTarget,
 SecEstablishTrustInClient
};

Identifies the range of security features that can be associated with
a Credentials object, including association options.

Values This enumeration can have the following values:

SecNoDelegation The Security::NoDelegation associa-
tion option.

SecSimpleDelegation The Security::SimpleDelegation
association option.
Not supported in Orbix.

SecCompositeDelegation The Security::CompositeDelegation
association option.
Not supported in Orbix.

SecNoProtection The Security::NoProtection associa-
tion option.

 958 Orbix CORBA Programmer’s Reference: Java

See Also SecurityLevel2::Credentials::get_security_feature()
Security::AssociationOptions

Security::SecurityName Type
// IDL
typedef string SecurityName;

A string that identifies a principal (for example, a login name).

Not used by Orbix.

Security::SimpleDelegation Constant
// IDL
const AssociationOptions SimpleDelegation = 256;

Not supported in Orbix.

SecIntegrity The Security::Integrity association
option.

SecConfidentiality The Security::Confidentiality asso-
ciation option.

SecIntegrityAndConfidentiality Both the Security::Integrity and
Security::Confidentiality associa-
tion options.

SecDetectReplay The Security::DetectReplay associa-
tion option.

SecDetectMisordering The Security::DetectMisordering
association option.

SecEstablishTrustInTarget The
Security::EstablishTrustInTarget
association option.

SecEstablishTrustInClient The
Security::EstablishTrustInClient
association option.

 Orbix CORBA Programmer’s Reference: Java 959

SecurityLevel1 Overview
Because security level 1 is aimed at security-unaware applica-
tions, there is little IDL defined at this level—most of the security
features are controlled by an administrator. Currently, there is one
IDL interface defined at level 1:
• SecurityLevel1::Current

 960 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 961

SecurityLevel1::Current Interface
IDL // IDL in module SecurityLevel1

local interface Current : CORBA::Current { // Locality
Constrained

 // thread specific operations
 Security::AttributeList get_attributes (
 in Security::AttributeTypeList attributes
);
};

Description The Current object enables you to access information about the
execution context. In Orbix, it enables a server object to access a
client’s credentials.

Current::get_attributes()
IDL Security::AttributeList get_attributes (

 in Security::AttributeTypeList attributes
);

Description Not implemented in Orbix.
You can use the Credentials::get_attributes() operation instead.

See Also SecurityLevel2::Current::received_credentials
SecurityLevel2::Credentials::get_attributes()

 962 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 963

SecurityLevel2 Overview
At security level 2, IDL interfaces are defined to enable secu-
rity-aware application to access security information and specify
security policies. Orbix implements the following IDL interfaces
from the SecurityLevel2 IDL module:
• PrincipalAuthenticator interface.
• Credentials inteface.
• ReceivedCredentials interface.
• TargetCredentials interface.
• QOPPolicy interface.
• MechanismPolicy interface.
• InvocationCredentialsPolicy interface.
• EstablishTrustPolicy interface.
• SecurityManager interface.
• Current interface.

SecurityLevel2::CredentialsList Sequence
// IDL
typedef sequence <Credentials> CredentialsList;

A sequence to hold a list of Credentials objects.

 964 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 965

SecurityLevel2::Credentials
Interface
IDL // IDL in module SecurityLevel2

interface Credentials { // Locality Constrained
pragma version Credentials 1.7
 Credentials copy();

 void destroy();

 readonly attribute Security::InvocationCredentialsType
 credentials_type;
 readonly attribute Security::AuthenticationStatus
 authentication_state;
 readonly attribute Security::MechanismType
 mechanism;

 attribute Security::AssociationOptions
 accepting_options_supported;
 attribute Security::AssociationOptions
 accepting_options_required;
 attribute Security::AssociationOptions
 invocation_options_supported;
 attribute Security::AssociationOptions
 invocation_options_required;

 boolean get_security_feature(
 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

 boolean set_attributes (
 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

 Security::AttributeList get_attributes (
 in Security::AttributeTypeList attributes
);

 boolean is_valid (out Security::UtcT expiry_time);

 boolean refresh(in any refresh_data);
};

Description The Credentials interface is used either as a base interface or as a
concrete interface (most derived type is Credentials). An object of
Credentials type can represent one of the following kinds of cre-
dential:
• Own credentials—when the most derived type of the

Credentials object is Credentials.
• Received credentials—when the most derived type of the

Credentials object is ReceivedCredentials.
• Target credentials—when the most derived type of the

Credentials object is TargetCredentials.

 966 Orbix CORBA Programmer’s Reference: Java

A Credentials object holds the security attributes of a principal.

See Also IT_TLS_API::TLSCredentials
IT_TLS_API::TLSReceivedCredentials
IT_TLS_API::TLSTargetCredentials

Credentials::accepting_options_required
Attribute

IDL attribute Security::AssociationOptions
accepting_options_required;

Description Not implemented in Orbix.

Credentials::accepting_options_supported
Attribute

IDL attribute Security::AssociationOptions
accepting_options_supported;

Description Not implemented in Orbix.

Credentials::authentication_state Attribute
IDL readonly attribute Security::AuthenticationStatus

authentication_state;

Description Specifies how a Credentials object is initialized (authentication
state) at the time it is created by the PrincipalAuthenticator
object.

Values The authentication state can have one of the following values:

Credentials::copy()
IDL Credentials copy();

Description Returns a reference to a deep copy of the target Credentials
object.
Not implemented in Orbix.

Credentials::credentials_type Attribute
IDL readonly attribute Security::InvocationCredentialsType

 credentials_type;

SecAuthSuccess The Credentials object is fully initialized and
valid.

SecAuthExpired The credentials initialization has expired and the
credentials are invalid.

Orbix CORBA Programmer’s Reference: Java 967

Description Indicates whether the Credentials object represents an applica-
tion’s own credentials (of Credentials type), or received creden-
tials (of ReceivedCredentials type), or target credentials (of
TargetCredentials type).

Values This attribute can have one of the following values:

Credentials::destroy()
IDL void destroy();

Description Destroys the Credentials object.
Not implemented in Orbix.

Credentials::get_attributes()
IDL Security::AttributeList get_attributes(

 in AttributeTypeList attributes
);

Description Returns the security attributes from a Credentials object.

Parameters This operation takes the following parameter:

Credentials::get_security_feature()
IDL boolean get_security_feature(

 in Security::CommunicationDirection direction,
 in Security::SecurityFeature feature
);

Description Not implemented in Orbix.

Credentials:invocation_options_required
Attribute

IDL attribute Security::AssociationOptions
 invocation_options_required;

Description Not implemented in Orbix.
Use SecurityLevel2::QOPPolicy programmatically or secure invoca-
tion policies in the configuration file instead.

Security::SecOwnCredentials Indicates own credentials
Security::SecReceivedCredentials Indicates received credentials.
Security::SecTargetCredentials indicates target credentials

attributes The set of security attributes (attributes and
identities) whose values are desired. If this list
is empty, all attributes are returned.

 968 Orbix CORBA Programmer’s Reference: Java

Credentials::invocation_options_supported
Attribute

IDL attribute Security::AssociationOptions
 invocation_options_supported;

Description Not implemented in Orbix.
Use SecurityLevel2::QOPPolicy programmatically or secure invoca-
tion policies in the configuration file instead.

Credentials::is_valid()
IDL boolean is_valid(out Security::UtcT expiry_time);

Description Returns TRUE if the Credentials object is valid and FALSE other-
wise.
Not implemented in Orbix.

Credentials::mechanism Attribute
IDL readonly attribute Security::MechanismType mechanism;

Description A string, of Security::MechanismType type, that identifies the
underlying security mechanism.

Values Orbix returns the string 20 which represents SSL/TLS.

See Also IT_TLS_API::TLS::create_mechanism_policy()

Credentials::refresh()
IDL boolean refresh(in any refresh_data);

Description Not implemented in Orbix.
Some security mechanisms allow you to extend the expiry time of
a Credentials object by refreshing the credentials.

Credentials::set_attributes()
IDL boolean set_attributes (

 in Security::AttributeList requested_attributes,
 out Security::AttributeList actual_attributes
);

Description Not implemented in Orbix.

 Orbix CORBA Programmer’s Reference: Java 969

SecurityLevel2::Current Interface
IDL // IDL in module SecurityLevel2

local interface Current : SecurityLevel1::Current {
pragma version Current 1.7
 // Thread specific
 readonly attribute ReceivedCredentials received_credentials;
};

Description The Current object accesses information about the execution con-
text. In Orbix, the level 2 Current interface provides received cre-
dentials (originating from a client) to a target object’s execution
context.

Current::received_credentials Attribute
IDL readonly attribute ReceivedCredentials received_credentials;

At a target object, this thread-specific attribute is the credentials
received from a client. They are the credentials of the authenti-
cated principal that made the invocation.
If you have enabled Common Secure Interoperability (CSIv2), the
SecurityLevel2::Current::received_credentials() operation
returns the following credentials type:
• Propagated identity credentials, if present
• Authenticated credentials over the transport, if present and

propagated identity credentials are not.
• Transport TLS credentials, if present and the above two are

not.
See IT_CSI::CSIReceivedCredentials for more details.

Exceptions In the case of a pure client, that is, an application that is not
servicing an invocation on one of its objects, accessing the
received_credentials attribute causes a CORBA::BAD_OPERATION ex-
ception to be raised.

 970 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 971

SecurityLevel2::EstablishTrustPol
icy Interface
IDL // IDL in module SecurityLevel2

interface EstablishTrustPolicy : CORBA::Policy {
 readonly attribute EstablishTrust trust;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that obeys the given trust
policy.
The EstablishTrustPolicy object has a policy type of
Security::SecEstablishTrustPolicy and is locality constrained.

EstablishTrustPolicy::trust Attribute
IDL readonly attribute EstablishTrust trust;

Description The trust attribute is a structure that contains two members, each
stipulating whether trust in the client and trust in the target is
enabled.

 972 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 973

SecurityLevel2::InvocationCreden
tialsPolicy Interface
IDL // IDL in module SecurityLevel2

interface InvocationCredentialsPolicy : CORBA::Policy {
 readonly attribute CredentialsList creds;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the given cre-
dentials list, creds, for operation and attribute invocations.
The InvocationCredentialsPolicy object has a policy type of
Security::SecInvocationCredentialsPolicy and is locality con-
strained.

InvocationCredentialsPolicy::creds
IDL readonly attribute CredentialsList creds;

Description The list of Credentials objects associated with the
InvocationCredentialsPolicy object.

 974 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 975

SecurityLevel2::MechanismPolicy
Interface
IDL // IDL in module SecurityLevel2

interface MechanismPolicy : CORBA::Policy {
 readonly attribute Security::MechanismTypeList mechanisms;
};

Description A policy of this type can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the specified
security mechanisms.
The MechanismPolicy object has a policy type of
Security::SecMechanismsPolicy and is locality constrained.

See Also IT_TLS_API::TLS::create_mechanism_policy()

MechanismPolicy::mechanisms
IDL readonly attribute Security::MechanismTypeList mechanisms;

Description The mechanisms, in the form of a Security::MechanismTypeList,
associated with the MechanismPolicy object.

 976 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 977

SecurityLevel2::PrincipalAuthenti
cator Interface
IDL // IDL in module SecurityLevel2

interface PrincipalAuthenticator { // Locality Constrained
pragma version PrincipalAuthenticator 1.5

 Security::AuthenticationMethodList
 get_supported_authen_methods(
 in Security::MechanismType mechanism
);

 Security::AuthenticationStatus authenticate (
 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::SecurityName security_name,
 in any auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

 Security::AuthenticationStatus continue_authentication (
 in any response_data,
 in Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);
};

Description This interface provides operations to authenticate a principal and
provide it with credentials. For example, the authenticate() opera-
tion is typically called when a user logs on to an application.

PrincipalAuthenticator::authenticate()
IDL Security::AuthenticationStatus authenticate (

 in Security::AuthenticationMethod method,
 in Security::MechanismType mechanism,
 in Security::SecurityName security_name,
 in any auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

Description This operation is called to authenticate the principal. It can also
request privilege attributes that the principal requires during its
capsule-specific session with the system.
It creates a capsule-specific Credentials object including the
required attributes and is placed on the SecurityManager object’s
own_credentials list according to the credential’s mechanism type.

 978 Orbix CORBA Programmer’s Reference: Java

In Orbix, a capsule is effectively identified with an ORB object. The
main consequence of this is that credentials are not shared
between ORB objects. If you create more than one ORB object in
your application, you must call authenticate() for each ORB object
to make credentials available to both ORBs.

Return Value The return value indicates the status of the creds parameter:

Parameters

PrincipalAuthenticator::continue_authenticati
on()

IDL Security::AuthenticationStatus continue_authentication (

SecAuthSuccess A valid Credentials object is available in the
creds parameter.

SecAuthFailure Authentication was in some way inconsistent or
erroneous. Credentials have therefore not been
created.

SecAuthContinue The authentication procedure uses a challenge
and response mechanism. The creds parameter
references a partially initialized Credentials
object and the continuation_data indicates
details of the challenge.
Not supported by Orbix.

SecAuthExpired The authentication data, auth_data, has expired.
Credentials have therefore not been created.

method The authentication method to use. For example,
IT_TLS_API::IT_TLS_AUTH_METH_PKCS12_FILE.
See the IT_TLS_API module for the complete list
of authentication methods supported by Orbix.

mechanism The security mechanism for creating the returned
Credentials object. Leave this parameter blank.
It defaults to SSL/TLS.

security_name The principal’s identification information (such as
login name). Not used by Orbix.

auth_data The principal’s authentication information, typi-
cally consisting of a certificate, private key and
pass phrase. The data inserted into the auth_data
parameter depends on the specified authentica-
tion method, method.

privileges The requested privilege attributes. Not supported
by Orbix.

creds This parameter contains the locality constrained
object reference of the newly created Credentials
object. It is usable and placed on the Current
object’s own_credentials list only if the return
value is SecAuthSuccess.

continuation_data Not supported by Orbix.
auth_specific_data Not supported by Orbix.

Orbix CORBA Programmer’s Reference: Java 979

 in any response_data,
 in Credentials creds,
 out any continuation_data,
 out any auth_specific_data
);

Description Not supported by Orbix.

PrincipalAuthenticator::get_supported_authen
_methods()

IDL Security::AuthenticationMethodList
get_supported_authen_methods(
 in Security::MechanismType mechanism
);

Description Not implemented in Orbix.

 980 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 981

SecurityLevel2::QOPPolicy
Interface
IDL // IDL in module SecurityLevel2

interface QOPPolicy : CORBA::Policy {
 readonly attribute Security::QOP qop;
};

Description A QOP policy object can be passed to the set_policy_overrides()
operation to obtain an object reference that uses the specified
quality of protection policy.

See Also Security::SecQOPPolicy

QOPPolicy::qop Attribute
IDL readonly attribute Security::QOP qop;

Description The quality of protection, of Security::QOP enumeration type,
associated with the QOPPolicy object.

 982 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 983

SecurityLevel2::ReceivedCredenti
als Interface
IDL // IDL in module SecurityLevel2

interface ReceivedCredentials : Credentials {
pragma version ReceivedCredentials 1.5
 readonly attribute Credentials accepting_credentials;

 readonly attribute Security::AssociationOptions
 association_options_used;

 readonly attribute Security::DelegationState
delegation_state;

 readonly attribute Security::DelegationMode delegation_mode;
};

Description A ReceivedCredentials object stores the security attributes of a
remote client. It is made available in an execution context on the
server side and can be obtained from a SecurityLevel2::Current
object.

See Also SecurityLevel2::Current
IT_TLS_API::TLSReceivedCredentials

ReceivedCredentials::accepting_credentials
Attribute

IDL readonly attribute Credentials accepting_credentials;

Description Not implemented in Orbix.

ReceivedCredentials::association_options_use
d Attribute

IDL readonly attribute Security::AssociationOptions
 association_options_used;

Description Not implemented in Orbix.

 ReceivedCredentials::delegation_mode
Attribute

IDL readonly attribute Security::DelegationMode delegation_mode;

Description Not implemented in Orbix.

 ReceivedCredentials::delegation_state
Attribute

IDL readonly attribute Security::DelegationState delegation_state;

 984 Orbix CORBA Programmer’s Reference: Java

Description Not implemented in Orbix.

 Orbix CORBA Programmer’s Reference: Java 985

SecurityLevel2::SecurityManager
Interface
IDL // IDL in module SecurityLevel2

interface SecurityManager {
 readonly attribute Security::MechandOptionsList
 supported_mechanisms;
 readonly attribute CredentialsList own_credentials;
 readonly attribute RequiredRights required_rights_object;
 readonly attribute PrincipalAuthenticator
 principal_authenticator;

 readonly attribute AccessDecision access_decision;
 readonly attribute AuditDecision audit_decision;

 TargetCredentials get_target_credentials (in Object obj_ref);

 void remove_own_credentials(in Credentials creds);

 CORBA::Policy get_security_policy (
 in CORBA::PolicyType policy_type
);
};

Description In Orbix, this class is used to access ORB-specific information.

SecurityManager::access_decision Attribute
IDL readonly attribute AccessDecision access_decision;

Description Not implemented in Orbix.

SecurityManager::audit_decision Attribute
IDL readonly attribute AuditDecision audit_decision;

Description Not implemented in Orbix.

SecurityManager::get_security_policy()
IDL CORBA::Policy get_security_policy (

 in CORBA::PolicyType policy_type
);

Description Not implemented in Orbix.

SecurityManager::get_target_credentials()
IDL TargetCredentials get_target_credentials(

 in Object target;
};

 986 Orbix CORBA Programmer’s Reference: Java

Description Returns the target credentials for an object referenced by the
specified object reference, target. For example, this operation is
typically used on the client side to obtain the target credentials for
a remote object.

Parameters

SecurityManager::own_credentials Attribute
IDL readonly attribute CredentialsList own_credentials;

Description Holds an application’s own credentials, which are established by
calling authenticate() on the application’s own
PrincipalAuthenticator object.

SecurityManager::principal_authenticator
Attribute

IDL readonly attribute PrincipalAuthenticator
principal_authenticator;

Description Holds a reference to the PrincipalAuthenticator object that can be
used by the application to authenticate principals and obtain cre-
dentials.

SecurityManager::remove_own_credentials()
IDL void remove_own_credentials(

 in Credentials creds
);

Description Removes credentials that were put on the own_credentials list
using the PrincipalAuthenticator. This operation does not manipu-
late or destroy the objects in any way.

Parameters

SecurityManager::required_rights_object
Attribute

IDL readonly attribute RequiredRights required_rights_object;

Description Not implemented in Orbix.

SecurityManager::supported_mechanisms
Attribute

IDL readonly attribute Security::MechandOptionsList
 supported_mechanisms;

target An object reference.

creds The Credentials object to be removed from the list.

Orbix CORBA Programmer’s Reference: Java 987

Description Not implemented in Orbix.

 988 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 989

SecurityLevel2::TargetCredentials
Interface
IDL // IDL in module SecurityLevel2

interface TargetCredentials : Credentials {
 readonly attribute Credentials
 initiating_credentials;

 readonly attribute Security::AssociationOptions
 association_options_used;
};

Description A TargetCredentials object holds the security attributes of an
authenticated target object. To obtain the target credentials for a
remote object, call the SecurityManager::get_target_credentials()
operation.

See Also IT_TLS_API::TLSTargetCredentials

TargetCredentials::association_options_used
Attribute

IDL readonly attribute Security::AssociationOptions
 association_options_used;

Description Not implemented in Orbix.

 TargetCredentials::initiating_credentials
Attribute

IDL readonly attribute Credentials initiating_credentials;

Description Not implemented in Orbix.

 990 Orbix CORBA Programmer’s Reference: Java

 Orbix CORBA Programmer’s Reference: Java 991

System Exceptions
This appendix defines the system exceptions returned by Orbix.

BAD_CONTEXT This exception is raised if a client invokes an operation but the
passed context does not contain the context values required by
the operation.

BAD_INV_ORDER This exception indicates that the caller has invoked operations
in the wrong order. For example, it can be raised by an ORB if
an application makes an ORB-related call without having cor-
rectly initialized the ORB first.

BAD_OPERATION This exception indicates that an object reference denotes an
existing object, but that the object does not support the opera-
tion that was invoked.

BAD_PARAM This exception is raised if a parameter passed to a call is out of
range or otherwise considered illegal. For example, an ORB
may raise this exception if null values or null pointers are
passed to an operation (for language mappings where the con-
cept of a null pointers or null values applies).
BAD_PARAM can also be raised as a result of client generating
requests with incorrect parameters using the DII.

BAD_TYPECODE This exception is raised if the ORB encounters a malformed type
code (for example, a type code with an invalid TCKind value).

COMM_FAILURE This exception is raised if communication is lost while an opera-
tion is in progress, after the request was sent by the client, but
before the reply from the server has been returned to the cli-
ent.

DATA_CONVERSION This exception is raised if an ORB cannot convert the represen-
tation of data as marshaled into its native representation or
vice-versa. For example, DATA_CONVERSION can be raised if wide
character codeset conversion fails, or if an ORB cannot convert
floating point values between different representations.

FREE_MEM This exception is raised if the ORB failed in an attempt to free
dynamic memory. For example, it is raised because of heap
corruption or memory segments being locked.

IMP_LIMIT This exception indicates that an implementation limit was
exceeded in the ORB run time. For example, an ORB may reach
the maximum number of references it can can hold simultane-
ously in an address space, the size of a parameter may have
exceeded the allowed maximum, or an ORB may impose a
maximum on the number of clients or servers that can run
simultaneously.

INITIALIZE This exception is raised if an ORB encounters a failure during its
initialization, such as failure to acquire networking resources or
detection of a configuration error.

INTERNAL This exception indicates an interal failure in an ORB. For exam-
ple, it is raised if an ORB detected corruption of its internal data
structures.

INTF_REPOS This exception is raised if an ORB cannot reach the interface
repository, or some other failure relating to the interface repos-
itory is detected.

 992 Orbix CORBA Programmer’s Reference: Java

INV_FLAG This exception indicates that an invalid flag was passed to an
operation. For example, it is raised when creating a DII
request.

INV_IDENT This exception indicates that an IDL identifier is syntactically
invalid. For example it may be raised if an identifier passed to
the interface repository does not conform to IDL identifier syn-
tax, or if an illegal operation name is used with the DII.

INV_OBJREF This exception indicates that an object reference is internally
malformed. For example, the repository ID may have incorrect
syntax or the addressing information may be invalid. This
exception is raised by ORB::string_to_object if the passed string
does not decode correctly.
An ORB implementation might detect calls via nil references
(although it is not obliged to detect them). INV_OBJREF is used to
indicate this.

INV_POLICY This exception is raised when an invocation cannot be made
due to an incompatibility between policy overrides that apply to
the particular invocation.

INVALID_TRANSACTION This exception indicates that the request carried an invalid
transaction context. For example, this exception could be raised
if an error occurred when trying to register a resource.

MARSHAL This exception is raised if a request or reply from the network is
structurally invalid. This error typically indicates a bug in either
the client-side or server-side run time. For example, if a reply
from the server indicates that the message contains 1000
bytes, but the actual message is shorter or longer than 1000
bytes, the ORB raises this exception.
MARSHAL can also be caused by using the DII or DSI incorrectly.
For example, it is raised if the type of the actual parameters
sent does not agree with IDL signature of an operation.

NO_IMPLEMENT This exception is raised if the operation that was invoked exists
(it has an IDL definition) but no implementation for that opera-
tion exists. For example, NO_IMPLEMENT can be raised by an ORB
if a client asks for an object’s type definition from the interface
repository, but no interface repository is provided by the ORB.

NO_MEMORY This exception indicates that the ORB run time has run out of
memory.

NO_PERMISSION This exception is raised if an invocation fails because the caller
has insufficient privileges.

NO_RESOURCES This exception indicates that the ORB has encountered some
general resource limitation. For example, the run time may
have reached the maximum permissible number of open con-
nections.

NO_RESPONSE This exception is raised if a client attempts to retrieve the result
of a deferred synchronous call but the response for the request
is not yet available.

OBJ_ADAPTER This exception typically indicates an administrative mismatch.
For example, a server may have made an attempt to register
itself with an implementation repository under a name that is
already in use, or a name that is unknown to the repository.
OBJ_ADAPTER is also raised by the POA to indicate problems with
application-supplied servant managers.

Orbix CORBA Programmer’s Reference: Java 993

OBJECT_NOT_EXIST This exception is raised whenever an invocation on a deleted
object is performed. It is an authoritative “hard” fault report.
Anyone receiving it is allowed (even expected) to delete all cop-
ies of this object reference and to perform other appropriate
“final recovery” style procedures.
Bridges forward this exception to clients, also destroying any
records they may hold (for example, proxy objects used in ref-
erence translation). The clients could in turn purge any of their
own data structures.

PERSIST_STORE This exception indicates a persistent storage failure. For exam-
ple, it is raised if there is a failure to establish a database con-
nection or corruption of a database.

REBIND This exception is raised when the current effective RebindPolicy
has a value of NO_REBIND or NO_RECONNECT and an invocation on a
bound object reference results in a LocateReply message with
status OBJECT_FORWARD or a Reply message with status
LOCATION_FORWARD. This exception is also raised if the current
effective RebindPolicy has a value of NO_RECONNECT and a connec-
tion must be re-opened. The invocation can be retried once the
effective RebindPolicy is changed to TRANSPARENT or binding is
re-established through an invocation of
CORBA::Object::validate_connection().

TRANSACTION_REQUIRED This exception indicates that the request carried a null transac-
tion context, but an active transaction is required.

TRANSACTION_ROLLEDBACK This exception indicates that the transaction associated with the
request has already been rolled back or marked to roll back.
The requested operation either could not be performed or was
not performed because further computation on behalf of the
transaction would be fruitless.

TRANSIENT This exception indicates that the ORB attempted to reach an
object and failed. It is not an indication that an object does not
exist. Instead, it simply means that no further determination of
an object’s status was possible because it could not be reached.
For example, this exception is raised if an attempt to establish a
connection fails because the server or the implementation
repository is down.

UNKNOWN This exception is raised if an operation implementation throws a
non-CORBA exception (such as an exception specific to the
implementation’s programming language), or if an operation
raises a user exception that does not appear in the operation’s
raises expression.
UNKNOWN is also raised if the server returns a system exception
that is unknown to the client. (This can happen if the server
uses a later version of CORBA than the client and new system
exceptions have been added to the later version.)

 994 Orbix CORBA Programmer’s Reference: Java

Index
Symbols
() Subscript Operators 191, 225

A
absolute_name Attribute 41
abstract_base_values Attribute 214
access Attribute 223
active_groups() method 749
adapter_id attribute 943
ADAPTS 466
add() 65, 105, 125
add_client_request_interceptor() 930
add_consume() 105
add_contraints() 382
add_filter() 387
add_in_arg() 179
add_inout_arg() 179
add_ior_component() 923
add_ior_component_to_profile() 923
add_ior_interceptor() 930
add_item() 126
add_item_consume() 126
add_link() 417
add_listener() 662
add_mapping_contraints() 393
add_member method 742
add_named_in_arg() 179
add_named_inout_arg() 179
add_named_out_arg() 180
add_out_arg() 179
_add_ref() 209, 221, 673, 675
add_ref() 7
add_reply_service_context() 943
add_request_service_context() 911
Address data type 271
add_server_request_interceptor() 930
add_type() 457
add_value() 126
add_value_consume() 126
admin_if attribute 445
AdminLimitExceeded exception 289
AdminNotFound exception 288
AdminPropertiesAdmin::get_admin() 281
AliasDef Interface 23
allocate_slot_id() 930
AlreadyBound exception 262
AlreadyMasked exception 455
Any Class 25
any IDL type 25
AnySeq Sequence 571
ApplicationId data type 751
arguments() 180
arguments attribute 931, 937
ArrayDef Interface 33
assign() 577
attach_callback() 385
AttributeDef Interface 35
AttributeDescription Structure 8
AttributeMode Enumeration 8
audience xix
authenticate() 977
authentication_state 966
AUTOMATIC 685
AutomaticWorkQueue 865

high_water_mark 865
low_water_mark 865
shutdown() 866

AutomaticWorkQueueFactory 867
create_work_queue() 867
create_work_queue_with_thread_stack
_size() 867

AVA
convert() 641

AVA interface 641
AVAList

convert() 643
get_ava_by_oid() 644
get_ava_by_oidtag() 644
get_num_avas() 645
interface 643

B
BAD_CONTEXT exception 991
BAD_INV_ORDER exception 991
BadKind Exception 197
BAD_OPERATION exception 991
BAD_PARAM exception 991
BAD_TYPECODE exception 991
base_interfaces Attribute 114
base_value Attribute 214
before_completion() 493
begin() 482
bind() 262
bind_context() 263
BindingIterator interface 259
BindingList sequence 255
Binding structure 255
BindingType enumeration 256
bind_new_context() 263
bind_object_group() method 795
boolean_changed() 668
bound Attribute 185, 193, 227
Bounds Exception 197
Bridge::destory() 782
Bridge::name 781
Bridge::sink 781
Orbix CORBA Programmer’s Reference: Java 995

Bridge::source 781
Bridge::start() 781
Bridge::stop() 782
Bridge::suspend() 782
BridgeAdmin::create_bridge() 783
BridgeAdmin::find_bridge() 784
BridgeAdmin::get_all_bridges() 779, 784
BridgeAdmin::get_bridge() 784
BridgeAdmin::list_all_bridges() 767
byte_order() 891

C
CallbackNotFound exception 380
CannotProceed exception 264
CertConstraintsPolicy 841
CertValidatorPolicy 843
channel manager 901, 903
ChannelManager::create() 903
ChannelManager::createTyped() 904
ChannelManager::find() 903
ChannelManager::findByRef() 904
ChannelManager::findTyped() 904
ChannelManager::findTypedByRef() 905
ChannelManager::list() 904
ChannelManager::listTyped() 905
char*() 191, 225
clear() 99
clear_filter() 758
ClientRequestInfo interface 909
ClientRequestInterceptor interface 915
codec_factory attribute 931
COMM_FAILURE exception 991
commit() 482, 490, 495
commit_on_completion_of_next_call() 68

7
commit_one_phase() 490
commit_subtransaction() 492
Common CORBA Data Types 7
component_count() 578
concrete_base_type() 198
ConfigList sequence 659
config_scope() 677
configuration context 659
configuration domain 659
Configuration interface 661
configuration scope 659
connect_any_pull_consumer() 309
connect_any_pull_supplier() 307
connect_any_push_consumer() 314
connect_any_push_supplier() 311
connect_group_any_push_consumer() 79

9
connect_group_sequence_push_consume
r() 801

connect_group_structured_push_consum
er() 803

ConnectionAlreadyActive exception 288
ConnectionAlreadyInactive exception 288
connect_sequence_pull_consumer() 325
connect_sequence_pull_supplier() 321

connect_sequence_push_consumer() 328,
801

connect_sequence_push_supplier() 323
connect_structured_pull_consumer() 333
connect_structured_pull_supplier() 331
connect_structured_push_consumer() 33

8, 803
connect_structured_push_supplier() 335
ConstantDef Interface 37
ConstantDescription Structure 8
Constraint 399
constraint_grammar 382
ConstraintRecipe 433
ConstructionPolicy Interface 39
ConsumerAdmin interface 231, 291
Contained Interface 41
Container Interface 45
containing_repository Attribute 42
contents() 47, 214
content_type() 198
Context Class 61
context in configuration 659
ContextList 569
ContextList Class 65
context_name() 61
contexts() 180
contexts Attribute 137
contexts attribute 938
Control class 469
conventions in document xix
convert() 641, 643, 649, 651
Coordinator class 471
copy() 165, 578
_copy_value() 209
CORBA 2.3 specification xix
CosEventChannelAdmin::EventChannel
Interface 233

CosEventChannelAdmin::SupplierAdmin
interface 243

CosEventChannelAdmin module 229
CosEventComm::Disconnected 245
CosEventComm::PushConsumer
Interface 251

CosEventComm::PushSupplier
Interface 253

CosEventCom module 245
CosNaming module 255
CosNotificaiton::EventBatch 786
CosNotification

AdminPropertiesAdmin Interface 281
EventBatch 276
EventTypeSeq 275
NamedPropertyRangeSeq 279
PropertyErrorSeq 278
PropertyName 277
PropertySeq 277
PropertyValue 277
QoSAdmin Interface 283
QoSProperties 277
StructuredEvent 275
UnsupportedAdmin 279
 996 Orbix CORBA Programmer’s Reference: Java

UnsupprtedQoS 279
CosNotification::AdminProperties 277
CosNotifyChannelAdmin

AdminID 287
AdminIDSeq 287
ChannelID 287
ChannelIDSeq 288
ObtainInfoMode 285
ProxyID 286
ProxyIDSeq 286
ProxyType 285

AdminLimit 287
ChannelNotFound exception 289
ClientType 286

CosNotifyFilter

CallbackID 379
CallbackIDSeq 379
ConstraintExp 377
ConstraintExpSeq 377
ConstraintID 377
ConstraintIDSeq 377
ConstraintInfo 377
ConstraintInfoSeq 378
InterFilterGroupOperator 287
InvalidValue exception 380
MapingConstraintPair 378
MappingConstraintInfo 378
MappingConstraintInfoSeq 379
MappingConstraintPairSeq 378

CosTrading 399

Admin 407
LinkAttributes 421
Lookup 423

CosTradingDynamic

DPEvalFailure exception 447
DynamicProp Struct 447

CosTradingDynamic Module 447
CosTradingRepos Module 451
CosTransactions, data types 464
CosTransactions module 461
CostTypedEventChannelAdmin::Key
Type 501

CosTypedEventChannelAdmin::InterfaceN
otSupported 501

CosTypedEventChannelAdmin::NoSuchIm
plementation 501

CosTypedEventChannelAdmin::TypedCon
sumerAdmin Interface 503

CosTypedEventChannelAdmin::TypedEve
ntChannel Interface 505

CosTypedEventChannelAdmin::TypedProx
yPushConsumer Interface 507

CosTypedEventChannelAdmin::TypedSup
plierAdmin Interface 509

CosTypedEventChannelAdmin module 501
CosTypedEventComm::TypedPushConsu
mer Interface 513

CosTypedEventComm module 511

count() 65, 105, 125
create() 499
create_active() method 748
create_alias() 47
create_alias_tc() 147
create_array() 174
create_array_tc() 147
create_attribute() 114, 215
create_channel() 303
create_child() 62
create_constant() 48
create_context_list() 148
create_dyn_any() 599
create_dyn_any_from_type_code() 600
create_enum() 49
create_enum_tc() 148
create_environment() 148
create_exception() 50
create_exception_list() 148
create_exception_tc() 149
create_filter() 389
create_fixed() 174
create_fixed_tc() 149
create_interface() 51
create_interface_tc() 149
create_list() 150
create_mapping_filter() 389
create_module() 52
create_named_value() 150
create_native() 52
create_native_tc() 150
create_operation() 115, 216
create_operation_list() 151
create_policy() 151, 935
create_random() method 748
create_recursive_tc() 151
_create_request() 130
create_round_robin() method 747
create_sequence() 175
create_sequence_tc() 152
create_string() 175
create_string_tc() 152
create_struct() 53
create_struct_tc() 153
create_subtransaction() 472
create_union() 54
create_union_tc() 153
create_value() 55
create_value_box() 56
create_value_box_tc() 153
create_value_member() 216
create_value_tc() 154
create_wstring() 176
create_wstring_tc() 154
Credentials

authentication_state 966
destroy() 966, 967, 968, 983, 989
get_attributes() 967

Credentials interface 965, 983, 989
ctx() 180, 187
Current

received_credentials 961, 969, 985, 986
Orbix CORBA Programmer’s Reference: Java 997

received_credentials attribute 961, 969
Current class 481
current_component() 579
Current Interface 67, 986
Current interface 919, 961, 969
current_member_kind() 615, 624
current_member_name() 616, 624
CustomMarshal Value Type 69

D
DATA_CONVERSION exception 991
DataInputStream Value Type 71
DataOutputStream Value Type 83
DefaultFollowTooPermissive exception 416
default_index() 198
_DEFAULT in logging 753
default_value 392
def_follow_policy attribute 413
def_hop_count attribute 413
defined_in Attribute 42
DefinitionKind Enumeration 9
def_kind Attribute 117
def_match_card attribute 413
def_return_card attribute 413
def_search_card attribute 413
delete_values() 62
describe() 23, 35, 37, 42, 97, 103, 116, 119,

137, 195, 205, 207, 217, 439
describe_contents() 57
describe_interface() 116
describe_link() 417
describe_type() 458
describe_value() 218
Description Structure 42
destroy() 117, 154, 165, 259, 265, 296, 345,

384, 395, 429, 579, 966, 967, 968, 983, 989
destroy() method 745
_destroy_this() 673, 675
digits Attribute 107
DII and DSI Quick Reference 2
disconnect_push_consumer() 809
disconnect_sequence_pull_consumer() 36

1
disconnect_sequence_pull_supplier() 364
disconnect_sequence_push_consumer() 3

66, 811, 812
disconnect_sequence_push_supplier() 36

7
disconnect_structured_pull_consumer() 3

69
disconnect_structured_pull_supplier() 372
disconnect_structured_push_consumer()

373, 813
disconnect_structured_push_supplier() 3

75
discriminator_kind() 620
discriminator_type() 199
discriminator_type Attribute 207
discriminator_type_def Attribute 207
documentation

.pdf format xxii

updates on the web xxii
documentation, other xix
domain, configuration 659
DomainManager Interface 95
double_changed() 668
_downcast() 209, 221, 891
DsEventLog Module 523
DsLogAdmin

TimeT 532
:LogFullActionType 534

DsLogAdmin::AdministrativeState 536
DsLogAdmin::Anys 534
DsLogAdmin::AvailabilityStatus 534
DsLogAdmin::BasicLog 539
DsLogAdmin::BasicLogFactory 541
DsLogAdmin::CapacityAlarmThresholdList

536
DsLogAdmin::Constraint 532
DsLogAdmin::DaysOfWeek 535
DsLogAdmin::ForwardingState 536
DsLogAdmin::IntervalsOfDay 535
DsLogAdmin::InvalidAttribute 531
DsLogAdmin::InvalidConstraint 530
DsLogAdmin::InvalidGrammar 530
DsLogAdmin::InvalidLogFullAction 531
DsLogAdmin::InvalidMask 529
DslogAdmin::InvalidParam 529
DsLogAdmin::InvalidRecordId 531
DsLogAdmin::InvalidThreshold 529
DsLogAdmin::InvalidTime 529
DsLogAdmin::InvalidTimeInterval 529
DsLogAdmin::Iterator 543
DsLogAdmin::Log 545
DsLogAdmin::LogDisabled 530
DsLogAdmin::LogFull 530
DsLogAdmin::LogId 532
DsLogAdmin::LogIdList 536
DsLogAdmin::LogList 536
DsLogAdmin::LogLocked 530
DsLogAdmin::LogMgr 557
DsLogAdmin::LogOffDuty 530
DsLogAdmin::LogRecord 533
DsLogAdmin::NVList 533
DsLogAdmin::NVPair 532
DsLogAdmin::OperationalState 536
DsLogAdmin::QoSList 537
DsLogAdmin::QoSType 537
DsLogAdmin::RecordId 532
DsLogAdmin::RecordIdList 532
DsLogAdmin::RecordList 533
DsLogAdmin::Threshold 535
DsLogAdmin::Time24 534
DsLogAdmin::Time24Interval 534
DsLogAdmin::TimeInterval 533
DsLogAdmin::UnsupportedQoS 531
DsLogAdmin::WeekMask 535
DsLogAdmin::WeekMaskItem 535
DsLogAdmin Module 529
DsLogNotification::AttributeType 560
DsLogNotification::AttributeValueChange

560
 998 Orbix CORBA Programmer’s Reference: Java

DsLogNotification::ObjectCreation 559
DsLogNotification::ObjectDeletion 560
DsLogNotification::PercievedSeverityType

559
DsLogNotification::ProcessingErrorAlarm

561
DsLogNotification::StateChange 561
DsLogNotification::StateType 561
DsLogNotification::ThresholdAlarm 559
DsNotifyLogAdmin::NotifyLogFactory
Interface 567

DsNotifyLogAdmin::NotifyLog
Interface 565

DsNotifyLogAdmin Module 559, 563
_duplicate() 3, 131, 155
DuplicateGroup exception 739
DuplicateLinkName exception 416
DuplicateMember exception 738
DuplicateName exception 931
DuplicatePolicyName exception 403
DuplicatePropertyName 403
DuplicateServiceTypeName exception 455
Dynamic module 569
DynamicPropEval 449
DynAny Class 573
DynAnyFactory Class 599
DynArray Class 603
DynEnum Class 607
DynFixed Class 609
DynSequence Class 611
DynStruct Class 615
DynUnion Class 619
DynValue Class 623

E
effective_profile attribute 911
effective_target attribute 911
EITHER 467
element_type Attribute 33, 185
element_type_def Attribute 33, 185
Endpoint::admin 772
Endpoint::bridge_name 771
Endpoint::connect() 772
Endpoint::connected 772
Endpoint::destroy() 772
Endpoint::name 771
Endpoint::peer 772
Endpoint::type 771
EndpointAdmin::create_sink_endpoint()

775
EndpointAdmin::create_source_endpoint(
) 776

EndpointAdmin::get_all_sink_endpoints()
777

EndpointAdmin::get_all_source_endpoint
s() 777

EndpointAdmin::get_sink_endpoint() 776
EndpointAdmin::get_source_endpoint() 7

77
EndpointAdmin::name 775
EndpointAdmin::supported_types 775

EnumDef Interface 97
env() 181
Environment Class 99
equal() 199, 580
equivalent() 199
establish_components() 925
EstablishTrus Policy 971
evalDP() 449
EventChannel::destroy() 233
EventChannel::for_consumers() 233
EventChannel::for_suppliers() 233
EventChannelFactory::create_channel() 7

21
EventChannelFactory::find_channel() 721
EventChannelFactory::find_channel_by_i
d() 722

EventChannelFactory::list_channels() 722
EventChannelFactory interface 303
EventChannel interface 233, 297
EventId data type 751
EventLog 525
EventLogFactory 527
EventLogFactory::create() 527
EventLogFactory::create_with_id() 527
EventLog Interface 757
EventParameters data type 751
EventPriority data type 752
except() 187
exception() 99
Exception Class 101
ExceptionDef Interface 103
ExceptionDescription Structure 9
~ExceptionHolder() 892
ExceptionHolder() constructors 892
ExceptionHolder value type 891
ExceptionList 569
ExceptionList Class 105
exceptions 462
exceptions, system 991
exceptions() 181
exceptions Attribute 137
exceptions attribute 938
expand_filter() 758
export() 439
export_proxy() 435
Extension

convert() 649
get_extension_by_oid() 652
get_extension_by_oidtag() 652

Extension interface 649
ExtensionList

convert() 651
get_num_extensions() 653

ExtensionList interface 651

F
FilterAdmin interface 387
FilterFactory interface 389
FilterID Data Type 378
FilterIDSeq Data Type 378
FilterNotFound exception 380
Orbix CORBA Programmer’s Reference: Java 999

filters
IDL 381

find_group() method 748
FixedDef Interface 107
fixed_digits() 199
fixed_scale() 200
flags() 121
FollowOption 402
FORBIDS 466
forget() 490
format_message() 752
forward_reference attribute 938
ForwardRequest exception 907
FPS_POLICY_BASE 723
FREE_MEM exception 991
from_any() 580
FullInterfaceDescription Structure 116
FullValueDescription Structure 218
fully_describe_type() 458

G
get_all_channels() 304
get_all_constraints() 384
get_all_consumeradmins() 300
get_all_filters() 388
get_all_mapping_constraints 395
get_all_supplieradmins() 300
get_as_string() 607
get_as_ulong() 607
get_attributes() 967
get_ava_by_oid() 644
get_ava_by_oidtag() 644
get_boolean() 581, 662
get_callbacks() 386
get_canonical_typecode() 176
get_char() 581
get_compact_typecode() 200
get_constraints() 384
get_consumeradmin() 300
get_control() 482
get_coordinator() 469
get_default_context() 155
get_der_serial_number() 657
get_discriminator() 620
_get_domain_managers() 131
get_domain_policy() 95
get_double() 581, 663
get_dyn_any() 582
get_effective_component() 911
get_effective_components() 912
get_effective_policy() 924
get_elements() 603, 611
get_elements_as_dyn_any() 603, 612
get_event_channel() 304
get_exception() 892
get_exception_with_list() 892
get_extension_by_oid() 652
get_extension_by_oidtag() 652
get_filter() 388, 758
get_float() 582
_get_interface() 132

get_length() 612
get_list() 663
get_long() 582, 664
get_longlong() 583
get_mapping_constraints() 394
get_member() method 743
get_member_load() method 743
get_members() 616, 624
get_members_as_dyn_any() 616, 624
get_member_timeout() method 744
get_next_response() 155
get_num_avas() 645
get_num_extensions() 653
get_octet() 583
get_parent_status() 473
_get_policy() 132
_get_policy_overrides() 132
get_policy_overrides() 169
get_primitive() 177
get_proxy_consumer() 343
get_proxy_supplier() 294
get_reference() 583
get_reply_service_context() 938
get_request_policy() 912
get_request_service_context() 939
get_response() 181
get_server_policy() 944
get_service_information() 156
get_short() 584
get_slot() 919, 939
get_status() 473, 483
get_string() 584, 664
get_supplieradmin() 300
get_target_credentials() 985, 986
get_terminator() 470
get_timeout() 483
get_top_level_status() 473
get_transaction_name() 474, 483
get_txcontext() 474
get_typecode() 585
get_ulong() 585
get_ulonglong() 585
get_ushort() 586
get_val() 586
get_value() 609
get_values() 62
get_wchar() 586
get_wstring() 587
GroupId data type 738
GroupList data type 738
GroupNotifyPublish 807
GroupProxyPushSupplier 799
GroupPushConsumer 809
GroupSequenceProxyPushSupplier 801
GroupSequencePushConsumer 811
GroupStructuredProxyPushSupplier 803
GroupStructuredPushConsumer 813

H
hash_top_level_tran() 474
hash_transaction() 474
 1000 Orbix CORBA Programmer’s Reference: Java

has_no_active_member() 620
HasSubTypes exception 456
HeuristicCommit exception 462
HeuristicHazard exception 462
HeuristicMixed exception 462
HeuristicRollback exception 462
HowManyProps 424

I
id() 200
id Attribute 43
Identifier Alias 453
IDLType Interface 111
IllegalConstraint exception 403
IllegalLinkName exception 416
IllegalOfferId exception 403
IllegalPolicyName 424
IllegalPreference 425
IllegalPropertyName exception 403
IllegalRecipie exception 434
IllegalServiceType exception 403
IllegalTraderName exception 437
IMP_LIMIT exception 991
in() 191, 225
Inactive exception 462
incarnation 457
IncarnationNumber 454
InconsistentTypeCode User Exception
Class 601

INITIALIZE exception 991
initializers Attribute 219
Initializer Structure 10
inout() 191, 225
insert_any() 587
insert_boolean() 588
insert_char() 588
insert_double() 588
insert_dyn_any() 589
insert_float() 589
insert_long() 590
insert_longlong() 590
insert_octet() 591
insert_reference() 591
insert_short() 592
insert_string() 592
insert_typecode() 593
insert_ulong() 593
insert_ulonglong() 594
insert_ushort() 594
insert_val() 595
insert_wchar() 595
insert_wstring() 596
IntegerTooLarge exception 647
Interceptor interface 921
INTERDICTION_POLICY_ID 723
InterdictionPolicyValue 723
InterfaceDef Interface 109, 113
InterfaceDescription Structure 10
Interface Repository Quick Reference 1
InterfaceTypeMismatch exception 437, 456
INTERNAL exception 991

INTF_REPOS exception 991
Introduction 1
InvalidAddress exception 272
InvalidConstraint exception 379
InvalidControl exception 463
InvalidEndpoint exception 768
InvalidEventType exception 347
InvalidGrammar exception 379
InvalidLookupRef exception 404
InvalidName exception 265, 931
InvalidObjectRef exception 437
InvalidPolicies exception 11
InvalidPolicyValue 425
InvalidSlot exception 907
INVALID_TRANSACTION exception 463,

992
InvalidValue User Exception 596
INV_FLAG exception 992
INV_IDENT exception 992
INV_OBJREF exception 992
InvocationCredentialsPolicy 973
INVOCATION_POLICIES constant 888
InvocationPolicyValue data type 466
invoke() 181
INV_POLICY exception 992
IORInfo interface 923
IORInterceptor interface 925
IRObject Interface 117
_is_a() 133
is_a() 116, 219
is_abstract Attribute 219
is_ancestor_transaction() 475
is_custom Attribute 219
is_descendant_transaction() 475
_is_equivalent() 133
is_nil() 7
is_related_transaction() 475
is_same_transaction() 476
is_system_exception() 892
is_top_level_transaction() 476
Istring 399
Istring data type 256
IT_Certificate

AVA interface 641
AVAList interface 643
Extension interface 649
ExtensionList interface 651
IT_X509CertFactory interface 657
X509Certificate interface 647, 655

IT_Config module 659
IT_CosTransactions module 685
_it_demarshal_value() 893
item() 65, 105, 126
Iterator::destroy() 543
Iterator::get() 543
IT_EventChannelAdmin::ChannelAlreadyE
xists 719

IT_EventChannelAdmin::ChannelID
Type 719

IT_EventChannelAdmin::ChannelNotFoun
d 720
Orbix CORBA Programmer’s Reference: Java 1001

IT_EventChannelAdmin::EventChannelFa
ctory Interface 721

IT_EventChannelAdmin::EventChannelInf
oList Sequence 719

IT_EventChannelAdmin::EventChannelInf
o Structure 719

IT_EventChannelAdmin Module 719
IT_FPS::InterdictionPolicy Interface 725
IT_FPS Module 723
_it_get_fw_type_id() 893
_it_get_safe_bases() 893
IT_LOG_MESSAGE() macro 753
IT_LOG_MESSAGE_1() macro 754
IT_LOG_MESSAGE_2() macro 754
IT_LOG_MESSAGE_3() macro 754
IT_LOG_MESSAGE_4() macro 755
IT_LOG_MESSAGE_5() macro 755
_it_marshal_value() 893
IT_MessagingBridge::BridgeName 767
IT_MessagingBridge::BridgeNameAlready
Exists 770

IT_MessagingBridge::BridgeNameNotFou
nd 769

IT_MessagingBridge::BridgeNameSeq 767
IT_MessagingBridge::EndpointAdmin
Interface 775

IT_MessagingBridge::EndpointAdminNam
e 768

IT_MessagingBridge::EndpointAlreadyCon
nected 769

IT_MessagingBridge::Endpoint
Interface 771

IT_MessagingBridge::EndpointName 767
IT_MessagingBridge::EndpointType 767
IT_MessagingBridge::EndpointTypeSeq 7

68
IT_MessagingBridge::InvalidEndpointCod
e 768

IT_MessagingBridge::SinkEndpoint 785,
786

IT_MessagingBridge::SinkEndpoint
Interface 773

IT_MessagingBridge::SourceEndpoint
Interface 774

IT_MessagingBridgeAdmin::BridgeAdmin
Interface 783

IT_MessagingBridgeAdmin::BridgeAlread
yExists 780

IT_MessagingBridgeAdmin::Bridge
Interface 781

IT_MessagingBridgeAdmin::BridgeName
779

IT_MessagingBridgeAdmin::BridgeNameA
lreadyExists 780

IT_MessagingBridgeAdmin::BridgeNameS
eq 779

IT_MessagingBridgeAdmin::BridgeNotFou
nd 780

IT_MessagingBridgeAdmin::CannotCreate
Bridge 780

IT_MessagingBridgeAdmin::EndpointInfo
779

IT_MessagingBridgeAdmin::InvalidEndpoi
nt 780

IT_MessagingBridgeAdmin::InvalidEndpoi
tCode 779

IT_MessagingBridgeAdmin Module 779
IT_MessagingBridge Module 767
IT_MessaingBridge::InvalidEndpoint
exception 769

IT_NamingContextExt Interface 795
IT_NotifyBridge

SinkEndpoint Interface 786
IT_NotifyBridge::EndpointNotConnected

785
IT_NotifyBridge::MappingFailure 785
IT_NotifyBridge::SinkEndpoint::send_eve
nts() 786

IT_NotifyBridge Module 785
IT_NotifyLogAdmin 815
IT_NotifyLogAdmin::NotifyLog 817
IT_NotifyLogAdmin::NotifyLog::obtain_of
fered_types() 817

IT_NotifyLogAdmin::NotifyLog::obtain_su
bscribed_types() 817

IT_NotifyLogAdmin::NotifyLogFactory 819
IT_NotifyLogAdmin::NotifyLogFactory::de
fault_filter_factory 819

IT_NotifyLogAdmin::NotifyLogFactory::m
anager 819

IT_PortableServer::DISPATCH_WORKQU
EUE_POLICY_ID 824

IT_PortableServer::DispatchWorkQueueP
olicy Interface 825

IT_PortableServer module 823
_it_type() 893
IT_TypedEventChannelAdmin::TypedEve
ntChannelFactory Interface 861

IT_TypedEventChannelAdmin::TypedEve
ntChannelInfoList Sequence 859

IT_TypedEventChannelAdmin::TypedEve
ntChannelInfo Structure 859

IT_TypedEventChannelAdmin Module 859
IT_WorkQueue 863
IT_X509CertFactory interface 657

K
kind() 201
kind Attribute 171

L
length() 201
length Attribute 33
lifetime_filter attribute 293, 318
LimitingFollowTooPermissive
exception 416

link_if attribute 445
LinkInfo 415
LinkName 399
LinkNameSeq 400
list() 265
list_changed() 669
 1002 Orbix CORBA Programmer’s Reference: Java

Listener::variable_added() 667
Listener::variable_removed() 668
Listener interface 667
ListenerTargetRange enumeration 660
list_initial_services() 156
list_links() 418
list_offers() 408
ListOption 453
list_proxies() 408
list_types() 458
_local_narrow() 893, 895, 897, 899
Log::copy() 554
Log::copy_with_id() 554
Log::delete_records() 552
Log::delete_records_by_id() 552
Log::flush() 555
Log::get_administrative_state() 548
Log::get_availability_status() 549
Log::get_capacity_alarm_thresholds() 54

9
Log::get_current_size() 547
Log::get_forwarding_state() 548
Log::get_interval() 549
Log::get_log_full_action() 547
Log::get_log_qos() 550
Log::get_max_record_life() 546
Log::get_max_size() 547
Log::get_n_records() 547
Log::get_operational_state() 548
Log::get_record_attribute() 554
Log::get_week_mask() 550
Log::id() 546
Log::match() 551
Log::my_factory() 546
Log::query() 550
Log::retieve() 551
Log::set_administrative_state() 548
Log::set_capacity_alarm_thresholds() 54

9
Log::set_forwarding_state() 548
Log::set_interval() 549
Log::set_log_full_action() 548
Log::set_log_qos() 550
Log::set_max_record_life() 547
Log::set_max_size() 547
Log::set_record_attribute() 553
Log::set_records_attribute() 553
Log::set_week_mask() 550
Log::write_recordlist() 553
Log::write_records() 552
LOG_ALL_EVENTS 752
LOG_ALL_INFO 752
LOG_ERROR 752
LOG_FATAL_ERROR 752
LOG_INFO 752
LOG_INFO_HIGH 752
LOG_INFO_LOW 752
LOG_INFO_MED 752
LogMgr::find_log() 557
LogMgr::list_logs() 557
LogMgr::list_logs_by_id() 557
LOG_NO_EVENTS 752

LogStream Interface 761
LOG_WARNING 752
long_changed() 669
lookup() 58
lookup_id() 177
lookup_if attribute 445
lookup_name() 58
lookup_value_factory() 157

M
make_domain_manager() 39
Manager interface 763, 765
MandatoryProperty exception 438
ManualWorkQueue 869

dequeue() 869
do_work() 869
shutdown() 869

ManualWorkQueueFactory
create_work_queue() 871

MappingFilter interface 391
marshal() 70
marshaled_exception() 893
marshaled_exception_seq sequence 893
MARSHAL exception 992
mask_type() 459
match() 384, 395
match_structured() 385, 396
MaxChainLengthPolicy 845
max_follow_policy attribute 413
max_hop_count attribute 413
max_left() 429, 431
max_link_follow_policy 421
max_list attribute 414
max_match_card attribute 414
max_return_card attribute 414
max_search_card attribute 414
Mechanism Policy 975
member() 620
member_count() 201
Member data type 738
MemberId data type 737
MemberIdList data type 737
member_kind() 620
member_label() 202
member_name() 202, 621
members() method 743
members Attribute 97, 103, 195, 208
member_type() 203
member_visibility() 203
Messaging 887
MissingMandatoryProperty exception 404
mode Attribute 35, 138
modify_constraints() 383
modify_link() 418
modify_mapping_constraints() 393
ModuleDef Interface 119
ModuleDescription Structure 11
move() 43
MyChannel attribute 293
MyID attribute 292, 342
MyOperator attribute 293
Orbix CORBA Programmer’s Reference: Java 1003

N
name() 121, 203
name Attribute 44
name attribute 921
NameComponent structure 257
NamedValue Class 121
NameDynAnyPair Structure 572
Name sequence 256
NameValuePair Structure 572
NamingContextExt interface 271
NamingContext interface 261
_narrow() 3
narrowing, defined 4
NativeDef Interface 123
nested transactions 491
new_context() 266
new_for_consumers() 299
new_for_suppliers() 299
next() 597
next_n() 259, 429, 431
next_one() 260
_nil() 4, 7, 157
NO_IMPLEMENT exception 992
NoMatchingOffers exception 438
NO_MEMORY exception 992
_non_existent() 134
NonTxTargetPolicyValue data type 467
NO_PERMISSION exception 992
NO_RESOURCES exception 992
NO_RESPONSE exception 992
NoSuchGroup exception 739
NoSuchMember exception 738
NotConnected exception 288
NotEmpty exception 266
NotFound exception 266
NotFoundReason enumeration 267
NotifyLog::create() 567
NotifyLog::get_filter() 565
NotifyLog::set_filter() 565
NotifyPublish interface 349
NotifySubscribe interface 351
NotImplemented exception 404
NotMasked exception 456
NotPrepared exception 463
NotProxyOfferId exception 434
NoTransaction exception 463
NotSubtransaction exception 463
NVList Class 125

O
OBJ_ADAPTER exception 992
Object Class 129
ObjectDeactivationPolicy class 827
OBJECT_DEACTIVATION_POLICY_ID
constant 823

ObjectDeactivationPolicyValue
enumeration 823

ObjectGroupFactory Interface 747
ObjectGroup Interface 741
ObjectId 157
object_id Attribute 944

ObjectIdList Sequence Class 157
ObjectId type 932
OBJECT_NOT_EXIST exception 993
object_to_string() 157
obtain_notification_pull_consumer() 343
obtain_notification_pull_supplier() 294
obtain_notification_push_consumer() 344
obtain_notification_push_supplier() 295
obtain_offered_types() 318
obtain_subscription_types() 305
Offer 402
offer_change() 349, 807
OfferId 400
OfferIdIterator 429
OfferIdSeq 400
OfferInfo structure 437
OfferIterator 431

destroy() 431
OfferSeq 400
one-phase commit 490
operation() 181, 187
operation attribute 939
operation_context attribute 940
OperationDef Interface 137
OperationDescription Structure 12
OperationMode Enumeration 13
operator=() Assignment Operators 191,

225
op_name() 188
ORB Class 141
orb_id attribute 932
ORBid Type 13
ORB_init() 7
ORBInitializer interface 927
ORBInitInfo interface 929
OrbixEventsAdmin::ChannelManager 901,

903
Ordering type 888
original_type_def Attribute 23, 211
OTSPolicyValue, Orbix 2000
enhancements 685

OTSPolicyValue data type 465
out() 192, 226
own_credentials 986

P
ParameterDescription Structure 13
ParameterList 569
ParameterMode Enumeration 14
Parameter structure 569
params() 188
params Attribute 138
parent() 63
perform_work() 157
PERMIT 468
PersistenceModePolicy class 829
PERSISTENCE_MODE_POLICY_ID
constant 824

PersistenceModePolicyValue
enumeration 824
 1004 Orbix CORBA Programmer’s Reference: Java

PERSIST_STORE exception 993
pick() method 742
Policy 402
PolicyCurrent class 167
PolicyErrorCode Type 14
PolicyError Exception 14
PolicyFactory interface 935
Policy Interface 163
PolicyList Sequence 15
PolicyManager class 169
PolicyName 400
PolicyNameSeq 400
PolicySeq 400
policy_type Attribute 165
PolicyTypeMismatch 425
PolicyType Type 15
PolicyValue 400
PolicyValueSeq sequence 888
PolicyValue structure 888
poll_next_response() 158
poll_response() 182
PortableInterceptor module 907
post_init() 927
preface xix
Preference 423
pre_init() 927
prepare() 490
PREVENT 467
PrimitiveDef Interface 171
PrimitiveKind Enumeration 15
PrincipalAuthenticator

authenticate() 977
principal_authenticator 985
priority_filter 317
priority_filter attribute 293
PriorityRange structure 888
Priority Type 888
PropertNameSeq 401
Property 402
PropertyMode 453
PropertyName 400
PropertySeq 401
PropertyTypeMismatch exception 404
PropertyValue 401
PropStruct 454
PropStructSeq 453
Proxy 433
ProxyConsumer interface 305
proxy_if attribute 445
ProxyInfo 434
ProxyNotFound exception 288
ProxyOfferId exception 438
ProxyPullConsumer interface 235, 307
ProxyPullSupplier interface 237, 309
ProxyPushConsumer interface 311
ProxyPushSupplier interface 241, 313
ProxySupplier interface 317
PullConsumer::disconnect_pull_consumer
() 247

PullConsumer interface 247
pull_structured_event() 371
PullSupplier interface 249

pull_suppliers attribute 293
push() 809
PushConsumer::disconnect_push_consu
mer() 251

PushConsumer::push() 251
PushConsumer interface 251
push_structured_event() 373, 813
push_structured_events() 365, 811
PushSupplier::disconnect_push_supplier(
) 253

PushSupplier interface 253
push_suppliers attribute 294

Q
QOPPolicy 981
QoSAdmin

get_qos() 283
set_qos() 283
validate_qos() 284

query() 425

R
random_groups() method 749
read_Abstract() 72
read_any() 72
read_any_array() 73
read_boolean() 73
read_boolean_array() 73
read_char() 74
read_char_array() 74
read_double() 74
read_double_array() 74
read_float() 75
read_float_array() 75
read_long() 75
read_long_array() 75
read_longdouble() 76
read_longlong_array() 76
read_Object() 76
read_octet() 77
read_octet_array() 77
ReadonlyDynamicProperty exception 404
ReadonlyProperty exception 438
read_short() 77
read_short_array() 77
read_string () 78
read_TypeCode() 78
read_ulong() 78
read_ulong_array() 78
read_ulonglong() 79
read_ulonglong_array() 79
read_ushort() 79
read_ushort_array() 79
read_Value() 80
read_wchar() 80
read_wchar_array() 80
read_wstring() 81
rebind() 267
rebind_context() 268
REBIND exception 993
Orbix CORBA Programmer’s Reference: Java 1005

rebind_mode() 895
RebindMode type 888
~RebindPolicy() 896
RebindPolicy Class 895
received_credentials 961, 969, 985, 986
received_exception attribute 913
received_exception_id attribute 913
receive_exception() 915
receive_other() 916
receive_reply() 917
receive_request() 947
receive_request_service_contexts() 948
RecoveryCoordinator class 487
recreate() 500
RefCountedLocalObject() constructor 673
RefCountedLocalObject class 673
RefCountedLocalObjectNC()
constructor 675

RefCountedLocalObjectNC class 675
_refcount_value() 209
Register

modify() 440
register_if attribute 445
register_initial_reference() 932
Register interface 437
RegisterNotSupported exception 438
register_policy_factory() 932
register_resource() 477
register_stream() 759
register_subtran_aware() 477
register_synchronization() 478
register_value_factory() 158
related documentation xix
_release() 134
remove() 66, 106, 127
remove_all_constraints() 384
remove_all_filters() 388
remove_all_mapping_constraints() 395
remove_filter() 387
remove_link() 418
remove_listener() 664
remove_member() method 742
remove_own_credentials() 986
_remove_ref() 210, 221, 673, 675
remove_ref() 7
remove_type() 459
replay_completion() 487
~ReplyHandler() 898
ReplyHandler Base class 897
reply_status attribute 940
ReplyStatus type 908
report_event() 759, 761
report_message() 759, 762
RepositoryIdSeq Sequence 16
RepositoryId Type 16
Repository Interface 173
Request Class 179
RequestContext 569
request_id attribute 941
request_id_stem attribute 408
RequestInfo interface 937

RequestSeq Sequence 159
REQUIRES 466
resolve() 269
resolve_initial_references() 159, 933
resolve_str() 272
response_expected attribute 941
result() 182, 189
result Attribute 138
result attribute 941
result_def Attribute 139
resume() 483
resume_connection() 328
_retn() 192, 226
return_value() 182
rewind() 597
rollback() 484, 490, 496
rollback_only() 478, 484
rollback_subtransaction() 492
RoutingTypeRange structure 889
RoutingType type 888
rr_groups() method 749
run() 159

S
scale Attribute 107
scope, configuration 659
SecurityLevel2

Current interface 961, 969
SecurityManager

get_target_credentials() 985, 986
own_credentials 986
principal_authenticator 985
remove_own_credentials() 986

Security module 951
seek() 597
SelectionMethod data type 737
send_deferred() 182
send_exception() 948
sending_exception attribute 944
send_multiple_requests_deferred() 160
send_multiple_requests_oneway() 160
send_oneway() 182
send_other() 949
send_poll() 917
send_reply() 949
send_request() 917
SequenceDef Interface 185
SequenceProxyPullConsumer
interface 321

SequenceProxyPullSupplier interface 325
SequenceProxyPushConsumer
interface 323

SequenceProxyPushSupplier interface 327
SequencePullConsumer interface 361
SequencePullSupplier interface 363
SequencePushConsumer interface 365
SequencePushSupplier interface 367
Sequences 5
ServerRequest Class 187
ServerRequestInfo interface 943
ServerRequestInterceptor interface 947
 1006 Orbix CORBA Programmer’s Reference: Java

SERVER_SIDE 685
ServiceTypeExists exception 456
ServiceTypeName 401
ServiceTypeNameSeq 453
ServiceTypeRepository Interface 453
SessionCachingPolicy 847
set_as_string() 608
set_as_ulong() 608
set_def_follow_policy() 408
set_def_hop_count() 409
set_def_match_card() 409
set_def_return_card() 409
set_def_search_card() 409
set_discriminator() 621
set_elements() 604, 612
set_elements_as_dyn_any() 604, 613
set_exception() 188
set_filter() 760
set_length() 613
set_max_follow_policy() 409
set_max_hop_count() 410
set_max_link_follow_policy() 410
set_max_list() 410
set_max_match_card() 410
set_max_return_card() 410
set_max_search_card() 411
set_members() 617, 625
set_members_as_dyn_any() 617, 626
set_member_timoeout() method 744
set_one_value() 63
SetOverrideType Enumeration 16
set_policy_overrides() 169
set_request_id_stem() 411
set_result() 190
set_return_type() 183
set_slot() 920, 944
set_supports_dynamic_properties() 411
set_supports_modifiable_properties() 411
set_supports_proxy_offers() 411
set_timeout() 484
set_to_default_member() 622
set_to_no_active_member() 622
set_type_repos() 412
set_value() 609
set_values() 63
SHARED 467
shutdown() 665
SlotId type 908
SourceEndpoint::start() 774
SourceEndpoint::stop() 774
SourceEndpoint::suspend() 774
SpecifiedProps 424
SpecifiedServiceTypes 455
StatusActive 464
StatusCommitted 464
StatusCommitting 465
Status enumeration type 464
StatusMarkedRollback 464
StatusNoTransaction 465
StatusPrepared 464
StatusPreparing 465
StatusRolledBack 464

StatusRollingBack 465
StatusUnknown 465
string_alloc() 7
string_changed() 669
StringDef Interface 193
string_dup() 7
StringName data type 272
string_to_object() 161
String_var() Constructors 192
~String_var() Destructor 192
String_var Class 191
StructDef Interface 195
StructMember Structure 17
StructuredProxyPullConsumer
interface 331

StructuredProxyPullSupplier interface 333
StructuredProxyPushConsumer
interface 335

StructuredProxyPushSupplier
interface 337

StructuredPullConsumer interface 369
StructuredPullSupplier interface 371
StructuredPushConsumer interface 373
StructuredPushSupplier interface 375
subscription_change() 351
SubsystemId data type 753
SubtransactionAwareResource class 491
SubtransactionsUnavailable exception 463
SupplierAdmin::obtain_pull_consumer()

243
SupplierAdmin::obtain_push_consumer()

243
SupplierAdmin interface 341
SupportAttributes interface 443
supported_interfaces Attribute 219
supports_dynamic_properties
attribute 443

supports_modifiable_properties
attribute 443

supports_proxy_offers attribute 443
suspend() 485
suspend_connection() 314, 328, 338
synchronization() 899
Synchronization class 493
sync_scope attribute 941
~SyncScopePolicy() 899
SyncScopePolicy class 899
SyncScope type 889
system exceptions 991

T
TAG_POLICIES constant 890
target() 183
target attribute 913
target_is_a() 945
target_most_derived_interface
attribute 945

TCKind Enumeration 17
Terminator class 495
The DynamicAny Module 571
The IT_CORBA Module 671
Orbix CORBA Programmer’s Reference: Java 1007

The IT_LoadBalancing module 737
The IT_Logging module 751
The IT_Naming module 793
threads_total Attribute 865
Timestamp data type 753
to_any() 598
to_name() 272
to_string() 273
to_url() 273
TraderComponents 445
TraderName 401
TransactionalObject class 497
TransactionFactory class 499
TransactionPolicyValue data type 468
TRANSACTION_REQUIRED exception 463,

993
TRANSACTION_ROLLEDBACK
exception 464, 993

TRANSIENT exception 993
TrustedCAGroupPolicy 851, 853, 855, 857
try_pull_structured_events() 364
two-phase commit 490
type() 598
type Attribute 35, 37, 103, 111, 186, 193, 211,

223, 227
TypeCode Class 197
TypedConsumberAdmin::obtain_typed_p
ush_supplier() 503

TypedConsumerAdmin::obtain_typed_pul
l_supplier() 503

type_def Attribute 36, 38, 223
TypedefDef Interface 205
TypeDescription Structure 17
TypedEventChannelFactory::create_typed
_channel() 861

TypedEventChannelFactory::find_typed_c
hannel() 861

TypedEventChannelFactory::find_typed_c
hannel_by_id() 862

TypedEventChannelFactory::list_typed_c
hannels() 862

TypedPushConsumer::get_typed_consum
er() 513

TypedSupplierAdmin::obtain_typed_pull_
consumer() 509

TypedSupplierAdmin::obtain_typed_push
_consumer() 509

TypeMismatch exception 665
TypeMismatch User Exception 598
type_modifier() 204
type_repos attribute 443
TypeRepository 401
TypeStruct 454
typographic conventions xix

U
Unavailable exception 463
unbind() 269
_unchecked_narrow() 4
UnionDef Interface 207
UnionMember Structure 18

UNKNOWN exception 993
UnknownLinkName exception 417
UnknownMaxLeft exception 404
UnknownOfferId exception 404
UnknownPropertyName exception 439
UnknownServiceType exception 405
UnknownTraderName exception 439
unmarshal() 70
unmask_type() 459
unregister_value_factory() 161
UNSHARED 467
UnsupportedFilterableData exception 379
update_member_load() method 743
URLString data type 273

V
validate_event_qos() 305, 319
value() 121, 827, 829
value Attribute 38
ValueBase() Constructors 210
~ValueBase() Destructor 210
ValueBase Class 209
ValueBoxDef Interface 211
ValueDef Interface 213
ValueDescription Structure 18
ValueFactory 221
ValueFactoryBase() Constructor 221
~ValueFactoryBase() Destructor 221
ValueFactoryBase Class 221
ValueFactory Type 221
ValueMemberDef Interface 223
ValueMember Structure 19
value_type 392
Value Type Quick Reference 3
ValueTypeRedefinition exception 456
version Attribute 44
VoteCommit 465, 490
Vote enumeration type 465
VoteReadOnly 465, 490
VoteRollback 465, 490

W
WellKnownAddressingPolicy class 677
WELL_KNOWN_ADDRESSING_POLICY_ID
Constant 671

widening, defined 4
withdraw() 441
withdraw_proxy() 436
withdraw_using_constraint() 442
WorkItem 873

Destroy 873
execute() 873

work_pending() 162
WorkQueue 875

activate() 876
deactivate() 876
enqueue() 875
flush() 876
is_empty() 876
is_full() 876

WorkQueue::enqueue_immediate() 875
 1008 Orbix CORBA Programmer’s Reference: Java

WorkQueue::owns_current_thread() 876
WorkQueuePolicy 877
write_any() 84
write_any_array() 84
write_boolean() 85
write_boolean_array() 85
write_char() 85
write_char_array() 86
write_double() 86
write_double_array() 86
write_float() 87
write_float_array() 87
write_long() 87
write_long_array() 87
write_longlong() 88
write_longlong_array() 88
write_Object() 88
write_octet() 89
write_octet_array() 89
write_short() 89
write_short_array() 90
write_string() 90
write_TypeCode() 90
write_ulong() 90
write_ulong_array() 91
write_ulonglong() 91
write_ulonglong_array() 91
write_ushort() 92
write_ushort_array() 92
write_Value() 92
write_wchar() 92
write_wchar_array() 93
write_wstring() 93
WstringDef Interface 227
WString_var() Constructors 226
~WString_var() Destructor 226
WString_var Class 225

X
X509Certificate interface

get_der_serial_number() 657
IntegerTooLarge exception 647
Orbix CORBA Programmer’s Reference: Java 1009

 1010 Orbix CORBA Programmer’s Reference: Java

	Preface
	Audience
	Organization of this Reference
	Related Documentation
	Document Conventions
	Contacting Micro Focus

	Introduction
	Common CORBA Data Types

	CORBA::AbstractInterfaceDef Interface
	CORBA::AliasDef Interface
	CORBA::Any Class
	CORBA::ArrayDef Interface
	CORBA::AttributeDef Interface
	CORBA::ConstantDef Interface
	CORBA::ConstructionPolicy Interface
	CORBA::Contained Interface
	CORBA::Container Interface
	CORBA::Context Class
	CORBA::ContextList Class
	CORBA::Current Interface
	CORBA::CustomMarshal Value Type
	CORBA::DataInputStream Value Type
	CORBA::DataOutputStream Value Type
	CORBA::DomainManager Interface
	CORBA::EnumDef Interface
	CORBA::Environment Class
	CORBA::Exception Class
	CORBA::ExceptionDef Interface
	CORBA::ExceptionList Class
	CORBA::FixedDef Interface
	CORBA.InterfaceDefPackage.FullI nterfaceDescription Class
	CORBA::IDLType Interface
	CORBA::InterfaceDef Interface
	CORBA::IRObject Interface
	CORBA::ModuleDef Interface
	CORBA::NamedValue Class
	CORBA::NativeDef Interface
	CORBA::NVList Class
	CORBA::Object Class
	CORBA::OperationDef Interface
	CORBA::ORB Class
	CORBA::Policy Interface
	CORBA::PolicyCurrent Class
	CORBA::PolicyManager Class
	CORBA::PrimitiveDef Interface
	CORBA::Repository Interface
	CORBA::Request Class
	CORBA::SequenceDef Interface
	CORBA::ServerRequest Class
	CORBA::String_var Class
	CORBA::StringDef Interface
	CORBA::StructDef Interface
	CORBA::TypeCode Class
	CORBA::TypedefDef Interface
	CORBA::UnionDef Interface
	CORBA::ValueBase Class
	CORBA::ValueBoxDef Interface
	CORBA::ValueDef Interface
	CORBA::ValueFactory
	CORBA::ValueMemberDef Interface
	CORBA::WString_var Class
	CORBA::WstringDef Interface
	CosEventChannelAdmin Module
	CosEventChannelAdmin::Consum erAdmin Interface
	CosEventChannelAdmin::EventCh annel Interface
	CosEventChannelAdmin::ProxyPul lConsumer Interface
	CosEventChannelAdmin::ProxyPul lSupplier Interface
	CosEventChannelAdmin::ProxyPu shConsumer Interface
	CosEventChannelAdmin::ProxyPu shSupplier Interface
	CosEventChannelAdmin::Supplier Admin Interface
	CosEventComm Module
	CosEventComm::PullConsumer Interface
	CosEventComm::PullSupplier Interface
	CosEventComm::PushConsumer Interface
	CosEventComm::PushSupplier Interface
	CosNaming Overview
	CosNaming::BindingIterator Interface
	CosNaming::NamingContext Interface
	CosNaming::NamingContextExt Interface
	CosNotification Module
	CosNotification::AdminProperties Admin Interface
	CosNotification::QoSAdmin Interface
	CosNotifyChannelAdmin Module
	CosNotifyChannelAdmin::Consum erAdmin Interface
	CosNotifyChannelAdmin::EventCh annel Interface
	CosNotifyChannelAdmin::EventCh annelFactory Interface
	CosNotifyChannelAdmin::ProxyCo nsumer Interface
	CosNotifyChannelAdmin::ProxyPu llConsumer Interface
	CosNotifyChannelAdmin::ProxyPu llSupplier Interface
	CosNotifyChannelAdmin::ProxyPu shConsumer Interface
	CosNotifyChannelAdmin::ProxyPu shSupplier Interface
	CosNotifyChannelAdmin::ProxySu pplier Interface
	CosNotifyChannelAdmin::Sequenc eProxyPullConsumer Interface
	CosNotifyChannelAdmin::Sequenc eProxyPushConsumer Interface
	CosNotifyChannelAdmin::Sequenc eProxyPullSupplier Interface
	CosNotifyChannelAdmin::Sequenc eProxyPushSupplier Interface
	CosNotifyChannelAdmin::Structur edProxyPullConsumer Interface
	CosNotifyChannelAdmin::Structur edProxyPullSupplier Interface
	CosNotifyChannelAdmin::Structur edProxyPushConsumer Interface
	CosNotifyChannelAdmin::Structur edProxyPushSupplier Interface
	CosNotifyChannelAdmin::Supplier Admin Interface
	CosNotifyComm Module
	CosNotifyComm::NotifyPublish Interface
	CosNotifyComm::NotifySubscribe Interface
	CosNotifyComm::PullConsumer Interface
	CosNotifyComm::PullSupplier Interface
	CosNotifyComm::PushConsumer Interface
	CosNotifyComm::PushSupplier Interface
	CosNotifyComm::SequencePullCo nsumer Interface
	CosNotifyComm::SequencePullSu pplier Interface
	CosNotifyComm::SequencePushC onsumer Interface
	CosNotifyComm::SequencePushS upplier Interface
	CosNotifyComm::StructuredPullC onsumer Interface
	CosNotifyComm::StructuredPullS upplier Interface
	CosNotifyComm::StructuredPush Consumer Interface
	CosNotifyComm::StructuredPush Supplier Interface
	CosNotifyFilter Module
	CosNotifyFilter::Filter Interface
	CosNotifyFilter::FilterAdmin Interface
	CosNotifyFilter::FilterFactory Interface
	CosNotifyFilter::MappingFilter Interface
	CosTrading Module
	CosTrading::Admin Interface
	CosTrading::ImportAttributes Interface
	CosTrading::Link Interface
	CosTrading::LinkAttributes Interface
	CosTrading::Lookup Interface
	CosTrading::OfferIdIterator Interface
	CosTrading::OfferIterator Interface
	CosTrading::Proxy Interface
	CosTrading::Register Interface
	CosTrading::SupportAttributes Interface
	CosTrading::TraderComponents Interface
	CosTrading::Dynamic Module
	CosTradingDynamic::DynamicPro pEval Interface
	CosTradingRepos Module
	CosTradingRepos::ServiceTypeRe pository Interface
	CosTransactions Overview
	CosTransactions::Control Class
	CosTransactions::Coordinator Class
	CosTransactions::Current Class
	CosTransactions::RecoveryCoordi nator Class
	CosTransactions::Resource Class
	CosTransactions::Subtransaction AwareResource Class
	CosTransactions::Synchronization Class
	CosTransactions::Terminator Class
	CosTransactions::TransactionalO bject Class
	CosTransactions::TransactionFact ory Class
	CosTypedEventChannelAdmin Module
	CosTypedEventChannelAdmin::Ty pedConsumerAdmin Interface
	CosTypedEventChannelAdmin::Ty pedEventChannel Interface
	CosTypedEventChannelAdmin::Ty pedProxyPushConsumer Interface
	CosTypedEventChannelAdmin::Ty pedSupplierAdmin Interface
	CosTypedEventComm Module
	CosTypedEventComm::TypedPush Consumer Interface
	CSI Overview
	CSIIOP Overview
	DsEventLogAdmin Module
	DsEventLogAdmin::EventLog Interface
	DsEventLogAdmin::EventLogFact ory Interface
	DsLogAdmin Module
	DsLogAdmin::BasicLog Interface
	DsLogAdmin::BasicLogFactory Interface
	DsLogAdmin::Iterator Interface
	DsLogAdmin::Log Interface
	DsLogAdmin::LogMgr Interface
	DsLogNotification Module
	DsNotifyLogAdmin Module
	DsNotifyLogAdmin::NotifyLog Interface
	DsNotifyLogAdmin::NotifyLogFact ory Interface
	Dynamic Module
	DynamicAny Overview
	DynamicAny::DynAny Class
	DynamicAny::DynAnyFactory Class
	DynamicAny::DynArray Class
	DynamicAny::DynEnum Class
	DynamicAny::DynFixed Class
	DynamicAny::DynSequence Class
	DynamicAny::DynStruct Class
	DynamicAny::DynUnion Class
	DynamicAny::DynValue Class
	GSSUP Overview
	IT_Buffer::Storage
	IT_Buffer::Segment
	IT_Buffer::Buffer
	IT_Buffer::BufferManager
	IT_Certificate Overview
	IT_Certificate::AVA Interface
	IT_Certificate::AVAList Interface
	IT_Certificate::Certificate Interface
	IT_Certificate::Extension Interface
	IT_Certificate::ExtensionList Interface
	IT_Certificate::X509Cert Interface
	IT_Certificate::X509CertificateFa ctory Interface
	IT_Config Overview
	IT_Config::Configuration Interface
	IT_Config::Listener Interface
	IT_CORBA Overview
	IT_CORBA::RefCountedLocalObje ct Class
	IT_CORBA::RefCountedLocalObje ctNC Class
	IT_CORBA::WellKnownAddressin gPolicy Class
	IT_CORBASEC::ExtendedReceived Credentials
	IT_CosTransactions Module
	IT_CosTransactions::Current Class
	IT_CSI Overview
	IT_CSI::AttributeServicePolicy Interface
	IT_CSI::AuthenticateGSSUPCrede ntials Interface
	IT_CSI::AuthenticationServicePol icy Interface
	IT_CSI::CSICredentials Interface
	IT_CSI::CSICurrent Interface
	IT_CSI::CSICurrent2 Interface
	IT_CSI::CSIReceivedCredentials Interface
	IT_EventChannelAdmin Module
	IT_EventChannelAdmin::EventCh annelFactory Interface
	IT_FPS Module
	IT_FPS::InterdictionPolicy Interface
	Interface IT_GIOP::ClientVersionConstrai ntsPolicy
	Interface IT_GIOP::ClientCodeSetConstrain tsPolicy
	Interface IT_GIOP::Current
	Interface IT_GIOP::Current2
	IT_LoadBalancing Overview
	IT_LoadBalancing::ObjectGroup Interface
	IT_LoadBalancing::ObjectGroupF actory Interface
	IT_Logging Overview
	IT_Logging::EventLog Interface
	IT_Logging::LogStream Interface
	IT_MessagingAdmin Module
	IT_MessagingAdmin::Manager Interface
	IT_MessagingBridge Module
	IT_MessagingBridge::Endpoint Interface
	IT_MessagingBridge::SinkEndpoi nt Interface
	IT_MessagingBridge::SourceEndp oint Interface
	IT_MessagingBridge::EndpointAd min Interface
	IT_MessagingBridgeAdmin Module
	IT_MessagingBridgeAdmin::Bridg e Interface
	IT_MessagingBridgeAdmin::Bridg eAdmin Interface
	IT_NotifyBridge Module
	IT_NotifyBridge::SinkEndpoint Interface
	IT_NamedKey::NamedKeyRegis try
	IT_Naming Module
	IT_Naming::IT_NamingContextEx t Interface
	IT_NotifyChannelAdmin Module
	IT_NotifyChannelAdmin::GroupPr oxyPushSupplier Interface
	IT_NotifyChannelAdmin:GroupSe quenceProxyPushSupplier Interface
	IT_NotifyChannelAdmin::GroupSt ructuredProxyPushSupplier Interface
	IT_NotifyComm Module
	IT_NotifyComm::GroupNotifyPubl ish Interface
	IT_NotifyComm::GroupPushCons umer Interface
	IT_NotifyComm::GroupSequence PushConsumer Interface
	IT_NotifyComm::GroupStructured PushConsumer Interface
	IT_NotifyLogAdmin Module
	IT_NotifyLogAdmin::NotifyLog Interface
	IT_NotifyLogAdmin::NotifyLogFac tory Interface
	IT_PortableServer Overview
	IT_PortableServer::DispatchWork QueuePolicy Interface
	IT_PortableServer::ObjectDeactiv ationPolicy Class
	IT_PortableServer::PersistenceM odePolicy Class
	IT_TLS Overview
	IT_TLS::CertValidator Interface
	IT_TLS_API Overview
	IT_TLS_API::CertConstraintsPolic y Interface
	IT_TLS_API::CertValidatorPolicy Interface
	IT_TLS_API::MaxChainLengthPoli cy Interface
	IT_TLS_API::SessionCachingPolic y Interface
	IT_TLS_API::TLS Interface
	IT_TLS_API::TLSCredentials Interface
	IT_TLS_API::TLSReceivedCredent ials Interface
	IT_TLS_API::TLSTargetCredential s Interface
	IT_TLS_API::TrustedCAListPolicy Interface
	IT_TypedEventChannelAdmin Module
	IT_TypedEventChannelAdmin::Ty pedEventChannelFactory Interface
	IT_WorkQueue Module
	IT_WorkQueue::AutomaticWorkQ ueue Interface
	IT_WorkQueue::AutomaticWorkQ ueueFactory Interface
	IT_WorkQueue::ManualWorkQue ue Interface
	IT_WorkQueue::ManualWorkQue ueFactory Interface
	IT_WorkQueue::WorkItem Interface
	IT_WorkQueue::WorkQueue Interface
	IT_WorkQueue::WorkQueuePolic y Interface
	Messaging Overview
	Messaging::ExceptionHolder Value Type
	Messaging::RebindPolicy Class
	Messaging::ReplyHandler Base Class
	Messaging::SyncScopePolicy Class
	OrbixEventsAdmin Module
	OrbixEventsAdmin::ChannelMana ger
	PortableInterceptor Module
	PortableInterceptor::ClientReque stInfo Interface
	PortableInterceptor::ClientReque stInterceptor Interface
	PortableInterceptor::Current Interface
	PortableInterceptor::Interceptor Interface
	PortableInterceptor::IORInfo Interface
	PortableInterceptor::IORIntercep tor Interface
	PortableInterceptor::ORBInitializ er Interface
	PortableInterceptor::ORBInitInfo Interface
	PortableInterceptor::PolicyFactor y Interface
	PortableInterceptor::RequestInfo Interface
	PortableInterceptor::ServerRequ estInfo Interface
	PortableInterceptor::ServerRequ estInterceptor Interface
	Security Overview
	SecurityLevel1 Overview
	SecurityLevel1::Current Interface
	SecurityLevel2 Overview
	SecurityLevel2::Credentials Interface
	SecurityLevel2::Current Interface
	SecurityLevel2::EstablishTrustPol icy Interface
	SecurityLevel2::InvocationCreden tialsPolicy Interface
	SecurityLevel2::MechanismPolicy Interface
	SecurityLevel2::PrincipalAuthenti cator Interface
	SecurityLevel2::QOPPolicy Interface
	SecurityLevel2::ReceivedCredenti als Interface
	SecurityLevel2::SecurityManager Interface
	SecurityLevel2::TargetCredentials Interface
	System Exceptions
	Index

